
Edited by

Felix Schürmann, Omar Awile, James Courtney Knight, Thomas Nowotny,

James B. Aimone and Markus Diesmann

Published in

Frontiers in Neuroinformatics

Frontiers in Neuroscience

Neuroscience, computing,
performance, and
benchmarks: Why it
matters to neuroscience
how fast we can compute

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/research-topics/19349/neuroscience-computing-performance-and-benchmarks-why-it-matters-to-neuroscience-how-fast-we-can-compute
https://www.frontiersin.org/research-topics/19349/neuroscience-computing-performance-and-benchmarks-why-it-matters-to-neuroscience-how-fast-we-can-compute
https://www.frontiersin.org/research-topics/19349/neuroscience-computing-performance-and-benchmarks-why-it-matters-to-neuroscience-how-fast-we-can-compute
https://www.frontiersin.org/research-topics/19349/neuroscience-computing-performance-and-benchmarks-why-it-matters-to-neuroscience-how-fast-we-can-compute
https://www.frontiersin.org/research-topics/19349/neuroscience-computing-performance-and-benchmarks-why-it-matters-to-neuroscience-how-fast-we-can-compute

April 2023

Frontiers in Neuroinformatics 1 frontiersin.org

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is

a pioneering approach to the world of academia, radically improving the way

scholarly research is managed. The grand vision of Frontiers is a world where

all people have an equal opportunity to seek, share and generate knowledge.

Frontiers provides immediate and permanent online open access to all its

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review,

selection and dissemination processes in academic publishing. All Frontiers

journals are driven by researchers for researchers; therefore, they constitute

a service to the scholarly community. At the same time, the Frontiers journal

series operates on a revolutionary invention, the tiered publishing system,

initially addressing specific communities of scholars, and gradually climbing

up to broader public understanding, thus serving the interests of the lay

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely

collaborative interactions between authors and review editors, who include

some of the world’s best academicians. Research must be certified by peers

before entering a stream of knowledge that may eventually reach the public

- and shape society; therefore, Frontiers only applies the most rigorous

and unbiased reviews. Frontiers revolutionizes research publishing by freely

delivering the most outstanding research, evaluated with no bias from both

the academic and social point of view. By applying the most advanced

information technologies, Frontiers is catapulting scholarly publishing into

a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers

journals series: they are collections of at least ten articles, all centered

on a particular subject. With their unique mix of varied contributions from

Original Research to Review Articles, Frontiers Research Topics unify the

most influential researchers, the latest key findings and historical advances

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or

contribute to one as an author by contacting the Frontiers editorial office:

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual
articles in this ebook is the property
of their respective authors or their
respective institutions or funders.
The copyright in graphics and images
within each article may be subject
to copyright of other parties. In both
cases this is subject to a license
granted to Frontiers.

The compilation of articles constituting
this ebook is the property of Frontiers.

Each article within this ebook, and the
ebook itself, are published under the
most recent version of the Creative
Commons CC-BY licence. The version
current at the date of publication of
this ebook is CC-BY 4.0. If the CC-BY
licence is updated, the licence granted
by Frontiers is automatically updated
to the new version.

When exercising any right under
the CC-BY licence, Frontiers must be
attributed as the original publisher
of the article or ebook, as applicable.

Authors have the responsibility of
ensuring that any graphics or other
materials which are the property of
others may be included in the CC-BY
licence, but this should be checked
before relying on the CC-BY licence
to reproduce those materials. Any
copyright notices relating to those
materials must be complied with.

Copyright and source
acknowledgement notices may not
be removed and must be displayed
in any copy, derivative work or partial
copy which includes the elements
in question.

All copyright, and all rights therein,
are protected by national and
international copyright laws. The
above represents a summary only.
For further information please read
Frontiers’ Conditions for Website Use
and Copyright Statement, and the
applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-83252-165-6
DOI 10.3389/978-2-83252-165-6

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

April 2023

Frontiers in Neuroinformatics 2 frontiersin.org

Neuroscience, computing,
performance, and benchmarks:
Why it matters to neuroscience
how fast we can compute

Topic editors

Felix Schürmann — Swiss Federal Institute of Technology Lausanne, Switzerland

Omar Awile — Swiss Federal Institute of Technology Lausanne, Switzerland

James Courtney Knight — University of Sussex, United Kingdom

Thomas Nowotny — University of Sussex, United Kingdom

James B. Aimone — Sandia National Laboratories, United States

Markus Diesmann — Computational and Systems Neuroscience (INM-6), Institute

of Neuroscience and Medicine, Julich Research Center, Helmholtz Association of

German Research Centres (HZ), Germany

Citation

Schürmann, F., Awile, O., Knight, J. C., Nowotny, T., Aimone, J. B., Diesmann, M.,

eds. (2023). Neuroscience, computing, performance, and benchmarks: Why it

matters to neuroscience how fast we can compute. Lausanne: Frontiers Media SA.

doi: 10.3389/978-2-83252-165-6

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-83252-165-6

April 2023

Frontiers in Neuroinformatics 3 frontiersin.org

06	 Editorial: Neuroscience, computing, performance, and
benchmarks: Why it matters to neuroscience how fast we
can compute
James B. Aimone, Omar Awile, Markus Diesmann, James C. Knight,
Thomas Nowotny and Felix Schürmann

10	 Acceleration of the SPADE Method Using a Custom-Tailored
FP-Growth Implementation
Florian Porrmann, Sarah Pilz, Alessandra Stella,
Alexander Kleinjohann, Michael Denker, Jens Hagemeyer and
Ulrich Rückert

29	 ConGen—A Simulator-Agnostic Visual Language for
Definition and Generation of Connectivity in Large and
Multiscale Neural Networks
Patrick Herbers, Iago Calvo, Sandra Diaz-Pier, Oscar D. Robles,
Susana Mata, Pablo Toharia, Luis Pastor, Alexander Peyser,
Abigail Morrison and Wouter Klijn

47	 Routing Brain Traffic Through the Von Neumann
Bottleneck: Parallel Sorting and Refactoring
Jari Pronold, Jakob Jordan, Brian J. N. Wylie, Itaru Kitayama,
Markus Diesmann and Susanne Kunkel

61	 Parallelization of Neural Processing on Neuromorphic
Hardware
Luca Peres and Oliver Rhodes

81	 A Modular Workflow for Performance Benchmarking of
Neuronal Network Simulations
Jasper Albers, Jari Pronold, Anno Christopher Kurth,
Stine Brekke Vennemo, Kaveh Haghighi Mood, Alexander Patronis,
Dennis Terhorst, Jakob Jordan, Susanne Kunkel, Tom Tetzlaff,
Markus Diesmann and Johanna Senk

102	 Efficient Simulation of 3D Reaction-Diffusion in Models of
Neurons and Networks
Robert A. McDougal, Cameron Conte, Lia Eggleston,
Adam J. H. Newton and Hana Galijasevic

123	 A Scalable Approach to Modeling on Accelerated
Neuromorphic Hardware
Eric Müller, Elias Arnold, Oliver Breitwieser, Milena Czierlinski,
Arne Emmel, Jakob Kaiser, Christian Mauch, Sebastian Schmitt,
Philipp Spilger, Raphael Stock, Yannik Stradmann, Johannes Weis,
Andreas Baumbach, Sebastian Billaudelle, Benjamin Cramer,
Falk Ebert, Julian Göltz, Joscha Ilmberger, Vitali Karasenko,
Mitja Kleider, Aron Leibfried, Christian Pehle and Johannes Schemmel

Table of
contents

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

April 2023

Frontiers in Neuroinformatics 4 frontiersin.org

145	 Deploying and Optimizing Embodied Simulations of
Large-Scale Spiking Neural Networks on HPC Infrastructure
Benedikt Feldotto, Jochen Martin Eppler, Cristian Jimenez-Romero,
Christopher Bignamini, Carlos Enrique Gutierrez, Ugo Albanese,
Eloy Retamino, Viktor Vorobev, Vahid Zolfaghari, Alex Upton,
Zhe Sun, Hiroshi Yamaura, Morteza Heidarinejad, Wouter Klijn,
Abigail Morrison, Felipe Cruz, Colin McMurtrie, Alois C. Knoll,
Jun Igarashi, Tadashi Yamazaki, Kenji Doya and Fabrice O. Morin

168	 Auto-Selection of an Optimal Sparse Matrix Format in the
Neuro-Simulator ANNarchy
Helge Ülo Dinkelbach, Badr-Eddine Bouhlal, Julien Vitay and
Fred H. Hamker

182	 Mapping and Validating a Point Neuron Model on Intel’s
Neuromorphic Hardware Loihi
Srijanie Dey and Alexander Dimitrov

198	 Benchmarking Neuromorphic Hardware and Its Energy
Expenditure
Christoph Ostrau, Christian Klarhorst, Michael Thies and
Ulrich Rückert

216	 Scaling and Benchmarking an Evolutionary Algorithm for
Constructing Biophysical Neuronal Models
Alexander Ladd, Kyung Geun Kim, Jan Balewski, Kristofer Bouchard
and Roy Ben-Shalom

231	 Modernizing the NEURON Simulator for Sustainability,
Portability, and Performance
Omar Awile, Pramod Kumbhar, Nicolas Cornu, Salvador Dura-Bernal,
James Gonzalo King, Olli Lupton, Ioannis Magkanaris,
Robert A. McDougal, Adam J. H. Newton, Fernando Pereira,
Alexandru Săvulescu, Nicholas T. Carnevale, William W. Lytton,
Michael L. Hines and Felix Schürmann

252	 A System-on-Chip Based Hybrid Neuromorphic Compute
Node Architecture for Reproducible Hyper-Real-Time
Simulations of Spiking Neural Networks
Guido Trensch and Abigail Morrison

277	 Fast Simulation of a Multi-Area Spiking Network Model of
Macaque Cortex on an MPI-GPU Cluster
Gianmarco Tiddia, Bruno Golosio, Jasper Albers, Johanna Senk,
Francesco Simula, Jari Pronold, Viviana Fanti, Elena Pastorelli,
Pier Stanislao Paolucci and Sacha J. van Albada

294	 Beyond LIF Neurons on Neuromorphic Hardware
Mollie Ward and Oliver Rhodes

310	 A numerical population density technique for N-dimensional
neuron models
Hugh Osborne and Marc de Kamps

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

April 2023

Frontiers in Neuroinformatics 5 frontiersin.org

332	 Large-scale biophysically detailed model of somatosensory
thalamocortical circuits in NetPyNE
Fernando S. Borges, Joao V. S. Moreira, Lavinia M. Takarabe,
William W. Lytton and Salvador Dura-Bernal

351	 EvtSNN: Event-driven SNN simulator optimized by population
and pre-filtering
Lingfei Mo and Zhihan Tao

364	 STEPS 4.0: Fast and memory-efficient molecular simulations
of neurons at the nanoscale
Weiliang Chen, Tristan Carel, Omar Awile, Nicola Cantarutti,
Giacomo Castiglioni, Alessandro Cattabiani, Baudouin Del Marmol,
Iain Hepburn, James G. King, Christos Kotsalos, Pramod Kumbhar,
Jules Lallouette, Samuel Melchior, Felix Schürmann and
Erik De Schutter

390	 Brian2CUDA: Flexible and Efficient Simulation of Spiking
Neural Network Models on GPUs
Denis Alevi, Marcel Stimberg, Henning Sprekeler, Klaus Obermayer
and Moritz Augustin

412	 Efficient parameter calibration and real-time simulation of
large-scale spiking neural networks with GeNN and NEST
Felix Johannes Schmitt, Vahid Rostami and Martin Paul Nawrot

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

TYPE Editorial
PUBLISHED 30 March 2023
DOI 10.3389/fninf.2023.1157418

OPEN ACCESS

EDITED AND REVIEWED BY

Mohammed Fouda,
University of California, Irvine, United States

*CORRESPONDENCE

Felix Schürmann
felix.schuermann@epfl.ch

†These authors have contributed equally to this
work

RECEIVED 02 February 2023
ACCEPTED 08 March 2023
PUBLISHED 30 March 2023

CITATION

Aimone JB, Awile O, Diesmann M, Knight JC,
Nowotny T and Schürmann F (2023) Editorial:
Neuroscience, computing, performance, and
benchmarks: Why it matters to neuroscience
how fast we can compute.
Front. Neuroinform. 17:1157418.
doi: 10.3389/fninf.2023.1157418

COPYRIGHT

© 2023 Aimone, Awile, Diesmann, Knight,
Nowotny and Schürmann. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

Editorial: Neuroscience,
computing, performance, and
benchmarks: Why it matters to
neuroscience how fast we can
compute

James B. Aimone1†, Omar Awile2†, Markus Diesmann3,4,5†,

James C. Knight6†, Thomas Nowotny6† and Felix Schürmann2*†

1Neural Exploration and Research Laboratory, Center for Computing Research, Sandia National
Laboratories, Albuquerque, NM, United States, 2Blue Brain Project, École Polytechnique Fédérale de
Lausanne, Geneva, Switzerland, 3Institute of Neuroscience and Medicine and Institute for Advanced
Simulation and JARA-Institute Brain Structure-Function Relationships, Jülich Research Centre, Jülich,
Germany, 4Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany, 5Department
of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen University,
Aachen, Germany, 6School of Engineering and Informatics, University of Sussex, Brighton,
United Kingdom

KEYWORDS

performance benchmarking, large-scale simulation, simulation workflows, software

sustainability, neuromorphic computing architectures, subcellular neurosimulation,

biophysically detailed models

Editorial on the Research Topic

Neuroscience, computing, performance, and benchmarks:Why itmatters

to neuroscience how fast we can compute

Introduction

At the turn of the millennium the computational neuroscience community realized that
neuroscience was in a software crisis: software development was no longer progressing as
expected and reproducibility declined. The International Neuroinformatics Coordinating
Facility (INCF) was inaugurated in 2007 as an initiative to improve this situation. The INCF
has since pursued its mission to help the development of standards and best practices. In
a community paper published this very same year, Brette et al. (2007) tried to assess the
state of the field and to establish a scientific approach to simulation technology, addressing
foundational topics, such as which simulation schemes are best suited for the types of models
we see in neuroscience.

In 2015, a Frontiers Research Topic “Python in neuroscience” by Muller et al. (2015)
triggered and documented a revolution in the neuroscience community, namely in the usage
of the scripting language Python as a common language for interfacing with simulation
codes and connecting between applications. The review by Einevoll et al. (2019) documented
that simulation tools have since further matured and become reliable research instruments
used by many scientific groups for their respective questions. Open source and community
standard simulators today allow research groups to focus on their scientific questions and
leave the details of the computational work to the community of simulator developers.

Frontiers inNeuroinformatics 01 frontiersin.org6

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2023.1157418
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2023.1157418&domain=pdf&date_stamp=2023-03-30
mailto:felix.schuermann@epfl.ch
https://doi.org/10.3389/fninf.2023.1157418
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2023.1157418/full
https://www.frontiersin.org/research-topics/19349/neuroscience-computing-performance-and-benchmarks-why-it-matters-to-neuroscience-how-fast-we-can-compute
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Aimone et al. 10.3389/fninf.2023.1157418

A parallel development has occurred, which has been barely
visible in neuroscientific circles beyond the community of
simulator developers: Supercomputers used for large and complex
scientific calculations have increased their performance from ~10
TeraFLOPS (1013 floating point operations per second) in the early
2000s to above 1 ExaFLOPS (1018 floating point operations per
second) in the year 2022. This represents a 100,000-fold increase
in our computational capabilities, or almost 17 doublings of
computational capability in 22 years. Moore’s law (the observation
that it is economically viable to double the number of transistors
in an integrated circuit every other 18–24 months) explains a
part of this; our ability and willingness to build and operate
physically larger computers, explains another part. It should be
clear, however, that such a technological advancement requires
software adaptations and under the hood, simulators had to
reinvent themselves and change substantially to embrace this
technological opportunity. It actually is quite remarkable that—
apart from the change in semantics for the parallelization—this has
mostly happened without the users knowing.

The current Research Topic was motivated by the wish to
assemble an update on the state of neuroscientific software (mostly
simulators) in 2022, to assess whether we can see more clearly
which scientific questions can (or cannot) be asked due to our
increased capability of simulation, and also to anticipate whether
and for how long we can expect this increase of computational
capabilities to continue.

Larger brain and brain tissue models

A promising advance compared to the state of the field 15
years ago is that we now see an increase in the complexity of
network models. Earlier, the balanced random network model
composed of a population of excitatory neurons and a population
of inhibitory neurons was dominating the literature and few studies
reached beyond it. Today, biologically muchmore realistic network
models are in widespread use and have become the new de facto

standard (Albers et al.; Tiddia et al.; Awile et al.; Borges et al.).
These newer models represent the anatomy of the local circuitry
of the mammalian cortex at full scale, meaning with all the neurons
and synapses. As a consequence, neuron and synapse numbers have
increased by an order of magnitude compared to earlier models.
The ability to simulate at full scale is decisive because this removes
all uncertainties on the scaling of emerging network phenomena
with network size which have plagued and occupied theoreticians
for a long time (van Albada et al., 2015).

Expansion to the subcellular realm

Most articles in this collection concentrate on describing
models developed at the level of neurons and synapses. However,
some articles also show how our advances in computing and
simulation technology can be used to extend our modeling and
simulation capability to the membrane and subcellular biochemical
realm. Awile et al. show how subcellular dynamics can be
integrated into NEURON simulations. The works of Chen et al.
and McDougal et al. enable neuroscientists to study the biophysics

of synaptic plasticity and the processes in the spine in detail. As
generally accepted models of plastic processes have not yet been
established on a phenomenological level, the capability to simulate
on the level of subcellular processes is of high relevance.

The role of simulators and workflows

The number of codes targeting the same level of description has
decreased somewhat and remaining codes like NEURON (Awile
et al.) and NEST (Albers et al.; Pronold et al.) have increasingly
embraced and advanced community-based development models
and incorporated ideas of the emerging field of research software
engineering (RSE). At the same time, it is remarkable that after
15 years of intense research the seemingly fundamental question
of whether an event-driven or a clock-driven approach to the
simulation of spiking neuronal networks is more efficient, does not
seem to have found a consensus (Mo and Tao; Hanuschkin et al.,
2010; Krishnan et al., 2018). A reason for this could of course be
that there is simply no general answer for any model and hardware,
and that in practice simulation codes such as NEURON and NEST
employ hybrid approaches.

Furthermore, various variants of language interfaces were
developed for the traditional simulation codes (Borges et al.;
Herbers et al.). Also new simulation codes were developed
expressing network models entirely in Python or implementing
code generators for performance critical sections (Dinkelbach
et al.; Alevi et al.). Of similar importance to the advances of
individual tools is the progress in the digitalization of scientific
workflows (Albers et al.; Awile et al.; Feldotto et al.; Herbers
et al.) and the observation that not only the source codes but also
executable model descriptions of simulation engines are available
in publicly curated repositories.

Keeping innovations
around—Sustainability of scientific
software

Software codes that have been around for 15 years, are still
in widespread use by the community today. Neuroscience must
therefore acknowledge, as other scientific fields already have, that
scientific software can easily have life spans of 40 years or more.
Sustainability and portability are consequently of high relevance
for software tools that serve a whole community rather than a
specific scientific goal as showcased in Chen et al. and Awile et al..
While often new features or increased performance (especially in
the case of simulators) are the milestones of such projects, the
authors observed that a focus on software sustainability can be
an important driver for innovations. Both publications show how
the modernization of complex scientific software can be made
more tractable by first focusing on putting in place a robust
continuous integration, testing, and documentation workflow. As
the software developed in the field is becoming more complex
to satisfy the scientific needs (e.g., supporting multiple numerical
methods, multiphysics simulations, and heterogenous hardware
platforms), the implementation of software modularity and
composability is concurrently becoming increasingly important.

Frontiers inNeuroinformatics 02 frontiersin.org7

https://doi.org/10.3389/fninf.2023.1157418
https://doi.org/10.3389/fninf.2022.837549
https://doi.org/10.3389/fninf.2022.883333
https://doi.org/10.3389/fninf.2022.884046
https://doi.org/10.3389/fninf.2022.884245
https://doi.org/10.3389/fninf.2022.884046
https://doi.org/10.3389/fninf.2022.883742
https://doi.org/10.3389/fninf.2022.847108
https://doi.org/10.3389/fninf.2022.884046
https://doi.org/10.3389/fninf.2022.837549
https://doi.org/10.3389/fninf.2021.785068
https://doi.org/10.3389/fnins.2022.944262
https://doi.org/10.3389/fninf.2022.884245
https://doi.org/10.3389/fninf.2021.766697
https://doi.org/10.3389/fninf.2022.877945
https://doi.org/10.3389/fninf.2022.883700
https://doi.org/10.3389/fninf.2022.837549
https://doi.org/10.3389/fninf.2022.884046
https://doi.org/10.3389/fninf.2022.884180
https://doi.org/10.3389/fninf.2021.766697
https://doi.org/10.3389/fninf.2022.883742
https://doi.org/10.3389/fninf.2022.884046
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Aimone et al. 10.3389/fninf.2023.1157418

These methodologies feature prominently in Feldotto et al.. The
authors focus here on container technologies to enable complex
software setups and workflows for embodied simulations of spiking
neural networks.

If simulator engines are on track, how
about analysis packages?

Only one paper in this series discusses the performance of a data
analytics problem (Porrmann et al.). This may reflect the possibility
that the availability of HPC methods is not the most pressing
problem in the analysis of neuroscientific data. There is certainly
considerable activity in processing pipelines for neuroimaging, but
this field finds other forums (Halchenko et al., 2021). Maybe the
discrepancy also reflects the fact that in the research field concerned
with the spiking activity of neuronal networks, researchers doing
simulations have always been somewhat advanced in embracing
new hardware and software technologies compared to those
involved in analysis.

Embracing the course of computing
architecture evolution

A thread running through many of the articles in this
collection is how to make the best of the currently available but
rapidly changing hardware systems. Since clock frequencies for
processors flattened out in the mid-2000s, processor architectures
have become progressively more parallel. This applies to latency-
optimized CPUs which have become moderately parallel (<100
superscalar cores/CPU) as well as GPUs (>1000s of simple
cores/GPU). It is heartening to see that the community is
embracing this opportunity and challenge. Alevi et al. present
new software for exploiting NVIDIA GPU hardware to accelerate
simulation with the popular Brian simulator (Stimberg et al., 2019),
complementing the existing Brian2GeNN software (Stimberg
et al., 2020). Awile et al. show how code generation can be
used to run the NEURON simulator on GPUs. In a similar
vein, Tiddia et al. present work on how to efficiently run a
large spiking neural network model on a GPU cluster and
Dinkelbach et al. describe work on one specific aspect of efficient
simulations of spiking neural networks on GPU hardware in
their ANNarchy simulation software. Ladd et al. furthermore
present an evolutionary algorithm able to run on GPUs that
accelerates the building of multi-compartment neuron models.
Challenges of how to handle massive parallelism and distributed
computing also arise in the context of classical HPC clusters,
and Pronold et al. describe how one key bottleneck can
be overcome.

Emerging computing architectures

The unsure future of CMOS scaling will present the neural
simulation community with an even broader set of architectures
beyond CPUs and GPUs. There is an increasing trend toward more

specialized components, particularly those that enable artificial
intelligence applications such as artificial neural networks (Reed
et al., 2022). We hope that such specialization may also
enable simulations of biological neural networks without too
many adaptations. Looking beyond ANN accelerators, it is also
reasonable to expect to see even more diversity through platforms,
such as neuromorphic hardware, obtaining widespread use in
HPC systems, particularly since they are proving suitable for
conventional computing applications (Aimone et al., 2022). Beyond
exploiting specific characteristics of biological neural networks,
today’s neuromorphic computing systems such as SpiNNaker,
BrainScales, and Loihi attempt an integration at scale. As a result
they enable complexmodels to be programmed, with biologically fit
neurons shown to be realizable on Intel Loihi (Dey and Dimitrov),
BrainScaleS-2 (Müller et al.), and SpiNNaker (Peres and Rhodes;
Ward and Rhodes).

Rethinking the underlying algorithms

Not only is the computational neuroscience community
embracing the challenges of rapidly developing processor
architectures but it is also capitalizing on the additional computing
power to explore different simulation algorithms and schemes.
For instance, Osborne and de Kamps extend the population
density technique for neural network simulations to higher-
dimensional neuron models and Chen et al. improve on memory
efficiency and simulation speed for detailed molecular simulations
of neurons. Similarly, McDougal et al. describe the efficient
simulation of 3D reaction-diffusion processes in neuronal
networks extending on more traditional 1D simulations for
dendrites and axons.

Time

While GPUs and large, massively-parallel HPC clusters were
not built for the purpose of brain simulations, the inherently
parallel nature of how brains operate, makes such systems
reasonably well-suited to simulating brain models. However, we
must not forget that while computers have become more powerful
(i.e., they are able to do more things in parallel), they have
not become much faster—ever since frequency scaling (Dennard
Scaling) had to stop due to limits in how much heat can be
dissipated from an integrated circuit. This puts in question certain
scientific problems which require the simulation of long time
durations such as needed, for example, in plasticity studies, or
extensive training runs in the emerging field of neuro-inspired
machine learning. While algorithmic innovations may help us to
rethink the supposedly critical sequential paths of computational
problems (e.g., AlphaFold applied these to the problem of
protein folding), an alternative approach may be the acceleration
factors that can be achieved from mapping the computational
problem to physical instantiations of the computation such
as done by Brainscales-2 (Müller et al.) or as indicated by
Trensch and Morrison through spatial computations using SoCs
and FPGAs.

Frontiers inNeuroinformatics 03 frontiersin.org8

https://doi.org/10.3389/fninf.2023.1157418
https://doi.org/10.3389/fninf.2022.884180
https://doi.org/10.3389/fninf.2021.723406
https://doi.org/10.3389/fninf.2022.883700
https://doi.org/10.3389/fninf.2022.884046
https://doi.org/10.3389/fninf.2022.883333
https://doi.org/10.3389/fninf.2022.877945
https://doi.org/10.3389/fninf.2022.882552
https://doi.org/10.3389/fninf.2021.785068
https://doi.org/10.3389/fninf.2022.883360
https://doi.org/10.3389/fnins.2022.884128
https://doi.org/10.3389/fnins.2022.867027
https://doi.org/10.3389/fnins.2022.881598
https://doi.org/10.3389/fninf.2022.883796
https://doi.org/10.3389/fninf.2022.883742
https://doi.org/10.3389/fninf.2022.847108
https://doi.org/10.3389/fnins.2022.884128
https://doi.org/10.3389/fninf.2022.884033
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Aimone et al. 10.3389/fninf.2023.1157418

Benchmarking as the compass

As the diversity of hardware architectures grows, it will be
increasingly important to quantify the suitability of those platforms
for actual brain tissue model simulations. It is thus necessary to
develop benchmarks (models) and benchmarking (measuring) to
objectively quantify the performance of such platforms.While HPC
systems have often varied in components and configurations, there
have long been standards for linear algebra such as Linpack that
allowed rigorous, even if not perfect, comparisons. Herbers et al.,
Albers et al., and Schmitt et al. make a step toward generic and
simulator agnostic frameworks for benchmarking and simulation.
However, as we look toward a future with specialized neural
network accelerators and general purpose von Neumann systems,
the challenge in benchmarking will become more pronounced.
This is especially a challenge with neuromorphic hardware, which
is both rapidly evolving and exhibits a diversity of approaches
with mixed advantages in speed and energy, resulting in a
complex basis for evaluation (Trensch and Morrison; Müller
et al.). Furthermore, the concept of a FLOP or matrix multiply
operation is less meaningful in spiking neural simulations which
may be event-driven and sparse. One proposed approach is to
develop concrete benchmark spiking networks that can be tested
on both neuromorphic systems and conventional processors, which
is proving useful in obtaining an early assessment of the relative
efficiency of neuromorphic systems compared to both conventional
systems and real brains (Ostrau et al.; Kurth et al., 2022).

Author contributions

All authors contributed equally to the editing of the Research
Topic. All authors contributed equally to the writing of the article
and approved the submitted version.

Funding

JA was supported by the Collaborative Research in
Computational Neuroscience (CRCNS) program through the US
Department of Energy’s Advanced Scientific Computing Research
office. The work of OA and FS is supported by funding to the Blue
Brain Project, a research center of the École Polytechnique Fédérale
de Lausanne (EPFL), from the Swiss government’s ETH Board of
the Swiss Federal Institutes of Technology. JK was funded by the
EPSRC (Grant Number EP/V052241/1). MD and TN are funded
by the European Union’s Horizon 2020 research and innovation
programme under Grant Agreement 945539 (HBP SGA3). Finally,
MD’s work was supported by HiRSE_PS, the Helmholtz Platform
for Research Software Engineering—Preparatory Study, an
innovation pool project of the Helmholtz Association.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

References

Aimone, J. B., Date, P., Fonseca-Guerra, G. A., Hamilton, K. E., Henke, K., Kay,
B., et al. (2022). A review of non-cognitive applications for neuromorphic computing.
Neuromorphic Comput. Eng. 2, 032003. doi: 10.1088/2634-4386/ac889c

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., et al.
(2007). Simulation of networks of spiking neurons: a review of tools and strategies. J.
Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-0038-6

Einevoll, G. T., Destexhe, A., Diesmann, M., Grün, S., Jirsa, V., de Kamps,
M., et al. (2019). The scientific case for brain simulations. Neuron 102, 735–744.
doi: 10.1016/j.neuron.2019.03.027

Halchenko, Y. O., Meyer, K., Poldrack, B., Solanky, D. S., Wagner, A. S., Gors, J.,
et al. (2021). DataLad: distributed system for joint management of code, data, and their
relationship. J. Open Source Softw. 6, 3262. doi: 10.21105/joss.03262

Hanuschkin, A., Kunkel, S., Helias, M., Morrison, A., and Diesmann, M. (2010).
A general and efficient method for incorporating precise spike times in globally
time-driven simulations. Front. Neuroinform. 4, 113. doi: 10.3389/fninf.2010.00113

Krishnan, J., Porta Mana, P., Helias, M., Diesmann, M., and Di Napoli, E. (2018).
Perfect detection of spikes in the linear sub-threshold dynamics of point neurons.
Front. Neuroinform. 11, 75. doi: 10.3389/fninf.2017.00075

Kurth, A. C., Senk, J., Terhorst, D., Finnerty, J., and Diesmann,
M. (2022). Sub-realtime simulation of a neuronal network of natural
density. Neuromorphic Comput. Eng. 2, 021001. doi: 10.1088/2634-4386/a
c55fc

Muller, E., Bednar, J. A., Diesmann, M., Gewaltig, M.-O., Hines, M., and
Davison, A. P. (2015). Python in neuroscience. Front. Neuroinform. 9, 11.
doi: 10.3389/fninf.2015.00011

Reed, D., Gannon, D., and Dongarra, J. (2022). Reinventing high performance
computing: challenges and opportunities. arXiv [Preprint] arXiv:2203.02544.
doi: 10.48550/arXiv.2203.02544

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and
efficient neural simulator. eLife 8, e47314. doi: 10.7554/eLife.47314.028

Stimberg, M., Goodman, D. F. M., and Nowotny, T. (2020). Brian2GeNN:
accelerating spiking neural network simulations with graphics hardware. Sci. Rep. 10,
410. doi: 10.1038/s41598-019-54957-7

van Albada, S. J., Helias, M., and Diesmann, M. (2015). Scalability of asynchronous
networks is limited by one-to-one mapping between effective connectivity and
correlations. PLoS Comput. Biol. 11, e1004490. doi: 10.1371/journal.pcbi.1004490

Frontiers inNeuroinformatics 04 frontiersin.org9

https://doi.org/10.3389/fninf.2023.1157418
https://doi.org/10.3389/fninf.2021.766697
https://doi.org/10.3389/fninf.2022.837549
https://doi.org/10.3389/fninf.2023.941696
https://doi.org/10.3389/fninf.2022.884033
https://doi.org/10.3389/fnins.2022.884128
https://doi.org/10.3389/fnins.2022.873935
https://doi.org/10.1088/2634-4386/ac889c
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1016/j.neuron.2019.03.027
https://doi.org/10.21105/joss.03262
https://doi.org/10.3389/fninf.2010.00113
https://doi.org/10.3389/fninf.2017.00075
https://doi.org/10.1088/2634-4386/ac55fc
https://doi.org/10.3389/fninf.2015.00011
https://doi.org/10.48550/arXiv.2203.02544
https://doi.org/10.7554/eLife.47314.028
https://doi.org/10.1038/s41598-019-54957-7
https://doi.org/10.1371/journal.pcbi.1004490
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

TECHNOLOGY AND CODE
published: 16 September 2021
doi: 10.3389/fninf.2021.723406

Frontiers in Neuroinformatics | www.frontiersin.org 1 September 2021 | Volume 15 | Article 723406

Edited by:

Felix Schürmann,

École Polytechnique Fédérale de

Lausanne, Switzerland

Reviewed by:

Marcel Stimberg,

Sorbonne Université, France

Fernando S. Borges,

Federal University of ABC, Brazil

Bruno Golosio,

University of Cagliari, Italy

*Correspondence:

Florian Porrmann

fporrmann@techfak.uni-bielefeld.de

Received: 10 June 2021

Accepted: 16 August 2021

Published: 16 September 2021

Citation:

Porrmann F, Pilz S, Stella A,

Kleinjohann A, Denker M,

Hagemeyer J and Rückert U (2021)

Acceleration of the SPADE Method

Using a Custom-Tailored FP-Growth

Implementation.

Front. Neuroinform. 15:723406.

doi: 10.3389/fninf.2021.723406

Acceleration of the SPADE Method
Using a Custom-Tailored FP-Growth
Implementation
Florian Porrmann 1*, Sarah Pilz 1, Alessandra Stella 2,3, Alexander Kleinjohann 2,3,

Michael Denker 2, Jens Hagemeyer 1 and Ulrich Rückert 1

1Cognitronics and Sensor Systems, CITEC, Bielefeld University, Bielefeld, Germany, 2 Institute of Neuroscience and Medicine

(INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10),

Jülich Research Center, Jülich, Germany, 3 RWTH Aachen University, Aachen, Germany

The SPADE (spatio-temporal Spike PAttern Detection and Evaluation) method was

developed to find reoccurring spatio-temporal patterns in neuronal spike activity (parallel

spike trains). However, depending on the number of spike trains and the length of

recording, this method can exhibit long runtimes. Based on a realistic benchmark data

set, we identified that the combination of pattern mining (using the FP-Growth algorithm)

and the result filtering account for 85–90% of the method’s total runtime. Therefore, in this

paper, we propose a customized FP-Growth implementation tailored to the requirements

of SPADE, which significantly accelerates pattern mining and result filtering. Our version

allows for parallel and distributed execution, and due to the improvements made, an

execution on heterogeneous and low-power embedded devices is now also possible.

The implementation has been evaluated using a traditional workstation based on an Intel

Broadwell Xeon E5-1650 v4 as a baseline. Furthermore, the heterogeneous microserver

platform RECS|Box has been used for evaluating the implementation on two HiSilicon

Hi1616 (Kunpeng 916), an Intel Coffee Lake-ER Xeon E-2276ME, an Intel Broadwell

Xeon D-D1577, and three NVIDIA Tegra devices (Jetson AGX Xavier, Jetson Xavier NX,

and Jetson TX2). Depending on the platform, our implementation is between 27 and 200

times faster than the original implementation. At the same time, the energy consumption

was reduced by up to two orders of magnitude.

Keywords: FP-growth, pattern mining, spike train analysis, embedded devices, performance optimization, low

power, parallel and distributed computing, heterogeneous computing

1. INTRODUCTION

Increasing evidence from neuroscience suggests that in order to understand the principles of
information processing in the brain, it is important to study not only the activity of isolated neurons
in response to the environment and behavior, but also to investigate the concerted dynamics
of neuronal networks as a whole. With the rapid advancement of electrophysiological recording
techniques in the recent decades, scientists are now able tomonitor the spiking activity of individual
nerve cells in large neuronal populations, enabling the investigation of the dynamics of hundreds
of neurons recorded in parallel (e.g., Jun et al., 2017; Brochier et al., 2018; Steinmetz et al., 2018;
Juavinett et al., 2019; Chen et al., 2020). The cell assembly hypothesis (Hebb, 1949) postulates
that information is represented by interactions within groups of neurons. Signatures of assemblies

10

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2021.723406
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2021.723406&domain=pdf&date_stamp=2021-09-16
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:fporrmann@techfak.uni-bielefeld.de
https://doi.org/10.3389/fninf.2021.723406
https://www.frontiersin.org/articles/10.3389/fninf.2021.723406/full

Porrmann et al. Acceleration of SPADE

in the observed dynamics are groups of synchronously active
neurons (e.g., Harris, 2005), or spatio-temporal sequences of
neuronal activation. Efficient methods to detect and characterize
this coordinated activity are in high demand (Quaglio et al.,
2018). Such methods need to deal with challenges related to
the highly non-stationary spike time series and the statistical
complexity of high-dimensional activity patterns, since the
number of possible patterns exponentially increases with the
number of observed neurons. Several complementary methods
have been developed and calibrated in the past (e.g., Grün
et al., 2002a,b; Pipa et al., 2008; Gerstein et al., 2012; Lopes-
dos Santos et al., 2013; Torre et al., 2013; Russo and Durstewitz,
2017; Diana et al., 2019; Watanabe et al., 2019; Williams et al.,
2020). While the nature and underlying assumptions of these
approaches differ, they share the need to scale in runtime
performance as the number of observed neurons or the length
of the recording increases. This holds true, in particular, with
an increasing interest to employ such techniques to analyze and
validate simulations of large-scale models of neuronal networks
(cf., e.g., Trensch et al., 2018; Gutzen et al., 2018) that easily
exceed the volume of available experimental data.

One of the state-of-the-art methods to detect spatio-temporal
patterns in large sets of parallel spike trains (Quaglio et al.,
2018) is SPADE1, originally proposed by Torre et al. (2013).
The method is based on frequent itemset mining (Agrawal
et al., 1993). The existing Python implementation of the SPADE
method in the Electrophysiology Analysis Toolkit2 (Elephant;
RRID:SCR_003833; Denker et al., 2018) is able to analyze current
data sets of moderate size at relatively high computational
cost, making the availability of distributed compute resources
mandatory and discouraging interactive exploratory analyses.
In this work, we put forward an accelerated version of SPADE
by optimizing the underlying pattern mining flow using a
custom-tailored FP-Growth3 (Han et al., 2000) implementation
to address the need for enhanced scalability and thereby increase
the range of data sets for which the method is practically
applicable. Additionally, we show that our optimizations enable
the execution of SPADE on heterogeneous and low-power
embedded devices, which is significantly more energy-efficient
than the execution on a modern workstation.

Previously, the focus of development efforts related to SPADE
concentrated on improving or extending the capabilities of the
method, which makes this work the first to address performance
and energy efficiency. After Torre et al. (2013) developed the
concepts for the statistical evaluation of synchronous spike
patterns through FP-Growth, Yegenoglu et al. (2016) introduced
a technique to identify spatio-temporal patterns in massively
parallel spike trains using formal concept analysis (FCA; Ganter
and Wille, 1999), extending the detection of patterns from
synchronous to spike patterns with delays. In 2017, these
approaches were combined by Quaglio et al. (2017). Since the
FCA implementation used by Yegenoglu et al. (2016) required
significantly more time and computational power, it was replaced

1Spike PAtternDetection and Evaluation.
2http://python-elephant.org
3Frequent Pattern Growth.

by FP-Growth. Stella et al. (2019) introduced an extension to
SPADE, called 3d-SPADE, which also accounts for the temporal
extent of patterns with delays in the significance estimation. The
SPADEmethod is explained in more detail in section 2.3.

On a similar path, the FP-Growth algorithm used in
SPADE (Picado-Muiño et al., 2013) was subject to numerous
extensions and modifications from a methodological perspective.
PicadoMuiño et al. (2012) and Borgelt and Picado-Muiño (2013)
introduced a version of FP-Growth in continuous time called
CoCoNAD, which avoids the need to discretize the input spike
train. CoCoNAD was used for benchmarking of artificial data
(Picado-Muiño et al., 2013) and analyses of electrophysiological
experiments (Torre et al., 2016). Furthermore, CoCoNAD was
extended in Borgelt et al. (2015) to account for patterns
with selective neuronal participation, or fuzzy patterns. When
extending the SPADE analysis to delayed patterns, it was
necessary to resort back to discretizing data (Quaglio et al., 2017).

In contrast to SPADE, where performance improvements were
never the main focus, several publications focused primarily on
improving and accelerating FP-Growth through, e.g., parallel or
distributed computing. A detailed explanation of the pattern
mining and FP-Growth related terms used in this section can be
found in sections 2.1, 2.2. The first parallel FP-Growth variation,
called MLFPT, was developed by Zaiane et al. (2001). It divides
the input database across all available processors and creates a
local FP-tree4, the data structure used by FP-Growth, on each.
Afterward, a global header table, a linked list used by FP-Growth,
is created, linking the different items to their occurrences in local
FP-trees. Each processor is assigned an equal portion of the entire
itemset on which it performs the pattern mining step.

Chen et al. (2009) developed a parallel FP-Growth variant,
called Grided FP-Growth (GFP-Growth), designed to be used on
large compute clusters. The main difference to the original FP-
Growth is that they skip the FP-tree construction by directly
mining the conditional pattern bases, sub-databases, created
from the FP-tree, using the projection method proposed in Bin
and Li (2008). This allows them to split the mining process into
independent groups, which can be executed in parallel on any
number of compute nodes.

Li et al. (2008) proposed a massively parallel and distributed
implementation, called PFP-Growth. Their approach is based on
MapReduce (Dean and Ghemawat, 2004), a programming model
for large-scale distributed computing. By dividing the input
data into independent groups, they can distribute the workload
across massive compute clusters without any computational
dependencies between the different nodes. In their tests, they
achieved nearly linear performance scaling when executing their
implementation with a data set consisting of 802,939 web
pages on between 100 and 2,500 computers. Zhou et al. (2010)
improved PFP-Growth by adding load balance features, resulting
in a new version they called BPFP-Growth. Through proper
load balancing during the parallel execution of the pattern
mining process, a speedup of 1.5 over the original PFP-Growth
implementation was achieved. Xia et al. (2018) improved the
performance of PFP-Growth when processing a massive number

4Frequent Pattern Tree.

Frontiers in Neuroinformatics | www.frontiersin.org 2 September 2021 | Volume 15 | Article 72340611

http://python-elephant.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

of small files on a Hadoop compute platform, resulting in
the creation of MR-PFP-Growth. Shi et al. (2017) proposed a
distributed FP-Growth algorithm, using Apache Spark5 called
DFPS, which achieved a significant speedup over PFP-Growth.

The previously introduced parallel implementations for FP-
Growth are designed for use with large data sets, containing a
vast number of transactions (1–100 million) and items (more
than 10 million), and target large-scale compute clusters with
up to several thousand nodes. The algorithms were developed to
make pattern mining on these data sets possible in a reasonable
time frame. In addition, the use of such massive compute clusters
requires good load balancing and fault tolerance so that the
computation does not have to be restarted in case a node fails.
In contrast, the data sets used with SPADE are relatively small,
consisting of only a few thousand transactions with, on average,
two to three thousand items. Furthermore, while the cited
implementations target the parallelization of the baseline FP-
Growth algorithm, the version developed in this work is custom-
tailored for the use in the SPADEmethod. As such, the improved
implementation presented here, based around a rather naive
approach to parallel and distributed computing of FP-Growth, is
more suitable for the given problem, as it does not inhibit the
portability and can be easily disabled if required. One of the main
differences between our implementation and the ones described
previously is based on the filter function, a part of the SPADE
algorithm which significantly reduces the number of patterns
mined. It enables us to pursue an implementation approach
that would not be possible under normal conditions. Therefore,
using code optimizations and minimized overhead, we managed
to achieve high performance and high energy efficiency using
server- and distributed embedded processors.

The main contributions of this work are as follows.

1. We propose an optimized FP-Growth implementation,
custom-tailored to the problem presented by the SPADE
method. A significant performance increase was achieved by
incorporating the pattern filtering function used by SPADE
into the pattern mining. Furthermore, we have implemented
parallelization and distributed computing concepts in our
customized version of FP-Growth to take full advantage of the
available hardware.

2. Moving the pattern filtering task into FP-Growth resulted
in a considerable decrease in memory consumption, to the
point where execution on low-power embedded devices is now
possible.

3. We evaluated our implementation’s performance and showed
that a significant performance increase could be achieved with
our optimizations compared to the original.

The remainder of this article is structured as follows. In
section 2, we first provide an introduction to pattern mining.
Subsequently, we introduce the SPADE method, in particular,
its core algorithm, FP-Growth. We identify the bottlenecks
of the current implementation and present our optimizations
in terms of efficient data handling, memory optimizations,
and parallelizations. In section 3, we compare the runtime,

5http://spark.apache.org/

energy efficiency, and memory consumption of the original
implementation to our optimized solution. For this purpose,
we run the optimized version on several different platforms.
We demonstrate that our improvements can achieve up to 280
times higher energy efficiency in addition to an acceleration by a
factor of up to 200. Finally, in section 4, we discuss the impact
of our optimizations on SPADE’s overall runtime and energy
efficiency and present possible future research to improve its
performance further.

2. METHOD

In this section, we propose an optimization to significantly
accelerate the SPADE method used to detect spike patterns
in massively parallel spike trains. Therefore, we first discuss
the method itself, focusing on the FP-Growth algorithm used
to identify frequent spike patterns. Afterward, we present our
version of FP-Growth, optimized for use in the SPADE pipeline.
By integrating the result filtering step, that had previously been
performed separately, directly into the pattern mining process,
we achieve a significant performance improvement.

2.1. Introduction to Frequent Pattern
Mining
In this paragraph, we first give a short introduction into frequent
pattern mining and its terminology. Afterward, these concepts
are showcased in a small example. Frequent pattern mining
refers to the task of identifying reoccurring patterns within large
databases. Agrawal et al. (1993) initially introduced this concept
to find patterns in large databases of customer transactions, e.g.,
from large stores or businesses. Such patterns can, for instance, be
used to optimize the product placement in a supermarket, as they
provide information about products commonly bought together.
In the following, the terms used in conjunction with pattern
mining and the concept itself are explained in more detail. Most
terms reflect the method’s origin in purchase analysis, i.e., item
and transaction. Given an itemset I, a transaction T is defined
as a subset of items from I. A transaction database D is defined
as a collection of transactions. A frequent pattern (itemset) is
a combination of items within a transaction that reoccurs in
one or more different transactions of the same database. The
occurrence count of a pattern is called support S. There are
different ways to limit the number of patterns produced, e.g.,
by setting a minimum pattern length, i.e., that a pattern has
to contain at least n-items to be counted or by specifying a
minimum occurrence count, i.e., that a pattern has to occur at
least m-times to be counted. Additionally, there are two unique
categories of frequent patterns: closed frequent patterns and
maximal frequent patterns. A pattern P is considered closed when
there exists no superset, i.e., a pattern containing P with the same
support S as P. Similarly, a pattern P is regarded as a maximal
frequent pattern if it has no frequent superset, i.e., there exists no
frequent pattern containing P.

The following example showcases the concepts defined above.
A pattern P is depicted in the form P = {i1, ..., in} (S) with i ∈ I.
Given the itemset I =

{

a, b, c, d
}

and database D = {T1,T2,T3}

Frontiers in Neuroinformatics | www.frontiersin.org 3 September 2021 | Volume 15 | Article 72340612

http://spark.apache.org/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

FIGURE 1 | Left: All patterns from the pattern mining example presented in section 2.1. Right: The header table and FP-tree created from the same

example transactions.

where the transactions are T1 =
{

a, b, c
}

, T2 =
{

a, c, d
}

and
T3 =

{

a, b, c, d
}

, without any limitations, 15 frequent patterns
can be found in D, as shown in Figure 1. Once the minimum
pattern length n is increased to 2, only 11 patterns remain. If
now also a minimum occurrence s of 2 is specified, the amount
of patterns is reduced to 7. Of these patterns, a, c(3), a, c, d(2)
and a, b, c(2) are closed and a, c, d(2) and a, b, c(2) are maximal
frequent patterns.

2.2. FP-Growth-Based Pattern Mining
The FP-Growth algorithm is a highly efficient method to mine
frequent patterns from a transaction database. Other well-known
algorithms for frequent pattern mining, such as the Eclat (Zaki,
2000) or the Apriori (Agrawal and Srikant, 1994) algorithm,
perform this task through candidate generation, which has the
drawback that it can consume a large amount of memory. FP-
Growth builds a so-called FP-tree, which contains all information
about the relations between different items in all transactions. By
traversing this tree and recursively creating so-called conditional
sub-trees, it is possible to find all frequent patterns without
candidate generation, while also requiring significantly less
memory. The algorithm operates as follows. First, it iterates over
the entire database to store all unique items and their occurrence
in a list L, sorted by occurrence. Afterward, all items with an
occurrence count below the threshold can directly be discarded.
The same applies to transactions that have fewer items than
required for the minimum pattern length. Next, the items in
each transaction are sorted in descending order based on their

occurrence. Subsequently, the actual FP-tree is created by first
creating a root-node and sequentially inserting the transactions
into the tree. Starting at the root node, for the first item of the
current transaction, either a new node is created (if no node
for this item exists) or the counter is incremented (if a node
exists). This process is repeated for each item in the transaction,
always using the newly created node as a base. Once the current
transaction has been fully processed, the same process is done for
the next transaction, starting once again at the root node. This is
repeated until all transactions have been processed and the FP-
tree is completed. In parallel to the FP-tree, a header table is built,
linking each unique item to its first occurrence in the tree, which
then, in turn, links to the second occurrence, and so on. These
links are known as node-links. The items’ order is defined by their
occurrence and is equal to the order in the previously created list
L. The header table and the FP-tree for the example presented in
section 2.1 are depicted in Figure 1.

After the FP-tree and the header table are created, the frequent
patterns are mined. This is done by iterating over the header
table and evaluating the node-link for the respective item i. If i
only occurs once within the tree, the frequent patterns can be
determined by creating all combinations of i with its preceding
nodes. Should i occur multiple times in the tree, the preceding
nodes form the so-called conditional pattern base of i, from
which a sub-FP-tree is created, called conditional FP-tree of i. The
mining process is recursively performed on the conditional tree
until all patterns have been mined. Once all patterns for a header
table entry have been computed, the same process is repeated for

Frontiers in Neuroinformatics | www.frontiersin.org 4 September 2021 | Volume 15 | Article 72340613

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

the next entry until the entire header table has been processed,
and therefore, all frequent patterns have been mined. It should
be noted that there exist no dependencies between the different
header table iterations, meaning that they could, in theory, all be
performed in parallel. The compute complexity of the FP-Growth
algorithm depends on the number of items in the header table
and the maximum depth of the FP-tree, i.e., again, the number of
items. Let n be the number of items. Therefore, the complexity of
FP-Growth is O(n2) (Wicaksono et al., 2020).

2.3. Spike Activity Analysis Using the
SPADE Method
The SPADE method was introduced by Torre et al. (2013) and
has since been continuously advanced and improved (Quaglio
et al., 2017; Stella et al., 2019). Using SPADE, it is possible to
detect spatio-temporal spike patterns in parallel spike trains.
Spatio-temporal spike patterns are precisely reoccurring delayed
sequences of spikes across neurons. They are defined by the
times of their occurrences, by the neurons involved, and by
the temporal delays between spikes. In order to detect spatio-
temporal patterns, SPADE employs frequent itemset mining to
find reoccurring candidate patterns in the parallel spike train
data given as input. The mined patterns are then evaluated for
significance by Monte Carlo testing. First, different realizations
of surrogate data are generated, which are mined using FP-
Growth similarly to the original data. Second, patterns detected
in surrogates are grouped by shared characteristics, i.e., their
number of spikes, duration in time, and number of occurrences,
and a p-value is estimated for each group. In a third step,
candidate patterns are selected according to their p-value,
correcting for multiple testing. Finally, the set of statistically
significant patterns is further reduced by conditionally testing
each pair of patterns with common spikes. Within this study, we
concentrate on the mining of frequent patterns without taking
into consideration the statistical tests.

In terms of required computation, between 85 and 90% of
SPADE’s runtime is spent detecting spike patterns within the
parallel spike train data fed into the method. For this, first, the
spike trains for all N neurons are discretized into time bins
by segmenting time into small intervals with a bin size b of
typically a few milliseconds and mapping each spike onto one
bin. If two spikes of the same neuron fall into the same bin, they
are considered as one spike. This binning technique accounts
for small temporal variability that could prevent patterns from
being detected. As a next step, in order to detect delayed spike
patterns, a sliding window with a length of w bins (duration
equal to w · b) is shifted bin by bin over the data (Figure 2A).
The quantity ω coincides with the maximal allowed duration of
a pattern, calculated as the difference in bins between the first
and the last spike. Each window is first provided in a matrix
representation with the neurons mapped to the rows and the bins
to the columns. For further computation, the matrix is converted
to a row vector (cf., Figure 2B). For each element within the
window, its position in the vector is calculated as n · w + B,
where n is the neuron id (row), w the length of the window,
and B the bin id (column). We use ω to denote the index of

the window positions (cf. Figures 2A,C). This row vector equals
a transaction, as described in section 2.1. The vectors of all
windows compose the input data for FP-Growth (see section 2.2),
the pattern mining algorithm employed by SPADE. Figure 2C
shows a highly simplified version of the pattern mining process,
and Figure 2D depicts the spike trains fed into SPADE with the
found pattern highlighted in green.

Since typically, a large number of neurons is involved, only
closed frequent patterns are kept, while non-closed patterns
are rejected (Torre et al., 2013). After the mining is done, the
output can still contain repeating patterns caused by the shifting
window. A pattern with a duration shorter than the shifting
window size will reoccur several times in different windows.
Therefore, only those patterns whose first spike occurs in the
first bin are kept, and all others are discarded. This can be
quickly done, assuming that P is the position of the pattern
within the row vector by checking if P mod w = 0 for any of
the occurrences of the pattern. Furthermore, a pattern should
also contain a minimum number of individual neurons and only
occur a maximum number of times to be considered relevant.
Patterns with fewer individual neurons or too many occurrences
are therefore also ignored. Due to the use of the window and
binning, the same neuron can be part of a pattern multiple times,
therefore, it is checked, that at least a minimum number of
individual neurons are part of the pattern. This entire filtering
step is done by applying a custom filter function (cf.Algorithm 1)
to all found patterns, removing a significant portion of them. Of
the three filter criteria mentioned, most patterns are discarded
when performing the first bin check. Thereby, a large part
(typically, between 90 and 100%) of all found patterns are
removed. While SPADE is in most parts implemented using
Python, for the FP-Growth algorithm, the highly optimized
C-implementation PyFIM6, developed by Christian Borgelt, is
used (Borgelt and Picado-Muiño, 2013; Picado-Muiño et al.,
2013).

2.4. Identification of Bottlenecks
As mentioned in section 2.3, one of the most time-consuming
parts of the SPADE method consists of the closed frequent
pattern mining, using the FP-Growth algorithm, and the
result filtering. Therefore, we will first analyze the current
implementations of the aforementioned parts and identify their
respective bottlenecks. Subsequently, in section 2.5, we will
present our optimized version, which achieves a significant
speedup compared to the original.

Figure 3 illustrates the current implementation of SPADE’s
pattern mining flow and its pre-processing steps, on the example
of the movement_PGHF data set, which is also used during the
evaluation (cf., section 3.1). As described in section 2.3, the
input spike data is first discretized using binning and the sliding
window. Afterward, FP-Growth is applied to analyze the resulting
row vectors, and all closed patterns are identified. After filtering,
only relevant patterns remain and are further processed. For this
data set, from 3 MB of spike input data, 200 MB of row vectors
are generated and transferred to FP-Growth. Depending on the

6https://borgelt.net/pyfim.html

Frontiers in Neuroinformatics | www.frontiersin.org 5 September 2021 | Volume 15 | Article 72340614

https://borgelt.net/pyfim.html
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

FIGURE 2 | Data preprocessing and evaluation flow of SPADE [based on Stella et al. (2019)]. (A) Example of 4 spike trains recorded in parallel, where each black line

represents a spike. Time is divided into bins (gray vertical areas) of length b. A sliding window of size w is shifted bin by bin over the data (in blue, purple and orange).

(B) The window matrix representation is converted to a row vector. (C) Simplified visualization of the pattern mining process (also called incidence table), where spikes

occurring in the same bin in two window positions (ω = i and ω = i+ n) are detected. Coincident spikes across the two windows are indicated with a green cross. (D)

Representation of the original spike trains as in panel A, where the spike pattern is detected and indicated with green lines.

Frontiers in Neuroinformatics | www.frontiersin.org 6 September 2021 | Volume 15 | Article 72340615

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

FIGURE 3 | Representation of the original FP-Growth embedding in SPADE with special regard to transferred data volumes.

Algorithm 1: Filter function used by SPADE

Input: The pattern P, the support of the pattern S, the minimum
number of neuronsmn and the maximum supportms.

Output: Whether to keep the pattern or discard it.
function FILTER_RESULT(P, S,w,mn,ms)

if S > ms then
return false

end if

valid← false
neurons← [] ⊲ Initialize the list of known neurons
cnt← 0
for each e ∈ P do

if e mod w = 0 then ⊲ Check if the spike occurred in
the first bin

valid← true
end if

n← e
w ⊲ Get the neuron id

if n /∈ neurons then ⊲ Check if the neuron has already
been checked

neurons[cnt]← n ⊲ Add the neuron to the known
list

cnt← cnt + 1 ⊲ Increment the counter
end if

end for

if cnt < mn then

valid← false
end if

return valid
end function

minimum support and occurrence configurations, FP-Growth
can consume up to 70 GB of memory.

From our analysis of the current state, we identified threemain
factors for the long runtime of this part of the algorithm. First,
a generic FP-Growth implementation is used instead of one that
is custom-tailored to the problem at hand. Second, all frequent
patterns found by the algorithm are sent back to the Python
code. Last, the filtering of the results is performed in Python.

As noted in section 2.3, the highly optimized C-implementation
of the FP-Growth algorithm is used in SPADE. However, due
to the way SPADE operates, it does not need all possible closed
patterns; it, in fact, only needs a fraction of them. Therefore,
using an implementation that mines all closed patterns, as is
currently the case, can significantly impact the performance.
Furthermore, due to the data structures used internally by the FP-
Growth implementation, all items of each found pattern have to
be mapped back to their original data elements and inserted into
a numpy-array to be usable in Python. This process can require
a significant amount of time and memory and will be referred to
as conversion to Python. Depending on the number of patterns,
this can take several tens of minutes and consume up to 70 GB of
memory. Finally, filtering out the repeating patterns takes a long
time, as this is done in pure Python, without the assistance of an
optimized C or C++ function, which could considerably speed up
the process.

2.5. Optimized Implementation
We resolved the bottlenecks identified in section 2.4, thereby
increasing the performance by several orders of magnitude.
This was done by developing a custom C++-based FP-Growth
implementation, which directly includes the result filtering in an
external C++-library.

2.5.1. Custom FP-Growth Implementation With

Result Filtering
The developed custom C++-based FP-Growth implementation
is, in parts, based on PyFIM by Christian Borgelt. The core
implementation of the closed pattern detection, using conditional
itemset repositories (Grahne and Zhu, 2003), is entirely adopted
from PyFIM. There are two significant differences between our
version of FP-Growth and the general-purpose solution used
before. First, the result filter function, applied by SPADE to the
found closed frequent patterns, is integrated directly into FP-
Growth. This shifts the filtering from Python to C++, thereby
significantly decreasing the runtime and memory consumption,
as only a fraction of all patterns needs to be saved. Second, the
closed detection is not performed during the pattern mining
process but instead afterward. This step was taken because, as

Frontiers in Neuroinformatics | www.frontiersin.org 7 September 2021 | Volume 15 | Article 72340616

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

FIGURE 4 | Representation of the optimized FP-Growth embedding in SPADE with special regard to transferred data volumes.

mentioned before, the runtime of the closed frequent pattern
detection scales with the number of patterns to check. Therefore,
integrating the filter function into FP-Growth considerably
reduces the number of patterns to check for closure. This
decreases the runtime of the closed pattern detection and
thus results in pattern mining requiring most of the runtime.
Furthermore, the implementation for closed frequent pattern
detection used in this work cannot be parallelized, in contrast
to the pattern mining, which, as noted in section 2.2, can be
reasonably easily performed in parallel. In a situation where the
closed pattern detection has to be performed on all patterns, i.e.,
when there is no filter in place, splitting the mining and detection
usually either does not affect the runtime or can even increase
it. This is because detecting closed patterns is significantly more
complex than pattern mining. Figure 4 shows how SPADEs
pattern mining flow changes when using our optimized FP-
Growthmodule. Compared to the original flow, the peakmemory
consumption was reduced from up to 70 GB down to 4 GB.

2.5.2. Pattern Collector
In our custom FP-Growth version, we implemented a pattern
collector to efficiently and adequately store the found patterns.
It stores the pattern, its length, and support directly in memory.
The collector allocates a block of memory each time the previous
block is full or the new pattern’s size exceeds the remaining space.
Additionally, access functions have been integrated to allow for
fast iteration over all stored patterns. Furthermore, we directly
integrated the pattern filter function into the collector. This way,
whenever a new pattern is passed to the collector, it first runs
through the filter, and if it is invalid, it is discarded. As a result,
only valid patterns are stored, and all others are discarded.

2.6. Parallelization and Distributed
Computing
As an additional step, we integrated OpenMP7 into our
FP-Growth implementation, allowing us to parallelize the
pattern mining process across all available CPU-cores, thereby
significantly increasing the performance. As mentioned in

7Open Multi-Processing - https://www.openmp.org/.

section 2.2, parallelization of the pattern mining is possible
because, when iterating over the header table, all iterations are
entirely independent of each other, allowing them to be executed
in parallel and in any order. Memory conflicts and potential
race conditions were evaded by replicating the internal memory
structures for each thread, preventing the threads from affecting
each other. However, the closed frequent pattern detection
algorithm requires its input patterns to be in an orderly fashion,
i.e., the results of the first iteration, followed by the results of
the second iteration, and so on. Therefore, we further modified
the code to instantiate n pattern collector objects, where n is the
header table’s size. This way, each entry in the header table has its
own pattern collector to store all found patterns. This allows the
closed detector to operate correctly and removes overhead caused
by the threading, as all threads no longer share a single pattern
collector. Once the pattern mining process is finished, the closed
pattern detector iterates over all n collector objects and identifies
the closed frequent patterns. As mentioned in section 2.5.1,
our implementation uses the closed pattern detector developed
by Christian Borgelt, which cannot be easily parallelized, as
mentioned in section 2.2. Therefore, at the moment, the closed
pattern detection is performed sequentially on a single core.

The complete independence of the header table iterations
allows for the pattern mining to be performed in parallel on all
cores of a local processor and computed in parallel on several
compute nodes. For this purpose, we integrated MPI8 into our
application to distribute the workload across different compute
nodes. Through the use of the MPI execution environment
mpirun, it is possible to spawn an arbitrary number of processes
for a given application. Furthermore, spawning processes is not
limited to the local system but can be done on an arbitrary
number of remote nodes, e.g., a compute cluster. However,
without integrating MPI-specific modifications into the code,
execution across multiple nodes will only cause each node to run
the entire application. Therefore, the MPI-API provides a large
selection of functions to allow the processes to communicate,
i.e., pass messages between each other. Each process possesses a
unique identification number, the so-called rank. The rank will

8Message Passing Interface.

Frontiers in Neuroinformatics | www.frontiersin.org 8 September 2021 | Volume 15 | Article 72340617

https://www.openmp.org/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

be a number between 0 and the number of processes spawned
by MPI. In most cases, one process, usually with rank 0, collects
all results from all processes once they are finished and presents
them to the user or continues working with them.

When integratingMPI into our code, only a fewmodifications
were necessary. First, the header table loop was modified to start
at the rank of the current process and stops iterating in steps of
one, but instead in steps of size p, where p equals the total number
of processes. This way, each process processes n

p iterations. We

equally distributed the workload across all nodes using a round-
robin-styled loop to decrease the chance that one process finishes
significantly ahead of the others. Finally, after the header table has
been processed and all patterns have been mined, all processes
except for the root process send their mined patterns, in the
correct order, to the root, where they are added to the correct
collectors. Afterward, all but the root process terminate, and the
root process performs the closed pattern detection and outputs
the final results to the user. It should be noted that our distributed
approach requires the entire FP-tree to be built on each node,
which can take a significant amount of time for large data sets.
However, this is not of any concern because due to the nature
of the data, the data sets used with SPADE are relatively small,
causing the FP-tree creation to only take a few seconds.

3. RESULTS

In this section, we evaluate the performance, in terms of runtime,
memory consumption, and energy efficiency, of our optimized
patternmining flow on several different devices and compare it to
SPADE’s original program flow. Since in this work, we primarily
focused on accelerating the pattern mining and filtering, only the
runtimes of the associated steps are examined in the following.
Therefore, full runtime refers to the total runtime required by all
tasks, i.e., pattern mining, data conversion to Python, and pattern
filtering. Since in the original implementation, the patternmining
step also included closed pattern detection and data conversion
to Python, for the baseline, these steps are not listed separately.
Because we have separated these steps in our optimized version,
we include the corresponding runtimes. We show that using
our optimizations considerably reduces the runtime andmemory
consumption and noticeably increases energy efficiency, while
producing the same results as the original. Furthermore, due
to the memory optimizations, it is now possible to perform the
pattern mining on low-power embedded devices.

3.1. Test Setup
We used different platforms for evaluation. The first platform,
serving as a baseline, was a workstation equipped with an
Intel Xeon E5-1650 v4 (6 cores running at 3.60 GHz) server
CPU and 256 GB quad-channel DDR4 memory, running
Ubuntu 16.04. For the other evaluations, we used our
RECS|Box9 server (Oleksiak et al., 2019), a modular and scalable
microserver platform for resource-efficient heterogeneous high-
performance computing.

9Resource-Efficient Cluster Server – https://embedded.christmann.info/products.

The RECS|Box is a heterogeneous cluster server that allows
the user to choose between several computer architectures,
network systems, network topologies, and microserver sizes. In
this context, a microserver refers to an independent computer-
on-module (CoM) that integrates all components (e.g., CPU,
memory, IO, and power subsystem) in a small, compact form
factor for integration into a server or embedded environment.
In contrast to existing homogeneous microserver platforms
that support only a single microserver architecture, RECS|Box
seamlessly integrates the full range of microserver technologies
in a single chassis, including various CPUs as well as accelerators
based on FPGAs10 and GPUs. Hence, it can be used to
easily set up heterogeneous processing platforms optimized
for specific application requirements. CoMs are available for
all major computing platforms in both low-power and high-
performance versions. Like the big-little approach known from
mobile processors, this can be used to further increase energy
efficiency by dynamically switching, e.g., between 64-bit ARM
server processors and 64-bit ARM mobile SoCs11 or between
different FPGA/GPU devices.

Figure 5 gives a high-level overview of the modular approach
used for the design of the RECS|Box system architecture.
This modularity guarantees flexibility and reusability and thus
high maintainability. Microservers are grouped on carrier
boards that support hot-swapping and hot-plugging, similar
to a blade-style server. Three different carriers are available:
one integrating 16 low-power microservers, one for three
high-performance microservers, and one integrating PCIe-
based hardware accelerators. All microservers are designed
based on well-established CoM form factors12, which facilitates
the integration of third-party microserver modules into the
RECS|Box. Not only can the platform be individually adapted
to the given problem due to its modularity, but it is also able
to monitor the power consumption of the individual compute
modules very precisely. Furthermore, the installed modules can
communicate with each other through high-speed Ethernet
over PCI-Express, allowing for fast data exchange, e.g., when
performing distributed computing.

For our evaluation, we used high-performance as well as low-
power microservers. Firstly, we used a microserver equipped
with a HiSilicon Hi1616 (Kunpeng 916) dotriaconta-core ARM
processor (32 cores running at 2.4 GHz) and 64 GB of quad-
channel DDR4 memory, running CentOS 7.6, in a dual-socket
configuration (resulting in 64 cores/128 GB). In the following,
this will be referred to as the Hi1616 microserver. Next, an
ADLINK Express-BD713 module, equipped with an Intel Xeon D-
1577 (16 cores running at 1.30 GHz) and 32 GB dual-channel
DDR4 memory running Ubuntu 18.04 was used. Additionally,
we used an ADLINK Express-CFR-E14 microserver, equipped
with an Intel Xeon E-2276ME (6 cores running at 2.8 GHz)

10Field Programmable Gate Array.
11System-on-a-Chip.
12https://www.picmg.org/openstandards/com-express/
13https://www.adlinktech.com/Products/Computer_on_Modules/
COMExpressType7/Express-BD7
14https://www.adlinktech.com/Products/Computer_on_Modules/
COMExpressType6/Express-CFR

Frontiers in Neuroinformatics | www.frontiersin.org 9 September 2021 | Volume 15 | Article 72340618

https://embedded.christmann.info/products
https://www.picmg.org/openstandards/com-express/
https://www.adlinktech.com/Products/Computer_on_Modules/COMExpressType7/Express-BD7
https://www.adlinktech.com/Products/Computer_on_Modules/COMExpressType7/Express-BD7
https://www.adlinktech.com/Products/Computer_on_Modules/COMExpressType6/Express-CFR
https://www.adlinktech.com/Products/Computer_on_Modules/COMExpressType6/Express-CFR
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

FIGURE 5 | Overview of the RECS|Box hardware platform.

and 32 GB of dual-channel DDR4 memory, also running
Ubuntu 18.04. Finally, we executed our implementation on
three different types of embedded NVIDIA Jetson devices, each
running Ubuntu 18.04.

As mentioned above, we also evaluated energy efficiency by
measuring each platform’s system power consumption during
the execution of the test. System power consumption refers to
the amount of power consumed by the entire system after the
power supply unit (PSU), i.e., CPU, memory, storage, and system
accessories. We measure after the PSU because, depending on
the unit’s quality and overall load, there can be a significant
difference between the system’s power and the PSU. Using the
monitoring features of the RECS|Box, we were able to accurately
measure the power consumption of the different devices installed
in it. For the workstation, the power consumption was calculated
based on continuous voltage and current measurements using
a Tektronix MDO4054B-615 oscilloscope in combination with
a Tektronix TCP0030A16 current probe. Using the TCP0030A
probe, it is possible to continuously measure the electrical current
of the 12 V power supply with a sampling rate between 500 and

15https://www.tek.com/oscilloscope/mdo4054b-6
16https://www.tek.com/datasheet/30-ac-dc-current-probe

2,500 samples per second. All tests were performed in an air-
conditioned room at about 19◦C; therefore, the DC gain accuracy
of the probe is < 1% (cf. Tektronix, 2006).

For the evaluation, we used neural data extracted from in-vivo
experimental recordings. In the experiment, a macaque monkey
performs a delayed reaching and grasping task, while its neural
activity is recorded using a 10x10 electrode array chronically
inserted in the premotor and motor cortex (Riehle et al., 2013;
Brochier et al., 2018). The experimental protocol is as follows:
the monkey is trained to self-initiate the trial by pressing a start
button, then to wait for a first visual cue, indicating the type of
grip that it has to perform (either precision grip -PG- or side grip
-SG-). After a delay period of 1 s, the monkey receives the GO
signal, together with the information of the amount of force to
apply on the object (high force -HF- or low force -LF-). After the
monkey has successfully grasped and pulled the object with the
correct grip, a reward is given. In this study, we consider session
i140703-001 of Monkey N which lasts 1003 s, and consists of 141
correct trials with randomized trial type order (i.e., combinations
of grip and force conditions: PGHF, PGLF, SGHF, SGLF). Detailed
descriptions of this published data set are given in Brochier et al.
(2018). For this data, the SPADE method can be used to detect
behaviorally-locked spatio-temporal spike patterns, mimicking

Frontiers in Neuroinformatics | www.frontiersin.org 10 September 2021 | Volume 15 | Article 72340619

https://www.tek.com/oscilloscope/mdo4054b-6
https://www.tek.com/datasheet/30-ac-dc-current-probe
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

the analysis performed in (Torre et al., 2016). In this scenario,
it is necessary to segment the data in order to perform a time-
resolved analysis: we segment trials into six 500 ms long epochs,
each related to a behaviorally relevant event of the trial (start, cue
presentation, early delay, late delay, movement, reward). Identical
epochs belonging to the same trial type are concatenated to form
a total of 6x4 = 24 data sets to be analyzed with SPADE. In this
example, we consider the segment in which themonkey performs
the reaching and grasping movement with precision grip and
high force (movement_PGHF). The data set has a total duration
of 22.32 s, consists of 32 concatenated trials, and has 150 units
recorded in parallel after pre-processing. We select specifically
only single unit activities (SUA) exhibiting signal to noise ratio
(SNR) > 2.5. Furthermore, a buffer time of 200 ms is inserted
between successive trials.

This data set is a typical use case for SPADE in both length
and number of observed neurons, making it a fitting example to
benchmark the performance of the method. When transforming
the input data, as described in section 2.3, 3602 transactions
with 3,000 unique items were created, using a bin size of
5 ms and a window length of 100 ms (20 bins). We divide
the analysis into eight different jobs, each for a fixed pattern
size (number of spikes), starting from 2 and ending at 10+ in
steps of one. For each pattern size, the minimum number of
occurrences is estimated for optimizing the pattern mining: the
distribution of number of occurrences of a chance pattern of fixed
size is estimated with a Poisson assumption using the average
estimated rate of all neurons. By taking the 95% percentile of this
distribution, we estimate the number of occurrences that a non-
significant pattern would have under independence, giving us a
lower bound for the support in the pattern search. The absolute
lower bound for pattern occurrences is fixed to 10. In fact, in a
classical use case of the method, we would focus on behavior-
specific patterns. Thus, patterns occurring in less than 30% of
the total number of trials (∼ 30 trials per combination of epoch
and trial type) are not considered. The different configurations
of pattern sizes and number of pattern occurrences are described
in Table 1. In addition to the configurations, the table also lists
the total number of unfiltered frequent patterns found for each
job and how many are left after filtering. With these values,
the impact of one of our main optimizations, i.e., filtering the
patterns directly when they are mined, can be seen very clearly.
This significantly reduces the number of patterns to be stored,
thus reducing overall memory consumption and reducing the
number of patterns fed to the closed detector to a fraction of the
original amount. Through filtering, between 90 and 100% of the
mined patterns are discarded.

3.2. Evaluation of the Software Baseline on
x86 Server
To determine the runtime, memory consumption, and energy
efficiency of the current flow, i.e., create a performance baseline,
we executed the latest SPADE version (v0.9.0) on the workstation
mentioned before, base on an Intel Broadwell Xeon E5-1650 v4.
The considerable memory consumption of the baseline flow
made execution on the embedded devices impossible. Table 2

TABLE 1 | Configurations of the eight jobs used for the evaluation.

Job Min. occ. Min. spikes Patterns Filtered patterns

0 88 2 200,971 22,709

1 25 3 16,477,189 1,562,086

2 12 4 246,958,100 8,486,483

3 10 5 424,713,012 398,618

4 10 6 259,915,712 41

5 10 7 109,269,024 0

6 10 8 29,385,509 0

7 10 9 4,637,531 0

TABLE 2 | Workstation runtime and memory consumption of the implementation

currently used in SPADE.

Job
FP-growth

runtime (s)

Filtering

runtime (s)

Full

runtime (s)

Peak mem.

Consumption (GB)

0 0.9 0.9 1.8 0.4

1 41.4 83.6 125.0 3.3

2 2299.0 1386.9 3685.9 44.0

3 6506.7 2351.9 8858.6 77.5

4 3033.1 1451.7 4484.8 45.8

5 1651.5 647.5 2299.0 21.3

6 1369.1 187.7 1556.8 8.0

7 1336.7 30.8 1367.5 3.7

Sum 16238.4 6141.0 22379.4

depicts the time, in seconds, required for the entire C-based
FP-Growth flow, the time, in seconds, to perform the result
filtering in Python, and the accumulated runtime, in minutes.
The runtime for the FP-Growth flow includes the data conversion
from Python to C, the pattern detection (including closed pattern
detection), and the conversion of the results back to Python.
Furthermore, the table also lists the peak memory consumption
for each job. As can be seen, increasingly complex jobs can take
from a few minutes up to 2 h and consume more than 70 GB
of memory. As mentioned in section 2, these high memory
requirements are mainly caused by the need to convert all
closed patterns (up to 400 million, depending on the job) back
to Python, where the filtering is performed. The baseline flow
required 6 h and 13 min to complete all eight jobs. Based on the
workstations’ average power consumption of 64.8W17, the entire
computation consumed 1.45 MJ18.

Afterward, we executed our optimized implementation both
in single- and in multi-threaded (12-threads) mode. Both
runtimes, as well as the peak memory consumption, are depicted
in Table 3. As only the FP-Growth implementation is affected by
threading, there was no noticeable difference in the time required
for the closed frequent pattern detection or the conversion
to Python, so only the results from the single-threaded test
are listed. By filtering the results directly during the creation

17Watt.
18Joule (watt-second).

Frontiers in Neuroinformatics | www.frontiersin.org 11 September 2021 | Volume 15 | Article 72340620

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

TABLE 3 | Workstation runtime of the optimized implementation in single (ST)- and multi (MT)-threaded mode.

Job

FP-growth

runtime (s)
Closed

det. (s)

Conversion

to Python (s)

Full runtime (s)
Peak mem.

cons. (GB)

ST MT ST MT ST MT

0 1.2 0.5 0.0 0.0 1.3 0.6 0.5 0.5

1 14.9 2.4 1.3 1.0 17.2 4.7 1.3 1.3

2 116.4 17.4 13.3 14.3 143.9 45.1 3.5 3.5

3 205.4 32.7 0.5 0.7 206.6 34.0 3.4 3.4

4 195.9 31.3 0.0 0.0 196.0 31.4 1.9 1.9

5 180.9 29.8 0.0 0.0 181.0 29.9 1.8 1.8

6 174.1 25.7 0.0 0.0 174.1 25.8 1.8 1.8

7 171.0 25.2 0.0 0.0 171.1 25.3 1.8 1.8

Sum 1059.8 165.0 15.1 16.0 1091.2 196.8

TABLE 4 | Runtime of the multi-threaded implementation on the ADLINK Express-BD7, the ADLINK Express-CFR-E and the HiSilicon Hi1616 microserver.

Job FP-growth runtime (s) Closed detection (s) Conv. to Python (s) Full runtime (s)

BD7 CFR Hi16 BD7 CFR Hi16 BD7 CFR Hi16 BD7 CFR Hi16

0 0.9 0.5 0.8 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.5 0.9

1 2.6 2.2 1.2 2.9 1.1 2.4 1.5 0.6 2.2 7.1 4.0 6.0

2 16.0 16.8 5.0 24.8 10.8 22.9 20.3 8.2 35.6 61.2 35.8 63.7

3 28.0 31.8 8.6 0.8 0.4 0.8 1.1 0.4 1.6 30.0 32.7 11.1

4 27.0 32.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0 27.2 32.1 8.1

5 25.0 30.2 7.5 0.0 0.0 0.0 0.0 0.0 0.0 25.2 30.3 7.6

6 23.8 31.0 7.2 0.0 0.0 0.0 0.0 0.0 0.0 24.0 31.1 7.3

7 23.1 30.4 7.0 0.0 0.0 0.0 0.0 0.0 0.0 23.3 30.5 7.1

Sum 146.4 174.9 45.3 28.5 12.3 26.1 22.9 9.2 39.4 199.0 197.0 111.8

process, it was possible to significantly reduce the peak memory
consumption to amaximumof 4GB. The single-threaded version
required 18 min and 11 s to complete all eight jobs, while the
multi-threaded version finished all jobs in 3min and 17 s, making
it 114 times as fast as the baseline (see Table 7). Regarding energy
efficiency, 65W (70,876 J) and 109.9W (21,638 J) were consumed
in single- and multi-threaded mode, respectively. The multi-
threaded implementation achieved an energy efficiency 67 times
higher than the current implementation (see Table 7).

3.3. Evaluation on RECS|Box for Server
Processors
Due to its combined 64 cores running at 2.4 GHz, the Hi1616
microserver achieved the highest parallel processing speed and
overall lowest runtime of all considered platforms (cf. Table 4).
In terms of overall runtime, compared to the workstation, it
finished all jobs in 57% of the time, with an average power
consumption of 123.3 W (13,780 J), 64% of the energy the
workstation required. Compared to the baseline, a speedup of
200 was achieved while being 105 times as energy efficient (see
Table 7). The Intel Xeon D-1577 in the ADLINK Express-BD7,
on the other hand, required just 2 s longer (3 min and 19 s) than

the workstation to finish all jobs. However, the average power
consumption of the Xeon D was only 51.1 W (10,164 J), meaning
only 47% of the energy was required to finish all jobs compared
to the workstation. When comparing the results to the baseline,
the Xeon D achieved a speedup of 113 while being 143 times
more energy efficient. Finally, the Intel Xeon E-2276ME finished
all jobs in the same time as the workstation while requiring
on average only 60.3 W (11,887 J), i.e., 55% of the energy the
workstation required. Compared to the baseline, a speedup by a
factor of 114 together with a 122 times higher energy efficiency
was achieved (see Table 7).

3.4. Evaluation on RECS|Box for Embedded
Processors
Over the last decade, energy efficiency has become increasingly
important in data centers, especially when focusing on cloud
computing (Oleksiak et al., 2017). Therefore, we evaluated our
implementation’s performance and energy efficiency on several
embedded devices, namely the NVIDIA Jetson AGX Xavier19,
the NVIDIA Jetson Xavier NX20, and up to four NVIDIA Jetson

19https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
20https://developer.nvidia.com/embedded/jetson-xavier-nx

Frontiers in Neuroinformatics | www.frontiersin.org 12 September 2021 | Volume 15 | Article 72340621

https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-xavier-nx
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

TABLE 5 | Runtime of the multi-threaded implementation on all three embedded devices.

Job FP-growth runtime (s) Closed detection (s) Conversion to Python (s) Full runtime (s)

AGX NX TX2 AGX NX TX2 AGX NX TX2 AGX NX TX2

0 1.0 1.7 1.9 0.0 0.0 0.0 0.0 0.0 0.0 1.1 1.9 2.1

1 5.9 10.5 8.7 1.6 2.5 1.9 1.8 2.7 2.8 9.3 15.8 13.6

2 39.3 75.5 55.3 15.0 21.7 19.6 19.3 35.9 31.2 73.6 133.3 106.3

3 71.3 143.8 94.1 0.5 0.7 0.6 0.8 2.2 1.7 72.6 146.8 96.5

4 68.6 137.2 90.6 0.0 0.0 0.0 0.0 0.0 0.0 68.6 137.4 90.8

5 69.6 119.9 89.0 0.0 0.0 0.0 0.0 0.0 0.0 69.7 120.0 89.1

6 68.6 132.5 83.7 0.0 0.0 0.0 0.0 0.0 0.0 68.7 132.6 83.8

7 67.0 128.2 88.9 0.0 0.0 0.0 0.0 0.0 0.0 67.1 128.3 89.0

Sum 391.4 749.3 512.2 17.1 24.9 22.1 21.9 40.7 35.7 430.7 816.1 571.2

TX221, each running Ubuntu 18.04. These devices feature low
power consumption along with a small form factor and are
equipped with between four and eight ARM cores. In addition
to its quad-core ARM Cortex-A57 CPU, the Jetson TX2 also
possesses a dual-core NVIDIA Denver 2 CPU. In contrast to
that, the Jetson AGX and NX use hexa- and octa-core NVIDIA
Carmel ARMv8.2 CPUs, respectively. With its 32 GB of DDR4
memory, the AGX Xavier possesses four times as much memory
as the Xavier NX and the Jetson TX2, which each are equipped
with 8 GB. Changing the power mode makes it possible to adjust
the CPU and GPU clock frequency and disable all but one core,
e.g., disable the Denver cores on the TX2 and only use the ARM
cores or only use four of the eight cores on the AGX Xavier.
For our tests, we configured each device to use all available CPU
cores at their maximum clock frequency. While each core of
the Jetson TX2 and the AGX Xavier can achieve a maximum
frequency of 2 GHz, the cores on the Xavier NX are limited
to 1.4 GHz when all cores are enabled. Because currently, the
GPUs integrated in the devices are not used at all, the GPU
frequency was limited as much as possible to reduce power
consumption. The achieved performance and energy efficiency
values were compared to the original flow and the results from
the workstation test presented in section 3.2.

3.4.1. Execution on a Single Device
Table 5 summarizes the runtimes of the three different embedded
platforms for all eight jobs. The best performance is achieved
by the NVIDIA Jetson AGX Xavier, which completed all jobs in
7 min and 11 s, followed by the Jetson TX2 and the Xavier NX
with 9 min, 31 s, and 13 min, 36 s, respectively. Although
compared to the workstation, the embedded devices’ runtime
is between 2.2 and 4.4 times longer, they required significantly
less power and consumed overall less energy. The most power
was required by the AGX Xavier, which consumed an average
of 20.4 W, resulting in an energy consumption of 8,786 J,
followed by the Xavier NX with 6.7 W (5,468 J, one-fourth of
the workstation), and the least amount of energy was required
by the Jetson TX2 with 9.1 W (5,181 J, less than one-fourth of

21https://developer.nvidia.com/embedded/jetson-tx2

the workstation). Compared to the baseline flow, the embedded
devices are between 52 and 27 times faster and between 280 and
165 times more energy efficient (see Table 7). These results show
that even though the runtime is higher than on a workstation, the
use of embedded platforms may be more suitable in situations
where energy efficiency is of a higher priority than runtime.

3.4.2. Execution on Multiple Devices
In addition to the previous single device execution, we also
utilized the OpenMPI-based distributed flow described in
section 2.6 to run the implementation on up to four NVIDIA
Jetson TX2. As mentioned before, only the FP-Growth part is
accelerated using multi-threading and distributed computing,
while everything else is performed sequentially on the root
node. Therefore, the runtimes for the closed detection and the
conversion to Python are omitted here, as they equal those of
the single node execution, depicted in Table 5. Table 6 shows
the time required for the FP-Growth-based pattern mining, the
full runtime of the accelerated section, and the communication
overhead. It should be noted that the communication time is
part of the FP-Growth runtime and is listed separately to show
its impact. When looking at the accumulated runtime of the
FP-Growth part, a noticeable improvement compared to the
execution on a single node is visible. For a single TX2, this part
took 8:32 min, while, when using two, three, or four TX2, it was
reduced to 4:36, 3:15, and 2:32 min, respectively. Two Jetson TX2
significantly outperform the AGXXavier in terms of runtime and
energy efficiency, as the two TX2 only consume 5,986 J 68% of the
energy required by the AGX. As only a part of the computation is
performed in parallel, an increase in compute nodes will result in
a decrease in energy efficiency. However, four TX2 modules are
able to finish all jobs in nearly the same amount of time as the
workstation (16 s slower) while only consuming 31% (6,670 J)
of the energy required by the workstation. Compared to the
baseline, the use of between two and four TX2 modules achieved
an acceleration by a factor of 66 to 105 and an increase in energy
efficiency by a factor of 217 to 242 (see Table 7). Ultimately, the
decision to make is whether to decrease the runtime by adding
more TX2 nodes, resulting in increasing energy consumption or
increasing energy efficiency at the cost of an increased runtime.

Frontiers in Neuroinformatics | www.frontiersin.org 13 September 2021 | Volume 15 | Article 72340622

https://developer.nvidia.com/embedded/jetson-tx2
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

TABLE 6 | Runtime of the multi-threaded implementation on up to four NVIDIA Jetson TX2.

Job FP-growth runtime (s) Communication (s) Full runtime (s)

2 TX2 3 TX2 4 TX2 2 TX2 3 TX2 4 TX2 2 TX2 3 TX2 4 TX2

0 1.5 1.7 1.7 0.1 0.2 0.3 1.7 1.8 1.9

1 5.3 4.1 3.8 0.5 0.6 0.9 9.8 0.9 8.3

2 29.5 21.9 17.4 1.5 2.0 2.3 82.7 71.2 70.4

3 52.6 35.3 27.4 0.3 0.5 0.6 55.1 37.8 30.0

4 50.4 33.9 27.9 0.2 0.4 0.5 50.5 34.0 28.0

5 47.4 34.0 23.7 0.2 0.4 0.5 47.5 34.1 23.9

6 45.2 31.5 23.9 0.2 0.4 0.5 45.3 31.6 24.0

7 44.1 32.3 26.0 0.2 0.4 0.5 44.2 32.4 26.1

Sum 276.0 194.7 151.8 3.2 4.9 6.1 336.8 243.8 212.6

TABLE 7 | Runtime and energy consumption of all platforms.

System Power (W) Runtime (s)
Energy Improvement over baseline

Joule Wh Energy Runtime

Workstation (Baseline) 64.8 22,379.4 1,450,182 402.83 1 1

Workstation (ST) 65.0 1091.2 70,879 19.69 20 21

Workstation (MT) 109.9 196.8 21,638 6.01 67 114

Express-BD7 51.1 198.9 10,164 2.82 143 113

Express-CFR-E 60.3 197.0 11,887 3.30 122 114

Hi1616 123.3 111.8 13,780 3.82 105 200

AGX Xavier 20.4 430.7 8,786 2.44 165 52

Xavier NX 6.7 816.1 5,468 1.52 265 27

Jetson TX2 9.1 571.2 5,181 1.44 280 39

2x Jetson TX2 17.8 336.8 5,986 1.66 242 66

3x Jetson TX2 25.0 243.8 6,093 1.69 238 92

4x Jetson TX2 31.4 212.6 6,670 1.85 217 105

TABLE 8 | Full runtime (in seconds) comparison of the original and the optimized flow for different data sets.

Data set Length (s) Neurons Found patterns
Original flow Optimized flow

Runtime Baseline-% Runtime Baseline-%

Baseline 22.32 150 10,214,712 22379.4 100% 196.8 100%

Long 1003.00 150 7,097,875 – – 3052.6 1551%

Short 5.00 150 73,172 89.4 0.4% 4.0 2%

300 Neurons 22.32 300 28,077,304 28257.7 126% 432.2 220%

450 Neurons 22.32 450 64,933,631 64167.5 287% 1241.1 631%

3.5. Scalability
We analyzed the scalability of our optimized flow in terms of
increased compute power, e.g., multiple NVIDIA Jetson TX2 and
with regards to data sets with varying properties, i.e., longer
and shorter recordings as well as recordings with up to 450
neurons. All measurements for both the original flow and our
optimized version were performed on the workstation system.
For this evaluation, we used four different data sets. First, the
entire 1,003 s long recording session of 150 neurons mentioned
in section 3.1 was used as a baseline data set to analyze how both

implementations handle long data sets. Next, to test the opposite,
the first 5 s of themovement_PGHF data set were used to analyze
the performance when working with short inputs. Finally, to
test the effect an increase in neurons has on the runtime, we
created two data sets, each with a length of 22.32 s and with
300 and 450 neurons, respectively, by stacking spike trains of
the original data set. The total runtime, i.e., FP-Growth, filtering,
closed detection, and conversion to Python, for each data set
and both flows, is given in Table 8. Furthermore, the table lists
the runtime as a percentage of the baseline data set’s runtime.

Frontiers in Neuroinformatics | www.frontiersin.org 14 September 2021 | Volume 15 | Article 72340623

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

The original flow was unable to process the long recording, as
we had to stop it after 30 h after it consumed over 200 GB
of memory.

When analyzing the table, it can be seen that when the number
of neurons is increased, our implementation does not scale as
well as the original. This becomes particularly evident when
considering that a tripling of the neurons leads to a more than
sixfold increase of the runtime in our version. In comparison, the
runtime of the original version did not even triple. In contrast
to this, when the recording duration increases or decreases, the
scaling is comparable to the original. On the one hand, when
the recording time is decreased from 22.32 to 5 s, only 2% of
the original runtime was required, i.e., a reduction by a factor of
50. On the other hand, when the recording length is increased
by a factor of 45, the runtime increases only by a factor of
about 15. The main bottleneck and one of the primary factors
for the inadequate scaling of the optimized flow are the closed
detection and the data conversion to Python. As seen before, in
jobs where many valid patterns are found by FP-Growth, these
two steps significantly impact the overall performance, as they are
currently executed sequentially on a single CPU core in contrast
to the parallel FP-Growth. This is also the primary reason for the
weaker scaling when the number of neurons increases, which can
lead to a significant increase in found patterns. Concluding, it
can be said that although our implementation scales not as well
as the original, it still scales adequately even when confronted
with long data sets or ones containing several hundred neurons.
Furthermore, due to the overall significantly lower runtime, our
proposed flow is between one and two orders of magnitude faster
than the original.

4. DISCUSSION

Finding spike patterns in parallel spike trains using the FP-
Growth pattern mining algorithm and a custom filter function
is one of the most time-intensive parts of the SPADE method.
In the currently available implementation, pattern mining is
performed using a C-based Python module, while the filtering is
done directly in Python. There are some significant flaws in the
current flow that result in a significantly increased runtime. On
the one hand, all found patterns need to be converted from C to
Python, which takes a long time and consumes a large amount
of memory. On the other hand, performing the pattern filtering
in the Python programming language also negatively affects
the runtime. Therefore, in this work, we developed a multi-
threaded C++-based Python module that, while maintaining
the original flow’s functionality, performed the task between
27 and 200 times faster, while at the same time being 67
to 280 times as energy efficient depending on the executing
hardware. By integrating the pattern filtering function directly
into the FP-Growth implementation developed in this work, we
dramatically reduced the number of produced patterns that need
to be converted to Python. This reduced not only the runtime
but also the memory consumption. Furthermore, we integrated
multi-threading and distributed computing capabilities into our
FP-Growth implementation to fully utilize the CPU of one
or more compute nodes. Additionally, we showed that our
implementation scales reasonably when the number of neurons

or the length of the recording is changed and is able to finish the
processing of a very large data set (1,003 s of neuron activity) in
less than an hour, a task that was not possible using the original
version. As a result, the improvement of the method enables
the analysis of experimental data in a feasible amount of time
together with the statistical evaluation of mined patterns, i.e., in
the case where FP-Growth is applied not only on the original
data set, but also on its surrogates, as explained in section 2.3.
Our optimized flow opens up the possibility to perform more
complex analyses due to the highly reduced amount of time. This
makes it possible to handle large state-of-the-art data sets, such
as data recorded from multiple Utah arrays (Chen et al., 2020),
or Neuropixel probes (Juavinett et al., 2019), and to combine
the results of SPADE with other approaches to investigate the
correlative structure of neuronal dynamics (Diana et al., 2019;
Watanabe et al., 2019; Williams et al., 2020).

4.1. Platform Comparison
Here, we perform a concluding comparison of the results
achieved by our optimized implementation on the different
platforms. The performance, in terms of runtime, memory
consumption, and energy efficiency of our implementation
was evaluated on a workstation system, a Hi1616 microserver
equipped with two HiSilicon Hi1616 CPUs, an ADLINK Express-
BD7 equipped with an Intel Xeon D-1577, an ADLINK Express-
CFR-E equipped with an Intel Xeon E-2276 and three different
embedded computing devices from NVIDIA, namely Xavier NX,
AGX Xavier and Jetson TX2. For an easy comparison, some of
the most distinctive features of each platform focused on the
respective CPU are shown in Table 9. These are, among others,
the architecture, TDP22, and ISA23 of the CPU, as well as the type
of memory installed. Figure 6 shows the performance, in terms
of FP-Growth runtime only, total execution time, and energy
consumption, of the different platforms. The graph is sorted by
total execution time. Total Pattern Mining Flow refers to the
time required for the entire accelerated flow, i.e., FP-Growth-
based pattern mining, pattern filtering, closed detection, and data
conversion to Python, while FP-Growth Only exclusively shows
the time required for the FP-Growth-based pattern mining and
the pattern filtering.

Except for the Hi1616 microserver, FP-Growth consumed the
largest portion of the runtime on all platforms. Thanks to its
64 cores, the Hi1616 microserver achieved the highest parallel
processing performance and overall fastest execution time
(111 s). However, due to the low individual core performance, a
significant amount of time was required for the flow’s sequential
parts, which noticeably increased the full runtime. This, in turn,
affected the power consumption, which resulted in the third-
highest energy consumption (13,780 J). As can be expected, the
longest runtime (1,091 s) and the highest energy consumption
(70,876 J) belong to the single-threaded version’s execution on
the workstation. However, these values are still one order of
magnitude lower than the original implementation, whose results
are 20 times higher in both aspects (22,379 s and 1,450,185 J).

22ThermalDesign Power.
23Instruction Set Architecture.

Frontiers in Neuroinformatics | www.frontiersin.org 15 September 2021 | Volume 15 | Article 72340624

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

TABLE 9 | Overview of the different platforms and their distinctive features.

Platform CPU Architecture Memory Cores Threads Clockrate TDP ISA

Workstation E5-1650 v4 Haswell DDR4 6 12 3.6 GHz 140 W x86

Exp.-BD7 D-1577 Broadwell DDR4 16 32 1.3 GHz 45 W x86

Exp.-CFR-E E-2276ME Coffee Lake DDR4 6 12 2.8 GHz 45 W x86

Hi1616 Hi1616 Kunpeng DDR4 32 32 2.4 GHz 85 W A64

Jetson TX2
Cortex-A57 ARMv8-A LPDDR4 4 4 2.0 GHz 7.5 W A64

Denver Denver LPDDR4 2 2 2.0 GHz 7.5 W A64

AGX Xavier Carmel Carmel LPDDR4X 8 8 2.0 GHz 30 W A64

Xavier NX Carmel Carmel LPDDR4X 6 6 1.4 GHz 15 W A64

FIGURE 6 | Runtimes of the optimized flow on all considered platforms (cf. Table 7). MT refers to the multi-threaded, ST to the single-threaded and Original to the

baseline (currently used) version. A detailed overview over the different platforms and their features is presented in Table 9.

For identifying the most suitable platform for the given
application, both runtime, and energy consumption have to
be considered. The lowest energy consumption was obtained
using one Jetson TX2 (5,181 J), while the fastest runtime was
achieved on the Hi1616 microserver (111 s). Comparing the two
in consideration of the respective other value, the TX2 takes
five times longer, while the Hi1616 microserver consumes about
2.7 times more energy. When focusing on only one of these
values, it is straightforward to choose the most suitable platform.
However, when both factors are of equal importance, the decision
becomes significantly more challenging. The most balanced ratio
between runtime and energy consumption was achieved on the

platforms we looked at when two or three Jetson TX2 were used
in parallel.

4.2. Summary and Future Work
We have presented our optimized version of the SPADEmethod’s
pattern mining flow in this work, using a custom-tailored FP-
Growth implementation. Using a data set containing spike trains
from experimental data, we performed our evaluation on a
typical SPADE use case. We showed how our implementation
handles different input settings by varying the parameter
configuration for the minimum size and occurrence number.
Furthermore, using our distributed approach on up to four TX2,

Frontiers in Neuroinformatics | www.frontiersin.org 16 September 2021 | Volume 15 | Article 72340625

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

a near-linear scaling for the part computed in parallel, i.e., the
FP-Growth-based pattern mining, was achieved. In this work, our
primary focus was the acceleration of the pattern mining and
result filtering tasks, as they account for between 85 and 90%
of the overall runtime. On the one hand, we showed that our
improved version was, depending on the platform used, between
27 and 200 times faster compared to the original implementation.
On the other hand, all platforms’ energy consumption was up
to two orders of magnitude lower than the original FP-Growth
version currently used in SPADE. The highest energy efficiency
was achieved by the embedded devices, which, when executing
our flow, required only between 41% and 24% of the energy
consumed by the workstation, running the multi-threaded
version of our optimized implementation. Furthermore, the
execution on embedded devices is now possible; previously, this
was prevented by the high memory requirements.

In the future, we intend to further improve our flow by looking
at ways to accelerate the sections currently executed sequentially,
i.e., the closed pattern detection and the data conversion to
Python. Depending on the number of patterns found by FP-
Growth, these parts become the bottleneck, as mentioned in
section 3.5. An example of this can be seen in job 2, where,
depending on the platform, these tasks account for a significant
portion of the job’s and the overall runtime. For this reason,
we will be looking into implementations for parallel closed
pattern detection, e.g., the propositions made by Lucchese et al.
(2007) and Huynh et al. (2017). Besides the acceleration of these
sections, we plan to integrate the filtering even deeper into
our FP-Growth implementation, e.g., by marking all items that
reside in the first bin of their respective windows. This could
enable even faster filtering and, in addition, might also reduce
the number of header table entries to check. Furthermore, we
want to evaluate the usability of GPU-based FP-Growth and
closed pattern detection implementations, like the ones described
in Wang and Yuan (2014), Jiang and Meng (2017), and Wu
et al. (2019). At the same time, it will also be of interest to
analyze the applicability of a heterogeneous CPU and GPU
implementation, i.e., where the workload is shared between the
CPU and the GPU. This is something from which especially the
embedded devices could significantly benefit, as their GPU is
directly connected to the DDR memory allowing for fast data
exchange. We also intend to further improve our distributed
computing setup performance by exploring different strategies
like the ones proposed by Li et al. (2008) and Chen et al. (2009).
Additionally, we suggest to investigate different pattern mining
algorithms, e.g., LCM24 (Uno et al., 2004) or DPT25 (Qu et al.,
2020), and evaluate their performance in the given use case.
Finally, we want to analyze further the SPADE code surrounding
FP-Growth to find more potential improvement points. At the
same time, it might be worthwhile to analyze the SPADE code
as a whole and identify bottlenecks that can be accelerated using
custom C/C++ modules.

24Linear time Closed itemsetMiner.
25Dynamic Prefix Tree.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data, together with the source code for the Python module
presented in this paper can be found at: https://github.com/
fporrmann/FPG. The accelerated version of the SPADE method
presented in this article is included in the Elephant26 GitHub
project at: https://github.com/NeuralEnsemble/elephant and will
be featured starting from the official release 0.11.0. For an
interactive demonstration on how to use the SPADE method,
please refer to the tutorial page of the Elephant documentation
available at: http://tutorials.python-elephant.org.

AUTHOR CONTRIBUTIONS

FP: conceptualization, software implementation and
optimization, testing, evaluation, and writing original draft
preparation. SP and FP: visualization. AS: data preparation. FP,
SP, AS, AK, MD, JH, and UR: writing review and editing. JH and
UR: project administration and funding acquisition. All authors
have read and agreed to the published version of the manuscript.

FUNDING

This publication was supported by the VEDLIoT and LEGaTO
projects, which received funding from the European Union’s
Horizon 2020 research and innovation program under grant
agreements Nos. 957197 and 780681. Besides, the work was
supported by the PhD program Design of Flexible Work
Environments–Human-Centric Use of Cyber-Physical Systems
in Industry 4.0, funded by the North Rhine-Westphalian
funding scheme Forschungskolleg and affiliated to the
Research Institute for Cognition and Robotics (CoR-Lab),
Bielefeld University. This project has also received funding
from the European Union’s Horizon 2020 Framework
Programme for Research and Innovation under Specific
Grant Agreement No. 945539 (Human Brain Project SGA3)
and the Helmholtz Association Initiative and Networking Fund
under project number ZT-I-0003 and the VSR computation
grant JINB33, Jülich.

ACKNOWLEDGMENTS

We thank Prof. Dr.-Ing. Mario Porrmann from Osnabrück
University for his comments that greatly improved
the manuscript. We also thank Kevin Mika and René
Griessl from Bielefeld University for their assistance
during the performance and energy efficiency evaluation.
We acknowledge the financial support of the German
Research Foundation (DFG) and the Open Access
Publication Fund of Bielefeld University for the article
processing charge.

26RRID:SCR003833; python-elephant.org.

Frontiers in Neuroinformatics | www.frontiersin.org 17 September 2021 | Volume 15 | Article 72340626

https://github.com/fporrmann/FPG
https://github.com/fporrmann/FPG
https://github.com/NeuralEnsemble/elephant
http://tutorials.python-elephant.org
http://python-elephant.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

REFERENCES

Agrawal, R., Imieliński, T., and Swami, A. (1993). Mining association rules
between sets of items in large databases. ACM SIGMOD Rec. 22, 207–216.
doi: 10.1145/170036.170072

Agrawal, R., and Srikant, R. (1994). “Fast algorithms for mining
association rules in large databases,” in Proceedings of the 20th

International Conference on Very Large Data Bases, VLDB

’94 (San Francisco, CA: Morgan Kaufmann Publishers Inc.),
487–499.

Bin, Z., and Li, J. (2008). An improved algorithm based on FP-growth. J.

Pinddingshan 17, 9–12.
Borgelt, C., Braune, C., Loewe, K., and Kruse, R. (2015). “Mining frequent

parallel episodes with selective participation,” in 2015 Conference of the

International Fuzzy Systems Association and the European Society for

Fuzzy Logic and Technology (IFSA-EUSFLAT-15) (Gijón: Atlantis Press).
doi: 10.2991/ifsa-eusflat-15.2015.97

Borgelt, C., and Picado-Muiño, D. (2013). “Finding frequent patterns in parallel
point processes,” in Advances in Intelligent Data Analysis XII, eds A. Tucker,
F. Höppner, A. Siebes, and S. Swift (Berlin; Heidelberg: Springer), 116–126.
doi: 10.1007/978-3-642-41398-8_11

Brochier, T., Zehl, L., Hao, Y., Duret, M., Sprenger, J., Denker, M., et al. (2018).
Massively parallel recordings in macaque motor cortex during an instructed
delayed reach-to-grasp task. Sci. Data 5:180055. doi: 10.1038/sdata.2018.55

Chen, M., Gao, X., and Li, H. (2009). “An efficient parallel FP-growth
algorithm,” in 2009 International Conference on Cyber-Enabled

Distributed Computing and Knowledge Discovery (Piscataway, NJ: IEEE).
doi: 10.1109/CYBERC.2009.5342148

Chen, X., Wang, F., Fernandez, E., and Roelfsema, P. R. (2020). Shape perception
via a high-channel-count neuroprosthesis in monkey visual cortex. Science 370,
1191–1196. doi: 10.1126/science.abd7435

Dean, J., and Ghemawat, S. (2004). “Mapreduce: Simplified data processing
on large clusters,” in 6th Symposium on Operating System Design and

Implementation (OSDI 2004), eds E. A. Brewer and P. Chen (San Francisco,
CA).

Denker, M., Yegenoglu, A., and Grün, S. (2018). Collaborative HPC-enabled
workflows on the HBP Collaboratory using the Elephant framework.
Neuroinformatics. doi: 10.12751/incf.ni2018.0019

Diana, G., Sainsbury, T. T., and Meyer, M. P. (2019). Bayesian
inference of neuronal assemblies. PLoS Comput. Biol. 15:e1007481.
doi: 10.1371/journal.pcbi.1007481

Ganter, B., and Wille, R. (1999). Formal Concept Analysis. Berlin; Heidelberg:
Springer. doi: 10.1007/978-3-642-59830-2

Gerstein, G. L., Williams, E. R., Diesmann, M., Grün, S., and Trengove, C. (2012).
Detecting synfire chains in parallel spike data. J. Neurosci. Methods 206, 54–64.
doi: 10.1016/j.jneumeth.2012.02.003

Grahne, G., and Zhu, J. (2003). “Efficiently using prefix-trees in mining frequent
itemsets,” in Proceeding of the ICDM’03 International Workshop on Frequent

Itemset Mining Implementations (FIMI’03) (Melbourne, VIC), 123–132.
Grün, S., Diesmann, M., and Aertsen, A. (2002a). Unitary events in multiple

single-neuron spiking activity: I. Detection and significance. Neural Comput.
14, 43–80. doi: 10.1162/089976602753284455

Grün, S., Diesmann,M., andAertsen, A. (2002b). Unitary events inmultiple single-
neuron spiking activity: II. Nonstationary data. Neural Comput. 14, 81–119.
doi: 10.1162/089976602753284464

Gutzen, R., von Papen, M., Trensch, G., Quaglio, P., Grün, S., and Denker, M.
(2018). Reproducible neural network simulations: statistical methods for model
validation on the level of network activity data. Front. Neuroinform. 12:90.
doi: 10.3389/fninf.2018.00090

Han, J., Pei, J., and Yin, Y. (2000). Mining frequent patterns without candidate
generation. ACM SIGMOD Rec. 29, 1–12. doi: 10.1145/335191.335372

Harris, K. (2005). Neural signatures of cell assembly organization. Nat. Rev.
Neurosci. 5, 339–407. doi: 10.1038/nrn1669

Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological Theory.
New York, NY: John Wiley & Sons.

Huynh, B., Vo, B., and Snasel, V. (2017). An efficient parallel method for
mining frequent closed sequential patterns. IEEE Access 5, 17392–17402.
doi: 10.1109/ACCESS.2017.2739749

Jiang, H., and Meng, H. (2017). “A parallel FP-growth algorithm based on GPU,”
in 2017 IEEE 14th International Conference on e-Business Engineering (ICEBE)

(Piscataway, NJ: IEEE). doi: 10.1109/ICEBE.2017.24
Juavinett, A. L., Bekheet, G., and Churchland, A. K. (2019). Chronically implanted

neuropixels probes enable high-yield recordings in freely moving mice. eLife
8:e47188. doi: 10.14224/1.38304

Jun, J. J., Steinmetz, N. A., Siegle, J. H., Denman, D. J., Bauza, M., Barbarits, B., et
al. (2017). Fully integrated silicon probes for high-density recording of neural
activity. Nature 551, 232–236. doi: 10.1038/nature24636

Li, H., Wang, Y., Zhang, D., Zhang, M., and Chang, E. Y. (2008). “Pfp,” in
Proceedings of the 2008 ACM conference on Recommender systems - RecSys 08
(New York, NY: ACM Press). doi: 10.1145/1454008.1454027

Lopes-dos Santos, V., Ribeiro, S., and Tort, A. B. (2013). Detecting cell
assemblies in large neuronal populations. J. Neurosci. Methods 220, 149–166.
doi: 10.1016/j.jneumeth.2013.04.010

Lucchese, C., Orlando, S., and Perego, R. (2007). “Parallel mining of frequent
closed patterns: harnessing modern computer architectures,” in Seventh IEEE

International Conference on Data Mining (ICDM 2007) (Omaha, NE: IEEE).
doi: 10.1109/ICDM.2007.13

Oleksiak, A., Kierzynka, M., Piatek, W., Agosta, G., Barenghi, A.,
Brandolese, C., et al. (2017). M2DC–modular microserver DataCentre
with heterogeneous hardware. Microprocess. Microsyst. 52, 117–130.
doi: 10.1016/j.micpro.2017.05.019

Oleksiak, A., Kierzynka, M., Porrmann, M., Hagemeyer, J., Griessl, R.,
Peykanu, M., et al. (2019). M2DC-A Novel Heterogeneous Hyperscale

Microserver Platform. Cham: Springer International Publishing AG.
doi: 10.1007/978-3-319-92792-3_6

Picado-Muiño, D., Borgelt, C., Berger, D., Gerstein, G. L., and Grün, S. (2013).
Finding neural assemblies with frequent item set mining. Front. Neuroinform.
7:9. doi: 10.3389/fninf.2013.00009

Picado-Muiño, D., Castro León, I., and Borgelt, C. (2012). “Fuzzy frequent pattern
mining in spike trains,” in Advances in Intelligent Data Analysis XI, eds J.
Hollmén, F. Klawonn, and A. Tucker (Berlin; Heidelberg: Springer), 289–300.
doi: 10.1007/978-3-642-34156-4_27

Pipa, G., Wheeler, D. W., Singer, W., and Nikolie, D. (2008). NeuroXidence:
reliable and efficient analysis of an excess or deficiency of joint-spike events.
J. Comput. Neurosci. 25, 64–88. doi: 10.1007/s10827-007-0065-3

Qu, J.-F., Hang, B., Wu, Z., Wu, Z., Gu, Q., and Tang, B. (2020). Efficient
mining of frequent itemsets using only one dynamic prefix tree. IEEE Access

8, 183722–183735. doi: 10.1109/ACCESS.2020.3029302
Quaglio, P., Rostami, V., Torre, E., and Grün, S. (2018). Methods for identification

of spike patterns in massively parallel spike trains. Biological Cybernetics 112(1-
2):57–80. doi: 10.1007/s00422-018-0755-0

Quaglio, P., Yegenoglu, A., Torre, E., Endres, D. M., and Grün, S. (2017).
Detection and evaluation of spatio-temporal spike patterns in massively
parallel spike train data with SPADE. Front. Comput. Neurosci. 11:41.
doi: 10.3389/fncom.2017.00041

Riehle, A., Wirtssohn, S., Grün, S., and Brochier, T. (2013). Mapping the spatio-
temporal structure of motor cortical LFP and spiking activities during reach-
to-grasp movements. Front. Neural Circ. 7:48. doi: 10.3389/fncir.2013.00048

Russo, E., and Durstewitz, D. (2017). Cell assemblies at multiple time scales with
arbitrary lag constellations. eLife 6:19428. doi: 10.7554/eLife.19428

Shi, X., Chen, S., and Yang, H. (2017). “DFPS: distributed FP-growth algorithm
based on spark,” in 2017 IEEE 2nd Advanced Information Technology,

Electronic and Automation Control Conference (IAEAC) (Chongqing: IEEE).
doi: 10.1109/IAEAC.2017.8054308

Steinmetz, N. A., Koch, C., Harris, K. D., and Carandini, M. (2018). Challenges
and opportunities for large-scale electrophysiology with neuropixels
probes. Curr. Opin. Neurobiol. 50, 92–100. doi: 10.1016/j.conb.2018.
01.009

Stella, A., Quaglio, P., Torre, E., and Grün, S. (2019). 3d-SPADE: significance
evaluation of spatio-temporal patterns of various temporal extents. Biosystems

185:104022. doi: 10.1016/j.biosystems.2019.104022
Tektronix (2006). TCP0030 120 MHz, 30 A AC/DC Current Probe Instruction

Manual. Tektronix.
Torre, E., Picado-Muiño, D., Denker, M., Borgelt, C., and Grün, S. (2013).

Statistical evaluation of synchronous spike patterns extracted by frequent item
set mining. Front. Comput. Neurosci. 7:132. doi: 10.3389/fncom.2013.00132

Frontiers in Neuroinformatics | www.frontiersin.org 18 September 2021 | Volume 15 | Article 72340627

https://doi.org/10.1145/170036.170072
https://doi.org/10.2991/ifsa-eusflat-15.2015.97
https://doi.org/10.1007/978-3-642-41398-8_11
https://doi.org/10.1038/sdata.2018.55
https://doi.org/10.1109/CYBERC.2009.5342148
https://doi.org/10.1126/science.abd7435
https://doi.org/10.12751/incf.ni2018.0019
https://doi.org/10.1371/journal.pcbi.1007481
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1016/j.jneumeth.2012.02.003
https://doi.org/10.1162/089976602753284455
https://doi.org/10.1162/089976602753284464
https://doi.org/10.3389/fninf.2018.00090
https://doi.org/10.1145/335191.335372
https://doi.org/10.1038/nrn1669
https://doi.org/10.1109/ACCESS.2017.2739749
https://doi.org/10.1109/ICEBE.2017.24
https://doi.org/10.14224/1.38304
https://doi.org/10.1038/nature24636
https://doi.org/10.1145/1454008.1454027
https://doi.org/10.1016/j.jneumeth.2013.04.010
https://doi.org/10.1109/ICDM.2007.13
https://doi.org/10.1016/j.micpro.2017.05.019
https://doi.org/10.1007/978-3-319-92792-3_6
https://doi.org/10.3389/fninf.2013.00009
https://doi.org/10.1007/978-3-642-34156-4_27
https://doi.org/10.1007/s10827-007-0065-3
https://doi.org/10.1109/ACCESS.2020.3029302
https://doi.org/10.1007/s00422-018-0755-0
https://doi.org/10.3389/fncom.2017.00041
https://doi.org/10.3389/fncir.2013.00048
https://doi.org/10.7554/eLife.19428
https://doi.org/10.1109/IAEAC.2017.8054308
https://doi.org/10.1016/j.conb.2018.01.009
https://doi.org/10.1016/j.biosystems.2019.104022
https://doi.org/10.3389/fncom.2013.00132
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al. Acceleration of SPADE

Torre, E., Quaglio, P., Denker, M., Brochier, T., Riehle, A., and Grün, S.
(2016). Synchronous spike patterns in macaque motor cortex during
an instructed-delay reach-to-grasp task. J. Neurosci. 36, 8329–8340.
doi: 10.1523/JNEUROSCI.4375-15.2016

Trensch, G., Gutzen, R., Blundell, I., Denker, M., and Morrison, A. (2018).
Rigorous neural network simulations: a model substantiation methodology for
increasing the correctness of simulation results in the absence of experimental
validation data. Front. Neuroinform. 12:81. doi: 10.3389/fninf.2018.
00081

Uno, T., Kiyomi, M., and Arimura, H. (2004). “LCM ver. 2: efficient mining
algorithms for frequent/closed/maximal itemsets,” in FIMI ’04, Proceedings of

the IEEE ICDM Workshop on Frequent Itemset Mining Implementations,
eds B. Goethals and M. J. Zaki (Brighton). doi: 10.1145/1133905.
1133916

Wang, F., and Yuan, B. (2014). “Parallel frequent patternmining without candidate
generation on GPUs,” in 2014 IEEE International Conference on Data Mining

Workshop (Shenzhen: IEEE). doi: 10.1109/ICDMW.2014.71
Watanabe, K., Haga, T., Tatsuno, M., Euston, D. R., and Fukai, T. (2019).

Unsupervised detection of cell-assembly sequences by similarity-based
clustering. Front. Neuroinform. 13:39. doi: 10.3389/fninf.2019.00039

Wicaksono, D., Jambak, M. I., and Saputra, D. M. (2020). “The comparison of
apriori algorithm with preprocessing and FP-growth algorithm for finding
frequent data pattern in association rule,” in Proceedings of the Sriwijaya

International Conference on Information Technology and Its Applications

(SICONIAN 2019) (Palembang: Atlantis Press). doi: 10.2991/aisr.k.200424.047
Williams, A. H., Poole, B., Maheswaranathan, N., Dhawale, A. K., Fisher,

T., Wilson, C. D., et al. (2020). Discovering precise temporal patterns
in large-scale neural recordings through robust and interpretable
time warping. Neuron 105, 246.e8–259.e8. doi: 10.1016/j.neuron.2019.
10.020

Wu, Y.-C., Yeh, M.-Y., and Kuo, T.-W. (2019). “Fast frequent pattern
mining without candidate generations on GPU by low latency memory
allocation,” in 2019 IEEE International Conference on Big Data (Big

Data) (Los Angeles, CA: IEEE). doi: 10.1109/BigData47090.2019.
9006541

Xia, D., Lu, X., Li, H., Wang, W., Li, Y., and Zhang, Z. (2018). A MapReduce-
based parallel frequent pattern growth algorithm for spatiotemporal

association analysis of mobile trajectory big data. Complexity 2018, 1–16.
doi: 10.1155/2018/2818251

Yegenoglu, A., Quaglio, P., Torre, E., Grün, S., and Endres, D. (2016). “Exploring
the usefulness of formal concept analysis for robust detection of spatio-
temporal spike patterns in massively parallel spike trains,” in Graph-Based

Representation and Reasoning, Bd. 9717 (Lecture Notes in Computer Science,

9717), eds O. Haemmerlé, G. Stapleton, and C. F. Zucker (Cham: Springer
International Publishing), 3–16.

Zaiane, O., El-Hajj, M., and Lu, P. (2001). “Fast parallel association
rule mining without candidacy generation,” in Proceedings 2001

IEEE International Conference on Data Mining (San Jose, CA: IEEE).
doi: 10.1109/ICDM.2001.989600

Zaki, M. (2000). Scalable algorithms for association mining. IEEE Trans.

Knowledge Data Eng. 12, 372–390. doi: 10.1109/69.846291
Zhou, L., Zhong, Z., Chang, J., Li, J., Huang, J. Z., and Feng, S. (2010).

“Balanced parallel FP-growth with MapReduce,” in 2010 IEEE Youth

Conference on Information, Computing and Telecommunications (Beijing:
IEEE). doi: 10.1109/YCICT.2010.5713090

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Porrmann, Pilz, Stella, Kleinjohann, Denker, Hagemeyer and

Rückert. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 19 September 2021 | Volume 15 | Article 72340628

https://doi.org/10.1523/JNEUROSCI.4375-15.2016
https://doi.org/10.3389/fninf.2018.00081
https://doi.org/10.1145/1133905.1133916
https://doi.org/10.1109/ICDMW.2014.71
https://doi.org/10.3389/fninf.2019.00039
https://doi.org/10.2991/aisr.k.200424.047
https://doi.org/10.1016/j.neuron.2019.10.020
https://doi.org/10.1109/BigData47090.2019.9006541
https://doi.org/10.1155/2018/2818251
https://doi.org/10.1109/ICDM.2001.989600
https://doi.org/10.1109/69.846291
https://doi.org/10.1109/YCICT.2010.5713090
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

ORIGINAL RESEARCH
published: 07 January 2022

doi: 10.3389/fninf.2021.766697

Frontiers in Neuroinformatics | www.frontiersin.org 1 January 2022 | Volume 15 | Article 766697

Edited by:

Omar Awile,

Swiss Federal Institute of Technology

Lausanne, Switzerland

Reviewed by:

Caglar Cakan,

Technical University of Berlin,

Germany

Marcel Stimberg,

Sorbonne Université, France

*Correspondence:

Wouter Klijn

w.klijn@fz-juelich.de

Sandra Diaz-Pier

s.diaz@fz-juelich.de

†These authors have contributed

equally to this work

‡Present address:

Currently at Google,

Munich, Germany

Received: 29 August 2021

Accepted: 30 November 2021

Published: 07 January 2022

Citation:

Herbers P, Calvo I, Diaz-Pier S,

Robles OD, Mata S, Toharia P,

Pastor L, Peyser A, Morrison A and

Klijn W (2022) ConGen—A

Simulator-Agnostic Visual Language

for Definition and Generation of

Connectivity in Large and Multiscale

Neural Networks.

Front. Neuroinform. 15:766697.

doi: 10.3389/fninf.2021.766697

ConGen—A Simulator-Agnostic
Visual Language for Definition and
Generation of Connectivity in Large
and Multiscale Neural Networks
Patrick Herbers 1†, Iago Calvo 2†, Sandra Diaz-Pier 1*†, Oscar D. Robles 2,3, Susana Mata 2,3,

Pablo Toharia 3,4, Luis Pastor 2,3, Alexander Peyser 1‡, Abigail Morrison 1,5,6 and

Wouter Klijn 1*

1 Simulation and Data Lab Neuroscience, Jülich Supercomputing Centre, Institute for Advanced Simulation, JARA,

Forschungszentrum Jülich GmbH, Jülich, Germany, 2Department of Computer Science and Computer Architecture,

Lenguajes y Sistemas Informáticos y Estadística e Investigación Operativa, Rey Juan Carlos University, Madrid, Spain,
3Center for Computational Simulation, Universidad Politécnica de Madrid, Madrid, Spain, 4DATSI, ETSIINF, Universidad

Politécnica de Madrid, Madrid, Spain, 5 Institute of Neuroscience and Medicine and Institute for Advanced Simulation and

JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany, 6Computer Science 3 - Software Engineering, RWTH

Aachen University, Aachen, Germany

An open challenge on the road to unraveling the brain’s multilevel organization is

establishing techniques to research connectivity and dynamics at different scales in

time and space, as well as the links between them. This work focuses on the design

of a framework that facilitates the generation of multiscale connectivity in large neural

networks using a symbolic visual language capable of representing the model at different

structural levels—ConGen. This symbolic language allows researchers to create and

visually analyze the generated networks independently of the simulator to be used, since

the visual model is translated into a simulator-independent language. The simplicity of

the front end visual representation, together with the simulator independence provided

by the back end translation, combine into a framework to enhance collaboration among

scientists with expertise at different scales of abstraction and from different fields. On the

basis of two use cases, we introduce the features and possibilities of our proposed visual

language and associated workflow. We demonstrate that ConGen enables the creation,

editing, and visualization of multiscale biological neural networks and provides a whole

workflow to produce simulation scripts from the visual representation of the model.

Keywords: multiscale simulation, large scale simulation, visual language, neural networks, connectivity

generation, connectome

1. INTRODUCTION

The brain has a multilevel organization, with anatomical and dynamic features spanning orders of
magnitudes. Understanding the nature of its components and how they are connected with each
other is critical to unraveling this complexity (Evanko and Pastrana, 2013; Morgan and Lichtman,
2013; Peyser et al., 2019), for both healthy and diseased brains (e.g., Chen et al., 2021). Indeed,
connectivity is an essential aspect defining the functionality at all organizational scales of the brain
(Sporns et al., 2005).

The 21st century has seen multiple interdisciplinary research initiatives initiated to address this
important topic (Collins and Prabhakar, 2013;Markram et al., 2015); however, despite advances and

29

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2021.766697
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2021.766697&domain=pdf&date_stamp=2022-01-07
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:w.klijn@fz-juelich.de
mailto:s.diaz@fz-juelich.de
https://doi.org/10.3389/fninf.2021.766697
https://www.frontiersin.org/articles/10.3389/fninf.2021.766697/full

Herbers et al. ConGen—Visual Connectivity Generation

efforts toward standardization in this field (Gadde et al., 2012;
Gorgolewski et al., 2016), there is no consistent way to represent,
visualize, explore, and generate connectivity for simulation
or analysis across different scales. Consequently, developing
the tools to support investigations of multiscale functional
organization remains an open challenge.

A central method in such investigations is numerical
simulation of the brain. Existing simulation engines capture
the brain behavior at different levels of detail: detailed multi-
compartment simulations (e.g., Arbor—Akar et al., 2019; Abi
Akar et al., 2021, Neuron—Carnevale and Hines, 2006), point
neuron simulations (e.g., NEST—Jordan et al., 2019, Brian—
Stimberg et al., 2019) or whole brain level simulations (e.g., The
Virtual Brain—TVB Sanz Leon et al., 2013). By exploiting high
performance computing we are now able to simulate large scale
networks as well as those which represent the brain at different
scales simultaneously. However, the absence ofmethods to create,
and explore complex connectivity in these types of networks
limits investigations in the relationships between connectivity
and function.

Creating a framework that enables simulation of large and
multiscale models of heterogeneous neuron populations is only
possible by making use of well-defined interfaces, either new
or existing. These interfaces must allow weak coupling between
software systems and the necessary front ends to interact with
them, but at the same time be able to leverage the native functions
of the simulation engines and their inherent scaling capabilities.
The development of tools and standards which take advantage
of these interfaces will additionally enable the comparison of
performance and function metrics between different simulation
engines. This will allow the formulation of more robust
scientific conclusions and move the field of computational
neuroscience forward. The implementation of easy to use
and flexible tools for benchmarking different simulation tools
remains a critical and still unfulfilled requirement by the
neuroscience community.

This work focuses on the design and implementation
of ConGen, a framework that facilitates the generation of
connectivity in large neural networks using a new symbolic
visual language capable of representing the model at different
structural levels. This symbolic language is specifically designed
to provide researchers with a tool to represent and explore the
connectivity in models of multiscale and large scale networks.
ConGen provides an agnostic way to represent models and
later instantiate them with specific simulation frameworks.
The connectomes represented in the visual language can be
exported to the standardized network representation format
NeuroML (Gleeson et al., 2010). These descriptions can be
used directly by simulation engines which support the format.
ConGen adds functionality with a back end, also interfaced
with NeuroML.

The ConGen back end enables interfacing with efficient
connection generation approaches (e.g., Djurfeldt et al., 2014)
and allows users to launch simulations using the simulation
engines’ native scaling capabilities. For convenience, the ConGen
back end encapsulates a set of basic templates allowing users to
generate the connectivity using the standard description. The

ConGen back end also includes a number of thin simulator-
specific interfaces, enabling basic launching, i.e., using default
model parameters, on the target simulator. Users can edit and
extend the thin simulator-specific scripts in the ConGen back end
to define their own simulation and model parameters. Currently
the ConGen back end supports execution of the NEST and TVB
simulators, as well as the generation of EBRAINS co-simulation
model scripts ready for execution by external tooling. However,
due to its modular design it is possible to easily extend the back
end to support other simulators.

With this work we provide a bridge between a simple, yet
expressive, visual language (see section 2.1.1) embedded into a
simulator-agnostic graphical interface, simulation frameworks,
and high performance computing infrastructure. By providing
a language to describe connectivity in a simulator-agnostic way,
ConGen also represents a new platform to assist benchmarking
using a generic description of networks based on model
description standards. As such, ConGen helps to address the
unfulfilled requirement for an easy to use and flexible tool
for benchmarking.

This paper is structured as follows: first, we present the
state of the art in connectivity visualization and representation
techniques, as well as standards for network description. Then,
we describe the front end which implements the symbolic visual
language: ConGen. Afterwards, we discuss the implementation
of the back end which takes the standard output representation
from the visual language and translates it into a model instance in
one or multiple simulators. In the results section we show two use
cases for this framework. The first refers to the well-knownmodel
of the cortical mircrocircuit by Potjans and Diesmann (2014) and
the second is a multiscale model which combines a simulation
in TVB and NEST. Finally, we discuss the use cases and the
current limitations of the framework, provide some conclusions,
and point toward future directions.

1.1. State of the Art
1.1.1. Visual Representations of Connectivity
Connectivity matrices have long been used as a way to represent
connections in the brain. For example, the work of Rubinov
and Sporns (2010) presents a Matlab Toolbox intended to
generate connectomes at the scale of brain regions using this
type of representation. Here, binary entries in the matrix indicate
the presence or absence of connections; real-valued entries
can be used to represent magnitudes regarding correlational
or causal interactions. Although the authors state that the
neuroimaging methods available for them were unable to directly
detect anatomical or causal directionality, the matrices produced
using the Toolbox can incorporate this information if it is
available. Mijalkov et al. (2017) created another Matlab Toolbox
that allows the user to create visualizations mainly based
in connectivity matrices derived from different neuroimaging
modalities with the aim to study large scale brain connectivity
applying techniques from graph analysis theory.

An alternative representation of connectivity is given by
a Connectivity Pattern Table (CPT), a 2D schematic and
compact representation intended to shown the spatial structure
of connections as well as their strength, proposed by Nordlie

Frontiers in Neuroinformatics | www.frontiersin.org 2 January 2022 | Volume 15 | Article 76669730

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Herbers et al. ConGen—Visual Connectivity Generation

and Plesser (2010). The main features of CPTs are a clutter-free
presentation of connectivity, the ability to represent connectivity
at several levels of aggregation and a high information contents
regarding the spatial structure of connectivity.

Other approaches have focused on morphologically detailed
connectivity. For example, NeuroLines (Al-Awami et al., 2014)
is a multiscale abstract visualization technique for the analysis of
neurites and their connections. Here, each neurite is represented
as a tree structure based on 3D data of their morphology. Once a
synapse is selected, all other synapses linked to the same neurites
are visually highlighted for contextual information. In related
work, Böttger et al. (2014) developed an edge bundling method
which depicts clear and high-resolution pictures of functional
brain connectivity data across functional networks in the 3D
brain space.

Additional tools address MEG/EEG data import and pre-
processing. NeuroPycon (Meunier et al., 2020) is a Python
toolbox for the visualization of connectivity analysis in MEG
sensors. The visualization is built from the sensor-level
connectivity matrix obtained from the computation of the
coherence among MEG sensors in alpha band. The colors of the
connectivity edges indicate the strength of the connection, and
the node size and color represent the number of connections
per node. Similarly, Espinoza-Valdez et al. (2021) presented a 3D
visualizer of the brain connectivity for EEG data. The selection of
electrodes is performed in a dynamic way; graph theory is then
applied to characterize brain connectivity in 3D images.

Finally, Fujiwara et al. (2017) introduced a visual analytics
system to enable neuroscientists to compare networks. The
system provides visual tools for comparison at both individual
and population levels. Themain visualization techniques they use
are based on representations of connectivity and node-linkage
matrices (both 2D and 3D).

1.1.2. Abstract Representations of Connectivity
Unfortunately, often the descriptions of network model
connectivity do not adhere to any standards (Nordlie et al.,
2009). Model definitions rely on a combination of complex text
descriptions, pieces of pseudo-code or simulator-specific code,
tables, and connectivity patterns without formal definitions.
Consequently, ambiguities in the model description make it
difficult to independently reproduce the network, or port it from
one simulation environment to another (Pauli et al., 2018).

To provide a formal standard that can be used to convey the
connectivity of amodel, not only in written text and formulas, but
also among neuronal simulators, Djurfeldt (2012) developed the
Connection Set Algebra (CSA): a mathematical representation
of connections between populations of neurons based on set
algebra. With this abstract formalism, a connectivity pattern can
be defined independently of the implementation by the various
simulators. This independence is an important aspect of the
modular nature of CSA, allowing it, in principle, to be used
in combination with any simulator. The connection with the
simulators is formalized in the Connection Generation Interface
(CGI; Djurfeldt et al., 2014). The CGI allows the simulator to
query connections from the linked connection generator. Both

the simulator and the connection generator need to implement
the interface.

1.1.3. Standardized Network Model Descriptions
A number of domain languages exist to describe networks at
different scales, notably PyNN (Davison et al., 2009), NeuroML
(Gleeson et al., 2010), and NineML (Raikov et al., 2011). PyNN
is a Python based simulator-independent language. It supports
modeling at multiple levels of abstraction. The instruction
set of each simulator and PyNN code can be mixed, so
models described in PyNN can still access features specific to
individual simulation engines. Importantly for our work, PyNN
implements the CGI, which allows connection generation using
the CSA. During the development of ConGen, PyNN did not
support NeuroML, but a NeuroML file export for networks
generated with PyNN has since been added. While PyNN enables
easier interfacing with various simulators, it has been designed
primarily as a scripting tool. No visual tools are available for
PyNN, instead network creation follows procedural instructions.

NeuroML is a simulator-independent XML-based formalism
that is supported by a variety of neuroscience tools and supports
a more biophysically detailed level of modeling than PyNN. The
standard consists of three levels, which are built hierarchically
and provide a standard for describing morphologically detailed
neurons, spiking neurons and populations of neurons. The most
recent version of NeuroML (NeuroML2) combined with LEMS
(Cannon et al., 2014) has been developed in order to be able
to represent both network structure and model dynamics in a
standardized and domain specific fashion.

Finally, NineML is an XML-based modeling language similar
to NeuroML formalized in an XML Schema Definition (Raikov
et al., 2011). Its primary focus is on definitions on the network
level, such as populations and connections; as a consequence
of this focus it lacks many of the detailed elements present in
NeuroML, e.g., biological cell structures of neurons and synapses.

The computational neuroscience community needs to further
use and define standards in order to promote reproducibility
and robustness of results. With this in mind, efforts like Open
Source Brain (Gleeson et al., 2019) try to integrate graphic user
interfaces, model description languages and simulation engines
into a cohesive effort to simulate the brain.

1.1.4. Simulation Engines
Simulators are an important tool in computational neuroscience.
Simulation engines enable the creation and simulation of models
at different scales. They typically provide a language, usually a
scripting language, for the user to access the simulator’s functions.

Some common spiking neuron simulation tools are NEURON
(Carnevale and Hines, 2006), NEST (Jordan et al., 2019), and
BRIAN (Stimberg et al., 2019). For a detailed comparison on
these and other simulators see Tikidji-Hamburyan et al. (2017).
Of the three simulators, NEURON is the one with the longest
history and largest user community. Arbor (Akar et al., 2019)
is a new simulation framework, developed in the context of
the HBP, at the morphologically detailed scale and is designed
to take full advantage of new computing architectures and
reach high scalability. While NEURON and Arbor are used

Frontiers in Neuroinformatics | www.frontiersin.org 3 January 2022 | Volume 15 | Article 76669731

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Herbers et al. ConGen—Visual Connectivity Generation

for detailed cell models, NEST is used to simulate primarily
point neurons, and multi compartment neurons with up to
three compartments. NEST is optimized for simulations of
large scale networks—including up to hundreds of millions of
neurons and their synapses—on high performance computers
while still having great performance on smaller devices. BRIAN
supports simulations of both detailed and large scale networks
with a focus of separating model definition and simulator
implementation details. For ease of use all these simulators have
implemented Python interfaces, or can be controlled using a
simulator specific language [e.g., PyNEST (Eppler et al., 2009)
for NEST].

Simulations of the whole brain are also possible at a coarse
resolution. For example, The Virtual Brain is a simulation
framework which allows the representation of the brain using
neural mass models and simulate them to generate synthetic
Electroencephalography (EEG), Magnetoencephalography
(MEG), or Blood Oxygen Level Dependent (BOLD) signals.
Another emerging simulator at the whole brain scale level
is neurolib (Cakan et al., 2021). Similar to TVB, neurolib
provides the end user with a variety of neural mass models, the
ability to create networks based on empirical connectivity data
and generate simulated signals which can be optimized using
parameter fitting methods against empirical data.

2. METHODS

This section describes the two components of the proposed
framework: the description of the multiscale connectivity using
a symbolic visual language, and the translation of the generated
models into simulator-specific instructions.

The ConGen front end provides end users with a standardized
description of their models in NeuroML. This description can be
directly used by simulation engines which support this standard.
For convenience, the ConGen back end encapsulates a set of
basic functionality allowing users to read the NeuroML file
and generate the connectivity. The ConGen back end includes
simulator specific thin interfaces, allowing for basic launching on
the target simulator. To increase the compatibility of ConGen
to multiple simulators, we have extended the NeuroML scheme
used to define the models. Illustrating the flexibility of the
toolset, one of our use-case expands on the standard NeuroML
interface with new functionality. We show that new simulators
and functionality can be added by adapting the ConGen back
end. Users can also directly interact with the output of the
ConGen front end in NeuroML format to create more complex
simulations with detailed model specifications which go beyond
basic configuration and connectivity definition e.g., cell model
specific parameters, pre and post- processing of input and output
data, etc.

2.1. Visual Front End for Connectivity
Generation
ConGen facilitates the creation, editing and visualization of
multiscale neural networks. Connections can be created and
visualized at the desired level of abstraction, and mechanisms

for the propagation and aggregation of connectivity along the
hierarchy are provided. This approach allows the researcher to
generate large scale scenarios capturing global behavior and local
details at the same time.

The ConGen front end has been integrated into Neuroscheme
(Pastor et al., 2015), a visual framework to guide exploration and
knowledge extraction from complex neural scenes. Neuroscheme
allows the creation of domains that define the set of elements that
conform a neuronal scene. For example, Neuroscheme includes
the cortex domain, which provides elements corresponding to
the organizational levels of column, minicolumn and neuronal
cell, as well as defining the properties associated with each
element. ConGen has been conceived and developed as a new
domain within Neuroscheme, defining a new set of abstract
neural elements (i.e., not corresponding to specific brain areas)
and connections between them in order to represent models of
large scale and multiscale neural networks.

Neuroscheme offers an environment with multiple views
where different representations of the data can be visualized
in a coordinated manner. In this way, abstract views can be
combined with accurate representations of cellular anatomy.
The iconic view of a circuit provides a global, simplified view
with summarized or aggregated information, while the realistic
view provides all details of the neuronal anatomy and spatial
distribution. ConGen has been designed to act as a front end
for interactive visual definition of neural connectivity, thereby
facilitating the creation and manipulation of neural circuit
models. Following a top-down approach, ConGen enables the
creation of a hierarchy of super-populations and populations
and the specification of their connections by establishing the
necessary connectivity parameters. Populations constitute the
leaves of the hierarchy and grouping them together gives rise to
a superpopulation. In turn, superpopulations can be grouped
iteratively, also giving rise to hierarchical superpopulations.
Figure 1 shows a hierarchy of superpopulations and populations.
Our approach to interaction and visual representation
emphasizes simplicity, depicting views using easy symbolic
representations. The models so created can be exported using
an extended version of NeuroML for further simulator-specific
translation. The following subsection details the operations
supported by ConGen.

2.1.1. Creation and Parameterization of a Hierarchical

Network Structure
ConGen supports the creation of a neural scene and its
connectivity by providing an interface that visually displays the
created entities and relationships. Each entity will be represented
by a circular shape. Entities of the same type will share the same
color (superpopulations, populations, inputs and outputs). The
number of inner circles will represent the number of descending
levels of a superpopulation and the filling of the horizontal bar
will be proportional to the number of neurons in each grouping.
By simply right-clicking with the mouse, a context menu appears
allowing entities to be created and hierarchically structured. To
create one or more super-populations, the user simply sets the
number of entities to be created, their name and the other
configurable parameters. Figure 2A shows the super-population

Frontiers in Neuroinformatics | www.frontiersin.org 4 January 2022 | Volume 15 | Article 76669732

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Herbers et al. ConGen—Visual Connectivity Generation

FIGURE 1 | Hierarchical structure of a scene. Level 0 shows three superpopulations that group either populations or descendant superpopulations, as shown in level

1. Superpopulations SP_0_0 and SP_0_1 contain two neuron populations each, as depicted in level 2.

creation panel as well as the visual representation of the three
super-populations created. Figure 2B illustrates the creation of
two populations of neurons within the super-population SP_2.
Note that the visual representation of the super-population
SP_2, compared to its appearance in Figure 2A, now reflects the
existence of a hierarchical descendant level (presence of an inner
circle) and the number of neurons in the descendant populations
(green filling of the horizontal bar).

Continuing the procedure outlined above, the hierarchy
initially shown in Figure 1 can be easily created. Figure 3A
shows this scene depicted at level 0, composed of three super-
populations (SP_0, SP_1 and SP_2). SP_0 in turn contains two
child super-populations (SP_0_0 and SP_0_1); each of them, as
well as SP_1 and SP_2, containing two populations of neurons.
The super-populations can be expanded to show their children,
either in the same panel or in a different panel; Figure 3B

shows the result of expanding all super-populations in a different
panel, thus allowing the scene to be visualized at two levels of
abstraction simultaneously (level 0 on the left, and level 1 on the
right). Similarly, the SP_0_0 and SP_0_1 super-populations can
be expanded into a further panel, depicting the scene at the lowest
level of abstraction in the right panel of Figure 3C.

Connections are created by dragging with the mouse from
the source population to the target population. Figure 4A shows
the parameterization options of the connections as well as the
context menu that allows auto-connections (i.e., connections of a
population to itself) to be added. Each connection is represented
by an arrow whose thickness is proportional to the strength of
the connection. Since the views shown in the different panels
are coordinated, the connections created at the lowest level of
abstraction are reflected in an aggregated way in the panels

showing the scene at higher levels of abstraction, as shown in
Figure 4B.

In addition to neuron populations, input and output entities
can be created. These entities are external to the hierarchy. Input
entities stimulate one or more populations of neurons. An input
entity is connected to its target population analogously to the
connections between populations. Figure 4C shows the result of
including an input connected to example populations NP_0_0_1
and NP_0_1_0; note that input entities appear at all levels of
abstraction. Output entities, such a measurement devices, can
receive a connection from one or more populations of neurons.

2.2. From Visual Representation to
Simulation
In this section, we introduce the back end of ConGen, which
is used to generate the hierarchical neural network models
and interact with the simulation engines (see division of front
end/back end in Figure 5). The ConGen front end has to serialize
the model expressed in ConGen’s graphical language by some
means. Here, we make use the pre-existing NeuroML standard
rather than developing a new declarative language to achieve this
goal. Any simulator that supports NeuroML can be considered a
potential execution target.

The back end of ConGen consists of a modular translator
system. Its purpose is to translate the NeuroML descriptions of
the models created in the GUI described in the previous section
into simulator-specific code. It is important to highlight that the
ConGen back end is not a simulation engine but is able to call
functions from different target simulators using the simulator
interface. The translation system was designed with the following
technical requirements in mind:

Frontiers in Neuroinformatics | www.frontiersin.org 5 January 2022 | Volume 15 | Article 76669733

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Herbers et al. ConGen—Visual Connectivity Generation

FIGURE 2 | Creation of super-populations and populations. (A) The panel on the right sets the name root of the super-populations (SP in this example) and the

number of entities (three in this example) to be created. (B) Right clicking on SP_2 allows the creation of descendant neuron populations. The panel on the right sets

the name root of the populations (NP_2 in this example) and the number of entities (two in this example) to be created.

1. The translation system should enable the simulation of a
model defined in the ConGen GUI by a supported simulator

2. The simulation should be able to be performed in
different simulators

3. Adding support for a new simulator should require a low
development cost

4. The translation system should be functionally separate from
the ConGen GUI

5. The overhead of the system should be low: performance
should be close to that of using the simulator directly.

The back end of ConGen is designed to be separate from the
GUI (technical requirement 4). This separation allows the front
end and back end to be used as independent modules. For
example, the front end can run on a desktop computer, while
the back end runs and then executes the simulations on a
high performance computing system. This modular design also
allows individual components to be easily maintained or replaced
(technical requirement 3). A modular design requires careful
construction of interfaces and data exchange; these are illustrated

in Figure 5, which shows the overall flow of data from the visual
tool to the simulator.

2.2.1. Using NeuroML
The main data exchange between the front end and the back
end is via NeuroML: ConGen serializes its visual models to
NeuroML files for storage or data exchange. This separation
through a common data standard allows the ConGen translator
to be entirely independent of the GUI. ConGen uses NeuroML
version 1.8.2, which allows networks, layers, and connections to
be represented by XML files. At the time that the back end was
developed, NeuroML version 2 was still in development. For this
reason, the work presented here is based on version 1.8.2, but will
be ported to version 2 in the future.

The structure and validity of files is defined by XML
schemas, which allows extensions of the described file
format. To increase the compatibility of ConGen to multiple
simulators, we have extended the NeuroML scheme used for
translation. These additions include spatial connectivity and

Frontiers in Neuroinformatics | www.frontiersin.org 6 January 2022 | Volume 15 | Article 76669734

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Herbers et al. ConGen—Visual Connectivity Generation

FIGURE 3 | Creation of scenes in ConGen. (A) A scene where SP_0 has two hierarchical descendant levels (indicated by the two inner rings) while SP_1 and SP_2

have one hierarchical descendant level each. The green filling of the horizontal bars indicates that SP_1 and SP_2 have the same number of neurons while SP_0 has

twice the amount. (B) Super-populations can be expanded to visualize the next hierarchical level. Left panel: the three super-populations in a collapsed view. Right

panel: The three super-populations have been expanded to show their direct children. (C) The panels show the three hierarchical levels of the scene simultaneously.

Left: Neuron super-populations at the highest level of abstraction. Middle: The hierarchical entities tree displayed at depth level 2. Right: All entities have been drilled

down to show the lowest level of abstraction. Icons have been arranged in a circular layout for convenience for connectivity creation.

Frontiers in Neuroinformatics | www.frontiersin.org 7 January 2022 | Volume 15 | Article 76669735

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Herbers et al. ConGen—Visual Connectivity Generation

FIGURE 4 | Connections and inputs. (A) Connections are created by dragging with the mouse from the source to the target population. The panel on the right shows

the parameterizable features. Auto-connections can be created through the context menu that appears when right-clicking on a population. (B) Connectivity

simultaneously displayed at three levels of abstraction. Note the connections of superpopulations represent the aggregation of the connections of their descendant

populations. (C) Inputs can be created as entities that are external to the hierarchy. Note that inputs appear at every level of abstraction.

Frontiers in Neuroinformatics | www.frontiersin.org 8 January 2022 | Volume 15 | Article 76669736

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Herbers et al. ConGen—Visual Connectivity Generation

FIGURE 5 | Flow of data from visual representation to simulation. The user creates a model in ConGen and exports it as a NeuroML file. The translator parses the

NeuroML file and converts the connectivity into the Connection Set Algebra. The populations and inputs are built directly in the simulator. Using the Connection

Generation Interface (CGI), connections are generated from the connection generation library and passed to the simulator, which can then start the simulation. A

future extension of this workflow will allow simulation results to be processed and passed back to ConGen (dotted line).

TABLE 1 | XML connectivity pattern tags and their corresponding Python classes and CSA structures.

NetworkML tag Python class CSA structure

<all_to_all/> AllToAll csa.full

<one_to_one/> OneToOne csa.oneToOne

<fixed_probability/> FixedProbability csa.random(p)

<per_cell_connection/> PerCell csa.random(fanIn=n)

<gaussian_connectivity_2d/> GaussianSpatialConnectivity gaussian(sigma)

The Gaussian spatial connectivity has to be combined with CSA’s random operator, which samples from the distribution.

synapse parameter distributions. All changes are listed in the
Supplementary Material (see section Changes to NeuroML).

2.2.2. The ConGen Back End
After a visual model has been saved as a NeuroML file, the file
can be used as an input to the ConGen translator. The translator
parses the defined network structure, translates the layer
and connectivity information, and generates simulator-specific
instructions. The translator and the subsequent simulation can be
called either independently or invoked directly by ConGen. In the
following, we describe the workflow resulting in a set of simulator
specific commands which enable the model simulation using
specific simulation engines, and how ConGen can be extended
to support new simulators.

First, the ConGen back end parses the NeuroML file for
translation. XML tags correspond to a Python class, as shown

for the example of connectivity patterns in Table 1. The parser
first reads the populations, then the projections, and lastly the
inputs, outputs, and translators. If the model is to be simulated
by different simulators at different scales, the back end splits
the model into scale-specific sub-models. After the model has
been parsed successfully, all string references between objects
are replaced with object references. Any errors present in the
file (schema mismatch, undefined references) are raised as
an exception.

Connectivity patterns are represented by the
ConnectivityPattern class, which may be subclassed
when adding new types of connectivity patterns. When an object
of this class is created, the connectivity patterns are transformed
to CSA masks, as seen in Table 1. Spatial connectivity patterns,
based on e.g., 2D euclidean distances, are also supported. To
this end, neuron positions can be defined either by neuron

Frontiers in Neuroinformatics | www.frontiersin.org 9 January 2022 | Volume 15 | Article 76669737

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Herbers et al. ConGen—Visual Connectivity Generation

instance elements in the NeuroML file or sampled by a template
distribution (e.g., Gaussian sampling). Synapse parameters such
as weight and delay can be defined in analogously, by explicitly
stating neuron instance parameters or by using distributions for
whole layer connections. Currently, only Gaussian and Uniform
distributions are defined, but additional distributions can be
registered by sub-classing the Distribution class. In the
case of region-to-region connectivity, atlas based connectivity
is also supported. Additional details about the implementation
of the different connectivity patterns can be found in the
Supplementary Material.

After parsing, the layers and connections that make up a
network are instantiated for the chosen simulator. First, the
layers and neuron populations are translated to simulator specific
instructions. If the simulator requires neuron positions, any
distributions used are sampled at this point. Then, connections
between layers are instantiated. Since this connection generation
is computationally intensive, we use the Connection Generation
Interface (CGI). The CGI calls available internal simulation
engine functions to optimally generate connections instead of
the high level calls through the Python interface (Djurfeldt et al.,
2014). These native calls are typically more efficient (technical
requirement 5). We use the libneurosim package, which
supports the CGI and enables the generation of populations and
connections in the simulator (i.e., NEST). Due to the modular
nature of the implementation, individual components of ConGen
can be easily replaced. For example, the C++ implementation of
CSA (libcsa) offers increased performance over the Python
implementation when generating connectivity, but has limited
functionality. Thus, the Python implementation of CSA can be
replaced by libcsa to accelerate the connectivity generation of
large but simple networks.

For convenience to the users and in order to enable the
simulation of the generated model in an specific framework, the
ConGen back end contains a set of thin layer scripts which can
call the target simulation engine (technical requirements 1, 2, and
3). Extending the ConGen back end to support new simulator
engines is low effort and consists in the generation of a script
which takes the connectivity objects, instantiates the model and,
if desired, specifies simulator specific parameters. Pre- and post-
processing of input and output data can also be added to this
script by the user. At the moment the ConGen back end has a
thin layer execution script for NEST and TVB.

The population and cell model parameters have to be defined
by the user using simulator specific functions. This can be done
either when the user imports the NeuroML file in his or her script
or by modifying the thin layer simulator specific file in ConGen
in order to add these parameters before model execution. In the
current paper we focus specifically on connection generation as
this is a complicated task on its own. Setting of model parameters
could also be integrated into the ConGen front end, but is left as
future work.

ConGen also allows the visual representation and
generation of multiscale co-simulation models, and
supports the output of multiscale configuration files. The
orchestration and deployment of these multiscale simulations
is complex (Klijn et al., 2019) and falls outside of the

scope of the template based ConGen Translator simulation
launching functionality.

3. RESULTS

In this section we will describe first two use cases which are used
to demonstrate the functionality of ConGen while addressing
specific needs from the neuroscience community. Please refer
to the Supplementary Material section to see where to find and
how to execute the example files for these use cases. This section
ends with an overview of the supported simulators.

3.1. Use Case 1: The Cortical Microcircuit
Model
The Potjans and Diesmann microcircuit model (Potjans and
Diesmann, 2014) is an abstraction of 1 mm3 volume of
cortical tissue comprising four layers, each with one excitatory
and one inhibitory population. The model has been used to
address a variety of scientific questions and is able to show
spiking dynamics similar to those observed in real cortical
tissue. Due to its importance, we chose this model to test the
whole functionality of ConGen, from visual language definition
to simulation.

We constructed the model on two levels of abstraction: on
the higher level, the representation of the column; on the lower,
the representation of the single populations and their connection
probabilities. It is important to note that ConGen provides the
ability to define how the connectivity should be instantiated by
the simulation on a probabilistic or deterministic way. By using
CSA below the NeuroML description generated by ConGen, it
is possible to create stable, portable and constant instantiations
of connectivity patterns which will be the same independently of
the target simulator. A step by step description of themodel using
ConGen is described in the following.

First, the user can start by creating a super-population to
represent the cortical microcircuit entity and the Thalamic
region. The user can then go one level down in the visualization
of the cortical microcircuit super-population to create the eight
different populations of the cortical microcircuit using the Add
NeuronPop option in the menu. After the eight populations
have been created, the user can create connections between
the populations by clicking and dragging the cursor from the
source population to the target population. As the connectivity
in the cortical microcircuit model is defined by a set of
connection probabilities, the user defines a random connection
with Gaussian distributions for the weights and the delays. In
order to create an auto-connection, the user right-clicks on the
desired population and selects Add Auto Connection from the
menu. The model at this stage of creation is depicted in Figure 6.
It is important to highlight that the connectivity in the original
manuscript by Potjans andDiesmann (2014) is calculated under a
specific set of considerations that are not reflected in the random
distribution used in this use case. More specifically, the original
model makes use of a fixed number of connections derived from
the connection probability: Kn,m = ln(1 − Pn,m)/ ln((NnNm −

1)/NnNm), where Kn,m is the total number of connections

Frontiers in Neuroinformatics | www.frontiersin.org 10 January 2022 | Volume 15 | Article 76669738

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Herbers et al. ConGen—Visual Connectivity Generation

FIGURE 6 | Views at different levels of cortical microcircuits. Panel (A) shows microcircuit super-population and the Thalamic super-population. Panel (B) presents the

microcircuit super-population where all 8 populations can be seen with their respective connections.

between population n and population m, Pn,m is the connection
probability between the two populations, and Nx denotes the
number of neurons in population x. In our implementation, the
connectivity of the model is generated using a pairwise Bernoulli
distribution with probability Pn,m. Therefore, variations in the
actual number of connections between the model created with
ConGen and the original model are to be expected.

Next, the user can create a set of input devices, in this
case Poisson generators, in order to represent input arriving
from other regions in the brain. This is done using the Add
Input option and defining the frequency of the random stimuli
produced by the Poisson generator. The input devices can be then
connected using the click and drag operation from the source
input to the target population.

Finally, in order to create the Thalamic connections, the
user goes one level up in the visualization and then selects to
expand the children of both the Thalamic and the microcircuit
super-populations. This allows a Thalamic super-population to
be created that can be then connected with the desired probability
to the subpopulations representing the layer 4 and layer 6 of the
microcolumn. See Figure 7 for the final version of the model.

The user can then export the resulting model to JSON or save
as NeuroML, producing the file which can be then used by the
generation back end to call NEST and execute the simulation.
The time required by the ConGen backend to read, generate
the model and create the connections using CSA is negligible
compared to the actual connectivity generation step using CGI
and the following execution of the model in NEST. This goes

in agreement with the technical requirement 5 in section 2.2.
An expert user is able to define the model in this use case in
about 10 min. The resulting NeuroML file is easy to explore and
understand by the users.

3.2. Use Case 2: Co-simulation of The
Virtual Brain and NEST
The need to simulate the brain at different scales is an
emerging requirement of modern computational neuroscience.
Researchers may want to simulate the whole brain at a coarse
resolution while simultaneously simulating specific areas that are
relevant to answer a particular scientific question at a higher
resolution. This interaction between simulators is complex (Klijn
et al., 2019) and has been addressed in the past by several
tools such as MUSIC (Djurfeldt et al., 2010). Having a common
language to describe simulations which connects different scales
and simulation back ends is essential for providing a usability
layer to facilitate this ambitious next step in neuroscience. As
ConGen’s visual language is agnostic with respect to the target
simulation platform, it can be used to define complex multiscale
models for co-simulation.

In this second use case of ConGen we generate simulation
scripts which are compatible with the co-simulation framework
of the EBRAINS infrastructure developed by the Human Brain
Project.1 In particular, we target a whole human brain co-
simulation model where different parts are simulated at two

1https://ebrains.eu/

Frontiers in Neuroinformatics | www.frontiersin.org 11 January 2022 | Volume 15 | Article 76669739

https://ebrains.eu/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Herbers et al. ConGen—Visual Connectivity Generation

FIGURE 7 | Final view of the complete model considering all populations, connections, and input devices.

scales using two simulators, The Virtual Brain (TVB; Sanz Leon
et al., 2013) and NEST (Jordan et al., 2019). The coupling
between the simulators is in part performed using the Elephant
framework (Denker et al., 2018). For information going from
NEST into TVB, the spike activity is translated into firing
rates using Elephant. For information flowing from TVB into
NEST, firing rates are tunneled to the NEST I/O back ends and
defined as firing rates in heterogeneous Poisson generators. It
is important to highlight that the coordination and deployment
of the simulators is provided by external multiscale simulation
infrastructure (Klijn et al., 2019) and not by ConGen itself.

ConGen is used to define the model and simulator at
each scale, the connection points between simulators, and the
translation modules to be used in order to transform data
produced from one simulator and input to the other. In order
to make it possible for the ConGen back end to identify which
parts of the model belong to each scale, a prefix label is to be used
for each component in the multiscale model. In this use case, we
use “l” for all model components which should be simulated at
the point neuron scale with NEST (in agreement with the model
definition in use case 1) and the label “Brain_region” for all model
components to be simulated at the whole scale level by TVB.

For the coarse scale, we divide the brain into 68 regions
according to the Desikan Killiani cortical atlas (Desikan et al.,
2006). Of the 68 regions, 67 are represented using a neural mass
model, which in this case is the Kuramoto model (Kuramoto,

1975, 2003), and are to be simulated in TVB. The remaining
region is represented as a cortical microcircuit as described in use
case 1 and to be simulated in NEST. In this specific use case NEST
will simulate a region in the atlas related to the auditory cortex
on the right hemisphere, the right Transverse temporal cortex
region. The model can be used to study the propagation of audio
information from the auditory cortex to the rest of the brain and
its interactions using simulations with sound stimuli. Please note
that here for simplicity we assume that the phase represented by
the state variable in the Kuramoto model can be linked to an
indirect measure of the mean neural activity in the region and
translated into spikes using the Rate to Spike translator available
in the co-simulation framework.

The user starts by generating two super-populations, one
will represent the brain regions modeled in TVB and the
other one the brain region modeled in NEST. Additionally,
the user will create one spike to rate translator and a rate to
spike translator (see Figure 8). These input devices are used
to exchange information between scales and will be connected
to specific populations within each super-population. Although
obviously not existing in the real brain, translator components
are nonetheless required to produce a functional multiscale co-
simulation model.

Now the user can go one level down in the two super-
populations. In the NEST region, the hierarchy, connectivity and
inputs of the cortical microcircuit are defined as in use case 1. In

Frontiers in Neuroinformatics | www.frontiersin.org 12 January 2022 | Volume 15 | Article 76669740

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Herbers et al. ConGen—Visual Connectivity Generation

FIGURE 8 | Modeling of the co-simulation use case starting with the super-population for the brain region represented by NEST, the super-population for the brain

regions represented by TVB and the translator modules which have the task of translating spikes to rates and vice versa.

the TVB super-population, 68 population elements are created.
The neuron model to be used for 67 of the 68 regions will be
a neuron mass model called “nmm kuramoto” corresponding
to the Kuramoto model. The last region (correspond to ID
27) is modeled as a proxy for the NEST cortical microcolumn
using the model called “proxy.” These elements are automatically
numbered from 0 to 67 when created by ConGen and are linked
to the correct region ID in the Desikan Kiliani brain atlas for
simulation by the back end tool.

The next step is to define the connectivity between all the 68
regions. The type of connection to be used in the TVB models is
Atlas based and the value in the Connectivity Matrix field should
correspond to the connectivitymatrix file to be used at simulation
time (see Figure 9A). The value indicates a zip file which contains
at least two files, one containing the weights matrix and another
one containing the tract lengths matrix. The weights matrix is
an NxN matrix which defines the strength of the connections
between brain regions and where N is the number of regions
in the specific parcellation to be used. The tract lengths matrix
has the same dimensions as the weights matrix and specifies the
distance between brain regions. These matrices are plain CSV
files derived from empirical Diffusion Tensor Imaging (DTI) data
[for more information please refer to Sanz Leon et al. (2013),
section 1.1]. This ensures that the weight and the delay are loaded
from the desired connectivity matrices before simulation. The
user only needs to connect the first and the last region which
will be connected with the desired atlas. It is important that the

regions in the atlas match the range of regions selected in the
model and that all regions involved are created with an index e.g.,
Brain_region_{index}.

In order to connect the two simulations on different scales,
the output of all 67 regions in the TVB super-population, which
are to be simulated in TVB, need to be connected to the Rate to
Spike translator device created before. The output of the Spike
to rate translator device must also be connected as input to the
67 regions in the TVB super-population. As mentioned before,
region 27 serves as a proxy of the NEST super-population and,
together with the translator modules, it is also used to simplify
the exchange of information between both scales. As all regions
in the TVB super-population are connected between each other
using the atlas based connectivity, including region 27, it is only
necessary to connect the output of region 27 to the Rate to Spike
translator and the output of the Spike to rate translator as input
to region 27. This way, the information exchange will be tunneled
via the proxy region 27 in TVB.

Now the user can also connect the output of the Rate to
Spike translator device as input to the excitatory and inhibitory
populations in layers 4 and 6 of the cortical microcircuit model
of the NEST super-population. The output of the excitatory
population in layer 5 is then connected to the Spike to rate
translator device (see Figure 9B).

Finally, the user can export the NeuroML file and execute
the back end tool in order to generate the simulation files
for TVB, NEST and the spike/rate translator modules. Using

Frontiers in Neuroinformatics | www.frontiersin.org 13 January 2022 | Volume 15 | Article 76669741

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Herbers et al. ConGen—Visual Connectivity Generation

FIGURE 9 | Views of the multiscale model. (A) Establishing connectivity within the brain regions in the TVB super-population using the Atlas based connectivity. A

single connection from Brain_region_0 to Brain_region_67 is used to specify the atlas based connectivity. The connection from region 27 to the rate to spike translator

device is also visible at this step. (B) The final whole connectivity setup visualized on the right and the inside view of the cortical microcircuit model on the left.

ConGen, and using the cortical circuit model as a starting
point, the user takes about five additional minutes to specify
the connectivity of this multiscale model. In return, the ConGen
back end inputs the specific identifiers, connectivity patterns,

and proxy interfaces in TVB, NEST, and the translator module
files to enable co-simulation. The resulting files can then
be executed using tools from the EBRAINS co-simulation
framework (see the Supplementary Material section for more

Frontiers in Neuroinformatics | www.frontiersin.org 14 January 2022 | Volume 15 | Article 76669742

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Herbers et al. ConGen—Visual Connectivity Generation

TABLE 2 | Simulator support by ConGen in different modalities: Connectivity

setup and generation by ConGen back end, connectivity setup and basic

simulator launching via ConGen back end, support for NeuroML file generated by

ConGen front end using only standard features (see Supplementary Material for

details on ConGen’s extended connectivity features), and CGI connectivity

generation through the ConGen back end.

Type of support NEST TVB EBRAINS

multiscale

co-simulation

All NeuroML

compatible

simulators

Connectivity setup YES YES YES NO

Basic simulation launching YES YES NO NO

Standard NeuroML YES YES YES YES

CGI compatibility YES NO NO NO

Available use cases YES YES YES NO

details). The performance of the connectivity generation is
almost identical between having a single scale model or as part
of a multiscale model. The only difference is in the connectivity
to and from the translation modules, which depends on the
co-simulation infrastructure.

3.3. Supported Simulation Engines
Even though the two use cases presented in this manuscript
focus on NEST and TVB, ConGen can be easily extended
to work with any simulator that supports the CGI. The
only requirement is that a thin interfacing file needs to be
generated to deal with importing, accessing the model data
with the simulator-specific CGI commands, and launching the
simulation. Simulation engines which support NeuroML can
directly read the file generated by the ConGen interface and use
it as a base for simulation. To summarize we provide an overview
of the different simulators supported directly or via the diverse
interfaces in Table 2.

4. DISCUSSION

ConGen provides an easy way to generate networks at different
scales, providing users the ability to visualize the relationships
between scales in independent but correlated views and in side by
side panels. As a concise but expressive visual language, ConGen
provides a new way to define and navigate complex neural
network models. The transcription of the defined circuits into
NeuroML provides independence with respect to the ultimate
choice of simulator.

The interaction offered by the ConGen’s visual front end
enables a rapid construction of neural network models through
simple contextual menus, from defining a hierarchical structure
with complex connectivity to parameterizing the neuronal and
synaptic properties. The symbolic representations of the language
synthesizes the most relevant features while eliminating less
important details. The combination of schematic representations
together with their arrangement in levels of abstraction yields
simplified views of complex models.

The two use cases presented in this work illustrate the
visual creation of connectivity in neural network models for
their subsequent integration into simulation engines. Figure 7

provides a good example of how a user can examine the different
levels of abstraction and easily identify the relationships between
the components in the network. Use case 2 illustrates new
possibilities to interact with abstractions that allow definition
of multiscale models. At the higher level (Figure 8) we see
the coarse components that form the model together with the
abstract modeling components required to translate information
between scales. Figure 9A shows an alternative view of themodel,
with the abstract high-level multiscale components on the left
and the whole brain scale region definition on the right. In
contrast, Figure 9B ConGen provides a more detailed view of
the cortical microcircuit region and makes the relationship to
translation and other components in the model easy to see and
manipulate by the user. One important feature of the ConGen
front end is the ability to have multiple panels concurrently
showing different hierarchical levels of the model. These panels
are connected between each other, so any actions done on one
panel are automatically reflected on the others. This is useful for
the exploration and design of multiscale models because it allows
the user to visualize propagation of model changes from lower
scales into higher scales as seen in Figure 9B.

Use case 2 provides an initial proof of concept for the
definition of multiscale models compatible with the EBRAINS
co-simulation infrastructure. The capabilities of the ConGen
back end on this area are still limited and need to be extended
to support further use cases and more complex interactions
between simulators.

When comparing ConGen to existing simulator front ends,
such as PyNN, further advantages become apparent. In PyNN,
network creation code is inherently sequential, a characteristic
that is contrary to the structure of a neuronal network. The visual
language introduced in ConGen allows for a holistic view of a
network model, which makes it easier to interpret the network
or to spot errors. Other front ends like NEST Desktop (Spreizer
et al., 2021), the TVB framework, and the NEURON graphic
user interface (Carnevale and Hines, 2006) also allow the user to
define networks and their connectivity in a visual way but are by
definition, in contrast to ConGen, simulator-specific. We hope
that ConGen can serve to decouple the way we create network
models from the technical aspects of simulation, such as specific
execution and deployment definitions, something that projects
such as PyNN still require.

5. CONCLUSIONS AND FUTURE WORK

ConGen addresses the complexity inherent to model generation
in computational neuroscience from two perspectives. Firstly, it
supports the visualization of complex models at different scales,
allowing a reduction in the number of elements at higher scales
and thus simplifying the visual complexity present in images
with a high number of elements. Secondly, it reduces cognitive
complexity by structuring the model in hierarchical levels of
abstraction that summarize relevant features while eliminating
less important details.

Multiscale modeling is a particularly demanding branch of
computational neuroscience which exhibits a high degree of
abstraction complexity. With the second use case provided in
this manuscript we provide a proof of concept for a new visual

Frontiers in Neuroinformatics | www.frontiersin.org 15 January 2022 | Volume 15 | Article 76669743

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Herbers et al. ConGen—Visual Connectivity Generation

approach to manage the complexity of constructing such models.
The execution of multiscale models, which is not contemplated
by the ConGen back end, has high computational demands
which can only be efficiently fulfilled by using a dedicated
framework such as the EBRAINS co-simulation infrastructure.
Further extensions of ConGen may be required to fully facilitate
current and future research in this field. With this in mind,
ConGen was designed and implemented in a modular fashion; its
integration with network definition standards allows developers
and users to extend its functionality to include other simulation
and emulation platforms (e.g., neuromorphic hardware like
SpiNNaker; Furber et al., 2014) in the future.

The current version of ConGen does not fully constrain
the modeler with regards to the types of connections it
allows between network components scales. NeuroScheme has
basic functionality to support this kind of aided connectivity
generation but it would need additional metadata for each
component to fully enable this functionality. For example, in the
case of multiscale use cases, ConGen does not have any metadata
which allows it to suggest or prevent possible connections to or
from translators or devices. Adding such metadata would be a
good extension for the future, and would further increase the
usability for beginner users.

The next step for the ConGen back end is to update
to NeuroML version 2 with LEMS. The network description
of NeuroML version 2 has a different definition of the
populations, which makes it necessary to describe cells within
populations instead of providing generic cell types for all
elements in a population. This is useful for small networks and
morphologically detailed networks, but not suitable for the large
scale networks targeted by ConGen. As discussed in the section
2, to allow generation of networks using the CSA we had to
expand on the NeuroML interface. Although there is currently
no direct way to port our work to NeuroML2, our next steps
include working with the NeuroML2 development team in order
to extend the language with at least a subset of the connectivity
patterns available in CSA such as all-to-all or one-to-one. This
will probably be implemented with a new population description
using LEMS. Another alternative is to move toward NeuroMLite
(https://github.com/NeuroML/NeuroMLlite) which is still in
development but seems to move toward standardized description
of biological and artificial networks with features which are
compatible with the ConGen goals and architecture.

Future work also involves extending the back end to
incorporate more cases for different simulators and allow
more complex models, especially for co-simulation. Plasticity
is also an important feature of connectivity that may require
new visual language concepts. The direct next extension of
ConGen is to allow plastic synapses to be defined and to
implement an interactive loop (see Figure 5), the dashed arrow
indicates the transport of simulation results back to ConGen)
where connectivity can be refreshed based on data produced
during simulation. This new step will provide a new graphic
interface to study dynamic changes in the connectivity of large
scale networks.

PyNN has evolved as a strong domain specific language for
network representation in the last years. Future work will also

involve extending NeuroScheme and the back end in order to
support PyNN as a description language. This can be achieved
through the porting toNeuroML version 2. The automatic benefit
here is that PyNN already incorporates CSA in its description and
an extension will increase the range of potential target simulators
which can benefit from the visual language proposed by ConGen.
Adding models generated by the ConGen front end to Open
Source Brain (Gleeson et al., 2019) would also be a step forward
to increase integration with current efforts in the direction of
standardization. Additionally, the ConGen back end could be
later integrated into Open Source Brain, thanks to their usage of
common standard like NeuroML and PyNN.

In summary, with this work we propose a novel simulator-
agnostic method for the definition and generation of connectivity
in multiscale neural network models. ConGen also represents a
new way to generate models which can be ported to different
simulators using NeuroML or the ConGen back end in order to
perform benchmarking and compare functional and execution
metrics between simulation engines at different scales. Using
the ConGen framework does not require any programming
experience; any scientist, regardless of background, can employ a
common visual language to express, share, study, and implement
connectivity for in-silico experimentation, in order to solve
complex questions regarding the relationships between structure
and function in the brain.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

OR, SM, PT, LP, AP, AM, SD-P, and WK worked on the design
of the system. IC, OR, SM, PT, and LP worked on the design of
the visual front end. PH, AP, AM, SD-P, and WK worked on the
rest of the workflow and designed the use cases. PH, IC, WK, and
SD-P worked on the implementation. All authors conceived of
the project, reviewed, contributed, and approved the final version
of the manuscript.

FUNDING

The research leading to these results has received funding from
the Spanish Ministry of Economy and Competitiveness under
grants C080020-09 (Cajal Blue Brain Project, Spanish partner
of the Blue Brain Project initiative from EPFL), TIN2017-
83132, PID2020-113013RB-C21, and PID2020-113013RB-C22,
as well as from the European Union’s Horizon 2020 Framework
Programme for Research and Innovation under the Specific
Grant Agreements No. 785907 (Human Brain Project SGA2)
and 945539 (Human Brain Project SGA3). This research has also
been partially funded by the Helmholtz Association through the
Helmholtz Portfolio Theme Supercomputing and Modeling for
the Human Brain.

Frontiers in Neuroinformatics | www.frontiersin.org 16 January 2022 | Volume 15 | Article 76669744

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Herbers et al. ConGen—Visual Connectivity Generation

ACKNOWLEDGMENTS

We would like to kindly acknowledge the support and
discussions with Viktor Jirsa and Lionel Kusch about the
generation of co-simulation scripts with TVB and NEST.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2021.766697/full#supplementary-material

REFERENCES

Abi Akar, N., Biddiscombe, J., Cumming, B., Huber, F., Kabic, M., Karakasis, V.,
et al. (2021). arbor-sim/arbor: Arbor library v0.5.

Akar, N. A., Cumming, B., Karakasis, V., Kusters, A., Klijn, W., Peyser, A., et al.
(2019). “Arbor–a morphologically-detailed neural network simulation library
for contemporary high-performance computing architectures,” in 2019 27th

Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP) (Pavia), 274–282. doi: 10.1109/EMPDP.2019.8671560
Al-Awami, A. K., Beyer, J., Strobelt, H., Kasthuri, N., Lichtman, J. W., Pfister, H.,

et al. (2014). NeuroLines: a subway map metaphor for visualizing nanoscale
neuronal connectivity. IEEE Trans. Visual. Comput. Graph. 20, 2369–2378.
doi: 10.1109/TVCG.2014.2346312

Böttger, J., Schäfer, A., Lohmann, G., Villringer, A., and Margulies, D. S. (2014).
Three-dimensional mean-shift edge bundling for the visualization of functional
connectivity in the brain. IEEE Trans. Visual. Comput. Graph. 20, 471–480.
doi: 10.1109/TVCG.2013.114

Cakan, C., Jajcay, N., and Obermayer, K. (2021). neurolib: a simulation
framework for whole-brain neural mass modeling. bioRxiv.
doi: 10.1007/s12559-021-09931-9

Cannon, R. C., Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini, E.,
et al. (2014). LEMS: a language for expressing complex biological models in
concise and hierarchical form and its use in underpinning NeuroML 2. Front.
Neuroinform. 8:79. doi: 10.3389/fninf.2014.00079

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge
University Press. doi: 10.1017/CBO9780511541612

Chen, X., Wang, Y., Kopetzky, S. J., Butz-Ostendorf, M., and Kaiser, M. (2021).
Connectivity within regions characterizes epilepsy duration and treatment
outcome. Hum. Brain Mapp. 42:3777–91. doi: 10.1002/hbm.25464

Collins, F., and Prabhakar, A. (2013). BRAIN Initiative Challenges Researchers

to Unlock Mysteries of Human Mind. Available online at: http://www.
whitehouse.gov/blog/2013/04/02/brain-initiative-challenges-researchers-
unlock-mysteries-human-mind

Davison, A., Bruderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al.
(2009). PyNN: a common interface for neuronal network simulators. Front.
Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Denker, M., Alper, Y., and Sonja, G.(2018). Collaborative HPC-enabled workflows

on the HBP Collaboratory using the Elephant framework. (Germany: INM-ICS
Retreat)Available online at: https://juser.fz-juelich.de/record/850028/export/
hx?ln=en.

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker,
D., et al. (2006). An automated labeling system for subdividing the human
cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage

31, 968–980. doi: 10.1016/j.neuroimage.2006.01.021
Djurfeldt, M. (2012). The connection-set algebra–a novel formalism for

the representation of connectivity structure in neuronal network models.
Neuroinformatics 10, 287–304. doi: 10.1007/s12021-012-9146-1

Djurfeldt, M., Davison, A. P., and Eppler, J. M. (2014). Efficient generation of
connectivity in neuronal networks from simulator-independent descriptions.
Front. Neuroinform. 8:43. doi: 10.3389/fninf.2014.00043

Djurfeldt, M., Hjorth, J., Eppler, J. M., Dudani, N., Helias, M., Potjans,
T. C., et al. (2010). Run-time interoperability between neuronal network
simulators based on the MUSIC framework. Neuroinformatics 8, 43–60.
doi: 10.1007/s12021-010-9064-z

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2009).
Pynest: a convenient interface to the nest simulator. Front. Neuroinform. 2:12.
doi: 10.3389/neuro.11.012.2008

Espinoza-Valdez, A., Negrón, A. P. P., Salido-Ruiz, R. A., and Carranza, D. B.
(2021). “EEG data modeling for brain connectivity estimation in 3D graphs,”

in New Perspectives in Software Engineering, eds J. Mejia, M. Munoz, Á.
Rocha, and Y. Quinonez (Cham: Springer International Publishing), 280–290.
doi: 10.1007/978-3-030-63329-5_19

Evanko, D., and Pastrana, E. (2013).Whymapping the brain matters.Nat. Methods

10:447. doi: 10.1038/nmeth.2513
Fujiwara, T., Chou, J., McCullough, A. M., Ranganath, C., and Ma, K.

(2017). “A visual analytics system for brain functional connectivity
comparison across individuals, groups, and time points,” in 2017

IEEE Pacific Visualization Symposium (PacificVis) (Seoul), 250–259.
doi: 10.1109/PACIFICVIS.2017.8031601

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker
project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Gadde, S., Aucoin, N., Grethe, J. S., Keator, D. B., Marcus, D. S., Pieper, S., et al.
(2012). XCEDE: an extensible schema for biomedical data. Neuroinformatics

10, 19–32. doi: 10.1007/s12021-011-9119-9
Gleeson, P., Cantarelli, M., Marin, B., Quintana, A., Earnshaw, M., Sadeh, S.,

et al. (2019). Open source brain: a collaborative resource for visualizing,
analyzing, simulating, and developing standardized models of neurons and
circuits. Neuron 103, 395–411. doi: 10.1016/j.neuron.2019.05.019

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella,
M., et al. (2010). NeuroML: a language for describing data driven models of
neurons and networks with a high degree of biological detail. PLoS Comput.

Biol. 6:e1000815. doi: 10.1371/journal.pcbi.1000815
Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E.

P., et al. (2016). The brain imaging data structure, a format for organizing
and describing outputs of neuroimaging experiments. Sci. Data 3, 1–9.
doi: 10.1038/sdata.2016.44

Jordan, J., Mork, H., Vennemo, S. B., Terhorst, D.,Peyser, A., Ippen, T., et al.(2019).
NEST 2.18.0. Zenodo. doi: 10.5281/zenodo.2605422

Klijn, W., Diaz-Pier, S., Morrison, A., and Peyser, A. (2019). “Staged deployment of
interactivemulti-applicationHPCworkflows,” in 2019 International Conference
on High Performance Computing & Simulation (HPCS) (Dublin: IEEE),
305–311. doi: 10.1109/HPCS48598.2019.9188104

Kuramoto, Y. (1975). “Self-entrainment of a population of coupled non-
linear oscillators,” in International Symposium on Mathematical Problems in

Theoretical Physics (Berlin; Heidelberg: Springer), 420–422.
Kuramoto, Y. (2003). Chemical Oscillations, Waves, and Turbulence. Mineola, NY:

Courier Corporation.
Markram, H., Muller, E., Ramaswamy, S., Reimann, M., Abdellah, M., Sanchez, C.,

et al. (2015). Reconstruction and simulation of neocortical microcircuitry. Cell
163, 456–492. doi: 10.1016/j.cell.2015.09.029

Meunier, D., Pascarella, A., Altukhov, D., Jas, M., Combrisson, E., Lajnef, T.,
et al. (2020). NeuroPycon: an open-source python toolbox for fast multi-
modal and reproducible brain connectivity pipelines. Neuroimage 219:117020.
doi: 10.1016/j.neuroimage.2020.117020

Mijalkov, M., Kakaei, E., Pereira, J. B., Westman, E., and Volpe, G. (2017). BRAPH:
a graph theory software for the analysis of brain connectivity. bioRxiv. 12.
doi: 10.1371/journal.pone.0178798

Morgan, J. L., and Lichtman, J. W. (2013). Why not connectomics? Nat. Methods

10, 494–500. doi: 10.1038/nmeth.2480
Nordlie, E., Gewaltig, M.-O., and Plesser, H. E. (2009). Towards reproducible

descriptions of neural network models. PLoS Comput. Biol. 5:e1000456.
doi: 10.1371/journal.pcbi.1000456

Nordlie, E., and Plesser, H. E. (2010). Visualizing neuronal network
connectivity with connectivity pattern tables. Front. Neuroinform. 3:39.
doi: 10.3389/neuro.11.039.2009

Pastor, L., Mata, S., Toharia, P., Beriso, S. B., Brito, J. P., and Garcia-Cantero,
J. J. (2015). “NeuroScheme: efficient multiscale representations for the visual
exploration of morphological data in the human brain neocortex,” in XXV

Frontiers in Neuroinformatics | www.frontiersin.org 17 January 2022 | Volume 15 | Article 76669745

https://www.frontiersin.org/articles/10.3389/fninf.2021.766697/full#supplementary-material
https://doi.org/10.1109/EMPDP.2019.8671560
https://doi.org/10.1109/TVCG.2014.2346312
https://doi.org/10.1109/TVCG.2013.114
https://doi.org/10.1007/s12559-021-09931-9
https://doi.org/10.3389/fninf.2014.00079
https://doi.org/10.1017/CBO9780511541612
https://doi.org/10.1002/hbm.25464
http://www.whitehouse.gov/blog/2013/04/02/brain-initiative-challenges-researchers-unlock-mysteries-human-mind
http://www.whitehouse.gov/blog/2013/04/02/brain-initiative-challenges-researchers-unlock-mysteries-human-mind
http://www.whitehouse.gov/blog/2013/04/02/brain-initiative-challenges-researchers-unlock-mysteries-human-mind
https://doi.org/10.3389/neuro.11.011.2008
https://juser.fz-juelich.de/record/850028/export/hx?ln=en
https://juser.fz-juelich.de/record/850028/export/hx?ln=en
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1007/s12021-012-9146-1
https://doi.org/10.3389/fninf.2014.00043
https://doi.org/10.1007/s12021-010-9064-z
https://doi.org/10.3389/neuro.11.012.2008
https://doi.org/10.1007/978-3-030-63329-5_19
https://doi.org/10.1038/nmeth.2513
https://doi.org/10.1109/PACIFICVIS.2017.8031601
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1007/s12021-011-9119-9
https://doi.org/10.1016/j.neuron.2019.05.019
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.5281/zenodo.2605422
https://doi.org/10.1109/HPCS48598.2019.9188104
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1016/j.neuroimage.2020.117020
https://doi.org/10.1371/journal.pone.0178798
https://doi.org/10.1038/nmeth.2480
https://doi.org/10.1371/journal.pcbi.1000456
https://doi.org/10.3389/neuro.11.039.2009
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Herbers et al. ConGen—Visual Connectivity Generation

Spanish Computer Graphics Conference, CEIG 2015, eds M. Sbert and J. Lopez-
Moreno (Benicássim), 117–125.

Pauli, R., Weidel, P., Kunkel, S., and Morrison, A. (2018). Reproducing
polychronization: a guide to maximizing the reproducibility of spiking network
models. Front. Neuroinform. 12:46. doi: 10.3389/fninf.2018.00046

Peyser, A., Diaz Pier, S., Klijn, W., Morrison, A., and Triesch, J. (2019). Linking
experimental and computational connectomics. Netw. Neurosci. 3, 902–904.
doi: 10.1162/netn_e_00108

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical
microcircuit: relating structure and activity in a full-scale spiking
network model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/
bhs358

Raikov, I., Cannon, R., Clewley, R., Cornelis, H., Davison, A., De Schutter,
E., et al. (2011). NineML: the network interchange for neuroscience
modeling language. BMC Neurosci. 12:P330. doi: 10.1186/1471-2202-12-S1-
P330

Rubinov, M., and Sporns, O. (2010). Complex network
measures of brain connectivity: uses and interpretations.
Neuroimage 52, 1059–1069. doi: 10.1016/j.neuroimage.2009.
10.003

Sanz Leon, P., Knock, S. A., Woodman, M. M., Domide, L., Mersmann, J.,
McIntosh, A. R., et al. (2013). The virtual brain: a simulator of primate
brain network dynamics. Front. Neuroinform. 7:10. doi: 10.3389/fninf.2013.
00010

Sporns, O., Tononi, G., and Kotter, R. (2005). The human connectome:
a structural description of the human brain. PLoS Comput. Biol. 1:e42.
doi: 10.1371/journal.pcbi.0010042

Spreizer, S., Senk, J., Rotter, S., Diesmann, M., and Weyers, B. (2021). NEST
Desktop, an Educational Application for Neuroscience. Soc. Neurosci. 8, 25–29.
doi: 10.1523/ENEURO.0274-21.2021

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and
efficient neural simulator. eLife 8:e47314. doi: 10.7554/eLife.47314

Tikidji-Hamburyan, R. A., Narayana, V., Bozkus, Z., and El-Ghazawi, T. A.
(2017). Software for brain network simulations: a comparative study. Front.
Neuroinform. 11:46. doi: 10.3389/fninf.2017.00046

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Herbers, Calvo, Diaz-Pier, Robles, Mata, Toharia, Pastor, Peyser,

Morrison and Klijn. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 18 January 2022 | Volume 15 | Article 76669746

https://doi.org/10.3389/fninf.2018.00046
https://doi.org/10.1162/netn_e_00108
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1186/1471-2202-12-S1-P330
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.1523/ENEURO.0274-21.2021
https://doi.org/10.7554/eLife.47314
https://doi.org/10.3389/fninf.2017.00046
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

ORIGINAL RESEARCH
published: 01 March 2022

doi: 10.3389/fninf.2021.785068

Frontiers in Neuroinformatics | www.frontiersin.org 1 March 2022 | Volume 15 | Article 785068

Edited by:

Ludovico Minati,

Tokyo Institute of Technology, Japan

Reviewed by:

Stavros I. Dimitriadis,

Greek Association of Alzheimer’s

Disease and Related Disorders,

Greece

Jiang Wang,

Tianjin University, China

Antonio Marcos Batista,

Universidade Estadual de Ponta

Grossa, Brazil

*Correspondence:

Jari Pronold

j.pronold@fz-juelich.de

Received: 28 September 2021

Accepted: 24 December 2021

Published: 01 March 2022

Citation:

Pronold J, Jordan J, Wylie BJN,

Kitayama I, Diesmann M and Kunkel S

(2022) Routing Brain Traffic Through

the Von Neumann Bottleneck: Parallel

Sorting and Refactoring.

Front. Neuroinform. 15:785068.

doi: 10.3389/fninf.2021.785068

Routing Brain Traffic Through the
Von Neumann Bottleneck: Parallel
Sorting and Refactoring

Jari Pronold 1,2*, Jakob Jordan 3, Brian J. N. Wylie 4, Itaru Kitayama 5, Markus Diesmann 1,6,7

and Susanne Kunkel 8

1 Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain

Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany, 2 RWTH Aachen University, Aachen,

Germany, 3Department of Physiology, University of Bern, Bern, Switzerland, 4 Jülich Supercomputing Centre, Jülich

Research Centre, Jülich, Germany, 5 RIKEN Center for Computational Science, Kobe, Japan, 6Department of Physics,

Faculty 1, RWTH Aachen University, Aachen, Germany, 7Department of Psychiatry, Psychotherapy and Psychosomatics,

Medical Faculty, RWTH Aachen University, Aachen, Germany, 8 Faculty of Science and Technology, Norwegian University of

Life Sciences, Ås, Norway

Generic simulation code for spiking neuronal networks spends the major part of the

time in the phase where spikes have arrived at a compute node and need to be

delivered to their target neurons. These spikes were emitted over the last interval between

communication steps by source neurons distributed across many compute nodes and

are inherently irregular and unsorted with respect to their targets. For finding those

targets, the spikes need to be dispatched to a three-dimensional data structure with

decisions on target thread and synapse type to be made on the way. With growing

network size, a compute node receives spikes from an increasing number of different

source neurons until in the limit each synapse on the compute node has a unique source.

Here, we show analytically how this sparsity emerges over the practically relevant range

of network sizes from a hundred thousand to a billion neurons. By profiling a production

code we investigate opportunities for algorithmic changes to avoid indirections and

branching. Every thread hosts an equal share of the neurons on a compute node. In

the original algorithm, all threads search through all spikes to pick out the relevant ones.

With increasing network size, the fraction of hits remains invariant but the absolute

number of rejections grows. Our new alternative algorithm equally divides the spikes

among the threads and immediately sorts them in parallel according to target thread

and synapse type. After this, every thread completes delivery solely of the section of

spikes for its own neurons. Independent of the number of threads, all spikes are looked

at only two times. The new algorithm halves the number of instructions in spike delivery

which leads to a reduction of simulation time of up to 40 %. Thus, spike delivery is a

fully parallelizable process with a single synchronization point and thereby well suited for

many-core systems. Our analysis indicates that further progress requires a reduction of

the latency that the instructions experience in accessing memory. The study provides the

foundation for the exploration of methods of latency hiding like software pipelining and

software-induced prefetching.

Keywords: spiking neural networks, large-scale simulation, distributed computing, parallel computing, sparsity,

irregular access pattern, memory-access bottleneck

47

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2021.785068
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2021.785068&domain=pdf&date_stamp=2022-03-01
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:j.pronold@fz-juelich.de
https://doi.org/10.3389/fninf.2021.785068
https://www.frontiersin.org/articles/10.3389/fninf.2021.785068/full

Pronold et al. Routing Spikes by Parallel Sorting

1. INTRODUCTION

Over the last two decades, simulation algorithms for spiking
neuronal networks have continuously been improved. The largest
supercomputers available can be employed to simulate networks
with billions of neurons at their natural density of connections.
The respective codes scale well over orders of magnitude of
network size and number of compute nodes (Jordan et al., 2018).
Still, simulations at the brain scale are an order of magnitude
slower than real time, hindering the investigation of processes
such as plasticity and learning unfolding over hours and days
of biological time. In addition, there is a trend of aggregating
more compute power in many-core compute nodes. This further
reduces the strain on inter-node communication as one limiting
component but increases the urgency to better understand the
fundamental operations required for routing spikes within a
compute node.

The spiking activity in mammalian neuronal networks is
irregular, asynchronous, sparse, and delayed. Irregular refers
to the structure of the spike train of an individual neuron.
The intervals between spike times are of different lengths and
unordered as if drawn from a random process. Consequently, the
number of spikes in a certain time interval also appears random.
Asynchronous means that the spikes of any two neurons occur
at different times and exhibit low correlation. The activity of
neurons is sparse in time as compared to the time constants of
neuronal dynamics; only few spikes are emitted in any second of
biological time. Last, there is a biophysical delay in the interaction
between neurons imposed by their anatomy. The delay may be
a fraction of a millisecond for neurons within a distance of a
few micrometers but span several milliseconds for connections
between brain regions (refer to Schmidt et al., 2018a, for an
example compilation of parameters).

The existence of a minimal delay in a network model together
with the sparsity of spikes has suggested a three-phase cycle
for an algorithm directly integrating the differential equations
of the interacting model neurons (Morrison et al., 2005). First,
communication between compute nodes occurs synchronously
in intervals of minimal delay. This communication transmits
all the spikes that have occurred on a compute node since
the last communication step to the compute nodes harboring
target neurons of these spikes. Second, the received spikes
are delivered to their target neurons and placed in spike ring
buffers representing any remaining individual delay. Finally, the
dynamical state of each neuron is propagated for the time span
of the minimal delay while the ring buffer is rotating accordingly.
Once all neurons are updated, the next communication is due and
the cycle begins anew.

Progress in each update phase is shaped by the spiking
interaction between neurons and independent of the level of
detail of the individual model neurons constituting the network.
The choice of the neuron model, however, influences the
distribution of computational load across the phases of the
simulation. Some studies require neuron models with thousands
of electrical compartments (Markram et al., 2015), and efficient
simulation codes are available for this purpose (Carnevale
and Hines, 2006; Akar et al., 2019; Kumbhar et al., 2019).

Here, we focus on simulation code for networks of model
neurons described by a handful of differential equations as
widely used in the computational neuroscience community.
These investigations range from studies with several thousands
of neurons on the fundamental interplay between excitation
and inhibition (Brunel, 2000) to models attempting to capture
the natural density of wiring (Potjans and Diesmann, 2014;
Billeh et al., 2020) and the interaction between multiple cortical
areas (Joglekar et al., 2018; Schmidt et al., 2018b). Previous
measurements on a production code (Jordan et al., 2018)
already show that for networks of such simple model neurons
the dominating bottleneck for further speed-up is neither the
communication between computes nodes nor the update of the
dynamical state of the neurons, but the spike-delivery phase.
The empirical finding is elegantly confirmed by an analytical
performance model encompassing different types of network and
neuron models (Cremonesi and Schürmann, 2020; Cremonesi
et al., 2020). These authors further identify the latency of memory
access as the ultimate constraint of the spike-delivery phase.

Profiling tools like Intel VTune provide measures on where an
application spends its time and how processor and memory are
used. Two basic measures are the total number of instructions
carried out and the number of clock ticks the processor required
per instruction (CPI). The former characterizes the amount of
computations that need to be done to arrive at the solution.
The latter describes how difficult it is on average to carry out
an individual instruction due to the complexity of the operation
and the waiting for accessing the corresponding part of memory.
The product of the twomeasures is the total number of clockticks
and should correlate to the wall clock time required to complete
the simulation phase under investigation. Methods of software
pipelining and software-induced prefetching attempt to improve
the CPI by better vectorization of the code or by indicating to
the processor which memory block will soon be required. These
optimizations may lead to an increase in the actual number of
instructions but as long as the product with the reduced CPI
decreases, performance is improving. Nevertheless, a low CPI
does not mean that the code is close to optimal performance.
If the code is overly complicated, for example by recalculating
known results or missing out on regularities in the data it may
underutilize data that has been retrieved frommemory rendering
advanced methods of optimization fruitless. Therefore, in the
present study, as a first step, we do not consider pipelining and
prefetching but exclusively assess the number of instructions
required by the algorithm. It turns out that a better organized
algorithm indeed avoids unnecessary tests and indirections. This
decrease in the number of instructions also decreases CPI as
a side effect until with increasing sparseness of the network
CPI climbs up again. The control flow in the code becomes
more predictable for the processor until the fragmentation of
memory limits the success. The results of our study give us some
confidence that further work can now directly address improving
the CPI.

In Section 2, we expose spike delivery as the present
bottleneck for the simulation of mammalian spiking neuronal
networks, characterize analytically the transition to sparsity with
growing network size, and present the original algorithm as

Frontiers in Neuroinformatics | www.frontiersin.org 2 March 2022 | Volume 15 | Article 78506848

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pronold et al. Routing Spikes by Parallel Sorting

well as state-of-the-art performance data. Next, we introduce the
software environment of our study and the neuronal network
model used to obtain quantitative data (Section 3). On the basis
of these preparatory sections, Section 4 presents a new algorithm
streamlining the routing of spikes to their targets. Subsequently,
Section 5 evaluates the success of the redesign and identifies
the origin of the improvement by profiling. Finally, Section 6
embeds the findings into the ongoing efforts to develop generic
technology for the simulation of spiking neuronal networks.

The conceptual and algorithmic work described here is
a module in our long-term collaborative project to provide
the technology for neural systems simulations (Gewaltig and
Diesmann, 2007). Preliminary results have been presented in
abstract form (Kunkel, 2019).

2. SPIKE DELIVERY AS MEMORY-ACCESS
BOTTLENECK

The temporally sparse event-based communication between
neurons presents a challenging memory-access bottleneck
in simulations of spiking neuronal networks for modern
architectures optimized for dense data. In the neuronal simulator
NEST (Section 3.1), which we use as reference implementation
in this study, delivery of spikes to their synaptic and neuronal
targets involves frequent access to essentially random memory
locations, rendering automatic prediction difficult and leading
to long data-access times due to ineffective use of caches. The
following subsection provides an analysis of the sparsity of
the network representation for increasing numbers of Message
Passing Interface (MPI) processes and threads. Based on this,
there follows a description of the connection data structures
and spike-delivery algorithm in the original implementation. The
final subsection provides example benchmarking data for this
state-of-the-art simulation code.

2.1. Sparsity of Network Representation
We consider a network ofN neurons distributed in a round-robin
fashion acrossM MPI processes and T threads per process. Each
neuron receives K incoming synapses, which are represented on
the same thread as their target neuron. In a weak scaling scenario,
the computational load per process is kept constant. This implies
that the number of thread-local synapses

S = NK/(MT) (1)

does not change. The total network size, in contrast, increases
with MT. In the limit of large network sizes, each synapse on
a given thread originates from a different source neuron. This
scenario was already considered (Kunkel et al., 2014, section 2.4)
at the time to analyze the increase in memory overhead observed
with increasing sparsity. For completeness, we briefly restate this
result in the parameters used in the present work.

The probability that a synapse has a particular neuron j as
source neuron is 1/N and, conversely, the probability that the
synapse has a different source neuron is 1− 1/N. The probability
that none of the S thread-local synapses has neuron j as a source is
p∅ = (1− 1/N)S. Conversely, p = 1−p∅ denotes the probability

that j is the source to at least one of the thread-local synapses.
Therefore, the expected number of unique source neurons of the
thread-local synapses are given by Nu = pN expanding to

Nu =



1−

[

(

1−
1

N

)N
]

K
MT



N (2)

which is Equation (6) of Kunkel et al. (2014). In weak scaling,MT
grows proportionally to N such that

Nu =



1−

[

(

1−
1

N

)N
]

S
N



N

where they further identified the term [·] in the limit of largeN as
the definition of the exponential function with argument−1 and
therefore

˜Nu =

(

1− exp

(

−
S

N

))

N.

They confirm that the limit of Nu is indeed S and that a fraction
ζ of S is reached at a network size of

Nζ =
S

2 (1− ζ)
. (3)

Figure 1 illustrates the point where in weak scaling the total
network size N equals the number of thread local synapses S.
Here, the number of unique source neurons Nu of the thread-
local synapses bends. According to the definition (1) of S, here a
particular target neuron chooses its K incoming synapses from
the same total number of threads MT = K and already half

2 8 32 128 512 2048 8192 32,768

M (MPI processes)

105

106

107

108

E
xp

e
ct
e
d
n
u
m
b
e
r

N

S

Nu

2 32 512 8192

1

10

100

S
u

FIGURE 1 | Expected number of unique source neurons Nu (pink curve) of all

thread-local synapses as a function of the number of the MPI processes M
assuming T = 12 threads and 125, 000 neurons per MPI process in a

weak-scaling scenario; the total number of neurons N (dashed blue curve) and

number of thread-local synapses S (dashed pink horizontal line for

K = 11, 250 synapses per neuron). Inset: Expected number of thread-local

synapses per unique source neuron Su = S/Nu (light pink curve). All graphs in

double logarithmic representation.

Frontiers in Neuroinformatics | www.frontiersin.org 3 March 2022 | Volume 15 | Article 78506849

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pronold et al. Routing Spikes by Parallel Sorting

FIGURE 2 | Memory layout of synapse and neuron representations on each

MPI process. Each process stores the local synapses (pink filled squares) in a

three-dimensional resizable array sorted by hosting thread and synapse type.

At the innermost level, synapses are arranged in source-specific target

segments (dark pink: first synapse; light pink: subsequent targets); only one

innermost array is shown for simplicity. Target neurons (blue filled squares) are

stored in neuron-type and thread-specific memory pools; only one pool is

shown for simplicity. Each neuron maintains a spike ring buffer (dotted light

blue circles). Synapses have access to their target neurons through target

identifiers (dark pink arrows).

(ζ = 1
2) of the source neurons of the thread-local synapses are

unique. The number of thread-local synapses per unique source
neuron Su indicates the sparsity of the network representation on
a compute node (inset of Figure 1). The measure converges to
one exhibiting a bend at the same characteristic point as Nu.

2.2. Memory Layout of Synapse and
Neuron Representations
A three-dimensional resizable array stores the process-local
synapses sorted by hosting thread and synapse type (Figure 2),
where synapses are small in size, each typically taking up few
tens of Bytes. Each synapse has access to its target neuron, which
is hosted by the same MPI process and thread (Morrison et al.,
2005). The target identifier provides access either through a
pointer to the target neuron consuming 8 B or an index of 2 B
that is used to retrieve the corresponding pointer. Here, we use
the latter implementation of the target identifier reducing per-
synapse memory usage at the cost of an additional indirection
(refer to Section 3.3.2 in Kunkel et al., 2014).

In the innermost arrays of the data structure, synapses are
sorted by source neuron, which is an optimization for small
to medium scale systems (see Section 3.3 in Jordan et al.,
2018) exploiting that each neuron typically connects to many
target neurons (out-degree). Thereby, synapses are arranged in
target segments, each consisting of at least one target synapse
potentially followed by subsequent targets (Section 2.1). In a
weak-scaling experiment, the increasing sparsity of the network
in the small to medium scale regime (Section 2.1) influences
the composition of the innermost array. As synapses are to an
increasing degree distributed across MPI processes and threads,

the expected number of source-specific target segments increases
while the average segment size decreases (cf. Nu and Su in
Figure 1, respectively). Note that the degree of distribution also
depends on the number of synapse types, which is however not
considered in this study.

A model neuron easily takes up more than a Kilobyte of
memory. Multi-chunk memory pools enable contiguous storage
of neurons of the same type hosted by the same thread, where
due to the many-to-one relation between target synapses and
neurons, the order of memory locations of target neurons is
independent of the order of synapses in the target segments.

Synaptic transmission of spikes entails delays, which influence
the time when spikes take effect on the dynamics of the target
neurons. As typically synapses from many different source
neurons converge on the same target neuron (in-degree), it is
more efficient to jointly account for their delays in the neuronal
target. Therefore, each neuron maintains a spike ring buffer
serving as temporary storage and scheduler for the incoming
spikes (Morrison et al., 2005).

2.3. Original Spike-Delivery Algorithm
Every time all local neurons have been updated and all recent
spikes have been communicated across MPI processes, the spike
data needs to be delivered from the process-local MPI receive
buffers to the process-local synaptic and neuronal targets. Each
spike entry is destined for an entire target segment of synapses
(Section 2.2), which is an optimization for the small to medium
scale regime introduced in Jordan et al. (2018). Therefore, each
entry conveys the location of the target segment within the three-
dimensional data structure storing the process-local synapses
(Figure 2), i.e., identifiers for the hosting thread and the type of
the first synapse of the target segment, as well as the synapse’s
index within the innermost resizable array.

In the original algorithm, each thread reads through all spike
entries in the MPI receive buffer but it only proceeds with the
delivery of a spike if it actually hosts the spike’s targets - all spike
entries indicating other hosting threads are skipped. Each thread
delivers the relevant spikes to every synapse of the corresponding
target segments one by one. On receiving a spike, a synapse
transfers synaptic delay and weight to the corresponding target
neuron, where the stored target identifier provides access to the
neuron. The transmitted synaptic properties, delay and weight,
define the time and amplitude of the spike’s impact on the
neuron, respectively, allowing the neuron to add the weight of
the incoming spike to the correct position in the neuronal spike
ring buffer.

In a weak-scaling experiment, the increasing sparsity of the
network in the small to medium scale regime (Section 2.1)
influences algorithmic progression and memory-access patterns.
Access to target neurons and their spike ring buffers is
always irregular regardless of the degree of distribution of the
network across MPI processes, but memory access to synapses
become progressively irregular. The number of spike entries
communicated via MPI increases to cater to the growing
number of target segments (Section 2.2). In consequence, each
thread needs to process even more spike entries, delivering
relevant spikes to even more but shorter target segments, where

Frontiers in Neuroinformatics | www.frontiersin.org 4 March 2022 | Volume 15 | Article 78506850

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pronold et al. Routing Spikes by Parallel Sorting

successively visited target segments are typically in nonadjacent
memory locations. In the sparse limit where each target segment
consists of a single synapse, spike delivery to both neuronal and
synaptic targets requires accessing essentially random locations
in memory. As many synapses of different source neurons
converge on the same target neuron, it is impossible to arrange
target neurons in memory such that their order corresponds to
the order in synaptic target segments. The pseudocode in 2.3.1
summarizes this original spike-delivery algorithm.

2.3.1. Pseudocode

ORI nrn: Original Receive() procedure in neuron;
RB marks access to the spike ring buffer.

Data: spike_ring_buffer

Receive(delay, weight)
RB spike_ring_buffer.AddValue(delay, weight)

ORI syn: Original Send() function in synapse, which
calls the Receive() procedure of the target neuron
(ORI nrn) passing on synaptic properties.

Data: subsq, target_neuron, delay, weight

Send()
target_neuron.Receive(delay, weight)
return subsq

ORI:Original algorithm delivering spikes to local targets
with support for multi-threading, where TID denotes
the identifier of the executing thread. TS marks iteration
over a synaptic target segment. SYN marks access to an
individual target synapse (ORI syn).

Data: recv_buffer, synapses

foreach spike in recv_buffer do
(tid, syn_id, lcid)← spike.GetTargetLoc()
if tid == TID then

subsq← true

TS while subsq do
SYN subsq← synapses[tid][syn_id][lcid].Send()

lcid← lcid + 1

The original algorithm delivers spikes to the neuronal
spike ring buffers through the target synapses. Each neuron
owns a spike_ring_buffer, where the neuron member function
Receive() triggers the spike delivery by calling the spike ring
buffer member function AddValue(), which then adds the
weight of the spike to the correct position in the buffer (ORI nrn;

RB). To this end, both Receive() and AddValue() require
the synaptic properties delay and weight.

Each synapse stores properties such as delay and weight, an
identifier enabling access to the target neuron (target_neuron),
and an indicator (subsq) of whether the target segment continues
or not (ORI syn). The synapse member function Send() calls
the member function Receive() of the target neuron passing
on the synaptic properties and returns the indicator subsq.

The original spike-delivery algorithm has access to the MPI
spike-receive buffer (recv_buffer) containing all spike entries
that need to be delivered and to a three-dimensional resizable
array of process-local synapses ordered by hosting thread and
synapse type (ORI; see Figure 2). For each spike entry, the 3D
location of the first target synapse is extracted and assigned
to the variables tid, syn_id, and lcid, which indicate hosting
thread, synapse type, and location in the innermost synapses
array, respectively. If the executing thread (TID) is the hosting
thread of the target synapse, then the variable lcid is used in
the enclosed while loop to iterate over the spike’s entire synaptic
target segment within the innermost array synapses[tid][syn_id]
(TS). To deliver a spike to the target synapse at position
lcid, the synapse member function Send() is called on
synapses[tid][syn_id][lcid] returning the indicator subsq (SYN).

2.4. Simulation Time
The work of Jordan et al. (2018) shows that spike delivery is the
dominating phase of simulation time from networks with a few
hundred thousand neurons to the regime of billions of neurons.
In the latter, the number of neurons in the network exceeds
the number of synapses represented on an individual compute
node; each synapse on a given compute node has a unique source
neuron (Section 2.1). Therefore, a neuron finds either a single
target neuron on a compute node or none at all. Assuming
a random distribution of neurons across MPI processes, the
network is fully distributed in terms of its connectivity. From this
point on, the computational costs of spike delivery on a compute
node do not change with growing network size in a weak scaling
scenario; each synapse receives spikes with a certain frequency
and all spikes come from different sources.What is still increasing
are the costs of communication between the compute nodes.
Nevertheless, for smaller networks below the limit of sparsity,
Jordan et al. (2018) provide optimizations (their section 3.3)
exploiting the fact that a spike findsmultiple targets on a compute
node. This reduces both communication time and spike-delivery
time, but the effect vanishes in the limit (as shown in Figure 7C
in Jordan et al., 2018; 5g-sort) where the code continues to scale
well with the maximal but invariant costs of spike delivery.

The network model of Jordan et al. (2018) exhibits spike-
timing dependent plasticity in its synapses between excitatory
neurons. The spike-delivery phase calculates the plastic changes
at synapses because synaptic weights only need to be known
when a presynaptic spike is delivered to its target (Morrison
et al., 2007a). Depending on the specific plasticity rule, these
computations may constitute a considerable fraction of the total
spike delivery time. Therefore, from the data of Jordan et al.
(2018), we cannot learn which part of the spike-delivery time
is due to the calculation of synaptic plasticity and which part is

Frontiers in Neuroinformatics | www.frontiersin.org 5 March 2022 | Volume 15 | Article 78506851

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pronold et al. Routing Spikes by Parallel Sorting

due to the actual routing of spikes to their targets. In order to
disentangle these contributions, the present study uses the same
network model but considers all synapses as static (Section 3.2).

Figure 3 shows a weak scaling of our static neuronal network
model across the critical region where sparsity has not yet
reached the limit. This confirms that even in the absence of
synaptic plasticity spike delivery is the dominant contribution to
simulation time independent of the number of MPI processes.
The network on a single MPI process roughly corresponds to
the smallest cortical network in which the natural number of
synapses per neuron and the local connection probability of 0.1
can simultaneously be realized (Potjans and Diesmann, 2014).
While our weak scaling conserves the former quantity, the latter
drops. In the regime from 2 to 512 MPI processes, the absolute
time required for spike delivery almost quadruples (factor of 3.9).
Beyond this regime, the relative contribution of spike delivery
to simulation time drops below 50% because the time required
for communication is increasing. The absolute time for neuronal
update remains unchanged throughout as the number of neurons
per MPI process is fixed.

3. BENCHMARKING FRAMEWORK

3.1. Simulation Engine
Over the past two decades, simulation tools in computational
neuroscience have increasingly embraced a conceptual
separation of generic simulation engines and specific models of
neuronal networks (Einevoll et al., 2019). Many different models
can thus be simulated with the same simulation engine. This

2 4 8 16 32 64 128 256 512 1024

M (MPI processes)

0

200

400

600

800

S
im

ti
m
e
(s
)

total sim time

neuronal update

spike communication

spike delivery

FIGURE 3 | Contributions to the simulation time (sim time) for spiking neural

network simulations with NEST (Section 3.1) where the number of MPI

processes increases proportionally with the total number of neurons.

Weak-scaling experiment running 2 MPI processes per compute node and 12

threads per MPI process, with a workload of 125, 000 neurons per MPI

process (network model see Section 3.2). The network dynamics is simulated

for 1 s of biological time; spikes are communicated across MPI processes

every 1.5 ms. Time is spent on spike delivery (red bars), communication of

spike data (yellow bars), neuronal update (green bars), and total sim time

(black outline). Error bars (for most numbers of MPI processes hardly visible)

indicate the SD over three repetitions. Timings obtained via manual

instrumentation of the respective parts of the source code, measured on

JURECA CM (Section 3.3).

enables the community to separate the life cycle of a simulation
engine from those of specific individual models and to maintain
and further develop simulation engines as an infrastructure.
Furthermore, this separation is useful for the cross-validation of
different simulation engines.

One such engine is the open-source community code NEST1

(Gewaltig and Diesmann, 2007). The quantitative analysis of the
state-of-the-art in the present study is based on this code and
alternative concepts are evaluated in its software framework. This
ensures that ideas are immediately exposed to the complications
and legacy of real-world code. NEST uses a hybrid between an
event-driven and a time-driven simulation scheme to exploit that
individual synaptic events are rare whereas the total number
of spikes arriving at a neuron is large (Morrison et al., 2005).
Neurons are typically updated every 0.1 ms and spike times are
constrained to this time grid. For high-precision simulations,
spikes can also be processed in continuous time (Morrison
et al., 2007b; Hanuschkin et al., 2010). In contrast, synapses are
only updated when a spike is arriving from the corresponding
presynaptic neuron. The existence of a biophysical delay in the
spiking interaction between neurons enables a global exchange of
spike data between compute nodes in intervals of minimal delay.
The data structures and algorithms for solving the equations
of neuronal networks of natural size (Morrison and Diesmann,
2008; Helias et al., 2012; Kunkel et al., 2012, 2014; Jordan et al.,
2018) as well as technology for network creation (Ippen et al.,
2017) and the language interface (Eppler et al., 2009; Zaytsev
and Morrison, 2014; Plotnikov et al., 2016) are documented
and discussed in the literature in detail. For the purpose of the
present study, it suffices to characterize the main loop of state
propagation (Section 1) and concentrate on the details of spike
delivery (Section 2).

Besides spikes, NEST supports gap junctions (Hahne et al.,
2015; Jordan et al., 2020) as a further biophysical mechanism of
neuronal interaction. To allowmodeling of mechanisms affecting
network structure on longer time scales, NEST implements
models of neuromodulated synaptic plasticity (Potjans et al.,
2010), voltage-dependent plasticity (Stapmanns et al., 2021),
and structural plasticity (Diaz-Pier et al., 2016). For the
representation of more abstract network models, NEST, in
addition, supports binary neuron models (Grytskyy et al., 2013)
and continuous neuronal coupling (Hahne et al., 2017) for rate-
based and population models.

The present work is based on commit 059fe89 of the NEST
2.18 release.

3.2. Network Model
As earlier studies on neuronal network simulation technology
(latest Jordan et al., 2018), we use a generic model of mammalian
neuronal networks (Brunel, 2000) for measuring and comparing
proposed algorithmic modifications. The model description and
parameters are given in parameter Tables 1–3 of Jordan et al.
(2018), and Section 2.4 gives an overview of performance for
state-of-the-art code. A figure illustrating the structure of the

1https://www.nest-simulator.org

Frontiers in Neuroinformatics | www.frontiersin.org 6 March 2022 | Volume 15 | Article 78506852

https://www.nest-simulator.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pronold et al. Routing Spikes by Parallel Sorting

model is part of the NEST user-level documentation2. The sole
difference of the investigated model with respect to previous
studies is the restriction to static synapses for excitatory-
excitatory connections. These synapses have a fixed weight
whereas in former studies they exhibited spike-timing dependent
plasticity (Morrison et al., 2007a).

The network is split into two populations: excitatory (80%)
and inhibitory neurons (20%). These are modeled by single-
compartment leaky-integrate-and-fire dynamics with alpha-
shaped postsynaptic currents. Parameters are homogeneous
across all neurons. Each neuron receives a fixed number of
excitatory and inhibitory connections with presynaptic partners
randomly drawn from the respective population. Thus, every
neuron has 11, 250 incoming and, on average, 11, 250 outgoing
synapses, independent of the network size. Inhibitory synapses
are stronger than excitatory synapses to ensure the stability of
the dynamical state of the network. The simulation of 10 ms of
biological time, called the init phase, is followed by the further
simulation of 1 s of biological time. The former initiates the
creation and initialization of data structures that are unchanged
in the simulation of subsequent time stretches. The measured
wall-clock time of the latter, called the simulation phase, is
referred to as “sim time.” The mean firing rate across all network
sizes considered in this study is 7.56 Hz with a SD of 0.1 Hz.

3.3. Systems
The JURECA Cluster Module (JURECA CM) and the K
computer are already specified in Jordan et al. (2018), their
characteristics are repeated here in the same words for
completeness except the renaming of JURECA to JURECA CM
after the addition of a booster module not used here. JURECA
CM (Krause and Thörnig, 2018) consists of 1,872 compute nodes,
each housing two Intel Xeon E5-2680 v3 Haswell CPUs with 12
cores each at 2.5 GHz for a total of 1.8 PFLOPS. Most of the
compute nodes have 128 GB of memory available. In addition,
75 compute nodes are equipped with two NVIDIA K80 GPUs,
which, however, are not used in this study. The nodes are
connected via Mellanox EDR Infiniband.

Dynamical Exascale Entry Platform-Extreme Scale
Technologies (DEEP-EST)3 is an EU project exploring the
usage of modular supercomputing architectures. Among other
components, it contains a cluster module (DEEP-EST CM)
tuned for applications requiring high single-thread performance
and a modest amount of memory. The module consists of one
rack containing 50 nodes, each node hosting two Intel Xeon
Gold 6146 Skylake CPUs with 12 cores each. The CPUs run
at 3.2 GHz and have 192 GB RAM. In total, the system has
45 TFLOPS and aggregates 45 TB of main memory. The system
uses Mellanox InfiniBand EDR (100 GBps) with fat tree topology
for communication.

Both on JURECA CM and DEEP-EST CM, we compile the
application with OpenMP enabled using GCC and link against
ParaStationMPI for MPI support. In our benchmarks, to match
the node architecture, we launch 2 MPI processes each with 12

2https://nest-simulator.readthedocs.io
3https://www.deep-projects.eu

threads on every node and bind the MPI processes to sockets
using --cpu_bind=sockets to ensure that the threads of
each process remain on the same socket.

The K computer (Miyazaki et al., 2012) features 82, 944
compute nodes, each equipped with an 8-core Fujitsu SPARC64
VIIIfx processor operating at 2 GHz, with 16 GB RAM per
node, leading to a peak performance of about 11.3 PFLOPS
and a total of 1,377 TB of main memory. The compute
nodes are interconnected via the “Tofu” (“torus connected full
connection”) network with 5 GBps per link. The K computer
supports hybrid parallelism with OpenMP (v3.0) at the single
node level and MPI (v2.1) for inter-node communication.
Applications are compiled with the Fujitsu C/C++ Compiler and
linked with Fujitsu MPI. Each node runs a single MPI process
with 8 threads.

3.4. Software for Profiling and Workflow
Management
Optimizing software requires the developer to identify critical
sections of the code and to guarantee identical initial conditions
for each benchmark. This is all the more true in the
field of simulation technology for spiking neuronal networks.
Despite the advances (Schenck et al., 2014; Cremonesi, 2019;
Cremonesi and Schürmann, 2020; Cremonesi et al., 2020)
in the categorization of neuronal network applications and
the identification of bottlenecks, performance models are not
yet sufficiently quantitative and fundamental algorithms and
data structures are evolving. Therefore, the field still relies on
exploration and quantitative experiments. The present work
employs the profiling tool VTune to guide the development
as well as the benchmarking environment JUBE for workflow
management. In addition, the NEST code contains manual
instrumentation to gather the cumulative times spent in the
update, communicate, and deliver phases and to determine the
total simulation time.

3.4.1. VTune

VTune Profiler4 is a proprietary performance analysis tool
developed by the company Intel providing both a graphical user
interface and a command-line interface. It collects performance
statistics across threads and MPI processes while the application
is running. VTune supports different analysis types instructing
the profiling program executing the application to focus on
specific characteristics. From the rich set of statistical measures,
we select only three basic quantities: Instructions Retired,
Clockticks, and Clockticks per Instructions Retired (CPI). The
Instructions Retired show the total number of completed
instructions, while the CPI is the ratio of unhalted processor
cycles (clockticks) relative to the number of instructions retired
indicating the impact of latency on the application’s execution.

3.4.2. JUBE

Documenting and reproducing benchmarking data requires the
specification of metadata on the computer systems addressed and
metadata on the configurations for compiling the application,

4https://software.intel.com/vtune

Frontiers in Neuroinformatics | www.frontiersin.org 7 March 2022 | Volume 15 | Article 78506853

https://nest-simulator.readthedocs.io
https://www.deep-projects.eu
https://software.intel.com/vtune
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pronold et al. Routing Spikes by Parallel Sorting

for running the simulations, and for evaluating the results. The
Jülich Benchmarking Environment (JUBE) 5(Lührs et al., 2016)
is a software suite developed by the Jülich Supercomputing
Centre. We employ JUBE to represent all metadata of a particular
benchmark by a single script.

4. REDESIGN OF SPIKE-DELIVERY
ALGORITHM

The algorithmic redesign concentrates on the initial part of
spike delivery and access to the spike ring buffers. The initial
part of the original algorithm (Section 2.3) does not fully
parallelize the sorting of spike events according to the target
thread (Section 4.1). Furthermore, access to the spike ring
buffers is hidden from the algorithm as the buffer is considered
an implementation detail of the object representing a neuron
(Section 4.2). Acronyms given in the titles of the subsections label
the specific modifications for brevity and serve as references in
pseudocode and figures.

4.1. Streamlined Processing of Spike
Entries (SRR)
In the original spike-delivery algorithm (Section 2.3), each thread
needs to read all spike entries in the MPI receive buffer, even
those not relevant for its thread local targets, causing an overhead
per spike entry, and hence per process-local synaptic target
segment. Moreover, for each relevant spike entry, the thread
hosting the targets needs to identify the correct innermost array
in the three-dimensional resizable array storing the process-
local synapses (Figure 2) based on the synapse-type information
provided by the spike entry. This entails additional per target-
segment overhead.

To address these issues, we adapt the original spike-delivery
algorithm such that instead of directly dispatching the data from
the receive buffer to the thread-local targets, we introduce a
two-step process: First, the threads sort the spike entries by
hosting thread and synapse type in parallel, and only then the
threads dispatch the spikes, now exclusively reading relevant
spike entries. To this end, we introduce a new data structure
of nested resizable arrays, called spike-receive register (SRR),
where each thread is assigned its own domain for writing. After
each spike communication, a multi-threaded transfer of all spike
entries from the MPI receive buffer to the spike-receive register
takes place: each thread reads a different section of the entire
receive buffer and transfers the entries to their SRR domains.
The domains are in turn organized into separate resizable arrays,
one per hosting thread. Nested resizable arrays enable the further
sorting by synapse type. In this way, each element of the MPI
receive buffer is read only once and spike entries are immediately
sorted. This allows for a subsequent multi-threaded delivery of
spikes from the spike-receive register to the corresponding target
synapses and neurons such that all spike entries are exclusively
read by their hosting thread. At this point, all a hosting thread
has to do is to sequentially work through every resizable array

5https://www.fz-juelich.de/jsc/jube

exclusively prepared for it in the sorting phase. The additional
sorting by synapse type allows the hosting thread to deliver all
spikes targeting synapses of the same type in one pass.

4.2. Exposure of Code Dependencies
(P2RB)
In the original spike-delivery algorithm (Section 2.3), the target
synapse triggers the delivery of a spike to its target neuron,
which then adds the spike to its spike ring buffer. For the
entire spike-delivery process, this results in alternating access to
target synapses and target neurons, or more precisely, the target
neurons’ spike ring buffers. As synapses store the target identifiers
and other relevant information, access to a target synapse is a
precondition for access to its target neuron.

In order to expose this code dependency, we separate the two
delivery steps: spike delivery to target synapse and corresponding
target neuron are now triggered sequentially at the same call-
stack level. Moreover, instead of storing a target identifier,
each synapse now stores a pointer to the target neuron’s spike
ring buffer allowing for direct access when delivering a spike.
Therefore, the quantitative analysis (Section 5.1) refers to this
set of optimizations as P2RB as an acronym for “pointer to ring
buffer”.

4.3. Pseudocode

SRR+P2RB syn: Adapted Send() function in synapse,
which returns the pointer to the spike ring buffer of
the target neuron (target_rb) owned by the synapse and
the synaptic properties required for spike delivery to the
target neuron.

Data: subsq, target_rb, delay, weight

Send()
return (subsq, target_rb, delay, weight)

The pseudocode SRR+P2RB illustrates the changes to the
original spike-delivery algorithm (ORI) resulting from the two
new algorithms SRR (Section 4.1) and P2RB (Section 4.2).

Instead of a target-neuron identifier, each synapse now owns
a pointer (target_rb) to the neuronal spike ring buffer. The
synapse member function Send() returns the pointer and the
synaptic properties delay and weight in addition to the indicator
subsq (SRR+P2RB syn). This allows the algorithm to directly call
AddValue() on the spike ring buffer (SRR+P2RB; RB) after
the call to the synapse member function Send() (SYN). The
Receive()member function of the target neuron (ORI nrn) is
no longer required. Additionally, the algorithm nowmakes use of
a spike receive register (spike_reg) for a preceding thread-parallel
sorting of the spike entries from theMPI receive buffer by hosting
thread (tid) and synapse type (syn_id), where each thread writes
to its private region of the register (spike_reg[TID]). Spikes are
then delivered from the spike receive register instead of the MPI
receive buffer, where each thread processes only those regions

Frontiers in Neuroinformatics | www.frontiersin.org 8 March 2022 | Volume 15 | Article 78506854

https://www.fz-juelich.de/jsc/jube
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pronold et al. Routing Spikes by Parallel Sorting

SRR+P2RB: Detailed reference algorithm delivering
spikes to local targets with support for multi-threading,
where TID denotes the identifier of the executing thread.
TS marks iteration over a synaptic target segment. SYN
marks access to an individual target synapse (SRR+P2RB
syn); RB marks access to the spike ring buffer of the
corresponding target neuron. Based on ORI.

Data: recv_buffer, synapses, spike_reg

parallel foreach spike in recv_buffer do
(tid, syn_id, lcid)← spike.GetTargetLoc()
spike_reg[TID][tid][syn_id].PushBack(spike)

for syn_id← 0 toMAX_SYN_ID do

for tid← 0 toMAX_TID do

foreach spike in spike_reg[tid][TID][syn_id] do
lcid← spike.lcid
subsq← true

TS while subsq do
SYN (subsq, target_rb, d, w)←

synapses[TID][syn_id][lcid].Send()
lcid← lcid + 1

RB target_rb.AddValue(d, w)

of the register that contain spike entries for thread-local targets
(spike_reg[tid][TID] for all possible tid).

5. RESULTS

The new data structures and algorithms of Section 4 can be
combined because they modify different parts of the code. As
the efficiency of the optimizations may depend on the hardware
architecture, we assess their performance on three computer
systems (Section 5.1). Subsequently, we investigate in Section 5.2
the origin of the performance gain by evaluating the change in the
total number of instructions required and the average number of
clockticks consumed per instruction.

5.1. Effect of Redesign on Simulation Time
We select three computer systems for their differences in
architecture and size (Section 3.3) to measure simulation
times for a weak scaling of the benchmark network model
(Section 3.2). The number of neurons per MPI process is
significantly larger on the DEEP-EST CM and the JURECA
CM (125, 000) than on the K computer (18, 000) making use
of the respectively available amount of memory per process.
On all three systems, we observe a relative reduction in
simulation time by more than 30% (Figure 4) for the combined
optimizations compared to the original code (ORI, Section 2.3).
This includes the removal of a call to a function named
set_sender_gid() from the generic spike delivery code
(noSSG). This function attaches identifying information about
the source of the corresponding spike which is only required

2 8 32 128

-80

-60

-40

-20

0

P
e
rc
e
n
t
ch
a
n
g
e
in

si
m

ti
m
e

2 8 32 128 512

32 12
8

51
2

20
48

81
92

32
,76

8

13
1,0

72

M (MPI processes)

-80

-60

-40

-20

0
ORI

SRR

P2RB

noSSG

lim

FIGURE 4 | Cumulative relative change in simulation time after a redesign of

spike delivery as a function of the number of MPI processes M. Top left panel

DEEP-EST CM and top right panel JURECA CM: linear-log representation for a

number of MPI processes M ∈ {2; 4; 8; 16; 32; 64; 90} and
M ∈ {2; 4; 8; 16; 32; 64; 128; 256; 512; 1024}, respectively. Weak scaling

of benchmark network model with the same configuration as in Figure 3; error

bars show SD based on 3 repetitions. Bottom panel K computer: number of

MPI processes M ∈ {32; 64; 128; 256; 512; 1024; 2048; 4096;
8192; 16, 384; 32, 768; 82, 944}, gray dotted curve: M ∈ {32; 2048;
32, 768}. Weak scaling with different configurations (1 MPI process per

compute node; 8 threads per MPI process; 18, 000 neurons per MPI process).

The black dotted line at zero indicates the performance of the original code

(ORI, Section 2.3). The light carmine red curve indicates a change in sim time

(shading fills area to reference) due to sorting of spike entries prior to delivery

(SRR, Section 4.1). The dark carmine red curve indicates an additional change

in sim time due to providing synapses with direct pointers to neuronal spike

ring buffers (P2RB, Section 4.2). The dashed brown curve shows an additional

change in sim time after removal of an unrequired generic function call

(noSSG). Gray dotted curve indicates a hypothetical limit to the decrease in

sim time assuming spike delivery takes no time.

by specific non-neuronal targets such as recorders. However,
it causes per-target-segment overhead in all simulations. The
functionality can hence be moved to a more specialized part
of the code, e.g., the recorder model, and thereby regained if
required. The DEEP-EST CM hardly benefits from the removal
of the call but the batchwise processing of target segments has an
increasing gain reaching 20% at 90 MPI processes. On JURECA
CM, the function call does limit the performance and its removal
alone improves the performance by 20% for large numbers of
MPI processes. Across systems and a number of MPI processes,
the combined optimizations lead to a sustained reduction in
simulation time.

The new data structures and algorithms address the spike-
delivery phase only, but an optimization can only reduce
simulation time to the extent the component of the code
to be optimized contributes to the total time consumed as
indicated by the limiting curve in Figure 4. In the neuronal

Frontiers in Neuroinformatics | www.frontiersin.org 9 March 2022 | Volume 15 | Article 78506855

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pronold et al. Routing Spikes by Parallel Sorting

network simulations considered here, the delivery of spikes
from MPI buffers to their targets consumes the major part of
simulation time. Initially, spike delivery takes up 80% of the
simulation time for the DEEP-EST CM and the JURECA CM
and 70% for the K computer, but on all three systems, the
relative contribution decreases with an increasing number of
MPI processes. Under weak scaling into regimes beyond 1, 024
MPI processes, the absolute time required for spike delivery also
initially grows but converges as the expected number of thread-
local targets per spike converges to one (cf. Jordan et al., 2018).
Although spike-delivery time increases throughout the entire
range of MPI processes on DEEP-EST CM and JURECA CM,
the relative contribution to simulation time declines because
the time required by communication between MPI processes
increase more rapidly (for JURECA CM data cf. Figure 3).

P2RB increases the size of synapse objects by introducing an
8 B pointer to the neuronal spike ring buffer replacing the 2 B
local neuron index of the original algorithm (Section 2.3). We
hypothesize that this increase underlies the declining success
and ultimately disadvantageous effect observed on JURECA
CM. Control simulations using the original code but with an
artificially increased object size confirm this hypothesis (data not
shown).

5.2. Origin of Improvement
The new data structures and algorithms realize a more fine-
grained parallelization and avoid indirections in memory
accesses (Section 4). These changes significantly speed up the
application (Figure 4) across architectures and network sizes. In
order to understand the origin of this improvement, we employ
the profiling tool VTune (Section 3.4.1) which gives us access
to the CPU’s microarchitectural behavior. In the analysis, we
concentrate on the total number of instructions executed and the
clockticks per instruction retired (CPI).

The total number of instructions decreases by close to 50%
on all scales. Nevertheless, the contribution of noSSG to the
reduction in the number of instructions becomes larger as
this algorithm removes code which is called for every target
segment. The number of target segments, however, increases
with the number of MPI processes until a limit is asymptotically
approached (Figure 1).

For small problem sizes, the CPI decreases when compared
against the baseline (SRR+P2RB), but at around 32 MPI
processes, the instructions start to consume more clockticks
than in the original algorithm (Figure 5). This behavior is
apparent on DEEP-EST CM as well as JURECA CM where the
additional noSSG optimizations improve performance slightly.
We interpret this observation as follows. Initially the more
orderly organization of memory enables a shorter latency in
memory access. At larger network sizes, CPI is dominated by
memory access to the fragmented target segments and this
dominance is more pronounced as the new code spends fewer
instructions on reading the receive buffer.

Taken individually, the two metrics alone are not sufficient
for explaining the decrease in simulation time (Figure 4). The
product of the number of instructions retired and CPI expresses
their interplay and reduces to the total number of clockticks

− 50

0

50

In
st
ru
ct
io
n
s

ORI

P2RB

noSSG

− 50

0

50

C
P
I

2 8 32 128

M (MPI processes)

− 50

0

50

C
lo
ck
ti
ck
s

2 8 32 128 512

P
e
rc
e
n
t
ch
a
n
g
e
in

FIGURE 5 | Relative change in instructions retired (top row), clockticks per

instruction retired (CPI, middle), and clockticks (bottom) during spike delivery

for P2RB (including SRR as in Figure 4), and noSSG as a function of the

number of MPI processes. Raw data for all three quantities was obtained by

VTune (Section 3.4.1). Left column DEEP-EST CM and right column JURECA

CM: linear-log representation for number of MPI processes

M ∈ {2; 4; 8; 16; 32; 64; 90} and M ∈ {2; 4; 8; 16; 32; 64;
128; 256; 512}, respectively. Black dotted line at zero percent (ORI,

Section 2.3) indicates the performance of the original code. Weak scaling of

benchmark network model as in Figure 4.

required. Thus, this product is a quantity that directly relates
to the separately measured sim time. Indeed, the comparison
of this measure, depicted in Figure 5, with Figure 4 shows
that the product qualitatively explains the change in sim
time. While CPI increases beyond the baseline, the growth
in sim time is slowed down by having fewer instructions
in total.

6. DISCUSSION

Our investigation characterizes the dominance of the spike-
delivery phase in a weak-scaling scenario for a typical random
network model (Section 2.4). At small to medium network
sizes, spike delivery is the sole major contributor to simulation
time. Only if thousands of compute nodes are involved,
communication between nodes becomes prominent (Figure 3)
while spike delivery remains the largest contributor (Jordan et al.,
2018). The absolute time spent on spike delivery is dominating
for small networks and grows with increasing network size. The
reason for this is that the random network under study takes into
account that in the mammalian brain a neuron can send spikes
to more than ten-thousand targets. With increasing network
size, these targets are distributed over more and more compute

Frontiers in Neuroinformatics | www.frontiersin.org 10 March 2022 | Volume 15 | Article 78506856

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pronold et al. Routing Spikes by Parallel Sorting

nodes until in the limit a neuron either finds a single target on
a given compute node or more likely none at all. As the number
of synapses a compute node represents is invariant under weak
scaling, the node needs to process an increasing number of spikes
from different source neurons. For the simulation parameters in
this study, the expected number of unique source neurons and
thereby absolute costs approach the limit when the network is
distributed across thousands of compute nodes (Section 2.1) thus
also limiting the costs of spike delivery.

In spike delivery, a thread inspects all spikes arriving at the
compute node. If the thread hosts at least one target neuron
of a spike, the thread needs to access a three-dimensional data
structure (Figure 2) to activate the corresponding synapses and
ultimately under consideration of synapse specific delays place
the spike in the ring buffers of the target neurons. The present
work investigates whether an alternative algorithm can reduce
the number of instructions and decisions when handling an
individual spike. The hypothesis is that a more compact code
and more predictable control flow allows modern processors
a faster execution. On purpose, no attempt is made to apply
techniques like hardware prefetching or software pipelining to
conceptually separate improvements of the logic of the algorithm
from further optimizations that may have a stronger processor
dependence. Nevertheless, we hope that the insights of the
present work provide the basis for any future exploration of
these issues.

The first step in our reconsideration of the spike-delivery
algorithm is to look at the initial identification of the relevant
spikes for each thread. Originally, each thread inspects all spikes.
This means that the algorithms perform many read operations
on spikes without further actions and that their proportion
increases with an increasing number of threads per compute
node. The alternative algorithm which we refer to as SRR
(Section 4.1) carries out a partial sorting of the spikes. Each
thread is responsible for an equally sized chunk of the incoming
spikes and sorts them into a data structure according to the
thread on which the target neuron resides and according to
the type of the target synapse. Once all threads have completed
their work, they find a data structure containing only relevant
spikes and complete the spike delivery entirely independently
from the other threads. This already leads to a reduction of
simulation time between 10 and 20 % on the three computer
systems tested while the detailed development of this fraction
differs with network size.

As a second step, we remove an indirection originating
in the initial object oriented design of the simulation code.
Following the concept of describing entities of nature by
software objects, neurons became objects receiving and emitting
spikes and neuronal spike ring buffers an implementation
detail of no relevance for other components. As a consequence
when a neuron object receives a spike it needs to decide in
which ring buffer to place the spike, for example, to separate
excitatory from inhibitory inputs, and delegate this task to the
respective buffer. Our alternative algorithm (P2RB, Section 4.2)
exposes the corresponding spike ring buffer to the synapse
at the time of network construction. The synapse stores the
direct pointer and no further decision is required during

simulation. This change further reduces simulation time by 10
to 20 %.

One computer system (JURECA CM) shows a pronounced
decline in the computational advantage of the combined new
algorithm (SRR+P2RB) for large network sizes, which in the
case of P2RB, we assume to be due to an increase in synaptic
memory footprint. An additional optimization removing a
generic function call that enriches spike events by information
on the identity of the source neuron mitigates the loss in
performance. As this functionality is not required for the
interaction between neurons, we moved the function to a more
specialized part of the code (noSSG, Section 5.1).

The achievement of the combined algorithm
(SRR+P2RB+noSSG) needs to be judged in light of the potential
maximum gain. For small networks, spike delivery consumes 70
to 80 % of simulation time, depending on the computer system,
while this relative contribution declines with growing network
sizes as communication becomes more prominent. Thus, the
streamlined processing of spikes reduces spike delivery by 50 %
largely independent of network size. In conclusion, with the
new algorithm, spike delivery still substantially contributes to
simulation time.

In the small to medium scale regime (DEEP-EST CM,
JURECA CM), the new code gains its superiority from executing
only half of the number of instructions of the original
implementation (Section 5.2). The reduction becomes slightly
larger with increasing network size. This is plausible as for a given
thread, the algorithm avoids processing a growing number of
irrelevant spikes (SRR). As the number of synapses per compute
node is fixed, but neurons have a decreasing number of targets
per compute node, the number of relevant spikes increases.
Therefore, decreasing the number of function calls per spike has
an increasing benefit.

The picture is less clear for the average number of clockticks
required to complete an instruction (Section 5.2). For small
networks, the new algorithms exhibit an advantage. However,
with increasing network size, eventually more clockticks per
instruction are required than by the original algorithm.
Nevertheless, these latencies are hard to compare as the new
algorithm executes only half of the instructions and may
therefore put memory interfaces under larger stress. This result
already indicates that methods of latency hiding may now be
successful in further reducing spike-delivery time. The product
of the number of instructions and the clockticks per instruction
gives an estimate of the total number of clockticks required. The
observed stable improvement across all network sizes confirms
the direct measurements of simulation time.

Faster simulation can trivially be achieved by reducing the
generality of the code or by reducing the accuracy of the
simulation. While the SRR optimization does not touch the
code of individual neuron or synapse models, a critical point
in the P2RB optimization with regard to code generality is
the replacement of the target identifier in the synapse object
(Section 2.3) by a pointer to the corresponding spike ring buffer.
Synaptic plasticity is the biological phenomenon by which the
strength of a synapse changes in dependence on the spiking
activity of the presynaptic and the postsynaptic neuron. This is

Frontiers in Neuroinformatics | www.frontiersin.org 11 March 2022 | Volume 15 | Article 78506857

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pronold et al. Routing Spikes by Parallel Sorting

one of the key mechanisms by which brains implement system-
level learning. For a wide class of models of synaptic plasticity,
it is sufficient to update the synaptic weight when a presynaptic
spike arrives at the synapse (Morrison et al., 2008; Stapmanns
et al., 2020). However, at this point in time, the synapse typically
needs to inspect a state variable of the postsynaptic neuron or
even retrieve the spiking history of the postsynaptic neuron since
the last presynaptic spike. This information is only available
in the neuron, not in the spike ring buffer. Still, generality is
preserved as in the reference simulation engine (Gewaltig and
Diesmann, 2007) synapses are not restricted to a single strategy
for accessing the target neuron or its spike ring buffer. A static
synapse can implement the P2RB idea while a plastic synapse
stays with the target identifier from which the state of the neuron,
as well as the spike ring buffer, can be reached. But in this way, a
plastic synapse does not profit from the advantages of P2RB at
all. There are two alternatives. First, the spike ring buffer can be
equipped with a pointer to the target neuron. This requires an
indirection in the update of the synapse but still avoids the need
to select the correct ring buffer during spike delivery. Second,
the synapse can store both a target identifier and a pointer to
the ring buffer. This removes the indirection for the price of
additional per-synapse memory usage. There are no fundamental
limitations preventing us from making both solutions available
to the neuroscientist via different synapse types. In fact, this
strategy is currently in use, for example, to provide synapse
types with different target identifiers either consuming less
memory or requiring fewer indirections (Section 2.2), where
template-based solutions prevent the duplication of entire model
codes. Users can thus select the optimal synapse-type version
depending on the amount of memory available. However,
making multiple versions of the same model available reduces
the user-friendliness of the application. A domain specific
language like NESTML (Plotnikov et al., 2016) may come
to the rescue here generating more compact or faster code
depending on hints of the neuroscientists to the compiler.
This idea could be extended to other parts of the simulation
cycle where further information is required to decide on a
suitable optimization.

The incoming spike events of a compute node specify the
hosting thread as well as the location of the synaptic targets,
but they are unsorted with respect to the hosting thread and
synapse type. Nevertheless, the present work shows that the
processing of spikes can be completely parallelized requiring only
a single synchronization between the threads at the point where
the spikes are sorted according to target thread and synapse
type, which is when all spikes have been transferred from the
MPI receive buffer into the novel spike-receive register. This
suggests that spike delivery fully profits from a further increase
in the number of threads per compute node. Although here we
concentrate on compute nodes with an order of ten cores per
processor, we expect that the benefits of parallelization extend to
at least an order of magnitude more cores, which matches recent
hardware developments. The scaling might still be limited by the
structure of the spike-receive register having separate domains
for each thread writing spike data from the MPI spike receive

buffer to the register. If the same number of spikes is handled
by more threads, the spikes are distributed to more domains of
the register such that during the actual delivery from the register
to the thread-local targets each thread needs to collect its spikes
from more memory domains.

The local processing of a compute node is now better
understood and for large networks, the communication
between nodes begins to dominate simulation time already
for the machines investigated here. Current chip technology is
essentially two-dimensional in contrast to the three-dimensional
organization of the brain and parallelization in the brain
is more fine grained. Inside, a compute node technology
compensates for these advantages by communication over
buses. After substantially reducing the number of instructions,
we see indications that memory latency is a problem when
spikes from many sources need to be processed. Therefore,
it remains to be seen whether techniques of latency hiding
can further push the limits imposed by the von Neumann
bottleneck. Any neuromorphic hardware based on compute
nodes communicating by a collective spike exchange in fixed
time intervals needs to organize routing of the spikes to
target neurons. The ideas presented in the present study on
streamlining this process by partial parallel sorting may help
in the design of adequate hardware support. However, between
compute nodes, the latency of state-of-the-art inter-node
communication fabrics is likely to be the next limiting factor
for simulation. A possible approach to mitigate this problem
is the design of dedicated neuromorphic hardware explicitly
optimized for communication. The SpiNNaker project (Furber
et al., 2013; Furber and Bogdan, 2020), for example, follows an
extreme approach by routing packets with individual spikes to
the respective processing units.

Part of the improvements in performance this study achieved
come at the price of an increase in the number of lines of code and
an increase in code complexity. In general, one needs to weigh the
achieved performance improvements against detrimental effects
on maintainability. This is particularly relevant for a community
code like the one under consideration, in which experienced
developers are continuously replaced by new contributors.
Highly optimized code may be more difficult to keep up to
date and adjust to future compute node architectures. Next to
conceptual documentation of optimization to core algorithms,
code generation, as explored in the NESTML project (Plotnikov
et al., 2016), may be come part of a strategy to reduce
this friction between performance and code accessibility. A
domain specific language lets a spectrum of users concentrate
on the formal description of the problem while experienced
developers make sure the generator produces optimized code,
possibly even adapted to specific target architectures. Until
simulations are fast enough to enable the investigation of
plastic networks at natural density we have to find ways to
cope with increasing complexity of the algorithms and their
respective implementations.

Over the last two decades, studies on simulation technology
for spiking neuronal networks regularly report improvements
in simulation speed on the order of several percent and

Frontiers in Neuroinformatics | www.frontiersin.org 12 March 2022 | Volume 15 | Article 78506858

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pronold et al. Routing Spikes by Parallel Sorting

improved scaling compared to the state-of-the-art technology.
The stream of publications on simulation technology in the
field shows that there was and still is room for substantial
improvements. Nevertheless, at first sight, it seems implausible
that over this time span no canonical algorithm has emerged
and progress shows no sign of saturation. The solution to this
riddle is that new articles tend to immediately concentrate
on the latest available hardware and are interested in their
limits in terms of network size. This is driven by the desire
of neuroscience to overcome the limitations of extremely
downscaled models and arrive at a technology capable of
representing relevant parts of the brain. Moreover, investigations
of novel models in computational neuroscience have a life-cycle
of roughly 5 years, the same time scale at which supercomputers
are installed and decommissioned. Thus, both representative
network models and the hardware to simulate them are in flux,
which makes comprehensive performance studies difficult. The
software evolution of spiking network simulation code is largely
unknown and the community may profit from a review exposing
dead ends and volatile locations of the algorithm. For more
systematic monitoring of technological progress, the community
needs to learn how to establish and maintain reference models
and keep track of benchmarking data and their respective
metadata.

The present study streamlines the routing of spikes in a
compute node by a fully parallel partial sorting of incoming
spikes and refactoring of the code. This halves the number
of instructions for this phase of the simulation and leads to
a substantial reduction in simulation time. We expect that
our work provides the basis for the successful application of
techniques of latency hiding and vectorization.

DATA AVAILABILITY STATEMENT

All datasets and code of this study are available in a public
repository (Pronold et al., 2021).

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

FUNDING

Partly supported by the European Union’s Horizon 2020
(H2020) funding framework under grant agreement no. 785907
(Human Brain Project, HBP SGA2), no. 945539 (HBP SGA3),
and no. 754304 (DEEP-EST), the Helmholtz Association
Initiative and Networking Fund under project number SO-092
(Advanced Computing Architectures, ACA), and the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) -
368482240/GRK2416. The use of the JURECA supercomputer in
Jülich was made possible through VSR computation time grant
Brain-Scale Simulations JINB33. This research used resources of
K computer at the RIKEN Advanced Institute for Computational
Science. Supported by the project Exploratory Challenge on
Post-K Computer (Understanding the neural mechanisms of
thoughts and its applications to AI) of the Ministry of Education,
Culture, Sports, Science and Technology (MEXT).

ACKNOWLEDGMENTS

We are grateful to Mitsuhisa Sato for his guidance, who
helped us shape the project, to Johanna Senk and Dennis
Terhorst for fruitful discussions and joint efforts during
the HPC Optimisation and Scaling Workshop 2019 at
the Jülich Supercomputing Centre, Germany, to Sebastian
Lührs for his help with JUBE, to our colleagues in the
Simulation and Data Laboratory Neuroscience of the Jülich
Supercomputing Centre for continuous collaboration, and to
the members of the NEST development community for their
contributions to the concepts and implementation of the NEST
simulator. All network simulations were carried out with NEST
(http://www.nest-simulator.org).

REFERENCES

Akar, N. A., Cumming, B., Karakasis, V., Küsters, A., Klijn, W., Peyser, A., et al.
(2019). “Arbor -a morphologically-detailed neural network simulation library
for contemporary high-performance computing architectures,” in 2019, 27th

Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP) (Pavia: IEEE). 274–282.
Billeh, Y. N., Cai, B., Gratiy, S. L., Dai, K., Iyer, R., Gouwens, N. W., et al.

(2020). Systematic integration of structural and functional data into multi-
scale models of mouse primary visual cortex. Neuron 106, 388.e18–03.e18.
doi: 10.1016/j.neuron.2020.01.040

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory
and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208.
doi: 10.1023/a:1008925309027

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge:
Cambridge University Press.

Cremonesi, F. (2019). Computational characteristics and hardware implications of

brain tissue simulations, Technical Report, EPFL.
Cremonesi, F., Hager, G., Wellein, G., and Schürmann, F. (2020). Analytic

performance modeling and analysis of detailed neuron simulations. Int.

J. High Perform. Comput. Appl. 34, 428–449. doi: 10.1177/10943420209
12528

Cremonesi, F., and Schürmann, F. (2020). Understanding computational costs of
cellular-level brain tissue simulations through analytical performance models.
Neuroinformatics 18, 407–428. doi: 10.1007/s12021-019-09451-w

Diaz-Pier, S., Naveau, M., Butz-Ostendorf, M., and Morrison, A. (2016).
Automatic generation of connectivity for large-scale neuronal network
models through structural plasticity. Front. Neuroanatomy 10:57.
doi: 10.3389/fnana.2016.00057

Einevoll, G. T., Destexhe, A., Diesmann, M., Grün, S., Jirsa, V., Kamps, M.,
et al. (2019). The scientific case for brain simulations. Neuron. 102, 735–744.
doi: 10.1016/j.neuron.2019.03.027

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M. (2009).
PyNEST: a convenient interface to the NEST simulator. Front. Neuroinform.
2:12. doi: 10.3389/neuro.11.012.2008

Furber, S., and Bogdan, P. (2020). SpiNNaker: A Spiking Neural Network

Architecture. Boston, MA; Delft: Now Publishers.
Furber, S., Lester, D., Plana, L., Garside, J., Painkras, E., Temple, S., et al.

(2013). Overview of the SpiNNaker system architecture. IEEE Trans. Comp. 62,
2454–2467. doi: 10.1109/TC.2012.142

Frontiers in Neuroinformatics | www.frontiersin.org 13 March 2022 | Volume 15 | Article 78506859

http://www.nest-simulator.org
https://doi.org/10.1016/j.neuron.2020.01.040
https://doi.org/10.1023/a:1008925309027
https://doi.org/10.1177/1094342020912528
https://doi.org/10.1007/s12021-019-09451-w
https://doi.org/10.3389/fnana.2016.00057
https://doi.org/10.1016/j.neuron.2019.03.027
https://doi.org/10.3389/neuro.11.012.2008
https://doi.org/10.1109/TC.2012.142
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pronold et al. Routing Spikes by Parallel Sorting

Gewaltig, M.-.O., and Diesmann, M. (2007). NEST (NEural Simulation Tool).
Scholarpedia 2, 1430. doi: 10.4249/scholarpedia.1430

Grytskyy, D., Tetzlaff, T., Diesmann, M., and Helias, M. (2013). A unified view
on weakly correlated recurrent networks. Front. Comput. Neurosci. 7, 131.
doi: 10.3389/fncom.2013.00131

Hahne, J., Dahmen, D., Schuecker, J., Frommer, A., Bolten, M., Helias, M., et al.
(2017). Integration of continuous-time dynamics in a spiking neural network
simulator. Front. Neuroinform. 11:34. doi: 10.3389/fninf.2017.00034

Hahne, J., Helias, M., Kunkel, S., Igarashi, J., Bolten, M., Frommer, A., et al.
(2015). A unified framework for spiking and gap-junction interactions
in distributed neuronal network simulations. Front. Neuroinform. 9:22.
doi: 10.3389/fninf.2015.00022

Hanuschkin, A., Kunkel, S., Helias, M., Morrison, A., and Diesmann, M.
(2010). A general and efficient method for incorporating precise spike
times in globally time-driven simulations. Front. Neuroinform. 4, 113.
doi: 10.3389/fninf.2010.00113

Helias, M., Kunkel, S., Masumoto, G., Igarashi, J., Eppler, J. M., Ishii, S., et al.
(2012). Supercomputers ready for use as discovery machines for neuroscience.
Front. Neuroinform. 6:26. doi: 10.3389/fninf.2012.00026

Ippen, T., Eppler, J. M., Plesser, H. E., and Diesmann, M. (2017). Constructing
neuronal network models in massively parallel environments. Front.

Neuroinform. 11:30. doi: 10.3389/fninf.2017.00030
Joglekar, M. R., Mejias, J. F., Yang, G. R., and Wang, X.-J. (2018).

Inter-areal balanced amplification enhances signal propagation in a
large-scale circuit model of the primate cortex. Neuron 98, 222–234.
doi: 10.1016/j.neuron.2018.02.031

Jordan, J., Helias, M., Diesmann, M., and Kunkel, S. (2020). Efficient
communication in distributed simula-tions of spiking neuronal networks with
gap junctions. Front. Neuroinform. 14:12. doi: 10.3389/fninf.2020.00012

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018).
Ex-tremely scalable spiking neuronal network simulation code: From laptops
to exascale computers. Front. Neuroinform. 12:2. doi: 10.3389/fninf.2018.00002

Krause, D., and Thörnig, P. (2018). JURECA: modular supercomputer
at Jülich Supercomputing Centre. J. Largescale Res. Facilit. 4, A132.
doi: 10.17815/jlsrf-4-121-1

Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King, J., Delalondre, F., et al.
(2019). Coreneuron: an optimized compute engine for the neuron simulator.
Front. Neuroinform. 13, 63. doi: 10.3389/fninf.2019.00063

Kunkel, S. (2019). “Routing brain traffic through the bottlenecks of general purpose
computers: challenges for spiking neural network simulation code, ISC 33
(2019),” in High Performance Computing (Frankfurt: ISC High Performance
2019 International).

Kunkel, S., Potjans, T. C., Eppler, J. M., Plesser, H. E., Morrison, A., and Diesmann,
M. (2012). Meeting the memory challenges of brain-scale simulation. Front.
Neuroinform. 5:35. doi: 10.3389/fninf.2011.00035

Kunkel, S., Schmidt, M., Eppler, J. M., Masumoto, G., Igarashi, J., Ishii, S.,
et al. (2014). Spiking network simulation code for petascale computers. Front.
Neuroinform. 8:78. doi: 10.3389/fninf.2014.00078

Lührs, S., Rohe, D., Schnurpfeil, A., Thust, K., and Frings, W. (2016). “Flexible
and generic workflow management,” in: Parallel Computing: On the Road to

Exascale, Volume 27 of Advances in Parallel Computing (Amsterdam: IOS
Press), 431–438.

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M.,
Sanchez, C. A., et al. (2015). Reconstruction and simulation of neocortical
microcircuitry. Cell 163, 456–492. doi: 10.1016/j.cell.2015.09.029

Miyazaki, H., Kusano, Y., Shinjou, N., Fumiyoshi, S., Yokokawa, M., and
Watanabe, T. (2012). Overview of the K computer system. Fujitsu Scientific

Techn. J. 48, 255–265.
Morrison, A., Aertsen, A., and Diesmann, M. (2007a). Spike-timing dependent

plasticity in balanced random networks. Neural Comput. 19, 1437–1467.
doi: 10.1162/neco.2007.19.6.1437

Morrison, A., and Diesmann, M. (2008). “Maintaining causality in discrete time
neuronal network simulations,” in Lectures in Supercomputational Neuro-

Sciences: Dynamics in Complex Brain Networks, eds P. B. Graben, C. Zhou, M.
Thiel, and J. Kurths (Berlin; Heidelberg: Springer) 267–278.

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models
of synaptic plasticity based on spike-timing. Biol. Cybern. 98, 459–478.
doi: 10.1007/s00422-008-0233-1

Morrison, A., Mehring, C., Geisel, T., Aertsen, A., and Diesmann, M.
(2005). Advancing the boundaries of high connectivity network
simulation with distributed computing. Neural Comput. 17, 1776–1801.
doi: 10.1162/0899766054026648

Morrison, A., Straube, S., Plesser, H. E., and Diesmann, M. (2007b).
Exact subthreshold integration with continuous spike times in
discrete-time neural network simulations. Neural Comput. 19, 47–79.
doi: 10.1162/neco.2007.19.1.47

Plotnikov, D., Blundell, I., Ippen, T., Eppler, J. M., Rumpe, B., and Morrison, A.
(2016). “NESTML: a modeling language for spiking neurons,” in Modellierung

2016. volume P-254 of Lecture Notes in Informatics (LNI), eds A. Oberweis and
R. Reussner (Gesellschaft für Informatik e.V. (GI)), 93–108. Available online at:
http://juser.fz-juelich.de/record/826510.

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical
microcircuit: Relating structure and activity in a full-scale spiking network
model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358

Potjans, W., Morrison, A., and Diesmann, M. (2010). Enabling functional neural
circuit simulations with distributed computing of neuromodulated plasticity.
Front. Comput. Neurosci. 4:141. doi: 10.3389/fncom.2010.00141

Pronold, J., Jordan, J.,Wylie, B., Kitayama, I., Diesmann,M., and Kunkel, S. (2021).
Code for Routing brain traffic through the von Neumann bottleneck: Parallel
sorting and refactoring. doi: 10.5281/zenodo.5148731

Schenck, W., Adinetz, A. V., Zaytsev, Y. V., Pleiter, D., and Morrison, A. (2014).
“Performancemodel for large-scale neural simulations with NEST,” in Extended
Poster Abstracts of the SC14 Conference for Supercomputing (New Orleans, LA).

Schmidt, M., Bakker, R., Hilgetag, C. C., Diesmann, M., and van Albada,
S. J. (2018a). Multi-scale account of the network structure of macaque
visual cortex. Brain Struct. Funct. 223, 1409–1435. doi: 10.1007/s00429-017-
1554-4

Schmidt, M., Bakker, R., Shen, K., Bezgin, G., Diesmann, M., and van Albada, S.
J. (2018b). A multi-scale layer-resolved spiking network model of resting-state
dynamics in macaque visual cortical areas. PLoS Comput. Biol. 14:e1006359.
doi: 10.1371/journal.pcbi.1006359

Stapmanns, J., Hahne, J., Helias, M., Bolten, M., Diesmann, M., and Dahmen,
D. (2020). Event-based update of synapses in voltage-based learning rules.
arXiv:2009, 08667.

Stapmanns, J., Hahne, J., Helias, M., Bolten, M., Diesmann, M., and
Dahmen, D. (2021). Event-based update of synapses in voltage-based
learning rules. Front. Neuroinform. 15:609147. doi: 10.3389/fninf.2021.
609147

Zaytsev, Y. V., and Morrison, A. (2014). CyNEST: a maintainable Cython-
based interface for the NEST simulator. Front. Neuroinform. 8:23.
doi: 10.3389/fninf.2014.00023

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Pronold, Jordan, Wylie, Kitayama, Diesmann and Kunkel. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 14 March 2022 | Volume 15 | Article 78506860

https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.3389/fncom.2013.00131
https://doi.org/10.3389/fninf.2017.00034
https://doi.org/10.3389/fninf.2015.00022
https://doi.org/10.3389/fninf.2010.00113
https://doi.org/10.3389/fninf.2012.00026
https://doi.org/10.3389/fninf.2017.00030
https://doi.org/10.1016/j.neuron.2018.02.031
https://doi.org/10.3389/fninf.2020.00012
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.17815/jlsrf-4-121-1
https://doi.org/10.3389/fninf.2019.00063
https://doi.org/10.3389/fninf.2011.00035
https://doi.org/10.3389/fninf.2014.00078
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1162/neco.2007.19.6.1437
https://doi.org/10.1007/s00422-008-0233-1
https://doi.org/10.1162/0899766054026648
https://doi.org/10.1162/neco.2007.19.1.47
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.3389/fncom.2010.00141
https://doi.org/10.5281/zenodo.5148731
https://doi.org/10.1007/s00429-017-1554-4
https://doi.org/10.1371/journal.pcbi.1006359
https://doi.org/10.3389/fninf.2021.609147
https://doi.org/10.3389/fninf.2014.00023
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

ORIGINAL RESEARCH
published: 10 May 2022

doi: 10.3389/fnins.2022.867027

Frontiers in Neuroscience | www.frontiersin.org 1 May 2022 | Volume 16 | Article 867027

Edited by:

James Courtney Knight,

University of Sussex, United Kingdom

Reviewed by:

Garibaldi Pineda García,

University of Sussex, United Kingdom

Arren Glover,

Italian Institute of Technology (IIT), Italy

*Correspondence:

Luca Peres

luca.peres-2@manchester.ac.uk

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 31 January 2022

Accepted: 08 April 2022

Published: 10 May 2022

Citation:

Peres L and Rhodes O (2022)

Parallelization of Neural Processing on

Neuromorphic Hardware.

Front. Neurosci. 16:867027.

doi: 10.3389/fnins.2022.867027

Parallelization of Neural Processing
on Neuromorphic Hardware
Luca Peres* and Oliver Rhodes

Advanced Processor Technologies Group, Department of Computer Science, The University of Manchester, Manchester,

United Kingdom

Learning and development in real brains typically happens over long timescales, making

long-term exploration of these features a significant research challenge. One way to

address this problem is to use computational models to explore the brain, with Spiking

Neural Networks a popular choice to capture neuron and synapse dynamics. However,

researchers require simulation tools and platforms to execute simulations in real- or

sub-realtime, to enable exploration of features such as long-term learning and neural

pathologies over meaningful periods. This article presents novel multicore processing

strategies on the SpiNNaker Neuromorphic hardware, addressing parallelization of

Spiking Neural Network operations through allocation of dedicated computational units

to specific tasks (such as neural and synaptic processing) to optimize performance.

The work advances previous real-time simulations of a cortical microcircuit model,

parameterizing load balancing between computational units in order to explore trade-offs

between computational complexity and speed, to provide the best fit for a given

application. By exploiting the flexibility of the SpiNNaker Neuromorphic platform, up to 9×

throughput of neural operations is demonstrated when running biologically representative

Spiking Neural Networks.

Keywords: neuromorphic computing, SpiNNaker, real-time, parallel programming, event-driven simulation,

spiking neural networks

1. INTRODUCTION

The human brain is capable of operating using less energy than a light bulb (Levy and Calvert,
2020). However, simulation of biologically representative Spiking Neural Networks (SNN) is a
challenging task on conventional computer hardware. Models from the literature can produce
millions of spikes per second, which need to be delivered to hundreds of thousands of neurons
(Potjans and Diesmann, 2012; Schmidt et al., 2018; Casali et al., 2019) with very tight timing
constraints. A common way to simulate these network dynamics is through CPU-based HPC
platforms, using dedicated software such as NEST (Gewaltig and Diesmann, 2007). However,
because of the timing constraints and the intrinsic high parallelism of these tasks, they fail to
keep energy consumption low when attempting to run these applications, and performance gain is
limited by the latency of MPI-based (Ippen et al., 2017) communications. An alternative approach,
namely Neuromorphic engineering, inspired by the structure of the brain (Mead, 1990), has proven
effective when dealing with this type of simulation (Rhodes et al., 2019), efficiently addressing the

61

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.867027
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.867027&domain=pdf&date_stamp=2022-05-10
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:luca.peres-2@manchester.ac.uk
https://doi.org/10.3389/fnins.2022.867027
https://www.frontiersin.org/articles/10.3389/fnins.2022.867027/full

Peres and Rhodes Parallelization on Neuromorphic Hardware

sparsity of signals typical of these applications and keeping
energy consumption low. This approach is characterized by
simple computational units with close access to distributed
memory (Mead, 1990; Indiveri et al., 2011). To date, several
Neuromorphic platforms have been developed, both in the
digital, analog and mixed signal domains (Furber et al., 2014;
Akopyan et al., 2015; Schemmel et al., 2017; Davies et al., 2018;
Moradi et al., 2018). From a digital perspective, neurons (or
neural compartments) are implemented by processors, which
usually simulate both the neural dynamics and the synaptic
receptors. Analog platforms on the other hand, employ a circuit
implementation of models from literature. The efficiency of
such systems is usually measured in terms of synaptic events
(namely one spike targetting one synapse) per second and
neurons they can simulate, with these two measures limited by
the on-core memory capacity and computational power in digital
neuromorphic platforms and by the physical implementation for
analog architectures.

High synaptic fan-in represents one of the biggest challenges
in biologically representative SNNs and it usually prevents
real-time execution, requiring to slow down the simulations
(i.e., resulting in a simulated time longer than the biological
time) to process all network activity. Another strong limitation
is given by long-range connections between different brain
areas (Schmidt et al., 2018), which are typically represented by
extremely sparse connectivity patterns. Recent work (Rhodes
et al., 2019) demonstrated that, by performing more efficient
task-partitioning and by acting on the placement of networks on
Neuromorphic hardware, it is possible to improve significantly
the throughput of these systems, enabling real-time execution of
models that were not possible before.

Real-time simulations of biologically-representative SNNs are
a common target in the field. Several solutions have been
proposed to address the presented issues, including a procedural
generation of the synaptic weights whenever a spike is received,
instead of storing these, to reduce the memory footprint and
improve performance (Knight and Nowotny, 2021). Some digital
simulation platforms managed to achieve remarkable results
in terms of real-time simulations, even reaching sub real-time
performance for established benchmarks in the field (Knight
et al., 2021; Kurth et al., 2021; Heittmann et al., 2022).

This work offers an improved parallelization strategy, namely
the Multi-target partitioning, on how to efficiently deploy
Spiking Neural Networks on Neuromorphic hardware. This
strategy aims at addressing the major bottlenecks of SNN
simulations and informing the design of the next generation of
Neuromorphic platforms. The use-case platform chosen for this
work is SpiNNaker, a many-core digital Neuromorphic platform
designed at The University of Manchester (Furber et al., 2014).

Following this introduction, Section 2 provides a background
on SNNs simulations in general, together with the critical
aspects of real-time simulations and their challenges. Section 3
gives details about the SpiNNaker Neuromorphic platform
and how SNNs are mapped on it through the available
partitioning strategies. The Multi-target partitioning approach
is then presented in Section 3.4. Section 4 demonstrates the
advantages of this new strategy through benchmarking on

SpiNNaker. Finally, Section 5 contains a discussion about the
potentialities of this approach and possible future applications.

2. BACKGROUND

2.1. Neural Processing
SNN simulations are typically performed starting from a high
level description of the network characteristics, through high
level specification languages such as PyNN (Davison et al., 2009).
Groups of neurons sharing the same properties are grouped into
ensembles called Populations, and the connections between them
are called Projections. Starting from these high level descriptions,
Populations and Projections are typically fragmented (or
partitioned) such that they can fit the requirements set by
the underlying hardware platform. Digital platforms commonly
employ a discrete time resolution, using fixed length timesteps,
within which all spikes are considered to happen at the same
time. Each computational unit involved in the simulation is in
charge of handling a subset of a Population, meaning that it needs
to update the state of a predefined number of neurons, generate
output spikes for those neurons and receive input spikes.

A representation of a neural simulation is shown in
Figure 1. Two Populations are shown (left), called Pre and Post,
respectively, and the neurons are connected with a probability
P, meaning that each presynaptic neuron has a probability
P to connect to each postsynaptic neuron. An interaction of
simulation events is shown on the right, where 3 simulation
timesteps are presented for both Populations. In this case
each Population is simulated by a separate computational unit.
Timesteps are indicated by 1t, and are synchronized among the
involved computational units. Both computational units update
the neural state for their implemented neurons according to the
neuron model equations (light and dark green, respectively, in
Figure 1). After the state update, neurons will fire, generating
spikes that will be delivered to the Post neurons. The remaining
fraction of the timestep (tP in Figure 1) is commonly used to
process the incoming spikes (light blue).

During a simulation, the length of the green bar (tupd) is
constant. Increasing the number of neurons per computational
unit extends the green bar. When the input firing activity is
high (commonly when the number of input connections is
high), or P is increased, the blue bar grows. The length of the
blue bar therefore varies according to the amount of synaptic
inputs received during the timestep. In order to maintain real-
time processing, both the bars need to complete the execution
before the beginning of the subsequent timestep (therefore
before the next green bar is due to start). Figure 1 shows an
example of a non real-time simulation, where the first timestep
for the Post computational unit completes in time, however,
during the second timestep the synaptic processing overflows
on the third timestep, causing it to start delayed for the Post
computational unit. Some platforms allow this case to happen,
performing soft real-time simulations, and therefore allowing
to overrun timesteps and then recover for the lost time in
future timer periods, where the load is reduced. This however
violates the hard real-time requirements, which mandate to
simulate each individual timestep in the corresponding amount

Frontiers in Neuroscience | www.frontiersin.org 2 May 2022 | Volume 16 | Article 86702762

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Peres and Rhodes Parallelization on Neuromorphic Hardware

FIGURE 1 | Representation of neural processing. The schematic of a SNN composed of 2 Populations (Pre and Post) with connectivity P is shown on the left. On the

right the interaction of simulation events for 3 simulation timesteps, with real-time requirements violation is presented. The green bars show the neural state update,

the blue bars the synaptic input processing.

of wall-clock time: i.e., each 0.1ms of biological time is completed
in 0.1 ms.

A reduction of the size of the green bar (neural state
update) can be achieved by reducing the number of neurons
per computational unit. However, this operation has the effect
of requiring additional hardware, since the network becomes
more distributed and adds burdens to the communication
fabric, increasing the number of destinations for the generated
spikes. The time taken to process spikes, as indicated by
the length of the blue bar in Figure 1, is a function of the
number of postsynaptic neurons simulated per unit. When
the number of neurons simulated per unit increases, each
spike can potentially target more postsynaptic neurons, hence
requiring more processing time. While the fan-in to each
postsynaptic neuron is independent of the number of neurons
simulated, the fan-out of each arriving spike is proportional
to the number of available target neurons (defined by the
number of neurons simulated per core). Therefore, when this
number is reduced, the total available target neurons are reduced,
meaning the cost of processing a spike is amortized over
fewer individual connections. This reduction in efficiency is
a significant problem, as spike processing tends to dominate
computation in biologically-representative SNN simulations
(Schmidt et al., 2018; Casali et al., 2019).

A more efficient partitioning strategy (Knight and Furber,
2016; Rhodes et al., 2019), demonstrated that it is possible
to separate the two phases (neural state update and spike
processing) onto separate computational units. This enables
simulations with higher numbers of neurons per unit, together
with higher efficiency for the synaptic input processing. This

approach however still shows some limitations in dealing with
very sparse connectivity patterns, as the number of target
synapses per spike is still limited by the amount of neurons
that can be simulated on a single computational unit. Section 3
presents a novel parallelization approach which overcomes this
limitation, maximizing the number of postsynaptic receptors and
improving spike processing performance.

3. MATERIALS AND METHODS

3.1. The SpiNNaker System
SpiNNaker is a Globally Asynchronous Locally Synchronous
(GALS) many-core digital Neuromorphic platform, specifically
designed to simulate SNNs in real time (Plana et al., 2011;
Furber et al., 2014). From a hardware perspective, its main
building block is the SpiNNaker chip, which contains 18 ARM968
cores (ARM, 2006), each having two separate Tightly Coupled
Memories (TCMs), to store local data and simulation code,
respectively. Additionally the chip includes a 32 KB shared
memory (SysRAM), a 128MB off-chip sharedmemory (SDRAM)
and a tree-based routing infrastructure which allows direct
packet-based communication with 6 other neighboring chips.
Each on-chip router can be used as an intermediate hop to
forward packets to other chips (Furber et al., 2013; Painkras et al.,
2013; Mavaridas et al., 2015). For fault tolerance purposes, the
available cores per chip are 17. Access to the sharedmemories can
be performed through bridge or Direct Memory Access (DMA).
Bridge access is slow (> 100 ns/word), while a DMA controller
provides more efficient bulk transfers (≈ 10 ns/word) up to 64
KB per request, with DMA requests broken down into bursts 128

Frontiers in Neuroscience | www.frontiersin.org 3 May 2022 | Volume 16 | Article 86702763

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Peres and Rhodes Parallelization on Neuromorphic Hardware

B wide. Access to the memory controller is however limited to a
single channel. Simultaneous attempts to access shared memory
give rise to a phenomenon called contention, where a single
requesting processor is given access to thememory controller and
the others are queued (Painkras et al., 2013; Sharp and Furber,
2013; Rhodes et al., 2018).

SNNs models are simulated through dedicated software
(Rhodes et al., 2018; Rowley et al., 2019), with each processor
simulating a predefined number of neurons, each implemented
through mathematical models governing their neural dynamics.
All the available processors (excluding two service cores Rowley
et al., 2019, used for system purposes) perform the simulation.
This consists in updating the neural state of the implemented
neurons in sequential fashion, generating postsynaptic action
potentials where necessary, receiving incoming spikes and
extracting the synaptic events from incoming packets. SNN
simulations on SpiNNaker follow an event-driven approach
(Sharp et al., 2011), where cores remain in a low-power state,
until an event triggers a processing callback. Periodic timer events
are used to advance the simulation time through discrete fixed-
length timesteps, while asynchronous events signal the reception
of a spike and trigger synaptic processing (Rhodes et al., 2018).
Timesteps allow for discretization of continuous time models
and, provided the timestep resolution is high enough (commonly
0.1 or 1 ms), allow modeling of neuron state updates via
exponential integration (Rotter and Diesmann, 1999), calculating
the dynamics timestep by timestep.

The spike processing activity spans through most of the
simulation timestep and, in case of large networks (Potjans and
Diesmann, 2012; Schmidt et al., 2018; Casali et al., 2019), the
number of received spike events can cause the neural state
update to be preempted and delayed beyond the boundaries
of the simulation timesteps (van Albada et al., 2018; Bogdan
et al., 2021), resulting in non real-time performance. Real-
time performance means that the simulation time of a network
matches the modeling time of the network itself, therefore 1
s of activity needs to be simulated in 1 s for it to be in
biological real-time.

On SpiNNaker, spikes are delivered through multicast packets
in the Address Event Representation (AER) format (Mead, 1989),
therefore only containing information about the sender. All
synaptic information for a given presynaptic spike (i.e., number
of postsynaptic connections, weights and delays) is stored on
the postsynaptic side in the SDRAM shared memory. This
reduces the amount of information that is transmitted over
the communication network, by only specifying the sender.
Therefore, upon the reception of a spike packet, each core
performs a DMA request to retrieve the associated synaptic data
(Rhodes et al., 2018). This information is stored as a sparse
synaptic matrix using the compressed-row format, row-indexed
by the presynaptic neuron ID. Postsynaptic cores therefore, upon
the reception of a spike have a unique identifier of the sender
available (given by AER spike packets), and use this as an index
to locate the correct synaptic row inside the matrix. By storing
the synaptic matrices in the SDRAM memory it is possible
to simulate SNNs where neurons have much larger individual
fan-ins (a common aspect of biologically-representative SNNs).

This overcomes the limitations set by reduced local memory
typical of Neuromorphic platforms. This solution also allows
simulations of plastic networks, as opposed to the procedural
approach (Knight and Nowotny, 2021), and it is more suited
to platforms where the memory access is faster than generating
pseudo-random values, such as Neuromorphic hardware. This
however comes with the penalty of retrieving synaptic rows
every time a spike is received, and, in case of plastic networks,
a write-back operation for the updated weights is required.

3.2. Homogeneous Parallelization
SNNs on SpiNNaker are commonly partitioned following a
Homogeneous parallelization approach (Rhodes et al., 2018;
Rowley et al., 2019), where each core simulates a subset of a
Population, as described in Section 1. An example of the synaptic
matrix representation under the Homogeneous parallelization
approach is shown in Figure 2. Here, we show a network
composed of 2 populations having 12 neurons each, connected
with 20% probability (represented on the left). The full synaptic
matrix is displayed (top right), where each row corresponds to a
presynaptic neuron and each column to a postsynaptic neuron.
Where a connection is formed a weight is added to the respective
cell. Figure 2 shows how synaptic matrices are partitioned and
mapped to SpiNNaker cores. The right bottom representation
shows 3 cores each with its own sparse representation of
the synaptic matrix, assuming a limit of 4 neurons per core.
This representation reduces the size of the stored matrix, only
including the relevant information.

Despite reducing the required memory to store synaptic
matrices, this partitioning approach is inefficient; indeed, for
sparse connectivity patterns it generates several empty rows, as
seen in Figure 2. Each core has access to all the presynaptic
rows pertaining to the implemented neurons. This limits the
number of neurons that can be simulated per core, resulting in
an inefficient allocation. Furthermore, for large networks, simply
limiting the number of neurons per core is not sufficient, as
the amount of incoming synaptic events requires a processing
time larger than the timestep itself (van Albada et al., 2018;
Bogdan et al., 2021). Also, by reducing the number of neurons
per core, the length of the synaptic rows shrinks (as shown
in Figure 2). This happens because SNNs typically have low
connectivity probabilities, especially for long-range connections,
therefore having a small number of postsynaptic neurons per core
increases the chance of no connections being made, resulting in
empty rows in the synaptic matrix. Empty rows are problematic
because they cannot be detected until the core has completed the
DMA transfer, resulting in wasted processing cycles retrieving
meaningless information from SDRAM.

The cost of retrieving a synaptic row from shared memory
is however amortized by the number of postsynaptic neurons
implemented on each core, as a single transfer per packet is
performed. This means that, by simulating more neurons per
core it is possible to reduce the number of accesses to memory. A
higher number of neurons per core however requires to process
additional information, which might not be possible within the
boundaries of the timestep.

Frontiers in Neuroscience | www.frontiersin.org 4 May 2022 | Volume 16 | Article 86702764

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Peres and Rhodes Parallelization on Neuromorphic Hardware

FIGURE 2 | Synaptic matrix partitioning under the homogeneous partitioning. The presented matrix comes from an example network composed of 2 populations

having 12 neurons each with 20% connectivity (schematic on the left). The full synaptic matrix is shown on top right. The sparse representation partitioned into 3

different cores is shown on bottom right (with colors matching the full synaptic matrix). The partitioning assumes a limit of 4 neurons per core, therefore 3 cores are

required.

Synaptic processing throughput is defined as the maximum
number of synaptic events that can be processed per timestep,
while maintaining real-time performance (Rhodes et al., 2018).

E =

(

tP − t1st − tlast

tspike
+ 2

)

Pn (1)

tP = 1t − tupd (2)

tspike = msPn+ cs (3)

This can be evaluated according to Equations (1)–(3), where
E represents the number of synaptic events per timestep, tP
indicates the fraction of the timestep available to process synaptic
information, and is obtained by subtracting from the timestep
duration (1t) the time required to update the neural state (tupd)
of all the neurons simulated on core. The time required to process
a single spike is defined by tspike. This value is expressed by
Equation (3) and can be broken in a fixed contribution (cs), which
is paid once per spike packet, corresponding to context switches,
synaptic row location in the shared memory and transfer time,

and a variable contribution (ms) which corresponds to the
cost of processing a single synaptic event. Spike processing on
SpiNNaker is handled through a pipelined approach, therefore
the cost of processing the first and the last spike in the pipeline
are different due to different API calls (Rhodes et al., 2018). These
values are indicated by t1st and tlast , respectively, and follow the
same rule as tspike, but have different values for fixed and variable
costs (Rhodes et al., 2018).

The processing time (tP − t1st − tlast) is divided by tspike
to obtain the processed spikes per timestep. This number is
then incremented by 2, to account for t1st and tlast previously
subtracted. The number of synaptic events that can be processed
in a single timestep is, therefore, given bymultiplying the number
of spikes by the connectivity probability (P), which indicates the
number of postsynaptic connections per spike and then by the
number of postsynaptic neurons on core (n).

3.3. Heterogeneous Parallelization
The Heterogeneous Programming Model (Rhodes et al., 2019) is
a simulation approach which evolved from a previous study on
the partitioning of synaptic matrices on SpiNNaker (Knight and
Furber, 2016). This approach aimed at improving the placement

Frontiers in Neuroscience | www.frontiersin.org 5 May 2022 | Volume 16 | Article 86702765

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Peres and Rhodes Parallelization on Neuromorphic Hardware

FIGURE 3 | Synaptic matrix partitioning under the Heterogeneous Programming Model. The same matrix presented in Figure 2 is used. Synapse cores allow to

partition the matrix by presynaptic index, and to relieve Neuron cores from processing spikes, enabling the possibility of simulating more neurons per core, which in

turn allows to increase the length of synaptic rows. A schematic of the ensembles generated by this partitioning is shown on the right, where each Neuron core

receives inputs from two Synapse cores.

of SNNs on SpiNNaker to achieve real-time simulations of
complex SNNs (Rhodes et al., 2019). By partitioning the
synaptic matrices horizontally (see Figure 3), as opposed to
the vertical approach (see Figure 2), it is possible to maintain
longer postsynaptic rows and parallelize processing of incoming
spikes. This is achieved by introducing separate cores, called
Synapse cores, dedicated to the spike processing phase only,
each implementing a subset of the synaptic receptors for
each postsynaptic neuron (see Figure 3). The postsynaptic
neurons are simulated on dedicated Neuron cores, having
the role of advancing the neural state and generating action
potentials only. These cores combine the inputs coming from
the connected Synapse cores, through shared memory. This
partitioning strategy allows simulations of higher numbers
of neurons per core, therefore increasing the length of the
synaptic rows maintained by the connected Synapse cores. This
enables simulations of sparser connectivity patterns. Through

this approach it is furthermore possible to connect multiple
Synapse cores to each Neuron core, increasing the synaptic event
throughput of the overall system (Knight and Furber, 2016;
Rhodes et al., 2019). The communication between connected
Synapse and Neuron cores happens via the chip-local SDRAM
shared memory. Each Synapse core writes at the end of each
timestep the synaptic contributions (representing partial input
currents) coming from the receptors simulated by the core. The
Neuron core reads all the contributions in a single memory block
read and computes the total input currents by adding together
the values from different Synapse cores.

An example of the partitioning of synaptic matrices under
this approach is shown in Figure 3. In this example the same
synaptic matrix addressed in Figure 2 is used, however it is
now split horizontally by presynaptic neurons. Therefore, one
Synapse core (S11) receives inputs from the lower 6 presynaptic
neurons (dark green in Figure 2) and the other Synapse core (S21)

Frontiers in Neuroscience | www.frontiersin.org 6 May 2022 | Volume 16 | Article 86702766

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Peres and Rhodes Parallelization on Neuromorphic Hardware

from the higher 6 (light green in Figure 2). This increases the
number of neurons per core, as the Neuron core’s sole task is
to update the neural state. In this simple example, each Neuron
core can therefore now simulate 8 neurons, allowing to double
the length of the synaptic rows associated to each Synapse core.
The remaining 4 neurons are simulated by a separate Neuron
core which replicates the structure of the other ensemble. The
two ensembles are shown in Figure 3 right. N1 simulates the
lower 8 postsynaptic neurons, N2 the remaining 4 neurons.
Each Neuron core receives its inputs from 2 Synapse cores.
The synaptic labels correspond to the cores depicted on the
left.

The number of synaptic events that can be processed in a
timestep under this approach per Synapse core is expressed by
Equations (4)–(7), adapted from Equation (1). For this model,
tp represents the spike processing window, which is obtained
by subtracting from the duration of the timestep (1t) the time
required by the Synapse cores to write the synaptic contributions
to shared memory (tw), minus the time taken by the postsynaptic
Neuron core to read the contributions from shared memory
(tr). These last two components represent a fraction of the
timestep which is wasted, as during tw no additional spikes can
be processed, and during tr the Neuron core has to wait, as it
is retrieving the information necessary to update neuron state.
The number of neurons is indicated by n. These are simulated
by the Neuron core of the ensemble. The spike processing
times tspike, t1st and tlast follow the same rule presented in
Equation (3).

E = [
tp − t1st − tlast

tspike
+ 2]Pn (4)

tp = 1t − tw − tr (5)

tw = aSc + b (6)

tr = cSc + d (7)

A description of the read and write times is given by Equations
(6) and (7) and they depend on the number of involved Synapse
cores (Sc). This dependency can be easily explained by the
increase in size of the memory block containing the synaptic
contributions (which size is directly proportional to the number
of connected Synapse cores) to be read by the Neuron core
every timestep, and by memory access contention, arising when
multiple Synapse cores try to write to memory at the end
of each timestep simultaneously. The lower case coefficients
(a, b, c, and d) are hardware specific values. Previously measured
quantities, obtained from experimental analysis on SpiNNaker,
are shown in Table 1. The value described in Equation (4)
represents the number of synaptic events per Synapse core. The
total number of synaptic events per ensemble is calculated by
adding together the values for each Synapse core belonging
to the ensemble. Compared to the Homogeneous partitioning
case, with the same number of postsynaptic neurons, this
represents a pseudo-linear increase in the processed events per

TABLE 1 | Reading and writing time coefficients for the Heterogeneous and

Multi-target partitioning measured on SpiNNaker.

SpiNNaker reading and writing time coefficients

Coefficient Heterogeneous

partitioning value

Multi-target partitioning

value

a 0.4 0.9

b 4 0.1

c 0.3 0.6

d 3.9 1.3

e - 1.2

f - 0.4

g - 0.2

Column 2 refers to Equations (6) and (7). Column 3 to Equations (10) and (11).

timestep. A demonstration of this can be seen in Figure 4,
which shows the number of synaptic events processed by
SpiNNaker for a 10% connectivity network, with increasing
numbers of Synapse cores. Here, the blue line shows the 1
ms case and the green line 0.1 ms. For the latter it is not
possible to include more than 8 Synapse cores per ensemble,
as the synaptic contribution reading time from the Neuron
core’s perspective becomes predominant, therefore preventing
real-time execution.

The Heterogeneous Programming model can achieve
impressive performance improvements, however it also presents
limitations, as seen in the example shown in Figure 3. The
length of the synaptic rows is still not optimal, requiring two
additional (or more, according to the presynaptic partitioning)
Synapse cores (S12 and S22), to simulate the last four columns,
resulting in additional resources being allocated and a sub-
optimal partitioning of the matrices. Furthermore the number
of synaptic events that can be processed for 0.1 ms timestep
simulations is limited to the throughput of 8 Synapse cores,
which does not allow to fully exploit the available parallelism.

3.4. Multi-Target Synapse Cores
Here, we present a novel parallelization approach enabling
more efficient use of the available system resources, to address
peak synaptic throughput performance and increased sparsity in
synaptic connections.

This new approach, termed Multi-target Partitioning, extends
the concept of Synapse cores introduced in Section 3.3, by
assigning multiple Neuron core targets. Therefore, each neural
ensemble will have multiple Synapse cores implementing the
postsynaptic receptors of multiple Neuron cores, instead of
matching the neurons of a single Neuron core. This technique
improves partitioning of the synaptic matrices, by allowing
longer rows. This therefore reduces the chance of empty rows for
very sparse networks, and, at the same time, allows to amortize
the fixed cost of processing a spike (i.e., preprocessing, context
switches, and DMA cost) over a larger number of synapses.

An example of the Multi-target partitioning of synaptic
matrices is shown in Figure 5. The Synapse cores now span
over a much larger synaptic matrix, covering the entire rows

Frontiers in Neuroscience | www.frontiersin.org 7 May 2022 | Volume 16 | Article 86702767

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Peres and Rhodes Parallelization on Neuromorphic Hardware

FIGURE 4 | Processed synaptic events per timestep at 10% connectivity with increasing Synapse cores per ensemble. The blue line shows the 1 ms case (values

reported on the left axis), the green line the 0.1 ms case (values reported on the right axis). The number of Synapse cores is limited to 8 for the latter, because of timing

constraints due to the synaptic contributions reads.

in the example. The partitioning is performed presynaptically
(horizontally), similarly to the Heterogeneous Model. However
for the Multi-target partitioning, each Synapse core can target
multiple postsynaptic Neuron cores, implementing all receptors
for all target Neuron cores (effectively reducing the vertical
partitioning). This approach allows to save resources (2 Synapse
cores in the case of the example in Figure 5) and further reduces
the chance of having empty rows for a given probability of
connection. The number of synaptic events that can be processed
per timestep is now modeled by Equations (8)–(13).

E = [
tP − t1st − tlast

tspike
+ 2]PN (8)

tp = 1t − tw − tr (9)

tw = aSc − bNc + cNcSc + d (10)

tr = eSc + fNc − g (11)

N = nNc (12)

tspike = msPN + cs (13)

The components are similar to the Heterogeneous model case,
however N depends now on the number of Neuron cores
connected to each Synapse core, and is obtained by multiplying
the number of neurons per core (n) by the number of connected

Neuron cores (Nc). This reflects also on the spike processing
times, as shown in Equation (13), where the variable cost
is now multiplied by the total number of neurons targeted
by the spike, therefore by the Synapse core. The reading (tr)
and writing (tw) times now depend on the structure of the
ensemble, as both contention and size of the transfer play a key
role. The lower case coefficients (a to g) are hardware specific
values, which therefore change according to the chosen platform.
Table 1 reports values for the SpiNNaker platform obtained by
profiling execution.

3.4.1. Neuromorphic Implementation
A schematic of the core interactions and memory structures
for the Multi-target partitioning implementation is shown in
Figure 6. The ensemble demonstrates 2 Synapse cores each
targeting 3 Neuron cores.

In the Multi-target approach the synaptic matrices are
partitioned according to the synaptic view of the ensemble,
meaning that the postsynaptic neurons simulated by multiple
Neuron cores can now be included in a single matrix. Therefore,
Synapse cores allocate the shared memory region for the current
timestep synaptic contributions (blue and green blocks in
SysRAM and SDRAM memories in Figure 6). This is opposed
to the Heterogeneous Model, where the Neuron core of the
ensemble sets the shared regions. This allows to perform a single
block write per Synapse core per timestep, instead of fragmenting
into multiple regions. This choice is motivated by architectural
features, as the read throughput is higher than the write for the
SpiNNaker chip (Painkras et al., 2013), therefore it is preferred to
have fewer writes per timestep. Neuron cores retrieve the address

Frontiers in Neuroscience | www.frontiersin.org 8 May 2022 | Volume 16 | Article 86702768

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Peres and Rhodes Parallelization on Neuromorphic Hardware

FIGURE 5 | Synaptic matrix partitioning for the Multi-target approach. The used network is the same shown in Figures 2, 3. Here, Synapse cores have much longer

synaptic rows, further reducing the risk of empty rows, therefore fewer resources are required. The generated ensemble is shown on the right.

of each memory block of each connected Synapse core, and
compute the offset according to the indices of the implemented
neurons (blue and green sub-blocks in Figure 6). This results in
one write per Synapse core and multiple reads per Neuron core,
according to the number of afferent Synapse cores.

During simulation initialization, Synapse core 1 allocates the
blue region in SDRAM in Figure 6, which is large enough to
store the contributions to postsynaptic neurons of all 3 Neuron
cores. Synapse core 2 allocates the green region, having the same
characteristics. The Neuron cores then retrieve the addresses
of both memory regions and compute the starting address of
their sub-regions according to the implemented postsynaptic
neurons. Therefore, Neuron core 1 has the N1 sub-region from
both the green and blue region, Neuron core 2 has the N2
sub-region and Neuron core 3 has N3. During a simulation
timestep, when a spike is received, Synapse cores act the same
way as the Heterogeneous Model (Rhodes et al., 2019). They
extract the synaptic row address for the received spike, retrieve
the correct row from the synaptic matrix and then add the

connection weight to the synaptic input buffer (shown as circles
in Figure 6 in blue for Synapse core 1 and in green for Synapse
core 2), according to delay and postsynaptic index. Synaptic
input buffers (Morrison et al., 2005; Rhodes et al., 2018) are
structures employed to handle synaptic delays, and store the
input currents for postsynaptic neurons. These are typically two-
dimensional data structures, indexed by postsynaptic neuron
ID and delay. When a spike is received on a postsynaptic
core, for each postsynaptic neuron, the correct buffer slot is
located, according to the delay and destination of the spike.
Then, the weight of the connection is added to that buffer
slot.At the end of the timestep, the slots of the synaptic input
buffers representing the next timestep’s synaptic input are written
to shared memory (these include all the slots having delay 1
timestep). Therefore, Synapse core 1 writes N1, N2 and N3
sub-regions of the blue region, which will contain one slot per
postsynaptic neuron having 1 timestep delay, and Synapse core 2
does the same for the green region. Different Synapse cores write
to different memories (either SDRAM or SysRAM), to reduce

Frontiers in Neuroscience | www.frontiersin.org 9 May 2022 | Volume 16 | Article 86702769

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Peres and Rhodes Parallelization on Neuromorphic Hardware

FIGURE 6 | Synapse and Neuron cores memory interaction for the Multi-target partitioning. 2 Synapse cores targeting 3 Neuron cores are shown with all the steps

from spike reception to neural state update. Communication between cores belonging to the same ensemble happens via the two shared memories (SDRAM and

SysRAM), through the represented data structures.

contention on the SDRAM memory controller. The destination
is decided according to the physical core ID,evenly spreading
the contributions between the two memories. Both memories are
part of the system memory map, therefore the allocation can be
performed simply by specifying the correct memory heap, and
the address retrieval is transparent to this operation.

At the beginning of the subsequent timestep, all Neuron cores
perform reads of the sub-regions. Upon completion, the input
currents for each postsynaptic neuron are calculated by adding
together all contributions from the Synapse cores for the specific
neuron. The synaptic currents are then used to update the neuron
state, according to the implemented neuron model and, if the
model mandates it, a spike is generated.

The time required to read the memory regions is a crucial
design parameter, because it sets a boundary on when theNeuron
core can generate the first spike. In fact until all the contributions
are read, theNeuron cores cannot start processing the neural state
updates. This reflects on when postsynaptic Synapse cores can
start receiving spikes, effectively reducing the spike processing
window. It is therefore of paramount importance to reduce this
reading interval as much as possible. In order to address this
issue, Neuron cores are instructed to perform out-of-order read
operations of the sub-regions. This means that, based on the
Neuron core ID, the first read region will be either from SysRAM

or SDRAM. This effectively halves the Neuron cores accessing
the same memory at the same time, by explicitly instructing
half of them to first read from SDRAM and half of them from
SysRAM. After each read is completed, each Neuron core sends
the subsequent request to the other memory.

3.5. Plasticity
The Heterogeneous model and the Multi-target partitioning can
be extended to include simulations of plastic SNNs. For plastic
networks, the time required to process synaptic events is higher
compared to the static case, as a weight update phase is needed.
Therefore, simulations of plastic SNNs would also benefit from
reduced processing time per synaptic event. Here, we present
the steps to extend the plasticity framework, in order to include
the Multi-target partitioning. This framework is independent
from the implemented plasticity rule, and the synaptic update
is fully handled by Synapse cores, which implement the chosen
rule for a simulation. Figure 6 also shows the memory structures
necessary for the implementation of STDP, as well as the weight
update framework.

The plasticity framework adopted by the SpiNNaker toolchain
performs synaptic weight updates upon receiving a spike
(Galluppi et al., 2015). This minimizes the accesses to shared

Frontiers in Neuroscience | www.frontiersin.org 10 May 2022 | Volume 16 | Article 86702770

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Peres and Rhodes Parallelization on Neuromorphic Hardware

memory, as synaptic rows are commonly retrieved whenever a
spike is received. After a row is stored in local memory, before
adding the weight contribution to the correct synaptic input
buffer, each weight is updated according to the implemented
plasticity rule. STDP rules commonly require information
about postsynaptic firing activity (Morrison et al., 2008).
This information is stored into a postsynaptic buffer, locally
maintained by the Neuron cores, which contains one slot per
postsynaptic neuron, and is updated every time a neuron fires.
The introduction of plasticity into theMulti-target approach adds
complexity, since the Neuron cores need to communicate back to
the Synapse cores which neurons have spiked during the timestep,
to correctly update the synaptic weights. This operation is again
performed through shared memory. All Synapse cores share the
same postsynaptic region (red region in Figure 6), therefore this
area is allocated into SDRAMby the Synapse core of the ensemble
having the lowest index, and the address is retrieved by all the
other Synapse cores. TheNeuron cores get the address in the same
way as the synaptic contributions, and will use the same offset to
get access to their specific sub-regions.

During each timestep, after all the neurons on core have been
updated, the postsynaptic buffer (red sub-blocks in the Neuron
cores), which contains information on whether each neuron has
spiked or not, is written to SDRAM by each Neuron core. The
Synapse cores can read this region and update the postsynaptic
history (purple buffers in Figure 6) for each receptor. In order
to keep the memory operations short, the postsynaptic buffers
are saved as binary flags, indicating whether each neuron has
spiked or not. The update of the postsynaptic history depends
on the simulated plasticity rule, which is implemented on the
Synapse cores (as only these have visibility of the timing of
incoming spikes). Only after this read operation is completed is
it possible to update the weights and to process the incoming
spikes. Therefore, the received spikes before this operation are
buffered and ready to be processed when the read is completed.
The Synapse core read is scheduled to happen after a fixed
amount of time (for a given configuration), as the Neuron cores
require a fixed amount of time to update the neural state and
write back the postsynaptic buffers.

4. RESULTS

The performance of the Multi-target partitioning approach
presented in Section 3.4 is now evaluated from the perspectives
of: systemmemory (Section 4.1), peak synaptic event throughput
(Section 4.2) and the effect of connection sparsity (Section 4.3).

4.1. Memory Access
4.1.1. Experiment Description
This first experiment measures the impact of writing and reading
the synaptic contributions between Synapse and Neuron cores
under the new ensembles scheme, showing timings for each
possible combination of Neuron and Synapse cores on a chip.
Each Neuron core is set to simulate 64 Leaky Integrate-and-
Fire (Gerstner and Kistler, 2002) neurons, and afferent Synapse
cores handle their synaptic receptors. In order to isolate the
transfer times, the values are sampled in the context of a

neural simulation in absence of spike packets. Therefore, the
standard neural state is updated, but the spike processing
pipeline and the spike generation phases are turned off. This
prevents neural processing from increasing contention, while
maintaining the characteristics required by SNN simulations.
Each test simulates 100 timesteps, and is repeated 10 times
to ensure consistency. For each arrangement timings are
presented for both the SysRAM + SDRAM case, and the
SDRAM only case. The results are presented in form of
heatmaps, where the horizontal axis shows the number of
employed Synapse cores, while the vertical axis the Neuron
cores. All the Synapse cores for each case are connected to
all the Neuron cores of the same case. The reported values
are the worst case transfer times obtained by this test. These
values are fundamental to estimate the impact of memory
access time on the approach. Through these measurements
it is possible to correctly allocate timings which allow the
processors to initiate DMA transfers in time to maintain real-
time performance.

4.1.2. Reading Times
Reading time measurements are shown in Figure 7 (all times
measured in µs). The plot on the left presents values using
both the shared memories available to the SpiNNaker chips
(SysRAM and SDRAM), while the plot on the right contains
timings relative to the SDRAM use only. All the purple boxes
without a number are combinations of cores not allowed by the
machine. The case with a single Synapse core has been omitted,
since the transfer was completed quickly enough not to impact
performance. The timings have been extracted in the context
of a neural application simulating 64 neurons per core. Each
synaptic weight is stored on a 16 bit (2 B) integer, meaning
the contributions of a Synapse core targeting a single Neuron
core amount to 64 × 2 B = 128 B (each DMA read has this
fixed length).

By increasing the number of Synapse cores (moving from
left to right on the horizontal axis), the number of reads per
timestep per Neuron core increases. Reads are scheduled by the
Neuron cores at the beginning of the timestep and performed
sequentially, since there is a single DMA engine. As expected,
for both the plots, the case with a single Neuron core (first
line), shows linearly increasing reading times. The use of two
separate memories does not influence this aspect, as one read
at a time is performed. However it is observed that times in the
dual memories plot are slightly lower. This is due to half of the
Synapse cores contributions being stored into SysRAM which
has a lower access time than SDRAM, therefore providing faster
access. By increasing the number of Neuron cores (from top to
bottom on the vertical axis), the contention increases, as multiple
Neuron cores try to access shared memory to retrieve their
synaptic contributions simultaneously. This case demonstrates
the benefits of having two different memories in use with separate
access. The SysRAM + SDRAM case indeed performs generally
better than the single memory case allowing a gain up to 4 µs.
There are, however, some isolated allocations where the single
memory case performs better. This is probably due to a bad
allocation of the cores on the chip, which results in a slower access

Frontiers in Neuroscience | www.frontiersin.org 11 May 2022 | Volume 16 | Article 86702771

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Peres and Rhodes Parallelization on Neuromorphic Hardware

FIGURE 7 | Memory heatmaps showing worst case DMA reading timings for increasing Synapse and Neuron cores. Synapse cores are represented on the horizontal

axis, target Neuron cores on the vertical. All the measured times are in µs. The two plots represent the dual memory (left) and the SDRAM only case (right). Purple

blocks represent configurations not allowed by the machine.

to memory. Core allocation affects the memory access time, as
to grant fairness, access to memory is regulated by a binary tree
with arbiters at every junction point. The cores are on the leaves
of the tree. A situation where the allocation of Synapse cores
is unbalanced can cause higher contention between memory
requests, as requests coming from more populated branches of
the tree need to be filtered by multiple arbitration steps. This
results in additional delays, which increase the total memory
transfer time from the cores’ perspective. Cores are assigned
by the SpiNNaker toolchain during the placement phase. The
values reported here represent the measured worst case reading
times, therefore they are likely to represent the worst allocation
of cores.

The worst case for both the experiments happens with 14
Synapse cores, which represents the placement with the highest
number of sequential reads, performed by a single Neuron
core. Furthermore, by keeping the number of Synapse cores
constant, and increasing the Neuron cores, the transfer time
becomes higher, as the reading contention increases. This reduces
the portion of the timestep available for neural processing.
It is therefore of paramount importance to understand the
requirement of the SNN to be simulated, in order to determine
the appropriate number of Synapse cores to allocate per Neuron
core. It is noted that the values shown here represent the worst
case scenario, thus presenting the highest recorded reading times.
A more detailed analysis including best and average cases, is
provided in the Supplementary Material.

The worst case analysis is important from a reading
perspective to understand when the Neuron cores will start to
fire, as the read phase must precede the neural state update and
therefore Neuron cores must wait until this phase is completed
before processing the neuron state update.

4.1.3. Writing Times
The measurements for the writing times are shown in Figure 8:
the left plot shows the dual-memory case, while the right plot
contains the SDRAM only case. Times are measured in µs, and
each square represents a single write. Increasing Synapse cores
are displayed horizontally, while increasing Neuron cores on the
vertical axis. By increasing the number of Synapse cores, the
contention grows, as multiple cores attempt to write to shared
memory simultaneously. By increasing the number of Neuron
cores however, the size of each write becomes larger. This is
because each Synapse core performs one single write per timestep.
Therefore, by increasing the number of postsynaptic receptors
(connected Neuron cores), the number of synaptic contributions
to be written grows as well. The size of each write is expressed
by Equation (14), where n is the number of neurons per Neuron
core (64 in this case), w is the size of a contribution (2 B for
standard SNNs) and T is the number of target Neuron cores for
each Synapse core. Therefore, in Figure 8, T increases vertically
from top to bottom.

C = nwT (14)

Similarly to the read case, the reported times are the worst
case measured writing times, and, for some cases, the access
time is worse for the dual memory case. This can be due
to several factors, as Synapse core contributions are partially
located in SysRAM and partially in SDRAM. Although SysRAM
provides a faster access, it has a slower transfer rate, therefore,
for larger transfers, it can result in similar or worse performance
compared to SDRAM. This, combined with a bad cores
placement, can result in losing the advantages of using SysRAM,
negating the faster memory access, due to contention on
the memory controller. Average and best case measurements

Frontiers in Neuroscience | www.frontiersin.org 12 May 2022 | Volume 16 | Article 86702772

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Peres and Rhodes Parallelization on Neuromorphic Hardware

FIGURE 8 | Memory heatmaps showing worst case DMA writing Timings for increasing Synapse and Neuron cores. Synapse cores are represented on the horizontal

axis, target Neuron cores on the vertical. All the measured times are in µs. The two plots represent the dual memory (left) and the SDRAM only case (right). Purple

blocks represent configurations not allowed by the machine.

however highlight that this is an isolated case, and show that the
dual memory approach is more effective for the arrangements
of interest. For more details and analysis, please refer to the
Supplementary Material.

From a writing perspective, the worst case scenario is useful
to instruct Synapse cores on when to stop processing incoming
spikes and start writing the synaptic contributions to shared
memory (in order to meet real-time requirements). The highest
recorded writing time is when using SDRAM only with 6 Synapse
cores targeting 7 Neuron cores. This time amounts to 26.98 µs.
This does not represent an issue in 1 ms timesteps simulations,
but amounts to more than a quarter of the timestep for real-time
simulations with 0.1 ms timesteps.

The worst case writing and reading measurements therefore
allow to Taylor synaptic contribution writing and reading times
to the required number of Synapse and Neuron cores per
ensemble. This avoids overestimations which would further
reduce the processing time shown in Equation (9). This analysis
shows the importance of balancing the number of Synapse and
Neuron cores according to the application requirements, in order
to incur minimal memory access penalties. Network sparsity and
firing activity also play a key role in the choice of core allocations,
therefore the next sections focus on these aspects.

4.2. Peak Processing Profiling
4.2.1. Experiment Description
Themost usefulmetric when evaluating throughput performance
of the Multi-target partitioning is the maximum number
of processed synaptic events per timestep. This experiment
therefore compares the peak throughput performance for the
Multi-target partitioning to previous works. To perform a fair
comparison, the same SNN is profiled using the different

approaches: Multi-target and Heterogeneous models. The same
number of cores is allocated for both configurations, but
with different internal connections between Synapse cores and
target Neuron cores. A third configuration is also presented,
referred to as single target expanded. This consists of a standard
Heterogeneous partitioning which maintains the same number
of Neuron cores as the previous two cases, but allocates the
same input Synapse cores capacity per Neuron core as the
Multi-target approach. This last configuration provides a useful
comparison, as the number of cores required for the single
target Heterogeneous partitioning is adjusted to match the input
capability of the Multi-target partitioning. The aim of including
these cases is, therefore, twofold: first to compare theMulti-target
partitioning to its Heterogeneous counterpart employing the
same hardware resources, evaluating the performance difference;
second, to show that, to achieve the input processing capability
of the Multi-target approach, while using the Heterogeneous
partitioning, is necessary to employ a larger number of hardware
resources. This is represented by the single target expanded case.

A schematic of core allocations for the three approaches is
shown in Figure 9. The experiments run to evaluate this metric
are structured in test cases defined by 2 numbers in the form
[Sc,Nc], where Sc is the number of Synapse cores and Nc the
number of Neuron cores – the case shown in Figure 9 is [3, 3].
The Multi-target partitioning is shown on the left, where all
the Synapse cores are connected to all the Neuron cores. The
Heterogeneous partitioning is shown on the right, including
the two different mappings explored: single target and single
target expanded. The single target Heterogeneous partitioning
presents 3 Neuron cores receiving input from a single Synapse
core each, showing an input capacity reduced by a third compare
to the Multi-target case. The single target expanded in the

Frontiers in Neuroscience | www.frontiersin.org 13 May 2022 | Volume 16 | Article 86702773

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Peres and Rhodes Parallelization on Neuromorphic Hardware

FIGURE 9 | Arrangement of Synapse and Neuron cores under the explored configurations: Multi-target partitioning (left); Heterogeneous partitioning (right). The

example shown demonstrates the [3, 3] test case, with 3 Synapse cores and 3 Neuron cores. For the Multi-target partitioning configuration, each Synapse core

targets all Neuron cores. Comparison to the Heterogeneous approach is provided by: the Single-target partitioning, where the same overall number of cores are used,

but connected one Synapse core to each Neuron core; and the Single-target expanded partitioning, where the same number of Neuron cores is maintained, but each

with the same number of Synapse cores as implemented in the Multi-target approach.

experiment is therefore comparable with the [3, 3] cases for
the two other configurations, however the number of cores
allocated is [9, 3]. This single-target expanded configuration
matches the input capacity per Neuron core of the Multi-target
partitioning, keeping the same number of neurons and Neuron
cores (therefore in the presented example each Neuron core
receives inputs from 3 Synapse cores similarly to the Multi-target
case, but each Synapse core is single target). The intent here
is to show that the Multi-target partitioning can reach similar
performance compared to this extended configuration, requiring
only a fraction of the allocated resources.

The SNN model used for this experiment consists of 2
populations of neurons, configurable with a range of sizes and
connectivity (similar to that shown in Figure 1 left). All the
presynaptic neurons are Leaky Integrate-and-Fire (Gerstner and
Kistler, 2002) spiking neurons, with current-based exponentially-
decaying synapses. Neurons are initialized with the internal
voltage above firing threshold to produce spikes in a controlled
manner. This approach is adopted to send spikes, instead of
using spike sources, as it better represents the interaction between
cores when simulating biologically-representative SNNs. This is
because spike sources on SpiNNaker generate and send all spike
packets together, causing a high firing activity concentrated at the

beginning of the timestep, and then they remain silent. Cores
implementing Populations (Neuron cores in this case) on the
other hand, generate spike packets every time a neuron is updated
and themodel equations require it to spike, therefore distributing
the spike packet generation over the timestep.

The size of the presynaptic Population changes according
to the number of incoming partitions (number of Synapse
cores per ensemble) of the postsynaptic Population. These
Population sizes have been obtained experimentally, such that
the postsynaptic Population receives more spike packets than
it can process. This allows saturation of the receivers in order
to determine their limits. The number of generated spike
packets however needs to be limited, due to limitations set
by the SpiNNaker communication infrastructure (Mavaridas
et al., 2015). An excessive firing activity would cause higher
congestion at the routing level, causing spike packets to be
delivered late. This would result in lower processed synaptic
events, compared to the real peak throughput, due to late
arrivals. More details about Population sizes can be found in the
Supplementary Material. The postsynaptic Population employs
the same type of neurons as the presynaptic Population, and has
variable size between 64 to 896 neurons (corresponding to 1–14
Neuron cores, respectively). Different connectivity patterns have

Frontiers in Neuroscience | www.frontiersin.org 14 May 2022 | Volume 16 | Article 86702774

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Peres and Rhodes Parallelization on Neuromorphic Hardware

been tested to demonstrate the robustness of the approach. Here,
the 1% connectivity case is shown, as it is commonly found in
biologically-representative SNNs (Potjans and Diesmann, 2012;
Schmidt et al., 2018). For 0.1, 5, and 10% connectivities, please
refer to the Supplementary Material.

The same experiment was run both with 1 and 0.1
ms timesteps. The importance of showing results with both
timestep resolutions is given by the requirement of biologically-
representative SNNs to be modeled using tighter timing
resolutions, to better capture their dynamics. Real-time 0.1 ms
timestep simulations, indeed, present additional challenges due
to tighter timing constraints and a reduced spike processing
window (as demonstrated in Section 4.1), which is not amortized
by a smaller number of neurons or synaptic receptors.

The simulated network in this experiment was the same for
both 1 and 0.1 ms timestep cases, with the exception of the
presynaptic Population size, which was scaled down of a factor
≈ 10× (see Supplementary Material for exact values). The same
experiment was run both for plastic and static networks and
the results are presented separately. In order to provide a fair
comparison the number of neurons per core is kept fixed at 64.
For additional cases, please refer to the Supplementary Material.

4.2.2. Static Networks
Figure 10 shows peak synaptic event throughput in the form of
barcharts for the experiment with static connections, for both 0.1
ms (left) and 1 ms (right) timesteps. The connectivity between
the two Populations is randomly generated with a probability of
a connection between a pre- and postsynaptic neuron set to 1%.
The Multi-target case is represented by the blue bars, while the
single target with the same amount of cores by the green bars.
The purple bars represent the single target expanded case. Finally,
the yellow bars show the processed synaptic events using the
Homogeneous partitioning with the same network and neurons
per core.

Both the single target cases (green and purple) make use of
the Heterogeneous model. The number of employed cores for
each test case is indicated on the horizontal axes. The lower axis
refers to theMulti-target (blue) and the single target (green). The
upper axis shows values for the single target expanded (purple).
The chosen configurations of cores allow direct comparison of
the approaches. The left number in each tuple represents the
Synapse cores of that test case, the right number the Neuron
cores (as shown by the example presented in Figure 9). In the
case of the Multi-target partitioning, all the Synapse cores of
the ensemble target all the Neuron cores. For the single target
cases the number of Synapse cores per Neuron core is obtained
dividing the first number by the second. The blue and green bars
are on the same axis because they employ the same number of
cores, the difference between these two cases is in the connections
between cores. This demonstrates that it is possible to improve
the peak processing by rearranging the available units. The purple
cases use the same number of Synapse cores per ensemble of the
green tests, however, in this case each Synapse core has one single
target (therefore there is a singleNeuron core per ensemble). This
replicates the input capabilities of the Multi-target partitioning
per ensemble, but requires a considerably higher amounts of

cores compared to the Multi-target case, resulting in the worst
case of 56 total cores compared to 14 (8th test case).

In all the cases the Multi-target approach (blue) performs
better compared to the single target model (green). This
is because the Multi-target partitioning performs a more
efficient use of the available system resources compared to the
Heterogeneous partitioning, allocating a higher input processing
capacity to each Neuron core.

For the 1 ms timestep experiment the highest synaptic
event throughput is given by the [7,7] configuration, where
the Multi-target partitioning processes ≈ 9× more synaptic
events than the heterogeneous partitioning. The reason why
this happens is due to a full exploitation of the source-
based partitioning offered by the approach. Each Synapse
core in the Multi-target case receives inputs from one
seventh of the presynaptic neurons and targets all the 448
postsynaptic neurons. The single target partitioning on the
other hand, has each Synapse core receiving inputs from all
the presynaptic neurons, but targets only 64 neurons. Because
the connectivity is very sparse, a reduced input traffic achieves
better results.

TheMulti-target approach performs well also compared to the
single target expanded (purple), which represents a remarkable
result, since the amount of resources in use is much lower,
especially in the [7, 7] case. The single target expanded approach
employs the same number of Synapse cores per ensemble
as the Multi-target partitioning, but has a single target per
ensemble. Therefore, in the [7, 7] case ([49, 7] for the single
target expanded), each Synapse core receives input from one
seventh of the presynaptic neurons and targets 64 postsynaptic
neurons only.

The trend is similar for 0.1 ms timesteps, with the
Multi-target partitioning performing better than the single
target case. However, with higher numbers of Synapse cores
targeting higher numbers of Neuron cores, performance
compared to the single target expanded case tends to be
lower. This is due to the tight constraints set by the timestep
resolution and the fact that memory read and write times
for the synaptic contributions do not scale down with the
timestep resolution.

This experiment shows that, by efficiently using the Multi-
target partitioning, it is possible to achieve comparable results
to the single target expanded case, but with a fraction of the
hardware resources (a quarter in the [7, 7] case). Furthermore,
with the same amount of resources it is possible to achieve
considerably higher synaptic event throughput.

The general trend for the three approaches, together with the
Homogeneous partitioning baseline is compared in Figure 11,
where the horizontal axis shows the total number of allocated
cores, and the vertical axis the processed synaptic events
per timestep. The simulations are analogous to those shown
in Figure 10. Each point in Figure 11 matches one of the
bars (refer to the Supplementary Material for a case by case
labeled representation of this plot). The Multi-target approach
shows the best gain, having the steepest increase compared
to the other three approaches, performing the best use of the
available resources. Additional analysis is performed in the

Frontiers in Neuroscience | www.frontiersin.org 15 May 2022 | Volume 16 | Article 86702775

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Peres and Rhodes Parallelization on Neuromorphic Hardware

FIGURE 10 | Peak processed synaptic events per timestep. The presented configuration represents a 1% connectivity static network. Both 0.1 ms (left) and 1 ms

(right) cases are shown. Each plot contains the results for the Single target expanded (purple), multi-target (blue), single target (green) and baseline homogeneous

partitioning (yellow) cases. The horizontal axes show the number of cores per ensemble in the form of [Sc,Nc], as indicated in Section 4.2.1 and Figure 9. The top

axis refers to the single target expanded case (purple), the bottom to the other cases.

FIGURE 11 | Resource allocation vs. peak performance for the different partitioning strategies (single target expanded, multi-target, single target, and baseline

homogeneous). The network is the same used for Figure 10, with 1% connectivity and static connections. The color scheme matches that used in Figure 10. For a

case by case labeled version of this plot, please refer to the Supplementary Material.

Supplementary Material including 0.1, 5, and 10% connectivity
patterns for both the 0.1 and 1 ms timestep resolutions.

4.2.3. Plastic Networks
Figure 12 shows the results of the experiment with the addition
of synaptic plasticity. The color scheme for the bar chart is
analogous to the static case and the network is run with 1 ms
timestep. Connectivity probability is set at 1%, additional analysis
(including 0.1%, 5% and 10% connectivities) can be found in
the Supplementary Material. The same type of experiment was
run for the plastic case, with the exception of the connections
being defined through STDP with Spike-Pair rule for timing
dependence and additive weight dependence (Morrison et al.,
2008). The number of firing neurons has been reduced compared
to the static case, as synaptic processing for plastic synapses
requires additional steps (as highlighted in Section 3.5). For
details regarding population sizes and the employed plasticity
rule, please refer to the Supplementary Material.

Similarly to the static case, the Multi-target approach shows
better performance than the single target case for all simulated

configurations, demonstrating again that the approach makes
better use of the available resources. For very sparse networks,
with plastic synapses, the Multi-target approach achieves peak
synaptic event throughput very close to the single target expanded
simulations. This is due to the differences in processing plastic
synapses compared to static synapses. Plasticity, requires the
updated weights to be written back to shared memory, therefore
doubling the accesses to SDRAM compared to the static case.
This operation becomes extremely costly when the number of
receptors per row are limited. Therefore, having longer synaptic
rows, as in the case of theMulti-target approach, allows to further
increase the number of synaptic events that can be processed per
timestep. Figure 13 contains a comparison of the general trend
for the three approaches (refer to the Supplementary Material

for a case by case labeled representation of this plot). Similarly
to the static case, the Multi-target partitioning shows the steepest
increase of processed synaptic events per timestep (vertical axis)
with increasing allocated resources (horizontal axis). This further
demonstrates that the Multi-target partitioning achieves better
performance than previous approaches when the same hardware

Frontiers in Neuroscience | www.frontiersin.org 16 May 2022 | Volume 16 | Article 86702776

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Peres and Rhodes Parallelization on Neuromorphic Hardware

FIGURE 12 | Peak processed synaptic events per timestep. The presented

configuration represents a 1% connectivity network with plastic connections.

Timestep resolution is set to 1 ms. The plot shows results for the single target
expanded (purple), multi-target (blue) and single target (green) cases. The
horizontal axes show the number of cores per ensemble in the form of

[[Sc,Nc]], as indicated in Section 4.2.1 and Figure 9. The top axis refers to the

single target expanded case (purple), the bottom to the other cases.

FIGURE 13 | Resource allocation vs. peak performance for the three different

approaches (single target expanded, multi-target, and single target). The
network is the same used for Figure 12, with 1% connectivity and plastic

connections. The color scheme matches that used in Figure 12. For a case by

case labeled version of this plot, please refer to the Supplementary Material.

resources are available and comparable results with reduced
hardware requirements, also for SNN simulations involving
synaptic plasticity.

4.3. Sparsity Profiling
4.3.1. Experiment Description
Profiling of peak synaptic event throughput with a range of
connection sparsity levels is now explored. This experiment
shows the variation of the processed synaptic events per timestep
with increasing numbers of target Neuron cores. The number
of Synapse cores is kept fixed and the target Neuron cores are
gradually increased. In order to provide a good balance (and
according to the peak performance shown in Section 4.2), the
chosen number of Synapse cores is 7 and the target Neuron cores
range from 1 to 7, guaranteeing to fit on a single chip. This
allocation also allows equal comparison between simulations
with 1 ms timestep resolution and 0.1 ms, having set the number

of neurons per Neuron core in both cases to 64. The connectivity
probabilities investigated are: 0.1, 1, 10, and 50%. Connectivity
patterns above 50% are beyond the scope of this study, as they are
extremely rare in biology (Hagmann et al., 2008), and are handled
sufficiently well by traditional hardware (GPUs, CPUs, etc.). The
network employed for this experiment has a structure analogous
to that described in Section 4.2.1. For this case various sparsity
patterns are shown, together with different cores allocations per
chip. This experiment is useful to demonstrate the flexibility of
the approach in handling multiple sparsity levels, a common
feature in biologically-representative SNNs (Schmidt et al., 2018).

4.3.2. Sparsity Results
The results for this experiment are shown in Figure 14 left for
0.1 ms timestep resolution and in Figure 14 right for 1 ms
timestep resolution. The horizontal axis shows the connectivity
probabilities, the vertical axis the processed synaptic events
per timestep. Each line represents a different configuration of
Synapse cores to Neuron cores, where each Synapse core is
connected to all the targets of that configuration. The number of
postsynaptic receptors per Synapse core therefore can be obtained
by multiplying the number of Neuron cores by 64 (number of
neurons per Neuron core).

For the 1 ms case (Figure 14 right), as expected, simulations
with higher number of targets process the highest number of
synaptic events per timestep. The most evident jump happens
between the configurations with 1 and 2 targets, respectively,
where the synaptic rows double in size. This shows that having
larger synaptic rows impacts processing times, especially for very
sparse networks, by improving the processed synaptic events of
≈ 1 order of magnitude for 0.1% connectivity between worst and
best case. This gain reduces when the connectivity probability
increases, because of multiple synaptic events are carried per
spike. Therefore, the time processing per spike increases as well.

The 0.1 ms case (Figure 14 left) follows a similar trend to the
1 ms case, however the examples with 6 and 7 targets do not give
any improvements. The reason for this is due to the time required
to perform the transfers between shared and local memories for
the synaptic contributions, which have a higher impact on the
timestep relative to the 1 ms case. For the sparse simulations
(0.1% and 1% connectivity), having multiple target Neuron cores
gives advantage similarly to the 1 ms case, however, when the
network becomes denser the trend starts to invert, as the cost
of processing a single incoming spike dominates over the gain
introduced by this approach.

5. DISCUSSION

This work presents a novel parallelization approach for neural
processing on Neuromorphic hardware, which improves the
performance of SNN simulations by acting on the way
synaptic matrices are partitioned and processed. The Multi-
target partitioning approach provides additional freedom when
designing SNN simulations, by allowing to target applications
more specifically, according to their requirements. By allowing
parameterization of synaptic and neural processing units, it is
possible to allocate the appropriate amount of resources for a

Frontiers in Neuroscience | www.frontiersin.org 17 May 2022 | Volume 16 | Article 86702777

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Peres and Rhodes Parallelization on Neuromorphic Hardware

FIGURE 14 | Processed synaptic events for different connectivity configurations. Both the 0.1 ms timestep (left) and 1 ms timestep (right) cases are shown. The

vertical axis shows the total processed synaptic events per timestep, the horizontal axis different connectivity probabilities. Each line represents a different neural

ensemble with constant Synapse cores, but increasing target Neuron cores.

given requirement, prioritizing the number ofNeuron processing
units for sparser applications and increasing the number of
Synapse processing units when the fan-in dominates. Thanks to
these improvements it is possible to maximize the performance,
while using minimal hardware resources and therefore reducing
power consumption.

Through a SpiNNaker implementation of the Multi-target
partitioning approach, it is possible to improve the peak synaptic
processing throughput up to 9× compared to previous results
for the same hardware resources. Furthermore, it is possible to
obtain comparable processed synaptic events per ms, by reducing
the hardware resources to a quarter, resulting in a much smaller
machine (and energy consumption) dedicated to the simulation
(as detailed in Section 4.2).

The Multi-target partitioning approach additionally enables
optimal processing of incoming spike packets, providing a
larger pool of target neurons for each spike, hence increasing
the length of processed synaptic rows for a given connection
density. This greatly reduces the required number of accesses
to shared memory per timestep, therefore allowing more
efficient processing of sparsely connected networks (detailed in
Section 4.3). This is shown by Equations (8) and (13), where the
number of target neurons of each spike grows according to the
number of target Neuron cores, expanding the limit beyond a
single postsynaptic Neuron core. This has the effect of reducing,
by a factor Nc the number of destination processors per spike
packet, facilitating the routing of spike packets and so reducing
the pressure on the communication fabric. Furthermore, this
increased number of targets per spike packet allows to amortize
the dominating fixed cost of processing a spike (cs) (Rhodes
et al., 2018) over a higher number of postsynaptic receptors,
which can now be larger than that of a single Neuron core,
overcoming this limitation which is still observed for the
Heterogeneous partitioning.

The Multi-target partitioning approach is optimal as it comes
with minimal additional costs compared to previous approaches.
However, the SpiNNaker implementation is limited by the
different access patterns to shared memory. The shared memory
access time plays a key role in the fraction of the timestep

available for spike processing, as shown by Equation (9) and by
the recorded values presented in Sections 4.1.2 and 4.1.3. The
relatively old technology employed by SpiNNaker represents a
bottleneck in this context, resulting in both memory contention
and transfer size limiting the total system throughput. This
causes the synaptic contributions writing (tw) and reading (tr)
times (Equations 9–11) to increase with the number of cores
in the ensemble, consuming approximately half the timestep
duration for high timestep resolution simulations such as 0.1
ms. For this reason the need for faster access to shared memory
is proven, by showing that there is a large potential gain in
having access to multiple separate shared memories, compared
to a single shared memory. This consideration opens up to
the possibility of using more advanced memory architectures
for Neuromorphic hardware, such as multiport memories, since
structures like synaptic matrices and synaptic contributions are
non-overlapping and therefore would benefit from the capability
of separate independent accesses.

The flexibility of the approach also makes it portable and
extendable for the next generation of digital Neuromorphic
platforms. SpiNNaker 2, by exploiting its chip organization of
cores in quartets, namely QPEs (Höppner et al., 2021; Yan et al.,
2021), could map a cluster-based implementation of multiple
neural ensembles per chip, where each processor (PE) represents
either a Neuron core or a Synapse core. Since each PE has
the capability to efficiently access the local memory of other
PEs on the same QPE, it is possible to efficiently share the
synaptic contributions within a QPE, overcoming the contention
issue. A step further would include a tree-like structure, where
QPEs could implement a group of 4 Synapse cores, which
generate the synaptic contributions as a single block for the
4 cores. Then, a single PE per QPE accesses the chip shared
memory to communicate with other QPEs implementing blocks
of Neuron cores. Following the same strategy, a single Neuron
core per Neuron QPE accesses the shared memory to retrieve the
contributions. This would expand the ensemble capabilities to a
full chip (up to 160 cores), limiting the memory contention to a
quarter of the cores in use, which combined with themuch higher
memory throughput (6 vs. 1 GB/s for the SpiNNaker SDRAM)

Frontiers in Neuroscience | www.frontiersin.org 18 May 2022 | Volume 16 | Article 86702778

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Peres and Rhodes Parallelization on Neuromorphic Hardware

would have a large impact on the synaptic contributions reading
and writing times.

The Multi-target partitioning approach also has potential
benefits in Neuromorphic systems where all synaptic information
is stored locally to the computational units. For these systems
the approach would allow synaptic compartments to target
multiple neural compartments, improving the handling of sparse
connections, and overcoming the limitations set by the fixed
coupling between synaptic and neural units. Furthermore the
added benefits seen when processing plastic connections offers
advantages for online learning applications, particularly in
sparsely-connected biologically-representative SNNs.

DATA AVAILABILITY STATEMENT

The material and the code generated for this study, as
well as the experiments, are available from the SpiNNaker
software stack: https://github.com/SpiNNakerManchester, using
the branch Multitarget_syn_cores.

AUTHOR CONTRIBUTIONS

LP led the design of the Multi-target partitioning model, built the
SpiNNaker implementation, designed and ran the experiments

and drafted the manuscript. OR co-designed the Multi-target
partitioning model and supervised the research. Both authors
read, commented, and approved the final manuscript.

FUNDING

The design and construction of the SpiNNaker machine
was supported by EPSRC (the UK Engineering and Physical
Sciences Research Council) under grant EP/D07908X/1
and EP/G015740/1, in collaboration with the universities
of Southampton, Cambridge, and Sheffield and with
industry partners ARM Ltd., Silistix Ltd., and Thales.
Ongoing development of the software is supported by the
EU ICT Flagship Human Brain Project (H2020 785907
and 945539), in collaboration with many university and
industry partners across the EU and beyond. LP was
funded by an EPSRC DTA studentship in the Department of
Computer Science.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2022.867027/full#supplementary-material

REFERENCES

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla,
P., et al. (2015). TrueNorth: design and tool flow of a 65 mW 1
million neuron programmable neurosynaptic chip. IEEE Trans. Comput.

Aided Design Integr. Circ. Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.
2474396

ARM (2006). ARM968E-S Technical Reference Manual. ARM. Available online at:
https://developer.arm.com/documentation/ddi0311/

Bogdan, P. A., Marcinne, B., Casellato, C., Casali, S., Rowley, A. G.,
Hopkins, M., et al. (2021). Towards a bio-inspired real-time neuromorphic
cerebellum. Front. Cell. Neurosci. 15, 622870. doi: 10.3389/fncel.2021.
622870

Casali, S., Marenzi, E., Medini, C., Casellato, C., and D’Angelo, E. (2019).
Reconstruction and simulation of a scaffold model of the cerebellar network.
Front. Neuroinform. 13, 37. doi: 10.3389/fninf.2019.00037

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.
(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Davison, A., Bruderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al.
(2009). PyNN: a common interface for neuronal network simulators. Front.
Neuroinform. 2, 11. doi: 10.3389/neuro.11.011.2008

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker
project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al.
(2013). Overview of the SpiNNaker system architecture. IEEE Trans. Comput.
62, 2454–2467. doi: 10.1109/TC.2012.142

Galluppi, F., Lagorce, X., Stromatias, E., Pfeiffer, M., Plana, L. A., Furber, S. B., et al.
(2015). A framework for plasticity implementation on the SpiNNaker neural
architecture. Front. Neurosci. 8, 429. doi: 10.3389/fnins.2014.00429

Gerstner, W., and Kistler, W. M. (2002). Spiking Neuron Models: Single

Neurons, Populations, Plasticity. (Cambridge: Cambridge University Press).
doi: 10.1017/CBO9780511815706

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool).
Scholarpedia 2, 1430. doi: 10.4249/scholarpedia.1430

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J.,
et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biol.
6, e159. doi: 10.1371/journal.pbio.0060159

Heittmann, A., Psychou, G., Trensch, G., Cox, C. E.,Wilcke,W.W., Diesmann,M.,
et al. (2022). Simulating the cortical microcircuit significantly faster than real
time on the IBM INC-3000 neural supercomputer. Front. Neurosci. 15, 728460.
doi: 10.3389/fnins.2021.728460

Höppner, S., Yan, Y., Dixius, A., Scholze, S., Partzsch, J., Stolba, M.,
et al. (2021). The SpiNNaker 2 processing element architecture for
hybrid digital neuromorphic computing. arXiv preprint arXiv:2103.08392.
doi: 10.48550/arXiv.2103.08392

Indiveri, G., Linares-Barranco, B., Hamilton, T., van Schaik, A., Etienne-
Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron
circuits. Front. Neurosci. 5, 73. doi: 10.3389/fnins.2011.00073

Ippen, T., Eppler, J. M., Plesser, H. E., and Diesmann, M. (2017). Constructing
neuronal network models in massively parallel environments. Front.

Neuroinform. 11, 30. doi: 10.3389/fninf.2017.00030
Knight, J. C., and Furber, S. B. (2016). Synapse-centric mapping of cortical

models to the SpiNNaker neuromorphic architecture. Front. Neurosci. 10, 420.
doi: 10.3389/fnins.2016.00420

Knight, J. C., Komissarov, A., and Nowotny, T. (2021). PyGeNN: a Python
library for GPU-enhanced neural networks. Front. Neuroinform. 15, 659005.
doi: 10.3389/fninf.2021.659005

Knight, J. C., and Nowotny, T. (2021). Larger GPU-accelerated brain
simulations with procedural connectivity. Nat. Comput. Sci. 1, 136–142.
doi: 10.1038/s43588-020-00022-7

Kurth, A. C., Senk, J., Terhorst, D., Finnerty, J., and Diesmann, M. (2021). Sub-
realtime simulation of a neuronal network of natural density. Neuromorph.

Comput. Eng. 2, 021001. doi: 10.1088/2634-4386/ac55fc
Levy, W. B., and Calvert, V. G. (2020). Computation in the human cerebral cortex

uses less than 0.2 watts yet this great expense is optimal when considering
communication costs. bioRxiv. 1, 1–13. doi: 10.1101/2020.04.23.057927

Mavaridas, J., Lujan, M., Plana, L. A., Temple, S., and Furber, S. B.
(2015). SpiNNaker: enhanced multicast routing. Parallel Comput. 45, 49–66.
doi: 10.1016/j.parco.2015.01.002

Frontiers in Neuroscience | www.frontiersin.org 19 May 2022 | Volume 16 | Article 86702779

https://github.com/SpiNNakerManchester
https://www.frontiersin.org/articles/10.3389/fnins.2022.867027/full#supplementary-material
https://doi.org/10.1109/TCAD.2015.2474396
https://developer.arm.com/documentation/ddi0311/
https://doi.org/10.3389/fncel.2021.622870
https://doi.org/10.3389/fninf.2019.00037
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/TC.2012.142
https://doi.org/10.3389/fnins.2014.00429
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1371/journal.pbio.0060159
https://doi.org/10.3389/fnins.2021.728460
https://doi.org/10.48550/arXiv.2103.08392
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.3389/fninf.2017.00030
https://doi.org/10.3389/fnins.2016.00420
https://doi.org/10.3389/fninf.2021.659005
https://doi.org/10.1038/s43588-020-00022-7
https://doi.org/10.1088/2634-4386/ac55fc
https://doi.org/10.1101/2020.04.23.057927
https://doi.org/10.1016/j.parco.2015.01.002
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Peres and Rhodes Parallelization on Neuromorphic Hardware

Mead, C. (1989). Analog VLSI and Neural Systems. (Boston, MA: Addison-Wesley
Longman Publishing Co., Inc).

Mead, C. (1990). Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636.
doi: 10.1109/5.58356

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2018). A scalable
multicore architecture with heterogeneous memory structures for
dynamic neuromorphic asynchronous processors (DYNAPs). IEEE

Trans. Biomed. Circ. Syst. 12, 106–122. doi: 10.1109/TBCAS.2017.27
59700

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models
of synaptic plasticity based on spike timing. Biol. Cybern. 98, 459–478.
doi: 10.1007/s00422-008-0233-1

Morrison, A., Mehring, C., Geisel, T., Aertsen, A., and Diesmann,
M. (2005). Advancing the boundaries of high-connectivity network
simulation with distributed computing. Neural Comput. 17, 1776–1801.
doi: 10.1162/0899766054026648

Painkras, E., Plana, L. A., Garside, J., Temple, S., Galluppi, F., Patterson, C.,
et al. (2013). SpiNNaker: a 1-W 18-core system-on-chip for massively-
parallel neural network simulation. IEEE J. Solid State Circ. 48, 1943–1953.
doi: 10.1109/JSSC.2013.2259038

Plana, L. A., Clark, D., Davidson, S., Furber, S. B., Garside, J. D., Painkras,
E., et al. (2011). SpiNNaker: design and implementation of a GALS
multicore system-on-chip. ACM J. Emerg. Technol. Comput. Syst. 4, 1–18.
doi: 10.1145/2043643.2043647

Potjans, T. C., and Diesmann, M. (2012). The cell-type specific cortical
microcircuit: relating structure and activity in a full-scale spiking
network model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/
bhs358

Rhodes, O., Bogdan, P. A., Brenninkmeijer, C., Davidson, S., Fellows, D.,
Gait, A., et al. (2018). sPyNNaker: a software package for running PyNN
simulations on SpiNNaker. Front. Neurosci. 12, 816. doi: 10.3389/fnins.2018.
00816

Rhodes, O., Peres, L., Rowley, A. G. D., Gait, A., Plana, L. A., Brenninkmeijer,
C., et al. (2019). Real-time cortical simulation on neuromorphic hardware.
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378. doi: 10.1098/rsta.20
19.0160

Rotter, S., and Diesmann, M. (1999). Exact digital simulation of time-invariant
linear systems with applications to neuronal modeling. Biol. Cybern. 81,
381–402. doi: 10.1007/s004220050570

Rowley, A. G. D., Brenninkmeijer, C., Davidson, S., Fellows, D., Gait, A., Lester, D.
R., et al. (2019). SpiNNTools: the execution engine for the SpiNNaker platform.
Front. Neurosci. 13, 231. doi: 10.3389/fnins.2019.00231

Schemmel, J., Kriener, L., Muller, P., and Meier, K. (2017). “An accelerated analog
neuromorphic hardware system emulating NMDA- and calcium-based non-
linear dendrites,” in 2017 International Joint Conference on Neural Networks

(IJCNN). (Anchorage), 2217–2226. doi: 10.1109/IJCNN.2017.7966124
Schmidt, M., Bakker, R., Shen, K., Bezgin, G., Diesmann, M., and van Albada, S.

J. (2018). A multi-scale layer-resolved spiking network model of resting-state
dynamics in macaque visual cortical areas. PLoS Comput. Biol. 14, e1006359
doi: 10.1371/journal.pcbi.1006359

Sharp, T., and Furber, S. B. (2013). “Correctness and performance of the
SpiNNaker architecture,” in The 2013 International Joint Conference on Neural

Networks (IJCNN). (Dallas), 1–8. doi: 10.1109/IJCNN.2013.6706988
Sharp, T., Plana, L. A., Galluppi, F., and Furber, S. B. (2011). “Event-driven

simulation of arbitrary spiking neural networks on SpiNNaker,” in ICONIP.
(Heidelberg) doi: 10.1007/978-3-642-24965-5_48

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M., Stokes,
A. B., et al. (2018). Performance comparison of the digital neuromorphic
hardware SpiNNaker and the neural network simulation software NEST
for a full-scale cortical microcircuit model. Front. Neurosci. 12, 291.
doi: 10.3389/fnins.2018.00291

Yan, Y., Stewart, T. C., Choo, X., Vogginger, B., Partzsch, J., Hoppner, S.,
et al. (2021). Comparing Loihi with a SpiNNaker 2 prototype on low-latency
keyword spotting and adaptive robotic control. Neuromorph. Comput. Eng. 1,
014002. doi: 10.1088/2634-4386/abf150

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Peres and Rhodes. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 20 May 2022 | Volume 16 | Article 86702780

https://doi.org/10.1109/5.58356
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1007/s00422-008-0233-1
https://doi.org/10.1162/0899766054026648
https://doi.org/10.1109/JSSC.2013.2259038
https://doi.org/10.1145/2043643.2043647
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.3389/fnins.2018.00816
https://doi.org/10.1098/rsta.2019.0160
https://doi.org/10.1007/s004220050570
https://doi.org/10.3389/fnins.2019.00231
https://doi.org/10.1109/IJCNN.2017.7966124
https://doi.org/10.1371/journal.pcbi.1006359
https://doi.org/10.1109/IJCNN.2013.6706988
https://doi.org/10.1007/978-3-642-24965-5_48
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.1088/2634-4386/abf150
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 11 May 2022

doi: 10.3389/fninf.2022.837549

Frontiers in Neuroinformatics | www.frontiersin.org 1 May 2022 | Volume 16 | Article 837549

Edited by:

Ludovico Minati,

Tokyo Institute of Technology, Japan

Reviewed by:

Justin Wozniak,

Argonne National Laboratory (DOE),

United States

David Phillip Nickerson,

The University of Auckland,

New Zealand

*Correspondence:

Jasper Albers

j.albers@fz-juelich.de

Received: 16 December 2021

Accepted: 11 March 2022

Published: 11 May 2022

Citation:

Albers J, Pronold J, Kurth AC,

Vennemo SB, Haghighi Mood K,

Patronis A, Terhorst D, Jordan J,

Kunkel S, Tetzlaff T, Diesmann M and

Senk J (2022) A Modular Workflow for

Performance Benchmarking of

Neuronal Network Simulations.

Front. Neuroinform. 16:837549.

doi: 10.3389/fninf.2022.837549

A Modular Workflow for Performance
Benchmarking of Neuronal Network
Simulations
Jasper Albers 1,2*, Jari Pronold 1,2, Anno Christopher Kurth 1,2, Stine Brekke Vennemo 3,

Kaveh Haghighi Mood 4, Alexander Patronis 4, Dennis Terhorst 1, Jakob Jordan 5,

Susanne Kunkel 3, Tom Tetzlaff 1, Markus Diesmann 1,6,7 and Johanna Senk 1

1 Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain

Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany, 2 RWTH Aachen University, Aachen,

Germany, 3 Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway, 4 Jülich Supercomputing

Centre (JSC), Jülich Research Centre, Jülich, Germany, 5Department of Physiology, University of Bern, Bern, Switzerland,
6Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany, 7Department of Psychiatry, Psychotherapy

and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany

Modern computational neuroscience strives to develop complex network models to

explain dynamics and function of brains in health and disease. This process goes

hand in hand with advancements in the theory of neuronal networks and increasing

availability of detailed anatomical data on brain connectivity. Large-scale models that

study interactions between multiple brain areas with intricate connectivity and investigate

phenomena on long time scales such as system-level learning require progress

in simulation speed. The corresponding development of state-of-the-art simulation

engines relies on information provided by benchmark simulations which assess the

time-to-solution for scientifically relevant, complementary network models using various

combinations of hardware and software revisions. However, maintaining comparability of

benchmark results is difficult due to a lack of standardized specifications for measuring

the scaling performance of simulators on high-performance computing (HPC) systems.

Motivated by the challenging complexity of benchmarking, we define a generic workflow

that decomposes the endeavor into unique segments consisting of separate modules.

As a reference implementation for the conceptual workflow, we develop beNNch: an

open-source software framework for the configuration, execution, and analysis of

benchmarks for neuronal network simulations. The framework records benchmarking

data and metadata in a unified way to foster reproducibility. For illustration, we measure

the performance of various versions of the NEST simulator across network models

with different levels of complexity on a contemporary HPC system, demonstrating how

performance bottlenecks can be identified, ultimately guiding the development toward

more efficient simulation technology.

Keywords: spiking neuronal networks, benchmarking, large-scale simulation, high-performance computing,

workflow, metadata

81

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.837549
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.837549&domain=pdf&date_stamp=2022-05-11
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:j.albers@fz-juelich.de
https://doi.org/10.3389/fninf.2022.837549
https://www.frontiersin.org/articles/10.3389/fninf.2022.837549/full

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

1. INTRODUCTION

Past decades of computational neuroscience have achieved a
separation between mathematical models and generic simulation
technology (Einevoll et al., 2019). This enables researchers to
simulate different models with the same simulation engine,
while the efficiency of the simulator can be incrementally
advanced and maintained as a research infrastructure. Increasing
computational efficiency does not only decrease the required
resources of simulations, but also allows for constructing
larger network models with an extended explanatory scope
and facilitates studying long-term effects such as learning.
Novel simulation technologies are typically published together
with verification—evidence that the implementation returns
correct results—and validation—evidence that these results are
computed efficiently. Verification implies correctness of results
with sufficient accuracy for suitable applications as well as a
flawless implementation of components confirmed by unit tests.
For spiking neuronal network simulators, such applications are
simulations of network models which have proven to be of
relevance for the field. In a parallel effort, validation aims at
demonstrating the added value of the new technology for the
community. To this end, the new technology is compared to
previous studies on the basis of relevant performance measures.

Efficiency is measured by the resources used to achieve
the result. Time-to-solution, energy-to-solution and memory
consumption are of particular interest. For the development of
neuromorphic computing systems, efficiency in terms of low
power consumption and fast execution is an explicit design goal:
simulations need to be able to cope with limited resources, for
example, due to hardware constraints. Real-time performance,
meaning that simulated model time equals wall-clock time,
is a prerequisite for simulations interacting with the outer
world, such as in robotics. Even faster, sub-real-time simulations
enable studies of slow neurobiological processes such as brain
development and learning, which take hours, days, or more
in nature. High-performance computing (HPC) benchmarking
studies usually assess the scaling performance of the simulation
architecture by incrementally increasing the amount of employed
hardware resources (e.g., compute nodes). In weak-scaling
experiments, the size of the simulated networkmodel is increased
proportionally to the computational resources, which keeps
the workload per compute node fixed if the simulation scales
perfectly. Scaling neuronal networks, however, inevitably leads
to changes in the network dynamics (van Albada et al., 2015b).
Comparisons between benchmarking results obtained at different
scales are therefore problematic. For network models of natural
size describing the correlation structure of neuronal activity,
strong-scaling experiments (in which the model size remains
unchanged) are more relevant for the purpose of finding the
limiting time-to-solution. For a formal definition of strong and
weak scaling refer to page 123 of Hager and Wellein (2010) and
for pitfalls in interpreting the scaling of network simulation code
see van Albada et al. (2014). When measuring time-to-solution,
studies distinguish between different phases of the simulation, in
the simplest case between a setup phase of network construction
and the actual simulation phase of state propagation. Such

benchmark metrics not only depend on the simulation engine
and its options for time measurements (see, e.g., Jordan et al.,
2018; Golosio et al., 2021), but also on the network model. The
simulated activity of a model may not always be stationary over
time, and transients with varying firing rates are reflected in the
computational load. For an example of transients due to arbitrary
initial conditions see Rhodes et al. (2019), and for an example
of non-stationary network activity, refer to the meta-stable state
of the multi-area model described by Schmidt et al. (2018a).
Studies assessing energy-to-solution need to specify whether only
the power consumption of the compute nodes is considered or
interconnects and required support hardware are also accounted
for (van Albada et al., 2018).

The omnipresence of benchmarks in studies on simulation
technology demonstrates the relevance of efficiency. The
intricacy of the benchmarking endeavor, however, not only
complicates the comparison between these studies, but also
reproducing them. Neuroscientific simulation studies are already
difficult to reproduce (Crook et al., 2013; McDougal et al., 2016;
Rougier et al., 2017; Gutzen et al., 2018; Pauli et al., 2018;
Gleeson et al., 2019), and benchmarking adds another layer
of complexity. Reported benchmarks may differ not only in
the structure and dynamics of the employed neuronal network
models, but also in the type of scaling experiment, soft- and hard-
ware versions and configurations, as well as in the analysis and
presentation of the results. Figure 1 illustrates the complexity of
benchmarking experiments in simulation science and identifies
five main dimensions: “Hardware configuration”, “Software
configuration”, “Simulators”, “Models and parameters”, and
“Researcher communication”. The following presents examples
specific to neuronal network simulations, demonstrating the
range of each of the five dimensions.

Different simulators, some with decades of development,
allow for large-scale neuroscientific simulations (Brette
et al., 2007). We distinguish between simulators that run
on conventional HPC systems and those that use dedicated
neuromorphic hardware. Prominent examples of simulators for
networks of spiking point-neurons are NEST (Morrison et al.,
2005b; Gewaltig and Diesmann, 2007; Plesser et al., 2007; Helias
et al., 2012; Kunkel et al., 2012, 2014; Ippen et al., 2017; Kunkel
and Schenck, 2017; Jordan et al., 2018; Pronold et al., 2021, 2022)
and Brian (Goodman and Brette, 2008; Stimberg et al., 2019)
using CPUs; GeNN (Yavuz et al., 2016; Knight and Nowotny, 2018,
2021; Stimberg et al., 2020; Knight et al., 2021) and NeuronGPU

(Golosio et al., 2021) using GPUs; CARLsim (Nageswaran et al.,
2009; Richert et al., 2011; Beyeler et al., 2015; Chou et al., 2018)
running on heterogeneous clusters; and the neuromorphic
hardware SpiNNaker (Furber et al., 2014; Rhodes et al., 2019).
NEURON (Carnevale and Hines, 2006; Migliore et al., 2006; Lytton
et al., 2016) and Arbor (Akar et al., 2019) aim for simulating
morphologically detailed neuronal networks.

The hardware and software configurations used in published
benchmark studies are diverse because both underlie updates
and frequent releases. In addition, different laboratories may not
have access to the same machines. Therefore, HPC benchmarks
are performed on different contemporary compute clusters or
supercomputers. For example, NEST benchmarks have been

Frontiers in Neuroinformatics | www.frontiersin.org 2 May 2022 | Volume 16 | Article 83754982

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

FIGURE 1 | Dimensions of HPC benchmarking experiments with examples from neuronal network simulations. Hardware configuration: computing architectures and

machine specifications. Software configuration: general software environments and instructions for using the hardware. Simulators: specific simulation technologies.

Models and parameters: different models and their configurations. Researcher communication: knowledge exchange on running benchmarks.

conducted on the systems located at Research Center Jülich in
Germany but also on those at the RIKEN Advanced Institute
for Computational Science in Japan (e.g., Helias et al., 2012;
Jordan et al., 2018). To assess the performance of GPU-based
simulators, the same simulation is typically run on different GPU
devices; from low-end gaming GPUs to those installed in high-
end HPC clusters (Knight and Nowotny, 2018; Golosio et al.,
2021). This variety can be beneficial; performing benchmark
simulations on only a single system can lead to unwanted
optimization toward that type of machine. However, comparing
results across different hard- and software is complicated and
requires expert knowledge of the compared technologies in order
to draw reasonable conclusions.

The modeling community distinguishes between functional
models, where the validation is concerned with the questions
if and how well a specific task is solved, and non-functional
models, where an analysis of the network structure, dynamics,
and activity is used for validation. Simulating the same model
using different simulation engines often results in activity data
which can only be compared on a statistical level. Spiking activity,
for example, is typically evaluated based on distributions of

quantities such as the average firing rate, rather than on precise
spike times (Senk et al., 2017; van Albada et al., 2018). Reasons
for that are inevitable differences between simulators such as
different algorithms, number resolutions, or random number
generators, combined with the fact that neuronal network
dynamics is often chaotic, rapidly amplifying minimal deviations
(Sompolinsky et al., 1988; van Vreeswijk and Sompolinsky,
1998; Monteforte and Wolf, 2010). The most frequently used
models to demonstrate simulator performance are balanced
random networks similar to the one proposed by Brunel (2000):
generic two-population networks with 80% excitatory and 20%
inhibitory neurons, and synaptic weights chosen such that
excitation and inhibition are approximately balanced, similar to
what is observed in local cortical networks. Variants differ not
only in the parameterization but also in the neuron, synapse, and
plasticity models, or other details. Progress in NEST development
is traditionally shown by upscaling a model of this type, called
“HPC-benchmark model”, which employs leaky integrate-and-
fire (LIF) neurons, alpha-shaped post-synaptic currents, and
spike-timing-dependent plasticity (STDP) between excitatory
neurons. The detailed model description and parameters can be

Frontiers in Neuroinformatics | www.frontiersin.org 3 May 2022 | Volume 16 | Article 83754983

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

found in Tables 1–3 of the Supplementary Material of Jordan
et al. (2018). Other versions include a network of Izhikevich
model neurons and STDP (Izhikevich, 2003) used by Yavuz et al.
(2016) and Golosio et al. (2021), the COBAHH model with
Hodgkin-Huxley type neurons and conductance-based synapses
(Brette et al., 2007) used by Stimberg et al. (2020), and a version
with excitatory LIF and inhibitory Izhikevich model neurons
where excitatory synapses are updated with STDP and inhibitory-
to-inhibitory connections do not exist is used by Chou et al.
(2018). Even though balanced random networks are often used
for weak-scaling experiments, they describe the anatomical and
dynamical features of cortical circuits only at a small spatial scale
and the upscaling affects the network dynamics (see van Albada
et al., 2015b as indicated above). At larger scales, the natural
connectivity becomes more complex than what is captured
by this model type. Therefore, models of different complexity
need to be benchmarked to guarantee that a simulation engine
performs well across use cases in the community. In addition
to the HPC-benchmark model, this study employs two more
elaborate network models: the “microcircuit model” proposed
by Potjans and Diesmann (2014) and the “multi-area model” by
Schmidt et al. (2018a). The microcircuit model is an extension
of the balanced random network model with an excitatory and
an inhibitory neuron population in each of four cortical layers
with detailed connectivity derived from experimental studies.
The model spans 1mm2 of cortical surface, represents the
cortical layers at their natural neuron and synapse densities,
and has recently been used to compare the performance of
different simulation engines; for instance, NEST and SpiNNaker

(Senk et al., 2017; van Albada et al., 2018; Rhodes et al.,
2019); NEST, SpiNNaker, and GeNN (Knight and Nowotny,
2018); and NEST and NeuronGPU (Golosio et al., 2021). The
multi-area model comprises 32 cortical areas of the visual
system where each is represented by an adapted version of the
microcircuit model; results are available for NEST (van Albada
et al., 2021) and GeNN (Knight and Nowotny, 2021). Comparing
the performance of the same model across different simulators
profits from a common model description. The simulator-
independent language PyNN (Davison et al., 2009), for example,
enables the use of the same executable model description for
different simulator back ends. Testing new technologies only with
a single network model is, however, not sufficient for general-
purpose simulators and comes with the danger of optimizing the
code base for one application, while impairing the performance
for others.

Problems to reproduce the simulation outcome or compare
results across different studies may not only be technical but
also result from a miscommunication between researchers or a
lack of documentation. Individual, manual solutions for tracking
the hardware and software configuration, the simulator specifics,
and the models and parameters used in benchmarking studies
have, in our laboratories, proven inefficient when scaling up
the number of collaborators. This effect is amplified if multiple
laboratories are involved. Similar inter-dependencies are also
present between the other four dimensions of Figure 1, making
it hard to produce long-term comparable results; the exhibited
intricacy of benchmarking is susceptible to errors as, for instance,

small details in parameterization or configuration may have a
large impact on performance.

Standardizing benchmarks can help to control the
complexity but represents a challenge for the fast-moving
and interdisciplinary field of computational neuroscience. While
the field had some early success in the area of compartmental
modeling (Bhalla et al., 1992) and Brette et al. (2007) made
initial steps for spiking neuronal networks, neither a widely
accepted set of benchmark models nor guidelines for performing
benchmark simulations exist. In contrast, benchmarks are
routinely employed in computer science, and established
metrics help to assess the performance of novel hardware and
software. The LINPACK benchmarks (Dongarra et al., 2003),
for example, were initially released in 1979, and the latest
version is used to rank the world’s top supercomputers by
testing their floating-point computing power (TOP500 list).
Although this strategy has been successful for many years, it
has also been criticized as misguiding hardware vendors toward
solutions with high performance in formalized benchmarks but
disappointing performance in real-world applications1. For the
closely related field of deep learning, Dai and Berleant (2019)
summarize seven key properties that benchmarking metrics
should fulfill: relevance, representativeness, equity, repeatability,
cost-effectiveness, scalability, and transparency. There exist
standard benchmarks for machine learning and deep learning
applications such as computer vision and natural language
processing with standard data sets and a global performance
ranking. The most prominent example is MLPerf2 (Mattson
et al., 2020). Another example is the High Performance LINPACK
for Accelerator Introspection (HPL-AI) benchmark3 which is
the mixed-precision counterpart to the LINPACK benchmarks.
Ostrau et al. (2020) propose a benchmarking framework for
deep spiking neural networks and they compare results obtained
with the simulators Spikey (Pfeil et al., 2013), BrainScales
(Schemmel et al., 2010), SpiNNaker, NEST, and GeNN.

For measuring and comparing the scaling performance
of large-scale neuronal network model simulations, there
exists, to our knowledge, no unifying approach, yet. Recently,
more laboratories make use of established simulators rather
than developing their own, and computing resources have
become available and interchangeable. The resulting increase
in the size of user-communities comes with the demand for
even more flexible and efficient simulators with demonstrated
performance. To keep up with this progress, we see the
need for a common benchmarking framework. We envision
a consistently managed array of standard benchmark models
together with standard ways for running them. The five
dimensions outlined above lend themselves to a modular
framework integrating distinct components which can be
updated, extended, or replaced independently. The framework
needs to cover all steps of the benchmarking process from
configuration, to execution, to handling of results. For enabling

1https://www.technologyreview.com/2010/11/08/199100/why-chinas-new-
supercomputer-is-only-technically-the-worlds-fastest
2https://mlcommons.org
3https://www.icl.utk.edu/hpl-ai

Frontiers in Neuroinformatics | www.frontiersin.org 4 May 2022 | Volume 16 | Article 83754984

https://www.technologyreview.com/2010/11/08/199100/why-chinas-new-supercomputer-is-only-technically-the-worlds-fastest
https://www.technologyreview.com/2010/11/08/199100/why-chinas-new-supercomputer-is-only-technically-the-worlds-fastest
https://mlcommons.org
https://www.icl.utk.edu/hpl-ai
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

comparability and reproducibility, all relevant metadata and
data need to be tracked. In this work, we develop a conceptual
benchmarking workflow that meets these requirements. For a
reference implementation named beNNch, we employ the JUBE

Benchmarking Environment4 and the simulator NEST in different
versions (Gewaltig and Diesmann, 2007), and we assess the time-
to-solution for the HPC-benchmark model, the microcircuit
model (Potjans and Diesmann, 2014), and the multi-area model
(Schmidt et al., 2018a) on the contemporary supercomputer
JURECA-DC (Thörnig and von St. Vieth, 2021). The goal of
this study is to set the cornerstone for reliable performance
benchmarks facilitating the comparability of results obtained
in different settings, and hence, supporting the development
of simulators.

The Results section of this manuscript formalizes the
general concepts of the benchmarking workflow (Section 2.1),
implements these concepts into a reference benchmarking
framework for the NEST simulator (Section 2.2), and applies the
framework to generate and compare benchmarking data, thereby
making a case for the relevance of benchmarking for simulator
development (Section 2.3.1). After a discussion of our results
in Section 3, Section 4 provides details of specific performance
optimizations addressed in this work.

2. RESULTS

2.1. Workflow Concepts
We devise a generic workflow for performance benchmarking
applicable to simulations running on conventional HPC
architectures. The conceptual workflow depicted in Figure 2

consists of four segments which depend on each other in a
sequential fashion. The segments are subdivided into different
modules which are related to the specific realizations used in
our reference implementation of the workflow (Section 2.2).
We use the term “workflow” to describe abstract concepts
that are of general applicability with regard to benchmarking
efforts, and “framework” to refer to the concrete software
implementation we have developed. Further, we make the
distinction between “internal” and “external” modules. Internal
modules are considered essential building blocks of the workflow
while external modules can be exchanged more readily. The
following introduces each of the workflow’s conceptual segments
and explains how the proposed solution addresses the identified
problems (cf. Figure 1).

2.1.1. Configuration and Preparation
The first of the four workflow segments consists of five distinct
modules that together set up all necessary prerequisites for the
simulation. First, the installation of the simulation software and
its dependencies is handled by “software deployment”, while
“machine configuration” specifies parameters that control the
simulation experiment conditions, as for example, how many
compute nodes to reserve. Together, these two modules target

4https://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.
html

the problem dimensions “hardware configuration”, “software
configuration”, and “simulators”. Addressing “models and
parameters”, the module “model” provides the network model
implementation, while “model configuration” allows for passing
parameters to the model such as the biological model time to
be simulated, thereby separating the model from its parameters.
Finally, the “user configuration” module confines user-specific
data, such as file paths or compute budgets, to a single location.

2.1.2. Benchmarking
The second segment encompasses all modules related to actually
running the benchmark simulation. Compute clusters typically
manage the workload of the machine via queuing systems;
therefore, compute-intensive calculations are submitted as jobs
via scripts which define resource usage and hold instructions for
carrying out the simulation. In the workflow, this is handled by
the module aptly named “job script generation”. Here, the first
link between modules comes into play: the workflow channels
model, user and machine configuration to create a job script
and subsequently submit the script to the job queue via the
module “job submission”. With the simulator software prepared
by the software-deployment module, “job execution” performs
the model simulation given the job-submission parameters.
While a simulation for neuroscientific research purposes would
at this point focus on the output of the simulation, for
example, neuronal spike times or voltage traces, benchmarking
is concerned with the performance results. These are recorded in
the final benchmarking module called “data generation”.

2.1.3. Data- and Metadata Handling
A core challenge in conducting performance benchmarks is
the handling of all produced data and metadata. While the
former type of data here refers to the results of the performance
measurements, the latter is an umbrella term describing the
circumstances under which the data was recorded according
to the dimensions of benchmarking (Figure 1). Since executing
multiple simulations using different configurations, software,
hardware, and models is an integral part of benchmarking, data
naturally accumulates. Recording the variations across these
dimensions leads to a multitude of metadata that needs to
be associated to the measured data. Standardized formats for
both types of data make the results comparable for researchers
working with the same underlying simulation technology. The
workflow segment “Data- and metadata handling” proposes the
following solution. First, the raw performance data, typically
stemming from different units of the HPC system, are gathered
and unified into a standardized format, while the corresponding
metadata is automatically recorded. Next, the metadata is
associated to the unified data files, alleviating the need for
manually keeping track of parameters, experiment choices and
software environment conditions. While there are different
possible solution for this, attaching the relevant metadata directly
to the performance-data files simplifies filtering and sorting of
results. Finally, “initial validation” allows for a quick glance at the
results such that erroneous benchmarks can be swiftly identified.

Frontiers in Neuroinformatics | www.frontiersin.org 5 May 2022 | Volume 16 | Article 83754985

https://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.html
https://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.html
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

FIGURE 2 | Conceptual overview of the proposed benchmarking workflow. Light gray boxes divide the workflow into four distinct segments, each consisting of

multiple modules. Internal modules are shown in orange and external ones in pink. Blue boxes indicate their respective realization in our reference implementation.

2.1.4. Data Presentation
This final workflow segment addresses the challenge of making
the benchmarking results accessible and comparable such that
meaningful conclusions can be drawn, thereby aiming to
cope with the complexity that “Researcher communication”
introduces. In a first step, “metadata based filtering and sorting”
allows the user to dynamically choose the results to be included
in the comparison. Here, dynamic means that arbitrary cuts
through the hypercube of metadata dimensions can be selected
such that the filtered results only differ in metadata fields of
interest. Second, the data is presented in a format for which
switching between benchmarks is intuitive, key metadata is given
alongside the results, and data representation is standardized.
The presentation of data should be comprehensive, consistent,
and comparative such that the benchmarking results are usable
in the long term. Thereby, the risk of wasting resources through
re-generation of results is eliminated, making the corresponding
software development more sustainable.

2.2. beNNch: A Reference Implementation
Building on the fundamental workflow concepts developed
in Section 2.1, we introduce a reference implementation for
modern computational neuroscience: beNNch5—a benchmarking

5https://github.com/INM-6/beNNch

framework for neuronal network simulations. The framework
serves not only as a proof-of-concept, but also provides a software
tool that can be readily used by neuroscientists and simulator
developers. While beNNch is built such that plug-ins for any
neuronal network simulator can be developed, we specifically
implement compatibility with the NEST simulator (Gewaltig and
Diesmann, 2007) designed for simulating large-scale spiking
neuronal network models. In the following subsections, we detail
software tools, templates, technologies, and user specifications
needed to apply beNNch for benchmarking NEST simulations.
Each of the conceptual modules of Figure 2 is here associated
with a concrete reference.

2.2.1. Builder
Reproducible software deployment is necessary for repeatability
and comparability of the benchmarks. In favor of the usability
of the benchmarking framework, however, we need to abstract
non-relevant information on the hardware architecture and the
software tool chain. The tool set is required to install software in a
platform independent way and should not depend on a particular
flavor of the operating system, the machine architecture or overly
specific software dependencies. Additionally, it needs to be able
to make use of system-provided tools and libraries, for example,
to leverage machine specific MPI implementations. beNNch uses

Frontiers in Neuroinformatics | www.frontiersin.org 6 May 2022 | Volume 16 | Article 83754986

https://github.com/INM-6/beNNch
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

the tool Builder6 for this purpose. Given a fixed software
stack and hardware architecture, Builder provides identical
executables by deriving the install instructions from “plan files”.
Integration with other package management systems such as
easy_build (Geimer et al., 2014) or Spack (Gamblin et al., 2015)
is achieved by using the same environment module systems7.
Thereby, the required user interaction is minimized and, from
a user perspective, installation reduces to the configuration
of installation parameters. Given a specified variation of the
software to be benchmarked, beNNch calls Builder to deploy
the requested software. In doing so, Builder checks whether the
software is already available and otherwise installs it according to
the specifications in the plan file. The depth to which required
dependencies need to be installed and which mechanisms are
used depend on the conventions and prerequisites available
at each execution site. For any installation, the used software
stack—including library versions, compiler versions, compile
flags, etc.—are recorded as metadata.

2.2.2. NEST
beNNch implements compatibility with the NEST simulator
(Gewaltig and Diesmann, 2007), enabling the performance
benchmarking of neuronal network simulations at the resolution
of single neurons. The NEST software is complex, and the
consequences of code modifications for performance are often
hard to predict. NEST has an efficient C++ kernel, but network
models and simulation experiments are defined via the user-
friendly Python interface PyNEST (Eppler et al., 2009; Zaytsev and
Morrison, 2014). To parallelize simulations, NEST provides two
methods: for distributed computing, NEST employs the Message
Passing Interface (MPI, Message Passing Interface Forum, 2009),
and for thread-parallel simulation, NEST uses OpenMP (OpenMP
Architecture Review Board, 2008).

2.2.3. Instrumentation
We focus our performance measurements on the time-to-
solution. Acquiring accurate data on time consumption is critical
for profiling and benchmarking. To this end, we make use of
two types of timers to collect this data: the timers are either
built-in to NEST on the C++ level, or they are included on the
Python level as part of the PyNEST network-model description.
The latter type of timers are realized with explicit calls to
the function time.time() of the Python Standard Library’s
time. To achieve consistency throughout the framework, we
use standardized variable names for the different phases of the
simulation. Figure 3 shows the simulation flow of a typical
NEST simulation. During “network construction”, neurons and
auxiliary devices for stimulation and recording are created
and subsequently connected according to the network-model
description. Afterwards, in the course of “state propagation”, the
network state is propagated in a globally time-driven manner.
This comprises four main phases which are repeated until
the entire model time has been simulated: update of neuronal
states, collocation of spikes in MPI-communication buffers,

6https://github.com/INM-6/Builder
7https://modules.readthedocs.io and http://lmod.readthedocs.io

FIGURE 3 | Instrumentation to measure time-to-solution. Successive phases

of a NEST simulation; time is indicated by top-down arrow. Fanning arrows

denote parallel operation of multiple threads. The main phases network

construction (cyan) and state propagation (pink) are captured by external

timers on the Python level. Built-in NEST timers on the C++ level measure

sub-phases: node creation and connection (both gray, not used in benchmark

plots); update (orange), collocation (yellow), communication (green), and

delivery (blue). The sub-phases of the state propagation are repeated until the

simulation is finished as shown by the dashed arrow connecting delivery

and update.

communication of spikes, and delivery of the received spikes
to their respective thread-local targets. NEST’s built-in timers
provide a detailed look into the contribution of all four phases
of state propagation, while timers on the Python level measure
network construction and state propagation.

In NEST, the postsynaptic connection infrastructure is
established during the “connection” phase. However, the
presynaptic counterpart is typically only set up at the beginning
of the state propagation phase (see Jordan et al., 2018, for details).
In this work, we trigger this step deliberately and include it in our
measurement of network-construction time rather than state-
propagation time. Besides, it is common practice to introduce
a short pre-simulation before the actual simulation to give the
network dynamics time to level out; the state propagation phase
is only recorded when potential startup transients have decayed
(Rhodes et al., 2019). The model time for pre-simulation can be
configured via a parameter in beNNch. For simplicity, Figure 3
does not show this pre-simulation phase.

2.2.4. beNNch-models
We instantiate the “model” module with the repository
beNNch-models8 which contains a collection of PyNEST neuronal

8https://github.com/INM-6/beNNch-models

Frontiers in Neuroinformatics | www.frontiersin.org 7 May 2022 | Volume 16 | Article 83754987

https://github.com/INM-6/Builder
https://modules.readthedocs.io
http://lmod.readthedocs.io
https://github.com/INM-6/beNNch-models
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

network models, i.e., models that can be simulated using the
Python interface of NEST (Eppler et al., 2009). In principle, any
such model can be used in conjunction with beNNch; only a
few adaptations are required concerning the interfacing. On
the input side, the framework needs to be able to set relevant
model parameters. For recording the performance data, the
required Python timers (Section 2.2.3) must be incorporated.
On the output side, the model description is required to
include instructions to store the recorded performance data and
metadata in a standardized format. Finally, if a network model is
benchmarked with different NEST versions that require different
syntax, as is the case for switching between NEST 2.X and NEST

3.X, the model description also needs to be adjusted accordingly.
Which model version is used in a simulation can thereby be
deduced from knowing which simulator version was tested. For
fine-grained version tracking, we additionally record the commit
hash of beNNch-models and attach it as metadata to the results.
Instructions on how to adapt existing models are provided in the
documentation of beNNch-models.

The current version of beNNch provides benchmark versions
of three widely studied spiking neuronal network models:
the two-population HPC-benchmark model9, the microcircuit
model10 by Potjans and Diesmann (2014) representing 1mm2

of cortical surface with realistic neuron and synapse densities,
and the multi-area model11 by Schmidt et al. (2018a,b) consisting
of 32 microcircuit-like interconnected networks representing
different areas of visual cortex of macaque monkey. The model
versions used for this study employ the required modifications
described above.

2.2.5. config files
When executing benchmarks, the main user interaction with
beNNch consists of defining the characteristic parameters. We
separate this from the executable code by providing yaml-based
templates for “config files” to be customized by the user. Thereby,
the information that defines a benchmark experiment is kept
short and well arranged, limiting the number of files a user
needs to touch and reducing the risk of user errors on the
input side. Listing 1 presents an excerpt from such a config
file which has distinct sections to specify model, machine, and
software parameters. While some parameters are model specific,
standardized variable names are defined for parameters that are
shared between models.

2.2.6. JUBE
At this point, the first segment of the benchmarking workflow
(Figure 2) is complete and hence all necessary requirements
are set up: the software deployment provides the underlying
simulator (here: NEST with built-in instrumentation), the models
define the simulation, and the configuration specifies the
benchmark parameters. This information is now processed by
the core element of the framework: generating and submitting

9Original repository: https://github.com/nest/nest-simulator/blob/master/pynest/
examples/hpc_benchmark.py.
10Original repository: https://github.com/nest/nest-simulator/tree/master/
examples/nest/Potjans_2014.
11Original repository: https://github.com/INM-6/multi-area-model.

� �
parameterset:

- name: model_parameters

parameter:

can be either "metastable" or "ground"

- {name: network_state, type: string, _: "metastable"}

biological model time to be simulated in ms

- {name: model_time_sim, type: float, _: "10000."}

"weak" or "strong" scaling

- {name: scaling_type, _: "strong"}

- name: machine_parameters

parameter:

number of compute nodes

- {name: num_nodes, type: int, _: "4,8,12,16,24,32"}

number of MPI tasks per node

- {name: tasks_per_node, type: int, _: "8"}

number of OpenMP threads per task

- {name: threads_per_task, type: int, _: "16"}

- name: software_parameters

parameter:

simulator used for executing benchmarks

- {name: simulator, _: "nest-simulator"}

simulator version

- {name: version, _: "3.0"}
� �

Listing 1: Excerpt of a config file in yaml-format for setting
model, machine, and software parameters for benchmarking
the multi-area model. When giving a list (e.g., for num_nodes),
a job for each entry of the list is created. Model parameters:
network_state describes particular model choices that induce
different dynamical fixed points; model_time_sim defines the
total model simulation time in ms; scaling_type sets up the
simulation for either a weak- or a strong-scaling experiment.
The former scales the number of neurons linearly with the
used resources which might be ill-defined for anatomically
constrained models. Machine parameters: num_nodes defines
the number of nodes over which the scaling experiment shall be
performed; tasks_per_node and threads_per_task specify
the number of MPI tasks per node and threads per MPI task
respectively. Software parameters: simulator and version

describe which version of which simulator to use (and to install
if not yet available on the machine).

simulation jobs and gathering and unifying the obtained
performance data. We construct this component of beNNch

around the xml-based JUBE4 software tool using its yaml

interface. Built around the idea of benchmarking, JUBE can
fulfill the role of creating job scripts from the experiment,
user and machine configuration, their subsequent submission,
as well as gathering and unifying of the raw data output.
Here, we focus on the prevalent scheduling software SLURM

(Yoo et al., 2003), but extensions to allow for other workload
managers would be straightforward to implement. Our approach
aims at high code re-usability. Model specific code is kept to
a minimum, and where necessary, written in a similar way
across models. Adhering to a common interface between JUBE

scripts and models facilitates the integration of new models,
starting from existing ones as a reference. Since JUBE can
execute arbitrary code, we use it to also record metadata in

Frontiers in Neuroinformatics | www.frontiersin.org 8 May 2022 | Volume 16 | Article 83754988

https://github.com/nest/nest-simulator/blob/master/pynest/examples/hpc_benchmark.py
https://github.com/nest/nest-simulator/blob/master/pynest/examples/hpc_benchmark.py
https://github.com/nest/nest-simulator/tree/master/examples/nest/Potjans_2014
https://github.com/nest/nest-simulator/tree/master/examples/nest/Potjans_2014
https://github.com/INM-6/multi-area-model
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

conjunction with each simulation. This includes specifications of
the hardware architecture as well as parameters detailing the run
and model configuration.

2.2.7. git-annex
Without a mature strategy for sharing benchmark results,
communication can be a major obstacle. Typically, each
researcher has their preferred workflow, thus results are shared
over different means of communication, for example, via email
attachments, cloud-based storage options, or git repositories.
This makes it difficult to maintain an overview of all results,
especially if researchers from different labs are involved. Ideally,
results would be stored in a decentralized fashion that allows for
tracking the history of files while allowing on-demand access for
collaborators. To this end, we use git-annex12 as a versatile base
technology; it synchronizes file information in a standard git

repository while keeping the content of large files in a separate
object store, thereby keeping the repository size at a minimum.
git-annex is supported by the GIN platform13 which we employ
for organizing our benchmark results. In addition, it allows for
metadata annotation: instead of relying on separate files that store
the metadata, git-annex can directly attach them to the data
files, thereby implementing the “metadata annotation” module.
Previously this needed to be cataloged by hand, whereas now
the framework allows for an automatic annotation, reducing
the workload on researchers and thus probability of human
mistakes. A downside of following this approach is a limitation
to command line-based interaction. Furthermore, git-annex is
not supported by some of the more widely used git repository
hosting services such as GitHub or GitLab in favor of Git LFS.

A difficult task when scaling up the usage of the framework
and, by extension, handling large amounts of results, is providing
an efficient way of dealing with user queries for specific
benchmark results. Attaching the metadata directly to the
performance data not only reduces the visible complexity of the
repository, but also provides an efficient solution: git-annex
implements a native way of selecting values for metadata keys
via git-annex “views”, automatically and flexibly reordering
the results in folders and sub-folders accordingly. For example,
consider the case of a user specifying the NEST version to
be 3.0, the tasks_per_node to be either 4 or 8, and the
network_state to be either metastable or ground. First,
git-annex filters out metadata keys for which only a single
value is given; in our example, only benchmarks conducted with
NEST version 3.0 remain. Second, a hierarchy of directories
is constructed with a level for each metadata key for which
multiple options are given. Here, the top level contains the
folders “4” and “8”, each containing sub-folders metastable

and ground where the corresponding results reside. However,
it may be difficult to judge exactly what metadata is important
to collect; oftentimes, it is only visible in hindsight that certain
metadata is relevant for the simulation performance. Therefore,
recording as much metadata as possible would be ideal, allowing
for retrospective investigations if certain metadata becomes

12https://git-annex.branchable.com
13https://gin.g-node.org

relevant after run time. Importantly, a balance needs to be
struck between recording large amounts of metadata and keeping
the volume of annotations manageable. In our implementation,
we choose to solve this issue by recording detailed metadata
about the system, software, and benchmarks, but only attaching
what we currently deem relevant for performance to the data.
The remaining metadata is archived and stored alongside the
data, thereby sacrificing ease of availability for a compact
format. This way, if future studies discover that a certain
hardware feature or software parameter is indeed relevant
for performance, the information remains accessible also for
previously simulated benchmarks while staying relatively hidden
otherwise. Furthermore, using git as a base technology allows
to collect data sets provided by different researchers in a curated
fashion by using well-established mechanisms like branches
and merge-request reviews. This use of git-annex thereby
implements the “metadata based filtering and sorting” module
of Figure 2.

2.2.8. beNNch-plot
To enable a comparison between plots of benchmark results
across the dimensions illustrated in Figure 1 it is paramount
to use the same plotting style. To this end, we have developed
the standalone plotting package beNNch-plot14 based on
matplotlib (Hunter, 2007). Here, we define a set of tools to
create individual plot styles that can be combined flexibly by
the user. The standardized definitions of performance measures
employed by beNNch directly plug into this package. In addition,
beNNch-plot includes default plot styles that can be readily
used, and provides a platform for creating and sharing new
ones. beNNch utilizes the default plot styles of beNNch-plot for
both initial validation—a preliminary plot offering a quick glance
at the results, thereby enabling a swift judgement whether any
problems occurred during simulation—and visualization of the
final results.

2.2.9. Flip-Book
When devising a method of presenting benchmark results
we found the following aspects to be of crucial relevance
for our purposes. First, it should be possible to navigate the
results such that plots are always at the same screen position
and have the same dimensions, thereby minimizing the effort
to visually compare results. To achieve such a format, we
decided to create a flip-book in which each slide presents the
results of one experiment. Second, relevant metadata should be
displayed right next to the plots. This can include similarities
across the runs, but more importantly should highlight the
differences. As each user might be interested in different
comparisons, we let the user decide which kind of metadata
should be shown. Third, it should be easy to select only the
benchmarks of interest in order to keep the number of plots
small. This is already handled by the filtering provided by
git-annex views as described in Section 2.2.7. As an underlying
technology for programmatically creating HTML slides we use

14https://github.com/INM-6/beNNch-plot

Frontiers in Neuroinformatics | www.frontiersin.org 9 May 2022 | Volume 16 | Article 83754989

https://git-annex.branchable.com
https://gin.g-node.org
https://github.com/INM-6/beNNch-plot
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

TABLE 1 | Shorthand notation and description of NEST versions used in this work.

Shorthand notation

of NEST version

Description

2.20.2 Official 2.20.2 release (Fardet et al., 2021)

3.0rc Release candidate for 3.0

3.0rc+ShrinkBuff 3.0rc plus shrinking MPI buffers

3.0rc+ShrinkBuff+SpikeComp 3.0rc+ShrinkBuff plus spike

compression

3.0 Official 3.0 release (Hahne et al., 2021) =

3.0rc+ShrinkBuff+SpikeComp plus

neuronal input buffers with multiple

channels

jupyter notebooks15 in conjunction with the open source HTML
presentation framework reveal.js16. An exemplary flip-book
containing the NEST performance results described in this work is
published alongside the beNNch repository17. By respecting these
considerations, our proposed solution offers a way of sharing
benchmarking insights between researchers that is both scalable
and flexible.

2.2.10. Exchanging External Modules
beNNch is written in a modular fashion; as such, it is
possible to exchange certain modules without compromising
the functionality of the framework. In particular, the “external
modules” (see Figure 2) are implemented such that an exchange
is straight-forward to implement. This section presents a recipe
to exchange the “job execution” module, i.e., the simulator,
along with necessary changes in “data generation” and “model”
that follow:

First, the simulator to be substituted instead of NEST needs
to be properly installed. Builder—our implementation of the
“software deployment” module—provides the flexibility to install
any software as well as make it loadable via a module system.
Thus, a plan file specifying dependencies as well as source
code location and installation flags needs to be created for the
new simulator.

Second, models compatible with the new simulator need to be
added. On the framework side, the execute commands may need
to be adapted. Required adaptations to the models are the same
as for PyNEST models and are described in Section 2.2.4.

Third, the instrumentation needs to be changed. As NEST has
built-in instrumentation, only superficial timing measurements
are necessary on the model level. Depending on the new
simulator’s existing ability to measure performance, timing
measurements might need to be implemented on the simulator
or model level. If different measurements than implemented
are of interest, a simple addition to an existing list in
beNNch suffices to add the recorded data to the csv-format
result file.

15https://jupyter.org
16https://github.com/hakimel/reveal.js
17https://inm-6.github.io/beNNch

2.3. Using beNNch for Simulator
Development
For the development of simulation software with the goal to
optimize its performance, it is vital to focus efforts on those
parts of the simulation loop that take the most time to complete.
Benchmarking can help in identifying performance bottlenecks
and testing the effect of algorithmic adaptations. However, the
dimensions of benchmarking identified in Figure 1 make this
difficult: to guarantee that observed differences in performance
are caused by changes in the simulator code, many variables
need to be controlled for, such as hardware and software
configurations as well as simulator versions. General-purpose
simulators also need to be tested with respect to different settings
and applications to ensure that a performance improvement
in one case does not lead to a crucial decline in another
case. Neuronal network simulators are one such example as
they should exhibit reasonable performance for a variety of
different models with different resource demands. A systematic
assessment of the scaling performance covering the relevant
scenarios is therefore a substantial component of the iterative
simulator development.

beNNch, as an implementation of the workflow outlined in
Section 2.1, provides a platform to handle the complexity of
benchmarking while staying configurable on a low level. The
following suggests how beNNch can support the process of
detecting and tackling performance issues of a simulator. In a
first step, exploration is necessary to identify the performance
bottlenecks of the current version of the simulation engine.
As many software and model parameters need to be explored,
the centralized location of configuration parameters built
into beNNch helps in maintaining an overview of conducted
experiments. Neuronal network simulations can usually be
decomposed into separate stages, such as neuronal update and
spike communication. The instrumentation and visualization of
these stages is part of beNNch and points the researcher to the
respective sections in the code. If a potential bottleneck for
a certain model is identified, tests with other models provide
the basis for deciding whether these are model- and scale-
specific or are present across models, hinting at long-reaching
issues of the simulator. beNNch’s native support for handling the
benchmarking of multiple models alleviates the researchers from
operating a different code base for every model. In the process
of solving the simulator issue, running further benchmarks
and directly comparing new results can assist in deciding
which adaptations bear fruit. The standardized visualization
tools of beNNch support spotting differences in performance
plots. Finally, an ongoing development of a neuronal network
simulator should respect the value of insights gained by resource-
intensive benchmarks. To this end, beNNch implements a
decentralized storage of standardized performance results. In
addition to preserving information for the long term, this also
helps in communicating between researchers working on the
simulator’s development.

2.3.1. Use Case: NEST Development
This section illustrates the relevance of performance benchmarks
for the development of neuronal network simulators with the

Frontiers in Neuroinformatics | www.frontiersin.org 10 May 2022 | Volume 16 | Article 83754990

https://jupyter.org
https://github.com/hakimel/reveal.js
https://inm-6.github.io/beNNch
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

example of recent changes to the NEST code base; for historical
context see Section 4.1.1. We use beNNch to outline crucial steps
of the development from the release candidate NEST 3.0rc to
the final NEST 3.0 and also discuss improvements compared
to the latest NEST 2 version (NEST 2.20.2, Fardet et al.,
2021). Table 1 summarizes the NEST versions employed in
this study.

Regarding the dimensions of HPC benchmarking in Figure 1,
this use case primarily addresses the “Simulators” dimension by
testing different NEST versions and the “Models and parameters”
dimension by testing different network models; the approach can
be extended similarly to the other dimensions.

Our starting point is the weak-scaling experiments of
the HPC-benchmark model (Jordan et al., 2018); the times
for network construction and state propagation as well as
the memory usage remain almost constant with the newly
introduced 5g kernel (see their Figures 7, 8). Figure 4 shows
similar benchmarks of the same network model conducted
with beNNch using the release candidate in Figure 4A and
the final release in Figure 4B. The graph design used here
corresponds to the one used in the flip-book format by the
framework. A flip-book version of the results shown in this
work can be accessed via the GitHub Pages instance of the
beNNch repository17. While the release candidate in Figure 4A

exhibits growing state-propagation times when increasing the
number of nodes, network-construction times stay constant
and are, for Tmodel = 1 s, small, making up less than
10% of the total simulation time. The phases “delivery” and
“communication” both contribute significantly to the state-
propagation time. Jordan et al. (2018) report real-time factors
of about 500 (e.g., their Figure 7C) in contrast to values
smaller than 40 shown here and their simulations are by
far dominated by the delivery phase (see their Figure 12).
A comparison of our data and the data of Jordan et al.
(2018) is not straightforward due to the inherent complexity
of benchmarking and we will here emphasize a few concurring
aspects: first, Jordan et al. (2018) run their benchmarks on the
dedicated supercomputers JUQUEEN (Jülich Supercomputing
Centre, 2015) and K Computer (Miyazaki et al., 2012) while our
benchmarks use the recent cluster JURECA-DC (Thörnig and
von St. Vieth, 2021). Each compute node of the BlueGene/Q
system JUQUEEN is equipped with a 16-core IBM PowerPC
A2 processor running at 1.6GHz and each node of the K
Computer has an 8-core SPARC64 VIIIfx processor operating at
2GHz; both systems provide 16GB RAM per node. In contrast,
the JURECA-DC cluster employs compute nodes consisting of
two sockets, each housing a 64-core AMD EPYC Rome 7742
processor clocked at 2.2GHz, that are equipped with 512GB
of DDR4 RAM. Here, nodes are connected via an InfiniBand
HDR100/HDR network. Second, Jordan et al. (2018) use 1
MPI process per node and 8 threads per process while our
simulations are performed throughout this study with 8 MPI
processes per node and 16 threads per process. Third, Jordan et al.
(2018) simulate 18,000 neurons per MPI process while we only
simulate 11, 250 neurons per process. This list of differences is not
complete and only aims to illustrate that potential discrepancies
in benchmarking results may be explained by differences in

hardware, software, simulation and model configuration, and
other aspects exemplified in Figure 1.

Having demonstrated that beNNch can perform weak-scaling
experiments of the HPC-benchmark model as done in previous
publications, we next turn to strong-scaling benchmarks of
the multi-area model (Schmidt et al., 2018a). To fulfill the
memory requirements of the model, at least three compute nodes
of JURECA-DC are needed; here, we choose to demonstrate
the scaling on four to 32 nodes. Initially, we compare the
latest NEST 2 version (Figure 5A) with the release candidate
for NEST 3.0 (Figure 5B). The improved parameter handling
implemented in NEST 3.0rc reduces the network-construction
time. However, the communication phase here largely dominates
state propagation in both NEST versions shown; both use the
original 5g kernel. Previous simulations of the HPC-benchmark
model have not identified the communication phase as a
bottleneck (Jordan et al., 2018, Figure 12). Communication only
becomes an issue when then smallest delay in the network is of
the same order as the computation step size because NEST uses the
smallest delay as the communication interval for MPI. While the
HPC-benchmark model uses 1.5ms for all connections—which
is a good estimate for inter-area connections—the multi-area
model andmicrocircuit use distributed delays with a lower bound
of 0.1ms leading to a fifteen-fold increase in the number MPI
communication steps.

The following identifies and eliminates the main cause
for the large communication time in case of the multi-area
model, thus introducing the first out of three performance-
improving developments applied to NEST 3.0rc. Cross-node
communication, handled in NEST by MPI, needs to strike a
balance between the amount of messages to transfer and the size
of each message. The size of the MPI buffer limits the amount
of data that fits into a single message, and is therefore the main
parameter controlling this balance. Ideally, each buffer would fit
exactly the right amount of information by storing all spikes of
the process relevant for the respective communication step. Due
to overhead attached to operating on additional vectors, a scheme
in which the buffer size adapts precisely for each MPI process
for each communication step can be highly inefficient. Therefore,
in cases where communication is roughly homogeneous, it is
advantageous to keep the exchanged buffer between all processes
the same size, as is implemented in NEST 3.0rc. While buffer
sizes are constant across processes, NEST does adapt them
over time to minimize the number of MPI communications.
Concretely, whenever the spike information that a process needs
to send exceeds what fits into one buffer, the buffer size for
the next communication step is increased. However, the original
5g kernel of NEST does not shrink buffer sizes. In networks
such as the multi-area model, the firing is not stationary over
time; transients of high activity propagate through the network
(Schmidt et al., 2018a). In general, startup transients may cause
high spike rates only in the beginning of a simulation unless
the network is carefully initialized (Rhodes et al., 2019). If the
rates decrease, the spiking information becomes much smaller
than the available space in the MPI buffer. Consequently, the
original 5g kernel preserves unnecessarily large buffer sizes
which results in the communication of useless data. To address

Frontiers in Neuroinformatics | www.frontiersin.org 11 May 2022 | Volume 16 | Article 83754991

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

A

B

FIGURE 4 | Weak-scaling performance of the HPC-benchmark model on JURECA-DC. (A) NEST 3.0rc. The left graph shows the absolute wall-clock time Twall
measured with Python-level timers for both network construction and state propagation [legend in (B)]; the model time is Tmodel = 1 s. Error bars indicate variability

across three simulation repeats with different random seeds. The top right graph displays the real-time factor defined as wall-clock time normalized by the model time.

Built-in timers resolve four different phases of the state propagation [legend in (B)]: update, collocation, communication, and delivery. Pink error bars show the same

variability of state propagation as the left graph. The lower right graph shows the relative contribution of these phases to the state-propagation time. Same colors used

for phases as in Figure 3. (B) NEST 3.0. Same display as (A).

this issue, a mechanism for automatically shrinking the buffer
sizes has been introduced. For details see Section 4.1.2. The
release candidate with the implementation of shrinking MPI
buffers (NEST 3.0rc+ShrinkBuff) approximately halves the
time spent in the communication phase compared to the original
implementation (compare Figures 5B,C).

Next, we assess the strong-scaling performance of the
microcircuit model (Potjans and Diesmann, 2014). The model
size is similar to the size of one of the 32 areas of the multi-
area model. The microcircuit therefore requires fewer resources.
We show results of the model run on one to six compute nodes;
for a detailed analysis of NEST’s thread scaling performance
on the example of this model refer to Kurth et al. (2021).
Using NEST 3.0rc, the microcircuit is simulated faster than
the HPC-benchmark and the multi-area models and achieves
approximately real time (Twall/Tmodel ≈ 1, Figure 6A). The finer
resolution of the vertical axis of the top-right graph reveals a
small gap between the state propagation measured with Python
timers and the sum of the phases timed on the C++ level which
is not visible for the other models. The state-propagation time

of the microcircuit is also dominated by the communication
phase similarly to the respective benchmarks with the multi-
area model (Figure 5B) and even increases with the number of
nodes used. However, shrinking MPI buffers does not reduce
communication significantly (data not shown), indicating that
we face a different bottleneck with the microcircuit model.
With on the order of 103 outgoing connections per neuron,
a single neuron of this model has multiple targets on each
MPI process and, in particular, on multiple threads of a
given process. Since the 5g kernel is designed to send out
a separate copy of a neuron’s spiking information to each
target thread, multiple copies of identical information about
the activity of a presynaptic neuron may be sent to the same
process, causing unnecessary communication load. To tackle
this, we devise a spike compression algorithm which only
requires transmitting the spiking information once to each MPI
process where it is locally routed to the receiving threads. For
details see Section 4.1.3. This algorithm leads to a significant
reduction in communication time for the microcircuit model
(compare Figures 6A,B).

Frontiers in Neuroinformatics | www.frontiersin.org 12 May 2022 | Volume 16 | Article 83754992

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

A

B

C

FIGURE 5 | Strong-scaling performance of the multi-area model on JURECA-DC. Same display as in Figure 4. The multi-area model is simulated in its meta-stable

state leading to a high amount of spikes that are communicated. The model time is Tmodel = 10 s. Simulations are repeated for 10 different random seeds.

(A) NEST 2.20.2 (latest NEST 2 release). (B) NEST 3.0 release candidate. (C) NEST 3.0 release candidate with shrinking MPI buffers.

The microcircuit model easily fits within the main memory
of one compute node of JURECA-DC. Due to the simplicity
of the employed model neurons and the absence of synaptic
plasticity mechanisms, the network model causes little workload
during update and delivery in a strong-scaling experiment—
real-time simulation is already possible with a single compute
node. Consequently, communication naturally starts to dominate
the state-propagation time at a few compute nodes even with
the spike-compression optimization described above. While
increasing the number of compute nodes from one to two still

results in a fair reduction of state-propagation time, scaling
is already sublinear, and increasing the number of compute
nodes further hardly results in further improvement. Therefore,
simulation phases other than the so far discussed communication
become important if the objective of the optimizations is,
for example, achieving real-time performance with even fewer
resources. In the following we highlight an algorithm adaptation
that concentrates on the update phase. A redesign of the
neuronal input buffers prevents neurons from retrieving the
input values for different channels, for example, excitatory and

Frontiers in Neuroinformatics | www.frontiersin.org 13 May 2022 | Volume 16 | Article 83754993

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

A

B

C

FIGURE 6 | Strong-scaling performance of the microcircuit model on JURECA-DC. Same display as in Figure 4. The model time is Tmodel = 10 s. Simulations are

repeated for 10 different random seeds. (A) NEST 3.0 release candidate. (B) NEST 3.0 release candidate with spike compression and shrinking MPI buffers.

(C) NEST 3.0.

inhibitory, from separate locations in memory. Thereby, the
cache can be better utilized during neuronal updates. Instead
of maintaining separate buffers for the input channels as in the
original 5g kernel, neurons maintain a single buffer with all
inputs for a particular simulation time step stored contiguously
in memory. For details see Section 4.1.4. This adaptation is
most effective for network models with short minimum synaptic
delays; both the microcircuit and the multi-area model use
0.1ms. Figure 6C shows the resulting decrease in update time for
few compute nodes.

In summary, the analysis with beNNch exposes the
communication phase as a major performance bottleneck
in microcircuit and multi-area model simulations with the
release candidate NEST 3.0rc. The underlying problem is,
however, a different one for each of the two models, and they
are rectified with different adaptations to the code: the shrinking
MPI buffers (Section 4.1.2) improve the performance of the
multi-area model while spike compression (Section 4.1.3)
increases simulation speed of the microcircuit model. Notably,
none of the adaptations introduce performance regressions for

Frontiers in Neuroinformatics | www.frontiersin.org 14 May 2022 | Volume 16 | Article 83754994

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

the respective other model (data not shown). In addition, the
update phase is improved by introducing neuronal input buffers
with multiple channels (Section 4.1.4). Returning to the HPC-
benchmark model, Figure 4B shows that the kernel adaptations
are not detrimental to the originally tested model; the overall
state-propagation time is preserved with the final NEST 3.0

release. However, the reduced communication and update
times here come at the cost of increased delivery times due to
an additional indirection introduced with spike compression.
Ongoing work targets the delivery phase (Pronold et al., 2021,
2022) and gives a perspective for performance improvements in
future NEST releases.

3. DISCUSSION

Benchmarking studies in the field of neuronal network
simulations are often hard to reproduce and compare.
To overcome this problem, we propose a unified and
modular workflow for defining, running, and analyzing
benchmark simulations. We identify five dimensions spanning
the space of the benchmarking endeavor, and work out
their specific challenges: hardware configuration, software
configuration, simulators, models and parameters, and
researcher communication. The benchmarking concept
developed in this study encompasses all five dimensions and
proposes solutions for the posed challenges in the form of self-
contained and interacting modules. Each module contributes
to one of the main workflow segments: configuration and
preparation, actual benchmarking, data- and metadata handling,
and data presentation. As a proof of concept, we provide a
reference implementation of the framework (beNNch), describe
the concrete underlying technologies, and apply it to a specific
use case: assessing and comparing the performance of different
versions of the neuronal network simulator NEST for three
different network models. The reference implementation goes
beyond existing benchmarking environment software such
as JUBE: it adds an interface to models, installs and deploys
simulation software, automates data and metadata annotation,
and implements storage and presentation of results. The use
case illustrates how the framework helps to focus simulator
development by detecting performance bottlenecks, and
demonstrates the relevance of an accessible and comprehensive
benchmarking setup. The software is ready to use, not only for
developers of simulation technology, but also for researchers
seeking to find optimal performance configurations for
their models.

The proposed workflow is generic and not restricted to
benchmarking neuronal network simulations with NEST. The
reference implementation, however, still faces limitations and
open problems. First, it is a priori unclear what parameters,
configurations or external influences may possibly contribute
to differences in the performance of complex software systems
such as simulation engines. beNNch seeks to address this problem
by employing a metadata archive which—in addition to the
selection of metadata directly attached to the performance
results—tracks further metadata that are seemingly insignificant

at the time of simulation but may become relevant in
future investigations. Exhaustiveness, however, can not be
claimed. For the exploration and presentation of benchmarking
data, the reference implementation uses metadata to filter
benchmark results and to highlight differences in a flip-
book format. However, even if all relevant metadata were
tracked, selecting sensible metadata keys for filtering and
highlighting is a hard problem. In the current implementation,
this requires knowledge about existing results and, therefore,
human input. Future solutions could, for example, categorize
and hierarchically structure metadata keys to facilitate and semi-
automatize these steps. Second, the networkmodel specifications,
expressed in the PyNEST set of commands for the Python
language, require adaptations to interface with the benchmarking
framework. These include accepting parameters passed by
JUBE benchmarking files, adjusting the model specification to
work with different versions of the simulation engine, and
storing recorded metadata and performance measures such
as the duration of simulation phases. At the moment, it
is a manual task to keep the benchmarking model version
up to date with the original model version, which is error
prone. We use rigorous version control of the code, automatic
checking for errors (via exceptions), and continuous testing for
correct simulation outcome to reduce the risk of errors. This
strategy could be automatized further in the future by finding
methods to automatically inject respective instrumentation into
the executable model descriptions. To mitigate the additional
overhead, we keep the necessary changes as minimal as
possible, thereby lowering the entry barrier for new models.
Third, the reference implementation makes concrete choices
on the employed tools. Alternatives, however, may be viable.
For example, the required software for the simulations is
installed with Builder which can be integrated with other
package management systems or replaced by a different
solution. Our strategy exploits the native software environment
available on a compute cluster which is typically specifically
configured for the underlying hardware. An alternative is to
use containerized systems such as Docker18 or Singularity19.
Replacing NEST by a different simulator requires adapting the
model implementations. Expressing the models in the simulator-
independent language PyNN (Davison et al., 2009) instead
of PyNEST would avoid this. However, additional layers of
complexity such as PyNN may have an impact on performance,
making it more challenging to pinpoint bottlenecks in the
simulator backend. JUBE as an environment to manage jobs
on compute clusters could be substituted by tools such as
ecFlow20, AiiDA21 (Huber et al., 2020), or cylc (Oliver
et al., 2021). Further, one could replace git-annex with,
e.g., DataLad22 which is based on the same technology but
extends its functionality and provides slightly different metadata
handling. The flip-book-style presentation of results could also

18https://www.docker.com
19https://sylabs.io
20https://confluence.ecmwf.int/display/ECFLOW
21https://www.aiida.net
22https://www.datalad.org

Frontiers in Neuroinformatics | www.frontiersin.org 15 May 2022 | Volume 16 | Article 83754995

https://www.docker.com
https://sylabs.io
https://confluence.ecmwf.int/display/ECFLOW
https://www.aiida.net
https://www.datalad.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

be replaced or supplemented with other approaches, for example
an automatically generated overview figure showing results from
multiple benchmarking runs together, similar to Figures 4–6 in
this article. Furthermore, tools like Rust Compiler Performance
Monitoring and Benchmarking23 or Sacred24 cover multiple
aspects of the workflow and can be a source of inspiration for
further development of beNNch. Fourth, beNNch presently focuses
on a single performance measure: the time-to-solution. However,
different performance aspects, such as energy-to-solution and
memory consumption, may also be of interest. Energy-to-
solution, for example, combines power consumption and time-
to-solution. Monitoring both power consumption and time-to-
solution enables researchers to determine an optimal number
of compute nodes balancing speed and energy consumption
(van Albada et al., 2018). The memory consumption of the
simulation dictates, for instance, the smallest number of nodes
required to simulate a network of a given size, or the largest
network size possible to simulate on a given machine. Reducing
memory requirements was a major driving force behind the
improvements to the NEST kernel (Helias et al., 2012; Kunkel
et al., 2012, 2014; Jordan et al., 2018) in the past decade. The
spike compression introduced here reduces the time-to-solution
(communication phase, Figures 4, 6). However, this code change
directly affects the memory consumption. Assuming that the
number of postsynaptic targets per neuron is fixed, the memory
overhead is negligible if the number of MPI processes is small.
But in the limit of a large number of MPI processes, i.e., when
each neuron has at most one target on each process, the effective
size of each synapse is increased by 8 byte. In this limit, users thus
are encouraged to actively deactivate the “spike compression”
feature. This example illustrates that performance optimizations
often have to find a balance between acceptable solutions for
different measures. Due to its modular structure, beNNch is ready
to include further performance measures.

To achieve long term sustainability, organized and openly
available communication on development is essential. Adhering
to this guideline, we have developed beNNch as an open source
software project from the start, making use of a public issue
tracker, suggestions via pull requests, public code reviews, and
detailed documentation. This approach facilitates constructive
communication between users and developers which enables a
targeted progression of the framework by demand. While the
concrete application of NEST benchmarks of neuronal network
models shaped our specific implementations, the modular
structure allows for adaptation to other use cases. In certain
domains of software development, it is already common practice
to verify each code change on the basis of syntax, results, and
other unit tests. The proposed automated approach to execute
performance benchmarks creates the opportunity to integrate
an aspect of validation directly into the development cycle.
This way, performance regressions of algorithm adaptations
are immediately exposed, while positive effects can readily
be demonstrated. For high-performance software, however,
comprehensive checks for scaling performance are particularly

23https://github.com/rust-lang/rustc-perf
24https://github.com/IDSIA/sacred

costly because they require compute time on state-of-the-art
clusters and supercomputers. Therefore, it is important to
conduct the performance benchmarks purposefully and with
care. By organizing benchmarking results and keeping track
of metadata, beNNch helps to avoid redundant benchmark
repeats and instead encourages a direct comparison with
previous results.

It has long been recognized that software development
in science underlies different constraints and needs to fulfill
different requirements as compared to industry (Diesmann
and Gewaltig, 2002). The software crisis in neuroscience at
the beginning of the century led to the foundation of the
International Neuroinformatics Coordinating Facility (INCF)
in 2005. A first INCF report in 2006 addresses the software
challenges of large-scale modeling in neuroscience (INCF
Secretariat et al., 2018) and recommends establishing a common
set of benchmark models and a corresponding framework
for assessing accuracy and efficiency. Furthermore, the report
advocates benchmarking neuroscientifically relevant published
models rather than network models constructed specifically for
the purpose of benchmarking only. In 2007, the communitymade
a first effort in verifying simulation codes by using a number of
simple network models (Brette et al., 2007). Executable model
descriptions are, in part, already expressed in the simulator
independent language PyNN (Davison et al., 2009), but there
is no support by a common benchmarking framework, and a
focus is set on correctness rather than computational efficiency.
The emerging field of Research Software Engineering (RSE) is
studying how, in the scientific setting, reliable and sustainable
software can be developed, developers can be educated for this
purpose, and science organizations and politics can be made
aware of its strategic relevance (Manifesto25 and Akhmerov
et al., 2019). Obvious differences to software engineering in
the industrial setting include research code being developed
by scientists rather than experienced software developers, the
time-constrained and thesis-bound nature of scientific projects,
and the continuous integration of new contributors into the
development process. Our study contributes to RSE conceptually
by identifying the dimensions of benchmarking simulation
technology and proposing a general workflow capable of coping
with the complexity, and practically by developing a reference
implementation of a benchmarking framework which can be
used to test and refine the concepts. It is too early to tell
quantitatively whether the benchmarking framework improves
the collaboration in a joint project and the communication
between researchers in the community.

The proposed framework enables benchmarking of research
software to evolve from one-off tasks of individual researchers
to a collaborative routine effort, thereby increasing the
benchmarking capacity and reducing its susceptibility to
errors. Making beNNch accessible to the community as an
open-source software puts the concept to the test. We are
looking forward to learn how the current implementation of
the framework’s components are received and adapted to other
applications. Due to the conceptual foundation and modular

25https://www.software.ac.uk/about/manifesto

Frontiers in Neuroinformatics | www.frontiersin.org 16 May 2022 | Volume 16 | Article 83754996

https://github.com/rust-lang/rustc-perf
https://github.com/IDSIA/sacred
https://www.software.ac.uk/about/manifesto
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

structure, we hope that beNNch can adjust to future requirements
and ultimately help increase the complexity and explanatory
scope of brain models. The benchmarking concepts developed in
this work are not limited to neuroscience and can be transferred
to other types of simulation research.

4. MATERIALS AND METHODS

4.1. NEST Developments
4.1.1. Brief History of NEST
The series of NEST 2.X releases includes enhancements, bug
fixes, and contributions to maintenance with only marginal
effects on the PyNEST user interface (Eppler et al., 2009).
Performance-related updates to the simulation kernel are
accomplished under the hood. The 3g kernel (Helias et al., 2012;
Kunkel et al., 2012) is in use from NEST 2.2.0 (van Albada
et al., 2015a). NEST 2.12.0 (Kunkel et al., 2017) introduces the
4g kernel (Kunkel et al., 2014) which implements novel data
structures allowing for an efficient and flexible representation
of sparse network connectivity on highly distributed computing
systems such as supercomputers. The 5g kernel (Jordan
et al., 2018) in NEST 2.16.0 (Linssen et al., 2018) continues
this direction of development toward an optimal usage of
HPC systems for large-scale simulations by disentangling the
memory usage per compute node from the total network
size. The transition from NEST 2 to NEST 3 corresponds to
a refurbishment of the simulator code which also breaks the
backwards compatibility of the user interface. While improved
high-level functionality and parameter handling are the primary
goals of this transition, the 5g kernel is supposed to remain.
In the past, performance changes due to kernel updates have
been predominantly assessed using the HPC-benchmark model.
The performance of the NEST 3.0 release candidate (“3.0rc”),
however, is in addition evaluated with the microcircuit and
multi-area model which exhibit a more complex connectivity
structure and a different distribution of synaptic delays. In this
way, so far undetected performance bottlenecks are discovered
and subsequently resolved, leading to the official release NEST

3.0 (Hahne et al., 2021).

4.1.2. Shrinking MPI Buffers
Motivated by reducing the memory footprint of the postsynaptic
infrastructure—necessary to deliver spikes to their process-
local targets—the 5g kernel of NEST 3.0rc prepares a separate
part of the MPI send buffer for each target process and only
includes the relevant spikes. Thus, each process is responsible
for sending the spikes of its neurons to all target processes
for each communication time step. NEST 3.0rc implements a
homogeneous buffer size across processes to avoid overhead
introduced by variable buffer sizes; in the latter case, each process
would need to complete two rounds of communication, one for
transmitting the size, and one for the actual spiking information.
Similarly, transmitting a certain amount of information via
sending MPI buffers is more efficient when fewer buffers—each
carrying more information—are sent. NEST 3.0rc consequently
aims to reduce the number of needed MPI buffers to only 1 by
dynamically increasing the global buffer size whenever a process

FIGURE 7 | Spike compression adds an additional indirection to post-synaptic

spike routing. Green arrow denotes original spike delivery introduced with the

5g kernel (Jordan et al., 2018, same display as their Figure 4A). Blue arrow

illustrates additional indirection with compressed spike delivery. Dashed arrows

indicate spikes from the same source neuron with target on a different thread.

cannot fit all spikes into the buffer. Specifically, every time more
than a single buffer needs to be sent by a process, NEST increases
the buffer size of the following communication step by a factor of
1.5. In this scheme, a reduction of buffer sizes is not implemented,
meaning that buffer sizes can only increase or stay constant. The
kernel of NEST 3.0rc+ShrinkBuff addresses this by introducing
the following algorithm for shrinking the global buffer size. In
each communication round in which only a single send buffer is
required, the buffer for the following round decreases by a factor
of 1.1. Even though this implementation leads to an oscillation of
buffer size for constant spiking activity, tests show that this simple
mechanism only introduces negligible cost while being robust.

4.1.3. Spike Compression
NEST’s 5g kernel (Jordan et al., 2018) introduces a two-tier
connection infrastructure for routing spikes. The connection
infrastructure consists of data structures on the presynaptic side
(the MPI process of the sending neuron) and the postsynaptic
side (the MPI process of the receiving neuron), cf. Section 2.2.3.
Communication of spikes is organized as follows: when a neuron
becomes active, its targets are retrieved from the local presynaptic
data structure. These targets represent indices of synapses in
the “thread-local” post-synaptic data structure through which
spikes are routed to the target neurons. The presynaptic side
then creates MPI buffers containing collections of such indices

Frontiers in Neuroinformatics | www.frontiersin.org 17 May 2022 | Volume 16 | Article 83754997

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

which are subsequently communicated to the postsynaptic side
via the MPI Alltoall function. To deliver spikes on the
postsynaptic side, each thread uses the received spikes to index
its local postsynaptic data structure and register a spike in the
corresponding synapse (Figure 7, “original spike delivery”). If a
presynaptic neuron has targets on multiple threads of a process,
it hence has to send multiple spikes, i.e., indices in different
thread-local data structures, to the target process.

Here, we adapt this infrastructure as follows. We introduce
an additional data structure on the post-synaptic side which
is shared across threads (“process local”). This data structure
contains, arranged by source neuron, the indices of all process-
local synapses. While the pre-synaptic part of communicating
spikes remains essentially identical, the postsynaptic part incurs
an additional indirection: each entry in the MPI receive buffer
now represents an index in the new process-local postsynaptic
data structure. Using this index, each thread can retrieve the
indices of thread-local targets, to which it can then deliver spikes
as previously (Figure 7, “compressed spike delivery”; note that
the origin of the dashed arrow changes). In contrast to the
previous implementation, each presynaptic neuron thus sends at
most one spike to each process.

In NEST 3.0, spike compression is turned on by default, but
the previous 5g behavior can be recovered by setting:
� �
nest.SetKernelStatus({"use_compressed_spikes": False})
� �

4.1.4. Neuronal Input Buffers With Multiple Channels
Simulation technology for spiking neuronal networks requires
techniques to handle synaptic transmission delays. The reference
simulation code (Section 2.2.2) follows a globally time-
driven approach: spikes are constrained to a time grid and
regularly exchanged between MPI processes using collective
communication. The time grid defines the simulation time
step for neuronal updates, whereas the minimum synaptic
delay dmin in the network model defines the communication
interval (Morrison et al., 2005a), which comprises at least
one simulation time step. In the microcircuit model and the
multi-area model used in this study the minimum delay is
0.1ms (i.e., dmin = 1 simulation time step) and in the HPC-
benchmark model it is 1.5ms (i.e., dmin = 15 simulation
time steps). While communication and subsequent process-local
delivery of spikes define interaction points between neurons,
within a communication interval each neuron independently
updates its state for all time steps without interruption. Hence,
a simulation cycle of neuronal update, spike-communication,
and spike-delivery phase propagates the network state by one
communication interval, but within each update phase neurons
propagate their state in potentially shorter simulation time steps.
All spikes emitted by the process-local neurons during such
an update are immediately transmitted during the subsequent
communication and on the receiver side delivered to their target
neurons. Hence, to account for synaptic delays, neurons cannot
immediately integrate the incoming spikes into their dynamics,
but they need to buffer the inputs until the corresponding delays
elapse. To this end, neuronsmaintain input buffers of dmin+dmax

time slots, where dmax denotes the maximum synaptic delay in
the network (Figure 8A). The relative time origin S defining

A

C

B

FIGURE 8 | Neuronal input buffers accounting for synaptic delays in

simulations of spiking neuronal networks. (A) Structure of neuronal input

buffers assuming a minimum synaptic delay dmin of three simulation time steps

and a maximum delay dmax = 2dmin. To buffer upcoming inputs during

simulation a total buffer size of dmin + dmax time slots is required, which

corresponds to three communication intervals of three simulation time steps

each. After every spike communication and subsequent spike delivery to local

targets, simulation time is advanced, meaning that the relative time origin S
of the neuronal input buffers advances by dmin time slots with a wrap-around

at the buffer end. A pre-calculated and continuously updated look-up table

maps the index relative to S to the actual buffer index. Example: The relative

time origin S is located at the fourth time slot. Synaptic delays of the inputs of

the middle buffer segment elapse with the upcoming three simulation time

steps; the neuron integrates these inputs updating its state. Spikes are then

communicated and new inputs delivered to the neuron are added to the time

slots in the last or first buffer segment depending on the delay, which is at least

dmin and at most dmax. Relative time origin S then advances to the seventh

buffer slot (not shown). (B) Original neuronal spike buffers for two input

channels (e.g., excitatory and inhibitory synaptic inputs). For each channel a

separate resizable array buffers the inputs for the upcoming time slots.

(C) Multi-channel input buffer for two input channels. A single resizable array

stores the inputs for the upcoming time slots, where for each time slot a fixed

size array holds the inputs sorted by channel.

the time slots from which to retrieve inputs during update and
the time slots for adding inputs during spike delivery advances
by dmin time slots at the end of every simulation cycle. In this
way, the time slots that were read and reset during the update
of the current cycle become available for adding new inputs
during the spike delivery in the next cycle. For cases where
the communication interval comprises multiple simulation time
steps (e.g., HPC-benchmark model), input retrieval is most
costly for the first step as the corresponding buffer entry needs
to be loaded into cache, but then benefits from the already
cached subsequent buffer entries in the subsequent steps of
the communication interval. If, however, the communication
interval consists of only one simulation step due to a very short
minimal synaptic delay (e.g., microcircuit andmulti-area model),
input retrieval is costly for every simulation step as each step
is handled in a separate simulation cycle, and hence caching of
relevant input buffer entries is rendered ineffective during the
spike communication and delivery that follows each neuronal
update phase.

Frontiers in Neuroinformatics | www.frontiersin.org 18 May 2022 | Volume 16 | Article 83754998

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

Most neuron models need to distinguish between input
channels to treat the corresponding inputs dynamically
differently, as for example, excitatory and inhibitory synaptic
inputs causing different post-synaptic responses. The original
input-buffer design required a separate resizable array per
channel storing the channel’s input values per time slot
(Figure 8B). This entailed retrieval of the input values for a
particular time step from separate locations in memory, which
amplifies the cache inefficiency during update for network
models with short minimum delays described above. To alleviate
this issue, the newly introduced input buffer allows storing the
input values for multiple channels per time slot contiguously in
fixed size arrays in a single resizable array (Figure 8C). Thus,
neurons now retrieve all input values for a particular time step
by accessing subsequent locations in memory in one pass.

DATA AVAILABILITY STATEMENT

The benchmarking framework is publicly available under https://
github.com/INM-6/beNNch. Benchmarks for this study were
performed with version 1.0 of beNNch which is available as
a release on GitHub and on Zenodo (https://doi.org/10.5281/
zenodo.6092768, Albers et al., 2022). The data sets generated and
analyzed for this study as well as the code to reproduce all figures
of this paper are available on Zenodo (https://doi.org/10.5281/
zenodo.5784633). An exemplary flip-book containing the results
shown in this work can be accessed under https://inm-6.github.
io/beNNch.

AUTHOR CONTRIBUTIONS

JA, JP, ACK, SBV, KHM,AP, DT, TT,MD, and JS: study design. JA,
JP, ACK, SBV, KHM, DT, and JS: implementation of beNNch. JA:
execution and analysis of benchmarks. JA, JP, SK, and JJ: figures.
AP and JA: implementation of shrinking MPI buffers. JJ and

JS: implementation of spike compression. SK: implementation
of neuronal input buffers with multiple channels. All authors
contributed to the writing of the manuscript and approved it
for publication.

FUNDING

This project has received funding from the European Union’s
Horizon 2020 Framework Programme for Research and
Innovation under Specific Grant Agreement No. 945539 (Human
Brain Project SGA3) andNo. 754304 (DEEP-EST); theHelmholtz
Association Initiative and Networking Fund under project
number SO-092 (Advanced Computing Architectures, ACA);
the Joint Lab Supercomputing and Modeling for the Human
Brain; the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation)—368482240/GRK2416 and 491111487;
the Helmholtz Metadata Collaboration (HMC), an incubator-
platform of the Helmholtz Association within the framework of
the Information and Data Science strategic initiative, under the
funding ZT-I-PF-3-026.

ACKNOWLEDGMENTS

We thank the members of the NEST development community
for their contributions to the concepts and implementation of
the NEST simulator, and our colleagues in the Simulation and
Data Laboratory Neuroscience of the Jülich Supercomputing
Centre for continuous collaboration. We gratefully acknowledge
the computing time granted by the JARA Vergabegremium and
provided on the JARA Partition part of the supercomputer
JURECA at Forschungszentrum Jülich (computation grant
JINB33). We acknowledge the use of Fenix Infrastructure
resources, which are partially funded from the European Union’s
Horizon 2020 research and innovation programme through the
ICEI project under the grant agreement No. 800858.

REFERENCES

Akar, N. A., Cumming, B., Karakasis, V., Küsters, A., Klijn, W., Peyser, A., et al.
(2019). “Arbor— amorphologically-detailed neural network simulation library
for contemporary high-performance computing architectures,” in 2019 27th

Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP) (Pavia: IEEE), 274–282.
Akhmerov, A., Cruz, M., Drost, N., Hof, C., Knapen, T., Kuzak, M., et al. (2019).

Raising the profile of research software. doi: 10.5281/zenodo.3378572
Albers, J., Pronold, J., Kurth, A. C., Vennemo, S. B., Haghighi, M. K., Patronis, A.,

et al. (2022). beNNch. Version 1.0. Zenedo. doi: 10.5281/zenodo.6092768
Beyeler, M., Carlson, K. D., Chou, T.-S., Dutt, N., and Krichmar, J. L. (2015).

“CARLsim 3: A user-friendly and highly optimized library for the creation of
neurobiologically detailed spiking neural networks,” in 2015 International Joint

Conference on Neural Networks (IJCNN) (Killarney: IEEE).
Bhalla, U., Bilitch, D., and Bower, J. M. (1992). Rallpacks: A set of

benchmarks for neuronal simulators. Trends Neurosci. 15, 453–458.
doi: 10.1016/0166-2236(92)90009-w

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M.,
et al. (2007). Simulation of networks of spiking neurons: a review of tools and
strategies. J. Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-0038-6

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory
and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208.
doi: 10.1023/a:1008925309027

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge:
Cambridge University Press.

Chou, T.-S., Kashyap, H. J., Xing, J., Listopad, S., Rounds, E. L., Beyeler, M., et al.
(2018). “CARLsim 4: An open source library for large scale, biologically detailed
spiking neural network simulation using heterogeneous clusters,” in 2018

International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro.
Crook, S. M., Davison, A. P., and Plesser, H. E. (2013). “Learning from the past:

approaches for reproducibility in computational neuroscience,” in 20 Years of

Computational Neuroscience, Springer Series in Computational Neuroscience,
ed J. Bower (New York, NY: Springer), 73–102.

Dai, W., and Berleant, D. (2019). “Benchmarking contemporary deep learning
hardware and frameworks: a survey of qualitative metrics,” in 2019 IEEE

First International Conference on Cognitive Machine Intelligence (CogMI) (Los
Angeles, CA).

Davison, A., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski,
D., et al. (2009). PyNN: a common interface for neuronal network
simulators. Front. Neuroinform. 2:10. doi: 10.3389/neuro.11.011.
2008

Frontiers in Neuroinformatics | www.frontiersin.org 19 May 2022 | Volume 16 | Article 83754999

https://github.com/INM-6/beNNch
https://github.com/INM-6/beNNch
https://doi.org/10.5281/zenodo.6092768
https://doi.org/10.5281/zenodo.6092768
https://doi.org/10.5281/zenodo.5784633
https://doi.org/10.5281/zenodo.5784633
https://inm-6.github.io/beNNch
https://inm-6.github.io/beNNch
https://doi.org/10.5281/zenodo.3378572
https://doi.org/10.5281/zenodo.6092768
https://doi.org/10.1016/0166-2236(92)90009-w
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1023/a:1008925309027
https://doi.org/10.3389/neuro.11.011.2008
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

Diesmann, M., and Gewaltig, M.-O. (2002). “NEST: an environment for neural
systems simulations,” in Forschung und Wisschenschaftliches Rechnen, Beiträge

zum Heinz-Billing-Preis 2001, eds T. Plesser and V. Macho (Göttingen: Ges. für
Wiss. Datenverarbeitung), 43–70.

Dongarra, J. J., Luszczek, P., and Petitet, A. (2003). The LINPACKbenchmark: past,
present and future. Concurr. Comput. 15, 803–820. doi: 10.1002/cpe.728

Einevoll, G. T., Destexhe, A., Diesmann, M., Grün, S., Jirsa, V., de Kamps, M.,
et al. (2019). The scientific case for brain simulations. Neuron 102, 735–744.
doi: 10.1016/j.neuron.2019.03.027

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M. (2009).
PyNEST: a convenient interface to the NEST simulator. Front. Neuroinform.

2:12. doi: 10.3389/neuro.11.012.2008
Fardet, T., Vennemo, S. B., Mitchell, J., Mork, H., Graber, S., Hahne, J., et al. (2021).

NEST 2.20.2, Version 2.20.2. Zenedo. doi: 10.5281/zenodo.5242954
Furber, S., Galluppi, F., Temple, S., and Plana, L. (2014). The SpiNNaker Project.

Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638
Gamblin, T., LeGendre, M., Collette, M. R., Lee, G. L., Moody, A., de Supinski,

B. R., et al. (2015). “The spack package manager,” in Proceedings of the

International Conference for High Performance Computing, Networking, Storage

and Analysis (ACM). doi: 10.1145/2807591.2807623
Geimer, M., Hoste, K., and McLay, R. (2014). “Modern scientific software

management using EasyBuild and lmod,” in 2014 First International Workshop

on HPC User Support Tools (New Orleans, LA,).
Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural simulation tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430
Gleeson, P., Cantarelli, M., Marin, B., Quintana, A., Earnshaw, M., Sadeh, S.,

et al. (2019). Open source brain: a collaborative resource for visualizing,
analyzing, simulating, and developing standardized models of neurons and
circuits. Neuron 103, 395–411.e5. doi: 10.1016/j.neuron.2019.05.019

Golosio, B., Tiddia, G., Luca, C. D., Pastorelli, E., Simula, F., and Paolucci, P. S.
(2021). Fast simulations of highly-connected spiking cortical models using
GPUs. Front. Comput. Neurosci. 15:627620. doi: 10.3389/fncom.2021.627620

Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks
in python. Front. Neuroinform. 2:8. doi: 10.3389/neuro.11.005.2008

Gutzen, R., von Papen, M., Trensch, G., Quaglio, P., Grün, S., and Denker, M.
(2018). Reproducible neural network simulations: statistical methods for model
validation on the level of network activity data. Front. Neuroinform. 12:90.
doi: 10.3389/fninf.2018.00090

Hager, G., andWellein, G. (2010). Introduction to High Performance Computing for

Scientists and Engineers, 1st Edn. New York, NY: CRC Press.
Hahne, J., Diaz, S., Patronis, A., Schenck, W., Peyser, A., Graber, S., et al. (2021).

NEST 3.0. Zenedo. doi: 10.5281/zenodo.4739103
Helias, M., Kunkel, S., Masumoto, G., Igarashi, J., Eppler, J. M., Ishii, S., et al.

(2012). Supercomputers ready for use as discovery machines for neuroscience.
Front. Neuroinform. 6:26. doi: 10.3389/fninf.2012.00026

Huber, S. P., Zoupanos, S., Uhrin, M., Talirz, L., Kahle, L., Häuselmann,
R., et al. (2020). Aiida 1.0, a scalable computational infrastructure for
automated reproducible workflows and data provenance. Sci. Data 7, 1–18.
doi: 10.1038/s41597-020-00638-4

Hunter, J. D. (2007). Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9,
90–95. doi: 10.1109/MCSE.2007.55

INCF Secretariat, Djurfeldt, M., and Lansner, A. (2018). “1st INCF Workshop

on Large-Scale Modeling of the Nervous System.” Stockholm: F1000 Research
Limited. doi: 10.7490/F1000RESEARCH.1116028.1

Ippen, T., Eppler, J. M., Plesser, H. E., and Diesmann, M. (2017). Constructing
neuronal network models in massively parallel environments. Front.

Neuroinform. 11:30. doi: 10.3389/fninf.2017.00030
Izhikevich, E. (2003). Simple model of spiking neurons. IEEE Trans. Neural Netw.

14, 1569–1572. doi: 10.1109/TNN.2003.820440
Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018).

Extremely scalable spiking neuronal network simulation code: from laptops to
exascale computers. Front. Neuroinform. 12:2. doi: 10.3389/fninf.2018.00002

Jülich Supercomputing Centre (2015). JUQUEEN: IBM Blue Gene/Q®

Supercomputer System. Jülich Supercomputing Centre.
Knight, J. C., Komissarov, A., and Nowotny, T. (2021). PyGeNN: A python

library for GPU-enhanced neural networks. Front. Neuroinform. 15:5.
doi: 10.3389/fninf.2021.659005

Knight, J. C., and Nowotny, T. (2018). GPUs outperform current HPC
and neuromorphic solutions in terms of speed and energy when
simulating a highly-connected cortical model. Front. Neurosci. 12:941.
doi: 10.3389/fnins.2018.00941

Knight, J. C., and Nowotny, T. (2021). Larger GPU-accelerated brain
simulations with procedural connectivity. Nat. Comput. Sci. 1, 136–142.
doi: 10.1038/s43588-020-00022-7

Kunkel, S., Morrison, A., Weidel, P., Eppler, J. M., Sinha, A., Schenck, W., et al.
(2017). NEST 2.12.0. Zenedo. doi: 10.5281/zenodo.259534

Kunkel, S., Potjans, T. C., Eppler, J. M., Plesser, H. E., Morrison, A.,
and Diesmann, M. (2012). Meeting the memory challenges of brain-
scale simulation. Front. Neuroinform. 5:35. doi: 10.3389/fninf.2011.
00035

Kunkel, S., and Schenck, W. (2017). The NEST dry-run mode:
efficient dynamic analysis of neuronal network simulation
code. Front. Neuroinform. 11:40. doi: 10.3389/fninf.2017.
00040

Kunkel, S., Schmidt, M., Eppler, J. M., Masumoto, G., Igarashi, J., Ishii, S.,
et al. (2014). Spiking network simulation code for petascale computers. Front.
Neuroinform. 8:78. doi: 10.3389/fninf.2014.00078

Kurth, A. C., Senk, J., Terhorst, D., Finnerty, J., and Diesmann, M. (2021). Sub-
realtime simulation of a neuronal network of natural density. Neural. Comput.

Eng. doi: 10.1088/2634-4386/ac55fc
Linssen, C., Lepperod, M. E., Mitchell, J., Pronold, J., Eppler, J. M., Keup, C., et al.

(2018). NEST 2.16.0. Zenedo. doi: 10.5281/zenodo.1400175
Lytton, W. W., Seidenstein, A. H., Dura-Bernal, S., McDougal, R. A., Schürmann,

F., and Hines, M. L. (2016). Simulation neurotechnologies for advancing
brain research: parallelizing large networks in NEURON. Neural Comput. 28,
2063–2090. doi: 10.1162/neco_a_00876

Mattson, P., Cheng, C., Diamos, G., Coleman, C., Micikevicius, P., Patterson,
D., et al. (2020). “MLPerf training benchmark,” in Proceedings of Machine

Learning and Systems, Vol. 2, eds I. Dhillon, D. Papailiopoulos, and V. Sze,
336–349. Available online at: https://proceedings.mlsys.org/paper/2020/file/
02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf

McDougal, R. A., Bulanova, A. S., and Lytton, W. W. (2016). Reproducibility
in computational neuroscience models and simulations. IEEE

Trans. Biomed. Eng. 63, 2021–2035. doi: 10.1109/TBME.2016.25
39602

Message Passing Interface Forum (2009). MPI: A Message-Passing Interface

Standard, Version 2.2. Technical Report, Knoxville, TN, United States.
Migliore, M., Cannia, C., Lytton, W. W., Markram, H., and Hines, M. (2006).

Parallel network simulations with NEURON. J. Comput. Neurosci. 21, 119–223.
doi: 10.1007/s10827-006-7949-5

Miyazaki, H., Kusano, Y., Shinjou, N., Fumiyoshi, S., Yokokawa, M., and
Watanabe, T. (2012). Overview of the K computer System. Fujitsu Sci. Techn. J.
48, 255–265.

Monteforte, M., and Wolf, F. (2010). Dynamical entropy production in
spiking neuron networks in the balanced state. Phys. Rev. Lett. 105:268104.
doi: 10.1103/PhysRevLett.105.268104

Morrison, A., Hake, J., Straube, S., Plesser, H. E., and Diesmann, M. (2005a).
“Precise spike timing with exact subthreshold integration in discrete time
network simulations,” in Proceedings of the 30th Göttingen Neurobiology

Conference, 205B, Göttingen.
Morrison, A., Mehring, C., Geisel, T., Aertsen, A., and Diesmann, M.

(2005b). Advancing the boundaries of high connectivity network
simulation with distributed computing. Neural Comput. 17, 1776–1801.
doi: 10.1162/0899766054026648

Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., and Veidenbaum, A. V.
(2009). A configurable simulation environment for the efficient simulation of
large-scale spiking neural networks on graphics processors. Neural Netw. 22,
791–800. doi: 10.1016/j.neunet.2009.06.028

Oliver, H. J., Shin, M., Sanders, O., Fitzpatrick, B., Clark, A., Dutta, R., et
al. (2021). cylc/cylc-flow: cylc-flow-8.0b3. Zenedo. doi: 10.5281/zenodo.566
8823

OpenMP Architecture Review Board (2008). OpenMP Application Program

Interface. Available online at: http://www.openmp.org/mp-documents/spec30.
pdf (accessed September 27, 2016).

Frontiers in Neuroinformatics | www.frontiersin.org 20 May 2022 | Volume 16 | Article 837549100

https://doi.org/10.1002/cpe.728
https://doi.org/10.1016/j.neuron.2019.03.027
https://doi.org/10.3389/neuro.11.012.2008
https://doi.org/10.5281/zenodo.5242954
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1016/j.neuron.2019.05.019
https://doi.org/10.3389/fncom.2021.627620
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.3389/fninf.2018.00090
https://doi.org/10.5281/zenodo.4739103
https://doi.org/10.3389/fninf.2012.00026
https://doi.org/10.1038/s41597-020-00638-4
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.7490/F1000RESEARCH.1116028.1
https://doi.org/10.3389/fninf.2017.00030
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.3389/fninf.2021.659005
https://doi.org/10.3389/fnins.2018.00941
https://doi.org/10.1038/s43588-020-00022-7
https://doi.org/10.5281/zenodo.259534
https://doi.org/10.3389/fninf.2011.00035
https://doi.org/10.3389/fninf.2017.00040
https://doi.org/10.3389/fninf.2014.00078
https://doi.org/10.1088/2634-4386/ac55fc
https://doi.org/10.5281/zenodo.1400175
https://doi.org/10.1162/neco_a_00876
https://proceedings.mlsys.org/paper/2020/file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf
https://doi.org/10.1109/TBME.2016.2539602
https://doi.org/10.1007/s10827-006-7949-5
https://doi.org/10.1103/PhysRevLett.105.268104
https://doi.org/10.1162/0899766054026648
https://doi.org/10.1016/j.neunet.2009.06.028
https://doi.org/10.5281/zenodo.5668823
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Albers et al. beNNch: Benchmarking Neuronal Network Simulations

Ostrau, C., Klarhorst, C., Thies, M., and Rückert, U. (2020). “Benchmarking
of neuromorphic hardware systems,” in NICE ’20: Proceedings of

the Neuro-inspired Computational Elements Workshop, Heidelberg.
doi: 10.1145/3381755.3381772

Pauli, R., Weidel, P., Kunkel, S., and Morrison, A. (2018). Reproducing
polychronization: a guide to maximizing the reproducibility of spiking network
models. Front. Neuroinform. 12:46. doi: 10.3389/fninf.2018.00046

Pfeil, T., Grübl, A., Jeltsch, S., Müller, E., Müller, P., Petrovici, M. A., et al.
(2013). Six networks on a universal neuromorphic computing substrate. Front.
Neurosci. 7:11. doi: 10.3389/fnins.2013.00011

Plesser, H. E., Eppler, J. M., Morrison, A., Diesmann, M., and Gewaltig, M.-
O. (2007). “Efficient parallel simulation of large-scale neuronal networks on
clusters of multiprocessor computers,” in Euro-Par 2007: Parallel Processing,

Vol. 4641 of Lecture Notes in Computer Science, eds A.-M. Kermarrec, L. Bougé,
and T. Priol (Berlin: Springer-Verlag), 672–681.

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical
microcircuit: relating structure and activity in a full-scale spiking network
model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358

Pronold, J., Jordan, J., Wylie, B. J. N., Kitayama, I., Diesmann, M., and Kunkel, S.
(2021). Routing brain traffic through the von Neumann bottleneck: Efficient
cache usage in spiking neural network simulation code on general purpose
computers. arXiv [Preprint]. arXiv: 2109.12855. Available online at: https://
arxiv.org/pdf/2109.12855.pdf (accessed March 11, 2022).

Pronold, J., Jordan, J., Wylie, B. J. N., Kitayama, I., Diesmann, M., and
Kunkel, S. (2022). Routing brain traffic through the Von Neumann
bottleneck: Parallel sorting and refactoring. Front. Neuroinform. 15:785068.
doi: 10.3389/fninf.2021.785068

Rhodes, O., Peres, L., Rowley, A. G. D., Gait, A., Plana, L. A., Brenninkmeijer, C.,
et al. (2019). Real-time cortical simulation on neuromorphic hardware. Philos.
Trans. R. Soc. A 378:20190160. doi: 10.1098/rsta.2019.0160

Richert, M., Nageswaran, J. M., Dutt, N., and Krichmar, J. L. (2011). An efficient
simulation environment for modeling large-scale cortical processing. Front.
Neuroinform. 5:19. doi: 10.3389/fninf.2011.00019

Rougier, N. P., Hinsen, K., Alexandre, F., Arildsen, T., Barba, L. A., Benureau, F. C.,
et al. (2017). Sustainable computational science: the ReScience initiative. PeerJ
Comput. Sci. 3:e142. doi: 10.7717/peerj-cs.142

Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., and Millner, S.
(2010). “A wafer-scale neuromorphic hardware system for large-scale neural
modeling,” in Proceedings of the 2010 International Symposium on Circuits and

Systems (ISCAS) (Paris: IEEE Press), 1947–1950.
Schmidt, M., Bakker, R., Hilgetag, C. C., Diesmann, M., and van Albada,

S. J. (2018a). Multi-scale account of the network structure of macaque
visual cortex. Brain Struct Funct. 223, 1409–1435. doi: 10.1007/s00429-017-
1554-4

Schmidt, M., Bakker, R., Shen, K., Bezgin, G., Diesmann, M., and van Albada, S. J.
(2018b). A multi-scale layer-resolved spiking network model of resting-state
dynamics in macaque visual cortical areas. PLOS Comput. Biol. 14:e1006359.
doi: 10.1371/journal.pcbi.1006359

Senk, J., Yegenoglu, A., Amblet, O., Brukau, Y., Davison, A., Lester, D. R.,
et al. (2017). “A collaborative simulation-analysis workflow for computational
neuroscience using HPC,” in High-Performance Scientific Computing, JHPCS

2016, Vol. 10164 of Lecture Notes in Computer Science, eds E. Di Napoli, M.-A.
Hermanns, H. Iliev, A. Lintermann, and A. Peyser (Cham: Springer), 243–256.
doi: 10.1007/978-3-319-53862-4_21

Sompolinsky, H., Crisanti, A., and Sommers, H. J. (1988). Chaos in random neural
networks. Phys. Rev. Lett. 61, 259–262. doi: 10.1103/PhysRevLett.61.259

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and
efficient neural simulator. eLife 8:47314. doi: 10.7554/elife.47314

Stimberg, M., Goodman, D. F. M., and Nowotny, T. (2020). Brian2GeNN:
accelerating spiking neural network simulations with graphics hardware. Sci.
Rep. 10:410. doi: 10.1038/s41598-019-54957-7

Thörnig, P., and von St. Vieth, B. (2021). JURECA: data centric and
booster modules implementing the modular supercomputing architecture
at Jülich supercomputing centre. J. Large Scale Res. Facil. 7:A182.
doi: 10.17815/jlsrf-7-182

van Albada, S., Chindemi, G., Deger, M., Diesmann, M., Djurfeldt, M., Enger, H.,
et al. (2015a). NEST 2.2.0. Zenedo. doi: 10.5281/zenodo.5772624

van Albada, S. J., Helias, M., and Diesmann, M. (2015b). Scalability of
asynchronous networks is limited by one-to-one mapping between
effective connectivity and correlations. PLOS Comput. Biol. 11:e1004490.
doi: 10.1371/journal.pcbi.1004490

van Albada, S. J., Kunkel, S., Morrison, A., and Diesmann, M. (2014).
“Integrating brain structure and dynamics on supercomputers,” in Brain-

Inspired Computing, eds L. Grandinetti, T. Lippert, and N. Petkov (Cham:
Springer), 22–32.

van Albada, S. J., Pronold, J., van Meegen, A., and Diesmann, M. (2021). “Usage
and scaling of an open-source spiking multi-area model of monkey cortex,”
in Brain-Inspired Computing. Lecture Notes in Computer Science (Cetraro:
Springer International Publishing), 47–59.

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M.,
Stokes, A. B., et al. (2018). Performance comparison of the digital
neuromorphic hardware SpiNNaker and the neural network simulation
software NEST for a full-scale cortical microcircuit model. Front. Neurosci.
12:291. doi: 10.3389/fnins.2018.00291

van Vreeswijk, C., and Sompolinsky, H. (1998). Chaotic balanced state
in a model of cortical circuits. Neural Comput. 10, 1321–1371.
doi: 10.1162/089976698300017214

Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a code generation framework
for accelerated brain simulations. Sci. Rep. 6:18854. doi: 10.1038/srep18854

Yoo, A. B., Jette, M. A., and Grondona, M. (2003). “Slurm: simple linux utility for
resource management,” in Job Scheduling Strategies for Parallel Processing, eds
D. Feitelson, L. Rudolph, and U. Schwiegelshohn (Berlin; Heidelberg: Springer
Berlin Heidelberg), 44–60.

Zaytsev, Y. V., and Morrison, A. (2014). CyNEST: a maintainable Cython-
based interface for the NEST simulator. Front. Neuroinform. 8:23.
doi: 10.3389/fninf.2014.00023

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Albers, Pronold, Kurth, Vennemo, Haghighi Mood, Patronis,

Terhorst, Jordan, Kunkel, Tetzlaff, Diesmann and Senk. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 21 May 2022 | Volume 16 | Article 837549101

https://doi.org/10.1145/3381755.3381772
https://doi.org/10.3389/fninf.2018.00046
https://doi.org/10.3389/fnins.2013.00011
https://doi.org/10.1093/cercor/bhs358
https://arxiv.org/pdf/2109.12855.pdf
https://arxiv.org/pdf/2109.12855.pdf
https://doi.org/10.3389/fninf.2021.785068
https://doi.org/10.1098/rsta.2019.0160
https://doi.org/10.3389/fninf.2011.00019
https://doi.org/10.7717/peerj-cs.142
https://doi.org/10.1007/s00429-017-1554-4
https://doi.org/10.1371/journal.pcbi.1006359
https://doi.org/10.1007/978-3-319-53862-4_21
https://doi.org/10.1103/PhysRevLett.61.259
https://doi.org/10.7554/elife.47314
https://doi.org/10.1038/s41598-019-54957-7
https://doi.org/10.17815/jlsrf-7-182
https://doi.org/10.5281/zenodo.5772624
https://doi.org/10.1371/journal.pcbi.1004490
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.1162/089976698300017214
https://doi.org/10.1038/srep18854
https://doi.org/10.3389/fninf.2014.00023
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

ORIGINAL RESEARCH
published: 17 May 2022

doi: 10.3389/fninf.2022.847108

Frontiers in Neuroinformatics | www.frontiersin.org 1 May 2022 | Volume 16 | Article 847108

Edited by:

James Courtney Knight,

University of Sussex, United Kingdom

Reviewed by:

Vincenzo Marra,

University of Leicester,

United Kingdom

Dimiter Prodanov,

Interuniversity Microelectronics Centre

(IMEC), Belgium

Iain Hepburn,

Okinawa Institute of Science and

Technology Graduate University,

Japan

*Correspondence:

Robert A. McDougal

robert.mcdougal@yale.edu

Received: 01 January 2022

Accepted: 20 April 2022

Published: 17 May 2022

Citation:

McDougal RA, Conte C, Eggleston L,

Newton AJH and Galijasevic H (2022)

Efficient Simulation of 3D

Reaction-Diffusion in Models of

Neurons and Networks.

Front. Neuroinform. 16:847108.

doi: 10.3389/fninf.2022.847108

Efficient Simulation of 3D
Reaction-Diffusion in Models of
Neurons and Networks
Robert A. McDougal 1,2,3*, Cameron Conte 2,4,5, Lia Eggleston 6, Adam J. H. Newton 1,2,7 and

Hana Galijasevic 6

1Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States, 2Center for Medical Informatics,

Yale University, New Haven, CT, United States, 3 Program in Computational Biology and Bioinformatics, Yale University,

New Haven, CT, United States, 4Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States,
5Department of Statistics, The Ohio State University, Columbus, OH, United States, 6 Yale College, Yale University,

New Haven, CT, United States, 7Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University,

New York, NY, United States

Neuronal activity is the result of both the electrophysiology and chemophysiology. A

neuron can be well-represented for the purposes of electrophysiological simulation as a

tree composed of connected cylinders. This representation is also apt for 1D simulations

of their chemophysiology, provided the spatial scale is larger than the diameter of the

cylinders and there is radial symmetry. Higher dimensional simulation is necessary to

accurately capture the dynamics when these criteria are not met, such as with wave

curvature, spines, or diffusion near the soma. We have developed a solution to enable

efficient finite volume method simulation of reaction-diffusion kinetics in intracellular

3D regions in neuron and network models and provide an implementation within the

NEURON simulator. An accelerated version of the CTNG 3D reconstruction algorithm

transforms morphologies suitable for ion-channel based simulations into consistent 3D

voxelized regions. Kinetics are then solved using a parallel algorithm based on Douglas-

Gunn that handles the irregular 3D geometry of a neuron; these kinetics are coupled to

NEURON’s 1D mechanisms for ion channels, synapses, pumps, and so forth. The 3D

domain may cover the entire cell or selected regions of interest. Simulations with dendritic

spines and of the soma reveal details of dynamics that would be missed in a pure 1D

simulation. We describe and validate the methods and discuss their performance.

Keywords: reaction-diffusion, computer simulation, 3D, multi-scale modeling, reusability

INTRODUCTION

The brain’s behavior in health and disease is most naturally observed at the level of functional
outcomes, but these outcomes are often indirect consequences of subcellular chemical kinetics (e.g.,
oxygen and ATP in stroke; amyloid beta and tau in Alzheimer’s Disease). The connection between
these two scales is non-intuitive due to the many nonlinear-interactions within the brain (e.g.,
action potentials, networks). Dedicated tools like MCell (RRID:SCR_007307; Stiles et al., 1998) and
STEPS (RRID:SCR_008742; Hepburn et al., 2012) enable highly-detailed 3D simulation of parts
of neurons to entire cells, enabling the study of microdomains (see e.g., Keller et al., 2008) and
other highly localized phenomena but with limited ability to extend to the full cell or a network of
neurons to study the implications of these localized dynamics on a broader scale.

102

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.847108
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.847108&domain=pdf&date_stamp=2022-05-17
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:robert.mcdougal@yale.edu
https://doi.org/10.3389/fninf.2022.847108
https://www.frontiersin.org/articles/10.3389/fninf.2022.847108/full
https://https://scicrunch.org/resolver/RRID:SCR_007307

McDougal et al. Efficient 3D Reaction-Diffusion Simulation

The NEURON simulator (RRID:SCR_005393; Hines et al.,
2019) has long supported simultaneous simulation of chemical
dynamics and networks of neurons, originally through re-
purposing MOD files—traditionally used for ion channel
kinetics—and later through the introduction of a dedicated
Python-based reaction-diffusion specification (McDougal R.A.
et al., 2013). These early methods were most applicable to
phenomena that behave analogously to electrical signaling, such
as when a wave of elevated calcium concentration spreads over
a large region of the dendritic tree (e.g., Neymotin et al., 2015).
Even for these large scale phenomena, a 1D approximation of
the tree (so called despite the cell’s branching structure because
concentration and voltage states are governed by differential
equations only on the interior of non-branching sections,
with conservation laws governing the branch points) breaks
down in regions where the cell is not radially symmetric (e.g.,
the predicted curvature of a calcium wave front where the
dendrite meets the soma) and is inappropriate for smaller scale
phenomena on the same spatial scale as the dendrite diameter
(e.g., diffusion between neighboring spines); see the examples in
the results section.

We have developed a set of approaches with implementations
freely available in the development version of NEURON—
to efficiently address the need to incorporate 3D intracellular
dynamics for subcellular compartments, whole cell and network
models. Combining local discretizations and preserving segment
mappings accelerates the Constructive Tessellated Neuronal
Geometry algorithm (CTNG; McDougal R. et al., 2013) for
generating a 3D volume consistent with a neuron point-and-
diameter 3D reconstruction, of the sort available via, e.g.,
NeuroMorpho.Org (RRID:SCR_002145; Ascoli et al., 2007).
Reaction-diffusion (rxd) kinetics are specified as for 1D
simulations, with selected regions of interest simulated selected
for 3D simulation via a single line function call, while other
parts simulated in 1D. The 3D regions of interest are voxelized
(meshed into cubic voxels) and any overlapping 3D regions are
connected together and with neighboring 1D regions. Threaded,
deterministic simulation is enabled using an irregular boundary
extension of Newton et al. (2018)’s operator-splitting parallelized
Douglas-Gunn Alternating Direction Implicit method (Douglas
and Gunn, 1964). Ion channel activity is based on concentrations
at the surface of the cell, and ions enter the cell through the
surface voxels. Single cell results are validated by comparison to
analytic solutions, by comparison of 3D results with other tools,
and by comparison of hybrid 1D-3D simulations with pure 3D
simulations.

METHODS

Methods and results are described for a development version
of NEURON 8.1, although the initial version of most of these
methods was introduced in NEURON 7.7. The source code
is available at github.com/neuronsimulator/nrn, installers for
major platforms are available at neuron.yale.edu, and NEURON
can also be installed for linux and macOS via pip install
neuron. The voxelization algorithm is written in a mix of

Python, Cython, and C/C++. The interface code is written
in Python. For performance reasons, all NEURON reaction-
diffusion code used during an active simulation is written in
C/C++.

For analyses requiring many simulations, simulation
and visualization were split into separate scripts with each
simulation’s data stored in a SQLite database. To be robust
against the possibility of interrupted calculation, simulation
scripts checked the database to see if a given set of parameters
had already been tested before running the simulation. Graphs
were rendered using plotly (for 3D images), plotnine/ggplot, and
matplotlib.

Python code for all figures in this manuscript is available
on ModelDB (RRID:SCR_007271; McDougal et al., 2017) at
modeldb.yale.edu/267018.

Voxelization
3D simulation requires the specification of a 3D domain, typically
defined by a mesh (e.g., in VCell; RRID:SCR_007421) or a
boundary (e.g., MCell, Smoldyn). Neuron morphologies, by
contrast, are typically reconstructed using a series of (x, y, z; d)
optical measurements with tree-structured connectivity rooted
at the soma, which is sometimes a special case with an outline,
typically in 2D. (A neuron’s morphology is a graph-theoretic tree
in the sense that every non-root section has exactly one parent
section, namely the connecting section that is closer to the root.)
This information is sufficient for electrophysiology simulation
where the space constant is typically on the order of tens of
microns, but under-determines the 3D structure for chemical
simulation. Several algorithms have been proposed to generate
consistent geometries, including our Constructive Tessellated
Neuronal Geometries (CTNG) algorithm (McDougal R. et al.,
2013) and others (e.g., Lasserre et al., 2011; Mörschel et al., 2017).
The full CTNGmethod is described in our previous paper, but in
brief consecutive point-diameter measurements are interpreted
as defining the frustum of a right circular cone. Neighboring
frusta are joined using clip spheres, with a clipping rule that
depends on the taper of frustra and the angle of intersection.
Soma outlines are approximated using sheared frusta with
dendrites attached to the soma extended to the soma axis to
avoid any gaps from the assumption of local radial symmetry
given a 2D soma outline. NEURON’s Import3D tool stores soma
outline points in a Python dictionary; these soma outlines are not
used in pure electrophysiology simulations, but the voxelization
algorithm checks each section against the dictionary to see if it
should be treated as a sequence of frusta or if there is a 2D outline
to use.

To accelerate CTNG voxelization and to facilitate its use in
simulations incorporating one-dimensional electrophysiology
dynamics, we enhanced the original implementation in
several ways: (1) additional interpolated points are inserted at
electrophysiological compartment (“segment” in NEURON)
boundaries so every frusta belongs to exactly one compartment;
(2) each electrical compartment is voxelized separately, thus
preserving the relationship between voxels and electrical
compartments; (3) each frusta and joining sphere is voxelized
separately, exploiting convexity to rapidly identify all the

Frontiers in Neuroinformatics | www.frontiersin.org 2 May 2022 | Volume 16 | Article 847108103

https://NeuroMorpho.Org
https://https://scicrunch.org/resolver/RRID:SCR_002145
https://https://scicrunch.org/resolver/RRID:SCR_007271
https://modeldb.yale.edu/267018
https://https://scicrunch.org/resolver/RRID:SCR_007421
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

McDougal et al. Efficient 3D Reaction-Diffusion Simulation

relevant voxels; and (4) voxelized meshes are merged together,
with voxels being assigned to the segment closest to the root of
the electrophysiological tree (typically the soma).

In CTNG, the constructed 3D volume of the neuron is the
union of frusta and spheres clipped by planes. These component
objects are voxelized using a modified flood-fill algorithm,
starting from the center of an end-face for a frustum or the center
of the sphere. In the case of a clipped sphere with a small angle,
the resulting wedge may be very small, causing all corners of the
voxel to be outside. In this case, additional points in the sphere
are tested until a voxel is found with at least one interior corner;
this voxel is then used as the seed for the flood-fill. Since the
spheres serve to smooth the joins between neighboring frusta, in
practice they comprise a small percentage of the total voxels, so
this search introduces minimal overhead.

The flood fill is propagated through the surface of the shape
as much as possible, using the convexity of the objects to
automatically fill in interior voxels between two surface points.
This is done by traversing rows of voxels perpendicular to the
y, z plane. No matter the orientation of the object, any row of
voxels that contains part of the object contains one or more
surface voxels at each endpoint of the row’s intersection with the
object. The modified flood fill calculates these endpoints along
with any additional surface voxels in the row, and then fills in
any non-surface voxels between the endpoints as interior voxels.
To find all the rows intersecting the object, the flood fill searches
all the rows bordering an intersecting row, using the endpoints
of the original row as “guesses” to retain information about
the surface and expedite finding endpoints for the surrounding
rows. The signed distance to each surface voxel corner is also
computed and stored throughout the flood fill; as in the original
CTNG implementation, these signed distances are supplied to
the marching cubes algorithm (Lorensen and Cline, 1987) to
approximate the surface with a triangular mesh.

To approximate the surface, the marching cubes algorithm
requires that at least one corner of a voxel containing the surface
be outside the object and at least one corner be inside. NEURON
generates a warning suggesting a smaller dx (the length of a
voxel edge) if any frustum length or diameter is less than the
largest distance that fits within a voxel (

√
3 dx). Some publicly

available reconstructions are sampled with very little distance
between the 3D points, leading to a very small suggested value
of dx and as noted in McDougal R. et al. (2013), sometimes
a bumpy 3D reconstruction; in this case, subsampling the 3D
points before loading themorphology intoNEURON avoids both
the bumpiness and the recommendation of a small dx. The extra
segment boundaries added by a very high (per unit length) value
of nseg (the number of electrical compartments in a section)
can produce a similar effect; in this case, the solution is to reduce
nseg to a value appropriate for the electrical space constant. In
NEURON, an appropriate choice of nseg can be determined for
each section based on the so-called d_lambda rule (Hines and
Carnevale, 2001).

The areas of the triangles in the surface mesh are summed
to estimate surface area, and the portion of each surface voxel
inside the object is estimated to be the fraction of test points
inside the object. As the voxel has been identified as a surface

voxel, at least one corner is inside, and thus the volume estimate
will never be 0. Test points are sampled on a uniform grid in
1 + options.ics_partial_volume_resolution steps
in each direction along the voxels edge, starting and ending at
a voxel corner. NEURON versions 7.7–8.0 used an alternative
rule for estimating partial volumes using dynamic subsampling,
however the approach described above and used beginning in
NEURON 8.1 is simpler and provides better scaling.

As neurons occupy a small fraction of the volume of their
bounding box (1.498± 3.406%) for the neurons in Section voxels
are stored as a set of locations (i, j, k) within an imaginary grid
comprising a padded bounding box. Thus, memory usage to store
the discretization is proportional to the volume of the neuron
not to the volume of the bounding box. Likewise, NEURON’s
simulation times scale proportionally to the number of voxels in
the cell, not the number of voxels in the bounding box.

Discretization into a 3D grid happens as needed, allowing
interactive changes to grid hyperparameters and morphology
without the overhead of re-voxelizing the cell. The mesh is
typically generated on the first request for a pointer (e.g., for
recording concentration at a point), or when the simulation
is initialized. NEURON’s internal counters for structure or
diameter changes are monitored for subsequent changes at
each initialization, pointer request, or simulation step, and the
morphology is re-discretized if needed; such re-discretization is
expected to be rare in practice as NEURON models typically
assume cells do not change shape or size during simulation.

Model Specification
Reaction-Diffusion Kinetics
NEURON’s basic reaction-diffusion model specification,
introduced in McDougal R.A. et al. (2013), is independent
of numerical simulation details such as whether the
model is to be simulated in 1D or 3D. Readers are
directed to the 2013 paper or for a more complete and
updated treatment to the relevant section of the online
NEURON documentation (nrn.readthedocs.io/en/latest/rxd-
tutorials) for full details, but in brief: domains of a cell
are specified in Python using rxd.Region, chemical
species and their properties using rxd.Species, and
chemical reactions using rxd.Reaction, rxd.Rate,
or rxd.MultiCompartmentReaction. The classes
rxd.Parameter and rxd.State allow fixed values
that change with location and non-diffusing state variables,
respectively. Dynamics at a specific point (e.g., localized pump)
are specified using node.include_flux where node
represents the spatial compartment and the flux is measured in
changes in mass. Using mass changes instead of concentration
changes allows the same amount of a substance to enter the
cell regardless of the spatial discretization. To specify that
all reaction-diffusion kinetics should be simulated in 3D, call
rxd.set_solve_type(dimension=3).

NEURON automatically translates the Python kinetics
specification into C and compiles them for use during simulation
as described in Newton et al. (2018).

Frontiers in Neuroinformatics | www.frontiersin.org 3 May 2022 | Volume 16 | Article 847108104

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

McDougal et al. Efficient 3D Reaction-Diffusion Simulation

Boundary Conditions
Flux across the plasma membrane (the boundary of the 3D
intracellular simulation region) is assumed to be fully defined
by explicitly modeled mechanisms such as ion channels and
pumps; if there are no such mechanisms defined, the boundary
is assumed to be fully reflective (no flux). For compatibility
with 1D simulation, no special 3D boundary condition syntax is
introduced. Instead, all plasma membrane spanning mechanisms
may be described in NMODL (Hines and Carnevale, 2000),
NeuroML/LEMS and translated to NMODL via jNeuroML
(Cannon et al., 2014), NEURON’s ChannelBuilder tool, or a
rxd.MultiCompartmentReaction. The last option is the
most flexible and allows using an rxd.Parameter to specify
different values in different 3D compartments as well as defining
the movement of uncharged particles. The other mechanisms
work for charged particles and support variation at the level of
a NEURON segment; the currents they generate are distributed
proportionally across the segment’s surface voxels by the voxel
surface area. Faraday’s and Avogadro’s constants along with the
surface voxel volume and the charge of the particle are used to
convert the currents into rates of change of concentration at the
boundary due to flux across the plasma membrane.

3D Simulation
To efficiently simulate intracellular regions in 3D, we generalized
the parallel Douglas-Gunn algorithm of Newton et al. (2018)
to support the irregular 3D boundary of a neuron. Unlike
extracellular simulation in NEURON— which is simulated
coarsely enough that the morphological details can be subsumed
into an effective volume fraction— in intracellular simulation
the voxels are necessarily much smaller and need to respect the
3D boundary of the cell. As described in the Section 2.1, voxels
may have widely varying amounts of surface, and each voxel
must be associated with a specific electrical compartment (with
a “segment” in NEURON terminology).

The conceptual algorithm for integration is the same as in
Newton et al. (2018), however with voxels only existing inside
the cell membrane, the number of voxels in any row is no longer
necessarily the same. This variation means that although the
memory locations for concentration in a particular voxel and in
the voxel above it are fixed for a simulation, the offset between
voxels and the voxels above them varies throughout the cell and
cannot be calculated using a simple arithmetic expression. To
work with this irregularity, the indices of every voxel in each line
are precomputed at initialization. To find neighbors, NEURON
constructs a dictionary (hash array) keyed by the (i, j, k) voxel
location with the value of the index of the voxel in memory.
Lines in each direction are formed by starting from an arbitrary
voxel, backtracking to the beginning of the line (e.g., if forming
the lines parallel to the x axis, we successively check for the
presence of (i − 1, j, k), (i − 2, j, k), . . . until such a voxel is not
in the dictionary), and then recording the indices of the voxels
in the line until there is no next voxel indexed in the dictionary.
Although Python is used to calculate the indices comprising
each line, the results are cached and transferred to C++ code
that uses them during integration. This process is repeated if
and only if the 3D structure is changed (e.g., more segments,
different diameters, ...).

All memory indices are relative to a given rxd.Species,
(or rxd.Parameter or rxd.State), each of which has its
memory allocated independently, allowing for one to be added
or removed without requiring memory for the others to be
reallocated.

Fixed step integration proceeds using the two-phase operator-
splitting approximation as in McDougal R.A. et al. (2013):
reactions and fluxes are calculated using an implicit method first
and then diffusion is calculated with DG-ADI, also an implicit
method. This introduces a source of error that converges to 0
as dt → 0, and has the advantage of keeping the matrices that
need to be inverted (a O(n3) task in the general case) small,
involving only one location’s concentrations for each reaction
matrix or one line for each diffusion matrix. No calculations
are done for memory associated with rxd.Parameter objects,
only reactions are calculated for rxd.State objects, and
both reactions and diffusions are calculated for rxd.Species
objects. Fluxes from ion channels specified with MOD files are
converted into mass changes per segment and then distributed
proportionally across the surface voxels assigned to the segment
by voxel surface area. Here, it is assumed that every segment has
surface voxels. All diffusion calculations explicitly incorporate
the effect of voxel by voxel interior volume as voxels with surface
do not have their entire volume inside the cell.

Variable step integration uses the CVODE solver from the
SUNDIALS suite (Hindmarsh et al., 2005) with all NEURON
rates of change (membrane potentials, ion channel states,
reactions, and diffusion) represented in one derivative vector.
The approximate Jacobian used for the reaction-diffusion part of
the problem is a permutation of a block-diagonal matrix, where
each block includes the full reaction Jacobian for a given spatial
location but only the diagonal part of the diffusion Jacobian.
This simplifying approximation allows the approximate Jacobian
to be quickly invertible at a tradeoff of a decrease in accuracy,
potentially forcing smaller timesteps than CVODE might use
with the exact Jacobian.

NEURON concentrations are tied to segments and the
surface nodes are assigned the concentration. In general, there
are multiple surface nodes per segment. To address this, the
segment concentrations are updated at each time step with
the weighted average concentration from the segment’s surface
voxels. In some cases, using only the surface nodes can cause
an artificially high concentrations due to relatively few 3D
voxels diffusing with a single 1D segment. This effect can be
mitigated by using all 3D nodes to calculate concentrations with
options.concentration_nodes_3d = "all".

Multiple threads, specified with rxd.nthread(n) where
n is the number of threads, may be used to accelerate
intracellular simulation. Load balancing is achieved using a
longest-processing-time first greedy algorithm based on the line
length for each direction, which is guaranteed to run in no worse
than 4/3 the optimal time (Graham, 1969).

Hybrid Simulation
For performance reasons and to better support simulations with
narrow dendrites that would otherwise require a small dx, a
Python iterable of sections (list, set, ...) may be provided when
specifying the simulation dimension to indicate which sections

Frontiers in Neuroinformatics | www.frontiersin.org 4 May 2022 | Volume 16 | Article 847108105

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

McDougal et al. Efficient 3D Reaction-Diffusion Simulation

are being set, e.g., rxd.set_solve_type(apicals,
dimension=3). Chemical simulations within a given section
must either be in 1D or 3D (i.e., this cannot vary by Region),
but each section can be set independently. Capturing the 3D
nature of the dynamics within a section generally requires
that its neighboring sections also be in 3D as otherwise all the
incoming diffusive fluxes from neighboring sections are the same
regardless of 3D location. As with specification of the full model,
multiple dimension specifications for a given section are allowed,
with the last one taking effect.

Boundary Identification
At initialization, each rxd.Region identifies which of the
sections it contains are to be simulated in 1D and which are to
be simulated in 3D. If a region does not contain both sections
to be simulated in 1D and in 3D, no additional analysis is done
and the simulation is purely in the specified dimension. When
both dimensions are present, for every given rxd.Species
instance, every 3D section’s parent, if it exists, is checked to
see if it is on the 1D section list. Likewise, every 1D section’s
parent is checked to see if it is on the list of 3D sections.
In recommended usage each cell has its own rxd.Species
instance for a given conceptual molecule (e.g., each cell would
have a self.ca for its internal calcium concentrations), the
search space is constrained to a given cell. Within any given
rxd.Region containing both 1D and 3D sections, there may
be zero (if the 1D and 3D sections are not contiguous), one, or
arbitrarily many places where 1D and 3D sections meet.

For each case where 3D and 1D sections meet, boundary
voxels are identified by finding the voxels belonging to the
3D section and its spherical endcap that intersect the plane
perpendicular to the line segment defined by the two (x, y, z; d)
points at the appropriate edge of the 1D section. In particular, this
algorithm requires that the boundary or boundaries must occur
at either end of a NEURON Section, not in the middle. Each 1D-
3D juncture potentially has many boundary voxels, depending on
the 3D discretization. Mass diffuses between each 3D boundary
voxel and 1D boundary segment at a rate based on the distance
between the center of the voxel and the center cross-section of the
boundary segment (estimated as the sum of half the voxel dx and
half the segment length) and the cross-sectional area of where
the voxel meets the 1D region (estimated as its volume raised
to the 2/3 power). Boundary voxel identifiers and distances
to the 1D boundary nodes are computed at initialization and
cached in a data structure passed to the C++ compute engine
via ctypes. Any subsequent changes to the morphology trigger
recalculation of the discretization—including identification of
boundary voxels—at the next initialization, advance, or node
request event.

Simulation
At the beginning of each timestep, fluxes between 1D and
3D boundary compartments are computed according to the
finite volume method and Fick’s laws: fluxes are proportional
to the concentration gradient and inversely proportional to
the 1D distance between the centers of the compartments. In
particular, we use the common approximation of neglecting the

effects of charge on diffusive spread, i.e., we do not consider
electrodiffusion (see e.g., Ellingsrud et al., 2020). The 1D and
3D regions are then advanced independently, applying the
fluxes as appropriate, thereby weakly coupling them. This weak
coupling introduces minimal performance overhead, but at the
cost of reduced numerical stability, thereby potentially requiring
a smaller timestep (see e.g., Benedikt and Drenth, 2019).

Random Realistic Neuron Morphologies
To assess performance on realistic morphologies, we identified
21 random reconstructions from NeuroMorpho.Org (Ascoli
et al., 2007) with metadata indicating realistic diameters
and a 3D reconstruction. These were obtained by querying
NeuroMorpho.Org’s “Browse by Random” tool, once for 50
random cells and once for 10 random cells, and filtering for
those meeting the stated criteria. The randomly selected
morphologies as identified by their NeuroMorpho.Org
name are: 9CL-IVxAnk2-IR_ddaC (Nanda et al., 2018),
29-1-8 (Martinez-Canabal et al., 2013), 64-8-L-B-JB
(Ehlinger et al., 2017), 243-3-39-AW (Nguyen et al., 2020),
2017-25-04-slice-2-cell-2-rotated (Scala et al.,
2019), 070601-exp1-zB (Groh et al., 2010), 160524_7_4
(Kunst et al., 2019), 15892037 (Takagi et al., 2017),
AE5_EEA_Outerthirds_DG-Mol_sec1-cel4-aev5me
(de Oliveira et al., 2020), AM61-2-1 and AM81-2-3
(Trevelyan et al., 2006), B4-CA1-L-D63x1zACR3_1
(Canchi et al., 2017), Dnmt3bKO-cell-8 and
WT-iPS-derived-cell-12MR (Tarusawa et al.,
2016), Fig5C (Herget et al., 2017), glia_4090
(Helmstaedter et al., 2013), KC-s-4505762 (Takemura
et al., 2017), Mouse_CA2_Ma_Cell_5 (Helton et al., 2019),
RatS1-6-107 (Nogueira-Campos et al., 2012), RP4_scaled
(Weiss et al., 2020), and WT-mPFC-A-20X-3-2 (Juan et al.,
2014).

Timings
All reported times are based on measurements on Yale’s Farnam
HPC’s general partition, which has amix of mostly Intel Xeon E5-
2660 v3 CPUs with 119 GiB memory per node and some Xeon
6240 CPUs with 181 GiB memory per node.

RESULTS

Validation
Convergence on a Cylinder and the Role of Voxel

Refinement
To assess convergence of surface area and volume calculations,
we began by considering a cylinder of diameter 2 µm and
length 5 µm. Cylinders, unlike neuron morphologies from
reconstructions, have analytically known values for surface area
and volume; in particular, here the volume is 5π µm3 and the
surface area is 12π µm2. Errors were measured for one thousand
random orientations (specified as (φ, θ) in spherical coordinates)
at negative integer powers of

√
2, approximately dx= 0.5, 0.3536,

0.25, 0.1768, 0.125, 0.0884, and 0.0625 µm without using partial
volume resolution on the surface voxels. For reasons that are
explored later, we did not choose this to be NEURON’s default

Frontiers in Neuroinformatics | www.frontiersin.org 5 May 2022 | Volume 16 | Article 847108106

https://NeuroMorpho.Org
https://NeuroMorpho.Org
https://NeuroMorpho.Org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

McDougal et al. Efficient 3D Reaction-Diffusion Simulation

behavior; using the defaults produces volume errors typically
around 4x lower.

Volume estimates converged with error scaling at
approximately O(dx2.18), with the average absolute error
at dx= 0.5 µm being approximately 0.3976 ± 0.4396 µm3

and the error at dx= 0.0625 µm being approximately
4.271 × 10−3 ± 8.590 × 10−3

µm3, a 93.10-fold reduction.
This convergence compares favorably to the simpler volume
estimating approach of counting the full volume of every
voxel that is included in the geometry, which converges at
approximately O(dx). In contrast to that approach, which by
definition gives overestimates of volumes, our algorithm gave
more underestimates than overestimates (582 out of 1,000 test
orientations) when dx=0.25 µm, with an average signed error of
−4.205× 10−2

µm3.
Surface area converged at approximately O(dx1.21): absolute

errors at dx = 0.5 µm were 2.963 ± 0.313 µm2, and at dx =
0.0625µmwere 0.2384± 0.0251µm2, an∼12.43-fold reduction.
For a convex shape such as a cylinder, surface areas estimated
using marching cubes are expected to be under-estimates (and
this holds for 999 out of 1,000 of our test cylinder orientations) as
the computed surfaces are planes lying strictly inside the shape; as
neurons are not convex, surface areas need not be underestimates
in those morphologies.

As interior voxels always contribute their full volume—and
therefore do not contribute to volume error—and have no
surface, we examined if it was advantageous to use a refined mesh
on the surface voxels only to reduce error without incurring the
full speed penalty from using a finer global mesh. As explained
in the methods, we subdivide surface voxels into VR3 subvoxels,
compute the volumes and surface areas for each, and sum the
results together for the total values for the voxel. Although this
approach is similar to increasing the overall mesh resolution, it
still depends on the coarser mesh’s determination of which voxels
are surface or not, and thus differences may arise in complex
morphologies when, for example, small branches pass near each
other.

To examine the effect of voxel subdivisions, we held the
cylinder orientation constant, parallel to the x-axis, and
recorded the errors and runtime for various subdivision
levels VR. In NEURON, subdivisions used for volume and
surface area calculations are independently configurable, using
rxd.options.ics_partial_volume_resolution
and rxd.options.ics_partial_surface_
resolution, respectively. In general, as shown in Figure 1,
increasing VR provides volume errors and discretization
times comparable to using a higher resolution grid but
without introducing additional voxels that would significantly
increase simulation overhead. Subdividing for surface
area calculation did not improve the error for a given
discretization time, likely due to this strategy increasing
the number of marching cubes to compute since it must
process domains that would otherwise be classified as
fully interior or fully exterior. As such, NEURON’s default
rxd.options.ics_partial_volume_resolution of
2 and rxd.ics_partial_surface_resolution of 1 are
used for all subsequent calculations, i.e., volume calculations use

FIGURE 1 | Sub-sampling surface voxels tends to improve the accuracy of

the volume estimate for any discretization resolution at the cost of increasing

voxelization time. VR is the partial volume resolution, the voxelization times of a

cylinder of fixed size and orientation are shown for 50 different values of dx

(from 0.01 µm to 0.5 µm) and five values of VR (2, 4, 6, 8, 10). Each subplot

highlights one of the VRs, with the others shown in grey. As dx decreases,

discretization time increases and relative error tends to decrease, but the error

is non-monotonic due to changing alignment of the cylinder with the grids.

subdivided surface voxels while surface area calculations do not.
As discussed below, we found that the accuracy of the surface
voxel partial volume calculations affects the error introduced in
1D-3D hybrid models.

Convergence of Discretization on Realistic

Geometries
To assess the convergence of volume and surface area estimates
on realistic morphologies, we used our voxelization algorithm
to estimate these values for 21 randomly chosen neuron
reconstructions from NeuroMorpho.Org as described in Section
2.5. For most cells, we tested 12 choices of dx from 0.05 to
0.5 µm, omitting the smaller values for large cells that would
require prohibitive setup time or memory at those resolutions.
As the true surface area and volumes are unknown, we compared
each value for a given morphology to the corresponding value
calculated with the smallest dx (Figure 2). With dx = 0.5 µm,
the majority of whole cell morphologies (13 out of 21) had
an estimated relative volume error of <1% with one having
error <0.1%. At NEURON’s default resolution of dx = 0.25 µm,
15 out of 21 morphologies had a volume error <1% with 5
having a volume error <0.1%. By dx = 0.15 µm, these rates
increase to 19 out of 21 and 10 out of 21, respectively. The
volume error scaling varies per morphology but scales between
O(dx2) and O(dx3) (Figure 2B). With dx=0.15 µm, 10 out of
21 whole cell morphologies had estimated surface area errors
<1% and two morphologies had surface area errors <0.1%. For
most morphologies, the surface area error scaled between O(dx)
and O(dx2) (Figure 2A). Thus, the scaling rates for volume
and surface area errors with realistic neuron morphologies are

Frontiers in Neuroinformatics | www.frontiersin.org 6 May 2022 | Volume 16 | Article 847108107

https://NeuroMorpho.Org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

McDougal et al. Efficient 3D Reaction-Diffusion Simulation

FIGURE 2 | Log-log plots of estimated (A) surface area and (B) volume relative error as a function of dx for the voxelization of 21 entire morphologies (all sections)

chosen randomly from NeuroMorpho.Org. Points indicate measured values; colored lines indicate best-fits. Black lines indicate first-, second-, and third-order

convergence, as marked, for reference. Note that the y-axis scale is different between (A) and (B).

broadly consistent with the rates observed for the cylinder. While
the relative errors for the surface area are higher than that for the
volume, we note that as described in the methods, for consistency
with models not including 3D reaction-diffusion, NEURON
always computes ion current influx based on the summed frusta
surface areas for the 1Dmodel and only uses the 3D surface areas
to distribute the total segment currents into individual voxels.

Voxel-Segment Assignment
For currents through the membrane to correctly alter and be
modulated by local near-surface concentrations, each voxel must
be assigned to the correct segment and surface voxels must be
distinguished from interior voxels. To test these classifications,
we constructed a simple geometry, consisting of two parallel
connected cylinders, with length 5 µm, diameter 5 µm, and
9 segments, and length 5 µm, diameter 1 µm, 5 segments,
respectively. We plotted the quarter of the surface-voxels with
x > 0, y > 0, and z > 0 in 3D and color-coded by
segment (Figure 3A). (The x > 0 condition removes the
end-face of one of the cylinders.) Visual inspection revealed
that our algorithm constructed a continuous surface with no
holes and no interior mis-identified voxels. Similar results were
found for the other sections of the geometry (not shown),

suggesting that the algorithm correctly distinguishes surface and
non-surface voxels. To test the voxel-segment assignment, we
projected this image into the x, y plane and added markers for
the analytically computed segment boundaries (every 5/9 µm
for the bigger cylinder and every 1 µm for the smaller cylinder).
We additionally added a line segment that passes through the
corner of the big cylinder and the midpoint of the first segment
of the smaller cylinder which by default in NEURON is assigned
a 3D point, and thus this line segment marks the projection of
the cone that CTNG adds to join the two cylinders. All segment
boundaries aligned with the analytically computed ones and the
join cone tapered as expected (Figure 3).

Three-Dimensional Simulation

Conservation of Mass
Physically, mass diffusing in any domain should be constant,
however the finite limits of computer precision and large
numbers of voxels in 3D simulations allow the opportunity for
round-off error to accumulate.

To quantify this effect for the serial (1 thread) simulation,
we simulated diffusion on a Y-shaped geometry consisting of
three sections, each of length 10 µm and diameter 2 µm. One
section is positioned from (0, 0, 0) to (10, 0, 0). The other sections

Frontiers in Neuroinformatics | www.frontiersin.org 7 May 2022 | Volume 16 | Article 847108108

https://NeuroMorpho.Org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

McDougal et al. Efficient 3D Reaction-Diffusion Simulation

FIGURE 3 | Segment alignment validation. (A) 3D plot and (B) 2D-projection of surface voxels of a morphology with an abrupt change in diameter and a change in

segment length, colored by segment. Vertical lines in (B) illustrate the locations of the 1D segment boundaries, which align with the 3D surface nodes. The diagonal

black line connects the edge of the last wide segment with the top-middle of the first narrow segment and matches the corresponding 3D cone taper.

continue from there to (10 + 5
√
3, ± 5, 0), i.e., 30◦ changes

in either direction. While the exact orientation would have no
effect on 1D chemical or electrical simulation, we specify these
details because they affect the exact number of voxels in the
3D simulation as narrow angles would lead to more overlap
of the logical shapes in 3D space and hence less total voxels.
We used the default discretization with voxels with dx = 0.25
µm on each side, for a total of 7,904 voxels in our model.
Substance diffused with diffusion constant of 1 µm2/ms) starting
from a concentration of 1 µM on the section parallel to the
x-axis and 100 nM on the other two sections and ran for
varying lengths of time. For fixed step simulation, we started
with a timestep of dt = 0.025 ms, NEURON’s default. After 4
million timesteps (i.e. by t = 100, 000 ms) conservation error
accumulation led to a relative change of about 8.2219 × 10−10

of the total mass. As timestep reduced to dt = 0.0125 ms and
dt = 0.00625 ms, the relative change in mass after 100, 000
ms reduced to 7.004 × 10−12 and 1.7741 × 10−13, respectively.
For variable step, using NEURON’s default tolerance and an
atolscale of 10−6 for the state variable. Without scaling,
NEURON’s default error tolerance would be 1 µM, small enough
for sodium and potassium, but far too large for physiological
concentrations of, e.g., calcium which are often about 50–100
nM (Grienberger and Konnerth, 2012). With these settings, by
t = 100, 000 ms, variable step integration accrued a relative
change of 2.7389×10−13 of total mass over 33,233,603 timesteps.
We note that in practice, many NEURON simulations run for
orders of magnitude less time, and can expect even smaller error
accumulation.

We further examined conservation of mass by running the
same simulation with four compute threads. The relative errors

in both fixed step and variable step matched the results reported
above for the serial case.

Diffusion
To assess the error in our numerical diffusion algorithm, we
compared the simulated distribution of concentration on a large
finite cylinder to the known analytical solution for the infinite line
and infinite space.

In particular, on an infinite 1D line, the Green’s function
for diffusion with diffusion constant D from initial conditions
described by the Dirac delta function δ(x) is well-known to be:

G(x, t) =
1

√
4πDt

exp

(

−x2

4Dt

)

, (1)

see e.g., Balluffi et al. (2005). In particular, this implies that
for diffusion on an infinite line with initial concentration
0 everywhere except between A and B where the initial
concentration is C, the concentration at position x at time t > 0
will be equal to

C
√
4πDt

∫ B

A
exp

(

−(x− ξ)2

4Dt

)

dξ . (2)

This integral may be evaluated numerically or expressed in terms
of the error function (erf). For diffusion on a finite line with
reflective boundary conditions (such as an unattached section in
NEURON), the exact concentration is an infinite sum of values
of that form (with adjusted values of A and B; this is the so-called
method of images), however this may be numerically neglected as
long as the section is sufficiently long and the time sufficiently
small.

Frontiers in Neuroinformatics | www.frontiersin.org 8 May 2022 | Volume 16 | Article 847108109

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

McDougal et al. Efficient 3D Reaction-Diffusion Simulation

Likewise, on a right circular cylinder, the solution (Equation
5) applies for all points (r,φ, x) (in cylindrical coordinates)
provided zero-flux boundary conditions, initial concentrations
u0(r,φ, x) = û0(x) are independent of r and φ (that
is, the concentration is uniform on any given cross-section
perpendicular to the axis), and a spatially uniform D. This
follows immediately from the diffusion equation in cylindrical
coordinates as uφφ = ur = 0 (this is immediate at t = 0 from
the initial conditions and can be shown to hold for t > 0) and
thus

∂u

∂t
= D

(

1

r

∂

∂r

(

r
∂u

∂r

)

+
1

r2
∂2u

∂φ2
+

∂2u

∂x2

)

(3)

reduces to

∂u

∂t
= D

∂2u

∂x2
, (4)

the 1D diffusion equation. A similar reduction applies for any
right cylinder regardless of the shape of the base that satisfies the
other conditions.

We thus began our diffusion validation by considering a right
circular cylindrical section 200 µm long with diameter 1 µm
oriented along the x-axis with concentration 0 everywhere except
1 mM between positions 95 and 105 µm with diffusion constant
D = 1 µm2/ms with dx values of 0.5, 0.25, and 0.125 µm. The
maximum absolute error at time t = 100 ms when simulated
using NEURON’s default 0.025 ms time step when compared
to the theoretical values reduced at approximately O(dx2): the
maximum absolute error with dx = 0.5 µmwas 5.29× 10−5 mM,
with dx = 0.25 µm was 1.28 × 10−5 mM, and with dx = 0.125
µmwas 2.79× 10−6 mM. The distribution of absolute errors and
concentration vs position for this problem is shown in Figure 4.

Analogously, we used the Green’s function for diffusion in 3D
space from a point source at the origin,

G(Ex, t) =
1

(4πDt)3/2
exp

(

−|Ex|2

4Dt

)

, (5)

to assess the numerical accuracy of our 3D diffusion algorithm
in space as opposed to in a cylinder. Again, we chose a
domain sufficiently large and time point sufficiently small to
neglect the reflective boundary conditions; in particular, we
consider a cylinder centered around the origin of diameter 40
µm and height 40 µm. Within this domain, we take initial
concentration of 0 everywhere except in the cube [−2, 2] ×

[−2, 2] × [−2, 2] where we take initial concentration of 1 mM;
as before, we suppose the substance diffuses with a diffusion
constant of 1 µm2/ms. Analytic solutions follow from Equation
(5) analogously to Equation (2) but with a triple integral over
the domain with the non-zero initial conditions. We simulated
until t = 20 ms using the default spatial discretization of
0.25 µm and plotted the relative error at 100 randomly chosen
points within a sphere of radius 10 µm centered around the
origin (Figure 5). As the initial source was not spherically
symmetric, the concentrations themselves are not spherically
symmetric, however the relative error (always under 0.1%)
exhibits a clear relationship to the distance from the origin,

FIGURE 4 | (A) Distribution of absolute errors as functions of spatial

discretization dx at t = 100 ms from simulation of a diffusion problem on a

cylinder of length 200 µm, diameter 1 µm from an initial concentration of 1

mM between positions 95 and 105 µm, 0 elsewhere. The apparent bumpy

shape is an artifact of plotting the absolute value on a log scale; at each

sudden drop in error the 3D simulated values switch from being an over- to an

under-estimate or vice-versa. (B) Distribution of concentration at the same

time point as determined by the analytic solution.

FIGURE 5 | Relative error vs. distance from the origin in 3D diffusion

simulation from a cube of elevated concentration centered at the origin,

simulated using the default spatial discretization; see text for details.

with the relationship becoming weaker as distance (and thus
concentration) increases.

Ion Channel Fluxes
To examine the interplay between membrane potential, ion
channels, and diffusion, we simulated sodium dynamics at

Frontiers in Neuroinformatics | www.frontiersin.org 9 May 2022 | Volume 16 | Article 847108110

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

McDougal et al. Efficient 3D Reaction-Diffusion Simulation

various diffusion rates within a cylindrical “soma” geometry 10
µm in length and 10 µm in diameter with Hodgkin-Huxley
channels under a continuous current injection of 0.1 nA. This
current injection was sufficient to cause the cell to fire a train of
action potentials, each of which admits sodium current into the
cell, raising the sodium concentration. (Sodium concentration
change is only simulated when sodium dynamics are explicitly
modeled, either through NEURON’s rxd mechanism as here or
through certain MOD file mechanisms.) As shown in Figure 6,
with a low sodium diffusion rate, the sodium concentration near
the surface builds up rapidly. As the diffusion rate increases,
the surface concentration approaches that of the corresponding
1D simulation as the sodium is more able to spread across the
dendrite’s cross-section. By definition, the difference in sodium
concentration in the surface voxels leads to a difference in the
sodium Nernst potential (which is automatically recalculated by
NEURON), which affects subsequent sodium currents and hence
spike timing and shape, leading to the separation of spike times
for the different diffusion rates shown in the inset to Figure 6A.

With larger values of dx, the surface voxels extend deeper
into the soma, providing an averaging effect that approaches that
of the 1D solution. The resulting numerical difference is most
pronounced for small diffusion constants: With dx = 0.5 µm, the
surface concentrations at t = 100 ms for D = 10−4

µm2/ms and
D = 0.01 µm2/ms were 13.35 and 11.24 mM, respectively. With
dx = 0.25 µm (NEURON’s default), the surface concentrations at
the same time point and diffusion constants were 15.59 and 11.16
mM, respectively.

In the case of a single section, the same dynamics would
be observed for a 2D model using radial shells to incorporate
the difference between near-plasma-membrane concentrations
and interior concentrations, however the 3D approach used here
avoids the non-physical-realizability of radial shells at branch
points (see, e.g., Figure 1 in Chen and De Schutter, 2017).

3D Simulation on Realistic Geometry
For a more complete test, we compared simulations of scalar
bistable dynamics on a realistic cell morphology using our
algorithm with using the 3D cell biology simulator VCell (Schaff
et al., 1997; Cowan et al., 2012). We used CTNG in NEURON
to voxelize the morphology of NeuroMorpho.Org:NMO_02699
(Ascoli et al., 2007; Nikolenko et al., 2007). The voxelized data
was exported to a stack of PNG images, where each image
represents a z-slice with a value of 0 for voxels not in the cell
and a value of 255 for voxels in the cell. These image stacks
were then loaded into VCell with each pixel corresponding to
one voxel. We note, however, that while this transfer approach
correctly transfers information about which voxels are included,
it loses the fractional volume calculated for surface voxels within
NEURON, so the two tools are not expected to produce identical
results as the boundaries vary slightly. In each tool, the initial
concentrations were set to be 1 mM in the distal apical and 0 mM
elsewhere. Reaction-diffusion was simulated until time t = 220
ms, and corresponding z-slices were compared. With both tools,
the wavefront was at the same approximate location mid-soma
and showed comparable curvature (Figure 7).

FIGURE 6 | (A) Membrane potential and (B) surface voxel sodium

concentration of a 3D cylindrical soma with Hodgkin-Huxley channels and

sodium accumulation, 10 µm in diameter and 10 µm in length with a constant

current injection of 0.1 nA at various diffusion constants D (µm2/ms). Legend

applies to both sub-figures. Insets: magnified views of indicated regions

showing differences in 3D results depending on the diffusion constant and

convergence to the 1D solution (black dashed line) as the diffusion constant

increases.

FIGURE 7 | NEURON vs. VCell comparison. Reaction-diffusion NEURON and

VCell simulation results of one cell z-slice at t = 220 ms. Image cropped to

show relevant cell slice areas. Note the similarity between the characteristics of

the wave curvature, approximate wave position, and the thickness of the wave

front in each simulation.

Orientation Sensitivity With Propagating Wave
The orientation of a section affects how many voxels will be
on the boundary and how the surface cuts through them,
but the boundary voxel partial volumes and surface areas are
inherently only approximations. To assess the impact of these

Frontiers in Neuroinformatics | www.frontiersin.org 10 May 2022 | Volume 16 | Article 847108111

https://NeuroMorpho.Org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

McDougal et al. Efficient 3D Reaction-Diffusion Simulation

FIGURE 8 | Distribution of relative error in wave speed for the scalar bistable

wave with α = 0.25 derived from 100 random orientations of a 251 µm long, 2

µm diameter cylinder simulated in 3D at three choices of dx (measured in µm);

all graphs are on the same scale. Simulations with θ within 0.1 radians of 0,

π/2, or π corresponding to cylinders nearly parallel to either the x, y plane or

the z axis are in cyan and tended to have lower errors than those that were

oriented otherwise. Dashed lines indicate mean values.

approximations on models incorporating both 3D reaction and
diffusion and components that are sensitive to 1D concentrations
(e.g., ion channel kinetics specified using NMODL; Hines and
Carnevale, 2000), we considered wave propagation governed by
the the scalar bistable equation, ut = D1u − u(1 − u)(α − u),
and timed wave propagation based on 1D concentrations. Here
1 is the Laplacian operator, D is the diffusion constant, and
α is a threshold concentration, above which in the absence of
diffusion concentrations will tend to increase and below which
concentrations will tend to decrease. As observed in McDougal
R.A. et al. (2013), these dynamics exhibit key characteristics
of some intracellular signaling processes, like calcium waves.
Furthermore, this equation has a known analytic solution in the
1D infinite line case that can be used for validation.

To quantify this effect, we tested 100 random orientations of a
251 µm long dendrite of diameter 2 µm. We initialized the wave
with a concentration of 1 on the first 50 µm and 0 elsewhere,

then let it diffuse with a diffusion constant of D = 1 µm2/ms.
(Concentration by default in NEURON is represented in mM,
however the units are omitted here as the dynamics are the same
as long as the units are consistent.) For each orientation, we
estimated wave speed for three different choices of α (0.15, 0.25,
0.35) and three values of dx (0.5 µm, 2−1.5 ≈ 0.3536 µm, 0.25
µm). A plane wave in an infinite cylinder with these dynamics is
known to propagate with a wave speed of c =

√
2(12 − α) (see,

e.g., Fife, 1979). We estimated the wave speed in each simulation
by measuring the time it took for the wave front (defined as
the farthest point with an average 1D concentration over 0.5) to
move from position 100–200 µm. These positions and the total
length of the dendrite were chosen as they were found to allow
reasonably accurate approximations of the wave speed in 1D
simulations—i.e., a large enough distance to be free of boundary
effects—while keeping the geometry small enough that the 900
total 3D simulations involved in this study could be run in a
reasonable amount of time.

For α = 0.25, the average relative error in the estimated wave
speed decreased proportionally to dx (4.59 ± 2.24 % for dx =
0.5 µm, 3.12 ± 1.56 % for dx ≈ 0.3536 µm, and 2.17 ± 1.09 %
for dx = 0.25 µm). At NEURON’s default resolution of dx = 0.25
µm, all orientations led to <4% relative error in estimated wave
speed; about three-quarters (74 out of 100) showed <3% relative
error, and about one-fifth (21 out of 100) had <1% relative error,
with the minimum being 0.13% (Figure 8). All three values of
α tested showed similar distributions of relative errors of wave
speed (not shown). Cylinders whose axis was parallel to the x, y
plane or mostly vertical gave less error in wave-time estimates
than cylinders whose axes were not aligned with the Cartesian
grid.

Hybrid 1D-3D Simulation Validation

Conservation of Mass
Simulations of diffusion should conserve mass for 3D and

hybrid 1D-3Dmodels. To test hybrid conservation, simple hybrid
models were used, where one section joined to one or two other
sections, either aligned or a Y-shaped join. A region of initially
elevated concentration was placed in one section away from the
join and diffusion to the neighboring sections was simulated.
Using different voxel sizes and time-steps showed similar change
in total concentrations, on the order of 10−11% of initial amount,
consistent with the expected numerical error.
Diffusion
We tested the accuracy of 1D-3D hybrid simulation using a
cylindrical dendrite of length 153 µm and diameter 2 µm. For
all simulations we used a 1D discretization of two segments per
micron. We simulated for 50 ms with a diffusion constant of 1
µm2/ms from an initial distribution of 0 mM everywhere except
for a concentration of 1 mM between positions 70 and 83 µm.
We compared four different discretization strategies—pure 1D
simulation, pure 3D simulation, 1D on the middle 51 µm and
3D elsewhere, and 3D on the middle 51 µm and 1D elsewhere—
at time t = 50 ms to the analytical solution calculated using
Green’s functions as described under “Conservation of mass.”
The analytical solution’s concentration at the midpoint of our
cylinder at the end time is∼0.4843 mM. Since there are many 3D

Frontiers in Neuroinformatics | www.frontiersin.org 11 May 2022 | Volume 16 | Article 847108112

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

McDougal et al. Efficient 3D Reaction-Diffusion Simulation

FIGURE 9 | Comparison of the magnitude of signed absolute errors as a

function of position for 1D (red), 3D (green), and two hybrid cases (cyan and

purple) for diffusion from an area of elevated concentration near the middle of

a 153 µm long cylindrical domain ; all plots are for t = 50 ms. (A) With different

choices of dx. (B) With dx = 0.25 µm and different levels of accuracy for

estimating the partial volume of voxels that are partly inside and partly outside

the cylinder; see text for details. (C) Analytically computed concentration

distribution.

voxels per x coordinate, we examined the weighted (by volume)
concentration as a function of position. In both hybrid cases for
both dx = 0.25 µm (the default) and dx = 0.125 µm, numerical
absolute error for the weighted concentration at the points where
the 1D and 3D domains join exceeded that of the highest absolute
error for the pure 3D simulation, however it was generally of
the same order (Figure 9A). For the 1D in the middle model,
when dx was reduced by a factor of two, the maximum error

was reduced by a factor >2: the maximum absolute error of the
weighted average concentration dropped from 1.21 × 10−3 to
5.17×10−4 mM. In surface voxels containing only a small volume
of the cell, the error can be larger, reaching up to 1.99×10−3 mM
and 7.93 × 10−4 mM in the dx = 0.25 µm and dx = 0.125
µm cases on the same hybrid problem, respectively. Maximum
errors for the weighted average for the 3D on the middle hybrid
problem reduced from 6.72× 10−4 to 4.76× 10−4 mM as dx was
reduced from 0.25 to 0.125 µm. While all simulations conserve
mass, only the fully 1D and fully 3D error curves in Figure 9A

have an integral of ∼0. This apparent discrepancy is due to
inconsistencies in the way 1D and 3D approximate the volume
of the cylinder; in this simple geometry, the 3D volumes are
consistently under-estimated.

Exploring the volume issue further and motivated
by the fact that decreasing dx increases simulation
time and the corresponding quantity of generated,
we examined the effect of increasing the accuracy of
surface voxel partial volume estimates by increasing
rxd.options.ics_partial_volume_resolution.
In particular, for the same setup and holding dx = 0.25 µm
constant, we found that the maximum error of the weighted
concentrations in the 3D on the outer thirds hybrid case dropped
from 1.21 × 10−3 mM when the partial volume resolution was
set to 2 (the default) to 4.38× 10−4 mMwhen the partial volume
resolution was set to 6. Likewise the 3D on the inside case error
reduced from 6.72 × 10−4 to 2.37 × 10−4 mM (Figure 9B).
The analytically computed solution is shown for reference in
Figure 9C. In both hybrid cases, increasing the accuracy of
the partial volume estimates for the surface voxels in this way
reduced the absolute error by an amount exceeding that of
halving dx. Importantly, after initialization, simulation time
is unaffected by the improved partial volume estimates but is
greatly affected by dx.

Performance
Defining and simulating a 3D model are logically separate
activities: a model only needs to be defined once to be
simulated many times (e.g., with different parameters). The
most time-consuming part of the definition phase is the
voxelization process. Furthermore, in principle, any voxelization
that generates the appropriate data structures and maps voxels
to segments could be used by the simulation engine. As such,
we measure the performance of voxelization (currently single-
threaded; described in Section 3.2.1) and the performance of
simulation (multi-threaded; described in Section 2.3) separately.
To assess the performance using realistic cell shapes, we tested
21 randomly selected morphologies (listed in Section 2.5)
with realistic diameters and 3D data from NeuroMorpho.Org
(Ascoli et al., 2007).

Voxelization
To assess the voxelization performance, we loaded each of the
21 randomly chosen neuron morphologies one at a time and
recorded the initialization time and estimated volume for many
choices of spatial resolution dx, typically from 0.05 to 0.5 µm.
Each timing was run in a separate process, as NEURON caches

Frontiers in Neuroinformatics | www.frontiersin.org 12 May 2022 | Volume 16 | Article 847108113

https://NeuroMorpho.Org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

McDougal et al. Efficient 3D Reaction-Diffusion Simulation

FIGURE 10 | (A) Voxelization time scales as approximately O(dx−2). Dots denote measured data from 21 different morphologies from NeuroMorpho.Org; colored

connecting line segments are illustrative only. (B) The scaling of estimated relative volume error varies depending on the morphology, but typically lies between O(t−2)

and O(t−1), where t is the time spent computing the voxelization. Points denoted measured values; corresponding colored lines represent a linear (in log-log space)

best fit. In both (A,B), black lines give examples of perfect scaling at the rate indicated.

the results to avoid voxelizing the same cell more than once (i.e.,
subsequent model initializations skip the voxelization step). As
shown in Figure 10A, the time required to voxelize/discretize
the cell scaled nearly consistently at about O(dx−2) regardless of
the morphology, with the main exceptions happening for large
dx. As before, relative volume error was estimated using the
volume calculated for the smallest measured dx as the estimated
true volume. The relationship between estimated relative volume
error as calculated in the convergence on a cylinder section
and time spent doing the discretization was noisy and less
consistent across morphologies but the error generally scaled
between error = O(time−2) and error = O(time−1) as shown
in Figure 10B.

3D Simulation
To assess the scaling of our simulation algorithm with the
number of threads used, we simulated three different dynamics
(pure diffusion, bistable wave, and calcium wave) across two
morphologies (a cylinder of length 50 µm and diameter 1
µm) and a reconstructed cell (NeuroMorpho.Org’s NMO_77436
(Canchi et al., 2017)), with three spatial resolutions (dx =
0.25, 0.125, and 0.0625 µm). The pure diffusion dynamics

were governed by Fick’s laws. The bistable wave modeled here
implements the scalar bistable wave equation ut = D1u −

u(1 − u)(α − u) analyzed in Fife (1979), and previously used
as an example of reaction-diffusion phenomena in McDougal
R.A. et al. (2013). The calcium wave model implements
Ca2+-induced-Ca2+-release (CICR) driven by the endoplasmic
reticulum (ER), and is a simplified version of Neymotin et al.
(2015). Waves were initiated by an area of elevated cytosolic
concentration (u for the bistable wave and IP3 for the calcium
wave) in the first 25 µm in the cylinder case and in section
dend_7[19] of the apical dendrite which starts approximately
9.35 µm from the soma in the morphologically detailed case.

Excluding the cylinder diffusion and cylinder bistable wave
on the coarsest resolution (dx = 0.25 µm), which both initially
ran in under 1 second (and for whom threading overhead is
thus non-trivial), the rest of the simulations showed speedup as
the number of threads increased (Figure 11). For the 16 other
combinations of morphology, model, and dx: using four threads
reduced runtime by up to a factor of 3.63 (2.00±0.65 on average);
using eight threads reduced runtime by up to a factor of 6.39
(3.20 ± 1.29 on average); using 16 threads reduced runtime by
a factor of up to 9.76 (5.07 ± 2.28 on average). The reported

Frontiers in Neuroinformatics | www.frontiersin.org 13 May 2022 | Volume 16 | Article 847108114

https://NeuroMorpho.Org
https://NeuroMorpho.Org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

McDougal et al. Efficient 3D Reaction-Diffusion Simulation

FIGURE 11 | Parallel scaling. Testing all 18 combinations of two choices of

morphology, three choices of model, and three choices of dx shows

decreased real time for simulation for most combinations as the number of

threads increases from 1 to 16. Pure diffusion and a bistable wave on a

cylinder at dx = 0.25 µm were the only two test cases that took more real time

with 16 threads than with 1 thread. Solid lines indicate dx = 0.0625 µm,

dashed lines dx = 0.125 µm, and dash-dot lines

dx = 0.25 µm.

runtimes here are based on the best of three runs to limit the
contribution from background tasks.

Reported times exclude voxelization time, analyzed above,
which is currently single-threaded and is only performed once
for a given morphology regardless of the number of simulation
studies performed.

To further test performance speed-up, we experimented with
different settings of cache prefetch, which in our experiments
ultimately did not show significant difference in parallel scaling.

Examples
Three-dimensional simulation offers the ability to explore both
the role of a neuron’s three-dimensional shape—which is
especially relevant wherever the neuron is not approximately
conical, such as where the dendrites meet the soma or a
spine connects to a dendrite—and the role of precise spatial
positioning for, e.g., synapses. In this subsection, we examine
examples of each of these, discuss relevant implementation
details, and examine different visualization strategies for the
resulting volumetric data.

Dendrite-Soma Intersection
Certain cellular phenomena are typically found in one region
of the cell and typically not present in neighboring regions

even when the neighboring regions are known to be able
to support the phenomena. For example, waves of elevated
intracellular calcium in pyramidal cells observed in apical
dendrites only sometimes invade the soma but when they do
are capable of propagating across the soma (Hagenston et al.,
2008). There exist mathematical models of wave phenomena
where it is known that domain geometry affects wave propagation
(e.g., Dronne et al., 2009); 3D simulation allows us to
study if the morphology plays a similar role in problems of
neuroscientific importance.

For example, we simulated the scalar bistable equation
with a threshold α = 0.1 mM in the morphology of
NeuroMorpho.Org:NMO_53113 (Ascoli et al., 2007; Malik et al.,
2016) starting with a concentration of 1 mM on the distal
apical and 0 mM elsewhere, and a diffusion constant of 0.25
µm2/ms. No other dynamics were included; in particular, no
ion channels were simulated and there was no flux across the
plasma membrane (Neumann boundary conditions). We chose
this cell in part because the soma of this cell was specified using
a soma outline in ASC format, allowing NEURON to construct
a non-cylindrical approximation to the soma shape. Using a
fixed-step simulation (dt = 0.25 ms), we simulated the volume
containing the soma and all sections whose center was within
a path distance of 70 µm from the soma’s center in 3D, with
the rest of the cell in 1D. Within this volume of 3D simulation,
the smallest diameter was 0.18 µm, and we used a dx = 0.17
µm. Under these conditions, a wave of elevated concentration
propagated from the apical toward the soma at approximately
uniform speed. Near the soma, the wave front curved and slowed,
but propagated into the soma where it eventually straightened
and resumed its initial speed (Figure 12A) shows the progression
of the wave front over time using contours on a 2D projection of
the cell.

To assess if the hybrid approach was accurately simulating
wave behavior within our region of interest near the soma,
we repeated the experiment using all sections whose center
was within a path distance of 100 µm from the center of the
soma; this expansion added an additional 19 sections to the
3D domain. Simulating in 3D on this expanded domain gave a
visually identical contour map of wave propagation (not shown),
and an identical prediction for when the wave would cross the
center of the soma (t= 188.255 ms), defined as the first time
the 1D concentration at the center of the soma exceeded the
half-maximal value. This consistency suggests that our original
simulation was not losing significant accuracy near the soma
despite simulating distal parts of the cell in 1D. By contrast,
simulating only the soma and the sections directly connected
to the soma in 3D led to a different wave crossing time
(t= 194.58 ms), which therefore indicates this smaller region is
not a sufficiently large 3D region for studying behavior near
the soma.

We note that Figure 7 presents a similar experiment on
a different morphology showing a color-coded 2D slice at a
specific time point. The visualization in the latter figure shows
more detail on the concentration distribution near the wave
front, but cannot show the propagation of the wave front
over time.

Frontiers in Neuroinformatics | www.frontiersin.org 14 May 2022 | Volume 16 | Article 847108115

https://NeuroMorpho.Org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

McDougal et al. Efficient 3D Reaction-Diffusion Simulation

FIGURE 12 | Chemical concentration within neurons is affected by the 3D shape of the cell. (A) An intracellular wave entering the soma may curve, slow, and in

extreme cases fail to propagate. (B) Diffusion of ligand from neighboring spines (red; illustrated as inset) leads to different trajectories of higher peak dendrite

concentrations than from spines opposite each other on the dendrite.

Spines
Numerous publications have examined the interactions of spines
with each other (e.g., Chiu et al., 2013), how concentrations
may be compartmentalized within spines (e.g., Yuste et al., 2000)
and the relationship between membrane potential in spine and
dendrite (e.g., Jayant et al., 2017). As with dendrites meeting
the soma, the exact nature of dynamics at the spine-dendrite
juncture depends on the shape of this connection. This is in
part dependent on the angle with which the spine attaches to its
dendrite, a detail completely lost in 1D simulation, but analagous
to the issues arising at the soma.

Spine-dendrite modeling, however, also introduces a new
challenge arising from non-physically realizable models where
the same volumes is part of two separate sections. Such
overlapping sections are common inNEURON, as sections are by
default connected to the centroid of the parent section. For most
models, the length of most sections is longer than the length of
the diameter and the child diameters are generally comparable
to the parent diameters, so any discrepancies in local surface
area or volume due to the overlaps are typically minimal. Models
with spines are a notable exception; spine necks vary in shape
and size but for example in layer 6 pyramidal cells of the mouse
somatosensory cortex are typically <0.2 µm in diameter and
<2 µm long (Ofer et al., 2021), and so attaching the spine at
the centroid places much of the neck inside the dendrite. Here
our choice of mapping the voxel to the 1D compartment closest
to the presumptive soma assures that the spine neck is only
that portion extending beyond the dendrite proper, but the 3D
volume and surface area calculations will be based only on the
part that extends beyond the dendrite, and thus the volumes
will disagree, and it is possible that some segments may not
have any true surface area. This discrepancy between the 1D
and 3D representations can be mitigated by shifting the start
of the spine neck to be some distance (almost a radius) away

from the centroid of the parent dendrite using the appropriate
NEURON pt3dstyle while keeping the perimeter inside the
parent dendrite. In the case of a cylindrical dendrite with a
smaller orthogonal spine, the maximum spine distance from the
dendrite centroid can be found by considering the circular cross-
section of the dendrite meeting the rectangular cross-section of
the spine neck, placed inside the dendrite such that the two
lower vertices are on the perimeter of the dendrite. The resulting
distance d from the centroid is determined by a right triangle,
formed by the center of the dendrite, one of the lower vertices of
the spine neck, and the center of the lower edge of the spine neck.
This gives a triangle with hypotenuse rd, adjacent rn and opposite
rd − d, where rd is the radius of the dendrite and rn the radius of

the spine neck. Then by Pythagoras’s theorem d = rd−
√

r2
d
− r2n.

Using this rule, we constructed a cylindrical dendrite 2.5 µm
in diameter and 6 µm long. We attached two spines at position
3 µm orthogonal to the dendrite with necks of length 3 µm,
diameter 0.1 µm and cylindrical heads of length 0.5 µm and
diameter 0.6 µm. To simulate the spread of a substance from the
spines, they were initially filled with substance to a concentration
of 2 mM, with 0 mM in the dendrite. When the substance was
allowed to diffuse at a rate of 0.01 µm2/ms, the dynamics of the
concentrations within the dendrite varied depending on the angle
separating the two spines (Figure 12B).We considered two cases:
spines 30◦ apart, and spines 180◦ apart. We note that in a non-3D
simulation these two cases would give identical results. The peak
dendritic concentration in each case was reached within the first
0.5ms, with the closer spines leading to a peak concentration 89%
as high as with the spines on the opposite side of the dendrite.
All voxels dropped below a concentration of 0.15 mM 17.575
ms earlier when the dendrites were near each other than when
they were opposite each other. If the threshold for triggering
another reaction was around 0.15 mM, this difference in time

Frontiers in Neuroinformatics | www.frontiersin.org 15 May 2022 | Volume 16 | Article 847108116

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

McDougal et al. Efficient 3D Reaction-Diffusion Simulation

above that value could make the difference between whether or
not the downstream reaction was triggered. For different choices
of parameters (e.g., with a thinner dendrite), the same model
could have the peak concentration drop below the threshold in
the other order.

Three-Dimensional Localization of Synapses
Metabotropic receptors and other mechanisms exist at specific
points in 3D space. Such dynamics in 1D are often specified
using files written in NMODL (Hines and Carnevale, 2000), a
domain specific language for ion channel, receptor, and artificial
cell kinetics supported by NEURON, Arbor (Akar et al., 2019),
and the Python nmodl module (github.com/bluebrain/nmodl).
We can apply the same approach to synapses located in 3D space,
but a few extra considerations are necessary.

First, we begin by defining our post-synaptic response
kinetics. In principle, these can be arbitrarily complicated
to reproduce experimental observations, however as a first
approximation it is not uncommon in modeling to see
mechanisms where the rate of production jumps abruptly in
response to synaptic and decays exponentially; such an NMODL
file is shown in Figure 13. In this file, g denotes the rate of
production of a substance; physically, this corresponds to a
change in mass per ms. To support traditional NMODL files, all
currents generated by an NMODL mechanism are distributed
over the entire segment surface. As a segment is the smallest
electrical compartment, that behavior is correct for the electrical
aspects of the simulation, however distributing, e.g., sodium
currents across the surface would result in sodium changes in
all surface voxels. To avoid this issue, a 3D targeted NMODL
mechanismmust generate onlyNONSPECIFIC_CURRENTwith
chemical changes driven solely by the rate g.

NMODL mechanisms must be compiled before they can be
used. This is typically done by running nrnivmodl, but we
note additional compilation options are sometimes available.
NEURON loads compiled NMODL mechanisms from the
current directory at startup and can also load them on demand
via h.nrn_load_dll. Once loaded, the POINT_PROCESS
name (RxDSyn in Figure 13) is available as a class in NEURON’s
h object. That is, a new instance could be created by r =
h.RxDSyn(seg), where seg is the segment that contains the
mechanism.

Once we have picked the kinetics, the next step is to identify
the 3D location to place them. If ca is an rxd.Species
on a 3D region, then ca.nodes[(x, y, z)] is an
rxd.NodeList of ca nodes containing the point (x, y,
z). As each node covers a volume, there are many points within
a Node but at most one Node that contains the point unless
the rxd.Species is present on more than one region (e.g.,
calcium might be present in both the ER and the cytosol, as in
Neymotin et al., 2015). The coordinates of the center of a Node’s
voxel are (node.x3d, node.y3d, node.z3d). Note that
if node is on the surface, then node.surface_area should
be strictly positive. If the surface exactly touches a grid corner, it is
possible that some voxels with zero surface area will be included
in the mesh, but as such, these should not be used for surface-
based kinetics. If the segment containing the mechanism was

FIGURE 13 | Source code for a generic NMODL mechanism called RxDSyn

that receives synaptic events (NET_RECEIVE block) causing the flux g to

increase abruptly in response to an event by an associated weight, with the

flux decaying exponentially with time constant tau thereafter (DERIVATIVE

block).

initially unknown, it can be obtained from the selected node via
node.segment.

Mechanisms may be connected to one or more
nodes by passing a pointer to the rate to the node’s
include_flux method; in our example, this is
node.include_flux(r._ref_g). By default, this
method assumes g is measured in molecules per second; these
units ensure that the same total amount of substance is enters
the cell regardless of the discretization. The same flux rate may
optionally be applied to other nodes.

Once this is done and the post-synaptic dynamics are
connected to a presynaptic event source (e.g., a membrane
potential crossing a threshold or a random spike train),
then presynaptic events will trigger production of the node’s
substance at a rate that decays over time (if using the kinetics of
Figure 13) and that substance is free to diffuse away (Figure 14).

DISCUSSION

NEURON 8.1 provides built-in support for parallel, 3D
deterministic simulation of intracellular reaction-diffusion
dynamics (e.g., protein and ion interactions and diffusion) in
whole neurons and in modeler-selected Sections of interest; the
remaining Sections, with kinetics expressed identically, continue
to use 1D reaction-diffusion simulation, allowing computational
resources to be targeted toward locations where the 3D shape
is likely to matter such as the relatively large volumes near the
soma. Selected cells or Sections are voxelized using an updated

Frontiers in Neuroinformatics | www.frontiersin.org 16 May 2022 | Volume 16 | Article 847108117

https://github.com/bluebrain/nmodl
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

McDougal et al. Efficient 3D Reaction-Diffusion Simulation

FIGURE 14 | Simulated diffusion in a cylindrical dendrite of a substance produced at (2.5, 0.975, 0.275) in response to synaptic input at time t = 5 ms. The volumetric

images highlight translucent level sets with all concentrations above 10 µm displayed the same. Bottom-right: concentration (on a log scale) vs. time at five distances

from the source on the surface of the dendrite. Inset: a volumetric view from a different angle showing the extent of diffusion into the interior of the dendrite.

version of the CTNG algorithm (McDougal R. et al., 2013)
that exploits convexity. Synapses can optionally target their
effects to specific 3D compartments (e.g., production of a certain
mass of messenger from activation of a metabotropic synapse).
Electrophysiology simulations remain simulated as branching
1-dimensional sections as is appropriate given their larger space
constants.

NEURON—via its Import3D library—supports a variety of
neuroscience formats for specifying the overall cell morphology,
including SWC (Cannon et al., 1998), MorphML (Crook
et al., 2007), and Neurolucida ASC (Glaser and Glaser, 1990).
Morphologies specified using Neurolucida ASC may include
a soma outline; CTNG uses this outline when available to
construct a more accurate soma shape than is possible when
reading morphologies specified in the other formats. SWC is
especially useful as the over 170,000 neuron reconstructions on
NeuroMorpho.Org (Ascoli et al., 2007) are all available in SWC
format. To study the effects of cell morphology on reaction-
diffusion dynamics, modelersmay alter amorphology file directly
or may modify it using NEURON’s standard techniques, such
as adding new Section objects to insert e.g. spines or using
Section.pt3dchange and related methods to adjust (x, y, z)
or diameter values.

Alternative Strategies
There are two main alternative approaches in the literature for
combining 3D reaction-diffusion kinetics with electrophysiology.

The first alternative approach is to have an integrated solver
that uses a single mesh. STEPS, for example, simulates ion

channel and pump activity on the surface of the 3D mesh
(Hepburn et al., 2013); a similar approach was used in the Virtual
NEURON study (Brown et al., 2011). Using the same mesh
eliminates the possibility of numerical artifacts from coupling,
automatically ensures consistent surface areas, and eliminates the
possibility of interior surface (e.g., from spines mis-connected
at the centroid). We have avoided this approach, instead using
1D electrical with 3D reaction-diffusion as in Grein et al. (2014)
to allow the electrical dynamics to be consistent regardless of
the dimensionality of the reaction-diffusion simulation, to take
advantage of the O(n) implicit simulation of electrical dynamics
on such a 1D-structure (Hines, 1984), and for compatibility
with the over 2,000 existing NEURON models (i.e., extending
an existing NEURON model with 3D intracellular reaction-
diffusion dynamics does not require modifying the existing
components, unless a change is desired to their behavior).

The second alternative approach is to use multisimulation;
that is, to combine a solver specializing in ion channels and the
cable equation like NEURON or MOOSE (RRID:SCR_008031;
Dudani et al., 2009) with an external solver specializing in
reaction-diffusion simulation. We and our colleagues have
used this approach for stochastic 3D model simulation with
NEURON Time Warp (Lin et al., 2017). KappaNEURON
likewise combines NEURON with the rule-based reaction-
diffusion simulator SpatialKappa (Sterratt et al., 2014). Grein
et al. (2014) used a similar approach for deterministic 3D
simulation coupling NEURON with uG. Additionally, we note
that NEURON supports the general multisimulation framework
MUSIC (Djurfeldt et al., 2010) which has been used to connect

Frontiers in Neuroinformatics | www.frontiersin.org 17 May 2022 | Volume 16 | Article 847108118

https://NeuroMorpho.Org
https://https://scicrunch.org/resolver/RRID:SCR_008031
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

McDougal et al. Efficient 3D Reaction-Diffusion Simulation

MOOSE andNeuroRD (Brandi et al., 2011). Themultisimulation
approach is appealing as it allows each simulator to specialize
in its own problem domain, providing a rich set of simulatable
features, with each simulator programmed independently. While
recognizing the benefits and flexibility of multisimulation, we
chose to build our 3D intracellular simulation capability within
NEURON to allow for a unified Jacobian matrix, allowing
for variable step simulation, to provide consistent coupling
semantics, to avoid the need for syncing data between two
different potentially parallel tools, and to avoid the need for users
to learn two simulator tools.

Special Considerations
Models with exactly zero diffusion of a species that enters or
leaves through ion channels pose specific issues in comparing
1D and 3D simulations or 3D simulations with different
discretizations. Although mathematically convenient, these
models are non-physical as diffusion is necessary to bring a
molecule to or through an ion channel. Concentration changes
in 1D are based on the active geometry, typically the whole
dendrite. Increasing the spatial resolution (e.g., tripling nseg) in a
1D model with no diffusion has no direct effect on concentration
dynamics as the volume and total current both scale by the same
fraction. In contrast, in a 3D model as ions must enter via the
surface, with no diffusion, they are trapped there. Reducing voxel
edge size by a factor of 2 changes the volume by a factor of 8
but the surface area contained in the voxel by only a factor of 4
on average, leading to a factor of 2 change in the rate at which
concentration in surface voxels changes, which could affect ion
channel kinetics.

In principle, multigriding could be extended to be used within
the chemical dynamics in 1D or 3D; i.e., a species prone to
steeper gradients could be simulated on a finer grid, but this
risks introducing artifacts, especially in the case of slow or
zero diffusion. For example, suppose molecule A on a coarse
grid bound with molecule B from a refinement of the grid to
form molecule AB. If AB is represented on the same fine grid,
then when it dissociates A and B can return to their correct
points of origin. If on the other hand, AB is represented on
the coarse grid then when it dissociates B could end up in any
of the corresponding fine meshes. Thus, even if the diffusion
rate was set to zero for all species, molecule B could move
by binding to A, entering the coarse grid, and then returning
to a different fine grid compartment. A similar problem exists
regardless of the relative sizes of the grids if they do not align
perfectly. Meshless simulators, like MCell (Stiles et al., 1998),
avoid this class of problems entirely at the cost of having to
simulate each molecule separately. We note that this problem
only pertains to overlapping meshes; separate mesh resolutions
on different parts of the cell (e.g., large near the soma, smaller
in the distal dendrites) are potentially compatible, although the
mesh transition would not in general be expected to align to the
boundary between Sections.

We note that the insight gained by a 3D simulation
depends on the quality of the 3D mesh. CTNG or any of the
alternative rules for converting point-diameter representations
into a 3D mesh are inherently approximations as the full

shape of the cell is under-determined by the reconstruction
data. For a given reconstruction, the mesh quality in
NEURON is primarily driven by the choice of dx (with
smaller values of dx giving generally higher quality meshes)
as well as the ics_partial_volume_resolution and
ics_partial_surface_resolution options. At least
as important is the quality of the reconstruction itself; even
when working from the same image stacks, different approaches
can lead to logically different reconstructions with branches
connected at different points (see e.g., Gillette et al., 2011). Details
of the imaging approach can likewise affect the detail present in
image stacks of a cell (e.g., dyes may not fill a neuron entirely or
a neuron’s branches may be amputed by a slice). We recommend
that—regardless of metadata annotations—morphologies should
be manually reviewed for slice artifacts (e.g., when we randomly
selected 21 morphologies, we found that while none were strictly
planar several showed minimal z-axis variation), for realistic and
non-uniform diameters, for electrical connectivity (no pinch
points where the diameter gets very small), and for z-axis errors
(some reconstructions show abrupt changes in z values). There
is no value in doing a 3D simulation if the 3D morphology is
unrealistic.

3D time-series data is in general large and hard to visualize.
We deal with the large volume of data by only automatically
keeping the current state in memory. The time series of the
concentration of a specific species at a specific compartment
may be recorded using a Vector. For modelers needing to
store or visualize all the states at a specific time, simulations
may be stopped at a specific time point, where the states
are then captured to an appropriate Python data structure.
Throughout this paper, we have deliberately illustrated several
approaches to visualizing such data: (1) line plots of a single
species at a single point as in Figure 12B; (2) for traveling
waves, plots of the location of the wave front at evenly spaced
time points on a 2D projection or slice as in Figure 12A;
(3) plots of the concentrations at the surface, analagous to
the surface segment identities in Figure 3A; (4) heatmaps of
a slice or projection at a specific time point as in Figure 7;
and (5) translucent contour maps of concentration level sets
at given time points as in Figure 14. Example Python code
for each type of graph is available in this paper’s entry
on ModelDB.

Conclusions and Future Directions
From our examples, we make a few observations that apply
broadly to other 3D reaction-diffusion simulations: (1) areas
that are far from the region of interest do not need to be
simulated in 3D; when studying effects at the dendrite-soma
intersection, this allows larger dx values than would be possible
if the fine distal dendrites also needed to be simulated in 3D.
(2) Conversely, such experiments are fundamentally about the
role of boundary conditions, therefore other boundaries must
be at a far enough distance from the region of interest so as
not to affect the results. (3) The accuracy of any results arising
from such simulations depends on the accuracy of the voxelized
reconstructions. For this reason, we currently recommend using

Frontiers in Neuroinformatics | www.frontiersin.org 18 May 2022 | Volume 16 | Article 847108119

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

McDougal et al. Efficient 3D Reaction-Diffusion Simulation

reconstructions in ASC format with a soma outline, as this will
provide a non-cylindrical soma. Future versions of NEURON
will allow importing a predefined voxelization to more accurately
reflect the observed shape, but this will necessarily require
matching the surface areas and volumes on the 3D chemical
domain with that used for electrophysiology simulation. (4)
Regenerative waves have a leading edge that can be plotted on a
contour map at regular intervals showing the progression of the
wave over time.

NEURON is under continuous development. We intend to
improve its support for 3D simulation by streamlining mesh
generation: the CTNG algorithm is in-principle embarrassingly
parallel and meshes and the data on them could in principle
be saved and reused when relaunching NEURON. The first
will require reimplementation of CTNG in pure C++ to avoid
parallel limitations from Python’s GIL, and the second will
require an efficient way of validating that the mesh aligns with
the 1D skeleton. Both of these enhancements will make it
more practical to use the high-quality volume estimates that
are necessary to keep 1D-3D coupling errors low but currently
require a potentially time-prohibitive initialization. We intend to
integrate support for stochastic simulation to study more classes
of dynamics and to more faithfully capture phenomena arising
from very low concentrations or very small regions (such as
spines and boutons). To more accurately capture the dynamics of
smaller regions, we intend to add support for optionally including
electrodiffusion effects.

We believe that the approach described in this paper provides
an intuitive way of incorporating intracellular reaction-diffusion
dynamics in computational neuroscience models in a way that
more faithfully captures the effects of geometry than is possible
in a 1D or 1D + radial simulation. We hope that this allows
new insights into the multi-scale processes that underlie our
neural activity.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be
found in online repositories. The names of the
repository/repositories and accession number(s) can be found at:
http://modeldb.yale.edu/267018.

AUTHOR CONTRIBUTIONS

CC and RM designed the 3D simulation strategy in consultation
with AN. CC implemented it in consultation with AN. LE and
RM designed the 3D voxelization strategy and LE implemented
it. AN designed and implemented the surface subvoxelization,
and improved simulation and voxelization robustness. RM,
HG, AN, and CC performed the analyses. All authors drafted,
reviewed, edited the manuscript, and contributed to the article
and approved the submitted version.

FUNDING

Research reported by this publication was supported by
the National Institute of Mental Health (NIMH) and the
National Institute of Neurological Disorders and Stroke (NINDS)
of the National Institutes of Health under award numbers
R01MH086638 and R01NS11613.

ACKNOWLEDGMENTS

We thank Michael L. Hines and William W. Lytton for
valuable discussions affecting the design of the interface and
its implementation. We thank the Virtual Cell team for various
discussions over the years about 3D simulation. We thank the
Yale Center for Research Computing for guidance and use of the
research computing infrastructure, specifically the Farnam HPC.

REFERENCES

Akar, N. A., Cumming, B., Karakasis, V., Küsters, A., Klijn, W., Peyser, A., et
al. (2019). “Arbor – a morphologically-detailed neural network simulation
library for contemporary high-performance computing architectures,” in 2019

27th Euromicro International Conference on Parallel, Distributed and Network-

Based Processing (PDP). (Pavia), 274–282. doi: 10.1109/EMPDP.2019.86
71560

Ascoli, G. A., Donohue, D. E., and Halavi, M. (2007). NeuroMorpho.Org:
a central resource for neuronal morphologies. J. Neurosci. 27, 9247–9251.
doi: 10.1523/JNEUROSCI.2055-07.2007

Balluffi, R. W., Allen, S. M., Carter, W. C., and Kemper, R. A. (2005). Kinetics of
Materials, Vol. 1. Hoboken, NJ: Wiley Online Library. doi: 10.1002/0471749311

Benedikt, M., and Drenth, E. (2019). “Relaxing stiff system integration
by smoothing techniques for non-iterative co-simulation,” in IUTAM

Symposium on Solver-Coupling and Co-Simulation, ed B. Schweizer
(Cham: Springer International Publishing), 1–25. doi: 10.1007/978-3-030-
14883-6_1

Brandi, M., Brocke, E., Talukdar, H. A., Hanke, M., Bhalla, U. S., Kotaleski, J. H.,
et al. (2011). Connecting MOOSE and NeuroRD through MUSIC: towards a
communication framework for multi-scale modeling. BMC Neurosci. 12:P77.
doi: 10.1186/1471-2202-12-S1-P77

Brown, S.-A., Moraru, I. I., Schaff, J. C., and Loew, L. M. (2011). Virtual NEURON:
a strategy for merged biochemical and electrophysiological modeling. J.

Comput. Neurosci. 31, 385–400. doi: 10.1007/s10827-011-0317-0
Canchi, S., Sarntinoranont, M., Hong, Y., Flint, J. J., Subhash, G., and

King, M. A. (2017). Simulated blast overpressure induces specific
astrocyte injury in an ex vivo brain slice model. PLoS ONE 12:e0175396.
doi: 10.1371/journal.pone.0175396

Cannon, R. C., Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini, E., et
al. (2014). LEMS: a language for expressing complex biological models in
concise and hierarchical form and its use in underpinning NeuroML 2. Front.
Neuroinformatics 8:79. doi: 10.3389/fninf.2014.00079

Cannon, R. C., Turner, D., Pyapali, G., and Wheal, H. (1998). An on-line
archive of reconstructed hippocampal neurons. J. Neurosci. Methods 84, 49–54.
doi: 10.1016/S0165-0270(98)00091-0

Chen, W., and De Schutter, E. (2017). Time to bring single neuron modeling into
3D. Neuroinformatics. 15, 1–3. doi: 10.1007/s12021-016-9321-x

Chiu, C. Q., Lur, G., Morse, T. M., Carnevale, N. T., Ellis-Davies, G. C., and Higley,
M. J. (2013). Compartmentalization of GABAergic inhibition by dendritic
spines. Science 340, 759–762. doi: 10.1126/science.1234274

Cowan, A. E., Moraru, I. I., Schaff, J. C., Slepchenko, B. M., and Loew, L. M. (2012).
Spatial modeling of cell signaling networks. Methods Cell Biol. 110, 195–221.
doi: 10.1016/B978-0-12-388403-9.00008-4

Frontiers in Neuroinformatics | www.frontiersin.org 19 May 2022 | Volume 16 | Article 847108120

http://modeldb.yale.edu/267018
https://doi.org/10.1109/EMPDP.2019.8671560
https://NeuroMorpho.Org
https://doi.org/10.1523/JNEUROSCI.2055-07.2007
https://doi.org/10.1002/0471749311
https://doi.org/10.1007/978-3-030-14883-6_1
https://doi.org/10.1186/1471-2202-12-S1-P77
https://doi.org/10.1007/s10827-011-0317-0
https://doi.org/10.1371/journal.pone.0175396
https://doi.org/10.3389/fninf.2014.00079
https://doi.org/10.1016/S0165-0270(98)00091-0
https://doi.org/10.1007/s12021-016-9321-x
https://doi.org/10.1126/science.1234274
https://doi.org/10.1016/B978-0-12-388403-9.00008-4
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

McDougal et al. Efficient 3D Reaction-Diffusion Simulation

Crook, S., Gleeson, P., Howell, F., Svitak, J., and Silver, R. A. (2007). MorphML:
Level 1 of the NeuroML standards for neuronal morphology data and model
specification. Neuroinformatics 5, 96–104. doi: 10.1007/s12021-007-0003-6

de Oliveira, T. C. G., Carvalho-Paulo, D., de Lima, C. M., de Oliveira, R. B., Santos
Filho, C., Diniz, D. G., et al. (2020). Long-term environmental enrichment
reduces microglia morphological diversity of the molecular layer of dentate
gyrus. Eur. J. Neurosci. 52, 4081–4099. doi: 10.1111/ejn.14920

Djurfeldt, M., Hjorth, J., Eppler, J. M., Dudani, N., Helias, M., Potjans,
T. C., et al. (2010). Run-time interoperability between neuronal network
simulators based on the music framework. Neuroinformatics 8, 43–60.
doi: 10.1007/s12021-010-9064-z

Douglas, J., and Gunn, J. E. (1964). A general formulation of alternating direction
methods. Numer. Math. 6, 428–453. doi: 10.1007/BF01386093

Dronne, M.-A., Descombes, S., Grenier, E., and Gilquin, H. (2009). Examples of
the influence of the geometry on the propagation of progressive waves. Math.

Comput. Model. 49, 2138–2144. doi: 10.1016/j.mcm.2008.07.024
Dudani, N., Ray, S., George, S., and Bhalla, U. S. (2009). Multiscale

modeling and interoperability in moose. BMC Neurosci. 10:P54.
doi: 10.1186/1471-2202-10-S1-P54

Ehlinger, D. G., Burke, J. C., McDonald, C. G., Smith, R. F., and Bergstrom, H.
C. (2017). Nicotine-induced and d1-receptor-dependent dendritic remodeling
in a subset of dorsolateral striatum medium spiny neurons. Neuroscience 356,
242–254. doi: 10.1016/j.neuroscience.2017.05.036

Ellingsrud, A. J., Solbrå, A., Einevoll, G. T., Halnes, G., and Rognes, M. E. (2020).
Finite element simulation of ionic electrodiffusion in cellular geometries. Front.
Neuroinformatics 14:11. doi: 10.3389/fninf.2020.00011

Fife, P. (1979). Mathematical Aspects of Reacting and Diffusing Systems. Berlin:
Springer Verlag. doi: 10.1007/978-3-642-93111-6

Gillette, T. A., Brown, K. M., and Ascoli, G. A. (2011). The DIADEM metric:
comparing multiple reconstructions of the same neuron. Neuroinformatics 9,
233–245. doi: 10.1007/s12021-011-9117-y

Glaser, J. R., and Glaser, E. M. (1990). Neuron imaging with Neurolucida-a PC-
based system for image combining microscopy. Comput. Med. Imaging Graph.
14, 307–317. doi: 10.1016/0895-6111(90)90105-K

Graham, R. L. (1969). Bounds on multiprocessing timing anomalies. SIAM J. Appl.

Math. 17, 416–429. doi: 10.1137/0117039
Grein, S., Stepniewski, M., Reiter, S., Knodel, M. M., and Queisser, G. (2014). 1D-

3D hybridmodeling-frommulti-compartmentmodels to full resolutionmodels
in space and time. Front. Neuroinformatics 8:68. doi: 10.3389/fninf.2014.00068

Grienberger, C., and Konnerth, A. (2012). Imaging calcium in neurons.Neuron 73,
862–885. doi: 10.1016/j.neuron.2012.02.011

Groh, A., Meyer, H. S., Schmidt, E. F., Heintz, N., Sakmann, B., and Krieger,
P. (2010). Cell-type specific properties of pyramidal neurons in neocortex
underlying a layout that is modifiable depending on the cortical area. Cereb.
Cortex 20, 826–836. doi: 10.1093/cercor/bhp152

Hagenston, A. M., Fitzpatrick, J. S., and Yeckel, M. F. (2008). MGluR-
mediated calcium waves that invade the soma regulate firing in layer V
medial prefrontal cortical pyramidal neurons. Cereb. Cortex 18, 407–423.
doi: 10.1093/cercor/bhm075

Helmstaedter, M., Briggman, K. L., Turaga, S. C., Jain, V., Seung, H. S., and Denk,
W. (2013). Connectomic reconstruction of the inner plexiform layer in the
mouse retina. Nature 500, 168–174. doi: 10.1038/nature12346

Helton, T. D., Zhao, M., Farris, S., and Dudek, S. M. (2019). Diversity of
dendritic morphology and entorhinal cortex synaptic effectiveness in mouse
Ca2 pyramidal neurons. Hippocampus 29, 78–92. doi: 10.1002/hipo.23012

Hepburn, I., Cannon, R., and De Schutter, E. (2013). Efficient calculation of the
quasi-static electrical potential on a tetrahedral mesh and its implementation
in steps. Front. Comput. Neurosci. 7:129. doi: 10.3389/fncom.2013.00129

Hepburn, I., Chen, W., Wils, S., and De Schutter, E. (2012). Steps: efficient
simulation of stochastic reaction-diffusion models in realistic morphologies.
BMC Syst. Biol. 6:36. doi: 10.1186/1752-0509-6-36

Herget, U., Gutierrez-Triana, J. A., Thula, O. S., Knerr, B., and Ryu, S.
(2017). Single-cell reconstruction of oxytocinergic neurons reveals separate
hypophysiotropic and encephalotropic subtypes in larval zebrafish. ENeuro 4.
ENEURO.0278-16.2016. doi: 10.1523/ENEURO.0278-16.2016

Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee, S. L., Serban, R., Shumaker,
D. E., and Woodward, C. S. (2005). SUNDIALS: Suite of nonlinear and

differential/algebraic equation solvers. ACM Trans. Math. Softw. 31, 363–396.
doi: 10.1145/1089014.1089020

Hines, M. (1984). Efficient computation of branched nerve equations. Int. J.
Bio-Med. Comput. 15, 69–76. doi: 10.1016/0020-7101(84)90008-4

Hines, M., Carnevale, T., and McDougal, R. A. (2019). “Chapter: NEURON
simulation environment,” in Encyclopedia of Computational Neuroscience,
eds D. Jaeger and R. Jung (New York, NY: Springer New York), 1–7.
doi: 10.1007/978-1-4614-7320-6_795-2

Hines, M. L., and Carnevale, N. T. (2000). Expanding neuron’s
repertoire of mechanisms with nmodl. Neural Comput. 12, 995–1007.
doi: 10.1162/089976600300015475

Hines, M. L., and Carnevale, N. T. (2001). NEURON: a tool for neuroscientists.
Neuroscientist 7, 123–135. doi: 10.1177/107385840100700207

Jayant, K., Hirtz, J. J., Jen-La Plante, I., Tsai, D. M., De Boer, W. D., Semonche,
A., et al. (2017). Targeted intracellular voltage recordings from dendritic
spines using quantum-dot-coated nanopipettes.Nat. Nanotechnol. 12, 335–342.
doi: 10.1038/nnano.2016.268

Juan, L.-W., Liao, C.-C., Lai, W.-S., Chang, C.-Y., Pei, J.-C., Wong, W.-R.,
et al. (2014). Phenotypic characterization of C57BL/6J mice carrying the
disc1 gene from the 129S6/SvEv strain. Brain Struct. Funct. 219, 1417–1431.
doi: 10.1007/s00429-013-0577-8

Keller, D. X., Franks, K.M., Bartol Jr, T.M., and Sejnowski, T. J. (2008). Calmodulin
activation by calcium transients in the postsynaptic density of dendritic spines.
PLoS ONE 3:e2045. doi: 10.1371/journal.pone.0002045

Kunst, M., Laurell, E., Mokayes, N., Kramer, A., Kubo, F., Fernandes, A. M., et
al. (2019). A cellular-resolution atlas of the larval zebrafish brain. Neuron 103,
21–38. doi: 10.1016/j.neuron.2019.04.034

Lasserre, S., Hernando, J., Hill, S., Schuermann, F., de Miguel Anasagasti, P.,
Abou Jaoudé, G., et al. (2011). A neuron membrane mesh representation for
visualization of electrophysiological simulations. IEEE Trans. Visual. Comput.

Graph. 18, 214–227. doi: 10.1109/TVCG.2011.55
Lin, Z., Tropper, C., McDougal, R. A., Ishlam Patoary, M. N., Lytton, W. W., Yao,

Y., et al. (2017). Multithreaded stochastic PDES for reactions and diffusions in
neurons. ACM Trans. Model. Comput. Simul. 27:7. doi: 10.1145/2987373

Lorensen, W. E., and Cline, H. E. (1987). Marching cubes: a high resolution 3D
surface construction algorithm. ACM Siggraph Comput. Graph. 21, 163–169.
doi: 10.1145/37402.37422

Malik, R., Dougherty, K. A., Parikh, K., Byrne, C., and Johnston, D. (2016).
Mapping the electrophysiological and morphological properties of CA 1
pyramidal neurons along the longitudinal hippocampal axis. Hippocampus 26,
341–361. doi: 10.1002/hipo.22526

Martinez-Canabal, A., Wheeler, A. L., Sarkis, D., Lerch, J. P., Lu, W.-
Y., Buckwalter, M. S., et al. (2013). Chronic over-expression of tgfβ1
alters hippocampal structure and causes learning deficits. Hippocampus 23,
1198–1211. doi: 10.1002/hipo.22159

McDougal, R., Hines, M., and Lytton, W. (2013). Water-tight membranes
from neuronal morphology files. J. Neurosci. Methods 220, 167–178.
doi: 10.1016/j.jneumeth.2013.09.011

McDougal, R. A., Hines, M. L., and Lytton, W. W. (2013). Reaction-diffusion in
the neuron simulator. Front. Neuroinformatics 7:28. doi: 10.3389/fninf.2013.
00028

McDougal, R. A., Morse, T. M., Carnevale, T., Marenco, L., Wang, R., Migliore,
M., et al. (2017). Twenty years of ModelDB and beyond: building essential
modeling tools for the future of neuroscience. J. Comput. Neurosci. 42:7.
doi: 10.1007/s10827-016-0623-7

Mörschel, K., Breit, M., and Queisser, G. (2017). Generating neuron geometries for
detailed three-dimensional simulations using anamorph. Neuroinformatics 15,
247–269. doi: 10.1007/s12021-017-9329-x

Nanda, S., Das, R., Bhattacharjee, S., Cox, D. N., and Ascoli, G. A.
(2018). Morphological determinants of dendritic arborization neurons in
drosophila larva. Brain Struct. Funct. 223, 1107–1120. doi: 10.1007/s00429-017-
1541-9

Newton, A. J., McDougal, R. A., Hines, M. L., and Lytton, W. W. (2018).
Using neuron for reaction-diffusion modeling of extracellular dynamics. Front.
Neuroinformatics 12:41. doi: 10.3389/fninf.2018.00041

Neymotin, S. A., McDougal, R. A., Sherif, M. A., Fall, C. P., Hines, M. L., and
Lytton, W. W. (2015). Neuronal calcium wave propagation varies with changes

Frontiers in Neuroinformatics | www.frontiersin.org 20 May 2022 | Volume 16 | Article 847108121

https://doi.org/10.1007/s12021-007-0003-6
https://doi.org/10.1111/ejn.14920
https://doi.org/10.1007/s12021-010-9064-z
https://doi.org/10.1007/BF01386093
https://doi.org/10.1016/j.mcm.2008.07.024
https://doi.org/10.1186/1471-2202-10-S1-P54
https://doi.org/10.1016/j.neuroscience.2017.05.036
https://doi.org/10.3389/fninf.2020.00011
https://doi.org/10.1007/978-3-642-93111-6
https://doi.org/10.1007/s12021-011-9117-y
https://doi.org/10.1016/0895-6111(90)90105-K
https://doi.org/10.1137/0117039
https://doi.org/10.3389/fninf.2014.00068
https://doi.org/10.1016/j.neuron.2012.02.011
https://doi.org/10.1093/cercor/bhp152
https://doi.org/10.1093/cercor/bhm075
https://doi.org/10.1038/nature12346
https://doi.org/10.1002/hipo.23012
https://doi.org/10.3389/fncom.2013.00129
https://doi.org/10.1186/1752-0509-6-36
https://doi.org/10.1523/ENEURO.0278-16.2016
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.1016/0020-7101(84)90008-4
https://doi.org/10.1007/978-1-4614-7320-6_795-2
https://doi.org/10.1162/089976600300015475
https://doi.org/10.1177/107385840100700207
https://doi.org/10.1038/nnano.2016.268
https://doi.org/10.1007/s00429-013-0577-8
https://doi.org/10.1371/journal.pone.0002045
https://doi.org/10.1016/j.neuron.2019.04.034
https://doi.org/10.1109/TVCG.2011.55
https://doi.org/10.1145/2987373
https://doi.org/10.1145/37402.37422
https://doi.org/10.1002/hipo.22526
https://doi.org/10.1002/hipo.22159
https://doi.org/10.1016/j.jneumeth.2013.09.011
https://doi.org/10.3389/fninf.2013.00028
https://doi.org/10.1007/s10827-016-0623-7
https://doi.org/10.1007/s12021-017-9329-x
https://doi.org/10.1007/s00429-017-1541-9
https://doi.org/10.3389/fninf.2018.00041
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

McDougal et al. Efficient 3D Reaction-Diffusion Simulation

in endoplasmic reticulum parameters: a computer model. Neural Comput. 27,
898–924. doi: 10.1162/NECO_a_00712

Nguyen, V. T., Uchida, R., Warling, A., Sloan, L. J., Saviano, M. S., Wicinski,
B., et al. (2020). Comparative neocortical neuromorphology in felids: African
lion, African leopard, and cheetah. J. Compar. Neurol. 528, 1392–1422.
doi: 10.1002/cne.24823

Nikolenko, V., Poskanzer, K. E., and Yuste, R. (2007). Two-photon
photostimulation and imaging of neural circuits. Nat. Methods 4, 943–950.
doi: 10.1038/nmeth1105

Nogueira-Campos, A. A., Finamore, D. M., Imbiriba, L. A., Houzel, J. C., and
Franca, J. G. (2012). Distribution and morphology of nitrergic neurons across
functional domains of the rat primary somatosensory cortex. Front. Neural
Circuits 6:57. doi: 10.3389/fncir.2012.00057

Ofer, N., Berger, D. R., Kasthuri, N., Lichtman, J. W., and Yuste, R. (2021).
Ultrastructural analysis of dendritic spine necks reveals a continuum of spine
morphologies. Dev. Neurobiol. 81, 746–757. doi: 10.1002/dneu.22829

Scala, F., Kobak, D., Shan, S., Bernaerts, Y., Laturnus, S., Cadwell, C.
R., et al. (2019). Layer 4 of mouse neocortex differs in cell types
and circuit organization between sensory areas. Nat. Commun. 10, 1–12.
doi: 10.1038/s41467-019-12058-z

Schaff, J., Fink, C. C., Slepchenko, B., Carson, J. H., and Loew, L. M. (1997). A
general computational framework for modeling cellular structure and function.
Biophys. J. 73, 1135–1146. doi: 10.1016/S0006-3495(97)78146-3

Sterratt, D. C., Sorokina, O., and Armstrong, J. D. (2014). “Integration of rule-
based models and compartmental models of neurons,” in International

Workshop on Hybrid Systems Biology (Vienna: Springer), 143–158.
doi: 10.1007/978-3-319-27656-4_9

Stiles, J. R., Bartol, T. M., Salpeter, E. E., and Salpeter, M. M. (1998). “Monte
Carlo simulation of neuro-transmitter release using Mcell, a general simulator
of cellular physiological processes,” in Computational Neuroscience, eds J. M.
Bower (Boston, MA: Springer), 279–284. doi: 10.1007/978-1-4615-4831-7_47

Takagi, S., Cocanougher, B. T., Niki, S., Miyamoto, D., Kohsaka, H., Kazama,
H., et al. (2017). Divergent connectivity of homologous command-like
neurons mediates segment-specific touch responses in drosophila. Neuron 96,
1373–1387. doi: 10.1016/j.neuron.2017.10.030

Takemura, S.-y., Aso, Y., Hige, T., Wong, A., Lu, Z., Xu, C. S., et al. (2017). A
connectome of a learning and memory center in the adult drosophila brain.
Elife 6:e26975. doi: 10.7554/eLife.26975

Tarusawa, E., Sanbo, M., Okayama, A., Miyashita, T., Kitsukawa, T., Hirayama,
T., et al. (2016). Establishment of high reciprocal connectivity between
clonal cortical neurons is regulated by the DNMT3B DNA methyltransferase
and clustered protocadherins. BMC Biol. 14:6. doi: 10.1186/s12915-016-
0326-6

Trevelyan, A. J., Sussillo, D., Watson, B. O., and Yuste, R. (2006).
Modular propagation of epileptiform activity: evidence for an
inhibitory veto in neocortex. J. Neurosci. 26, 12447–12455.
doi: 10.1523/JNEUROSCI.2787-06.2006

Weiss, L., Jungblut, L. D., Pozzi, A. G., Zielinski, B. S., O’Connell, L. A.,
Hassenklöver, T., et al. (2020). Multi-glomerular projection of single olfactory
receptor neurons is conserved among amphibians. J. Compar. Neurol. 528,
2239–2253. doi: 10.1002/cne.24887

Yuste, R., Majewska, A., and Holthoff, K. (2000). From form to function:
calcium compartmentalization in dendritic spines. Nat. Neurosci. 3, 653–659.
doi: 10.1038/76609

AuthorDisclaimer:The content is solely the responsibility of the authors and does
not necessarily represent the official views of the National Institutes of Health.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 McDougal, Conte, Eggleston, Newton and Galijasevic. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 21 May 2022 | Volume 16 | Article 847108122

https://doi.org/10.1162/NECO_a_00712
https://doi.org/10.1002/cne.24823
https://doi.org/10.1038/nmeth1105
https://doi.org/10.3389/fncir.2012.00057
https://doi.org/10.1002/dneu.22829
https://doi.org/10.1038/s41467-019-12058-z
https://doi.org/10.1016/S0006-3495(97)78146-3
https://doi.org/10.1007/978-3-319-27656-4_9
https://doi.org/10.1007/978-1-4615-4831-7_47
https://doi.org/10.1016/j.neuron.2017.10.030
https://doi.org/10.7554/eLife.26975
https://doi.org/10.1186/s12915-016-0326-6
https://doi.org/10.1523/JNEUROSCI.2787-06.2006
https://doi.org/10.1002/cne.24887
https://doi.org/10.1038/76609
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

ORIGINAL RESEARCH
published: 18 May 2022

doi: 10.3389/fnins.2022.884128

Frontiers in Neuroscience | www.frontiersin.org 1 May 2022 | Volume 16 | Article 884128

Edited by:

James B. Aimone,

Sandia National Laboratories (DOE),

United States

Reviewed by:

Srideep Musuvathy,

Sandia National Laboratories (DOE),

United States

Federico Corradi,

Eindhoven University of Technology,

Netherlands

*Correspondence:

Eric Müller

mueller@kip.uni-heidelberg.de

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 25 February 2022

Accepted: 20 April 2022

Published: 18 May 2022

Citation:

Müller E, Arnold E, Breitwieser O,

Czierlinski M, Emmel A, Kaiser J,

Mauch C, Schmitt S, Spilger P,

Stock R, Stradmann Y, Weis J,

Baumbach A, Billaudelle S, Cramer B,

Ebert F, Göltz J, Ilmberger J,

Karasenko V, Kleider M, Leibfried A,

Pehle C and Schemmel J (2022) A

Scalable Approach to Modeling on

Accelerated Neuromorphic Hardware.

Front. Neurosci. 16:884128.

doi: 10.3389/fnins.2022.884128

A Scalable Approach to Modeling on
Accelerated Neuromorphic Hardware
Eric Müller 1*†, Elias Arnold 1†, Oliver Breitwieser 1†, Milena Czierlinski 1†, Arne Emmel 1†,

Jakob Kaiser 1†, Christian Mauch 1†, Sebastian Schmitt 2†, Philipp Spilger 1†,

Raphael Stock 1†, Yannik Stradmann 1†, Johannes Weis 1†, Andreas Baumbach 1,3,

Sebastian Billaudelle 1, Benjamin Cramer 1, Falk Ebert 1, Julian Göltz 1,3, Joscha Ilmberger 1,

Vitali Karasenko 1, Mitja Kleider 1, Aron Leibfried 1, Christian Pehle 1 and

Johannes Schemmel 1

1 Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany, 2 Third Institute of Physics, University of

Göttingen, Göttingen, Germany, 3Department of Physiology, University of Bern, Bern, Switzerland

Neuromorphic systems open up opportunities to enlarge the explorative space for

computational research. However, it is often challenging to unite efficiency and usability.

This work presents the software aspects of this endeavor for the BrainScaleS-2

system, a hybrid accelerated neuromorphic hardware architecture based on physical

modeling. We introduce key aspects of the BrainScaleS-2 Operating System: experiment

workflow, API layering, software design, and platform operation. We present use

cases to discuss and derive requirements for the software and showcase the

implementation. The focus lies on novel system and software features such as

multi-compartmental neurons, fast re-configuration for hardware-in-the-loop training,

applications for the embedded processors, the non-spiking operation mode, interactive

platform access, and sustainable hardware/software co-development. Finally, we

discuss further developments in terms of hardware scale-up, system usability, and

efficiency.

Keywords: hardware abstraction, neuroscientific modeling, accelerator, analog computing, neuromorphic,

embedded operation, local learning

1. INTRODUCTION

The feasibility and scope of neuroscientific research projects is often limited due to long simulation
runtimes and therefore long wall-clock runtimes, especially for large-scale networks (van Albada
et al., 2021). Other areas of neuromorphic research—such as lifelong learning in robotic
applications—inherently rely on very long network runtimes to capture physical transformations of
their embodiment on the one hand and evolutionary processes on the other. Furthermore, training
mechanisms relying on iterative reconfiguration benefit from low execution latencies.

Traditional software-based simulations typically still often rely on general-purpose
high-performance computing (HPC) hardware. While some efforts toward GPU-based
accelerators provide an intermediate step to improve scalability and runtimes (Yavuz et al.,
2016; Abi Akar et al., 2019), domain-specific accelerators—a subset of which are neuromorphic
hardware architectures—, have come more and more into the focus of HPC (Dally et al., 2020).
Such systems specifically aim to improve on performance and scalability issues—both, in the
strong and in the weak scaling cases. Particularly, the possibility to achieve high throughput at low
execution latencies can pose a crucial advantage compared to massively parallel simulations.

123

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.884128
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.884128&domain=pdf&date_stamp=2022-05-18
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mueller@kip.uni-heidelberg.de
https://doi.org/10.3389/fnins.2022.884128
https://www.frontiersin.org/articles/10.3389/fnins.2022.884128/full

Müller et al. Neuromorphic Modeling, a Scalable Approach

The BrainScaleS (BSS) neuromorphic architecture is an
accelerator for spiking neural networks based on a physical
modeling approach. It provides a neuromorphic substrate for
neuroscientific modeling as well as neuro-inspired machine
learning. Earlier work shows its scalability in wafer-scale
applications, emulating up to 200 k neurons and 40 M synapses
(Schmitt et al., 2017; Kungl et al., 2019; Müller et al., 2020b;
Göltz et al., 2021), as well as its energy-efficient application
as standalone system with 512 neurons and 128 k synapses in
use cases related to edge computing (Stradmann et al., 2021;
Pehle et al., 2022). Compared to the biological time domain, the
model dynamics evolve on a 1.000-fold accelerated time scale
making the system interesting for iterative and long-running
experiments. Constant model emulation speed is attractive for
hardware users. However, it often comes with algorithmic
challenges. Similar to other neuromorphic systems based on
the physical modeling concept, neuroscientific modeling on
the BrainScaleS-2 (BSS-2) system requires a translation from
a user-defined neural network experiment to a corresponding
hardware configuration. BSS-2 operates in continuous time and
does not support pausing or resuming of model dynamics.
The algorithmic problem statement is global for the user-
defined experiment. Therefore, the complexity of the translation
process cannot be reduced by partitioning the problem. Many
neuromorphic systems have been providing software solutions
to solve this problem and enable higher-level experiment
descriptions. We developed a software stack for the wafer-
scale BrainScaleS-1 (BSS-1) system covering the translation of
user-defined experiments from the PyNN high-level domain-
specific description language to a hardware configuration (Müller
et al., 2020b). While the BSS-2 neuromorphic architecture hasn’t
been scaled to full wafer size yet, other feature additions such
as structured and non-linear neuron models as well as single
instruction, multiple data (SIMD) processors make BSS-2 an
appealing substrate for modeling of smaller network sizes. In
particular, a new challenge is posed by the introduction of
SIMD processors in BSS-2 as programmable elements with real-
time vectorized access to many observables from the physical
modeling substrate. Observables such as correlation sensors
are implemented in the synapse circuits, yielding an immense
computational power by offloading computational tasks into the
analog substrate. Moreover, the configuration space increases
significantly: in addition to a static configuration of network
topology, the processors allow for flexible handling of dynamic
aspects such as structural plasticity, homeostatic behavior,
and virtual environments enabling robotic or other closed-
loop applications. This “hybrid” approach requires modeling
support in the software stack integrating code generation
for the processors as well as mechanisms to parameterize
plasticity algorithms and other code parts running on the
embedded processors.

We present recent modeling advances on the substrate
showcasing new features of the system: complex neurons
(section 3.1), neuro-inspired machine-learning experiments
(section 3.2), closed-loop sensor-motor interaction (section 3.3)
and non-spiking operation (section 3.4). We demonstrate
network-attached accelerator operation as well as standalone

operation. We argue that for successful and sustainable advances
in the usage of neuromorphic systems a deep integration between
hardware and software is crucial on all layers. The complete
system—software together with hardware—needs to be explicitly
designed to support access with varying abstraction levels: high-
level modelers, expert users and component developers possess
different perceptions of the system; in order for a modeling
substrate to be successful, it has to deliver on all of these aspects.

1.1. The BrainScaleS-2 Hardware
In this section, we introduce the BSS-2 system and highlight the
basic hardware design which is guiding the development of the
accompanying software stack. For a more in depth description
of the hardware aspects of the BSS-2 system refer to Aamir et al.
(2018), Schemmel et al. (2020), and Pehle et al. (2022).

BrainScaleS is a family of mixed-signal neuromorphic
accelerators; analog circuits emulate neuron as well as synapse
dynamics in continuous time, while communication of spike
events and configuration data is handled in the digital domain.
In this paper we focus on the single chip BSS-2 system with
512 neurons and 131.072 synapses circuits (see Figure 1A). Due
to the intrinsic properties of the silicon substrate, the physical
emulation of neuron dynamics is 1.000 faster than in biological
real time. Currently, the BSS-2 ASIC is integrated in a stationary
laboratory setup (Figure 1C), as well as in a portable system
(Figure 1B).

The high configurability of the BSS-2 system facilitates many
different applications (see Section 3). For example, the neuron
circuits replicate the dynamics of the adaptive exponential
integrate-and-fire (AdEx) neuron model (Brette and Gerstner,
2005) and are individually configurable by a number of analog
and digital parameters. By connecting several neuron circuits
together to form one logical neuron, more complex multi-
compartmental neuron models can be formed and the synaptic
fan-in of individual neurons can be increased; a single neuron
circuit on its own has access to 256 synapses (Figure 1D).
In addition to the emulation of biologically plausible neural
networks, BSS-2 also supports non-spiking artificial neural
networks (ANNs). This is facilitated by disabling spiking as
well as the exponential, the adaptive and the leak current
of the AdEx neuron model, turning the neuron circuits into
simple integrators. Furthermore, the high configurability allows
countering device-specific deviations between analog circuits
which result from imperfections during the manufacturing
process (see Section 2.3.6).

The digital handling of spike events enables the
implementation of various network topologies. All spikes,
including external spikes as well as spikes generated in the
neuron circuits, are collected in the “event handling” block
and subsequently routed off chip for recording or via the
synapse drivers and synapses to post-synaptic on-chip partners
(cf. Figure 1D). One of the key challenges during experiment
setup is the translation of neural networks to valid hardware
configurations. This includes assigning specific neuron circuits
to the different neurons in the network as well as routing events
between neurons (cf. Sections 2.3.2, 2.3.3).

Frontiers in Neuroscience | www.frontiersin.org 2 May 2022 | Volume 16 | Article 884128124

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Müller et al. Neuromorphic Modeling, a Scalable Approach

FIGURE 1 | Overview of the BSS-2 system. (A) BSS-2 ASIC bonded to a carrier board. The ASIC is organized in two hemispheres each hosting 256 neurons and the

accompanying synapse matrix (cf. D). (B) Portable BSS-2 system. (C) Laboratory setup. (D) Overview over the signal flow in the BSS-2 system. The depicted analog

neural network core and SIMD processor represent one of the two hemispheres visible in (A), which are mirrored vertically below the neurons.

Apart from forwarding spikes, the synapse circuits are also
equipped with analog correlation sensors which measure the
causal and anti-causal correlation between pre- and post-synaptic
spikes. The measured correlation can be accessed by two
columnar ADCs (CADCs), which measure correlations row-wise
in parallel and can be used in the formulation of plasticity rules
(cf. Sections 3.2, 3.3). An additional analog-to-digital converter
(ADC), the so-called membrane ADC (MADC), offers the
possibility to record single neurons with a higher temporal and
value resolution.

Aside the analog neural network core, two embedded SIMD
processors, based on the PowerTM architecture (PowerISA,
2010), which allow for arbitrary calculations and reconfigurations
of the BSS-2 ASIC during hardware runtime and are the
experiment master in standalone operation. They are equipped
with 16KiB static random-access memory (SRAM)memory each
and feature a weakly-coupled vector unit (VU), which can access
the hemisphere-local synapse matrix as well as the CADC.

Communication to the BSS-2 ASIC as well as real-time
runtime control is handled by a field-programmable gate array
(FPGA). It provides memory buffers for data received from
a host computer or from the chip, with which it orchestrates
experiment executions in real time (see Section 2.1). To allow
for more complex programs and larger data storage, the on-chip
processors can access memory connected to the FPGA.

The software stack covered in this paper handles all the
necessary steps to turn high-level experiment descriptions into
configuration data, spike stimuli or programs for the on-chip
SIMD processor.

In the following we will at first describe the BSS-2 Operating
System (BSS-2 OS) in Section 2, before showcasing several

applications in Section 3. We conclude the paper with a
discussion in Section 4.

2. BRAINSCALES-2 OPERATING SYSTEM

This section introduces key concepts and software components
that are essential for the operation of BrainScaleS-2 systems.
First, we introduce the workflow of experiments incorporating
BSS-2, derive an execution model and specify common modes
of operation in Section 2.1. Continuing, we give a structural
overview of the complete software stack including the foundation
developed in Müller et al. (2020a) in Section 2.2. Following this,
we motivate key design decisions and show their incorporation
into the development of the software stack in Section 2,3. Finally,
we describe advancements in platform operation toward seamless
integration of BSS-2 as an accelerator resource in multi-site
compute environments in Section 2.4.

Higher abstraction layers scale down the level of required
hardware detail knowledge. Naturally, such abstractions impose
constraints on and reduce the flexibility of system usage
introducing tradeoffs. Therefore, there are tradeoffs between
abstraction level and the flexibility to exploit system capabilities.
In the following, we explain existing tradeoffs at their occurrence.

2.1. Experiment Workflow
Unlike numerical simulations, which are orchestrated as number-
crunching on traditional computers, experiments on BSS-2 are
more akin to physical experiments in a traditional lab. Just like
for these there is an initialization phase, which ensures the correct
configuration of the system for this particular experiment and a
real-time section, where the network dynamics are recorded and

Frontiers in Neuroscience | www.frontiersin.org 3 May 2022 | Volume 16 | Article 884128125

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Müller et al. Neuromorphic Modeling, a Scalable Approach

FIGURE 2 | Time evolution of a single execution instance. The initialization is

followed by possibly multiple real-time executions with input spike-trains

represented by vertical lines.

the actual emulation happens. If multiple emulations share (parts
of) the configuration, those experiments can be composited
by concatenating the trigger commands for both input and
recording (see Figure 2).

The fundamental physical nature of the emulation on BSS-2
requires these control commands to be issued with very high
temporal precision as the dynamics of the on-chip circuitry can
neither be interrupted nor exactly repeated. To achieve this,
the accompanying FPGA is used to play-back a sequence of
instructions with clock-precise timing, in the order of 10 ns. In
order to limit the FPGA firmware complexity, the play-back unit
is restricted to sequential execution, which includes blocking
instructions (used for times without explicit interaction), but
excludes branching instructions. Concurrently to the FPGA-
based instruction sequence execution, the embedded single
instruction, multiple data central processing units (SIMD CPUs)
can be configured to perform readout of observables and
arbitrary alterations to the hardware configuration. This means
that conditional decisions, e.g., the issuance of rewards, can
be performed either via the SIMD CPU if they are not
computationally too complex or via synchronization with the
executing host computer which in the current setup has no
guaranteed timing.

The initialization phase typically includes time-consuming
write operations to provide an initial state of the complete
hardware configuration. This is due to both, the amount
of data to be transmitted, e.g., for the synapse matrix, and
required settling-time for the analog parameters. Since this
can take macroscopic amounts of time, at least around
100 µs due to round-trip latency, around 100ms for a
complete reconfiguration, back-to-back concatenation of real-
time executions is needed to keep their timeshare high and
therefor the configuration overhead low.

Due to the hardware’s analog speed-up factor compared to
typical biological processes, a single real-time section can be short
compared to the initialization phase. Therefore, we concatenate
multiple real-time sections after a single initialization phase to
increase the real-time executions’ timeshare. In the following,
this composition is called execution instance and is depicted in
Figure 2.

Alternatively, instead of this asynchronous high-throughput
operation, the low minimal latency allows for fast iterative
workflows with partial reconfiguration, e.g., iterative
reconfiguration of a small set of synaptic weights.

Based on this we differentiate between three modes of
operation. First, in batch-like operation one or multiple

execution instances are predefined and run on hardware. Second,
in the so-called hardware in-the-loop case hardware runs are
executed iteratively where the results of previous runs determine
the parameters of successive runs. Last, in closed-loop operation
is characterized by tightly coupling the network dynamics of the
analog substrate to the experiment controller, either the SIMD
CPU or the control host.

2.2. Software Stack Overview
Structuring software into well-defined layers is vital for keeping
it maintainable and extendable. The layers are introduced and
implemented via a bottom-up approach matching the order of
requirements in the current stage of the hardware development
and commissioning process. This means, that first raw data
exchange and transport from and to the hardware via the
communication layer is established. Subsequently, the hardware
abstraction layer implements translation of typed configuration,
e.g., enabling a neuron’s event output, to and from this raw data.
On this level, the calibration layer allows to programmatically
configure the analog hardware to a desired working point.
Then, hardware-intrinsic relations between configurables and
their interplay in experiments (cf. Section 2.1), is encapsulated
in a graph structure. Lastly, automated generation of hardware
configuration from an abstract network specification enables
embedding into modeling frameworks for high-level usage.
Figure 3 gives a graphical overview of this software architecture1.

2.2.1. Communication
From the software point of view, the first step to utilize
hardware systems is the ability to exchange data. With proper
abstraction the underlying transport protocol and technology
are interchangeable. Communication is therefore structured
into a common connection interface hxcomm2 that supports
various back-ends.

For most hardware setups, we use a custom, reliable regarding
data integrity, transport protocol on top of the user datagram
protocol (UDP),Host-ARQ provided by sctrltp3. Additionally, we
support connection to hardware design simulations via flange4,
compare Section 3.6 for both the use during debugging of current
and unit testing of future chip generations. Multi-site workflows
are transparently enabled already at this level via the micro
scheduler quiggeldy5.

2.2.2. Hardware Abstraction
A major aspect of any system configuration software is hardware
abstraction, which encapsulates knowledge about the raw bit
configuration, e.g., that bit i at address j corresponds to enabling
neuron k’s event output. It therefore decouples hardware usage
and detailed knowledge about its memory layout, which is an
important step toward providing hardware access beyond the
group of developers of the hardware. Responsibility of this layer

1All the repositories mentioned in the following are available at https://github.
com/electronicvisions under the GNU Lesser General Public License v2/v3.
2hxcomm is available at https://github.com/electronicvisions/hxcomm.
3sctrltp is available at https://github.com/electronicvisions/sctrltp.
4flange is available at https://github.com/electronicvisions/flange.
5quiggeldy is available at https://github.com/electronicvisions/hxcomm.

Frontiers in Neuroscience | www.frontiersin.org 4 May 2022 | Volume 16 | Article 884128126

https://github.com/electronicvisions
https://github.com/electronicvisions
https://github.com/electronicvisions/hxcomm
https://github.com/electronicvisions/sctrltp
https://github.com/electronicvisions/flange
https://github.com/electronicvisions/hxcomm
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Müller et al. Neuromorphic Modeling, a Scalable Approach

FIGURE 3 | Overview of the BSS-2 software architecture and its applications. Left side: Colored boxes in the background represent the separation of the software

into different concerns. White boxes represent individual software APIs or libraries with their specific repositories names and dependencies. Right side: Various

applications concerning different system aspects. The arrows represent dependencies in the stack, where the dependent points to its dependencies. For embedded

operation additional dependencies on libnux are needed (dashed arrows).

can be compared to device drivers. The layers provide an abstract
software representation of various hardware components, such as
synaptic weights on the chip or values of supply voltages on the
periphery board, as well as their control flow.

Within this category the lowest layer is fisch6 (FPGA
Instruction Set arCHitecture), the abstraction of FPGA
instructions. Combined with communication software this is
already sufficient to provide an interface for prototyping in early
stages of system development, i.e., the possibility to manually
read and write words at memory locations. With knowledge of
the hardware’s memory layout this allows specifying addresses
and word values directly, e.g., bit i (and all other bits in this word
with possibly unrelated effects) at address j which then enables
the neuron k’s event output.

The heterogeneous set of entities on the hardware as well
as their memory layout is arranged via geometric pattern and
contain symmetries, e.g., a row of neurons or a matrix of
synapses. An intuitive structure of this fragmented address
space is provided by the coordinate layer halco7. It represents
hardware components by custom ranged types that can be
converted to other corresponding coordinate types, e.g., a

6fisch is available at https://github.com/electronicvisions/fisch.
7halco is available at https://github.com/electronicvisions/halco.

SynapseOnSynapseRow as a ranged integer i ∈ [0, 256), that
allows conversion to a neuron column (see Müller et al., 2020a).

A software representation of the configuration space
of hardware components is implemented by the container
layer haldls8. For example a NeuronConfig contains a
boolean parameter for enabling the spike output. These
configuration containers are translatable (e.g., a neuron
container represents one, but not a specific one, of the
neurons) and also define methods for de- and encoding
between their abstract representation and the on-hardware
data format given a location via a supplied coordinate. A
logical function- instead of a hardware subsystem-centered
container collection is implemented by the lola9 layer. For
example the AtomicNeuron collects the analog and digital
configuration of a single neuron circuit, which is scattered over
two digital configurations and a set of elements in the analog
parameter array.

The runtime control layer stadls10 provides an interface to
describe timed sequences of read and write instructions of pairs
of coordinates and containers, e.g., changing the synaptic weight
of synapse i, j at time t, as well as event-like response data,

8haldls is available at https://github.com/electronicvisions/haldls.
9lola is available at https://github.com/electronicvisions/haldls.
10stadls is available at https://github.com/electronicvisions/haldls.

Frontiers in Neuroscience | www.frontiersin.org 5 May 2022 | Volume 16 | Article 884128127

https://github.com/electronicvisions/fisch
https://github.com/electronicvisions/halco
https://github.com/electronicvisions/haldls
https://github.com/electronicvisions/haldls
https://github.com/electronicvisions/haldls
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Müller et al. Neuromorphic Modeling, a Scalable Approach

e.g., spikes or ADC samples. These timed sequences, also called
playback programs, can then be loaded to and executed on the
FPGA which records the response data. Afterwards, the recorded
data is transferred-back to the host computer.

We track the constitution of all hardware setups in a database,
hwdb11. It is used for compatibility checks between hardware
and software as well as for the automated selection of stored
calibration data.We also use it to provide the resource scheduling
service with information about all available hardware systems.

This set of layers is feature-complete to formulate arbitrary
hardware-compatible experiments and was used as basis
for experiments in Schemmel et al. (2020), Göltz et al.
(2021), Klassert et al. (2021), Czischek et al. (2022), and
Cramer et al. (2022).

2.2.3. Embedded Runtime
In addition to the controlling host system, the two SIMD CPUs
on the BSS-2 ASIC require integration into the BSS-2 OS. To
enable users to efficiently formulate their programs, we provide a
development environment based on C++. It specifically consists
of a cross-compilation toolchain based on gcc (GNU Project,
2018) that has been adapted to the custom SIMD extensions
of the integrated microprocessors (Müller et al., 2020a). More
abstract functionality is encapsulated in the support library
libnux12, which provides various auxiliary functionality for
experiment design. Moreover, the hardware abstraction layer of
the BSS-2 OS (cf. Section 2.2.2) supports the SIMD CPUs as an
additional cross-compiled target for configuration containers as
well as coordinates.

2.2.4. Calibration
In order to tune all the analog hardware parameters to the
requirements given by an experiment, we provide a calibration
framework, calix13. For example, an experiment might require
a certain set of synaptic time constants for which analog
parameters are to be configured while counteracting circuit
inequalities. In Section 2.3.6, this layer’s design is explained in
detail. The Python module supplies a multitude of algorithms
and calibrations for each relevant component of the circuitry: A
calibration provides a small experiment based on the hardware
abstraction layer (see Section 2.2.2), which is executed on the chip
for characterization. An iterative algorithm then decides how
configuration parameters should be changed in order to match
the measured data with given expectations.

The user-interfacing part provides functions that take a
set of target parameters and return a serializable calibration
result that can be injected to experiment toplevels (cf. Section
2.2.6). Additionally, we have the option to calibrate the analog
circuits locally on chip, using the embedded processors. Aside of
enabling arbitrary user-defined calibrations, we provide default
calibrations for spiking operation (cf. for example Sections 3.1,
3.2), and non-spiking matrix-vector multiplication (cf. Section

11hwdb is available at https://github.com/electronicvisions/hwdb.
12libnux is available at https://github.com/electronicvisions/libnux.
13calix is available at https://github.com/electronicvisions/calix.

3.4) for convenient entry. They are generated nightly via
continuous deployment (CD).

2.2.5. Experiment Description
With rising experiment and network topology complexity,
a coherent description ensuring topology and data-flow
correctness becomes beneficial. Therefore, a signal-flow
graph is defined representing the hardware configuration and
experiment flow. Compilation and subsequent execution via the
hardware abstraction layer (cf. Section 2.2.2), of this graph in
conjunction with supplied data, e.g., spike events, then forms
an experiment execution. The applied execution model follows
the experiment workflow described in Section 2.1. It, therefore,
restricts flexibility to enable network-topology-based experiment
descriptions and the separation of data-flow description
and data.

While this aids in construction of complex experiments,
detailed knowledge of configuration and its interplay is still
required. Solving this, a high-level abstract representation of
neural network topology building on top of the signal-flow
graph description is developed. An automated translation from
this high-level abstraction to a valid hardware configuration is
handled by a place-and-route algorithm. This enables hardware
usage without detailed knowledge of event routing capabilities
and interplay of configuration. While relieving users from
providing a valid hardware configuration, this automatism
requires tradeoffs to be made between the computational
complexity of the algorithms and the size of the explored
configuration space to find a matching hardware configuration
for a given abstract network representation.

This layer is contained in grenade14, short for GRaph-based
Experiment Notation And Data-flow Execution. Its design is
explained in detail in Section 2.3.2.

2.2.6. Modeling Wrapper
Various back-end-agnostic modeling languages emerged to
provide access to various simulators or neuromorphic hardware
systems to a wide range of researchers. The BSS-2 software
stack comprises wrappers to two of such modeling frameworks:
PyNN (Davison et al., 2009) via pyNN.brainscales215 and
PyTorch (Paszke et al., 2019) via hxtorch16 (Spilger et al., 2020).
Their goal is to provide a common user interface and to embed
different back-ends into an existing software ecosystem. This
allows users to benefit from a consistent and prevalent interface
and integration into their established work-flow. The design of
these layers’ integration with BSS-2 is explained in detail in
Section 2.3.4 for PyNN and in Section 2.3.5 for PyTorch.

2.3. Software Design
We base the full-stack software design on the principles laid
out in Müller et al. (2020a). We use C++ as the core language
to ensure high performance and make use of its compile-
time expression evaluation and template metaprogramming

14grenade is available at https://github.com/electronicvisions/grenade.
15pyNN.brainscales2 is available at https://github.com/electronicvisions/
pynn-brainscales.
16hxtorch is available at https://github.com/electronicvisions/hxtorch.

Frontiers in Neuroscience | www.frontiersin.org 6 May 2022 | Volume 16 | Article 884128128

https://github.com/electronicvisions/hwdb
https://github.com/electronicvisions/libnux
https://github.com/electronicvisions/calix
https://github.com/electronicvisions/grenade
https://github.com/electronicvisions/pynn-brainscales
https://github.com/electronicvisions/hxtorch
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Müller et al. Neuromorphic Modeling, a Scalable Approach

capabilities. Due to the heterogeneous hardware architecture we
employ type safety for logical correctness and compile-time error
detection. Serialization support of configuration and control flow
enables multi-site workflows as well as archiving of experiments.

In the following, we show enhancements of the hardware
abstraction layer (see Section 2.2.2), introduced in Müller et al.
(2020a) as well as design decisions for the full software stack with
high-level user interfaces. First, support for multiple hardware
revisions is shown in (Section 2.3.1). Then, the signal-flow graph-
based experiment notation is derived in Section 2.3.2. Following,
an abstract network description explained in Section 2.3.3 closes
the gap to the modeling wrappers in PyNN (cf. Section 2.3.4) and
PyTorch (cf. Section 2.3.5). Closing, the calibration framework is
described in Section 2.3.6.

2.3.1. Multi-Revision Hardware Support
As platform development progresses, new hardware revisions
require software support. This holds true for both, the ASIC
and the surrounding support hardware like the FPGA and
system printed circuit boards (PCBs). Additionally, the platform
constitution evolves, e.g., by introduction of a mobile system
with still one chip but different support hardware or a multi-
chip setup.

After a potential development of a second revision, a
heterogeneous set of hardware setups may co-exist. For one
generation of chips, it is typically possible to combine different
revisions with different surrounding hardware configurations,
leading to a number of combinations given by the Cartesian
product N = MASIC × MPlatform1 × · · · × MPlatformP

, where
MPlatformi

is the number of configurations for a given part of
the platform, e.g., the FPGA and MASIC is the revision of the
BSS-2 ASIC.

We provide simultaneous software support by dependency
separation and extraction of common code for each affected
component across all affected software layers. This way, code
duplication is minimized, maintainability of common features
is ensured and divergence of software support is prevented.
Moreover, phasing-out or retiring hardware revisions is possible
without effecting the software infrastructure of other revisions.
The to be implemented software reduces to N′ = MASIC +

MPlatform1 + · · · +MPlatformP
constituents, the combinations are

rolled-out automatically. We use C++ namespaces for separation
and C++ templates for common code, which depends on the
individual platform’s constituents.

2.3.2. Signal-Flow Graph-Based Experiment Notation
As stated in Section 2.2.2, the hardware abstraction developed
in Müller et al. (2020a) is already feature-complete to
formulate arbitrary hardware-compatible experiments. However,
it lacks a representation of intrinsic relations between different
configurable entities. For example, the hard-wired connections
between synapse drivers and synapse rows are not represented in
their respective configuration but only given implicitly.

Neural networks are predominantly described as graphs. For
spiking neural networks single neurons or collections thereof and
their connectivity form a graph (Goddard et al., 2001; Gewaltig
and Diesmann, 2007; Davison et al., 2009). In machine-learning,
the two major frameworks PyTorch (Paszke et al., 2019) and

Tensorflow (Abadi et al., 2016) use a graph-based representation
of tensor computation or are moving into this direction
(PyTorch’s JIT intermediate representation Facebook Inc., 2021a
and XLA back end Facebook Inc., 2021b; Suhan et al., 2021).

Inspired by this, we implement a signal-flow graph-based
experiment abstraction. A signal-flow graph (Mason, 1953) is
a directed graph, where vertices receive signals from their
in-neighborhood, perform some operation, and transmit an
output signal to their out-neighborhood. We integrate this
representation at the lowest possible level to fully incorporate all
hardware features without premature abstraction.

For BSS-2, the graph-based abstraction is applied at two
granularities (see Figure 4). First, the initial static network
configuration as well as virtualized computation using the
on-chip embedded processors is abstracted as a signal-flow
graph. Second, data-flow between multiple individual real-time
experiments distributed over chips and time are described as
a graph.

The signal-flow graph representation yields multiple
advantages. Type safety in the graph constituents facilitates
experiment correctness regarding on-chip connectivity and
helps to avoid inherently dysfunctional experiments already
during specification. Debugging benefits from visualization
of the graph representation, which directly contains implicit
on-chip connectivity. Finally, the signal-flow graph is the ideal
source of relationship information for on-chip entity allocation
optimization or merging of digital operations.

However, the actual signals are not part of the signal-flow
graph representation. They are either provided separately (e.g.,
external events serving as input), will only be present locally
upon execution (e.g., synaptic current pulses) or will be generated
by execution (e.g., recorded external events). We implement the
experiment workflow described in Section 2.1 consisting of an
initial static configuration followed by a collection (batch) of time
evolutions (see Figure 2).

The signal-flow graph is a recipe for compilation toward
the lower-level hardware abstraction layer (cf. Müller et al.,
2020a), and eventual execution. The specific implementation
of the compilation and execution process is separate from the
graph representation in order to allow extensibility and multiple
solutions for different requirement profiles. Here, we present a
just-in-time (JIT) execution implementation. It supports both,
spiking and non-spiking experiments. For every execution
instance, the local subgraph is compiled into a sequence of
instructions, executed and its results processed in order for
them to serve as inputs for the out-neighborhood. While it is
feature-complete for the graph representation, it introduces
close coupling between the execution on the neuromorphic
hardware and the controlling host computer. Host-based
compilation can be performed concurrently to hardware
execution, increasing parallelism. Figure 5 shows concurrent
execution of multiple execution instances (Figure 5A)
and the compilation and execution of a single execution
instance (Figure 5B).

2.3.3. Abstract Network Description
The signal-flow graph-based notation from Section 2.3.2 eases
creation of correct experiments while minimizing implicit

Frontiers in Neuroscience | www.frontiersin.org 7 May 2022 | Volume 16 | Article 884128129

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Müller et al. Neuromorphic Modeling, a Scalable Approach

FIGURE 4 | Signal-flow graph-based experiment abstraction on BSS-2. (A) Placed feed-forward network represented as signal-flow graph. (Left) Abstract network;

(Middle) Actual layout on the chip, the arrows represent the graph edges; (Right) The network graph structure enlarged with signal type annotation on the edges. The

color links the same entities in the middle (chip schematic) and right subfigure (vertical data-flow graph). (B) Non-spiking network distributed over two physical chips,

adapted from Spilger et al. (2020). The result of two matrix multiplications on chips 1 and 2 is added on chip 1. The latter execution instance depends on the output of

the two former instances.

FIGURE 5 | JIT compilation and execution of signal-flow graph of multiple execution instances and within a single execution instance. (A) JIT execution of a graph on

two physical chips, adapted from Spilger et al. (2020). Left: Execution instance 3 is to be executed on another physical chip than the other execution instances. Right:

The execution of instance 3, depicted in gray, can be performed concurrently to execution instance 1. (B) JIT compilation and execution of a single execution instance

subgraph. First, the static configuration is extracted by a vertex visit and transformed to hardware configuration where applicable. Then, the real-time execution is built

by a vertex visit. This built program is executed on the neuromorphic hardware and results are transmitted back to the host computer. Finally, delayed digital

operations, which require output data from the execution, are performed on the host computer.

knowledge. However, knowledge of hardware routing capabilities
is still required to create a graph-based representation of the
hardware configuration which performs as expected. This should
not be required to formulate high-level experiments. To close this
gap, an abstract representation similar to PyNN (Davison et al.,
2009), consisting of populations as collections of neurons and
projections as collections of synapses, is developed. Given this
description, an algorithm finds an event routing configuration
to fulfill the abstract requirements and generates a concrete
hardware configuration. This step is called routing. Figure 6
visualizes an abstract network description and one corresponding
hardware configuration.

2.3.4. Integration of PyNN
When it comes to modeling spiking neural networks, a
widely used API is PyNN (Davison et al., 2009). It is

supported by various neural simulators like NEST (Gewaltig
and Diesmann, 2007), NEURON (Hines and Carnevale, 2003),
and Brian (Stimberg et al., 2019), as well as by neuromorphic
hardware platforms like SpiNNaker (Rhodes et al., 2018) or the
predecessor hardware of BSS-2: BSS-1 (Müller et al., 2020b)
and Spikey (Brüderle et al., 2009). With the aim of easy access
to BSS-2, we expose its hardware configuration via the PyNN
interface. The module pyNN.brainscales2 implements the
PyNN-API for BSS-2. It offers a custom cell type, HXNeuron,
which corresponds to a physical neuron circuit on the hardware
and replicates the lola.AtomicNeuron from the hardware
abstraction layer, see section 2.2.2. This allows to set parameters
directly in the hardware domain and gives expert users the
possibility to precisely control the hardware configuration while
at the same time take advantage of high-level features such as
neuron populations and projections. Figure 7 illustrates how

Frontiers in Neuroscience | www.frontiersin.org 8 May 2022 | Volume 16 | Article 884128130

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Müller et al. Neuromorphic Modeling, a Scalable Approach

FIGURE 6 | Abstract network notation. Population A consisting of five neurons is connected to population B consisting of four neurons via projection AB. (Left)

Abstract network. (Right) Placed and routed on the hardware, where the projection AB consists of synapses in the two-dimensional synapse matrix and the

populations A and B are located in the neuron row, compare Figure 1D.

FIGURE 7 | Comparison between lola.AtomicNeuron and pynn.HXNeuron.

these parameters are available in the corresponding interfaces. An
additional neuron type supporting the translation from neuron
model parameters in SI units is currently in the planning.
Otherwise, the PyNN program looks the same as for any other
back end. Since the PyNN-API is free from hardware placement
specifications, they are algorithmically determined by mapping
and routing in grenade (cf. Section 2.3.3). This step is performed
automatically upon invocation of pynn.run(), so that the user
is not required to have any particular knowledge about event
routing on the hardware. Nevertheless, the interface allows that
an experimenter can adjust any low-level configuration aside
from neuron parameters and synaptic weights.

To exploit the full potential of the accelerated hardware the
software implementation’s overhead shall be minimal. Figure 8
presents runtime andmemory consumption analysis of the whole
PyNN-based stack for a high spike count benchmark experiment.
12 neurons are excited by a regular spike train with 1MHz
frequency and their activity is recorded for one second. These
settings are chosen as they roughly equate to the maximum
recording rate without loss.

The initial overhead of importing Python libraries and
setting up the PyNN environment only needs to be performed
once for every experiment and is independent of the network
topology itself. Run time on hardware is about 1.5 s of
which roughly 125ms are initial configuration and 278ms
are transmission of the input spike train. Post-processing the
1.2× 107 received spikes (fisch and grenade) takes about 1.9 s,
i.e., in the same order of magnitude as the actual hardware run.
Peak memory consumption is reached during post-processing of
results obtained after the hardware execution which corresponds
to roughly three times the minimum memory footprint of the
recorded spike train. With this the stack is well suited to also

FIGURE 8 | Run time analysis of a PyNN-based experiment with large spike

count. Population of 12 neurons is excited by a regular spike train with

frequency of 1MHz. The network is emulated for 1 s on hardware resulting in

1.2× 107 spike events. The black line represents memory consumption during

execution. Horizontal bars represent time consumption in software layers. The

annotations in the legend present the individual run time of steps and

percentage of the overall run time.

handle experiments with high spike count without introducing
a bottleneck.

2.3.5. Integration Into PyTorch
To enable access to BSS-2 for machine learning applications, we
develop a thin wrapper layer to the PyTorch-API. This extension

Frontiers in Neuroscience | www.frontiersin.org 9 May 2022 | Volume 16 | Article 884128131

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Müller et al. Neuromorphic Modeling, a Scalable Approach

is called hxtorch and was introduced in Spilger et al. (2020)
for non-spiking hardware operation emulating analog multiply-
accumulate operations and compositions thereof. There, we
build on top of the same signal-flow graph experiment
description as for the spiking mode of operation (cf. Section
2.3.2). Operations are mapped to the hardware size by using
temporal serialization and physical concurrency. The PyTorch
extension enhances this by automatic gradient calculation
for training. Same as PyTorch, we implement a functional
API in C++ wrapped to Python (e.g. hxtorch.matmul
comparable to torch.matmul) and add modules/layers on
top in Python (e.g., hxtorch.nn.Linear comparable to
torch.nn.Linear). In contrast, our operations are quantized
to the hardware-intrinsic digital resolution (5 bit unsigned
activations, 6 bit weights plus sign bit and 8 bit signed results).
Execution on the hardware is performed individually for each
operation using the JIT execution (see Section 2.3.2).

2.3.6. Calibration Framework
On BSS-2, there are a multitude of voltages and currents
controlling analog circuit behavior. While some of them can be
set to default values, most of them require calibration in order
to match experiment-specific target values and to counteract
device-specific mismatch. Fundamentally, the calibration can
be executed on a host computer or locally on chip, using the
embedded processors. We provide the Python module calix to
handle all aspects of the calibration process.

Model parameters are calibrated by iteratively adjusting
relevant parts of the hardware configuration. As an example,
the membrane time constant is controlled by a bias current: In
order to calibrate the membrane time constant of all neurons,
the neurons’ membrane potentials are recorded while they decay
back to their resting potential after an initial perturbation from
the resting state. We can perform an exponential fit to the
recorded voltage trace to determine the time constant and
iteratively tweak the bias current to reach the desired target.

The calibration routine of each parameter is encapsulated
using an object-oriented API providing a common interface.
Mainly, two methods allow the iterative parameter search: one
applies a parameter configuration to the hardware, while the
other evaluates an observable to determine circuit behavior.
An algorithm calculates parameter updates during the iterative
search. In each step, the measurement from the calibration
class is compared to the target value and the parameter set is
modified accordingly.

A functional API is provided for commonly used sets
of calibrations, for example for calibration of a spiking
leaky-integrate and fire (LIF) neuron. Technical parameters
and multidimensional dependencies are handled automatically
as required in this case. This yields a simple interface
for experimenters for tweaking high-level parameters, while
calibration routines for individual parameters remain accessible
for expert users.

The higher-level calibration functions save their results in
a typed data structure, which contains the related analog
parameters and digital control bits. Further, success flags indicate
whether the calibration targets were reached within the available

parameter ranges. These result structures can either directly be
applied to a hardware setup or serialized to disk. Application
of serialized calibration is beneficial compared to repeating the
calibration in experiments due to decreased required time and
improved digital reproducibility.

Running the calibration on a host computer using Python
allows for great flexibility in terms of gathering observations from
the chip. We can utilize all observables, including a fast ADC,
which allows performing fits to measured data—as sketched
previously for the calibration of the membrane time constant.
While this direct measurement should yield the most accurate
results, fitting to a trace for each neuron takes a lot of time.
Performing a full LIF neuron calibration takes a few minutes
via the Python module. And importantly, when scaling this
approach to many chips, we need to scale the host computing
power accordingly.

In order to achieve better scalability, we can control the
calibration from the embedded processors, directly on chip,
removing the host computer from the loop. However, this
approach limits the observables to those easily accessible to the
embedded processor, the CADC and spike counters – performing
a fit to an MADC trace using the embedded processors would
consume lots of runtime and potentially counteract benefits
of scaling. As a result, some calibrations have to rely on an
indirect measurement of their observable. Again using the
neurons’ membrane time constant as an example, we can
consider the spike rate in a leak-over-threshold setup. However,
this introduces a dependency on multiple potentials being
calibrated beforehand.

Apart from the need for indirect measurements, on-chip and
host-based calibration work similarly: An iterative algorithm
selects parameters, we configure them on chip and characterize
their effects. Using the embedded processors for configuring
parameters and acquiring data from the two on-chip readouts is
fully supported and naturally faster than fetching them from a
host computer. We use the SIMD CPUs’ vector units for parallel
access to the synapse array and columnar ADCs. This is enabled
by cross-compiler-support (cf. Section 3.3), by which both the
scalar unit and vector unit are integrated and accessible from the
C++ language.

We provide routines for on-chip calibration, which allow
all LIF neuron parameters to be calibrated in approximately
half a minute, with this number staying constant even when
considering large systems comprising many individual chips.
Similar to the host-based calibration API, calix exposes these on-
chip routines as conveniently parameterized functions that can
be called within any experiment. Their runtime is mostly limited
by waiting for configured analog parameters to stabilize before
evaluating the effects on the circuits.

2.4. Platform Operation
Over the past decade neuromorphic systems evolved from
intricate lab setups toward back ends for the more comfortable
execution of spiking neural networks (Indiveri et al., 2011; Furber
et al., 2012; Benjamin et al., 2014; Davies et al., 2018; Pehle et al.,
2022). One major step along this development path is to provide
users with seamless access to the systems.

Frontiers in Neuroscience | www.frontiersin.org 10 May 2022 | Volume 16 | Article 884128132

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Müller et al. Neuromorphic Modeling, a Scalable Approach

Small scale prototype hardware is often connected to a single
host machine, e.g., via USB. This is also a common usage
mode for different neuromorphic hardware. To access these
devices, users have to have (interactive) access to the particular
machine the hardware is connected to. This limits the flexibility
of the user and is an operational burden as the combination of
neuromorphic hardware and host machine has to be maintained.
While this tightly coupled mode of operation is sufficient during
commissioning and initial experiments, it is not robust enough
for higher work-loads and flexible usage.

An improvement to the situation sketched above is using
a scheduler, e.g., SLURM (Yoo et al., 2003), where users can
request a resource, e.g., a specific hardware setup, and the jobs
get launched on the matching machine with locally attached
hardware. This is the typical mode of access also used for
other accelerator-type hardware, e.g., GPU clusters. However,
this batch driven way is not always ideal as it often requires
accounts on the local compute cluster and does not allow for
easy interactive usage. In addition, traditional compute load
schedulers optimize for throughput and not latency, therefore the
scheduling overhead can be significant especially for hardware
that is fast and experiments that are short. In the latter case, job
execution rates of the order of Hz and faster are required.

Another downside of using a traditional scheduler is that
hardware resources are not efficiently utilized when multiple
users want to use the same hardware resources at the same
time. Therefore, we developed the micro scheduler quiggeldy that
exposes access to the hardware directly via a network connection,
but still manages concurrent access from different users. It
decouples the hardware utilization from the user’s surrounding
computations such as experiment preparation, updates in
iterative workflows or result evaluation. For this to work runtime
control, configuration, input stimulus as well as output data
must be serializable which is facilitated via cereal (Grant and
Voorhies, 2017). The inter-process communication between the
user software and the micro scheduler is done with RCF (Delta V
Software, 2020). When a user requests multiple hardware runs,
it is checked whether certain already performed parts can be
omitted, e.g., resets or re-initializations. Experiment interleaving
between multiple users is also supported as the initialization state
is tracker for each user and is automatically applied when needed.

Having the correct software environment for using
neuromorphic hardware is also a major challenge. Nowadays,
software vendors often provide a container image that includes
the appropriate libraries. However, this approach does not
necessarily yield well specified and traceable dependencies, but
only a “working” black-box solution.We overcome this downside
by using the Spack (Gamblin et al., 2015) package manager with
a meta-package that explicitly tracks all software dependencies
and their version needed to run experiments on and develop for
the neuromorphic hardware. An automatically built container
embedding the Spack installation enables encapsulation and
eased distribution. This Spack meta-package is also used for the
EBRAINS’ JupyterLab service and will eventually be deployed
to all HPC sites involved in EBRAINS (EBRAINS, 2022). The
latter will facilitate multi-site workflows involving neuromorphic
hardware and traditional HPC.

3. APPLICATIONS

In this section, we show-case a range of applications of BSS-2.
Each application involves use of unique hardware features or
modes of operation and motivates parts of the software design.

First, we describe biological multi-compartmental modeling
in Section 3.1 concluding in the development of an API
for structural neurons. Continuing, functional modeling with
spiking neural network (SNN) is demonstrated for a pattern-
generation task in Section 3.2, which leads to embedding of
spiking BSS-2 usage into the machine learning framework
PyTorch and involves host-based training as well as local learning
on the SIMD CPUs. Then, embedded operation, where the SIMD
CPUs are the experiment orchestrator of BSS-2, is displayed
and their implications detailed in Section 3.3. Following, the
non-spiking mode of operation implementing ANNs and its
PyTorch interface is characterized in Section 3.4. Afterwards,
user adoption and platform access to BSS-2 is shown in Section
3.5. Finally, application of the software stack for hardware co-
simulation, co-design and verification is portrayed in Section 3.6.

3.1. Biological Modeling Example
BSS-2 aims to emulate biological inspired neuron models. Most
neurons are not simple point-like structures but possess intricate
dendritic structures. In recent years, the research interest in how
dendrites shape the output of neurons has increased (Major
et al., 2013; Gidon et al., 2020; Poirazi and Papoutsi, 2020). As
a result, BSS-2 incorporates the possibility to emulate multi-
compartmental neuron models in addition to the AdEx point-
neuron model (Aamir et al., 2018; Kaiser et al., 2022).

In the following, we use a dendritic branch, which splits into
two sub-branches, to illustrate howmulti-compartmental neuron
models are represented in our system (cf. Figure 9). At first, we
look at a simplified representation of the model (Figure 9A).
The main branch consists of two compartments, connected via a
resistance; at the second compartment, the branch splits in two
sub-branches, which themselves consist of two compartments
each. On hardware this model is replicated by connecting several
neuron circuits via switches and tunable resistors (cf. Figure 9B).
Each compartment consists of at least two neuron circuits,
directly connected via switches, compare colors in Figures 9A,B.
With the help of a dedicated line at the top of the neuron circuits
these compartments can then be connected via resistors to form
the multi-compartmental neuron model; for more details see
Kaiser et al. (2022).

In software, the AtomicNeuron class stores the
configuration of a single neuron circuit and therefore can
be used to configure the switches and resistors as desired. As
mentioned in Section 2.3.4, the HXNeuron exposes this data
structure to the high-level interface PyNN, allowing users to
construct multi-compartmental neuron models in a known
environment. However, it is cumbersome and error-prone
to set individual switches. As a consequence, we implement
a dictionary-like hierarchy on top of the AtomicNeuron,
called LogicalNeuron in the logical abstraction layer
(cf. Section 2.2).

Frontiers in Neuroscience | www.frontiersin.org 11 May 2022 | Volume 16 | Article 884128133

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Müller et al. Neuromorphic Modeling, a Scalable Approach

FIGURE 9 | Pulse propagation along a dendrite which branches into two sub-branches. (A) Each branch is modeled by two compartments (rectangles). Different

compartments are connected via resistors (lines). (B) Hardware configuration: neuron circuits (squares) are arranged in two rows on BSS-2, compare Figure 1D.

Each compartment is represented by at least two neuron circuits. Circuits which form a single compartment are directly connected via switches (straight lines);

compartments are connected via resistors. For details see Kaiser et al. (2022). (C) Membrane responses to synaptic input: we inject synaptic input at four different

compartments; the compartment at which the input is injected is marked by a *. The membrane traces of the different compartments are arranged as in (A). For the

top left quadrant (i) the input is injected in the first compartment and decreases in amplitude while it travels along the chain. The response in both branches is

symmetric. A similar behavior can be observed when the input is injected in the second compartment, (ii). Due to the symmetry of the model, we only display

membrane responses for synaptic input to the upper branch. When injecting the input in the first compartment of the upper branch, (iii), the input causes a noticeable

depolarization within the same branch and the main branch but does not cause a strong response in the lower sister branch. All values are given in the hardware

domain.

We use a builder pattern approach to construct these logical
neurons: the user creates a neuron morphology by defining
which neuron circuits constitute a compartment and how these
compartments are connected. Upon finalization of the builder,
the correctness of the neuron model configuration is checked;
if the provided configuration is valid, a LogicalNeuron is
created. This LogicalNeuron stores the morphology of the
neuron as well as the configuration of each compartment.

The coordinate system of the BSS-2 software stack (cf. Section
2.2.2), allows to place the final logical neuron at different
locations on the chip (Müller et al., 2020a). This is achieved by
saving the relation between the different neuron circuits defining
the morphology in relative coordinates. Once the neuron is
placed at a specific location on the chip, the relative coordinates
are translated to absolute coordinates.

Currently, the logical neuron is only exposed in the logical
abstraction layer. In future work, it will be integrated in the
PyNN API of the BSS-2 system. This will—for instance—allow
to easily define populations of multi-compartmental neurons and
connections between them.

3.2. Functional Modeling Example
The BSS-2 system enables energy efficient and fast SNN
implementations. Moreover, the system’s embedded SIMD CPU
enables highly parallelized on-chip learning with fast access to
observables and thus, promises to benefit the computational
neuroscience and machine learning community in terms of
speed and energy consumption. We demonstrate functional
modeling on the BSS-2 system with a pattern-generation task
using recurrent spiking neural networks (RSNNs) with an input
layer, a recurrent layer and a single readout neuron. The recurrent
layer consists of 70 LIF neurons {j} with membrane potential
vtj , receiving spike trains xti from 30 input neurons {i}. Neurons

in the recurrent layer project spike events ztj onto the single

leaky-integrate readout neuron with potential yt .
RSNNs are commonly trained using backpropagation through

time (BPTT) by introducing a variety of surrogate gradients
taking account of the discontinuity of spiking neurons (Shrestha
and Orchard, 2018; Zenke and Ganguli, 2018; Bellec et al., 2020).
However, as BPTT requires knowledge of all network states
along the time sequence in order to compute weight updates
(backwards locking), it is not just considered implausible from a
biological perspective, but also unfavorable for on-chip learning,
which effectively enables high scalability due to local learning.
Therefore, we utilize e-prop learning rules (Bellec et al., 2020),
where the gradient for BPTT is factorized into a temporal sum
over products of so-called learning signals Ltj and synapse-local

eligibility traces etji. While the latter accumulates all contributions
to the gradient that can be computed forward in time, the
first depends on the network’s error and still requires BPTT.
However, Bellec et al. (2020) provide suitable approximations for
Ltj , allowing computing the weight updates online (Figure 10A).
Such learning rules are favorable for the BSS-2 system, as the
SIMD CPU can compute the weight updates locally while the
network is emulated in parallel.

E-prop-inspired learning on the BSS-2 system is enabled by
adapting Bellec et al. (2020, Equation 28). Here we replace the
membrane potentials vtj in etji with the post-synaptic recurrent

spike train ztj ,

et+1
ji → zt+1

j · Fα

(

zti
)

: = êt+1
ji , 1Whh

ji = −η
∑

t

LtjFκ

(

êtji

)

,

(1)

Frontiers in Neuroscience | www.frontiersin.org 12 May 2022 | Volume 16 | Article 884128134

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Müller et al. Neuromorphic Modeling, a Scalable Approach

FIGURE 10 | (A) Computational graph of an RSNN for one time step. The contribution to the weight update is computed by merging learning signals Ltj with eligibility

traces etji . (B) Representation of the RSNN on the BSS-2 system using signed synapses. Inputs and recurrent spike trains are routed to the corresponding synapse

drivers via the crossbar. (C) s-prop training on hardware. The upper plot depicts the evolution of the MSE while training the BSS-2 system in-the-loop, where the

experiment is executed on BSS-2 and weight updates are computed on the host computer, in comparison to training with the network simulated in software,

incorporating basic hardware properties (Sim). In both cases the weights are optimized using the Adam optimizer (Kingma and Ba, 2014). The learned analog

membrane trace of the readout neuron after training BSS-2 for 1,000 epochs is exemplified in the lower plot, aligned to the spike trains ztj of the first five out of 70

recurrent neurons. (D) NASProp simulations. The upper plot depicts the MSE over the update period P after training with Adam in comparison to a training with GD

and a training taking additional hardware properties (noise, weight saturation, etc.) into account (HW props). Optimization with pure GD mimics weight updates

computed by the SIMD CPU while on-chip learning. The lower plot shows the worst and best learned readout traces of the target pattern ensemble in simulation. (E)

Timing of NASProp weight updates. For each update n at tn, the correlation cnji are merged with the learning signals Lnj by incorporating the membrane trace yn.

where Fx is an exponential filter with decay constant x. The
update rule for input weights, derived in Bellec et al. (2020), is
adapted accordingly. The equation for output weights remains
untouched. With the readout neuron’s membrane trace yt and
an MSE loss measuring the error to a target trace y∗,t , the
learning signals are Ltj = Who

j

(

yt − y∗,t
)

. Since this learning rule
propagates only spike-based information over time we refer to it
as s-prop.

Finally, we approach s-prop learning with BSS-2 in the loop
(cf. Section 2.1). For this, the network, represented by PyTorch
parameters Wih, hh, ho, is mapped to a hardware representation
(see Figure 10B) via hxtorch (see Section 2.3.5), forwarding a
spike tensor on-chip. Inherently, grenade (see Section 2.3.2)
applies a routing algorithm, finds a graph-based experiment
description and executes it on hardware for a given time interval.
The routing algorithm allocates two adjacent hardware synapses
for one signed synapse weight in software, one excitatory and one
inhibitory. Further, grenade records the MADC-sampled readout
trace yt and the recurrent spike trains zt . Both observables are
returned as PyTorch tensors for weight optimization on the host
side. Experiment results are displayed in Figure 10C.

Implementing s-prop on-chip requires the SIMD CPU to
know and process explicit spike-times. As this comes with a
high computational cost, the correlation sensors are utilized to
emulate approximations of the spike-based eligibility traces êtji in
analog circuits, thereby freeing computational resources on the
SIMD CPU. The correlation sensors model the eligibility traces
under nearest-neighbor approximation (Friedmann et al., 2017)
and are accessed by the SIMD CPU as an entity cnji, accumulated

over a period P. Hence, the time sequence is split into N chunks
of size P and weight updates on the SIMD CPU are performed at
times tn = nP + t̃, with n ∈ N

<N
0 (cf. Figure 10E) and t̃ ∈ [0, P)

a random offset,

1W̄ih/hh
ij = −η

∑

n

Lnj Fκ̂

(

cih/hh,nji

)

and

1W̄ho = −η
∑

n

(

yn − y∗,n
)

Fκ̂

(

ζ n
j

)

, (2)

with κ̂ = exp (−P/τm) and ζ n
j being the recurrent spike count

in interval n. Due to the updates rules’ accumulative nature, we
refer to them as neuromorphic accumulative spike propagation
(NASProp). Simulations in Figure 10D verify that NASProp
endows RSNNs with the ability to solve the pattern-generation
task reasonable well.

NASProp’s SIMD CPU implementation effectively
demonstrates full on-chip learning on the BSS-2 system. In
high-level software, on-chip learning is implemented in a
PyTorch model, defined in hxtorch, holding parameters for
the network’s projections. Its forward method implicitly
executes the experiment on the BSS-2 system for a batch of input
sequences. Currently, this model learning on-chip serves as a
mere black box for the specific network at hand with a static
number of layers, as for on-chip spiking networks the network’s
topology needs to be known upon execution. Therefore, this
approach is considered a first step from common PyTorch
models to spiking on-chip models.

Frontiers in Neuroscience | www.frontiersin.org 13 May 2022 | Volume 16 | Article 884128135

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Müller et al. Neuromorphic Modeling, a Scalable Approach

As for in-the-loop learning, on forwarding a batch of inputs
sequences, grenade maps the software network to a hardware
representation with signed synapses and configures the chip
accordingly. Moreover, before executing a batch element, grenade
starts the plasticity kernel on the SIMD CPU, computing weight
updates in parallel to the network’s emulation. The plasticity rule
implementation relies on libnux (cf. Section 2.2.3) and utilizes the
VU extension for accessing hardware observables (e.g., cnji and y

n)
and computing weight updates row-wise in parallel, thereby fully
exploiting the system’s speed up factor.

In hxtorch, learning parameters are configured in a
configuration object exposed to Python, which is injected
to grenade and passed to the SIMD CPU before batch execution
on hardware begins. As different projections in the network
have different update rules, relying on population-specific
observables, the network’s representation on hardware (cf.
Figure 10B) is communicated to the SIMD CPU. This allows
for identifying signed hardware synapses and neurons with
projections and populations on the SIMD CPU. Finally, before
each batch element is executed, grenade has the ability to write
trial-specific details onto the SIMD CPU (e.g. random offset t̃
and the synapse row to perform updates for). Hence, smooth
on-chip learning is granted by reliable communication between
little-endian host engine and the embedded big-endian SIMD
CPU. For serialization of information from and to the SIMD
CPU we deploy the C++ header-only library bitsery (Vinkelis,
2020), allowing for seamless transmission of objects between
systems of differing endianness.

Due to changing hardware weights during on-chip training,
the adjusted weights are reverse mapped to the software
representation and stored in the network’s parameter tensors.
Therewith we utilize PyTorch’s native functionality to load
and store network parameters. Reverse network mapping is
implemented in the hxtorch on-chip-learning model by accessing
the hardware routing result and is performed implicitly in the
model’s forwardmethod after experiment execution.

Successful implementations of plasticity rules for on-chip
learning are facilitated by providing transparency of SIMD CPU
programs by means for tracing and recording data. To that end,
libnux (cf. Section 2.2.3) facilitates logging of any information
into a dedicated SIMD CPU memory region, easily accessed
from the host engine. Moreover, logging can be redirected to
the FPGA-controlled dynamic random-access memory (DRAM),
effectively allowing extensive logging of whole learning processes
and hardware observables.

3.3. Embedded Operation
Apart from operating BSS-2 tightly coupled to a host computer,
the integrated microprocessors can act as system controllers.
They can orchestrate the control flow of the experiment and
undertake tasks within it. These tasks may include calibration
routines, virtual environment simulation or optimizer loops.
Embedding them in proximity to the neural network core
yields latency and data-locality advantages. In the following, we
describe three exemplary experiments that make exhaustive use
of the embedded processors as system controllers.

First, Wunderlich et al. (2019) introduce an embedded
environment simulation of a simplified version of the Pong video
game on the SIMD CPU, see left panel in Figure 11. One of the
two involved agents plays optimally by design, the other one is
represented by a SNN on BSS-2. During the experiment, the latter
is trained on-chip using a reward-based spike timing dependent
plasticity (STDP) rule. This set-up therefore unites the control
flow, virtual environment simulation and learning rule within a
single program running on the integrated processors.

Second, Stradmann et al. (2021) describe the application of the
BSS-2 system for inference of ANNs that detect atrial fibrillation
in medical electrocardiogram (ECG) data. Targeting applications
in energy efficient devices, they aim for as little periphery as
possible and therefore let the embedded processors orchestrate
all classification routines. The resulting tight loop between the
analog inference engine and digital data in- and outputs allows
for low classification latencies and high throughput of more than
3.600 ECG traces per second.

Third, Schreiber et al. (in preparation) presents the emulation
of an insect model with strong biological inspiration on BSS-2.
The simplified brain model is embedded into an agent that is fed
with stimuli from a simulated environment, see right panel in
Figure 11. While the neural network is emulated as a SNNwithin
the analog core, the agent itself as well as its virtual environment
are both simulated on the SIMD CPU. The authors specifically
challenge the virtual insects with a simple path integration task:
As depicted in the right panel of Figure 11, a simulated swarm-
out phase is followed by a period of free flight, where the agent
is supposed to return to its nest. The complexity of this task
and the comparably low number of involved neurons requires
precisely controlled dynamics, which they achieve by integrating
experiment specific on-chip calibration routines directly on the
SIMD CPUs (cf. Section 2.3.6).

Supporting these complex experiments on the embedded
processors and their interaction with the controlling host
computer poses specific requirements to the BSS-2 OS.
Especially, a cross-compilation toolchain for the SIMD CPU
is required.

As described in Section 2.2.3, we therefore provide a cross-
compiler based on gcc (GNU Project, 2018), which in addition
to the processor’s scalar unit also integrates its custom vector
unit in C++ (Müller et al., 2020a). Additional hardware specific
functionality is encapsulated in the support library libnux. It
abstracts access to configuration data and observables in the
analog neural network core, like synaptic weights or correlation
measurements. The exchange of such data with the host is
facilitated by integration of the lean, cross-platform binary
serialization library bitsery (Vinkelis, 2020).

For execution, the compiled programs need to be placed
in system memory—in case of BSS-2, each SIMD CPU has
direct access to 16 kB SRAM. For a complete calibration
routine or complex locally simulated environments, this may not
suffice. We therefore utilize the controlling FPGA as memory
controller: It allows the on-chip processors to access externally
connected DRAM with significantly larger capacity at the cost
of higher latency. Programs for the embedded processor can
place instructions and data onto both the internal SRAM

Frontiers in Neuroscience | www.frontiersin.org 14 May 2022 | Volume 16 | Article 884128136

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Müller et al. Neuromorphic Modeling, a Scalable Approach

FIGURE 11 | (Left) Reinforcement learning: the chip implements a spiking neural network sensing the current ball position and controlling the game paddle. It is

trained via a reward-based STDP learning rule to achieve almost optimal performance. The game environment, the motor command and stimulus handling, the reward

calculation and the plasticity is performed by a C++ program running on the on-chip processor. Figure taken from Wunderlich et al. (2019). (Right) Recording of a

virtual insect navigating a simulated environment. The top panels show the forced swarm-out path in black. During this phase, the SNN emulated by the analog

neuron and synapse circuits on BSS-2 perform path integration. Afterwards, the insect flies freely and successfully finds its way back to the starting point and circles

around it (gray trajectory). The bottom panel shows the neuronal activity during the experiment. The environment simulation as well as the interaction with the insect is

performed by a C++ program running on the on-chip processor. Figure taken from Pehle et al. (2022).

and the external memory via compiler attributes. This allows
fine-grained decisions about the access-latency requirements of
specific instruction and data sections.

Similar to experiments designed for operation from the host
system, embedded experiments often require reconfiguration of
parts of BSS-2. The hardware abstraction layer introduced in
the BSS-2 OS (cf. Section 2.2.2) has therefore been prepared
for cross-compilation on the embedded processors. As a result,
the described container and coordinate system can be used in
experiment programs running on the on-chip SIMD CPUs.

3.4. Artificial Neural Networks
The BSS-2 hardware supports a non-spiking operation mode
which supports artificial neural networks (ANNs) implementing
multiply-accumulate (MAC) operations (Weis et al., 2020). The
operation within the analog core is sketched in Figure 12A.
Each entry in the vector operand stimulates one or two rows of
synapses, when using unsigned or signed weights, respectively.
The activations have an input resolution of 5 bit, controlling the
duration of synapses’ activation. Similar to the spiking operation,
synapses emit a current pulse onto the neurons’ membranes
depending on their weight, which has a resolution of 6 bit. We
implement signed weights by combining an excitatory and an
inhibitory synapse into one logical synapse. Once all entries in
the input vector have been sent to the synapses, the membrane
potential resembles the result of the MAC operations. It is

digitized for all neurons in parallel using the CADC, yielding an
8 bit result resolution.

As a user interface, we have developed an extension to the
PyTorch machine learning framework (Paszke et al., 2019),
hxtorch (Spilger et al., 2020). It partitions ANN models into
chip-sized MAC operations that are executed on hardware
using grenade, see Section 2.2.5. Apart from a special MAC
program used for each multiplication, the majority of code
is shared between spiking and non-spiking operation. With
the leak term disabled, the neurons’ membranes represent the
integrated synaptic currents, as shown in Figure 12B. As the
MAC operation lacks any real-time requirements, it is executed
as fast as possible to optimize energy efficiency. In terms of circuit
parameterization, this means we choose a small synaptic time
constant in order for the membrane potential to stabilize quickly.
Therefore, a subset of the existing spiking calibration routines can
be reused here (cf. Section 2.3.6). There is only one additional
circuit—the encoding of input activations to activation times in
synapse drivers—that needs to be calibrated.

Defining an ANN model in hxtorch works similar to
PyTorch: The hxtorch module provides linear and convolutional
layer classes as a replacement for their PyTorch equivalents.
We introduce a few additional parameters controlling the
specifics of hardware execution, e.g., the time interval between
sending successive entries in the input vector to the synapse
matrix, or the option to repeat the vector for efficacy scaling.

Frontiers in Neuroscience | www.frontiersin.org 15 May 2022 | Volume 16 | Article 884128137

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Müller et al. Neuromorphic Modeling, a Scalable Approach

FIGURE 12 | Matrix-vector multiplication for ANN inference. (A) Scheme of a multiply-accumulate operation. Vector entries are input via synapse drivers (left) in 5 bit

resolution. They are multiplied by the weight of an excitatory or inhibitory synapse, yielding 6 bit plus sign weight resolution. The charge is accumulated on neurons

(bottom). Figure taken from Weis et al. (2020). (B) Comparison between a spiking (top) and an integrator (bottom) neuron. Both neurons receive identical stimuli, one

inhibitory and multiple excitatory inputs. While the top neuron shows a synaptic time constant and a membrane time constant, the lower is configured close to a pure

integrator. We use this configuration for ANN inference. Please note that for visualization purposes the input timing (bottom) has been slowed to match the SNN

configuration (top). The integration phase typically lasts <2 µs.

This enables the user to optimize saturation effects when
driving the input currents as well as the gain of the MAC
operation for the particular experiment. For both we provide
default values as a starting point. The activation function
ConvertingReLU additionally converts signed 8 bit output
activations into unsigned 5 bit input activations for the following
layer by a bitwise right shift.

Trained deep neural network models can be transferred to
BSS-2 by first quantizing them with PyTorch and subsequently
mapping their weights to the hardware domain. For quantization,
we need to consider the intrinsic gain factor of the hardware
MAC operation.

Figure 13 shows an example application of a deep neural
network with BSS-2, using the yin-yang dataset from Kriener
et al. (2021). One of the three classes—yin, yang, or dot—are to
be determined from four input coordinates (x, y, 1 − x, 1 − y).
The network is first trained with 32 bit floating point accuracy
using PyTorch, achieving 98.9% accuracy. After quantizing with
PyTorch to the hardware resolution of 5 bit activations and
6 bit plus sign weights, this drops to 94.0%. Porting the model
to BSS-2, after running a few epochs of hardware-in-the-loop
training, an accuracy of 95.8% is finally reached.

In addition to running the ANN on the BSS-2 hardware,
a hardware-limitations-aware simulation is available. It can be
enabled per layer via the mock parameter (see Figure 13B). For
mock mode, we simply assume a linear MAC operation, using
a hardware-like gain factor. To investigate possible effects of
the analog properties of the BSS-2 hardware on the inference
and training, additional Gaussian noise of the accumulators and
multiplicative fixed-pattern deviations in the weight matrix can
be simulated. The comparison with actual hardware operation
shown in Figure 13D illustrates how this simple model already
captures the most dominant non-linearities of the system. More

sophisticated software representations that embrace second-
order effects across multiple hardware instances have been
proposed by Klein et al. (2021). They have shown how pre-
training with faithful software models can significantly decrease
hardware allocation time while at the same time increasing
classification accuracy compared to plain hardware-in-the-
loop training.

3.5. User Adoption and Platform Access
The BSS-2 software stack aims to enable researchers to exploit
the capabilities of the novel neuromorphic substrate. Support for
common modeling interfaces like PyNN and PyTorch provides
a familiar entry point for a wide range of users. However,
not all aspects of the hardware can fully be abstracted away,
requiring users to familiarize themselves with unique facets of the
system. To flatten the learning curve several tutorials—verified
in continuous integration (CI) as “executable” documentation—
as well as example experiments are provided17. They range from
introducing the hardware via single neuron dynamics to learning
schemes like plasticity rate coding. In addition to the scientific
community, they also target students, for example exercises
accompanying a lecture about Brain Inspired Computing and
hands-on tutorials.

A convenient entry point to explore novel hardware are
interactive web-based user interfaces. That is why we integrated
the BSS-2 system into the EBRAINS Collaboratory18 (EBRAINS,
2022). The Collaboratory provides a dynamic VM hosting
on multiple HPC sites for Jupyter notebooks running in
a comprehensive software environment. An BSS-2-specific

17The tutorials and example experiments are available at https://github.com/
electronicvisions/brainscales2-demos.
18Platform access is available via https://ebrains.eu.

Frontiers in Neuroscience | www.frontiersin.org 16 May 2022 | Volume 16 | Article 884128138

https://github.com/electronicvisions/brainscales2-demos
https://github.com/electronicvisions/brainscales2-demos
https://ebrains.eu
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Müller et al. Neuromorphic Modeling, a Scalable Approach

FIGURE 13 | (A) The Yin-Yang dataset (Kriener et al., 2021) used for the experiment. (B) Hardware initialization and model description with hxtorch. (C) Network
response of the trained model depending on the input. (Top) 32 bit floating-point precision; (Bottom) Quantized model on BSS-2 (5 bit activations, 6 bit plus sign

weights). (D) Output of the MAC operation on BSS-2 (left) compared to the linear approximation (right). The solid line indicates the median, the colored bands contain

95% of each neuron’s outputs across 100 identical MAC executions.

experiment service manages multi-user access to the hardware
located in Heidelberg utilizing the quiggeldy micro scheduler
(see Section 2.4). It allows for seamless interactive execution of
experiments running on hardware with execution rates of over
10Hz. This, for example, was utilized during hands-on tutorials
at the NICE 2021 conference (NICE, 2021). The execution rates
of that demonstration are shown in Figure 14.

Furthermore, EBRAINS has begun to provide a
comprehensive software distribution that includes typical
neuroscientific software libraries next to the BSS-2 client
software. As of now, this software distribution has been already

deployed at two HPC centers and work is under way to extend
this to all sites available in the EBRAINS community. Leaving
interactive demos aside, this automatic software deployment
will simplify multi-site workflows significantly—including
BSS-2 systems—as the scientist is not responsible for software
deployment anymore.

3.6. Hardware/Software Co-development
The BSS-2 platform consists of two main hardware components:
the ASIC implementing an analog neural network core and
digital periphery, as well as an FPGA used for experiment control

Frontiers in Neuroscience | www.frontiersin.org 17 May 2022 | Volume 16 | Article 884128139

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Müller et al. Neuromorphic Modeling, a Scalable Approach

FIGURE 14 | Rate of executed experiment-steps via quiggeldy during the two BSS-2 hands-on tutorials at NICE 2021. Experiments were distributed among eight

hardware setups. In total there were 86,077 hardware runs executed.

and digital communication. Development of these hardware
components is primarily driven by simulations of their analog
and digital behavior, where—especially in the case of the ASIC—
solid pre-fabrication test strategies need to be employed. Given
the complexity of the system, integration tests involving all
subsystems are required to ensure correct behavior.

Replicating the actual hardware systems, the setup for these
simulated integration tests pose very similar requirements on
the configuration and control software. The BSS-2 OS therefore
provides a unified interface to both, circuit simulators and
hardware systems. For the connection to the simulators, we
introduce an adapter library (flange) as an optional substitution
for the network transport layer. Implementing an additional
hxcomm back-end, flange allows for the transparent execution of
hardware experiments in simulation.

This architecture enables various synergies between hardware
and software development efforts—specifically, co-design of
both components already in early design phases. On system
level, this methodology helps to preempt interface mismatch
between components of various different subsystems. Positive
implications for software developers include the possibility
of very early design involvement as well as enhanced debug
information throughout the full product life cycle: Having
simulation models of the hardware components of the system
allows for the inspection of internal signals within the FPGA
and ASIC during program runtime. In particular, we have made
use of this possibility during the development of a compiler
toolchain for the embedded custom SIMD microprocessors,
where the recording of internal state helps to understand the
system’s behavior. Hardware development, on the other hand,
strongly profits from software-driven verification strategies and
test frameworks. BSS-2 OS especially allows to run the very same
test suites on current hardware as well as simulations of future

revisions. These shared test suites are re-used across all stages
of the platform’s life cycle for multiple hardware generations,
therefore ever accumulating verification coverage.

4. DISCUSSION

This work describes the software environment for the latest
BrainScaleS (BSS) neuromorphic architecture (Pehle et al.,
2022): the BrainScaleS-2 (BSS-2) operating system. In Müller
et al. (2020b), we introduced the operating system for
the BrainScaleS-1 (BSS-1) wafer-scale neuromorphic hardware
platform. New basic concepts of the second-generation software
architecture were described in Müller et al. (2020a). For
example, we introduced a concise representation of “units of
configuration” and “experiment runs” supporting asynchronous
execution by extensive usage of “future” variables. Key concepts
already existing in BSS-1—e.g., the type-safe coordinate system—
were extended for BSS-2. In particular, the systematic use of
“futures” now allows higher software levels to transparently
support experiment pipelining and asynchronous experiment
execution in general. Additionally, dividing experiments into
a definition and an execution phase also facilitates experiment
correctness, software stack flexibility—by decoupling hardware
usage from experiment definition—as well as increased platform
performance by enabling a separation of hardware access from
other aspects of the experiment.

The new software framework is expert-friendly: we designed
the software layers to facilitate composition between higher- and
lower-level application programming interfaces (APIs). Domain
experts can therefore define experiments on a higher abstraction
level in certain aspects, and are still able to access low-level
functionality. A software package for calibration routines—the

Frontiers in Neuroscience | www.frontiersin.org 18 May 2022 | Volume 16 | Article 884128140

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Müller et al. Neuromorphic Modeling, a Scalable Approach

process of tuning hardware parameters to the requirements
defined by an experiment—provides algorithms and settings
for typical parameterizations of the chip, including support
for multi-compartmental neurons and non-spiking use cases.
An experiment micro scheduler service allows to pipeline
experiment runs, and even preempt longer experiment sessions
of individual users, to decrease hardware platform latency
for other user sessions. Enabling multiple high-level modeling
interfaces—such as PyNN and PyTorch—to cover a larger user
base was one of the new requirements for BSS-2. To achieve this,
we provide a separate high-level representation of user-defined
experiments. This signal-graph-based representation is generally
suited for high-level configuration validation, optimization, and
transformation from higher- to lower-level abstractions. The
modeling API wrappers merely provide conversions between
data types and call semantics. The embedded microprocessors
allow for many new applications: Initially designed to increase
flexibility for online learning rules (Friedmann et al., 2017),
they have been also used for: environment simulations (Pehle
et al., 2022; Schreiber et al., in preparation), online calibration
(Section 3.3), general optimization tasks, as well as experiment
control (Wunderlich et al., 2019). We ported our low-level
chip configuration interface to the embedded processors and
thereby allow for code sharing between host and embedded
program parts in addition to a software library for embedded
use cases. Apart from features directly concerning platform
users, we enhanced the support for multiple hardware revisions
in parallel facilitating hardware development, commissioning
and platform operation. In combination with a dedicated
communication layer, this enables not only support for multiple
communication backends between host computer and field-
programmable gate array (FPGA), such as gigabit ethernet (GbE)
or a memory-mapped interface for hybrid FPGA-CPU systems,
but also for co-simulation and therefore co-development of
software and hardware. Finally, we operate BSS-2 as a research
platform. As a result of our contributions to the design and
implementation of the EBRAINS (EBRAINS, 2022) software
distribution, interactive usage of BSS-2 is now available to a
world-wide research community. To summarize, we motivated
key design decisions and demonstrated their implementation
based on existing use cases: Support for multiple top-level
APIs for “biological” and “functional” modeling; support
for the embedded microprocessors including structured data
exchange with the host, a multi-platform low-level hardware-
abstraction layer, and an embedded execution runtime and
helper library; support for artificial neural networks in host-based
and standalone applications; focus on the user community by
providing an integrated platform; sustainable hardware-software
co-development.

To build a versatile modeling platform, BSS-2 is a
neuromorphic system that improved upon successful
properties of predecessors, both, in terms of hardware and
software. Simulation speed continues to be an important point
in computational neuroscience. The development of new
approaches to numerical simulation promising lower execution
times and better scalability is an active field of research (Knight
and Nowotny, 2018, 2021; Abi Akar et al., 2019), as is improving

existing simulation codes (Kunkel et al., 2014; Jordan et al.,
2018). Whereas parameter sweeps scale trivially, systematically
studying model dynamics over sufficiently long periods as well
as iterative approaches to training and plasticity can only benefit
from increases in simulation speed. The physical modeling
approach of the accelerated neuromorphic architectures allows
for a higher emulation speed than state-of-the-art numerical
simulations (Zenke and Gerstner, 2014; van Albada et al., 2021).
BSS-2 can serve as an accelerator for spiking neural networks and
therefore opens up opportunities to work on scientific questions
that aren’t accessible by numerical simulation. However, to
deliver on this promise in reality, both, hardware and software
need to be carefully designed, implemented, and applied. The
publications building on BSS-2 are evidence of what is possible
in terms of modeling on accelerated neuromorphic hardware
(Bohnstingl et al., 2019; Cramer et al., 2020, 2022; Wunderlich
et al., 2019; Billaudelle et al., 2020, 2021; Müller et al., 2020a;
Spilger et al., 2020; Weis et al., 2020; Göltz et al., 2021; Kaiser
et al., 2022; Klassert et al., 2021; Klein et al., 2021; Stradmann
et al., 2021; Czischek et al., 2022; Schreiber et al., in preparation).

We believe that these publications offer a first glimpse of
what will be possible in a scaled-up system. The next step on
the roadmap is a multi-chip BSS-2 setup employing EXTOLL
(Resch et al., 2014; Neuwirth et al., 2015) for host and inter-chip
connectivity. First multi-chip experiments have been performed
on a lab setup (Thommes et al., 2022). Additionally, a multi-
chip system reusing BSS-1 wafer-scale infrastructure is in the
commissioning phase and will provide up to 46 BSS-2 chips.
Similar to BSS-1, a true wafer-scale version of BSS-2 will provide
an increase in terms of resources by one order of magnitude
and thus will enable research that not only looks at dynamics
at different temporal scales, but also on larger spatial scales.
In terms of software we have been adapting our roadmap
continuously to match modelers’ expectations. For example, we
work on future software abstractions that will allow for flexible
descriptions of spiking network models with arbitrary topology
in a machine learning framework. PyTorch libraries such as
BindsNET (Hazan et al., 2018) or Norse (Pehle and Pedersen,
2021) enable efficient machine-learning-inspired modeling with
spiking neural networks and would benefit from neuromorphic
hardware support.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found at: Ying-Yang Dataset (https://arxiv.org/abs/2102.
08211).

AUTHOR CONTRIBUTIONS

EM initially wrote the extended abstract for the article, devised
a first draft of the article, contributed conceptually and in
writing to the final manuscript, and lead developer and architect
of the BrainScaleS-2 software stack. EA is the main author
of the “Functional Modeling” use case and conducted the
experiments, contributed to the high-level hxtorch interface

Frontiers in Neuroscience | www.frontiersin.org 19 May 2022 | Volume 16 | Article 884128141

https://arxiv.org/abs/2102.08211
https://arxiv.org/abs/2102.08211
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Müller et al. Neuromorphic Modeling, a Scalable Approach

for spiking neural networks, and contributed conceptually
and in writing to the final manuscript. OB contributed to
the hardware abstraction layers and contributed conceptually
and in writing to the final manuscript. MC contributed
to the high-level PyNN interface and the manuscript. AE
co-authored the “Artificial Neural Networks” use case and
conducted experiments for this section, contributed to the
commissioning of the non-spiking mode of operation, and
contributed conceptually and in writing to the final manuscript.
JK is the main author of the “Biological Modeling” use case
and conducted the experiments, contributed to the high-
level PyNN interface, and hardware abstraction layers, and
contributed conceptually and in writing to the final manuscript.
CM is a main developer of the hardware abstraction layers
and the communication layers, contributed to all other software
layers and contributed conceptually and in writing to the
final manuscript, and maintainer of platform operation. SS
contributed to the high-level user experience by testing new
features and providing detailed feedback, contributed to the
incorporation of calibration data, and the final manuscript. PS
is the main developer of the experiment description layers and
contributed to all other software layers, contributed conceptually
and in writing to the final manuscript. RS contributed to the
hardware abstraction layer, calibration procedures, and the final
manuscript. YS is the lead designer of the CI/CD workflows
used for BrainScaleS-2, contributed to the architecture of BSS-
2 OS and contributed conceptually and in writing to the
final manuscript. JW is the lead designer of the calibration
framework, contributed to the hardware abstraction layer, and
contributed conceptually and in writing to the final manuscript.
AB contributed to the software methodology, software resources,
and the final manuscript. SB contributed to the hardware
abstraction layer, commissioning of the hardware platform, and
the calibration procedures. BC contributed to the commissioning
of the hardware platform and the calibration procedures.
FE contributed to the hardware abstraction layer and the

commissioning of the hardware platform. JG contributed to
the commissioning of the hardware platform, the calibration
procedures, and the final manuscript. JI and VK contributed
to the transport layer and commissioning of the hardware
platform. MK contributed to the methodology and software
for co-simulation. AL contributed to the hardware abstraction
layer, calibration procedures, and themanuscript. CP contributed
to the hardware development, specifically the PPU memory
interface, and to a prototype of the “Functional Modeling” use
case, contributed to the manuscript. JS is the lead designer
and architect of the BrainScaleS-2 neuromorphic system and
provided conceptual advice, contributed to the final manuscript.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work has received funding from the EC Horizon 2020
Framework Programme under grant agreements 785907
(HBP SGA2) and 945539 (HBP SGA3), the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy EXC 2181/1-390900948
(the Heidelberg STRUCTURES Excellence Cluster), the German
Federal Ministry of Education and Research under grant
number 16ES1127 as part of the Pilotinnovationswettbewerb
Energieeffizientes KI-System, the Helmholtz Association Initiative
and Networking Fund [Advanced Computing Architectures
(ACA)] under Project SO-092, as well as from the Manfred Stärk
Foundation, and the Lautenschläger-Forschungspreis 2018 for
Karlheinz Meier.

ACKNOWLEDGMENTS

The authors wish to thank all present and former members
of the Electronic Vision(s) research group contributing to the
BrainScaleS-2 neuromorphic platform.

REFERENCES

Aamir, S. A., Müller, P., Kiene, G., Kriener, L., Stradmann, Y., Grübl, A.,
et al. (2018). A mixed-signal structured AdEx neuron for accelerated
neuromorphic cores. IEEE Trans. Biomed. Circuits Syst. 12, 1027–1037.
doi: 10.1109/TBCAS.2018.2848203

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016).
“TensorFlow: a system for large-scale machine learning,” in Proceedings of the

12th USENIX Conference on Operating Systems Design and Implementation

(Savannah, GA: USENIX Association), 265–283.
Abi Akar, N., Cumming, B., Karakasis, V., Küsters, A., Klijn, W., Peyser, A.,

et al. (2019). “Arbor-a morphologically-detailed neural network simulation
library for contemporary high-performance computing architectures,” in
2019 27th Euromicro International Conference on Parallel, Distributed

and Network-Based Processing (PDP) (Los Alamitos, CA: IEEE), 274–282.
doi: 10.1109/EMPDP.2019.8671560

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., et al.
(2020). A solution to the learning dilemma for recurrent networks of spiking
neurons. Nat. Commun. 11:3625. doi: 10.1038/s41467-020-17236-y

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran,
A. R., Bussat, J.-M., et al. (2014). Neurogrid: a mixed-analog-digital
multichip system for large-scale neural simulations. Proc. IEEE 102, 699–716.
doi: 10.1109/JPROC.2014.2313565

Billaudelle, S., Cramer, B., Petrovici, M. A., Schreiber, K., Kappel, D., Schemmel,
J., et al. (2021). Structural plasticity on an accelerated analog neuromorphic
hardware system. Neural Netw. 133, 11–20. doi: 10.1016/j.neunet.2020.
09.024

Billaudelle, S., Stradmann, Y., Schreiber, K., Cramer, B., Baumbach, A., Dold, D.,
et al. (2020). “Versatile emulation of spiking neural networks on an accelerated
neuromorphic substrate,” in 2020 IEEE International Symposium on Circuits

and Systems (ISCAS) (New York, NY). doi: 10.1109/ISCAS45731.2020.9180741
Bohnstingl, T., Scherr, F., Pehle, C., Meier, K., and Maass, W. (2019).

Neuromorphic hardware learns to learn. Front. Neurosci. 2019:483.
doi: 10.3389/fnins.2019.00483

Brette, R. and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model
as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642.
doi: 10.1152/jn.00686.2005

Brüderle, D., Müller, E., Davison, A., Muller, E., Schemmel, J., and Meier,
K. (2009). Establishing a novel modeling tool: a python-based interface
for a neuromorphic hardware system. Front. Neuroinformatics 3:17.
doi: 10.3389/neuro.11.017.2009

Cramer, B., Billaudelle, S., Kanya, S., Leibfried, A., Grübl, A., Karasenko, V., et al.
(2022). Surrogate gradients for analog neuromorphic computing. Proc. Natl.
Acad. Sci. U.S.A. 119:e2109194119. doi: 10.1073/pnas.2109194119

Cramer, B., Stöckel, D., Kreft, M., Wibral, M., Schemmel, J., Meier, K., et al.
(2020). Control of criticality and computation in spiking neuromorphic

Frontiers in Neuroscience | www.frontiersin.org 20 May 2022 | Volume 16 | Article 884128142

https://doi.org/10.1109/TBCAS.2018.2848203
https://doi.org/10.1109/EMPDP.2019.8671560
https://doi.org/10.1038/s41467-020-17236-y
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1016/j.neunet.2020.09.024
https://doi.org/10.1109/ISCAS45731.2020.9180741
https://doi.org/10.3389/fnins.2019.00483
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.3389/neuro.11.017.2009
https://doi.org/10.1073/pnas.2109194119
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Müller et al. Neuromorphic Modeling, a Scalable Approach

networks with plasticity. Nat. Commun. 11:2853. doi: 10.1038/s41467-020-16
548-3

Czischek, S., Baumbach, A., Billaudelle, S., Cramer, B., Kades, L., Pawlowski, J.
M., et al. (2022). Spiking neuromorphic chip learns entangled quantum states.
SciPost Phys. 12:39. doi: 10.21468/SciPostPhys.12.1.039

Dally, W. J., Turakhia, Y., and Han, S. (2020). Domain-specific hardware
accelerators. Commun. ACM 63, 48–57. doi: 10.1145/3361682

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.
(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al.
(2009). PyNN: a common interface for neuronal network simulators. Front.
Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Delta V Software (2020). Remote Call Framework. Delta V Software.
EBRAINS (2022). EBRAINS research infrastructure.
Facebook Inc. (2021a). PyTorch JIT Overview. Facebook, Inc.
Facebook Inc. (2021b). PyTorch on XLA Devices. Facebook, Inc.
Friedmann, S., Schemmel, J., Grübl, A., Hartel, A., Hock, M., and Meier,

K. (2017). Demonstrating hybrid learning in a flexible neuromorphic
hardware system. IEEE Trans. Biomed. Circuits Syst. 11, 128–142.
doi: 10.1109/TBCAS.2016.2579164

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al.
(2012). Overview of the SpiNNaker system architecture. IEEE Trans. Comput.
99, 2454–2467. doi: 10.1109/TC.2012.142

Gamblin, T., LeGendre, M., Collette, M. R., Lee, G. L., Moody, A., de Supinski, B.
R., et al. (2015). “The spack package manager: bringing order to HPC software
chaos,” in Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, SC ’15 (New York, NY: ACM),
40:1–40:12. doi: 10.1145/2807591.2807623

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool).
Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Gidon, A., Zolnik, T. A., Fidzinski, P., Bolduan, F., Papoutsi, A., Poirazi, P., et al.
(2020). Dendritic action potentials and computation in human layer 2/3 cortical
neurons. Science 367, 83–87. doi: 10.1126/science.aax6239

GNU Project (2018). The GNU Compiler Collection 8.1. Free Software Foundation
Inc.

Goddard, N. H., Hucka, M., Howell, F., Cornelis, H., Shankar, K., and Beeman,
D. (2001). Towards neuroml: model description methods for collaborative
modelling in neuroscience. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356,
1209–1228. doi: 10.1098/rstb.2001.0910

Göltz, J., Kriener, L., Baumbach, A., Billaudelle, S., Breitwieser, O., Cramer, B., et al.
(2021). Fast and energy-efficient neuromorphic deep learning with first-spike
times. Nat. Mach. Intell. 3, 823–835. doi: 10.1038/s42256-021-00388-x

Grant, W. S., and Voorhies, R. (2017). Cereal - A C++11 library for serialization.
Available online at: http://uscilab.github.io/cereal

Hazan, H., Saunders, D. J., Khan, H., Patel, D., Sanghavi, D. T., Siegelmann, H. T.,
et al. (2018). BindsNET: a machine learning-oriented spiking neural networks
library in python. Front. Neuroinformatics 12:89. doi: 10.3389/fninf.2018.00089

Hines, M., and Carnevale, N. (2003). The NEURON simulation environment.
Neural Comput. 9, 1179–1209. doi: 10.1162/neco.1997.9.6.1179

Indiveri, G., Linares-Barranco, B., Hamilton, T. J., van Schaik, A., Etienne-
Cummings, R., Delbruck, T., et al. (2011). Neuromorphic silicon neuron
circuits. Front. Neurosci. 5:73. doi: 10.3389/fnins.2011.00073

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J.,
et al. (2018). Extremely scalable spiking neuronal network simulation
code: from laptops to exascale computers. Front. Neuroinformatics 12:2.
doi: 10.3389/fninf.2018.00002

Kaiser, J., Billaudelle, S., Müller, E., Tetzlaff, C., Schemmel, J., and Schmitt, S.
(2022). Emulating dendritic computing paradigms on analog neuromorphic
hardware. Neuroscience. 489, 290–300. doi: 10.1016/j.neuroscience.2021.08.013

Kingma, D. P., and Ba, J. (2014). Adam: amethod for stochastic optimization. arXiv
preprint. doi: 10.48550/arXiv.1412.6980

Klassert, R., Baumbach, A., Petrovici, M. A., and Gärttner, M. (2021). Variational
learning of quantum ground states on spiking neuromorphic hardware.
doi: 10.2139/ssrn.4012184. [Epub ahead of print].

Klein, B., Kuhn, L., Weis, J., Emmel, A., Stradmann, Y., Schemmel, J., and
Fröning, H. (2021). “Towards addressing noise and static variations of analog
computations using efficient retraining,” in Machine Learning and Principles

and Practice of Knowledge Discovery in Databases, eds M. Kamp, I. Koprinska,
A. Bibal, T. Bouadi, B. Frénay, L. Galárraga, J. Oramas, L. Adilova, Y.
Krishnamurthy, B. Kang, C. Largeron, J. Lijffijt, T. Viard, P. Welke, M. Ruocco,
E. Aune, C. Gallicchio, G. Schiele, F. Pernkopf, M. Blott, H. Fröning, G.
Schindler, R. Guidotti, A. Monreale, S. Rinzivillo, P. Biecek, E. Ntoutsi, M.
Pechenizkiy, B. Rosenhahn, C. Buckley, D. Cialfi, P. Lanillos, M. Ramstead, T.
Verbelen, P. M. Ferreira, G. Andresini, D. Malerba, I. Medeiros, P. Fournier-
Viger, M. S. Nawaz, S. Ventura, M. Sun, M. Zhou, V. Bitetta, I. Bordino,
A. Ferretti, F. Gullo, G. Ponti, L. Severini, R. Ribeiro, J. Gama, R. Gavaldà,
L. Cooper, N. Ghazaleh, J. Richiardi, D. Roqueiro, D. Saldana Miranda, K.
Sechidis, and G. Graça (Cham: Springer International Publishing), 409–420.
doi: 10.1007/978-3-030-93736-2_32

Knight, J. C., and Nowotny, T. (2018). GPUs outperform current HPC
and neuromorphic solutions in terms of speed and energy when
simulating a highly-connected cortical model. Front. Neurosci. 12:941.
doi: 10.3389/fnins.2018.00941

Knight, J. C., and Nowotny, T. (2021). Larger GPU-accelerated brain
simulations with procedural connectivity. Nat. Comput. Sci. 1, 136–142.
doi: 10.1038/s43588-020-00022-7

Kriener, L., Göltz, J., and Petrovici, M. A. (2021). The yin-yang dataset. arXiv
preprint. doi: 10.48550/arXiv.2102.08211

Kungl, A. F., Schmitt, S., Klähn, J., Müller, P., Baumbach, A., Dold, D., et al.
(2019). Accelerated physical emulation of bayesian inference in spiking neural
networks. Front. Neurosci. 13:1201. doi: 10.3389/fnins.2019.01201

Kunkel, S., Schmidt, M., Eppler, J. M., Plesser, H. E., Masumoto, G., Igarashi, J.,
et al. (2014). Spiking network simulation code for petascale computers. Front.
Neuroinformatics 8:78. doi: 10.3389/fninf.2014.00078

Major, G., Larkum, M. E., and Schiller, J. (2013). Active properties of
neocortical pyramidal neuron dendrites. Annu. Rev. Neurosci. 36, 1–24.
doi: 10.1146/annurev-neuro-062111-150343

Mason, S. J. (1953). Feedback theory-some properties of signal flow graphs. Proc.
IRE 41, 1144–1156. doi: 10.1109/JRPROC.1953.274449

Müller, E., Mauch, C., Spilger, P., Breitwieser, O. J., Klähn, J., Stöckel, D.,
et al. (2020a). Extending BrainScaleS OS for BrainScaleS-2. arXiv preprint.
doi: 10.48550/arXiv.2003.13750

Müller, E., Schmitt, S., Mauch, C., Schmidt, H., Montes, J., Ilmberger, J., et al.
(2020b). The operating system of the neuromorphic BrainScaleS-1 system.
arXiv preprint. doi: 10.48550/arXiv.2003.13749

Neuwirth, S., Frey, D., Nuessle, M., and Bruening, U. (2015). “Scalable
communication architecture for network-attached accelerators,” in 2015 IEEE

21st International Symposium on High Performance Computer Architecture

(HPCA) (New York, NY), 627–638. doi: 10.1109/HPCA.2015.7056068
NICE (2021).NICE ’20: Proceedings of the Neuro-Inspired Computational Elements

Workshop. New York, NY: Association for Computing Machinery.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).

“Pytorch: an imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32, eds H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Red Hook,
NY: Curran Associates, Inc.), 8024–8035.

Pehle, C., Billaudelle, S., Cramer, B., Kaiser, J., Schreiber, K., Stradmann, Y.,
et al. (2022). The BrainScaleS-2 accelerated neuromorphic system with hybrid
plasticity. Front. Neurosci. 16:795876. doi: 10.3389/fnins.2022.795876

Pehle, C., and Pedersen, J. E. (2021). Norse – A Deep Learning Library for Spiking

Neural Networks. Available online at: https://norse.ai/docs/ (accessed April 11,
2022).

Poirazi, P., and Papoutsi, A. (2020). Illuminating dendritic function
with computational models. Nat. Rev. Neurosci. 21, 303–321.
doi: 10.1038/s41583-020-0301-7

PowerISA (2010). PowerISA Version 2.06 Revision b. Specification, Power.org.
Resch, M. M., Bez, W., Focht, E., Kobayashi, H., and Patel, N., (eds.). (2014).

“Sustained simulation performance,” in Proceedings of the Joint Workshop

on Sustained Simulation Performance (Cham: University of Stuttgart (HLRS);
Tohoku University; Springer). doi: 10.1007/978-3-319-10626-7

Rhodes, O., Bogdan, P. A., Brenninkmeijer, C., Davidson, S., Fellows, D., Gait, A.,
et al. (2018). spynnaker: a software package for running PYNN simulations on
spinnaker. Front. Neurosci. 12:816. doi: 10.3389/fnins.2018.00816

Schemmel, J., Billaudelle, S., Dauer, P., and Weis, J. (2020). Accelerated analog
neuromorphic computing. arXiv preprint. doi: 10.1007/978-3-030-91741-8_6

Frontiers in Neuroscience | www.frontiersin.org 21 May 2022 | Volume 16 | Article 884128143

https://doi.org/10.1038/s41467-020-16548-3
https://doi.org/10.21468/SciPostPhys.12.1.039
https://doi.org/10.1145/3361682
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.1109/TBCAS.2016.2579164
https://doi.org/10.1109/TC.2012.142
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1126/science.aax6239
https://doi.org/10.1098/rstb.2001.0910
https://doi.org/10.1038/s42256-021-00388-x
http://uscilab.github.io/cereal
https://doi.org/10.3389/fninf.2018.00089
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.1016/j.neuroscience.2021.08.013
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.2139/ssrn.4012184
https://doi.org/10.1007/978-3-030-93736-2_32
https://doi.org/10.3389/fnins.2018.00941
https://doi.org/10.1038/s43588-020-00022-7
https://doi.org/10.48550/arXiv.2102.08211
https://doi.org/10.3389/fnins.2019.01201
https://doi.org/10.3389/fninf.2014.00078
https://doi.org/10.1146/annurev-neuro-062111-150343
https://doi.org/10.1109/JRPROC.1953.274449
https://doi.org/10.48550/arXiv.2003.13750
https://doi.org/10.48550/arXiv.2003.13749
https://doi.org/10.1109/HPCA.2015.7056068
https://doi.org/10.3389/fnins.2022.795876
https://norse.ai/docs/
https://doi.org/10.1038/s41583-020-0301-7
https://Power.org
https://doi.org/10.1007/978-3-319-10626-7
https://doi.org/10.3389/fnins.2018.00816
https://doi.org/10.1007/978-3-030-91741-8_6
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Müller et al. Neuromorphic Modeling, a Scalable Approach

Schmitt, S., Klähn, J., Bellec, G., Grübl, A., Güttler, M., Hartel, A., et al.
(2017). “Neuromorphic hardware in the loop: training a deep spiking
network on the brainscales wafer-scale system,” in Proceedings of the 2017

IEEE International Joint Conference on Neural Networks (New York, NY).
doi: 10.1109/IJCNN.2017.7966125

Shrestha, S. B., and Orchard, G. (2018). “SLAYER: Spike layer error reassignment
in time,” in Advances in Neural Information Processing Systems, Vol. 31, eds
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (Red Hook, NY: Curran Associates, Inc.), 1419–1428.

Spilger, P., Müller, E., Emmel, A., Leibfried, A., Mauch, C., Pehle, C., et al. (2020).
“hxtorch: PyTorch for BrainScaleS-2 - perceptrons on analog neuromorphic
hardware,” in IoT Streams for Data-Driven Predictive Maintenance and

IoT, Edge, and Mobile for Embedded Machine Learning, eds J. Gama,
S. Pashami, A. Bifet, M. Sayed-Mouchawe, H. Fröning, F. Pernkopf, G.
Schiele, and M. Blott (Cham: Springer International Publishing), 189–200.
doi: 10.1007/978-3-030-66770-2_14

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and
efficient neural simulator. eLife 8:e28. doi: 10.7554/eLife.47314.028

Stradmann, Y., Billaudelle, S., Breitwieser, O., Ebert, F. L., Emmel, A.,
Husmann, D., et al. (2021). Demonstrating analog inference on the
BrainScaleS-2 mobile system. arXiv preprint. doi: 10.48550/arXiv.2103.
15960

Suhan, A., Libenzi, D., Zhang, A., Schuh,P., Saeta, B., Sohn, J. Y., et al. (2021).
LazyTensor: combining eager execution with domain-specific compilers. arXiv
[Preprint]. doi: 10.48550/arXiv.2102.13267

Thommes, T., Bordukat, S., Grübl, A., Karasenko, V., Müller, E., and
Schemmel, J. (2022). Demonstrating BrainScaleS-2 Inter-Chip Pulse
Communication using EXTOLL. arXiv [Preprint]. doi: 10.48550/arXiv.2202.
12122

van Albada, S. J., Pronold, J., van Meegen, A., and Diesmann, M. (2021).
“Usage and scaling of an open-source spiking multi-area model of monkey
cortex,” in Brain-Inspired Computing, eds K. Amunts, L. Grandinetti, T.
Lippert, and N. Petkov (Cham: Springer International Publishing), 47–59.
doi: 10.1007/978-3-030-82427-3_4

Vinkelis, M. (2020). Bitsery. Available online at: https://github.com/fraillt/bitsery
(accessed April 11, 2022).

Weis, J., Spilger, P., Billaudelle, S., Stradmann, Y., Emmel, A., Müller, E., et al.
(2020). “Inference with artificial neural networks on analog neuromorphic
hardware,” in IoT Streams for Data-Driven Predictive Maintenance and

IoT, Edge, and Mobile for Embedded Machine Learning, eds J. Gama,
S. Pashami, A. Bifet, M. Sayed-Mouchawe, H. Fröning, F. Pernkopf, G.
Schiele, and M. Blott (Cham: Springer International Publishing), 201–212.
doi: 10.1007/978-3-030-66770-2_15

Wunderlich, T., Kungl, A. F., Müller, E., Hartel, A., Stradmann, Y., Aamir, S. A.,
et al. (2019). Demonstrating advantages of neuromorphic computation: a pilot
study. Front. Neurosci. 13:260. doi: 10.3389/fnins.2019.00260

Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a code generation framework
for accelerated brain simulations. Sci. Rep. 6, 1–14. doi: 10.1038/srep18854

Yoo, A. B., Jette, M. A., and Grondona, M. (2003). “SLURM: simple linux utility
for resource management,” inWorkshop on Job Scheduling Strategies for Parallel

Processing (Berlin; Heidelberg: Springer), 44–60. doi: 10.1007/10968987_3
Zenke, F., and Ganguli, S. (2018). SuperSpike: supervised learning in

multilayer spiking neural networks. Neural Comput. 30, 1514–1541.
doi: 10.1162/neco_a_01086

Zenke, F., and Gerstner, W. (2014). Limits to high-speed simulations of spiking
neural networks using general-purpose computers. Front. Neuroinformatics

8:76. doi: 10.3389/fninf.2014.00076

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Müller, Arnold, Breitwieser, Czierlinski, Emmel, Kaiser, Mauch,

Schmitt, Spilger, Stock, Stradmann, Weis, Baumbach, Billaudelle, Cramer, Ebert,

Göltz, Ilmberger, Karasenko, Kleider, Leibfried, Pehle and Schemmel. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 22 May 2022 | Volume 16 | Article 884128144

https://doi.org/10.1109/IJCNN.2017.7966125
https://doi.org/10.1007/978-3-030-66770-2_14
https://doi.org/10.7554/eLife.47314.028
https://doi.org/10.48550/arXiv.2103.15960
https://doi.org/10.48550/arXiv.2102.13267
https://doi.org/10.48550/arXiv.2202.12122
https://doi.org/10.1007/978-3-030-82427-3_4
https://github.com/fraillt/bitsery
https://doi.org/10.1007/978-3-030-66770-2_15
https://doi.org/10.3389/fnins.2019.00260
https://doi.org/10.1038/srep18854
https://doi.org/10.1007/10968987_3
https://doi.org/10.1162/neco_a_01086
https://doi.org/10.3389/fninf.2014.00076
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

ORIGINAL RESEARCH
published: 19 May 2022

doi: 10.3389/fninf.2022.884180

Frontiers in Neuroinformatics | www.frontiersin.org 1 May 2022 | Volume 16 | Article 884180

Edited by:

Omar Awile,

Swiss Federal Institute of Technology

Lausanne, Switzerland

Reviewed by:

Mikael Djurfeldt,

Royal Institute of Technology, Sweden

Andrey Palyanov,

Siberian Branch of the Russian

Academy of Sciences (RAS), Russia

*Correspondence:

Benedikt Feldotto

feldotto@in.tum.de

Received: 25 January 2022

Accepted: 19 April 2022

Published: 19 May 2022

Citation:

Feldotto B, Eppler JM,

Jimenez-Romero C, Bignamini C,

Gutierrez CE, Albanese U,

Retamino E, Vorobev V, Zolfaghari V,

Upton A, Sun Z, Yamaura H,

Heidarinejad M, Klijn W, Morrison A,

Cruz F, McMurtrie C, Knoll AC,

Igarashi J, Yamazaki T, Doya K and

Morin FO (2022) Deploying and

Optimizing Embodied Simulations of

Large-Scale Spiking Neural Networks

on HPC Infrastructure.

Front. Neuroinform. 16:884180.

doi: 10.3389/fninf.2022.884180

Deploying and Optimizing Embodied
Simulations of Large-Scale Spiking
Neural Networks on HPC
Infrastructure
Benedikt Feldotto 1*, Jochen Martin Eppler 2, Cristian Jimenez-Romero 2,

Christopher Bignamini 3, Carlos Enrique Gutierrez 4, Ugo Albanese 5, Eloy Retamino 6,

Viktor Vorobev 1, Vahid Zolfaghari 1, Alex Upton 3, Zhe Sun 7,8, Hiroshi Yamaura 9,

Morteza Heidarinejad 8, Wouter Klijn 2, Abigail Morrison 2,10,11, Felipe Cruz 3,

Colin McMurtrie 3, Alois C. Knoll 1, Jun Igarashi 8,12, Tadashi Yamazaki 9, Kenji Doya 4 and

Fabrice O. Morin 1

1 Robotics, Artificial Intelligence and Real-Time Systems, Faculty of Informatics, Technical University of Munich, Munich,

Germany, 2 Simulation and Data Lab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation,

JARA, Forschungszentrum Jülich GmbH, Jülich, Germany, 3 Swiss National Supercomputing Centre (CSCS), ETH Zurich,

Lugano, Switzerland, 4Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa,

Japan, 5Department of Excellence in Robotics and AI, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera,

Italy, 6Department of Computer Architecture and Technology, Research Centre for Information and Communication

Technologies, University of Granada, Granada, Spain, 7 Image Processing Research Team, Center for Advanced Photonics,

RIKEN, Wako, Japan, 8Computational Engineering Applications Unit, Head Office for Information Systems and Cybersecurity,

RIKEN, Wako, Japan, 9Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo,

Japan, 10 Jülich Research Centre, Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6),

JARA BRAIN Institute I, Jülich, Germany, 11Computer Science 3-Software Engineering, RWTH Aachen University, Aachen,

Germany, 12Center for Computational Science, RIKEN, Kobe, Japan

Simulating the brain-body-environment trinity in closed loop is an attractive proposal

to investigate how perception, motor activity and interactions with the environment

shape brain activity, and vice versa. The relevance of this embodied approach, however,

hinges entirely on the modeled complexity of the various simulated phenomena. In this

article, we introduce a software framework that is capable of simulating large-scale,

biologically realistic networks of spiking neurons embodied in a biomechanically accurate

musculoskeletal system that interacts with a physically realistic virtual environment. We

deploy this framework on the high performance computing resources of the EBRAINS

research infrastructure and we investigate the scaling performance by distributing

computation across an increasing number of interconnected compute nodes. Our

architecture is based on requested compute nodes as well as persistent virtual machines;

this provides a high-performance simulation environment that is accessible to multi-

domain users without expert knowledge, with a view to enable users to instantiate

and control simulations at custom scale via a web-based graphical user interface. Our

simulation environment, entirely open source, is based on the Neurorobotics Platform

developed in the context of the Human Brain Project, and the NEST simulator. We

characterize the capabilities of our parallelized architecture for large-scale embodied

brain simulations through two benchmark experiments, by investigating the effects of

scaling compute resources on performance defined in terms of experiment runtime,

145

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.884180
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.884180&domain=pdf&date_stamp=2022-05-19
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:feldotto@in.tum.de
https://doi.org/10.3389/fninf.2022.884180
https://www.frontiersin.org/articles/10.3389/fninf.2022.884180/full

Feldotto et al. Embodied Large-Scale Neural Simulations

brain instantiation and simulation time. The first benchmark is based on a large-

scale balanced network, while the second one is a multi-region embodied brain

simulation consisting of more than a million neurons and a billion synapses. Both

benchmarks clearly show how scaling compute resources improves the aforementioned

performance metrics in a near-linear fashion. The second benchmark in particular is

indicative of both the potential and limitations of a highly distributed simulation in

terms of a trade-off between computation speed and resource cost. Our simulation

architecture is being prepared to be accessible for everyone as an EBRAINS service,

thereby offering a community-wide tool with a unique workflow that should provide

momentum to the investigation of closed-loop embodiment within the computational

neuroscience community.

Keywords: spiking neural networks, embodiment, Neurorobotics Platform, high performance computing (HPC),

NEST, musculoskeletal modeling, large-scale brain simulation, parallel computing

1. INTRODUCTION

While theories exist that describe how brain architecture and
neuronal activity support human-specific, higher-level cognitive
abilities such as common sense, capacity for generalization and
self-awareness, their experimental validation in vivo is usually
impossible for both technical (e.g., lack of reproducibility,
observability and perturbability) and ethical reasons. As such,
simulating the human brain becomes necessary in order to test
data-driven hypotheses coming from theoretical neuroscience
regarding the structure-function-activity trifecta, and thus
establish the link between these in an ethical, reproducible and
fully observable manner.

In particular, it is only through simulation that the functional
capacity of a given brain model can be consistently evaluated
at multiple scales and under various operating conditions, or
that the individual contribution of its sub-components to the
emergence of advanced cognitive functions can be teased apart.
In short, as Nobel physicist Richard Feynman concluded, “what
I cannot create I do not understand.” Not just any isolated
simulation will do, though. To have any relevance to data
collected from living beings, the simulated brainmust be afforded
with the possibility to interact with a dynamic, physically realistic
and sensory-rich environment. This is what we refer to as
embodiment. Only then can the simulated neuronal activity be
expected to somewhat match, even to a limited extent, that of an
actual brain in natural settings. This aspect is therefore essential
when studying cognitive mechanisms that involve sensorimotor
integration or motor control.

Such an embodied simulation framework must be able to
simulate the brain at scale in order to capture the contributions
of multiple brain regions involved in goal-directed actions,
and to account for the effects of various learning mechanisms,
from single synapses up to network effects of different neural
populations. It requires significant computing capabilities and a
distributed architecture to cope with the highly parallel, resource-
intensive nature of large-scale neuronal network simulations,
as well as features that allow interactive experimentation while
keeping brain and body simulation in sync.

We demonstrate a prototype for a simulation service on
the EBRAINS research infrastructure; this prototype enables
users to run custom embodied large-scale brain simulations
through the Neurorobotics Platform (NRP), the component of
EBRAINS dedicated to closed-loop neuroscience. Implemented
with the NEST simulator for large-scale spiking neural networks,
these brain simulations are run in a distributed manner on a
variable allocation of high-performance computing (HPC) nodes
of the supercomputer Piz Daint. Within this framework, large-
scale biologically plausible neuronal networks with multiple
regions are simulated in NEST and interconnected with a
physics simulation of a musculoskeletal system in Gazebo. A
dedicated graphical user interface in the NRP frontend enables
anyone entitled to adequate compute resources on EBRAINS
to schedule jobs on the Piz Daint supercomputer at the Swiss
National Supercomputing Center (CSCS) and to launch newNRP
instances. This process enables users to run, control and interact
with embodied simulation experiments online as intuitively as is
possible using local installations of the NRP, but backed by the
considerable computing power of Piz Daint.

2. STATE OF THE ART

2.1. Large-Scale Neuronal Simulations on
HPC Infrastructure
Several tools for the simulation of spiking neurons and networks
thereof have been developed. They allow to model a high degree
of biological plausibility but differ in their focus on different
aspects of the biological models or the technology they use.
Highlighting a few, NEURON (Hines and Carnevale, 1997;
Awile et al., 2022) GENESIS (Bower and Beeman, 2007) and
Arbor (Abi Akar et al., 2019) allow the modeling of complex
compartmental neurons and are tailored to the simulation from
the sub-cellular level to networks, while the Open Source Brain
(Gleeson et al., 2019) provides functionalities for visualization
and focuses on user collaboration and accessibility of neuron
models and networks.

Due to the improved availability of compute resources
for neuroscience research through programs like the Human

Frontiers in Neuroinformatics | www.frontiersin.org 2 May 2022 | Volume 16 | Article 884180146

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Feldotto et al. Embodied Large-Scale Neural Simulations

Brain Project’s Fenix/ICEI1, or the Neuroscience Gateway2

and advances in simulation technology (e.g., Jordan et al.,
2018; Kumbhar et al., 2019), it became routinely possible for
computational neuroscientists to run large-scale simulations of
spiking neuronal networks with great efficiency. Most modern
neuronal network simulators achieve linear scaling for a large
range of simulations of neuroscientific models and have thus
opened the way to increased model sizes and more complex
learning paradigms.

Meanwhile, a large number of projects are making use of these
technological developments, which also resulted in a number of
large-scale modeling publications (Markram et al., 2015; Senk
et al., 2018; Igarashi et al., 2019; Billeh et al., 2020). Many of
the studies are scaling to considerable portions of the world’s
largest supercomputers and reach far beyond the simple random
balanced network that has been the norm in the field for many
years. By integrating data from multiple neuroanatomical and
electrophysiological sources, they enable the study of biological
phenomena with an unprecedented level of detail. At the same
time, the developers of the simulation tools are facing new
challenges when it comes to coupling simulators amongst each
other to increase the realism of the simulatedmodels and to allow
for an integration of physics simulators in scenarios such as those
described in the present work.

2.2. Simulations of Spiking Neural
Networks Controlling Virtual Embodied
Agents
Previous works involving simulations of spiking neural networks
connected to an embodied agent (either a robot or a
musculoskeletal system) have mostly aimed at understanding
motor control in the brain in relation to sensorimotor
integration. Many of them focused on functional performance
and were often carried out in a robotic context (e.g., Gilra and
Gerstner, 2018; Bahuguna et al., 2019; Angelidis et al., 2021).
Others more specifically investigated the robustness, versatility
and capacity for adaptation of biological motor systems, for
which there is still no satisfactory mechanistic explanatory
framework. As an example, DeWolf et al. (2016) used the Neural
Engineering Framework (NEF; Eliasmith and Anderson, 2004)
to implement a multi-area brain model capable of controlling
a three-link arm which also successfully exhibited adaptation to
changes in arm dynamics and kinematic structure.

Other research efforts found in the literature involving
spiking neural networks controlling a body were about
replicating specific features of biological motor systems, with
a focus usually placed more on simple movement generation
rather than complex, behaviorally-relevant interactions with the
environment (e.g., Allegra Mascaro et al., 2020; Fernándes et al.,
2021; Kalidindi et al., 2021). In order to achieve task completion,
these often involved some network training/optimization
process, be it biologically realistic (e.g., STDP in Fernándes
et al., 2021) or derived from AI approaches (back-propagation
through time in Kalidindi et al., 2021). As for the simulation

1https://fenix-ri.eu/
2https://www.nsgportal.org/

of musculoskeletal systems, it usually attempted to remain as
biologically realistic as possible (e.g., through the use of Hill
muscle models), but the experimental implementation did not
provide straightforward means for reuse and reproducibility
testing. Very few efforts reported in the literature besides the
Neurorobotics Platform (see Section 2.3 below) actually focused
on this aspect, which makes them all the more remarkable
(e.g., Jordan et al., 2019). The latter introduces a toolchain to
connect NEST with OpenAIGym making use of the MUSIC
interface (Djurfeldt et al., 2010; Brocke, 2020). In Bahuguna
et al. (2019), MUSIC is used to connect NEST with Gazebo.
The Neurorobotics Platform connects physics and neural
simulations directly using Nengo (Angelidis et al., 2021) or
NEST (Allegra Mascaro et al., 2020).

The brain-body-environment trinity for different species at
different levels of complexity from single body limbs to full
body simulations has been simulated in multiple frameworks.
The most popular example for invertebrates can be found in
the OpenWorm platform (Szigeti et al., 2014; Sarma et al.,
2018), which is made for the complete simulation of the
Caenorhabditis elegans modeled with both its full body using
fluid-simulation dynamics and the full neural network consisting
of 302 neurons. A whole body simulation model including
environment interaction of a vertebrate is found in Ferrario
et al. (2021) with the simulation of a tadpole and serves as
an experiment platform for research questions ranging from
decision-making to movement generation. While both of the
aforementioned simulation platforms are specialized for the
given species, AnimatLab (Cofer et al., 2010) is a more generic
simulation platform, which allows simulations of a wide range
of vertebrates and invertebrates. Cofer et al. (2010) described a
human arm flexion as an example.

The most complex work connecting a spiking model of the
brain to a body can be found in Yamada et al. (2016). It describes
a system encompassing a musculoskeletal model of human fetus
at 32 weeks of gestation, a brain (2.6 million leaky integrate-
and-fire spiking neurons and 5.3 billion synaptic connections)
and some limited environmental modeling, which was used to
comparatively study touch-driven cortical learning via limited
embodied interactions under intrauterine and extrauterine
environmental conditions.

2.3. Neurorobotics Platform
The HBP Neurorobotics Platform (NRP) is the backbone of
the EBRAINS Closed-Loop Neuroscience service (Knoll et al.,
2016). It provides access to a physically realistic simulated
environment within which users can simulate and use all kinds
of neural models (including spiking neural networks running
on neuromorphic chips) composed into functional architectures,
and connected to physical incarnations (musculoskeletal models
or robotic systems). The simulation of the environment is
carried out in Gazebo, an open-source robotic simulator.
The neural models can be implemented using one of several
frameworks, such as the software simulators NEST (Gewaltig
and Diesmann, 2007) or Nengo (Bekolay et al., 2014), or the
neuromorphic system SpiNNaker (Furber et al., 2014). The
execution of the various simulators involved in a given NRP

Frontiers in Neuroinformatics | www.frontiersin.org 3 May 2022 | Volume 16 | Article 884180147

https://fenix-ri.eu/
https://www.nsgportal.org/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Feldotto et al. Embodied Large-Scale Neural Simulations

simulation is orchestrated by a dedicated component referred
to as the Closed-Loop Engine (CLE). The connections between
the simulated agents’ bodies and brains are entirely user-
configurable, within the limitations imposed by the application
programming interfaces (APIs) of the various simulators. The
details of the connections are established through a dedicated
framework of so-called Transfer Functions, which are responsible
for the conversion and processing of data in transit for seamless
recurrent communication between simulators. The NRP can be
downloaded and installed locally for maximum experimental
convenience, or accessed online in order to leverage the
EBRAINS HPC infrastructure for large-scale experiments, as in
the present case.

The functional connection of neural models to embodied
agents allows neuroscientists to explore how the brain performs
a number of tasks in closed loop, from lower-level sensorimotor
tasks to higher cognitive functions (e.g., contextual awareness,
decision making, etc.). The NRP thus enables cognitive and
computational neuroscientists to explore the relationships that
exist between the architectural characteristics of neural circuitry
(usually constrained by anatomical and connectome data),
neuronal dynamics (activity at either population or single-cell
level), and their function expressed as the overt behavior of
an embodied agent. Furthermore, in silico simulation provides
a level of control over experimental parameters that enables
studies that would be either technically impossible or ethically
unacceptable. For example, only in simulation one can fully
observe the effect of knocking out a particular ion channel in a
specific neuronal sub-population with perfect efficiency, or carry
out lesioning studies with perfect reproducibility. As such, the
NRP provides a unique enabling platform to probe the functional
consequences of e.g., stroke (Allegra Mascaro et al., 2020) or
pharmacological tampering on the central nervous system. It
is therefore a valuable tool to elucidate outstanding questions
around motor control in both health and disease. However, until
the work reported in the present paper, the NRP was run either
locally or as a cloud service (i.e., on virtual machines). As such,
the size of simulations that could be run on the NRP was limited
by the typical computing resources of standard computers or
virtual machines.

2.4. The Neural Simulation Tool NEST
NEST is a simulator for large networks of spiking neurons
connected by phenomenological synapse models. It supports
hybrid parallel simulations using threading within CPUs and
the message passing interface (MPI) across multiple CPUs and
computing nodes. In previous studies, NEST has shown excellent
scaling over a large number of architectures even on the world’s
largest supercomputers (Kunkel et al., 2014; Jordan et al., 2018).
The details of the parallelization are entirely transparent to the
users, who do not need to handle or care about node placement
onto processes or inter-process communication. Neurons in
NEST can be anything from simple point neuron models like the
integrate-and-fire neuron to complex compartmental neurons, as
long as they can be expressed as a single C++ class. Synapses
can be either static or change their weight over time according

to a plasticity algorithm. Examples of such algorithms are spike-
timing-dependent plasticity (STDP), short-term plasticity (STP),
or third-factor neuromodulated weight dynamics. Many different
neuron and synapse models have been developed over time and
are included in any distribution of the NEST source code.

NEST can be used from Python by means of a module called
PyNEST that wraps the NEST simulation kernel, which itself is
written in C++. Simulation scripts can then use functions like
Create() and Connect() to create neurons and devices for
stimulation and recording, and to connect these elements using
different connection rules, respectively. A web-based graphical
frontend called NEST Desktop simplifies the task of network
creation by offering graphical metaphors and a point-and-click
interface and has been especially useful in classroom scenarios.
To keep the actual simulation of the neuronal network separate
from the graphical frontend, NEST was extended by the NEST
Server, which allows steering NEST via a RESTful API that listens
on a specific TCP/IP port and maps incoming requests of the
form http://localhost:5000/api/Create to calls of the PyNEST API
(the function Create() in the example).

When NEST is run in an MPI-distributed fashion, each
process (or task, in MPI terminology) executes the same
simulation script, but only creates its share of neurons, devices,
and connections. The individual tasks also apply configuration
changes only to local elements of the simulation and record
data only from the entities they are responsible for. This is not
a problem in many simulation experiments, where simulation
scripts are run for the full simulation time and data is analyzed
only after the simulation has finished and data from the
different result files of the different processes has been manually
combined. Due to the distributed nature of data collection in
NEST, NEST Server originally only supported non-distributed
simulation runs. To support the framework described in this
work, NEST Server has now been extended to also support
distributed scenarios by using a master-worker paradigm: The
first MPI process (MPI rank 0, master) is responsible for
both providing the RESTful API to clients, and forwarding all
incoming commands to the workers (i.e., all MPI ranks but 0) and
collecting their result data. In addition, the master process also
participates in the neuronal simulation and thus also serves as a
worker itself. A set of heuristics is used to combine and present
the worker’s response data to an outside caller as a consistent view
that does not differ from one that the caller would see when only
a single MPI process is used.

3. SOFTWARE ARCHITECTURE

The following provides the implementation details of a software
architecture that integrates the Neurorobotics Platform and
NEST Server for embodied simulations, supports browser-
based online control of and interaction with experiments, and
is highly scalable. This setup leverages a cloud computing
infrastructure and HPC computing resources, both provided by
EBRAINS. Despite the complexity of the architecture, automated
deployment and online interactivity are provided through a
dedicated graphical user interface available in the NRP frontend.

Frontiers in Neuroinformatics | www.frontiersin.org 4 May 2022 | Volume 16 | Article 884180148

http://localhost:5000/api/Create
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Feldotto et al. Embodied Large-Scale Neural Simulations

3.1. Infrastructure
The software service presented in this article is deployed across
multiple compute systems at the Swiss National Supercomputing
Center3 (CSCS). Therein, persistent virtual machines are used
in order to let users interact with the NRP continuously and
request HPC resources in the form of compute nodes. The overall
architecture is illustrated in Figure 1. The NRP frontend and
a proxy responsible for assigning NRP backends and handling
REST calls are deployed on a virtual machine on the Castor
cluster, while the actual embodied simulations (NRP backend and
NEST brain simulation) are run on requested compute nodes of
Piz Daint. For every NRP job, at least two compute nodes are
requested, the first running the NRP backend, the second and any
additional nodes running NEST Server. As such, the setup is fully
scalable in terms of computing capabilities and is able to support
custom large-scale embodied simulations.

The software interface between NRP frontend on Castor
and NRP backend on Piz Daint compute nodes is instantiated
on demand. We implement a UNICORE4 (Uniform Interface
to Computing Resources) interface in the NRP proxy to
interact with the SLURM workload manager (Yoo et al., 2003).
UNICORE’s REST API is used to request compute jobs, transmit
configuration files and launch the NRP with NEST via startup
scripts. We set up an SSH tunnel between the NRP frontend
virtual machine and the cluster compute node running the NRP
backend to enable bidirectional communication during runtime.

To facilitate fast and automated update cycles in a cloud
infrastructure with our multi-component software architecture,
we integrate all software components in Docker containers, in
particular the NRP frontend, NRP backend and NEST Server.
We use Jenkins with Ansible for Continuous Integration and
Continuous Deployment (CI/CD); installation andDocker image
instantiation on Castor is fully automated; new Piz Daint NRP
backend images can be pushed to the Docker registry and then
pulled to the Piz Daint login nodes using the Sarus container
engine (Benedičič et al., 2019). The main advantage of this
approach is the fast deployment of software improvements and
new releases of the NRP and its components. This ensures
forward compatibility of the platform during the ongoing NRP
development. The architecture also allows multiple versions to
be made available in the Docker registry so that custom software
versions can be instantiated on demand.

3.2. Graphical User Interface
The setup is intended to enable future community access to
an EBRAINS service that lets users experiment with large-
scale embodied simulations without in-depth knowledge of
the required underlying supercomputing infrastructure and
architecture deployment. For this purpose, we implement a
new section in the NRP frontend as shown in Figure 2, which
can be accessed through a web browser. With it, users can
request and launch the NRP on Piz Daint as compute jobs with
customized resources, as well as manage instantiated jobs with
running NRP instances. The job duration, compute node number

3https://www.cscs.ch/
4https://sourceforge.net/projects/unicore/

and memory allocation can be customized depending on the
duration and complexity of the experiments to be simulated.
The frontend section also includes a list of past and running
compute jobs, and lets users abort and inspect these during and
after runtime. After starting the NRP backend distributed on
requested Piz Daint compute nodes, it is accessible and can be
selected just like any other backend running on virtual machines.
Launching an experiment lets users interact with the rendered
virtual environment and control the experiment interfaces and
procedure runtime either graphically or programmatically via
Python scripts in the NRP Virtual Coach. The Virtual Coach
includes a Python REST interface to the NRP so that users can
control simulations and observe its status via callback functions
from a Python script. Additionally, experiment scripts can be
modified programmatically and finally recorded data can be
requested for postprocessing of experimental data.

3.3. NRP-NEST Coupling Architecture
Since the beginning of the development of the NRP, NEST has
been a first-class citizen in the NRP platform. It was initially
integrated through a direct import of the Python module for
NEST into the NRP CLE, which entailed a number of drawbacks
in terms of code maintenance and distribution on multiple
compute nodes of Piz Daint. To overcome the main drawbacks of
the previous coupling, we started from the existing solutions and
devised a new architecture based on the idea of separating NEST
from the NRP by channeling all communication through the
NEST Server and its RESTful API: instead of importing PyNEST
directly, the NRP would only talk to NEST via HTTP requests
and responses. The change to this new architecture constitutes
a minimally invasive change to the NRP itself, as all code can be
encapsulated in a newmodule that implements the NRP interface
specification for integrating brain simulators on the one side, and
a client for the NEST Server on the other. By having NEST run
in its own process space, the issues related to code maintenance
are eliminated, because NEST can run on any suitable Python
version independently, and the version of NEST does not have
to be taken into account by the NRP as long as the RESTful
API of the NEST Server remains unchanged. The requirement
for running distributed simulations of the brain simulation is
naturally fulfilled in the new architecture as long as the MPI-
enabled version of the NEST Server is used. The complete new
coupling architecture is depicted in Figure 3.

Within the new client-server based architecture of the NRP-
NEST coupling, the NEST Client Python module exposes a
number of API functions in the client-side user API (3© in
Figure 3) that allow to configure a neuronal network and the
needed devices, run a network simulation for a given amount of
time, and retrieve the recorded data. No actual computation takes
place within the client. Rather, the latter forwards all operations
to the NEST Server, which is based on a master/worker paradigm
in which the master (MPI rank 0) provides a RESTful API to the
NEST client and coordinates the workers by exchanging data and
control commands with them. All MPI ranks (including rank 0)
together execute the neuronal simulation. By virtue of this split
in responsibilities, the actual details of the distribution remain
completely transparent to the NEST Client.

Frontiers in Neuroinformatics | www.frontiersin.org 5 May 2022 | Volume 16 | Article 884180149

https://www.cscs.ch/
https://sourceforge.net/projects/unicore/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Feldotto et al. Embodied Large-Scale Neural Simulations

FIGURE 1 | Software architecture. Persistent virtual machines are interfaced with requested compute resources in order to offer a flexible user interface with HPC

resources. We use UNICORE as an interface to schedule compute jobs, and a SSH tunnel on demand establishes the bidirectional connection between NRP frontend

and backend running on the two distinct computing systems.

FIGURE 2 | Graphical user interface. The large-scale simulation setup on HPC resources can be managed, accessed and controlled via a standard browser. We

implemented a dedicated tab in the Neurorobotics Platform frontend that lets users parametrize supercomputing jobs and manage allocated resources. A new

compute job running the NRP backend instance with distributed NEST can be requested and started with a single click from this frontend.

In terms of deployment, the described separation between
client and server allows execution of the components on different
computing units. In particular, it is now possible to execute
the NRP (including the NEST Client) and the NEST Server

codes on different nodes of a given supercomputer or compute
cluster, or even on completely independent machines. All NEST-
related operations such as loading the network, stepping the
simulation, creating devices and connectivity, aremanaged by the

Frontiers in Neuroinformatics | www.frontiersin.org 6 May 2022 | Volume 16 | Article 884180150

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Feldotto et al. Embodied Large-Scale Neural Simulations

FIGURE 3 | NRP-NEST client-server architecture. The NRP (yellow) connects to the NEST Client via its client-side user API for Python 3 . The NEST Client (blue)

provides a channel for talking to the NEST Server (between 1 and 2) for simulation control and steering. A high-performance transport layer for data (between 4 and

5) is possible, but not yet implemented. The NEST Server (red) encompasses all NEST MPI processes (rank 0 to n), but only rank 0 (Master) offers the RESTful API

visible to the outside world.

NEST Client that provides a set of user-friendly methods for all
relevant operations.

The methods of the client-side API are (roughly speaking)
just wrappers of the corresponding PyNEST functions. An
example of such a method is get_kernel_status(), a
call to which translates to an HTTP request for the URL
host:port/api/GetKernelStatus, where host and port
are the IP address of the machine on which NEST Server
is running and the port it is listening on, respectively.
Such a request results in a call of the PyNEST function
GetKernelStatus() by the NEST Server. The return value
of that function will be included in the response in the form of a
JSON-encoded dictionary.

Below is a non-exhaustive list of the methods provided by
the NEST Client client-side API to control and configure the
simulation of the neuronal network in NEST:

• get_kernel_status(): access to NEST simulation
parameters

• startup(): reset the kernel and set the number of threads
and the simulation resolution

• load_network(): load a network in the form of a
simulation script

• run_simulation(): drive a network simulation for a
given amount of time

• create_device(): create a given number of network
devices of a given type

• connect_device(): connect a device to a neuron using
the provided connection parameters

• set_device_params(): set the given parameters on a
device

• get_population_parameters(): retrieve parameters
from a neuronal population

The second component of the coupling architecture, NEST
Server, can be considered a language-independent interface to
NEST that can be deployed either locally or on a remote machine
as outlined above and in Section 2.4. Prior to any simulation, an
instance of the NEST Server has to be started independently from
the NRP and the NEST client with a degree of MPI parallelization
that is suitable for the neuronal simulation at hand. As of writing,
the NEST Server is fully integrated into the current release of
NEST (Hahne et al., 2021) and can be either used after compiling
the source from scratch, or from the NEST Docker image. All
benchmark simulations presented in Section 6 have been realized
using the containerized version of the NEST Server.

Frontiers in Neuroinformatics | www.frontiersin.org 7 May 2022 | Volume 16 | Article 884180151

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Feldotto et al. Embodied Large-Scale Neural Simulations

3.4. HPC Parallelization
Since the inception and widespread use of multi-socket/multi-
core architectures several years ago, it has become more and
more evident that a purely threaded application or one that
purely relies on message passing for distributing the workload
onto multiple processes is not sufficient for achieving optimal
performance. Since then, the use of hybrid parallelization
strategies that use threads within a CPU socket and message
passing via MPI across CPU sockets and compute nodes has
become the de facto standard for neuronal simulators. As this
new paradigm has a high implementation complexity, many of
the modern simulator codes shield the user from the details of the
parallelization and provide suitable abstractions that also allow
scientists not trained in computer science to use large-scale HPC
machines efficiently.

For the NRP-NEST use case, we make use of the UNICORE
REST API for requesting an individual number of compute
nodes and running embodied simulations on compute resources
customized to the user experiment. In contrast to a usual
supercomputing job, in our case, not all compute nodes execute
the same software but in fact run different sub-components of
the overall architecture. After job approval, the execution of
the architecture startup script is initiated via UNICORE, which
launches the NRP backend, SSH tunneling service and NEST
Server with workers on specific compute nodes. The general
allocation layout is such that the user always requests N + 1
compute nodes, with the NRP and its NEST Client as well as
the tunneling services started on the first node, and NEST Server
on the remaining N nodes. This specific allocation of software
components to compute nodes is done via the Slurm Workload
Manager, assigning individual component execution scripts to
the corresponding subsets of the overall allocated compute node
list. Appropriate settings of thread pinning and process affinity
are used to achieve good performance. For the deployment of
NEST on Piz Daint for example, one MPI process is launched
per physical CPU socket and set to use all of the 36 virtual and
real cores by means of one OpenMP thread per core. NEST
itself will then take care of the distribution of neurons and
synapses onto the processes and threads by assigning neurons
to threads in a round-robin fashion and allocating synapses on
the process that is responsible for the post-synaptic neuron.
We run two NEST workers on every individual compute node
automatically (each assigned 36 CPU cores, see Section 5 for
more details) to optimally use allocated compute resources. The
described allocation scheme allows for fully customized scaling of
computing capacity, which is only limited by the physical number
of available nodes in the given HPC system.

4. MODELS AND SETUP

We implemented two different benchmark experiments in the
Neurorobotics Platform to evaluate our software architecture:
the first one is a rather synthetic balanced random network
without any body connection; the second one is based on a
biologically derived multi-region brain model connected to a
virtual musculoskeletal rodent model.

4.1. HPC Benchmark With Balanced
Networks
The random balanced network introduced by Brunel (2000)
has been adopted by the NEST development community as
a benchmark for large-scale simulations of spiking neural
networks on HPC supercomputers (Morrison et al., 2007; Helias
et al., 2012; Kunkel et al., 2014). This benchmark simulates
a network with a large number of spiking neurons split into
excitatory and inhibitory populations and random connectivity.
The excitatory—excitatory synapses exhibit the multiplicative
depression and power law potentiation model of Spike Timing
Dependent Plasticity (STDP) described in the work of Morrison
et al. (2007), while all connections targeting or originating from
inhibitory neurons are static.

The number of neurons in the network corresponds to 11,250
multiplied by a scale parameter. The indegree of each neuron
is fixed to 11,250 synapses regardless of the scale parameter. In
this work, we use a scale factor of 20 yielding a network with
225,000 neurons and roughly 2.5 billion synapses. The network
is simulated with a computational resolution of 0.1 ms for a
duration of 1s. A four-wheeled Husky robot is loaded in a static
virtual room but is left unconnected from the neural network and
merely serves as a base workload for the NRP. In this benchmark
setup, physics are simulated with Gazebo and the ODE engine.

4.2. Embodied Multi-Region Rodent Brain
Experiment
The embodied multi-region rodent brain experiment aims to
examine the dynamic mechanism of the cortico-basal ganglia-
cerebellar-thalamic (CBCT) circuit in motor control through
combined simulation of the brain model and the physical
musculoskeletal model of a mouse. The embodied simulation
includes 1,005,905 spiking neurons with 1,588,469,795 synapses
in NEST. Neuronal output from the brain simulation controls
the physical simulation of a mouse musculoskeletal model with
8 muscles in Gazebo and the Simbody physics engine. The NRP
experiment view lets the user inspect, adapt and interact with the
simulation online, Figure 6 (bottom) shows the 3D rendering of
the moving musculoskeletal body and the brain activity as a spike
raster plot in the NRP frontend.

4.2.1. The Multi-Region Rodent Brain Model
The CBCTmodel is based on the biologically constrained spiking
network models of the cerebral cortex (Ctx), basal ganglia (BG),
cerebellum (CB), and thalamus (TH) (Gutierrez et al., 2020). The
numbers of neurons in the CBCT loop add up to more than 90%
of the number of all neurons in rodents, primates, and humans
(Azevedo et al., 2009; Herculano-Houzel, 2009).

The model consists of a reference cortical patch of 1×1mm2

and connected BG, CB and TH models with proportional
number of neurons. In total, the model incorporates 1,005,905
neurons (Table 1). Simulations of such a large network
combined with the musculoskeletal model requires efficient use
of high-performance computing (HPC), especially for model
optimization by repeated evaluations of the generated dynamics
against experimental data. The NRP infrastructure provides
the framework for managing access and execution by HPC.

Frontiers in Neuroinformatics | www.frontiersin.org 8 May 2022 | Volume 16 | Article 884180152

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Feldotto et al. Embodied Large-Scale Neural Simulations

TABLE 1 | Summary statistics of the 1×1mm2 unit of the rodent brain model.

Model #Neurons #Layers #Neuron types

M1 (Ctx) 58,805 5 19

S1 (Ctx) 94,396 7 22

VL (TH) 6,144 2 3

VM (TH) 6,144 2 3

BG 10,976 5 5

CB (M1) 414,720 6 6

CB (S1) 414,720 6 6

Total 1,005,905 33 65

Parrot neurons and neurons instantiated by NRP devices as interface are not included.

Moreover, it allows easy and efficient integration of the brain
model with physical models with realistic behavioral constraints,
which facilitates better validation and improves predictive power
of the simulated models.

The CBCT model of the multi-region rodent brain (Figure 4)
is composed of the following regional models:

Cerebral Cortex: The model incorporates the primary motor
cortex (M1) and the primary somatosensory cortex (S1), based
on previous works of Igarashi et al. (2019), Sun Zhe (2019),
and Sun and Morteza Heidarinejad (2019). A unit model has
the size of 1,000 x 1,000 x 1,400 (height x width x length)
µm3 and contains six 2D sheets for the arrangement of neural
populations in layers 1, 2/3, 4, 5A, 5B, and 6 based on
reported cortical organization and experimental data (Lev and
White, 1997; Weiler et al., 2008). Main neuron types are single
bouquet (SBC) and elongated neurogliaform (ENGC) cells in
layer 1; intratelencephalic (IT), parvalbumin-expressing (PV),
and somatostatin-expressing (SST) neurons at layers 2/3, 5A, 6;
and IT, pyramidal-tract (PT), PV and SST neurons in layer 5B
(Jiang et al., 2013; Shepherd, 2013; Tremblay et al., 2016). The
model also incorporates vasoactive intestinal peptide-expressing
(VIP) neurons in layer 2/3 and connections based on Jiang et al.
(2015). The S1model Sun Zhe (2019) includes additional neurons
in layer (L4).

For each layer (except layer 1), the numbers of excitatory
and inhibitory neurons follow a ratio of 4:1, with a total
number of about 58,000 and 94,000 neurons in 1×1mm2 for
M1 and S1, respectively. The spatial organization is based
on pseudo-randomly generated neuronal positions uniformly
distributed within layer boundaries. Connections are generated
using several 2D Gaussian probability functions describing
distance-based connectivity between excitatory and inhibitory
neurons, including recurrent connections, in different cortical
layers. The relative magnitude of the connections, as well as the
parameters of the Gaussian functions, are taken from reported
laser-scanning photo-stimulation and patch-clamp experimental
recordings (Song et al., 2005; Weiler et al., 2008; Lefort et al.,
2009; Xu and Callaway, 2009; Kätzel et al., 2011; Apicella et al.,
2012; Avermann et al., 2012; Jiang et al., 2013; Pfeffer et al., 2013;
Xue et al., 2014; Lee et al., 2015; Pala and Petersen, 2015). Leaky-
integrate-and-firemodels with conductance-based synapses from
the standard NESTmodel library are used. To achieve resting and

functional states, neurons are stimulated by bias currents drawn
from normal distributions with optimized mean and standard
deviation parameters.

Basal Ganglia: The BG model is a topologically organized
version (Gutierrez et al., unpublished) of previous works from
Liénard and Girard (2014) and Girard et al. (2020). Fixed
parameters were defined based on biological constraints, while
free parameters were optimized against electrophysiological
recordings. The total number of neurons sum up to around
10,000 for rodents following a reference 1×1mm2 cortical surface
(Table 1), with most of them being medium spiny neurons
(MSN). Neurons were spatially and uniformly organized in 2D
space. Main inputs are from cortico-striatal neurons (CSN) and
pyramidal tract neurons (PTN) in the cortex (M1 and S1) and the
centromedian/parafascicular neurons (CMPf) in the thalamus
(TH). The model considers glutamatergic excitatory inputs with
AMPA and NMDA receptors and inhibitory inputs by GABA
receptors. The model uses multi-synapse LIF neuron models
from NEST. Connections follow the same architecture as in
Girard et al. (2020), with specifications based on optimized
bouton counts, and focused or diffused axonal domains.
Simulation tests reproduced the firing rate of previous models in
the resting state.

Cerebellum: The CB model consists of two regions connected
with S1 and M1. Each cerebellar region is a corticonuclear
microcomplex model developed in NEST based on the previous
work of Yamaura et al. (2020). The cerebellum is modeled as
seven stacked layers corresponding to 1×1mm2: upper and lower
molecular layers, Purkinje cells, granular layer, deep cerebellar
nucleus, and Pons (Eccles, 1967). The upper molecular layer was
modeled as a group of four 2D layers of stellate cells, while the
lower one as a single sheet of basket cells. Similarly, the granular
layer was composed of eight sheets of granular cells and one sheet
of Golgi cells. All other nuclei were modeled within single sheets.
Number of neurons (Table 1) for each population were defined
from previous data (Lange, 1975; Ito and Itō, 1984; Harvey
and Napper, 1991; Heckroth, 1994). The cerebellum contains
around 80% of the neurons (around 820,000 neurons) of our
full brain model. Neurons were modeled as conductance-based
leaky integrate-and-fire units, with parameters defined based on
previous studies by Yamaura et al. (2020). Excitatory synapses
were modeled as AMPA or NMDA, and inhibitory as GABA-
A or GABA-B alpha-shaped synapses. Connections were settled
according to known anatomical structures (Eccles, 1967; Apps
and Garwicz, 2005; Barmack and Yakhnitsa, 2008), using 2D
Gaussian functions for defining the spatial scope and connection
probability between neurons. Most internal parameters such as
capacitances, conductances, and synaptic weights were tuned and
tested to reproduce electrophysiological and behavioral results
on optokinetic responses, a cerebellum-dependent eyemovement
task based on the previous work by Yamaura et al. (2020). On
the other hand, firing rates and synaptic weights for neurons
in Pons were adjusted to obtain the mean firing rate of mossy
fibers at 8Hz, which resulted in reproducing plausible resting
activity patterns. At that regime, granular cells revealed different
temporal activity patterns, with random repetition of transitions
between burst and silent states.

Frontiers in Neuroinformatics | www.frontiersin.org 9 May 2022 | Volume 16 | Article 884180153

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Feldotto et al. Embodied Large-Scale Neural Simulations

FIGURE 4 | The cortico-basal ganglia-cerebellar-thalamic (CBCT) model of the rodent brain. The model includes the cortex (S1, M1), the basal ganglia (BG), the

cerebellum (CB), and the thalamus (TH). Within each region, neural populations are topologically organized in 2D-layers of 1×1 mm2, with dots on their surface

indicating the spatial allocation and density for each neuron type. Only main inter-regional connections are displayed for clarity. Layers in green correspond to the

interface between different regions or simulated input, which are implemented using NEST’s parrot neurons that just relay incoming spikes to multiple targets.

Thalamus: The TH model (Igarashi et al., unpublished)
consists of two regions, ventral lateral nucleus and ventral medial
nucleus, connected with M1 and S1, respectively. The individual
thalamic nucleus is composed of excitatory and inhibitory zones
receiving inputs from the cerebellum and basal ganglia. Each
region-zone contains 1024 excitatory thalamocortical cells, 1024
inhibitory interneurons, and 1024 inhibitory thalamic reticular

cells, arranged in a unit size corresponding to 1×1mm2 of the
cerebral cortex. Thalamocortical cells and two types of inhibitory
neurons are mutually connected, with no excitatory recurrent
connections among thalamocortical cells.

Inter-regional connections: Inter-regional connections are set
as topographic connections between two neural sheets. Major
inter-regional pathways include: M1 L5A to BG Striatum, S1

Frontiers in Neuroinformatics | www.frontiersin.org 10 May 2022 | Volume 16 | Article 884180154

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Feldotto et al. Embodied Large-Scale Neural Simulations

FIGURE 5 | Resting-state of the CBCT circuit (Gutierrez et al., 2020). Spike rasters (right) and mean firing rate (left) per neuron type (thalamus activity is not displayed).

L5A to BG Striatum, BG GPi/SNr to TH, M1 L5B to CB Pons,
S1 L5B to CB Pons, CB deep cerebellar nucleus to TH, M1 L6
to TH, S1 L6 to TH, TH to L2/3 M1, and TH to L4 S1. A

major challenge when integrating different models is to guarantee
their optimized activities are maintained after combination. For
instance, in the basal ganglia model, inputs from cortical models

Frontiers in Neuroinformatics | www.frontiersin.org 11 May 2022 | Volume 16 | Article 884180155

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Feldotto et al. Embodied Large-Scale Neural Simulations

(M1 and S1, layers L5A and L5B) were adjusted to match
the firing activity of PTN (pyramidal track neurons) and CSN
(cortico-striatal neurons) inputs from Poisson spike trains used
on the optimization of the isolated model. NEST’s parrot neurons
(models that just relay incoming spikes to their targets) were used
to gradually replace Poison-based neurons by M1 and S1 based
neurons. Thus, inputs involved in inter-regional connections
were adjusted to those used on individual optimizations, using
or not using parrot neurons on the connections.

4.2.2. Resting-State Activity
In order to reproduce resting-state neural activity that is
simulated in this benchmark experiments, Poisson noise
generators and constant current inputs were optimized
to reproduce the average firing rates of individual neural
populations based on physiological data (Figure 5). In S1, M1,
and TH, neurons showed low-rate and irregular firing. Layers
5 and 6 in S1 generated gamma oscillation of around 40 Hz.
Similarly, M1 bottom layers displayed oscillatory behavior. GPe
and GPi/SNr in BG showed high-rate firing while others were
kept low. In CB, Purkinje cells exhibited regular firing patterns,
whereas granule cells emitted spikes sparsely. We acknowledge
that the spiking activities of few neural populations could be
slightly higher. While this model is a first version of the CBCT
model used for benchmarking of the architecture presented here,
a future release of our model aims to improve firing activities as
well as other metrics.

4.2.3. Embodied Simulation
The multi-region brain model is embodied into a simulated
rodent musculoskeletal model and a virtual environment in the
NRP. We replicate the physical experiment platform introduced
in Mathis et al. (2017) as a simulation model in silico in the
Neurorobotics Platform. In this model, the animal is held in
place, rewarded by a Lickometer, and is able to manipulate a
joystick to which additional forces can be applied via a linear
solenoid magnet. We modeled a rodent housing, Lickometer
and joystick in the Neurorobotics Platform using the Robot
Designer5 plugin for Blender as part of the Neurorobotics
Platform design tools. The joystick was connected to the world
with two revolute joints representing two degrees of freedom.
The mouse manipulated the joystick with its left forelimb, while
a small effort of –0.001 Nm is applied to the joystick joint.

For the musculoskeletal system, we adapted a rodent
simulation model that has been used in a stroke rehabilitation
study in the Neurorobotics Platform recently (Vannucci et al.,
2019; Allegra Mascaro et al., 2020). The skeleton thereof was
modeled according to anatomical data and scans, and is an
early version of the fully parameterized rodent model presented
in Ramalingasetty et al. (2021). We anchored the rodent body
model to the experimental apparatus, leaving only three moving
segments of the left forelimb capable of movement: humerus,
ulna/radius and the foot. Body and humerus were connected via
two revolute joints, humerus and ulna/radius via one revolute
joint and the foot was attached to the joystick via a ball joint

5https://github.com/HBPNeurorobotics/BlenderRobotDesigner

with 3 degrees of freedom. With this configuration, the mouse
was able to move the joystick in the forward/backward and
lateral/medial directions. The skeleton was simulated as a rigid-
body simulation with the Simbody multibody physics engine in
Gazebo. We added 8 muscles to the forelimb joints, 2 for every
rotation axis, with 2–5 muscle pathpoints each. Muscles were
simulated with the OpenSimmuscle implementation (Delp et al.,
2007) and modeled with type “Millard2012EquilibriumMuscle”
as described in Millard et al. (2013). Every muscle was actuated
in normalized range [0,1]. Figure 6 illustrates the overall setup
rendered in the Neurorobotics Platform frontend.

For the benchmark experiments in this study, we set up a
naive representative brain-to-body connection. We connected
one layer, the elongated neuroglia form cells of the motor cortex,
to three muscles of the rodent model. For this we made use
of spike sinks that read out the membrane potential of a leaky
integrate-and-fire neuron with infinite threshold and connected
to all neurons of the given population, and apply it as muscle
activation signal. We also instantiated spike sinks for all layers in
M1 and logged the corresponding voltages in the NRP frontend
console for inspection. Additionally, we created spike sources
consisting of Poisson neurons connected to all neurons of the
given population for three layers of M1 including the elongated
neurogliaform cells.

A base activation was sent to all muscles for the first 5
simulation steps (corresponding to 0.1s of simulation time)
to stabilize the biomechanical model. Additionally, all spike
sources including the source to the elongated neurogliaform
cells of the motor cortex were set with a spike rate of 0 in
every iteration. After 5 simulation steps, the clipped voltage
readout of the elongated neurogliaform cells was applied as
activation value to three muscles continuously (muscle activation
in range [0,1]). Reaching 25 simulations steps (0.5s simulation
time), we feed a rate of 5000.0 into the Poisson generators
representing the spike source of the elongated neurogliaform
cells. As a result, spike activity in this layer rose and the brain
layer readout devices transmitted an increased muscle activation
to the aforementioned three muscles. The overall experimental
procedure resulted in a loose stabilization of the joystick in the
first 25 simulation steps (0.5s of simulation time), followed by a
forward motion of the rodent leg pushing the joystick forward as
a consequence. Starting after 5 simulation steps a status message
was shown in the frontend to indicate the current state of network
input activation repeatedly to the user.

5. BENCHMARK EXPERIMENT
PROCEDURE

We ran the benchmark experiments on the XC40 multicore
compute nodes of Piz Daint6. Each node of this partition is
equipped with two Intel R© Xeon R© E5-2695 v4 18-core CPUs
running at 2.10 GHz (2 x 18 cores, each having 2 virtual cores)
and 120 GB of RAM. All experiments were executed with

6https://www.cscs.ch/computers/piz-daint/

Frontiers in Neuroinformatics | www.frontiersin.org 12 May 2022 | Volume 16 | Article 884180156

https://github.com/HBPNeurorobotics/BlenderRobotDesigner
https://www.cscs.ch/computers/piz-daint/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Feldotto et al. Embodied Large-Scale Neural Simulations

FIGURE 6 | Embodiment of the multi-region rodent brain. (Top) The multi-region brain model is interconnected with the rodent musculoskeletal simulation via Transfer

Functions. The readout rate of motor cortex populations actuates the rodent muscles moving the joystick forward. (Bottom) The user can interact with the simulation

during runtime via the NRP frontend. Here we show the rendering of the simulated experiment on the left (muscle color coding: red–active, blue–not active) and spike

trains of the motor cortex population on the right.

the Neurorobotics Platform version 3.2 and NEST version 3.0
(Hahne et al., 2021).

We executed one NEST process per CPU using all 36 (virtual)
cores, hence at most two NEST processes per compute node.
Every experiment ran for 1s of simulation time (assigned as a
timeout to every experiment), consisting of 50 CLE step times
of 20ms each (meaning that data between body and brain was
exchanged every 20ms in simulation time). We carried out a
series of benchmark experiments, starting with a single NEST
process and scaling up to 64 processes, doubling the process
number at each run. At the beginning of every benchmark series,

we requested 33 compute nodes (1 NRP node, 32 NEST nodes)
to ensure all runs in the same series that included a variable
number of NEST processes were executed on the exact same
node allocation. Every benchmark series was repeated multiple
times with a new node allocation every time. Hereafter, we report
the first 8 successful repetitions of every benchmark experiment.
For reproducible experiment execution, we instantiated the NRP
NEST setup with scripts directly on a Piz Daint login node.
This experiment procedure allows us to access and collect all
recorded performance data from different sources directly. After
launching the framework, the NRP experiment was controlled

Frontiers in Neuroinformatics | www.frontiersin.org 13 May 2022 | Volume 16 | Article 884180157

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Feldotto et al. Embodied Large-Scale Neural Simulations

from the main script via the NRP Virtual Coach. The experiment
procedure is presented in the pseudocode below:

for number of benchmark repetitions do

Salloc - Request Piz Daint job with 33 nodes
NRP - Launch backend container on compute node #1
SSH - Set up SSH tunnel from NRP backend to frontend
for number of NEST tasks n = 2i do

NEST - Launch NEST with n processes on n/2 cluster nodes
Virtual Coach - Import benchmark experiment into NRP storage
Start experiment runtime timer
Virtual Coach - Launch NRP benchmark experiment
Virtual Coach - Start NRP benchmark experiment
while Experiment is running do

Virtual Coach - Wait for experiment to be finished
end while

Stop experiment runtime timer
Virtual Coach - Save CLE profiler performance data
NEST - Save network performance data
Sacct - Save job performance data
Virtual Coach - Delete benchmark experiment from NRP storage

end for

end for

After every experiment we collected performance data from
the NEST Server (neural network creation time, connection
time and duration of last simulation step), the NRP CLE
profiler (brain/robot/transfer function step times) and Slurm
workload manager (memory and energy consumption). The
total experiment runtime was tracked manually as shown in
the pseudocode and the real-time factor was calculated as the
quotient of CLE step simulation time to real time, whereas the
CLE real time was taken to be the mean value of all CLE step
times except the first one (indeed, the first CLE step executes
initialization procedures, hence is significantly larger and does
not reflect the CLE step time of the overall experiment). The
code to run the benchmark and the results presented in this
paper can be found in the GitHub repository https://github.com/
HBPNeurorobotics/nestserver_benchmarks.

6. RESULTS

We first executed and evaluated the HPC Benchmark experiment
based on random networks without brain to body connection,
and afterwards ran the multi-region rodent brain model
with connection to the musculoskeletal rodent model. For a
succeeding comparison between the benchmarks we added a
third configuration that is a subset of the embodied multi-region
rodent brain experiment with only the motor cortex as the
brain model. This configuration shall not represent a biological
simulation, but instead serves purely as a benchmark since a
midsize brain in connection with the musculoskeletal model
provides additional insights for the distribution of computation
required for the simulation of brain and body.

Diagrams showcasing the compute node scaling use
logarithmic scaling on the x-axis. We also present a linear
expectation starting from the first point as the mean of all
first data points without outliers that are not in range mean

±12%. The CLE profiler times represent a random benchmark
repetition (here, the 4th), the y-axis is clipped as the initialization
step takes significantly longer than usual runtime executions.

6.1. HPC Random Balanced Network
Benchmark
The HPC Benchmark showed good repeatability with only
a small variance between the benchmark runs. The runtime
(Figure 7) could be reduced exponentially close to the linear
expectation from about 500 to about 40 s, more than 12 times
faster, when increasing the number of NEST processes from 1
to 64. The real-time factor increased exponentially first, but only
up to about 8 processes; with more than 16 NEST processes a
partial saturation appeared that resulted in an increase of the real-
time factor up to 64 processes, albeit with a smaller slope. Overall
the real-time factor could be increased from around 0.0036 to
0.150, a factor of more than 40. The NEST procedures scaled very
well generally. The time required to build the network in NEST
(i.e., creating and connecting nodes, Figure 8A) scaled nearly
linearly. Simulation time (Figure 8B) scaled supra-linearly, but
reached the same time performance as a linear scaling would
have with 64 processes. Scaling up from 1 to 64 processes, the
network building time could be reduced by a factor of about
61 and the time to simulate a brain step by about 60. The
maximal memory required by a single HPC node (Figure 8C)
could be reduced nearly linearly, from a maximum resident
set size of about 87GB down to approximately 2.5GB. Along
this scaling the amount of consumed energy (Figure 8D) did
not increase linearly, but only by a factor of about 12 from
104kJ up to 1,200kJ. We observed that the three procedures
of brain, robot and Transfer Function execution (Figure 9) all
have an initial simulation step that takes significantly longer
than the usual step time and hence is not considered in our
analysis. In line with expectations, robot and Transfer Function

Frontiers in Neuroinformatics | www.frontiersin.org 14 May 2022 | Volume 16 | Article 884180158

https://github.com/HBPNeurorobotics/nestserver_benchmarks
https://github.com/HBPNeurorobotics/nestserver_benchmarks
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Feldotto et al. Embodied Large-Scale Neural Simulations

FIGURE 7 | HPC Benchmark runtime and real-time factor. The runtime (A) can be reduced by a factor larger than 12 from 500s to about less than 40s by exploiting

64 NEST processes on 32 compute nodes compared to a single process. Simultaneously, the real-time factor (B) improves supra-linearly, but performance increases

less significantly when using more than 32 NEST processes.

execution step time varied over time but were not affected by
the experiment parallelization. We observed a decrease of brain
simulation time with increased numbers of NEST processes,
with a slight overshoot in the first simulation steps and then
stabilization at a mean value. As the robot and transfer function
step times are relatively low in contrast to the brain execution,
the latter one prominently defines the experiment runtime speed.
Overall, the HPC Benchmark scales well, in most aspects nearly
or supra-linearly, the one (beneficial) exception being the less-
than-linear increase of consumed energy.

6.2. Embodied Multi-Region Rodent Brain
The increased network size in the embodied multi-region rodent
brain experiment compared to the balanced network benchmark
(only 0.6 times the number of connections (1,588,456,283 vs.
2,531,475,000), but 4.8 times more network nodes compared to
the balanced network benchmark (1,089,147 vs. 225,001) resulted
in a larger overall experiment runtime as well as individual step
execution times. The total runtime of the experiments showed a
higher variance in repetitions (Figure 10) compared to the HPC
Benchmark, which can be partly attributed to the larger execution
times in general, and shows less than linear duration decrease
but still a big improvement in time. The execution runtime could
be reduced from about 600s down to about 100s, with two runs
decreasing the runtime only down to about 200s during scale-up.
Experiment runs that lasted longer usually took longer runtime
in all node configurations in comparison to mean runtimes.
The real-time factor of the experiment increased however only
slightly and saturated using about 32 NEST processes, with
a small decrease with 64 processes. This real-time factor was
improved from about 0.0069 to 0.0480 (for 32 processes) during
the scale-up, a factor of around 7. NEST procedures scaled
exponentially (Figure 11), the simulation time (Figure 11B)
close to linear, building time (Figure 11A) with a somewhat
flatter decrease. The network building time could be sped up by

a factor of more than 17 and the time for the last simulation step
by a factor of about 30. The required memory did scale close to
linear (factor of 17) to the number of nodes, and the consumed
energy again increased far less than linearly, from about 120 kJ up
to 1,450 kJ, by a factor of about 12 (Figures 11C,D). In contrast
to the HPC Benchmark with balanced networks, execution times
for robot and transfer functions changed over time (Figure 12),
along with the scripted experiment procedure. We could clearly
see an increase of computation time required by the Transfer
Functions when a layer of the motor cortex was addressed with
even a fixed spike rate of 0 after 5 execution steps. Changing the
input rate to a higher value at 25 CLE steps did not have an impact
on the execution time. We observed that the Transfer Function
execution time increased slightly when scaling the experiment up
to 64 NEST processes running on 32 different compute nodes.
However, the execution time of Transfer Functions was still low
compared to the brain execution time.

The robot execution time increased up to about 0.08s,
reaching the highest values at around 25 simulation steps. It
decreased afterwards at about 27 simulation steps and remained
at a relatively low value of around 0.02s until the end of the
benchmark time being 50 simulations steps. Brain step execution
times showed less variability compared to the balanced network
benchmark experiment, and were much higher in general than
robot and Transfer Function execution times. Overall, the
embodied multi-region rodent brain benchmark did not scale
as well as the HPC Benchmark and showed more variability in
terms of execution times. However, regardless of the network size,
nearly all inspected timings still scaled close to linearly in relation
to the number of nodes, which thus can be taken to speed up the
experiment execution and decrease its runtime significantly.

6.3. Comparison
In order to optimize the experiments at scale, it is important
to examine where the largest potential for improvements is,

Frontiers in Neuroinformatics | www.frontiersin.org 15 May 2022 | Volume 16 | Article 884180159

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Feldotto et al. Embodied Large-Scale Neural Simulations

FIGURE 8 | HPC Benchmark NEST times and workload manager characteristics. (A) Network building time (i.e., creating and interconnecting nodes) scales nearly

linearly. The time to simulate the last brain step (B) scales even supra-linearly with 2–32 NEST processes. Similarly, the required memory per compute node (C)

reduces close to linear, but the total energy consumed (D) by all tasks is only 12 times more for 64 NEST processes compared to 1 process.

FIGURE 9 | HPC Benchmark CLE profiler times. Robot (B) and transfer function (C) execution times do not change during the scaleup, as they are not parallelized

and just run on the first compute node in the allocation. Both are neglectable compared to the brain step time (A) that runs faster with additional compute nodes. The

first timestep includes additional initialization procedures and hence takes significantly longer than the usual runtime step time, in the diagrams we clip the y-axis for

better visibility of the relevant runtime data.

and what the costs related to scaling up execution will be.
Therefore, we inspected the brain-to-robot compute time ratio

as well as consumed node hours for all executed experiments and
executed a third benchmark run that consisted of the embodied

Frontiers in Neuroinformatics | www.frontiersin.org 16 May 2022 | Volume 16 | Article 884180160

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Feldotto et al. Embodied Large-Scale Neural Simulations

FIGURE 10 | Embodied multi-region rodent brain benchmark runtime and realtime factor. Experiment runtime (A) shows a variability in repetitions, but can be

improved exponentially by a factor of about 6 when scaling up to 64 NEST processes. The realtime factor (B) can be improved up to about 0.048, but starts

saturating from 32 NEST processes onwards.

multi-region rodent brain setup, but with only the motor cortex
as an active brain region.

In the NRP, at every CLE simulation step both robot and brain
simulations are executed in parallel, and only after completion
of these steps are Transfer Functions executed to process
information to be communicated between both simulations.
Obviously, when either one of the robot or brain simulation
takes consistently longer to execute than its counterpart, that
component becomes the target for optimizing the overall NRP
simulation. In the top part of Figure 13, the ratio between brain
and body simulation step time is visualized; times are mean
values over all 8 benchmark repetitions. As both simulations are
executed in parallel, the most efficient performance is achieved
with both having the same execution time. For all experiments
reported herein, the brain simulation step took longer than
the robot simulation step. With our distributed architecture the
ratio between the parallelized brain simulation step time and
the (shorter) robot simulation step time improved as the brain
simulation step time was reduced by distribution. This effect was
less significant for small neural networks such as the embodied
rodent brain experiment with a motor cortex only (B), but was
very relevant for the full embodied multi-region rodent brain
experiment (C) and balanced networks benchmark experiments
(A). For both these large neural networks, the ratio between the
two simulation time steps improved with the number of NEST
processes, with the best result obtained for the 64 NEST processes
we tested for these benchmark experiments. In the bottom part
of Figure 13, the required node hours for every benchmark
were calculated as the product of the pure experiment runtime,
including experiment launch and execution but excluding the
overall architecture setup and initialization, and the utilized
number of nodes. As can be seen, the number of required node
hours scaled less than linearly, i.e., exponentially but with small
increments when scaling up the utilized node number. For the
node hours of the HPC Benchmark (D) with balanced networks,

the increase was by a factor of less than 14 from about 0.14
to 0.67/1.87 (best case/worst case), whereas for the embodied
rodent brain experiment with Motor cortex only (E) it was by
a factor of less than 35 from around 0.04 to 0.71/1.39, and
for the full embodied multi-region rodent brain experiment
(F) (which consumes the most resources), the consumption
increased from 0.17 to 1.35/3.75 by a factor of less than 23. We
also observed a higher variability of number of required node
hours with increasing experiment complexity, and the embodied
rodent brain experiment with only motor cortex showing the
steepest increment.

7. CONCLUSION

In this paper, we presented a distributed architecture
for large-scale embodied simulations of spiking neural
networks, together with the results of benchmark
experiments run on our setup. We sought to develop
the software components of a future simulation service
on the EBRAINS research infrastructure, while at the
same time understanding the benefits and drawbacks
of distributing simulations across nodes of the Piz
Daint supercomputer.

For this purpose, we connected the Neurorobotics Platform
for physics simulation via a REST interface to NEST for
simulation of spiking neural networks used as brain models.
We distributed this brain simulation across multiple HPC
compute nodes via MPI parallelization, and thereby sped up
both experiment loading and execution times. The proposed
software architecture can be controlled via a browser-based
graphical user interface integrated into the NRP frontend, and
it extends across both persistent virtual machines and HPC
compute nodes. To facilitate the technical implementation, we
utilized standard tools such as Docker for containerization,
Jenkins for automated deployment, and UNICORE for HPC

Frontiers in Neuroinformatics | www.frontiersin.org 17 May 2022 | Volume 16 | Article 884180161

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Feldotto et al. Embodied Large-Scale Neural Simulations

FIGURE 11 | Embodied multi-region rodent brain benchmark NEST times and workload manager characteristics. NEST network building time (A) scales up close to

linearly, NEST simulation time (B) nearly optimally linearly. Building time and simulation time shorten by factors of about 17 and 30, respectively. The required memory

per node (C) for running the experiment scales close to linearly, but the total amount of consumed energy (D) only increases by a factor of about 12.

FIGURE 12 | Embodied multi-region rodent brain benchmark CLE profiler times. Experiment execution has an impact on step times, setting the spike ratio of a motor

cortex layer at step 5, and feeding the brain at 25 steps has a visible effect in Transfer Function (C) and robot (B) execution. Transfer Functions execute slightly slower

with scaling up the experiment, but is still small compared to the large improvement in the brain execution times (A). The first timestep includes additional initialization

procedures and hence takes significantly longer than the usual runtime step time, in the diagrams we clip the y-axis for better visibility of the relevant runtime data.

job handling. This should enable easy transfer of the proposed
architecture to other computing sites, in particular those that
are part of the FENIX research infrastructure and/or EBRAINS.

The presented setup is fully scalable, as the number of compute
nodes involved in the simulation can be user-defined, and as
multiple experiments executed on different job allocations can

Frontiers in Neuroinformatics | www.frontiersin.org 18 May 2022 | Volume 16 | Article 884180162

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Feldotto et al. Embodied Large-Scale Neural Simulations

FIGURE 13 | Comparison of benchmark experiments. Brain to Body step time ratio (mean values over all 8 benchmark repetitions) and node hours required to run the

simulation for the HPC Benchmark, embodied rodent brain experiment with Motor cortex only and full embodied multi-region rodent brain experiment. For all

experiments the brain execution takes longer than the robot simulation step (A–C). This imbalance can be improved with our distributed architecture in particular for

large neural networks as with the HPC Benchmark (A) and full embodied multi-region rodent brain experiment (C). The required amount of node hours to run the

experiments does not scale up linearly, it increases exponentially with small slope only. The embodied multi-region rodent brain experiment (F) requires the most node

hours, but the required node hours increase by factors about less than 14, 35 and 23 for the HPC Benchmark (D), embodied rodent brain experiment with only Motor

cortex (E) and full embodied multi-region rodent brain experiment (F), respectively.

be launched simultaneously via the same front-end. Experiments
run interactively, meaning that the user can join the simulations
at any time via the web-based front-end, interact with the virtual
agent and environment, or change the configuration of e.g., brain
parameters, transfer functions and robot control.

We demonstrated the potential of our setup with two
benchmark experiments scaled up from 2 to 33 compute nodes
(1 to 64 NEST processes) using a balanced brain benchmark
simulation and amulti-region embodied rodent brain model. We
were able to speed up the total experiment execution time for
the HPC Benchmark with balanced networks by a factor of up
to 12, and for the RoboBrain experiment by a factor of about
6, thus demonstrating the potential benefits of distributing a
brain simulation over multiple nodes, especially as it gets larger.
Furthermore, the real-time factor could be improved, particularly
for the benchmark based on balanced networks. It saturated with
more than 32 nodes, however, potentially indicating that scaling-
up is not always beneficial in cases where the overhead required
for communication with all compute nodes at every simulation
step becomes significant in relation to the compute load on
each individual node. Nevertheless, the improvements we could
demonstrate with distribution in terms of real-time factor lay the
foundation for large-scale experiments that could otherwise not
be carried out interactively due to their slow execution.

With both benchmark experiments we also demonstrated that
NEST scales linearly, or near-linearly when parallelizing across
1–64 processes in terms of network building and simulation
time. Regarding the cost of distribution for the benchmark
experiments, we found that both energy consumed and compute
node hours required scale sub-linearly and hence provide a
strong argument for distributed simulations. The parallelization
of the brain simulation accounts for better usage of computation
time in our examples, as both brain and robot simulation are
executed in parallel at every simulation step in the NRP, and thus
can be better aligned with each other since the brain simulation
is consistently the limiting factor. This ratio may even improve
for a more complex rodent model physics simulation with more
muscle actuators.

When NEST is run in a stand-alone fashion, it shows excellent
scaling (Kunkel et al., 2014; Jordan et al., 2018) and is even
able to achieve sub-realtime performance for certain models
(Kurth et al., 2022). There are several reasons why the scaling
is not at this level for the use-case presented in this article.
First, due to the synchronization between network and physics
simulation, NEST is executed in steps of 20 ms in the NRP
and such stepped simulations are inherently more expensive due
to the increased function call overhead and the fact that data-
structures have to be paged in and out much more frequently

Frontiers in Neuroinformatics | www.frontiersin.org 19 May 2022 | Volume 16 | Article 884180163

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Feldotto et al. Embodied Large-Scale Neural Simulations

rather than operating on them in a more continuous way.
Second, both simulators are executed in parallel, but the data
exchange still needs to be executed sequentially, which adds
to the raw neural network simulation times. Third, we chose
a REST-based communication interface between the NRP and
NEST Server for the first version of the interface presented
here, since it is functionally complete and has successfully been
used in other contexts. This communication via text-based
data representations (JSON over HTTP) is obviously inefficient
compared to lower level protocols such as Google’s Protocol
Buffers7 or Cap’n Proto8. We are aware of this restrictions and
already working on moving to more optimized communication
methods with higher bandwidth and lower latency (e.g., Insite
framework). It is worth noting here, that the current setup will
support any future NEST improvements transparently, as long as
these do not change the NEST Server API.

Overall, we approached saturation when scaling up to
about 64 NEST processes. For the larger embodied multi-
region rodent brain experiment, this saturation was visible
with 32 processes in terms of both runtime and real-time
factors. With both benchmark experiments we demonstrated
that a scale-up to about 8 nodes could bring a significant
performance improvement in terms of initialization and runtime
of experiments, at the cost of only few additional node hours and
concomitant energy consumption. With more compute nodes,
additional improvements were possible, albeit less significantly
and at a slightly higher cost. We proved the repeatability of
our results by executing every benchmark experiment 8 times.
Even though we ran our benchmark experiments with only 1s
simulation time in order to save energy, we think it is safe to
assume that our results will scale, as we showed relatively stable
simulation execution step sizes in the CLE profiler data.

The setup we presented here is intrinsically highly scalable,
insofar as the number of compute nodes can be passed as
a parameter and can be much larger than the 33 compute
nodes used for the presented benchmark experiments. While we
simulated a multi-region brain model consisting of about one
million neurons in these benchmark experiments, a biological
mouse brain is assumed to have around 70 million neurons,
and therefore another scale-up by a factor of 70 would be
needed to simulate such a brain at the naturalistic scale. We are
currently not aware of any embodied brain simulation model
with larger scale that is implemented with the given software
tools and that we could have used for our benchmarks, but such
models are clearly part of future work. While the benchmarks
presented saturate in terms of performance with about 32 or 64
compute nodes, it has been demonstrated that NEST scales well
above that with a larger number of CPU cores (Kunkel et al.,
2014; Kurth et al., 2022). Knowing that there are 1813 available
multicore compute nodes on the Piz Daint supercomputer, we
could approach this simulation scale with our current setup with
just a parameter change—and a good budget. The Piz Daint
supercomputer also provides GPU compute nodes that are well
known for efficient parallel computing. However, Kurth et al.

7https://developers.google.com/protocol-buffers
8https://capnproto.org/

(2022) show that NEST distributed on CPU cores is faster and
more energy efficient than any neuromorphic and GPU based
simulation known to us.

A wide variety of experiments are supported with our setup,
as it easily enables one to add additional muscles for the
rodent model (e.g., a freely running mouse with additional
muscles), use a different musculoskeletal model altogether
(Human, monkey) or use NEST-based spiking neural networks to
control a robotic system. In particular, we posit that integration
of a detailed model of spinal cord circuitry with the whole-
brain model presented herein would be highly relevant in order
to investigate in silico experiments related to motor control,
neurotechnology and neurorehabilitation. The proposed setup is
therefore extremely versatile and can support research efforts in
multiple high-impact fields, such as neuroscience, robotics and
neuromorphic computing.

More generally, the present work lays the foundation to
address the scientific dimension of large-scale brain simulation
in addition to its technical one. The scientific investigation
and validation of the dynamics emerging from the interaction
of several types of neurons is indeed critical, as well as the
optimizations of the high-degree-of-freedom parameter space
of network models. Biological constraints were incorporated
in the different regions of the CBCT model; however, once
interconnected, the model as a whole requires a proper
framework for systematic simulation with additional naturalistic
constraints or boundary conditions, i.e., a body, for relevant
experimentation on cognitive and motor functions. The
reference model size defined herein in relation to the 1× 1mm2

cortical patch provides an initial setup for starting such validation
process. However, the ultimate goal is the simulation of the full-
brain network. Previously, large-scale simulations of the CBCT
model were performed on the decommissioned K computer
(Miyazaki et al., 2012) using NEST 2, reaching a network size
of 7× 7mm2; thus, 51 million neurons, more than a single
hemisphere of the mouse brain (Gutierrez et al., 2020). The
new NEST 3 (de Schepper et al., 2022), NRP, EBRAINS HPC
infrastructure, as well as the Fugaku supercomputer (Sato et al.,
2020), provide a promising new horizon for 1:1 scale simulations.

In summary, we introduced a versatile NRP-based setup
that supports embodied large-scale brain simulations. It can
accommodate spiking neural networks implemented in NEST
and connected to customizable musculoskeletal systems or
robotic agents. We tested it with several models of spiking
neural networks, including a highly complex multi-area brain
model, thus demonstrating the capacity of this setup for in
silico closed-loop neuroscience at scale. Importantly, it leverages
the HPC capabilities of a supercomputer while supporting
online interactivity with the ongoing simulations. With this
setup, we thus lay the foundations toward the democratization
of in silico behavioral experiments with large-scale multi-
area brain models. Indeed, the raison d’être of this work
is to remove some of the main entry barriers that prevent
computational neuroscientists or neuromorphic engineers from
testing the functional capabilities of their models through
embodied simulations, and make it as easy as possible for
them to leverage HPC infrastructures without being a power

Frontiers in Neuroinformatics | www.frontiersin.org 20 May 2022 | Volume 16 | Article 884180164

https://developers.google.com/protocol-buffers
https://capnproto.org/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Feldotto et al. Embodied Large-Scale Neural Simulations

user thereof. In order to achieve this vision, the upcoming
development efforts will focus on integrating the setup fully
into the EBRAINS research infrastructure, especially in terms
of federated user resource management and the creation of a
dedicated service account. With this, it is our hope that this
work will not be yet another attempt at simulating the brain,
but a blueprint that can be reused by many, and an enabling
technology for the concept of embodiment to gain traction in the
neuroscience community.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://github.com/
HBPNeurorobotics/nestserver_benchmarks.

AUTHOR CONTRIBUTIONS

BF and FM conceptualized the benchmark study and
orchestrated the implementation. BF, CB, UA, ER, VV,
VZ, AK, and FM implemented necessary features in the
Neurorobotics Platform. CB, AU, FC, and CM supported the
implementation and execution on HPC nodes of Piz Daint and
virtual machines on Castor. JE, CJ-R, WK, and AM implemented
the parallelization of NEST on multiple cluster nodes. JE and CB
implemented the client-server interface between the NRP and
NEST. CG, ZS, HY, MH, JI, TY, and KD implemented the multi-
region rodent brainmodel. BF integrated themulti-region rodent

brain model into the NRP, adapted rodent and environment
model and implemented the brain to body interconnection. BF
implemented the NRP frontend GUI to launch the NRP on Piz
Daint compute nodes. BF, JE, and CJ-R executed the benchmark
experiments. Everyone contributed to analyzing the benchmark
data and writing the paper. All authors contributed to the article
and approved the submitted version.

FUNDING

This work received funding from the European Union’s Horizon
2020 Framework Programme for Research and Innovation under
the Specific Grant Agreements No. 785907 (Human Brain
Project SGA2) and no. 945539 (Human Brain Project SGA3).
We acknowledge the use of Fenix Infrastructure Resources,
which are partially funded from the European Union’s Horizon
2020 research and innovation programme through the ICEI
project under the grant agreement no. 800858. This project
was supported by MEXT as Program for Promoting Researches
on the Supercomputer Fugaku (hp200139, hp210169). Part
of this study was supported by MEXT KAKENHI grant
no. 17H06310.

ACKNOWLEDGMENTS

The authors like to thank Samuel Omlin (NRP), Massimo Benini
(OpenStack), and Alberto Madonna (Sarus) for their support
implementing the architecture and running experiments for
this study.

REFERENCES

Abi Akar, N., Cumming, B., Karakasis, V., Küsters, A., Klijn, W., Peyser, A., et al.
(2019). “Arbor–a morphologically-detailed neural network simulation library
for contemporary high-performance computing architectures,” in 2019 27th

Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP) (Pavia), 274–282.
Allegra Mascaro, A. L., Falotico, E., Petkoski, S., Pasquini, M., Vannucci, L.,

Tort-Colet, N., et al. (2020) Experimental and computational study on
motor control and recovery after stroke: toward a constructive loop between
experimental and virtual embodied neuroscience. Front. Syst. Neurosci. 14:31.
doi: 10.3389/fnsys.2020.00031

Angelidis, E., Buchholz, E., Arreguit, J., Rougé, A., Stewart, T., von Arnim,
A., et al. (2021). A spiking central pattern generator for the control of a
simulated lamprey robot running on SpiNNaker and Loihi neuromorphic
boards. Neuromorphic Comput. Eng. 1, 014005. doi: 10.1088/2634-4386/ac1b76

Apicella, A. J., Wickersham, I. R., Seung, H. S., and Shepherd, G. M.
(2012). Laminarly orthogonal excitation of fast-spiking and low-threshold-
spiking interneurons in mouse motor cortex. J. Neurosci. 32, 7021–7033.
doi: 10.1523/JNEUROSCI.0011-12.2012

Apps, R., and Garwicz, M. (2005). Anatomical and physiological foundations
of cerebellar information processing. Nat. Rev. Neurosci. 6, 297–311.
doi: 10.1038/nrn1646

Avermann, M., Tomm, C., Mateo, C., Gerstner, W., and Petersen, C. C. (2012).
Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel
cortex. J. Neurophysiol. 107, 3116–3134. doi: 10.1152/jn.00917.2011

Awile, O., Kumbhar, P., Cornu, N., Dura-Bernal, S., King, J. G., Lupton,
O., et al. (2022). Modernizing the neuron simulator for sustainability,
portability, and performance. bioRxiv [preprint]. doi: 10.1101/2022.03.03.
482816

Azevedo, F. A., Carvalho, L. R., Grinberg, L. T., Farfel, J. M., Ferretti, R. E., Leite,
R. E., et al. (2009). Equal numbers of neuronal and nonneuronal cells make the
human brain an isometrically scaled-up primate brain. J. Compar. Neurol. 513,
532–541. doi: 10.1002/cne.21974

Bahuguna, J., Weidel, P., and Morrison, A. (2019). Exploring the role of striatal
D1 and D2 medium spiny neurons in action selection using a virtual robotic
framework. Eur. J. Neurosci. 49, 737–753. doi: 10.1111/ejn.14021

Barmack, N. H., and Yakhnitsa, V. (2008). Functions of
interneurons in mouse cerebellum. J. Neurosci. 28, 1140–1152.
doi: 10.1523/JNEUROSCI.3942-07.2008

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T., Rasmussen, D.,
et al. (2014). Nengo: a Python tool for building large-scale functional brain
models. Front. Neuroinform. 7, 48. doi: 10.3389/fninf.2013.00048

Benedičič, L., Cruz, F., Madonna, A., and Mariotti, K. (2019). “Sarus: highly
scalable docker containers for hpc systems,” in International Conference onHigh
Performance Computing (Cham), 46–68.

Billeh, Y. N., Cai, B., Gratiy, S. L., Dai, K., Iyer, R., Gouwens, N. W., et
al. (2020). Systematic integration of structural and functional data into
multi-scale models of mouse primary visual cortex. Neuron 106, 388–403.
doi: 10.1016/j.neuron.2020.01.040

Bower, J. M., and Beeman, D. (2007). Constructing realistic neural simulations
with genesis. Neuroinformatics 1401, 03–125. doi: 10.1007/978-1-59745-
520-6_7

Brocke, E. (2020). Method Development for Co-Simulation of Electrical-Chemical

Systems in Neuroscience (Ph.D. thesis). KTH Royal Institute of Technology.
Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory

and inhibitory spiking neurons. J. Comp. Neurosci. 8, 183–208.
doi: 10.1023/A:1008925309027

Cofer, D., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W. J., and
Edwards, D. H. (2010). Animatlab: a 3d graphics environment for

Frontiers in Neuroinformatics | www.frontiersin.org 21 May 2022 | Volume 16 | Article 884180165

https://github.com/HBPNeurorobotics/nestserver_benchmarks
https://github.com/HBPNeurorobotics/nestserver_benchmarks
https://doi.org/10.3389/fnsys.2020.00031
https://doi.org/10.1088/2634-4386/ac1b76
https://doi.org/10.1523/JNEUROSCI.0011-12.2012
https://doi.org/10.1038/nrn1646
https://doi.org/10.1152/jn.00917.2011
https://doi.org/10.1101/2022.03.03.482816
https://doi.org/10.1002/cne.21974
https://doi.org/10.1111/ejn.14021
https://doi.org/10.1523/JNEUROSCI.3942-07.2008
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1016/j.neuron.2020.01.040
https://doi.org/10.1007/978-1-59745-\penalty -\@M {}520-6_7
https://doi.org/10.1023/A:1008925309027
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Feldotto et al. Embodied Large-Scale Neural Simulations

neuromechanical simulations. J. Neurosci. Methods 187, 280–288.
doi: 10.1016/j.jneumeth.2010.01.005

de Schepper, R., Eppler, J. M., Kurth, A., Nagendra Babu, P., Deepu, R., Spreizer, S.,
et al. (2022). NEST 3.2. Zenodo.

Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C.
T., et al. (2007). Opensim: open-source software to create and analyze
dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54, 1940–1950.
doi: 10.1109/TBME.2007.901024

DeWolf, T., Stewart, T. C., Slotine, J.-J., and Eliasmith, C. (2016). A spiking
neural model of adaptive arm control. Proc. R. Soc. B Biol. Sci. 283, 20162134.
doi: 10.1098/rspb.2016.2134

Djurfeldt, M., Hjorth, J., Eppler, J. M., Dudani, N., Helias, M., Potjans,
T. C., et al. (2010). Run-time interoperability between neuronal network
simulators based on the music framework. Neuroinformatics 8, 43–60.
doi: 10.1007/s12021-010-9064-z

Eccles, J. C. (1967). Circuits in the cerebellar control of movement. Proc. Natl.
Acad. Sci. U.S.A. 58, 336. doi: 10.1073/pnas.58.1.336

Eliasmith, C., and Anderson, C. (2004). Neural Engineering: Computation,

Representation, and Dynamics in Neurobiological Systems. Cambridge, MA:
MIT Press.

Fernándes, J. P., Vargas, M. A., García, J. M., Carrillo, J. A., and Aguilar, J. J.
(2021). A biological-like controller using improved spiking neural networks.
Neurocomputing 463, 237–250. doi: 10.1016/j.neucom.2021.08.005

Ferrario, A., Palyanov, A., Koutsikou, S., Li, W., Soffe, S., Roberts, A., et al. (2021).
From decision to action: Detailed modelling of frog tadpoles reveals neuronal
mechanisms of decision-making and reproduces unpredictable swimming
movements in response to sensory signals. PLoS Comput. Biol. 17, e1009654.
doi: 10.1371/journal.pcbi.1009654

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker
project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Gewaltig, M.-O., and Diesmann, M. (2007). Nest (neural simulation tool).
Scholarpedia 2, 1430. doi: 10.4249/scholarpedia.1430

Gilra, A., and Gerstner, W. (2018). “Non-linear motor control by local learning in
spiking neural networks,” in Proceedings of the 35th International Conference on
Machine Learning-PMLR (Stockholm), 1773–1782.

Girard, B., Lienard, J., Gutierrez, C. E., Delord, B., and Doya, K. (2020). A
biologically constrained spiking neural network model of the primate basal
ganglia with overlapping pathways exhibits action selection. Eur. J. Neurosci.
53, 2254–2277. doi: 10.1111/ejn.14869

Gleeson, P., Cantarelli, M., Marin, B., Quintana, A., Earnshaw, M., Sadeh, S.,
et al. (2019). Open source brain: a collaborative resource for visualizing,
analyzing, simulating, and developing standardized models of neurons and
circuits. Neuron 103, 395–411. doi: 10.1016/j.neuron.2019.05.019

Gutierrez, C. E., Zhe, S., Yamaura, H., Heidarinejad, M., Igarashi, J., Yamazaki, T.,
et al. (2020). “Simulation of resting-state neural activity in a loop circuit of the
cerebral cortex, basal ganglia, cerebellum, and thalamus using NEST simulator,”
in Proceedings of the Annual Conference of the Japanese Neural Network Society,

Vol. 30, 63–65.
Hahne, J., Diaz, S., Patronis, A., Schenck, W., Peyser, A., Graber, S., et al. (2021).

NEST 3.0. Zenodo.
Harvey, R., and Napper, R. (1991). Quantitatives studies on

the mammalian cerebellum. Progress Neurobiol. 36, 437–463.
doi: 10.1016/0301-0082(91)90012-P

Heckroth, J. A. (1994). Quantitative morphological analysis of the cerebellar nuclei
in normal and lurcher mutant mice. i. morphology and cell number. J. Compar.

Neurol. 343, 173–182. doi: 10.1002/cne.903430113
Helias, M., Kunkel, S., Masumoto, G., Igarashi, J., Eppler, J., Ishii, S., et al. (2012).

Supercomputers ready for use as discovery machines for neuroscience. Front.
Neuroinform. 6, 26. doi: 10.3389/fninf.2012.00026

Herculano-Houzel, S. (2009). The human brain in numbers: a linearly scaled-up
primate brain. Front. Hum. Neurosc. 31, 2009. doi: 10.3389/neuro.09.031.2009

Hines, M. L., and Carnevale, N. T. (1997). The NEURON simulation environment.
Neural Comput. 9, 1179–1209. doi: 10.1162/neco.1997.9.6.1179

Igarashi, J., Yamaura, H., and Yamazaki, T. (2019). Large-scale simulation
of a layered cortical sheet of spiking network model using a tile
partitioning method. Front. Neuroinform. 13, 71. doi: 10.3389/fninf.2019.
00071

Ito, M., and Itō, M. (1984). The Cerebellum and Neural Control. Raven Press.

Jiang, X., Shen, S., Cadwell, C. R., Berens, P., Sinz, F., Ecker, A. S., et al. (2015).
Principles of connectivity among morphologically defined cell types in adult
neocortex. Science 350, aac9462. doi: 10.1126/science.aac9462

Jiang, X., Wang, G., Lee, A. J., Stornetta, R. L., and Zhu, J. J. (2013). The
organization of two new cortical interneuronal circuits. Nat. Neurosci. 16,
210–218. doi: 10.1038/nn.3305

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018).
Extremely scalable spiking neuronal network simulation code: from laptops
to exascale computers. Front. Neuroinform. 12, 2. doi: 10.3389/fninf.2018.
00002

Jordan, J., Weidel, P., and Morrison, A. (2019). A closed-loop toolchain for neural
network simulations of learning autonomous agents. Front. Comput. Neurosci.
13, 46. doi: 10.3389/fncom.2019.00046

Kalidindi, H. T., Cross, K. P., Lillicrap, T. P., Omrani, M., Falotico, E., Sabes, P.
N., et al. (2021). Rotational dynamics in motor cortex are consistent with a
feedback controller. Elife 10, e67256. doi: 10.7554/eLife.67256

Kätzel, D., Zemelman, B. V., Buetfering, C., Wölfel, M., and Miesenböck, G.
(2011). The columnar and laminar organization of inhibitory connections to
neocortical excitatory cells. Nat. Neurosci. 14, 100–107. doi: 10.1038/nn.2687

Knoll, A., Gewaltig, M.-O., Sanders, J., and Oberst, J. (2016). Neurorobotics: a
strategic pillar of the human brain project. Sci. Robot. 25–35. Available online at:
http://archive.www6.in.tum.de/www6/Main/Publications/knollNeuro2016.pdf

Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King, J., Delalondre, F., et
al. (2019). Coreneuron: an optimized compute engine for the neuron simulator.
Front. Neuroinform. 13, 63. doi: 10.3389/fninf.2019.00063

Kunkel, S., Schmidt, M., Eppler, J. M., Plesser, H. E., Masumoto, G., Igarashi, J.,
et al. (2014). Spiking network simulation code for petascale computers. Front.
Neuroinform. 8, 78. doi: 10.3389/fninf.2014.00078

Kurth, A. C., Senk, J., Terhorst, D., Finnerty, J., and Diesmann, M. (2022). Sub-
realtime simulation of a neuronal network of natural density. Neuromorph.

Comput. Eng. 2, 021001. doi: 10.1088/2634-4386/ac55fc
Lange, W. (1975). Cell number and cell density in the cerebellar cortex of man and

some other mammals. Cell Tissue Res. 157, 115–124. doi: 10.1007/BF00223234
Lee, A. J., Wang, G., Jiang, X., Johnson, S. M., Hoang, E. T., Lanté, F., et

al. (2015). Canonical organization of layer 1 neuron-led cortical inhibitory
and disinhibitory interneuronal circuits. Cerebral cortex 25, 2114–2126.
doi: 10.1093/cercor/bhu020

Lefort, S., Tomm, C., Sarria, J.-C. F., and Petersen, C. C. (2009). The excitatory
neuronal network of the c2 barrel column in mouse primary somatosensory
cortex. Neuron 61, 301–316. doi: 10.1016/j.neuron.2008.12.020

Lev, D. L., and White, E. L. (1997). Organization of pyramidal cell apical dendrites
and composition of dendritic clusters in themouse: emphasis on primarymotor
cortex. Eur. J. Neurosci. 9, 280–290. doi: 10.1111/j.1460-9568.1997.tb01398.x

Liénard, J., and Girard, B. (2014). A biologically constrained model of the whole
basal ganglia addressing the paradoxes of connections and selection. J. Comput.

Neurosci. 36, 445–468. doi: 10.1007/s10827-013-0476-2
Markram, H., Muller, E., Ramaswamy, S., Reimann, M., Abdellah, M., Sanchez, C.,

et al. (2015). Reconstruction and simulation of neocortical microcircuitry. Cell
163, 456–492. doi: 10.1016/j.cell.2015.09.029

Mathis, M. W., Mathis, A., and Uchida, N. (2017). Somatosensory cortex plays
an essential role in forelimb motor adaptation in mice. Neuron 93, 1493–1503.
doi: 10.1016/j.neuron.2017.02.049

Millard, M., Uchida, T., Seth, A., and Delp, S. L. (2013). Flexing computational
muscle: modeling and simulation of musculotendon dynamics. J. Biomech. Eng.
135, 021005. doi: 10.1115/1.4023390

Miyazaki, H., Kusano, Y., Shinjou, N., Shoji, F., Yokokawa, M., and Watanabe, T.
(2012). Overview of the k computer system. Fujitsu Sci. Tech. J. 48, 255–265.
doi: 10.1016/j.procs.2014.05.052

Morrison, A., Aertsen, A., and Diesmann, M. (2007). Spike-timing-dependent
plasticity in balanced random networks. Neural Comput. 19, 1437–1467.
doi: 10.1162/neco.2007.19.6.1437

Morteza, H., and Sun Zhe, J. I. (2019). “Hierarchy of inhibitory circuit acts as a
switch key for network function in a model of the primary motor cortex,” in
28th Annual Computational NeuroscienceMeeting: CNS*2019Meeting Abstracts

(Barcelona), 132.
Pala, A., and Petersen, C. C. (2015). In vivo measurement of cell-type-specific

synaptic connectivity and synaptic transmission in layer 2/3 mouse barrel
cortex. Neuron 85, 68–75. doi: 10.1016/j.neuron.2014.11.025

Frontiers in Neuroinformatics | www.frontiersin.org 22 May 2022 | Volume 16 | Article 884180166

https://doi.org/10.1016/j.jneumeth.2010.01.005
https://doi.org/10.1109/TBME.2007.901024
https://doi.org/10.1098/rspb.2016.2134
https://doi.org/10.1007/s12021-010-9064-z
https://doi.org/10.1073/pnas.58.1.336
https://doi.org/10.1016/j.neucom.2021.08.005
https://doi.org/10.1371/journal.pcbi.1009654
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1111/ejn.14869
https://doi.org/10.1016/j.neuron.2019.05.019
https://doi.org/10.1016/0301-0082(91)90012-P
https://doi.org/10.1002/cne.903430113
https://doi.org/10.3389/fninf.2012.00026
https://doi.org/10.3389/neuro.09.031.2009
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.3389/fninf.2019.00071
https://doi.org/10.1126/science.aac9462
https://doi.org/10.1038/nn.3305
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.3389/fncom.2019.00046
https://doi.org/10.7554/eLife.67256
https://doi.org/10.1038/nn.2687
http://archive.www6.in.tum.de/www6/Main/Publications/knollNeuro2016.pdf
https://doi.org/10.3389/fninf.2019.00063
https://doi.org/10.3389/fninf.2014.00078
https://doi.org/10.1088/2634-4386/ac55fc
https://doi.org/10.1007/BF00223234
https://doi.org/10.1093/cercor/bhu020
https://doi.org/10.1016/j.neuron.2008.12.020
https://doi.org/10.1111/j.1460-9568.1997.tb01398.x
https://doi.org/10.1007/s10827-013-0476-2
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1016/j.neuron.2017.02.049
https://doi.org/10.1115/1.4023390
https://doi.org/10.1016/j.procs.2014.05.052
https://doi.org/10.1162/neco.2007.19.6.1437
https://doi.org/10.1016/j.neuron.2014.11.025
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Feldotto et al. Embodied Large-Scale Neural Simulations

Pfeffer, C. K., Xue, M., He, M., Huang, Z. J., and Scanziani, M. (2013). Inhibition
of inhibition in visual cortex: the logic of connections between molecularly
distinct interneurons. Nat. Neurosci. 16, 1068–1076. doi: 10.1038/nn.3446

Ramalingasetty, S. T., Danner, S. M., Arreguit, J., Markin, S. N., Rodarie,
D., Kathe, C., et al. (2021). A whole-body musculoskeletal model of
the mouse. IEEE Access. 9, 163861–163881. doi: 10.1109/ACCESS.2021.31
33078

Sarma, G. P., Lee, C. W., Portegys, T., Ghayoomie, V., Jacobs, T., Alicea, B., et
al. (2018). Openworm: overview and recent advances in integrative biological
simulation of caenorhabditis elegans. Philos. Trans. R. Soc. B 373, 20170382.
doi: 10.1098/rstb.2017.0382

Sato, M., Ishikawa, Y., Tomita, H., Kodama, Y., Odajima, T., Tsuji, M., et al. (2020).
“Co-design for a64fx manycore processor and “fugaku,” in SC20: International

Conference for High Performance Computing, Networking, Storage and Analysis

(Atlanta, GA: IEEE), 1–15.
Senk, J., Hagen, E., van Albada, S. J., and Diesmann, M. (2018).

Reconciliation of weak pairwise spike-train correlations and highly
coherent local field potentials across space. arXiv[Preprint].arXiv:1805.10235.
doi: 10.48550/arXiv.1805.10235

Shepherd, G. M. (2013). Corticostriatal connectivity and its role in disease. Nat.
Rev. Neurosci. 14, 278–291. doi: 10.1038/nrn3469

Song, S., Sjöström, P. J., Reigl, M., Nelson, S., and Chklovskii, D. B. (2005). Highly
nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol.
3, e68. doi: 10.1371/journal.pbio.0030068

Sun, Z., and Morteza Heidarinejad, J. I. (2019). “Spatially organized connectivity
for signal processing in amodel of the rodent primary somatosensory cortex,” in
28th Annual Computational NeuroscienceMeeting: CNS*2019Meeting Abstracts

(Barcelona), 133.
Szigeti, B., Gleeson, P., Vella, M., Khayrulin, S., Palyanov, A., Hokanson, J., et al.

(2014). Openworm: an open-science approach to modeling caenorhabditis
elegans. Front. Comput. Neurosci. 8, 137. doi: 10.3389/fncom.2014.
00137

Tremblay, R., Lee, S., and Rudy, B. (2016). Gabaergic
interneurons in the neocortex: from cellular properties to
circuits. Neuron 91, 260–292. doi: 10.1016/j.neuron.2016.
06.033

Vannucci, L., Pasquini, M., Spalletti, C., Caleo, M., Micera, S., Laschi, C., et al.
(2019). “Towards in-silico robotic post-stroke rehabilitation for mice„” in 2019

IEEE International Conference on Cyborg and Bionic Systems (CBS) (Munich:
IEEE), 123–128.

Weiler, N., Wood, L., Yu, J., Solla, S. A., and Shepherd, G. M. (2008). Top-down
laminar organization of the excitatory network in motor cortex. Nat. Neurosci.
11, 360–366. doi: 10.1038/nn2049

Xu, X., and Callaway, E. M. (2009). Laminar specificity of functional input
to distinct types of inhibitory cortical neurons. J. Neurosci. 29, 70–85.
doi: 10.1523/JNEUROSCI.4104-08.2009

Xue, M., Atallah, B. V., and Scanziani, M. (2014). Equalizing excitation-
inhibition ratios across visual cortical neurons. Nature 511, 596–600.
doi: 10.1038/nature13321

Yamada, Y., Kanazawa, H., Iwasaki, S., Tsukahara, Y., Iwata, O., Yamada, S., et
al. (2016). An embodied brain model of the human foetus. Sci. Rep. 6, 27893.
doi: 10.1038/srep27893

Yamaura, H., Igarashi, J., and Yamazaki, T. (2020). Simulation of a human-scale
cerebellar network model on the k computer. Front. Neuroinform. 14, 16.
doi: 10.3389/fninf.2020.00016

Yoo, A., Jette, M., and Grondona, M. (2003). Slurm: simple linux utility for
resource management, job scheduling strategies for parallel processing, volume
2862 of lecture notes in computer science (Seattle, WA).

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Feldotto, Eppler, Jimenez-Romero, Bignamini, Gutierrez,

Albanese, Retamino, Vorobev, Zolfaghari, Upton, Sun, Yamaura, Heidarinejad,

Klijn, Morrison, Cruz, McMurtrie, Knoll, Igarashi, Yamazaki, Doya and Morin.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 23 May 2022 | Volume 16 | Article 884180167

https://doi.org/10.1038/nn.3446
https://doi.org/10.1109/ACCESS.2021.3133078
https://doi.org/10.1098/rstb.2017.0382
https://doi.org/10.48550/arXiv.1805.10235
https://doi.org/10.1038/nrn3469
https://doi.org/10.1371/journal.pbio.0030068
https://doi.org/10.3389/fncom.2014.00137
https://doi.org/10.1016/j.neuron.2016.06.033
https://doi.org/10.1038/nn2049
https://doi.org/10.1523/JNEUROSCI.4104-08.2009
https://doi.org/10.1038/nature13321
https://doi.org/10.1038/srep27893
https://doi.org/10.3389/fninf.2020.00016
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

ORIGINAL RESEARCH
published: 23 May 2022

doi: 10.3389/fninf.2022.877945

Frontiers in Neuroinformatics | www.frontiersin.org 1 May 2022 | Volume 16 | Article 877945

Edited by:

Thomas Nowotny,

University of Sussex, United Kingdom

Reviewed by:

Ankur Sinha,

University College London,

United Kingdom

Mantas Mikaitis,

The University of Manchester,

United Kingdom

*Correspondence:

Fred H. Hamker

fred.hamker@informatik.tu-chemnitz.de

Received: 17 February 2022

Accepted: 28 April 2022

Published: 23 May 2022

Citation:

Dinkelbach HÜ, Bouhlal B-E, Vitay J

and Hamker FH (2022) Auto-Selection

of an Optimal Sparse Matrix Format in

the Neuro-Simulator ANNarchy.

Front. Neuroinform. 16:877945.

doi: 10.3389/fninf.2022.877945

Auto-Selection of an Optimal Sparse
Matrix Format in the Neuro-Simulator
ANNarchy

Helge Ülo Dinkelbach, Badr-Eddine Bouhlal, Julien Vitay and Fred H. Hamker*

Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany

Modern neuro-simulators provide efficient implementations of simulation kernels on

various parallel hardware (multi-core CPUs, distributed CPUs, GPUs), thereby supporting

the simulation of increasingly large and complex biologically realistic networks. However,

the optimal configuration of the parallel hardware and computational kernels depends on

the exact structure of the network to be simulated. For example, the computation time

of rate-coded neural networks is generally limited by the available memory bandwidth,

and consequently, the organization of the data in memory will strongly influence the

performance for different connectivity matrices. We pinpoint the role of sparse matrix

formats implemented in the neuro-simulator ANNarchy with respect to computation

time. Rather than asking the user to identify the best data structures required for a

given network and platform, such a decision could also be carried out by the neuro-

simulator. However, it requires heuristics that need to be adapted over time for the

available hardware. The present study investigates how machine learning methods can

be used to identify appropriate implementations for a specific network. We employ an

artificial neural network to develop a predictive model to help the developer select the

optimal sparse matrix format. The model is first trained offline using a set of training

examples on a particular hardware platform. The learned model can then predict the

execution time of different matrix formats and decide on the best option for a specific

network. Our experimental results show that using up to 3,000 examples of random

network configurations (i.e., different population sizes as well as variable connectivity), our

approach effectively selects the appropriate configuration, providing over 93% accuracy

in predicting the suitable format on three different NVIDIA devices.

Keywords: neural simulator, rate-coded networks, auto-tuning, code generation, CUDA

1. INTRODUCTION

Models in computational neuroscience are implemented with different degrees of biological
detail. Particularly at the systems-level, a significant subset of models incorporate dynamic
rate-coded neurons to explain emergent functions of such networks and link them to
experimental data. In such networks, neurons are connected to other neurons by axons
and synapses, whose joint effect is captured by so-called weights wij and describes in

168

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.877945
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.877945&domain=pdf&date_stamp=2022-05-23
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:fred.hamker@informatik.tu-chemnitz.de
https://doi.org/10.3389/fninf.2022.877945
https://www.frontiersin.org/articles/10.3389/fninf.2022.877945/full

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

how far the firing rate xi of a presynaptic neuron i affects the
firing of a post-synaptic neuron j. As outlined by Dinkelbach
et al. (2012), the sum of weighted inputs wij · xi, required to be
computed at each time step, is the dominating operation in large-
scale rate-coded neural networks, well before other operations
such as the numerical integration of ordinary differential
equations (ODE). It was shown using a simplified network model
that the choice of either a multi-core CPU or a GPU (Graphical
Processing Unit) as the computing backend depends on the
network’s structure. GPU implementations were more efficient
on mid- and large-scale networks in comparison to a multi-
core CPU implementation. Dinkelbach et al. (2019) observed for
a linear rate-coded model that the network had to consist of
thousands of neurons in order to utilize a GPU effectively.

When applied on populations of neurons, the weighted sum
of synaptic inputs can be computed by a sparse matrix-vector
multiplication (SpMV) between a (sparse) matrixW and a dense
vector Ex which results in a dense vector Ey:

Ey = W× Ex. (1)

The SpMV operation, which is a central kernel in many scientific
applications, is considered to be memory-bound and is impaired
by irregular access patterns to the dense vector Ex (e.g., Temam
and Jalby, 1992; Goumas et al., 2008; Williams et al., 2009;
Greathouse and Daga, 2014; Langr and Tvrdik, 2016; Filippone
et al., 2017). While each non-zero element of W is only accessed
once in the SpMV operation, there is frequent access to Ex at
different positions (e.g., Williams et al., 2009). Depending on
the distribution of the non-zeros within a row of the matrix,
this can lead to cache misses or re-loads, leading to noticeable
performance decreases on CPUs and especially on GPUs (e.g.,
shown in Dinkelbach et al., 2012). For optimal performance,
the number of these scattered accesses should be reduced,
for example through a reuse, efficient caching (CPU-oriented
architectures) or pre-loading into shared memory (GPU) of
the dense vector (e.g., Goumas et al., 2008; Williams et al.,
2009; Greathouse and Daga, 2014). To overcome this issue,
many different formats were proposed to perform the SpMV
operation efficiently on single-core, multi-core CPUs or GPUs
(see Langr and Tvrdik, 2016; Filippone et al., 2017 for more
details). Nevertheless, understanding the efficiency of applied
optimizations can be difficult as the interaction of optimizations
with each other or the underlying hardware is hard to predict
(see Goumas et al., 2008; Balaprakash et al., 2018 for a detailed
discussion). The efficiency of a single optimization may depend
on the matrix as well as on the specific platform as demonstrated
in the work of Williams et al. (2009). However, the efficiency
of an implementation can also change by advancements made
by compilers and hardware as pointed out by Steinberger et al.
(2016).

Due to the generally unknown sparsity of a matrix, choosing
an efficient parallel implementation of the SpMV operation for a
given matrix is therefore an important and hard problem (e.g.,
Liu and Vinter, 2015b; Lehnert et al., 2016; Hou et al., 2017).
However, there exists some knowledge about which given format

is more suitable for a given matrix. For example, Vázquez et al.
(2011) and Sedaghati et al. (2015) suggest that the density of
a matrix is a guiding factor for the selection of a particular
data structure. Furthermore, as shown by Vázquez et al. (2011),
the variability of row lengths can be a relevant criterion in the
selection of data formats.

Machine learning methods received increasing attention for
the tuning of implementations at various levels, including the
selection of code variants, parallelization strategies, or even
complete algorithms (see Balaprakash et al., 2018 for a recent
review). Modern multi-core CPUs and GPUs in combination
with compilers offer a rich possibility for programmers to adapt
their code to increase performance. Therefore, the possible
search space even for relatively simple operations can reach
millions of configurations (e.g., as shown by Datta et al., 2008;
Ganapathi et al., 2009 for the stencil operation). Auto-tuning
methods considering the SpMV operation were investigated
for single-thread, multi-core as well as GPU configurations
either using hand-tuning (e.g., Choi et al., 2010), heuristics
(e.g., Whaley et al., 2001; Sedaghati et al., 2015), or machine
learning methods (e.g., Ganapathi et al., 2009; Benatia et al.,
2018; Pichel and Pateiro-Lopez, 2018; Chen et al., 2019). As
hardware and algorithms steadily evolve, it is important to
integrate auto-tuning principles inside the specific application.
Such an integration allows to adjust the build process considering
the target platform (Balaprakash et al., 2018).

The present article shows that implementing different sparse
matrix formats in a neural simulator can improve the overall
performance of rate-coded neural networks. We present a two-
stage heuristic already embedded in our neural simulation
framework ANNarchy (Artificial Neural Networks architect,
Vitay et al., 2015). We also demonstrate that the performance
can be improved by integrating machine learning methods. This
should help developers of neural network models selecting a
suitable data structure representation for their specific network.

2. RELATED WORK

2.1. Sparse Matrix Formats for SpMV
As outlined in the introduction, the SpMV operation has been
thoroughly investigated and several sparse matrix formats have
been proposed. The following collection of formats is just a short
overview and by no means exhaustive. For more details, refer
to the reviews of Langr and Tvrdik (2016) and Filippone et al.
(2017).

Probably the most common and well-known format is the
compressed sparse row (or Yale) format (CSR). The non-zeros
of each row are stored in two arrays (one for the column indices
and the other one for the values). The start and stop indices of a
row are stored in a row pointer array. The ELLPACK/ITPACK
format (Kincaid et al., 1989) was intended to be efficient for
vector processors. This format decomposes the non-zeros into
two dense matrices whose dimensions are number of rows times
the maximum number of non-zeros within a row, one matrix
representing the column indices, the other the values. If the
matrix has heterogeneous row lengths, non-existing entries need
to be marked by a neutral element, which likely creates a large

Frontiers in Neuroinformatics | www.frontiersin.org 2 May 2022 | Volume 16 | Article 877945169

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

FIGURE 1 | Schematic representation of the compressed sparse row (CSR), ELLPACK, and ELLPACK-R formats derived from a dense matrix. The CSR format

comprises three dense vectors: a row_ptr array where the begin and end of subsequent rows are encoded. These indices are needed to select the correct values

from the column index and value array. Contrary to CSR, in ELLPACK/ELLPACK-R the column indices and the values are encoded in dense matrices. The

ELLPACK-R has an additional row-length (rl) array to encode the row lengths to spare the index checking.

memory overhead. This format is considered as GPU-friendly
if the dense matrices are stored in column-major1 order (Bell
and Garland, 2009; Vázquez et al., 2011). Vázquez et al. (2011)
proposed an extended version, ELLPACK-R, which introduces
an additional row-length array to encode varying row lengths
instead of checking each matrix entry with an if-clause. An
overview of the different sparse matrix formats is depicted
in Figure 1.

2.2. ANNarchy
The ANNarchy neural simulator is written in Python and
intended for the simulation of biologically detailed neural
networks. The equation-based interface of ANNarchy allows
a flexible and easy definition of the neuron and synapse
models (Vitay et al., 2015). Using an automatic code generation
approach, the model description is transformed into C++ code
allowing the use of parallel programming frameworks such as
OpenMP for multi-core CPUs or CUDA for GPUs for the

1This means that the data of a column is stored continuously in memory instead
of storing a row continuously (which is referred to as row-major).

efficient implementation of rate-coded and spikingmodels (Vitay
et al., 2015; Dinkelbach et al., 2019).

The current version 4.7.1.1 of ANNarchy provides several
sparse matrix formats for the computation of rate-coded neural
network models. In addition to the already existing list-in-
list/compressed sparse row implementation (as described in
Dinkelbach et al., 2012), an ELLPACK/ITPACK (Kincaid et al.,
1989; Vázquez et al., 2011) and a dense matrix format have been
added, which will be evaluated in Section 4. ANNarchy also
implements a Hybrid format as described by Bell and Garland
(2009) and a blocked sparse row (BSR) format as described by
Verschoor and Jalba (2012) and Eberhardt andHoemmen (2016),
but preliminary tests have shown that those formats are not
performing well in comparison to the others on the dataset used
in this work, so they are omitted for the present article. We
hypothesize that the structure of the matrices in our dataset, i.e.,
a relatively homogeneous row length (for Hybrid) and a high
scattering across the matrix (for BSR), are limiting factors for
these data formats.
Further, we extended our code generation approach to allow
auto-vectorization (using compiler hints e.g., #pragma simd)
for the continuous neural and synaptic state updates by

Frontiers in Neuroinformatics | www.frontiersin.org 3 May 2022 | Volume 16 | Article 877945170

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

reordering the code to reduce the number of branches. We
introduce for continuous transmission an implementation using
AVX-512, AVX and SSE4.2 instructions2 to address most of the
currently available CPU architectures.

2.3. Auto-Tuning Methods
As outlined by Balaprakash et al. (2018), auto-tuning in high-
performance computing is utilized at various levels within an
application. Many of these works/ideas are conjuncted with
highly optimized libraries like ATLAS3 (Whaley et al., 2001),
SPARSITY (Im et al., 2004), or OSKI (Vuduc et al., 2005). These
frameworks are often not limited to the SpMV operation but
implement a set of operations from the basic linear algebra
(BLAS) routines. This is in contrast to optimized libraries such as
clSpMV (Su and Keutzer, 2012) or SMAT (Li et al., 2013) which
only focus on the SpMV operation. From our perspective, there
are two types of approaches that are of special interest.

First, hand-tuning of a specific format is probably the most
common approach, where data structures are adapted to the
algorithm or processed data. Some examples are the CSR-like
(Hou et al., 2017), ELLR-T (Vázquez et al., 2012), BCSR (Choi
et al., 2010), BELLPACK (Choi et al., 2010), and sliced ELLPACK
Kreutzer et al. (2014) data structures. Especially for GPUs arise
the question of load balancing, i.e., how many threads should
be used and how many blocks should be used for computation
at the same time. The effect of the block size can already vary
noticeably on a single example as demonstrated by Eberhardt
and Hoemmen (2016). The performance was most consistent on
a Sandy Bridge CPU in comparison to a GPU and a Xeon Phi.
Guo andWang (2010) proposed amodel-driven approach for the
fine-tuning of the blocked CSR and blocked ELLPACK format to
tackle this issue.

The second class of approaches is the selection of a suitable
format for a given matrix, as investigated by Li et al. (2013),
Greathouse and Daga (2014), Sedaghati et al. (2015), or Benatia
et al. (2018). The main idea is to derive the decision based on
a set of features. The mapping of features into a decision can
be based on either heuristics or machine learning methods. For
instance, Lehnert et al. (2016) have shown that performance
prediction using machine learning methods can outperform
explicit performance models. The predicted computation time is
then used to derive the matrix format decision. In the present
manuscript we will follow the second class of approaches, more
precisely the work of Lehnert et al. (2016) and Benatia et al.
(2018), using regression techniques to predict the performance
of a sparse matrix format applied on a given matrix.

3. METHODS

Our focus is to develop an efficient tool that can predict
with high accuracy the suitable format for each connectivity
matrix of a specific neural network. In the following, we

2We use SIMD intrinsics which should not be confused with actual inline assembly
(for more details, see: https://www.intel.com/content/www/us/en/docs/intrinsics-
guide/index.html).
3Project homepage: http://math-atlas.sourceforge.net/.

propose two methods for matrix format selection: The first
is based on a simple heuristic (Section 3.1) and the second
uses a machine learning model (Section 3.2) for predicting the
appropriate format.

3.1. Two-Stage Heuristic for Format
Selection on GPUs
We followed the idea of Sedaghati et al. (2015), who analyzed the
obtained GFLOPS (floating operations per second, see Section
4 for a more detailed description) on several matrices for
potential correlations. In their work, they showed that a quite
good heuristic can be based on the fraction of non-zeros. We
are going to compare three available implementations: the CSR
format using an updated version of the algorithm presented in
Dinkelbach et al. (2012), the ELLPACK-R presented in Vázquez
et al. (2011) as well as a dense matrix representation.

There are several factors influencing the performance
achieved with a given implementation on GPUs. One crucial
fact is to ensure coalesced memory access toward accessed data
(e.g., Bell and Garland, 2009; Dinkelbach et al., 2012; Yavuz
et al., 2016). A memory access is considered as coalesced if
all threads within a half-warp4 can use the data loaded from
a 32-, 64-, or 128-byte segment (Bell and Garland, 2009). One
key difference between the implementations of the SpMV using
CSR and ELLPACK-R is that they are parallelized over different
dimensions: while our CSR implementation computes one row
per warp, a warp in ELLPACK-R computes a set of rows at the
same time.

Considering these different computation patterns and the fact
that a dense matrix is efficient for densely packed matrices, one
can obtain a simple decision tree as depicted in Figure 2. The
decision is two-fold: first we decide based on the matrix density,
i.e., the ratio of nonzeros to the total number of elements in
the matrix, whether the density is greater than a threshold. The
matrix is considered as dense in this case. Otherwise the average
number of non-zeros in a row (avgnzr) is considered. If this
value is lower or equal to 128, the ELLPACK-R format is selected,
otherwise CSR is chosen. The threshold for the first decision
stage is derived from observations made on the experiments
shown in Section 4.1. However, these observations should be
verified if they generalize, therefore we also analyzed the 3,000
data points generated for the machine learning model (as shown
in Supplementary Material, Section 3) and confirmed that the
threshold of 60% is appropriate for this decision stage. The
threshold for the second decision stage is based on theoretical
knowledge about the computation patterns. The threshold should
be chosen as a multiple of the warp size to ensure a full utilization
of the computation blocks. We analyzed the performance as
a function of the average number of non-zeros in a row (see
Supplementary Material, Section 3) and derived the value of
128 as suitable decision threshold for our dataset. However, the
analysis also suggests that this threshold could be fine-tuned to

4A warp is a group of 32 CUDA threads which process a given set of instructions
at the same time. Even though they can proceed in the code concurrently, the
efficiency rises if their execution does not diverge (Bell and Garland, 2009).

Frontiers in Neuroinformatics | www.frontiersin.org 4 May 2022 | Volume 16 | Article 877945171

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
http://math-atlas.sourceforge.net/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

FIGURE 2 | Two-stage heuristic for the matrix format selection on GPUs. The threshold values for both decision points were selected based on the analysis of our

datasets (see Supplementary Material, Section 3 for more details).

a specific CUDA device to achieve an optimal performance of
the heuristic.

3.2. Format Selection Using Machine
Learning
The heuristic approach is limited, as it is difficult to identify
differences arising from the execution of a given implementation
on different devices (see Section 4.2). To be efficient on diverse
devices, one would need to fine-tune the decision parameters for
each device. Therefore, it would be useful to have an automatic
selection which can be adapted through machine learning to data
obtained from each device.

The implementation of the prediction model requires three
general steps. The first step is made offline and consists in
generating the dataset necessary for the training and testing of the
model. The second step is also offline and consists in training the
model and testing it. The last one is online and consists of using
the model and performing predictions that help in selecting the
most suitable format.

3.2.1. Creation of the Dataset
For our benchmark, we follow a scheme similar to Dinkelbach
et al. (2012). We create two populations in ANNarchy. The
population sizes were randomly chosen from a fixed set of
sizes within the range of 1,000–20,000 neurons. We create
a projection between those two populations, which will be
referred to as the connectivity matrix in this section. For the
creation of this matrix, we either use a random probability (in
the range of 1–100%) or a fixed number of entries per row
(ranging from 128–4,096 entries). Using this scheme, we create
3,000 different network configurations. Each network is then
generated, compiled and simulated for 1,000 steps using each
data structure (in this case the CSR, ELLPACK-R and dense
matrix formats). At the end of this procedure, we obtained
3,000 data points which consist of a list of features (described

in the next section), the achieved computational time for each
of the three formats and the format which would be chosen by
the heuristic.

3.2.2. Feature Selection
The computation time of a rate-coded network heavily depends
on the number of connections between the different populations.
Since these various connections are structured in the format of
sparse matrices, we focus on the properties of this particular
type of matrix to define the relevant input features to the auto-
tuning network. We derive for the matrices the features depicted
in Table 1.

This set of features is a subset of features which are typically
used in the SpMV auto-tuning literature (e.g., Li et al., 2013;
Lehnert et al., 2016; Benatia et al., 2018; Chen et al., 2019).
In particular, the work of Lehnert et al. (2016) and Benatia
et al. (2018) suggests that the set of features used to detect
a format depends on the format itself. For instance, we left
out the difference between the maximum number of nonzeros
(MAXNZR) and the average nonzeros per row (AVGNZR)
as our preliminary experiments indicated that this feature is
not helpful on our dataset. Considering the work of Vázquez
et al. (2011) and Benatia et al. (2018), we believe this feature
is a helpful indicator for the Hybrid format which is not
used in the present work (see Section 5 for more details) and
thus we omit this criterion. Li et al. (2013) proposed two
additional values to characterize diagonals in matrices which
might indicate the usage of diagonal formats. It is worth
noting that not all approaches use such features. Pichel and
Pateiro-Lopez (2018) use for example, an image-like tensor
to represent the features of the connectivity matrix which is
scaled down to be used as input to a convolutional neural
network (AlexNet, Krizhevsky et al., 2012) to derive the optimal
matrix format.

Frontiers in Neuroinformatics | www.frontiersin.org 5 May 2022 | Volume 16 | Article 877945172

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

TABLE 1 | A set of features used to characterize the sparse matrices.

Features Description

N Number of rows in the matrix

M Number of columns in the matrix

NNZ Number of nonzeros in the matrix

DES Density of the matrix

AVGNZR Average number of nonzeros per row

MINNZR Minimum number of nonzeros per row

MAXNZR Maximum number of nonzeros per row

TABLE 2 | Best network configurations found by the Optuna library within 150

trials for each dataset.

NVIDIA K20m NVIDIA RTX 2060 NVIDIA RTX 3080

Normalization 7 7 7

Dense 119 124 155

Dense 187 195 86

Dense 199 105 85

Dense 96 127 150

Dense / / 66

Output 3 3 3

3.2.3. Machine Learning Model
The machine learning model is implemented using the
TensorFlow (Abadi et al., 2016) library version 2.6.25. The fully-
connected feedforward neural network consists of an input layer
with seven neurons representing the features (as discussed in
Section 3.2.2), a feature normalization layer, a number of hidden
layers and one output layer with three neurons. Each of these
neurons represents a possible data structure: CSR, ELLPACK-
R, and dense. The output of these neurons, i.e., the predicted
performance for a given network in GFLOPs, is then read out to
determine the fastest configuration. The hidden layers consist of
rectified linear units (ReLu) and the number of layers as well as
the number of units in each layer is determined byOptuna (Akiba
et al., 2019), a Bayesian optimization library for hyper-parameter
optimization used in many machine learning workflows. The
search space is here the set of possible configurations, in our
case the number of layers from 2 to 5 (motivated by the work
of Benatia et al. (2018) who identified four layers as optimal
for ELLPACK and five as optimal for CSR on their dataset),
the number of neurons in each layer (64–256) and the learning
rate (1e-7 to 1e-2). The objective function provided to Optuna
is the test accuracy, an average resulting from a 5-fold cross-
validation (see Section 4.4.1 for more details) without repetitions.
We configured Optuna to perform 150 trials for each of the three
datasets (i.e., the three CUDA devices considered in this work)
and the obtained best configurations are depicted in Table 2.

The optimizer is Adam with the default parameters and the
learning rate is determined by Optuna. The loss function is the
mean squared error (mse), as this is a regression problem.

5https://doi.org/10.5281/zenodo.5645375

4. RESULTS

All the experiments were performed using the ANNarchy 4.7.1.1
release6. The measured computation times are recorded with
the Python time package. When we analyze the performance
in this section, we evaluate the execution of 1,000 steps within
the ANNarchy neural simulator. As the populations are not
defined by means of equations, the simulation time is almost
equal to the execution time of the SpMV. We use in this article
FLOPS (floating operations per second) as a metric to evaluate
the performance, which is used commonly across the SpMV
literature. This value is computed for a given data structure based
on the measured computation time t in seconds for the 1,000
iterations (as mentioned in Section 3.2.1) and the number of
nonzeros (nnz) in the matrix:

FLOPS =
2× 1,000× nnz

t
(2)

The factor 2 comes from the fact that the SpMV requires one
multiplication and one addition for each non-zero value. For
an easier handling of the values, we transform then FLOPs
to GFLOPs (giga-FLOPs). Langr and Tvrdik (2016) suggest to
choose compiler flags for performance comparisons in order
to achieve the best possible performance. The ANNarchy
framework was therefore configured to use the optimization
flags -march=native7 -O38 -ffast-math9 for the g++ compiler to
enable typical optimizations. The CUDA compiler is configured
without further compiler flags as -O3 is automatically enabled for
device codes10. For a more detailed discussion on the effect of
-ffast-math and the CUDA compiler counterpart –use_fast_math
we would like to refer to Supplementary Material, Section 4.
The following sections will compare the performance achieved
on three NVIDIA devices: a K20m, a RTX 2060, and a
RTX 3080. Some hardware characteristics are provided in the
Supplementary Material, Section 1.

4.1. Dense vs. Sparse Matrix Formats
Sparse matrix representations require a memory overhead to
index the elements of a matrix (e.g., row pointers). When
the matrix becomes denser, it may become inefficient to
use a sparse matrix representation instead of a dense one
(see Supplementary Material, Section 2 for more details). To
illustrate this, we define a 2,000 × 2,000 matrix with varying
sparsity levels ranging from 10% to fully-connected. We compare
the achieved throughput in GFLOPs averaged across 15 runs for a
single thread on a AMDRyzen 7 2700XCPU (Figure 3) and three
different NVIDIA devices (Figure 4). The CSR data structure
(blue), the dense format (orange) and a format selected by the
heuristic (green) are compared.

6https://doi.org/10.5281/zenodo.6417924
7The march flag let the compiler generate the code for a specific CPU architecture.
Providing native let the compiler determine the CPU automatically. For more
details, see https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html.
8Formore details, see https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html.
9For more details, see https://gcc.gnu.org/wiki/FloatingPointMath.
10https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#ptxas-
options-opt-level

Frontiers in Neuroinformatics | www.frontiersin.org 6 May 2022 | Volume 16 | Article 877945173

https://doi.org/10.5281/zenodo.5645375
https://doi.org/10.5281/zenodo.6417924
https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/wiki/FloatingPointMath
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#ptxas-options-opt-level
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#ptxas-options-opt-level
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

FIGURE 3 | Comparison between a dense matrix representation and the compressed sparse row format on a AMD Ryzen 7 2700X using a single thread. We depict

the achieved performance in GFLOPs as a function of matrix density (A). In this setup we compare a 2,000 × 2,000 matrix with varying density levels and compare a

CSR (blue) and dense (orange) implementation. We compared additionally the improvement by a hand-written AVX implementation (dashed line). The gained

improvement by this implementation is depicted in (B).

For the CPU (Figure 3A), we can see that the GFLOPs
are almost constant for the CSR format, i.e., the computation
time increases linearly with the number of non-zeros in the
matrix, while the contrary applies for the dense matrix as the
computation time is not dependent on the number of non-zeros:
the achieved GFLOPs are low for sparse matrices and increase
with the matrix density. As outlined in Section 2.2, we added also
hand-written vectorization using AVX on the AMDRyzen7 CPU.
The results for the vectorized implementations are depicted in
Figure 3A as dashed lines. The relative improvement provided by
the vectorization is also depicted as a bar graph in Figure 3B. We
can see that the improvement is below the theoretical maximum
which would be four for double precision on an AVX-capable
CPU. The reduced efficiency, especially for the dense matrix
format, should be linked to the fact that the SpMV is a memory-
bound problem. We also see that the improvement is almost the
same for a density around 20% while the improvement achieved
on the CSR depends on the density: for small densities, the
implementation benefits mostly for small row lengths and the
reduced memory consumption.

To evaluate the performance on GPUs we compare the
K20m (Figure 4A), the RTX 2060 (Figure 4B) and the RTX
3080 (Figure 4C). On all three devices, we can see that for
small densities the achieved throughput of the CSR (blue line)
implementation is lower than for higher densities. This is a
consequence of the implementation [as discussed in Section 3.1;
more details can be found in Dinkelbach et al. (2012) for our
version of the CSR and in Vázquez et al. (2011) for the ELLPACK-
R format] as the thread groups processes rows together: there
must be a sufficient number of elements in a row to achieve a
high throughput.

In both experiments, we can see that, for higher matrix
densities, the CSR format is outperformed by the dense matrix
format (orange line). This motivated the first stage of our
heuristic (green line). The value 60% was originally obtained
on the K20m GPU. A comparison to the newer devices
would suggest 70%. We have analyzed this for all examples
in our dataset and determined 60% as a suitable value (see
Supplementary Material, Section 3).

4.2. Different Sparse Matrix Formats
This section illustrates the necessity for different sparse matrix
formats. We investigate the performance improvement of an
ELLPACK-R and dense implementation against the CSR on
three GPUs which is a criterion suggested by Langr and Tvrdik
(2016). To compare the formats, we compute the ratio between
the GFLOPS required by CSR and the GFLOPS of the other
format. A more detailed analysis of these values is depicted in the
Supplementary Material, Section 3.

Figure 5 depicts the average performance on the 3,000 data
points in our dataset. The orange line represents the median of
the obtained values and the green triangle represents the mean.
The CSR format outperforms the other two formats in most cases
on the K20m (Figure 5A) and the RTX 3080 (Figure 5C), as the
average performance of ELLPACK-R and dense is lower than 1.0.
However, there is a noticeable number of values >1.0, indicating
that some matrices benefit from another format than CSR. We
also found that the results on the RTX 2060 (Figure 5B) are
different in the sense that the ELLPACK-R outperforms in many
cases the CSR format which is represented by the average >1.0.

Comparing the results obtained on the three investigated
CUDA devices supports the claim of Balaprakash et al.

Frontiers in Neuroinformatics | www.frontiersin.org 7 May 2022 | Volume 16 | Article 877945174

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

FIGURE 4 | Achieved performance in GFLOPs on three devices: a NVIDIA K20m (A), a NVIDIA RTX 2060 (B), and a NVIDIA RTX 3080 (C). As for the single thread

CPU (Figure 3) we compare a CSR (blue) and dense (orange) implementation on a 2,000 times 2,000 matrix with varying filling degree. In the range of 60–70% the

dense matrix representation outperforms the CSR which motivated the first stage of our heuristic.

(2018). The performance behavior of a given implementation
can drastically change with evolving hardware. The relative
performance of our ELLPACK-R and dense implementations
toward the CSR implementation indeed shrinks noticeably.

4.3. Automatic Format Selection
In this section, we report on the results of the two strategies
for automatic format selection: the heuristic and the predictive
machine learning approach. We compare the results on the
K20m (Figure 6A), the RTX 2060 (Figure 6B), and the RTX
3080 (Figure 6C). Considering the distribution of the selected
formats, we generally notice that there is no significant
difference between the K20m and the RTX 3080 but the results
of RTX 2060 appears to deviate. Furthermore, the machine
learning model delivers more accurate results than the heuristic,
especially on the RTX 2060. The heuristic tends to select
on all three devices the CSR (blue bars) in too many cases,
in particular on the RTX 2060. As noted earlier, this might
be improved by device-specific thresholds used in the second
stage of the heuristic. The machine learning model was able
to select in 95.67% (K20m), 93.0% (RTX 2060), and 94.83%
(RTX 3080) of the cases the correct format resulting in the
fastest computation time. The selection of the heuristic was
in 87.67% (K20m), 71.67% (RTX 2060), and 77.83% (RTX
3080) of the cases correct. We hypothesize that device-specific
decision thresholds could improve the performance achieved
on the RTX 2060 and RTX 3080, but it would be difficult to
derive these thresholds on all possible hardware. It might be
interesting to note that CSR format was in 63.83% (K20m),
44.67% (RTX 2060), and 60.17% (RTX 3080) of the cases the
correct format.

4.4. Validation and Stability of the Machine
Learning Approach
The performance of the ML approach depends on the correct
selection of features and the size of the dataset dedicated to
training and testing. However, the choice of a basic cross-
validation method (random split of the data into 80% for
training and 20% for testing) is not sufficient to estimate the
appropriateness of the trained model, since it may have by
coincidence excellent results only on the part selected for testing
(20%). To avoid this issue, we have opted for the repetitive cross-
validation method (Section 4.4.1). To define the proper size of
the data required to obtain a stable model (a high accuracy
with the lowest standard deviation), we also perform tests (using
the repetitive cross-validation method) on different dataset sizes
(Section 4.4.2).

4.4.1. Cross-Validation
The five-fold cross-validation procedure divides the data set
into five non-overlapping folds. During each iteration of the
process, a fold is retained as a test set, while all others are used
for the training. In the end, a total of five models are fitted
and evaluated on the five retained test sets, and the average
performance accuracy is calculated. This procedure is repeated
ten times, and the mean performance across all folds and all
repetitions is reported.

Figure 7 shows the variation of the performance of the 10
repetitive five-fold cross-validations applied on the dataset of
the NVIDIA K20m. We can see that for the dataset with 3,000
data points, the optimal performance selection rate slightly varies
depending on the fraction of data selected as training set but
retains a high level of correctness over 93% and therefore still
outperforms the heuristic.

Frontiers in Neuroinformatics | www.frontiersin.org 8 May 2022 | Volume 16 | Article 877945175

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

FIGURE 5 | Relative performance of ELLPACK-R and dense matrices in comparison to a CSR averaged across the 3,000 matrices in our dataset. We compare the

results obtained on the NVIDIA K20m (A), the NVIDIA RTX 2060 (B), and the NVIDIA RTX 3080 (C). Although CSR is the fastest data structure in many cases, there is

a noticeable number of cases where the other formats appear to be superior. The performance differences between the matrix formats are higher on the Tesla K20m

(A) and the NVIDIA RTX 2060 (B) than on the RTX 3080 (C) especially for the ELLPACK-R matrix format. The orange line depicts the median, the green triangle the

mean and the circle denote outliers.

FIGURE 6 | The distribution of selected formats on three GPUs: NVIDIA K20m (A), NVIDIA RTX 2060 (B), and NVIDIA RTX 3080 (C). We compare the data (left), the

heuristic (middle), and the machine learning model (right) for each GPU. We can see that our heuristic tends to select the compressed sparse row (blue bars) in too

many cases, which leads to lower performance, in particular on the NVIDIA RTX 2060.

4.4.2. Influence of the Size of the Dataset
Generating the dataset can be quite time-consuming: the
generation of the 3,000 data points required 2–3 days in this
case. We therefore performed experiments (multiple repetitive
five-fold cross-validations with varying each time the size of the
dataset) to define the smallest dataset size enabling us to achieve

a good accuracy of the selection of the correct matrix format.
Bayesian optimization using Optuna for 150 trials is used to select
the best architecture in each case.

Figure 8 shows the accuracy variation of the optimal format
selection with respect to the number of samples used for training.
As one would expect, the performance increases with the size

Frontiers in Neuroinformatics | www.frontiersin.org 9 May 2022 | Volume 16 | Article 877945176

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

FIGURE 7 | Ten repeated cross-validations on 3,000 data samples recorded on the NVIDIA Tesla K20m. The dataset is divided into five non-overlapping folds. During

each validation stage, four folds containing 2,400 samples are used for training, and the remaining fold with 600 units is used for testing the accuracy of the best

format selection. The middle (orange) line of the box is the median, the green triangle the mean and the circles denote outliers.

of the dataset. However, already with one-third of the dataset
we could achieve an accuracy of 92.94% for the selection of the
optimal format.

5. DISCUSSION

Continuous transmission is a dominating computation kernel
for rate-coded neural networks (Dinkelbach et al., 2012) that
corresponds to the sparse matrix vector multiplication, a
well-investigated topic by many researchers over decades on
various hardware platforms. In this article, we investigated the
application of the ELLPACK-R and dense format derived from
the literature and study their performance within the neural
simulation framework ANNarchy.

As stated in the literature, there is no “one-size-fits-all”
solution, although the CSR format achieves a good performance
in many cases, which was also shown, e.g., by Benatia et al. (2018)
or Chen et al. (2019). Using a larger set of connection matrices,
we have shown that the usage of different matrix formats can
help to improve the performance on CPUs as well as GPUs by
distinguishing between sparse and dense matrices (Section 4.1).
For GPUs, we further studied the ELLPACK-R format proposed
by Vázquez et al. (2011) in addition to our CSR implementation
(Dinkelbach et al., 2012). In Section 4.2, we have shown that CSR
is in many cases the best format, but it can be outperformed
by a noticeable factor by the ELLPACK-R and the dense matrix

format. In summary, the availability of different sparse matrix
formats can be used to improve the performance but the selection
is not trivial, as expected from the literature (e.g., Liu and Vinter,
2015a).

In the case of heavy simulations, a user-friendly simulation
environment should measure and select the right sparse matrix
format for a specific network. We presented a first automatic
selection based on some simple rules which we derived from
experiments and which is implemented in ANNarchy 4.7.1.1.
We have also shown that this heuristic-based selection can be
improved by the help of machine learning techniques. Our
approach using machine learning techniques is comparable to
the work of Lehnert et al. (2016) and Benatia et al. (2018).
Based on a set of features, we build up a neural network which
predicts the performance of the format. Lehnert et al. (2016)
used computational time for the performance evaluation while
we used GFLOPs as a metric. Both our work and that of Lehnert
et al. (2016) uses regression for the prediction of the performance
of the data format. Contrary to the previously discussed works,
we do not use a fixed network but use the hyperparameter
optimization framework Optuna to find a suitable network
configuration for a given dataset. There is an important caveat:
Comparing matrix formats using FLOPS as a metric generates a
hardware dependency (Langr and Tvrdik, 2016), which we also
observed in our recorded data (see Section 4.2). This means that
the users need to generate the dataset on their own machine,
which requires several hours up to a few days for the data

Frontiers in Neuroinformatics | www.frontiersin.org 10 May 2022 | Volume 16 | Article 877945177

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

FIGURE 8 | Variation of the accuracy of the optimal format selection with respect to the number of samples used for training (NVIDIA Tesla K20m). Each measurement

and its corresponding standard deviation represents the average of 10 repeated cross-validations.

generation, although the results in Section 4.4.2 suggest that the
number of required data points can be reduced.

The present work demonstrates the performance
improvements that can be reached by using the ELLPACK-
R format in ANNarchy. However, the ELLPACK/ELLPACK-R
formats require more memory caused by padding zeros for
strongly varying row lengths and therefore, Bell and Garland
(2009) proposed a Hybrid format, which combines an ELLPACK
format for most entries, and those elements which are in the
long rows are stored in a separate coordinate format. This was
not the case in our dataset, and its not clear to us how relevant
this is for neurocomputational models, as this would mean that
the number of synapses per neuron vary strongly within one
projection. The present CSR implementation could be further
optimized for short rows using the CSR-stream implementation
proposed by Greathouse and Daga (2014), although this
introduces another hyper parameter: the number of nonzeros
processed by one warp. The CSR5 storage format (Liu and
Vinter, 2015a) introduces additional two hyperparameters but
should be efficient for SIMD-capable CPUs, GPUs, or other
accelerators like the Xeon Phi, while introducing a memory
overhead around 2% of the original CSR (Liu and Vinter, 2015b).

Other works focus on the grouping of rows into computation
blocks, i.e., by slicing the matrix into pieces, as done for the
CSR (e.g., Oberhuber et al., 2011) or the ELLPACK format (e.g.,
Monakov et al., 2010; Kreutzer et al., 2014). Kreutzer et al.
(2014) highlight that their modified sliced ELLPACK format is

applicable to GPUs as well as SIMD-capable CPUs. Another class
of formats proposed in the literature are blocked formats such
as the blocked compressed sparse row (BSR or BCSR, e.g., Choi
et al., 2010; Verschoor and Jalba, 2012; Eberhardt and Hoemmen,
2016; Benatia et al., 2018) or the blocked ELLPACK format (Choi
et al., 2010). The idea is thatmatrix is split into several small dense
matrices. As these sub-matrices are dense, a coalesced and fully
cacheable access to the dense vector is possible, which is desirable
for performance (Temam and Jalby, 1992; Im and Yelick, 2001;
Im et al., 2004; Goumas et al., 2008; Williams et al., 2009). These
formats appear to be efficient if the nonzeros in a matrix are
clustered, although the selection of the correct block size can
be challenging (Im and Yelick, 2001). For matrices where the
nonzeros are widely spread, the memory overhead will be too
large and no performance benefit can be expected in comparison
to other formats.

The present work focuses on the performance prediction
for sparse matrix formats on GPUs. Nonetheless, the same
procedure can be applied for CPUs. Preliminary tests with the
current ANNarchy 4.7.1 release has shown that the performance
differences between formats are small in comparison to
the differences observed on GPU. This hardens the correct
performance prediction and opens the question of whether the
approach is necessary at all. It is important to note that the
recent implementations of our CPU formats are not comparable
to highly optimized libraries like OSKI, SPARSITY, or ATLAS,
as low-level optimization like padding, local store blocking or

Frontiers in Neuroinformatics | www.frontiersin.org 11 May 2022 | Volume 16 | Article 877945178

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

register blocking (e.g., presented in Im and Yelick, 2001; Im
et al., 2004; Williams et al., 2009) are still missing. We started
to apply such optimizations, e.g., hand-written SpMV which
improve the performance (see Section 4.1), but this increases the
complexity of the code generation noticeably. Nonetheless, we
have implemented in the ANNarchy 4.7.1.1 the heuristic selection
of dense matrices instead of sparse matrices.

Brian2 (Stimberg et al., 2019), GeNN (Yavuz et al., 2016) as
well as ANNarchy do not switch the floating precision from
double to single precision automatically. As highlighted by
Hopkins et al. (2020), this could lead to numerical errors whose
importance need to be evaluated by the modeler. However,
the performance improvement on GPUs and CPUs (especially
using SIMD extension) could be noticeable. The reduction of
precision can improve the performance of the SpMV, e.g., shown
by Bell and Garland (2009) or Greathouse and Daga (2014) and
is therefore beneficial for the simulation of rate-coded models
(Dinkelbach et al., 2012). Yavuz et al. (2016) have shown that
the choice of single precision in context of two spiking models
at different scales can improve the performance.

The presented findings may also be of interest for the
implementation of spiking networks. The currently available
spiking simulators use either CSR-like (e.g., Brian2, GeNN,
coreNeuron; Kumbhar et al., 2019), dense (e.g., GeNN) or
object-oriented (NEST) representation of synapses, while also
using code generation approaches (see Blundell et al., 2018
for a recent review). At the very least, the differentiation
between sparse and dense matrices could be helpful for some
models as shown by Yavuz et al. (2016), as the usage of
dense matrices does not break coalescence as CSR does (e.g.,
Dinkelbach et al., 2012; Yavuz et al., 2016). The computational
load induced by the spike propagation can be quite low in
comparison to the update of neural equations (Plesser and
Diesmann, 2009), so there is a chance that the overhead
induced by the sparse matrix format can have a negative impact
on performance.

Ongoing work will target the application of other sparse
matrix formats for the simulation of rate-coded and spiking
models in ANNarchy. For rate-coded models, this could be
formats which use structural properties, such as the diagonal
format. Some neuro-computational models developed in our
lab (e.g., Jamalian et al., 2017) contain matrices which have
a banded matrix structure. A promising direction may be the
implementation of sliced matrix formats (e.g., Kreutzer et al.,
2014). For spiking models, the compressed sparse blocks format
(CSB, Buluç et al., 2009, 2011) could be beneficial for the

implementation of spiking models with plasticity rules. The CSB
format is proposed to be suitable for the SpMV as well as the
transposed SpMV, an uncommon property for SpMV formats
(Buluç et al., 2009; Steinberger et al., 2016). With respect to
the machine learning model, reducing the number of required
data points is critical, as users will likely not be patient enough
to gather the necessary data. Active learning methods (Cohn
et al., 1996) may be used to allow the ML network to ask for
additional samples where its uncertainty is maximal, focusing
data generation to the most interesting regions.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found at: Neural simulator
ANNarchy: https://github.com/ANNarchy/ANNarchy
(zenodo doi: 10.5281/zenodo.6417924); Scripts for
simulation/analysis: https://github.com/hamkerlab/
Dinkelbach2022_ANNarchyAutoTuning (zenodo doi: 10.
5281/zenodo.6534573).

AUTHOR CONTRIBUTIONS

HD and B-EB designed and performed the research,
programming, and data analysis. JV and FH guided the
research. FH acquired the funding. HD writing first draft.
HD, B-EB, JV, and FH writing, reviewing, and editing.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by the Deutsche
Forschungsgemeinschaft (DFG) with the project Auto-tuning
for neural simulations on different parallel hardware (DFG
HA2630/9-1). The publication of this article was funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) project number 491193532 and the Chemnitz
University of Technology.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2022.877945/full#supplementary-material

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016).
“Tensorflow: a system for large-scale machine learning,” in Proceedings of the

12th USENIX Conference on Operating Systems Design and Implementation,

OSDI’16 (Savanna, GA: USENIX Association), 265–283.
Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019).

“Optuna: a next-generation hyperparameter optimization framework,”
in Proceedings of the ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (Anchorage, AL: ACM),
2623–2631. doi: 10.1145/3292500.3330701

Balaprakash, P., Dongarra, J., Gamblin, T., Hall, M., Hollingsworth, J. K., Norris,
B., et al. (2018). Autotuning in high-performance computing applications. Proc.
IEEE 106, 2068–2083. doi: 10.1109/JPROC.2018.2841200

Bell, N., and Garland, M. (2009). “Implementing sparse matrix-vector
multiplication on throughput-oriented processors,” in Proceedings of the

Conference on High Performance Computing Networking, Storage and Analysis

- SC ’09 (New York, NY: ACM Press). doi: 10.1145/1654059.1654078

Frontiers in Neuroinformatics | www.frontiersin.org 12 May 2022 | Volume 16 | Article 877945179

https://doi.org/10.5281/zenodo.6417924
https://github.com/hamkerlab/Dinkelbach2022_ANNarchyAutoTuning
https://github.com/hamkerlab/Dinkelbach2022_ANNarchyAutoTuning
https://doi.org/10.5281/zenodo.6534573
https://www.frontiersin.org/articles/10.3389/fninf.2022.877945/full#supplementary-material
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1109/JPROC.2018.2841200
https://doi.org/10.1145/1654059.1654078
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

Benatia, A., Ji, W., Wang, Y., and Shi, F. (2018). BestSF: a sparse meta-format
for optimizing SpMV on GPU. ACM Trans. Architect. Code Optim. 15, 1–27.
doi: 10.1145/3226228

Blundell, I., Brette, R., Cleland, T. A., Close, T. G., Coca, D., Davison, A. P., et al.
(2018). Code generation in computational neuroscience: a review of tools and
techniques. Front. Neuroinform. 12, 68. doi: 10.3389/fninf.2018.00068

Buluç, A., Fineman, J. T., Frigo, M., Gilbert, J. R., and Leiserson, C. E. (2009).
“Parallel sparse matrix-vector and matrix-transpose-vector multiplication
using compressed sparse blocks,” in Proceedings of the Twenty-First Annual

Symposium on Parallelism in Algorithms and Architectures - SPAA ’09 (Calgary,
AB), 233. doi: 10.1145/1583991.1584053

Buluç, A., Williams, S., Oliker, L., and Demmel, J. (2011). “Reduced-bandwidth
multithreaded algorithms for sparse matrix-vector multiplication,”
in Proceedings - 25th IEEE International Parallel and Distributed

Processing Symposium, IPDPS 2011 (Anchorage, AL: IEEE), 721–733.
doi: 10.1109/IPDPS.2011.73

Chen, S., Fang, J., Chen, D., Xu, C., and Wang, Z. (2019). “Adaptive optimization
of sparse matrix-vector multiplication on emerging many-core architectures,”
in Proceedings - 20th International Conference on High Performance Computing

and Communications, 16th International Conference on Smart City and 4th

International Conference on Data Science and Systems, HPCC/SmartCity/DSS

2018 (Exeter), 649–658. doi: 10.1109/HPCC/SmartCity/DSS.2018.00116
Choi, J. W., Singh, A., and Vuduc, R. W. (2010). Model-driven autotuning

of sparse matrix-vector multiply on GPUs. ACM Sigplan Not. 45, 115.
doi: 10.1145/1837853.1693471

Cohn, D. A., Ghahramani, Z., and Jordan, M. I. (1996). Active learning with
statistical models. J. Artif. Intell. Res. 4, 129–145. doi: 10.1613/jair.295

Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., et al.
(2008). “Stencil computation optimization and auto-tuning on state-of-the-
art multicore architectures,” in 2008 SC - International Conference for High

Performance Computing, Networking, Storage and Analysis, SC 2008 (Austin,
TX). doi: 10.1109/SC.2008.5222004

Dinkelbach, H. Ü., Vitay, J., Beuth, F., and Hamker, F. H. (2012). Comparison
of GPU-and CPU-implementations of mean-firing rate neural networks
on parallel hardware. Network 23, 212–236. doi: 10.3109/0954898X.2012.
739292

Dinkelbach, H. Ü., Vitay, J., and Hamker, F. H. (2019). “Scalable simulation
of rate-coded and spiking neural networks on shared memory systems,” in
2019 Conference on Cognitive Computational Neuroscience (Berlin), 526–529.
doi: 10.32470/CCN.2019.1109-0

Eberhardt, R., and Hoemmen, M. (2016). “Optimization of block sparse matrix-
vector multiplication on shared-memory parallel architectures,” in Proceedings

- 2016 IEEE 30th International Parallel and Distributed Processing Symposium,

IPDPS 2016 (Chicago, IL: IEEE), 663–672. doi: 10.1109/IPDPSW.2016.42
Filippone, S., Cardellini, V., Barbieri, D., and Fanfarillo, A. (2017). Sparse

matrix-vector multiplication on GPGPUs. ACM Trans. Math. Softw. 43, 1–49.
doi: 10.1145/3017994

Ganapathi, A., Datta, K., Fox, A., and Patterson, D. (2009). “A case for machine
learning to optimize multicore performance,” in 1st USENIX Workshop on Hot

Topics in Parallelism, HotPar 2009 2009 (Berkeley, CA).
Goumas, G., Kourtis, K., Anastopoulos, N., Karakasis, V., and Koziris, N. (2008).

“Understanding the performance of sparse matrix-vector multiplication,”
in 16th Euromicro Conference on Parallel, Distributed and Network-Based

Processing, 2008 (Toulouse), 283–292. doi: 10.1109/PDP.2008.41
Greathouse, J. L., and Daga, M. (2014). “Efficient sparse matrix-vector

multiplication on gpus using the CSR storage format,” in International

Conference for High Performance Computing, Networking, Storage and Analysis,

SC (New Orleans, LA), 769–780. doi: 10.1109/SC.2014.68
Guo, P., and Wang, L. (2010). “Auto-tuning CUDA parameters for sparse

matrix-vector multiplication on GPUs,” in Proceedings - 2010 International

Conference on Computational and Information Sciences, ICCIS 2010 (Chengdu),
1154–1157. doi: 10.1109/ICCIS.2010.285

Hopkins, M., Mikaitis, M., Lester, D. R., and Furber, S. (2020).
Stochastic rounding and reduced-precision fixed-point arithmetic
for solving neural ordinary differential equations. Philos.

Trans. R. Soc. A 378, 20190052. doi: 10.1098/rsta.2019.
0052

Hou, K., Feng, W. C., and Che, S. (2017). “Auto-tuning strategies for
parallelizing sparse matrix-vector (spmv) multiplication on multi- and many-
core processors,” in Proceedings - 2017 IEEE 31st International Parallel

and Distributed Processing Symposium Workshops, IPDPSW 2017, 713–722.
doi: 10.1109/IPDPSW.2017.155

Im, E.-J., and Yelick, K. (2001). Optimizing sparse matrix computations for
register reuse in Sparsity. Lect. Notes Comput. Sci. 2073/2001, 127–136.
doi: 10.1007/3-540-45545-0_22

Im, E. J., Yelick, K., and Vuduc, R. (2004). Sparsity: Optimization framework
for sparse matrix kernels. Int. J. High Perf. Comput. Appl. 18, 135–158.
doi: 10.1177/1094342004041296

Jamalian, A., Bergelt, J., Dinkelbach, H. Ü., and Hamker, F. H. (2017).
“Spatial attention improves object localization: a biologically plausible neuro-
computational model for use in virtual reality,” in 2017 IEEE International

Conference on Computer Vision Workshops (ICCVW) (Venice), Vol. 2018,
2724–2729. doi: 10.1109/ICCVW.2017.320

Kincaid, D. R., Oppe, T. C., and Young, D. M. (1989). Itpackv 2d User’s Guide,

Technical Report CNA-232. Technical report, Center for Numerical Analysis.
University of Texas at Austin.

Kreutzer, M., Hager, G., Wellein, G., Fehske, H., and Bishop, A. R. (2014). A
unified sparse matrix data format for efficient general sparse matrix-vector
multiplication on modern processors with wide SIMD units. SIAM J. Sci.

Comput. 36, C401–C423. doi: 10.1137/130930352
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “ImageNet classification

with deep convolutional neural networks,” in Proceedings of the 25th

International Conference on Neural Information Processing Systems (Lake
Tahoe, NV), 1097–1105.

Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King, J., Delalondre, F., et al.
(2019). Coreneuron: an optimized compute engine for the neuron simulator.
Front. Neuroinform. 13, 63. doi: 10.3389/fninf.2019.00063

Langr, D., and Tvrdik, P. (2016). Evaluation criteria for sparse matrix
storage formats. IEEE Trans. Parallel Distrib. Syst. 27, 428–440.
doi: 10.1109/TPDS.2015.2401575

Lehnert, C., Berrendorf, R., Ecker, J. P., and Mannuss, F. (2016). “Performance
prediction and ranking of SpMV kernels on GPU architectures,” in Proceedings

of the 22nd International Conference on Euro-Par 2016: Parallel Processing,
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) (Grenoble), 9833.
doi: 10.1007/978-3-319-43659-3_7

Li, J., Tan, G., Chen, M., and Sun, N. (2013). “SMAT: an input adaptive auto-
tuner for sparse matrix-vector multiplication,” in Proceedings of the ACM

SIGPLAN Conference on Programming Language Design and Implementation

(PLDI) (Seattle, WA: ACM), 117–126. doi: 10.1145/2491956.2462181
Liu, W., and Vinter, B. (2015a). “CSR5: an efficient storage format for cross-

platform sparse matrix-vector multiplication,” in Proceedings of the 29th

ACM on International Conference on Supercomputing (New York, NY: ACM),
339–350. doi: 10.1145/2751205.2751209

Liu, W., and Vinter, B. (2015b). Speculative segmented sum for sparse matrix-
vector multiplication on heterogeneous processors. Parallel Comput. 49,
179–193. doi: 10.1016/j.parco.2015.04.004

Monakov, A., Lokhmotov, A., and Avetisyan, A. (2010). “Automatically tuning
sparse matrix-vector multiplication for GPU architectures,” in International

Conference on High-Performance Embedded Architectures and Compilers,
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) (Pisa), 5952.
doi: 10.1007/978-3-642-11515-8_10

Oberhuber, T., Suzuki, A., and Vacata, J. (2011). New row-grouped CSR format
for storing sparse matrices on gpu with implementation in CUDA. Acta
Techn. CSAV 56, 447–466. Available online at: http://journal.it.cas.cz/56(11)4-
Contents/56(11)4c.pdf

Pichel, J. C., and Pateiro-Lopez, B. (2018). “A new approach for sparse matrix
classification based on deep learning techniques,” in Proceedings - IEEE

International Conference on Cluster Computing, ICCC (Belfast: IEEE), 46–54.
doi: 10.1109/CLUSTER.2018.00017

Plesser, H. E., and Diesmann, M. (2009). Simplicity and efficiency
of integrate-and-fire neuron models. Neural Comput. 21, 353–359.
doi: 10.1162/neco.2008.03-08-731

Frontiers in Neuroinformatics | www.frontiersin.org 13 May 2022 | Volume 16 | Article 877945180

https://doi.org/10.1145/3226228
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.1145/1583991.1584053
https://doi.org/10.1109/IPDPS.2011.73
https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00116
https://doi.org/10.1145/1837853.1693471
https://doi.org/10.1613/jair.295
https://doi.org/10.1109/SC.2008.5222004
https://doi.org/10.3109/0954898X.2012.739292
https://doi.org/10.32470/CCN.2019.1109-0
https://doi.org/10.1109/IPDPSW.2016.42
https://doi.org/10.1145/3017994
https://doi.org/10.1109/PDP.2008.41
https://doi.org/10.1109/SC.2014.68
https://doi.org/10.1109/ICCIS.2010.285
https://doi.org/10.1098/rsta.2019.0052
https://doi.org/10.1109/IPDPSW.2017.155
https://doi.org/10.1007/3-540-45545-0_22
https://doi.org/10.1177/1094342004041296
https://doi.org/10.1109/ICCVW.2017.320
https://doi.org/10.1137/130930352
https://doi.org/10.3389/fninf.2019.00063
https://doi.org/10.1109/TPDS.2015.2401575
https://doi.org/10.1007/978-3-319-43659-3_7
https://doi.org/10.1145/2491956.2462181
https://doi.org/10.1145/2751205.2751209
https://doi.org/10.1016/j.parco.2015.04.004
https://doi.org/10.1007/978-3-642-11515-8_10
http://journal.it.cas.cz/56(11)4-Contents/56(11)4c.pdf
http://journal.it.cas.cz/56(11)4-Contents/56(11)4c.pdf
https://doi.org/10.1109/CLUSTER.2018.00017
https://doi.org/10.1162/neco.2008.03-08-731
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dinkelbach et al. Auto-Selection of the Matrix Format in ANNarchy

Sedaghati, N., Ashari, A., Pouchet, L.-N., Parthasarathy, S., and Sadayappan,
P. (2015). “Characterizing dataset dependence for sparse matrix-vector
multiplication on GPUs,” in Proceedings of the 2nd Workshop on Parallel

Programming for Analytics Applications - PPAA 2015 (San Francisco, CA),
17–24. doi: 10.1145/2726935.2726941

Steinberger, M., Derlery, A., Zayer, R., and Seidel, H. P. (2016). “How naive is
naive SPMV on the GPU?,” in 2016 IEEEHigh Performance Extreme Computing

Conference, HPEC 2016 (Waltham, MA). doi: 10.1109/HPEC.2016.7761634
Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and

efficient neural simulator. eLife 8, e47314. doi: 10.7554/eLife.47314.028
Su, B.-Y., and Keutzer, K. (2012). “clSpMV: A cross-platform openCL

SpMV framework on GPUs,” in Proceedings of the 26th ACM

international conference on Supercomputing - ICS ’12 (Venice: ACM),
353. doi: 10.1145/2304576.2304624

Temam, O., and Jalby, W. (1992). “Characterizing the behavior of sparse
algorithms on caches,” in Proceedings Supercomputing ’92 (Minneapolis, MN),
578–587. doi: 10.1109/SUPERC.1992.236646

Vázquez, F., Fernández, J. J., and Garzón, E. M. (2011). A new approach for sparse
matrix vector product on NVIDIA GPUs. Concurr. Comput. 23, 815–826.
doi: 10.1002/cpe.1658

Vázquez, F., Fernández, J. J., and Garzón, E. M. (2012). Automatic tuning
of the sparse matrix vector product on GPUs based on the ELLR-
T approach. Parallel Comput. 38, 408–420. doi: 10.1016/j.parco.2011.
08.003

Verschoor, M., and Jalba, A. C. (2012). Analysis and performance estimation of the
conjugate gradient method on multiple GPUs. Parallel Comput. 38, 552–575.
doi: 10.1016/j.parco.2012.07.002

Vitay, J., Dinkelbach, H. Ü., and Hamker, F. H. (2015). Annarchy: a code
generation approach to neural simulations on parallel hardware. Front.

Neuroinformatics 9, 19. doi: 10.3389/fninf.2015.00019

Vuduc, R., Demmel, J. W., and Yelick, K. A. (2005). OSKI: a library
of automatically tuned sparse matrix kernels. J. Phys. 16, 521–530.
doi: 10.1088/1742-6596/16/1/071

Whaley, R. C., Petitet, A., and Dongarra, J. J. (2001). Automated emperical
optimization of software and the atlas project. Parallel Comput. 27, 3–35.
doi: 10.1016/S0167-8191(00)00087-9

Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., and Demmel, J. (2009).
Optimization of sparse matrix-vector multiplication on emerging multicore
platforms. Parallel Comput. 35, 178–194. doi: 10.1016/j.parco.2008.12.006

Yavuz, E., Turner, J., and Nowotny, T. (2016). Genn: a code generation framework
for accelerated brain simulations. Sci. Rep. 6, 18854. doi: 10.1038/srep18854

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Dinkelbach, Bouhlal, Vitay and Hamker. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 14 May 2022 | Volume 16 | Article 877945181

https://doi.org/10.1145/2726935.2726941
https://doi.org/10.1109/HPEC.2016.7761634
https://doi.org/10.7554/eLife.47314.028
https://doi.org/10.1145/2304576.2304624
https://doi.org/10.1109/SUPERC.1992.236646
https://doi.org/10.1002/cpe.1658
https://doi.org/10.1016/j.parco.2011.08.003
https://doi.org/10.1016/j.parco.2012.07.002
https://doi.org/10.3389/fninf.2015.00019
https://doi.org/10.1088/1742-6596/16/1/071
https://doi.org/10.1016/S0167-8191(00)00087-9
https://doi.org/10.1016/j.parco.2008.12.006
https://doi.org/10.1038/srep18854
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

ORIGINAL RESEARCH
published: 30 May 2022

doi: 10.3389/fninf.2022.883360

Frontiers in Neuroinformatics | www.frontiersin.org 1 May 2022 | Volume 16 | Article 883360

Edited by:

James B. Aimone,

Sandia National Laboratories (DOE),

United States

Reviewed by:

Oliver Rhodes,

The University of Manchester,

United Kingdom

Fredrick Henry Rothganger,

Sandia National Laboratories,

United States

*Correspondence:

Srijanie Dey

srijanie.dey@wsu.edu

Alexander Dimitrov

alex.dimitrov@wsu.edu

Received: 25 February 2022

Accepted: 25 April 2022

Published: 30 May 2022

Citation:

Dey S and Dimitrov A (2022) Mapping

and Validating a Point Neuron Model

on Intel’s Neuromorphic Hardware

Loihi. Front. Neuroinform. 16:883360.

doi: 10.3389/fninf.2022.883360

Mapping and Validating a Point
Neuron Model on Intel’s
Neuromorphic Hardware Loihi
Srijanie Dey* and Alexander Dimitrov*

Department of Mathematics, Washington State University, Vancouver, WA, United States

Neuromorphic hardware is based on emulating the natural biological structure of the

brain. Since its computational model is similar to standard neural models, it could serve as

a computational accelerator for research projects in the field of neuroscience and artificial

intelligence, including biomedical applications. However, in order to exploit this new

generation of computer chips, we ought to perform rigorous simulation and consequent

validation of neuromorphic models against their conventional implementations. In this

work, we lay out the numeric groundwork to enable a comparison between neuromorphic

and conventional platforms. “Loihi”—Intel’s fifth generation neuromorphic chip, which is

based on the idea of Spiking Neural Networks (SNNs) emulating the activity of neurons

in the brain, serves as our neuromorphic platform. The work here focuses on Leaky

Integrate and Fire (LIF) models based on neurons in the mouse primary visual cortex

and matched to a rich data set of anatomical, physiological and behavioral constraints.

Simulations on classical hardware serve as the validation platform for the neuromorphic

implementation. We find that Loihi replicates classical simulations very efficiently with high

precision. As a by-product, we also investigate Loihi’s potential in terms of scalability and

performance and find that it scales notably well in terms of run-time performance as the

simulated networks become larger.

Keywords: neuromorphic computing, LIF models, neural simulations, validation, performance analysis

1. INTRODUCTION

The human brain is a rich complex organ made up of numerous neurons and synapses. Replicating
the brain structure and functionality in classical hardware is an ongoing challenge given the
complexity of the brain and limitations of hardware. The advent of supercomputers now allows for
complex neural models, but at a huge cost of both software complexity and energy consumption.

A recent intense focus on brain studies, with the BRAIN initiative at the US (Insel et al., 2013),
the Human Brain Project (HBP) in Europe (Markram et al., 2011), and philanthropic endeavors like
Janelia Research Campus (Winnubst et al., 2019), and the Allen Institute for Brain Science (AIBS)
(Lein et al., 2007), has produced a wealth of new data and knowledge, from records of neuronal and
network dynamics, to fine-grained data on network micro- and nano-structure, bringing in the era
of big neural data. At the same time, advances in electronics and the search for post-von Neumann
computational paradigms has led to the creation of neuromorphic systems like Intel’s Loihi (Davies
et al., 2018), IBM’s TrueNorth (Akopyan et al., 2015; DeBole et al., 2019; Löhr et al., 2020) and
HBP’s SpiNNaker (Khan et al., 2008), and BrainScaleS (Grübl et al., 2020).

182

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.883360
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.883360&domain=pdf&date_stamp=2022-05-30
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:srijanie.dey@wsu.edu
mailto:alex.dimitrov@wsu.edu
https://doi.org/10.3389/fninf.2022.883360
https://www.frontiersin.org/articles/10.3389/fninf.2022.883360/full

Dey and Dimitrov Point Neuron Model Simulations in Loihi

Neuromorphic chips, as the name suggests—“like the brain”—
can mimic the brain’s function in a truer sense as their design
is analogous to the brain (Thakur et al., 2018; Roy et al., 2019).
Inspired by its architecture, we work on developing a principled
approach toward obtaining simulations of biologically relevant
neural network models on a novel neuromorphic commercial
hardware platform.

Computers today are limited in this respect because of the way
they have been built historically and the way they process data
leading toward more energy and resource consumption in order
to maintain versatility (Nawrocki et al., 2016; Ou et al., 2020).
Neuromorphic chips on the other hand claim to be faster and
more efficient for a set of specialized tasks (Bhuiyan et al., 2010;
Sharp and Furber, 2013). In this study, we lay out a numeric
groundwork to validate this assertion based on neural models
derived from the primary visual cortex (VISp) of themouse brain,
as seen in recent work done on SpiNNaker (Knight and Furber,
2016; Rhodes et al., 2019). Intel’s neuromorphic chip “Loihi”
serves as our neuromorphic platform. Results obtained in Loihi
are validated against classical simulations (Rossant et al., 2010;
Nandi et al., 2020; Wang et al., 2020) given by AIBS’s software
package the Brain Modeling Toolkit (BMTK) (Dai et al., 2020).

In this manuscript we focus on the Loihi architecture, as
it is at present one of the most powerful platforms with
specialized digital hardware and significant software support.
While TrueNorth has a similar combination of hardware and
programming support, its inter-neuron connectivity capability is
relatively limited; Loihi approaches the human-scale connectivity
density of interest to our research. SpiNNaker has similar
capabilities, but is constructed of standard CPU hardware. Loihi’s
capabilities on the other hand, are built-in on a chip, thus
forcing us to explore new programming paradigms. And recent
and current state of the art hybrid analog-digital platforms, like
Neurogrid (Benjamin et al., 2014), Braindrop (Neckar et al.,
2019), DYNAP-SE2 (Moradi et al., 2017), and BrainScaleS(2)
(Pehle et al., 2022) are beyond the scope of this manuscript.
However, we believe that the simulation and programming
paradigms developed on the Loihi platform can generalize
to these analog platforms as well, and thus decrease the
development time on these unfamiliar architectures.

We present one of our main motivations for this project
in Figure 1, which highlights Loihi’s advantage in performance
when compared to standard simulations. Overall, our initial
implementation indicates that Loihi is quite efficient in terms
of compute-time in context of large brain network simulations
and thus shapes our central motivation for this work (see
Figure 1 and Table 3). This manuscript mainly focuses on
the trade-offs necessitated by these implementations, that is,
how precise are the Loihi simulations when validated against
BMTK simulations, given their very different hardware and
programming architectures?

As a starting point, we focus on a class of neural network
building blocks: point neuronal models as used in large AIBS
simulations of biological neural networks. We do so because
the Generalized Leaky Integrate and Fire Models (GLIFs, Teeter
et al., 2018) have been found to be appropriate for reproducing
cellular data under standardized physiological conditions. The

FIGURE 1 | As the network size increases, Loihi outperforms consistently in

terms of time. The figure shows runtime comparison of 500 ms of dynamics

for up to 20,000 neurons for Loihi and BMTK, with the values scaled by the

respective smallest runtime. Loihi has a maximum runtime of up to 12 ms,

whereas BMTK runtime goes up to 273 s (See Table 3 for the explicit runtime

values and Section 4.4 for further details about the network.).

data used for this study is made available by the AIBS
(AIBS, 2020).

The paper is organized as follows. In Section 2, we describe
in detail the features of Loihi and the differences between
the neuromorphic and classical hardware that form the basis
for this study. Section 3 explains the implementation of the
continuous LIF equation on classical computational architecture
using BMTK vs. the discrete Loihi setting. Also, we list the
validation methods and the cost function that is used to draw
comparisons between the implementations. In Section 4, we list
out and explain the various results leading to a qualitative and
quantitative assessment between the two platforms based in part
on methods from Gutzen et al. (2018). Finally, Section 5 lays the
ground for future work with expected improvements based on
the second generation of the Loihi chip, Loihi 2 (Intel, 2022).

2. COMPARISON BETWEEN CLASSICAL
AND NEUROMORPHIC PLATFORMS

At present, various simulators are available for implementing
spiking neural networks (Brette et al., 2008). In this section, we
lay out the details of the mathematical model and the platforms
we use for our work. For the classical simulation, we use the
Brain Modeling Toolkit (BMTK) (Dai et al., 2020) developed
by the AIBS. Being open source, these resources enable us to
experiment with a varied range of data and thus support our
extensive validation of neuronal models in Loihi. Intel’s fifth-
generation chip Loihi provides us with the tools to implement
and test out the various neuromorphic features. The output
provided by Loihi simulations is then compared to the output of
classical simulations implemented in BMTK.

2.1. The Brain Modeling Toolkit (BMTK)
The BMTK is a python-based software package for creating and
simulating large-scale neural networks. It supports models of

Frontiers in Neuroinformatics | www.frontiersin.org 2 May 2022 | Volume 16 | Article 883360183

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dey and Dimitrov Point Neuron Model Simulations in Loihi

different resolutions, namely, Biophysical Models, Point Models,
Filter Models, and Population Models along with the use of the
rich data sets of the Allen Cells Database (Lein et al., 2007;
AIBS, 2020). It leverages themodeling file format SONATAwhich
includes details on cell, connectivity and activity properties of a
network along with being compatible with the neurophysiology
data format Neurodata Without Borders (NWB), thus allowing
easy access to a vast repertoire of experimental data.

In this study, we work with the Point Neuron Models with
simulations supported by the BMTK module PointNet via NEST
2.16 (Kunkel et al., 2017; Linssen et al., 2018). For analysis and
visualization, we use the HDF5 output format, underlying both
SONATA and NWB’s spike and time series storage.

The classical BMTK simulation are instantiated and run on
a single node of Kamiak, the institutional high performance
computing cluster. A typical Kamiak node contains 2 Intel Xeon
E5-2660 v3 CPUs at 2.60 GHz, with 20 cores and 128–256 GB
RAM (CIRC and WSU, 2021).

2.2. Loihi
Neuromorphic hardware inspired by the structure and
functionality of the brain, envisioned to provide advantages
such as low power consumption, high fault tolerance and
massive parallelism for the next generation of computers, is
called neuromorphic hardware. Toward the end of 2017, Intel
Corporation unveiled its experimental neuromorphic chip called
Loihi. We provide a summary of the platform here.

As of its 2020 rendition, the version on which these results
were evaluated, Loihi is a 60-mm2 chip that implements 131,072
leaky-integrate-and-fire neurons. According to Davies et al.
(2018), it uses an asynchronous spiking neural network (SNN),
comprising of 128 neuromorphic cores, each with 1,024 neural
computational units; 3 × 86 cores; along with several off-chip
communication interfaces that provide connectivity to other
chips. As Loihi advances the modeling of SNNs in silicon,
it comprises of a large number of features necessary for
their implementation viz., hierarchical connectivity, dendritic
compartments, synaptic delays and synaptic learning rules. Each
neuron is represented as a compartment in the Loihi architecture,
i.e., it is designed to resemble an actual biological neuron
model comprising of all the functional units (Figure 2). The
SYNAPSE unit processes all the incoming spikes from the
previous compartment/neuron and captures the synaptic weight
from the memory. The DENDRITE unit updates the different
state variables. The AXON unit generates the spike message to be
carried ahead by the fan out cores. The LEARNING unit updates
the synaptic weights based on a learning rule and is not used in
this project.

The aim of this study is to establish the groundwork required
to execute an ambitious plan of simulating about ∼250,000
neurons with ∼500M synapses in the future, which encapsulates
much of the experimentally observed dynamics in the mouse
visual cortex available to the AIBS, thus providing a close
functional replica of the mouse visual cortex. Loihi’s specialized
hardware features hold promise for a real-time, low-powered
version of such an implementation.

2.3. Leaky Integrate and Fire Model (LIF)
A typical neuron consists of a soma, dendrites, and a single
axon. Neurons send signals along an axon to a dendrite through
junctions called synapses. The classical Leaky Integrate and Fire
(LIF) equation (Gerstner and Kistler, 2002) is a point neuron
model which reduces much of the neural geometry and dynamics
in order to achieve computational efficiency. It is one of the
simplest and rather efficient representations of the dynamics of
the neuron, while still providing reasonable approximation of
biological neural dynamics for some classes of neurons (Teeter
et al., 2018). It is stated mathematically as:

V ′(t) =
1

C

[

Ie(t)−
1

R
(V(t)− EL)

]

(1)

V(t)← Vr , if V(t) > 2 (2)

where,

V(t) = membrane potential (state)

C = membrane capacitance (parameter)

R = membrane resistance (parameter)

EL = resting potential (parameter)

Ie = trans-membrane current (control and state)

Vr = reset membrane potential

2 = firing threshold

Here, ′ = d/dt, t is time in ms, the membrane potential V(t) of
the neuron is in mV. These specific physical units are followed
based on what the AIBS datasets use to define the respective
physiology measurements. A LIF neuron fires when V(t) > 2,
i.e., the membrane potential exceeds the firing threshold 2 and
subsequently the membrane potential is set to a reset value Vr .

The classical LIF model (point generalized LIF) has been
shown to match well the dynamics of somemouse neurons under
a variety of conditions (Teeter et al., 2018), as listed in the Allen
Cell Types Database (Lein et al., 2007). In addition, this model
matches the LIF abstraction in Loihi to some extent (as Loihi uses
discrete time discrete state dynamics to emulate the continuous
time continuous state dynamics of the model). Thus, we work
with this model throughout this study to establish the basis for
comparison for the two platforms, determine how closely such a
discrete dynamical system can get to simulations of a continuous
dynamical system, validate the neuromorphic implementation
against the ground truth of a standard implementation, and
provide evidence that our neuromorphic platform performs
more efficiently.

2.4. Loihi LIF Model
In an SNN, spiking neurons form the primary processing
elements. The individual neurons are connected through
junctions called synapses and interact with each other through
single-bit events called spikes. Each spike train can be represented
as a list of event times, e.g., as a sum of Dirac delta functions
σ (t) =

∑

i δ(t − ti) where ti is the time of the i-th spike.
Since Loihi encapsulates the working of an SNN, one of the

computational models it implements is a variation of the LIF

Frontiers in Neuroinformatics | www.frontiersin.org 3 May 2022 | Volume 16 | Article 883360184

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dey and Dimitrov Point Neuron Model Simulations in Loihi

FIGURE 2 | Loihi internal neuron model—Time multiplexed pipeline architecture of a neural unit (Figure 4 in Davies et al., 2018). Reproduced from WikiCommons

(2018).

model based on two internal state variables : the synaptic current
and the membrane potential (Davies et al., 2018).

u(t) =
∑

j

wj(αj ∗ σj)(t)+ b (3)

v′(t) = −
1

τv
v(t)+ u(t) (4)

v(t)← 0, if v(t) > θ (5)

where,

v(t) = membrane potential

u(t) = synaptic current

w = synaptic weight

α = synaptic response function

b = constant bias current

τv = time constant

θ = firing threshold

A neuron sends out a spike when its membrane potential exceeds
its firing threshold θ , i.e., v(t) > θ . After a spike occurs, v(t) is
reset to 0. As in the classical LIF model, here ′ = d/dt. However,
time and membrane potential values here are in arbitrary units.

Loihi follows a fixed-size discrete time-step model, similar to
an explicit Euler integration scheme, where the time steps relate
to the algorithmic time of the computation. This algorithmic
time may differ from the hardware execution time. Moreover, to
increase the efficiency of the chip, specific bit-size constraints are
imposed on the state variables. We discuss the ones relevant for
the LIF model implementation in the following section.

3. METHODS

3.1. Model Setup and Integration
The classical LIF model as represented in Equations (1) and (2)
can be rewritten as :

V ′(t) = −
1

τv
V(t)+

1

C

[

Ie(t)+
1

R
EL

]

(6)

where τv = RC is membrane time constant of the neuron.
For a non-homogeneous linear differential equation,

df

dt
= af + g (7)

the solution is given by the “variation of constants” method as :

f (t) = eat
∫ t

0
g(s)e−asds

Comparing Equation (6) to Equation (7), we have,

a =
1

τv

f = V(t)

g =
1

C
(Ie)+

1

τv
(EL)

Here, the postsynaptic current Ie is in the form of an exponent
function. However, calculating the above integral at every step
i.e., at all grid points ti ≤ t proves to be quite expensive.

BMTK uses NEST as backend to implement the above
membrane potential dynamics. To avoid the expensive
computations, NEST chooses to use the linear exact integration
method (Rotter and Diesmann, 1999), given below as follows :

Frontiers in Neuroinformatics | www.frontiersin.org 4 May 2022 | Volume 16 | Article 883360185

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dey and Dimitrov Point Neuron Model Simulations in Loihi

Equation (6) is rewritten as a multidimensional homogeneous
differential equation:

d

dt
y = Ay (8)

where,

A =

























an an−1 · · · · · · a1 0
1 0 · · · 0 0 0

0
. . .

. . .
...

...
...

...
. . .

. . . 0 0 0

0 0
. . . 1 0 0

0 0 · · · 0 1
C

1
−τ

























The solution is given by :

y(t) = eAty0 (9)

yt+h = y(t + h) = eA(t+h)y(0) = eAh · yt (10)

for a fixed time-step h. It saves exorbitant computations
since each evaluated step involves multiplication only, and
intermediate steps between events do not have to be computed.

3.1.1. Mapping Between BMTK and Loihi Models
In this section, we illustrate the primary step of implementing
the BMTK-NEST LIF integration with the Loihi dynamic
computational model. Loihi follows a discrete-state, discrete-
time computational model, similar to an explicit Euler
integration scheme. This allows it more flexibility for
integrating non-linear neural model, but, and unlike NEST’s
exact integration method, Loihi’s engine accumulates errors at
each time step. The time steps in the Loihi model relate to the
algorithmic time of the computation which may differ from
hardware execution time. Following the linear exact numerics in
the NEST implementation, we implement our model in the Loihi
discrete setting using the forward Euler method for guidance, as
discussed below.
Step 1

First, we rewrite the standard LIF model in Equation (1) to
resemble the Loihi form as given in Equation (4). Since Loihi
parameters are unit-less, we introduce a re-scaling parameter
Vs, which converts standard physical units used in BMTK to
Loihi units.

As we compare Equations (2) and (5), it can be seen that for
BMTK the membrane potential reset value is set to Vr whereas it
is set to zero for Loihi. To account for that, we shift the BMTK
representation by Vr . Thus, the forward transformation from
BMTK to Loihi looks as follows :

v = (V − Vr)/Vs (11)

which produces an inverse transformation, to arrive back at the
BMTK values, given by :

V = v · Vs + Vr (12)

Step 2

Substituting the expression in (12) in (1) and isolating v, we get :

V ′(t) =
1

C

[

Ie(t)−
1

R
(V(t)− EL)

]

|V = vVs + Vr H⇒

(13)

v′(t)Vs = −
1

RC
(vVs + Vr − EL)+

1

C
Ie(t) |/Vs H⇒

(14)

v′(t) = −
1

τv
v(t)+

1

τv

EL − Vr

Vs
+

1

C

Ie

Vs
(15)

= −
1

τv
v(t)+ u(t) (16)

with

v(t) =
V(t)− Vr

Vs
, (17)

u(t) =
1

CVs
Ie(t)+

1

τv

EL − Vr

Vs
, (18)

τv = RC, (19)

θ =
2− Vr

Vs
(20)

Here, we reintroduce the LIF threshold 2 and the corresponding
Loihi threshold θ in Equation (20), which is derived from 2 by
the same shift and re-scaling that converted V to v.

To reiterate, Loihi implements the continuous LIF as a discrete
finite state machine model (Jin et al., 2008; Mikaitis et al.,
2018) implemented in silicon. The actual computation is similar
to a forward Euler scheme with some peculiarities reflecting
engineering design trade-offs. Specifically, the v(t) state evolves
on-chip according to the update rule,

v(t + 1) = v(t)

[

1−
δv

212

]

+ b+ u(t) (21)

where δv is the membrane potential decay constant and b is the
constant bias current listed in Equation (3).
Step 3

Using the forward Euler method :

yn+1 = yn + f (tn, yn).dt

where yn+1 = y(tn+1) and tn+1 = tn + dt for a fixed time-step
dt, we transform the classical LIF model into a form followed
in Equation (21). Thus, transforming the LIF model into the
discrete form and grouping terms to match the Loihi integration
(9) yields the following :

v(t + dt)− v(t)

dt
= −

1

τv
v(t)+ u(t) (22)

H⇒ v(t + dt) = v(t)(1−
dt

τv
)+ u(t)dt (23)

where dt is the fixed time-step with which we can adjust the
temporal precision of the Euler integration scheme.

Frontiers in Neuroinformatics | www.frontiersin.org 5 May 2022 | Volume 16 | Article 883360186

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dey and Dimitrov Point Neuron Model Simulations in Loihi

In order to equate the Loihi computation (21) with the Euler
scheme (23), we use dt with unitsms/Loihi timestep i.e., 1 BMTK
millisecond per Loihi timestep. Thus, comparing Equations (21)
and (23) defines the Loihi voltage decay parameter δv in terms of
the timestep dt, i.e.,

(212 − δv) 2
−12 = (1−

dt

τv
) (24)

H⇒ δv =
dt

τv
212 =

dt

RC
212 (25)

3.1.2. Bit Constraints
Given its discrete setting, there are specific bit-size constraints
that Loihi imposes on the state variables and parameters. State
variables—membrane potential and current—are allotted ±23
bits each. The membrane potential decay constant δv is allotted
12 bits and the membrane potential threshold is assigned 17 bits
interpreted as the 17 high bits of a 23 bit word to match the state
variables size. Details on other parameters can be found under
Table 1 in Davies et al. (2018) and Table 6 in Michaelis et al.
(2021).

3.2. Validation Methods
3.2.1. Data
The data used here is provided by the Allen Mouse Brain
Atlas (Lein et al., 2007; AIBS, 2020), which is a survey of
single cells from the mouse brain, obtained via intracellular
electrophysiological recordings done through a highly
standardized process. We focus on neurons of different
types with available GLIF parameters. The data used can be
accessed in the Allen Cell Types Database. Our LIF model is
implemented and simulated on BMTK based on this data, and
these simulations form the ground truth for validating the Loihi
implementations.

The datasets used for the simulations in this work can be
found in our Github repository (Dey, 2022).

3.2.2. Cost Functions
To quantify the error between the BMTK and Loihi membrane
potential values, we use two related cost functions: the RootMean
Square Error (RMSE) and the Pearson correlation coefficient (r)
with values as follows :

RMSE =

√

√

√

√

1

n

n
∑

i=1

(

yiL − yiB
)2

(26)

where,

i = index of data point

yL = transformed Loihi values

yB = original BMTK values

n = number of data points

and

r =

∑n
i=1

(

yiL − ȳL
) (

yiB − ȳB
)

√

∑n
i=1

(

yiL − ȳL
)2 ∑n

i=1

(

yiB − ȳB
)2

(27)

where,

ȳL = mean of the transformed Loihi values

ȳB = mean of the original BMTK values

3.2.3. Other Methods
Since BMTK and Loihi run on two different computing
environments, visual comparisons in graphs are helpful for
diagnostics of discrepancies that may be obscured in the single
numbers reported by the cost function. They also contribute to
assess the level of similarity between the two implementations.

We compare the simulation dynamics for both
implementations based on the following:

- Distribution Function: We compare the distributions of
attained state values in the two cases. We use density plot as
a representation of those distributions, thus allowing us to
compare the two implementations in terms of concentration
and spread of the values and provide a basis for comparing the
collective dynamics of the implementations.
- Raster Plot:We evaluate themembrane potential response at
each time-step. The X-axis represents the membrane potential
and the Y-axis represents the time-step. Raster plot helps
to visually communicate similarities between the BMTK and
Loihi states, and highlight potential state-localized difference
in the dynamics at each step which may otherwise be lost in
the average error measures.
- Scatter Plot: For examining association between the two
implementations, we use color-coded scatter plots identifying
the correlation relationships. We add a trend line to illustrate
the strength of the relationship and pin down the outliers to
improve the simulation results. Since we anticipate an almost
perfect linear relationship, we quantify the match with its
Pearson correlation coefficient.

4. RESULTS

In order to lay the groundwork for simulating a network of over
250,000 neurons with a connectivity of over 500M synapses in
the neuromorphic hardware, we begin by ensuring a high quality
replication of individual neural and smaller network models. The
replication performance here is evaluated based on membrane
potential and current responses, the two state variables. We
conjecture that securing a good replica for smaller models will
ensure that parameters can be calibrated correctly and thus can
be carried forward for the bigger networks needed in biological
context (Herz et al., 2006; Gutzen et al., 2018; Trensch et al.,
2018).

We begin our work on a single-neuron network1 sub-
threshold dynamics driven by both bias current and external
spikes to ensure Loihi is able to handle both stimuli efficiently.
Our test suite consists of LIF models based on 20 different
parameter sets. We perform rigorous analysis of our results based

1A network is the smallest executable structure in Loihi, hence the peculiar term
single-neuron network.

Frontiers in Neuroinformatics | www.frontiersin.org 6 May 2022 | Volume 16 | Article 883360187

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dey and Dimitrov Point Neuron Model Simulations in Loihi

FIGURE 3 | Membrane potential response for single-neuron network based on two different neuron parameters. (A) Simulation is driven by bias current. (B)

Simulation is driven by external spikes.

on various statistical measures and visualizations to demonstrate
that we have replication of high quality. It is important to restate
here that we test our results based on neurons with different
morphologies and biophysics, which attribute to the different
parameter sets.

4.1. Simulations of a Single Neuron
We begin by simulating a single-neuron network in BMTK.
The simulation is run for 500ms. The classical parameters are
translated to Loihi values and the corresponding LIF model is
implemented as an one-neuron SNN executed for 500/dt time
steps in Loihi. The simulations are driven either by bias current
or external spikes.

In the Loihi network, neurons are denoted by compartments.
The compartment dynamics are hardware-constrained and
determined by the parameters bias current mantissa, membrane
potential threshold, membrane potential decay, and current decay.
It is worth iterating here that the membrane potential values in
Loihi are unit-less as opposed to the BMTK values which are
assigned units of millivolts (mV) and milliseconds (ms) based on
the AIBS datasets.

We test the precision of our replication, both qualitatively and
quantitatively, for all 20 parameters sets and find that the results
are consistent with the ones described below. In Figure 3, we
illustrate the implementations achieved through bias current and

TABLE 1 | Parameter set for LIF models.

Parameters Dataset (1) Dataset (2) Units

Membrane time constant 25.0 22.0 ms

Membrane potential threshold −43.0 −43.0 mV

Resting potential −70.0 −70.0 mV

Voltage reset −70.0 −70.0 mV

Current 200.0 0.0 pA

Membrane capacitance 170.21 170.0 pF

external spikes on two different parameter sets (Table 1). The
remaining 18 parameter sets can be found in our Github page
(Dey, 2022). The parameters in the BMTK platform are mapped
to Loihi using the transformations described in Section 3.1.1 with
respect to the bit constraints described in Section 3.1.2.

It is to be noted here that stimulus bias current acts as one of
the parameters of the LIF model and hence is mapped into Loihi
according to Equation (18). When stimulating with external
spikes as stimulus, we make use of the fixed-time step dt that
we introduce in Equation (23). Here, the external spike-times are
in “ms” and we assign unit “ms/Loihi time-step” to dt. Thus, the
external spike-times are scaled as spike-time/dt and then injected
into a Loihi neural unit for each time-point, with dt guiding the

Frontiers in Neuroinformatics | www.frontiersin.org 7 May 2022 | Volume 16 | Article 883360188

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dey and Dimitrov Point Neuron Model Simulations in Loihi

temporal precision scale. Table 2 shows the external spike-times
used in the simulations, which are generated by five spike sources
using a random Poisson spike generator with a max firing rate
of 5Hz and then frozen to stimulate the different models in both
BMTK and Loihi.

For a qualitative comparison, it can be seen from Figure 3

that Loihi implementations simulate BMTK results very closely.
We have close correspondence in terms of spike frequency, spike
amplitude, and response values. Since Loihi membrane potential
values are unit-less, we map them back to BMTK values (mV, ms)
before performing the comparison. The inverse mapping from
Loihi to BMTK is performed based on Equation (12), i.e.,

TABLE 2 | External spike-time values.

Source Spike-times (ms)

0 446

1 355

2 53, 258, 300, 424, 457

3 88, 466

4 100, 212

TABLE 3 | Correlation and RMSE between BMTK and Loihi membrane potential

values.

Stimulus Correlation RMSE

Bias current 0.999992 1.1374× 10−4 mV/ms

External spikes 0.999942 4.208× 10−5 mV/ms

V = v · Vs + Vr

We perform a quantitative assessment of the replication using
RMSE and correlation coefficient between the values obtained
from the two platforms. As seen from Table 3, the values are
highly correlated with a relatively small RMSE.

Figure 4 illustrates the comparison of Loihi implementations
against the BMTK implementations for the two different
stimuli using various graphing data—(a) Distribution function
approximating the membrane potential dynamics, (b) Raster
plot of the spiking network activity, (c) Scatter Plot highlighting
the positive coefficient between the two implementations. These
visualizations help us track discrepancies which might remain
unobserved based on single quantitative averages given by the
cost function or the correlation coefficient.

4.2. Simulation Using Varied Precision
As already stated, Loihi follows a fixed-size discrete time-step
model along with bit-size constraints for the different parameters.
Thus, we examine how the numerics of Loihi affect its ability
to faithfully implement neuron models. More precisely, we
investigate how changing the precision of the time scale and
the neuron state values affects the accuracy of the simulations.
We explore this property for the two state variables—membrane
potential and current.

Figure 5 illustrates the membrane potential and current
responses of a single neuron model in BMTK which form the
basis of our comparison for the results below.

FIGURE 4 | Validation plots for simulations based on two different stimuli—(A) Validation plots for bias current stimulus (B) Validation plots for external spike stimulus,

based on the Distribution Function, Raster Plot, and Scatter Plot, respectively.

Frontiers in Neuroinformatics | www.frontiersin.org 8 May 2022 | Volume 16 | Article 883360189

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dey and Dimitrov Point Neuron Model Simulations in Loihi

4.2.1. Simulation Using Varied Temporal Precision
For Loihi’s fixed simulation time-step, we assign different
time units to each step and test the corresponding simulation
precision. This is achieved through the “dt” parameters available
in our equations while transforming the classical LIF model to
Loihi neural model. It enables us to experiment with several time
units (Hopkins and Furber, 2015). Following Equation (24), the

change of a time-step while working with the Loihi neural model
necessitates a corresponding variation of the time constant “τv”
to yield the desired results.

We check the results for dt = 0.1, 1.0 and 10.0(ms/timestep).
As mentioned earlier, we run the simulation for 500 ms, thus the
corresponding number of time steps in Loihi for dt = 0.1 and
dt = 10.0 becomes 5000 and 50 respectively, and for dt = 1.0 it

FIGURE 5 | Single neuron model in BMTK—(A) Membrane potential response. (B) Current response.

FIGURE 6 | Comparison of membrane potential and current plots with different temporal precisions in Loihi. Membrane potential plots are on the left with (A) dt = 0.1

(B) dt = 1.0 (C) dt = 10.0. Current plots are on the right with (D) dt = 0.1 (E) dt = 1.0 (F) dt = 10.0. For dt = 10.0, number of time-steps are 50 and for dt = 0.1,

number of time-steps are 5,000.

Frontiers in Neuroinformatics | www.frontiersin.org 9 May 2022 | Volume 16 | Article 883360190

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dey and Dimitrov Point Neuron Model Simulations in Loihi

remains at 500, (i.e., 500/dt for each dt). Figure 6 illustrates the
related Loihi simulation for membrane potential and current.
Error comparison for temporal precision Unlike continuous
analysis in which the error decreases monotonically with dt,
Loihi’s discrete-time, discrete-state simulation dynamics suggests
that there may be an optimal dt which minimizes the LIF
dynamics error.

We compare the simulations in Loihi with different temporal
precisions against the simulations in BMTK. We calculate the
RMSE to be able to deduce the result. As can be seen from
Figure 7, the error is lowest when 1 ms of simulation time in

BMTK equates to 1 time-step in Loihi for membrane potential
and current. Thus, for the LIF model simulations, representing
1ms with a Loihi hardware time step provides the best match
between the two simulations. As to using larger dt for efficiency,
panels (C) and (F) clearly show that large time steps (larger than
the synaptic time constant in this case) significantly degrade the
quality of simulations.

It should be noted that the selected simulation timestep dt
affects the range of physical time constants τv that can be
represented in Loihi. Since δv =

dt
τv

212 (Equation 24), then

τv =
dt
δv

212. In Loihi, δv ∈ [1, 212] (stored as a 12-bit word,

FIGURE 7 | Error comparison for different temporal precisions—(A) Membrane potential error. (B) Current error. In both panels, the RMSE for the corresponding state

is plotted against the log of the temporal precision dt.

FIGURE 8 | Comparison of membrane potential and current plots with different voltage precisions. Membrane potential plots are on the left with (A) Vs = 1.0× 10−3

(B) Vs = 1.0× 10−4 (C) Vs = 1.0× 10−5. Current plots are on the right with (D) Vs = 1.0× 10−3 (E) Vs = 1.0× 10−4 (F) Vs = 1.0× 10−5.

Frontiers in Neuroinformatics | www.frontiersin.org 10 May 2022 | Volume 16 | Article 883360191

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dey and Dimitrov Point Neuron Model Simulations in Loihi

with 0 representing δv = 212). Hence, τv ∈ [1, 212]dt, that
is, the highest physical time constant that can be represented
is τv = 212dt ≈ 4, 100dt. This is not a big constraint for
dt = 1ms, but e.g., a higher simulation precision of dt =
0.01ms can be performed only for neurons with time constants
τv <41ms, which already excludes some models found in the
Allen Institute’s Cell Types Database. This shortcoming of this
Loihi 1 platform is being addressed by Intel in subsequent
hardware like Loihi 2 (Intel, 2022), and the new Lava SDK.
Similarly affected are potential spike propagation delays (not

used here). Loihi supports ranges from 1 to 62 time steps, which
translate to dt to 62dtms of physical time. This is a minor
constraint for dt = 1ms, but quickly becomes a significant
constraint for short dt.

4.2.2. Simulation Using Varied Voltage Precision
We repeat the precision study by changing the voltage precision
values using the re-scaling parameter Vs. To check different
precision results, we try 1K/mV, 10K/mV and 100K/mV (state
level/mV) by using Vs = 1.0 × 10−3, 1.0× 10−4 and 1.0 × 10−5

FIGURE 9 | Error comparison for different membrane potential precisions—(A) Membrane potential error. (B) Current error. In both panels, the RMSE for the

corresponding state is plotted against the –log of the voltage scale Vs.

FIGURE 10 | Loihi replicates various neuron class responses of BMTK. (A) BMTK simulation of 20 neuron classes. (B) Loihi simulation of 20 neuron classes.

Frontiers in Neuroinformatics | www.frontiersin.org 11 May 2022 | Volume 16 | Article 883360192

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dey and Dimitrov Point Neuron Model Simulations in Loihi

respectively. Figure 8 illustrates the neuron state simulations
based on different voltage precisions.
Error Comparison for Voltage Precision As can be seen from
Figure 9, for membrane potential—error decreases significantly
as the precision increases from Vs = 1.0 × 10−3 to Vs =

1.0× 10−4. However, the error is extremely small for the current
simulation and remains the same for Vs = 1.0 × 10−4 and
Vs = 1.0× 10−5.

4.2.3. Effects of State Precision on Simulations
In conclusion, the effect of precision on both scales depends
on the model parameters and the information needing to
be preserved. However, there are important performance
differences. Increased voltage precision is essentially free, as
it does not tax the hardware resources any further, and the
sole risk is from computation overflow in cases of the Loihi
voltage state nearing the capacity of the voltage register.
Increased time precision on the other hand has two important
drawbacks: it increases simulation time (proportionately to
increased precision), and it decreases the range of voltage
decay timescales that can be represented (again, proportionately
to increased precision). Thus, the choice of simulation time
step and corresponding precision should be weighed against
these tradeoffs.

4.3. Simulation of Different Neuron Classes
After establishing and verifying the calibrated Loihi parameters
for a single neuron, we extend our simulation to an ensemble

TABLE 4 | Correlation and RMSE for different neuron classes.

Neuron class Correlation RMSE

Excitatory 0.999989 0.532× 10−4 mV/ms

Inhibitory 0.999982 0.612× 10−4 mV/ms

of neurons comprising of different neuron classes with
varying parameters.

Figure 10 illustrates an equivalent simulation for 20 different
neuron classes between BMTK and Loihi indicating that Loihi
is capable of emulating BMTK results in spite of varying
parameters. Here, we found an average correlation of 0.99985
with an RMSE of 0.57 ×10−4 mV/ms (Table 4). This also
validates the fact that the calibration of parameters for a single
neuron done earlier is valid.

The scatter plots in Figure 11 capture the range of the
parameters—Figure 11(A) Cm vs. τv and Figure 11(B) Ibias vs.
τv, in the (E)xcitatory and (I)nhibitory classes used for the
simulations. The size of the markers represents RMSE errors
for those models, with ranges as indicated on the legend. This
lays the foundation for building more complicated networks
encompassing different neuron classes.

We reiterate here that Loihi imposes certain bit constraints
on the parameters. For instance, membrane potential threshold
ranges from 0 to ± 223, membrane time constant allows 0
to 212 bits. The membrane capacitance is integrated with bias
current (Equation 18) with biasmantissa allowed a range between
[−212, 212] and bias exponent a range between [0, 7]. Thus,
a good range of parameters can be mapped well into Loihi
and a limit to the “exactness” can be attributed to the low-
fixed-precision nature of Loihi as most state and configuration
variables are in the range of 8–24 bits.

5. CONCLUSION AND FUTURE WORK

Inspired by the brain, neuromorphic computing holds great
potential in tackling tasks with extremely low power and high
efficiency. Many large-scale efforts including the TrueNorth,
SpiNNaker and BrainScaleS have been demonstrated as a tool
for neural simulations, each replete with its own strengths

FIGURE 11 | Scatter plots showing the range of parameters for the 20 neurons classes comprising of both excitatory and inhibitory neurons grouped by RMSE of the

simulations. (A) Scatter plot for membrane capacitance (Cm) vs. membrane time constant (τv). (B) Scatter plot for bias current (Ibias) vs. membrane time constant (τv).

The marker size is determined by the corresponding RMSE.

Frontiers in Neuroinformatics | www.frontiersin.org 12 May 2022 | Volume 16 | Article 883360193

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dey and Dimitrov Point Neuron Model Simulations in Loihi

and constraints. Fabricated with Intel’s 14 nm technology,
Loihi is a forward-looking and continuously evolving state-
of-the-art architecture for modeling spiking neural networks
in silicon. As opposed to its predecessors, Loihi encompasses a
wide range of novel features such as hierarchical connectivity,
dendritic compartments, synaptic delays and programming
synaptic learning rule. These features, together with solid SDK
support by Intel, and a growing research community, make
Loihi an effective platform to explore a wealth of neuromorphic
features in more detail than before.

In this work, we have demonstrated that Loihi is capable of
replicating the continuous dynamics of point neuronal models
with high degree of precision and does so with much greater
efficiency in terms of time and energy. The work comes with
its challenges as simulations built on the conventional chips
cannot be trivially mapped to the neuromorphic platform as its
architecture differs remarkably from the conventional hardware.
Classical simulations from the Brain Modeling Toolkit (BMTK)
developed by the Allen Institute of Brain Science (AIBS) serves as
the foundation of our neuromorphic validation.

For comparison between the conventional and the
neuromorphic platforms, we use both qualitative and
quantitative measures. It can be seen that Loihi replicates
BMTK very closely in terms of both membrane potential and
current, the two state variables on which the Loihi LIF model

FIGURE 12 | Performance comparison between BMTK and Loihi for network

sizes ranging from 1 to 20,000 for the simulation of 500 ms of dynamics. The

values for each curve are scaled by the respective smallest runtime. The Loihi

runtime units are in “milliseconds” and BMTK runtime is in “seconds”.

TABLE 5 | Simulation runtime in Loihi and BMTK.

Network size Loihi time (ms) BMTK time (s)

20 2.52 0.12

100 3.03 0.3

500 5.21 1.13

1,000 7.56 2.72

5,000 9.57 26.47

10,000 9.73 80.45

evolves. We use different validation methods and quantitative
measures to assess the equivalence and identify sets of parameters
which maximize precision while retaining high performance
levels. Furthermore, simulation results indicate Loihi is highly
efficient in terms of speed and scalability as compared to BMTK.

This work demonstrates that classical simulations based on
Generalized Leaky Integrate-and-Fire (GLIF) point neuronal
models can be successfully replicated on Loihi with a reasonable
degree of precision.

Our future work is motivated by runtime performance
comparisons for larger networks between the two platforms. As
Loihi and BMTK are based on very different hardware systems
that follow distinct dynamics and network-setup regimes, we
use the runtime of the simulations to compare the performance
of these implementations. As has been mentioned in the
introduction, performance of Loihi far exceeds that of BMTK.
Figure 12 compares the runtime of Loihi and BMTK, for running
a network of randomly connected neurons with the same
parameters. The network consists of excitatory and inhibitory
neurons in a 1:1 ratio driven by bias current, with connection
probability set at 0.1.

As can be seen from Figure 12 and Table 5, Loihi easily scales
up to larger network sizes with a minuscule rise in runtime

FIGURE 13 | Loihi runtime for a network of upto 250K neurons for the

simulation of 500 ms of dynamics.

TABLE 6 | Simulation runtime in Loihi for independent neurons vs. connected

network.

Network size Connected network (ms) Independent neurons (ms)

20 2.52 2.09

100 3.03 2.31

500 5.21 3.94

1,000 7.56 6.22

5,000 9.57 7.35

10,000 9.73 7.53

50,000 10.84 7.98

100,000 11.49 8.00

250,000 11.98 9.16

Frontiers in Neuroinformatics | www.frontiersin.org 13 May 2022 | Volume 16 | Article 883360194

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dey and Dimitrov Point Neuron Model Simulations in Loihi

whereas for BMTK the increase is quite rapid. While both seem
to exhibit a power-law scaling (string line on this graph), Loihi’s
scaling power is much smaller. It is also worth noting here that
for Loihi the unit for the runtime are in “milliseconds” whereas
for BMTK they are in “seconds”. Here we stop at 20,000 neurons
as it can be inferred from the graph that increasing the network
size would increase the time cost for BMTK substantially.

Furthermore, following the above outcome, we extend our
network size in Loihi only to 250K neurons in order to
investigate what potential Loihi holds to execute the final goal
of simulating about ∼250,000 neurons with ∼500M synapses
in the future, a simulation scale comprising much of the
experimentally observed dynamics in the mouse visual cortex
available to the AIBS.We record our observations for a randomly
connected network of neurons as well as an independent set
of unconnected neurons. From Figure 13 and Table 6, we can
infer that the runtime remains consistent with the above result,
with the independent set of neurons completing the simulation
marginally faster.

This shows that Loihi performs well for connected networks,
setting the stage for our main aim for neural simulations.
Additionally, it also works well for independent set of neurons
which contribute to solutions of problems that require on-chip
parameter and meta-parameter searches, e.g., for Evolutionary
Programming (Schuman et al., 2020).

We do not asses the state-based cost for these networks as
their large sizes require multi-chip simulations which we expect
to be better supported on Loihi 2 (Intel, 2022). Furthermore,
other research groups have firmly established that we cannot
expect exact replication of subthreshold network states between
simulators except for few very simple small networks (van Albada
et al., 2018; Crook et al., 2020). Thus, on the network level we
need to develop cost functions that capture appropriate network
activity details on different scales (e.g., average spike rates and
correlations on the coarsest levels, as in van Albada et al.,
2018).

In closing, we want to highlight that with the advent of
Loihi 2 (Intel, 2022), we aim to address the limitations of the
larger networks and carry out the next steps of our work in
this new hardware. We are planning to investigate the full GLIF
dynamics as we would have better support for more complex

network topology and spiking dynamics. In addition, we hope
to implement a connected network of 250K neurons with specific
synaptic variables as available in the AIBS dataset. We also plan
to investigate the control and performance of temporal precision
choices. Till date, our limited conclusion for these cases is that∼
1ms timestep is sufficient. This need not generalize to networks
in which other precision may be needed, with corresponding
tradeoffs to changes in the parameters. We intend to explore
this question further. Lastly, we are working on performing
a sensitivity analysis on the GLIF parameters to assess the
robustness of the model.

DATA AVAILABILITY STATEMENT

The original contribution in the study are included in the
article. The datasets used are available in https://github.com/
srijanie03/bmtk_loihi_utils. Further inquiries can be directed to
the corresponding author/s.

AUTHOR CONTRIBUTIONS

SD andAD contributed to conception and design of the study. SD
performed the simulations and analysis and wrote the first draft
of the manuscript. AD wrote parts of the manuscript, edited, and
reviewed. All authors contributed to manuscript revision, read,
and approved the submitted version.

FUNDING

This work received support from WSU Vancouver Office of
Research and Graduate Education to SD.

ACKNOWLEDGMENTS

We thank Dr. Kael Dai for his helpful suggestions and advice
regarding the use of BMTK.We thank Intel for providing us with
access to Loihi and the Intel technical support team for helpful
feedback on technical issues. This work used resources from
the Center for Institutional Research Computing at Washington
State University (CIRC and WSU, 2021).

REFERENCES

AIBS (2020). Allen Brain Atlas. Available online at: https://celltypes.brain-map.
org/ (accessed February 22, 2022).

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla,
P., et al. (2015). Truenorth: Design and tool flow of a 65 mw 1
million neuron programmable neurosynaptic chip. IEEE Trans. Comput.

Aided Design Integr. Circ. Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.24
74396

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S.,
Chandrasekaran, A. R., Bussat, J.-M., et al. (2014). Neurogrid:
a mixed-analog-digital multichip system for large-scale neural

simulations. Proc. IEEE 102, 699–716. doi: 10.1109/JPROC.2014.
2313565

Bhuiyan, M. A., Nallamuthu, A., Smith, M. C., and Pallipuram, V. K. (2010).
“Optimization and performance study of large-scale biological networks
for reconfigurable computing,” in 2010 Fourth International Workshop on

High-Performance Reconfigurable Computing Technology and Applications

(HPRCTA) (New Orleans, LA), 1–9. doi: 10.1109/HPRCTA.2010.5670796
Brette, R., Lilith, M., Carnevale, T., Hines, M., Beeman, D., Bower, J., et al. (2008).

Simulation of networks of spiking neurons: a review of tools and strategies. J.
Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-0038-6

CIRC andWSU (2021).What Is Kamiak? Available online at: https://hpc.wsu.edu/
kamiak-hpc/what-is-kamiak/ (accessed February 22, 2022).

Frontiers in Neuroinformatics | www.frontiersin.org 14 May 2022 | Volume 16 | Article 883360195

https://github.com/srijanie03/bmtk_loihi_utils
https://github.com/srijanie03/bmtk_loihi_utils
https://celltypes.brain-map.org/
https://celltypes.brain-map.org/
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1109/HPRCTA.2010.5670796
https://doi.org/10.1007/s10827-007-0038-6
https://hpc.wsu.edu/kamiak-hpc/what-is-kamiak/
https://hpc.wsu.edu/kamiak-hpc/what-is-kamiak/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dey and Dimitrov Point Neuron Model Simulations in Loihi

Crook, S. M., Davison, A. P., McDougal, R. A., and Plesser, H. E. (2020). Editorial:
reproducibility and rigour in computational neuroscience. Front. Neuroinform.
14, 23. doi: 10.3389/fninf.2020.00023

Dai, K., Gratiy, S. L., Billeh, Y. N., Xu, R., Cai, B., Cain, N., et al.
(2020). Brain modeling toolkit: an open source software suite for
multiscale modeling of brain circuits. PLoS Comput. Biol. 16, e1008386.
doi: 10.1371/journal.pcbi.1008386

Davies,M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–99. doi: 10.1109/MM.2018.112130359
DeBole, M., Taba, B., Amir, A., Akopyan, F., Andreopoulos, A., Risk, W., et al.

(2019). Truenorth: Accelerating from zero to 64 million neurons in 10 years.
Computer 52, 20–29. doi: 10.1109/MC.2019.2903009

Dey, S. (2022). BMTK-Loihi Data. Available online at: https://github.com/
srijanie03/bmtk_loihi_utils (accessed February 22, 2022).

Gerstner, W., and Kistler, W. M. (2002). Spiking Neuron Models:

Single Neurons, Populations, Plasticity. Cambridge University Press.
doi: 10.1017/CBO9780511815706

Grübl, A., Billaudelle, S., Cramer, B., Karasenko, V., and Schemmel, J. (2020).
Verification and design methods for the brainscales neuromorphic hardware
system. J. Signal Process. Syst. 92, 1277–1292. doi: 10.1007/s11265-020-01558-7

Gutzen, R., von Papen, M., Trensch, G., Quaglio, P., Grün, S., and Denker, M.
(2018). Reproducible neural network simulations: statistical methods for model
validation on the level of network activity data. Front. Neuroinform. 12, 90.
doi: 10.3389/fninf.2018.00090

Herz, A. V.M., Gollisch, T.,Machens, C. K., and Jaeger, D. (2006).Modeling single-
neuron dynamics and computations: a balance of detail and abstraction. Science
314, 80–85. doi: 10.1126/science.1127240

Hopkins, M., and Furber, S. (2015). Accuracy and efficiency in fixed-point neural
ODE solvers. Neural Comput. 27, 2148–2182. doi: 10.1162/NECO_a_00772

Insel, T. R., Landis, S. C., and Collins, F. S. (2013). The NIH BRAIN initiative.
Science 340, 687–688. doi: 10.1126/science.1239276

Intel (2022). Intel Lab’s Loihi 2 Chip. Technical report, Intel Corporation.
Jin, X., Furber, S. B., and Woods, J. V. (2008). “Efficient modelling of spiking

neural networks on a scalable chip multiprocessor,” in 2008 IEEE International

Joint Conference on Neural Networks (Hong Kong: IEEE World Congress on
Computational Intelligence), 2812–2819. doi: 10.1109/IJCNN.2008.4634194

Khan, M. M., Lester, D. R., Plana, L. A., Rast, A., Jin, X., Painkras, E.,
et al. (2008). “Spinnaker: mapping neural networks onto a massively-parallel
chip multiprocessor,” in 2008 IEEE International Joint Conference on Neural

Networks (Hong Kong: IEEE World Congress on Computational Intelligence),
2849–2856. doi: 10.1109/IJCNN.2008.4634199

Knight, J. C., and Furber, S. (2016). Synapse-centric mapping of cortical models
to the spinnaker neuromorphic architecture. Frontiers in Neuroscience 10.
doi: 10.3389/fnins.2016.00420

Kunkel, S., Morrison, A., Weidel, P., Eppler, J. M., Sinha, A., Schenck, W., et al.
(2017). Nest 2.12.10. Zenodo.

Lein, E., Hawrylycz, M., Ao, N., Ayres, M., Bensinger, A., Bernard, A., et al. (2007).
Genome-wide atlas of gene expression in the adult mouse brain. Nature 445,
168–176. doi: 10.1038/nature05453

Linssen, C., Lepperød, M. E., Mitchell, J., Pronold, J., Eppler, J. M., Keup, C., et al.
(2018). NEST 2.16.0. Zenodo. doi: 10.5281/zenodo.1400175

Löhr, M. P. R., Jarvers, C., and Neumann, H. (2020). “Complex neuron dynamics
on the IBM truenorth neurosynaptic system,” in 2020 2nd IEEE International

Conference on Artificial Intelligence Circuits and Systems (AICAS) (Genao),
113–117. doi: 10.1109/AICAS48895.2020.9073903

Markram, H., Meier, K., Lippert, T., Grillner, S., Frackowiak, R., Dehaene, S.,
et al. (2011). Introducing the human brain project. Proc. Comput. Sci. 7, 39–42.
doi: 10.1016/j.procs.2011.12.015

Michaelis, C., Lehr, A. B., Oed, W., and Tetzlaff, C. (2021). Brian2Loihi:
an emulator for the neuromorphic chip loihi using the spiking
neural network simulator brian. arXiv preprint arXiv:2109.12308.
doi: 10.48550/ARXIV.2109.12308

Mikaitis, M., Lester, D., Shang, D., Furber, S., Liu, G., Garside, J., et al. (2018).
“Approximate fixed-point elementary function accelerator for the spinnaker-
2 neuromorphic chip,” in 2018 IEEE 25th Symposium on Computer Arithmetic

(ARITH) (Amherst, MA). doi: 10.1109/ARITH.2018.8464785

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2017). A scalable
multicore architecture with heterogeneous memory structures for
dynamic neuromorphic asynchronous processors (DYNAPs). IEEE

Trans. Biomed. Circ. Syst. 12, 106–122. doi: 10.1109/TBCAS.2017.
2759700

Nandi, A., Chartrand, T., Geit, W. V., Buchin, A., Yao, Z.,
Lee, S. Y., et al. (2020). Single-neuron models linking
electrophysiology, morphology and transcriptomics across
cortical cell types. bioRxiv [Preprints]. doi: 10.1101/2020.04.09.
030239

Nawrocki, R. A., Voyles, R. M., and Shaheen, S. E. (2016). A mini
review of neuromorphic architectures and implementations. IEEE

Trans. Electron Dev. 63, 3819–3829. doi: 10.1109/TED.2016.
2598413

Neckar, A., Fok, S., Benjamin, B. V., Stewart, T. C., Oza, N. N.,
Voelker, A. R., et al. (2019). Braindrop: a mixed-signal neuromorphic
architecture with a dynamical systems-based programming
model. Proc. IEEE 107, 144–164. doi: 10.1109/JPROC.2018.
2881432

Ou, Q.-F., Xiong, B.-S., Yu, L., Wen, J., Wang, L., and Tong, Y. (2020). In-memory
logic operations and neuromorphic computing in non-volatile random access
memory.Materials 13, 3532. doi: 10.3390/ma13163532

Pehle, C., Billaudelle, S., Cramer, B., Kaiser, J., Schreiber, K., Stradmann, Y.,
et al. (2022). The brainscaleS-2 accelerated neuromorphic system with hybrid
plasticity. Front. Neurosci. 16, 795876. doi: 10.3389/fnins.2022.795876

Rhodes, O., Peres, L., Rowley, A., Gait, A., Plana, L., Brenninkmeijer, C. Y. A., et al.
(2019). Real-time cortical simulation on neuromorphic hardware. Philos. Trans.
Ser. A Math. Phys. Eng. Sci. 378:20190160. doi: 10.1098/rsta.2019.0160

Rossant, C., Goodman, D., Platkiewicz, J., and Brette, R. (2010). Automatic
fitting of spiking neuron models to electrophysiological recordings. Front.
Neuroinform. 4:2. doi: 10.3389/neuro.11.002.2010

Rotter, S., and Diesmann, M. (1999). Exact digital simulation of time-invariant
linear systems with applications to neuronal modeling. Biol. Cybernet. 81,
381–402. doi: 10.1007/s004220050570

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-based machine
intelligence with neuromorphic computing. Nature 575, 607–617.
doi: 10.1038/s41586-019-1677-2

Schuman, C. D., Mitchell, J. P., Patton, R. M., Potok, T. E., and Plank, J. S. (2020).
“Evolutionary optimization for neuromorphic systems,” in Proceedings of the

Neuro-inspired Computational Elements Workshop, NICE ’20 (New York, NY:
Association for Computing Machinery), 1–9. doi: 10.1145/3381755.3381758

Sharp, T., and Furber, S. (2013). “Correctness and performance of the spinnaker
architecture,” in The 2013 International Joint Conference on Neural Networks

(IJCNN) (Dallas, TX), 1–8. doi: 10.1109/IJCNN.2013.6706988
Teeter, C., Iyer, R., Menon, V., Gouwens, N., Feng, D., Berg, J., et al. (2018).

Generalized leaky integrate-and-firemodels classifymultiple neuron types.Nat.
Commun. 9, 709. doi: 10.1038/s41467-017-02717-4

Thakur, C. S., Molin, J. L., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao, N.,
et al. (2018). Large-scale neuromorphic spiking array processors: a quest to
mimic the brain. Front. Neurosci. 12, 891. doi: 10.3389/fnins.2018.00891

Trensch, G., Gutzen, R., Blundell, I., Denker, M., and Morrison, A. (2018).
Rigorous neural network simulations: a model substantiation methodology for
increasing the correctness of simulation results in the absence of experimental
validation data. Front. Neuroinform. 12, 81. doi: 10.3389/fninf.2018.00081

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M., Stokes,
A. B., et al. (2018). Performance comparison of the digital neuromorphic
hardware SpiNNaker and the neural network simulation software NEST
for a full-scale cortical microcircuit model. Front. Neurosci. 12, 291.
doi: 10.3389/fnins.2018.00291

Wang, Q., Ding, S.-L., Li, Y., Royall, J., Feng, D., Lesnar, P., et al. (2020). The allen
mouse brain common coordinate framework: a 3D reference atlas. Cell 181,
936.e20–953.e20. doi: 10.1016/j.cell.2020.04.007

WikiCommons (2018). Core Top-Level Microarchitecture. Available
online at: https://commons.wikimedia.org/wiki/File:Core_Top-Level_
Microarchitecture.png (accessed March 17, 2022).

Winnubst, J., Bas, E., Ferreira, T. A., Wu, Z., Economo, M. N., Edson, P., et al.
(2019). Reconstruction of 1,000 projection neurons reveals new cell types

Frontiers in Neuroinformatics | www.frontiersin.org 15 May 2022 | Volume 16 | Article 883360196

https://doi.org/10.3389/fninf.2020.00023
https://doi.org/10.1371/journal.pcbi.1008386
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/MC.2019.2903009
https://github.com/srijanie03/bmtk_loihi_utils
https://github.com/srijanie03/bmtk_loihi_utils
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.1007/s11265-020-01558-7
https://doi.org/10.3389/fninf.2018.00090
https://doi.org/10.1126/science.1127240
https://doi.org/10.1162/NECO_a_00772
https://doi.org/10.1126/science.1239276
https://doi.org/10.1109/IJCNN.2008.4634194
https://doi.org/10.1109/IJCNN.2008.4634199
https://doi.org/10.3389/fnins.2016.00420
https://doi.org/10.1038/nature05453
https://doi.org/10.5281/zenodo.1400175
https://doi.org/10.1109/AICAS48895.2020.9073903
https://doi.org/10.1016/j.procs.2011.12.015
https://doi.org/10.48550/ARXIV.2109.12308
https://doi.org/10.1109/ARITH.2018.8464785
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1101/2020.04.09.030239
https://doi.org/10.1109/TED.2016.2598413
https://doi.org/10.1109/JPROC.2018.2881432
https://doi.org/10.3390/ma13163532
https://doi.org/10.3389/fnins.2022.795876
https://doi.org/10.1098/rsta.2019.0160
https://doi.org/10.3389/neuro.11.002.2010
https://doi.org/10.1007/s004220050570
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1145/3381755.3381758
https://doi.org/10.1109/IJCNN.2013.6706988
https://doi.org/10.1038/s41467-017-02717-4
https://doi.org/10.3389/fnins.2018.00891
https://doi.org/10.3389/fninf.2018.00081
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.1016/j.cell.2020.04.007
https://commons.wikimedia.org/wiki/File:Core_Top-Level_Microarchitecture.png
https://commons.wikimedia.org/wiki/File:Core_Top-Level_Microarchitecture.png
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dey and Dimitrov Point Neuron Model Simulations in Loihi

and organization of long-range connectivity in the mouse brain. Cell 179,
268.e13–281.e13. doi: 10.1016/j.cell.2019.07.042

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Dey and Dimitrov. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 16 May 2022 | Volume 16 | Article 883360197

https://doi.org/10.1016/j.cell.2019.07.042
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

ORIGINAL RESEARCH
published: 02 June 2022

doi: 10.3389/fnins.2022.873935

Frontiers in Neuroscience | www.frontiersin.org 1 June 2022 | Volume 16 | Article 873935

Edited by:

James Courtney Knight,

University of Sussex, United Kingdom

Reviewed by:

Lyes Khacef,

University of Groningen, Netherlands

Johannes Partzsch,

Technical University Dresden,

Germany

*Correspondence:

Christoph Ostrau

costrau@techfak.uni-bielefeld.de

Specialty section:

This article was submitted to

Neuroscience,

a section of the journal

Frontiers in Neuroscience

Received: 11 February 2022

Accepted: 27 April 2022

Published: 02 June 2022

Citation:

Ostrau C, Klarhorst C, Thies M and

Rückert U (2022) Benchmarking

Neuromorphic Hardware and Its

Energy Expenditure.

Front. Neurosci. 16:873935.

doi: 10.3389/fnins.2022.873935

Benchmarking Neuromorphic
Hardware and Its Energy Expenditure
Christoph Ostrau*, Christian Klarhorst, Michael Thies and Ulrich Rückert

Technical Faculty, Bielefeld University, Bielefeld, Germany

We propose and discuss a platform overarching benchmark suite for neuromorphic

hardware. This suite covers benchmarks from low-level characterization to high-level

application evaluation using benchmark specific metrics. With this rather broad approach

we are able to compare various hardware systems including mixed-signal and fully

digital neuromorphic architectures. Selected benchmarks are discussed and results for

several target platforms are presented revealing characteristic differences between the

various systems. Furthermore, a proposed energy model allows to combine benchmark

performance metrics with energy efficiency. This model enables the prediction of the

energy expenditure of a network on a target system without actually having access to

it. To quantify the efficiency gap between neuromorphics and the biological paragon

of the human brain, the energy model is used to estimate the energy required

for a full brain simulation. This reveals that current neuromorphic systems are at

least four orders of magnitude less efficient. It is argued, that even with a modern

fabrication process, two to three orders of magnitude are remaining. Finally, for selected

benchmarks the performance and efficiency of the neuromorphic solution is compared

to standard approaches.

Keywords: neuromorphic hardware, spiking neural network (SNN), benchmark, deep neural network (DNN), energy

model

1. INTRODUCTION

With the increasing maturity of spiking neural network (SNN) simulation tools and neuromorphic
hardware systems for acceleration, there is an increasing demand of potential end-users for
platform comparison and performance estimation (Davies, 2019). Typical questions include the
demand for speed-up of large-scale networks, potentially including plasticity rules for learning,
and efficient implementations for so-called edge computing use-cases. For large-scale high-
performance computing, a typical workload for comparing implementations is the full-scale
cortical microcircuit model, which has been demonstrated on various platforms and forms the
de-facto standard (van Albada et al., 2018; Rhodes et al., 2020; Golosio et al., 2021; Knight and
Nowotny, 2021). Around the Intel Loihi chip (Davies et al., 2018) there has been a lot of work
comparing SNNs to classical algorithmic approaches on standard of-the-shelf hardware systems
(Davies et al., 2021). The current work is situated in between these two approaches of benchmarking
individual implementations on (large scale) systems and comparing a single neuromorphic
system to classical computation. It fills the gap with small to medium-scale neuromorphic
benchmarks. We present our benchmark framework SNABSuite (Spiking Neural Architecture
Benchmark Suite), which is publicly available. The suite currently supports simulations using
NEST (Jordan et al., 2019) (CPU—single and multithreaded), GeNN (Yavuz et al., 2016)

198

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.873935
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.873935&domain=pdf&date_stamp=2022-06-02
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:costrau@techfak.uni-bielefeld.de
https://doi.org/10.3389/fnins.2022.873935
https://www.frontiersin.org/articles/10.3389/fnins.2022.873935/full

Ostrau et al. Benchmarking Neuromorphic Hardware

(single threaded CPU, GPU), digital (SpiNNaker; Furber et al.,
2013), and analogue [Spikey; (Pfeil et al., 2013), BrainScaleS
(Schmitt et al., 2017)] neuromorphic hardware. SNABSuite
focuses on cross-platform benchmarking using a backend
agnostic implementation of SNNs coupled to backend specific
configurations (e.g., setting neuron model and parameters or
network size), allowing direct cross-platform comparisons of
benchmark specific performance metrics. We present results
from low-level benchmarks to application related tasks like
solving constraint-satisfaction problems (CSP). As an example,
solving Sudoku puzzles is a representative for this class of
problems and can be realized using a winner-takes-all (WTA) like
implementation (Maass, 2014). This implementation is scalable,
and thus it can be adapted to size constraints of neuromorphic
hardware. Furthermore, different implementations of the WTA
structure allow emulating the network on substrates with
limited and restricted connectivity demonstrating not only
how fast a system can find a solution, but also which kind
of network is mappable to the system at all. Consequently,
from this application a benchmark candidate for the category
of computational kernel benchmarks naturally emerges: the
evaluation of the various implementations of WTA networks
as a building block for a broader range of applications (in
addition to the CSP class of problems there is for example the
spiking SLAM algorithm; Kreiser et al., 2018b). Even closer to
the hardware system is the first category of benchmarks targeting
lower-level features of the system and characterizing its basic
properties. These properties, an example is the spike-bandwidth
between neurons, are effectively limiting all networks and as such
are relevant when designing a network for a specific system.
They are not solely given by pure theoretical considerations
but depend on several factors: runtime optimizations in the
internal event routing, the chosen connectivity and combined
spike rates impact these characteristics. For example, a given
connectivity might fit onto the neuromorphic system, however,
when operating at its limits, spike loss might still occur.

Another very common approach of using SNNs, which is
applicable to all target platforms, is the conversion of pre-trained
artificial networks (ANN) into SNNs (Rueckauer et al., 2017).
Here, we support rate-based as well as time-to-first-spike-based
encodings, and through different network layouts and sizes we
are able to fully utilize the small-scale Spikey chip as well as
the larger SpiNNaker system, allowing a fair comparison of key
characteristics like time and energy per inference. A related sub-
task is measuring the resemblance of the neuron activation curve
to the ReLU function used in the ANN.

Due to a mixture of qualitative and quantitative benchmarks,
the suite does not provide an oversimplifying benchmark score
as known from suites in classical computation. Furthermore, a
recent addition to the framework is an energymodel which allows
to estimate the energy expenditure of neuromorphic systems
by running simulations in, e.g., GeNN or NEST on standard
hardware. The estimated results closely resemble previously
published values and are confirmed by newer measurements. All
in all, this results in a benchmark suite which is reflecting, up to a
certain extent, the current state of the art of SNN algorithms that
are applicable to the aforementioned neuromorphic platforms

and simulators. Hence, the suite fulfils the major requirement of
being representative and relevant to our key audience of potential
end-users (from neuroscience).

The remainder of this paper is structured as follows: the
methods section introduces the neuromorphic systems and SNN
simulators used in this work. The benchmark suite and its
design are discussed as well as selected benchmark networks.
Before elaborating the energy model and contributions to the
energy expenditure of the human brain, selected benchmarks
of the proposed suite are discussed. Results of the latter
are detailed in the respective chapter. The energy model
is validated using several of these benchmarks and a naive
upscaling of related energy costs allows to compare the hardware
systems to the human brain. Finally, the performance and
efficiency is compared to classical approaches (algorithms or
ANN accelerators) where applicable. The last section provides a
summary and an outlook.

2. METHODS

This section provides an overview of the employed SNN
simulators and neuromorphic hardware systems before
discussing the benchmark suite, selected benchmarks, and the
energy model.

2.1. Neuromorphic Systems and Simulators
In the following, all neuromorphic systems and simulators used
in this work are reviewed. A summarizing table is provided
in Supplementary Table 1. When it comes to standard of-
the-shelf hardware, like CPUs and GPUs, our benchmarks
utilize two simulators. The NEST simulator (Gewaltig and
Diesmann, 2007) is suited for large scale simulations of SNNs on
multiple computation nodes (in HPC systems) or multithreaded
simulations on a single node. The simulation code as well as the
neuron models are written in C++ code and pre-compiled at
installation time. Through a Python interface [PyNEST (Eppler,
2008) or PyNN (Davison, 2008)] the user can build networks of
neuron populations and spike or current sources to provide input
to the simulation.GeNN (Yavuz et al., 2016) supports both single
threaded CPU simulations and GPU simulations using CUDA
or OpenCL. In this work we test only an NVIDIA RTX 20701,
thus we stick with the CUDA backend. Similar to NEST, GeNN
allows building networks within Python, but the direct interface
is written in C++. Neuron and synapse models are programmed
in an imperative way and are compiled at runtime. In contrast
to NEST, which was created to reproduce exact spike trains with
accurate simulations and hence using a fourth order Runge-
Kutta-Fehlberg integrator for the LIF neuronmodels, GeNN uses
a closed-form representation assuming a fixed input current over
the integration step, which is usually set to 0.1ms. Especially
with larger time steps, this can lead to numerical artifacts in
the membrane voltage as well as in spike times (see Hopkins
and Furber, 2015 for a discussion of the precision of various
numerical solvers).

1Details of the NVIDIA RTX 2070 can be found at https://www.nvidia.com/en-
me/geforce/graphics-cards/rtx-2070/.

Frontiers in Neuroscience | www.frontiersin.org 2 June 2022 | Volume 16 | Article 873935199

https://www.nvidia.com/en-me/geforce/graphics-cards/rtx-2070/
https://www.nvidia.com/en-me/geforce/graphics-cards/rtx-2070/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

Closest specialized hardware system to CPU/GPU simulators
is the SpiNNaker platform (Furber et al., 2013). Fabricated in
a 130nm CMOS process, the SpiNNaker chip consists of 18
general purpose ARM968 cores with 16 cores being used for
the simulation of spiking neurons. Each core features 64KB
memory for data and 32KB for instructions, each chip has
access to additional 128MB of off-die SDRAM. Several chips
are connected in a toroidal way and combined to form a small
scale four chip board (SpiNN3) or a 48 chip system (SpiNN5).
Between cores and chips, the spike communication is using
address event representation, where a single packet contains the
address of the sending neuron and the spike time is modeled
by the time of appearance (Furber et al., 2014). For accessing
the hardware, a PyNN interface is provided which is coupled
to the various components of the SpiNNaker software stack
SpiNNTools (Rowley et al., 2018) and sPyNNaker (Rhodes et al.,
2018). The software stack maps the individual networks at
runtime to the attached system, placing at most 255 neurons on a
single core. Similar to GeNN, the numerical integration is using
a closed form solution for the LIF model and assumes constant
currents during the full time step. When using an algorithmic
timestep of 1ms, the full simulation is running in realtime, which
means that 1s of model time is simulated in 1s of wall-clock time.
When reducing the algorithmic timestep to 0.1ms to increase
the accuracy of the simulation and to potentially reduce the
amount of spikes per machine timestep, the system slows down
the simulation by a factor of 10.

Finally, two mixed-signal systems from Heidelberg are used
within this work. The Spikey system (Pfeil et al., 2013) employs
above threshold analogue circuitry implemented in a 180 nm
CMOS process. Spikey consists of single chip featuring two
blocks of 192 neurons each supporting up to 256 independent
synaptic inputs. Because of the digital communication of spikes,
these neurons can be connected quite flexibly with some
constraints regarding cross-chip connectivity and enforcing
the separation of excitatory and inhibitory neurons. The chip
emulates neurons with a fixed acceleration factor of 10, 000,
which means that 1s of model time is emulated in 0.1ms. To
counter the analogue mismatch between the neuron circuitry,
the software interface has a built-in calibration and maps high-
level parameters of LIF neurons in the PyNN interface to adapted
low-level hardware parameters. Spikey emulates conductance-
based LIF neurons with some restrictions on neuron parameters,
and weights are encoded with 4 bit precision and a fixed range
of values. As the neuron model is implemented as circuitry,
there is no flexibility in changing the neuron model itself. The
successor system, BrainScaleS, is implemented using updated
HICANN chips and supports much larger networks using
wafer-scale integration (Schemmel et al., 2010; Petrovici et al.,
2014). The implemented neuron model is a conductance-based
LIF model with an optional adaptive exponential extension.
A single HICANN chip consists of 512 neuron circuits each
supporting 220 synapses. Up to 64 neuron circuits (multiples
of two) can be combined to form a single virtual neuron,
increasing the connectivity per neuron and the robustness against
noise. Wafer-scale integration is used to combine 384 accessible
chips into a single addressable system, allowing to emulate

networks with up to nearly 100,000 neurons. The system comes
with neuron calibration to compensate for device mismatch
which also provides blacklisting capabilities to exclude circuits
and neurons that are not working at all or are misbehaving
in some way. Other properties, like acceleration factor or
fabrication technology, are similar to those of the Spikey
system.

2.2. Benchmark Framework
The first issue encountered when developing a black-box
benchmark for neuromorphic hardware is related to the various
interfaces to the hardware systems. First introduced in Stöckel
et al. (2017), the Cypress2 library is a C++ framework allowing to
access all systems in a backend agnostic manner. The structure
and input of an SNN is defined in an abstract interface that
is quite similar to the PyNN interface. After compilation, the
target backend can be chosen at runtime as long as the respective
software packages (and neuromorphic systems) are installed
on the working machine. Hence, network definition and data
analysis can be decoupled from the actual target backend.
However, it is still possible to change some low level properties at
runtime, like, e.g., the number of neurons per core on SpiNNaker
or the simulation time step on all digital simulators. This platform
configuration is appended to the simulator string, which is
provided as a command line argument, using the JSON format.
At the time of writing, Cypress supports all systems reviewed
in Section 2.1, and an overview of the framework is given in
Figure 1. The simulation flow is the following:

• The network with its neurons and populations is set up in
Cypress specific data structures.

• When run is called in the C++ source, some compatibility
checks are done, e.g., regarding supported neuron models on
a specific backend.

• Next, the Cypress network is mapped to the backend specific
API, e.g., by creating a mirrored network in the target
framework.

• Connection tables and input spikes are generated wherever a
target does not natively support it.

• The backend executes the simulation and recorded data, like
spikes or voltage traces, is written into the Cypress network
instance.

After the simulation, spike data or voltage traces are provided in
the same format and can be interpreted by the end-user.

While this abstracts away the individual backends from
the main implementation of the benchmark suite, the suite
itself needs to provide more flexibility regarding platform
specific configuration of the benchmarks. There are two main
reasons why the SNNs need to be configurable depending
on the target backend: first, the different simulators/emulators
support different network sizes and connectivity. Thus, to
fully utilize every platform (in case of a scalable benchmark)
the suite needs to include mechanisms to incorporate these
properties into the configuration of the network. This is
comparable to implementations of classical benchmarks as the

2https://github.com/hbp-unibi/Cypress

Frontiers in Neuroscience | www.frontiersin.org 3 June 2022 | Volume 16 | Article 873935200

https://github.com/hbp-unibi/Cypress
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

FIGURE 1 | Structure of the Cypress library. Network generations and data analysis is done in C++ code. The library takes care of mapping the created network to

the target platforms listed on the right side using the individual platform APIs.

High Performance Linpack benchmark (Dongarra et al., 2003),
where problem sizes can be adapted to the target system. For
neuromorphic systems, further limitations might be related
to supported neuron models, restricted parameter space or
bandwidth limitations. Second, the work in Stöckel et al.
(2017) demonstrated that using the same neural parameters
for all target platforms might give an unfair advantage to
the platform for which these parameters have been tuned
to. All in all, this requires us to factor out the benchmark
configuration, too. Changing network sizes would usually require
to recompile the whole network, which is why we included
a mechanism to parse all these parameters from JSON files.
Each of these benchmark specific files contain a section for
every platform and the suite allows to define a default set of
parameters. Configuration options depend on the individual
benchmark and may include network size, neuron model
and parameters or maximal spike rates. On the one hand,
this allows fair comparison between different platforms. On
the other hand, the actual executed workload might differ
between platforms and has to be kept in mind. We see this
as a compromise between real “black-box” benchmarking and
individual implementations for every platform. This has been
accounted for in the Spiking Neural Architecture Benchmark
Suite (SNABSuite) and its architecture was already proposed
in Ostrau et al. (2020b) combined with a coarse overview
of the benchmark approach. Its modular structure factored
out all backend specific configuration and the benchmark
implementation. Furthermore, through a common API to all
benchmarks, these can be interfaced by other applications e.g. for
parameter sweeps optimizing the configuration, besides the mere
consecutive execution of all benchmarks. To address different
sizes of the systems, SNABSuite supports defining several sizes
of benchmarks using the benchmark index. Thus, sizes fall into
four categories: single core, single chip, small scale, and large
scale system. For systems like Spikey, the first index refers to
the first available category, which in this case is the single
chip.

The next section will introduce selected benchmarks of
the SNABSuite, called SNAB (Spiking Neural Architecture
Benchmark).

2.3. Neuromorphic Benchmarks
When choosing benchmarks for integration into SNABSuite
we are limited by the main criterion: a potential benchmark
has to be portable to as many of our target platforms as
possible. Otherwise, the benchmark metric cannot be compared
between platforms. Ideally, the potential candidate has been
already successfully demonstrated. Here, it becomes clear that
the implemented benchmarks can only lag behind state-of-
the-art SNNs, as there is either missing support for newly
introduced neuron models or learning rules (thus, these are not
implemented yet or not integrated into the analogue circuitry),
or there is some adaptation required for mapping the networks
to the hardware. To overcome this issue at least partially,
SNABSuite integrates several levels of benchmarks, categorized
from low-level characterization benchmark, which measures
basic hardware properties as, e.g., maximal spike rate of neurons,
up to high-level application benchmarks, that measure the
performance of a selected workload with reduced extrapolatory
meaning to new benchmarks. These categories are described in
Figure 2.

2.3.1. Low-Level Characterization Benchmark
Low-level benchmarks target some basic characteristics of a
target platform. The resulting performance metrics are quite
universal and applicable for a wide range of applications. The
first examplemeasures themaximal output frequency of neurons.
The metric of average output rate per neuron is a limiting factor
in many applications, especially when using a rate encoding of
data. This can have an influence onWTA networks as well, as the
current winner population might spike at high rates during its
winning period. For measuring the maximal output rate, neurons
are put in a state where they fire by themselves by setting the
resting potential above threshold. Not all simulators/emulators
allow to set the reset potential above the threshold, which is
why in those cases a small membrane time constant will lead
to high firing rates. In addition, the output rate is limited by
the configurable refractory state, providing an upper limit of
the maximal measurable rate. This specific benchmark comes
in several implementations, either using a single neuron, or
a partially/fully recorded population of neurons. Here, the

Frontiers in Neuroscience | www.frontiersin.org 4 June 2022 | Volume 16 | Article 873935201

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

FIGURE 2 | Different categories of benchmarks implemented in SNABSuite.

benchmark reveals whether the output rate decreases with an
increased number of neurons, and whether partially recording
selected neurons will have a positive influence on the measurable
rate.

Other examples of this category of benchmarks include
the maximal spike insertion benchmark, wherewith varying
connectivity the maximal number of spikes inserted into the
network can be measured, or a benchmark for spike transmission
between populations.

When comparing the measured (output) rates between the
platforms one has to keep in mind that these rates are evaluated
in the biological time domain and do not account for the
acceleration factor of, e.g., the analogue systems. Thus, a
comparably small (output) rate does not immediately hint at low
bandwidth between neurons on hardware.

2.3.2. Application Inspired Sub-task
Here, we introduce the class of application inspired sub-tasks.
These networks do not yet perform a real world application,
however, they are building blocks of the latter. The aim of
this kind of benchmark is to provide measures related to these
applications, but having broader applicability at the same time:
quite often measurements of full application benchmarks can not
be extrapolated to other neural algorithms or related fields. This
is where the proposed class of benchmarks steps in.

The first example is the class of WTA networks. WTA
architectures play a major role in several tasks most notably
solving constraint satisfaction problems (Maass, 2014), to
implement competing behavior in self-organizing networks (e.g.,
Diehl and Cook, 2015) or in approaches to neuromorphic
simultaneous localization and mapping (SLAM) (Kreiser et al.,
2018b). Here, we test three different architectures to account
for the different constraints of our target systems (compare
Figure 3). The simplest instantiation of a two population WTA
network uses direct cross-inhibition and self-excitation. Every
population gets individual random noise via Poisson spikes
source using a one-to-one connectivity scheme. However, this
simplest style infringes the constraint of separating excitation
and inhibition, which is mandatory for the Spikey platform. The
two alternative implementations use external inhibition by either
having a global inhibitory population or by usingmirror neurons.

Benchmark metrics include the maximal winning streak of any
population, the number of state changes, and the amount of time
for which no winner could be determined. These metrics allow
us to qualitatively assess the performance of the WTA dynamics
on a substrate by identifying too stable or too fragile winner
populations. The respective winner population is determined by
counting the spikes per population within a 15ms time window.

A second example is the similarity of activations curves to
the rectifying linear unit (ReLU) activation function known from
ANN. The motivation is clear: when converting pre-trained
ANNs to SNNs a required feature is that neuron output rates
increase linearly with increasing activation (Cao et al., 2015).
This benchmark samples through different input spike rates
measuring the output and calculating the similarity between both
curves. As a main metric we chose the average deviation from the
target curve for every frequency, which is then again averaged
across the different frequencies. A low deviation testifies that the
neural substrate is capable of reproducing the ANN activation
curve. A second metric is the averaged standard deviation. Here,
a high value indicates larger variances across different neurons.

2.3.3. Full Application Benchmark
Full application benchmarks build the last category of
benchmarks. Here, a high-level task is solving a certain
problem using SNNs and benchmark metrics are usually
related to accuracy. For this work we evaluated selected
applications/algorithms for which the only requirement is that
all target systems are able to potentially support it. This excludes
networks with, e.g., continuous access to membrane potential.
As an example for this category, the spiking binary associative
memory benchmark (BiNAM) (Stöckel et al., 2017) calculates
the retrieved amount of information in bits and compares it to
the non-spiking variant. The BiNAM is trained offline and used
as a synaptic connection matrix in the SNNs. Neuron parameters
are tuned to reach maximal capacity, which is equal or below the
capacity of the non-spiking variant. To reduce the computation
time of this benchmark and in contrast to the analysis in Stöckel
et al. (2017), larger networks are tested with a subset of samples
only, which approximates the real relative capacity.

A second example is a spiking Sudoku solver (Ostrau
et al., 2019), where the Sudokus are representative of the class

Frontiers in Neuroscience | www.frontiersin.org 5 June 2022 | Volume 16 | Article 873935202

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

FIGURE 3 | Winner-Takes-All implementation styles. Random spike source are not included in the picture, as every neuron of the excitatory populations (1 and 2) has

a one-to-one connection to its individual Poisson spike source.

of constraint-satisfaction problems. As mentioned above, this
network uses WTA structures to implement the solver. Here,
every possible number in the Sudoku puzzle is represented by a
population of neurons. Sudoku rules, interpreted as constraints
on all numbers, are implemented using inhibitory connections
between the different numbers. Hence, there is inhibition
between the numbers situated in a single cell, same numbers
in a row, column, and sub-box of the Sudoku. Every neuron
in this network has its own Poisson spike source. For analysis,
spikes are binned and the respective winner in a Sudoku cell is
determined. The benchmark metric is the bio-time to solution,
which returns the value of the first time bin in which the solution
is complete. The previous publication (Ostrau et al., 2019)
analyzed the time-to-solution of 100 assorted Sudoku puzzles for
every Sudoku size. Here, we reduce the analysis to a single puzzle
to reduce benchmark time, but add GeNN as additional backend
and compare the time and energy to solution to algorithmic
approaches. Furthermore, the model is used in the validation of
the proposed energy model.

A third benchmark is the conversion of deep neural networks
to SNNs (Ostrau et al., 2020a). For this conversion, DNNs
are trained using ReLU activation functions without biases,
and for simplicity, only densely connected layers. This pre-
trained network is converted to a SNN by rescaling the weights
and converting the input data into rates (Diehl et al., 2015).
Currently, this procedure is only evaluated for the MNIST
handwritten digits dataset. To reach optimal performance,
neuron parameters have to be adapted. For the analogue Spikey
system, it was necessary to scale down the MNIST images by
3 × 3 average pooling to create a network that maps on the
substrate. This network has as 81 × 100 × 10 layout and
further employs excitatory connections only. A second network
included in this analysis is the 784 × 1,200 × 1,200 × 10
network published with Diehl et al. (2015). To reach higher
accuracies on the analogue system and encounter neuron to
neuron variability, a hardware in the loop retraining approach
is applied, similar to the one presented in Schmitt et al.
(2017). Furthermore, we extended this set of benchmarks by
also employing time-to-first spike encoding, where normalized
input values are mapped to spikes using f (x) = (1 − x) ·

T, where T is a configurable timescale. The original analysis
of converted and pre-trained DNNs in Ostrau et al. (2020a)
is extended here by a time-to-first spike encoding and an

energy-per-inference comparison to standard accelerators for
DNN inference.

A basic building block for the Neural Engineering Framework
(Eliasmith and Anderson, 2004), but also an application by
itself, is the approximation of functions via activation curves
of neurons. For this, we feed spike rates into a population
of neurons (one-to-all connection) and measure the response
function of individual neurons. Given a certain variability across
the population, one finds different response curves (compare
Figure 4) that can be used as basis of the function space of
continuous functions.

f (x) ≈
#Neurons

∑

i

aigi(x) (1)

Here, x is a number that has to be mapped to the available
rate interval, gi(x) is the decoded response rate of a neuron,
and ai are the neuron specific coefficients. For encoding x into
rates, we normalize the input interval and linearly transform it
to rates (given a maximal rate as a parameter). The response to
that rate is decoded to values in the unit interval, again given a
maximal frequency. For fixing the coefficients in Equation (1), it
is required to have at least as many sampling points as neurons in
the target population. For testing the approximation capabilities,
more sampling points are used, including points in between the
original ones for fitting, from a second simulation/emulation.
This is shown in Figure 4 on the right side. Since the output
activity of neurons should be more or less the same in several
runs, we can use the same set of input/output rates to fit several
functions. In theory, one could see the coefficients as decoding
weights, and using a second matrix for encoding, we could
chain these approximation populations to approximate more
complex calculations, which is not currently covered in this
benchmark.

An application from robotics is the spiking localization and
mapping algorithm. Existing work proposes a sort of spiking
state machine to track the current position and head direction
of the (virtual) robot, and learning a map of the surroundings
using spike-timing dependent plasticity (STDP) and a bumper
sensor (Kreiser et al., 2018a,b, 2020). We adopt this network
and use it as a benchmark using the accuracy of the learnt
map as a benchmark metric (pixel-wise false positives for a
learnt obstacle that does not exist in the simulation and false

Frontiers in Neuroscience | www.frontiersin.org 6 June 2022 | Volume 16 | Article 873935203

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

FIGURE 4 | (Top) Activation curves for various neurons for fitting (left) and testing. Every second neuron has a positive bias, and the input is inserted via inhibitory

connections (depicted in yellow). (Bottom) Results of the function approximation for exponential and sinus function using the testing activation curves.

negative for a not learnt obstacle). The WTA populations
used for tracking the current state of the robot could not
be reliably tuned on analogue hardware using population-wise
neuron parameters and would require neuron-specific tuning
of 364 neurons, which is why this is currently not included.
Here, only an automated approach would lead to reproducible
results. The original work however targeted analogue hardware,
demonstrating that the proposed algorithm is indeed suited for
this kind of system.

2.4. Comparison to DNN Benchmarks
The original meaning of DNN benchmarks is related to
datasets for benchmarkDNN algorithms and network topologies,
comparing the efficiency and accuracy of networks. Since
our target is benchmarking hardware systems, we focus on
hardware benchmarks, where the learning algorithm and
network topologies are typically fixed. One of the first benchmark
suites for DNN acceleration is Baidu Deep Bench3. This
suite was introduced when the field of DNN accelerators
began to grow while the DNN community was in fast
progress, and representatives of an application domain are
yet to exist. Thus, full applications benchmarks could not
be integrated into the suite. Furthermore, every hardware
system came with its own deep learning library, increasing
the effort to maintain such a suite. Consequently, the authors
decided to do some low-level benchmarking using typical
core workloads of deep learning. These are comparable
to our aforementioned low-level benchmarks. Instead of
benchmarking dense or convolutional connectivity schemes or
vectorized application of the activation function, our benchmark
suite targets spike input and output rates, as well as the

3https://github.com/baidu-research/DeepBench (accessed November 3, 2021).

bandwidth between populations using various connectivity
schemes.

Later, DAWNBench (Coleman et al., 2017, 2019) was
introduced to the community. In comparison to DeepBench,
the workloads cover various application categories instead of
computational kernels. Besides benchmarking mere execution
speed of these DNNs, its benchmarkmetrics account for potential
differences in precision and accuracy of accelerators. As with
less precise data formats the inference speed can be increased
but usually at the cost of impeded accuracy. For training the
network, the time required to reach a pre-defined accuracy is
measured, which should account for the variances in speed
and accuracy. If the criterion is met, the trained network
could be used for inference, where delay between input and
output is the main metric. DAWNBench built the basis for
the current state-of-the-art benchmark suite MLPerf, which
not only includes several application domains for DNNs, it
also separates training and inference benchmarks and consists
of several execution domains, from embedded to sever scale
machine learning (Mattson et al., 2020; Reddi et al., 2020). In
all application domains, a state-of-the-art network topology has
been developed by the community, and as such, the suite can
be considered to be representative of the field. Furthermore,
most currently developed hardware accelerators support the
feature set required to execute the selected networks. This is
not the case for neuromorphic computing: There is a broad
range of learning algorithms and workarounds for the back-
prop algorithm, let alone the available neuron and synapse
models. As such, there are only few commonly agreed learning
algorithms that can be ported to all hardware platforms. Hence,
our benchmark suite relies on low-level benchmarks too which,
as a class of benchmarks, have been historically the first step to
DNN benchmarking.

Frontiers in Neuroscience | www.frontiersin.org 7 June 2022 | Volume 16 | Article 873935204

https://github.com/baidu-research/DeepBench
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

2.5. Energy Model for Neuromorphic
Hardware
To estimate the power consumption of a network simulated on
a target system we identified the following workloads as core
contributions to the overall energy expenditure:

• The static power consumption of the idle neuromorphic
system

• The energy required for a virtual spike source neuron to emit
an event

• The power required to simulate/emulate an idle neuron
• The energy used for a real neuron to emit a spike
• The energy expenditure of transmitting a single spike
• The static power required for activating STDP and the energy

per synaptic event

By subsequently activating different parts of a full network
we are able to calculate the different contributions from
individual processes. In more detail, we start measuring idle
power consumption. Next, idle neurons are simulated. For
calculating the power per simulated neuron, the idle power
is subtracted. Following this line, the energy per generated
action potential is measured by simulating neurons that fire by
themselves after subtracting the power for idle neurons and idle
hardware. In the end, the different processes are mapped to a
power/energy budget. Given a network simulation, the overall
energy expenditure can be calculated. For simplicity of themodel,
we do not account for different channels of spike communication.
For example, whether source and target neuron are situated on
the same chip or in close physical neighborhood plays no role in
our model.

For SpiNNaker, the power measurement is done using a
Ruideng UM25C USB meter. It measures the power for a supply
voltage up to 20V, which allows the measurement of both the
small SpiNN3 board (5V) and the larger SpiNN5 board (12V).
For Spikey, the sample rate of the USB meter is insufficient.
Thus, we fix the power supply (Aim TTi CPX200DP) to 5V and
measure the supply current using a Fluke 289. The NVIDIA
GPU allows to directly read out the current power consumption
using monitoring tools. All setups allow automation of the
measurement process using either the provided Bluetooth or
serial interface. For the final calculation, every value is an average
covering 20 measurements. Furthermore, the devices have been
plugged in for several minutes to assure that devices reach their
idle temperature.

To compare the energy expenditure of neuromorphic
hardware to its biological counterpart, we use the data acquired
by Attwell and Laughlin (2001), which calculate the amount
of ATP molecules required to maintain resting potential and
for active signaling. These values were calculated for the rat’s
neocortex and have to be adapted for the human brain. According
to Lennie (2003), the human brain consists of larger neurons,
which can be accounted for by using factors of 2.6 for the
energy expenditure of maintaining resting potential and 3.3
for action potential generation. Finally, Howarth et al. (2012)
argues that the overlap of sodium and potassium fluxes during
action potential generation in the human brain is actually smaller

TABLE 1 | Various contributions to the overall energy expenditure of the human

brain.

Action ATP molecules Energy expenditure

in W

Action potential 1.57 ×109 7.86 × 10−11

Resting potential 1.15 ×109 5.77 × 10−11

Post-synaptic receptors 1.40 ×105 7.00 × 10−15

Neurotransmitter recycling 1.14 ×104 5.70 × 10−16

Other pre-synaptic loads 1.20 ×104 6.00 × 10−16

Single neuron 4.03 ×109 2.02 × 10−10

Single neuron + housekeeping 4.98 ×109 2.49 × 10−10

Single neuron refers to a spike rate of 4Hz and a fan-out of 2,000.

than originally assumed, correcting the original value of 4 from
Attwell and Laughlin (2001) to 1.24. Furthermore, the costs
of auxiliary functions in the brain (“housekeeping”) is about
33% of the signaling costs (Howarth et al., 2012). Table 1 lists
the different contributions to the overall energy expenditure
of a single neuron. The resting potential expenditure includes
the costs of glia cells under the assumption of a one-to-one
correspondence. The contribution of “other pre-synaptic loads”
includes the costs for vesicle cycling and Ca2+ recycling. For
the overall power consumption we assume (following Attwell
and Laughlin, 2001) an average spike rate of 4 Hz while the
average fan out of a neuron is 2,000. For converting the amount of
freed energy per ATP molecule, Rosing and Slater (1972) reports
4.6495−5.5628·10−20 J ATP−1. Hence, we used 5·10−20 J ATP−1

for our calculations. When scaling the energy expenditure up to
full brain size using 8.61 · 1010 ± 8.12 · 109 neuron cells of the
human brain (Azevedo et al., 2009) we end up with an overall
energy expenditure of 21.5W.

3. EXPERIMENTS AND RESULTS

This section provides results for the three categories of
benchmarks. Major outcomes are discussed and evaluated.
Furthermore, the proposed energy model is validated on selected
benchmarks. Since individual contributions to the energy model
are known, the model allows us to trivially upscale networks
to brain size and compare neuromorphic to biological energy
efficiency. Finally, the efficiency is also compared to algorithmic
approaches for the Sudoku network and to ANN accelerators for
the converted pre-trained networks.

3.1. Characterization Benchmarks
In this category of benchmarks we look at two examples. The
first one measures the maximal output rate of a set of neurons.
Figure 5 demonstrates the behavior of our target neuromorphic
systems regarding this metric. CPU/GPU simulations are not
included, as these do not suffer from any spike loss. Here, the
maximal output rate is only limited by time resolution and
the refractory period of the simulated model. Quite similar, the
SpiNNaker system does not show any output bandwidth issues.

Frontiers in Neuroscience | www.frontiersin.org 8 June 2022 | Volume 16 | Article 873935205

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

FIGURE 5 | Measured output rate (left) and the indirectly measured input rate from virtual spike source neurons using a one-to-one connection scheme (right). Light

coloring indicates the empirical standard deviation across neurons.

The maximally required output buffers can be calculated before
the simulation and the SpiNNaker software stack will ensure
that spikes are copied to the host machine when reaching these
limits. Both analogue systems suffer from bandwidth restrictions,
as spikes are communicated via the on-chip network before
reaching the target storage. However, the systems run in an
accelerated manner, so in wall-clock terms the actual rates are
increased by a factor of 104.

The second benchmark indirectly measures the amount of
output spikes measurable when all neurons receive a spike
at the same time via one-to-one connection. Ten spikes per
neuron are inserted during the simulation and we provide
the average number of output spikes. On SpiNNaker, the loss
usually appears at the receiving neuron. If a core (simulating 255
neurons) receives too many inputs within the same timestep, the
computation of that core lags behind the global timer. In our
case, the computationally more expensive conductance-based
LIF neuron model requires more resources than the current-
based one, thus these limits depend on the neuron/synapse
model in use. Note, that if running into such problems,
the SpiNNaker software stack provides several configuration
options to reduce the computational load of individual cores,
including a slow-down of the simulation or the reduction of
simulated neurons per core (which then requires more cores
for the simulation of the network). For the Spikey system,
the quite prominent drop in output spikes is related to the
usage of the second block of neurons of the system. When
using a single block only, the average amount of spikes is
more or less constant, indicating that the origin of spikes loss
is not a bandwidth issue, but more related to the neuron to
neuron variability. For BrainScaleS, the amount of spikes for
few neurons reaches the target of 10. Here, we expect that
the closeness of output spikes reaches some output bandwidth
bottlenecks. The overall constant curve for larger networks
indicates that there is no additional constraint when using
multiple HICANN chips.

3.2. Application Inspired Subtasks
TheWTA behavior is tested for two populations only to check the
general capability of the system to demonstrate the appropriate
behavior. Results for this set of benchmarks are provided in
Supplementary Table 2. For analogue platforms we see in spike
raster plots, that random neurons are activated quite often.
Especially for Spikey one can distinguish several neurons that
emit spikes more easily compared to neighboring neurons. This
reduces the capability of the substrate to simulate two equally
probable winner populations and acts as a bias. To account
for variances across simulation due to random seeds and trial-
to-trial variation in analogue systems, benchmark metrics are
averaged using ten simulations. The chosen metrics for this kind
of network do vary a lot across simulations, as the random
input noise to neurons is different for every instance. For
BrainScaleS the obtained values are comparably worse, even in
the one-to-one comparison to Spikey. This is basically due to
different days of the evaluation and parameter tuning leading
to different results and this should not be seen as a general
deficit of the hardware platform. The second part of the table
(in the Supplementary Material) shows values for the exact
same benchmarks, but using only as few neurons as possible
[simulators: one (source) neuron; Spikey: two neurons, doubled
number of source neurons; BrainScaleS: two source neurons, but
four neurons per population]. Here, all platforms demonstrate
the capability of embedding WTA dynamics, with analogue
hardware tending to have a higher variation in winners compared
to the simulators.

Figure 6 shows measured activation curves. The aim is to
reuse these curves to approximate the ReLU activation function
known from the field of deep learning. Thus, the aim is to
measure the capability of a system to simulate converted pre-
trained networks with rate-encoding. Using a single input neuron
that is connected to a simulator specific number of neurons,
all target systems demonstrate the ability to approximate the
ReLU function in certain frequency boundaries. For simulators,

Frontiers in Neuroscience | www.frontiersin.org 9 June 2022 | Volume 16 | Article 873935206

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

FIGURE 6 | Activation curves for various simulators. “Spikey Full” refers to the usage of both neuron blocks on the Spikey system. The target curve is depicted in

black. SpiNNaker is tested with two different simulation timesteps.

this maximal frequency is, besides potential bottlenecks, limited
by the refractory period and the timestep of the simulation.
For SpiNNaker, no bottlenecks should be triggered in this
setup, thus the deviations are results of the timestep of 1ms
for running the network in realtime. The curves for the full
Spikey system (employing both neuron blocks of the system)
and the BrainScaleS system resemble each other. The rate
limitation is a consequence of the large speedup and readout
restrictions. The latter is due to shared priority encoders with
limited maximal output rate of packages into the digital network
effectively limiting the measurable number of spikes. If using
only one neuron block of the Spikey system, the sensible
range of frequencies is larger and meets expectations from
the previously discussed low-level benchmarks. Putting these
results into numbers, the Supplementary Table 3 of results in the
Supplementary Material validates the discussed observations.
Note, that by reducing the measured frequency corridor the
average deviation is expected to decrease.

3.3. Applications
The BiNAM benchmark comes in four different implementation
styles, using bursts and/or populations to represent bits in
input and output. Here, we present the results from the
simple variant only, although (Stöckel et al., 2017) demonstrated
that the analogue platforms potentially benefit from averaging
the output over several neurons. The results are provided in
Supplementary Table 4, and we summarize the most important
findings here. In comparison to the old publication, several things
have changed in our evaluation. First, we reduced the amount
of samples used in the spiking recall phase. While training the
BiNAM, we still use the theoretical prediction for the optimal
sample count for determining the amount of binary patterns
to store. For recall, we make use of the first few randomly
generated patterns only and the exact amount of samples is

configurable. Since false positives and negatives are on average
equally distributed across these random samples, results are still
in overall accordance with the full recall. This effectively reduces
the simulation times of the larger networks. Second, the new
set of results include GeNN and BrainScaleS platforms. While
simulators perform close to the original, non-spiking model of
the BiNAM, analogue platforms show reduced accuracy. For
Spikey, an increased amount of false positives demonstrate that
input bottlenecks are not the problem.With an increased amount
of output spikes due to false positives, a potential pitfall is that
correct positives are lost while false positives are recorded. This
seems to be more of an issue with the BrainScaleS system: Here,
the smallest network produces no false positives, but already
some false negatives, which are mostly related to the neuron to
neuron variability. Higher accuracy could only be reached using
a neuron specific training of parameters. Spreading the network
to two or more HICANNs, the performance of the network
is degraded. An increased amount of false positives implies an
issue with the read-out causing the increasing number of false
negatives. When using larger networks that are spread across
the wafer, the amount of false negatives decreases. We can only
guess that spreading the activated neurons across more HICANN
reduces the average load on individual priority encoders and
routers.

The Sudoku benchmark comes in three styles: the first one
is how a possible end-user would program such a network.
Every possible number is presented by its own population.
Between populations, high-level connectors are used (e.g., all-to-
all connectors) to implement the direct inhibition. The second
benchmark implements exactly the same network but uses a
single population which includes all neurons. Connections are
realized using custom connection lists, only the random noisy
input is connected via one-to-one connectors. Comparing results
(see Table 2) of both implementations reveals how good the

Frontiers in Neuroscience | www.frontiersin.org 10 June 2022 | Volume 16 | Article 873935207

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

TABLE 2 | Results of the Sudoku benchmark for several implementation styles and two Sudoku sizes.

Platform Bio runtime Sudoku Bio time to solution Wall-clock time to solution

in ms size in ms in ms

Simple Sudoku

GeNN-CPU 5,000 2 × 2 20 0.81 ± 0.06

10,000 3 × 3 4420 3,645.26 ± 219.17

GeNN-GPU 5,000 2 × 2 20 2.8 ± 0.04

NEST 5,000 2 × 2 20 9.77 ± 0.70

10,000 3 × 3 2980 24,106.13 ± 3,447.74

BrainScaleS 50,000 2 × 2 6264 ± 6333.54 0.63 ± 0.63

SpiNNaker 5,000 2 × 2 20 200.01 ± 0.00

Simple Sudoku—single population

GeNN-CPU 5,000 2 × 2 20 0.44 ± 0.06

10,000 3 × 3 4420 1,212.41 ± 82.48

GeNN-GPU 5,000 2 × 2 20 1.31 ± 0.02

10,000 3 × 3 4420 376.47 ± 6.44

NEST 5,000 2 × 2 20 6.30 ± 0.44

10,000 3 × 3 2980 9,553.49 ± 51.32

BrainScaleS 50,000 2 × 2 6780 ± 10899.87 0.68 ± 1.09

SpiNNaker 5,000 2 × 2 20 200.01 ± 0.00

10,000 3 × 3 1660 16,600.33 ± 0.00

Mirrored inhibition Sudoku

GeNN-CPU 5,000 2 × 2 120 423.41 ± 2.28

GeNN-GPU 5,000 2 × 2 120 25.26 ± 2.07

NEST 5,000 2 × 2 100 52.79 ± 0.25

Spikey 30,000 2 × 2 363 ± 288.60 0.04 ± 0.03

SpiNNaker 5,000 2 × 2 140 4,200.17 ± 0.00

2 × 2 refers to a Sudoku featuring numbers 1–4, 3 × 3 is the standard Sudoku size.

underlying software can merge neuron groups. On SpiNNaker,
the individual populations are mapped to individual cores, thus
every core simulates only few neurons. This highly inefficient
usage leads to the larger network not being available on the
SpiNNaker platform. Furthermore, the simulation tools GeNN
and NEST do also benefit from such a merging of populations,
as the wall clock to solution is lower. For the GeNN GPU, the
larger Sudoku network would require lots of working memory
at compile time, which is why it is not included. Otherwise,
we see that the biological time to solution is unaffected by the
implementation style (when keeping the seeds for random input
generation fixed). For BrainScaleS, the simulation is evaluated
ten times to measure the influence of trial-to-trial variations of
the analogue substrate. For comparison, using random seed in
a GeNN simulation for the generation of input noise results in
a time-to-solution of 58.0 ± 53.7ms for the small and 2716.0 ±

1869.5ms for the large Sudoku. Thus, the variance through trial-
to-trial variation matches to some extent the variation due to
different random input. While mean time to solution is similar
between both implementation styles, the standard deviation is
larger for the merged implementation. We are not aware of any
specific issue that might be causing this and guess that this is
related to the mapping to the hardware system: The networks
is mapped to a restricted list of HICANNs, but we leave the

placement of individual neurons to the BrainScaleS software
stack. Between repetitions, this mapping is kept fixed. Due to
the different layout of both networks we cannot assume that the
same virtual neuron is placed to the same hardware neuron in
both implementations. Thus, one can assume that the simple
implementation style was mapped in favor of this specific Sudoku
or that by revealing the internal structure of the network, the
mapping reduces the amount of spike loss appearing during the
emulation.

For the larger Sudoku network, we were not able to reliably
emulated it on the BrainScaleS system. However, using neuron
specific parameters and a hardware in-the-loop training should
result in decreased time-to-solution and reliable solving for larger
Sudokus, too. The last implementation benchmarked includes
a workaround for the Spikey system avoiding direct inhibition.
Here, we see that fast solving of such constraint problems is
possible on analogue hardware, and find the shortest wall-clock
time to solution.

Next, we evaluate rate-coded converted deep neural networks.
We focus on two networks, the first being created to be mapped
to the Spikey platform using a 81 × 100 × 10 layout without
bias and inhibition. The input images are rescaled using 3 × 3
average pooling. The second network has been published by
Diehl et al. (2015). The aim is to reach an accuracy close to

Frontiers in Neuroscience | www.frontiersin.org 11 June 2022 | Volume 16 | Article 873935208

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

TABLE 3 | Results of pre-trained and converted DNNs.

Platform Parallel Accuracy Sim. time Bio time/inf.

instances in % in s in ms

Spikey network 90.13%

GeNN-CPU 1 89.11 6.83 ± 0.25 500

100 88.87 4.29 ± 0.02 500

GeNN-GPU 1 89.10 35.64 ± 029 500

100 88.87 0.70 ± 0.01 500

NEST 1 88.98 86.43 ± 2.09 500

20 88.98 62.83 ± 3.70 500

BrainScaleS 1 57.92 ± 5.92 0.95 900

Spikey 1 65.23 ± 0.78 0.35 300

SpiNNaker 1 88.41 6677.20 500

239 88.40 235.22 500

In-the-loop retraining

BrainScaleS 1 83.03 0.95 900

Spikey 1 85.16 0.22 180

Diehl network 98.84%

GeNN-CPU 1 98.85 276.23 ± 1.24 500

36 98.85 325.56 ± 3.12 500

GeNN-GPU 1 98.85 46.89 ± 0.66 500

36 98.85 9.85 ± 0.01 500

NEST 1 98.82 1763.54 ± 22.17 500

53 98.82 2646.66 ± 246.88 500

SpiNNaker 1 98.73 13695.06 500

53 98.77 1724.87 500

Diehl network (TTFS) 98.84%

GeNN-CPU 1 97.59 42.49 ± 1.14 9.12 ± 1.02

10 97.60 40.99 ± 0.40 9.12 ± 1.02

GeNN-GPU 1 97.60 30.66 ± 0.54 9.12 ± 1.02

10 97.60 4.37 ± 0.02 9.12 ± 1.02

NEST 1 97.59 540.95 ± 7.54 9.94 ± 1.01

10 97.57 581.39 ± 1.80 9.94 ± 1.01

SpiNNaker 1 97.57 4817.04 9.05 ± 1.08

61 97.56 626.44 9.05 ± 1.08

Only those benchmarks in the lowest part of the table employ the sparse time-to-first-spike
(TTFS) instead of rate encoding. An extended table is found in Supplementary Table 5.
The best results are highlighted in bold.

the original ANN accuracy. Thus, we used the 10 first images
of the training set to coarsely optimize SNN parameters using
parameter sweeps. Afterwards, we increased to number of images
to 100 to do a more fine-grained optimization of the most
fragile parameters like the maximal frequency for encoding
inputs and the scaling parameter for pre-trained weights. To
fully utilize the systems, several parallel instances of the same
network evaluate mutually exclusive parts of the test set of 10,000
images. Regarding the loss of accuracy during the conversion
process, we find a drop in accuracy of up to 1.5% for digital
platforms and the Spikey network. For the analogue systems
this loss is significantly larger which can be accounted for using
the HIL retraining. Nevertheless, the loss is about 5%. Note,

that for this retraining the inference time per sample has been
adapted to reach maximal accuracy (see last column of Table 3).
When comparing simulation times, the advantages of accelerated
analogue neuromorphic computing come into play. Only the
GPU with massively parallel instances is on a comparable level
(at a much larger power consumption).

The network proposed by Diehl et al. (2015) features a smaller
conversion loss. Here, the rate-coded variant suffers from up
to 0.1% loss. Curiously, the GeNN simulation even improves
the accuracy on one image which is most likely due to a lucky
circumstance in the parameter/rate conversion process4. For
SpiNNaker, the number of neurons per core was reduced to 180
(200 for the largest network on the SpiNN5 board). The machine
timescale factor was increased to two (not for the largest network)
effectively slowing down the simulation. Otherwise, the workload
per core, due to the employed rate-coding, would overload and
lead to lost spikes or even a break-down of the simulation. Thus,
SpiNNaker is as fast as a single threaded NEST simulation, one
order of magnitude slower than the GeNN CPU simulation and
two orders of magnitude slower than the GPU simulation. When
switching to time-to-first-spike (TTFS) encoding, the number of
neurons per core is set to default while the timestep is decreased
to 0.1ms slowing down the simulation by a factor of ten. This is
due to the increased time precision required by this encoding.
The overall loss during the conversion process is a bit larger,
which might be due to the employed conductance-based synapse
model [the original publication (Rueckauer and Liu, 2018) uses a
simpler synapse model]. The overall response time (time between
inserting the first spike of an TTFS encoded image) to the
first and classifying spike in the last layer is about 9ms. The
performance comparison to DNN accelerators is provided in
Section 3.5.

Results for the function approximation benchmark are shown
in Table 4. Simpler functions, like the linear function, can be
approximated with a very small overall deviation. Furthermore,
all target platform show quite similar approximation errors. For
digital simulators this is realized using two distinct diversification
mechanisms. First, a constant rate of spikes is fed to target
neurons using random connections weights (both inhibitory and
excitatory). Second, random but fixed input rates are inserted
using fixed weights. On analogue hardware this is not necessary
due to the naturally occurring neuron-to-neuron variability.
Here, higher approximation errors are most likely related to
trial-to-trial variances.

The last benchmark performs partial workloads of a SLAM
algorithm. Figure 7 visualizes not only the coverage of the
random trail of the robot in its virtual map, but also the learnt
map of the simulators. This test environment features a 15 × 15
map with four obstacles. All tested platforms demonstrate the
successful learning of the surroundings using the STDP (a spike
pair rule with additive weight dependence) enabled connection.
Small deviations from the target map occur due to not or only
once visited spots in the map.

4This is reproduced in the quantization process for the neural compute stick in
Table 8.

Frontiers in Neuroscience | www.frontiersin.org 12 June 2022 | Volume 16 | Article 873935209

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

TABLE 4 | Average deviations for selected functions in the function approximation benchmark.

Platform f(x) = x f(x) = 10 + x f(x) = sin(2πx) f(x) = cos(2πx) f(x) = exp(2x)

GeNN-CPU 0.01 ± 0.01 0.37 ± 0.42 0.30 ± 0.56 0.16 ± 0.27 0.17 ± 0.29

GeNN-GPU 0.02 ± 0.01 0.38 ± 0.41 0.16 ± 0.14 0.18 ± 0.20 0.12 ± 0.10

NEST 0.02 ± 0.02 0.68 ± 0.82 0.29 ± 0.27 0.17 ± 0.14 0.19 ± 0.22

BrainScaleS 0.14 ± 0.38 1.54 ± 3.78 0.77 ± 1.92 0.52 ± 1.44 0.67 ± 1.76

Spikey 0.05 ± 0.06 0.51 ± 0.54 0.27 ± 0.29 0.25 ± 0.26 0.24 ± 0.25

SpiNNaker 0.02 ± 0.02 0.41 ± 0.38 0.32 ± 0.63 0.29 ± 0.44 0.23 ± 0.30

FIGURE 7 | Result of the spiking SLAM benchmark. The leftmost map visualizes the map with the obstacles (blue circles). Black pixels are not visited by the virtual

agent while red ones are visited once or twice. The best achievable representation is missing two pixels (see the SpiNNaker result), as two points close to the right

obstacles are not visited by the virtual agent.

TABLE 5 | Results of the energy model in comparison to the biological counterparts.

Brain Spikey SpiNNaker R2600X Intel mobile RTX2070

Housekeeping 4.75E-11 1.37E-06 1.66E-04 4.49E-04 1.23E-04 9.76E-07

Resting potential 5.77E-11 3.83E-08 8.99E-05 4.77E-05 4.25E-05 3.63E-06

Action potential 1.96E-11 4.39E-10 1.04E-08 3.04E-08 4.46E-09 4.71E-09

Transmission 8.17E-15 1.08E-11 9.59E-09 5.82E-08 2.14E-08 3.40E-09

Single neuron 2.49E-10 1.49E-06 3.33E-04 9.62E-04 3.37E-04 3.18E-05

Full brain 2.15E+01 1.29E+05 2.87E+07 8.29E+07 2.90E+07 2.74E+06

Values for the simulation of 1s of model time are reported in Joule. The single neuron and full brain estimates assume a fan-out of 2,000 synapses and a spike rate of 4Hz. R2600X: AMD
Ryzen 2600X. Intel mobile: Intel Core i7-4710MQ. RTX2070: NVIDIA RTX 2070. Both CPUs are measured using a PeakTech power meter. The lowest values from simulators/emulators
are highlighted in bold.

3.4. Energy
First, the energy expenditure of neuromorphic hardware is
compared to the human brain. Table 5 summarizes costs for
the various contributions to the overall energy expenditure.
Values for the brain are adapted from Table 1. For neuromorphic
hardware, “housekeeping” refers to the scaled system’s idle
power. For transmission, the values for random connectivity
schemes are used. To scale values up to a full brain simulation,
we assume that every neuron is connected to 2000 neurons
and firing at 4Hz similar to Attwell and Laughlin (2001). The
results demonstrate the superiority of the analogue system in
regard to efficiency. Only the housekeeping costs are lower
for the GPU due to the large number of neurons simulated.
SpiNNaker performs on par with both CPUs and is less efficient
compared to the GPU. Comparing the values for a single
neuron or the full brain simulation, the biological paragon
is four orders of magnitude more efficient than the analogue
implementation. This huge difference cannot be compensated

by using a modern fabrication process: According to Sun et al.
(2019), the performance per watt doubles every 3–4 years.
Applying the same scaling factor to the SpiNNaker system, this
results in more than 8-fold improvement, which closes the gap to
the GPU implementation. The step from 180 to 22/28nm FDSOI
sub-threshold process would result in 50-fold improvement
(Rubino et al., 2019) for analogue implementations, which most
likely applies to the above-threshold circuits in Spikey, too.
This results in ∼2.6KW, which is still two orders of magnitude
above the values found in biology. Note, that this is a naive
upscaling only, as the system neither supports simulation of such
many neurons nor do they provide the infrastructure to connect
these.

To validate the proposed energy model, predicted values
for several networks are compared to measured ones. These
results are summarized in Table 6. For the Spikey system,
predicted values are quite close to measured values and
deviations are <10% but are not covered by the statistical

Frontiers in Neuroscience | www.frontiersin.org 13 June 2022 | Volume 16 | Article 873935210

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

TABLE 6 | Validation of the energy model.

Platform Acc. E/Inf. Prediction of E/Inference in mJ

in % in mJ GeNN Spikey SpiNN3 SpiNN5

Spikey network with parallelism 1

GPU 86.04 160.8 46.8 ± 1.3 0.19 ± 0.00 939.9 ± 2.5 8071.8 ± 16.6

Spikey 68.89 0.2 – 0.19 ± 0.00 939.9 ± 2.5 8071.7 ± 16.5

SpiNN3 87.07 950.8 – 0.19 ± 0.00 939.9 ± 2.5 8071.7 ± 16.5

SpiNN5 87.07 8148.1 – 0.19 ± 0.01 939.9 ± 2.5 8071.8 ± 16.6

Spikey network with parallelism 239

CPU 86.03 – – 0.00 ± 0.00 89.6 ± 1.3 38.6 ± 6.4

SpiNN5 87.04 38.2 – 0.00 ± 0.00 89.4 ± 1.3 38.5 ± 6.3

Diehl network with parallelism 4

GPU 98.83 217.0 265.4 ± 16.3 – 1871.1 ± 43.1 7232.5 ± 205.5

SpiNN3 98.73 993.5 – – 1806.0 ± 41.1 7181.3 ± 196.5

SpiNN5 98.74 6597.8 – – 1806.0 ± 41.1 7181.3 ± 196.5

Diehl network with parallelism 53

CPU 98.86 – – – 1046.1 ± 39.6 1013.5 ± 185.4

SpiNN5 98.77 488.5 – – 979.8 ± 37.6 961.3 ± 176.1

— in J in J in mJ in J in J

Mirror Inhibition

GeNN-GPU 56.0 378.5 ± 57.0 2.7 ± 0.0 14.2 ± 59.8 160.3 ± 71.3

GeNN-GPU† 62.6 261.2 ± 82.8 2.8 ± 0.0 88.0 ± 22.9 187.8 ± 114.7

Spikey 0.0029 – 2.7 ± 0.0 155.7± 6.5 1174.1 ± 33.4

Single population

GeNN-GPU 15.3 7.5 ± 0.2 2.9 ± 0.1 134.7 ± 0.4 1153.7 ± 2.4

SpiNN3 134.3 – 2.9 ± 0.1 134.7 ± 0.4 1153.7 ± 2.4

SpiNN5 1171.6 – 2.9 ± 0.1 134.7 ± 0.4 1153.7 ± 2.4

Spiking SLAM

GeNN-GPU 303.1 108.8 ± 2.8 – 45.7 ± 0.12 390.6 ± 0.8

SpiNN3 46.0 – – 45.7 ± 0.12 390.6 ± 0.8

SpiNN5 398.0 – – 45.7 ± 0.12 390.6 ± 0.8

For selected networks the measured energy (3rd column) is compared to the prediction of the energy model (right part of the table). For the Spikey network, input rates have been
adapted to values used for the Spikey system to improve comparability. Thus, the reported accuracy might be reduced compared to Table 3. Missing values are either due to missing
runtime for the GPU simulation, or due to the network not being compatible with the Spikey system. More data points are found in Supplementary Table 6.
†Simulation using three neurons per population similar to the Spikey parameter set.

error. Even better, relative deviation for the SpiNNaker system
is <3%. This however is not true for the Diehl network,
where low-level settings like the number of neurons have been
changed explaining larger deviations. For GPU simulations the
prediction is usually correct in order of magnitude, but severely
deviates from actual measurements. Here, some features, like
dynamic voltage and frequency scaling or temperature dependent
clock rates, are not covered by the proposed energy model.
Nevertheless, for Spikey and SpiNNaker the proposed model
predicts the energy expenditure of a network simulation even
though the network has been executed with, e.g., the GeNN
simulator. More interestingly, there is an overall agreement of
predictions based on analogue emulation and digital simulation.
Thus, one can use the Spikey system to estimate the energy
expenditure of a SpiNNaker simulation and vice versa (if the
network maps to both systems).

3.5. Comparison to Classical Solutions
Finally, we address the comparison to classical algorithmic
approaches for solving a Sudoku or ANN inference. In
Table 7, the time and energy to solution of the former
application are compared between a Raspberry Pi 4 with
2GB of RAM and neuromorphic systems. On the Pi 4 the
Coin-Or Cbc5 was employed to efficiently solve the Sudoku.
For the small Sudoku puzzle, Spikey is the most efficient
platform in regard to both time and energy to solution. The
GPU is faster, but also more energy consuming compared to
the algorithmic implementation. For the larger Sudoku, the
latter outperforms SpiNNaker and the GPU implementation.
This is most likely due to the SpiNNaker system and
the GPU not being fully utilized. With a more up-to-date

5Found at https://github.com/coin-or/Cbc.

Frontiers in Neuroscience | www.frontiersin.org 14 June 2022 | Volume 16 | Article 873935211

https://github.com/coin-or/Cbc
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

manufacturing process (see Section 4 above), the SpiNNaker
implementation would be on the same level of efficiency as the
RPI 4.

For deep network inference (see Table 8), the Spikey system is
again the fastest and most efficient system. However, the ANN
accelerators perform similar at a higher accuracy. Again, the
rather old technology in Spikey is accountable for at least an
order of magnitude in efficiency. The Intel Neural Compute

TABLE 7 | Comparing Sudoku solving on a Raspberry Pi 4 using an algorithmic

approach with SNN solvers.

System Time to solution Energy to solution

in ms in J

2 × 2 Sudoku

RPI 4 2GB 5.00 0.016

SpiNN3 200.00 0.537

Spikey 0.04 10−4 × 2.105

GeNN-GPU 1.42 0.061

3 × 3 Sudoku

RPI 4 2GB 261.0 0.91

SpinNN3 560.0 16.77

GeNN-GPU 370.6 26.72

Metrics are time and energy to solution. The fastest and most efficient values are
highlighted in bold.

Stick 2 (NCS)6 benefits from a larger batchsize, which is defined
at compile time. For the Edge TPU7 a batchsize could not
be configured. Both accelerators were able to simulate the
full network without doing computation on the host machine.
The GPU simulation requires one order of magnitude more
energy, while SpiNNaker (even with full utilization) requires
two orders of magnitude more energy. For the larger Diehl
network, SpiNNaker, and the GPU simulation are on the same
level of efficiency, while the latter being significantly faster.
Switching to TTFS encoding and only counting the energy
expenditure until the first, classifying spike appears closes the gap
between both platforms and ANN accelerators. Here, a modern
manufacturing process would result in SpiNNaker being themost
efficient system. Note, that the slightly reduced accuracy in SNN
simulations with TTFS encoding might be encountered by using
SNN specific training methods (e.g., Neftci et al., 2019).

4. DISCUSSION

To tackle the problem of missing cross-platform performance
assessment in neuromorphic computing, we presented
SNABSuite, an open-source benchmark suite. SNABSuite
features a set of workloads implemented in a platform-agnostic
way, but also providingmechanisms for benchmark and platform
configuration. This allows to account for varying neuron models,
parameter inaccuracies, and platform sizes. The suite has been

6Results created with Open Vino 2021.3.
7The TPU was interfaced with the Pycoral Frogfish Release from February 2021.

TABLE 8 | The table reports time and energy per inference in SNNs compared to ANN accelerators.

System Batch- Parallel Accuracy in % Time per Inf. in ms E per Inf. in mJ

size netw. value to Spikey value to Spikey value to Spikey

Spikey network (90.13% ANN accuracy)

Coral edge TPU 1 90.20 5.04 0.05 0.03 0.3 0.1

Intel NCS 2 1 90.10 4.94 1.92 1.90 10.6 10.4

200 90.10 4.94 0.12 0.10 0.6 0.4

GeNN-GPU 100 88.87 3.71 0.07 0.05 3.7 3.5

SpiNNaker 239 88.40 3.24 23.50 23.48 38.2 38.0

Spikey 1 85.16 0.00 0.02 0.00 0.2 0.0

to SpiNN to SpiNN to SpiNN

Diehl network (98.84% ANN accuracy)

Coral edge TPU 1 98.85 1.29 1.43 −4.83 7.7 3.9

Intel NCS 2 1 98.84 1.28 2.53 −3.73 13.8 10.0

200 98.84 1.28 0.71 −5.55 3.8 0.0

GeNN-GPU 36 98.85 1.29 1.00 −5.26 181.6 177.8

SpiNNaker 53 98.77 1.21 172.49 166.23 188.5 184.7

GENN-GPU (TTFS) 10 97.60 0.04 0.44 −5.82 4.7 0.9

SpiNNaker (TTFS) 61 97.56 0.00 6.26 0.00 3.8 0.0

The batchsize is configured for ANN accelerators. The number of parallel instances of the same network is used for SNN simulations. Values are compared to the most efficient
neuromorphic solution, too. Highlighted are the most accurate and the fastest/most efficient results.

Frontiers in Neuroscience | www.frontiersin.org 15 June 2022 | Volume 16 | Article 873935212

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

deployed to a range of neuromorphic systems (from mixed-
signal to fully digital) and SNN simulators, demonstrating the
capabilities of the framework. Selected benchmarks have been
presented and evaluated revealing hardware specific constraints
for neural modeling and potential workarounds for issues
encountered when using these systems. Benchmarks belong
to three categories with varying closeness to full applications
and extrapolation capabilities: low-level benchmarks revealed
constraints that influence the available SNNs deployable to
a given system. These constraints hold for every application,
thus their relevance is quite broad. Application kernels, like the
presented WTA architectures, represent a full class of networks,
but still not solve a real task like object detection or CSP
solving. These belong to the class of full application benchmarks,
providing natural benchmark metrics but having only limited
meaning for other applications implemented on neuromorphic
hardware. We presented results for DNN inference, function
approximation, spiking Sudoku solving, and SLAM.More results
can be found in the Supplementary Material.

For future development of our benchmark framework, two
directions are possible: due to the modular structure and
the hardware abstraction layer, adding new platforms to the
comparison is eased up to a certain extent. Here, possible
candidates include Intel Loihi (Davies et al., 2018), BrainDrop
(Neckar et al., 2019), or DYNAPs (Moradi et al., 2018).
Furthermore, successors have been announced for systems
discussed here (Billaudelle et al., 2019; Mayr et al., 2019). The
second direction covers the implementation of new benchmarks.
Most interesting is the embedding of the various direct training
methods published within the recent years. These methods allow,
similar to the hardware-in-the-loop approach discussed above, to
encounter the neuron variability found in analogue circuitry.

One major argument for neuromorphic computing is the
improvement in efficiency compared to algorithmic or standard
DNN implementations. To validate this argument, we proposed a
simple energy model relating costs of high-level SNN operations
(e.g., action potential generation) to low-level energy costs.
This model successfully predicts the energy budget of networks
emulated on Spikey or simulated on SpiNNaker as long as low-
level configurations would not deviate from the default. Here,
especially changing the number of neurons per core on the
SpiNNaker system leads to larger deviations, as the idle cost
per neuron is increased. The energy model does not cover all
features of a modern digital processor, thus energy predictions
for GPU simulations were found to be insufficient. Nevertheless,
the model allowed us to scale up the energy budget to a full
brain simulation. Comparing these to the costs of the human
brain we found mixed-signal hardware, being the most of
efficient system in consideration, to lag behind by four orders of
magnitude (even in this very optimistic and simplified upscaling).
Furthermore, switching to a modernized fabrication technology,
this gap cannot be closed in the short run. To conclude the
energy related discussion, we presented a comparison to ANN

accelerators and to a Raspberry Pi 4 for selected benchmarks.
We demonstrated, that for small scaled Sudokus the SpiNNaker
system was not fully utilized and thus the RPI4 is performing
better. Only the mixed-signal system had superior time and
energy to solution metrics. Similarly, this system is most efficient
at DNN inference at the cost of accuracy. For SpiNNaker,
switching to TTFS encoding resulted in an efficiency competitive
to ANN accelerators, despite the rather old technology in which
SpiNNaker cores are fabricated in.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data can be found at: http://yann.lecun.com/exdb/mnist/; https://
github.com/dannyneil/spiking_relu_conversion.

AUTHOR CONTRIBUTIONS

CO and CK conducted the experiments. MT and UR supervised
this work and contributed with various corrections and
comments. All authors contributed to writing the article and
approved the submitted version.

FUNDING

This research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7)
under grant agreement no 604102 and the EU’s Horizon 2020
research and innovation programme under grant agreements
Nos. 720270 and 785907 (Human Brain Project, HBP). It has
been further supported by the Cluster of Excellence Cognitive
Interaction Technology CITEC (EXC 277) at Bielefeld University,
which was funded by the German Research Foundation (DFG).
We acknowledge support for the publication costs by the Open
Access Publication Fund of Bielefeld University and the Deutsche
Forschungsgemeinschaft (DFG).

ACKNOWLEDGMENTS

We thank the Electronic Vision(s) group from Heidelberg
University and Advanced Processor Technologies Research
Group from Manchester University for access to their hardware
systems and continuous support. We thank James Knight
from the University of Sussex for support regarding the
GeNN implementation. Tables and Figures have been previously
published with the dissertation thesis of CO (Ostrau, 2022).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2022.873935/full#supplementary-material

Frontiers in Neuroscience | www.frontiersin.org 16 June 2022 | Volume 16 | Article 873935213

http://yann.lecun.com/exdb/mnist/
https://github.com/dannyneil/spiking_relu_conversion
https://github.com/dannyneil/spiking_relu_conversion
https://www.frontiersin.org/articles/10.3389/fnins.2022.873935/full#supplementary-material
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

REFERENCES

Attwell, D., and Laughlin, S. B. (2001). An energy budget for signaling in
the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145.
doi: 10.1097/00004647-200110000-00001

Azevedo, F. A. C., Carvalho, L. R. B., Grinberg, L. T., Farfel, J. M., Ferretti, R. E. L.,
Leite, R. E. P., et al. (2009). Equal numbers of neuronal and nonneuronal cells
make the human brain an isometrically scaled-up primate brain. J. Compar.

Neurol. 513, 532–541. doi: 10.1002/cne.21974
Billaudelle, S., Stradmann, Y., Schreiber, K., Cramer, B., Baumbach, A., Dold,

D., et al. (2019). Versatile emulation of spiking neural networks on
an accelerated neuromorphic substrate. arXiv preprint arXiv:1912.12980.
doi: 10.1109/ISCAS45731.2020.9180741

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural
networks for energy-efficient object recognition. Int. J. Comput. Vis. 113, 54–66.
doi: 10.1007/s11263-014-0788-3

Coleman, C., Kang, D., Narayanan, D., Nardi, L., Zhao, T., Zhang, J.,
et al. (2019). Analysis of DAWNBench, a time-to-accuracy machine
learning performance benchmark. ACM SIGOPS Oper. Syst. Rev. 53, 14–25.
doi: 10.1145/3352020.3352024

Coleman, C., Narayanan, D., Kang, D., Zhao, T., Zhang, J., Nardi, L., et al. (2017).
DAWNBench: An End-to-End Deep Learning Benchmark and Competition,
Technical Report.

Davies, M. (2019). Benchmarks for progress in neuromorphic computing. Nat.
Mach. Intell. 1, 386–388. doi: 10.1038/s42256-019-0097-1

Davies, M., Srinivasa, N., Lin, T.-H. H., Chinya, G., Cao, Y., Choday, S. H., et al.
(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Davies, M., Wild, A., Orchard, G., Sandamirskaya, Y., Guerra, G. A. F., Joshi, P., et
al. (2021). Advancing neuromorphic computing with Loihi: a survey of results
and outlook. Proc. IEEE 10, 1–24. doi: 10.1109/JPROC.2021.3067593

Davison, A. P. (2008). PyNN: a common interface for neuronal network
simulators. Front. Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Diehl, P., and Cook, M. (2015). Unsupervised learning of digit recognition
using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.
doi: 10.3389/fncom.2015.00099

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C. C., Pfeiffer, M., et al.
(2015). “Fast-classifying, high-accuracy spiking deep networks through weight
and threshold balancing,” Proceedings of the International Joint Conference on
Neural Networks, doi: 10.1109/IJCNN.2015.7280696

Dongarra, J. J., Luszczek, P., and Petitet, A. (2003). The LINPACK Benchmark:
past, present and future. Concurr. Comput. 15, 803–820. doi: 10.1002/cpe.728

Eliasmith, C., and Anderson, C. H. (2004). Neural engineering.
Eppler, J. M. (2008). PyNEST: a convenient interface to the NEST simulator. Front.

Neuroinform. 2:12. doi: 10.3389/neuro.11.012.2008
Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638
Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al.

(2013). Overview of the SpiNNaker system architecture. IEEE Trans. Comput.
62, 2454–2467. doi: 10.1109/TC.2012.142

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural simulation tool).
Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Golosio, B., Tiddia, G., De Luca, C., Pastorelli, E., Simula, F., and Paolucci, P.
S. (2021). Fast simulations of highly-connected spiking cortical models using
GPUs. Front. Comput. Neurosci. 15:627620. doi: 10.3389/fncom.2021.627620

Hopkins, M., and Furber, S. (2015). Accuracy and efficiency in fixed-point neural
ODE solvers. Neural Comput. 27, 2148–2182. doi: 10.1162/NECO_a_00772

Howarth, C., Gleeson, P., and Attwell, D. (2012). Updated energy budgets for
neural computation in the neocortex and cerebellum. J. Cereb. Blood Flow

Metab. 32, 1222–1232. doi: 10.1038/jcbfm.2012.35
Jordan, J., Mørk, H., Vennemo, S. B., Terhorst, D., Peyser, A., Ippen, T., et al.

(2019). NEST 2.18.0 (2.18.0). Zenodo. doi: 10.5281/zenodo.2605422
Knight, J. C., and Nowotny, T. (2021). Larger GPU-accelerated brain

simulations with procedural connectivity. Nat. Comput. Sci. 1, 136–142.
doi: 10.1038/s43588-020-00022-7

Kreiser, R., Cartiglia, M., Martel, J. N., Conradt, J., and Sandamirskaya,
Y. (2018a). “A neuromorphic approach to path integration: a head-
direction spiking neural network with vision-driven reset,” in 2018 IEEE

International Symposium on Circuits and Systems (ISCAS) (Florence), 1–5.
doi: 10.1109/ISCAS.2018.8351509

Kreiser, R., Renner, A., Leite, V. R. C., Serhan, B., Bartolozzi, C., Glover, A., et al.
(2020). An on-chip spiking neural network for estimation of the head pose of
the iCub robot. Front. Neurosci. 14:551. doi: 10.3389/fnins.2020.00551

Kreiser, R., Renner, A., Sandamirskaya, Y., and Pienroj, P. (2018b). “Pose
estimation and map formation with spiking neural networks: towards
neuromorphic SLAM,” in 2018 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS) (Madrid), 2159–2166.
doi: 10.1109/IROS.2018.8594228

Lennie, P. (2003). The cost of cortical computation. Curr. Biol. 13, 493–497.
doi: 10.1016/S0960-9822(03)00135-0

Maass, W. (2014). Noise as a resource for computation and learning in networks of
spiking neurons. Proc. IEEE 102, 860–880. doi: 10.1109/JPROC.2014.2310593

Mattson, P., Cheng, C., Diamos, G., Coleman, C., Micikevicius, P., Patterson,
D., et al. (2020). “MLPerf training benchmark,” in Proceedings of Machine

Learning and Systems, Vol. 2, eds I. Dhillon, D. Papailiopoulos, and V. Sze,
p. 336–349. Available online at: https://proceedings.mlsys.org/paper/2020/file/
02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf

Mayr, C., Hoeppner, S., and Furber, S. (2019). SpiNNaker 2: A 10 million core
processor system for brain simulation and machine learning. arXiv preprint

arXiv:1911.02385, 10–13.
Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2018). A scalable

multi-core architecture with heterogeneous memory structures for Dynamic
Neuromorphic Asynchronous Processors (DYNAPs). IEEE Trans. Biomed.

Circuits Syst. 12, 106–122. doi: 10.1109/TBCAS.2017.2759700
Neckar, A., Fok, S., Benjamin, B. V., Stewart, T. C., Oza, N. N., Voelker, A.

R., et al. (2019). Braindrop: a mixed-signal neuromorphic architecture with
a dynamical systems-based programming model. Proc. IEEE 107, 144–164.
doi: 10.1109/JPROC.2018.2881432

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning
in spiking neural networks: bringing the power of gradient-based
optimization to spiking neural networks. IEEE Sign. Process. Mag. 36,
51–63. doi: 10.1109/MSP.2019.2931595

Ostrau, C. (2022). Energy and Performance Estimation for Neuromorphic
Systems. Dissertation Thesis. Bielefeld University. doi: 10.4119/unibi/2962759

Ostrau, C., Homburg, J., Klarhorst, C., Thies, M., and Rückert, U. (2020a).
“Benchmarking deep spiking neural networks on neuromorphic
hardware,” in Artificial Neural Networks and Machine Learning-

ICANN 2020 (Bratislava: Springer International Publishing), 610–621.
doi: 10.1007/978-3-030-61616-8_49

Ostrau, C., Klarhorst, C., Thies, M., and Rückert, U. (2019). “Comparing
neuromorphic systems by solving sudoku problems,” in 2019 International

Conference on High Performance Computing & Simulation (HPCS) (Dublin),
521–527. doi: 10.1109/HPCS48598.2019.9188207

Ostrau, C., Klarhorst, C., Thies, M., and Rückert, U. (2020b). “Benchmarking of
neuromorphic hardware systems,” in Neuro-inspired Computational Elements

Workshop (NICE’20) (Heidelberg), 1–4. doi: 10.1145/3381755.3381772
Petrovici, M. A., Vogginger, B., Müller, P., Breitwieser, O., Lundqvist, M., Muller,

L., et al. (2014). Characterization and compensation of network-level anomalies
in mixed-signal neuromorphic modeling platforms. PLoS ONE 9:e108590.
doi: 10.1371/journal.pone.0108590

Pfeil, T., Grübl, A., Jeltsch, S., Müller, E., Müller, P., Petrovici, M. A., et al.
(2013). Six networks on a universal neuromorphic computing substrate. Front.
Neurosci. 7:11. doi: 10.3389/fnins.2013.00011

Reddi, V. J., Cheng, C., Kanter, D., Mattson, P., Schmuelling, G., Wu, C.-
J., et al. (2020). “MLPerf inference benchmark,” in 2020 ACM/IEEE 47th

Annual International Symposium on Computer Architecture (ISCA) (Valencia),
446–459. doi: 10.1109/ISCA45697.2020.00045

Rhodes, O., Bogdan, A., Brenninkmeijer, C., Davidson, S., Fellows, D., Gait, A., et
al. (2018). sPyNNaker: A Software Package for Running PyNN Simulations on

SpiNNaker. doi: 10.3389/fnins.2018.00816
Rhodes, O., Peres, L., Rowley, A. G. D., Gait, A., Plana, L. A., Brenninkmeijer, C.,

et al. (2020). Real-time cortical simulation on neuromorphic hardware. Philos.
Trans. R. Soc. A 378:20190160. doi: 10.1098/rsta.2019.0160

Rosing, J., and Slater, E. (1972). The value of 1G◦ for the hydrolysis of
ATP. Biochim. Biophys. Acta 267, 275–290. doi: 10.1016/0005-2728(72)9
0116-8

Frontiers in Neuroscience | www.frontiersin.org 17 June 2022 | Volume 16 | Article 873935214

https://doi.org/10.1097/00004647-200110000-00001
https://doi.org/10.1002/cne.21974
https://doi.org/10.1109/ISCAS45731.2020.9180741
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1145/3352020.3352024
https://doi.org/10.1038/s42256-019-0097-1
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.1002/cpe.728
https://doi.org/10.3389/neuro.11.012.2008
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/TC.2012.142
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.3389/fncom.2021.627620
https://doi.org/10.1162/NECO_a_00772
https://doi.org/10.1038/jcbfm.2012.35
https://doi.org/10.5281/zenodo.2605422
https://doi.org/10.1038/s43588-020-00022-7
https://doi.org/10.1109/ISCAS.2018.8351509
https://doi.org/10.3389/fnins.2020.00551
https://doi.org/10.1109/IROS.2018.8594228
https://doi.org/10.1016/S0960-9822(03)00135-0
https://doi.org/10.1109/JPROC.2014.2310593
https://proceedings.mlsys.org/paper/2020/file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1109/JPROC.2018.2881432
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.4119/unibi/2962759
https://doi.org/10.1007/978-3-030-61616-8_49
https://doi.org/10.1109/HPCS48598.2019.9188207
https://doi.org/10.1145/3381755.3381772
https://doi.org/10.1371/journal.pone.0108590
https://doi.org/10.3389/fnins.2013.00011
https://doi.org/10.1109/ISCA45697.2020.00045
https://doi.org/10.3389/fnins.2018.00816
https://doi.org/10.1098/rsta.2019.0160
https://doi.org/10.1016/0005-2728(72)90116-8
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ostrau et al. Benchmarking Neuromorphic Hardware

Rowley, A. G. D., Brenninkmeijer, C., Davidson, S., Fellows, D., Gait, A., Lester, D.
R., et al. (2018). SpiNNTools: the execution engine for the SpiNNaker platform.
Front Neurosci. 13:231. doi: 10.3389/fnins.2019.00231

Rubino, A., Payvand, M., and Indiveri, G. (2019). “Ultra-low power silicon
neuron circuit for extreme-edge neuromorphic intelligence,” in 2019 26th IEEE

International Conference on Electronics, Circuits and Systems (ICECS) (Genoa),
458–461. doi: 10.1109/ICECS46596.2019.8964713

Rueckauer, B., and Liu, S.-C. (2018). “Conversion of analog to spiking
neural networks using sparse temporal coding,” in 2018 IEEE

International Symposium on Circuits and Systems (ISCAS) (Florence),
1–5. doi: 10.1109/ISCAS.2018.8351295

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion
of continuous-valued deep networks to efficient event-driven networks
for image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.
00682

Schemmel, J., Briiderle, D., Griibl, A., Hock, M., Meier, K., and Millner,
S. (2010). “A wafer-scale neuromorphic hardware system for large-scale
neural modeling,” in Proceedings of 2010 IEEE International Symposium

on Circuits and Systems (Paris), 1947–1950. doi: 10.1109/ISCAS.2010.55
36970

Schmitt, S., Klahn, J., Bellec, G., Grubl, A., Guttler, M., Hartel, A., et al.
(2017). “Neuromorphic hardware in the loop: training a deep spiking
network on the BrainScaleS wafer-scale system,” in 2017 International Joint

Conference on Neural Networks (IJCNN) (Anchorage, AK), 2227–2234. IEEE.
doi: 10.1109/IJCNN.2017.7966125

Stöckel, A., Jenzen, C., Thies, M., and Rückert, U. (2017). Binary associative
memories as a benchmark for spiking neuromorphic hardware. Front. Comput.

Neurosci. 11:71. doi: 10.3389/fncom.2017.00071

Sun, Y., Agostini, N. B., Dong, S., and Kaeli, D. (2019). Summarizing CPU and
GPU design trends with product data. arXiv preprint arXiv:1911.11313.

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M.,
Stokes, A. B., et al. (2018). Performance comparison of the digital
neuromorphic hardware SpiNNaker and the neural network simulation
software NEST for a full-scale cortical microcircuit model. Front. Neurosci.
12:291. doi: 10.3389/fnins.2018.00291

Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a code generation framework
for accelerated brain simulations. Sci. Rep. 6:18854. doi: 10.1038/srep18854

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Ostrau, Klarhorst, Thies and Rückert. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 18 June 2022 | Volume 16 | Article 873935215

https://doi.org/10.3389/fnins.2019.00231
https://doi.org/10.1109/ICECS46596.2019.8964713
https://doi.org/10.1109/ISCAS.2018.8351295
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.1109/IJCNN.2017.7966125
https://doi.org/10.3389/fncom.2017.00071
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.1038/srep18854
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

TECHNOLOGY AND CODE
published: 17 June 2022

doi: 10.3389/fninf.2022.882552

Frontiers in Neuroinformatics | www.frontiersin.org 1 June 2022 | Volume 16 | Article 882552

Edited by:

Felix Schürmann,

Swiss Federal Institute of Technology

Lausanne, Switzerland

Reviewed by:

Michael Hines,

Yale University, United States

Nathan Gouwens,

Allen Institute for Brain Science,

United States

Werner Van Geit,

Swiss Federal Institute of Technology

Lausanne, Switzerland

*Correspondence:

Alexander Ladd

zladd@berkeley.edu

Roy Ben-Shalom

rbenshalom@ucdavis.edu

Received: 23 February 2022

Accepted: 18 May 2022

Published: 17 June 2022

Citation:

Ladd A, Kim KG, Balewski J,

Bouchard K and Ben-Shalom R

(2022) Scaling and Benchmarking an

Evolutionary Algorithm for

Constructing Biophysical Neuronal

Models.

Front. Neuroinform. 16:882552.

doi: 10.3389/fninf.2022.882552

Scaling and Benchmarking an
Evolutionary Algorithm for
Constructing Biophysical Neuronal
Models
Alexander Ladd 1*, Kyung Geun Kim 1, Jan Balewski 2, Kristofer Bouchard 3,4 and

Roy Ben-Shalom 5*

1 Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, United States, 2NERSC,

Lawrence Berkeley National Laboratory, Berkeley, CA, United States, 3Helen Wills Neuroscience Institute & Redwood Center

for Theoretical Neuroscience, University of California, Berkeley, Berkeley, CA, United States, 4 Scientific Data Division and

Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States,
5Neurology Department, MIND Institute, University of California, Davis, Sacramento, CA, United States

Single neuron models are fundamental for computational modeling of the brain’s

neuronal networks, and understanding how ion channel dynamics mediate neural

function. A challenge in defining such models is determining biophysically realistic

channel distributions. Here, we present an efficient, highly parallel evolutionary algorithm

for developing such models, named NeuroGPU-EA. NeuroGPU-EA uses CPUs and

GPUs concurrently to simulate and evaluate neuron membrane potentials with respect

to multiple stimuli. We demonstrate a logarithmic cost for scaling the stimuli used

in the fitting procedure. NeuroGPU-EA outperforms the typically used CPU based

evolutionary algorithm by a factor of 10 on a series of scaling benchmarks. We

report observed performance bottlenecks and propose mitigation strategies. Finally,

we also discuss the potential of this method for efficient simulation and evaluation of

electrophysiological waveforms.

Keywords: biophysical neuron model, high performance computing, evolutionary algorithms, non-convex

optimization, strong scaling, weak scaling, electrophysiology

1. INTRODUCTION

Since Hodgkin and Huxley’s seminal work on recording and mathematically formulating the
activity of the giant squid axon (Hodgkin and Huxley, 1952), great progress has been made
in understanding the electrical properties of single neuron models. The development of the
patch-clamp technique (Sakmann and Neher, 1984), which enabled recording neurons in finer
resolution, and the work by Rall (1959, 1962, 1964) on modeling the cable properties of
dendritic trees have been the basis of extensive research in numerical methods for compartmental
neuron models (Rall, 2009). The formulation of electrical properties of neurons in digital
computers (Hines, 1984; Carnevale and Hines, 2006; Bower and Beeman, 2012) enabled simulating
experimental observation in computational models (Traub et al., 1991, 2005; De Schutter and
Bower, 1994; Mainen et al., 1995). These advancements have brought the field of computational
neuroscience closer to realistically modeling biological neurons on computers (Markram et al.,
2015; Nogaret et al., 2016; Ben-Shalom et al., 2017; Bouchard et al., 2018; Gouwens et al., 2018;
Daou and Margoliash, 2020; Spratt et al., 2021). Multi-compartmental biophysical models, such

216

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.882552
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.882552&domain=pdf&date_stamp=2022-06-17
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zladd@berkeley.edu
mailto:rbenshalom@ucdavis.edu
https://doi.org/10.3389/fninf.2022.882552
https://www.frontiersin.org/articles/10.3389/fninf.2022.882552/full

Ladd et al. Scaling Neuronal Model Fitting

as the Mainen & Sejnowski model (Mainen and Sejnowski,
1996) and those comprising the large-scale neocortical column
simulation (Markram et al., 2015; Ramaswamy et al., 2015;
Gouwens et al., 2018; Billeh et al., 2020), aim to simulate the
electrical properties of single neuron. TheNEURON (Hines et al.,
2004; Carnevale and Hines, 2006) simulation environment is a
commonly used software for simulating how different channel
conductances contribute to the electrical activity of the neuron.
However, constraining the conductance of variousmembrane ion
channels and biophysical properties of the membrane remains a
major obstacle in fitting these models to experimental data (Prinz
et al., 2004; Druckmann et al., 2007; Almog and Korngreen, 2016;
Nogaret et al., 2016). As the number of free parameters that
characterize the neuronal model increase, so does the cardinality
of the optimization search space, thus making the optimization
less tractable. Adding more parameters that govern channel
and membrane dynamics makes the simulated neuron more
specific to a physical neuron, but also adds more unknown
variables with complex relationships. Thus, there exist trade-
offs between the amount of detail in the model, computation
time, computational power, and the questions that need to
be answered by such models (Eliasmith and Trujillo, 2014;
Almog and Korngreen, 2016; Sáray et al., 2020). Researchers
must make limiting assumptions to constrain the number of
free parameters to maintain feasible simulation and model
fitting times.

With increasing model complexity comes the need for more
efficient optimization methods. One challenge with constraining
the parameters of electrophysiological neuron models is that the
search space of possible model parameters is large. Furthermore,
neurons with substantially different parameters can produce
qualitatively similar responses (Goldman et al., 2001; Golowasch
et al., 2002; Prinz et al., 2003). However, a small perturbation
in the conductance of a single channel parameter can have a
significant impact on the simulated voltage trace. In constraining
single neuron parameters, there are several approaches including
brute force search, Monte Carlo optimization algorithms such
as evolutionary algorithms and simulated annealing, or heuristic
algorithms (Keren et al., 2005; Druckmann et al., 2007; Van Geit
et al., 2007, 2008, 2016). For the construction of biophysical
neuron models in this paper, we chose to use the evolutionary
algorithm (EA), a prevalent method for this optimization
problem (Vanier and Bower, 1999; Keren et al., 2005; Druckmann
et al., 2011; Masoli et al., 2017; Gouwens et al., 2018; Ben-
Shalom et al., 2020). Our objective function is constructed from
score functions comparing electrophysiological firing properties
between simulated and experimental target voltages (Druckmann
et al., 2007). This multi-objective optimization (MOO) is
formulated using the Indicator-Based evolutionary algorithm
(IBEA) (Zitzler and Künzli, 2004). EA searches for solutions that
present optimal trade-offs between electrophysiological score
functions. We focused on efficiently scaling EA to mitigate
computational bottlenecks and highlight potential benefits. We
considered the construction of the objective function outside the
scope of this work. We show the motivation for accelerating this
algorithm through scaling the parameter search algorithm on a
motivating example model.

Advancements in chip capacity (Schaller, 1997) and software
for high performance computing (HPC) platforms (Fan et al.,
2004; Strohmaier et al., 2015) have the potential to accelerate
electrophysiological simulation (Bouchard et al., 2018) and
consequently the EA algorithm. We focused on benchmarking
two classes of software modules—neuron simulators and
electrophysiological spike train feature extractors, due to their
central importance in EA. While it is important to experiment
with performance benchmarks that are specific to individual
modules it is also important to develop benchmarks that
assess the application of combinations of modules. This study
draws from previous work in benchmarking for computer
science (Hoefler and Belli, 2015; Bouchard et al., 2016;
Coleman et al., 2019; Wu et al., 2019) by applying established
performance benchmarks to software for neuron simulation
and biophysical modeling. These experiments utilize two well-
established benchmarking strategies: strong scaling and weak
scaling (Bailey et al., 2010; Balasubramanian et al., 2020). In total,
we used three benchmarks:

• “Compute Fixed and Problem Scales”: The number of neuron
models used in EA increases across experiments but the
allocation of computing nodes, cores, and/or GPUs available
is fixed.
• “Compute Scales and Problem Fixed” or strong scaling: The

allocation of computing nodes, cores, and/or GPUs increases
across experiments but the number of neuron models used in
EA is fixed.
• “Compute Scales and Problem Scales” or weak scaling: The

allocation of computing nodes, cores, and/or GPUs and the
number of neuron models used in EA both increase across
experiments at a fixed ratio.

These experiments investigate the impact of modularizing
EA using different software tools for simulation and
electrophysiological feature extractors. Using this experimental
design in conjunction with various software and hardware
configurations demonstrates the state of the art, challenges, and
opportunities, related to efficiently utilizing HPC resources for
complex biophysical neuronal modeling.

Adapting well-known performance benchmarks to EA helps
understand how the algorithm can scale using different
configurations of computational resources and softwaremodules.
While (Knight and Nowotny, 2018; Van Albada et al., 2018;
Criado et al., 2020; Kulkarni et al., 2021), all provide
relevant examples of benchmarking simulation modules and
computational platforms, such as neuromorphic hardware, there
is a gap in benchmarking the performance of such simulators
applied to the neuron fitting problem. This work aims to
address this gap by evaluating the run time performance of the
evolutionary algorithm as a method to construct biophysical
neuron models. Thus, the principal contributions of this paper
are as follows:

1. We present an optimized implementation of the evolutionary
algorithm, NeuroGPU-EA, that aims to accelerate the time
it takes to fit a biophysical neuronal model by leveraging
parallelism on high performance GPU nodes.

Frontiers in Neuroinformatics | www.frontiersin.org 2 June 2022 | Volume 16 | Article 882552217

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

2. We benchmark the run time of this algorithm using
well-established performance benchmarks weak scaling and
strong scaling.

3. We vary implementation by:

3a. Running experiments on CPU only nodes with the CPU-
EA algorithm or CPU-GPU experiments with NeuroGPU-
EA algorithm.

3b. Using different electrophysiological feature
extraction libraries.

3c. Using different GPU-based neuron simulation modules,
such as CoreNeuron in CoreNeuron-EA.

In the following sections of this paper, we first give a brief
overview of the implementation of the evolutionary algorithm
and how simulation and feature extraction drive the algorithm
toward increasingly realistic neuronal modeling. Next, we
specify the hardware and software on the machines we used.
Then we give a description of National Energy Research
Scientific Computer Center’s (NERSC) supercomputer Cori1,
which was used to test the scaling of each variation of this
algorithm. The experimental design allows for the comparison
of different algorithms, using GPU and CPU, as well as different
software modules in the simulate-evaluate loop. Subsequently,
we demonstrate the results of such experiments and discuss the
implications. We show how scaling the evolutionary algorithm
for an example cell results in a more realistic model. Finally, we
discuss challenges faced in benchmarking EA and future steps
for analysis.

2. METHODS

2.1. Evolutionary Algorithm
The optimization problem considered in this paper is the
fitting of biophysically accurate parameters of a neuron using
evolutionary algorithms (EAs). EAs are a class of optimization
methods that rely on natural selection in a population through
biologically inspired operators such as mutation, crossover, and
fitness-based selection (Mitchell, 1998). This version of EA
encodes solutions to an optimization problem into continuous
vector representations of neuron model parameters. We refer to
this group of parameterized neuron models as the “population”
and a singlemodel as an “individual”. EAs represent the quality of
these vector representations by evaluating an objective function
that takes this population as an input and compares the models’
responses to experimental data. The algorithm is known as the
(µ, λ) evolutionary algorithm (Beyer and Schwefel, 2002; Beyer,
2007) and is implemented using DEAP (Fortin et al., 2012) and
BluePyOpt2 (Van Geit et al., 2016). In this implementation, µ

and λ are the size of the parent population and the number
of offspring to produce for the next generation, respectively.
The parameter cxRate is the probability that an offspring
was produced by crossover and the parameter mutRate is the

1https://docs.nersc.gov/systems/cori/
2https://github.com/BlueBrain/BluePyOpt

probability that an offspring is produced viamutation3. Mutation
is a perturbation of one or more parameters and crossover is
a combination between a pair of parameter sets. The function
VARIATION in the EA algorithm, Algorithm 1, applies mutation,
reproduction, or crossover exclusively to each individual, or pair
in the case of crossover, to produce λ new offspring from aµ sized
parent generation.

Algorithm 1 Evolutionary Algorithm

1: procedure OPTIMIZE(µ, λ, cxRate, mutRate nGenerations)
2: parents← INITIALIZE()
3: hof← []
4: parents.scores← EVALUATE(parents)
5: for generation← 1, nGenerations do
6: offspring← VARIATION(parents, λ, cxRate,mutRate)
7: offspring.scores← EVALUATE(offspring)
8: population← parents + offspring
9: parents← SELECT(population, µ) ⊲ keep

µ individuals using indicator value tournament selection
(Zitzler and Künzli, 2004)

10: hof← hof.update(population) ⊲ hof tracks 10 lowest
scoring models

end

11: return argmin
hofi ∈ hof

sum(hofi.scores)⊲ the best model has the

lowest sum of scores

Algorithm 2 Objective Function

1: procedure EVALUATE(offspring)
2: scores← {}
3: for all stim ∈ Stims do ⊲ stimuli parallelism
4: responses← SIMULATE(offspring,stim)
5: for all scoreFunction ∈ scoreFunctions do ⊲ score

function parallelism
6: scores[scoreFunction] ←

scoreFunction(responses, target)
end

end

7: return scores

Formally, the optimization problem posed in this paper defines
an individual i as xi ∈ R

13. Boldface x denotes a one-dimensional
vector. The entire population is defined as X ∈ R

13×N , where
13 is the number of free parameters of the neuron model
and N is the size of the population (typically 50–5,000). The
OBJECTIVE FUNCTION is computed using electrophysiological
score functions, thus the term “score function” refers to one
electrophysiological feature and the term objective function
refers to the function characterizing the joint optimization
such score functions (MOO). Initially, a model xi is simulated

3https://deap.readthedocs.io/en/master/api/algo.html#deap.algorithms.
eaMuPlusLambda

Frontiers in Neuroinformatics | www.frontiersin.org 3 June 2022 | Volume 16 | Article 882552218

https://docs.nersc.gov/systems/cori/
https://github.com/BlueBrain/BluePyOpt
https://deap.readthedocs.io/en/master/api/algo.html#deap.algorithms.eaMuPlusLambda
https://deap.readthedocs.io/en/master/api/algo.html#deap.algorithms.eaMuPlusLambda
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

FIGURE 1 | Stimuli and electrophysiological score functions used in algorithm: (A) Various stimuli used in the fitting procedure of EA. (B) Corresponding target

voltages that are recorded from patch clamp experiments as a result of the stimuli in (A). (C) Demonstrates how electrophysiological score functions are computed on

a single trace. These score functions are used to compare target and simulated firing traces.

using s ∈ S stimuli, shown in Figure 1A, and evaluated
against an experimental waveform, shown in Figure 1B, using F
electrophysiological score functions, shown in Figure 1C. This
procedure results in a set of scores for each individual. These
scores are computed across each stimuli and score function
(Druckmann et al., 2007). Then, BluePyOpt (VanGeit et al., 2016)
uses an indicator based objective function (IBEA) that computes
binary comparisons between individuals and their respective
electrophysiological scores. These comparisons are calculated
using the sum of indicator functions of the form I({xi}, {xj}),
resulting in an indicator based fitness value, as referenced in
line 6 of Algorithm 1. This definition of fitness is derived from
Zitzler and Künzli (2004). The aforementioned µ individuals are
obtained through an iterative process that acquires the winner
of a tournament of binary comparisons between all individuals
untilµ individuals have been selected. The selectedµ individuals,
termed the “parents”, are used to produce a new set of offspring
for the subsequent generation, as demonstrated in line 4 of
Algorithm 1. After all individuals in the population, consisting
of offspring and parents, are scored, the 10 individuals with the
lowest sum of score functions are added to a hall of fame. The
hall of fame has no impact on the evolution of the population,
as it tracks the 10 lowest scoring individuals over all generations
of EA. When the EA algorithm has terminated, on line 11
Algorithm 1, the lowest scoring individual is selected from the
hall of fame.

In total, we used a set 18 stimulations consisting of 8 long
square, 6 noisy, 2 short square, and 2 ramp stimuli, as represented
in Figure 1A. In benchmarking tasks 3.2,3.3, 3.4 and 3.5, stimuli
were chosen in a random order. The optimization in Section

3.6 used the same stimuli as benchmarking tasks 3.2,3.3, 3.4.
However, the optimization in Section 3.7 only utilized the 8 long
square stimuli. We chose to benchmark a diverse set of stimuli as
the practice of EA for fitting neuron model parameters utilizes a
wide range of stimuli, including passive stimuli not represented
in this study. The full list of score functions is included as a
Supplementary Material.

2.2. Implementations
In our implementation of EA, we used 20 scoring
electrophysiological score functions from Blue Brain Project’s
Electrophys Feature Extraction Library (eFEL) library4 (Van Geit
et al., 2016). The total offspring score is the unweighted sum
of the selected score functions. Figure 1C is an illustration of
how these scoring functions are computed on a single trace. The
size of EA is defined as having cardinality N × S × F, which
represents the population size× the number of stimuli presented
× the number of score functions used. As mentioned above,
the population for the evolutionary algorithm is comprised
of parameter sets for the multi-compartment neuron model.
We used a layer 5 thick tufted pyramidal neuron from the
Blue Brain Project (Ramaswamy et al., 2015) with 13 different
ionic channel parameters in the axon, soma, and dendrite.
This cell morphology and parameterization can be found
in Blue Brain Model portal5 as L5 TTPC1 cADpyr232 1.
The Supplementary Table 1 shows how the parameters were
distributed across axonal, somatic sections, as well as the

4https://efel.readthedocs.io/en/latest/
5https://bbp.epfl.ch/nmc-portal/downloads.html

Frontiers in Neuroinformatics | www.frontiersin.org 4 June 2022 | Volume 16 | Article 882552219

https://efel.readthedocs.io/en/latest/
https://bbp.epfl.ch/nmc-portal/downloads.html
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

upper and lower optimization bounds for each conductance.
Supplementary Table 1 also shows that some of these parameters
were modeled separately in the soma and the axon. The model
used in Section 3.7, Figure 7, and Supplementary Figure 1 does
not include a parameter for non-specific cation current Ih but
the model used in the benchmarking Sections 3.2, 3.3, and 3.4
did include this parameter. This channel was not included in the
optimization to reduce the complexity of the optimization task.

In the objective function Algorithm 2 there are three
opportunities to implement parallelism:

1. Population level parallelism: run the simulate-evaluate loop
in parallel across the entire population.

2. Stimuli parallelism: run all the simulations for each stimulus
in parallel.

3. Score function parallelism: run all the score functions
in parallel.

In the objective function Algorithm 2, scores and responses
are lists containing the voltages and scores for each individual
of the population respectively. The objective function can be
implemented as a triple for loop by including an initial loop
over the population. Alternatively, Algorithm 2 implements
a double for loop by defining scores as a vector of
scores corresponding to each individual. Each stimulus response
and score are computed without using information about
other simulations, other electrophysiological score functions,
or individuals in the population. Thus, the problem is
embarrassingly parallel (Herlihy and Shavit, 2012). For reference,
the sequential representation is summarized in Figure 2A. Our
CPU-EA and NeuroGPU-EA algorithm took advantage of this
feature in the following ways.

• NeuroGPU-EA employed all three approaches to implement
parallelism, as demonstrated in Figure 2C. (i) The population
level parallelism was achieved by dividing the entire
population (MPI_SCATTER) across nodes and then
aggregating (MPI_GATHER) at the rank 0 node at the end
of evaluation. (ii) The simulations for each stimuli were
computed in parallel across each available GPU. (iii) Each
electrophysiological score function was computed in parallel
on CPUs once the simulation responses were obtained.
• CPU-EA implementation, shown in Figure 2B, was

parallelized over the population and one CPU core per
individual was allocated using IPyParallel6. The parallelized
CPU-EA procedure was run in parallel across the entire
population (MAP) and aggregated (REDUCE) into a list once
all scores have been calculated. Thus, CPU-EA leverages
population level parallelism across all available CPU cores.

ForNeuroGPU-EA, if there are more stimuli than GPUs available,
it is necessary to launch batches of simulations while the CPU
cores handle electrophysiological score function evaluation for
the previous batch of stimuli. This case is demonstrated in
Figure 2D and will be referenced in Section 3.5 in experiments
that scale up the number stimuli used in EA. We compute scores
on CPU and acquire additional CPU-GPU data transfer cost

6https://ipyparallel.readthedocs.io/en/latest/

because we did not have access to a GPU implementation of the
eFEL library.

2.3. Hardware
The experiments presented here were executed on the Cori-GPU
cluster at NERSC7. Each Cori GPU node has two sockets of
20-core Intel Xeon Gold 6148 (“Skylake”) CPUs with 384 GB
DDR4 RAM memory and a clock rate of 2.40 GHz. Each of
these nodes also has 8 NVIDIA Tesla V100 (“Volta”) GPUs,
connected with NVLink interconnect, each with 16 GB HBM2
memory. We used Cray’s Programming Environment version
2.6.2. Allocated nodes were chosen by the batch system (SLURM
20.11.8) and were allocated exclusively to eliminate on-node
interference. The system uses InfiniBand host network adapters
(HCA) and network interface cards (NICs). Each Cori CPU
node has two sockets, each socket is populated with a 2.3 GHz
16-core Haswell Intel Xeon Processor E52698 v3. Each core
supports 2 hyperthreads, and has two 256-bit-wide vector units
36.8 Gflops/core (theoretical peak), 1.2 TFlops/node (theoretical
peak) and 2.81 PFlops total (theoretical peak). Each node has 128
GB DDR4 2133 MHz memory (four 16 GB DIMMs per socket)
and 298.5 TB total aggregate memory. The interconnect is Cray
Aries with Dragonfly topology with 45 TB/s global peak bisection
bandwidth. We used Cray’s Programming Environment version
2.6.2. Allocated nodes were chosen by the batch system (SLURM
20.11.8) and were allocated exclusively to eliminate on-node
interference. For all experiments, we used Cori SCRATCH which
is a Lustre file system designed for high performance temporary
storage of large files. All experiments were run on x86 64
computing architecture, SUSE Linux Enterprise 15 and kernel
4.12.14-150.75-default.

2.4. Software
We used GCC compiler version 8.3.0, CUDA version 11.1.1,
OpenMPI version 4.0.3, Python 3.8.6. As in previous work (Ben-
Shalom et al., 2012, 2013, 2022), the evolutionary algorithm
was implemented using the DEAP 1.3 (Fortin et al., 2012)
and BluePyOpt 1.9.126 (Van Geit et al., 2016) python libraries.
Score functions were implemented using Blue Brain Project’s
Electrophys Feature Extract Library 3.2.4 (eFEL)8 (Van Geit
et al., 2016) and Allen Institutes’s IPFX9. The CPU based
neuron simulations were run using NEURON 7.6.7 .mod files
and the NEURON python interface10. the software versions
and requirements are added as Supplementary Materials. For
GPU based neuron simulations we used NeuroGPU 1.011 (Ben-
Shalom et al., 2022) and CoreNeuron 1.012 (Kumbhar et al.,
2019). For the installation of CoreNeuron we used the Intel PGI
compiler, version 20.11-0 and we used Cori’s cray-python version
3.7.3.2 to avoid compilation issues with anaconda python used in
other experiments.

7https://docs-dev.nersc.gov/cgpu/
8https://github.com/BlueBrain/eFEL
9https://github.com/AllenInstitute/ipfx
10https://neuron.yale.edu/neuron/
11https://github.com/roybens/NeuroGPU
12https://github.com/BlueBrain/CoreNeuron

Frontiers in Neuroinformatics | www.frontiersin.org 5 June 2022 | Volume 16 | Article 882552220

https://ipyparallel.readthedocs.io/en/latest/
https://docs-dev.nersc.gov/cgpu/
https://github.com/BlueBrain/eFEL
https://github.com/AllenInstitute/ipfx
https://neuron.yale.edu/neuron/
https://github.com/roybens/NeuroGPU
https://github.com/BlueBrain/CoreNeuron
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

FIGURE 2 | (A) Sequential execution EA. (B) CPU-EA maps the simulation/evaluation of a model to a single core. (C) GPU-EA maps each stimuli to a GPU, then

scores the simulation in parallel on each CPU core. (D) Timeline of NeuroGPU-EA for two generations. The algorithm starts new stimuli on GPUs while the CPUs are

still completing the previous ones.

3. RESULTS

3.1. Experimental Design
The primary metric of EA performance was the wall time needed

to complete one simulation-evaluation step. The three main
experimental contexts are NeuroGPU-EA, CoreNeuron-EA, and
CPU-EA. The version of NeuroGPU-EA that uses CoreNeuron

is termed CoreNeuron-EA. We refer to both NeuroGPU-EA
and CoreNeuron-EA as GPU-EA to represent GPU based
evolutionary algorithms. CPU-EA experiments are run on CPU
only nodes with 64 single-threaded cores. Unlike simulators used
inGPU-EA, CPU-EA using NEURON offers an adaptive timestep
option, with command h.cvode_active(1), which allows
the simulator to perform fewer integration solves when there

Frontiers in Neuroinformatics | www.frontiersin.org 6 June 2022 | Volume 16 | Article 882552221

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

TABLE 1 | Compute fixed and problem scales: Stimuli and score functions are

fixed 8 and 20, respectively.

Population NeuroGPU-EA

run time (s)

CPU-EA run

time (s)

CoreNeuronGPU-EA

run time (s)

500 36.8 ± 5.71 401 ± 82.4 58.7 ± 2.72

1,000 70.6 ± 8.83 679 ± 98.6 89.2 ± 5.25

1,500 91.6 ± 5.52 1,000 ± 159 123 ± 12.8

2,000 123 ± 8.88 1,380 ± 285 151 ± 53

2,500 150 ± 6.48 1,740 ± 296 182 ± 6.92

3,000 182 ± 3.98 1,930 ± 490 210 ± 3.58

3,500 212 ± 3.56 2,270 ± 494 242 ± 3.72

4,000 242 ± 10.4 - 272 ± 3.78

4,500 270 ± 4.87 - 304 ± 7.77

5,000 295 ± 11.8 - 333 ± 9.52

Each experiment uses one node. CPU node has 64 cores. GPU nodes have 80 CPU
cores and 8 GPUs. ± values indicate 1 standard deviation.

are fewer spikes. CPU-EA uses the h.cvode_active(1)
setting for applicable stimuli as this setting accelerates NEURON
simulation time. As demonstrated in Supplementary Figure 1,
NEURON with adaptive timestep had a notably faster
average simulation time than standard NEURON settings.
For benchmarking experiments, 50 trials were run using an
initial population with the same seed. Supplementary Figure 2

shows that running NeuroGPU-EA trials with multiple seeds
resulted in a slight speedup for the 500 and 1,000 populations,
but also resulted in more deviation between recorded times for
these population sizes. For all experiments, the first generation of
every optimization was discarded so the time spent loading the
morphology of model neurons was not included. Morphology
loading time was not included for GPU-EA because NeuroGPU
begins with a mapping of the model in the GPU, while
CoreNeuron had an initial cost of 0.35 s per model to load
the morphology13. Further benchmarking of how different
topologies, models, and morphologies affect simulation run time
can be found in Figures 3, 4 of previous work (Ben-Shalom et al.,
2013). The GPU-EAmodel transfer to CPU was not intentionally
benchmarked either, as the NeuroGPU model only exists on the
GPU. However, logs from CoreNeuron trials indicate an average
cost of 3 ms for moving a single model to the GPU. Furthermore,
CoreNeuron outputs indicated that a single model used 560 kB
of memory. CPU experiments that were not ran for enough trials
are not represented. We report the mean and standard deviation
of the run time. We provide run time lower bounds as ideal
scaling measures, in accordance with Hoefler and Belli (2015).
To confirm these benchmarks are practicable, we include the
optimized model responses and statistics at key generations for
EA with population size 1,000 in Supplementary Materials.

3.2. Benchmark 1
The “Compute Fixed Problem Scales” benchmark measures
the computational capacity of the algorithm with a fixed

13https://github.com/BlueBrain/CoreNeuron/issues/642

resource allocation. The problem scales with increases in the
population size, N, at increments of 500 until the population
size reaches 5,000. “Compute Fixed” means using 64 CPUs
on one node for the CPU-EA algorithm and using 80 CPUs
together with 8 GPUs for the GPU-EA algorithm. The results
from this benchmark experiment are shown in Figure 3A

and Table 1. Across all population sizes, CPU-EA took 10x
the amount of time it took NeuroGPU-EA to complete a
simulation-evaluation step and 7x the amount of time it took
CoreNeuron-EA to complete a simulation-evaluation step. The
comparative performance of CoreNeuron-EA and CPU-EA aligns
with previous benchmarking studies showing CoreNeuron’s 2-
7x decrease of NEURON execution time (Kumbhar et al.,
2019). Between GPU-EA experiments in Figure 3A, NeuroGPU-
EA had approximately 20% speed-up when compared against
CoreNeuron-EA. Supplementary Figure 3A shows that both
feature extraction libraries had similar scaling performance,
with Allen IPFX extractor running slightly faster in general,
exhibiting a speed up of about 10%. Supplementary Figure 4A

shows this experimental design applied to NeuroGPU-EA using
Oak Ridge National Lab’s (ORNL) Summit14 computing cluster.
Experiments ran on Cori showed a speed-up of around 20%
when compared to those ran on Summit. These experiments
characterize the rate in which run time of simulation-evaluation
loop grows as the population size scales up. There are several
possible scaling bounds such as logarithmic O(log(N)), linear
O(N), polynomial O(Nk), and exponential O(kN) where k is
a constant and N is the population size. Our expectation is
that the run time of the algorithm should increase directly
proportional to the increase of the population size. This
would be a linear relationship or O(N). Figure 3A and
Supplementary Figures 3A, 4A all confirm a close alignment
between expected scaling performance and actualized scaling
performance. To further investigate the factors that drive an
increase in run time in the application, additional experiments
analyzing single node performance were required.

Further motivation for scaling population size on a single
node is that this analysis can identify bottlenecks that occur
at different problem sizes. Figure 4 shows a set of experiments
ranging from 187 to 3,000 neurons models per node using GPU-
EA and CoreNeuron-EA. These experiments measured the run
time for simulating (GPU) and evaluating (CPU). In this figure,
both GPU computations and CPU computations are potential
bottlenecks. Starting at around 375 individuals per node, up
to twice as much time is spent running simulations on the
GPU than evaluating them on the CPU. The proportion of run
time on the CPU to run time on the GPU increases with the
amount of population per node. At 3,000 individuals per node,
the CPU evaluation takes twice as long as the GPU evaluation
time. For both CoreNeuron-EA and NeuroGPU-EA, when the
population size is larger than 1,000, the CPU is the bottleneck.
Thus, predicting the simulate-evaluate run time as population
per node increases becomes increasingly dependent on CPU
run time.

14https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

Frontiers in Neuroinformatics | www.frontiersin.org 7 June 2022 | Volume 16 | Article 882552222

https://github.com/BlueBrain/CoreNeuron/issues/642
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

FIGURE 3 | Simulation-evaluation scaling CPU vs. GPU: Experiments measuring the time it takes to run one simulation-evaluation step using NeuroGPU-EA,

CoreNeuron-EA, and CPU-EA. (A) One compute node and population size increases, as in Table 1. (B) Increases compute nodes and population size is constant, as

in Table 2. (C) Increasing compute nodes and population size, as in Table 3.

FIGURE 4 | GPU bottleneck shifts to CPU as population per node increases: at large population sizes the CPU operation for score functions is the

bottleneck—denoted by relatively taller bars for CPU Eval. At smaller population sizes in (B) the GPU simulation is the bottleneck for CoreNeuron-EA—denoted by

relatively taller bars for simulation. CPU and GPU time are balanced at small population sizes for NeuroGPU-EA in (A).

3.3. Benchmark 2
The second benchmark, “Compute Scales Problem Fixed”,
determines the strong scaling of the application. Keeping the
problem size constant and increasing the number of allocated
CPU/GPU resources quantifies the potential for parallelism to
accelerate the simulation-evaluation step. In this experimental
design, specified by Table 2, the population size, N, is fixed
at 3,000, while the number of allocated nodes scales up by
a factor of 2. The outcomes for scaling N exponentially are
represented in Figure 3B. The expectation is that run time
decreases exponentially by a factor of 2, corresponding to the
compute scaling rate. For all GPU-based algorithms, after 4
nodes, or 2 nodes in the case of CoreNeuron-EA, run time
acceleration per node starts to decrease and no longer match
expected scaling. This demonstrates a limit to which parallelism

in GPU-EA can efficiently leverage available resources. As shown
in Figures 4A,B andTable 2, at 187 individuals per node the time
to complete evaluation is around 14 and 16 s for 375 individuals.
This demonstrates Amdahl’s law (Amdahl, 1967) which states
that the overall improvement gained by parallelized code is
limited to the fraction of time that code is in use. The benefit
of parallelizing across the population and electrophysiological
score functions is limited by the time the slowest score
function takes to complete. Similarly, for simulation, both
GPU-EA and CPU-EA show marginal decrease in run time after
population size begins decreasing below 750 individuals per
node. These results support the analysis shown in Figure 3B,
as the benefit of using more than 4 nodes to simulate and
evaluate 3,000 neurons is limited by the speed of the software
modules deployed in the respective tasks. The equivalent

Frontiers in Neuroinformatics | www.frontiersin.org 8 June 2022 | Volume 16 | Article 882552223

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

TABLE 2 | Compute scales and problem fixed: Stimuli and electrophysiological score functions are fixed to 8 and 20, respectively.

CPU node GPU node Run time (s)

Nodes Total CPUs Total CPUs Total GPUs CPU-EA NeuroGPU-EA CoreNeuronGPU-EA

1 64 80 8 1930 ± 490 182 ± 3.98 210 ± 3.58

2 128 160 16 1100 ± 212 93.6 ± 1.52 128 ± 24.9

4 256 320 32 573 ± 141 45.9 ± 0.586 80.6 ± 2.64

8 512 640 64 302 ± 149 28.9 ± 0.526 67.4 ± 5.96

16 1,024 1280 128 257 ± 123 22.4 ± 1.05 70.4 ± 10.5

Population size is fixed to 3,000. each.

TABLE 3 | Compute scales and problem scales: see Table 2 for other details.

CPU node GPU node Run time (s)

Nodes Total CPUs Total CPUs Total GPUs Population CPU-EA NeuroGPU-EA CoreNeuronGPU-EA

1 64 80 8 250 279 ± 44.9 25.0 ± 3.49 42.9 ± 1.53

2 128 160 16 500 267 ± 58 24.8 ± 3.13 44.3 ± 3.08

4 256 320 32 1,000 285 ± 151 24.4 ± 2.85 46.8 ± 3.24

8 512 640 64 2,000 305 ± 88.4 26.0 ± 4.75 55.3 ± 5.29

16 1,024 1,280 128 4,000 374 ± 137 27.7 ± 2.24 76.5 ± 21.4

experiments, shown in Supplementary Figures 3B, 4B, using
IPFX electrophysiological score functions and different
computing architecture demonstrate the same limitations
in using more than 4 nodes to simulate 3,000 neuron models.
The next benchmark illustrates how scaling the problem size
enables efficient utilization of larger resource allocations.

3.4. Benchmark 3
The third benchmark, “Compute Scales Problem Scales”,
determines the weak scaling of the application. In this
experimental design, specified by Table 3, the initial trial sets a
scaling factor 250 population (N = 250) per node. The subsequent
trials increase the number of CPU/GPU nodes and population
size proportionally. The expectation is that run time remains
constant. These experiments demonstrate how multi-node
parallelism can accommodate the scaling of population size in the
evolutionary algorithm. As demonstrated in Figure 3C, scaling
at 250 individuals per node allows the run time of algorithm to
remain approximately constant for up to 10 nodes. We chose
to scale at 250 individuals per node because in this allocation
the time spent on the GPU and CPU are nearly balanced for
GPU-EA. Furthermore, this choice of scaling factor resulted in a
higher average GPU utilization, at around 70%, as demonstrated
in Supplementary Figure 6. This figure demonstrates the
proportion of time spent running computations on the GPU
and CPU compared to the total run time. With a scaling
constant of 250 individuals, at more than 10 nodes the run
time starts to marginally increase with each trial. In CPU-EA,
the increase in run time is marginal. Supplementary Figure 3C

demonstrates that eFEL score functions and Allen IPFX
provide both match the expected constant scaling and the
performance is nearly identical. The IPFX library is a few

seconds faster than eFEL. Further experiments, shown in
Supplementary Figures 3C, 4C, demonstrate that overhead is
incurred when NeuroGPU-EA is run on larger allocations of
GPUnodes (64–128Nodes) using the Summit computing cluster.
In the Section 4, further consideration is taken toward the
explaining implications of successful large-scale optimization
runs and the software/hardware that powers such runs.

3.5. Scaling Stimuli and
Electrophysiological Score Functions
The set of experiments above only changes the problem size
using population size, N. To further explore the axes of scaling
GPU-EA problem space, we ran scaling experiments on GPU-EA
with NeuroGPU-EA where electrophysiological score functions
are set to 20, population size is set to 500 but the number of
stimuli used in EA increases from 1 to 18. This experiment is
shown in Figure 5A. In this figure, we use big O notation to

denote worst case scaling of running time. The O(log(n)2) and

O(log(n)4) lines show the starting run time scaled by the log
transform of the expected increase in run time. This figure shows
that GPU-EA scales logarithmically with the number of stimuli
used. Furthermore, we ran an experiment on GPU-EA where
the number of stimuli is fixed to 8, population size is fixed to
500 but the number of electrophysiological score functions used
in EA increases from 1 to 180. This experiment is shown in
Figure 5B. In this figure, there is constant scaling for up to 80
score functions. Once the number of electrophysiological score
functions exceeds 80 they can no longer run entirely in parallel
and the algorithm begins to scale at a constant linear rate—O(n3).
These results in scaling different dimensions of the EA problem
size further demonstrates how computational resources can be

Frontiers in Neuroinformatics | www.frontiersin.org 9 June 2022 | Volume 16 | Article 882552224

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

FIGURE 5 | Scaling stimuli and electrophysiological scoring functions: Panel (A) represents the observed run time as the number of stimuli used in the algorithm

increases. We provide two lines for scaling reference O(log(n)2) and O(log(n)4). Panel (B) represents the observed run time as the number of score functions used in the

algorithm increases. We provide two lines for reference, O(n3) and O(log(n)4).

leveraged using parallelism and concurrency to achieve efficient
scaling in our GPU-EA algorithmic design.

3.6. Benchmark Model Fit
Figure 6 shows the model neuron, specified in Section 2,
that was fit using GPU-GA. Congruent with benchmarks 1,
2, and 3, the EA used to fit this model was constrained to
use 5,000 population size 20 score functions and 8 stimuli.
Models are fitted against publicly available experimental data
and stimuli from the Allen Cell Types Database (Gouwens et al.,
2019) specimen 488683425. The experimentally recorded cell,
plotted in black in Figure 6, is a layer 5 thick tufted pyramidal
visual cortex cell. The best model, obtained according to the
procedure in Section 2, is plotted in red. Figure 6 shows that
the fitted model neuron demonstrates a similar firing rate and
spike onsets that are well-aligned with those of experimental
data. While the simulated model waveforms closely align with
experimental data, the voltage base and after hyperpolarization
depth (AHP) vary from those produced by the experimental
neuron. As shown in Supplementary Figures 5A,E, the voltage
base is indicative of a limitation of the passive dynamics of
the optimized model, such as g_pas and e_pas. These dynamics
could be alleviated through the use of more appropriate passive
score functions. The generalized response of the model to stimuli
that were not used in the optimization is also demonstrated in
Supplementary Figures 5F–H. These results show the quality of
model that can be achieved with the simple EA design and stimuli
used in the benchmarks, however there are many aspects of EA
optimization that can be tuned to achieve an improved neuron
model. This is why a general understanding of optimization
quality from different EA configurations is important. For
instance, the beneficial impact of scaling EA population size is
exemplified in the next section.

3.7. Effect of Scaling Up EA Population
To demonstrate the practical impact of scaling the evolutionary
algorithm, we set up an experiment on the layer 5 thick tufted

FIGURE 6 | Best fitted model after 50 generations of EA using 8 stimuli and

20 score functions (red) plotted against experimental data (black). (A) Long

square stimulus. (B) Short square stimulus. (C) Noisy stimulus. The remaining

stimuli and scores are shown in Supplementary Figure 5 and

Supplementary Table 1, respectively.

pyramidal neuron from the Blue Brain Project (Ramaswamy
et al., 2015) described in Section 2. The purpose of this
experiment is to demonstrate the benefit of increasing population
size on the resulting optimized model. In this experiment, we ran
150 generations of the evolutionary algorithm for three different
trials with population sizes 1,000, 5,000, 10,000, respectively.
Unlike the EA in Section 3.6 which utilized the 8 stimuli
from benchmarks 1–3, this version of EA utilized 8 different

Frontiers in Neuroinformatics | www.frontiersin.org 10 June 2022 | Volume 16 | Article 882552225

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

FIGURE 7 | EA score and model fit both improve with larger population size: (A) Objective function optimization trajectory in EA with varying population sizes. Scores

start around 2,500 but the y-axis is constrained to clearly show results. Lower scores indicate a closer fit to experimental data. The minima of the objective function

are denoted by large circles and the lower the minima the more the best simulated response resembles the experimentally recorded waveform. Confidence intervals

are computed using 10 random initializations. Panel (B) illustrates the neuron model responses corresponding to varying population sizes.

long square currents, as shown in Figure 1A, and 8 score
functions per stimulus. Six of the score functions are represented
in Figure 1C and the other two are minor variations of the
rendered score functions. For each population size, we ran 10
trials using 10 different random seeds for EA. As a Monte
Carlo method, the trajectory of EA is stochastic, thus using
random seeds ensures the score trajectories follow a reproducible
trend. Notably, the run time per generation increased as EA
progressed toward more optimal parameter sets. By breaking
down the cumulative run time associated with running multiple
generations of EA, Supplementary Figure 8 shows that as EA
progresses, the electrophysiological features take more time to
compute on average. Regarding the optimization procedure,
Figure 7A demonstrates the mean and 95% confidence interval
of the score of the objective function for the evolutionary
algorithm at each generation. The 10,000 individual EA achieves
a better fit to experimental data, resulting in the lowest
achieved value for the objective function. The value for objective
function represents a penalty against simulated neurons where
the electrophysiological features of voltage traces differ from
those of an experimentally recorded target waveform. The
lower scores achieved by the 10,000 individual EA indicate
this configuration finds comparatively more optimal models
for generations 70–150. Compared to 1,000 individual EA, the
5,000 individual EA achieved a lower mean score over 10
random seeds, but this difference was not statistically significant.
Furthermore, alignment of the experimentally recorded neuron
membrane potential and that of the best simulated neuron
model substantiates the impact of improved optimization of
the objective function due to larger population size in the
EA. In Figure 7B, as the population sizes increase, models
show improvement in the depth and timing of the after
hyperpolarization (AHP). The AHP depth is the maximum
level of depolarization after the action potential has peaked
and re-polarized to resting potential. In the 10,000 individual
optimization, the AHP depth is not greater than that of the

experimentally recorded target waveform. The duration of the
hyperpolarization is also more similar to the target waveform for
the 10,000 individual optimization than the smaller population
size EAs. Figure 7B qualitatively demonstrates that population
sizes that allow EA to explore more potential parameter sets
construct a model that better characterizes the experimental data
(Ben-Shalom et al., 2012). Figure 7A quantitatively supports this
claim by showing that EA with 10,000 individuals finds the most
optimal solution when compared with smaller population EAs.

4. DISCUSSION

The most central comparison drawn in this paper is between
CPU and GPU based simulation-evaluation loops. GPU based
simulation is markedly faster and scales better than CPU
based simulation. These results suggest that CPU-EA may
be a reasonable choice for fitting simple electrophysiological
neuron models, but that researchers should use caution in more
computationally complex optimization problems that require
scaling. For these complex problems, leveraging parallel code
design and GPU neuron simulation can reduce EA optimization
time fromweeks or days to hours. Based off the CPU experiments
in the Compute Fixed Problem Scales section, using a single
desktop computer without a GPU would limit researchers to
a population size of 1,000 or smaller. Based off the single
node GPU example, the addition of a single GPU allows for
a researcher to complete 50 iterations of a population size of
3,000 in several days. A conservative estimate is that using
GPU-EA with a workstation that has 8 GPUs and over 40
cores enables a researcher to complete 50 iterations of an EA
with 3,000 individuals in a day. Using the maximum amount
of resources available, 128 nodes on Summit, we show in
Supplementary Figure 4C that we can simulate and evaluate a
population size of 32,000 in 35 s. This allocation makes it feasible
to reach 50 generations of 32,000 individuals within the course
of a few hours. While these estimates demonstrate the potential

Frontiers in Neuroinformatics | www.frontiersin.org 11 June 2022 | Volume 16 | Article 882552226

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

scale and advantages of GPU-EA, there are instances where
CPU-EA may be more optimal. In Ben-Shalom et al. (2022),
we show that simulating models with less compartments and
channels are not substantially accelerated by GPUs. Furthermore,
for EA optimizations with only one stimulus and a nominal
number of score functions will not benefit from the score
function level parallelism and stimuli level parallelism discussed
in the Section 2. Finally, for researchers attempting to simulate
many different models, NEURON provides the highest level of
compatibility with most available models in ModelDB (Hines
et al., 2004), though CoreNeuron is expanding its compatibility
with NEURON.

Our choice of an appropriate scaling factor was critical in
achieving large scale simulation and evaluation. We used the
experiment shown in Figure 4A in the Compute Fixed Problem
Scales section to determine a reasonable scaling constant of
250 neuron models per node. We chose this constant as the
simulation and evaluation time were approximately balanced
so neither simulation or evaluation would dominate run time.
Relative to other configurations, 250 models per node led to
the most efficient GPU utilization, at around 60%. 60% is the
highest achieved GPU utilization using GPU-EA because the
GPU must be idle while the evaluation step is finishing. Once all
the models are scored and a new population evolves, the GPU
resumes activity at 100% utilization. This is shown in the plot
of GPU utilization over time in Supplementary Figure 7. Future
work could involve implementations that achieve higher GPU
utilization through different implementations, such as parallel
EAs (PEAs) that evolve multiple sub-populations simultaneously
(Cantú-Paz, 2001; Du et al., 2013). It may be necessary to
modify GPU simulation modules in order to adapt GPU-EA to
enable PEAs, or simultaneous EAs with different seeds. Based
on Figure 4A, 250 neuron models per node was a conservative
choice of a scaling constant, as the CPU did not start to become a
bottleneck until 750 population per node and 1,500 population
per node in Figure 4B. This conservative choice ensured we
would be able to efficiently scale the problem size with number of
computing nodes, which we aim to demonstrate for the purpose
of benchmarking. In practice, researchers might choose larger
scaling constants.

While GPU-EA’s ability to leverage parallelized kernel
computation for fast simulation is one advantage. Another
advantage is that GPU-EA, using NeuroGPU, also adds
concurrency to the algorithm described in Section 2.
Concurrency, defined as the capacity to run separate tasks
at the same time (Roscoe, 1998), is different than the achieved
levels of multi-node and single node parallelism. This algorithm
is concurrent when simulation of the remaining batches of
stimuli begin as soon as the first set of stimuli finish. The GPU
does not remain idle as the CPU finishes evaluating the first
batch of simulations. Thus, while the CPU is evaluating the
quality of the simulations, the GPU begins the next batch of
simulations. This is shown in Figure 2C as the CPU and GPU
are running at the same time. The result of concurrency in
GPU-EA is shown in Figure 5A where the algorithm scales
logarithmically with the number of stimuli used in the algorithm.
Logarithmic scaling is enabled by NeuroGPU’s capacity to run

stimuli in parallel across GPUs as well the algorithmic design to
simulate a second set of neuronal models while the previous set
of stimuli is being evaluated. This logarithmic scaling enables
the objective function of evolutionary algorithm to incorporate
multiple stimuli. Consequently, models that are fit using multiple
stimuli will generalize better to new unseen stimuli. While state
of the art fitting procedures like (Gouwens et al., 2018) are
currently designed to use a single stimulus in the optimization
algorithm, the addition of simulate-evaluate concurrency can
enhance these methods using more stimuli with minimal cost
in run time. A challenge with incorporating more stimuli in the
objective function is that simulators that don’t permit concurrent
execution will need to simulate and evaluate sequentially.

In the section Compute Fixed Problem Scales and Figure 4,
we showed that at too large of a population size, the score
functions will bottleneck simulation-evaluation run time. We
also found that this bottleneck in the evaluation step can be
mitigated or worsened by the number of electrophysiological
scoring functions used. Figure 5B showed constant scaling for
up to 80 score functions. This happened because there were
80 cores available on a single Cori node. Once the number
of score functions exceeds the number of cores available to a
node they can no longer be run entirely in parallel and the
algorithm begins to scale at a constant linear rate—O(n/3).
Thus, if researchers intend to use multiple score functions for
multi-objective optimization, as in Druckmann et al. (2007),
we recommend they consider using fewer score functions than
cores available in GPU-EA. Even in the case where there are
fewer score functions than cores, Supplementary Figure 8 shows
that as EA progresses, the evaluation step takes more time to
complete. A potential cause for increased evaluation time is that
in later generations there are more spiking neuron models to
be evaluated and eFEL score functions take longer on traces
with more spikes. These results demonstrate a distinct advantage
in simulating larger populations of neurons on GPU nodes
as there are many opportunities to implement parallelism and
concurrency. However, CPU processing capacity for scoring
electrophysiological features hinders the efficient scaling of
the GPU-EA algorithm. A potential strategy to alleviate this
bottleneck could involve loading simulated traces into the score
function library before mapping the score functions to be
evaluated in parallel. Currently, traces are loaded separately
for each score function. Another potential mitigation could
be using GPU feature extraction. To the best of the author’s
knowledge, there are no available GPU based software toolkits
for scoring features of simulated spike trains based on a
target train. There are several GPU-based applications that
are used for real time analysis of Electroencephalography
(EEG) waveform data, Magnetoencephalography (MEG) data,
and Multi-electrode Arrays (MEA) signals (Tadel et al., 2011;
Guzman et al., 2014; Sahoo et al., 2016), but none that exist for
evaluating simulated neuron firing traces. Software capable of
scoring electrophysiological traces on a GPU would considerably
enhance the performance of GPU-EA configurations where score
functions are the bottleneck. The prospective advantage of GPU
accelerated electrophysiological feature extraction presents an
opportunity for researchers. Because the Blue Brain Project’s

Frontiers in Neuroinformatics | www.frontiersin.org 12 June 2022 | Volume 16 | Article 882552227

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

eFEL (Van Geit et al., 2016) score function library is developed
in C++, it has the potential to be adapted to the GPU through
tools like OpenACC’s GPU directives.

A critical consideration in attempting to generalize
benchmarks, whether between simulation software, HPC
platforms, or algorithms, is that factors from the hardware
and software environment to the number of spiking neurons
in a population can have a substantial impact on the run time
of the application. In Supplementary Figure 8, the time to
evaluate score functions increased as the EA algorithm produced
more spiking neurons. The stochasticity in the optimization in
EA is not a desirable property for benchmarking as it can be
difficult to tell if scoring is taking longer to complete because it is
slower or because an instantiation of EA is producing offspring
that spike more. We mitigate this issue by benchmarking
one initial population in 3.2, 3.3, and 3.4. Another example
of variability in performance occurred in our comparison
between Cori and Summit. Initial experiments demonstrated
a much more dramatic speedup, but after upgrading to use
GCC 8.3.0 (version used on CORI), the performance on
Summit improved considerably. Kumbhar et al. (2019) shows
a notable increase in performance of CoreNeuron using the
Intel C/C++ compiler instead of GCC/G++. Moving from
benchmarking stand-alone software modules to applications
means there are more dependencies that can be affected by
the installation environment. With this consideration we
provide a simplified code example15 to run one simulation
evaluation loop without HPC or EA. We also provide the
entire code suite16, which we hope to further extend to
be a platform capable of benchmarking of more tools in
computational neuroscience.

In future work, we aim to apply this benchmarking framework
across several other software modules of interest. A simple
extension of this work would be to run experiments comparing
Allen IPFX and BluePyopt’s eFEL to the widely adopted python
electrophysiological toolkit Elephant (Denker et al., 2018). While
Elephant has fewer statistic-based features, it offers correlative
measures between spike trains. Also, Elephant has a parallel
extension which can further advantage HPC resources. Another
simple extension of this work could involve benchmarking the
biophysical neuron simulator LFPy (Lindén et al., 2014) or Arbor
(Abi Akar et al., 2019). A more complex extension of this work
would involve benchmarking the same simulate-evaluate loop,
but as it applies to spiking neural networks (SNN) instead of
the evolutionary algorithm. There are several well-documented
and widely adopted SNN packages such as Brian (Goodman
and Brette, 2009), NEST (Gewaltig and Diesmann, 2007), and
SpiNNaker (Furber et al., 2014) that would be appropriate
to benchmark using this experimental design. Finally, we are
interested in generalizing this benchmarking experimental design
to a wider range of single neuron and network optimization
tasks. Any algorithm that involves simulation or feed-forward
stage and then an evaluation/feedback/learning stage is amenable
to the analysis conducted in this paper. This generalizability

15https://github.com/xanderladd/benchmarking_examples
16https://github.com/xanderladd/EA_benchmarking

extends to many methods commonly used in machine learning
and optimization.

5. CONCLUSION

This work demonstrates the potential of efficiently parallelized
simulation and evaluation software for electrophysiological
modeling. Specifically, applications that leverage GPU utilization
demonstrate the capacity to run larger fitting optimizations. In
turn, these optimizations can result in a larger search of the
parameter space, and consequently, a more accurate model. As
the processor count continues to increase on hyper-threaded
and multi-core chips, computational methods that leverage
parallelism can continue to leverage new innovations in high
performance computing to generate more detailed and accurate
neuronal models. While this progression is beneficial, it is ever
relevant to apply established benchmarks such as weak scaling
and strong scaling for neuroscientists to get the most value out of
new computing resources.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://portal.nersc.
gov/cfs/m2043/benchmarking_ea.tar.gz.

AUTHOR CONTRIBUTIONS

JB, KB, and RB-S helped the conceptualize experiments. AL
and KK designed the software to run, process, and visualize
experiments. AL wrote the original draft. RB-S helped with
visualization. RB-S and KB funded the project and provided
supercomputing hours. All authors have read and agreed to the
published version of the manuscript.

FUNDING

This research was supported by the MIND Institute and
Neurology Department at the University of California Davis and
the Action Potential grant fromThe FamiliesSCN2A Foundation.

ACKNOWLEDGMENTS

This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of
Energy Office of Science User Facility located at Lawrence
Berkeley National Laboratory, operated under Contract No.
DE-AC02-05CH11231 using NERSC award M2043. Thank you
to Albert Vasquez for helping me test out reproducible examples
locally on his 3090 GPU.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2022.882552/full#supplementary-material

Frontiers in Neuroinformatics | www.frontiersin.org 13 June 2022 | Volume 16 | Article 882552228

https://github.com/xanderladd/benchmarking_examples
https://github.com/xanderladd/EA_benchmarking
https://portal.nersc.gov/cfs/m2043/benchmarking_ea.tar.gz
https://portal.nersc.gov/cfs/m2043/benchmarking_ea.tar.gz
https://www.frontiersin.org/articles/10.3389/fninf.2022.882552/full#supplementary-material
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

REFERENCES

Abi Akar, N., Cumming, B., Karakasis, V., Küsters, A., Klijn, W., Peyser, A., et al.
(2019). “Arbor–a morphologically-detailed neural network simulation library
for contemporary high-performance computing architectures,” in 2019 27th

Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP) (Pavia: IEEE), 274–282. doi: 10.1109/EMPDP.2019.8671560
Almog, M., and Korngreen, A. (2016). Is realistic neuronal modeling realistic? J.

Neurophysiol. 116, 2180–2209. doi: 10.1152/jn.00360.2016
Amdahl, G. M. (1967). “Validity of the single processor approach to achieving

large scale computing capabilities,” in Proceedings of Spring Joint Computer

Conference (New Jersey), 483–485. doi: 10.1145/1465482.1465560
Bailey, D. H., Lucas, R. F., andWilliams, S. (2010). Performance Tuning of Scientific

Applications. Florida: CRC Press. doi: 10.1201/b10509
Balasubramanian, M., Ruiz, T. D., Cook, B., Prabhat, M., Bhattacharyya, S.,

Shrivastava, A., et al. (2020). “Scaling of union of intersections for inference of
granger causal networks from observational data,” in 2020 IEEE International

Parallel and Distributed Processing Symposium (IPDPS) (Louisiana: IEEE),
264–273. doi: 10.1109/IPDPS47924.2020.00036

Ben-Shalom, R., Athreya, N. S., Cross, C., Sanghevi, H., Kim, K. G., Ladd, A., et al.
(2020). NeuroGPU, software for NEURON modeling in GPU-based hardware.
bioRxiv 366, 727560. doi: 10.1101/727560

Ben-Shalom, R., Aviv, A., Razon, B., and Korngreen, A. (2012). Optimizing ion
channel models using a parallel genetic algorithm on graphical processors. J.
Neurosci. Methods 206, 183–194. doi: 10.1016/j.jneumeth.2012.02.024

Ben-Shalom, R., Keeshen, C. M., Berrios, K. N., An, J. Y., Sanders, S.
J., and Bender, K. J. (2017). Opposing effects on Na v1. 2 function
underlie differences between SCN2A variants observed in individuals with
autism spectrum disorder or infantile seizures. Biol. Psychiatry 82, 224–232.
doi: 10.1016/j.biopsych.2017.01.009

Ben-Shalom, R., Ladd, A., Artherya, N. S., Cross, C., Kim, K. G., Sanghevi,
H., et al. (2022). NeuroGPU: accelerating multi-compartment, biophysically
detailed neuron simulations on GPUs. J. Neurosci. Methods 366, 109400.
doi: 10.1016/j.jneumeth.2021.109400

Ben-Shalom, R., Liberman, G., and Korngreen, A. (2013). Accelerating
compartmental modeling on a graphical processing unit. Front. Neuroinform.
7, 4. doi: 10.3389/fninf.2013.00004

Beyer, H. (2007). Evolution strategies. Scholarpedia 2, 1965.
doi: 10.4249/scholarpedia.1965

Beyer, H.-G., and Schwefel, H.-P. (2002). Evolution strategies-a comprehensive
introduction. Natural Comput. 1, 3–52. doi: 10.1023/A:1015059928466

Billeh, Y. N., Cai, B., Gratiy, S. L., Dai, K., Iyer, R., Gouwens, N. W.,
et al. (2020). Systematic integration of structural and functional data into
multi-scale models of mouse primary visual cortex. Neuron 106, 388–403.
doi: 10.1016/j.neuron.2020.01.040

Bouchard, K. E., Aimone, J. B., Chun, M., Dean, T., Denker, M., Diesmann,
M., et al. (2016). High-performance computing in neuroscience for data-
driven discovery, integration, and dissemination. Neuron 92, 628–631.
doi: 10.1016/j.neuron.2016.10.035

Bouchard, K. E., Aimone, J. B., Chun, M., Dean, T., Denker, M., Diesmann, M.,
et al. (2018). International neuroscience initiatives through the lens of high-
performance computing. Computer 51, 50–59. doi: 10.1109/MC.2018.2141039

Bower, J. M., and Beeman, D. (2012). The Book of GENESIS: Exploring Realistic

Neural Models with the GEneral NEural SImulation System. California: Springer
Science & Business Media.

Cantú-Paz, E. (2001). Migration policies, selection pressure, and parallel
evolutionary algorithms. J. Heurist. 7, 311–334. doi: 10.1023/A:1011375326814

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Connecticut:
Cambridge University Press. doi: 10.1017/CBO9780511541612

Coleman, C., Kang, D., Narayanan, D., Nardi, L., Zhao, T., Zhang, J., et al. (2019).
Analysis of dawnbench, a time-to-accuracy machine learning performance
benchmark. SIGOPS Oper. Syst. Rev. 53, 14–25. doi: 10.1145/3352020.3352024

Criado, J., Garcia-Gasulla, M., Kumbhar, P., Awile, O., Magkanaris, I.,
and Mantovani, F. (2020). “CoreNEURON: performance and energy
efficiency evaluation on intel and arm CPUs,” in 2020 IEEE International

Conference on Cluster Computing (CLUSTER) (Kobe), 540–548.
doi: 10.1109/CLUSTER49012.2020.00077

Daou, A., and Margoliash, D. (2020). Intrinsic neuronal properties represent
song and error in zebra finch vocal learning. Nat. Commun. 11, 1–17.
doi: 10.1038/s41467-020-14738-7

De Schutter, E., and Bower, J. M. (1994). An active membrane model of the
cerebellar purkinje cell. I. Simulation of current clamps in slice. J. Neurophysiol.
71, 375–400. doi: 10.1152/jn.1994.71.1.375

Denker, M., Yegenoglu, A., and Grun, S. (2018). “Collaborative HPC-enabled
workflows on the HBP Collaboratory using the Elephant framework,” in
Neuroinformatics 2018 (Montreal, QC), p. 19.

Druckmann, S., Banitt, Y., Gidon, A. A., Schürmann, F., Markram, H., and Segev,
I. (2007). A novel multiple objective optimization framework for constraining
conductance-based neuron models by experimental data. Front. Neurosci. 1,
7–18. doi: 10.3389/neuro.01.1.1.001.2007

Druckmann, S., Berger, T. K., Schürmann, F., Hill, S., Markram, H., and Segev, I.
(2011). Effective stimuli for constructing reliable neuronmodels. PLoS Comput.

Biol. 7, e1002133. doi: 10.1371/journal.pcbi.1002133
Du, X., Ni, Y., Yao, Z., Xiao, R., and Xie, D. (2013). High performance parallel

evolutionary algorithm model based on mapreduce framework. Int. J. Comput.

Appl. Technol. 46, 290–295. doi: 10.1504/IJCAT.2013.052807
Eliasmith, C., and Trujillo, O. (2014). The use and abuse of large-scale brain

models. Curr. Opin. Neurobiol. 25, 1–6. doi: 10.1016/j.conb.2013.09.009
Fan, Z., Qiu, F., Kaufman, A., and Yoakum-Stover, S. (2004). “GPU cluster for

high performance computing,” in SC’04: Proceedings of the 2004 ACM/IEEE

Conference on Supercomputing (Pennsylvania), 47.
Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., and Gagné,

C. (2012). DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res.
13, 2171–2175. Available online at: https://www.jmlr.org/papers/v13/fortin12a.
html

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The Spinnaker
project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (neural simulation tool).
Scholarpedia 2, 1430. doi: 10.4249/scholarpedia.1430

Goldman, M. S., Golowasch, J., Marder, E., and Abbott, L. (2001). Global structure,
robustness, and modulation of neuronal models. J. Neurosci. 21, 5229–5238.
doi: 10.1523/JNEUROSCI.21-14-05229.2001

Golowasch, J., Goldman, M. S., Abbott, L., and Marder, E. (2002). Failure
of averaging in the construction of a conductance-based neuron model. J.
Neurophysiol. 87, 1129–1131. doi: 10.1152/jn.00412.2001

Goodman, D. F., and Brette, R. (2009). The brian simulator. Front. Neurosci. 3,
192–197. doi: 10.3389/neuro.01.026.2009

Gouwens, N. W., Berg, J., Feng, D., Sorensen, S. A., Zeng, H., Hawrylycz, M. J.,
et al. (2018). Systematic generation of biophysically detailed models for diverse
cortical neuron types.Nat. Commun. 9, 1–13. doi: 10.1038/s41467-017-02718-3

Gouwens, N. W., Sorensen, S. A., Berg, J., Lee, C., Jarsky, T., Ting,
J., et al. (2019). Classification of electrophysiological and morphological
neuron types in the mouse visual cortex. Nat. Neurosci. 22, 1182–1195.
doi: 10.1038/s41593-019-0417-0

Guzman, S., Schlogl, A., and Schmidt-Hieber, C. (2014). Stimfit: quantifying
electrophysiological data with python. Front. Neuroinform. 8, 16.
doi: 10.3389/fninf.2014.00016

Herlihy,M., and Shavit, N. (2012).The Art ofMultiprocessor Programming, 1st Edn.
San Francisco, CA: Morgan Kaufmann Publishers Inc.

Hines, M. (1984). Efficient computation of branched nerve equations. Int. J.
Biomed. Comput. 15, 69–76. doi: 10.1016/0020-7101(84)90008-4

Hines,M. L., Morse, T., Migliore,M., Carnevale, N. T., and Shepherd, G.M. (2004).
ModelDB: a database to support computational neuroscience. J. Comput.

Neurosci. 17, 7–11. doi: 10.1023/B:JCNS.0000023869.22017.2e
Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane

current and its application to conduction and excitation in nerve. J. Physiol.
117, 500–544. doi: 10.1113/jphysiol.1952.sp004764

Hoefler, T., and Belli, R. (2015). “Scientific benchmarking of parallel computing
systems: twelve ways to tell the masses when reporting performance results,” in
Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis (Texas), 1–12. doi: 10.1145/2807591.2807644
Keren, N., Peled, N., and Korngreen, A. (2005). Constraining compartmental

models using multiple voltage recordings and genetic algorithms. J.

Neurophysiol. 94, 3730–3742. doi: 10.1152/jn.00408.2005

Frontiers in Neuroinformatics | www.frontiersin.org 14 June 2022 | Volume 16 | Article 882552229

https://doi.org/10.1109/EMPDP.2019.8671560
https://doi.org/10.1152/jn.00360.2016
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1201/b10509
https://doi.org/10.1109/IPDPS47924.2020.00036
https://doi.org/10.1101/727560
https://doi.org/10.1016/j.jneumeth.2012.02.024
https://doi.org/10.1016/j.biopsych.2017.01.009
https://doi.org/10.1016/j.jneumeth.2021.109400
https://doi.org/10.3389/fninf.2013.00004
https://doi.org/10.4249/scholarpedia.1965
https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1016/j.neuron.2020.01.040
https://doi.org/10.1016/j.neuron.2016.10.035
https://doi.org/10.1109/MC.2018.2141039
https://doi.org/10.1023/A:1011375326814
https://doi.org/10.1017/CBO9780511541612
https://doi.org/10.1145/3352020.3352024
https://doi.org/10.1109/CLUSTER49012.2020.00077
https://doi.org/10.1038/s41467-020-14738-7
https://doi.org/10.1152/jn.1994.71.1.375
https://doi.org/10.3389/neuro.01.1.1.001.2007
https://doi.org/10.1371/journal.pcbi.1002133
https://doi.org/10.1504/IJCAT.2013.052807
https://doi.org/10.1016/j.conb.2013.09.009
https://www.jmlr.org/papers/v13/fortin12a.html
https://www.jmlr.org/papers/v13/fortin12a.html
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1523/JNEUROSCI.21-14-05229.2001
https://doi.org/10.1152/jn.00412.2001
https://doi.org/10.3389/neuro.01.026.2009
https://doi.org/10.1038/s41467-017-02718-3
https://doi.org/10.1038/s41593-019-0417-0
https://doi.org/10.3389/fninf.2014.00016
https://doi.org/10.1016/0020-7101(84)90008-4
https://doi.org/10.1023/B:JCNS.0000023869.22017.2e
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1145/2807591.2807644
https://doi.org/10.1152/jn.00408.2005
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Ladd et al. Scaling Neuronal Model Fitting

Knight, J. C., and Nowotny, T. (2018). Gpus outperform current hpc
and neuromorphic solutions in terms of speed and energy when
simulating a highly-connected cortical model. Front. Neurosci. 12, 941.
doi: 10.3389/fnins.2018.00941

Kulkarni, S. R., Parsa, M., Mitchell, J. P., and Schuman, C. D. (2021).
Benchmarking the performance of neuromorphic and spiking neural network
simulators. Neurocomputing 447, 145–160. doi: 10.1016/j.neucom.2021.03.028

Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King, J., Delalondre, F., et al.
(2019). Coreneuron: an optimized compute engine for the neuron simulator.
Front. Neuroinform. 13, 63. doi: 10.3389/fninf.2019.00063

Lindén, H., Hagen, E., Leski, S., Norheim, E. S., Pettersen, K. H., and
Einevoll, G. T. (2014). Lfpy: a tool for biophysical simulation of extracellular
potentials generated by detailed model neurons. Front. Neuroinform. 7, 41.
doi: 10.3389/fninf.2013.00041

Mainen, Z. F., Joerges, J., Huguenard, J. R., and Sejnowski, T. J. (1995). A model
of spike initiation in neocortical pyramidal neurons. Neuron 15, 1427–1439.
doi: 10.1016/0896-6273(95)90020-9

Mainen, Z. F., and Sejnowski, T. J. (1996). Influence of dendritic structure
on firing pattern in model neocortical neurons. Nature 382, 363–366.
doi: 10.1038/382363a0

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M.,
Sanchez, C. A., et al. (2015). Reconstruction and simulation of neocortical
microcircuitry. Cell 163, 456–492. doi: 10.1016/j.cell.2015.09.029

Masoli, S., Rizza, M. F., Sgritta, M., Van Geit, W., Schürmann, F., and D’Angelo,
E. (2017). Single neuron optimization as a basis for accurate biophysical
modeling: the case of cerebellar granule cells. Front. Cell. Neurosci. 11, 71.
doi: 10.3389/fncel.2017.00071

Mitchell, M. (1998). An Introduction to Genetic Algorithms. Massachusetts: MIT
Press. doi: 10.7551/mitpress/3927.001.0001

Nogaret, A., Meliza, C. D., Margoliash, D., and Abarbanel, H. D. (2016). Automatic
construction of predictive neuron models through large scale assimilation of
electrophysiological data. Sci. Rep. 6, 1–14. doi: 10.1038/srep32749

Prinz, A. A., Billimoria, C. P., and Marder, E. (2003). Alternative to hand-tuning
conductance-based models: construction and analysis of databases of model
neurons. J. Neurophysiol. 90, 3998–4015. doi: 10.1152/jn.00641.2003

Prinz, A. A., Bucher, D., and Marder, E. (2004). Similar network activity from
disparate circuit parameters. Nat. Neurosci. 7, 1345–1352. doi: 10.1038/nn1352

Rall, W. (1959). Branching dendritic trees and motoneuron membrane resistivity.
Exp. Neurol. 1, 491–527. doi: 10.1016/0014-4886(59)90046-9

Rall, W. (1962). Electrophysiology of a dendritic neuron model. Biophys. J. 2(2 Pt
2), 145. doi: 10.1016/S0006-3495(62)86953-7

Rall, W. (1964). “Theoretical significance of dendritic trees for neuronal input-
output relations,” in Neural Theory and Modeling, eds I. Segev, J. Rinzel, and G.
M. Shephard (Cambridge: MIT Press), 73–97.

Rall, W. (2009). Rall model. Scholarpedia 4, 1369. doi: 10.4249/scholarpedia.1369
Ramaswamy, S., Courcol, J.-D., Abdellah, M., Adaszewski, S. R., Antille,

N., Arsever, S., et al. (2015). The neocortical microcircuit collaboration
portal: a resource for rat somatosensory cortex. Front. Neural Circ. 9, 44.
doi: 10.3389/fncir.2015.00044

Roscoe, B. (1998). The Theory and Practice of Concurrency. New Jersey: Prentice-
Hall (Pearson).

Sahoo, S. S., Wei, A., Valdez, J., Wang, L., Zonjy, B., Tatsuoka, C., et al. (2016).
NeuroPigPen: a scalable toolkit for processing electrophysiological signal data
in neuroscience applications using apache pig. Front. Neuroinform. 10, 18.
doi: 10.3389/fninf.2016.00018

Sakmann, B., and Neher, E. (1984). Patch clamp techniques for studying
ionic channels in excitable membranes. Annu. Rev. Physiol. 46, 455–472.
doi: 10.1146/annurev.ph.46.030184.002323

Sáray, S., Rössert, C. A., Appukuttan, S., Migliore, R., Vitale, P., Lupascu,
C. A., et al. (2020). Systematic comparison and automated validation
of detailed models of hippocampal neurons. bioRxiv [Preprint].
doi: 10.1101/2020.07.02.184333

Schaller, R. R. (1997). Moore’s law: past, present and future. IEEE Spectrum 34,
52–59. doi: 10.1109/6.591665

Spratt, P. W., Alexander, R. P., Ben-Shalom, R., Sahagun, A., Kyoung, H.,
Keeshen, C. M., et al. (2021). Paradoxical hyperexcitability from Na v1. 2
sodium channel loss in neocortical pyramidal cells. Cell Rep. 36, 109483.
doi: 10.1016/j.celrep.2021.109483

Strohmaier, E., Meuer, H. W., Dongarra, J., and Simon, H. D. (2015). The
top500 list and progress in high-performance computing. Computer 48, 42–49.
doi: 10.1109/MC.2015.338

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., and Leahy, R. M. (2011).
Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell.

Neurosci. 2011, 879716. doi: 10.1155/2011/879716
Traub, R. D., Contreras, D., Cunningham, M. O., Murray, H., LeBeau,

F. E., Roopun, A., et al. (2005). Single-column thalamocortical
network model exhibiting gamma oscillations, sleep spindles, and
epileptogenic bursts. J. Neurophysiol. 93, 2194–2232. doi: 10.1152/jn.00983.
2004

Traub, R. D., Wong, R. K., Miles, R., and Michelson, H. (1991). A model of
a ca3 hippocampal pyramidal neuron incorporating voltage-clamp data on
intrinsic conductances. J. Neurophysiol. 66, 635–650. doi: 10.1152/jn.1991.66.
2.635

Van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M., Stokes,
A. B., et al. (2018). Performance comparison of the digital neuromorphic
hardware spinnaker and the neural network simulation software nest
for a full-scale cortical microcircuit model. Front. Neurosci. 12, 291.
doi: 10.3389/fnins.2018.00291

Van Geit, W., Achard, P., and De Schutter, E. (2007). Neurofitter: a parameter
tuning package for a wide range of electrophysiological neuron models. Front.
Neuroinform. 1, 1. doi: 10.3389/neuro.11.001.2007

Van Geit, W., De Schutter, E., and Achard, P. (2008). Automated neuron
model optimization techniques: a review. Biol. Cybernet. 99, 241–251.
doi: 10.1007/s00422-008-0257-6

Van Geit, W., Gevaert, M., Chindemi, G., Rossert, C., Courcol, J.-D., Muller,
E. B., et al. (2016). BluePyOpt: leveraging open source software and
cloud infrastructure to optimise model parameters in neuroscience. Front.
Neuroinform. 10, 17. doi: 10.3389/fninf.2016.00017

Vanier, M. C., and Bower, J. M. (1999). A comparative survey of automated
parameter-search methods for compartmental neural models. J. Comput.

Neurosci. 7, 149–171. doi: 10.1023/A:1008972005316
Wu, X., Taylor, V., Wozniak, J. M., Stevens, R., Brettin, T., and Xia, F.

(2019). “Performance, energy, and scalability analysis and improvement
of parallel cancer deep learning candle benchmarks,” in Proceedings of

the 48th International Conference on Parallel Processing (Kyoto), 1–11.
doi: 10.1145/3337821.3337905

Zitzler, E., and Künzli, S. (2004). “Indicator-based selection in multiobjective
search,” in International Conference on Parallel Problem Solving from Nature

(Berlin; Heidelberg: Springer), 832–842. doi: 10.1007/978-3-540-30217-9_84

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Ladd, Kim, Balewski, Bouchard and Ben-Shalom. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 15 June 2022 | Volume 16 | Article 882552230

https://doi.org/10.3389/fnins.2018.00941
https://doi.org/10.1016/j.neucom.2021.03.028
https://doi.org/10.3389/fninf.2019.00063
https://doi.org/10.3389/fninf.2013.00041
https://doi.org/10.1016/0896-6273(95)90020-9
https://doi.org/10.1038/382363a0
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.3389/fncel.2017.00071
https://doi.org/10.7551/mitpress/3927.001.0001
https://doi.org/10.1038/srep32749
https://doi.org/10.1152/jn.00641.2003
https://doi.org/10.1038/nn1352
https://doi.org/10.1016/0014-4886(59)90046-9
https://doi.org/10.1016/S0006-3495(62)86953-7
https://doi.org/10.4249/scholarpedia.1369
https://doi.org/10.3389/fncir.2015.00044
https://doi.org/10.3389/fninf.2016.00018
https://doi.org/10.1146/annurev.ph.46.030184.002323
https://doi.org/10.1101/2020.07.02.184333
https://doi.org/10.1109/6.591665
https://doi.org/10.1016/j.celrep.2021.109483
https://doi.org/10.1109/MC.2015.338
https://doi.org/10.1155/2011/879716
https://doi.org/10.1152/jn.00983.2004
https://doi.org/10.1152/jn.1991.66.2.635
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.3389/neuro.11.001.2007
https://doi.org/10.1007/s00422-008-0257-6
https://doi.org/10.3389/fninf.2016.00017
https://doi.org/10.1023/A:1008972005316
https://doi.org/10.1145/3337821.3337905
https://doi.org/10.1007/978-3-540-30217-9_84
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

TECHNOLOGY AND CODE
published: 27 June 2022

doi: 10.3389/fninf.2022.884046

Frontiers in Neuroinformatics | www.frontiersin.org 1 June 2022 | Volume 16 | Article 884046

Edited by:

Mike Hawrylycz,

Allen Institute for Brain Science,

United States

Reviewed by:

Daniele Linaro,

Politecnico di Milano, Italy

Mikael Djurfeldt,

Royal Institute of Technology, Sweden

*Correspondence:

Felix Schürmann

felix.schuermann@epfl.ch

†These authors share first authorship
‡These authors share senior

authorship

Received: 25 February 2022

Accepted: 26 May 2022

Published: 27 June 2022

Citation:

Awile O, Kumbhar P, Cornu N,

Dura-Bernal S, King JG, Lupton O,

Magkanaris I, McDougal RA,

Newton AJH, Pereira F, Săvulescu A,

Carnevale NT, Lytton WW, Hines ML

and Schürmann F (2022) Modernizing

the NEURON Simulator for

Sustainability, Portability, and

Performance.

Front. Neuroinform. 16:884046.

doi: 10.3389/fninf.2022.884046

Modernizing the NEURON Simulator
for Sustainability, Portability, and
Performance
Omar Awile 1†, Pramod Kumbhar 1†, Nicolas Cornu 1, Salvador Dura-Bernal 2,3,

James Gonzalo King 1, Olli Lupton 1, Ioannis Magkanaris 1, Robert A. McDougal 4,5,6,

Adam J. H. Newton 2,4, Fernando Pereira 1, Alexandru Săvulescu 1, Nicholas T. Carnevale 7‡,

William W. Lytton 3‡, Michael L. Hines 7‡ and Felix Schürmann 1*‡

1 Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland, 2Department Physiology and

Pharmacology, SUNY Downstate, Brooklyn, NY, United States, 3Center for Biomedical Imaging and Neuromodulation,

Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States, 4Department of Biostatistics, Yale School of

Public Health, New Haven, CT, United States, 5 Program in Computational Biology and Bioinformatics, Yale University,

New Haven, CT, United States, 6 Yale Center for Medical Informatics, Yale University, New Haven, CT, United States,
7Department of Neuroscience, Yale University, New Haven, CT, United States

The need for reproducible, credible, multiscale biological modeling has led to the

development of standardized simulation platforms, such as the widely-used NEURON

environment for computational neuroscience. Developing and maintaining NEURON

over several decades has required attention to the competing needs of backwards

compatibility, evolving computer architectures, the addition of new scales and physical

processes, accessibility to new users, and efficiency and flexibility for specialists. In

order to meet these challenges, we have now substantially modernized NEURON,

providing continuous integration, an improved build system and release workflow, and

better documentation. With the help of a new source-to-source compiler of the NMODL

domain-specific language we have enhanced NEURON’s ability to run efficiently, via

the CoreNEURON simulation engine, on a variety of hardware platforms, including

GPUs. Through the implementation of an optimized in-memory transfer mechanism

this performance optimized backend is made easily accessible to users, providing

training and model-development paths from laptop to workstation to supercomputer and

cloud platform. Similarly, we have been able to accelerate NEURON’s reaction-diffusion

simulation performance through the use of just-in-time compilation. We show that these

efforts have led to a growing developer base, a simpler and more robust software

distribution, a wider range of supported computer architectures, a better integration of

NEURON with other scientific workflows, and substantially improved performance for the

simulation of biophysical and biochemical models.

Keywords: NEURON, simulation, neuronal networks, multiscale computer modeling, systems biology,

computational neuroscience

1. INTRODUCTION

NEURON is an open-source simulation environment that is particularly well suited for models of
individual neurons and networks of neurons in which biophysical and anatomical complexity have
important functional roles (Hines and Carnevale, 1997). Its development started in the laboratory
of John Moore at Duke University in the mid-1980s as a tool for studying spike initiation and

231

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.884046
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.884046&domain=pdf&date_stamp=2022-06-27
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:felix.schuermann@epfl.ch
https://doi.org/10.3389/fninf.2022.884046
https://www.frontiersin.org/articles/10.3389/fninf.2022.884046/full

Awile et al. Modernizing NEURON

propagation in squid axons. Subsequently it underwent massive
enhancements in features and performance and it is now used
for models that range in scale from subcellular (McDougal et al.,
2013) to large networks (Migliore et al., 2006). Today it is one
of the most widely used simulation environments for biologically
detailed neurosimulations (Tikidji-Hamburyan et al., 2017).

Einevoll et al. (2019) have argued that the central role of
simulation software in neuroscience is analogous to physical
infrastructure in other scientific domains, such as astronomical
observatories and particle accelerators, and that the resources
required to build and maintain software should be considered
in this context. The increasing importance of software in
science is, however, not specific to neuroscience. Crouch
et al. (2013) and Hettrick et al. (2014) found that there
is a general trend that science relies more and more on
software with the capability to automate complex processes and
perform quantitative calculations for prediction and analysis.
Unfortunately, this reliance on software also has inherent and
increasing risks (Miller, 2006). The need for better software
sustainability, correctness and reproducibility (McDougal et al.,
2016; Mulugeta et al., 2018) has prompted initiatives and
proposals suggesting better practices when developing scientific
software (Crouch et al., 2013; Erdemir et al., 2020) and when
publishing computational results (Heroux, 2015; Willenbring,
2015). In practice, however, it remains difficult to always have
the right training, resources and overall understanding to develop
good software and use it correctly. Bartlett et al. (2012) and
Gewaltig and Cannon (2014) further illustrate how productive
use of a software application can lead to development and use
beyond its original scope. This, in turn, increases its complexity
and can render a once-straightforward implementation unwieldy
and hard to maintain.

Another challenge is that of software portability. A user
may, rightfully, expect that a scientific software runs on
different operating systems and makes good use of all the
installed hardware, which in today’s systems often means a
combination of a multi-core CPU and a powerful graphics
processing unit (GPU). The number and diversity of these
hardware architectures is expected to continue to increase as
hardware architects seek to further exploit problem specificities
in their designs (Hennessy and Patterson, 2017). The increasing
difficulty in miniaturizing transistors will amplify the trend
toward architectural heterogeneity (Hennessy and Patterson,
2019). From a software point of view, maintaining portability for
this diversity of platforms is a fundamental challenge. The more
target platforms that need to be supported, the bigger the risk that
this leads to multiple redundant code segments with potentially
different programming syntax, compilation configurations, and
deployment mechanisms, which are error-prone and labor-
intensive to maintain. In the software development world,
mechanisms and paradigms have been found that facilitate
writing more portable software, such as programming paradigms
that support multiple architectures (Wolfe, 2021), and modern
continuous integration mechanisms (Meyer, 2014). If we want to
be able to keep benefiting from future hardware developments in
neuroscience, neurosimulator software will have to fully engage
with the portability challenge.

Another important challenge is running computational
models quickly and efficiently, including those of large size.
This requires understanding the computational nature of the
scientific problem, which computer system is best suited
(Cremonesi and Schürmann, 2020; Cremonesi et al., 2020),
and optimization of data structures and algorithms for specific
hardware architectures (Jordan et al., 2018; Kumbhar et al., 2019).
Given the multitude of computational models and diversity of
computer architectures, it has become necessary to use various
automated approaches to generate optimized versions of the
software. Examples includemodern compiler techniques for code
generation from domain specific languages (e.g., Blundell et al.,
2018; Akar et al., 2019; Kumbhar et al., 2020), or just in time
compilation (Lam et al., 2015), as well as the use of platform-
optimized libraries (e.g., Agullo et al., 2009; Carter Edwards et al.,
2014) and new abstraction layers that anticipate heterogeneous
architectures (Beckingsale et al., 2019).

A major confounding factor to the aforementioned challenges
is that popular scientific codes, such as NEURON (Hines and
Carnevale, 1997) or NEST (Gewaltig and Diesmann, 2007),
have often been developed over long periods and include
key source code that was written without the benefit of
modern development tools, libraries and software programming
practices. The necessity of modernizing scientific codes is
increasingly recognized (Neely et al., 2017; de Verdière, 2020)
and does not spare brain simulator software projects (Brette et al.,
2007). In the case of NEST these modernizations happened over
the past few years, spanning a wide range of both algorithmic
and technical improvements (Pronold et al., 2022). Others,
such as the Brian Simulator (Goodman, 2009), have decided
to rewrite their codes from scratch, taking the opportunity to
overcome limitations of their previous implementations, such as
allowing for flexibility in model specification while improving
simulator performance (Stimberg et al., 2019). It also prompted
the inception of new simulator projects, such as the Arbor
simulator (Akar et al., 2019), where the developers sought to
start from a design philosophy that prefers standard library
data structures, code generation, and which minimizes external
dependencies. The flip side of such a fresh start is that it is difficult
to maintain full backward compatibility with existing models.

Lastly, with more complex scientific workflows, the notion of
software being a single do-it-all tool is slowly waning and one
should rather think of it as a building block in a larger eco-system.
This trend can be seen in efforts like the EBRAINS research
infrastructure1, where multiple tools are combined into intricate
scientific workflows (Schirner et al., 2022). The Open Source
Brain (Gleeson et al., 2019) and tools such as NetPyNE (Dura-
Bernal et al., 2019), LFPy (Lindén et al., 2014), Bionet (Gratiy
et al., 2018) and BluePyOpt (Van Geit et al., 2016) use NEURON
as a library and augment it with additional features. As an
example, NetPyNE is a high-level Python interface to NEURON
that facilitates the development, parallel simulation, optimization
and analysis of multiscale neural circuit models.

Here, we report on our efforts to modernize the widely-used
NEURON simulator, improving its sustainability, portability,

1https://ebrains.eu/

Frontiers in Neuroinformatics | www.frontiersin.org 2 June 2022 | Volume 16 | Article 884046232

https://ebrains.eu/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

and performance. We have overhauled NEURON’s overall code
organization, testing, documentation and build system with the
aim of increasing the code’s sustainability. We have integrated
NEURON with an efficient and scalable simulation engine
(CoreNEURON) and a modern source-to-source compiler
(NMODL) capable of targeting both CPUs and GPUs. We
demonstrate the performance of several large-scale models using
different multi-CPU and multi-GPU configurations, including
running simulations on Google Cloud using NetPyNE. Finally,
we updatedNEURON’s reaction-diffusion simulation capabilities
with just-in-time compilation, more seamless integration with
the rest of NEURON, support for exporting to the SBML format,
and support for 3D intra- and extra-cellular simulation.

2. METHODS

Over the years the NEURON simulator has been developed
to accommodate new simulation use-cases, support community
tools and file formats, and adopt new programming paradigms
to benefit from emerging computing technologies. During this
process, various software components have been developed
and external libraries have been integrated into the codebase.
Like many scientific software packages, maintaining a codebase
developed over four decades poses a significant software
engineering challenge.

Since the 7.8 release the NEURON developer community has
launched a variety of initiatives to future-proof the simulator
codebase. Figure 1 summarizes the high-level functional
components of the NEURON simulator and the various changes
described in the rest of this section. These developments
happened since 2020 over the course of 2 years starting with the
refactoring of the build system and the introduction of a new
continuous integration (CI) system. While especially the latter
is an ongoing effort, both developments have allowed various
improvements to documentation, testing and packaging. The
tighter integration of CoreNEURON into NEURON and its
various performance and hardware portability improvements
were implemented in parallel and were able to quickly benefit
from the new build system and CI made available in NEURON.

2.1. Improving Software Sustainability
Through Code Modernization and Quality
Assurance
To address some of the shortcomings of NEURON’s codebase
accumulated over four decades of continued development,
we have implemented a number of far-reaching changes and
adopted a new modern development process with the aim
of streamlining the handling of code contributions, while at
the same time improving code quality and documentation.
First, we have replaced the legacy GNU Autotools based build
system with CMake. Second, this allowed us to introduce a
comprehensive automated build and CI system using GitHub
Actions. Third, these two changes allowed us to create a modern
binary release system based on Python wheels. Finally, we
have further extended these components to integrate a code
coverage monitoring service and automatically build user and
developer documentation.

2.1.1. Modern Build System Adoption
Until recently the build system of NEURON used GNU
Autotools. Autotools, the de-facto standard on Unix-like
systems, is a build system used to assist the various build
steps of software packages. CMake is a modern alternative to
Autotools that offers many advantages and features important for
the continued development of NEURON. First, it has extensive
support for customizing C and C++ builds, from language
standards, to fine-tuning compile and link-time arguments.
Furthermore, it supports build portability across hardware
platforms (i.e., x86_64, ARM, GPUs), operating systems (i.e.,
Linux, macOS, Windows) and compilers (GCC, Clang, Intel,
NVIDIA, etc.). It also allows a more robust integration
with external dependencies. Finally, CMake is being actively
developed and supported by a large community of open source
and industry developers.

We decided, therefore, to replace NEURON’s legacy Autotools
build system by CMake and reimplemented the entire configure
and build process using CMake for NEURON as well as its
libraries such as CoreNEURON and Interviews. The build-
system reimplementation allowed us to refactor large parts of
the auxiliary code used for configuring, packaging and installing
NEURON in order to make it more robust and maintainable.

Using CMake we are able to provide a build configuration that
goes far beyond GNU Autotools in several respects. For instance,
we have included the ability to automatically clone and integrate
other CMake based libraries like CoreNEURON and NMODL
using CMake options. The build is organized in various build
targets producing multiple shared libraries for the interpreter,
solvers, simulator, the native interfaces of the Python API, RxD,
CoreNEURON, and the main neuron executable, nrniv.

2.1.2. Continuous Integration and Build Automation
Continuous integration (CI) is crucial for the development
process of any software project. It allows the development
team to check the correctness of code changes over the course
of the project’s development life cycle. To support our work
in modernizing the NEURON codebase and opening up the
development process to a wider community it was, therefore,
important to first put a CI in place. Figure 2A gives an
overview of the CI workflow using GitHub Actions and Azure.
Every time a new Pull Request is opened on the NEURON
repository, CI pipelines for building and testing NEURON are
executed on Linux, Windows and macOS. These also rebuild
the documentation, executing all embedded code snippets and
generate test code coverage reports, which are provided to the
code reviewer to aid them in evaluating the proposed change
to the code. As part of the CI workflows, we also need to build
and test binary installers as well as python wheels for various
platforms. As Github Actions provides limited concurrent builds
for open source projects, we use Azure CI workflows for building
artifacts such as installers and python wheels. This helps us to
reduce overall CI turnaround time.

Using the Pull Request CI workflow, we ensure that the
proposed change will not introduce bugs or unintended side-
effect, by testing the majority of build options along with
different compiler versions. The jobs also build Python wheel
packages (see Section 2.1.4 for more details) and test the integrity

Frontiers in Neuroinformatics | www.frontiersin.org 3 June 2022 | Volume 16 | Article 884046233

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

FIGURE 1 | NEURON Simulator Overview: At the top, the “Public API” layer shows NEURON’s three application programming interfaces exposed to end-users: the

legacy HOC scripting interface, the preferred Python interface, and the NMODL DSL for defining channel and synapse models. In the middle, the “Simulator

Component” layer shows the main three different software components and their interal sub-components: NEURON, the main modeling and simulation environment,

CoreNEURON, a compute engine for NEURON targetted at modern hardware architectures including GPUs, and NMODL, a modern compiler framework for the

NMODL DSL. At the bottom, supported hardware architectures are shown. Software components that are newly added or are deprecated are highlighted.

FIGURE 2 | (A) Pull Request CI workflow: Whenever a Pull Request is opened jobs are started to build and test NEURON on Linux, Windows and macOS. Several

combinations of build options and versions of dependencies are tested. Also, Python wheels are built, the documentation is regenerated, executing embedded code

snippets and code coverage metrics are determined. All CI job results are reported to the code reviewer. (B) Merge & Release CI workflow: Automated CI jobs are also

started after a PR has been merged, nightly or on a new version release. These jobs produce artifacts that are delivered into appropriate channels.

Frontiers in Neuroinformatics | www.frontiersin.org 4 June 2022 | Volume 16 | Article 884046234

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

of the resulting packages by running NEURON’s unit and
integration test suites. These jobs are executed both on Linux
andmacOS systems. BecauseWindows is a substantially different
environment, we needed to develop a separate CI to build and
test the NEURON installer package using the MinGW compiler
and MSYS2 environment2.

Contrary to the Pull Request CI, the Merge & Release CI
(Figure 2B) is executed on the latest master branch of the
NEURON codebase or with a new release. Artifacts such as the
latest documentation, Python wheels, binary packages and the
Windows installer are built.

Once we had set up a robust build system and CI workflow,
we were able to extend the framework to offer additional features
both for the developer and the user community. First, as the
name suggests, the Docs CI builds a NEURON Python wheel
package and rebuilds the NEURON documentation (described
in more detail in Section 2.1.3). Second, we have added a code
coverage workflow, which builds NEURON with all features
enabled and runs all tests tracking code coverage using lcov and
pytest-cov.

2.1.3. Documentation Generation
NEURON’s documentation consists of a number of resources
covering the Interviews graphical interface, the HOC and
Python APIs, the NMODL domain specific language (DSL), and
development best practices.

As part of our effort to streamline the development process
and modernize the organization of NEURON, we consolidated
NEURON’s documentation sources into the main repository and
automated the documentation building. Additional resources,
such as tutorials, in the form of Jupyter notebooks, were also
gathered and integrated into the NEURON documentation.

We integrated documentation building into the CMake build
system and CI pipelines. In the CI pipelines, we start by
executing the Jupyter notebooks using a freshly built NEURON
wheel, ensuring that existing notebooks are compatible with
the latest code. Once the notebooks have been successfully
executed, they are then converted to HTML. Next, Doxygen
code documentation is generated. Finally, the manual and
developers guide are re-built with Sphinx, embedding the
previously generated Jupyter notebooks and Doxygen. This
documentation is then published on the ReadTheDocs3 where
we provide versioned documentation starting with the NEURON
8.0.0 release.

2.1.4. A Modern NEURON Python Package
NEURON was originally packaged as a traditional software
application, made available as a binary package for mainstream
operating systems and alternatively as a source tarball.
Alternatively, NEURON could also be installed as a Python
package through a laborious multistep process that lacked
flexibility and was error prone. With the introduction of
a standard, complete Python interface (Hines et al., 2009),
NEURON could be more readily used from a Python shell.

2https://www.msys2.org/
3https://readthedocs.org/

Thanks to the user friendliness and strong scientific ecosystem
of the Python language, this API quickly became popular in
the NEURON community. At the same time, the Python wheel
package format has become an extremely popular means of
distributing Python software packages, allowing the user to
install Python packages using pip install.

To provide the flexibility of pip-based installation, using
the CMake build system we implemented a new NEURON
Python package shown in Figure 3. This package is comprised
of C/C++ extensions providing the legacy hoc language, the
Python interface, reaction-diffusion module (rxd) with Cython
extension, and several pure Python modules. To build functional
Python extensions it is important to provide the build system
with the correct build flags and paths compatible with the
target Python framework. To achieve this we extended the
Extension class of setuptools.

One of the challenges faced when building the NEURON
Python package was distribution of binary executables and
support for compiling MOD files on the user’s machine. Python
extensions are typically built as shared libraries and automatically
placed in the correct location in the package path to be found
at runtime. However, compiled executables such as nrniv are
treated by setuptools as binary data and not installed into the
Python framework’s bin folder. Also, we needed to support the
nrnivmodl workflow where the user can compile mechanism
and synapse models from MOD files and load the corresponding
library at runtime. In order to support this, we created Python
shims that take the place of the actual NEURON executables in
the bin folder. These shims prepare the runtime environment
and call the homonymous NEURON binary executable via the
execv routine, which substitutes the shim process with the
NEURON executable.

2.2. Integration of CoreNEURON Within
NEURON
CoreNEURON (Kumbhar et al., 2019) is a simulation engine
for NEURON optimized for modern hardware architectures
including CPUs and GPUs. CoreNEURON is developed and
maintained in its own public repository on GitHub. Previously
it was up to the user to obtain API-compatible versions and build
NEURON and CoreNEURON from source separately. The use
of CoreNEURONwas also not straightforward as it had to be run
as a separate executable. To simplify the usage, CoreNEURON
and NEURON are now coupled more tightly in terms of code
organization, build system and implementation level.

First of all, we have integrated CoreNEURON (along with
NMODL) as git submodules of the nrn repository, allowing us to
build single software distribution packages containing optimized
CPU and GPU support via CoreNEURON. This also simplifies
tracking changes in the various repositories and making sure
that the correct code revisions are distributed and built together.
Secondly, we have integrated CoreNEURON and NMODL
building into NEURON’s CMake build system. This is possible
thanks to CMake’s robust support of subprojects that allow easy
popagation of build parameters across the various code bases.
Thirdly we have implemented an in-memory model transfer,

Frontiers in Neuroinformatics | www.frontiersin.org 5 June 2022 | Volume 16 | Article 884046235

https://www.msys2.org/
https://readthedocs.org/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

FIGURE 3 | Overview of the NEURON Python package. The package is comprised of pure Python modules and extension code. The main NEURON extension is

written in C/C++ and provides the API for the NEURON interpreter. Additionally, the rx3d modules are written in Cython providing the reaction-diffusion solvers of

NEURON.

improved GPU support in CoreNEURON, and integrated our
MOD file code generation pipelines. Some of the important
changes are discussed in the remainder of this section.

2.2.1. Transparent Execution via Coreneuron Using

In-memory Model Transfer
While CoreNEURON can be run as a standalone application, it
still requires the model created by NEURON as an input. This
model can be written to disk and transferred to CoreNEURON
via files. This approach has the advantage that a large model
can be constructed once by NEURON and stored to files, which
can be later run by CoreNEURON many times (for example for
ensemble runs). Also, this allows the models with huge memory
requirement to be constructed in smaller pieces by NEURON
before being executed simultaneously by CoreNEURON, thanks
to it having a 5 − 6× smaller memory footprint than NEURON.
However, we found that in practice this workflow is not flexible
enough for many users.

To address this we have now implemented two-way in-
memory data transfer between NEURON and CoreNEURON,
which greatly simplifies CoreNEURON usage. With this, it
is now possible to record cell or mechanism properties (e.g.,
voltage, current, variables of type STATE, PARAMETER,
RANGE, ASSIGNED defined in MOD files), unlike with the
file-transfer mode where only spikes can be recorded. In case
of NEURON, all of the data structures representing a model
are laid out in an Array-of-Structures (AoS) memory layout.
This allows easy manipulation of sections, channels and cells
at runtime, but it is not optimal for memory access and
Single Instruction Multiple Data (SIMD) execution on modern
CPU/GPU architectures. Hence, NEURON data structures are
serialized and transferred to CoreNEURON where they are

transposed into a Structure-of-Array (SoA) memory layout. This
allows efficient code vectorization and favors coalesced memory
access, which is important for runtime performance. In addition
to data structures representing cells and network connectivity,
event queues are now also copied back and forth between
NEURON and CoreNEURON, allowing simulations to be run
partly with NEURON and partly with CoreNEURON if desired.
For end users, all this functionality is now exposed via a new
Pythonmodule named coreneuron. The API and new options
are discussed in Section 3.3.

2.2.2. Enabling GPU Offloading in NEURON

Simulations
It is now possible to offload NEURON simulations transparently
to GPUs using CoreNEURON. This support is implemented
using the OpenACC programming model. When CoreNEURON
GPU support is enabled, all data structures representing
the model are copied to GPU memory when initializing
CoreNEURON. State variables for the Random123 (Salmon
et al., 2011) library are also allocated on the GPU using
CUDA unified memory. Once the data are transferred, they
reside in the GPU memory throughout the simulation. This
simplifies memory management and reduces expensive CPU-
GPU memory transfers.

All computationally intensive kernels of the main simulation
loop are offloaded to the GPU, including state and current
updates in MOD files, and the Hines solver (Hines, 1984). Even
though the spike detection kernels are not computationally
expensive, they are offloaded to GPU too, to benefit from data
locality and avoid additional data transfers. Only the spike events
generated on the GPU and user-requested state variables are
copied back to CPU. Similarly, the spikes communicated by

Frontiers in Neuroinformatics | www.frontiersin.org 6 June 2022 | Volume 16 | Article 884046236

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

other processes are first queued on the CPU and then transferred
to GPU.

For some models the Hines solver can consume a significant
fraction of the total simulation time when running on GPUs. This
is often due to the limited parallelism and non-coalescedmemory
access arising from heterogeneous, branched tree structures in
neuron morphologies. As presented by Kumbhar et al. (2019),
two node ordering schemes (called cell permutations) were
developed to improve the parallelism and coalesced memory
accesses. We have further improved this implementation,
reducing solver execution time on GPU by an additional 15 −

−20%. Finally, simulations running on GPU can now utilize
multiple GPUs available on a compute node. The available GPUs
are uniformly distributed across MPI processes and threads.

2.2.3. Integration of Code Generation Pipelines
An integral part of NEURON’s modeling capability is provided
via the NMODL DSL. This allows the user to describe in their
models a wide range of membrane and intracellular submodels
such as voltage and ligand gated channels, ionic accumulation
and diffusion, and synapse models. Such models are written in
MOD files and then translated to lower level C or C++ code using
a source-to-source compiler (transpiler).

In order to support execution via both NEURON or
CoreNEURON, each MOD file is now translated twice: first into
C code for NEURON, and then into C++ for CoreNEURON.
This workflow is illustrated in Figure 4. nrnivmodl remains
our main tool for processing user provided MOD files. By default,
all inputMOD files are translated into C code byNEURON’s legacy
NOCMODL transpiler. These files are then compiled to create
a library for NEURON called libnrnmech. If a user provides
the -coreneuron CLI option then either the default MOD2C
or the new NMODL transpiler (Kumbhar et al., 2020) is used to
translate MOD files into C++ files. These files are then compiled to
create a library for CoreNEURON called libcorenrnmech.
The NMODL transpiler generates modern, optimized C++ code
that can be compiled efficiently on CPUs or GPUs. These two
libraries are finally linked into an executable called special.
When running on the CPU the user has the choice between
using python, nrniv or the special executable to launch
simulations.When running on a GPU, however, one must use the
special executable to launch simulations due to limitations of
the NVIDIA compiler toolchain when using OpenACC together
with shared libraries.

2.3. Modular NEURON: The Example of
NetPyNE
NetPyNE (Dura-Bernal et al., 2019) is a high-level declarative
NEURONwrapper used to develop a wide range of neural circuit
models (Metzner et al., 2020; Anwar et al., 2021; Bryson et al.,
2021; Pimentel et al., 2021; Ranieri et al., 2021; Romaro et al.,
2021; Volk et al., 2021; Borges et al., 2022; Dura-Bernal et al.,
2022a,b;Medlock et al., 2022)4, and also as a resource for teaching
neurobiology and computational neuroscience.

4http://netpyne.org/models

The core of NetPyNE consists of a standardized JSON-like
declarative language that allows the user to specify all aspects of
the model across different scales: cell morphology and biophysics
(including molecular reaction-diffusion), connectivity, inputs
and stimulation, and simulation parameters. The NetPyNE API
can then be used to automatically generate the corresponding
NEURON network, run parallel simulations, optimize and
explore network parameters through automated batch runs, and
visualize and analyze the results using a wide range of built-in
functions. NetPyNE can calculate local field potentials (LFPs)
recorded at arbitrary locations and has recently been extended
to calculate current dipoles and electroencephalogram (EEG)
signals using LFPykit (Hagen et al., 2018).

NetPyNE also facilitates model sharing by exporting to
and importing from the NeuroML and SONATA standardized
formats. All of this functionality is also available via a web-based
user interface5. Both Jupyter notebooks and graphical interfaces
are integrated and available via the Open Source Brain (Gleeson
et al., 2019) and the EBRAINS (Amunts et al., 2019) platforms.

Simulating large models in NEURON/NetPyNE is
computationally very expensive. Thus, enabling CoreNEURON
within NetPyNE is very attractive and may provide large
gains. Thanks to the tighter integration of CoreNEURON into
NEURON (see Section 2.2), we were able to easily integrate
CoreNEURON solver support into NetPyNE. We used the
coreneuron Python module provided by NEURON and
added three new configuration options in the simulation
configuration object of NetPyNE: coreneuron to enable
CoreNEURON execution, gpu to enable or disable GPU
support, and random123 in order to enable Random123-based
random number generators. Users can now enable these features
by simply setting the above options in their NetPyNE simulation
configuration file.

2.4. Enabling New Use-Cases With
Reaction-Diffusion Integration
The NEURON reaction-diffusion module (RxD, McDougal et al.,
2013) provides a consistent formalism for specifying, simulating,
and analyzing models incorporating both chemical signaling
(chemophysiology) and electrophysiology. Such models are
common in neuroscience as, for example, calcium concentration
in the cytosol affects the activity of calcium-gated potassium
channels. Before NEURON’s RxD module, these models
incorporated chemical effects in any of a variety of ways using
custom NMODL code; this variation unfortunately made some
such models incompatible with each other and posed challenges
when combining the custom code with NEURON’s built-in tools.
Due to the use of custom solutions, they also generally combined
simulation methodology with model description; NEURON’s
RxD module, by contrast, explicitly separates the two, allowing,
for example, the same model to be used for both 1D and
3D simulation. Recent enhancements to RxD have focused on
improving its domain of applicability and usability through
changes to the interface and redesigning the backend for more
flexibility and faster simulation.

5http://gui.netpyne.org

Frontiers in Neuroinformatics | www.frontiersin.org 7 June 2022 | Volume 16 | Article 884046237

http://netpyne.org/models
http://gui.netpyne.org
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

FIGURE 4 | nrnivmodl workflow where input MOD files are translated into C/C++ code for NEURON and CoreNEURON targeting different hardware platforms via

NOCMODL and NMODL. The output of this workflow is a special executable containing NEURON and CoreNEURON specific libraries.

A number of features have been implemented to expand
the ability of RxD to better represent a researcher’s conceptual
model. An Extracellular region type (Newton et al.,
2018) provides support for studying cellular interactions
through changes in the extracellular space (e.g., in ischemic
stroke or between neurons and astrocytes), simulated using
a macroscopic volume averaging approach. Three-dimensional
intracellular simulation (McDougal et al., 2022) allows study
of microdomains and the sensitivity to precise positioning of
synapses. Importantly, each of these extensions was designed
to fit within the broader RxD context; reaction and diffusion
rules are specified and interpreted in the same way for 1D
and 3D simulation and for intra- and extracellular simulation.
Current through NMODL-DSL-specified ion channels generates
a flux in the corresponding extracellular compartment and ionic
Nernst potentials are updated based on the 3D extracellular
concentration. Both 3D intra- and extra-cellular dynamics are
calculated using a parallelized adaptation of the Douglas-Gunn
alternating direction implicit method (Douglas and Gunn,
1964). For models not requiring full 3D simulation, it is
still sometimes advantageous to account for geometry changes
(e.g., in a model using nested shells to account for radial
variation, a spine most naturally connects to only the outer-
most shell); to allow modelers to address this connection,
we added a MultipleGeometry to explicitly bridge across
geometry changes.

Other interface enhancements focused on extending RxD’s
usability. We have worked to make existing NEURON tools
work directly with RxD objects. For example, h.distance
computes path distance between two points, whether they
are RxD nodes or segments. Likewise, the NEURON-specific
graph types (h.PlotShape and h.RangeVarPlot for
visualizing concentration across an image of the cell and
along a path) can plot traditional NEURON variables (e.g.,
v or cai) as well as RxD chemical Species in whatever
region (cytosol, ER, etc.) when using the graph’s matplotlib
or pyplot backends. We added a neuron.units submodule
with conversion factors to facilitate specifying models with
rate constants most naturally expressed in specific units

(e.g., circadian models involve protein concentrations that
change over hours whereas the gating variable on a sodium
channel may have a time constant of milliseconds). A new
rxd.v variable allows using the RxD infrastructure to include
dynamics driven by membrane potential, offering an alternative
to specifying ion channel kinetics through NMODL files.
To allow studying NEURON RxD models with other tools,
we introduced neuron.rxd.export.sbml which allows
exporting reaction dynamics at a point to SBML, a standard for
representing systems biology models (Keating et al., 2020).

Additionally, we modified the backend for h.SaveState
to introduce an extensible architecture for storing and restoring
new types of state variables. Python functions within theneuron
module allow registering SaveState extension types, which consist
of specifying a unique identifier, a function to call that serializes
the corresponding states, and a function that expands a serialized
representation. We implemented an RxD extension that registers
itself when RxD states are defined (in particular, importing
the module alone does not trigger the registration). When no
extensions (including RxD) are present in the model, the saved
file is bitwise identical to previous (NEURON 7.x) versions; when
extensions are present, the saved data includes a new version
identifier, is otherwise identical to the previous version, but
ends with binary encoded data representing the number of save
extensions used in the model, an identifier for each used save
extension, the length, and data to be passed to the extension.
In the case of the RxD SaveState extension, as the state data is
potentially voluminous, the serialized data is zlib compressed.

We redesigned the RxD backend to improve the flexibility of
interactive model specification and debugging. Region objects
now take an optional name argument that can be specified at
creation or after to help distinguish them during debugging.
For both intra- and extracellular 3D simulation, each Species,
State, and Parameter has its values stored in independent
memory locations accessed by a pointer to the corresponding
mesh. This architecture allows pointers to be preserved as new
Species, etc. are defined and old ones are removed. To
improve the portability of cells between models, we replaced the
requirement that a given species (e.g., calcium) could only be

Frontiers in Neuroinformatics | www.frontiersin.org 8 June 2022 | Volume 16 | Article 884046238

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

defined once with a requirement that there be no overlapping
versions of the same species. This change now allows each cell
object in NEURON to fully specify its kinetics, including the
reaction-diffusion aspects, thus allowing such cells to be reused
in other models without further code changes.

With successive releases of NEURON, we iteratively improved
the performance of RxD simulation. We moved all simulation
code to C++ and compile reaction specifications to eliminate
Python overhead. Reactions continue to be specified in Python as
before, but now contain a method that generates a corresponding
C file; this method is automatically called when first needed and
the corresponding file is compiled and dynamically loaded into
NEURON. We replaced the matrix solving algorithm used in
3D RxD simulations with one that exploits the decoupled nature
of the reaction-contribution to the Jacobian that arises from
reactions only happening between molecules at the same spatial
location. Multi-threading support was added to 3D simulations.
3D diffusion rates depend on the concentration at a node and
up to six of its neighbors. To minimize cache-miss latency
when accessing neighboring voxels when simulating extracellular
diffusion, __builtin_prefetch was used to move data
into a cache before accessing it. For extracellular diffusion,
prefetching provides a modest improvement depending of the
size of the simulation, e.g., 5% speed-up in a 1283 cube of voxels.
NEURON does not use prefetching with intracellular simulation,
as in practice we observed no comparable speedup. Finally, to
accelerate both the initialization and simulation of models with
reaction-diffusion dynamics to be studied in full 3D, we now
construct voxel based representations of each of its constituent
convex components (frusta and their joins) on a common mesh
and merge them together (McDougal et al., 2022), instead of
constructing a voxel-based representation of an entire neuron
morphology at once.

3. RESULTS

3.1. Sustainability Improvements Through
Modern Development Practices
3.1.1. Toward a Development Community
As described in Sections 2.1, 2.1.1, and 2.1.2, we have
radically updated NEURON’s development life cycle to be
a modern and collaborative process. First, new developers
are now able to quickly get started thanks to improved
documentation (Section 2.1.3). Users can access the latest release
documentation at https://nrn.readthedocs.io/en/latest/ and a
nightly documentation snapshot at https://neuronsimulator.
github.io/nrn/. Second, a modernized build system eases local
setup and testing of proposed code changes. A single repository,
https://github.com/neuronsimulator/nrn, now provides access to
all software components including Interviews, CoreNEURON,
NMODL, tutorials, and documentation. The integrated CMake
build system across these components provides a uniform
interface to build all components with ease. Third, code
contributions are automatically checked using a comprehensive
CI suite. This increases programmer confidence and helps
reviewers to more quickly evaluate proposed changes.

These improvements have directly led to the adoption of a
collaborative development process with a lively community. As
an example, Figure 5 depicts commits over time since the nrn
git repository was started in November 2007. We can see that
NEURON has been receiving more and more contributions from
new developers in the last 3 years.

3.1.2. Software Sustainability Through Development

Ecosystem Modernization
Build system modernization, removing obsolete dependencies,
and the introduction of CI pipelines have lead to a vastly
streamlined development process. First, using fewer external
dependencies sped up and simplified the build process and
reduced build times. Second, replacing the Autotools build
system with CMake has allowed us to more simply integrate
Interviews, CoreNEURON and NMODL in the build and has
made build system changes more maintainable. Third, the
removal of Autotools and support for legacy Python 2 has
simplified the overall code structure, and subsequent code
refactoring has become less complex. Finally, as a consequence of
the described build system improvements, the CI configuration
has been simplified as fewer build combinations need to be
tested, which in turn has enabled us to integrate additional
build jobs into the CI, such as automated Python wheel builds,
Windows installer builds, test code coverage and documentation
generation.

Thanks to having centralized documentation and automated
documentation building in the CI, developers are now able to
more easily find information on how to build, install, configure,
debug, profile, measure test code coverage, manage releases and
versioning, and build Python wheels. The user documentation
has also become more accessible and searchable, which makes
NEURONmore accessible to the community.

Since the introduction of test code coverage tracking we
were able to increase test coverage by almost 18%. For the
code components that are being maintained and developed by
the NEURON community, more than half the code is covered
by tests. Introducing systematic testing and coverage reports
has allowed us to keep track of our progress and facilitate
the refactoring and maintenance of the code. Up to date
code coverage reports are available at https://app.codecov.io/gh/
neuronsimulator/nrn.

3.2. Improved Software and Hardware
Portability
3.2.1. Streamlined NEURON Software Distributions
Building distributions (Windows and macOS installers, Debian
packages) and testing them reliably on different platforms against
different software toolchains has historically been a major hurdle
to NEURON releases. This had been extending release cycles and
delaying the introduction of new features. With the CI pipelines
described in Section 2.1.2 and a modernized CMake-based
build system, we are now able to automatically build portable
NEURON Python wheels for Linux and macOS (including Apple
M1) and an installer for Windows. With the infrastructure in
place we are able to offer both nightly wheels and installers,
containing the latest changes, as well as more rigorously tested,

Frontiers in Neuroinformatics | www.frontiersin.org 9 June 2022 | Volume 16 | Article 884046239

https://nrn.readthedocs.io/en/latest/
https://neuronsimulator.github.io/nrn/
https://neuronsimulator.github.io/nrn/
https://github.com/neuronsimulator/nrn
https://app.codecov.io/gh/neuronsimulator/nrn
https://app.codecov.io/gh/neuronsimulator/nrn
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

FIGURE 5 | An aligned commit series6 plot showing the top 16 contributors since the beginning of the git repository history. For better visibility the different time series

do not share y-axes. A clear trend toward collaborative development can be seen.

and hence stable, release builds. By simplifying, automating and
documenting the build steps, we have streamlined the process of
creating new NEURON releases.

Python’s dominance in scientific workflows and the
widespread use of Python-based data processing, analysis
and visualization tools in the scientific community can be
attributed to the ease-of-use and portability of these packages.
By distributing NEURON as a Python package we are embracing
this trend and making it easier to adopt NEURON. These Python
wheels, as well as binary installers, provide a full, portable
distribution of NEURON targeting desktop environments, cloud
instances and HPC clusters alike. Although we do not currently
provide a Python wheel for Windows, users can make use of the
Windows Installer or the Linux Python wheel using Windows
Subsystem for Linux (WSL). All these distributions have support
for dynamically loading MPI, Python, and Interviews graphics.
This ease of use has made distribution via Python wheels the
preferred way of installing NEURON. For Python wheels, we
currently see an average of around 3000 downloads/month, and
over 17,000 downloads in the last 6 months. Released wheels are
available via https://pypi.org/project/NEURON.

3.2.2. Improved Hardware Portability
Supporting a wide range of use-cases requires strong hardware
support for architectures ranging from laptops to cloud and HPC
platforms. Thanks to its updated and improved build system it
is straightforward to build NEURON and CoreNEURON for a
variety of hardware platforms including x86, ARM64, POWER
and NVIDIA PTX. The respective vendor compilers are able
to take advantage of CoreNEURON’s improved data-structures
and produce optimized code. In order to make CoreNEURON’s
GPU backend accessible to the wider user community we
have additionally created NEURON Python wheels with GPU
acceleration enabled. Currently these specialized wheels can only

6Adapted from https://github.com/src-d/hercules.

be used on environments with NVIDIA GPUs with compute
capability 6, 7 or 8 and the NVIDIA HPC SDK version 22.1 with
CUDA 11.5. These wheels can be downloaded from https://pypi.
org/project/NEURON-gpu.

3.3. Performance Improvements Through
Tighter Integration
As presented in Section 2.2, we have greatly improved the
integration between NEURON, CoreNEURON and NMODL
both on the level of the code organization and their ease of use at
runtime. CoreNEURON and NMODL are now git submodules
of the nrn repository, allowing us to build single software
distribution packages containing optimized CPU and GPU
support via CoreNEURON. This allows the user to transparently
take advantage of modern hardware platforms such as GPUs, and
recent hardware features such as AVX-512 on Intel CPUs. To
this end, CoreNEURON’s GPU implementation has been made
production-ready, allowing easy offloading to NVIDIA GPUs.
More importantly, the newly introduced in-memory transfer
mode allows CoreNEURON simulations to be directly called
from NEURON and the model state to be passed back and forth
between NEURON and CoreNEURON. The workflow to utilize
these new features is illustrated in Figure 6.

After constructing and initializing the model using
NEURON’s session file, simulation is first run in NEURON
with h.continuerun() and pc.psolve(). GPU support
via CoreNEURON is enabled using the newly introduced
coreneuron Python module. Having CoreNEURON enabled
will cause pc.psolve to use the CoreNEURON solver
instead of the default NEURON solver. All necessary model
state is automatically transferred to CoreNEURON before the
simulation is continued using the CoreNEURON solver. At
the end of the solver call, the model state is transferred back to
NEURON, allowing user to save necessary recording results.

With this tighter integration, it is now possible to easily switch
a large number of models, notably those using the fixed timestep

Frontiers in Neuroinformatics | www.frontiersin.org 10 June 2022 | Volume 16 | Article 884046240

https://pypi.org/project/NEURON
https://github.com/src-d/hercules
https://pypi.org/project/NEURON-gpu
https://pypi.org/project/NEURON-gpu
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

FIGURE 6 | Diagram showing the NEURON and CoreNEURON execution workflow using the Python API: The Python code on the left demonstrates the

CoreNEURON Python API usage and interoperability between NEURON and CoreNEURON solvers. The different shaded areas in the code correspond to the boxes

of the same color on the right. First, the script sets up the model in NEURON and defines the entities to be recorded. In the following h.continuerun() statement

the script starts by running the simulation in NEURON for 0.5ms. Since the coreneuron and gpu options have not been enabled yet, the following call to

pc.psolve() advances the simulation for 0.5ms using NEURON. The call to pc.psolve() that is executed after enabling CoreNEURON, however, first copies the

model to CoreNEURON using the direct-mode transfer and then runs the simulation until the prescribed h.tstop using CoreNEURON on GPUs. After finishing the

CoreNEURON simulation step all variables and events are transferred back to NEURON.

Frontiers in Neuroinformatics | www.frontiersin.org 11 June 2022 | Volume 16 | Article 884046241

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

TABLE 1 | Details of benchmarking systems: Blue Brain 5 (Phase 2)

supercomputer and Google Cloud Platform.

BB5 CPU 2x20 core Intel Xeon Gold Cascade Lake 6248 @ 2.5 GHz

GPU NVIDIA V100 16GB

Memory 768 GB DDR4 RAM

CPU compiler Intel C++ Compiler 19.1.2

GPU compiler NVHPC 21.2

CUDA 11.0.2

MPI HPE MPI (SGI MPT) 2.25

Python 3.8.3

Network InfiniBand 100G EDR

GCP CPU 2x20 core Intel Xeon Cascade Lake

GPU NVIDIA V100 16GB

Memory 320 GB DDR4 RAM

CPU compiler Intel C++ Compiler Classic 2022.0.2

GPU compiler NVHPC 21.2

CUDA 11.0.2

MPI Intel MPI 2021.5.0

Python 3.8.6

method, to use the optimized CoreNEURON solver. To quantify
the performance benefits, in this section we showcase three
different models that were ported to use CoreNEURON. We
will compare the performance of NEURON and CoreNEURON
running on CPU and GPU on the olfactory 3D bulb model 3.3.1,
the rat CA1 hippocampusmodel 3.3.2 and the rodentmotor (M1)
cortical model 3.3.3.

The benchmarking system, Blue Brain 5 (Phase 2), with its
hardware and software toolchains is summarized in Table 1. This
system is based on an HPE SGI 8600 platform (HPE, 2022)
and is housed at the Swiss National Supercomputing Center
(CSCS). TheGPUpartition of the system has compute nodes with
Intel Cascade Lake processors and NVIDIA Volta 100 GPUs.
We used vendor-provided compiler toolchains and MPI libraries
for the benchmarking. Unless otherwise specified, measurements
were performed using two compute nodes, providing a total
of 80 physical cores. We ran all CPU benchmarks in pure
MPI mode by pinning one MPI rank per core. For GPU
executions we reduced the number of MPI ranks to 16 (eight
ranks per node) in order to achieve better utilization, enabled
the CUDA Multi-Process Service (MPS) and used two or four
NVIDIA V100 GPUs on each node. For the CPU measurements,
NEURON and CoreNEURON were compiled using the Intel
C++ compiler, while for GPUmeasurements CoreNEURON was
compiled using the NVIDIA C++ compiler. All CoreNEURON
benchmarks were both performed using the legacy MOD2C
transpiler and the next-generation NMODL transpiler. All
reported speedups were averaged over ten runs.

3.3.1. Accelerating 3D Olfactory Bulb Model

Simulations via CoreNEURON
The olfactory bulb microcircuit developed by Migliore
et al. (2014), serves as a model for studying the functional

consequences of the laminar organization observed in cortical
systems. The model was developed using realistic three-
dimensional inputs, cell morphologies and network connectivity.
The original model uses Python 2 and is available on ModelDB;
we updated this model to use Python 3 and CoreNEURON to
run our benchmarks. The updated version is publicly available
from the GitHub repository of the Human Brain Project https://
github.com/HumanBrainProject/olfactory-bulb-3d. The full
model consists of 191,410 cells, 3,388,282 synapses and a total
of 9,118,745 compartments. We simulated the default model
configuration with a biological duration of 1050ms and a
timestep of 46.875µs.

Figure 7 shows the performance difference between
NEURON and CoreNEURON solvers when executing on
CPU and GPU hardware. As can be observed in Figure 7A,
the simulation using CoreNEURON on two full CPU nodes
is 3.5× faster than the baseline NEURON benchmark run on
the same hardware. The achieved acceleration is due to the
use of SIMD instructions, which is enabled by the efficient
internal data structures and the SoA (Structure of Array)
memory layout used by CoreNEURON. When GPU offloading
is enabled in CoreNEURON then with two GPUs per node
the speedup increases to 21.4× compared with the baseline
NEURON benchmark. Performance does not scale linearly
when doubling the number of GPUs per node to four, and we
see a maximum speedup of 30.4×. This is due to more time
spent in the communication between the eight GPUs and the
size of the model reaching the strong-scaling limit. In order to
understand the performance differences between CoreNEURON
executing on CPU and GPU Figure 7B shows a comparison of
the two runtime profiles broken down into the most relevant
execution regions. We have normalized the time of each region
with the total execution time of the simulation. On the one hand,
Figure 7B shows that the relative time spent in the most compute
intensive parts such as the Current calculation and the
State update is reduced significantly when executing on the
GPU. The Hines Matrix solver does not currently benefit
from GPU acceleration. This is due to data dependencies and
limited parallelism inherent to the algorithm. On the other hand,
we can see that the event delivery and CPU-GPU data transfer
incur an additional cost compared to the CPU execution. Also,
the spike exchange routines take a larger share in runtime on the
GPU than on the CPU. This shows that the highly parallelizable
compute operations are readily accelerated on the GPU while
data movement and code with higher execution divergence are
favored by the CPU.

3.3.2. Accelerating Rat CA1 Hippocampus

Simulations Using GPUs
Another interesting example of a NEURON based simulation is
the full-scale model of the rat hippocampus CA1 region built
as part of the European Human Brain Project (manuscript in
preparation). A recent draft of this model contains 456,378
neurons with 12 morphological types and 16 morpho-electrical
types. The CA1 neurons in this model employ up to 11 active
conductance classes, with up to 9 of those classes used in the
dendrites. This model is used for running various large scale

Frontiers in Neuroinformatics | www.frontiersin.org 12 June 2022 | Volume 16 | Article 884046242

https://github.com/HumanBrainProject/olfactory-bulb-3d
https://github.com/HumanBrainProject/olfactory-bulb-3d
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

FIGURE 7 | Olfactory 3D bulb model performance comparison: (A) Improvement in the simulation time using CoreNEURON on CPU and GPU, with respect to

NEURON running on CPU. We show the speedups using both MOD2C and NMODL transpilers. (B) Comparison of the two runtime profiles of the CoreNEURON run

on CPU and GPU. The relative time (normalized to the total execution time) of the different execution regions in one timestep is shown. All benchmarks were run on

two compute nodes with a total of 80 MPI ranks.

in-silico experiments on different European HPC systems. A
reduced but representative version of this model is used for and
available as part of the Hippocampus Microcircuit Massive Open
Online Course7 offered on edx.org.

Simulating the full rat CA1 hippocampus model is
computationally expensive and requires large-scale HPC
systems, due to its scale and biologically detailed nature. It
represents, therefore, an ideal showcase for the improvements
in hardware portability described above, most notably the
GPU support provided by CoreNEURON. For the purpose
of this showcase, we used aforementioned reduced model of
the CA1 hippocampus containing 18,198 cells with 11,401,920
compartments and 107,237,482 synapses. Furthermore, we
simulated a biological duration of 1000ms with a timestep
of 25µs. Finally, the runtime configuration for the GPU
benchmarks had to be adjusted so that 80 (instead of 16) MPI
ranks were used. This was necessary due to a technical limit on
the number of artificial cells of a given type that CoreNEURON
can simulate in a single MPI rank.

Figure 8A shows that using CoreNEURON yields a
performance improvement of 3 − 4× compared with NEURON
when executing on four Cascade Lake CPUs. When enabling
GPU offloading in CoreNEURON it is possible to achieve up
to 52× improvement compared with the NEURON baseline.
It is worth mentioning that the new NMODL transpiler shows
significant improvement in execution time over the legacy
MOD2C transpiler (i.e., a speedup of 52× vs. 42× when using
eight GPUs). This is due to NMODL’s analytic solver generation,
which is based on SymPy (Meurer et al., 2017) and the Eigen
library (Guennebaud and Jacob, 2010). The performance
improvement can be mainly attributed to the fact that State
update kernels represent the evaluation of DERIVATIVE

7https://www.edx.org/course/simulating-a-hippocampus-microcircuit

blocks in the MOD files, which contain ODEs that are now
efficiently solved by NMODL. It is apparent that due to the
computationally expensive nature of this model it scales linearly
from four to eight GPUs and executing on GPUs provides a
substantial benefit over the baseline NEURON benchmark.
Analogous to Figures 7B, 8B shows the relative breakdown of
the total execution time for the most relevant regions. In contrast
to the previous example, however, we see here that the current
calculation and state update remain dominant on the GPU, while
event delivery and CPU-GPU transfer play a smaller role. We
interpret this result as an indication that this simulation is better
suited for the strengths of the GPU hardware than the olfactory
bulb model.

3.3.3. Simulating Large-Scale Cortical Models With

NetPyNE
Here we report on the integration of NetPyNE with the
CoreNEURON solver, thus taking full advantage of modern
CPU/GPU architectures to reduce the simulation time. To
illustrate this, we compared the performance of a large-scale
and biologically realistic model of mouse motor (M1) cortical
circuit on Google Cloud Platform (GCP) as well as Blue Brain
5. The mouse M1 model simulates a 300µ m cylinder of
cortical tissue including 10651 neurons, of three excitatory and
four inhibitory types, and 38 million synapses, with 7000 spike
generators (NetStims) simulating long-range inputs from seven
thalamic and cortical regions. All model neuronal densities,
classes, morphologies, biophysics, and connectivity were derived
from experimental data. The model is being used to study neural
coding, learning mechanisms and brain disease in motor cortex
circuits (Sivagnanam et al., 2020; Dura-Bernal et al., 2022b).

GCP offers a wide variety of machine types tailored
to different applications. For our benchmarks we allocated
n2-standard-80 and nvidia-tesla-v100 nodes. The

Frontiers in Neuroinformatics | www.frontiersin.org 13 June 2022 | Volume 16 | Article 884046243

edx.org
https://www.edx.org/course/simulating-a-hippocampus-microcircuit
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

FIGURE 8 | Rat CA1 hippocampus model performance comparison: (A) Improvement in the simulation time using CoreNEURON on CPU and GPU, with respect to

NEURON running on CPU. NMODL shows a significant improvement compared to the legacy MOD2C transpiler, which is due to analytic solver support in NMODL.

(B) Comparison of the two runtime profiles of the CoreNEURON run on CPU and GPU. The relative time (normalized with the total execution time) of the different

execution regions in one timestep. All benchmarks were run on two compute nodes with a total of 80 MPI ranks.

n2-standard-80 are dual-socket Intel Cascade Lake based
nodes while nvidia-tesla-v100 compute nodes consist of
dual-socket Cascade Lake based systems with 8 NVIDIA V100
GPUs. NEURON and CoreNEURON CPU measurements of
the M1 NetPyNE benchmarks were run using 80 MPI ranks
evenly distributed over two n2-standard-80 nodes, while
GPU runs were performed with 16 MPI ranks on one node
pinning one MPI rank per core and distributing the ranks
evenly between 4 and 8 GPUs. To allow for a fairer comparison
between on-premise HPC hardware and cloud platforms we
adjusted the benchmark configuration accordingly on Blue Brain
5 running with 16MPI ranks for the GPU runs while maintaining
the 80 ranks for the CPU runs. Figure 9A shows benchmark
performance on Blue Brain 5. The CoreNEURON solver is 4×
faster compared to NEURON when executing on CPU only.
When GPU support is enabled then we achieve speedup of 26×
and 39× with four and eight GPUs, respectively. Similarly to
Section 3.3.1 the suboptimal scaling from four to eight GPUs
suggests that the model’s size and computational intensity do
not fully saturate the allocated hardware and do not fully
benefit from it. Figure 9B shows the performance improvements
achieved on GCP. The measured speedups compared with the
baseline NEURON CPU runs are 3.6×, 21×, and 30× for
CoreNEURON on CPU, on four and eight GPUs, respectively.
While the achieved speedups on GCP are slightly lower than
on Blue Brain 5, they still show a clear performance advantage
when using CoreNEURON with GPU support. Furthermore,
this shows that one can get improved performance in cloud
environments just as on traditional, on-premise cluster systems.
Finally, we note that the use of NEURON Python wheels with
their built-in GPU support drastically simplifies the efforts to
setup the NEURON simulator toolchain with GPU support in
cloud environments.

3.3.4. Improvements in RxD Performance
The developments described in Section 2.4 substantially
improved the performance and scalability of reaction-diffusion
simulations in NEURON both for 1D and 3D simulation. Using
the same model code to simulate pure diffusion in a 1D test
cylinder of length 200µ m and diameter 2µm, with 1,001
segments runs 4.2× faster in NEURON 8.0 than in NEURON
7.6.7. We note that “1D” is a slight misnomer here, as NEURON’s
version of 1D simulation uses the Hines algorithm (Hines,
1984) which provides O(n) scaling for implicit simulation and
supports an arbitrary tree-like morphology where multiple 1D
sections may connect at the same point. Likewise, a NEURON
implementation of the circadian model of Leloup et al. (1999),
a 10-species model with 21 reactions and no diffusion, ran 17.3×
faster in NEURON 8.0 than in 7.6.7 (Figure 10). In the NEURON
tutorial, we provide a version of this model that requires recent
versions of NEURON due to its use of the neuron.units
submodule to cleanly specify units appropriate for this model,
however theModelDB entry for this paper provides an equivalent
representation that runs in both older and recent versions
of NEURON.

Thanks to the improved voxelization method, the
construction of voxel representations is now significantly
faster. For example, the morphology (with voxel size 0.25µ m in
each dimension) of the soma and apical dendrite of a rat CA1
pyramidal neuron (Ascoli et al., 2007; Malik et al., 2016) within
70µ m of the soma completed in 69 s in NEURON 8.0 and 349 s
in NEURON 7.6.7, approximately a 5-fold speedup. The relative
volume error (computed by comparing to the volume calculated
as above vs. with voxel size 0.05µ m in each dimension) was
0.15% in NEURON 8.0 vs. 16% in NEURON 7.6.7, a reduction
made possibly by switching from including the full volume of
boundary voxels to a subsampled fractional volume.

Frontiers in Neuroinformatics | www.frontiersin.org 14 June 2022 | Volume 16 | Article 884046244

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

FIGURE 9 | M1 cortical model performance comparison: (A) Improvement in simulation time running CoreNEURON on CPU and GPU on the Blue Brain 5

supercomputer with respect to NEURON running on CPU. CPU benchmarks were run with 80 MPI ranks evenly distributed over two nodes, one rank per core. GPU

benchmarks used 16 MPI ranks evenly distributed over two nodes. (B) Improvement in simulation time running CoreNEURON on CPU and GPU on Google Cloud

Platform compute resources. The same configuration was used, except for GPU benchmarks being executed on one node.

FIGURE 10 | RxD performance improvements for the Circadian Rhythm

reaction model with just-in-time compilation, 3D morphology voxelization and

intracellular diffusion using the DG-ADI method. The speedup was measured

between NEURON 7.6.7 and NEURON 8.0. Inset shows the morphology used

for voxelization and 3D diffusion.

3D simulation times are likewise reduced in NEURON 8.0,
through the combined effects of eliminating Python from the
simulation-time code, compilation of reaction specifications, and
the replacement of the simulation algorithm (7.6.7 used SciPy’s
Virtanen et al., 2020 Biconjugate Gradient Stabilized iterative
solver for matrix inversion; 8.0 uses a threaded Douglas-Gunn
Alternating Direction Implicit method). Pure diffusion over 1 s
of simulated time on the cell volume described above with initial
conditions of 1 mM in a section of the apical dendrites and 0 mM
elsewhere required 18,349 s of real time in NEURON 7.6.7, 1,442
s of real time in NEURON 8.0 with 1 thread (a 12.7× speedup),
and only 426 s in NEURON 8.0 when using 16 threads (a 45.4×
speedup). (We specify the initial conditions here as the iterative

solver used in 7.6.7 would potentially require a different number
of iterations depending on the initial conditions; the solver used
in 8.0 performs the same calculations each time regardless of
the concentrations).

4. DISCUSSION

4.1. Sustainability of the NEURON
Simulator
Over the years, the scientific community has used NEURON to
study a wide range of biophysical questions across various spatial
and temporal scales, with over 2500 publications reporting such
usage 8. More than 750 published NEURON model source codes
are available through SenseLab’s ModelDB repository (McDougal
et al., 2017), which provides curated metadata describing the
biological assumptions. It is fair to say that for biophysically
detailed models of neurons and networks, NEURON has become
the de facto standard in the community. In light of this, it is
quite obvious that continuity of the NEURON project is of great
importance to the community.

However, for the majority of its more than 35 years of
history, NEURON has been developed under what Gewaltig and
Cannon (2014) dubbed a “heroic development model.” While
open source from its inception, until recently, the majority of
contributions to the NEURON software came from its original
author, Michael Hines, and a small group of collaborators from
Duke and Yale University. We have now established a radically
updated development model and life cycle of the NEURON
software toward a modern and collaborative process, facilitating
the contribution of modifications from other developers. In the
language of Gewaltig and Cannon (2014) we were able to evolve

8https://www.neuron.yale.edu/neuron/publications/neuron-bibliography

Frontiers in Neuroinformatics | www.frontiersin.org 15 June 2022 | Volume 16 | Article 884046245

https://www.neuron.yale.edu/neuron/publications/neuron-bibliography
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

NEURON’s “heroic development model” to a “collaborative
development model” with community engagement.

Sustainability of a software project, or its continued
development, is of course not a goal in and of itself. A software
with the history of NEURON should maintain as much backward
compatibility with previously publishedmodels as possible, while
catering for new use cases. In this respect, we demonstrated how
it is possible to process the widely used NMODL language with
a modern, compiler-based approach capable of producing highly
optimized code, while keeping maximal backward compatibility.

4.2. From Desktop to Supercomputers
For first time users, NEURON is often introduced through
interactive explorations on a desktop or laptop, combining small
bits of Python with NEURON’s built-in graphical user interface
(GUI). This usage remains common in practice, with roughly
one-third of NEURON models on ModelDB (McDougal et al.,
2017) containing a .ses file generated from NEURON’s GUI.
Our improved continuous integration and build automation
caters to this demand and produces pre-compiled binaries
for the most common consumer computing architectures
(Windows, macOS, and Linux), which allows users to easily
install NEURON, including its graphical interface, on their
personal systems.

With increasing use, it is common to complement or replace
GUI-based use with the power and flexibility of scripting.
This allows for easy handling of more diverse models and
settings, parameter sweeps, or the evaluation of model variants
to establish distributions and robustness of results. Over the
last decade, Python has become the language of choice in
the practice of computational science, and neurosimulations
have been no different (Muller et al., 2015). Since this early
integration, both neurosimulators and Python, have evolved
substantially, as has their usage pattern. This requires that
we express the functionality of NEURON in a Pythonic style
and enable simple installation of platform-specific NEURON
modules. Here, the adoption of modern Python wheels has
dramatically simplified the use of NEURON and user-specific
extensions in the Python environment.

As models and simulations become bigger, it is important that
the simulator can optimally use the available hardware. In these
cases it is particularly useful to be able to rely on NEURON
binaries tailored to the computer architecture. This can be
achieved through specialized pre-built NEURON binaries or
through compiling NEURON with platform-specific parameters,
including the support of the CPU’s vector instructions, multiple
threads or the use of GPUs (see also Section 4.4).

While there is already a wide range of computer architectures
in use today, it is to be expected that the diversity will
further increase. This general trend is driven by the challenges
of further miniaturizing transistors and performance gains
of future computer architectures in part will have to come
from specialization (Hennessy and Patterson, 2019), already
prominently visible in the field of machine learning (Reuther
et al., 2019). Not all of these specializations will necessarily be
useful for neurosimulations, but the better we understand the
computational costs of our models in neuroscience (Cremonesi

and Schürmann, 2020; Cremonesi et al., 2020), the more we may
be interested in adopting some of those platforms for specific
applications. Here, our work on translating the computationally
intensive parts of a neuron model described in the NMODL
language into source code that can be compiled for a wide
range of computer hardware, in combination with the reduced
memory footprint of CoreNEURON, is a major step forward
to leverage these developments in the computer industry for
neuroscience purposes.

With pre-compiled binaries for all major operating systems
(Windows, macOS, Linux), Python scriptability, and built-
in support for serial, threaded, MPI, and GPU accelerated
calculations, NEURON can readily be used in many computing
environments. The new NMODL framework furthermore can
be extended to support future computer architectures without
having to compromise performance on other platforms.

These efforts for efficiently using today’s computer
architectures, are complemented with NEURON’s ability to
run on large number of networked nodes, so-called clusters. In
previously published work (Hines et al., 2011b), NEURON has
run simulations with up to 128,000 processes catering even to the
largest models. Nowadays, many universities maintain their own
high performance computing environments for such purposes
and a growing number of e-infrastructure providers offer
high performance computing. For example, smaller numbers
of computing resources are freely available for neuroscience
simulation with NEURON and other simulators through a
Neuroscience Gateway account (Sivagnanam et al., 2013). The
EBRAINS research infrastructure provides large supercomputer
allocations with preinstalled NEURON and even models for
approved research projects.

4.3. NEURON as a Building Block for
Scientific Workflows
Cloud-based Jupyter notebook providers have recently become
another accessible way to use NEURON. EBRAINS, developed
through the Human Brain Project, provides a Jupyter notebook
cloud environment with NEURON and other simulator software
pre-installed. Additionally, many public Jupyter servers,
including Google Colab, allow installation of Python packages
including NEURON via pip. Using NEURON through a cloud-
based Jupyter server makes it accessible through any computing
device with a modern browser, including phones and tablets,
and facilitates sharing and collaborating on whole models and
examples. To increase NEURON’s usability in Jupyter notebooks,
we have added built-in support for Python graphics (including
via Plotly and Matplotlib) to NEURON’s ShapePlot and
RangeVarPlot classes, which provide, respectively, a 3D
false-color view of the cell and a plot of state values along a path.

Building on top of the modular structure and APIs of
NEURON, there are various community tools that have
incorporated NEURON as a building block to develop higher
level tools. For example, the Human Neocortical Neurosolver
(Neymotin et al., 2020) provides its own graphical interface
and launches NEURON in a separate process to simulate
the underlying neocortical model. NetPyNE’s online graphical

Frontiers in Neuroinformatics | www.frontiersin.org 16 June 2022 | Volume 16 | Article 884046246

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

interface launches virtual machines with NEURON on demand
in the cloud and uses NEURON or CoreNEURON to run
simulations. The example of the M1 model demonstrates that
in this setting we observe performance increases when switching
the simulator from NEURON to CoreNEURON (4× on a tightly
coupled cluster, and 3.6× on a cloud instance). Also, we see good
scaling when using multiple GPUs both for the tightly coupled
cluster and the cloud; see the next section for a more detailed
analysis. These results show that we can tap into the performance
improvements of NEURON when invoking it from other tools.
Thus, the same improvements in packaging and platform specific
optimization that were demonstrated above will benefit also other
tools, such as LFPy (Lindén et al., 2014) and BluePyOpt (Van Geit
et al., 2016), which rely on NEURON’s simulation capability.

4.4. Increased Performance for Tackling
New Scientific Questions
In recent years, several large-scale and biophysically detailed
models have been developed (Markram et al., 2015; Casali et al.,
2019; Billeh et al., 2020; Hjorth et al., 2020; Borges et al., 2022;
Dura-Bernal et al., 2022a,b). Some of these models are no longer
only models of networks and their signal processing but are
actually biophysical models of the tissue itself (Markram et al.,
2015), capturing a diverse set of properties of the modeled brain
region, also referred to as “digital twins.” Such models have
proved useful to bridge anatomy and physiology across multiple
spatial and time scales (Reimann et al., 2017; Newton et al., 2021).

These types of models have become possible because of more
quantitative data, new computational approaches to predicting
and inferring missing parameters, and the increase in computer
performance. In fact, a large number of improvements to
the NEURON software over the last decade were motivated
by these types of models: a major common theme in these
developments was functionality to support parallel execution
on multiple compute nodes (Migliore et al., 2006; Hines
et al., 2008a,b, 2011a; Lytton et al., 2016), complemented by
platform-specific optimizations (Ewart et al., 2015; Kumbhar
et al., 2016). In particular, the platform-specific optimizations
underwent a disturbing trend: optimizations of NEURON for
the first vector computers had been discontinued in favor of
memory optimizations for out-of-order CPUs with intricate
cache hierarchies, only to return to SIMD analogous structure-of-
array memory layouts for today’s CPUs/GPUs with wide vector
units. Previously, this led to special code versions with significant
development efforts to adapt the code for different generations of
hardware platforms and programming models.

Our work on CoreNEURON (Kumbhar et al., 2019) and
NMODL (Kumbhar et al., 2020) has made it possible to contain
the platform specific optimizations in the code generation
framework, requiring less platform specific code in NEURON
and allowing models to remain comparatively free of platform-
specific details. Here, we introduced two recent advances. First,
NMODL and CoreNEURON are now able to automatically
generate code not only for CPUs but also GPUs. Second, the
transparent integration with NEURON makes it possible to
leverage this capability simply as an accelerator for simulations

on a user’s desktop, or to dramatically speed up large-scale
simulations on supercomputers.

We compared running three different large scale models
with NEURON and CoreNEURON in different hardware
configurations. Compared to the baseline running with
NEURON, transparently offloading to CoreNEURON achieves
a four-fold speed-up on the same CPU hardware. This
performance increase is mostly due to the better utilization of
the vector units, a more cache efficient memory layout, and less
data transfer between the CPU and main memory (Kumbhar
et al., 2019). We furthermore demonstrate that it is now also
possible to seamlessly make use of NVIDIA GPU hardware.
We demonstrated a speed-up of 30×, 39× and 52× when
using eight GPUs for the olfactory bulb model, the cortical M1
model and the hippocampus CA1 model, respectively, compared
to four full CPUs. For the hippocampus CA1 model, we see
ideal scaling up to 52× when doubling the GPU number. Both
the thalamocortical M1 model and the olfactory bulb model
show suboptimal scaling when moving from four to eight
GPUs (39× and 30×, respectively), which we attribute to their
lower computational cost compared with the hippocampus
CA1 model, leading to lower utilization of the GPUs, and
an overall lower compute-to-communicate ratio seen in the
relatively longer time spent in event delivery and CPU-GPU
data transfers.

These numbers should not be used for comparing the CPU’s
suitability for neurosimulations with that of a GPU. As the two
architectures have wildly different characteristics in terms of total
floating point performance and memory bandwidth, a deeper
analysis is required to establish the efficiency of the simulations
on the respective platforms (Lee et al., 2010). However, what
can clearly be demonstrated with these numbers is that it is now
possible for any user to readily make use of NVIDIA GPUs if they
are installed.

4.5. Simulations in the Cloud
Low-cost virtual machines or dedicated servers are now also
available from commercial providers billed by the second—
typically referred to as “the cloud.” Using NEURON in these
environments requires that one can quickly configure NEURON
there. In these environments, it is furthermore desirable to
save intermediate results in a database to allow examining the
results mid-calculation and to facilitate resuming in the event
of timeouts and other issues, which can be readily done with
database functionality integrated in Python (such as SQLite3).
This is where our work on a straightforward pip install
for NEURON is particularly useful, as more generally described
in Sivagnanam et al. (2020) as a practical approach for both
small sets of simulations and very large ones. Not only could
we demonstrate the feasibility of running in the cloud using the
Google Compute Cloud and NetPyNE with CoreNEURON as
the compute backend, but we could also demonstrate that the
achievable performance on a moderate set of nodes (moderate
when compared to clusters and supercomputers) is on par
with that of bare metal simulations on dedicated cluster. Using
CoreNEURON showed a speedup that is comparable (3.6× vs.
4.0×) with the one achieved on a dedicated cluster. Using GPU

Frontiers in Neuroinformatics | www.frontiersin.org 17 June 2022 | Volume 16 | Article 884046247

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

offloading with CoreNEURON offered a 30× speedup compared
with the baseline NEURON simulation. These results should
be put in the context of simple on-demand access to such
compute resources, NEURON’s integration in an ecosystem of
computational neuroscience, data processing and analysis tools.

4.6. Efficiently Integrating Subcellular and
Extracellular Detail Into Neurosimulations
Some of the greatest health challenges of our time like stroke
(the #2 cause of death worldwide) and dementia (#7 cause of
death worldwide) are driven by the interaction of effects spanning
from the sub-cellular level to neuron, network, and organism
levels. These scales have often been addressed separately using
different techniques with computational neuroscientists focusing
on the neuron and network level while systems biologists study
the protein interactions and systems-level questions, but this
split has long been viewed as artificial and possibly problematic
(see e.g., De Schutter, 2008). Exporting point dynamics to SBML
for exploration with systems biology tools is an explicit bridge
across this divide, but we believe that within NEURON the
recent enhancements to NEURON’s reaction-diffusion (RxD)
support provide a conceptual bridge, supporting studies that
were previously impractical. Faster simulations in both 1D and
3D are more than just a convenience for the modeler: they
allow more detailed dynamics to be simulated in the same
amount of time featuring a more complete representation of
molecular interactions. They allow parameter sweeps at a higher
resolution of detail, and they allow building more detailed
training sets for machine-learning powered approximations of
complex biophysics (e.g., Pham et al., 2021). The recently added
ability to use NEURON’s SaveState class with RxD models will
facilitate running multiple experiments from a complex initial
state and investigating steady state dependence on parameter
values. New NEURON features like 3D extracellular simulation
allow exploring how detailed cell models interact with each other
through the extracellular environment and provide opportunities
to include the effects of astrocytes (associated with multiple
neurological diseases including Alzheimer’s and Parkinson’s),
blood vessels, and other considerations historically under-studied
by computational neuroscience.

4.7. Outlook
The updated development model, improved build system and
enhanced software testing regime presented in this study
provide the foundations for further modernization and re-
engineering of NEURON. These improvements will enable more
complex changes to be made while maintaining correctness and
performance. The performance improvements reported here,
coupled with the ease-of-use of the newly released Python
wheels, show that CoreNEURON could soon become the
default simulation engine for NEURON models, and that the
improved integration between NEURON and CoreNEURON
that we have presented is just the starting point. Further
integration will require more migration of NEURON code to
C++ and the development of modern data structures that can
be exchanged betweenNEURON and CoreNEURONmore easily

and efficiently. The next-generation NMODL framework source-
to-source compiler is able to parse the entire NMODL language
and generate efficient and portable code for most existing MOD
files. By further extending its code generation capabilities we
will be able to replace the legacy NOCMODL and MOD2C DSL
translators entirely. Ultimately this will allow the neuroscience
community to use NEURON to simulate increasingly complex
brain models in more accessible ways on systems ranging from
desktops to supercomputers.

DATA AVAILABILITY STATEMENT

The NEURON simulator, with all the features and improvements
described in this paper, is available as version 8.1 in the NEURON
GitHub repository9. NetPyNE with CoreNEURON support is
released as version 1.0.1 and available in the NetPyNE GitHub
repository10. From the performance benchmarking studies in
Section 3.3, the 3D Olfactory bulb model is available in
the Human Brain Project GitHub repository11, the Rat CA1
Hippocampus model is available as part of the Hippocampus
Microcircuit Massive Open Online Course12 offered on edx.org,
and the M1 cortical circuit is available in the SUNY Downstate
Medical Center GitHub repository13. All the benchmarking
scripts, performance measurement data and figures are available
in the NEURON GitHub repository14.

AUTHOR CONTRIBUTIONS

NTC, WL, MH, and FS conceptualized and led the study. MH
and PK led the overall software development on NEURON,
CoreNEURON, and NMODL. OA, PK, NC, JK, OL, IM, FP, AS,
and MH contributed to aspects of NEURON, CoreNEURON,
and NMODL software development. OL and IM led GPU
support integration and performance improvements. AS and NC
led software engineering efforts including refactoring, CI and
testing. FP implemented support for portable Python wheels for
CPU and GPU platforms. IM and SD-B performed and validated
the NetPyNE benchmarks. IM, OL, PK, and OA performed and
validated the 3D olfactory bulb and Hippocampus benchmarks.
RM and AN led and performed software development on
RxD. OA, PK, and FS wrote the manuscript. NC, SD-
B, JK, OL, IM, RM, AN, FP, AS, NTC, WL, and MH
contributed to the manuscript. All authors gave feedback to
the manuscript.

FUNDING

Research reported in this publication was supported by the
National Institute for Neurological Disorders and Stroke, the
National Institute for Mental Health, and the National Institute

9https://github.com/neuronsimulator/nrn
10https://github.com/suny-downstate-medical-center/netpyne
11https://github.com/HumanBrainProject/olfactory-bulb-3d
12https://www.edx.org/course/simulating-a-hippocampus-microcircuit
13https://github.com/suny-downstate-medical-center/M1_NEURON_paper/
14https://github.com/neuronsimulator/neuron_frontiers_2022_artifacts

Frontiers in Neuroinformatics | www.frontiersin.org 18 June 2022 | Volume 16 | Article 884046248

https://github.com/neuronsimulator/nrn
https://github.com/suny-downstate-medical-center/netpyne
https://github.com/HumanBrainProject/olfactory-bulb-3d
https://www.edx.org/course/simulating-a-hippocampus-microcircuit
https://github.com/suny-downstate-medical-center/M1_NEURON_paper/
https://github.com/neuronsimulator/neuron_frontiers_2022_artifacts
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

of Biomedical Imaging and Bioengineering of the National
Institutes of Health under award numbers R01NS011613,
R01MH086638, andU24EB028998, National Science Foundation
1904444-1042C, New York State Spinal Cord Injury Research
Board (SCIRB) DOH01-C32250GG-3450000, funding to the
Blue Brain Project, a research center of the École Polytechnique
Fédérale de Lausanne (EPFL), from the Swiss government’s ETH
Board of the Swiss Federal Institutes of Technology, the European
Union’s Horizon 2020 Framework Programme for Research and
Innovation under the Specific Grant Agreement Nos. 785907 and
945539 (Human Brain Project SGA2 and SGA3).

ACKNOWLEDGMENTS

We thank Alessandro Cattabiani, Christos Kotsalos, and
Tristan Carel for improving AST visitors and solver support
in NMODL. We thank Jorge Blanco Alonso and Christos
Kotsalos for improving the reports interface and GPU solver
performance in CoreNEURON, respectively. We thank Evan
Blasy, Lia Eggleston, and Cameron Conte for their respective
contributions in SBML export, 3D voxelization, and 3D
simulation functionalities in RxD.We thankMicheleMigliore for
providing the Olfactory bulb model.

REFERENCES

Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., et al.
(2009). Numerical linear algebra on emerging architectures: the PLASMA
and MAGMA projects. J. Phys. 180, 012037. doi: 10.1088/1742-6596/180/1/0
12037

Akar, N. A., Cumming, B., Karakasis, V., Küsters, A., Klijn, W., Peyser, A., et al.
(2019). “Arbor–a morphologically-detailed neural network simulation library
for contemporary high-performance computing architectures,” in 2019 27th

Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP) (Pavia), 274–282.
Amunts, K., Knoll, A. C., Lippert, T., Pennartz, C. M., Ryvlin, P., Destexhe,

A., et al. (2019). The human brain project–synergy between neuroscience,
computing, informatics, and brain-inspired technologies. PLoS Biol. 17,
e3000344. doi: 10.1371/journal.pbio.3000344

Anwar, H., Caby, S., Dura-Bernal, S., D’Onofrio, D., Hasegan, D., Deible, M.,
et al. (2021). Training a spiking neuronal network model of visual-motor
cortex to play a virtual racket-ball game using reinforcement learning. bioRxiv.
doi: 10.1101/2021.07.29.454361

Ascoli, G. A., Donohue, D. E., and Halavi, M. (2007). NeuroMorpho.Org:
a central resource for neuronal morphologies. J. Neurosci. 27, 9247–9251.
doi: 10.1523/JNEUROSCI.2055-07.2007

Bartlett, R. A., Heroux, M. A., and Willenbring, J. M. (2012). “Overview
of the TriBITS lifecycle model: a Lean/Agile software lifecycle model
for research-based computational science and engineering software,” in
2012 IEEE 8th International Conference on E-Science (Chicago, IL: IEEE),
1–8.

Beckingsale, D. A., Burmark, J., Hornung, R., Jones, H., Killian, W., Kunen, A. J.,
et al. (2019). “Raja: Portable performance for large-scale scientific applications,”
in 2019 IEEE/ACM International Workshop on Performance, Portability and

Productivity in HPC (P3HPC) (Denver, CO: IEEE), 71–81.
Billeh, Y. N., Cai, B., Gratiy, S. L., Dai, K., Iyer, R., Gouwens, N. W., et al.

(2020). Systematic integration of structural and functional data into multi-
scale models of mouse primary visual cortex. Neuron 106, 388.e18–403.e18.
doi: 10.1016/j.neuron.2020.01.040

Blundell, I., Brette, R., Cleland, T. A., Close, T. G., Coca, D., Davison, A. P., et al.
(2018). Code generation in computational neuroscience: a review of tools and
techniques. Front. Neuroinform. 12, 68. doi: 10.3389/fninf.2018.00068

Borges, F., d,. S., Moreira, J. V., Takarabe, L. M., Lytton, W. W., and Dura-
Bernal, S. (2022). Large-scale biophysically detailed model of somatosensory
thalamocortical circuits in NetPyNE. bioRxiv. doi: 10.1101/2022.02.03.
479029

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M.,
et al. (2007). Simulation of networks of spiking neurons: a review of tools and
strategies. J. Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-0038-6

Bryson, A., Berkovic, S. F., Petrou, S., and Grayden, D. B. (2021). State transitions
through inhibitory interneurons in a cortical network model. PLoS Comput.

Biol. 17, e1009521. doi: 10.1371/journal.pcbi.1009521
Carter Edwards, H., Trott, C. R., and Sunderland, D. (2014). Kokkos:

Enabling manycore performance portability through polymorphic
memory access patterns. J. Parallel Distribut. Comput. 74, 3202–3216.
doi: 10.1016/j.jpdc.2014.07.003

Casali, S., Marenzi, E., Medini, C., Casellato, C., and D’Angelo, E. (2019).
Reconstruction and simulation of a scaffold model of the cerebellar network.
Front. Neuroinform. 13, 37. doi: 10.3389/fninf.2019.00037

Cremonesi, F., Hager, G., Wellein, G., and Schürmann, F. (2020). Analytic
performance modeling and analysis of detailed neuron simulations. Int.

J. High Perform. Comput. Appl. 34, 428–449. doi: 10.1177/10943420209
12528

Cremonesi, F., and Schürmann, F. (2020). Understanding computational costs of
cellular-level brain tissue simulations through analytical performance models.
Neuroinformatics 18, 407–428. doi: 10.1007/s12021-019-09451-w

Crouch, S., Hong, N. C., Hettrick, S., Jackson, M., Pawlik, A., Sufi, S., et al. (2013).
The software sustainability institute: changing research software attitudes and
practices. Comput. Sci. Eng. 15, 74–80. doi: 10.1109/MCSE.2013.133

De Schutter, E. (2008). Why are computational neuroscience and systems biology
so separate? PLoS Comput. Biol. 4, e1000078. doi: 10.1371/journal.pcbi.1000078

de Verdière, G. C. (2020). Recommendations of the “Extreme Data and

Computing Initiative-2” Project, Assessment for Legacy Code and Software

Modernisation. Available online at: https://exdci.eu/sites/default/files/public/
files/d4.5f.pdf (accessed September 14, 2021).

Douglas, J., and Gunn, J. E. (1964). A general formulation of alternating direction
methods. Numerische mathematik 6, 428–453. doi: 10.1007/BF01386093

Dura-Bernal, S., Griffith, E. Y., Barczak, A., O’Connell, M. N., McGinnis, T.,
Schroeder, C. E., et al. (2022a). Data-driven multiscale model of macaque
auditory thalamocortical circuits reproduces in vivo dynamics. bioRxiv.
doi: 10.1101/2022.02.03.479036

Dura-Bernal, S., Neymotin, S. A., Suter, B. A., Dacre, J., Schiemann, J.,
Duguid, I., et al. (2022b). Multiscale model of primary motor cortex circuits
reproduces in vivo cell type-specific dynamics associated with behavior.
bioRxiv. doi: 10.1101/2022.02.03.479040

Dura-Bernal, S., Suter, B. A., Gleeson, P., Cantarelli, M., Quintana, A., Rodriguez,
F., et al. (2019). NetPyNE, a tool for data-driven multiscale modeling of brain
circuits. Elife 8, e44494. doi: 10.7554/eLife.44494

Einevoll, G. T., Destexhe, A., Diesmann, M., Grün, S., Jirsa, V., de Kamps, M.,
et al. (2019). The scientific case for brain simulations. Neuron 102, 735–744.
doi: 10.1016/j.neuron.2019.03.027

Erdemir, A., Mulugeta, L., Ku, J. P., Drach, A., Horner, M., Morrison, T. M.,
et al. (2020). Credible practice of modeling and simulation in healthcare:
ten rules from a multidisciplinary perspective. J. Transl. Med. 18, 369.
doi: 10.1186/s12967-020-02540-4

Ewart, T., Yates, S., Cremonesi, F., Kumbhar, P., Schürmann, F., and Delalondre, F.
(2015). “Performance evaluation of the IBM POWER8 architecture to support
computational neuroscientific application using morphologically detailed
neurons,” in Proceedings of the 6th International Workshop on Performance

Modeling, Benchmarking, and Simulation of High Performance Computing

Systems - PMBS ’15 (Austin, TX: ACM Press), 1–11.
Gewaltig, M., and Diesmann, M. (2007). NEST (NEural Simulation Tool).

Scholarpedia 2, 1430. doi: 10.4249/scholarpedia.1430
Gewaltig, M.-O., and Cannon, R. (2014). Current practice in software development

for computational neuroscience and how to improve it. PLoS Comput. Biol. 10,
e1003376. doi: 10.1371/journal.pcbi.1003376

Gleeson, P., Cantarelli, M., Marin, B., Quintana, A., Earnshaw, M., Sadeh, S.,
et al. (2019). Open source brain: a collaborative resource for visualizing,

Frontiers in Neuroinformatics | www.frontiersin.org 19 June 2022 | Volume 16 | Article 884046249

https://doi.org/10.1088/1742-6596/180/1/012037
https://doi.org/10.1371/journal.pbio.3000344
https://doi.org/10.1101/2021.07.29.454361
https://doi.org/10.1523/JNEUROSCI.2055-07.2007
https://doi.org/10.1016/j.neuron.2020.01.040
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.1101/2022.02.03.479029
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1371/journal.pcbi.1009521
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.3389/fninf.2019.00037
https://doi.org/10.1177/1094342020912528
https://doi.org/10.1007/s12021-019-09451-w
https://doi.org/10.1109/MCSE.2013.133
https://doi.org/10.1371/journal.pcbi.1000078
https://exdci.eu/sites/default/files/public/files/d4.5f.pdf
https://exdci.eu/sites/default/files/public/files/d4.5f.pdf
https://doi.org/10.1007/BF01386093
https://doi.org/10.1101/2022.02.03.479036
https://doi.org/10.1101/2022.02.03.479040
https://doi.org/10.7554/eLife.44494
https://doi.org/10.1016/j.neuron.2019.03.027
https://doi.org/10.1186/s12967-020-02540-4
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1371/journal.pcbi.1003376
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

analyzing, simulating, and developing standardized models of neurons and
circuits. Neuron 103, 395–411. doi: 10.1016/j.neuron.2019.05.019

Goodman, D. F. M. (2009). The brian simulator. Front. Neurosci. 3, 192–197.
doi: 10.3389/neuro.01.026.2009

Gratiy, S. L., Billeh, Y. N., Dai, K., Mitelut, C., Feng, D., Gouwens, N. W., et al.
(2018). Bionet: a python interface to neuron for modeling large-scale networks.
PLoS ONE 13, e0201630. doi: 10.1371/journal.pone.0201630

Guennebaud, G., and Jacob, B.. (2010). Eigen v3. Available online at: http://eigen.
tuxfamily.org

Hagen, E., Næss, S., Ness, T. V., and Einevoll, G. T. (2018). Multimodal modeling
of neural network activity: computing lfp, ecog, eeg, and meg signals with lfpy
2.0. Front. Neuroinform. 12, 92. doi: 10.3389/fninf.2018.00092

Hennessy, J. L., and Patterson, D. A. (2017). Computer Architecture, Sixth Edition:

A Quantitative Approach, 6th Edn. San Francisco, CA: Morgan Kaufmann
Publishers Inc.

Hennessy, J. L., and Patterson, D. A. (2019). A new golden age for computer
architecture. Commun. ACM 62, 48–60. doi: 10.1145/3282307

Heroux, M. A. (2015). Editorial: ACM TOMS replicated computational results
initiative. ACM Trans. Math. Softw. 41, 1–5. doi: 10.1145/2743015

Hettrick, S., Antonioletti, M., Carr, L., Chue Hong, N., Crouch, S., De Roure, D.,
et al. (2014). Uk research software survey 2014. doi: 10.5281/zenodo.608046

Hines, M. (1984). Efficient computation of branched nerve equations. Int. J.
Biomed. Comput. 15, 69–76. doi: 10.1016/0020-7101(84)90008-4

Hines, M., Davison, A., and Muller, E. (2009). NEURON and python. Front.
Neuroinform. 3, 1. doi: 10.3389/neuro.11.001.2009

Hines, M., Kumar, S., and Schürmann, F. (2011a). Comparison of neuronal spike
exchange methods on a Blue Gene/P supercomputer. Front. Comput. Neurosci.
5, 49. doi: 10.3389/fncom.2011.00049

Hines, M., Kumar, S., and Schürmann, F. (2011b). Comparison of neuronal spike
exchange methods on a blue gene/p supercomputer. Front. Comput. Neurosci.
5, 49. doi: 10.3389/fncom.2011.00049

Hines, M. L., and Carnevale, N. T. (1997). The NEURON simulation environment.
Neural Comput. 9, 1179–1209. doi: 10.1162/neco.1997.9.6.1179

Hines, M. L., Eichner, H., and Schürmann, F. (2008a). Neuron splitting in
compute-bound parallel network simulations enables runtime scaling
with twice as many processors. J. Comput. Neurosci. 25, 203–210.
doi: 10.1007/s10827-007-0073-3

Hines, M. L., Markram, H., and Schürmann, F. (2008b). Fully implicit
parallel simulation of single neurons. J. Comput. Neurosci. 25, 439–448.
doi: 10.1007/s10827-008-0087-5

Hjorth, J. J. J., Kozlov, A., Carannante, I., Frost Nylén, J., Lindroos, R., Johansson,
Y., et al. (2020). The microcircuits of striatum in silico. Proc. Natl. Acad. Sci.
U.S.A. 117, 9554–9565. doi: 10.1073/pnas.2000671117

HPE (2022). Hpe sgi 8600 System. Available online at: https://support.hpe.com/
hpesc/public/docDisplay?docId=emr_na-a00025339en_us (accessed January
05, 2022).

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018).
Extremely scalable spiking neuronal network simulation code: from laptops
to exascale computers. Front. Neuroinform. 12, 2. doi: 10.3389/fninf.2018.
00002

Keating, S. M., Waltemath, D., König, M., Zhang, F., Dräger, A., Chaouiya, C.,
et al. (2020). Sbml level 3: an extensible format for the exchange and reuse of
biological models.Mol. Syst. Biol. 16, e9110. doi: 10.15252/msb.20199110

Kumbhar, P., Awile, O., Keegan, L., Alonso, J. B., King, J., Hines, M., et al. (2020).
“An optimizing multi-platform source-to-source compiler framework for the
NEURONMODeling language,” inComputational Science—ICCS 2020, Lecture

Notes in Computer Science, eds V. V. Krzhizhanovskaya, G. Závodszky, M. H.
Lees, J. J. Dongarra, P. M. A. Sloot, S. Brissos, and J. Teixeira (Cham: Springer
International Publishing), 45–58.

Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King, J., Delalondre, F.,
et al. (2019). CoreNEURON : an optimized compute engine for the NEURON
simulator. Front. Neuroinform. 13, 63. doi: 10.3389/fninf.2019.00063

Kumbhar, P., Hines, M., Ovcharenko, A., Mallon, D. A., King, J., Sainz, F., et al.
(2016). “Leveraging a cluster-booster architecture for brain-scale simulations,”
in High Performance Computing, Vol. 9697, eds J. M. Kunkel, P. Balaji, and J.
Dongarra (Cham: Springer International Publishing), 363–380.

Lam, S. K., Pitrou, A., and Seibert, S. (2015). “Numba: a llvm-based python
jit compiler,” in Proceedings of the Second Workshop on the LLVM Compiler

Infrastructure in HPC, LLVM ’15 (New York, NY: Association for Computing
Machinery).

Lee, V. W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A. D., et al.
(2010). Debunking the 100X GPU vs. CPU myth: an evaluation of throughput
computing on CPU and GPU. ACM Sigarch Comput. Arch. News 38, 451–460.
doi: 10.1145/1816038.1816021

Leloup, J.-C., Gonze, D., and Goldbeter, A. (1999). Limit cycle models for circadian
rhythms based on transcriptional regulation in drosophila and neurospora. J.
Biol. Rhythms 14, 433–448. doi: 10.1177/074873099129000948

Lindén, H., Hagen, E., Leski, S., Norheim, E. S., Pettersen, K. H., and
Einevoll, G. T. (2014). Lfpy: a tool for biophysical simulation of extracellular
potentials generated by detailed model neurons. Front. Neuroinform. 7, 41.
doi: 10.3389/fninf.2013.00041

Lytton, W. W., Seidenstein, A. H., Dura-Bernal, S., McDougal, R. A., Schürmann,
F., and Hines, M. L. (2016). Simulation neurotechnologies for advancing
brain research: parallelizing large networks in NEURON. Neural Comput. 28,
2063–2090. doi: 10.1162/NECO_a_00876

Malik, R., Dougherty, K. A., Parikh, K., Byrne, C., and Johnston, D. (2016).
Mapping the electrophysiological and morphological properties of ca 1
pyramidal neurons along the longitudinal hippocampal axis. Hippocampus 26,
341–361. doi: 10.1002/hipo.22526

Markram, H., Muller, E., Ramaswamy, S., Reimann, M., Abdellah, M., Sanchez, C.,
et al. (2015). Reconstruction and simulation of neocortical microcircuitry. Cell
163, 456–492. doi: 10.1016/j.cell.2015.09.029

McDougal, R. A., Bulanova, A. S., and Lytton, W. W. (2016). Reproducibility in
computational neurosciencemodels and simulations. IEEE Trans. Biomed. Eng.
63, 2021–2035. doi: 10.1109/TBME.2016.2539602

McDougal, R. A., Conte, C., Eggleston, L., Newton, A. J. H., and Galijasevic, H.
(2022). Efficient simulation of 3D reaction-diffusion in models of neurons and
networks. Front. Neuroinform. 16, 847108. doi: 10.3389/fninf.2022.847108

McDougal, R. A., Hines, M. L., and Lytton, W. W. (2013). Reaction-diffusion
in the neuron simulator. Front. Neuroinform. 7, 28. doi: 10.3389/fninf.2013.
00028

McDougal, R. A., Morse, T. M., Carnevale, T., Marenco, L., Wang, R., Migliore,
M., et al. (2017). Twenty years of ModelDB and beyond: building essential
modeling tools for the future of neuroscience. J. Comput. Neurosci. 42, 1–10.
doi: 10.1007/s10827-016-0623-7

Medlock, L., Sekiguchi, K., Hong, S., Dura-Bernal, S., Lytton, W. W., and Prescott,
S. A. (2022). Multi- scale computer model of the spinal dorsal horn reveals
changes in network processing associated with chronic pain. J. Neurosci. 42,
3133–3149. doi: 10.1523/JNEUROSCI.1199-21.2022

Metzner, C., Mäki-Marttunen, T., Karni, G., McMahon-Cole, H., and Steuber, V.
(2020). The effect of alterations of schizophrenia-associated genes on gamma
band oscillations. Schizophrenia 8, 46. doi: 10.1101/2020.09.28.316737

Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M.,
et al. (2017). SymPy: symbolic computing in python. PeerJ Comput. Sci. 3, e103.
doi: 10.7717/peerj-cs.103

Meyer, M. (2014). Continuous integration and Its tools. IEEE Software 31, 14–16.
doi: 10.1109/MS.2014.58

Migliore, M., Cannia, C., Lytton, W. W., Markram, H., and Hines, M. L. (2006).
Parallel network simulations with NEURON. J. Comput. Neurosci. 21, 119–129.
doi: 10.1007/s10827-006-7949-5

Migliore, M., Cavarretta, F., Hines, M. L., and Shepherd, G. M. (2014).
Distributed organization of a brain microcircuit analyzed by three-
dimensional modeling: the olfactory bulb. Front. Comput. Neurosci. 8,
50. doi: 10.3389/fncom.2014.00050

Miller, G. (2006). A scientist’s nightmare: software problem leads to five retractions.
Science 314, 1856–1857. doi: 10.1126/science.314.5807.1856

Muller, E., Bednar, J. A., Diesmann, M., Gewaltig, M.-O., Hines, M., and
Davison, A. P. (2015). Python in neuroscience. Front. Neuroinform. 9, 11.
doi: 10.3389/fninf.2015.00011

Mulugeta, L., Drach, A., Erdemir, A., Hunt, C. A., Horner, M., Ku, J. P.,
et al. (2018). Credibility, replicability, and reproducibility in simulation for
biomedicine and clinical applications in neuroscience. Front. Neuroinform. 12,
18. doi: 10.3389/fninf.2018.00018

Neely, J., de Supinski, B. R., and Still, C. H. (2017). Application modernization
for the exascale era. Comput. Sci. Eng. 19, 6–8. doi: 10.1109/MCSE.2017.34
21548

Frontiers in Neuroinformatics | www.frontiersin.org 20 June 2022 | Volume 16 | Article 884046250

https://doi.org/10.1016/j.neuron.2019.05.019
https://doi.org/10.3389/neuro.01.026.2009
https://doi.org/10.1371/journal.pone.0201630
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://doi.org/10.3389/fninf.2018.00092
https://doi.org/10.1145/3282307
https://doi.org/10.1145/2743015
https://doi.org/10.5281/zenodo.608046
https://doi.org/10.1016/0020-7101(84)90008-4
https://doi.org/10.3389/neuro.11.001.2009
https://doi.org/10.3389/fncom.2011.00049
https://doi.org/10.3389/fncom.2011.00049~
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1007/s10827-007-0073-3
https://doi.org/10.1007/s10827-008-0087-5
https://doi.org/10.1073/pnas.2000671117
https://support.hpe.com/hpesc/public/docDisplay?docId=emr_na-a00025339en_us
https://support.hpe.com/hpesc/public/docDisplay?docId=emr_na-a00025339en_us
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.15252/msb.20199110
https://doi.org/10.3389/fninf.2019.00063
https://doi.org/10.1145/1816038.1816021
https://doi.org/10.1177/074873099129000948
https://doi.org/10.3389/fninf.2013.00041
https://doi.org/10.1162/NECO_a_00876
https://doi.org/10.1002/hipo.22526
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1109/TBME.2016.2539602
https://doi.org/10.3389/fninf.2022.847108
https://doi.org/10.3389/fninf.2013.00028
https://doi.org/10.1007/s10827-016-0623-7
https://doi.org/10.1523/JNEUROSCI.1199-21.2022
https://doi.org/10.1101/2020.09.28.316737
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1109/MS.2014.58
https://doi.org/10.1007/s10827-006-7949-5
https://doi.org/10.3389/fncom.2014.00050
https://doi.org/10.1126/science.314.5807.1856
https://doi.org/10.3389/fninf.2015.00011
https://doi.org/10.3389/fninf.2018.00018
https://doi.org/10.1109/MCSE.2017.3421548
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Awile et al. Modernizing NEURON

Newton, A. J., McDougal, R. A., Hines, M. L., and Lytton, W. W. (2018).
Using neuron for reaction-diffusion modeling of extracellular dynamics. Front.
Neuroinform. 12, 41. doi: 10.3389/fninf.2018.00041

Newton, T. H., Reimann, M. W., Abdellah, M., Chevtchenko, G., Muller, E.
B., and Markram, H. (2021). In silico voltage-sensitive dye imaging reveals
the emergent dynamics of cortical populations. Nat. Commun. 12, 3630.
doi: 10.1038/s41467-021-23901-7

Neymotin, S. A., Daniels, D. S., Caldwell, B., McDougal, R. A., Carnevale, N. T., Jas,
M., et al. (2020). Human neocortical neurosolver (hnn), a new software tool for
interpreting the cellular and network origin of human meg/eeg data. Elife 9,
e51214. doi: 10.7554/eLife.51214

Pham, D.-T. J., Yu, G. J., Bouteiller, J.-M. C., and Berger, T. W. (2021). Bridging
hierarchies in multi-scale models of neural systems: look-up tables enable
computationally efficient simulations of non-linear synaptic dynamics. Front.
Comput. Neurosci. 88, 733155. doi: 10.3389/fncom.2021.733155

Pimentel, J. M., Moioli, R. C., de Araujo, M. F. P., Ranieri, C. M., Romero, R. A. F.,
Broz, F., et al. (2021). Neuro4PD: An initial neurorobotics model of parkinson’s
disease. Front. Neurorobot. 15, 640449. doi: 10.3389/fnbot.2021.640449

Pronold, J., Jordan, J., Wylie, B. J. N., Kitayama, I., Diesmann, M., and
Kunkel, S. (2022). Routing brain traffic through the von neumann
bottleneck: parallel sorting and refactoring. Front. Neuroinform. 15, 785068.
doi: 10.3389/fninf.2021.785068

Ranieri, C. M., Pimentel, J. M., Romano, M. R., Elias, L. A., Romero, R. A.
F., Lones, M. A., et al. (2021). A data-driven biophysical computational
model of parkinson’s disease based on marmoset monkeys. IEEE Access 9,
122548–122567. doi: 10.1109/ACCESS.2021.3108682

Reimann, M. W., Nolte, M., Scolamiero, M., Turner, K., Perin, R., Chindemi,
G., et al. (2017). Cliques of neurons bound into cavities provide a missing
link between structure and function. Front. Comput. Neurosci. 11, 48.
doi: 10.3389/fncom.2017.00048

Reuther, A., Michaleas, P., Jones, M., Gadepally, V., Samsi, S., and Kepner, J.
(2019). “Survey and benchmarking of machine learning accelerators,” in 2019

IEEE High Performance Extreme Computing Conference (HPEC) (Waltham,
MA: IEEE), 1–9.

Romaro, C., Najman, F. A., Lytton, W. W., Roque, A. C., and Dura-
Bernal, S. (2021). NetPyNE implementation and scaling of the Potjans-
Diesmann cortical microcircuit model. Neural Comput. 33, 1993–2032.
doi: 10.1162/neco_a_01400

Salmon, J. K., Moraes, M. A., Dror, R. O., and Shaw, D. E. (2011). “Parallel random
numbers: as easy as 1, 2, 3,” in Proceedings of 2011 International Conference for

High Performance Computing, Networking, Storage and Analysis, SC ’11 (New
York, NY: Association for Computing Machinery), 1–12.

Schirner, M., Domide, L., Perdikis, D., Triebkorn, P., Stefanovski, L., Pai, R.,
et al. (2022). Brain simulation as a cloud service: the virtual brain on ebrains.
Neuroimage 251, 118973. doi: 10.1016/j.neuroimage.2022.118973

Sivagnanam, S., Gorman, W., Doherty, D., Neymotin, S. A., Fang, S.,
Hovhannisyan, H., et al. (2020). “Simulating large-scale models of brain
neuronal circuits using google cloud platform,” in Practice and Experience in

Advanced Research Computing, PEARC ’20 (New York, NY: Association for
Computing Machinery), 505–509.

Sivagnanam, S., Majumdar, A., Yoshimoto, K., Astakhov, V., Bandrowski, A.
E., Martone, M. E., et al. (2013). “Introducing the neuroscience gateway,” in
IWSG (Zurich), 993.

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and
efficient neural simulator. Elife 8, e47314. doi: 10.7554/eLife.47314.028

Tikidji-Hamburyan, R. A., Narayana, V., Bozkus, Z., and El-
Ghazawi, T. A. (2017). Software for brain network simulations: a
comparative study. Front. Neuroinform. 11, 46. doi: 10.3389/fninf.2017.
00046

Van Geit, W., Gevaert, M., Chindemi, G., Rössert, C., Courcol, J.-D., Muller,
E. B., et al. (2016). BluePyOpt: leveraging open source software and
cloud infrastructure to optimise model parameters in neuroscience. Front.
Neuroinform. 10, 17. doi: 10.3389/fninf.2016.00017

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., et al. (2020). Scipy 1.0: fundamental algorithms for scientific
computing in python. Nat. Methods 17, 261–272. doi: 10.1038/s41592-019-
0686-2

Volk, V. L., Hamilton, L. D., Hume, D. R., Shelburne, K. B., and Fitzpatrick,
C. K. (2021). Integration of neural architecture within a finite element
framework for improved neuromusculoskeletal modeling. Sci. Rep. 11, 22983.
doi: 10.1038/s41598-021-02298-9

Willenbring, J. M. (2015). Replicated computational results (RCR) report for
“BLIS: a framework for rapidly instantiating BLAS functionality”. ACM Trans.

Math. Softw. 41, 1–4. doi: 10.1145/2738033
Wolfe, M. (2021). Performant, portable, and productive parallel

programming with standard languages. Comput. Sci. Eng. 23, 39–45.
doi: 10.1109/MCSE.2021.3097167

AuthorDisclaimer:The content is solely the responsibility of the authors and does
not necessarily represent the official views of the National Institutes of Health.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Awile, Kumbhar, Cornu, Dura-Bernal, King, Lupton, Magkanaris,

McDougal, Newton, Pereira, Săvulescu, Carnevale, Lytton, Hines and Schürmann.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 21 June 2022 | Volume 16 | Article 884046251

https://doi.org/10.3389/fninf.2018.00041
https://doi.org/10.1038/s41467-021-23901-7
https://doi.org/10.7554/eLife.51214
https://doi.org/10.3389/fncom.2021.733155
https://doi.org/10.3389/fnbot.2021.640449
https://doi.org/10.3389/fninf.2021.785068
https://doi.org/10.1109/ACCESS.2021.3108682
https://doi.org/10.3389/fncom.2017.00048
https://doi.org/10.1162/neco_a_01400
https://doi.org/10.1016/j.neuroimage.2022.118973
https://doi.org/10.7554/eLife.47314.028
https://doi.org/10.3389/fninf.2017.00046
https://doi.org/10.3389/fninf.2016.00017
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41598-021-02298-9
https://doi.org/10.1145/2738033
https://doi.org/10.1109/MCSE.2021.3097167
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

ORIGINAL RESEARCH
published: 29 June 2022

doi: 10.3389/fninf.2022.884033

Frontiers in Neuroinformatics | www.frontiersin.org 1 June 2022 | Volume 16 | Article 884033

Edited by:

James Courtney Knight,

University of Sussex, United Kingdom

Reviewed by:

Runchun Mark Wang,

Western Sydney University, Australia

Bernhard Vogginger,

Technical University Dresden,

Germany

*Correspondence:

Guido Trensch

g.trensch@fz-juelich.de

Received: 25 February 2022

Accepted: 23 May 2022

Published: 29 June 2022

Citation:

Trensch G and Morrison A (2022) A

System-on-Chip Based Hybrid

Neuromorphic Compute Node

Architecture for Reproducible

Hyper-Real-Time Simulations of

Spiking Neural Networks.

Front. Neuroinform. 16:884033.

doi: 10.3389/fninf.2022.884033

A System-on-Chip Based Hybrid
Neuromorphic Compute Node
Architecture for Reproducible
Hyper-Real-Time Simulations of
Spiking Neural Networks

Guido Trensch 1,2* and Abigail Morrison 1,2,3

1 Simulation and Data Laboratory Neuroscience, Jülich Supercomputing Centre, Institute for Advanced Simulation, Jülich

Research Centre, Jülich, Germany, 2Department of Computer Science 3—Software Engineering, RWTH Aachen University,

Aachen, Germany, 3 Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6),

JARA-Institute Brain Structure-Function Relationship (JBI-1/INM-10), Research Centre Jülich, Jülich, Germany

Despite the great strides neuroscience has made in recent decades, the underlying

principles of brain function remain largely unknown. Advancing the field strongly depends

on the ability to study large-scale neural networks and perform complex simulations.

In this context, simulations in hyper-real-time are of high interest, as they would enable

both comprehensive parameter scans and the study of slow processes, such as learning

and long-term memory. Not even the fastest supercomputer available today is able to

meet the challenge of accurate and reproducible simulation with hyper-real acceleration.

The development of novel neuromorphic computer architectures holds out promise, but

the high costs and long development cycles for application-specific hardware solutions

makes it difficult to keep pace with the rapid developments in neuroscience. However,

advances in System-on-Chip (SoC) device technology and tools are now providing

interesting new design possibilities for application-specific implementations. Here, we

present a novel hybrid software-hardware architecture approach for a neuromorphic

compute node intended to work in a multi-node cluster configuration. The node design

builds on the Xilinx Zynq-7000 SoC device architecture that combines a powerful

programmable logic gate array (FPGA) and a dual-core ARM Cortex-A9 processor

extension on a single chip. Our proposed architecture makes use of both and takes

advantage of their tight coupling. We show that available SoC device technology can

be used to build smaller neuromorphic computing clusters that enable hyper-real-time

simulation of networks consisting of tens of thousands of neurons, and are thus capable

of meeting the high demands for modeling and simulation in neuroscience.

Keywords: neuromorphic computing, compute node, FPGA, SoC, spiking neural networks, simulation,

performance, parallel computing

252

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.884033
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.884033&domain=pdf&date_stamp=2022-06-29
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:g.trensch@fz-juelich.de
https://doi.org/10.3389/fninf.2022.884033
https://www.frontiersin.org/articles/10.3389/fninf.2022.884033/full

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

1. INTRODUCTION

In the process of gaining insight into the underlying principles
of neural computation, the tools and methods developed and
provided by computational neuroscience play a key role. In
particular, we rely on the mathematical modeling of neuron,
synapse, and neural network models and their numerical
simulation to study their complex interaction and network
dynamics. Community software for modeling, such as NeuroML
(Gleeson et al., 2010), NMODL (Hines and Carnevale, 2000),
and NESTML (Plotnikov et al., 2016), and for simulation,
such as NEURON (Hines and Carnevale, 1997), Arbor (Akar
et al., 2019), NEST (Gewaltig and Diesmann, 2007), and Brian
(Goodman and Brette, 2008) provide such tools. They are
complemented by numerical tools for statistical analysis, such as
the Electrophysiology Analysis Toolkit Elephant1 as well as tool
support for model validation methodologies, for example, the
validation framework NetworkUnit2 (Gutzen et al., 2018). The
requirements in regard to efficiency, correctness, and replicability
and reproducibility of the outcomes place high demands on the
whole software ecosystem.

When investigating large scale networks, in general one
would like to simulate them as fast as possible. Whereas, real-
time simulation is interesting because of the possibility of
interacting with real-world applications, hyper-real-time would
enable the study of slow processes, such as structural plasticity
and long-term memory, and permit researchers to perform more
comprehensive parameter scans of faster processes. This is still a
major technical challenge (Friedmann et al., 2017), and not even
the fastest supercomputer available today is up to the task.

Consequently, neuromorphic computing and application-
specific novel hardware architectures are very attractive as
they promise significant acceleration. However, the technical
hurdles to making neuromorphic computing a useful tool for
neuroscientists are not insignificant either. Crucially, flexibility
and efficiency, which are both required for such a system, are
opposing goals in the choice of technology (e.g., GPP3, FPGA4

or ASIC5; Noll et al., 2010). Optimal flexibility is achieved with
traditional general purpose processors. The SpiNNaker system
(Furber et al., 2013) is an example for a neuromorphic massively
parallel computing platform that is based on digital multi-core
chips using ARM processing cores. It is fully programmable,
thus flexible in the choice and implementation of the numerical
models, and allows large-scale simulations to be performed in
real-time. The Heidelberg BrainScaleS system (Schemmel et al.,
2010) and its successor BrainScales-2 (Pehle et al., 2022), in
contrast, are capable of running simulations orders of magnitude
faster than real-time. To achieve this, the architecture builds
on the physical, i.e., analog, emulation of neuron and synapse
models (Schemmel et al., 2017) in dedicatedmixed-signal circuits
combined with digital plasticity processors (BrainsScaleS-2)

1RRID:SCR_003833; http://neuralensemble.org/elephant.
2RRID:SCR_016543; https://github.com/INM-6/NetworkUnit.
3General Purpose Processor.
4Field Programmable Gate Array.
5Application-Specific Integrated Circuit.

using a “hybrid plasticity” scheme (Friedmann et al., 2017).
Physical, analog emulation thereby restricts the system to its
built-in, “silicon-frozen” analog models, and use-cases where
technology-related effects, such as fabrication tolerances and
thermal noise, are acceptable.

During recent years, programmable device technology
and tools have greatly increased in functionality, benefiting
from the continued advances in semiconductor technology.
Modern field programmable gate arrays (FPGAs) provide
a large number of chip resources (e.g., logic cells and
memories) allowing to implement complex hardware designs
at affordable costs. High-level synthesis (HLS) tools allow
the developer to generate hardware implementations from
algorithmic descriptions, thus reducing development time and
making the technology accessible to non hardware experts.
Although the design effort remains high, programmable device
technology offers a good compromise between flexibility and
efficiency and has therefore been widely recognized as potentially
well-suited to neural network simulation. This has been exploited
by a number of digital neuromorphic architectures developed in
recent years.

In an earlier study, Maguire et al. (2007) made an inventory
and revealed the challenges associated with implementing large-
scale spiking neural networks on FPGAs, emphasizing the
importance of design decisions on system level and its impact
on the final performance. Since then, a number of architectural
approaches and implementations for different use cases have
been published. A scalable modular architecture for closed-loop
experiments with in vitro cultures is presented in Pani et al.
(2017). The platform is able to simulate small-to-medium size
networks in real-time, implementing 1, 440 Izhikevich neurons.
Bluehive (Moore et al., 2012)—a scalable custom 64-FPGA
machine—is dedicated to the simulation of large-scale networks
with demanding communication requirements. On a single
FPGA, Bluehive can simulate 64, 000 Izhikevich neurons in real-
time.NeuroFlow (Cheung et al., 2016) is a platform that builds on
top of Maxeler’s6 Dataflow Engine (DFE) technology. A 6-FPGA
system can simulate a network of 600, 000 neurons. Real-time
performance is achieved when simulating a network consisting
of 400, 000 neurons. The simulation of a plastic 1, 000 neuron
two-population Izhikevich model for 24 h biological time can be
completed in 1, 435 s, thus achieving a ~60-fold acceleration. The
platform supports several neuron and synapse model types and
a spike time dependent plasticity (STDP) rule. NeuroFlow also
provides a PyNN interface (Davison et al., 2009)—a common
Python interface for neural network simulators. In Wang et al.
(2014) and Wang et al. (2018), an architecture is proposed that
uses a procedural “on-the-fly” generation scheme for parameters
and connections and is able to simulate 20 million to 2.6 billion
leaky integrate and fire (IAF) neurons in real-time on a single
Stratix V FPGA.

Such large scales come at a price and can only be achieved by
accepting limitations regarding functionality, model complexity
and simulation accuracy. These limitations may well represent
acceptable trade-offs for the intended specific use cases, but can

6Maxeler Technologies: www.maxeler.com.

Frontiers in Neuroinformatics | www.frontiersin.org 2 June 2022 | Volume 16 | Article 884033253

https://scicrunch.org/resolver/RRID:SCR_003833
http://neuralensemble.org/elephant
https://scicrunch.org/resolver/RRID:SCR_016543
https://github.com/INM-6/NetworkUnit
https://www.maxeler.com
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

be severe with respect to the requirements of a platform for
general neuroscience simulations. For example, in order to save
hardware resources and reduce both computational costs and
the amount of data to be processed, hardware implementations
often use a large update interval of h = 1 ms to progress neuron
model dynamics (e.g., Moore et al., 2012; Cheung et al., 2016;
Wang et al., 2018). This is 10 times larger than the de facto
standard used in digital simulations, and comes at the cost
of numerical accuracy, especially for neuron models with stiff
equations (Hansel et al., 1998; Morrison et al., 2007; Blundell
et al., 2018b; Pauli et al., 2018). A further commonly-used trade-
off with similar advantages and disadvantages is to represent
neuron state variables in a low-precision fixed-point data format
(e.g., Moore et al., 2012; Wang et al., 2018). It has been shown,
for example, that the accuracy of the numerical integration of the
Izhikevich neuron model dynamics is insufficient when a s16.15
representation, i.e., a 32-bit signed fixed-point data format is used
(Gutzen et al., 2018; Trensch et al., 2018). Model complexity
is reduced in the architecture proposed in Wang et al. (2014)
and Wang et al. (2018) where individual synaptic connection
delays are replaced by an axonal delay, thus avoiding the large
memory structures and computational costs required to delay
and accumulate incoming spike events.

These examples clearly demonstrate that it is challenging to
reach design decisions that are simultaneously performant and
flexible. The plethora of neuron and synapse models makes it
difficult to come to design decisions that satisfy all requirements
equally. There are also many questions relevant for the design
which still lack an unambiguous answer and thus keep design
decisions in a state of uncertainty. One example is the required
numerical precision, which determines the specification of data
types and the implementation of arithmetic operations—a design
decision that effects implementation complexity, chip area and
power efficiency. So far, only a few studies have examined the
effects of numerical accuracy on simulation outcomes (e.g., Pfeil
et al., 2012; Trensch et al., 2018; Dasbach et al., 2021).

Promising new design possibilities are also enabled by the
integration on a single chip of FPGAs together with processor
cores and other components to System-on-Chip (SoC) devices.
This paves the way toward novel hybrid software-hardware
approaches for application-specific implementations and new
neuromorphic computing systems, such as the IBM Neural
Computer INC-3000; a highly scalable parallel processing system.
A single-cage system clusters 432 Xilinx Zynq SoC devices in a
high bandwidth 3D mesh communication network (Narayanan
et al., 2020). The system is highly flexible and applications can
off-load algorithms and accelerate them using the programmable
logic of the Zynq SoC devices. An example of such an application
is the implementation of the cortical microcircuit model
(Potjans and Diesmann, 2014) on the INC-3000 presented in
Heittmann et al. (2022)—a reproduction of an equivalent NEST
implementation and on the SpiNNaker neuromorphic system
(cf. van Albada et al., 2018). The model consists of 0.8 · 105

neurons and 0.3 · 109 synaptic connections, was implemented
in HLS, and utilizes 305 FPGAs. The simulation achieves an
approx. four times speed-up compared with the biological
time domain.

In this article, we introduce a novel SoC-based hybrid software
and hardware mixed architecture approach for a neuromorphic
compute node (henceforth HNC node) which is intended to
work in a multi-node cluster configuration and capable of
meeting the high demands for modeling and simulation in
neuroscience. The development builds on the Xilinx Zynq-7000
SoC device architecture (Xilinx, 2021) and takes advantage of
the tight coupling of a powerful FPGA device and a dual-
core ARM Cortex-A9 processor core. The primary goal of the
development is to provide a flexible platform for the accelerated
simulation of neural network models which may consist of up
to a few tens of thousands of neurons, a scale which covers
the vast majority of current spiking neural network modeling
studies. With the neuroscience requirement-driven design of
the HNC node architecture, our development is to be seen as
a complementary yet distinct approach to the neuromorphic
developments aiming at brain-inspired and highly efficient novel
computer architectures for solving real-world tasks.

We show that such a system can indeed be built, and that
acceleration factors with respect to real-time in the order of
10–50 are realistically achievable for moderate workloads, with
even higher factors possible for low workloads. We further
demonstrate that the use of workload and performance models
allow us to predict the performance characteristics of such
a system under varying assumptions regarding workload and
hardware design choices, some of which showing great potential
as a substrate for neural simulations.

This article is organized as follows. Section 2 first gives
an overview of the HNC node high-level architecture and
the main design ideas. Section 3 presents the results of
our performance measurements and an evaluation of the
performance characteristics. A detailed presentation of the
HNC node hardware and software architecture can be found
in Section 4, with a focus on microarchitecture details
critical to performance. In Section 5, we develop a workload
and performance model to understand the performance
characteristics of the HNC node and predict them for alternative
assumptions in design space.

2. OVERVIEW OF THE HYBRID
NEUROMORPHIC COMPUTE (HNC) NODE

The HNC node architecture concept combines software-based
and hardware-based implementations for the building blocks of
a neural network simulation engine, and tightly couples both
implementation types on a single chip; specifically, on a device
of the Xilinx Zynq-7000 SoC family (Xilinx, 2021).

The underlying algorithms and the functional principle of
the HNC node concept do not differ from those that are
typically used in pure software implementations for time-
discrete neural network simulations of point neuron models.
It follows a hybrid strategy where neuron states are updated
synchronously, time-driven, and at fixed intervals (e.g., 1t =
0.1 ms) and synapses are updated asynchronously and event-
driven, triggered when a synapse’s presynaptic neuron emits a
spike (Morrison et al., 2005).

Frontiers in Neuroinformatics | www.frontiersin.org 3 June 2022 | Volume 16 | Article 884033254

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

FIGURE 1 | Hybrid neuromorphic compute (HNC) node high-level architecture. The highest architectural level of the HNC node comprises three main components: an

off-chip external memory (top), an application processing unit (APU; middle), and a programmable logic part (PL; lower dashed box). In order to distribute the

workload and parallelize operations, the PL implements 16 identical processing units (P1, P2,.., P16). The red and blue arrows indicate two distinct processes that are

critical to performance and primarily determine the performance characteristics and achievable acceleration factors. Red arrows: the process of the neuron and

synapse model state update performed by the ordinary differential equations solver pipelines (ODE pipelines) which operate on fast on-chip block RAM memories that

constitute the state variables buffer (SVBs). Blue arrows: the process of the presynaptic data distribution and processing which hold the data it operates on in the slow

external off-chip memory.

While it is sufficient to implement performance non-
critical tasks in software and let them be executed by general
purpose processors, the performance-critical algorithms profit

from mapping them to hardware. Non-critical tasks are, for
example, the processes of node configuration, operation and
simulation control, data type conversion, network instantiation,

Frontiers in Neuroinformatics | www.frontiersin.org 4 June 2022 | Volume 16 | Article 884033255

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

and user interaction. Critical to performance and simulation
efficiency are the spike events processing and presynaptic data
distribution, and the neuron and synapse model computations.
The algorithms implemented in hardware bring the data and
the operations performed on them close together and can
thus alleviate problems which are inevitable with conventional
systems, such as the von Neumann bottleneck.

Figure 1 shows the HNC node high-level architecture
concept, which consists of three main components: (i) an off-chip
external memory (top); (ii) an application processing unit (APU;
middle); and (iii) a programmable logic part (PL; dashed box).
A more detailed description of the high-level system architecture
and the microarchitecture is given in Section 4.1.

Both the APU and the PL are connected to the off-
chip external memory. It contains the node control software
(Section 4.2) which is executed by the APU orchestrating
the overall node operation, and also holds the node-local
connectivity data of the neural network being simulated and
buffers the recorded spike data. Storing the connectivity data
in a slow, external memory is one of the decisive performance
limiting factors of the system. This aspect is discussed in detail
Section 4.3.1. However, there are two important factors leading
to this design decision. The first is a functional requirement: even
though the current development does not yet include plasticity,
in order to be able to cope with synaptic and structural plasticity
algorithms in future, the synaptic connections must be stored,
accessible, and changeable. In contrast, for static networks,
performance-efficient solutions have been developed which
makes use of a procedural connectivity generation approach
(Knight and Nowotny, 2021; Heittmann et al., 2022) where
the synaptic connections are determined algorithmically during
the simulation, thus avoiding having to retrieve them from
memory. The second is a resource constraint due to technical
limitations of the technology: fast, low-latency, on-chip block
RAM (BRAM) would be ideal to hold this data, but BRAM
is a limited FPGA resource and the memory requirement for
storing a network’s connectivity data is demanding. For example,
given a 64-bit data item to represent a single connection, a
natural dense network, such as the cortical microcircuit model
(Potjans and Diesmann, 2014) comprising 0.8 · 105 neurons and
0.3 · 109 connections requires 2.4 Gbyte of memory in total.
That is 24 Mbyte per compute node if a single node processes
103 neurons. The Xilinx Zynq-7000 SoC device used in this
work provides only 19.2 Mbit of BRAM, i.e., 10 times less
than required.

The PL, i.e., the FPGA part of the SoC, implements 16
identical hardware processing units (P1, P2,.., P16). Each is
capable of carrying out the computations for NP = 64 neurons.
This allows a total of N = 1, 024 neurons to be processed
on a single chip or HNC node, respectively. The PL and
APU are closely coupled through high performance streaming
and memory mapped interfaces which allow an efficient data
exchange between the two parts. The PL is also directly
connected to the off-chip external memory, thus enabling APU-
independent memory read and write operations.

Each processing unit processes its 64 neurons in a pipeline
fashion, updating the neuron states at fixed intervals of

1t = 0.1 ms. The neuron states yyyk are thereby held in state
vector buffers (SVB) which are implemented as fast block RAM
(BRAM) memories on the PL. The associated data paths of this
time-driven process are indicated in Figure 1 by the red arrows.

The blue arrows in Figure 1 mark the data paths involved in
the event-driven presynaptic data processing. The post-synaptic
spike events (up to 16 spike events can occur in parallel at a
time; one per processing unit) are serialized and packed for
communication and recording. This is handled by the spike
events processing module. If a spike event occurs, it initiates
read operations from external memory to obtain the network’s
connectivity data, i.e., the node-local synaptic connections of
the firing neuron, from which the synaptic inputs are derived.
The presynaptic data distribution module parallelizes this data
and delivers the synaptic inputs to the processing units (P1,
P2,.., P16); this is indicated by the dashed blue lines in Figure 1,
thereby distributing the workload generated by the incoming
presynaptic spike events. The ring buffers (RB) implement the
synaptic transmission delays and store the accumulated synaptic
inputs, i.e., the lumped excitatory iex and inhibitory iinh values.
Since the number of synapses by far predominates, the whole
process of presynaptic data distribution and processing is critical
to performance.

3. RESULTS

3.1. Single Node Performance
In the following, we consider an isolated HNC node that is not
embedded in a multi-node system for which otherwise inter-
node communication and synchronization latencies cannot be
ignored. For an isolated node, the previously explained two
distinct processes will exclusively determine performance where
the neuron state update process (red arrows in Figure 1), and
the process of presynaptic data distribution and processing
(blue arrows in Figure 1), contribute to different performance
relevant aspects. In Section 5.2, a performance model is
presented that is based on the HNC node microarchitecture
implementation details explained in Section 4.3. By additionally
taking communication latencies, inevitably occurring in a multi-
node system, into account, the model will also allow conclusions
to be drawn about the acceleration factors achievable for larger
network sizes and workloads.

The current HNC node design implements NM = 1024
neurons and allows CM = 128 target connections per source
neuron and node. This is in agreement with a connection
probability value of approx. ǫ = 0.1 observed in Braitenberg and
Schüz (1998). Note that the possible number of a source neuron’s
target connections is not restricted to the value of CM. It scales
linearly with the number of HNC nodes M in a cluster, i.e., it
yieldsMCM. A typical cortical neuron connects to between 1, 000
and 10, 000 other neurons. Consequently, a network of N = 105

where each neuron has 104 connections represents an upper limit
with regard to memory requirements and workload; beyond this,
the total number of synapses in a network scales linearly rather
than quadratically.

In order to evaluate the HNC node’s capability to perform in
different workload situations, we investigate a two-population

Frontiers in Neuroinformatics | www.frontiersin.org 5 June 2022 | Volume 16 | Article 884033256

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

A B

FIGURE 2 | Performance as a function of workload for the HNC node and NEST. The acceleration factor (wall clock time divided by the biological time) as a function

of the average number of spike events per simulation time step ν̄k of the HNC node using a PL clock frequency of fclk = 200 MHz (A) and the neural simulation tool

NEST on an Intel(R) Core(TM) i7-7700K CPU 4.20 GHz (Kaby Lake architecture) (B). The measurements were carried out with h = 0.1 ms simulation resolution. In

consecutive simulation runs of 5 min simulated biological time, the 1,000 neuron two-population Izhikevich neural network model described in Section 5.3 was

stimulated with an increasing external offset current iext = {−3.0 pA, ..,+100 pA}. Inset in (A) gives a log-lin representation.

network model consisting of 1, 000 neurons (see Section 5.3).
We measure the time to simulate the network and calculate the
acceleration factor as the quotient of the measured simulation
duration in wall clock time and the simulated biological time
of 300 s. We systematically vary the external input current
from iext = −3.0 pA to 100.0 pA. The increasing external offset
current causes the network to run through a wide range
of activity, from quiescence up to an average firing rate of
ν̄ = 300 spks/s and thus an increase in the workload. According
to the workload model described in Sec. 5.1, this results in an
average number of spike events per simulation time step (h =
0.1 ms) ranging from ν̄k = 0 to ν̄k = 30.

The result of the HNC node performance measurement is
shown in Figure 2A. For comparison, Figure 2B shows the
results for the same model implemented in NEST 2.20.1 (Fardet
et al., 2020) and executed on an Intel(R) Core(TM) i7-7700K
CPU 4.20 GHz (Kaby Lake architecture). If the workload is in
the range of a few spike events per simulation time step, the
HNC node outperforms the NEST simulation on the Intel Kaby
Lake CPU, and this even at ~4.5 W power consumption (see the
power report given in the Supplementary Material)—with the
Intel Kaby Lake CPU, a power consumption of several tens of
Watts is to be expected. If the external current is set to zero,
the network fires with an average rate of ν̄ = 7.0 spks/s, which
corresponds to a number of spikes per time step of ν̄k = 0.7.
For this workload, the acceleration factor achieved for the NEST
simulation is 8.4 compared to a factor of 127.0 measured for
the HNC node. The NEST simulator used for the comparison
is a runtime-optimized and flexible tool for a wide range of
neural network simulations and as such, is a good reference
in this regard. Clearly, a CPU-optimized implementation of

the specific network model can achieve even better results7.
However, the difference in performance and efficiency is such
that the HNC node performance is beyond the reach of
any CPU implementation. At low workloads, the hardware
implementation can fully utilize its capabilities. Pipelining and
the parallelization of operations increases throughput and reduce
latencies. This is mainly to be ascribed to the process of the
neuron state update, indicated by the red arrows in Figure 1. Its
implementation benefits from data-locality that is achieved by
storing variables in fast, low-latency on-chip BRAMmemories.

As the workload increases, the NEST implementation
undergoes a moderate degradation in performance. In contrast,
the performance deteriorates rapidly on the HNC node. This
is a trivial consequence of the data access latency and limited
bandwidth of the external memory decelerating the process of
the pre-synaptic data distribution and processing (marked by
the blue arrows in Figure 1), which now dominates operation.
This is examined in greater detail below for different hardware
design choices. Moreover, the measurements of the single
HNC node and CPU core performances only give an upper
baseline. For the simulation of larger networks on multi-
node or many-core systems in the following we examine the
effect on performance of the additional latencies arising from
synchronization and communication.

3.2. Performance Characteristics
Based on the HNC node microarchitecture (Section 4.3) and
their operating latencies (Section 4.3.3) a performance model

7AC-implementation of the networkmodel is provided on GitHub: https://github.
com/gtrensch/RigorousNeuralNetworkSimulations.

Frontiers in Neuroinformatics | www.frontiersin.org 6 June 2022 | Volume 16 | Article 884033257

https://github.com/gtrensch/RigorousNeuralNetworkSimulations
https://github.com/gtrensch/RigorousNeuralNetworkSimulations
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

A1 A2

B1 B2

FIGURE 3 | Performance as a function of PL clock frequency and workload for the HNC node and NEST. (A) Measured acceleration factors of the HNC node (blue

markers) as a function of workload for three different clock frequencies in log-lin (A1) and linear (A2) representation. Gray curves show the predictions of the

performance model (Section 5.2). (B) As in (A), but comparing the performance of the HNC node running at a PL clock frequency of fclk = 200 MHz to that of a NEST

implementation using one or four threads on an Intel(R) Core(TM) i7-7700K CPU 4.20 GHz.

is developed in Section 5.2. This model is used in the
following to evaluate the performance characteristics of the
HNC node as a stand-alone compute node and when operating
in a cluster configuration. In order to verify the correctness
of the performance model, we repeated the measurements
carried out in the previous section using three different PL
clock frequencies fclk = 100/150/200 MHz. The results are
shown in Figures 3A1,A2 where the blue markers indicate the
measured acceleration factors and the gray curves are calculated
from Equation (7) of the performance model. The predicted
acceleration factors are in almost perfect agreement with the
measured values.

The results also reveal that as the workload increases, the
achievable acceleration factor is increasingly determined—and
thus limited—by external memory access times (i.e., by the term
ν̄kLDS in Equation 7). This can not be compensated by a higher
PL clock frequency. However, an acceleration factor of ∼100 is
achieved for moderate workloads, i.e, ν̄k ≈ 1, h = 0.1 ms. Such
a workload is created, for example, by a network consisting of
N = 5, 000 neurons with an average firing rate of ν̄ ≈ 2 spks/s.

Figures 3B1,B2 compares the HNC node measurements at
a PL clock frequency of fclk = 200 MHz to the equivalent
simulation in NEST on a four-core Intel CPU. At low workloads,
the HNC node is an order of magnitude faster than the
NEST/CPU implementation. Even at high workloads, the HNC
node still simulates substantially faster than a single state-
of-the-art processor core. Such high workloads are not only
of theoretical interest in benchmarking tasks. As ν̄k increases

linearly with the network sizeN (Section 5.1), from a single-node
workload perspective and assuming a fixed number of neurons
per node, a small network at high average firing rates is equivalent
to a large network utilizing multiple nodes and exhibiting a low
average firing rate.

For example, for the cortical microcircuit model (Potjans
and Diesmann, 2014) which consists of N ≈ 0.8 · 105 neurons,
a value of ν̄k ≈ 23 can be expected8. At this workload the
HNC node achieves an acceleration factor of ∼7 while for a
single-threaded NEST simulation a factor of ∼2 was measured.
If the NEST workload is distributed, in the sense of strong-
scaling utilizing all four cores of the Intel CPU, the NEST
simulation is nearly as fast as the HNC node. Note that ν̄k ≈ 23
is a theoretical value in this case, as the current single node
implementation cannot accommodate a network as large as the
cortical microcircuit model.

Even though power efficiency was not considered in this
work, it is worth mentioning that the SoC device’s power
consumption is in the order of just a few Watts, and
thus achieves a much higher simulation efficiency than the
Intel core.

If the HNC node is to be operated in a cluster, the
adverse effect that additional inter-node communication has on
performance could influence design decisions such as the number

8A value of ν̄k = 23.24 spikes per simulation time step was determined
experimentally from a 15 minutes NEST simulation using the implementation by
van Albada et al. (2018).

Frontiers in Neuroinformatics | www.frontiersin.org 7 June 2022 | Volume 16 | Article 884033258

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

TABLE 1 | Parameter sets.

Parameters

Prototype High

data stream

parallelism

High

proc. units

parallelism

Low

proc. units

parallelism

Number of data streams, DS 2 16 16 16

Data stream latency, LDS 110 14 14 14

Number processing units, P 16 16 32 8

Number of neurons per processing unit, NP 64 64 32 128

ODE pipeline iteration latency, ILN 64 64 32 128

Acceleration factors w/o communication

Maximum, FMAX
S = FS(ν̄k = 0) 298.5 298.5 571.4 152.7

Low workload, FS(1.0) 104.7 177.0 246.9 113.0

Medium workload, FS(10.0) 16.9 84.5 97.7 66.5

High workload, FS(20.0) 8.8 52.4 58.4 45.6

Acceleration factors with communication

Maximum, FMAX
C = FC(0) 119.8 119.8 148.1 86.6

Low workload, FC(1.0) 67.6 91.7 107.5 70.9

Medium workload, FC(10.0) 15.0 51.7 56.4 44.4

High workload, FC(20.0) 8.1 34.8 36.9 31.3

The acceleration factors are calculated using the performance model (Section 5.2) for four different parameter sets prototype; high data stream parallelism; high processing units
parallelism; low processing units parallelism, and for three different workload situations, low, medium, and high as well as with and without inter-node communication. The number
of neurons per node NM = PNP = 1024, the PL clock frequency fclk = 200 MHz, the transmission latency time TCOM = 500 ns, and the per spike event transmission latency factor
α = 0.05 (see main text and Section 5.2 for description) are the same for all parameter sets.

FIGURE 4 | Performance characteristics estimation. Performance characteristics of the HNC node are calculated using the performance model (Section 5.2) for the

parameter sets prototype; high data stream parallelism; high processing units parallelism; low processing units parallelism. See main text and Table 1 for details. The

upper panels show the achievable acceleration factors as a function of workload with inter-node communication FC(ν̄k) (dashed curves) and without inter-node

communication FS (ν̄k) (solid curves); the lower panels show the stacked plots of the respective contributions to the loss of performance with respect to the maximum

achievable single-node acceleration factor FMAXS of the inter-node communication PC(ν̄k) (green) and presynaptic data distribution PS(ν̄k) (blue) (see Section 5.2).

of neurons per node and processing unit. For illustration, we
consider four sets of design parameters. These are as follows:
prototype—the parameter set corresponding to the prototypical
implementation generating the measurements presented above,

implementing P = 16 processing units, DS = 2 data streams
(marked S1 and S2 in Figures 8, 9), and NP = 64 neurons per
ODE pipeline; high data stream parallelism—as for prototype
but assuming that each processing unit connects to its own

Frontiers in Neuroinformatics | www.frontiersin.org 8 June 2022 | Volume 16 | Article 884033259

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

data stream (P = 16, DS = 16, NP = 64) introducing a factor
eight times reduction of external memory access latency; high
processing units parallelism—as for high data stream parallelism
but implementing twice the number of processing units in order
to halve the ODE pipeline iteration latency and increase the
maximum achievable single-node acceleration factor (P = 32,
DS = 16, NP = 32); and low processing units parallelism—
the opposite of high processing units parallelism, reducing the
number of processing units (P = 8, DS = 16, NP = 128). The
parameter sets are shown inTable 1. Note that the parameter sets,
with the exception of the prototype configuration, have not been
applied to the HNC node. The SoC device selected for this study
is limited to the prototype configuration in terms of number of
data streams.

The number of neurons per node (NM = 1024) and
the PL clock frequency (fclk = 200 MHz) are kept constant
across the parameter sets. To describe the effect of inter-
node communication on performance, the performance model
developed in Section 5.2 introduces two parameters: the
transmission latency time TCOM, and the per spike event
transmission latency factor α (for a description of the parameters
see Section 5.2). Their values were set to TCOM = 500 ns and
α = 0.05. They are the same for all parameter sets. The choice
for the transmission latency time is motivated by the temporal
resolution of h = 0.1 ms and an envisioned acceleration factor
of 100, which would be a major breakthrough for reproducible
large-scale neuroscience simulations. This assigns TCOM half of
the wall clock time that would be available to complete a single
simulation step. The value of the per spike event transmission
latency factor was arbitrarily chosen and corresponds to 5
additional clock cycles per spike event at a given PL clock
frequency of fclk = 200 MHz.

The upper panels in Figure 4 show the acceleration factors as a
function of the workload calculated according to the performance
model (Section 5.2, Equations 7, 8) both with and without
inter-node communication. In addition, the lower panels in
Figure 4 provide an alternative representation of the curves,
namely as the respective proportion of performance loss (with
respect to the maximum achievable single-node acceleration
factor for the corresponding parameter configuration) caused
by inter-node communication and by the process of the
presynaptic data distribution—mainly the effect of external
memory access latency (Section 5.2, Equations 11, 12). Table 1
shows the calculated acceleration factors for low, medium, and
high workload.

As one would expect, the additional communication latency
reduces the maximum achievable acceleration factors. For the
prototype configuration (Figure 4, prototype, upper panel), for
example, the factor decreases from 298.5 to 119.8 (Table 1). As
the workload increases, the effect becomes progressively smaller.
For the prototype configuration, for low workload, the factor
decreases by 35.5%, for medium workload by 11.2%, and for high
workload by 7.9%. For low workload, the achievable acceleration
is now determined by inter-node communication latency, but
toward higher workload external memory access time is still
the main contributor to performance degradation (Figure 4,
prototype, lower panel).

In the high data streaming parallelism configuration, we
therefore assign each processing unit its own data stream,
and by this means, introduce eight times higher parallelism
in the presynaptic data distribution—the two data streams
S1 and S2 (Figure 8) are each split into eight streams, thus
reducing external memory access times by a factor of eight.
Figure 4 (high data stream parallelism, upper and lower panel)
illustrate the effect. For medium workload and with inter-node
communication, the acceleration factor increases from 15.0 (for
the prototype configuration) to 51.7, i.e., by a factor of 3.4.

One may try to further improve performance by an increase
in the parallelism of the neuron and synapse model processing,
i.e., by introducing a higher number of processing units. The high
processing units parallelism configuration doubles the number
of processing units. This configuration achieves a very high
maximum acceleration factor of 571.4 for the single node without
inter-node communication. In a cluster such high acceleration
cannot be realized, even for low workload. Bound by inter-node
communication latency, the performance loss in relation to the
maximum acceleration is 74%, and for low workload 81.2%.
However, for high workload, external memory access time is
still the main limiting factor (Figure 4, high processing units
parallelism, upper and lower panel).

With regard to the hardware footprint and the required
FPGA resources—which is an important aspect of hardware
designs—the effect of a reduction of the number of processing
units is also of interest. The low processing units parallelism
configuration, therefore, implements half of the processing units
of the prototype configuration (Figure 4, low processing units
parallelism, upper and lower panel). For low workload and in
comparison to the high processing units parallelism configuration,
the acceleration factor decreases from 107.5 to 70.9, i.e., by 34%.
For high workload, the acceleration factor decreases from 36.9
to 31.3. This is a loss of only 15.2% and might be an acceptable
degradation when making design decisions oriented toward a
high workload scenario, given that thereby 75% of ODE pipeline
hardware resource, namely digital signal processing (DSP) units,
can be saved with this configuration. Saving hardware resources
reduces power consumption and thus increases simulation
efficiency. Considering the above, for medium workload the
high data stream parallelism configuration can be a compromise
with regard to the achievable acceleration factors for different
workload situations and the required chip resources. For the
HNC node prototype implementation the utilization of the SoC
chip resource are given in the Supplementary Material.

The current implementation of the HNC node configured
with the prototype parameter set and operated in a cluster would
achieve an acceleration factor in the order of 10–50 for medium
and small workloads. Such a workload is created, for example,
by a network consisting of N = 10, 000 neurons with an average
firing rate of ν̄ ≈ 2..10 spks/s. To simulate such a network, 10
HNC nodes would need to be clustered.

3.3. Correctness
In order to meet the requirement of an accurate and reproducible
simulation we evaluated the equivalence of the simulation
results produced by the HNC node and a ground truth.

Frontiers in Neuroinformatics | www.frontiersin.org 9 June 2022 | Volume 16 | Article 884033260

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

FIGURE 5 | Quantitative comparison of statistical measures. Upper two rows from left to right: probability distribution of average firing rate (FR), coefficient of variation

(CV), and Pearson’s correlation coefficient (CC) for the excitatory (EXC) and the inhibitory (INH) population. The measures were calculated from 30 min simulated time.

For the calculation of CC, spike trains were binned at 2 ms. In order to derive the probability distributions from the calculated measures, the Freedman-Diaconis rule

was applied to select the width of the bins of the distribution histograms, and a Gaussian kernel was used for density smoothing. The bottom row shows the

Kolmogorov-Smirnov statistics calculated from the raw samples of the calculated statistical measures. During the simulations performed on the HNC node, using the

NEST simulator, and carried out using the reference C implementation, the network was stimulated with a different random input—a limitation of the HNC node

prototype and hardware implementation of the PRNG. All three simulations used the same explicit Forward Euler integration method with an integration step size of

h = 0.1 ms. All measures are in close agreement and show statistical equivalence.

In this validation process we aimed for the reproduction
of the dynamics of a selected network state obtained from
a reference implementation of the two-population Izhikevich
network described in Section 5.3. This reference implementation
was written in the C language and developed as part of an earlier
study (Trensch et al., 2018). The source code is available online9.
To create the network state, the ground truth, the network was
trained for 1 h biological time using a spike time dependent
plasticity (STDP) rule (see the description of the network given
in the Supplementary Material). After 1 h of simulated network
time, the current state of the network was captured by exporting
the network’s connectivity data. The connectivity data was then
imported back into the C simulation, and with the STDP rule
turned off, from 30 min simulated time the spikes were recorded
while the network was stimulated with a random input. This
recorded network activity data defined the ground truth, that is,
the captured network state that defines a reliable reference. For
reproduction, we loaded the connectivity data into theHNCnode
and repeated the simulation. To provide further evidence and

9 https://github.com/gtrensch/RigorousNeuralNetworkSimulations

to substantiate the correctness of the simulation result generated
by the HNC node, the connectivity data was also imported into
the NEST simulator and we repeated the simulation again. When
simulating a network, it is sufficient to communicate spike events
at intervals less or equal to the minimum synaptic delay in
the network. The NEST implementation makes use of this and
propagates spike events on a 1 ms grid - the minimal synaptic
delay in the two-population Izhikevich network. In contrast, the
HNC node communicates spike events at 0.1 ms intervals. For
progressing neuron model dynamics, an integration step size
of h = 1 ms would not be sufficient to achieve the necessary
numerical accuracy (Pauli et al., 2018). Therefore, both NEST and
the HNC node use an integration step size of h = 0.1 ms. The
NEST Izhikevich neuron model implementation was adapted
accordingly. The simulation script and the source code is
available online9.

From the three obtained data sets of network activity, the
probability distribution of the firing rates (FR), the coefficient
of variation (CV), and the Pearson’s correlation coefficient (CC)
were calculated and compared. The statistical measures are
described in the Supplementary Material. The result of the

Frontiers in Neuroinformatics | www.frontiersin.org 10 June 2022 | Volume 16 | Article 884033261

https://github.com/gtrensch/RigorousNeuralNetworkSimulations
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

comparison is shown in Figure 5. All measures are in close
agreement and show statistical equivalence.

Simulation results must not only be reproducible and in
agreement with a reliable reference, but also replicable, i.e.,
spike-identical in repeated simulations. Replicability was tested
by repeatedly simulating the two-population Izhikevich network
for 20 minutes simulated time. Due to limited numerical
precision and rounding errors, operations are not commutative.
Therefore, and to strengthen the tests, the network was also
logically shifted across processing units in order to assign a
logical neuron-id to different hardware resources, and thus
force a different spike ordering and scheduling of operations.
The simulation results were successfully validated for spike-
identicality (data not shown).

4. ARCHITECTURE

4.1. System-Level Architecture
We chose the XCZ7045 SoC from the Xilinx Zynq-7000 SoC
device family (Xilinx, 2021) for the technical implementation,
and all work presented in this article was carried out on a Xilinx
Zynq-7000 SoC ZC706 development board (Xilinx, 2019e). The
XCZ7045 integrates a dual-core ARM Cortex-A9 processor (up
to 1 GHz) and a freely programmable and re-configurable logic
device, i.e., an FPGA with the size of 350, 000 configurable
logic blocks (CLBs). It provides ~218, 000 look-up tables (LUTs),
~437, 000 flip-flops (FFs), 19.2 Mbit of fast static block RAM
(BRAM) that can be customized for different configurations, and
900 digital signal processing (DSP) blocks for the implementation
of arithmetic operations.

Figure 6 shows the system-level view of the implemented
HNC node architecture. It details the major components and
modules, their interaction and functional assignments. The
operation of the HNC node is software-controlled. The program
executable is located in the external memory (top right) and
executed by the processing system’s (PS) application processing
unit (APU) (upper dashed box). For user interaction, debugging
and data exchange, the HNC node is connected to a Linux
host system (upper left) via an Ethernet (ENET) connection
for the read-out of recorded spike events, a JTAG10 connection
for programming and debugging, and a serial UART11 user
console interface.

The simulation engine’s core components are realized in
programmable logic (PL). They are shown in the lower dashed
box in Figure 6. Function-wise, the hardware components can
be assigned to four distinct steps in the process of carrying
out a simulation cycle: (i) presynaptic data distribution; (ii)
presynaptic data processing; (iii) neuron and synapse model
update; and (iv) spike events processing.

Presynaptic data distribution: triggered by postsynaptic spike
events, the PS/PL Data Transfer Module initiates read operations
from the external memory to obtain the node-local connectivity
information (see Section 4.3.1) of the firing neurons. In order
to do so and make optimal use of the read bandwidth of the

10JTAG is an industry standard named after the Joint Test Action Group.
11Universal Asynchronous Receiver Transmitter.

external memory, the PS/PL Data Transfer Module is connected
to the PS via a pair of high performance ports (HP1, HP3)
capable of working independently of one another. At its outputs,
the module connects to a series of first-in-first-out (FIFO)
buffers (in Figure 6 referred to as RB FIFOs) which compensate
for latencies and to which the presynaptic date is distributed.
The RB FIFOs connect the PS/PL Data Transfer Module to 16
identical processing units (P1, P2,.., P16). The processing units
parallelize and pipeline the computations for the presynaptic data
processing and the neuron and synapse model dynamics.

Presynaptic data processing: In order to derive the synaptic
inputs iex and iinh from the presynaptic data, the presynaptic
data is fetched from the RB FIFOs and passed through the RB
pipelines. The RB pipelines operate on the ring buffers (RBs) and
accumulate the synaptic inputs, the values of which are stored
and delayed for further processing by placing them into the RBs.

Neuron and synapse model update: The ordinary differential
equation solver pipelines (ODE pipelines) retrieve the
accumulated synaptic input values from the RBs and progresses
the neuron and synapse model dynamics; updating the models’
state vectors in the state variables buffers (SVBs). In addition,
an XNOR-shift PRNG can provide a random external network
stimulus {iP1ext, .., i

P16
ext } which is directly applied to the neurons in

the ODE pipelines.
Spike events processing: In principle, there can be as many

spike events occurring in each unit, and in a single simulation
time step k, as the number of neurons processed in a pipeline.
In other words, in extreme, 16 · NP = NM = 1, 024 spike events
need be buffered, serialized and packed for local (intra-node)
and external (inter-node) spike communication, as well as for
recording. The associated components that are related to this
process are shown at the lower right in Figure 6.

In order to enable the APU to perform software-controlled
read and write operations on the SVBs to access the state
variables, all processing units are chained to one another and
connected to a direct memory access (DMA) controller.

The aforementioned modules mainly represent the data paths
or operate on them. To orchestrate the control flow, additional
components are required for configuration, simulation control,
and synchronization. For configuration and simulation control, a
bank of 32-bit registers store node control and status information
(shown at the mid left in Figure 6). All registers are mapped into
the APU’s address space and thus accessible by the node software.
Their settings steer the operation of a finite state machine (FSM)
responsible for generating all control signal sequences for the
different operating modes (e.g., load state variables, progress
simulation by k steps, unload state variables). To preserve the
temporal causality and ensure the correct sequence of operations,
all spike events of a simulation step k must have been delivered
and the RB buffer updates must have been completed before the
next simulation step k+ 1 can be initiated. This is ensured by an
intra-node synchronization logic which monitors the operating
status of all modules. The module is shown at the lower left
in Figure 6. Technically, it implements a barrier mechanism
that synchronizes the overall processing at the end of every
simulation step. In a multi-node configuration this extends to
an inter-node barrier message—software simulators, such as

Frontiers in Neuroinformatics | www.frontiersin.org 11 June 2022 | Volume 16 | Article 884033262

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

FIGURE 6 | System-level view of the HNC node hardware architecture. The on-chip components are framed by the dashed lines. The lower frame encloses all

modules that have been implemented in programmable logic (PL), while in the upper frame the components of the processing system (PS) are shown. Attached to it is

an external 1 GiB DDR RAM module (upper right). It stores the node software system executable and the data structures required for operation, for example, the state

variables and connectivity information. The external memory also functions as buffer for the recorded spike data. The PS is further connected to a Linux host system

(upper left) which provides a serial console to operate the HNC node, the Xilinx Vivado environment for development, and a TCP/IP server to collect the recorded

binary spike data.

Frontiers in Neuroinformatics | www.frontiersin.org 12 June 2022 | Volume 16 | Article 884033263

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

NEST (Gewaltig and Diesmann, 2007) use MPI12 barrier calls for
this purpose.

The entire hardware design—with the exception of the DMA
controller and the FIFO blocks for which Xilinx soft IP cores
were used—was implemented on the register transfer level
(RTL) in VHDL. The decision to take this more arduous and
time consuming approach—rather than a high level synthesis
(HLS) implementation (Xilinx, 2019c)—is motivated by the
endeavor to maximize control over the microarchitecture details
in order to optimize the timing behavior. The current HNC
node implementation works stable up to a PL clock frequency
of fclk = 200 MHz. The software implementation was carried
out in the C language. For the development process the Xilinx
Vivado Design Suite (Xilinx, 2019d) and the Xilinx Vivado SDK
and embedded system tools (Xilinx, 2019b) were used which
provide the development tools for hardware-software co-design,
synthesis and analysis.

4.2. Software System Architecture
Figure 7 outlines the basic architecture of the HNC node
software system, which is executed by the SoC’s integrated APU.
At its lowest level, an abstraction layer provides fundamental
routines to drive the hardware functions, for example, to reset
and initialize components, to handle interrupts, to establish
a basic serial console and TCP/IP communication, and to
initiate direct memory access (DMA) transfer operations.
Helper- and low-level simulator functions, such as routines
to load and unload the state variable buffers, build on top of
this layer providing the foundation for the actual simulator
functions—the kernel of the software system. The main
components here are the Neuron Manager, responsible for
the instantiation of neurons, and the Connection Manager,
responsible for creating the synaptic connections. At the highest
level, a C-API provides Create(..), Connect(..), and
Simulate(..) function calls, which represent a minimal
set of functions required to instantiate and simulate a network.
Besides the simulator core-functionality, we implemented
functions for system configuration, testing and debugging as
well as for user-interactive node control. Access to those is
given through a serial user console interface. To minimize the
resources footprint and achieve best possible performance, the
software system was implemented as bare-metal application,
running natively without the use of any underlying operating
system. When executed, it makes use of one of the two ARM
Cortex-A9 cores that the APU provides. During the execution of
a Simulate(..) function call, no operations on the external
memory are performed by the APU. This allows the PL to make
optimal use of the bandwidth of the external memory while a
simulation is running.

4.2.1. Node-Local Network Instantiation
The current HNC node prototype requires that the neural
network model is formulated as a sequence of Create and
Connect function calls, which needs to be compiled to an

12Message Passing Interface, https://www.mpi-forum.org/.

executable. In this object-format it is loaded into the external
memory and executed when a Simulate function call is issued.
Each Create instantiates a single neuron. The function takes
as its arguments a model name, the initial values of the neuron’s
state variables, and a logical neuron-id, which identifies the
neuron on the node. The Create function calls are processed
by the Neuron Manager. It maps the logical neuron-id to
a dedicated hardware resource identified by a resource-id, i.e.,
a processing unit and a position in the ODE pipeline. This
process mainly consists of setting up the data structures for
state variables in memory while administering byte-orders and
data type conversions according to the model-specific hardware
implementation. The DMA controller operates directly on these
data structures when the processing units are “loaded” and the
state variables are moved to the SVBs—and also vice versa when
“unloaded” and the data is read back to external memory. In the
current implementation, an interrupt-controlled DMA operation
takes≈ 30µs to fill the SVBs while 16KiB of data is transferred in
order to load or unload the states of NP = 1024 neurons.

Analogous to the Create function call for the instantiation
of a neuron, a Connect function call creates a single connection.
It expects in its argument list a logical source neuron-id (for
a multi-node system extended by a node-id), a logical target
neuron-id, as well as the synapse parameters, i.e., a weight
and a delay. From the sequence of Connect function calls,
the Connection Manager builds the data structures in the
external memory that represent the network connectivity. This
structure associates each source neuron with a list of synapse
target connections.

4.2.2. Recording
The HNC node implements two different solutions for recording
the network activity data, one for recording spikes and one
for recording state variables. Recording spike events is a fully
asynchronous process which is decoupled from the simulation
scheduling. During a simulation, the spike events are grouped
together as they occur and packed to 64-bit values which
are buffered in the Recording FIFO (shown at the bottom
in Figure 6) before being written to external memory. The
high performance port HP3 is used for the write operations.
Its read channel is already assigned to the retrieving of the
presynaptic data. Sharing the port—and the external memory—
does not create any visible read-write contention. Performance
measurements carried out with and without spike recording
did not show any degradation in performance with active
spike recording and led to comparable results for the measured
acceleration factors, even at high spike rates. The current design
implements a recording buffer with a size of 60MiB capable
of caching ~15M spike events. This buffer is written by the
recording hardware in a round robin manner and emptied by
the simulation kernel’s Recording Client (Figure 7), which
transfers the data via a TCP connection to a TCP server running
on the Linux host system. For the client implementation on the
HNC node the open-source lightweight IP13 (lwIP) TCP/IP stack
was used, which comes with the Xilinx board support package,

13http://savannah.nongnu.org/projects/lwip/

Frontiers in Neuroinformatics | www.frontiersin.org 13 June 2022 | Volume 16 | Article 884033264

https://www.mpi-forum.org/
http://savannah.nongnu.org/projects/lwip/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

FIGURE 7 | HNC node software system architecture. The tiered architecture provides abstraction at different functional levels. (A) The low-level system routines hide

technical details about the operation of the implemented hardware components. Based on this, low-level simulator and helper functions (B) form the foundation for

the core component of the HNC node software (C), that is, the simulator functions. (D) At the highest level, a minimal set of functions is provided to instantiate and

simulate a network. (E) In addition, the software system implements components that are responsible for control, testing, and debugging and also enable user

interaction.

and is included in the Vivado SDK. In order to read out
state variables, a running simulation must be halted to allow
the DMA controller to access the SVBs. Consequently, capturing
state variables significantly reduces performance. On the other
hand, the DMA provides the APU with an efficient way to access
all state variables at once and at any desired interval.

4.3. Microarchitecture
The module microarchitectures presented in this section try to
bring the data and the operations performed on them as close
together as possible. The implementations aim at optimal low-
latency solutions utilizing SoC device features, such as low-
latency BRAM and high-performance streaming interfaces for
external memory access.

4.3.1. Connectivity Representation and Presynaptic

Data Distribution
The structure in which the network connectivity data is stored
in memory is determined by the microarchitecture of the PS/PL
Data Transfer Module, which is shown in Figure 8. Upon
the arrival of a spike event, it retrieves the list of synapse
target connections Cj associated with a source neuron nj, and

distributes the data items to the RB FIFO buffers for further
processing by the RB pipelines (see also Figure 6). Such a
retrieved list constitutes the presynaptic data. It is represented by
a list of quadruples Cj = {(sij, ni,wij, dij), .., ()}, where ni specifies
the target neuron, wij and dij denote the synaptic weight and
delay values, and sij is a data path control value assigning a
data item to its associated RB FIFO buffer by controlling the
demultiplexer circuits (DMUX, Figure 8). The data format of the
synaptic target list items is detailed in Supplementary Figure S1.
The demultiplexers connect the data paths alternately with the
RB FIFO buffers and thus the processing units. This architecture
detail comes in handy when removing, adding, or combining
processing units, as it helps to maintain a balanced load on
the high-performance ports. The design and implementation
of the module aim at lowest possible data access latency and
an optimal utilization of the available read bandwidth of the
external memory. Therefore, the PS/PL Data Transfer Module,
residing in the PL, is interfaced with the PS, and thus with the
external memory, through the two high-performance ports HP1
and HP3. This splits the target list into the two lists CS1

j and

CS2
j assigned to HP1 and HP3, respectively. Their assignment

(and associated data paths) are indicated in red and blue in

Frontiers in Neuroinformatics | www.frontiersin.org 14 June 2022 | Volume 16 | Article 884033265

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

FIGURE 8 | Presynaptic data distribution. Upon the arrival of a spike event, the presynaptic data is read from the external memory in two independent parallel data

streams S1 and S2, indicated by the red and blue arrows, and distributed to the RB FIFOs by the demultiplexers (DMUX). While the Processing System (PS) performs

the external storage operations bypassing the APU (not shown in the figure), the PS/PL Data Transfer Module controls the two AXI data streams and the

high-performance ports HP1 and HP3 through which it connects to the PS. It calculates the memory addresses of two lists, CS1
j and CS2

j which constitute the two

data streams, that is, the presynaptic data associated with the neuron that has emitted the spike. This data is stored in two different memory regions, marked by the

red and blue boxes.

Figure 8. The two high-performance ports are capable of working
in parallel and independently of one another, while for example,
the ports HP0 and HP1 would share the same PS resources,
hindering full parallelism.

In terms of implementation, the port interfaces follow the
Advanced eXtensible Interface14 (AXI) standard (Arm Limited,

14The Advanced eXtensible Interface (AXI) standard is an extension of the
Advanced Microcontroller Bus Architecture (AMBA), which is an open standard.

2021). More precisely, they provide 64-bit AXI3 Slave interfaces.
On the PL, the PS/PL Data Transfer Module architecture bundles
two AXIMaster stream interface implementations that constitute
their counterparts. The AXI protocol is based on data bursts.
The presynaptic data to be retrieved upon the occurrence of a
single spike event is transmitted in two parallel sequences of four
bursts, i.e., four bursts on each port, where a burst consists of 16
64-bit data items. The principle is shown in Figure 9. The red
and blue colors correspond to the datapath coloring in Figure 8.

Frontiers in Neuroinformatics | www.frontiersin.org 15 June 2022 | Volume 16 | Article 884033266

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

FIGURE 9 | AXI stream protocol implementation. To create data streams that are as continuous as possible, data transfers are already scheduled without waiting for

the preceding transfer to complete. Per spike event, the transfer of a sequence of four data bursts is initiated on each of the two read data channels associated with

the two streams S1 and S2 (marked red and blue). For this purpose, the memory read base addresses of the four burst data packets are transmitted as a block on

the read address channels.

The read address channels describe the address and control
information of the data bursts transferred on the read data
channels. The addresses

(

addr(CS1
j), addr(CS2

j)
)

are calculated

from the neuron-id and node-id (nj,m) of the source neuron that
emitted the spike, the burst length (lenburst), and the memory

base addresses of the two target lists
(

addrS1base, addr
S2
base

)

.

In order to generate data streams that are as continuous as
possible, read operations that are triggered by subsequent spike
events are already scheduled even though the read data channels
are still occupied. By this means, the two data streams S1 and
S2 are created. Every spike event triggers a transfer of a 1KiB
data packet from external memory. For a single data packet,
an average transmission time of ~550 ns (fclk = 200 MHz) was
measured. This corresponds to a data transfer rate of 1818 MiB/s
which is a much higher throughput than achievable with a Xilinx
AXI DMA soft IP core (Xilinx, 2019a)—the common solution
for high-bandwidth direct memory access. The DMA soft IP
core throughput is specified with 399.04 MB/s at 100 MHz clock
frequency (Xilinx, 2019a).

The transfer parameters, the number of bursts and the size
of a burst, are configurable in control registers. They were
set as discussed above allowing a source neuron to make 128
synapses on a node. In the current prototypical implementation,

the transferred data packets are of same size for all spike
events. Unused list entries are read from memory but they are
not distributed.

The RB FIFO buffers which connect the PS/PL Data Transfer
Module with the processing units serve two purposes. First, they
buffer the synaptic input derived from incoming spike events for
the time that the ODE pipelines are operating on the ring buffers
(RBs) and blocking them for parallel read operations, and second,
they allow a clock domain crossing. We have not yet investigated
the latter, but it would allow the PS/PL Data Transfer Module to
operate at a higher clock frequency than the processing units,
which could have a positive impact on the latency of external
memory data access.

4.3.2. Ring Buffer Processing and Ordinary

Differential Equation Solver Pipeline
The HNC node’s processing units draw their ability to accelerate
computations primarily from the pipelined processing when
accumulating the synaptic inputs in the ring buffers, and when
progressing the neuron and synapse model dynamics in the
ODE pipelines. This capacity builds on the usage of fast, low-
latency on-chip BRAM for storing local variables. Figure 10
shows the involved components and their interaction for a
single processing unit. In every simulation time step, the ODE

Frontiers in Neuroinformatics | www.frontiersin.org 16 June 2022 | Volume 16 | Article 884033267

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

A B

FIGURE 10 | Ring buffer (RB) architecture and interaction of components. Local variables are stored in the ring buffer (RB) and the state variables buffer (SVB). For

their implementation fast, low-latency on-chip BRAM memories were used. Shown is the interaction of the RB pipeline and the ODE pipeline which both operate on

the RB. To avoid additional write operations by the ODE pipeline to invalidate the RB entries when processed, each entry is provided with a time stamp kval that
indicates the RB cycle for which it is valid. The value of kval is calculated by the RB pipeline—see also the RB update algorithm (Figure 11)—and compared with the

current simulation time step to verify an entry’s validity when read by the ODE pipeline for processing. The principle is illustrated in (B) where the data path is marked in

red. The corresponding RB layout is shown in (A).

pipeline updates the state vectors of 64 neurons (yyyk → yyyk+1)
while operating on the state variables buffer (SVB). The SVB is
implemented as true dual-port BRAM enabling high pipeline-
throughput and minimal iteration latency. The state vectors are
implemented as 128-bit data words, where 120 bits are available
for use to store the state variables and 8 bits are required for
pipeline control. The representation of the 120-bit data word,
in terms of the number of state variables, their length and
type, is determined by the model’s hardware implementation
and its counterpart in the software system, namely the function
for neuron instantiation as part of the neuron manager. This
generic approach allows a certain flexibility with regard to
the choice of data types and operations according to the
numerical precision required by the model to be implemented.
This architecture is open to extensions, as the ODE pipeline
module can be exchanged to support a wide variety of neuron
and synapse models. An example implementation is given in
Supplementary Figure S3. It shows the microarchitecture of the
Izhikevich model implementation used for the performance
evaluation and validation task conducted in this work.

AnODE pipeline retrieves the accumulated synaptic inputs iex
and iinh from the RB and may also receive input from an external
source, such as a PRNG. Like the SVB, the RB is also implemented
as true dual-port BRAM. The buffer layout, shown in Figure 10A,
consists of KRB segments subdivided into NP = 64 entries -
the number of neurons in the pipeline. The RB is read in a
round-robin fashion by the ODE pipeline, such that a segment
is re-addressed after k+ KRB simulation time steps. The delay

resolution—the minimum of which is given by the simulation
resolution, i.e., dmin = h = 0.1 ms—and the number of segments
KRB determine the maximum possible synaptic delay.

RB entries that have already been processed, and are
thus outdated, remain in the buffer and may be erroneously
reprocessed by the ODE pipeline in subsequent RB cycles. In
order to avoid having to add an additional write operation to the
ODE pipeline to mark an entry as processed, and thus invalid, we
implemented a solution which turns this approach around.When
updated, an entry is marked with a time stamp kval that indicates
the RB cycle for which the entry is valid. The principle is shown in
Figure 10B. This valid time stamp is derived from the calculated
target simulation step k′ ← k+ dij excluding the lower log2(KRB)
digits. Upon entering the ODE pipeline, the higher order bits of
k and the value of kval are checked for equality. If this is the case,
iex and iinh are valid synaptic inputs. This method further avoids
the restoring of RB entries in the situation of an ODE pipeline
restart (see below). The disadvantage of this solution is a higher
consumption of the scarce BRAM resources.

In contrast to the ODE pipelines that are controlled by
a finite state machine, an RB pipeline works in a purely
event-driven fashion. When not stalled by ODE pipeline
operations, the presynaptic data buffered in the RB FIFO is
being fetched. It is then passed through the RB pipeline which
executes the ring buffer algorithm detailed in the flow diagram
in Figure 11.

The proposed design raises two issues of potential read-
before-write conflicts which need to be taken into consideration.

Frontiers in Neuroinformatics | www.frontiersin.org 17 June 2022 | Volume 16 | Article 884033268

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

FIGURE 11 | Ring buffer update algorithm. The algorithm is executed by the RB pipelines. The blue arrows indicate in- and out-going data items at different pipeline

stages. The dashed box is for simplified illustration and shows the algorithm for the exceptional case of static synapses where a neuron’s excitatory and inhibitory

synaptic input can be lumped together. In all other cases, the algorithm expands according to the table on the upper right.

Even though RB update operations never address an RB segment
that is processed in the current time step k, it may nevertheless
happen that an RB write operation is not considered in further
processing. This can be the case if a presynaptic data item
represents a synapse with dij = dmin, i.e., a 0.1 ms delay. The
initiated update on the k+ 1 RB segment may have no effect
as it is already being fetched into the ODE pipeline for the
next simulation step. In such a case, the ODE pipelines must
be reset and restarted. This adds an additional latency LODE to
the processing, where LODE denotes the pipeline depth. In the
proposed design the ODE pipeline restart is software controlled.
Whether a restart condition is indicated or not depends on the
synaptic delay value and is encoded in the presynaptic data
(see table in Supplementary Figure S2). This information is
passed to the finite state machine that is controlling the ODE
pipeline operation and considered when the next simulation
step is initiated. Another read-before-write conflict arises in the

RB pipeline itself, caused by BRAM read, write, and operation
latencies. These must be taken into account if consecutive
presynaptic data items initiate updates on the same RB entry.
The reading of an entry for which a previous write operation
has not yet completed will lead to a wrong synaptic input value.
This problem may only arise with multapses. It can also be
solved in software by rearranging the lists of synaptic targets
in memory.

It is also worth mentioning that a ring buffer shares its read
ports between the RB and ODE pipelines. We have investigated
the impact of read contention on performance due to concurrent
read operations.When not considering an asynchronous external
spike input and long ODE pipeline iteration latencies, only an
early arriving spike event may find the RB pipeline stalled when
placing data in the RB FIFOs. The additional latency is minimal
(in the order of a few clock cycles per simulation time step) and
thus can be neglected.

Frontiers in Neuroinformatics | www.frontiersin.org 18 June 2022 | Volume 16 | Article 884033269

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

A

B

C

FIGURE 12 | Operating latencies. The scheduling of operations and the latencies associated with it, distinguishes two basic cases. (A) If no spike events occur,

operation mainly reduces to ODE pipeline processing. (B) Normally, spike events have to be processed which changes and adds latencies. Postsynaptic spike events

must be serialized, and for incoming presynaptic spike events the presynaptic data must be retrieved from external memory. (C) Table listing relevant latencies. The

value of LDS cannot be derived from the microarchitecture; its average value was determined using an external logic analyzer.

4.3.3. Operating Latencies
In order to further examine the design, we extracted the operating
latencies from the microarchitecture VHDL implementation,
or where that was not possible, measured them with an
external logic analyzer. The timing diagrams and the table in
Figure 12 details the performance relevant operating latencies
of the HNC node in clock cycles and show the timing of the
operation scheduling.

At simulation start (and restart) the ODE pipelines are empty.
An initial memory read operation that fetches the first data items,
and the process of filling the ODE pipelines results in the latencies
LRD and LODE. This is illustrated in Figure 12A for the case of
two simulation steps in which no spike events occur. The latency
LODE corresponds to the depth of the ODE pipelines and may
differ depending on the implemented model. The same holds for
the iteration latency ILN, which is the number of clock cycles
required to process allNP = 64 neurons assigned to a pipeline. At
the end of a simulation step a few clock cycles LSYNC are required
for synchronization.

Spike events can occur in every clock cycle of the ODE
pipeline operation, as depicted in Figure 12B. They are serialized
and packed, resulting in a latency of LSE (see also the table
in Figure 12C). Before the presynaptic data can be read from
external memory, its memory addresses have to be calculated.

The latencies created by this process are summarized in LIDS.
The high-performance ports and the memory controller on the
PS, as well as the external memory itself, determine the overall
read access latency, and hence the value of LDS as the data
is streamed into the RB FIFOs by the PS/PL Data Transfer
Module. The components involved are connected to different
clock domains and contribute with latencies that are determined
by the SoC technology rather than by the implemented user
logic. We therefore measured the value as the number of PL
clock cycles required for the transfer of a 1KiB data packet—the
amount of data which is read from external memory upon the
occurrence of a single spike event—for three PL clock frequencies
fclk = 100/150/200 MHz.

At the end of a simulation step in which spike events had to be
processed, the RB pipelines might still be filled, and pending RB
updates must be finalized. This adds the latencies summarized in
LRB. Finally, the HNC node goes into synchronization to prepare
for the next simulation step. This requires a few clock cycles at the
end of a simulation step compared to the situation where no spike
event occurred. This adds the latency LSESYNC to the processing.

In amulti-node system, the total latency would be extended by
inter-node synchronization times. This is not explicitly included
in the timing diagrams in Figure 12 but indicated by the
red barriers.

Frontiers in Neuroinformatics | www.frontiersin.org 19 June 2022 | Volume 16 | Article 884033270

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

5. METHODS AND MATERIALS

5.1. Workload Model
The synchronous, time-driven neuron states update process (red
arrows in Figure 1) generates a computational cost determined
almost exclusively by the number of neurons processed by
a single processing unit, and thus adds a constant operating
latency. In contrast, the computational cost of the asynchronous,
event-driven process of presynaptic data distribution and
processing (blue arrows in Figure 1) depends mainly on the
amount of presynaptic data to be processed and retrieved from
external memory. The amount of data is determined by the
average number of synapses on a node that a source neuron
connects to CM, as well as the total number of spike events
processed by the node. For a given number of neurons per node
NM—which is a hardware design parameter and a constant—a
certain number of nodes M is required to simulate a network of
size N. The connection probability ǫ of the network determines
the average in/out-degree K = ǫN, i.e., the number of in- and
out-going synaptic connections of a neuron, which grows with
the network size. Since the connections are distributed across the
nodes, the average number of synapses on a node that a source
neuron connects to remains constant for a given ǫ, even if the
network size is growing. This is expressed by Equation (1).

CM = ǫNM =
ǫN

M
(1)

Because CM is a constant, the average amount of presynaptic
data retrieved from external memory is consequently of same size
for every spike event. It is therefore practical to consider as an
indicator of computational workload the average number of spike
events processed per simulation time step k:

ν̄k = Nν̄h, with ν̄ =
1

N

∑

N

nsp(T)

T
(2)

ν̄k =
h

T

∑

N

nsp(T) (3)

where ν̄ is the average firing rate calculated over all neurons in
the network, nsp is a neuron’s total spike count in the interval
T, and h defines the temporal resolution, the step size, of the
grid-based simulation, i.e., the time interval h = 1t = tk+1 − tk.
Note that this metric is initially independent of the number of
neurons simulated.

5.2. Performance Model
We exploit knowledge of the HNC node microarchitecture
latencies to derive a performance model that allows conclusions
to be drawn about the performance characteristics in different
scenarios regarding the workload and design and technology
parameters. We make the following assumptions that represent
a scenario that maximally challenges the hardware:

• All neurons have at least one target connection with a synaptic
delay value dij = dmin.

Every spike event will initiate an ODE pipeline restart.
This adds the latencies LRD and LODE (Figure 12) to every
simulation step.
• Spike events are distributed uniformly across the neurons in an

ODE pipeline and over pipeline iterations.
We assume that the expected value for the timing of a spike
event is the middle of an ODE pipeline iteration, i.e., at ILN/2.
This is justified by the two-population Izhikevich network
used for the benchmarking (Sec. 5.3), and the placement of the
neurons on the processing units.
• All lists of synaptic target connections are the same length.

This is justified by the current design (Section 4.3.1). Upon
every spike event, a 1KiB data packet is transferred from
external memory to the RB FIFOs.

As explained in the previous section, we take the average number
of spike events ν̄k processed in a single simulation step k as a
measure of the workload. The time span to perform a single
simulation step becomes minimal if no spike events occur, and
is predominantly determined by the number of serially processed
neurons assigned to anODE pipeline. This is reflected in theODE
pipeline iteration latency ILN. Together with the synchronization
latency LSYNC, it sets the upper bound for the single-node
acceleration factor FMAX

S at a given clock frequency fclk. From the
timing diagram in Figure 12A we derive:

FMAX
S =

khfclk

LRD + LODE + k(ILN + LSYNC)
(4)

where k denotes the number of simulation steps, and h specifies
the temporal resolution of the simulation, i.e., h = 1t = 0.1 ms.
For k≫ 1 this simplifies to

FMAX
S =

hfclk

L6

(5)

where L6 = ILN+LSYNC. Analogously to L6 , which summarizes
the processing latencies for the non-spiking case, latencies
arising from processing spiking events can be summarized
according to the timing diagrams and process scheduling shown
in Figures 12A,B. This consists of the sum of the latencies for the
spike events serialization and buffering process (LSE = LSEP +
LSES + LSEF), the latencies incurred by the initiation of the data
streams S1 and S2 (LIDS = LIDSCAL + LIDSADR), see Figure 9,
and the latencies resulting from the processing of outstanding
presynaptic data items at the end of a simulation step (LRB =
LRBF + LRBP). The number of clock cycles for each latency, as
well as its description, can be found in Figure 12C. Altogether,
this results in

LSE6 = LRD + LODE +
ILN

2
+ LSE + LIDS + LRB + LSESYNC (6)

The term ILN/2 in Equation (6) reflects the assumption of a
uniform distribution of the spike events.

For an isolated node with no inter-node communication, the
acceleration factor as a function of the average number of spike
events per simulation step can now be formulated as follows:

Frontiers in Neuroinformatics | www.frontiersin.org 20 June 2022 | Volume 16 | Article 884033271

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

FS(ν̄k) =



















hfclk

ν̄k(L
SE
6 + LDS)+ (1− ν̄k)L6

if ν̄k < 1

hfclk

LSE6 + ν̄kLDS
otherwise

(7)

For ν̄k < 1, the denominator in Equation (7) consists of two
terms corresponding to the spiking [ν̄k(L

SE
6 + LDS)] and the non-

spiking ((1− ν̄k)L6) case, where LDS denotes the per spike event
data stream latency. The two branches are equal for ν̄k = 1. In the
absence of spike events, FS(0) = FMAX

S applies (see Equation 5).
Please note that Equation (7) does not consider CM -

the average number of synapses on a node that a source
neuron connects to. The value of CM determines the value of
LDS that was measured since it cannot be derived from the
microarchitecture. This becomes relevant, for example, when the
number of neurons per node NM, and thus also CM changes
(Equation 1). Furthermore, it neglects the possibility that a
presynaptic data transfer could complete before all neurons are
processed, i.e., ILN/2− LDS > 0. To account for this, the value
of LSE6 would have to be corrected by adding ILN/2− LDS.
However, one would only see an effect at very low spike rates
because ν̄kLDS≫ ILN/2− LDS applies. Equation (7), therefore,
represents a good estimate of the acceleration factors that
can be achieved with the proposed HNC node design under
different workloads.

Currently, only a single-node prototype exists. In order
to estimate the performance characteristics of a multi-node
system, we expand the performance model to include inter-
node communication latencies. Strongly simplifying the complex
effects of communication network topologies, protocols, and
low-latency interconnects, we propose three basic assumptions:

• Spike events are broadcasted, i.e, communicated to all nodes.
• Inter-node connections all have the same and fixed

transmission latency time TCOM, which adds to every
simulation step. In addition to the times needed to
communicate the spike events between nodes, TCOM

also includes inter-node synchronization latencies, i.e., barrier
messaging times.
• To take into account that inter-node communication increase

with workload, every spike event adds a transmission latency
to the communication, i.e., a variable, workload dependent
portion defined as a small fraction of the transmission latency
time. It is specified by a factor α and results for a given
workload in ν̄kαTCOM.

Adding inter-node communication latencies to Equation (7)
results in

FC(ν̄k) =



















hfclk

ν̄k(LSE6 + LDS + αLCOM)+ (1− ν̄k)L6 + LCOM
if ν̄k < 1

hfclk

LSE6 + ν̄k(LDS + αLCOM)+ LCOM
otherwise

(8)

where LCOM denotes the transmission latency in PL clock
cycles derived from the transmission latency time, i.e.,
LCOM = fclkTCOM. Note that even in the absence of spike
events, LCOM does not vanish as it includes inter-node
synchronization times. According to Equation (4), the upper
bound for the acceleration factor with inter-node communication
then becomes:

FMAX
C =

hfclk

L6 + LCOM
(9)

From the performance characteristics derived above, the total
relative performance loss PTOT with respect to the maximum
achievable acceleration can be estimated for different workloads
as follows:

PTOT(ν̄k) = PS + PC =

(

1−
FC(ν̄k)

FMAX
S

)

· 100%. (10)

The total performance loss can be further subdivided into
the losses caused by the HNC node-local spike processing
(which mainly consists of retrieving and distributing the
presynaptic data)

PS(ν̄k) =

(

1−
FS(ν̄k)

FMAX
S

)

· 100% (11)

and the loss caused by the inter-node communication

PC(ν̄k) =
FS(ν̄k)− FC(ν̄k)

FMAX
S

· 100%. (12)

5.3. Verification, Validation, and
Benchmarking Model: Two-Population
Izhikevich Network
We use a simple two-population model as the basis for both the
performance measurements and the verification and validation
of the correctness of the HNC node hardware and software
implementation. The network consists of 1, 000 Izhikevich-type
neurons (Izhikevich, 2003), which follow the dynamics

dv

dt
= 0.04v2+5v+140−u+isyn(t)+iext(t), with isyn(t) = iex+iinh

(13)

du

dt
= a(bv− u) (14)

if v ≥ 30mV, then

{

v← c

u← u+ d
(15)

The network consists of 800 excitatory regular spiking neurons
[

(a, b, c, d) = (0.02, 0.2,−65.0, 8.0)
]

and 200 inhibitory fast
spiking neurons

[

(a, b, c, d) = (0.1, 0.2,−65.0, 2.0)
]

. The
excitatory population makes random connections to the
inhibitory population and to itself. The inhibitory population

Frontiers in Neuroinformatics | www.frontiersin.org 21 June 2022 | Volume 16 | Article 884033272

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

only projects to the excitatory population. All neurons in
the network draw their connections with a fixed in-degree
of Kin = 100 and receive additional input from an external
source. A detailed description of the network is given in the
Supplementary Material.

The choice of this model was motivated by our
previous work, where we subjected a two-population
Izhikevich network implementation on the SpiNNaker
system to a rigorous verification and validation task
(Gutzen et al., 2018; Trensch et al., 2018).

6. DISCUSSION

We presented an SoC-based hybrid software-hardware
architecture of a neuromorphic computing node. This is to
be seen as a complementary yet distinct approach to the
neuromorphic developments aiming at brain-inspired and
highly efficient novel computer architectures for solving real-
world tasks. The requirements for achieving reproducible
hyper-real-time neuroscience simulations are different, so also
the technical challenges. We examined the extent to which the
proposed architecture and Xilinx Zynq SoC device technology
is capable of meeting the high demands of modeling and
simulation in neuroscience in terms of flexibility, accuracy, and
simulation performance.

6.1. Flexibility
The HNC node design exploits the trade-off between flexibility
and efficiency offered by the Xilinx Zynq SoC device technology.
The tight coupling of programmable logic with a general purpose
processor gives the developer the flexibility to cope with rapid
developments in neuroscience and changing requirements. For
example, the plethora of neuron and synapse models require
that the operations and their scheduling performed by the
ODE pipelines can be adapted in terms of the implemented
numerical algorithms and data types. The application of code
generation techniques (Blundell et al., 2018a) can abstract
hardware implementation details away from a neuron and
synapse modeling task. Therefore, the ODE pipeline architecture
was implemented as a replaceable VHDL-module having a
defined port interface. This makes the neuron and synapse model
hardware implementations accessible to tools, such as NESTML
(Plotnikov et al., 2016). By this means a wide variety of neuron
and synapse models can be supported.

The availability of powerful, node-local processor cores also
allows us to decentralize; moving tasks onto the neuromorphic
compute nodes that are typically carried out on a host system.
For example, the generation of the network connectivity could be
carried out on a conventional system using established tools, such
as PyNN (Davison et al., 2009) or PyNEST (Eppler et al., 2009),
while the network instantiation process is parallelized by being
delegated to the processor cores of the neuromorphic compute
nodes. This would reduce network building times, especially
when repeated simulations are performed (e.g., parameter scans).
Moreover, the integration with the existing workflows for neural
network modeling and simulation becomes easier to reach.

The HNC node architecture is open for extension, for
example, the implementation of synaptic plasticity rules.

Although plasticity models were deliberately left out for the
current HNC node prototype, it was considered in the design
decisions. In future developments, we intend to exploit the
hybrid software-hardware architecture concept of the HNC
node in such a way that plasticity algorithms programmed
in software run on a dedicated plasticity processor—executed
on the APU using the second, so far unused, ARM processor
core—supported by accelerators implemented in programmable
logic. To enable the implementation of spike-based plasticity
rules (Morrison et al., 2008), the network connectivity data as
well as the recorded spike events are stored in the external
memory, thus keeping synaptic weights adjustable and spike
history accessible to the processor cores. There are a number of
different forms of plasticity (Magee and Grienberger, 2020) and
a rapid development in the field which entails some technical
challenges. The HNC node provides here a flexible platform as
a means to explore novel architecture concepts to implement
plasticity algorithms.

6.2. Numerical Precision
Particular care must be taken with respect to mathematical
operations. Both the choice of data types and algorithms as
well as their technical implementation require special attention.
The design decisions made regarding the example Izhikevich
neuron model ODE pipeline implementation (see Section 4
in the Supplementary Material), e.g., the data types and the
numeric integration scheme, are based on the results of our
earlier studies (Gutzen et al., 2018; Trensch et al., 2018). By
conducting a calculation verification task15, we concluded that
a 32-bit signed fixed-point data type (s16.15) does not provide
the necessary numerical precision to capture the dynamics of
the Izhikevich neuron model (Izhikevich, 2003) with sufficient
accuracy. For the processing unit’s ODE pipelines, we therefore
implemented a 40-bit signed fixed-point data type (s16.23)—a
decision also made to avoid expensive floating point operations.
In combination with an explicit Forward Euler ODE solver
method and an integration step size of h = 0.1 ms, we achieve
sufficient accuracy—even though it is the simplest numerical
method available. Analogously to the calculation verification
task carried out in the studies mentioned, we verified the ODE
pipeline operation by comparing the subthreshold dynamics
and the spike timing to the results of an explicit Runge-Kutta-
Fehlberg(4, 5) method with an absolute integration error of
10−6.

6.3. Verification of Implementations
During implementation, hardware and software components
cannot be considered independently of each other and must
therefore be developed in parallel in a co-development process.
The HNC node software system is written in C and almost all
hardware components were developed in VHDL. In contrast
to a high-level synthesis approach, where a hardware design is
formulated at an algorithmic level in the C language, for example,
and the synthesis tool chain generates a reliable hardware

15Calculation verification tasks assess the level of error that arises from various
sources of error in numerical simulations as well as to identify and remove them
(Thacker et al., 2004).

Frontiers in Neuroinformatics | www.frontiersin.org 22 June 2022 | Volume 16 | Article 884033273

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

description from it, the implementation in VHDL at the RTL
level is rather error-prone. A well thought-out test strategy
is therefore essential. It must consider the verification of the
correctness of the technical implementation of the hardware and
software components as well as the validation of the outcome of
the simulations performed on the HNC node.

Our approach was that of an embedded hardware-software
co-verification, in the sense of a directed software-controlled
functional testing. For this purpose, the hardware components
under test were connected to the APU of the SoC device through
memory-mapped AXI-interfaces and subjected to a series of
hierarchical functional tests written in C. These tests range from
simple to complex and are executed on the APU. They include
basic hardware and software functional tests, integration tests,
as well as complex functional tests that also became part of the
HNC node software system. Examples of such complex tests
are memory read-write pattern tests. They ensure the correct
implementation and operation of the DMA data transfer to and
from the SVBs and verify data type and endianness conversion.
Another example of a complex test scenario is the functional
verification of the RB pipeline and RB buffer operation, where
a software-controlled spike injection and a subsequent RB
read out is used to verify the correctness of the presynaptic
data processing.

6.4. Performance
Software developers of spiking neural network simulation tools
invest much effort in the optimization of their codes to achieve
best possible performance and simulation efficiency. They are
well aware of the performance-critical nature of retrieving
the presynaptic data from memory and its distribution, its
accumulation in the ring buffers, and the update process of
the neuron and synapse model dynamics performed at every
simulation time step. The challenges in finding optimal solutions
and implementations are manifold. For example, in large-
scale networks, synaptic processing substantially dominates the
computational load, and the irregular, random access pattern
in retrieving the presynaptic data reduce a processor’s cache hit
rate and increases data access latencies (see e.g., Kunkel et al.,
2014). The tools of trade here are algorithms that implement high
parallelism in computations, “cache-friendly” data structures,
and the application of techniques for latency hiding, such
as data prefetching (Pronold et al., 2022). The proposed
HNC node design aims to address these problems—which
on conventional computer architectures are a consequence of
the von Neumann bottleneck—by implementing performance-
critical tasks in hardware. Specifically, the process of neuron
and synapse model update benefits from the data-locality
of state variables stored in fast on-chip BRAM memories.
Storing the network connectivity data in an external memory,
however, undermines this concept, and toward higher workloads,
performance will be bound by external memory access latency.
For larger systems and higher workloads, it is therefore crucial
to aim for an architecture design that also allows data-locality for
the presynaptic data processing. The design of the HNC node is
constrained in this respect by the limited BRAM resources.

The ability to model the performance behavior for different
design parameters is of great value as it can guide future

developments and design decisions. We developed such a model
for the HNC node architecture. The implementation strategy,
based on the hardware description on register-transfer level
(RTL) in the VHDL language has allowed us to derive an accurate
performance model from the implemented microarchitecture.
To this end we made several simplifying assumptions, in
particular, with respect to the inter-node communication
latencies. Network technologies are typically optimized for
throughput, but not for latency. The value of the transmission
latency time (TCOM = 500 ns) assumed for the performance
evaluation is already ambitious. However, low-latency inter-
node communication is as important for performance as data-
locality is for the computations. Despite these simplifications,
the model achieves a good approximation of the performance
characteristics. Extrapolating from the single node performance,
we predict that small clusters capable of simulating in hyper-real-
time networks comprising a few tens of thousands of neurons
would achieve acceleration factors in the order of 10 to 50.

6.5. Cluster Operation
Although cluster operation is not the focus of this article,
some related considerations that influenced design decisions are
worth mentioning. Three communication bottlenecks can be
identified in the simulation flow that are relevant to the overall
performance of a cluster system: the spike exchange between
nodes, inter-node synchronization, and external communication
for system configuration and operation including the unload
of recorded simulation data. The requirements of these tasks
differ in regard to latency and bandwidth. Inter-node spike
communication and node synchronization require an ultra-low
latency interconnect but not high bandwidth. The demand for
external communication is completely different. For loading
and unloading larger amounts of data, high bandwidth is
desirable to achieve low system setup times and eventually real-
time recording capability. We are therefore aiming at three
different solutions tailored to the respective task, although our
cluster concept is not yet fully developed. The HNC node
encodes spike events using an Address Event Representation
(AER; Mahowald, 1992). AER-based communication is well
established in neuromorphic computing and the basis for low-
latency spike-communication. In order to achieve the predicted
cluster performance (cf. Section 3.2), it is crucial that the
transmission latency time of TCOM = 500 ns for inter-node spike
communication assumed by the performance model can be
attained in a cluster consisting of a few tens of HNC nodes. The
Xilinx Zynq SoC device used for the implementation of the HNC
node prototype provides various hardware interfaces that would
allow us to establish an efficient chip-to-chip communication,
for example, a number of serial gigabit transceivers (GTX/GTH),
PCI Express, and low-voltage differential signaling (LVDS)
user I/Os (Xilinx, 2021). A solution for a low-latency spike
communication in a 64-node FPGA cluster is, for example,
presented in Moore et al. (2012). It exploits high-speed serial
links and achieves a hop-latency of 50 ns in a 3D torus
topology. For inter-node synchronization, we favor a simple one-
wire (e.g., wired-or) solution where a global barrier signal is
derived from the intra-node synchronization logic (cf. Figure 6).
External communication with the HNC node is established

Frontiers in Neuroinformatics | www.frontiersin.org 23 June 2022 | Volume 16 | Article 884033274

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

using a 10/100/1000 Mb/s tri-speed Ethernet PHY and the TCP
protocol—currently used only to stream the recorded simulation
data to a host system. For a cluster, we aim at a parallel data move
solution, in which each HNC node is connected to its own host
system or host node, respectively.

The proposed technology and architecture is an ideal basis
for prototyping and design space exploration—the primary
domain of programmable logic devices—and for elaborating
novel architectures. The reconfigurable logic allows extensive
freedom in the implementation of the numerical models while
the processor cores opens an elegant way to achieve system
integration. They can be an intermediate step toward next-
generation neuromorphic systems and neuroscience simulation
platforms. In this sense, the proposed HNC node design
complements the existing neuromorphic system architecture
approaches of SpiNNaker and BrainScales, in regards both to
technology and the trade-off between flexibility and efficiency.

DATA AVAILABILITY STATEMENT

The simulation scripts and source codes used in this
work to demonstrate correctness are available online
at: https://github.com/gtrensch/RigorousNeuralNetwork
Simulations (doi: 10.5281/zenodo.6591552).

AUTHOR CONTRIBUTIONS

GT developed the System-on-Chip based hybrid architecture
and implemented the prototype, developed the workload and

performance model, and performed the experiments. GT
and AM designed the experiments and wrote the paper.
All authors contributed to the article and approved the
submitted version.

FUNDING

This project has received funding from the Helmholtz
Association’s Initiative and Networking Fund under project
number SO-092 (Advanced Computing Architectures,
ACA). Open access publication funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research
Foundation)—491111487.

ACKNOWLEDGMENTS

We are grateful to Tobias Noll, Georgia Psychou, Eqbal Maraqa,
Tom Tetzlaff, and Michael Schiek for the fruitful discussions
throughout the project. We would especially like to thank
Arne Heittmann for his comments on an earlier version of the
manuscript and to our colleagues in the Advanced Computing
Architectures (ACA) Project and the Simulation and Data
Laboratory Neuroscience for continuous collaboration.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2022.884033/full#supplementary-material

REFERENCES

Akar, N. A., Cumming, B., Karakasis, V., Kusters, A., Klijn, W., Peyser, A., et al.
(2019). “Arbor-a morphologically-detailed neural network simulation library
for contemporary high-performance computing architectures,” in 2019 27th

Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP) (Pavia: IEEE), 274–282. doi: 10.1109/EMPDP.2019.8671560
Arm Limited (2021). AMBA AXI and ACE Protocol Specification. Arm Limited.

Available online at: www.arm.com.
Blundell, I., Brette, R., Cleland, T. A., Close, T. G., Coca, D., Davison, A. P., et al.

(2018a). Code generation in computational neuroscience: a review of tools and
techniques. Front. Neuroinform. 12:68. doi: 10.3389/fninf.2018.00068

Blundell, I., Plotnikov, D., Eppler, J. M., and Morrison, A. (2018b). Automatically
selecting an optimal integration scheme for systems of differential equations in
neuron models. Front. Neuroinform. 12:50 doi: 10.3389/fninf.2018.00050

Braitenberg, V., and Schüz, A. (1998). Cortex: Statistics and Geometry of

Neuronal Connectivity. Berlin; Heidelberg: Springer Berlin Heidelberg.
doi: 10.1007/978-3-662-03733-1

Cheung, K., Schultz, S. R., and Luk, W. (2016). NeuroFlow: a general purpose
spiking neural network simulation platform using customizable processors.
Front. Neurosci. 9:516. doi: 10.3389/fnins.2015.00516

Dasbach, S., Tetzlaff, T., Diesmann, M., and Senk, J. (2021). Dynamical
characteristics of recurrent neuronal networks are robust against low synaptic
weight resolution. Front. Neurosci. 15:757790. doi: 10.3389/fnins.2021.757790

Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et
al. (2009). PyNN: a common interface for neuronal network simulators. Front.
Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Eppler, J., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2009).
PyNEST: a convenient interface to the nest simulator. Front. Neuroinform. 2:12.
doi: 10.3389/neuro.11.012.2008

Fardet, T., Vennemo, S. B., Mitchell, J., Mòrk, H., Graber, S., Hahne, J., et al. (2020).
Nest 2.20.1. Zenodo.

Friedmann, S., Schemmel, J., Grübl, A., Hartel, A., Hock, M., and Meier,
K. (2017). Demonstrating hybrid learning in a flexible neuromorphic
hardware system. IEEE Trans. Biomed. Circuits Syst. 11, 128–142.
doi: 10.1109/TBCAS.2016.2579164

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et
al. (2013). Overview of the spinnaker system architecture. IEEE Trans. Comput.
62, 2454–2467. doi: 10.1109/TC.2012.142

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool).
Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella,
M., et al. (2010). NeuroML: a language for describing data driven models of
neurons and networks with a high degree of biological detail. PLoS Comput.

Biol. 6:e1000815. doi: 10.1371/journal.pcbi.1000815
Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks

in python. Front. Neuroinform. 2:5. doi: 10.3389/neuro.11.005.2008
Gutzen, R., von Papen, M., Trensch, G., Quaglio, P., Grün, S., and Denker, M.

(2018). Reproducible neural network simulations: Statistical methods formodel
validation on the level of network activity data. Front. Neuroinform. 12:90.
doi: 10.3389/fninf.2018.00090

Hansel, D., Mato, G., Meunier, C., and Neltner, L. (1998). On numerical
simulations of integrate-and-fire neural networks.Neural Comput. 10, 467–483.
doi: 10.1162/089976698300017845

Heittmann, A., Psychou, G., Trensch, G., Cox, C. E.,Wilcke,W.W., Diesmann,M.,
et al. (2022). Simulating the cortical microcircuit significantly faster than real
time on the IBM INC-3000 neural supercomputer. Front. Neurosci. 15:728460.
doi: 10.3389/fnins.2021.728460

Hines, M. L., and Carnevale, N. T. (1997). The NEURON simulation environment.
Neural Comput. 9, 1179–1209. doi: 10.1162/neco.1997.9.6.1179

Frontiers in Neuroinformatics | www.frontiersin.org 24 June 2022 | Volume 16 | Article 884033275

https://github.com/gtrensch/RigorousNeuralNetworkSimulations
https://doi.org/10.5281/zenodo.6591552
https://www.frontiersin.org/articles/10.3389/fninf.2022.884033/full#supplementary-material
https://doi.org/10.1109/EMPDP.2019.8671560
https://www.arm.com
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.3389/fninf.2018.00050
https://doi.org/10.1007/978-3-662-03733-1
https://doi.org/10.3389/fnins.2015.00516
https://doi.org/10.3389/fnins.2021.757790
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.3389/neuro.11.012.2008
https://doi.org/10.1109/TBCAS.2016.2579164
https://doi.org/10.1109/TC.2012.142
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.3389/fninf.2018.00090
https://doi.org/10.1162/089976698300017845
https://doi.org/10.3389/fnins.2021.728460
https://doi.org/10.1162/neco.1997.9.6.1179
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Trensch and Morrison Hybrid Neuromorphic Compute Node Architecture

Hines, M. L., and Carnevale, N. T. (2000). Expanding NEURON’s
repertoire of mechanisms with NMODL. Neural Comput. 12, 995–1007.
doi: 10.1162/089976600300015475

Izhikevich, E. M. (2003). Simple model of spiking neurons. Trans. Neur. Netw. 14,
1569–1572. doi: 10.1109/TNN.2003.820440

Knight, J. C., and Nowotny, T. (2021). Larger GPU-accelerated brain
simulations with procedural connectivity. Nat. Comput. Sci. 1, 136–142.
doi: 10.1038/s43588-020-00022-7

Kunkel, S., Schmidt, M., Eppler, J. M., Plesser, H. E., Masumoto, G., Igarashi, J.,
et al. (2014). Spiking network simulation code for petascale computers. Front.
Neuroinform. 8:78. doi: 10.3389/fninf.2014.00078

Magee, J. C., and Grienberger, C. (2020). Synaptic plasticity forms and functions.
Annu. Rev. Neurosci. 43, 95–117. doi: 10.1146/annurev-neuro-090919-022842

Maguire, L., McGinnity, T., Glackin, B., Ghani, A., Belatreche, A., and Harkin, J.
(2007). Challenges for large-scale implementations of spiking neural networks
on FPGAs. Neurocomputing 71, 13–29. doi: 10.1016/j.neucom.2006.11.029

Mahowald, M. (1992). VLSI analogs of neuronal visual processing: a synthesis of

form and function (Ph.D. thesis). Califpionia Institute of Technology, Pasadella,
CA, United States.

Moore, S. W., Fox, P. J., Marsh, S. J., Markettos, A. T., and Mujumdar,
A. (2012). “Bluehive - A field-programable custom computing machine
for extremescale real-time neural network simulation,” in 2012 IEEE 20th

International Symposium on Field-Programmable Custom Computing Machines

(Toronto, ON: IEEE), 133-140. doi: 10.1109/FCCM.2012.32
Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models

of synaptic plasticity based on spike timing. Biol. Cybern. 98, 459–478.
doi: 10.1007/s00422-008-0233-1

Morrison, A., Mehring, C., Geisel, T., Aertsen, A., and Diesmann,
M. (2005). Advancing the boundaries of high-connectivity network
simulation with distributed computing. Neural Comput. 17, 1776–1801.
doi: 10.1162/0899766054026648

Morrison, A., Straube, S., Plesser, H. E., and Diesmann, M. (2007).
Exact subthreshold integration with continuous spike times in
discrete time neural network simulations. Neural Comput. 19, 47–79.
doi: 10.1162/neco.2007.19.1.47

Narayanan, P., Cox, C. E., Asseman, A., Antoine, N., Huels, H., Wilcke,
W. W., et al. (2020). Overview of the IBM neural computer architecture.
arXiv:2003.11178 [cs]. arXiv: 2003.11178. doi: 10.48550/ARXIV.2003.11178

Noll, T. G., von Sydow, T., Neumann, B., Schleifer, J., Coenen, T., and
Kappen, G. (2010). “Chapter 2: Reconfigurable components for application-
specific processor architectures,” in Dynamically Reconfigurable Systems,
eds M. Platzner, J. Teich, and N. Wehn (Heidelberg: Springer), 25–49.
doi: 10.1007/978-90-481-3485-4_2

Pani, D., Meloni, P., Tuveri, G., Palumbo, F., Massobrio, P., and Raffo, L. (2017).
An FPGA platform for real-time simulation of spiking neuronal networks.
Front. Neurosci. 11:90. doi: 10.3389/fnins.2017.00090

Pauli, R., Weidel, P., Kunkel, S., and Morrison, A. (2018). Reproducing
polychronization: a guide to maximizing the reproducibility of spiking network
models. Front. Neuroinform. 12:46. doi: 10.3389/fninf.2018.00046

Pehle, C., Billaudelle, S., Cramer, B., Kaiser, J., Schreiber, K., Stradmann,
Y., et al. (2022). The BrainScaleS-2 accelerated neuromorphic system
with hybrid plasticity. Front. Neurosci. 16:795876. doi: 10.3389/fnins.2022.
795876

Pfeil, T., Potjans, T., Schrader, S., Potjans, W., Schemmel, J., Diesmann, M., et al.
(2012). Is a 4-bit synaptic weight resolution enough? - constraints on enabling
spike-timing dependent plasticity in neuromorphic hardware. Front. Neurosci.
6:90. doi: 10.3389/fnins.2012.00090

Plotnikov, D., Blundell, I., Ippen, T., Eppler, J. M., Morrison, A., and Rumpe,
B.(2016). “NESTML: amodeling language for spiking neurons,” inModellierung

2016 (Karlsruhe), 93–108.
Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical

microcircuit: relating structure and activity in a full-scale spiking
network model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/
bhs358

Pronold, J., Jordan, J., Wylie, B. J. N., Kitayama, I., Diesmann, M., and
Kunkel, S. (2022). Routing brain traffic through the von neumann
bottleneck: Parallel sorting and refactoring. Front. Neuroinform. 15:785068.
doi: 10.3389/fninf.2021.785068

Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., and Millner, S.
(2010). “A wafer-scale neuromorphic hardware system for large-scale neural
modeling,” in Proceedings of the 2010 IEEE International Symposium on Circuits

and Systems (Paris: IEEE), 1947–1950. doi: 10.1109/ISCAS.2010.5536970
Schemmel, J., Kriener, L., Muller, P., and Meier, K. (2017). “An accelerated analog

neuromorphic hardware system emulating NMDA- and calcium based non-
linear dendrites,” in 2017 International Joint Conference on Neural Networks

(Anchorage, AK), 2217–2226. doi: 10.1109/IJCNN.2017.7966124
Thacker, B. H., Doebling, S. W., Hemez, F. M., Anderson, M. C., Pepin, J. E., and

Rodriguez, E. A. (2004). Concepts of Model Verification and Validation. Los
Alamos, NM: Los Alamos National Lab.

Trensch, G., Gutzen, R., Blundell, I., Denker, M., and Morrison, A. (2018).
Rigorous neural network simulations: a model substantiation methodology for
increasing the correctness of simulation results in the absence of experimental
validation data. Front. Neuroinform. 12:81. doi: 10.3389/fninf.2018.00081

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M.,
Stokes, A. B., et al. (2018). Performance comparison of the digital
neuromorphic hardware spinnaker and the neural network simulation software
nest for a full-scale cortical microcircuit model. Front. Neurosci. 12:291.
doi: 10.3389/fnins.2018.00291

Wang, R., Hamilton, T. J., Tapson, J., and van Schaik, A. (2014). “An FPGA
design framework for large-scale spiking neural networks,” in 2014 IEEE

International Symposium on Circuits and Systems (Melbourne, VIC: IEEE),
457–460. doi: 10.1109/ISCAS.2014.6865169

Wang, R. M., Thakur, C. S., and van Schaik, A. (2018). An FPGA-based
massively parallel neuromorphic cortex simulator. Front. Neurosci. 12:213.
doi: 10.3389/fnins.2018.00213

Xilinx (2019b). Embedded System Tools Reference Manual v2019.2 (UG1043).
Available online at: www.xilinx.com (accessed January 13, 2022).

Xilinx (2019c). Vivado Design Suite User Guide High-Level Synthesis v2019.1

(UG902). Available online at: www.xilinx.com (accessed January 13, 2022).
Xilinx (2019d). Vivado Design Suite User Guide v2019.1 (UG893). Available online

at: www.xilinx.com (accessed January 13, 2022).
Xilinx (2019e). ZC706 Evaluation Board for the Zynq-7000 XC7Z045 SoC User

Guide (UG945). Available online at: www.xilinx.com (accessed January 13,
2022).

Xilinx (2021). Zynq-7000 SoC Technical Reference Manual (UG585). Available
online at: www.xilinx.com.

Xilinx. AXI DMA v7.1 LogiCORE IP Product Guide (2019a). Available
online at: https://www.xilinx.com/support/documentation/ip_documentation/
axi_dma/v7_1/pg021_axi_dma.pdf (accessed January 13, 2022).

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Trensch and Morrison. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroinformatics | www.frontiersin.org 25 June 2022 | Volume 16 | Article 884033276

https://doi.org/10.1162/089976600300015475
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1038/s43588-020-00022-7
https://doi.org/10.3389/fninf.2014.00078
https://doi.org/10.1146/annurev-neuro-090919-022842
https://doi.org/10.1016/j.neucom.2006.11.029
https://doi.org/10.1109/FCCM.2012.32
https://doi.org/10.1007/s00422-008-0233-1
https://doi.org/10.1162/0899766054026648
https://doi.org/10.1162/neco.2007.19.1.47
https://doi.org/10.48550/ARXIV.2003.11178
https://doi.org/10.1007/978-90-481-3485-4_2
https://doi.org/10.3389/fnins.2017.00090
https://doi.org/10.3389/fninf.2018.00046
https://doi.org/10.3389/fnins.2022.795876
https://doi.org/10.3389/fnins.2012.00090
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.3389/fninf.2021.785068
https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.1109/IJCNN.2017.7966124
https://doi.org/10.3389/fninf.2018.00081
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.1109/ISCAS.2014.6865169
https://doi.org/10.3389/fnins.2018.00213
https://www.xilinx.com
https://www.xilinx.com
https://www.xilinx.com
https://www.xilinx.com
https://www.xilinx.com
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_dma/v7_1/pg021_axi_dma.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

ORIGINAL RESEARCH
published: 04 July 2022

doi: 10.3389/fninf.2022.883333

Frontiers in Neuroinformatics | www.frontiersin.org 1 July 2022 | Volume 16 | Article 883333

Edited by:

James B. Aimone,

Sandia National Laboratories (DOE),

United States

Reviewed by:

Fred H. Hamker,

Chemnitz University of Technology,

Germany

Georgios Detorakis,

Independent Researcher, Irvine, CA,

United States

*Correspondence:

Bruno Golosio

golosio@unica.it

Received: 24 February 2022

Accepted: 02 June 2022

Published: 04 July 2022

Citation:

Tiddia G, Golosio B, Albers J, Senk J,

Simula F, Pronold J, Fanti V,

Pastorelli E, Paolucci PS and van

Albada SJ (2022) Fast Simulation of a

Multi-Area Spiking Network Model of

Macaque Cortex on an MPI-GPU

Cluster.

Front. Neuroinform. 16:883333.

doi: 10.3389/fninf.2022.883333

Fast Simulation of a Multi-Area
Spiking Network Model of Macaque
Cortex on an MPI-GPU Cluster
Gianmarco Tiddia 1,2, Bruno Golosio 1,2*, Jasper Albers 3,4, Johanna Senk 3,

Francesco Simula 5, Jari Pronold 3,4, Viviana Fanti 1,2, Elena Pastorelli 5,

Pier Stanislao Paolucci 5 and Sacha J. van Albada 3,6

1Department of Physics, University of Cagliari, Monserrato, Italy, 2 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di

Cagliari, Monserrato, Italy, 3 Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and

JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany, 4 RWTH Aachen

University, Aachen, Germany, 5 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma, Rome, Italy, 6 Faculty of

Mathematics and Natural Sciences, Institute of Zoology, University of Cologne, Cologne, Germany

Spiking neural network models are increasingly establishing themselves as an effective

tool for simulating the dynamics of neuronal populations and for understanding the

relationship between these dynamics and brain function. Furthermore, the continuous

development of parallel computing technologies and the growing availability of

computational resources are leading to an era of large-scale simulations capable of

describing regions of the brain of ever larger dimensions at increasing detail. Recently,

the possibility to use MPI-based parallel codes on GPU-equipped clusters to run such

complex simulations has emerged, opening up novel paths to further speed-ups. NEST

GPU is a GPU library written in CUDA-C/C++ for large-scale simulations of spiking

neural networks, which was recently extended with a novel algorithm for remote spike

communication through MPI on a GPU cluster. In this work we evaluate its performance

on the simulation of a multi-area model of macaque vision-related cortex, made up of

about 4 million neurons and 24 billion synapses and representing 32mm2 surface area of

the macaque cortex. The outcome of the simulations is compared against that obtained

using the well-known CPU-based spiking neural network simulator NEST on a high-

performance computing cluster. The results show not only an optimal match with the

NEST statistical measures of the neural activity in terms of three informative distributions,

but also remarkable achievements in terms of simulation time per second of biological

activity. Indeed, NEST GPU was able to simulate a second of biological time of the full-

scale macaque cortex model in its metastable state 3.1× faster than NEST using 32

compute nodes equippedwith an NVIDIA V100GPU each. Using the same configuration,

the ground state of the full-scale macaque cortex model was simulated 2.4× faster than

NEST.

Keywords: computational neuroscience, spiking neural networks, simulations, GPU (CUDA), primate cortex,

multi-area model of cerebral cortex, message passing interface (MPI), high performance computing (HPC)

277

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.883333
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.883333&domain=pdf&date_stamp=2022-07-04
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:golosio@unica.it
https://doi.org/10.3389/fninf.2022.883333
https://www.frontiersin.org/articles/10.3389/fninf.2022.883333/full

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

1. INTRODUCTION

Large-scale spiking neural networks are of growing research
interest because of their ability to mimic brain dynamics and
function more and more accurately. However, the task of
accurately simulating natural neural networks is arduous: the
human brain contains around 86 × 109 neurons (Azevedo
et al., 2009) and on the order of 104–105 synapses per neuron
in the cerebral cortex (Cragg, 1975; Alonso-Nanclares et al.,
2008). Moreover, the brain presents a plethora of different
neurotransmitters, receptors, and neuron types connected with
specific probabilities and patterns. For these reasons, even
a simulation of a small fraction of the brain could be
computationally prohibitive if the details of axonal and dendritic
arborizations were accounted for or if, adding further complexity,
accurate descriptions of biochemical processes were included.
In this work, focused on enabling the simulation of multi-area
cortical models on up to a few tens of compute nodes, we treat
spiking simulations with point neurons and simplified synaptic
rules. This level of abstraction greatly reduces computational
demands while still capturing essential aspects of the neural
network behavior. However, achieving short simulation times for
a multi-area spiking network model is nevertheless nontrivial
even on high-performance hardware with highly performant
software tools.

Some simulators such as NEST (Hahne et al., 2021), NEURON
(Carnevale and Hines, 2006), Brian 2 (Stimberg et al., 2019)
and ANNarchy (Vitay et al., 2015) are capable of simulating a
large variety of neuron and synapse models. These simulators
support multithreaded parallel execution on general-purpose
CPU-based systems. Furthermore, NEST and NEURON also
support distributed computing viaMPI.

Meanwhile in the last decades, to efficiently simulate large-
scale neural networks in terms of both speed and energy
consumption, neuromorphic hardware has been developed
by taking inspiration from brain architecture. Among these
systems, we can mention Loihi (Davies et al., 2018) and
TrueNorth (Akopyan et al., 2015), which are entering the
realm of large-scale neural network simulations, and BrainScaleS
(Grübl et al., 2020), which is based on analog emulations
of simplified models of spiking neurons and synapses, with
digital connectivity. The system enables energy-efficient neuronal
network simulations, offering highly accelerated operations.
Another promising project in this field is SpiNNaker (Furber
et al., 2014), which recently achieved biological real-time
simulations of a cortical microcircuit model (Rhodes et al.,
2020) proposed by Potjans and Diesmann (2014) (which
has since been simulated sub-realtime with NEST (Kurth
et al., 2022) and with an FPGA-based neural supercomputer
(Heittmann et al., 2022). This result was made possible by
its architecture designed for efficient spike communication,
performed with an optimized transmission system of small
data packets. BrainScaleS and SpiNNaker are freely available to
the scientific community through the EBRAINS Neuromorphic
Computing service. Nevertheless, neuromorphic systems still
require a significant amount of system-specific skills. Even
if the simulation speed they can provide is impressive, the

flexibility and simplicity of programming environments available
for such neuromorphic systems are still low compared to
their general-purpose counterparts. On neuromorphic systems
adopting analog design techniques, advantages in speed, area,
and energy consumption are associated with the difficulties of
managing manufacturing fluctuations, unavoidable in analog
substrates, and with the effects of electronic noise emerging
in the dynamics of analog circuits. Porting neural simulations
from digital systems to analog neuromorphic platforms is not
a trivial task. Overcoming such difficulties and turning them
into advantages is an emerging field of research (Wunderlich
et al., 2019). Furthermore, as soon as the number of synapses
established by each neuron reaches biological scales (i.e., several
thousands per neuron), the current generation of neuromorphic
systems often experience significant slowdown, whereas a new
generation capable of coping with such issues is still under
development. For example, in its maximum configuration, the
first-generation BrainScaleS system hosts 1 billion synapses and
4 million neurons (250 synapses/neuron) on 20 silicon wafers
(Güttler, 2017), and a similar synapse-per-neuron ratio is the
sweet spot for optimal execution on SpiNNaker, well below
the typical 10K synapses/neuron characteristic for pyramidal
cortical neurons or >100K synapses/neuron sported by cerebellar
Purkinje cells.

Lately some systems based on graphical processing units
(GPUs) have emerged (Sanders and Kandrot, 2010; Garrido
et al., 2011; Brette and Goodman, 2012; Vitay et al., 2015; Yavuz
et al., 2016). These systems grant a higher flexibility compared
to neuromorphic systems, because of the current technological
constraints of the latter and because of the software support
offered by platforms like CUDA (Compute Unified Device
Architecture) (Sanders and Kandrot, 2010), created by NVIDIA
to take advantage of the large compute resources of GPUs.
As a matter of fact, spiking neural network simulations could
reap large benefits from the high degree of parallelism of GPU
systems, which allows for thousands of simultaneous arithmetic
operations even for a single GPU. However, the effective speed-
up made possible by parallelization on GPUs can be limited by
sequential parts and operations like I/O of spike recordings and
feeding inputs into the network model, which inevitably require
data transfer between CPU and GPU memory.

Among GPU-based simulators we can mention CARLSim4
(Chou et al., 2018), a spiking neural network simulator written
in C++ with a multi-GPU implementation, and NCS6 (Hoang
et al., 2013), a CPU/GPU simulator specifically designed to
run on high-performance computing clusters. More recently,
CoreNEURON (Kumbhar et al., 2019) was developed as an
optimized compute engine for the NEURON simulator. It is
able to both reduce memory usage and increase simulator
performance with respect to the NEURON simulator by taking
advantage of architectures like NVIDIA GPUs and many-core
CPUs. One of the most popular GPU-based simulators for
spiking neural networks is GeNN (Yavuz et al., 2016), which
has achieved fast simulations of the cortical microcircuit model
of Potjans and Diesmann (Knight and Nowotny, 2018; Knight
et al., 2021). Recently the same simulator, running on a single
high-end GPU, has shown better performance compared to what

Frontiers in Neuroinformatics | www.frontiersin.org 2 July 2022 | Volume 16 | Article 883333278

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

was obtained with a CPU-based cluster (Knight and Nowotny,
2021) in the simulation of a multi-area spiking network model of
macaque cortex (Schuecker et al., 2017; Schmidt et al., 2018a,b).
This result was reached thanks to the procedural connectivity
approach, consisting in generating the model connectivity and
its synaptic weights only when spikes need to be transmitted,
without storing any connectivity data in the GPU memory.
As a matter of fact, one of the most constraining features of
GPUs is the size of the built-in memory, which in spiking
neural network simulations can be a severe limitation. The
possibility of generating the connections on demand enables
performing a large-scale simulation even with a single GPU.
However, procedural connectivity is a suitable approach only
with static synapses. Indeed, plastic synapses require data to be
stored since their synaptic weights change their value during
the simulation. The inclusion of plastic synapses is essential
for many investigations, e.g., when learning or the interplay
between synaptic changes and brain dynamics are of interest
(Capone et al., 2019; Golosio et al., 2021a). GeNN allows and
supports models with synaptic plasticity, but for such models the
procedural connectivity approach is thus prevented.

NEST GPU (previously named NeuronGPU) (Golosio et al.,
2021b) is a GPU-MPI library written in CUDA for large-scale
simulations of spiking neural networks, which was recently
included in the NEST Initiative with the aim of integrating it
within the NEST spiking network simulator, in order to allow
for simulations on GPU hardware. In this work we evaluate the
performance of NEST GPU on simulations that exploit multiple
GPUs on MPI clusters. The library implements a novel MPI-
optimized algorithm for spike communication across processes
that also leverages some of the delivery techniques already
investigated for CPU-based distributed computing platforms.
Currently, NEST GPU exploits the neuron distribution among
processes as described in Pastorelli et al. (2019): neurons are
allocated on processes taking into account their spatial locality,
instead of using a round-robin approach. Spike delivery takes
advantage of this distribution mode, resulting in an efficient
and optimized algorithm. NEST GPU supports a large variety
of neuron models and synapses, both static and plastic. In this
work we compare the outcomes of NEST GPU and NEST for the
full-scale multi-area spiking network model of macaque cortex
simulated on a high-performance computing (HPC) cluster
with both GPU- and CPU-equipped compute nodes. To this
end the distributions of firing rates, coefficients of variation of
interspike intervals (CV ISI), and Pearson correlations between
spike trains obtained by the two simulators are examined. We
further evaluate the performance in terms of simulation time per
second of biological activity.

2. MATERIALS AND METHODS

2.1. NEST GPU Spike Communication and
Delivery Algorithm
In this section the algorithm exploited by NEST GPU for spike
communication between MPI processes and for spike delivery

is briefly introduced. For an in-depth description of the spike
delivery algorithm please see Golosio et al. (2021b).

In NEST GPU, the output connections of each neuron (or
other spiking device) are organized in groups, all connections in
the same group having the same delay. For each neuron there
is a spike buffer, which is structured as a queue used to store
the spikes emitted by the neuron. Each spike is represented by
a structure with three member variables: a time index ts, which
starts from 0 and is incremented at every time step; a connection
group index ig , which also starts from zero and is increased
every time the spike matches a connection group, i.e., when the
time index corresponds to the connection group delay; and a
multiplicity, i.e., the number of spikes emitted by the neuron
in a single time step. Keeping a connection group index and
having connection groups ordered according to their delays is
useful for reducing the computational cost, because it avoids the
need for a nested loop to compare the time index of the spike
with all the connection delays. When the time index of a spike
matches a connection group delay, spike information (i.e., source
neuron index, connection group index, multiplicity) is inserted in
a global spike array and the connection group index is increased.
A spike is removed from the queue when ig becomes greater than
the number of connection groups of that neuron, i.e., when the
time index becomes greater than the maximum delay. The final
delivery from the global spike array to the target neurons is done
in a loop, so no additional memory is required. When a source
neuron is connected to target neurons belonging to a different
MPI process, a spike buffer, similar to the local one, is created
in the remote MPI process. When the source node fires a spike,
this is sent to the spike buffer of the remote MPI process, which
will deliver the spike to all target neurons after proper delays. The
remote spikes, i.e., the spikes that must be transferred to remote
MPI processes, are communicated through non-blocking MPI
send and receive functions at the end of every simulation time
step. LetN be the number ofMPI processes. The whole procedure
consists of three stages:

1. Each MPI process initiates a non-blocking receive
(MPI_Irecv) on N − 1 receiving buffers (one for each
remote MPI process), so that all receiving buffers are ready
more or less simultaneously;

2. Each MPI process initiates forwarding of the remote spikes
to all other N − 1 processes by calling a non-blocking send
(MPI_Isend);

3. EachMPI process initializes a list with the indexes of the other
N − 1 processes, and starts checking all the items in the list
in an endless loop with MPI_Test. When the transfer from
the i-th MPI process is complete, the corresponding index i is
removed from the list. The loop is interrupted when the list is
empty.

The spike buffer for a single network node and the spike handling
and delivery for multiple MPI processes are depicted in Figure 1.

2.2. NEST GPU Spike Recording Algorithm
In this section the NEST GPU algorithm for spike time recording
is introduced. The spike times are initially recorded in the GPU

Frontiers in Neuroinformatics | www.frontiersin.org 3 July 2022 | Volume 16 | Article 883333279

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

A B

FIGURE 1 | Spike handling and delivery schemes. (A) Structure of a single spike buffer. (B) Schematic depicting MPI communication between spike buffers for

different hosts.

memory in a two-dimensional array, with the number of rows
equal to the number of neurons and the number of columns
equal to the maximum number of spikes that can be recorded
before each extraction. Since the number of spikes per neuron
is typically much smaller than the maximum, most entries of
this array are zero. To compress the information, the spike
times are periodically packed into contiguous positions of a one-
dimensional buffer, which is copied from GPU memory to RAM
along with a one-dimensional array indicating the positions at
which the spikes for each neuron start. The packing algorithm
works as follows:

1. Let Ni be the number of recorded spikes of the i-th neuron,
and Ci its cumulative sum (also called prefix scan):

C0 = 0; Ci =

i−1
∑

k=0

Nk for i = 1, ..., n (1)

where n is the number of neurons. Note that Ci has n +

1 elements, one more than Ni, and that it is sorted by
construction. Ci is computed in parallel with CUDA using
the algorithm described by Nguyen (2007, Chapter 39) as
implemented in https://github.com/mattdean1/cuda. The last
element of Ci, Ntot = Cn, is the total number of recorded
spikes of all neurons;

2. Let ti,j be the time of the j-th recorded spike of the i-th neuron.
The packed spike array Am (m = 0, . . .,Ntot − 1) is computed
from ti,j using a one-dimensional CUDA kernel with Ntot

threads.m is set equal to the thread index. Since Ci is sorted, a
binary-search algorithm can be used to find the largest index i
such that

Ci ≤ m < Ci+1 (2)

Ci will be the index of the first spike of the i-th neuron in the
packed spike array, therefore the spike m in this array will

correspond to the spike i, j in the original two-dimensional
array ti,j, where j is simply

j = m− Ci (3)

Once i and j are computed fromm, it is possible to set

Am = ti,j (4)

Packing of recorded spikes and transfer to the RAM can be
performed after a certain number of simulation time steps
depending on GPU memory availability.

2.3. Multi-Area Model
We consider the dynamics of a model of all vision-related areas
in one hemisphere of macaque cortex (Schmidt et al., 2018a,b)
(Figure 2). Here, we briefly summarize the model; all details
and parameter values can be found in the original publications.
Following the parcellation of Felleman and Van Essen (1991),
the model includes 32 areas that either have visual function
or are strongly interconnected with visual areas. To yield a
tractable model size, only 1 mm2 of cortex is represented within
each area, albeit with the full local density of neurons and
synapses. This leads to a total of about 4.1 million neurons and
24 billion synapses. The areas have a laminar structure, layers
2/3, 4, 5, and 6 each containing one population of excitatory
(E) and one population of inhibitory (I) neurons (area TH
lacks layer 4); hence the total number of populations in the
network is 254. The neuron model is the leaky integrate-and-fire
model with exponential current-based synapses, and all neurons
have the same electrophysiological parameter values. The initial
membrane potentials are normally distributed. Input from non-
modeled brain regions is represented by homogeneous Poisson
spike trains with area-, layer- and population-specific rates.

The numbers of neurons are determined from a combination
of empirically measured neuron densities, cytoarchitectural type

Frontiers in Neuroinformatics | www.frontiersin.org 4 July 2022 | Volume 16 | Article 883333280

https://github.com/mattdean1/cuda
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

definitions of areas, and the thicknesses of the cortical layers.
The connectivity of the local microcircuits consists of scaled
versions of the connectivity of a microcircuit model of early
sensory cortex (Potjans and Diesmann, 2014). The inter-area
connectivity is based on axonal tracing data collected in the
CoCoMac database (Bakker et al., 2012), complemented with the
quantitative tracing data of Markov et al. (2011, 2014). Gaps in
the data are filled by predictions of overall connection densities
from inter-area distances, and laminar patterns from relative
neuron densities of source and target areas. The synapses are
statistically mapped to target neurons based on the extent of the
dendritic trees of morphologically reconstructed neurons of each
type in each layer (Binzegger et al., 2004). A mean-field-based
method slightly adjusts the connectivity to support plausible
spike rates (Schuecker et al., 2017).

When the cortico-cortical synapses have the same strength
as the local synapses, this leads to a stationary “ground
state” of activity without substantial rate fluctuations or inter-
area interactions (Figure 2B). As this state does not match
experimental resting-state recordings of spiking activity and
functional connectivity between areas, the cortico-cortical
synaptic strengths are increased, especially onto inhibitory
neurons, in order to generate substantial inter-area interactions
while maintaining balance. Poised just below a transition to
a high-activity state, the spiking activity is irregular with low
synchrony apart from population events of variable duration. In
this “metastable state” (Figure 2C), aspects of both microscopic
and macroscopic resting-state activity in lightly anesthetized
monkeys are well reproduced: the spectrum and spike rate
distribution of the modeled spiking activity of primary visual
cortex (V1) are close to those from parallel spike train
recordings (Chu et al., 2014a,b); and the functional connectivity
between areas approximates that obtained from fMRI recordings
(Babapoor-Farrokhran et al., 2013).

For further details we refer to the original publications
(Schmidt et al., 2018a,b).

3. RESULTS

In this section we first verify the correctness of the simulations
performed by NEST GPU, using NEST 3.0 as a reference.
Afterwards, the performance evaluation is presented in
terms of build (i.e., network construction) and simulation
time.

To this end, we used the HPC cluster JUSUF (von St. Vieth,
2021). In particular, the NEST GPU simulations employed 32
accelerated compute nodes, each of them equipped with two
AMD EPYC 7742 (2 × 64 cores, 2.25 GHz), 256 GB of DDR4
RAM (3,200 MHz), and an NVIDIA V100 GPU with 16 GB
HBM2e; inter-node communication is enabled via InfiniBand
HDR100 (Connect-X6). The NEST simulations were run on
standard compute nodes of the HPC cluster JURECA-DC
(Thörnig and von St. Vieth, 2021), which uses the same CPUs
and interconnect as JUSUF but has 512 GB of DDR4 RAM per
node available.

3.1. Comparison of Model Results Between
NEST and NEST GPU
In Golosio et al. (2021b) some of us have compared the
simulation outcomes between NEST GPU and NEST for the
cortical microcircuit model of Potjans and Diesmann (2014),
showing an optimalmatch between the results of both simulators.
The validation approach follows that of van Albada et al. (2018)
and Knight and Nowotny (2018). In this section we present a
similar procedure in order to validate the NEST GPU outcome
for the multi-area model considered here.

Firstly, for each of the executed simulations, we simulated 10 s
of biological activity of the full-scale multi-area model in both
NEST andNESTGPU. All the simulations were performed with a
time step of 0.1ms.We simulated both the ground state (showing
asynchronous irregular spiking with stationary rate) and the
metastable state of the model (better representing the resting-
state activity of the cortex) in order to compare the results of
both configurations. To avoid transients due for instance to initial
synchronization, a pre-simulation time of 500ms was employed
for all the simulations. This enhances the independence of the
derived activity statistics from the total simulation time.

We executed 10 simulations for each simulator, recording
the spike times. The 10 simulations differ in the chosen seed
for the random number generation, so that there is no pairwise
matching of seeds between NEST and NEST GPU simulations.
Furthermore, we performed another set of 10 simulations with
NEST to estimate the differences that arise only because of the
different seeds used. Taking their outcome as a reference for both
NEST GPU and NEST simulations, it was possible to evaluate
NEST-NEST and NEST-NEST GPU comparisons.

To compare the simulation outcomes using the recorded
spike times, we selected and extracted the distributions of three
quantities for each population:

• The time-averaged firing rate of each neuron;
• The coefficient of variation of inter-spike intervals (CV ISI),

i.e., the ratio between the standard deviation and the average
of inter-spike time intervals of each neuron;

• The pairwise Pearson correlation between the spike trains
obtained from a subset of 200 neurons for each population,
in order to grant a reasonable computing time.

The spike trains were binned with a time step of 2ms,
corresponding to the refractory time, so that at most one spike
could occur in each bin. Considering a binned spike train bi for
neuron i with mean value µi, the correlation coefficient between
two spike trains bi and bj is defined as:

C[i, j] = 〈bi−µi, bj−µj〉/

√

〈bi − µi, bi − µi〉 · 〈bj − µj, bj − µj〉

(5)
where 〈, 〉 represents the scalar product. Hence a 200×200matrix
is built and the distribution of the Pearson correlations can be
evaluated as the distribution of the off-diagonal elements. All
aforementioned distributions were computed using the Elephant
package (Denker et al., 2018).

The raw distributions were smoothed using Kernel
Density Estimation (KDE) (Rosenblatt, 1956; Parzen,

Frontiers in Neuroinformatics | www.frontiersin.org 5 July 2022 | Volume 16 | Article 883333281

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

A

B

FIGURE 2 | Spiking neuronal network model used to evaluate simulator performance in this study. (A) Schematic overview of the model. The multi-area model

represents 32 areas of macaque vision-related cortex, each modeled by four cortical layers with a size of 1mm2. Local connectivity, cortico-cortical connectivity, and

population sizes are adapted for each area. (B) Network activity of areas V1 and V2 in the ground state. (C) Network activity of the same areas in the metastable state.

Figure adapted from Schmidt et al. (2018a) and Schmidt et al. (2018b).

Frontiers in Neuroinformatics | www.frontiersin.org 6 July 2022 | Volume 16 | Article 883333282

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

1962). The KDE method was applied with the
sklearn.neighbors.KernelDensity function of
the scikit-learn Python library (Pedregosa et al., 2011) (version
0.24.2). Specifically, we performed KDE with a Gaussian kernel,
optimized with a bandwidth obtained using the Silverman
method (Silverman, 1986).

With this procedure we obtained 762 distributions for each
simulation. For each of the 254 populations we determined
the average and standard deviation of these distributions across
each set of 10 simulations. To gain an impression of the
similarity of the simulation outcomes of NEST and NEST
GPU, example distributions are shown in Figures 3, 4.
As can be observed, the distributions obtained with the

two simulators closely match each other in the ground state
(Figure 3), and also the error bands are negligible because of
the small variability of the state. In the metastable state, the
variability between the NEST and NEST GPU distributions
is larger (Figure 4). Due to the increased variability, we
decided to depict an additional NEST distribution to show
the substantial fluctuations that can arise between two sets of
NEST simulations.

To provide an overview over the distributions for the
entire model, averaged distributions for each layer and
area were computed. These data were plotted with the
seaborn.violinplot function of the Seaborn Python
library (Waskom, 2021) (version 0.11.1), which returns KDE-
smoothed distributions optimized with the Silverman method,
matching our calculation of the distributions. The distributions
thus obtained were compared by placing them side by side in
the split violin plots shown in Figure 5, also showing median and
interquartile range for every distribution.

The area-averaged distributions compared in Figure 5 are
nearly indistinguishable. The same holds for each of the 254
population-level distributions separately1.

To quantify the similarity between the distributions, the Earth
Mover’s Distance (EMD) was computed. This metric evaluates
the distance between two probability distributions, and its name
stems from an analogy with the reshaping of soil. The two
distributions may be thought of as, respectively, a given amount
of earth located in a certain space and the same amount of earth
that has to be arranged properly. The Earth Mover’s Distance can
thus be seen as the minimum amount of work needed to obtain
the desired distribution from the original one. It is equivalent
to the 1st Wasserstein distance between two distributions (see
Supplementary Material). In this work it has been computed
using the scipy.stats.wasserstein_distance
function of the Python scientific library SciPy (Virtanen et al.,
2020) (version 1.5.2). We opted for this measure instead of the
Kullback-Leibler divergence adopted in the procedure described
in Golosio et al. (2021b) because of the metric properties of the
EMD, which makes it not only more specific in detecting the
degree of dissimilarity among distributions but also symmetric.

To verify the equivalence between the simulators we analyzed
the box plots obtained from the set of 10 EMD values for each

1The distributions are available at https://github.com/gmtiddia/
ngpu_multi_area_model_simulation/tree/main/analysis/dist_plots/Areas.

population, given by the pairwise comparison of each of the 10
simulations. This way, we take into consideration the possible
variability due to the different random number generator seeds.
The random connectivity, membrane potential initialization, and
external drive mean that one expects a nonzero EMD between
simulations with different random seeds even with the same
simulator. Furthermore, the different order of the operations in
the two simulators combined with the chaotic dynamical state
imply that nonzero differences would be expected even with
the same random seeds for different simulators. Since EMD has
the same units as the variables over which the distributions are
computed, it is possible to directly estimate the relevance of the
corresponding values.

Figure 6 shows the EMD box plots obtained from the
comparisons NEST-NEST and NEST-NEST GPU for the three
distributions calculated for area V1, respectively, for the ground
state and the metastable state. The EMD values for the NEST-
NEST GPU comparison are distributed similarly to those for
the NEST-NEST comparison, meaning that the differences that
arise due to the choice of simulator are statistically similar to
those between NEST simulations with different random number
generator seeds. Thus, using NEST GPU instead of NEST (with
different random numbers) does not add variability compared to
using different random seeds with the same simulator. This is a
further indication that NEST and NEST GPU yield statistically
closely similar results. EMD values obtained by the comparison
of the ground state distributions are smaller than the EMD
values obtained for the metastable state. This is due to the
increased fluctuations in the latter state of the model. In some
cases, the whiskers for the NEST-NEST and NEST-NEST GPU
comparisons have different extents. This may be related to
long-tailed distributions of the corresponding activity statistics,
especially for correlations (cf. Figure 5). Differences in the tails of
the distributions caused by only a few data points can lead to large
differences in EMD values because the probability mass needs
to be moved over large distances to turn one distribution into
another. However, the EMD values are marginal compared to
the values within the distributions shown in Figure 5, revealing
a negligible difference between the NEST and NEST GPU
simulation results. This statement is also true for the other areas
of the model, as shown in the Supplementary Material.

3.2. Performance Evaluation
Hitherto we showed that NEST and NEST GPU simulation
outcomes are comparable. In this section the performance of
NEST GPU is evaluated and compared with that of NEST 3.0.

We divided the total execution time into build and simulation
time. The former includes the time needed to allocatememory for
the network components (i.e., neurons, synapses, and all devices,
such as Poisson generators and spike detectors), and to establish
the connections. The simulation time measures how long it takes
to propagate the network dynamics for the specified amount of
biological time once the model has been set up.

The simulation time for NEST and NEST GPU was further
divided to reflect the following subtasks:

Frontiers in Neuroinformatics | www.frontiersin.org 7 July 2022 | Volume 16 | Article 883333283

https://github.com/gmtiddia/ngpu_multi_area_model_simulation/tree/main/analysis/dist_plots/Areas
https://github.com/gmtiddia/ngpu_multi_area_model_simulation/tree/main/analysis/dist_plots/Areas
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

A B

C D

E F

FIGURE 3 | Ground state distributions of firing rate (A,B), CV ISI (C,D) and Pearson correlation of the spike trains (E,F) for the populations L4E and L4I of area V1.

The distributions are averaged over 10 simulations with NEST (orange) and NEST GPU (sky blue). Every averaged distribution has an error band representing its

standard deviation.

• Delivery, describing the time for local spike handling and
delivery;

• MPI communication, describing the time for remote spike
handling and delivery;

• Collocation, i.e., the time employed for the preparation of the
MPI send buffers;

• Update, i.e., the dynamics update time;
• Other, a general subtask in which other contributions

to the overall simulation time are taken
into account.

As reported in Golosio et al. (2021b), NEST GPU creates the
model connections in the RAM, and thereafter copies them to
the GPU memory. For this reason, the build phase, i.e., the phase
related to the network construction, does not take advantage of
any speed-up due to the use of GPUs. However, the build phase
does not depend on the biological time, meaning that the more
biological time is simulated, the less relevance the build time has
for the overall duration of the simulation.

The simulations performed on JUSUF by NEST GPU used
32 compute nodes with one MPI process each and 8 threads

Frontiers in Neuroinformatics | www.frontiersin.org 8 July 2022 | Volume 16 | Article 883333284

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

A B

C D

E F

FIGURE 4 | Metastable state distributions of firing rate (A,B), CV ISI (C,D) and Pearson correlation of the spike trains (E,F) for the populations L4E and L4I of area V1.

The distributions are averaged over 10 simulations with NEST (orange lines) and NEST GPU (sky blue dashed line). Every averaged distribution has an error band

representing its standard deviation. An additional set of NEST simulation distributions is also shown.

per MPI process. It should be noted that while NEST uses MPI
and thread parallelism during both build and state propagation
phases, the number of threads per MPI process in NEST GPU
affects only the build time, because the connections are initially
created in parallel by different OpenMP threads in CPUmemory,
as stated above. This parallel setup, which permits the simulation
of an area for each compute node, was the most efficient in
terms of compute time, because the NVIDIAV100 GPUmemory
can hold one model area at most and also because in this setup
only inter-area communications have to be carried out by MPI.

Indeed, it is known that one of the most significant bottlenecks
in parallel computation is the communication between MPI
processes (Marjanović et al., 2010), and herein the way NEST
GPU handles spike delivery and distributes model areas between
MPI processes (i.e., an area for each MPI process) grants an
efficient parallel optimization.

Performance was evaluated using 10 simulations of 10 s of
biological time for both NEST and NEST GPU, averaging over
random number generator seeds. In contrast to the previous
simulations, spike recording was disabled. To obtain a single set

Frontiers in Neuroinformatics | www.frontiersin.org 9 July 2022 | Volume 16 | Article 883333285

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

A B

C

F

D E

FIGURE 5 | Averaged distributions of the ground state and the metastable state of the model for all 32 areas obtained using NEST (orange, left side) and NEST GPU

(sky blue, right side) and compared with split violin plots. The central dashed line represents the distribution’s median, whereas the other two dashed lines represent

the interquartile range. (A,D) average firing rate, (B,E) average CV ISI, (C,F) average Pearson correlation of the spike trains.

Frontiers in Neuroinformatics | www.frontiersin.org 10 July 2022 | Volume 16 | Article 883333286

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

FIGURE 6 | Earth Mover’s Distance between distributions of firing rate (A,D), CV ISI (B,E) and correlation of the spike trains (C,F) obtained for area V1 of the model in

the ground state and the metastable state. NEST-NEST (orange, left) and NEST-NEST GPU (sky blue, right) data are placed side by side.

Frontiers in Neuroinformatics | www.frontiersin.org 11 July 2022 | Volume 16 | Article 883333287

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

of values for each simulation we performed timemeasurement on
each employed compute node separately and then we averaged
the obtained values. Since the MPI processes are synchronized by
NESTGPU after each simulation time step, the overall simulation
time for each node is the same; however, the time taken by
individual subtasks differs somewhat across the MPI processes
due to the differences between the areas of the model, such as
number of neurons, density of connections, and activity rate.
These subtask differences across the MPI processes are discussed
later in this section. Once we extracted a single set of timings for
each simulation we computed their mean and standard deviation
to obtain a unique set of values.

Figure 7 shows the performance benchmarks of the multi-
area model on CPUs conducted on JURECA-DC using the
benchmarking framework beNNch (Albers et al., 2022).
For both network states, the optimal configuration of the
hybrid parallelization is achieved with 8 MPI processes per
node and 16 threads per task, thus making use of every
physical core of the machine while avoiding hyperthreading.
NEST distributes neurons in a round-robin fashion across
virtual processes. This implements a simple form of static
load balancing as neuronal populations are distributed
evenly. Larger error bars in Figure 7B demonstrate the
increased dependence on initial conditions and decreased
stability of network activity of the metastable state. For the
network simulations of the ground and metastable states,
the scalings plateau at 12 nodes and 32 nodes, respectively.
As discussed in Jordan et al. (2018), plateau is expected in
strong scaling experiments once the MPI communication
dominates. Figure 7 shows that indeed all contributions except
the communication get smaller for increasing numbers of
MPI processes.

In the ground state simulations, comparing the configurations
with 32 nodes, the network construction times were 951 ± 29 s
and 80 ± 7 s (mean ± st.dev.) for NEST GPU and
NEST, respectively. Simulations of the multi-area model in its
metastable state revealed similar network construction times of
957± 41 s for NEST GPU and 69.5± 0.4 s for NEST.

In terms of state propagation time, ground state simulations
took 6.5 ± 0.1 s using NEST GPU, whereas NEST took
15.6 ± 2.1 s, both measured per second of biological model
time. In the metastable state NEST GPU was able to compute a
second of biological activity in 15.3 ± 0.9 s, whereas NEST took
47.9 ± 7.7 s. The longer simulation time taken for the metastable
state is explained by the higher firing rates and synchrony in this
state.

In case of enabled spike recording using NEST GPU the
simulation time increases up to 5% when recording from all
neurons. In these simulations, packing of recorded spikes and
transfer to the CPUmemory is performed every 2,000 simulation
time steps (i.e., every 200ms of biological time). This overhead
is strongly dependent on the model simulated and the amount
of GPU memory available. In fact a larger GPU memory
would support larger buffers of recorded spikes, diminishing
the frequency of copy operations from GPU memory to CPU
memory. Furthermore, the overhead can be reduced by recording
spikes from only a fraction of the neurons.

Figure 8A shows the various contributions to the simulation
time for NEST and NEST GPU. The main difference between the
simulators appears in the time taken by spike communication,
evincing the advantage of exploiting a neuron distribution among
MPI processes that takes into account spatial locality. The round-
robin distribution of neurons in NEST necessitates a larger
degree of parallelization and hence communication to reach
optimal performance. This increased communication is needed
regardless of whether MPI or OpenMP parallelism is used.
Indeed, replacing the 8 MPI processes per node by a further 8
threads incurs an even greater performance penalty (data not
shown). We here compare both simulators in configurations
which yield optimal performance.

The relative contributions of the various phases do not
differ strongly between the ground and metastable states. The
contribution of the communication of spikes between different
MPI processes for the metastable state of the model is around
8.0 and 29.7 s per second of biological time for NEST GPU
and NEST, respectively. The contribution of update, delivery,
and other operations, excluding the communication of spikes
between different MPI processes, is around 7.3 s for NEST GPU
and 18.0 s for NEST. We can therefore observe that the better
performance of NEST GPU compared to NEST is mainly due
to a reduction in the communication time of the spikes between
MPI processes, although there is an improvement also in the time
associated with the update and delivery of local spikes.

Regarding the differences in computation time across MPI
processes in NEST GPU, as mentioned above, the time taken
by individual subtasks can vary across MPI processes because of
differences between the areas of the model. However, since MPI
processes are synchronized at the end of every simulation time
step, the overall simulation time shown by every MPI process
is the same. The resulting latency due to the difference between
model areas is embedded in the Communication subtask. We
measured that, within a simulation, the contribution of the spike
communication between the 32 MPI processes (i.e., the 32 areas
of the model) can vary up to 25% with respect to its average
shown in Figure 8A and the contribution of the local spike
delivery subtask shows comparable variations. The rest of the
subtasks (i.e., Collocation, Update and Other) do not change
significantly across the MPI processes, as shown in Figure 8B.

4. DISCUSSION

In this work we have compared the simulators NEST GPU
and NEST on a full-scale multi-area spiking network model of
macaque cortex with 4.1 million neurons and 24 billion synapses
(Schmidt et al., 2018a,b). As described at the beginning of the
Results section, the NEST GPU simulations used 32 nodes of
the HPC cluster JUSUF, each node of which is equipped with
an NVIDIA V100 GPU. The NEST simulations used 32 nodes
of the JURECA-DC cluster, each of which is equipped with two
AMD EPYC 7742 CPUs. We have considered both the ground
state of the model and the metastable state, where the latter better
represents in vivo cortical activity thanks to stronger inter-area
connections.

Frontiers in Neuroinformatics | www.frontiersin.org 12 July 2022 | Volume 16 | Article 883333288

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

A

B

FIGURE 7 | Strong-scaling performance of the multi-area model in its ground and metastable states on JURECA-DC using NEST 3.0. (A) Simulated with parameters

inducing stable ground state activity in the network. The left sub-panel displays the absolute wall-clock time Twall for the network construction and state propagation in

ms for a biological model time Tmodel = 10 s. Error bars indicate the standard deviation of the performance across 10 repeat simulations with different random seeds,

the central points of which show the respective mean values. Error bars are shown in pink in the right panels to indicate that they are for the state propagation phase

as a whole; the corresponding standard deviations are the same as in the left panels. The top right sub-panel presents the real-time factor defined as Twall/Tmodel.

Detailed timers show the absolute (top right) and relative (bottom right) time spent in the four different phases of the state propagation: update, collocation,

communication, and delivery. Where the collocation phase is not discernible, this is due to its shortness. (B) Simulated with parameters inducing a metastable state

with population bursts of variable duration. Same arrangement as (A).

Figure 5, showing the averaged distributions of firing rate,
CV ISI, and Pearson correlation obtained with NEST and NEST
GPU, exhibits the compatibility between the outcomes of the
two simulators in both states of the network. We have also
quantified the differences that arise between a NEST and a NEST
GPU simulation using the EarthMover’s Distance (EMD)metric.
Specifically, we used EMD to evaluate the differences between
the distributions obtained for each population with the two
simulators. The results of this analysis show that the differences
between NEST and NEST GPU simulations are comparable to
those between multiple NEST simulations differing only in terms
of their random seeds.

Regarding simulation performance, we observed that the build
time of the multi-area model simulations is substantially higher
using NEST GPU as compared to NEST. This is due to the fact

that NEST GPU builds the network in the RAM and thereafter
copies the constructed model to GPU memory. This additional
step represents the bottleneck of the network construction phase
using NEST GPU. However, since the build time is independent
of the biological simulation time, it can be regarded as an
overhead with decreasing relevance for longer biological times.
A future integration of the network construction phase into the
GPU memory could strongly decrease this contribution.

In terms of simulation time, NEST GPU shows a remarkable
performance (Figure 8A). Simulations of themulti-areamodel in
its ground state achieved a simulation time of 6.5 s per second of
biological activity, reaching a speed-up factor of 2.4 compared
to NEST. In the metastable state, NEST GPU reached 15.3 s
of simulation time per second of biological activity which is
approximately 3.1× faster than NEST simulations. Future work

Frontiers in Neuroinformatics | www.frontiersin.org 13 July 2022 | Volume 16 | Article 883333289

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

A B

FIGURE 8 | Contributions to the simulation time of the multi-area model. (A) Contributions to the simulation time in the ground state and the metastable state for

NEST and NEST GPU measured with the real-time factor. Error bars show the standard deviation of the overall performance across 10 simulations with different

random seeds. The plot shows the performance obtained by NEST GPU and NEST in the 32-node configuration. NEST simulations were performed on JURECA-DC

using 8 MPI processes per node and 16 threads per task, whereas NEST GPU simulations were performed on JUSUF using one MPI process per node and 8 threads

per task. The black dashed line indicates the biological time. (B) Relative contributions to the simulation time of the multi-area model in the metastable state for every

area (i.e., for every MPI process) in a NEST GPU simulation.

can further improve upon this performance: firstly, if each node
of the HPC cluster were equipped with more than one GPU,
the communication time, and with it the simulation time, would
diminish. Secondly, the same simulation performed with a more
recent GPU hardware (e.g., NVIDIA A100 GPUs) would permit
not only faster simulations but also the possibility to simulate
more than one area of the model on the same GPU thanks to
enhancements of the GPU memory.

From the Results section it can be observed that the most
relevant differences in the performance of NEST and NEST GPU
in the simulation of the multi-area model are related to the
contribution of the spike communication to the total simulation
time. NEST uses a round-robin distribution of the nodes among
MPI processes, and a two-tier connection infrastructure for
communicating spikes. This infrastructure differentiates between
data structures on the presynaptic side, i.e., the MPI process
of the sending neuron, and the postsynaptic side, i.e., the MPI
process of the receiving neuron. By using the blocking MPI
Alltoall, spikes, which are stored in MPI buffers, are routed
across MPI processes from pre- to postsynaptic neurons. In the
implementation described by?, a spike having target neurons
on different threads necessitated communication of spike copies
to all these threads. Furthermore, this implementation only
allowed MPI buffers to grow, but not to shrink. Albers et al.
(2022) identified that this puts unnecessary strain on the MPI
communication. They therefore introduced spike compression
which only sends one spike to each target MPI process, which

has the necessary knowledge on the target threads saved in an
additional data structure. The problem of buffer size is solved via
introducing the possibility of dynamically shrinking and growing
the MPI buffers.

Kumar et al. (2010) and Hines et al. (2011) propose
and compare several strategies for spike-exchange on systems
including up to 128 K communication end-points (fine-grained
BlueGene/P cores) leveraging a communication infrastructure
based on non-blocking neighborhood collectives. The proposed
approach has several points of strength that have not yet been
exploited in this paper, for several reasons. First, communication
steps are performed every ms (the minimum axo-synaptic delay
in their model), while the integration step is set at 0.1ms.
Some of the authors of the present paper already exploited
this strategy (e.g., in Pastorelli et al., 2019) demonstrating its
substantial merit in reducing the communication/computation
time ratio. However, the minimal connection delay in the 32-
areamodel under consideration is not higher than the integration
step, so this prevents the application of the method in the
current paper. However, this will be considered for multi-area
models with inter-areal connection delays substantially longer
than the integration step. Second, in Kumar et al. (2010)
and Hines et al. (2011) communication and computation are
overlapped by further dividing the communication step in two
alternating temporal steps (A and B, with spikes produced
during the time window A sent during the B window, and
vice versa). Substantial minimal inter-areal connection delays

Frontiers in Neuroinformatics | www.frontiersin.org 14 July 2022 | Volume 16 | Article 883333290

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

are again a precondition for the overlapping of computation
and communication, but it must also be supported by adequate
infrastructure in the simulation engine. This technique further
reduces the overhead of communication down to values that
are comparable with the computation cost even for highly
simplified neural integration models. The technique should be
surely considered for implementation in NEST GPU and NEST.

Concerning the merit of distributing the neurons among
nodes according to their spatial locality (as in the NEST
GPU implementation), there are several substantial differences
between the spike-exchange algorithmic exploration proposed by
Hines et al. (2011) (from 8 to 128 K small memory footprint
MPI end-points in the BlueGene/P system) and our discussion
that uses as end-points of MPI communication 32 large memory
node systems. Hines et al. (2011) analyze the effect of round-
robin vs. a consecutive distribution of neurons among processing
nodes for models with random vs. local connectivity, in two
spiking rate regimes, named “Noburst” and “Burst.” In the first
one each neuron of the network fires with a uniform distribution
over the entire simulation time interval, whereas in the second
regime groups of contiguous neurons successively fire at five
times their normal rate for a 50 ms period. On a system
with 16 K communication end-points, they demonstrated that
the consecutive distribution is highly advantageous for locally
connected networks with homogeneous firing rates, while it is
only moderately advantageous when all neurons on a processor
show the bursting regime. In our case, with larger memory
per node and in general for horizontal projections strongly
decaying with spatial distance, mapping the laterally incoming
synapses on the memory of a single GPU eliminates the need
to use collective communications for a much larger fraction of
spikes than when mapping a structured network on a system
with 16K communication end-points. Indeed, the average ratio
between the number of spikes that an area sends to all the
other areas and the total number of spikes that it emits is
around 3%, with a maximum across areas of around 16% (see
Supplementary Material).

Regarding NEST GPU performance on a learning case (i.e.,
on a network model that employs plastic synapses), in Golosio
et al. (2021b) we evaluated the library’s performance in the
simulation of networks with spike-timing-dependent plasticity
(STDP) (Gütig et al., 2003) on a single GPU. In general, multi-
GPU/MPI simulation performance can significantly depend on
the way synaptic parameters of STDP connections between
neurons on different MPI processes are updated. The availability
of presynaptic spikes and synaptic representation on the same
process as the target neurons, as in NEST GPU (and NEST),
enables efficient weight updates because they can be managed
locally. However, simulation of plastic networks will be covered
in future work.

The inclusion of NEST GPU into the NEST Initiative
facilitates further integration with the NEST simulator, opening it
up to GPU-based spiking neural network simulations. Currently
there is ongoing work oriented to an adaptation of the models to
be consistent with the NEST simulator, and a software interface
has also been developed (Golosio et al., 2020) which enables
creating NEST-NEST GPU hybrid networks. Indeed, as reported
in Golosio et al. (2021b), the Python interfaces of NEST and

NEST GPU are highly similar, making the porting of NEST
scripts to the new simulator quite simple. Not only the possibility
of using GPU hardware, but also the optimized MPI algorithm
for spike communication will greatly improve user experience in
simulating large-scale spiking neural networks. In fact, as shown
in Figure 8, the time reduction in the communication between
MPI processes is the main contributor to the better performance
of NEST GPU compared to NEST. A speed-up in the neuron
updates and delivery of local spikes is also present, and can be
further enhanced with the use of more performant GPU-based
HPC solutions.

In summary, the NEST GPU simulator (Golosio et al., 2021b)
is able to outperform NEST in the state propagation phase of
the simulation of a large-scale spiking model, and this speed-
up can be essential for simulations covering long stretches
of biological time. The performance might be even further
enhanced with the help of the latest GPU hardware, which could
lead to a steeper performance difference between CPU-based
simulators and GPU-based ones. Indeed the use of multi-GPU
nodes in a cluster, together with the increase in GPU memory
and therefore the possibility of allocating more neurons on a
single GPU card, would allow a considerable reduction in the
spike communication time. More generally, the GPU industry is
growing rapidly, with excellent prospects for the performance of
future cards, which from generation to generation significantly
increase performance.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://github.com/
gmtiddia/ngpu_multi_area_model_simulation.

AUTHOR CONTRIBUTIONS

GT, JA, and JP performed the simulations and data analysis with
guidance by JS, BG, and SvA. JP, JA, JS, and SvA contributed
to the development of the NEST implementation of the multi-
area model. BG, FS, GT, EP, VF, and PP contributed to the
development of the NEST GPU implementation of the multi-
area model. GT, BG, and SvA wrote the first manuscript draft.
JS, GT, JA, EP, PP, VF, and SvA revised the manuscript. BG and
SvA supervised the project. All authors have read and approved
the final manuscript.

FUNDING

This study was supported by the European Union’s Horizon
2020 Framework Programme for Research and Innovation under
Specific Grant Agreements No. 945539 (Human Brain Project
SGA3) and No. 785907 (Human Brain Project SGA2), the
Priority Program 2041 (SPP 2041) Computational Connectomics
of the German Research Foundation (DFG), the Helmholtz
Association Initiative and Networking Fund under project
number SO-092 (Advanced Computing Architectures, ACA), the
Joint Lab Supercomputing and Modeling for the Human Brain,

Frontiers in Neuroinformatics | www.frontiersin.org 15 July 2022 | Volume 16 | Article 883333291

https://github.com/gmtiddia/ngpu_multi_area_model_simulation
https://github.com/gmtiddia/ngpu_multi_area_model_simulation
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

and the INFN APE Parallel/Distributed Computing laboratory.
We acknowledge the use of Fenix Infrastructure resources, which
are partially funded from the European Union’s Horizon 2020
research and innovation programme through the ICEI project
under the Grant Agreement No. 800858. Open access publication
funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – 491111487.

ACKNOWLEDGMENTS

We thank Alexander van Meegen for contributing to the testing
and maintenance of the NEST code for the multi-area model. We

are also grateful to Jose Villamar for his valuable contribution
to the improvement of the NEST GPU code. The authors
gratefully acknowledge the computing time granted by the JARA
Vergabegremium and provided on the JARA Partition part
of the supercomputer JURECA at Forschungszentrum Jülich
(computation grant JINB33).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2022.883333/full#supplementary-material

REFERENCES

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,
et al. (2015). Truenorth: design and tool flow of a 65 mw 1 million neuron
programmable neurosynaptic chip. IEEE Trans. Comput. Aided Design Integrat.

Circ. Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396
Albers, J., Pronold, J., Kurth, A. C., Vennemo, S. B., Haghighi Mood,

K., Patronis, A., et al. (2022). A modular workflow for performance
benchmarking of neuronal network simulations. Front. Neuroinform. 16,
837549. doi: 10.3389/fninf.2022.837549

Alonso-Nanclares, L., Gonzalez-Soriano, J., Rodriguez, J., and DeFelipe, J. (2008).
Gender differences in human cortical synaptic density. Proc. Natl. Acad. Sci.
U.S.A.105, 14615–14619. doi: 10.1073/pnas.0803652105

Azevedo, F. A., Carvalho, L. R., Grinberg, L. T., Farfel, J. M., Ferretti, R. E., Leite,
R. E., et al. (2009). Equal numbers of neuronal and nonneuronal cells make the
human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513,
532–541. doi: 10.1002/cne.21974

Babapoor-Farrokhran, S., Hutchison, R. M., Gati, J. S., Menon, R. S., and Everling,
S. (2013). Functional connectivity patterns of medial and lateral macaque
frontal eye fields reveal distinct visuomotor networks. J. Neurophysiol. 109,
2560–2570. doi: 10.1152/jn.01000.2012

Bakker, R., Thomas, W., and Diesmann, M. (2012). CoCoMac 2.0 and
the future of tract-tracing databases. Front. Neuroinform. 6, 30.
doi: 10.3389/fninf.2012.00030

Binzegger, T., Douglas, R. J., and Martin, K. A. C. (2004). A quantitative
map of the circuit of cat primary visual cortex. J. Neurosci. 39, 8441–8453.
doi: 10.1523/JNEUROSCI.1400-04.2004

Brette, R., and Goodman, D. F. M. (2012). Simulating spiking neural networks on
GPU. Network 23, 167–182. doi: 10.3109/0954898X.2012.730170

Capone, C., Pastorelli, E., Golosio, B., and Paolucci, P. S. (2019). Sleep-like
slow oscillations improve visual classification through synaptic homeostasis
and memory association in a thalamo-cortical model. Sci. Rep. 9, 8990–8911.
doi: 10.1038/s41598-019-45525-0

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge:
Cambridge University Press.

Chou, T.-S., Kashyap, H. J., Xing, J., Listopad, S., Rounds, E. L., Beyeler, M.,
et al. (2018). “CARLsim 4: An open source library for large scale, biologically
detailed spiking neural network simulation using heterogeneous clusters,” in
2018 International Joint Conference on Neural Networks (IJCNN) (Rio de
Janeiro: IEEE).

Chu, C. C. J., Chien, P. F., and Hung, C. P. (2014b). Tuning dissimilarity explains
short distance decline of spontaneous spike correlation in macaque V1. Vision
Res. 96, 113–132. doi: 10.1016/j.visres.2014.01.008

Chu, C. C. J., Chien, P. F., and Hung, C. P. (2014a). Multi-Electrode Recordings of

Ongoing Activity and Responses to Parametric Stimuli in Macaque V1. Available
online at: https://crcns.org/data-sets/vc/pvc-5/about

Cragg, B. G. (1975). The density of synapses and neurons in normal,
mentally defective ageing human brains. Brain 98, 81–90. doi: 10.1093/brain/
98.1.81

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.
(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Denker, M., Yegenoglu, A., and Grün, S. (2018). “Collaborative HPC-enabled
workflows on the HBP Collaboratory using the Elephant framework,” in
Neuroinformatics 2018 (Jülich), P19.

Felleman, D. J., and Van Essen, D. C. (1991). Distributed hierarchical processing in
the primate cerebral cortex. Cereb. Cortex 1, 1–47. doi: 10.1093/cercor/1.1.1

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker
project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Garrido, J. A., Carrillo, R. R., Luque, N. R., and Ros, E. (2011). “Event and
time driven hybrid simulation of spiking neural networks,” in Advances in

Computational Intelligence (Berlin; Heidelberg: Springer), 554–561.
Golosio, B., De Luca, C., Pastorelli, E., Simula, F., Tiddia, G., and Paolucci, P.

S. (2020). “Toward a possible integration of NeuronGPU in NEST,” in NEST

Conference 2020 (Ås), 7.
Golosio, B., De Luca, C., Capone, C., Pastorelli, E., Stegel, G., Tiddia, G.,

et al. (2021a). Thalamo-cortical spiking model of incremental learning
combining perception, context and NREM-sleep. PLoS Comput. Biol. 17, 1–26.
doi: 10.1371/journal.pcbi.1009045

Golosio, B., Tiddia, G., De Luca, C., Pastorelli, E., Simula, F., and Paolucci, P. S.
(2021b). Fast simulations of highly-connected spiking cortical models using
GPUs. Front. Comput. Neurosci. 15, 13. doi: 10.3389/fncom.2021.627620

Grübl, A., Billaudelle, S., Cramer, B., Karasenko, V., and Schemmel, J. (2020).
Verification and design methods for the BrainScaleS neuromorphic hardware
system. J. Signal Process. Syst. 92, 1277–1292. doi: 10.1007/s11265-020-01558-7

Gütig, R., Aharonov, R., Rotter, S., and Sompolinsky, H. (2003). Learning input
correlations through nonlinear temporally asymmetric hebbian plasticity. J.
Neurosci. 23, 3697–3714. doi: 10.1523/JNEUROSCI.23-09-03697.2003

Güttler, G. M. (2017). Achieving a Higher Integration Level of Neuromorphic

Hardware Using Wafer Embedding. Heidelberg: Heidelberg University Library.
doi: 10.11588/HEIDOK.00023723

Hahne, J., Diaz, S., Patronis, A., Schenck, W., Peyser, A., Graber, S., et al. (2021).
NEST 3.0. Available online at: https://zenodo.org/record/4739103/export/hx#.
YqHBUiNByYM

Heittmann, A., Psychou, G., Trensch, G., Cox, C. E.,Wilcke,W.W., Diesmann,M.,
et al. (2022). Simulating the cortical microcircuit significantly faster than real
time on the ibm inc-3000 neural supercomputer. Front. Neurosci. 15, 728460.
doi: 10.3389/fnins.2021.728460

Hines, M., Kumar, S., and Schürmann, F. (2011). Comparison of neuronal spike
exchange methods on a Blue Gene/P supercomputer. Front. Comput. Neurosci.
5, 49. doi: 10.3389/fncom.2011.00049

Hoang, R., Tanna, D., Jayet Bray, L., Dascalu, S., and Harris, F. (2013). A
novel cpu/gpu simulation environment for large-scale biologically realistic
neural modeling. Front. Neuroinform. 7, 19. doi: 10.3389/fninf.2013.
00019

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018).
Extremely scalable spiking neuronal network simulation code: from laptops to
exascale computers. Front. Neuroinformat. 12:2. doi: 10.3389/fninf.2018.00002

Frontiers in Neuroinformatics | www.frontiersin.org 16 July 2022 | Volume 16 | Article 883333292

https://www.frontiersin.org/articles/10.3389/fninf.2022.883333/full#supplementary-material
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.3389/fninf.2022.837549
https://doi.org/10.1073/pnas.0803652105
https://doi.org/10.1002/cne.21974
https://doi.org/10.1152/jn.01000.2012
https://doi.org/10.3389/fninf.2012.00030
https://doi.org/10.1523/JNEUROSCI.1400-04.2004
https://doi.org/10.3109/0954898X.2012.730170
https://doi.org/10.1038/s41598-019-45525-0
https://doi.org/10.1016/j.visres.2014.01.008
https://crcns.org/data-sets/vc/pvc-5/about
https://doi.org/10.1093/brain/98.1.81
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1093/cercor/1.1.1
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1371/journal.pcbi.1009045
https://doi.org/10.3389/fncom.2021.627620
https://doi.org/10.1007/s11265-020-01558-7
https://doi.org/10.1523/JNEUROSCI.23-09-03697.2003
https://doi.org/10.11588/HEIDOK.00023723
https://zenodo.org/record/4739103/export/hx#.YqHBUiNByYM
https://zenodo.org/record/4739103/export/hx#.YqHBUiNByYM
https://doi.org/10.3389/fnins.2021.728460
https://doi.org/10.3389/fncom.2011.00049
https://doi.org/10.3389/fninf.2013.00019
https://doi.org/10.3389/fninf.2018.00002
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Tiddia et al. MPI-GPU Simulation of Multi-Area Model

Knight, J. C., Komissarov, A., and Nowotny, T. (2021). PyGeNN: A Python
library for GPU-enhanced neural networks. Front. Neuroinform. 15, 659005.
doi: 10.3389/fninf.2021.659005

Knight, J. C., and Nowotny, T. (2018). GPUs outperform current HPC
and neuromorphic solutions in terms of speed and energy when
simulating a highly-connected cortical model. Front Neurosci. 12.
doi: 10.3389/fnins.2018.00941

Knight, J. C., and Nowotny, T. (2021). Larger GPU-accelerated brain
simulations with procedural connectivity. Nat. Comput. Sci. 1, 136–142.
doi: 10.1038/s43588-020-00022-7

Kumar, S., Heidelberger, P., Chen, D., and Hines, M. (2010). “Optimization of
applications with non-blocking neighborhood collectives viamultisends on the
blue gene/p supercomputer,” in 2010 IEEE International Symposium on Parallel

Distributed Processing (IPDPS) (Atlanta, GA: IEEE), 1–11.
Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King, J., Delalondre, F., et al.

(2019). Coreneuron: an optimized compute engine for the neuron simulator.
Front. Neuroinform. 13, 63. doi: 10.3389/fninf.2019.00063

Kurth, A. C., Senk, J., Terhorst, D., Finnerty, J., and Diesmann, M. (2022). Sub-
realtime simulation of a neuronal network of natural density. Neuromorph.

Comput. Eng. 2, 021001. doi: 10.1088/2634-4386/ac55fc
Marjanović, V., Labarta, J., Ayguadé, E., and Valero, M. (2010). “Overlapping

communication and computation by using a hybrid mpi/smpss approach,” in
Proceedings of the 24th ACM International Conference on Supercomputing, ICS

’10 (New York, NY: Association for Computing Machinery), 5–16.
Markov, N. T., Ercsey-Ravasz, M. M., Ribeiro Gomes, A., Lamy, C.,

Magrou, L., Vezoli, J., et al. (2014). A weighted and directed interareal
connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36.
doi: 10.1093/cercor/bhs270

Markov, N. T., Misery, P., Falchier, A., Lamy, C., Vezoli, J., Quilodran, R., et al.
(2011). Weight consistency specifies regularities of macaque cortical networks.
Cereb. Cortex 21, 1254–1272. doi: 10.1093/cercor/bhq201

Nguyen, H. (2007). Gpu Gems 3. Addison-Wesley Professional, 1st Edn.
Boston, MA: Addison-Wesley

Parzen, E. (1962). On estimation of a probability density function and mode. Ann.
Math. Stat. 33, 1065–1076. doi: 10.1214/aoms/1177704472

Pastorelli, E., Capone, C., Simula, F., Sanchez-Vives, M. V., Del Giudice, P., Mattia,
M., et al. (2019). Scaling of a large-scale simulation of synchronous slow-
wave and asynchronous awake-like activity of a cortical model with long-range
interconnections. Front. Syst. Neurosci. 13, :33. doi: 10.3389/fnsys.2019.00033

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al. (2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12,
2825–2830. Available online at: https://scikit-learn.org/stable/about.html

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical
microcircuit: relating structure and activity in a full-scale spiking network
model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358

Rhodes, O., Peres, L., Rowley, A. G. D., Gait, A., Plana, L. A., Brenninkmeijer,
C., et al. (2020). Real-time cortical simulation on neuromorphic
hardware. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378, 20190160.
doi: 10.1098/rsta.2019.0160

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density
function. Ann. Math. Stat. 27, 832–837. doi: 10.1214/aoms/1177728190

Sanders, J., and Kandrot, E. (2010). CUDA by Example: An Introduction to

General-Purpose GPU Programming. Upper Saddle River, NJ: Addison-Wesley.
Schmidt, M., Bakker, R., Hilgetag, C. C., Diesmann, M., and van Albada, S. J.

(2018a). Multi-scale account of the network structure of macaque visual cortex.
Brain Struct. Funct. 223, 1409–1435. doi: 10.1007/s00429-017-1554-4

Schmidt, M., Bakker, R., Shen, K., Bezgin, G., Diesmann, M., and van Albada, S.
J. (2018b). A multi-scale layer-resolved spiking network model of resting-state
dynamics in macaque visual cortical areas. PLoS Comput. Biol. 14, e1006359.
doi: 10.1371/journal.pcbi.1006359

Schuecker, J., Schmidt, M., van Albada, S. J., Diesmann, M., and
Helias, M. (2017). Fundamental activity constraints lead to specific
interpretations of the connectome. PLoS Comput. Biol. 13, e1005179.
doi: 10.1371/journal.pcbi.1005179

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis.
London: Chapman and Hall.

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and
efficient neural simulator. Elife 8, e47314. doi: 10.7554/eLife.47314

Thörnig, P., and von St. Vieth, B. (2021). JURECA: data centric and
booster modules implementing the modular supercomputing architecture
at jülich supercomputing centre. J. Large Scale Res. Facilit. 7, A182.
doi: 10.17815/jlsrf-7-182

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M., Stokes,
A. B., et al. (2018). Performance comparison of the digital neuromorphic
hardware SpiNNaker and the neural network simulation software NEST
for a full-scale cortical microcircuit model. Front. Neurosci. 12, 291.
doi: 10.3389/fnins.2018.00291

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,
D., et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in
python. Nat. Methods 17, 261–272. doi: 10.1038/s41592-020-0772-5

Vitay, J., Dinkelbach, H. U., and Hamker, F. H. (2015). ANNarchy: a code
generation approach to neural simulations on parallel hardware. Front.

Neuroinform. 9, 19. doi: 10.3389/fninf.2015.00019
von St. Vieth, B. (2021). Jusuf: Modular tier-2 supercomputing and cloud

infrastructure at jülich supercomputing centre. J. Large Scale Res. Facilit. 7,
A179. doi: 10.17815/jlsrf-7-179

Waskom, M. L. (2021). seaborn: statistical data visualization. J. Open Source Softw.
6, 3021. doi: 10.21105/joss.03021

Wunderlich, T., Kungl, A. F., Müller, E., Hartel, A., Stradmann, Y., Aamir, S. A.,
et al. (2019). Demonstrating advantages of neuromorphic computation: a pilot
study. Front. Neurosci. 13, 260. doi: 10.3389/fnins.2019.00260

Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a code generation framework
for accelerated brain simulations. Sci Rep. 6, 18854. doi: 10.1038/srep18854

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Tiddia, Golosio, Albers, Senk, Simula, Pronold, Fanti, Pastorelli,

Paolucci and van Albada. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 17 July 2022 | Volume 16 | Article 883333293

https://doi.org/10.3389/fninf.2021.659005
https://doi.org/10.3389/fnins.2018.00941
https://doi.org/10.1038/s43588-020-00022-7
https://doi.org/10.3389/fninf.2019.00063
https://doi.org/10.1088/2634-4386/ac55fc
https://doi.org/10.1093/cercor/bhs270
https://doi.org/10.1093/cercor/bhq201
https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.3389/fnsys.2019.00033
https://scikit-learn.org/stable/about.html
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1098/rsta.2019.0160
https://doi.org/10.1214/aoms/1177728190
https://doi.org/10.1007/s00429-017-1554-4
https://doi.org/10.1371/journal.pcbi.1006359
https://doi.org/10.1371/journal.pcbi.1005179
https://doi.org/10.7554/eLife.47314
https://doi.org/10.17815/jlsrf-7-182
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.1038/s41592-020-0772-5
https://doi.org/10.3389/fninf.2015.00019
https://doi.org/10.17815/jlsrf-7-179
https://doi.org/10.21105/joss.03021
https://doi.org/10.3389/fnins.2019.00260
https://doi.org/10.1038/srep18854
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

ORIGINAL RESEARCH
published: 05 July 2022

doi: 10.3389/fnins.2022.881598

Frontiers in Neuroscience | www.frontiersin.org 1 July 2022 | Volume 16 | Article 881598

Edited by:

Markus Diesmann,

Helmholtz Association of German

Research Centres (HZ), Germany

Reviewed by:

Federico Corradi,

Eindhoven University of Technology,

Netherlands

Marcel Stimberg,

Sorbonne Université, France

*Correspondence:

Mollie Ward

mollie.ward@manchester.ac.uk

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 22 February 2022

Accepted: 10 June 2022

Published: 05 July 2022

Citation:

Ward M and Rhodes O (2022) Beyond

LIF Neurons on Neuromorphic

Hardware.

Front. Neurosci. 16:881598.

doi: 10.3389/fnins.2022.881598

Beyond LIF Neurons on
Neuromorphic Hardware
Mollie Ward* and Oliver Rhodes

Department of Computer Science, University of Manchester, Manchester, United Kingdom

Neuromorphic systems aim to provide accelerated low-power simulation of Spiking

Neural Networks (SNNs), typically featuring simple and efficient neuron models such as

the Leaky Integrate-and-Fire (LIF) model. Biologically plausible neuron models developed

by neuroscientists are largely ignored in neuromorphic computing due to their increased

computational costs. This work bridges this gap through implementation and evaluation

of a single compartment Hodgkin-Huxley (HH) neuron and a multi-compartment

neuron incorporating dendritic computation on the SpiNNaker, and SpiNNaker2

prototype neuromorphic systems. Numerical accuracy of the model implementations

is benchmarked against reference models in the NEURON simulation environment,

with excellent agreement achieved by both the fixed- and floating-point SpiNNaker

implementations. The computational cost is evaluated in terms of timing measurements

profiling neural state updates. While the additional model complexity understandably

increases computation times relative to LIF models, it was found a wallclock time

increase of only 8× was observed for the HH neuron (11× for the mutlicompartment

model), demonstrating the potential of hardware accelerators in the next-generation

neuromorphic system to optimize implementation of complex neuron models. The

benefits of models directly corresponding to biophysiological data are demonstrated: HH

neurons are able to express a range of output behaviors not captured by LIF neurons;

and the dendritic compartment provides the first implementation of a spiking multi-

compartment neuron model with XOR-solving capabilities on neuromorphic hardware.

The work paves the way for inclusion of more biologically representative neuron models

in neuromorphic systems, and showcases the benefits of hardware accelerators included

in the next-generation SpiNNaker2 architecture.

Keywords: SpiNNaker, dendritic computation, Hodgkin-Huxley, neuronal modeling, neuromorphic computing,

spiking neural networks

1. INTRODUCTION

A vast array of brain modeling techniques exist to simulate brain activity with a view to gaining
understanding of the human brain. These techniques range from mathematical representations
of individual molecules within neurons to whole-brain simulations. One widely used method for
simulation of brain activity is through the use of neural networks. Spiking Neural Networks (SNNs)
use biologically-inspired models of neurons to carry out computation with the aim of simulating
neural activity and have applications in a number of research areas including computational
neuroscience, machine learning, and robotics.

294

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.881598
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.881598&domain=pdf&date_stamp=2022-07-05
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mollie.ward@manchester.ac.uk
https://doi.org/10.3389/fnins.2022.881598
https://www.frontiersin.org/articles/10.3389/fnins.2022.881598/full

Ward and Rhodes Beyond LIF Neurons

State-of-the-art large scale SNN simulations such as those
described by the Blue Brain Project (Markram et al., 2015) aim
to mimic brain activity through the use of complex neuron
models to advance understanding of the human brain. Scientists
were able to accurately reproduce anatomical and physiological
features of real biological networks when simulating 0.29 mm3 of
the rat brain. Despite these recent achievements in the complexity
and scale of SNNs simulated, simulation of these SNNs consumes
considerable power (megawatts) for simulation of very small
regions of the brain (Markram et al., 2015). The full simulation
involved over 30,000 different neuron models incorporating 13
different ion-channel models, each neuron comprised on average
20,000 differential equations representing synaptic connections
and ion-channels. The full simulation required solving of over
two billion equations for every second of biological time
(Kumbhar et al., 2019). This power consumption is not required
in the human brain which demonstrates a remarkable ability
for large amounts of fine-scale computation at a fraction of the
power (up to 20 watts) and much faster than SNNs simulated on
conventional computer hardware which do not run in real-time
(Cox and Dean, 2014).

Energy-efficient neuromorphic systems are designed to mimic
the brain and provide low-power platforms for simulation
of SNNs, providing a potential solution for the high energy
requirements of large scale simulations. As neuromorphic
computing platforms target real-time large-scale simulations of
SNNs, the biological plausibility of neuron models has been
largely ignored in favor of simple, efficient neuronmodels such as
the Leaky-Integrate-and-Fire (LIF) neuron model. Such models
are favored due to the ease of solving the equations involved:
the differential equations can be solved exactly with a small
number of addition and multiplication operations. These simple
neurons have allowed large-scale SNNs in real-time such as the
cortical microcircuit simulated on SpiNNaker (Rhodes et al.,
2020). This SNN simulated≈ 1mm2 of mamillian neocortex, and
while this demonstrated the potential of neuromorphic hardware
as a neuroscience research tool, the model does not exhibit
the fidelity typically explored by the neuroscience research
community.

The LIF model falls short of biological plausibility in two
main areas: membrane conductance and structure. Membrane
conductance is described with a single term in the model but
is actually governed by a number of different ion-channels
spanning the neural membrane. The flow of ions through
these channels gives biological neurons a wide range of firing
capabilities not captured with the LIF model, e.g., the ability
to respond to identical inputs differently depending on the
current state of the neuron and its ion-channels. Structure
is simplified in the LIF model to a single point, however in
biology, neurons are complex and elongated and incorporate
vast branched extensions called dendrites. Dendrites are active
structures capable of generating their own action potentials and
are believed to contribute significant computational function
to biological neurons (Dayan and Abbott, 2005; Poirazi and
Papoutsi, 2020).

Neuron models can increase in complexity to capture these
simplified biological features and a wide range of spiking

neuron models exist. Hodgkin and Huxley (1952) described a
biologically inspired model incorporating equations for sodium
and potassium ion channels which govern the progression of
the action potential. Other models, such as the Izhikevich
model (Izhikevich, 2004), aim to capture certain biological
characteristics with more efficient non-biologically plausible
equations. However, this lack of biological plausibility takes away
the ability to explore the effects of incorporating different ion-
channels and more complex morphologies than a single point
neuron structure. Accurate and efficient ion-channel modeling
on neuromorphic hardware would therefore allow exploration
of a wide range of biologically inspired models including multi-
compartment models describing complex neural morphologies
with dendritic compartments (Markram et al., 2015; Gidon et al.,
2020). Implementation of more complex neuron models onto
neuromorphic systems could provide low-power solutions for
large-scale SNN simulations.

Neuron models with increased complexity have been tested
in analog and digital neuromorphic systems, demonstrating the
importance of this kind of modeling. For example, individual
ion-channels have been modeled in an analog circuit (Abu-
Hassan et al., 2019). Here, the aim was to design a biologically
accurate neuromorphic circuit that responds identically to a
biological neuron under any injected current. The authors
were able to reproduce biological voltage recordings with
94–97% accuracy. These neurons were built to demonstrate
the potential for making synthetic neurons with therapeutic
potential for implementation into the central nervous system,
therefore do not easily scale up to large SNNs and do
not incorporate structural morphology. However, this work
demonstrates accurate representation of ion-channel models
on neuromorphic systems. Multi-compartment neuron models
have also been tested on neuromorphic systems. BrainScalesS
(Schemmel et al., 2010) is an analog neuromorphic system that
features an Adaptive-Exponential Integrate-and-Fire (AdExp)
neuron model. Schemmel et al. (2017) and more rec ently Müller
et al. (2022) and Kaiser et al. (2022) expanded this neuron
model to capture dendritic computation in multi-compartment
approaches. Intel’s Loihi (Davies et al., 2018) also offers support
for dendritic computation by offering the opportunity to model
neurons with multiple compartments. Here, the additional
compartments are effectively identical, the only difference being
that the “somatic” compartment generates spike output and
the “dendritic” compartments do not. While this does enable a
concept of dendritic computation through the ability to distribute
synaptic input across individual units, there is a lack of biological
plausibility as dendrites are actually much more computationally
complex, exhibiting non-linear processing of synaptic inputs
(Gidon et al., 2020; Poirazi and Papoutsi, 2020).

1.1. Neuromorphic Hardware
While a range of neuromorphic computing systems are currently
developed across industry and academia (Schemmel et al.,
2010; Benjamin et al., 2014; Furber et al., 2014; Merolla et al.,
2014; Davies et al., 2018; Pei et al., 2019), the application of
this technology remains limited. While these systems boast
impressive performance figures in terms of energy and processing

Frontiers in Neuroscience | www.frontiersin.org 2 July 2022 | Volume 16 | Article 881598295

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ward and Rhodes Beyond LIF Neurons

speed, their bespoke architectures are often tailored to particular
applications, making it hard to adapt these systems to emerging
research problems. The SpiNNaker neuromorphic computing
system is selected as the research platform for this work, as
its flexibility enables exploration of the target neural models,
while constraints such as co-location of memory and processors
mean findings remain relevant for the wider neuromorphic
research community. The SpiNNaker system is currently an
active research platform, with a 1M core machine operating and
maintained by the University of Manchester, UK. In parallel
to exploring SNN applications on this system, research and
development into next-generation hardware is also on-going
in the form of the SpiNNaker2 system (Mayr et al., 2019).
The two platforms are explored in this work, implementing
models on both the SpiNNaker system and a SpiNNaker2
prototype chip (Jib2), to enable comparison and evaluation
of performance.

1.1.1. SpiNNaker
SpiNNaker is a massively-parallel many-core digital computing
platform, designed for large-scale real-time simulation of SNNs.
The system comprises chips assembled into a two-dimensional
mesh network, enabling the system to scale to 1M cores. Each
individual chip houses 18 cores, network on chip (NoC) and
external RAM controller; while each core contains an ARM968,
direct memory access controller, communications controller, two
timers and other peripherals. Each core has 32 kB instruction
and 64 kB data tightly coupled memory (ITCM and DTCM,
respectively), with single cycle access. Each chip has an additional
128MB shared memory, typically accessed via DMA, and used
to store larger SNN data-structures such as synaptic matrices.
Cores operate at 200MHz, running an event-driven operating
system enabling efficient neural processing (Rhodes et al., 2018).
Individual cores simulate a collection of neurons using software
to solve mathematical models representing neural dynamics.
These models are solved in discrete time, with the goal of
matching the simulation timestep to the time required to process
the state update, in order to achieve real-time simulation.
Models are programmed in C, and compiled into ARM code
using the GCC toolchain. As the core has no floating-point
unit, all models are coded using fixed-point arithmetic, with
the ISO standard accum type favored for the majority of
variables. This 32-bit type is a signed representation, with
16 integer and 15 fractional bits, and lower/upper limits of
0.000030517578125 and 65535.999969482421875, respectively
(Rhodes et al., 2018). While transcendental functions are
also not supported in hardware, division and exponential
functions are available in software, requiring approximately
100 clock cycles each. This framework enables real-time
implementation of multiple neuron models, including the
current- and conductance-based LIF and Izhikevich neurons
(Rhodes et al., 2018).

1.1.2. Jib2—SpiNNaker2 Prototype
While the architectural principles are similar, the goals of
SpiNNaker2 are to increase the number of cores by a factor of
10, and to increase the number of simulated neurons by a factor

of 50, while staying within the same power budget. The system
will use an ARM cortex M4 core, with adaptive body biasing
to enable increased clock frequencies during periods of high
load—switchable from 150 to 300MHz. Additional performance
increases are expected from inclusion of hardware accelerators
for specific operations common in neural processing, including
random number generation, ex, and a single-precision floating
point unit (Mikaitis, 2020). The experiments reported in this
work are performed on a SpiNNaker2 prototype system known
as Jib2, containing 8 processing elements (PE) arranged in
two quad processing elements (QPEs) (Höppner et al., 2021).
Each PE has an ARM cortex M4 in addition to the above
mentioned accelerators, and runs compiled C code in a similar
fashion to SpiNNaker (Section 1.1.1), again compiled with the
GCC toolchain. PEs each have 128 kB of fast access SRAM, for
combined instruction and data storage. Jib2 has variable voltage-
frequency levels enabling low-power operation and workload-
dependent scaling of clock frequency. The experiments reported
in this work are performed with the core running with voltage-
frequency settings of 0.5 V–150MHz and 0.8V–300MHz.

1.2. NEURON Simulation Environment
New models implemented on neuromorphic hardware need to
be benchmarked again standard methods used in the industry
in order to ensure the models are accurate and valid. NEURON
is a widely used platform for simulation of individual neuron
models and networks of neurons and was designed specifically
to simulate equations describing nerve cells. NEURON was
chosen as the benchmark for models as it is a standard
tool in the research field. It provides an environment for
implementing biologically realistic models with a focus on
incorporation of multiple ion-channel models and complex
branched neuronal morphologies (Hines and Carnevale, 1997).
The activity of neurons is modeled using the cable equation
in which neurons are treated as trees consisting of a number
of compartments. Each compartment is an unbranched cable
which can be split into sections and each section can contain
its own biophysical properties through different ion-channels.
Each section is described by its membrane potential and a set of
coupled differential equations are solved for each section within
a neuron to compute the evolution of membrane potential inside
the neuron over time. The general form of the cable equation for
each section, j is:

cj
dvj

dt
+ I

j
m =

∑

k

vk − vj

rjk
(1)

where cj is the membrane capacitance of the section, vj is
the membrane voltage of the section, t is time, the ionic

component I
j
m includes all currents through ion-channels.

∑

k
vk−vj
rjk

represents the sum of axial currents entering from

neighboring sections, vk is the membrane voltage of the
neighboring section and rjk is the resistive coupling between
compartments. This differential equation is coupled to an
additional set of differential equations describing the active
states of any ion-channels incorporated into the model. This

Frontiers in Neuroscience | www.frontiersin.org 3 July 2022 | Volume 16 | Article 881598296

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ward and Rhodes Beyond LIF Neurons

FIGURE 1 | (A) Single-compartment HH model of a L2/L3 pyramidal neuron. The soma of the cell is modeled with a leak current, IL, as well as sodium, INa, and
potassium, IK , currents. Current can be injected into the model, Ie, and it can receive multiple synaptic inputs, Isyn. (B) Two-compartment model of an L2/L3 pyramidal

neuron consisting of a somatic and a dendritic compartment. The dendritic compartment incorporates a calcium ion channel current, ICa, and a leak current, IL. The
somatic compartment incorporates the same leak current, IL, as well as sodium, INa, and potassium, IK , currents. The compartments are connected by coupling

conductances, gsoma,dend and gdend,soma. Current can be injected into either compartment, Ie, and each compartment can receive multiple synaptic inputs, Isyn.

leads to a set of coupled differential equations which need
to be solved at each simulation time step. NEURON uses a
backward Euler implicit integration method as standard (Hines
and Carnevale, 1997). Each time step update is divided into
a set of operations which are performed in order to progress
from one time step to the next. These operations include a
spike delivery step where synapses are activated by incoming
spikes, a matrix assembly step where the ionic and synaptic
currents are calculated, a matrix resolution step in which the
membrane potential is calculated, a state variable update step
in which the ion-channel states are updated, and a threshold
detection step in which membrane voltages are checked against
threshold values to determine whether a firing condition has
been met (Kumbhar et al., 2019). The NEURON platform was
designed specifically to model systems of neurons incorporating
easy to configure biological data (branched morphologies and
ion-channel models) and is therefore widely used by the
computational neuroscience community.

2. METHODS

This work involves modeling a L2/L3 pyramidal neuron1. These
neurons comprise approximately two-thirds of neurons in the
cerebral cortex of human brains and are key for a large number
of cognitive processes, making them prime candidates for
mathematical modeling and simulation. Differential equations

1All models discussed in the text are available at https://github.com/mollie-ward/
beyondLIFNeurons, and can be compiled and run on any GCC compatible
platform.

are used in individual models of spiking neurons to calculate
a neuron’s membrane potential over time. The change of the
membrane potential is proportional to the rate of change of
charge build up, i.e., the rate of change of ion flow into and
out of the cell, and hence is proportional to the amount of
current entering the cell. The amount of current entering the
cell is based on the membrane and synaptic conductances and
any current injected into the cell. The soma of the neuron is first
modeled as a single compartment Hodgkin-Huxley (HH) (1952)
model with sodium and potassium ion-channels. This single-
compartment model is then expanded to a two-compartment
model to capture a dendritic compartment which incorporates
a calcium ion-channel model (Figure 1).

2.1. Ion-Channels and HH Neurons
A single compartment HH neuron model is built to represent
the somatic membrane potential of a typical L2/L3 pyramidal
neuron. The model describes the region in which action
potentials are generated (Figure 1A). The somatic model
incorporates sodium (INa), potassium (IK), and leak (IL) currents
with corresponding maximal conductances gNa = 0.12 S/cm2,
gK = 0.036 S/cm2, and gL = 0.0003 S/cm2, and reversal
potentials ENa = +50 mV, EK = −77 mV and EL = −54.3
mV. The rate functions for somatic ion channels are modeled as
described by Hodgkin and Huxley (1952) and total membrane
current in the somatic compartment is calculated as the sum of
these three individual currents:

Isoma = gL(Vsoma − EL)+ gKn
4(Vsoma − EK)

+gNam
3h(Vsoma − ENa) (2)

Frontiers in Neuroscience | www.frontiersin.org 4 July 2022 | Volume 16 | Article 881598297

https://github.com/mollie-ward/beyondLIFNeurons
https://github.com/mollie-ward/beyondLIFNeurons
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ward and Rhodes Beyond LIF Neurons

where n, m and h are gating variables for the ion channels; n
and m are activation variables for K+ and Na+ ion channels,
respectively, and h is an inactivation variable for Na+ channels.
n,m, and h, like Vsoma, all vary over time and can be modeled by:

τn(V)
dn

dt
= n∞(V)− n (3)

where

τn(V) =
1

αn(V)+ βn(V)
and n∞(V) =

αn(V)

αn(V)+ βn(V)
(4)

with similar equations for m and h. αn(V) and βn(V) are
the opening and closing variables for the K+ channel, αm(V)
and βm(V) are the opening and closing variables for the Na+

channel and αh(V) and βh(V) are the key inactivation and de-
inactivation variables for the Na+ channel. Rate functions for K+

and Na+ conductances are parameterized according to (Dayan
and Abbott, 2005):

αn =
0.01(Vsoma + 55)

1− exp(−0.1(Vsoma + 55))

and βn = 0.125 exp(−0.0125(Vsoma + 65)) (5)

αm =
0.1(Vsoma + 40)

1− exp(−0.1(Vsoma + 40))

and βm = 4 exp(−0.0556(Vsoma + 65)) (6)

αh = 0.07 exp(−0.05(Vsoma + 65))

and βh =
1

1+ exp(−0.1(Vsoma + 35))
(7)

The soma fires action potentials in response to injected current
(Ie) and excitatory synaptic input (Isyn). The progression of the
membrane potential is governed by the ion channel currents
described. Figure 2 shows the somatic membrane potential over
time in response to two current injections, and corresponding
ion-channel parameters m, n, and h. A small, constant current
injection can cause one somatic action potential to fire as the ion-
channel parameters stabilize and adapt to the injected current
(Figure 2A). A larger, constant current injection causes repeated
firing of somatic action potentials and as the ion-channel
parameters do not stabilize, firing is constant (Figure 2B). A
LIF neuron is not able to adapt in this way and is either firing
constantly or not firing at all.

2.1.1. Numerical Methods
The neuron is modeled as an equipotential sphere such that
the same electrical potential exists across the whole surface and
hence the entire neuron can be described with a single membrane
potential in a single compartment model. The ion-channels
described in Section 2.1 (Equations 2–4) are incorporated into
the general equation for a single compartment neuron in
which the membrane voltage (Vsoma) is modeled over time.

The progression of membrane voltage is calculated at discrete
timesteps with interval 1t = 0.1ms.

Cm
dVsoma

dt
= −Im +

Ie

A
(8)

Membrane capacitance (Cm) is uniformly set to 1 µFcm2 over
the neuron. The conductance per unit area (im) is defined in
Equation (2) (S/cm2), Iµe is the total electrode current flowing
into the compartment (nA) and A is the area of the neuron
(mm2). Equation (8), combined with Equations (2), (3), and
the corresponding equations for m and h, make up a system
of ordinary differential equations (ODEs) where the rates of
change of more than one variable are described: membrane
voltage (Vsoma), sodium activation parameter (m), sodium
inactivation parameter (h), and potassium activation parameter
(n) (Figure 2).

2.2. Multi-Compartment Modeling
A two-compartment neuron morphology consisting of a
somatic compartment and a dendritic compartment is designed
incorporating ion-channel currents. Inspiration is drawn from
the multi-compartment neuron model presented by Gidon et al.
(2020) with the aim of simplifying this model in order to
make it suitable for implementation on neuromorphic hardware
while preserving the higher level L2/L3 pyramidal neural
cell capabilities demonstrated. The dendritic compartment
represents the apical dendrites and the somatic compartment
represents the soma and basal dendrites (Figure 1B). For
the somatic compartment, HH sodium and potassium ion-
channels described in Section 2.1 are implemented. For the
dendritic compartment, a calcium channel introduced by Gidon
et al. (2020) is implemented in an attempt to capture the
L2/L3 pyramidal neural cell firing dynamics demonstrated
by the authors.

2.2.1. Dendritic Currents
The dendritic compartment is modeled with the same leak
current (IL) as the soma and a calcium current (IdCaAP) as
described in Gidon et al. (2020). The calcium current in the
dendritic compartment gives the compartment the ability to
fire its own action potentials (independent of the somatic
action potentials). These dendritic calcium action potentials
are known as dCaAPs. The dCaAP current is activated when
the dendritic membrane potential (Vdend) crosses a threshold
value (Vthresh = −36mV):

IdCaAP = −ωK(v)(A− B) (9)

with weight, ω = 3 (dimensionless). When Vdend crosses the
threshold, Vthresh, the dCaAP is activated: the activation function
of the dendrite, K(v), is calculated and the time of dCaAP
activation, t′, is set to the current timestep, t.

K(v) = exp(
−F(Vdend − Vthresh)

τK
) (10)

where F is a normalization factor F = 1/(Vthresh−Vrest) and τK is
the dCaAP amplitude decay constant τK = 0.3 (dimensionless).

Frontiers in Neuroscience | www.frontiersin.org 5 July 2022 | Volume 16 | Article 881598298

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ward and Rhodes Beyond LIF Neurons

FIGURE 2 | (A) Single-compartment model of a L2/L3 pyramidal neuron with injected current Isomae = 0.3 nA and corresponding dimensionless ion-channel activation

parameters m, n, and h which govern sodium, INa, and potassium, IK , currents. (B) Current injection of Isomae = 3 nA and corresponding m, n and h progression.

The dCaAP current has a 200ms refractory period in which it
cannot fire.

A and B describe the rise and decay of the dCaAP current and
are described by sigmoidal functions:

A =
1

1+ exp(− (t−t′)
τA

)
(11)

B =
1

1+ exp(− (t−(t′+1t′)
τA

)
(12)

where t′ is the time of dCaAP activation, 1t′ = 21ms, τA = 3ms
and τB = 0.4ms.

The total membrane current in the dendritic compartment is
calculated as the sum of the dCaAP current and the leak current:

Idend = gL(Vdend − EL)+ IdCaAP (13)

Current flows from the dendritic compartment to the somatic
compartment such that injected current into the dendrite can
cause somatic action potentials to fire (Figure 3A) slightly
after dendritic action potentials. Firing dynamics of the two
compartment model in response to injected current into each
compartment is presented in Figure 3. Increasing input to the
dendritic compartment causes the amplitude of dCaAPs to
decrease, this in turn causes somatic action potentials to stop
firing as the current flowing to the somatic compartment will
decrease with decreased amplitude of dCaAP (Figure 4).

2.2.2. Numerical Methods
The single compartment model is described with a single
membrane potential, however, membrane voltages actually vary
considerably across the expansive surface of a neuron. It is
possible to analyse signal propagation within neurons using
a mathematical analysis known as “cable theory” (Dayan and
Abbott, 2005). A two-compartment neuron is modeled using
cable theory which assumes that the membrane potential varies
with longitudinal distance along the axon, x, enabling it to be
expressed as a partial differential equation (PDE) as a function
of x and time, t, V(x, t):

cm
∂V

∂t
=

a

2R

∂2V

∂x2
− Im + Ie (14)

where R is the intracellular resistivity (M�mm2) and a is the
radius (mm2). Appropriate boundary conditions are defined as
the neuron is split into two compartments (soma and dendrite)—
assuming membrane potential does not vary across the surface
of the compartment—each with their own voltage (Vsoma and
Vdend). This allows the continuous membrane potential, V(x, t),
to be approximated by a set of membrane potential values in each
compartment. Applying these boundary conditions simplifies the
PDE to a system of ODEs for each compartment such that each
compartment is described by its own membrane potential. For
the somatic compartment, Vsoma:

cm
dVsoma

dt
= −Isoma

m +
Isoma
e

Asoma
+ gdend,soma(Vsoma − Vdend) (15)

Frontiers in Neuroscience | www.frontiersin.org 6 July 2022 | Volume 16 | Article 881598299

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ward and Rhodes Beyond LIF Neurons

FIGURE 3 | (A) Action potential initiation in dendritic and somatic compartment in response to a 3 nA injected current into the dendritic compartment. Dendritic

compartment regularly fires dCaAPs with a refractory period of 200 ms. dCaAPs propagate to the somatic compartment and cause somatic action potentials. The

dCaAP therefore precedes somatic action potentials (B). (C) Spiking dynamics of the dendritic compartment in response to increasing current injections into the

dendrite, the frequency of dendritic spikes remains constant but the amplitude decreases as the current injection increases. (D) Action potential initiation in somatic

compartment in response to a 10 nA injected current into the somatic compartment, the dendritic compartment does not fire in response to this injected current (E).

(F) Spiking dynamics of the somatic compartment in response to increasing current injection into the soma, the frequency of somatic spikes increases as the current

injection increases.

For the dendritic compartment, Vdend:

cm
dVdend

dt
= −Idendm +

Idende

Adend
+ gsoma,dend(Vdend − Vsoma) (16)

where Isoma
e and Idende is the total electrode current flowing

into the compartments (nA) and Asoma and Adend is the area
of the compartments (mm2). The constants gsoma,dend and
gdend,soma (nA/mm2) determine the resistive coupling between
neighboring compartments. The membrane current for each
compartment, Isoma

m and Idendm are described in Equations (2)
and (9). At each timestep, the voltage update equation and
corresponding activation parameters (Equations 15 and 16) must
be solved, along with the corresponding activation parameters
for any present ion channels such as Equation (3) for both
compartments. A backwards Euler integration scheme is used
due to its robust stability (Hines and Carnevale, 1997) by
exploiting the conditional linearity of the ion-channel update
equations (Dayan and Abbott, 2005).

2.3. Synaptic Model
Where synapses are incorporated into the model, synaptic
currents are modeled as

Isyn = gsyn(Vµ − Esyn) (17)

where Esyn is the reversal potential for the synaptic current (mV),
and gsyn is the synaptic conductance (S/cm2). All synapses model
excitatory NMDA connections, therefore Esyn = 0 mV (Dayan
and Abbott, 2005). Synaptic conductance is modeled as:

gsyn = gmax ∗ Ps (18)

where gmax = 0.05 is the maximal conductance and Ps is the
probability of neurotransmitter release, modeled as:

Ps = Pmax ∗ (e
−t
τs) (19)

where the maximal probability of neurotransmitter release
Pmax = 1 and τs = 10 ms. All synapses were activated
at 20 Hz for simulations and are incorporated into dendritic
(Idend, Equation 13) or somatic (Isoma, Equation 2) currents as an
additional term.

2.4. SpiNNaker Implementation
To make the models suitable for implementation on
neuromorphic hardware, modifications to the system of
equations are sought to decrease the computational load of
simulation. Neuron models on SpiNNaker are written in C
and compiled into ARM executable code. The SpiNNaker
ARM968 CPU provides an energy-efficient core on which to

Frontiers in Neuroscience | www.frontiersin.org 7 July 2022 | Volume 16 | Article 881598300

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ward and Rhodes Beyond LIF Neurons

FIGURE 4 | (A) Increasing injected current into the dendritic compartment results in a decrease in dCaAP amplitude. (B) The shape of the dCaAP is governed by the

dendritic activation function, K(v) (Equation 10), which exhibits a characteristic shape in which the threshold current for dCaAP firing is the maximum dCaAP activation

and hence the maximum dCaAP amplitude, the amplitude then decays with decay constant τK = 0.3 (dimensionless) (Equation 10). (C) Resulting somatic membrane

voltage with increasing injected current into the dendritic compartment. Amplitude of somatic action potentials decreases with decreasing dCaAP amplitude. The

all-or-nothing nature of these action potentials causes a lack of firing in the soma when the dendritic stimulus intensity gets higher. (D) Somatic action potential

amplitudes are maximum when the dCaAP activation threshold is reached, they then decrease until the firing threshold for somatic action potentials is no longer

reached and the soma stops firing.

TABLE 1 | Time taken to update the membrane voltage in models in µs on the SpiNNaker and Jib2 neuromorphic hardware in one 0.1ms timestep.

HH Two comp LIF

No LUT LUT No LUT LUT

SpiNNaker 99.6 8.34 153.67 12.91 0.32

Jib2 300 MHz 2.59 0.73 3.22 1.09 0.09

150 MHz 5.19 1.45 6.45 2.18 0.19

Values for the time taken to update neuron state in a Leaky-Integrate-and-Fire neuron is also presented for comparison (values from Rhodes et al., 2018).

simulate large-scale neural networks. This core has no floating-
point hardware so fixed-point arithmetic is the preferred data
representation. Two 32-bit fixed-point arithmetic types are used
in this study which are defined in the ISO standard 18037 and
are implemented by the GCC compiler. Variables and constants
assuming values greater than 1 are defined as an ISO 10837 s16.15
accum fixed-point type: a signed 16-integer and 15-fractional
bit number. Variables and constant taking values exclusively
between 0 and 1 (for example m, n, and h) are defined as ISO
10837 u0.32 unsigned long fract fixed-point type: an unsigned 32-
fractional bit number. Previous efforts to model more complex

neuron models on SpiNNaker (Hopkins and Furber, 2015)
reported spike time lag in comparison with reference models,
however, later work (Hopkins et al., 2020) demonstrated
that errors can be reduced by introducing various rounding
techniques including round-to-nearest rounding. These methods
are implemented here to reduce arithmetic error between the
SpiNNaker implementation and the reference model. While
most modern processors include hardware support for common
arithmetic operations, SpiNNaker lacks hardware support for
division and exponential operations. Simplifying assumptions
which still give a biologically faithful model were sought enabling

Frontiers in Neuroscience | www.frontiersin.org 8 July 2022 | Volume 16 | Article 881598301

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ward and Rhodes Beyond LIF Neurons

pre-calculation of operations such as divisions and exponentials.
For example, in Equation (10), F and τK are constant to avoid
the need to calculate a division at runtime. Lookup tables (LUTs)
were also used to eliminate a number of costly calculations:
Equations (3)–(7) are replaced by lookup operations.

2.4.1. Ion-Channels and HH Neurons
For potassium and sodium ion-channels, LUTs (using 12 kB
of memory) remove nine exponential and twelve division
calculations involved in the calculation of gating variables for the
ion-channels (Equation 3) which greatly improves the efficiency
of the simulation (Table 1). Inspiration was taken from the
NEURON simulation environment (Hines and Carnevale, 1997),
in which LUTs are used as standard for Hodgkin-Huxley style ion
channels. In NEURON, values of τn, τm, τh, n∞, m∞, and h∞
are pre-calculated for values of Vsoma at 1 mV intervals between
values of −100 and +100 mV and the value of Vsoma is used
with interpolation to retrieve corresponding parameters from the
table. Here, a similar table is tested in which instead of values
of τn, τm, and τh, values of exp(1t/τn) (and similar for m and
h) with 1t = 0.1 were pre-calculated for each value of V to
further decrease the amount of computation required at each
timestep. While use of this table did decrease the computational
requirements, the change from NEURON’s standard LUT meant
that discrepancies were introduced. To rectify this, an identical
LUT to NEURON’s was created, along with a LUT which stores
values of exp(1t/τn) with 1t = 0.1 for values of τn (and
similar form and h). Therefore, instead of the complex equations
required to solve Equation (3) and the similar equations for
m and h, each state update then requires only three look-up
operations per activation parameter followed by one addition
and multiplication.

2.4.2. Two-Compartment Model
The same LUT described in Section 2.4.1 is used for the somatic
compartment in the two-compartment model. For the dendritic
compartment, another LUT (using 1.6 kB of memory) is used in
the calculation of the dCaAP current (IdCaAP) again improving
efficiency. Here, A and B in IdCaAP are each described by two
divisions and an exponential operation which are particularly
costly on SpiNNaker hardware. However, as the two terms are
not themselves voltage dependent, calculating each term at every
timestep is unnecessary; A and B have characteristic sigmoidal
shapes which describe the rise and decay of the dCaAP current
which can be pre-calculated and loaded onto the SpiNNaker
chips such that the A− B calculation:-

1

1+ exp(− (t−t′)
τA

)
−

1

1+ exp(− (t−(t′+1t′)
τA

)
(20)

is replaced by a single look-up operation.

3. MODEL VALIDATION

To assess the accuracy of the proposed models on neuromorphic
hardware, the models are benchmarked against the NEURON
simulation environment in a number of simulations.

Benchmarking involves comparison between the membrane
potential on each platform at each timestep and comparison
of the timing of spikes. Monitoring progression of membrane
potential enabled a comparison of the numerical solvers on the
different platforms and spike times give a broader comparison
as spikes are the fundamental communication method in
SNNs. Spike times are recorded as the timestep in which
membrane voltage crossed a threshold value, −20 mV, and are
compared between the different platforms. In order for direct
comparisons to be made, identical simulations are run with
SpiNNaker, Jib2 and with NEURON. Despite the mathematical
complexity involved in these calculations, SpiNNaker and the
Jib2 neuromorphic hardware are still able to model the HH and
two-compartment neuron accurately.

3.1. Ion-Channels and HH Neurons
In the somatic model, current injections ranging from 0
to 10 nA are tested for 2 s of simulation time on both
SpiNNaker and Jib2. This is long enough for steady state
behavior to develop in the neuron and accumulated errors
to become visible if present. The membrane voltage is then
compared with an identical reference model in the NEURON
simulation environment. The maximum error recorded over all
current injections over full simulation time for SpiNNaker is
34.6mV, and for Jib2 is 0.106 mV. Spike times are consistent
between Jib2 and NEURON, but the increase in error on the
SpiNNaker neuromorphic system leads to accumulated errors
which results in differences in spike timings between NEURON
and SpiNNaker. Despite this, over the range of simulations,
spike times on SpiNNaker only differ by one timestep (0.1
ms). In these neuron models the action potential is the most
challenging part of the model due to the rapidly changing
dynamics, and it is during action potentials that the largest
errors between the fixed-point SpiNNaker implementation and
the reference model are generated. One source of errors between
these systems is the differing number representation: NEURON
supports double precision floating point numbers, Jib2 supports
single precision floating point units and SpiNNaker supports
32-bit fixed-point representations. During testing, switching the
reference model to a CPU implementation and restricting the
precision to 32-bit floating point arithmetic resulted in negligible
errors between this implementation and Jib2. This shows that
the different number representations are a source of error, these
results are not included due to brevity. Another source of error
in both SpiNNaker and Jib2 relative to NEURON is due to
subtle differences in look-up tables being implemented: where
NEURON pre-calculates values of τn, τm, and τh and then
calculates values of exp(1t/τn) (and similar for m and h), this
exponential and division step is replaced with another LUT in
the SpiNNaker implementation to avoid the need for exp(1t/τn)
calculations at each timestep. This source of error is confirmed
by altering double precision reference models to mirror the
SpiNNaker implementation and observing the decreased error.
The accuracy of the somatic compartment is also tested with
varying resolutions of LUT to further justify the use of a LUT
with 1mV intervals between values of −100 and +100mV,
as in NEURON (Hines and Carnevale, 1997) simulations. The

Frontiers in Neuroscience | www.frontiersin.org 9 July 2022 | Volume 16 | Article 881598302

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ward and Rhodes Beyond LIF Neurons

FIGURE 5 | Accuracy comparisons between the two-compartment model implemented on SpiNNaker, Jib2 and NEURON. The dendritic compartment fires a dCaAP

in response to a current injection of 3.5nA which is accurately modeled on the neuromorphic platforms (A). The dendritic compartment is modeled accurately over

time (B): absolute errors are small throughout the duration of the action potential and drop to 0 mV when the dendritic compartment enters its refractory period. In the

somatic compartment, absolute errors are larger because the calculation of Isoma is voltage dependent, therefore when errors are produced in this calculation, an error

in voltage is calculated which then, in turn, further increases the error in the Isoma calculations (C). Because of this, over time, SpiNNaker experiences accumulated

errors. With Jib2 errors return to 0mV between spikes, and with do not accumulate over time (D).

model is simulated with no LUT, and with LUTs with 2 and
1mV voltage intervals.With no LUT, the maximum error was
105.9mV. Inclusion of LUTs increases the accuracy of models
with the 2mV table resulting in a 59.2mV maximum error and
the 1mV interval table providing the most accurate solution
with a 34.6mV maximum error. SpiNNaker cores have 64 kB of
memory for data storage (DTCM). Finer resolution LUTs are not
tested because they occupy more of the SpiNNaker DTCM and
the accuracy of spike times using the 1mV interval is sufficient
therefore occupying more DTCM with larger lookup tables is
unnecessary. Despite the differing errors, both SpiNNaker and
Jib2 can accurately model the HH model in response to a wide
range of current injections and are able to maintain this accuracy
over time (Figure 5).

3.2. Multi-Compartment Modeling
In the dendritic compartment, current injections ranging from 0
to 10 nA are tested for 2 s of simulation time. Membrane voltage

was recorded and absolute errors between SpiNNaker, Jib2 and
NEURON are calculated, as well as the timings of spikes in both
compartments. In the dendritic compartment, the maximum
error recorded over all current injections over full simulation
time for SpiNNaker is 0.00314mV, and for SpiNNaker 2 is
0.00137mV. An example current injection of 0.45 nA into
the dendritic compartment and resulting membrane potential
recording is shown in Figure 5A. The evolution of absolute
error over time in the dendritic compartment in response to
injected current into the dendrite follows a typical shape each
time a dCaAP is fired; the error remains below 0.5µV between
spikes when the dendritic compartment is in its refractory period
but rises as the membrane voltage rises, following a similar
progression as the voltage. After the spike, the look-up table is
no longer used and the value of A − B returns to 0, meaning
the value of IdCaAP is 0. There are therefore no issues with errors
accumulating over time because after each spike the error returns
to near zero as there is no active calcium current. The errors

Frontiers in Neuroscience | www.frontiersin.org 10 July 2022 | Volume 16 | Article 881598303

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ward and Rhodes Beyond LIF Neurons

for the dendritic compartment simulations are smaller than the
somatic model due to a decreased complexity in the equations
(the soma contains more ion-channels). Again, errors result here
from the differing numerical datatypes used on the different
systems. This is demonstrated by restricting the reference model
to single precision floats which decreases the error between Jib2
and the reference model. Again, during testing, switching the
reference model to a CPU implementation and restricting the
precision to 32-bit floating point arithmetic resulted in decreased
errors between this implementation and Jib2, these results are not
included due to brevity. The errors are not large enough to cause
any differences in the timing of spikes between SpiNNake, Jib2
and the NEURONmodel. Spike times remained consistent across
all platforms.

3.3. Performance Profiling
We are interested in accelerating brain simulation with
neuromorphic hardware, therefore the time taken to update the
state of a neuron in each simulated 0.1ms timestep is a key
metric to evaluate for the different implementations. This is
measured through recording the number of clock cycles taken to
update the membrane potential in each model, and combining
with the clock frequency. Each core on the SpiNNaker chip
operates at 200MHz, meaning one clock cycle takes 5 ns. With
Jib2, voltage-frequency settings of 0.5 V–150MHz and 0.8V–
300MHz result in clock cycles taking 6.67 and 3.3 ns, respectively.
For each model, 100 neurons are profiled for 10,000 timesteps
with a representative current injection causing regular somatic
spiking with a frequency of 50Hz for HH and two compartment
model. The amount of time taken to update the membrane
potential in implemented models, with and without LUTs, is
described in Table 1. For comparison, the time taken to update
the membrane potential of a LIF neuron on SpiNNaker and Jib2
is also presented, the LIF neuron is kept sub-threshold during
profiling in order to provide full state updates at each timestep,
analogous to the HH and two compartment models.

In the HH model, the calculation of ion-channel parameters,
resulting current values from these parameters, and subsequent
membrane potential update for each 0.1ms timestep on
SpiNNaker takes 99.6µs without any lookup tables (LUTs).
Inclusion of the LUTs results in the update taking 8.34µs to
compute, meaning the look-up table speeds the implementation
up by over 11x. Similar calculations on Jib2 demonstrate the
benefits of the hardware accelerators by showing a speed up in
processing time. At 300MHz, the membrane potential update
takes 0.73µs and at 150MHz, the update takes 1.45µs. Again,
Jib2 illustrates that the LUTs improve the implementation speed,
both the HHmodel and the two-compartment model are over 3x
faster with the LUTs (Table 1). The HHmodel on Jib2 with LUTs
is within an order of magnitude of the LIF neuron running on
Jib2 which takes 0.09µs.

Addition of the calcium current in the dendritic compartment
for the two-compartment model increases the amount of
time taken to update the membrane potential. On SpiNNaker,
updating the somatic membrane potential takes 12.91µs with
LUTs, without LUTs this takes 153.67µs, over 11x longer. On Jib2
these membrane potential updates are quicker, taking 1.09 and

2.18µs with the core operating at 300 and 150MHz, respectively.
Again, this model is 3x faster with the inclusion of the LUTs, with
the non-LUT implementations taking 5.19 and 6.45µs (Table 1).

4. RESULTS

4.1. HH Model Increases Expressiveness of
Single Compartment Neurons
After models were validated (Section 3), the additional behaviors
they bring to neuromorphic hardware were explored which
have not been demonstrated previously on these platforms.
The sodium and potassium ion-channels incorporated into
a HH neuron model give the neuron a number of firing
capabilities that are unable to be produced with simple LIF
neurons. Izhikevich (2004) identified 20 of the most important
neurocomputational spiking features of biological neurons which
can be captured with spiking neuron models. The Hodgkin-
Huxley model was identified to be able to reproduce all 20
of the firing dynamics, while the LIF neuron model can
only reproduce 3: the ability to spike tonically, to increase
firing frequency in response to increased input strength and
the ability to integrate inputs and fire in response to them
(Izhikevich, 2004). The single compartment neuron model here
features Hodgkin-Huxley sodium and potassium ion-channels
which therefore give this model the ability to produce all 20
neurocomputational features.

Firing features of the somatic model are demonstrated in
Figure 6, through injection of current directly into the neuron
and recording the resulting somatic membrane voltage. It is
not possible for a single neuron model to exhibit all properties
simultaneously because some features, for example the ability to
fire a train of spikes in response to a constant input, and the
ability to fire periodic bursts of spikes in response to constant
input, are mutually exclusive. For that reason, 10 biologically
important firing features are presented that can be exhibited
simultaneously without altering parameters from those described
in Section 2.2. In response to a constant somatic current
injection, the soma can fire a constant train of spikes known as
tonic spiking (Figure 6A). If the current injection is just strong
enough to cause a spike, the neuron demonstrates phasic spiking
(Figure 6B) where a single spike is fired followed by inactivity.
Phasic spikes are often followed by sub-threshold oscillations
(Figure 6C) caused by ion-channel currents. Inputs to neurons
are generally not constant, and neurons can display a number
of firing properties in response to different input currents.
Neurons can demonstrate accommodation to inputs: presenting
the neuron with a slowly increasing current does not produce a
spike but presenting the same neuron with a sharply increasing
current will produce a spike (Figure 6D) due to the ion-channels
within the neuron having more time to adapt to the current,
meaning the neuron accommodates. Hodgkin-Huxley neurons
are Class II excitable neurons meaning they are either inactive
or they fire spikes with a high frequency, this is displayed by
presenting the neuron with a steady increase in injected current
(Figure 6E). Adaptation of ion-channel currents also leads to a
phenomenon in which the neuron fires a spike after an inhibitory

Frontiers in Neuroscience | www.frontiersin.org 11 July 2022 | Volume 16 | Article 881598304

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ward and Rhodes Beyond LIF Neurons

FIGURE 6 | Spiking properties of the somatic compartment. Shown are simulations of the two-compartment model with current injected into the somatic or dendritic

compartment to reproduce different firing dynamics capturing a number of biologically representative neural capabilities. The firing dynamics in the box are achieved

through injected current into the dendritic compartment rather than the somatic compartment itself. (A) Tonic spike. (B) Phasic spike. (C) Oscillations. (D)

Accommodation. (E) Class II. (F) Rebound spike. (G) Integrator. (H) Variable threshold. (I) Adaptation. (J) XOR.

current injection (Figure 6F) known as a post-inhibitory spike.
Neuron models in SNNs generally integrate spiking inputs over
time, if inputs are closer together then the neuron is more
likely to fire spikes as the firing threshold is passed (Figure 6G).
While most SNN neuron models have fixed voltage threshold for
firing spikes, biological neurons actually have a variable threshold
which is determined by the activity of the neuron (Figure 6H).
Briefly exciting the neuron in Figure 6H is not enough to make
the neuron fire, however if it is preceded by a brief inhibitory
input, this same excitation will cause the neuron to fire. Spike rate
adaptation is a phenomenon in which neurons fire tonic spikes
with decreasing frequency, this feature is mutually exclusive with
the tonic spiking ability discussed above and single-compartment
neuron models are unable to display both properties. Here,
inclusion of the dendritic compartment allows the soma to
display spike-rate adaptation in response to a constant current
injected into the dendritic compartment (Figure 6I). Injecting
the dendritic compartment with a steady increase in injected
current leads to remarkably different somatic firing dynamics in
which firing starts when input is above threshold but ceases firing
when the input continues to rise (Figure 6J), this phenomenon is
explained in Section 4.2.

Other neurocomputational properties presented by Izhikevich
can be captured by altering the parameters described in
Section 2.2. These include the ability to burst (rather than
tonically) fire and to fire in response to inhibitory (rather than
excitatory) inputs. Properties such as these can be captured

by altering parameters involved in the differential equations
describing ion-channel currents (Kirigeeganage et al., 2019).
Sodium channel currents change more rapidly than potassium
currents in the beginning of the progression of an action
potential, they are described by an activation variable (m) and
an inactivation variable (n) (Section 2.1). Therefore, to adjust the
neuron to be responsive to inhibitory inputs, modifications to
the differential equation describing m can be made to alter the
responsiveness of the neuron.

Izhikevich compared 11 spiking neuron models by the
ability of the models to produce some of these features
and the computational cost of each model (Izhikevich,
2004). The Hodgkin-Huxley model was the only one
able to produce all firing properties while also being
biophysically meaningful. This biological accuracy leads to
higher computational cost of the model which makes it
more expensive to implement than other neuron models.
However, computational costs can be diminished using
a variety of techniques (see Section 2.4). In addition, the
biophysical plausibility of the Hodgkin-Huxley model
allows incorporation of dendritic morphology and different
ion-channels through cable equation modeling, this is not
possible with less biologically plausible models. The dendritic
modeling in the second compartment gives the neuron
additional computational properties to further increase the
firing capabilities beyond those identified by Izhikevich,
described in Section 4.2.

Frontiers in Neuroscience | www.frontiersin.org 12 July 2022 | Volume 16 | Article 881598305

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ward and Rhodes Beyond LIF Neurons

TABLE 2 | XOR truth table demonstrating the binary output of an XOR operation

in response to two binary inputs.

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

If the inputs are both 1 (true) or both 0 (false) then the output is 0 (false), if either input is
1 and the other 0 then the output is 1.

4.2. Dendritic Compartment Enables Single
Neuron to Function as a Multi-Layer
Network
Inclusion of the dendritic compartment further increases the
computational properties of the neuron beyond the 20 identified
by Izhikevich. The dynamics described by Izhikevich are
relatively well-known capabilities for Hodgkin-Huxley neurons
and can be reproduced by other neuron models including
the model proposed by Izhikevich himself (Izhikevich, 2004).
However, the biological plausibility of the Hodgkin-Huxley
model enables it to be built upon through the incorporation
of more compartments representing dendritic branches which
further increase the capabilities of the neuron.

Here, the dendritic compartment gives the neuron the ability
to compute a logical operation known as exclusive-or (XOR).
Logical operations are performed on binary inputs and produce
a binary output. An XOR operation is a logical operation in
which an exclusive-or is implemented: the binary output is
1 (or true) when there is only one input to the operation,
if both of the inputs are 0 (or false) or both of the inputs
are 1 then the output of the XOR operation is 0 (Table 2).
While simple logic operations such as AND and OR are easily
implemented in single units within neural networks, the XOR
function is a common problem in neural network research and
is widely used as an example of a linearly inseparable problem;
it has become a benchmark in machine learning for testing
neural network capabilities in solving complex problems. SNN
implementation of the XOR operation has thus far required
multiple layers of spiking neurons as the nature of spiking neural
network architectures is that each layer can only separate data
points with a single line (Vogels and Abbott, 2005; Reljan-
Delaney and Wall, 2018; Cyr et al., 2020). XOR functions were
deemed impossible in single-layer networks—Marvin Minsky
and Seymour Papert provided proof that single-layer ANNs
could not perform XOR in their 1969 book Perceptrons (Minsky
and Papert, 2017) due to the non-linear separability. An XOR
gate was demonstrated within a large SNN by (Vogels and
Abbott, 2005) who stated that “a functional XOR gate requires
∼220 neurons”. Here, the XOR problem is solved with a single
neuron model.

The shape of the dendritic activation function allows the
XOR problem to be solved here with a single neuron model.
The activation function results in the amplitude of dCaAPs
decreasing when the input to the dendritic compartment
increases above a certain strength; the dCaAP amplitude is

maximal when the input to the dendrite crosses the threshold
for activation, then decreases as the input increases further
(Figure 7A). As the dCaAP amplitude decreases, the amount
of current flowing from the dendritic compartment to the
somatic compartment decreases which in turn decreases the
somatic action potential amplitude (Figure 4B). As somatic
action potentials are an all-or-nothing spike response, when
the current flowing from the dendritic compartment to the
somatic compartment decreases below a certain value, the
soma stops firing action potentials (Figure 4B). Therefore, the
somatic compartment will start firing when the input to the
dendrite is increased to its firing threshold and then will
decrease and eventually stop firing as input is increased further.
Similar behavior is observed when input to the dendritic
compartment is synaptic rather than injected current. Increasing
the number of synapses also causes the dCaAP amplitude to
increase then to decrease above a certain number of synapses,
leading to somatic action potential firing and subsequent
cease (Figure 7).

While the action potentials arising from calcium currents
in the dendritic compartment are responsible for XOR-type
computation, the somatic compartment, through integration
of sodium and potassium currents, computes standard logical
operations for spiking neurons such as AND and OR.
The combination of these differing logical operations allow
the neuron to act as a multi-layer network, increasing
the computational capabilities of a single neuron model in
comparison with a leaky integrate-and-fire model.

5. DISCUSSION

This work has provided the first fixed-point implementation of
ion-channel, Hodgkin-Huxley, and multi-compartment models
on SpiNNaker neuromorphic hardware and the first profiling
for both speed and accuracy of such models on SpiNNaker2
prototype neuromorphic hardware, demonstrating the improved
performance of the next-generation system through the use of
hardware accelerators and floating point arithmetic. The first
demonstration of a two-compartment neuron model running on
neuromorphic hardware that can solve the XOR problem using a
single neuron is also presented through this work.

Neuromorphic systems are designed to provide low-energy
platforms for simulation of Spiking Neural Networks (SNNs) but
in doing so biologically plausible neuron models have largely
been ignored in favor of simple and efficient neuron models
such as the Leaky Integrate-and-Fire (LIF) model. In contrast,
focus in the computational neuroscience community has been
on building models with a high degree of biological accuracy
which are in turn accompanied by large computational costs,
making the models difficult to scale into SNNs. This work
bridges this gap by presenting two biologically inspired neuron
models (Figure 1), implemented efficiently and accurately on
SpiNNaker and Jib2 neuromorphic platforms (Figure 5): a
single compartment Hodgkin-Huxley (HH) neuron (Figure 2)
and a multi-compartment neuron incorporating dendritic
computation (Figure 4).

Frontiers in Neuroscience | www.frontiersin.org 13 July 2022 | Volume 16 | Article 881598306

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ward and Rhodes Beyond LIF Neurons

FIGURE 7 | Somatic compartment exhibits XOR response to dendritic input in a single neuron model. (A) Dendritic and somatic firing dynamics in response to

increased synaptic input into the dendritic compartment. Increased number of synapses leads to an initial increase and then decrease in dCaAP amplitude which

subsequently cause the somatic compartment to start firing action potentials then stop. (B) The dynamics of the somatic compartment in response to the dendritic

inputs provide a solution to the XOR problem in a single neuron model. Somatic compartment exhibits XOR response to dendritic input in a single neuron model.

Increased number of synapses leads to an initial increase and then decrease in dCaAP amplitude which subsequently cause a similar increase and cease of somatic

action potential firing.

Both SpiNNaker and Jib2 are able to accurately model both
neurons over time with identical spike times recorded on Jib2
and a reference model in NEURON (Hines and Carnevale, 1997)
and spike times within 0.1ms on SpiNNaker. Manipulation of
equations, pre-calculation of constants and the use of lookup
tables (using 12 and 13.6 kB of memory for HH and two-
compartment models, respectively) enabled a significant speed
up of simulation time of the models (approx 11× for both
the single and two-compartment models—Table 1). This speed-
up is further increased by 3× with implementation on the
next-generation Jib2 neuromorphic chip, demonstrating the
effectiveness of hardware accelerators for expressions such as
exponential operations (Table 1) when simulating biologically
representative neurons.

Comparison with neuromorphic implementations of
the conventional LIF neuron model revealed that both the
HH and the multi-compartment neurons were slower to
simulate on neuromorphic hardware, due to the increased
complexity of the models (Table 1). However, the computational
capabilities gained justify the increased expense of running
the model, and the model on Jib2 is within an order of
magnitude of the LIF neuron in terms of computation time.
The underlying ion channel models directly correspond
to biophysiological data, bringing increased biological
relevance to models simulated on neuromorphic hardware.
Furthermore, the presented HH model exhibits a wide
range of firing characteristics which cannot be captured
with LIF neurons (Figure 6), and the inclusion of a dendritic

Frontiers in Neuroscience | www.frontiersin.org 14 July 2022 | Volume 16 | Article 881598307

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ward and Rhodes Beyond LIF Neurons

compartment enables the a single neuron model to function
as a multi-layer network. The multi-compartment model
provides the first implementation of a single neuron model
capable of solving the XOR problem on neuromorphic
hardware (Figure 7).

This work has explored simulation and profiling of individual
neurons, and their realization on neuromorphic systems. The
ultimate goal of implementing these models is harnessing
their ability to capture biologically representative features in
large-scale SNNs, and opening up new applications in bio-
inspired AI. To understand how the presented models would
scale when included in large networks, it is useful to contrast
performance with LIF neurons and biologically representative
neural circuits previously evaluated on SpiNNaker. In previous
work modeling cortical microcircuits comprising LIF neurons,
it was shown that neuron and synapse processing could
be parallelized effectively on multicore architectures such as
SpiNNaker (Rhodes et al., 2020). Through this parallelization
real-time simulation of cortical circuits containing 80k neurons
and 300M synapses was demonstrated, with an energy per
synaptic event of ≈ 0.6 µJ. The models presented here would
impact the neuron processing, resulting in a ≈ 40× reduction
in neuron density relative to LIF neurons to accommodate the
increased model complexity. This indicates that approximately
40× more SpiNNaker chips would be required to simulate
the same size of model, leading to the same factor increase
in total energy consumption. Projecting these numbers on to
SpiNNaker2 requires consideration of the updated performance
achieved with the new hardware. The HH and two-compartment
neurons occupy 48 and 55 kB, respectively (of the 128 kB fast-
access SRAM for combined instruction and data storage on
Jib2) with the instructions to update the neuron and the storage
of constants, variables and LUTs. Increasing the number of
neurons does not significantly increase the storage requirements,
as the instructions for updating the neurons are the same
and all neurons share common LUTs. While the number of
neurons per core determines the amount of state variables to
be stored, these datastructures are relatively small compared
to those described above (assuming split neuron and synapse
processing/storage as described above, Peres and Rhodes, 2022).
Therefore the determining factor in the number of neurons
which can be simulated on each core is the processing time.
As it takes 0.73 µs to update a HH neuron and 1.09 µs
for the two-compartment neuron using a 0.1 ms simulation
timestep, assuming the goal of real-time simulation, an upper
limit of 136 HH neurons or 91 two-compartment neurons
could be updated by a single core while maintaining real-time
execution. In reality this number is likely to be reduced to
enable cores to perform auxilliary operations such as monitoring
and data recording, reducing overall neuron density. However,
this is likely to remain above the 64 neurons per core
utilized in previous cortical simulations on SpiNNaker (Rhodes
et al., 2020), enabling real-time cortical simulations containing
biologically representative ion-channel-based neuronmodels (on
SpiNNaker2). Furthermore, embedding these models within the
SpiNNaker routing and communications fabric should facilitate

further expansion of model sizes while maintaining real-time
execution. This indicates that the cost of changing from LIF
to multicompartment models on SpiNNaker2 will incur a 10×
increase in energy, with the overall system significantly more
energy efficient—LIF neurons have been profiled at 20 pJ per
synaptic event (Höppner et al., 2021).

The model provides a framework for capturing and
testing more biologically plausible neural dynamics in an
efficient way. For example, different ion-channels can easily
be substituted or added to the model, and more complex
morphologies can be captured through inclusion of more
dendritic compartments. Recent work has demonstrated the
potential of multi-compartment neuron models to learn
via a synaptic learning rule (Bicknell and Häusser, 2021),
opening the door to the possibility of training the neuron
models presented in this work within large-scale SNNs on
neuromorphic hardware, in particular those featuring hardware
accelerators to maximize efficiency. Significant computational
capabilities are gained with each individual neuron model
and neuromorphic architectures can provide energy-efficient
platforms for simulations. While this work has focused
on demonstrating feasibility through development of software
models suitable for execution on SpiNNaker, the developed
models also provide the first step toward algorithm-hardware
co-design. Hardware requirements such as arithmetic operations
and memory use have been identified, providing insights into
how future neuromorphic systems could be tailored to further
optimize execution.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

MW designed and completed the project through model
creation, implementation, validation, timing measurements,
accuracy measurements and testing of models on both
neuromorphic systems and NEURON, and wrote the
manuscript. OR provided input into model design and
implementation, assisted with efficiency improvements and
measurements of models on both neuromorphic systems. Both
authors reviewed and edited manuscript, and approved the
submitted version.

FUNDING

This work was supported by the EU ICT Flagship Human Brain
Project (H2020 785907 and 945539).

ACKNOWLEDGMENTS

The authors thank Dr. Luis Plana for technical
discussions and assistance with the Jib2 implementation
and measurements.

Frontiers in Neuroscience | www.frontiersin.org 15 July 2022 | Volume 16 | Article 881598308

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Ward and Rhodes Beyond LIF Neurons

REFERENCES

Abu-Hassan, K., Taylor, J. D., Morris, P. G., Donati, E., Bortolotto, Z. A.,
Indiveri, G., et al. (2019). Optimal solid state neurons. Nat. Commun. 10, 1–13.
doi: 10.1038/s41467-019-13177-3

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A.
R., Bussat, J., et al. (2014). Neurogrid: a mixed-analog-digital multichip
system for large-scale neural simulations. Proc. IEEE 102, 699–716.
doi: 10.1109/JPROC.2014.2313565

Bicknell, B. A., and Häusser, M. (2021). A synaptic learning rule for
exploiting nonlinear dendritic computation. Neuron 109, 4001.e10–4017.e10.
doi: 10.1016/j.neuron.2021.09.044

Cox, D. D., and Dean, T. (2014). Neural networks and neuroscience-inspired
computer vision. Curr. Biol. 24, R921–R929. doi: 10.1016/j.cub.2014.08.026

Cyr, A., Thériault, F., and Chartier, S. (2020). Revisiting the XOR problem:
a neurorobotic implementation. Neural Comput. Appl. 32, 9965–9973.
doi: 10.1007/s00521-019-04522-0

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday, S., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–99. doi: 10.1109/MM.2018.112130359
Dayan, P., and Abbott, L. F. (2005). Theoretical Neuroscience: Computational and

Mathematical Modeling of Neural Systems. Cambridge, MA: The MIT Press.
Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638
Gidon, A., Zolnik, T. A., Fidzinski, P., Bolduan, F., Papoutsi, A., Poirazi, P., et al.

(2020). Dendritic action potentials and computation in human layer 2/3 cortical
neurons. Science 367, 83–87. doi: 10.1126/science.aax6239

Hines, M. L., and Carnevale, N. T. (1997). The neuron simulation environment.
Neural Comput. 9, 1179–1209. doi: 10.1162/neco.1997.9.6.1179

Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Physiol.
117, 500–544. doi: 10.1113/jphysiol.1952.sp004764

Hopkins, M., and Furber, S. (2015). Accuracy and efficiency in fixed-point neural
ODE solvers. Neural Comput. 28, 2148–2182. doi: 10.1162/NECO_a_00772

Hopkins, M., Mikaitis, M., Lester, D. R., and Furber, S. (2020). Stochastic rounding
and reduced-precision fixed-point arithmetic for solving neural ordinary
differential equations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378, 2166.
doi: 10.1098/rsta.2019.0052

Höppner, S., Yan, Y., Dixius, A., Scholze, S., Partzsch, J., Stolba, M.,
et al. (2021). The SpiNNaker 2 processing element architecture for
hybrid digital neuromorphic computing. arXiv preprint arXiv:2103.08392.
doi: 10.48550/ARXIV.2103.08392

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE
Trans. Neural Netw. 15, 1063–1070. doi: 10.1109/TNN.2004.832719

Kaiser, J., Billaudelle, S., Müller, E., Tetzlaff, C., Schemmel, J., and Schmitt, S.
(2022). Emulating dendritic computing paradigms on analog neuromorphic
hardware. Neuroscience 489, 290–300. doi: 10.1016/j.neuroscience.2021.
08.013

Kirigeeganage, S., Jackson, D., Zurada, J. M., and Naber, J. (2019). “Modeling the
bursting behavior of the Hodgkin-Huxley neurons using genetic algorithm
based parameter search,” in 2018 IEEE International Symposium on Signal

Processing and Information Technology, ISSPIT 2018 (Louisville, KY), 470–475.
doi: 10.1109/ISSPIT.2018.8642781

Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King, J., Delalondre, F., et al.
(2019). Coreneuron: an optimized compute engine for the neuron simulator.
Front. Neuroinform. 13, 63. doi: 10.3389/fninf.2019.00063

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M.,
Sanchez, C. A., et al. (2015). Reconstruction and simulation of neocortical
microcircuitry. Cell 163, 456–492. doi: 10.1016/j.cell.2015.09.029

Mayr, C., Höppner, S., and Furber, S. (2019). SpiNNaker 2: a 10 million core
processor system for brain simulation and machine learning. Concurr. Syst.
Eng. Ser. 70, 277–280. doi: 10.48550/arXiv.1911.02385

Merolla, P. A., Arthur, J. V., Alvarez-icaza, R., Cassidy, A. S., Sawada, J.,
Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with
a scalable communication network and interface. Science 345, 668–673.
doi: 10.1126/science.1254642

Mikaitis, M. (2020). Arithmetic accelerators for a digital neuromorphic processor

(Ph.D. thesis). Manchester, UK.
Minsky, M., and Papert, S. A. (2017). Perceptrons: An Introduction

to Computational Geometry. Cambridge, MA: The MIT Press.
doi: 10.7551/mitpress/11301.001.0001

Müller, E., Arnold, E., Breitwieser, O., Czierlinski, M., Emmel, A., Kaiser, J.,
et al. (2022). A scalable approach to modeling on accelerated neuromorphic
hardware. Front. Neurosci. 16, 884128. doi: 10.3389/fnins.2022.884128

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S., et al. (2019). Towards
artificial general intelligence with hybrid Tianjic chip architecture. Nature 572,
106–111. doi: 10.1038/s41586-019-1424-8

Peres, L., and Rhodes, O. (2022). Parallelization of neural processing
on neuromorphic hardware. Front. Neurosci. 16, 867027.
doi: 10.3389/fnins.2022.867027

Poirazi, P., and Papoutsi, A. (2020). Illuminating dendritic function
with computational models. Nat. Rev. Neurosci. 21, 303–321.
doi: 10.1038/s41583-020-0301-7

Reljan-Delaney, M., and Wall, J. (2018). “Solving the linearly inseparable XOR
problemwith spiking neural networks,” in Proceedings of Computing Conference

2017 (London, UK), 701–705. doi: 10.1109/SAI.2017.8252173
Rhodes, O., Bogdan, P. A., Brenninkmeijer, C., Davidson, S., Fellows, D., Gait, A.,

et al. (2018). SpyNNaker: a software package for running pynn simulations on
spinnaker. Front. Neurosci. 12, 816. doi: 10.3389/fnins.2018.00816

Rhodes, O., Peres, L., Rowley, A. G., Gait, A., Plana, L. A., Brenninkmeijer,
C., et al. (2020). Real-time cortical simulation on neuromorphic hardware.
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378, 2164. doi: 10.1098/rsta.2019.
0160

Schemmel, J., Bruderle, D., Grubl, A., Hock, M., Meier, K., and Millner, S.
(2010). “A wafer-scale neuromorphic hardware system for large-scale neural
modeling,” in 2010 IEEE International Symposium on Circuits and Systems

(ISCAS) (Paris), 1947–1950. doi: 10.1109/ISCAS.2010.5536970
Schemmel, J., Kriener, L., Muller, P., and Meier, K. (2017). “An accelerated

analog neuromorphic hardware system emulating NMDA- and calcium-based
non-linear dendrites,” in Proceedings of the International Joint Conference

on Neural Networks (Alaska, USA), 2217–2226. doi: 10.1109/IJCNN.2017.796
6124

Vogels, T. P., and Abbott, L. F. (2005). Signal propagation and logic gating
in networks of integrate-and-fire neurons. J. Neurosci. 25, 10786–10795.
doi: 10.1523/JNEUROSCI.3508-05.2005

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Ward and Rhodes. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 16 July 2022 | Volume 16 | Article 881598309

https://doi.org/10.1038/s41467-019-13177-3
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1016/j.neuron.2021.09.044
https://doi.org/10.1016/j.cub.2014.08.026
https://doi.org/10.1007/s00521-019-04522-0
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1126/science.aax6239
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1162/NECO_a_00772
https://doi.org/10.1098/rsta.2019.0052
https://doi.org/10.48550/ARXIV.2103.08392
https://doi.org/10.1109/TNN.2004.832719
https://doi.org/10.1016/j.neuroscience.2021.08.013
https://doi.org/10.1109/ISSPIT.2018.8642781
https://doi.org/10.3389/fninf.2019.00063
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.48550/arXiv.1911.02385
https://doi.org/10.1126/science.1254642
https://doi.org/10.7551/mitpress/11301.001.0001
https://doi.org/10.3389/fnins.2022.884128
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.3389/fnins.2022.867027
https://doi.org/10.1038/s41583-020-0301-7
https://doi.org/10.1109/SAI.2017.8252173
https://doi.org/10.3389/fnins.2018.00816
https://doi.org/10.1098/rsta.2019.0160
https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.1109/IJCNN.2017.7966124
https://doi.org/10.1523/JNEUROSCI.3508-05.2005
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

TYPE Technology and Code
PUBLISHED 22 July 2022
DOI 10.3389/fninf.2022.883796

OPEN ACCESS

EDITED BY

Thomas Nowotny,
University of Sussex, United Kingdom

REVIEWED BY

Gennady Cymbalyuk,
Georgia State University, United States
Claudia Casellato,
University of Pavia, Italy

*CORRESPONDENCE

Marc de Kamps
M.deKamps@leeds.ac.uk

RECEIVED 25 February 2022
ACCEPTED 24 June 2022
PUBLISHED 22 July 2022

CITATION

Osborne H and de Kamps M (2022) A
numerical population density
technique for N-dimensional neuron
models.
Front. Neuroinform. 16:883796.
doi: 10.3389/fninf.2022.883796

COPYRIGHT

© 2022 Osborne and de Kamps. This is
an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction
in other forums is permitted, provided
the original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

A numerical population density
technique for N-dimensional
neuron models

Hugh Osborne1 and Marc de Kamps1,2,3*

1School of Computing, University of Leeds, Leeds, United Kingdom, 2Leeds Institute for Data
Analytics, University of Leeds, Leeds, United Kingdom, 3The Alan Turing Institute, London,
United Kingdom

Population density techniques can be used to simulate the behavior of a

population of neurons which adhere to a common underlying neuron model.

They have previously been used for analyzingmodels of orientation tuning and

decision making tasks. They produce a fully deterministic solution to neural

simulations which often involve a non-deterministic or noise component. Until

now, numerical population density techniques have been limited to only one-

and two-dimensional models. For the first time, we demonstrate a method to

take an N-dimensional underlying neuron model and simulate the behavior

of a population. The technique enables so-called graceful degradation of

the dynamics allowing a balance between accuracy and simulation speed

while maintaining important behavioral features such as rate curves and

bifurcations. It is an extension of the numerical population density technique

implemented in the MIIND software framework that simulates networks of

populations of neurons. Here, we describe the extension to N dimensions and

simulate populations of leaky integrate-and-fire neurons with excitatory and

inhibitory synaptic conductances then demonstrate the e�ect of degrading

the accuracy on the solution. We also simulate two separate populations

in an E-I configuration to demonstrate the technique’s ability to capture

complex behaviors of interacting populations. Finally, we simulate a population

of four-dimensional Hodgkin-Huxley neurons under the influence of noise.

Though the MIIND software has been used only for neural modeling up to

this point, the technique can be used to simulate the behavior of a population

of agents adhering to any system of ordinary di�erential equations under the

influence of shot noise. MIIND has been modified to render a visualization of

any three of an N-dimensional state space of a population which encourages

fast model prototyping and debugging and could prove a useful educational

tool for understanding dynamical systems.

KEYWORDS

simulator, neural population, population density, software, Python, dynamical

systems, network, visualization

1. Introduction

A common and intuitive method for simulating the behavior of a population of

neurons is to directly simulate each individual neuron and aggregate the results (Gewaltig

and Diesmann, 2007; Yavuz et al., 2016; Knight et al., 2021). At this level of granularity,

the population can be heterogeneous in terms of the neuron model used, parameter

Frontiers inNeuroinformatics 01 frontiersin.org

310

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.883796
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.883796&domain=pdf&date_stamp=2022-07-22
mailto:M.deKamps@leeds.ac.uk
https://doi.org/10.3389/fninf.2022.883796
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2022.883796/full
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Osborne and de Kamps 10.3389/fninf.2022.883796

values, and connections. The state of each neuron, which may

consist of one or many more time or spatially dependent

variables, is then integrated forward in time. The benefit of this

method of simulation is that it provides a great deal of control

over the simulated neurons with the fewest approximations. If

required, the state history of each neuron can be inspected.

However, this degree of detail can produce results that are

overly verbose making it difficult to explain observations. While

this can be mitigated by carefully limiting the degrees of

freedom (for example, keeping all neurons in the population

homogeneous, using point neuron models, or having a well-

defined connection heuristic), other simulation methods exist

that have such assumptions built in and provide additional

benefits like increased computation speed, lower memory

requirements, or improved ways to present and interpret the

data. For example, so-called neural mass models (Wilson and

Cowan, 1972; Jansen and Rit, 1995) eschew the behavior of the

individual neurons in a population in favor of a direct definition

of the average behavior. These methods are computationally

cheap and can be based on empirical measurements but they

lack a direct link to the microscopic behavior of the constituent

neurons which limits a generalization to populations of different

neuron types.

Population density techniques (PDTs) approximate

population-level behaviors based on a model definition of

the constituent neurons. Most PDTs assume all neurons are

homogeneous and unconnected within a discrete population.

All neurons are considered point-neurons and adhere to a single

neuron model which is made up of one or more variables that

describe the state of the neuron at a given time. The state space

of the model, as shown in Figure 1, contains all possible states

that a neuron in the population could take. For a population of

neurons, PDTs frequently define a probability density function

or the related probability mass function across the state space

which gives the probability of finding a neuron from the

population with a given state. PDTs are not concerned with

the individual neurons but instead calculate the change to the

probability mass function which is governed by two processes:

the deterministic dynamics defined by the underlying neuron

model, and a non-deterministic noise process representing

random incoming spike events.

Methods for solving the deterministic dynamics of a system

of ordinary differential equations under the influence of a non-

deterministic noise process have been used right back to early

studies of Brownian motion. Then in theoretical neuroscience,

Johannesma (1969) and Knight (1972) among others used

similar techniques to give a formal definition of the effect of

stochastic spiking events on a neuron by defining a probability

density function of possible somatic membrane potentials. Most

often, these involved the assumption of infinitesimal changes in

state due to the incoming events, also known as the diffusion

approximation. Omurtag et al. (2000) applied the method

to a population of unconnected homogeneous neurons. They

separated the deterministic dynamics of a common underlying

neuron model from the incoming spike train generated by a

Poisson process. Originally, the motivation for their work was

to more efficiently approximate the behavior of collections of

neurons in the visual cortex. Work by Sirovich et al. (1996)

showed that there is a lot of redundancy in optical processing

in the macaque visual cortex such that on the order of O(104)

functional visual characteristics or modalities are encoded by

O(108) neurons. It was, therefore, a reasonable approximation to

treat a population of 104 neurons as a homogeneous group and

investigate the interaction between populations. The technique

was employed by Nykamp and Tranchina (2000) to analyse

mechanisms for orientation tuning. Bogacz et al. (2006) also

used PDTs to model decision making in a forced choice task.

PDTs have since been extended to attend to various

shortcomings of the original formulation. For example, there

is often an assumption of Poisson distributed input to a

population (Omurtag et al., 2000; Mattia and Del Giudice,

2002; Rangan and Cai, 2007) which in certain circumstances

is not biologically realistic. Ly and Tranchina (2009) outlined a

technique to calculate the distribution of the output spike train

of a population of LIF neurons with different input distributions

(based on a renewal process - with a function involving the

inter-spike interval). Instead of introducing a Poisson process

for their noise term, they use a hazard function which defines

the probability of an incoming spike given the time since the

last spike. This allows them to handle more realistic input

distributions such as a gamma distribution for certain situations

and calculate the output firing rate. They are also able to derive

the output statistics of a population like expected inter-spike

interval and spike distribution. Further work has been done to

develop so-called quasi-renewal processes (Naud and Gerstner,

2012) which define the probability of the next spike in terms

of both the population level activity and the time since the last

spike. Such approaches can simulate behaviors such as spike

frequency adaptation and refractoriness but there is a weaker

link to the underlying neuron model which limits the simulation

of populations of neurons with dynamics that produce behaviors

like bursting.

PDTs have also often been limited to low-dimensional

neuron models with which to derive population level behavior

and statistics. The conductance based refractory density (CBRD)

approach (Chizhov and Graham, 2007) tracks the distribution

of a population of neurons according to the time since they last

spiked (often referred to as their age) instead of across the state

space of the neuron model. In its most elementary form, the

probability density equation, given in terms of time and time

since last spike, is dependent on the neuronal dynamics defined

by the underlying model and a noise process. Crucially though,

the conductance variables defined in the underlyingmodel (such

as the sodium gating variables of the Hodgkin-Huxley neuron

model) can be approximated to their mean across all neurons

with similar age. With this approximation, the dimensionality

Frontiers inNeuroinformatics 02 frontiersin.org

311

https://doi.org/10.3389/fninf.2022.883796
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Osborne and de Kamps 10.3389/fninf.2022.883796

FIGURE 1

(A) The mesh used in MIIND to simulate a population of Izhikevich neurons. The quadratic red curve and blue line are the nullclines where the
rate of change of the membrane potential and recovery variable, respectively, are zero. The strips, made up of quadrilateral cells are formed by
the characteristic curves of the Izhikevich model for a given parameter set. (B) A vector field for the same model showing the direction of
movement of probability mass around the state space. (C) The state space discretized into a regular grid. The parameters and definition of the
Izhikevich model are not given here as it is only required to demonstrate the mesh and grid discretization. As in the original derivation of the
model, the recovery variable has no units.

of the problem is reduced to a dependence only on the

membrane potential, significantly improving the tractability of

such systems. Refractory density approaches (Schwalger and

Chizhov, 2019) have been extended further to approximate finite

size populations, phenomenological definitions, and bursting

behaviors (Schwalger et al., 2017; Chizhov et al., 2019; Schmutz

et al., 2020).

Using these techniques for modeling and simulation

generally requires a large amount of mathematical and

theoretical work to develop a solution for a specific scenario.

As we see above, each additional behavior requires at least an

extension or even reformulation of a previous approach. The

numerical PDT implemented in MIIND (de Kamps et al., 2019;

Osborne et al., 2021) requires only a definition of the underlying

neuron model plus population and simulation parameters. The

definition can be given in the form of a Python function in

a similar fashion to direct simulation techniques. However,

until now, the PDT has been able to simulate populations of

neurons adhering to only a one- or two-dimensional model.

Often, this is enough as many different neuronal behaviors can

be captured with two variables, for example, the action potential

of the Fitzhugh-Nagumo neuron (FitzHugh, 1961; Nagumo

et al., 1962), the spike frequency adaptation of the adaptive

exponential integrate-and-fire neuron (Brette and Gerstner,

2005), or the bursting behavior of the Izhikevich neuron model

(Izhikevich, 2007). Using a one-dimensional neuron model,

MIIND has been employed to simulate a network of interacting

populations in the spinal cord (York et al., 2022). Populations

were based on the exponential integrate-and-fire neuron model

and showed how a relatively simple spinal network could explain

observed trends in a static leg experiment. The main benefit of

using the numerical PDT in this study was to eliminate finite-

size variation in the results which would have hindered the

subsequent analysis. The MIIND software itself also afforded

benefits such as the ability to quickly prototype population

network models, and to observe the population states during

and after simulation. Osborne et al. (2021) have previously

presented the full implementation details of MIIND including

the two “flavors” of the numerical PDT, named the mesh and

grid methods. The mesh method involves discretizing the state

space using a mesh of quadrilateral cells as shown in Figure 1A.

The grid method was developed chiefly to improve the flexibility

of the PDT to avoid building a mesh. In this method, the state

space is discretized into a grid of rectangles which allows for a

more automated approach. Here, we extend the grid method to

greater than two-dimensional models to expand the repertoire

of possible neuron types.

2. Materials and methods

2.1. Recap of the grid method in MIIND

The MIIND algorithm for calculating the change to the

probability mass function is covered in detail by de Kamps et al.

(2019) and Osborne et al. (2021). However, we will cover the

basic algorithm as it is relevant to the extension of the grid

method to N dimensions. As a preprocessing step, the state

space of the underlying neuron model is discretized such that

each discrete volume of state space, or cell, is associated with a

probability mass value. The probability mass is assumed to be

uniformly distributed across the cell. The discretization can take

the form of a mesh as shown in Figure 1A, constructed from

the characteristic curves of the underlying neuron model or a

regular grid which spans the state space as in Figure 1C.

When generating the grid in MIIND, the user provides

the resolution of the grid and the size and location in state

space within which the population is expected to remain during

Frontiers inNeuroinformatics 03 frontiersin.org

312

https://doi.org/10.3389/fninf.2022.883796
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Osborne and de Kamps 10.3389/fninf.2022.883796

FIGURE 2

Figure showing steps for generating the transition matrix to solve the deterministic dynamics of the underlying model using a two-dimensional
grid. Axes are not labeled as they represent arbitrary time-dependent variables. (A) For each grid cell (rectangle), the vertices translated
according to a single time step of the underlying neuron model and the resulting quadrilateral is triangulated. (B) Each triangle is then tested for
intersection with the axis-aligned lines of the original grid. The green crosses mark the intersection points between the tested triangle and the
dashed line. The resulting subsections are again triangulated. (C) The process runs recursively until no more triangulations can be made. (D) The
resulting triangles each lie within only a single cell of the original grid. The area of each triangle divided by the area of the original quadrilateral
gives a proportion of mass to be transferred from the grid cell to the containing cell. From these, the proportions to be transferred can be
summed and the totals stored in the file.

simulation. For each iteration of the simulation, the distribution

of probability mass across the cells is updated, firstly, according

to the deterministic dynamics of the underlying neuron model.

For example, in the Izhikevich neuron model (Izhikevich, 2007),

as shown in Figure 1B, the vector field below −60 mV indicates

that probability mass will move slowly toward −60 mV before

quickly accelerating to the right. Because the underlying neuron

model does not change, the proportion of probability mass

transitioning from each cell according to the deterministic

dynamics remains constant throughout any simulation and can

therefore be precalculated and stored in a file. To generate the

file, the steps illustrated in Figure 2 are performed. For each

cell, the aim is to calculate where probability mass will move

after one time step of the simulation and how much of the

mass is apportioned to each cell. First, the four vertices of

the cell are translated according to a single time step of the

underlying neuron model to produce a quadrilateral which is

assumed to remain convex due to the small distance traveled.

The quadrilateral is then split into two triangles and each triangle

is then processed separately. Each triangle is tested against

the axis-aligned edges of the grid. Because the lines are axis-

aligned, this is a trivial test for points on either side of the

line. If an intersection occurs, the new vertices are calculated to

produce two polygons on either side of the line. Each polygon is

triangulated and the process is recursively repeated on all sub-

triangles until no more intersections occur. Once all triangles

have been tested, the quadrilateral is now split into a collection

of triangles which are each entirely contained within one cell of

the grid. For each cell which contains one or more triangles, the

total area of the triangles is calculated as a proportion of the area

of the quadrilateral and this value represents the proportion of

probability mass which will be transferred from the originating

grid cell after one time step. It is expected that each transformed

cell will only overlap with a few others in the grid so that an

N × N matrix of transitions where N is the number of cells

should be sparsely populated and can be stored in a file then

read into memory. The transitions in the file are applied once

every iteration of the simulation. This is a computationally time

efficient way to solve the deterministic dynamics.

Once the probability mass distribution has changed

according to the deterministic dynamics of the underlying

neuron model, the second part of the MIIND algorithm

calculates the spread of mass across cells due to random (usually

Poisson distributed) incoming spikes. This process is more

computationally expensive than the first because the shape of

the spread must be recalculated every time step by solving

Frontiers inNeuroinformatics 04 frontiersin.org

313

https://doi.org/10.3389/fninf.2022.883796
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Osborne and de Kamps 10.3389/fninf.2022.883796

FIGURE 3

(A) The change in state, J, of a neuron due to a single incoming spike can be split into component parts, Jx and Jy for the horizontal and vertical
dimensions, respectively. All neurons with a state within cell 0 will be translated by Jx due to a single incoming spike. Because all cells are the
same width (Cx), the uniformly distributed probability mass of cell 0 will be shared among a maximum of two cells, cell 1 and cell 2. The o�set of
cell 1 from cell 0 is equal to floor(Jx/Cx) [for negative Jx, it is ceil(Jx/Cx)] with cell 2 being the one beyond that. The proportion of mass transferred
from cell 0 to cell 1 is equal to 1− (Cx% Jx) and the remainder is transferred to cell 2. (B) Once the mass proportions have been calculated in the
horizontal direction, the same calculations are made with cells 1 and 2 in the vertical direction using Cy and Jy. The proportion calculated from
cell 0 to cell 1 is split between cells 3 and 4. The proportion in cell 2 goes to 5 and 6. (C) The proportions of mass to be transferred from cell 0 to
the resulting four cells give an approximation of the e�ect of transition J. With a constant J, this calculation gives the same relative results for
every cell and therefore only needs to be performed once. (D) Iteratively applying the transitions to all cells in the grid spreads mass further
across state space simulating the e�ect of neurons receiving multiple spikes in a given time step. (E) The probability mass function of a
population of leaky integrate-and-fire neurons with an excitatory synaptic conductance rendered in MIIND. The color of each cell indicates the
amount of probability mass. The value has been normalized to the maximum value of all cells. The e�ect of an incoming spike is to shift mass
0.2 nS/cm² in the vertical direction (producing a change in synaptic conductance). At this early point in the simulation, most neurons would
have received zero or one spike (indicated by the bright yellow spots) while only a few would have received up to four spikes. (F) As the
simulation proceeds, mass continues to be transferred upwards due to incoming spikes but the deterministic dynamics of the model causes
mass to also move to the right according to the transitions defined in the matrix file and the population becomes more cohesive.

the Poisson master equation (de Kamps, 2006), which involves

iteratively applying a different set of transitions to the probability

mass function and is dependent on the incoming rate of spikes.

Figure 3 shows how the spread of probability mass can be

calculated in two dimensions based on the width of the cells and

the change in state due to a single incoming spike. Calculating

the transitions for solving the non-deterministic noise process

benefits from the fact that all cells are the same size and regularly

Frontiers inNeuroinformatics 05 frontiersin.org

314

https://doi.org/10.3389/fninf.2022.883796
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Osborne and de Kamps 10.3389/fninf.2022.883796

spaced. It is assumed that a single incoming spike will cause

a neuron’s state to instantaneously jump by a constant vector,

J. Most often this is only in one direction instead of two. For

example, many neuron models expect an instantaneous jump

in membrane potential or in synaptic conductance. However,

calculating the jump transition for any vector is a useful feature

to have for models like the Tsodyks-Markram synapse model

(Tsodyks and Markram, 1997) for which incoming spikes cause

a jump in two variables at once. For a single incoming spike, all

probability mass in a cell will shift up or down according to the

x component of J, where x is the first variable or dimension of

the model. Because all cells are the same size, this shift will result

in probability mass being shared among at most two other cells

which are adjacent to each other. Calculating which cells receive

probability mass and in what proportion requires only knowing

the width of the cells in the x dimension and the x component

of J. If the J vector has a y component, where y is the second

variable or dimension, the same process can be applied to each

of the two new cells. The proportion of probability mass to be

shared to each cell is itself shared among a further two cells for

a maximum of four cells containing probability mass from the

original cell. Due to the regularity of the grid, this calculation

need only be made once and is applicable to every other cell. To

simulate the effect of the incoming Poisson noise process on the

probability mass function, the transitions are applied iteratively

to each cell.

Figures 3E,F show the resulting probability mass function

during a simulation when both deterministic and non-

deterministic processes are applied. From the function, average

values across the population can be calculated as well as the

average firing rate if the underlying model has a threshold-

reset mechanism. In that case, after each iteration, mass that

has moved into the cells that lie across the threshold potential is

transferred to cells at the rest potential according to a mapping

generated during the pre-processing steps. The details of this

mechanism are described by Osborne et al. (2021).

2.2. Extending the grid to N dimensions

An important observation is that the steps shown in Figure 2

for generating the two-dimensional transition matrix file work

similarly in higher dimensions. However, the complexity of

the algorithm increases significantly. For a three-dimensional

underlying neuron model, the grid is extended such that each

cell is a cuboid in state space with eight vertices (Figure 4). For

an N-dimensional (ND) neuron model, an N-dimensional grid

can be constructed with cells made up of 2N vertices. The task

here is to update the calculations involved in the deterministic

and non-deterministic processes described above so that they

work generically for any number of dimensions. For illustration

purposes, we will use a three-dimensional grid.

FIGURE 4

(A) With a three-dimensional state space, the grid discretization
is made up of cuboids. (B) For the two-dimensional case, a
rectangle has two possible triangulations, [A,B,C] and [A,C,D] or
[A,B,D] and [B,D,C]. (C) A cuboid triangulated into six
3-simplices. Other triangulations are possible, some which aim
to achieve the minimum number of simplices or to keep the
volumes of the simplices as uniform as possible. The Delaunay
triangulation makes no guarantees of this kind but is easy to
implement and works in N-dimensions.

For the deterministic dynamics, each of the 2N vertices is

again translated according to a single time step of the neuron

model and the resulting volume must be triangulated into N-

simplices. In three dimensions, a 3-simplex is a tetrahedron.

There aremany possible triangulations of anN-dimensional cell.

As an example, in the simpler two-dimensional case, if the four

vertices of a rectangle are labeled A to D in a clockwise fashion

as in Figure 4B, the possible triangulations are [A,B,C] and

[A,C,D] or [A,B,D] and [B,D,C]. As with the number of possible

triangulations, the number of resulting N-simplices increases

with dimensionality and there are many algorithms available to

generate them (Haiman, 1991). Many algorithms exist to find

the so-called Delaunay triangulation of a set of points, which

has a specific definition: A set of triangles (or N-simplices)

between points such that no point lies within the circumcircle

(or hypersphere) of any triangle (or N-simplex) in the set.

This definition results in a quite well-formed triangulation

(minimizing the number of long and thin triangles). One of

the simplest ways to find the Delaunay triangulation of a set

of points in N dimensions is to use the quickhull algorithm

(Brown, 1979; Barber et al., 1996). The initial triangulation

of the transformed cell is calculated using this method. To

improve efficiency of this triangulation step, instead of finding

the Delaunay triangulation for every translated cell, quickhull

can be applied once to a unit N-cube as shown in Figure 4C.

Under the assumption that the transformed cell remains a

convex hull (not unreasonable given that the time step should

Frontiers inNeuroinformatics 06 frontiersin.org

315

https://doi.org/10.3389/fninf.2022.883796
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Osborne and de Kamps 10.3389/fninf.2022.883796

FIGURE 5

(A,D,G,J) Possible plane intersections with a 3-simplex. (B,E,H,K) Illustration of how each intersection is represented in the algorithm such that
intersections bisect the relevant edges. (C,F,I,L) The resulting triangulations of the bisected 3-simplex which can be applied to all intersections of
this type when calculating the transitions. (A–C) A plane intersection leaving one vertex of the 3-simplex above the plane and three vertices
below. (D–F) A plane intersection leaving two vertices on either side of the plane. (G–I) A plane intersection which goes through one of the
vertices leaving one vertex above the plane and two vertices below. (J–L) A plane intersection which goes through two vertices leaving one
vertex on either side.

be small), the triangulation of the unit N-cube can be applied to

every transformed cell without re-calculating.

As with the two-dimensional version, the next step is

to recursively test each N-simplex for intersections with

hyperplanes of the grid. Figure 5 shows examples of possible

plane intersections of a 3-simplex. Finding an intersection,

again, trivially involves checking if vertices lie on both sides of

the hyperplane. The new vertices resulting from the intersections

with the edges of the N-simplex describe two new shapes on

either side of the plane. These must again be triangulated into

smaller N-simplices. As with the first triangulation of the unit

N-cube, pre-calculated triangulations of a unit N-simplex can be

mapped to each newly generated N-simplex of the transformed

cell. However, as Figure 5 shows, there are multiple ways that

an N-simplex can be bisected with each requiring a different

triangulation of the resulting shapes. Each type of intersection

Frontiers inNeuroinformatics 07 frontiersin.org

316

https://doi.org/10.3389/fninf.2022.883796
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Osborne and de Kamps 10.3389/fninf.2022.883796

TABLE 1 Possible vertex configurations from bisections of a

3-simplex.

Vertices above

the plane

Vertices below

the plane

Vertices on the

plane

Resulting new

vertices

1 3 0 3

2 2 0 4

1 2 1 2

1 1 2 1

can be described uniquely with the number of vertices above

the hyperplane, below the hyperplane and on the hyperplane.

Table 1 gives the possible bisections of a 3-simplex which are

illustrated in Figure 5. The terms “above” and “below” are just

used here to describe each side of the hyperplane and do not

represent a position relative to each other or the hyperplane.

Listing 1 gives the programmatic way to find all possible

intersections of an N-simplex.

Listing 1 Calculate all possible vertex combinations to uniquely

identify each type of intersection of an N-simplex

For each possible number of co-planar vertices
which is between 0 and 2^N - 2:
List all possible combinations of the

remaining vertices above and below the
hyperplane excluding 0

For each of the vertex combinations which uniquely

identifies a type of intersection, the appropriate triangulation of

the resulting shapes can be pre-calculated using the Delaunay

triangulation of a unit N-simplex. To do this, the vertices of the

N-simplex are assigned to be “above”, “below” or “on” according

to the vertex combination. At this point, no hyperplane exists

to test for intersection points. However, we know that edges

that pass between an “above” vertex and a “below” vertex will

be intersected so we can choose to bisect that edge to produce

a new vertex as shown in Figure 5. This represents a good

enough approximation of the eventual N-simplex bisection and

the quickhull algorithm can be performed on the resulting

two shapes. The full dictionary of vertex combinations to

triangulations is stored in a lookup table so that, during

the actual subdivision of N-simplices in the grid, all that is

required is to find the correct intersection in the table and

to apply the triangulation mapping. As before, the algorithm

continues recursively until no more triangulations are required

and the volumes of all N-simplices are summed to calculate the

proportion of probability mass which will be shared among the

relevant cells.

Solving the non-deterministic dynamics in N dimensions

is precisely the same as for two dimensions. In the same way

that the probability mass proportion was recursively shared

among two new cells per dimension, the resulting number of

cells to which mass is transitioned due to a single incoming

spike is at most 2N . No intersections of triangulations are

required for this calculation as only the cell width and the

jump value in each dimension is required as shown in Figure 3.

The MIIND algorithm proceeds in the same way as it did for

two dimensions. First applying the matrix of transitions for the

deterministic dynamics to the grid, then iteratively applying

the jump transition to each cell multiple times to approximate

the spread of probability mass due to Poisson distributed

input. If the underlying neuron model has a threshold-reset

mechanism, probability mass in the cells at threshold (for a

three-dimensional grid, this is a two-dimensional set of cells)

is transferred to a set of reset cells according to another pre-

calculated mapping.

2.3. Running an ND simulation in MIIND

When implementing the ND extension to the grid method

in MIIND, care has been taken to minimize any changes to how

the user builds and runs a simulation. Listing 2 shows a MIIND

simulation file for defining two neuron populations in an E-I

configuration as examined later in Section 2.5.

Listing 2 The XML-style simulation file for an E-I network in MIIND

<Simulation>
<WeightType>CustomConnectionParameters</

WeightType>
<Algorithms>
<Algorithm type="GridAlgorithmGroup" name="

COND3D" modelfile="cond3d.model"
tau_refractive="0.002" transformfile="
cond3d.tmat" start_v="-65" start_w="0.00001
" start_u="0.00001">

<TimeStep>1e-03</TimeStep>
</Algorithm>
</Algorithms>
<Nodes>
<Node algorithm="COND3D" name="E" type="

EXCITATORY" />
<Node algorithm="COND3D" name="I" type="

INHIBITORY" />
</Nodes>
<Connections>
<IncomingConnection Node="E" num_connections="10

" efficacy="0.15" delay="0.0" dimension="1"
/>

<IncomingConnection Node="I" num_connections="10
" efficacy="0.15" delay="0.0" dimension="1"
/>

<Connection In="E" Out="E" num_connections="50"
efficacy="1" delay="0.003" dimension="1"/>

<Connection In="I" Out="E" num_connections="50"
efficacy="4" delay="0.003" dimension="2"/>

<Connection In="E" Out="I" num_connections="50"
efficacy="1" delay="0.003" dimension="1"/>

<Connection In="I" Out="I" num_connections="50"
efficacy="4" delay="0.003" dimension="2"/>

Frontiers inNeuroinformatics 08 frontiersin.org

317

https://doi.org/10.3389/fninf.2022.883796
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Osborne and de Kamps 10.3389/fninf.2022.883796

</Connections>
<Reporting>

<Display node="E" />
<Average node="E" t_interval="0.001" />
<Average node="I" t_interval="0.001" />
<Rate node="E" t_interval="0.001" />
<Rate node="I" t_interval="0.001" />

</Reporting>
<SimulationRunParameter>
<master_steps>10</master_steps>
<t_end>TE</t_end>
<t_step>1e-03</t_step>
<name_log>cond.log</name_log>
</SimulationRunParameter>
</Simulation>

The full details of the syntax for a simulation file is

provided by Osborne et al. (2021). Little in this file has changed

to accommodate higher dimensional neuron models. In the

definition of the Algorithm, COND3D, the attributes start_v,

start_w, and start_u allow the user to define the starting

position (of a Dirac delta peak) for the population in the three-

dimensional space. Similarly-named attributes can be added for

higher dimensions. The modelfile and transformfile attributes

should point to the required pre-processed files generated from

the algorithm described in Section 2.2.

The Connection elements describe the inhibitory and

excitatory connections between the two populations (nodes) E

and I. As discussed earlier, each population simulated using

the numerical PDT is influenced by one or more Poisson

noise processes which change the probability mass function to

approximate each neuron in the population receiving Poisson

distributed spike trains. InMIIND, populations interact via their

average output firing rate which becomes the rate parameter

of the input Poisson process for the target population. Four

such connections are set up here. The num_connections attribute

indicates how many incoming connections each neuron in

the target (Out) population receives from the source (In)

population. This has the effect of multiplying the incoming firing

rate parameter. The efficacy attribute gives the instantaneous

jump value caused by a single incoming spike. The dimension

attribute has been newly added and gives the direction in which

the jump occurs. In this example, spikes from the excitatory

population cause a change of 1 nS/cm² change in dimension 1

which corresponds to the w variable. Finally, the delay attribute

gives the transmission delay of the instantaneous firing rate

between populations which allows MIIND to simulate the

complex dynamics which can arise when this is a non-zero value.

All other aspects of the file remain unchanged though the

Display element which tells MIIND to render the probability

mass function of population E during the simulation now causes

a three-dimensional rendering of the function in state space. For

higher dimensions, which three dimensions to display can be

chosen during simulation.

The main change to MIIND to support ND neuron models

is the addition of the generateNdGrid method in the MIIND

Python module. Listing 3 shows a function set up in Python,

cond, which describes the time evolution of a LIF neuron with

excitatory and inhibitory conductances. The generateNdGrid

method generates the cond3d.model and cond3d.tmat support

files which are referenced in the simulation file above (listing 2).

The method takes as parameters:

1. The Python function defining the model dynamics.

2. The name of the generated files.

3. The minimum values in state space.

4. The span of the grid in state space.

5. The resolution of the grid.

6. The threshold potential.

7. The reset potential.

8. Any additional change in state of a neuron after being reset to

the reset potential (in this case, there is none).

9. The timescale of the neuron model in seconds.

10. The time step with which to solve the neuron model in

seconds.

Listing 3 An example Python script to generate the support files for a

three-dimensional LIF neuron population in MIIND.

import miind.miindgen as miindgen

def cond(y):
V_l = -70.6
V_e = 0.0
V_i = -75
C = 281
g_l = 0.03
tau_e = 2.728
tau_i = 10.49

v = y[2]
w = y[1]
u = y[0]

v_prime = (-g_l*(v - V_l) - w * (v - V_e) -
u * (v - V_i)) / C

w_prime = -(w) / tau_e
u_prime = -(u) / tau_i

return [u_prime, w_prime, v_prime]

miindgen.generateNdGrid(cond, ’cond3d’,
[-0.2,-0.2,-80], [5.4,5.4,40.0],
[50,50,50], -50.4, -70.6, [0.0,0.0,0.0], 1,
0.001)

Running a script such as this performs the steps outlined

in Section 2.2. To see further examples of ND simulations

in MIIND, once the software has been installed (using

pip install miind), the examples/model_archive directory of

the MIIND repository contains the required files for a

number of different three- and four-dimensional neuron

model populations. The three experiments presented below are

available in the examples/miind_nd_examples directory of the

MIIND repository.

Frontiers inNeuroinformatics 09 frontiersin.org

318

https://doi.org/10.3389/fninf.2022.883796
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Osborne and de Kamps 10.3389/fninf.2022.883796

TABLE 2 Parameters used for Equations (1) and (2).

Parameter name Values and notes

Equation (1) Leaky integrate-and-fire neuron with

an excitatory and inhibitory synaptic

conductance

gl 0.03 nS/cm²

El −70.6 mV

Ee 0.0 mV

Ei −75 mV

C 281 pF/cm²

τe 2.728 ms

τi 10.49 ms

Refractive period 2 ms

Threshold potential −50.4 mV

Reset potential −70.6 mV

Equation (2) Hodgkin-Huxley Neuron

gl 0.5 mS/cm²

gk 30 mS/cm²

gna 100 mS/cm²

Vk −90 mV

Vna 50 mV

Vl −65 mV

C 1.0 µF/cm²

αm 0.32(13− v+ Vt)/(e
13−v+Vt

4 − 1)

αn 0.032(15− v+ Vt)/(e
15−v+Vt

5 − 1)

αh 0.128e
17−v+Vt

18

βm 0.28(v− Vt − 40)/(e
v−Vt−40

5 − 1)

βn 0.5e
10−v+Vt

40

βh 4/(1+ e
40−v+Vt

5)

Vt -63 mV

2.4. Testing a single population

Initially, a single population of leaky integrate-and-fire

neurons with excitatory and inhibitory synaptic conductance

variables was simulated in MIIND and compared to a so-called

Monte Carlo approach. The definition of the underlying neuron

model is given in Equation (1) and the parameters are listed

in Table 2. v represents the membrane potential, u represents

the conductance of inhibitory synapses which will increase with

increased inhibitory input. w represents the conductance of the

excitatory synapses. C is the membrane capacitance and gl is

the leak conductance. Vl, Ve, and Vi are the reversal potentials

for their respective conductances. The refractory period, during

which the state is held constant at the reset potential, has been

set to 2 ms. Figure 6 shows a schematic of the neuron model

state space in three dimensions and the effect of excitatory and

inhibitory input spikes. Due to the dynamics of the model,

mass in cells with a high u value will move to lower values

of v and mass at high w values will move to higher cells

in v.

C
dv

dt
= −gl(v− Vl)− w(v− Ve)− u(v− Vi)

τe
w

dt
= −w

τi
u

dt
= −u

v > threshold −→ v = reset (1)

The Monte Carlo simulation was set up in Python for a

population of 10,000 neurons following the dynamical system

in Equation (1). For a time step of 1 ms, neurons receive a

number of input spikes sampled from a Poisson distribution

with a given rate parameter. Each spike causes a 1.5 nS/cm²

increase in the excitatory synaptic conductance variable,w. Each

neuron also receives excitatory and inhibitory Poisson noise at

50 Hz, again, with each excitatory spike causing a 1.5 nS/cm²

increase in w and each inhibitory spike causing a 1.5 nS/cm²

increase in u. Both u and w were set to 0 nS/cm² at the start of

the simulation.

A MIIND simulation was similarly set up. Six separate

grid transition files were generated all according to Equation

(1) but with different grid resolutions: 50 × 50 × 50 (for

u, w, and v, respectively), 100 × 100 × 100, 150 × 150 ×

150, 100 × 100 × 200, 200 × 200 × 100, and 50 × 50 ×

300. For all resolutions, the grid spans the model state space

for u = −0.2 nS/cm² to 5.2 nS/cm², w = −0.2 nS/cm² to 5.2

nS/cm², and v = −80 to −40 mV. These ranges represent the

limits of the values that the variables can take in the MIIND

simulation but were chosen because all significant probability

mass is contained in this volume throughout. All simulations

produced 1.2 s of activity. The average membrane potential,

synaptic conductances, and firing rate of the population

were recorded.

Though MIIND has not been fully benchmarked, it is

instructive to see the relative benefits to computational efficiency

with differing grid resolutions. For the grid resolutions, 50 × 50

× 50, 100 × 100 × 100, 150 × 150 × 150, and 50 × 50 × 300,

the time from starting the MIIND program to the beginning of

the simulation was recorded to give an indication of the effect

of load times with greater transition file sizes. Then the time

to complete the simulation was recorded. The same simulation

from above was performed without recording the membrane

potential or firing rate to the hard drive. The machine used to

produce the results has a solid state drive (SSD), an Intel(R)

Core(TM) i7-8750H CPU @ 2.20GHz, and an NVidia Geforce

GTX 1060.

Frontiers inNeuroinformatics 10 frontiersin.org

319

https://doi.org/10.3389/fninf.2022.883796
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Osborne and de Kamps 10.3389/fninf.2022.883796

FIGURE 6

(A) A schematic of the E-I population network. The excitatory population, E is made up of NE neurons. The inhibitory population, I contains
NI = 10, 000− NE neurons. Each population receives an excitatory external input of 500 Hz. Each neuron in both populations receives 0.01NE

excitatory connections and 0.01NI inhibitory connections. Arrows represent an excitatory connection, circles represent an inhibitory connection.
(B) The three-dimensional state space of the leaky integrate-and-fire neuron with an excitatory and inhibitory synaptic conductance. v is the
membrane potential, w is the excitatory synaptic conductance, and u is the inhibitory synaptic conductance. The vector field shows the direction
of motion in state space for neurons with no external impulse. Neurons which receive an excitatory input spike are shifted higher in w. Neurons
which receive an inhibitory input spike are shifted higher in u. The solid curves show trajectories of neurons under excitatory impulse alone. The
dashed curves show trajectories of neurons under inhibitory impulse alone.

2.5. An E-I network

To demonstrate how MIIND is able to simulate the

interaction of multiple populations and capture changes in

behavior with different parameters, a population network was

set up in an E-I configuration (Brunel, 2000). Figure 6 shows the

population level connections. In both the MIIND and Monte

Carlo simulations, for each connection, the average firing rate

of the source population is used as the rate parameter for

the Poisson input to the target population. The Monte Carlo

simulation was set up in Python for 10,000 neurons following the

dynamics of Equation (1). Parameters for the neuron model and

E-I network model are adapted from Sukenik et al. (2021). The

10,000 neurons are shared among the two populations according

to a ratio parameter of excitatory to inhibitory neurons. That

is, the number of inhibitory neurons, NI was chosen and the

number of excitatory neurons, NE was set equal to 10, 000 −

NI . The excitatory and inhibitory conductance jump values are

held constant and a weight is multiplied by the Poisson rate

parameter of each connection to reflect that each neuron should

receive 0.01NE excitatory connections and 0.01NI inhibitory

connections. A transmission delay of 3 ms is applied to all

inter-population connections. Finally, each population receives

a 500 Hz excitatory Poisson distributed input with each spike

causing a 1.5 nS/cm² jump in w. Table 3 gives the full list

of parameters for the E-I model. MIIND was set up in the

same way using a newly generated grid with resolution 150 ×

150 × 150. The grid for this simulation covers a much larger

volume of state space as it is expected that there will be large

fluctuations in the conductance variables. Therefore, the size

of the grid was set to u = −10 nS/cm² to 100 nS/cm², w =

−5 nS/cm² to 25 nS/cm², and v = −80 to −40 mV. Across

Frontiers inNeuroinformatics 11 frontiersin.org

320

https://doi.org/10.3389/fninf.2022.883796
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Osborne and de Kamps 10.3389/fninf.2022.883796

TABLE 3 Parameters used for the E-I network model.

Parameter name Values and notes

Parameters apply to both the MIIND and Monte

Carlo simulations

External firing rate 500 Hz to both E and I populations

External excitatory jump 1.5 nS/cm² change in w per incoming spike

NI Free parameter in the range 1,000–9,000

NE 10, 000− NI

Number of E to E connections 0.01NE

Number of E to I connections 0.01NE

Number of I to I connections 0.01NI

Number of I to E connections 0.01NI

Excitatory jump for E to E

connections

1 nS/cm² increase in w per incoming spike

Excitatory jump for E to I

connections

1 nS/cm² increase in w per incoming spike

Inhibitory jump for I to I

connections

4 nS/cm² increase in u per incoming spike

Inhibitory jump for I to E

connections

4 nS/cm² increase in u per incoming spike

E to E transmission delay 3 ms

E to I transmission delay 3 ms

I to I transmission delay 3 ms

I to E transmission delay 3 ms

simulation trials, all parameters were kept constant except

for NI .

2.6. A four-dimensional neuron
population

To test the performance of MIIND with populations of four-

dimensional neurons, we simulated a population of Hodgkin-

Huxley neurons (Hodgkin and Huxley, 1952). This gold-

standard model has not been simulated with a population

density approach before. A fourth time-dependent variable

significantly increases the amount of computation required to

generate the transition matrix and its size beyond the three-

dimensional case above. As before, a Monte-Carlo simulation

was set up for comparison. The Hodgkin-Huxley neuron model

is defined in Equation (2). As in Equation (1), the neuron

has a capacitance, C, and a leak conductance, gl, with reversal

potential,Vl. The potassium and sodium synaptic conductances,

gk and gna remain constant with respective reversal potentials,

Vk and Vna. However, they are modulated by the three time

dependent gating variables, n,m, and h. The definitions of α and

β are given in Table 2.

C
dv

dt
= −gkn

4(v− Vk)− gnam
3h(v− Vna)− gl(v− Vl)

m

dt
= αm(1−m)− βmm

n

dt
= αn(1− n)− βnn

h

dt
= αh(1− h)− βhh. (2)

The population was given a Poisson distributed input at

various rates between 0 and 40 Hz. The number of input

connections to each neuron in the population was set at 100

and can be considered a weight so that the incoming rate would

be multiplied by this amount. Each incoming spike produces

a 3 mV jump in membrane potential. For MIIND, only one

Hodgkin-Huxley grid was generated with dimensions 50 × 50

× 50 × 50 for h, n, m, and v, respectively. This resolution was

chosen to keep the total number of cells low. The size of the grid

was set between −0.1 and 1.1 for the gating variables, and v =

−100 to 60 mV.

3. Results

3.1. A single population of
three-dimensional neurons

Figure 7 shows the probability mass functions for six

different simulations of a population of leaky integrate-and-fire

neurons with excitatory and inhibitory synaptic conductances.

Each cell has a color/brightness and an alpha or transparency

value such that cells with a higher probability mass are a brighter

yellow, and more opaque than cells with lower probability mass

which are darker red and more transparent. This plotting style

allows the center of the function volume to be seen from the

outside. Cells with zero probability are entirely transparent so

that only significant cells are visible. Due to the greater opacity

which often appears in the central volume of the function,

the MIIND user may also rotate the entire volume to view

the function from all angles. In Figures 7A,B, when only an

excitatory input is provided, the function remains in the two-

dimensional plane at u = 0 and is the same function as produced

in the purely two-dimensional model demonstrated in de Kamps

et al. (2019) and Osborne et al. (2021). Likewise, when only an

inhibitory input is provided (Figures 7C,D), the function stays

at w = 0. Figures 7E,F show the result of both an excitatory

and inhibitory input.When enough excitatory input is provided,

probability mass reaches the threshold membrane potential and

is reset causing a sharp cut-off at those values. The brighter

yellow cells in the center of the function’s volume indicate that

the majority of neurons can be found there traveling from the

reset to threshold potential receiving close to the average number

of excitatory and inhibitory input spikes. Further out, at higher

Frontiers inNeuroinformatics 12 frontiersin.org

321

Osborne and de Kamps 10.3389/fninf.2022.883796

FIGURE 7

Visualizations of a population of leaky integrate-and-fire neurons with an excitatory and inhibitory synaptic conductance in MIIND. Cells with no
probability mass are transparent. With increasing probability mass, they become more opaque and change from red to yellow. The color and
opacity are normalized to the value of the cell with the highest probability mass. (A,C,E) The probability mass function across a 150 × 150 × 150
grid. (B,D,F) The probability mass function across a 50 × 50 × 50 grid for the same simulation time as the image above. (A,B) When the
population receives only excitatory incoming spikes, the probability mass function remains in the plane at u = 0. (C,D) When the population
receives only inhibitory incoming spikes, the probability mass function stays in the plane at w = 0. (E,F) When the population receives both
inhibitory and excitatory incoming spikes, the probability mass function extends into the state space. In this case, the excitatory input is enough
to overcome the inhibitory input and the mass function moves across the threshold potential. The bright face shows the probability mass at the
threshold. Probability mass which has been reset reappears at the reset potential and moves further into the state space.

values of u and w, the probability of finding a neuron reduces as

neurons are less likely to receive many more spikes than average.

Figure 8 shows average membrane potential recorded from

multiple simulations of a population of leaky integrate-and-fire

neurons with excitatory and inhibitory synaptic conductances.

The scatter points show the average potential of 10,000

individual neurons simulated using the Monte Carlo approach.

The remaining curves show the average potential of populations

simulated in MIIND using 3-dimensional grids of different

resolutions. For the transient period before the membrane

potential reaches a steady state, all the MIIND simulations

remain synchronized with the Monte Carlo results. As would

be expected, the least accurate result comes from the lowest

resolution grid, 50 × 50 × 50. However, even at this resolution,

themean error between theMonte Carlo activity and theMIIND

result is only 0.354 mV. The error is reduced significantly for

100 × 100 × 100 (0.115 mV) then further reduced but only

slightly for 150 × 150 × 150 (0.063 mV) suggesting a degree

of diminishing return for increasing the resolution in an equal

fashion across dimensions. The error from the 200 × 200 ×

100 grid is the same as the 100 × 100 × 100 grid but the

100 × 100 × 200 grid does better (0.059 mV) indicating that

increasing the resolution of the membrane potential dimension

is a more efficient way to attain accurate results for this

underlying neuron model. To illustrate this further, the 50 ×

50 × 300 grid performs the best of the trials with an average

error of 0.054 mV despite the low resolution of the conductance

dimensions. Over a range of average rates (Figure 8B) of the

Poisson distributed input, the steady state membrane potential

of theMIIND simulations, again, approaches those of theMonte

Carlo results with increasing resolution. For low input rates,

when the majority of neurons are subthreshold, the 150 × 150

× 150 grid gives the closest approximation to the Monte Carlo

results. However, once the majority of neurons are crossing

the threshold and firing, the 50 × 50 × 300 grid gives better

agreement. Figure 8C shows the average excitatory conductance

variable for the grids across the range of lower input rates (1–

10 Hz) in comparison to the Monte Carlo approach. The 50

× 50 × 300 grid underestimates the conductance which could

account for the underestimation of the membrane potential for

the same input. The 150 × 150 × 150 grid, by contrast, has

better agreement with the membrane potential and excitatory

conductance for these rates which producemostly sub-threshold

activity in the population.

Frontiers inNeuroinformatics 13 frontiersin.org

322

https://doi.org/10.3389/fninf.2022.883796
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Osborne and de Kamps 10.3389/fninf.2022.883796

FIGURE 8

(A) The average membrane potential for a single population of leaky integrate-and-fire neurons with excitatory and inhibitory synaptic
conductances simulated using a Monte Carlo approach and using MIIND with grids of di�erent resolutions. (B) The e�ect on the average steady
state membrane potential with di�erent rates of the Poisson distributed input for the Monte Carlo simulation and di�erent MIIND grid
resolutions. (C) The e�ect on the average steady state excitatory conductance variable with increasing Poisson input rate. Only the mean of the
values for the Monte Carlo simulation are shown here (without a variance or standard deviation) because the MIIND simulation produces no
such statistic and so no comparison can be made.

Figure 9 shows the average firing rates of the same

Monte Carlo and MIIND simulations. The differences in grid

resolution produce a similar trend in error, with the lowest

resolution, 50 × 50 × 50 laying furthest away from the

Monte Carlo simulation and the 50 × 50 × 300 grid the

closest. However even at lower resolutions, all the average firing

rates of the MIIND populations are very well matched to

direct simulation.

3.2. Simulation speed for di�erent grid
resolutions

Table 4 shows the load and simulation times for 1 s of a single

population of leaky integrate-and-fire neurons with excitatory

and inhibitory synaptic conductances. As expected, as the total

number of cells increases the load times and simulation times

increase. When running multiple short simulations, the load

Frontiers inNeuroinformatics 14 frontiersin.org

323

https://doi.org/10.3389/fninf.2022.883796
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Osborne and de Kamps 10.3389/fninf.2022.883796

FIGURE 9

(A) The average firing rate of a single population of leaky integrate-and-fire neurons with excitatory and inhibitory synaptic conductances
simulated using a Monte Carlo approach and using MIIND with grids of di�erent resolutions. (B) The e�ect on the average steady state firing rate
of the population with increasing rate of the Poisson distributed input.

TABLE 4 Times to simulate 1 s of a population of leaky

integrate-and-fire neurons with excitatory and inhibitory synaptic

conductances in MIIND using di�erent grid resolutions.

Grid resolution Time to load the grid

(s)

Time to run the

simulation (s)

50× 50× 50 4.82 2.71

100× 100× 100 35.58 15.18

150× 150× 150 126.01 48.7

50× 50× 300 27.62 11.93

time becomes a significant consideration. However, only the

simulation time is dependent on the required length of the

simulation. The load time remains constant.

3.3. Three-dimensional neurons in an E-I
population network

For the Monte Carlo simulation of 5,000 excitatory and

5,000 inhibitory neurons (with an average of 50 excitatory and 50

inhibitory incoming connections to each), the two populations

reach an equilibrium state after an initial transitory phase.

Figure 10A shows excellent agreement between the average

membrane potentials from the two approaches. The initial

oscillation in the transient period covers nearly 100 nS/cm² in

u and 12 nS/cm² in w which requires a much larger volume

of state space than the single population simulation because of

the large synaptic efficacies and recurrent connections involved

in the E-I network. In MIIND, as the oscillations reduce, the

state space covered by the probability mass function reduces and

is therefore discretized by fewer cells. In other words, the cell

density covering the function is lower. However, this only causes

a minimal amount of additional damping to the oscillation as

the function reaches equilibrium.

In the Monte Carlo simulation, with 8,000 excitatory

neurons and 2,000 inhibitory neurons, both populations

produce an oscillating pattern as shown in Figure 10B. In the

MIIND simulation, in order to match the connection ratios

between populations, the number of excitatory and inhibitory

connections is set to 80 and 20, respectively. The simulation

is also able to produce a similar oscillatory pattern. As would

be expected, the population density approach produces a

regular oscillation while the Monte Carlo has some variation

in the length and amplitude of each oscillation. The double

peak of each oscillation can be explained by observing the

probability mass function in MIIND during the simulation

(Figures 10C–H). The initial peak is produced as the whole

population depolarizes and approaches the threshold potential.

As mass begins to pass the threshold, the reset mass brings

the average membrane potential back down. The probability

mass is pushed higher in w and u as the recurrent excitatory

input and inhibitory input from the other population increase.

The excitatory input has the strongest effect on the probability

mass close to the reset potential which begins to push the

average membrane potential back up toward a second peak. The

inhibitory input has the strongest effect on the probability mass

close to threshold and less and less mass reaches threshold. The

split probability mass function coalesces oncemore and the cycle

can repeat.

When the ratio of excitatory to inhibitory neurons is 9:1,

the Monte Carlo simulation demonstrates how the excitatory

Frontiers inNeuroinformatics 15 frontiersin.org

324

https://doi.org/10.3389/fninf.2022.883796
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Osborne and de Kamps 10.3389/fninf.2022.883796

FIGURE 10

(A) The average membrane potential of the excitatory population in the E-I network with a ratio of 1:1 excitatory and inhibitory neurons
(NE = NI). In the MIIND simulation, each connection between populations has the “number of connections” value set to 50. (B) The average
membrane potential of the excitatory population in the E-I network with a ratio of 8:2 excitatory to inhibitory neurons (NE = 8, 000,NI = 2, 000). In
the MIIND simulation, the excitatory connections have the “number of connections” value set to 80 and the inhibitory connections have the
“number of connections” value set to 20. For clarity, the traces from the Monte Carlo simulation and the MIIND simulation have been separated.
(C–H) The probability mass function for the excitatory population in MIIND during the double peaked oscillation with a connection ratio of 8:2.
(H) shows the corresponding points in the oscillation. At (C), The population only experiences the external input of 500 Hz and is pushed toward
the threshold. At (D), though some probability mass has passed threshold and been reset, the majority is close to the threshold and so the
average membrane potential is at a peak. At (E), probability mass has continued to cross the threshold so that now a large amount is near the
reset potential which brings the average back down. The function has also shifted higher in w due to the excitatory self-connections and more
probability mass is pushed across threshold. The function also begins moving upwards in u from the increased inhibitory input but this is not
enough to overcome the excitation. At (F), the inhibitory input has continued to push the probability mass function higher in u and much less
probability mass now crosses the threshold. At (G), the function continues to shift back away from threshold approaching (C) once again.

Frontiers inNeuroinformatics 16 frontiersin.org

325

https://doi.org/10.3389/fninf.2022.883796
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Osborne and de Kamps 10.3389/fninf.2022.883796

self-connection causes the excitatory population activity to

“blow-up” such that the excitatory conductance reaches a

maximum value and neurons fire at their maximum rate. This

state is a challenge for MIIND to emulate. Firstly, the number

of iterations required to solve the Poisson master equation each

time step must be increased to 1,000 due to the instability caused

by such high firing rates. Secondly, the excitatory conductance

variable frequently approaches 80 nS/cm² and so the grid must

cover a large amount of state space requiring an unreasonable

resolution in the w dimension to maintain the same cell density

as previous simulations.

3.4. A single population of
four-dimensional Hodgkin Huxley
neurons

Even with a low resolution of 50 × 50 × 50 × 50, MIIND

is able to simulate the probability mass function of a population

of Hodgkin Huxley neurons and achieve good agreement with

the transient activity and steady state membrane potential of

an equivalent Monte Carlo simulation (Figure 11A). Figure 11B

shows how, for a range of input firing rates, the resulting average

membrane potential at steady state approximates that of the

Monte Carlo simulations better for higher frequencies. At low

input rates, the membrane potential is overestimated. MIIND

displays the probability mass function for three of the four

dimensions at a time as shown in Figure 11C. With a key press,

the user can change the order of dimensions displayed and see

any combination of variables. Figure 11F shows the three gating

variables,m, n, and h.

4. Discussion

The original motivation for applying a population density

approach to simulate neurons was to reduce the computational

complexity when analyzing a large population of homogeneous

neurons. This has since been made somewhat redundant with

the development of more powerful computers and especially

the use of GPGPU architectures. For example, GeNN (Yavuz

et al., 2016; Knight et al., 2021) can simulate in real time

the well known Potjans-Diesmann microcircuit model (Potjans

and Diesmann, 2014) which comprises around 10,000 neurons.

The analytical solution for the behavior of a leaky integrate-

and-fire population developed by Omurtag et al. (2000) using

the diffusion approximation would undoubtedly prove efficient,

requiring only a single calculation per population per time

interval. However, it would require a lot of manual work to

define the full population network and if a different neuron

model were to substitute the integrate-and-fire neuron, the

entire solution would need to be re-derived. Even with newer

techniques such as the refractory density approach, work is

required to get the underlying neuron model in a form that

can be processed. MIIND uniquely overcomes this limitation

allowing the user to define the neuron model without any

further manual process to produce a numerical solution to

the population density approach. However, solving the master

equation for the non-deterministic noise component of the

dynamics requires repeated applications of the jump transitions

shown in Figure 3. As discussed by Osborne et al. (2021),

depending on the model, the time step, and the input firing

rate, solving the master equation can require tens or hundreds of

iterations per time step of the simulation. This was the case for

the EI network in the 8:2 ratio. The sharp changes in firing rate of

the two populations combined with large synaptic conductance

jumps meant that solving the master equation required 100

iterations per cell per time step to remain stable. The numerical

population density approach in MIIND should, therefore, not

be used for simulations where computational speed is the most

important factor. However, it has been shown (de Kamps et al.,

2019) that there is at least an order of magnitude improvement

in memory consumption over direct simulation techniques,

such as that of NEST, as there is no requirement to store the

spike history.

Although computational efficiency is not the primary reason

for using the population density approach, there are some

benefits to generating the probability mass function over a direct

simulation of individual neurons. The probability mass function

can be considered the idealized distribution of neuron states.

Cells in the grid which have zero mass correspond to volumes

of state space where neuron states should never appear. This can

be difficult to approximate with a direct simulation of individual

neurons for parts of the distribution with a low but non-zero

probability mass. Inconsistencies between the behavior of real

neurons and a model could be identified more effectively by

comparing to the probability mass function. Also due to the

idealized probability mass function, the output metrics of a

population such as average firing rate and average membrane

potential have no variation due to noise or a specific realization

of the Poisson distributed input. Therefore, no averaging or

smoothing is required to produce more readable results as

would be expected from a direct simulation (Figures 8, 9). In

the E-I network, 10,000 Monte Carlo neurons was enough to

produce a similar result to the MIIND simulation. But when

that number is reduced to 1,000, there is greater variation in the

firing rate and average membrane potential of the population.

In the E-I network, a temporarily high number of spikes from

the excitatory population leads to increased excitatory input 3

ms later and increased inhibitory input 3 ms after that. The

resulting reduction in average membrane potential and firing

rate is therefore exaggerated which produces an overall skew

of these metrics. A population in MIIND can be thought of as

an infinite number of trials of a single neuron or as an infinite

number of neurons performing a single trial once. Because of

this, a MIIND simulation is independent of the number of

Frontiers inNeuroinformatics 17 frontiersin.org

326

https://doi.org/10.3389/fninf.2022.883796
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Osborne and de Kamps 10.3389/fninf.2022.883796

FIGURE 11

(A) The average membrane potential of a single population of Hodgkin-Huxley neurons simulated using a Monte Carlo approach and in MIIND
with a 50 × 50 × 50 × 50 grid. (B) The average steady state membrane potential with di�erent rates of the Poisson distributed input. (C–E) The
three-dimensional marginal probability mass function of the four-dimensional Hodgkin-Huxley neuron population in MIIND having reached a
steady state. The membrane potential v, sodium activation variable m, and potassium activation variable n are shown. (F) The three-dimensional
marginal probability mass function showing the gating variables, w, n, and h (sodium inactivation variable) only.

neurons in the population and cannot produce so-called finite

size effects. This can be a useful feature as it is not always as clear

from a Monte Carlo simulation what behavior stems from the

finite size and what is a population level effect.

Finally, the visualization of the probability mass function

in MIIND could prove to be a valuable educational tool

for understanding the behavior of neural populations under

the influence of random spikes. In fact, any N-dimensional

dynamical system under the influence of shot noise could be

observed although this has not been attempted. It would be

easy enough to plot points in a three-dimensional state space

for individually simulated neurons but points at the front of

Frontiers inNeuroinformatics 18 frontiersin.org

327

https://doi.org/10.3389/fninf.2022.883796
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Osborne and de Kamps 10.3389/fninf.2022.883796

the distribution would obscure those at the back and in the

center. Producing a smooth enough distribution and to pick

an appropriate transparency value for each cell would require

a population of millions of neurons.

The increased time to produce the probability mass function

over direct simulation does not negate the usefulness of lower

resolution grids to improve the simulation time as shown in

Table 4. In particular, using a low resolution grid can greatly

improve workflow when designing or prototyping a new model.

Building a model which performs as required involves multiple

runs of the simulation as parameters are adjusted or when

errors are identified. This is another reason why it is convenient

that MIIND renders each population’s probability mass function

while the simulation is running. As shown in Figure 11, viewing

the probability mass function across all dimensions from any

angle as the simulation progresses gives both insight into

how the population behaves and any unexpected behavior is

quickly identified.

4.1. What is the theoretical output spike
distribution of a population in MIIND?

Different populations in MIIND interact via their average

firing rates. For each connection, the average firing rate of

the source population is taken as the rate parameter to a

Poisson distributed input to the target population. For a one-

dimensional neuron model such as a leaky integrate-and-fire

neuron for which incoming spikes cause an instantaneous jump

in membrane potential, it is reasonable to assume that neurons

in the population are pushed over threshold directly and only

due to the Poisson distributed input suggesting that the output

distribution should also be Poisson distributed. However, in

higher dimensional models with, for example, the addition of

excitatory and inhibitory synaptic conductances, it becomes

clear that neurons can move across threshold without direct

influence from the Poisson input. If a sample of neurons are

taken from the probability mass distribution at the beginning

of a simulation, by definition, the probability that each sampled

neuron is above threshold in a given time step is the probability

mass which sits above threshold to be transferred to the reset

potential. As the behavior of all neurons are independent by

virtue of being unconnected and homogeneous, the distribution

of spiking neurons from the population at each time step can

be considered binomial with p equal to the total probability

mass above threshold. Using the average firing rate as the

parameter to a Poisson input for each population is therefore

a reasonable approximation. Models such as the E-I network

which have self-connections and loop-connections invalidates

the assumption of independence and further work is required to

assess if using Poisson distributed outputs is appropriate under

such circumstances.

4.2. Finite size populations

The main function of MIIND is to use the numerical

population density approach to simulate population behavior.

However, a population of finite size can also be simulated

which makes use of the transition matrix file and calculated

jump transitions. This hybrid version of the algorithm is closer

to direct simulation. A list of M grid coordinates is stored

which represents the location in state space of M individual

neurons. At each time step, each coordinate is updated to one

of the possible transition cells defined in the transition file with

probability equal to the proportion of mass in that transition. To

capture the non-deterministic dynamics, a Poisson distributed

random number of spikes is sampled and the calculated

jump transition is applied that many times. Again, the jump

transition mass proportions are used as the probability for

choosing the coordinate update with each jump. The average

firing rate of the population is the number of neurons above

threshold (which are then translated to the reset potential)

divided by M. Currently direct connections between neurons

is not implemented and instead, the average firing rate is

used as the Poisson rate parameter applied to all neurons in

the target population. Because the Poisson master equation

is not required to solve the non-deterministic dynamics, this

algorithm is much faster than the population density technique

and approaches the speeds of simulations in GeNN although

this has not been fully benchmarked. The two main reasons for

using the finite size algorithm in MIIND are to further speed

up prototyping of new models and to more easily eliminate

finite-size effects.

4.3. Other potential models for study

The ability to easily simulate populations of three- and

four-dimensional neuron models opens a world of possibilities

for the population density approach. The Tsodyks-Markram

synapse model (Tsodyks and Markram, 1997), for example, can

be combined with a leaky integrate-and-fire neuron model to

define a four-dimensional system. In the original work, the

model was shown to support both rate coding between neurons

and more precise spike timing based on the configuration of

resource management in the synapse. For a large population,

simulating the rate coding configuration makes more sense but

MIIND could also be used to investigate the resilience of the

spike timing configuration to noise. Booth and Rinzel (1995)

developed a two-compartment minimal motor neuron model.

Each compartment requires two dimensions and MIIND would

therefore be able to simulate a population of both compartments

together. This model can reproduce the bi-stable behavior of

motor neurons such that a suitable incoming excitatory burst of

spikes can shift the population to an up state where it remains

even in the absence of further input. This is a candidate for

Frontiers inNeuroinformatics 19 frontiersin.org

328

https://doi.org/10.3389/fninf.2022.883796
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Osborne and de Kamps 10.3389/fninf.2022.883796

identifying any finite size effects and, in the presence of noise,

estimating the amplitude and duration of the required excitatory

and inhibitory bursts to switch states.

4.4. Limitations

The population density approach suffers from the so-called

curse of dimensionality. With each additional time-dependent

variable in the underlying neuron model, the number of

cells in the grid is multiplied by the resolution of the new

dimension. Not only does this produce an exponential increase

in the number of cells for which the deterministic and non-

deterministic dynamics must be solved, but the number of

transitions per cell in the transition file also increases in most

cases. The 50 × 50 × 50 × 50 transition file for the Hodgkin

Huxley model runs to nearly 1.5 Gb all of which must be loaded

into graphics memory. There is still work to do to improve

the memory management in MIIND but it is likely that a 5-

dimensional transition matrix would not fit in the memory of

current graphics hardware. In addition, generating theHodgkin-

Huxley transition file takes over 100 h on the four CPU cores of

a typical PC. This is a one-time preprocessing requirement that

can be mitigated somewhat with high performance computing

systems but, again, for higher dimensional models the time

required would become unfeasible.

In many cases, the number of cells in the grid that

contain a non-zero amount of probability mass at any time

during the simulation is much lower than the total number of

cells. For higher dimensions it would be possible to calculate

the non-deterministic dynamics transitions required for a cell

when probability mass is first transferred to it during the

simulation. The simulation would be considerably slower at

the beginning but would approach the original speeds as more

cells are calculated. The memory requirements would only come

from the cells involved in the probability mass function. This

adaptation would still have an upper limit on the number

of dimensions as the number of involved cells would still

increase with greater dimensionality but it would be far from the

exponential increase currently.

Another potential method for improving performance in

both memory and computation speed would be to relax the

requirement that all grid cells are the same size. In areas of

state space where the dynamics are expected to follow a shallow

curve (as opposed to the sharp turns in state space which can

occur near unstable stationary points for example), larger cells

could be defined. In order to preserve the benefit of equally

sized cells when calculating the jump transition, the larger cells

could be subdivided at simulation time and the deterministic

dynamics transitions into the large cell could be linearly

interpolated throughout. While not significantly affecting the

computation time, the memory requirements would improve

with the reduced number of transitions.

5. Conclusion

We have demonstrated for the first time, a numerical

population density technique to simulate populations of N-

dimensional neurons. Although models of higher than 5

dimensions are currently technologically out of reach, it is

a significant achievement to produce the probability mass

function of a population of 4-dimensional Hodgkin-Huxley

neurons and to be able to visualize it in such a fashion.

Implementing this technique in MIIND results in a very low

barrier to entry for new users allowing them to define their

desired neuron model in Python, automatically generate the

required transition files and run the simulation without expert

knowledge of the technique or any involved technical knowledge

beyond some basic Python and XML. Although originally

conceived as a technique to improve computational efficiency

when simulating large populations of neurons, the population

density technique cannot achieve the speeds of some other

simulation methods. However, there are a number of benefits to

using it, particularly in the areas of theoretical neuroscience and

as a tool for analysis.

Data availability statement

The MIIND source code and installation packages are

available as a github repository at https://github.com/dekamps/

miind. MIIND can be installed for use in Python using

“pip install miind” on many Linux, MacOS, and Windows

machines with python versions ≥3.6. Documentation is

available at https://miind.readthedocs.io/. The leaky integrate-

and-fire model, E-I network model, and Hodkin-Huxley model

can be found in the examples/model archive directory of the

MIIND repository on github.

Author contributions

The article and code development was undertaken by HO

with support and advice from MK. All authors contributed to

the article and approved the submitted version.

Funding

This project received funding from the European Union’s

Horizon 2020 research and innovation programme under

Grant Agreement No. 785907 (Human Brain Project

SGA2) (MK). HO was funded by EPSRC (EP/N509681/1).

The funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Frontiers inNeuroinformatics 20 frontiersin.org

329

https://doi.org/10.3389/fninf.2022.883796
https://github.com/dekamps/miind
https://github.com/dekamps/miind
https://miind.readthedocs.io/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Osborne and de Kamps 10.3389/fninf.2022.883796

Acknowledgments

The authors wish to thank Frank van der Velde and

Martin Perez-Guevara for their continued support of the

MIIND project.

Conflict of Interest

The authors declare that the research was conducted in

the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. (1996). The quickhull
algorithm for convex hulls. ACM Trans. Math. Softw. 22, 469–483.
doi: 10.1145/235815.235821

Bogacz, R., Brown, E., Moehlis, J., Holmes, P., and Cohen, J. D. (2006).
The physics of optimal decision making: a formal analysis of models of
performance in two-alternative forced-choice tasks. Psychol. Rev. 113, 700.
doi: 10.1037/0033-295X.113.4.700

Booth, V., and Rinzel, J. (1995). A minimal, compartmental model for a
dendritic origin of bistability of motoneuron firing patterns. J. Comput. Neurosci.
2, 299–312. doi: 10.1007/BF00961442

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-
fire model as an effective description of neuronal activity. J. Neurophysiol. 94,
3637–3642. doi: 10.1152/jn.00686.2005

Brown, K. Q. (1979). Voronoi diagrams from convex hulls. Inform. Process. Lett.
9, 223–228. doi: 10.1016/0020-0190(79)90074-7

Brunel, N. (2000). Dynamics of sparsely connected networks of
excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208.
doi: 10.1023/A:1008925309027

Chizhov, A., Campillo, F., Desroches, M., Guillamon, A., and
Rodrigues, S. (2019). Conductance-based refractory density approach
for a population of bursting neurons. Bull. Math. Biol. 81, 4124–4143.
doi: 10.1007/s11538-019-00643-8

Chizhov, A. V., and Graham, L. J. (2007). Population model of hippocampal
pyramidal neurons, linking a refractory density approach to conductance-based
neurons. Phys. Rev. E 75, 011924. doi: 10.1103/PhysRevE.75.011924

de Kamps, M. (2006). “An analytic solution of the reentrant poisson master
equation and its application in the simulation of large groups of spiking neurons,”
in The 2006 IEEE International Joint Conference on Neural Network Proceedings
(Vancouver, BC: IEEE), 102–109. doi: 10.1109/IJCNN.2006.246666

De Kamps, M., Lepperød, M., and Lai, Y. M. (2019). Computational geometry
for modeling neural populations: from visualization to simulation. PLoS Comput.
Biol. 15, e1006729. doi: 10.1371/journal.pcbi.1006729

FitzHugh, R. (1961). Impulses and physiological states in theoretical models of
nerve membrane. Biophys. J. 1, 445. doi: 10.1016/S0006-3495(61)86902-6

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (neural simulation tool).
Scholarpedia 2, 1430. doi: 10.4249/scholarpedia.1430

Haiman, M. (1991). A simple and relatively efficient triangulation of the n-cube.
Discrete Comput. Geometry 6, 287–289. doi: 10.1007/BF02574690

Hodgkin, A. L., and Huxley, A. F. (1952). The components of
membrane conductance in the giant axon of loligo. J. Physiol. 116, 473.
doi: 10.1113/jphysiol.1952.sp004718

Izhikevich, E. M. (2007). Dynamical Systems in Neuroscience. Cambridge, MA:
MIT Press. doi: 10.7551/mitpress/2526.001.0001

Jansen, B. H., and Rit, V. G. (1995). Electroencephalogram and visual evoked
potential generation in a mathematical model of coupled cortical columns. Biol.
Cybernet. 73, 357–366. doi: 10.1007/BF00199471

Johannesma, P. I. M. (1969). Stochastic neural activity: a theoretical investigation
(Ph.D. thesis). Faculteit der Wiskunde en Natuurwetenschappen, Nijmegen,
Netherlands.

Knight, B. W. (1972). Dynamics of encoding in a population of neurons. J. Gen.
Physiol. 59, 734–766. doi: 10.1085/jgp.59.6.734

Knight, J. C., Komissarov, A., and Nowotny, T. (2021). PyGeNN: a Python
library for gpu-enhanced neural networks. Front. Neuroinform. 15, 659005.
doi: 10.3389/fninf.2021.659005

Ly, C., and Tranchina, D. (2009). Spike train statistics and dynamics with
synaptic input from any renewal process: a population density approach. Neural
Comput. 21, 360–396. doi: 10.1162/neco.2008.03-08-743

Mattia, M., and Del Giudice, P. (2002). Population dynamics of interacting
spiking neurons. Phys. Rev. E 66, 051917. doi: 10.1103/PhysRevE.66.05
1917

Nagumo, J., Arimoto, S., and Yoshizawa, S. (1962). An active pulse
transmission line simulating nerve axon. Proc. IRE 50, 2061–2070.
doi: 10.1109/JRPROC.1962.288235

Naud, R., and Gerstner,W. (2012). Coding and decoding with adapting neurons:
a population approach to the peri-stimulus time histogram. PLoS Comput. Biol. 8,
e1002711. doi: 10.1371/journal.pcbi.1002711

Nykamp, D. Q., and Tranchina, D. (2000). A population density approach that
facilitates large-scale modeling of neural networks: analysis and an application
to orientation tuning. J. Comput. Neurosci. 8, 19–50. doi: 10.1023/A:100891291
4816

Omurtag, A., Knight, B. W., and Sirovich, L. (2000). On the
simulation of large populations of neurons. J. Comput. Neurosci. 8, 51–63.
doi: 10.1023/A:1008964915724

Osborne, H., Lai, Y. M., Lepperød, M. E., Sichau, D., Deutz, L., and De Kamps,
M. (2021). MIIND: a model-agnostic simulator of neural populations. Front.
Neuroinform. 15, 614881. doi: 10.3389/fninf.2021.614881

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical
microcircuit: relating structure and activity in a full-scale spiking network model.
Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358

Rangan, A. V., and Cai, D. (2007). Fast numerical methods for simulating
large-scale integrate-and-fire neuronal networks. J. Comput. Neurosci. 22, 81–100.
doi: 10.1007/s10827-006-8526-7

Schmutz, V., Gerstner, W., and Schwalger, T. (2020). Mesoscopic population
equations for spiking neural networks with synaptic short-term plasticity. J. Math.
Neurosci. 10, 1–32. doi: 10.1186/s13408-020-00082-z

Schwalger, T., and Chizhov, A. V. (2019). Mind the last spike-
firing rate models for mesoscopic populations of spiking neurons.
Curr. Opin. Neurobiol. 58, 155–166. doi: 10.1016/j.conb.2019.
08.003

Schwalger, T., Deger, M., and Gerstner, W. (2017). Towards a theory of cortical
columns: from spiking neurons to interacting neural populations of finite size.
PLoS Comput. Biol. 13, e1005507. doi: 10.1371/journal.pcbi.1005507

Frontiers inNeuroinformatics 21 frontiersin.org

330

https://doi.org/10.3389/fninf.2022.883796
https://doi.org/10.1145/235815.235821
https://doi.org/10.1037/0033-295X.113.4.700
https://doi.org/10.1007/BF00961442
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1016/0020-0190(79)90074-7
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.1007/s11538-019-00643-8
https://doi.org/10.1103/PhysRevE.75.011924
https://doi.org/10.1109/IJCNN.2006.246666
https://doi.org/10.1371/journal.pcbi.1006729
https://doi.org/10.1016/S0006-3495(61)86902-6
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1007/BF02574690
https://doi.org/10.1113/jphysiol.1952.sp004718
https://doi.org/10.7551/mitpress/2526.001.0001
https://doi.org/10.1007/BF00199471
https://doi.org/10.1085/jgp.59.6.734
https://doi.org/10.3389/fninf.2021.659005
https://doi.org/10.1162/neco.2008.03-08-743
https://doi.org/10.1103/PhysRevE.66.051917
https://doi.org/10.1109/JRPROC.1962.288235
https://doi.org/10.1371/journal.pcbi.1002711
https://doi.org/10.1023/A:1008912914816
https://doi.org/10.1023/A:1008964915724
https://doi.org/10.3389/fninf.2021.614881
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1007/s10827-006-8526-7
https://doi.org/10.1186/s13408-020-00082-z
https://doi.org/10.1016/j.conb.2019.08.003
https://doi.org/10.1371/journal.pcbi.1005507
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Osborne and de Kamps 10.3389/fninf.2022.883796

Sirovich, L., Everson, R., Kaplan, E., Knight, B., O’Brien, E., and Orbach,
D. (1996). Modeling the functional organization of the visual cortex. Phys. D
Nonlinear Phenomena 96, 355–366. doi: 10.1016/0167-2789(96)00033-4

Sukenik, N., Vinogradov, O., Weinreb, E., Segal, M., Levina, A., and Moses,
E. (2021). Neuronal circuits overcome imbalance in excitation and inhibition by
adjusting connection numbers. Proc. Natl. Acad. Sci. U.S.A. 118:e2018459118.
doi: 10.1073/pnas.2018459118

Tsodyks, M. V., and Markram, H. (1997). The neural code between neocortical
pyramidal neurons depends on neurotransmitter release probability. Proc. Natl.
Acad. Sci. U.S.A. 94, 719–723. doi: 10.1073/pnas.94.2.719

Wilson, H. R., and Cowan, J. D. (1972). Excitatory and inhibitory
interactions in localized populations of model neurons. Biophys. J. 12, 1–24.
doi: 10.1016/S0006-3495(72)86068-5

Yavuz, E., Turner, J., and Nowotny, T. (2016). Genn: a code
generation framework for accelerated brain simulations. Sci. Rep. 6, 1–14.
doi: 10.1038/srep18854

York, G. J. R., Osborne, H., Sriya, P., Astill, S., de Kamps, M., and Chakrabarty,
S. (2022). The effect of limb position on a static knee extension task can be
explained with a simple spinal cord circuit model. J. Neurophysiol. 127, 173–187.
doi: 10.1152/jn.00208.2021

Frontiers inNeuroinformatics 22 frontiersin.org

331

https://doi.org/10.3389/fninf.2022.883796
https://doi.org/10.1016/0167-2789(96)00033-4
https://doi.org/10.1073/pnas.2018459118
https://doi.org/10.1073/pnas.94.2.719
https://doi.org/10.1016/S0006-3495(72)86068-5
https://doi.org/10.1038/srep18854
https://doi.org/10.1152/jn.00208.2021
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

fninf-16-884245 September 22, 2022 Time: 6:33 # 1

TYPE Original Research
PUBLISHED 22 September 2022
DOI 10.3389/fninf.2022.884245

OPEN ACCESS

EDITED BY

James Courtney Knight,
University of Sussex, United Kingdom

REVIEWED BY

Srikanth Ramaswamy,
Newcastle University, United Kingdom
Mauricio Girardi-Schappo,
University of Ottawa, Canada

*CORRESPONDENCE

Fernando S. Borges
fernandodasilvaborges@gmail.com
Salvador Dura-Bernal
salvador.dura-bernal@downstate.edu

RECEIVED 25 February 2022
ACCEPTED 27 July 2022
PUBLISHED 22 September 2022

CITATION

Borges FS, Moreira JVS, Takarabe LM,
Lytton WW and Dura-Bernal S (2022)
Large-scale biophysically detailed
model of somatosensory
thalamocortical circuits in NetPyNE.
Front. Neuroinform. 16:884245.
doi: 10.3389/fninf.2022.884245

COPYRIGHT

© 2022 Borges, Moreira, Takarabe,
Lytton and Dura-Bernal. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

Large-scale biophysically
detailed model of
somatosensory thalamocortical
circuits in NetPyNE
Fernando S. Borges1,2*, Joao V. S. Moreira1,
Lavinia M. Takarabe2, William W. Lytton1,3,4 and
Salvador Dura-Bernal1,5*
1Department of Physiology and Pharmacology, State University of New York Downstate Health
Sciences University, Brooklyn, NY, United States, 2Center for Mathematics, Computation,
and Cognition, Federal University of ABC, São Paulo, Brazil, 3Department of Neurology, Kings
County Hospital Center, Brooklyn, NY, United States, 4Aligning Science Across Parkinson’s (ASAP)
Collaborative Research Network, Chevy Chase, MD, United States, 5Nathan Kline Institute
for Psychiatric Research, Orangeburg, NY, United States

The primary somatosensory cortex (S1) of mammals is critically important

in the perception of touch and related sensorimotor behaviors. In 2015,

the Blue Brain Project (BBP) developed a groundbreaking rat S1 microcircuit

simulation with over 31,000 neurons with 207 morpho-electrical neuron

types, and 37 million synapses, incorporating anatomical and physiological

information from a wide range of experimental studies. We have implemented

this highly detailed and complex S1 model in NetPyNE, using the data available

in the Neocortical Microcircuit Collaboration Portal. NetPyNE provides a

Python high-level interface to NEURON and allows defining complicated

multiscale models using an intuitive declarative standardized language. It

also facilitates running parallel simulations, automates the optimization

and exploration of parameters using supercomputers, and provides a wide

range of built-in analysis functions. This will make the S1 model more

accessible and simpler to scale, modify and extend in order to explore

research questions or interconnect to other existing models. Despite some

implementation differences, the NetPyNE model preserved the original cell

morphologies, electrophysiological responses and spatial distribution for all

207 cell types; and the connectivity properties of all 1941 pathways, including

synaptic dynamics and short-term plasticity (STP). The NetPyNE S1 simulations

produced reasonable physiological firing rates and activity patterns across

all populations. When STP was included, the network generated a 1 Hz

oscillation comparable to the original model in vitro-like state. By then

reducing the extracellular calcium concentration, the model reproduced

the original S1 in vivo-like states with asynchronous activity. These results

validate the original study using a new modeling tool. Simulated local field

potentials (LFPs) exhibited realistic oscillatory patterns and features, including

Frontiers in Neuroinformatics 01 frontiersin.org

332

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.884245
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.884245&domain=pdf&date_stamp=2022-09-22
https://doi.org/10.3389/fninf.2022.884245
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2022.884245/full
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

fninf-16-884245 September 22, 2022 Time: 6:33 # 2

Borges et al. 10.3389/fninf.2022.884245

distance- and frequency-dependent attenuation. The model was extended

by adding thalamic circuits, including 6 distinct thalamic populations with

intrathalamic, thalamocortical (TC) and corticothalamic connectivity derived

from experimental data. The thalamic model reproduced single known cell

and circuit-level dynamics, including burst and tonic firing modes and

oscillatory patterns, providing a more realistic input to cortex and enabling

study of TC interactions. Overall, our work provides a widely accessible, data-

driven and biophysically-detailed model of the somatosensory TC circuits

that can be employed as a community tool for researchers to study neural

dynamics, function and disease.

KEYWORDS

somatosensory cortex, thalamocortical circuits, large-scale model, biophysical,
cortical, multiscale

Introduction

The primary somatosensory cortex (S1) of mammals is
critically important in the perception of touch and works closely
with other sensory and motor cortical regions in permitting
coordinated activity with tasks involving grasp (Bosman et al.,
2011; Petrof et al., 2015; Barthas and Kwan, 2017). Moreover,
the communication of these cortical areas with the thalamus is
crucial for maintaining functions, such as sleep and wakefulness,
considering that the thalamocortical (TC) circuit is essential
for cerebral rhythmic activity (O’Reilly et al., 2021). A greater
understanding of S1 cortical circuits will help us gain insights
into neural coding and be of assistance in determining how
disease states such as schizophrenia, epilepsy and Parkinson’s
disease lead to sensory deficits or uncoordinated movement
(Vázquez et al., 2013; Petrof et al., 2015; Azarfar et al., 2018;
Peña-Rangel et al., 2021).

There exists an impressive, highly detailed model of rat S1
developed by the Blue Brain Project (BBP) (Markram et al.,
2015), incorporating anatomical and physiological information
from a wide range of experimental studies. This groundbreaking
model includes over 31,000 neurons of 55 layer-specific
morphological and 207 morpho-electrical neuron subtypes,
and 37 million synapses capturing layer- and cell type-specific
connectivity patterns and synaptic dynamics. Simulation results
matched in vitro and in vivo experimental findings, and the
model has been used over the years to reproduce additional
experimental results and generate predictions of the dynamics
and function of cortical microcircuits (Reimann et al., 2015,
2017a,b; Gal et al., 2017; Hagen et al., 2018; Amsalem et al.,
2020). Although the BBP S1 model is state-of-the-art, certain
constraints limit its reproducibility and use by the community,
as well as its extension or modification to connect to other
regions or update model features. The size and complexity of any
model of this scope is daunting. Due to its scale and complexity,

the original model must be run and analyzed on large High
Performance Computing platforms (HPCs), which are not
available to many users. Although the model is simulated using
NEURON (Carnevale and Hines, 2006; Migliore et al., 2006)
a widely used platform within the computational neuroscience
community, it also requires other custom libraries specifically
designed to facilitate this workflow. These libraries are used to
build, manage simulations and analyze the model. However,
not all of these libraries and workflows are publicly available
(Markram et al., 2015), making it somewhat difficult to modify
the code, and scale or simplify the model for simulation
on smaller computers, overall reducing its accessibility and
reproducibility (McDougal et al., 2016).

Here we implemented the original BBP S1 model in
NetPyNE (Dura-Bernal et al., 2019) in order to make
it more accessible and simpler to scale, modify and
extend. NetPyNE is a python package that provides
a high-level interface to the NEURON simulator, and
allows the definition of complex multiscale models
using an intuitive declarative standardized language.
NetPyNE translates these specifications into a NEURON
model, facilitates running parallel simulations, automates
the optimization and exploration of parameters using
supercomputers, and provides a wide range of built-in
analysis functions.

Conversion to NetPyNE also makes it easier to connect
to previous models developed within the platform, such as
our primary motor cortex model (Sivagnanam et al., 2020;
Dura-Bernal et al., 2022b), and models implemented in other
tools (e.g., NEST) by exporting to the NeuroML or SONATA
standard formats. In prior work, we ported a classic model
of generic sensory cortical circuits (Potjans and Diesmann,
2014) to our NetPyNE platform (Romaro et al., 2021) in order
to make it both more scalable and facilitate modification of
cell models and network parameters. The original model used

Frontiers in Neuroinformatics 02 frontiersin.org

333

https://doi.org/10.3389/fninf.2022.884245
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

fninf-16-884245 September 22, 2022 Time: 6:33 # 3

Borges et al. 10.3389/fninf.2022.884245

integrate-and-fire neurons and we replaced these with more
complex multi-compartment neuron models.

Although we have primarily focused on simplifying the
network description, we have also made the model more
complex, and more complete, by adding the associated
somatosensory thalamic circuits and bidirectional connectivity
with cortex to allow interplay of these two highly coordinated
areas (Meyer et al., 2010). The deepening of knowledge about the
cortico-thalamo-cortical loop (Shepherd and Yamawaki, 2021)
should contribute to investigations on rhythmic dysfunctions,
such as epilepsy and schizophrenia. But in contrast to cortical
microcircuitry, few detailed models exist for the thalamus (Hill
and Tononi, 2005; Izhikevich and Edelman, 2008; Murray and
Anticevic, 2017; Iavarone et al., 2019).

In this study we present a NetPyNE implementation of
the BBP S1 model, capturing most of the original single-cell
physiology and morphology, synaptic mechanisms, connectivity
and basic simulation results. With the addition of detailed
thalamic circuits, we extend the results to show synchronous
activity across cortical and thalamic populations, and open the
door to new investigations on corticothalamic dynamics. The
model is able to port readily across machines and can utilize
a fast and efficient implementation on CPUs and GPUs using
CoreNEURON. This extension allows the original BBP S1 model
to be readily available to be used by the wider community to
study a wide range of research questions.

Materials and methods

Individual neuron models

Cell reconstructions were based on the compartmental
model Hodgkin-Huxley formalism, with membrane properties
represented as components of an electric circuit, and ionic
channels modeled as variable conductances. To port the
somatosensory microcircuit model in NetPyNE (Dura-Bernal
et al., 2019), we recreated the single neuron models using cell
files from the Neocortical Microcircuit Collaboration (NMCP)1

(Ramaswamy et al., 2015). The full dataset comprises 207
morpho-electrical (me) cell types, with 5 examples for each,
totaling 1,035 cell models, each stored with morphology file,
descriptions of ion channels, and a NEURON HOC template to
instantiate the cell, which can be imported directly to NetPyNE
(Figure 1). Neuron morphologies from the BBP S1 model
(specifically, L1_DLAC, L4_DBC, L23_PC, and L6_TPC_L4)
imported into NetPyNE were visualized using the NetPyNE GUI
(Figure 1A). The full name of the 207 cell types as well as the
corresponding acronym can be found in Supplementary Table 1
in the Supplementary material.

1 https://bbp.epfl.ch/nmc-portal

Benchmark testing validated physiological responses
(Figures 1B–E) at 3 current clamp amplitudes (120%, 130%,
and 140% of threshold; only 120% shown). Slight differences
were observed in the cell types with a stochastic version of the
K+ channel mechanism (StochKv; Figure 1D) where we used
a deterministic version of the channel from OpenSourceBrain
(Gleeson et al., 2019). The StochKv NMODL (.mod) mechanism
required additional code outside of NetPyNE in order to
update its state, and the inclusion of stochastic variables in
each section of the cells significantly increased the simulation
time. In order to understand the effect of StochKv on cell
response, we applied a current clamp (0.1 nA, 2s) to the
soma of each of the 1,035 cells, and used the Electrophys
Feature Extraction Library (eFEL)2 to compare BBP and
NetPyNE mean firing rate (Figure 1F) and time to first spike
(Figure 1G) for those with and without the StochKv channel.
As expected, the variability for cells with the StochKv channel
in the original model was pronounced. Although present in
54/207 me-types, the StochKv channels are only in 3.63% of
all cells. Within each m-type (morphology-type) those with
StochKv also correspond to a minority of e-types (electrical)
types; for example, only 32% of L4_DBC cells have e-type
bIR (with StochKv channels). Given the small proportion
of cells with StochKv channels (3.63%), the NetPyNE mean
firing rates per m-type population closely matched those
of the original BBP model (Figure 1J). Furthermore, the
deterministic version of StochKv preserved irregular cell spiking
patterns (CVBBP = 0.25 ± 0.16; CVNetPyNE = 0.16 ± 0.13;
where CV is the inter spike interval coefficient of variation;
see Supplementary Figure 1) as well as the neural firing rate
(FRBBP = 30.24 ± 24.33, FRNetPyNE = 28.67 ± 21.20) in the
current-clamp simulation with amplitude 0.1 nA during 2 s.
For stimulation amplitude 0.8 nA, the CV (BBP = 0.14 ± 0.17;
NetPyNE = 0.15 ± 0.30) and FR (BBP = 115.58 ± 70.20,
NetPyNE = 110.15 ± 66.58) were similar in both model
implementations (Supplementary Figure 1).

The NetPyNE implementation perfectly reproduced
the original neuronal intrinsic dynamics since all model
parameters were directly imported from the original HOC
files, the same NMDOL files were used (except StochKv),
and the underlying simulation engine was NEURON in both
cases (see Figures 1B–E). To validate this, we simulated
somatodendritic backpropagating action potentials (Figure 1H)
and dendrosomatic postsynaptic potentials (Figure 1I) in
an example L5_TTPC cell. Results were identical in the
NetPyNE implementation and the original BBP cell models.
To model dendrosomatic postsynaptic potentials (PSPs), we
added excitatory connections with 5 and 10 synapses, and
an inhibitory connection with 20 synapses, to the L5_TTPC
neuron. Additionally, we provided the same three subthreshold

2 https://github.com/BlueBrain/eFEL

Frontiers in Neuroinformatics 03 frontiersin.org

334

https://doi.org/10.3389/fninf.2022.884245
https://bbp.epfl.ch/nmc-portal
https://github.com/BlueBrain/eFEL
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

fninf-16-884245 September 22, 2022 Time: 6:33 # 4

Borges et al. 10.3389/fninf.2022.884245

FIGURE 1

Reproduction and validation of BBP S1 cell types in NetPyNE. (A) 3D reconstructions of 4 pairs of m-type example neurons visualized using the
NetPyNE graphical user interface: inhibitory cells L1_DLAC and L4_DBC (red), and excitatory cells L23_PC and L6_TPC_L4 (blue). (B–E) Somatic
membrane potential of the neurons in (A) under current clamp with amplitude 120% of the neuron firing threshold. NetPyNE results (red)
compared to the original BBP model results (blue). For L4_DBC_bIR cells (D) we used a deterministic version of the BBP stochastic potassium
channel (StochKv) resulting in divergent results; using same deterministic channel in BBP (BBPdet, blue dotted line) restores the match to
NetPyNE results. (F,G) Comparison of BBP and NetPyNE firing rate and time to first spike in response to current-clamp with amplitude 0.1 nA
during 2 s for each cell type. Only some cell types with the StochKv show differences. (H) Backpropagating action potential in a L5_TTPC cell.
(I) Post synaptic potentials (PSPs) of one dendritic connection with 5 excitatory (blue circles), 10 excitatory (red squares), and 20 inhibitory (cyan
diamonds) synapses. (J) Comparison BBP and NetPyNE mean firing rate for all m-type populations. Due to the small number of cells with
StochKv (3.6%), NetPyNE population firing rates closely match those of BBP.

inputs within a short time interval, to demonstrate temporal
integration of PSPs (Figure 1I).

Distribution and connectivity of
cortical populations

Rather than instantiating the connectivity from a list of
individual synapses based on anatomical overlap of neuronal
arbors (Reimann et al., 2015), we created our S1 port using
probability rules for both neuron distribution and connections.
The network consisted of 31,346 cells in a cylindrical volume
2,082 µm height and radius of 210 µm as in the original
model (Figure 2). Each population was randomly distributed
within its specific layer (L1, L2/3, L4, L5, or L6). The number
of cells in each one of 207 me-types was taken from the
NMCP (Ramaswamy et al., 2015) the minicolumn data available
was not used to distribute cells. A 2D representation of the
cell distribution within the cylindrical volume is shown in
Figure 2A, with layer thicknesses (in µm) for L1, L23, L4, L5,

and L6 set to 165, 502, 190, 525, and 700, respectively. We used
the S1 connectome (Gal et al., 2017) from NMCP, following
the approach in Reimann et al. (2017b): 7 stochastic instances
of a model microcircuit based on averaged measurements of
neuron densities were used to calculate distance-dependent
probabilities of connection. In each microcircuit instance, we
calculated the connection probability for each pair of neurons
based on the 2D somatic distance (horizontal XZ-plane) for
each of the 1,941 pathways. To estimate the distance-dependent
probability, we calculated the probability in evenly spaced
intervals starting at 25 ± 25 µm, in 50 µm intervals, up to
375 ± 25 µm. Next, we calculated the mean probability across
the 7 microcircuits in evenly spaced intervals and used the
mean values to fit the connection probability rules. We evaluated
multiple functions for each pathway and selected the one that
provided the best fit to the data. Figures 2B–D shows how
this approach was used to calculate the connection probability
of 3 example projections: data from the 7 microcircuit
instances (mcs; cyan circles) was averaged across microcircuits
(green diamonds) and fitted to either a single exponential

Frontiers in Neuroinformatics 04 frontiersin.org

335

https://doi.org/10.3389/fninf.2022.884245
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

fninf-16-884245 September 22, 2022 Time: 6:33 # 5

Borges et al. 10.3389/fninf.2022.884245

FIGURE 2

Reproduction and validation of BBP S1 neuron distribution and connectivity in NetPyNE. (A) 2D representation of the location of 31,346 cells in a
cylinder with 2,082 µm height and 210 µm radius, with each subtype (different colors) randomly distributed within its layer (L1, L2/3, L4, L5, or
L6). (B–D) Probability of connection as a function of neuron pairwise 2D distance for three example pathways, each with a different best fit
function: a single exponential (B, red line), exponential with a linear saturation rule (C, red line), and single gaussian fit (D, black dashed line).
Cyan circles represent data from 7 microcircuit instances, and green diamonds represent the mean across the 7 instances. (E,F) Comparison of
the number of connections between NetPyNE and BBP for each of the 1,941 pathways (E) and 4 projection types (p-types) (F). (G) Postsynaptic
potential (PSP) generated by connection between L23_PC neurons (Table 1, #18) simulated in NetPyNE; mean PSP trace (black line) across 20
PSP random instances (gray lines).

(Figure 2B, red line); an exponential with a linear saturation
rule (Figure 2C); or a single gaussian (Figure 2D, dashed line).
Because the original S1 model shows high variability in the
number of synapses per connection, we calculated the mean
values for each pathway and used it as a parameter in our
model. The result is a representative reconstruction of the
S1 column connectivity in NetPyNE, with approximately 27.6
million excitatory synapses and 9.6 million inhibitory synapses.

Using the fitted connectivity rules, we reconstructed an
entire S1 column in NetPyNE and compared the two versions
using the mean number of connections. To avoid overfitting,
we generated 7 different instances using different connectivity
seeds for both the NetPyNE and BBP models. The number of
connections was similar in both models for each of the 1,941
pathways (Figure 2E) and for each of the four projection types
(p-type) (EE, EI, IE, II) (Figure 2F).

Synaptic physiology

The original BBP S1 model included detailed synaptic
properties (conductances, post-synaptic potentials (PSP),
latencies, rise and decay times, failures, release probabilities,
etc.) recapitulating published experimental data. Short-term
dynamics were used to classify synapses into the following
types (s-types): inhibitory facilitating (I1), inhibitory depressing
(I2), inhibitory pseudo-linear (I3), excitatory facilitating (E1),
excitatory depressing (E2), and excitatory pseudo-linear (E3).
A set of rules were then derived from experimental data to
assign an s-type to each broad class of connections. Based
on the NMCP data, there were 29 classes of connections as
determined by the combination of pre- and post-synaptic
me-types. The synaptic properties, s-type and p-type for each
class of connections are summarized in Table 1.

Frontiers in Neuroinformatics 05 frontiersin.org

336

https://doi.org/10.3389/fninf.2022.884245
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

fninf-16-884245 September 22, 2022 Time: 6:33 # 6

Borges et al. 10.3389/fninf.2022.884245

TABLE 1 Synaptic properties, s-type, p-type, and rules for each class of connections implemented in NetPyNE.

BBP id s-Type p-Type gsyn (nS) τ decay (ms) U D (ms) F (ms) Pre- and post-syn cell
type rules

0 0 I1 II 0.83± 0.55 10.40± 6.10 0.16± 0.100 45± 21 376± 253 L6:L6_(DBC-LBC-NBC-
SBC)

1 3 I1 IE 0.91± 0.61 10.40± 6.10 0.16± 0.100 45± 21 376± 253 SBC_cAC:Exc or
L6_(NBC-LBC):L6_BPC

2 13 I1 IE 0.75± 0.32 10.40± 6.10 0.41± 0.212 162± 69 690± 5 L6_MC:L6_IPC

3 1 I2 II 0.83± 0.55 8.30± 2.20 0.25± 0.130 706± 405 21± 9 L1:Excitatory or
Inhibitory:Inhibitory

4 4 I2 IE 0.91± 0.61 8.30± 2.20 0.25± 0.130 706± 405 21± 9 SBC_dNAC:Excitatory

5 8 I2 IE 0.75± 0.32 8.30± 2.20 0.25± 0.130 706± 405 21± 9 BTC-DBC-BP:Excitatory

6 9 I2 IE 0.75± 0.32 8.30± 2.20 0.30± 0.080 1,250± 520 2± 4 MC:Excitatory

7 10 I2 IE 0.91± 0.61 8.30± 2.20 0.14± 0.050 875± 285 22± 5 LBC-NBC_(bAC cAC bNAC
dNAC):Excitatory

8 12 I2 IE 2.97± 0.95 8.30± 2.20 0.25± 0.130 706± 405 21± 9 Chc:Excitatory

9 5 I3 IE 0.91± 0.61 6.44± 1.70 0.32± 0.140 144± 80 62± 31 SBC_bNAC or
LBC-NBC_(cNAC dSTUT
cSTUT bSTUT):Excitatory

10 11 I3 IE 0.83± 0.55 36.55± 0.71 0.25± 0.130 706± 405 21± 9 NGC:Excitatory

11 114 E1 EI 0.43± 0.28 1.74± 0.18 0.02± 0.001 194± 10 507± 20 Exc:(BP_cAC DBC_cAC
BTC_cAC)

12 115 E1 EI 0.72± 0.50 1.74± 0.18 0.02± 0.001 194± 10 507± 20 Exc:(NBC-LBC)_(cAC cIR
bAC bIR cNAC)

13 132 E1 EI 0.72± 0.50 1.74± 0.18 0.01± 0.001 242± 15 563± 32 L6_TPC_L:L6_(DBC-LBC-
NBC-SBC)

14 133 E1 EI 0.11± 0.08 1.74± 0.18 0.09± 0.120 138± 211 670± 830 Excitatory:MC

15 116 E2 EE 0.72± 0.50 1.74± 0.18 0.50± 0.020 671± 17 17± 5 Excitatory:Excitatory

16 117 E2 EI 0.43± 0.28 1.74± 0.18 0.50± 0.020 671± 17 17± 5 Excitatory:[L1-BP_(cNAC
bNAC)-DBC_bAC-
BTC_(bAC cNAC
bIR)]

17 118 E2 EI 0.72± 0.50 1.74± 0.18 0.50± 0.020 671± 17 17± 5 Excitatory:SBC-ChC

18 119 E2 EE 0.68± 0.46 1.74± 0.18 0.46± 0.260 671± 17 17± 5 L23_PC:L23_PC

19 120 E2 EE 0.68± 0.46 1.74± 0.18 0.86± 0.049 671± 17 17± 5 L4_Excitatory:L4_Excitatory

20 121 E2 EE 0.19± 0.12 1.74± 0.18 0.79± 0.040 671± 17 17± 5 L4_SS:L23_PC

21 122 E2 EE 0.80± 0.53 1.74± 0.18 0.39± 0.030 671± 17 17± 5 L5_STPC:L5_STPC

22 123 E2 EE 1.50± 1.05 1.74± 0.18 0.50± 0.020 671± 17 17± 5 L5_TTPC:L5_TTPC

23 127 E2 EE 0.80± 0.53 1.74± 0.18 0.39± 0.134 780± 54 51± 36 L6_IPC:L6_IPC

24 131 E2 EI 0.72± 0.50 1.74± 0.18 0.58± 0.070 240± 43 71± 47 L6_IPC:L6_(DBC-LBC-
NBC-SBC)

25 134 E2 EI 0.72± 0.50 1.74± 0.18 0.72± 0.065 227± 38 14± 12 Exc:(NBC-LBC)_(bSTUT
dNAC bNAC cSTUT)

26 126 E3 EE 0.80± 0.53 1.74± 0.18 0.21± 0.032 460± 53 230± 69 L6_TPC_L:L6_TPC_L

27 128 E3 EE 0.80± 0.53 1.74± 0.18 0.27± 0.033 559± 238 200± 92 L6_IPC:L6_BPC

28 129 E3 EE 0.80± 0.53 1.74± 0.18 0.22± 0.053 535± 134 116± 81 L6_IPC:L6_TPC_L

s-type, type of short-term dynamics; p-type, type of projection; gsyn , peak conductance (ms); τdecay , decay time (ms); U, neurotransmitter release probability; D, time constant for recovery
from depression (ms); F, time constant for recovery from facilitation (ms). Values indicate mean± standard deviation.

The dual-exponential conductance model with rise time
(τrise) 0.2 ms was used for all synapses. Moreover, synaptic
properties included the kinetic parameters: peak conductance
(gsyn; in nS) and decay time (τdecay; in ms); and dynamic
parameters: neurotransmitter release probability (U), time

constant for recovery from depression (D; in ms) and time
constant for recovery from facilitation (F; in ms). The NetPyNE
implementation reproduces the original PSP amplitudes from
Markram et al. (2015). An example of PSPs for a connection
between L23_PC neurons (Table 1, #18) simulated in NetPyNE

Frontiers in Neuroinformatics 06 frontiersin.org

337

https://doi.org/10.3389/fninf.2022.884245
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

fninf-16-884245 September 22, 2022 Time: 6:33 # 7

Borges et al. 10.3389/fninf.2022.884245

is shown in Figure 2G. The mean PSP peak amplitude across 20
PSPs (with different randomization seeds) was 1.0 mV, which
matches the value obtained in Markram et al. (2015). We
also included a compact description of the rules to determine
what connections belong to each class, based on the pre- and
postsynaptic cell types (Table 1). For clarity, we rearranged the
classes of connections by s-types in the sequence I1, I2, I3,
E1, E2, and E3 (from 0 to 28), and included the original BBP
class label for reference. The parameters D and F correspond to
the synapses with short term plasticity (STP), which could be
optionally added to recurrent S1 connections, and connections
from thalamus to S1.

The s-types for each class of connections and for each of the
1,941 pathways are color-coded and illustrated in Figure 3A.
Since pathways depend on m-types but connection classes
depend on me-types (each m-type includes multiple me-types),
it is possible to have multiple s-types for the same pathway; in
those cases we simply labeled it as either I2 or E2. To implement
the dynamics of each s-type in NetPyNE we used a deterministic
version of the dual-exponential synaptic model (Fuhrmann
et al., 2002; Hennig, 2013). Example simulations of the PSP for
the different s-types are shown in Figure 3B. For each example,
we ran 20 simulations with 5 different post-synaptic cells of
the same me-type and 4 random synaptic distributions. Pre-
and post-synaptic neurons of specific me-types were selected to
illustrate each of the six s-types (see Figure 3).

Extending the model to include
thalamic populations and connectivity

We extended the model to include somatosensory thalamic
populations with cell type-specific dynamics, intra-thalamic
connectivity and bidirectional projections with cortex. In
the original model, thalamic inputs were modeled as spike
generators that only provided feedforward inputs to S1. Our
somatosensory thalamus model is composed of the excitatory
ventral posterolateral (VPL), ventral posteromedial (VPM) and
the posteromedial (POm) nuclei, and the inhibitory reticular
nucleus (RTN). We used single compartment cell models with
dynamics tuned to reproduce previous studies on the interaction
between the thalamic relay and reticular cells (Destexhe et al.,
1996a), but adjusted to work in large-scale networks (Moreira
et al., 2021). The thalamic circuit architecture consisted of six
stacked populations as a rough approximation of the thalamic
anatomical layout (Figure 4A). The top three were inhibitory
populations comprising the outer, middle and inner sectors
of the RTN, and spanning a height of 78, 78, and 156 µm,
respectively. Below these were the three excitatory populations,
VPL, VPM, and POm, with heights of 156, 156, and 312
µm, respectively. The horizontal dimensions (XZ-plane) for all
populations were 420 µm × 420 µm. Cells were randomly
distributed across each nuclei with the number of cells in each

population based on cellular density obtained from the Cell
Atlas for the Mouse Brain3 (Erö et al., 2018). Although POm
was larger than VPL and VPM, we reduced its cell density by
50%, resulting in approximately the same population size. This
lower density accounts for the proportion of coexisting, but
functionally isolated, M1-projecting TC cells present in POm
with no projections to S1 (Guo et al., 2020).

The intrathalamic connectivity was based on data of axonal
and dendritic footprints for each nucleus. The VPL and VPM
are considered first-order nuclei (FO), which means they
receive afferent information from peripheral sensory organs
(not modeled here) and are interconnected with cortex (Sugitani
et al., 1990; Ma, 1991; Luczyńska et al., 2003) and RTN (Lam
and Sherman, 2011) in a topological fashion. On the other
hand, POm is considered a higher-order (HO) nucleus, so input
arrives mainly from the cortex, in this case, from S1 L5 and L6
(Ohno et al., 2012; O’Reilly et al., 2021). The connectivity pattern
of HO nuclei has not been properly characterized, but literature
reports a decreased level of organization of HO nuclei inputs to
RTN (Lam and Sherman, 2011), as it sends projections to S1.

We therefore adopted three connectivity strategies. In
the first, neurons from FO nuclei projected to RTN with a
column-like topological organization. We implemented this
by combining a probability of connection that decreased
exponentially with the horizontal distance between the pre-
and post-synaptic cells with a decay constant proportional to
the footprint radius, and which was truncated to 0 outside of
the footprint radius (this denotes the maximum distance of
connection in the XZ-plane). The following footprint diameters
were derived from experimental data (or estimated in the case
of no literature reports) for the different axonal footprints
of each thalamic projection: RTN→VPL and RTN→VPM:
64.33 µm (Lam and Sherman, 2007); VPL→RTN: 97.67 µm;
and VPM→RTN: 103.57 µm (Lam and Sherman, 2011).
The second strategy applies to RTN→RTN connectivity and
implements a sector-specific distance-dependent connectivity.
More specifically, within each RTN sector, the probability of
connection decayed exponentially and was truncated to 0 based
on a footprint radius of 264.63 µm (Lam et al., 2006). In
strategies one and two, the maximum distance in the Y-plane
was set to 10% of the footprint radius, following the disc-
like morphology from the axonal projections of the relay cells
and the dendritic trees of reticular cells (Murray Sherman and
Guillery, 2001; Lam et al., 2006). The third strategy was a
divergence rule, with the number of projections from and to HO
nuclei having a fixed value and being distributed without spatial
constraints. This divergence value was adjusted so that the HO
dynamics resembled that of the FO nuclei. This allowed us to
replicate a column-like topological organization in FO nuclei
using single-compartment cells (Lam and Sherman, 2007), and

3 https://bbp.epfl.ch/nexus/cell-atlas/

Frontiers in Neuroinformatics 07 frontiersin.org

338

https://doi.org/10.3389/fninf.2022.884245
https://bbp.epfl.ch/nexus/cell-atlas/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

fninf-16-884245 September 22, 2022 Time: 6:33 # 8

Borges et al. 10.3389/fninf.2022.884245

FIGURE 3

Matrix of s-types for each of the 1,941 pathways and simulated PSPs examples for each s-type in NetPyNE. (A) Color-coded s-types for each
class of connections (top) and for each of the 1,941 pathways (bottom). Note that for pathways with multiple s-types only either I2 or E2 is
shown. (B) Example simulations of post-synaptic potentials to illustrate each of the six s-types. Each example shows the results of 20
simulations with five different post-synaptic cells (different colors) of the same me-type, and 4 random synaptic distributions. Inhibitory s-types
were simulated using pathway L23_SBC:L23_PC, which included different s-types depending on pre-synaptic e-type: I1 for e-type cAC, I2 for
e-type dNAC, and I3 for e-type bNAC (as shown in Table 1). Excitatory s-types E1 and E2 were simulated using pathway L23_PC:L23_LBC,
e-types cAC, and dNAC, respectively; and s-type E3 was simulated using pathway L6_TPC_L4:L6_TPC_L4.

distribute the HO connections to behave in a functionally
similar fashion (Figure 4B).

All excitatory thalamic nuclei were indirectly interconnected
through their RTN projections, which was divided into three
sectors, in line with reports of preferred innervation zones
by each of the thalamic nuclei (Lam and Sherman, 2011).
Synapses within RTN were mediated by GABAa, those from
RTN to the excitatory nuclei by a combination of GABAa
and GABAb with equal weight, and those from the excitatory
nuclei to RTN and cortex by AMPA (Destexhe et al., 1996a).
The probability and weight of connections were the targets of
parameter optimization. The matrix with the convergence of
intra-thalamic connections is shown in Figure 4E.

Feedback corticothalamic connectivity originated from S1
m-types L5_TTPC2 and L6_TPC_L4 (O’Reilly et al., 2021).

Similar to the topological rules described above, we
implemented connectivity with convergence of 30 (i.e.,
number of pre-synaptic cells projecting to each post-synaptic
cell), but only if the horizontal distance between the pre- and
post-synaptic neurons was lower than 50.0 µm (Figure 4).

TC connectivity from VPL, POm and VPM to S1 was
implemented using convergence values estimated from previous
studies (Meyer et al., 2010; Figure 4C). Convergence values for
each of the 55 m-types were calculated based on the weighted
average of the populations in each layer. The convergence
values for inhibitory populations were multiplied by a scaling
factor derived from the original mode (∼0.595). This thalamic
convergence factor for inhibitory cells was estimated by dividing
the IE ratio of VPM thalamic innervation (83/775 = 0.107) by the
average IE population ratio (4,779/26,567 = 0.18). The resulting

Frontiers in Neuroinformatics 08 frontiersin.org

339

https://doi.org/10.3389/fninf.2022.884245
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

fninf-16-884245 September 22, 2022 Time: 6:33 # 9

Borges et al. 10.3389/fninf.2022.884245

FIGURE 4

NetPyNE model of somatosensory thalamic populations and connectivity extending the original S1 model. (A) Distribution of neurons across the
six different thalamic populations, roughly mimicking the thalamus anatomy (x and y axes in µm). (B) Schematic of bidirectional connectivity
between thalamic regions and cortex. Bidirectional connections between S1/RTN and first order (FO) regions VPL and VPM are topological,
whereas those with high order (HO) region POm are non-topological and implemented using divergence rules. (C) Convergence connectivity
between thalamic regions and S1 (D) RTN cells have sector-specific distance-dependent connectivity (E) convergence connectivity matrix
across all thalamic populations.

S1 column received approximately 4.95 M synapses from VPM,
4.95 M from VPL, and 3.1 M from POm. This is consistent
with values that can be derived from experimental studies
(Meyer et al., 2010), with 4.27 M synapses from VPM and, and
2.66 M from POm. We approximated TC synaptic physiology
using the parameters of model #25 in Table 1, and using 9
synapses per connection, following the Markram et al. (2015)
characterization of TC synapses as excitatory depressing (E2).

Background inputs

Each cell in the S1 circuit received 10 synaptic inputs from
Poisson-distributed spike generators (NetStims) to represent the
global effect of spontaneous synapses, background, and other
noise sources from non-modeled brain regions projecting to
S1. These stimuli were randomly distributed remove across
all sections. The quantal synaptic conductance was calculated
based on the average quantal conductance for excitatory and
inhibitory synapses. We tuned the excitatory and inhibitory
stimuli rates using grid search parameter exploration to obtain
average excitatory firing rates of ∼1 Hz and physiological firing
rates for most S1 populations.

Model building

We used the NetPyNE modeling tool (Dura-Bernal
et al., 2019) to build, manage simulations, and analyze
results of the S1 and thalamic circuit model. NetPyNE
employs NEURON (Carnevale and Hines, 2006; Migliore

et al., 2006; Lytton et al., 2016) as backend simulation
engine, with either the standard or CoreNEURON libraries
(Kumbhar et al., 2019). The high-level Python-based declarative
language provided by NetPyNE facilitated the development
of this highly complex and extensive circuit model. This
language enabled us to easily import existing morphological
and biophysical parameters of different cell types, and
define complex connectivity and stimulation rules. We used
NetPyNE to explore and optimize the model parameters
through automated submission and managing of simulations
on supercomputers. We also employed NetPyNE’s built-in
analysis functions to plot 2D representations of cell locations,
connectivity matrices, voltage traces, raster plots, local field
potentials (LFPs), 3D synapses representations, and firing rate
statistics. NetPyNE can also be used to export the model into the
NeuroML (Gleeson et al., 2010) and SONATA (Dai et al., 2020)
standard formats.

Model parameters are based on experimental data and the
original model (Markram et al., 2015). Nonetheless, parameter
optimization was necessary to ensure the model reproduces
experimental measures such as population firing rates and
PSP. The parameters optimized for the S1 TC circuit were
the background rate for excitatory and inhibitory connections.
For the intrathalamic projections, we optimized connection
weight (range 0–2 mV), connection probability (range 0–1),
y-axis connection radius (1%, 2%, 5%, or 10%) and connectivity
divergence of the HO populations (5, 10, 20, or 40 cells). For the
TC and corticothalamic projections we optimized connection
weight (range 0–2 mV) and connection probability (range 0–1).
More details about model parameter optimization/exploration
are described in section 2 of the Supplementary material.

Frontiers in Neuroinformatics 09 frontiersin.org

340

https://doi.org/10.3389/fninf.2022.884245
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

fninf-16-884245 September 22, 2022 Time: 6:33 # 10

Borges et al. 10.3389/fninf.2022.884245

Simulation of local field potentials

We simulated LFP extracellular recordings using the “line
source approximation” (Buzsáki et al., 2012; Łęski et al., 2013;
Parasuram et al., 2016), which is based on the sum of the
transmembrane currents generated by each segment of each
neuron, divided by the distance between the segment and the
electrode. This method assumes that the electric conductivity
(sigma = 0.3 mS/mm) and permittivity of the extracellular
medium are constant everywhere and do not depend on
frequency. LFP calculation, analysis and visualization was
performed using NetPyNE.

Given the computational cost and memory requirements
of simulating the full S1 model with morphologically-detailed
neurons while recording LFPs, we calculated transmembrane
currents only for the most central cells within an 84 µm (20%
of 420 µm) diameter cylinder. This means that only 4.4%
of the neurons were simulated in full detail, i.e., using full
morphological reconstructions and with all synapses from the
full model. The dynamics of the remaining cells (∼96% S1 and
thalamus) were simulated using spike generators (VecStims in
NEURON) using the spiking activity previously recorded in full
simulations. That is, the inputs and activity of the 4% of fully
detailed neurons from which the LFPs were calculated were
identical to those of the full network simulations (when 100%
of the neurons are simulated in detail).

Results

Reproduction of cell morphologies,
physiological responses, spatial
distribution and connectivity

Cells imported into NePyNE using the files from
The Neocortical Microcircuit Collaboration NMCP
(Ramaswamy et al., 2015), reproduced the morphological
and electrophysiological characteristics of the original model
(Figure 1): Mean firing rate and time to the first spike after
a current clamp stimulation were fitted for all the 1,035 cell
types. Firing dynamic differences were observed in cells with
the stochastic K channel (StochKv), but their firing irregularity
was partly preserved (Supplementary Figure 1) and, given
their low proportion (3.63%), the average firing rates of all
m-type populations closely matched those in the original
model (Figure 1H).

We were able to recreate the general characteristics across
the 7 BBP S1 microcircuit instances: the 31,346 cells were
distributed randomly by layer, and probabilistic connections
were generated for each of the 1,941 pathways (Figure 2).
Here, we replaced the original connectivity method, based
on the overlap between axonal and dendritic fields, with

one based on connection probability based on cell type,
layer, inter-cell distance, and dendritic pattern of post-synaptic
locations. This network parameterization allowed us to rescale
the microcolumn and generate different instances by changing
the random number generator seed. Our probabilistic rules
best reproduced the original number of connections using a
Gaussian fit in most projection pathways (1,303 of 1,941) and
an exponential fit plus a linear saturation in the remaining 638
cases (Figure 2).

Extension to include detailed thalamic
circuits

We extended the model to include the somatosensory
thalamic populations with projections to S1: RTN, POm, VPL,
and VPM. The number of thalamic cells was adapted to fit
a cylindrical column with the same radius as the S1 column.
This facilitated the inclusion of topological connectivity rules
between the two regions. We reproduced the firing dynamics
of the different thalamic cell types using a single compartment
neuron model (Moreira et al., 2021). The connections from
TC cells to S1 were based on convergence rules derived
from experimental data (Meyer et al., 2010), and synaptic
physiological mechanisms were generalized from the BBP VPM
projections to S1 layers 4 and 5 (Markram et al., 2015). Feedback
connections originated from S1 cell types L5_TTPC2 and
L6_TPC_L4 and targeted VPL and VPM following a topological
organization, and POm in a following a non-topological broader
distribution (Figure 4). The parameters of the thalamic circuit
were adjusted to reproduce a stable self-sustained activity
with rhythmic bursting and spindle oscillations (Destexhe and
Contreras, 2011), as well as a shift in dynamics following
localized excitatory input in the relay cells (Bonjean et al., 2012;
Moreira et al., 2021).

Cortical and thalamic circuits
independent response to background
inputs (no thalamocortical
connections)

We first evaluated the response to background inputs of
the S1 cortical circuit and the thalamus circuit independently,
i.e., without any connections between cortex and thalamus.
When driven with background inputs, the S1 model generated
spontaneous activity with most populations (48 out of 55)
firing within physiological rates (Figure 5). To achieve this,
excitatory and inhibitory background inputs were tuned via
grid search parameter optimization (see section Materials and
methods). Figure 5 illustrates the S1 spontaneous activity
results, including a spiking raster plot of all 31,346 cortical

Frontiers in Neuroinformatics 10 frontiersin.org

341

https://doi.org/10.3389/fninf.2022.884245
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

fninf-16-884245 September 22, 2022 Time: 6:33 # 11

Borges et al. 10.3389/fninf.2022.884245

FIGURE 5

NetPyNE S1 and thalamus circuit response to background inputs (spontaneous activity). (A) Spiking raster plot of the 31,346 cells in the S1
column during 1 s (the first second was omitted to allow the network to reach a steady state). (B) Example voltage traces for each of the 207
me-types grouped by rows into their respective 55 m-types (same time period as raster plot). (C) Spiking raster plot of the 7,266 thalamic
neurons during 1 s showing intrinsic oscillations. (D) Example voltage traces for each of the 6 thalamic populations. (E) Mean firing rates of each
of the 55 m-types for NEURON (red) vs. CoreNEURON (blue). (F) Comparison of the time required to create the network and run the simulation
on a 40-core Google Cloud virtual machine using NEURON (red) or CoreNEURON (blue).

cells, examples of voltage traces for each of the 207 me-
type population, and the average firing rates for each
of the 55 m-type populations. The thalamic populations,
disconnected from S1 and driven by background inputs,
exhibited stable self-sustained activity with rhythmic bursting
at theta ∼6 Hz (Kim and McCormick, 1998; Figures 5C,D).
These oscillations, which were most prominent in the RTNi
and POm populations, emerged despite the lack of rhythmicity
in the background inputs. The thalamic circuit oscillatory

dynamics are consistent with the recurrent interactions between
thalamic relay and reticular neurons described in previous
studies (Destexhe et al., 1996a).

Simulations were run using NetPyNE and NEURON on a
Google Cloud virtual machine with 40 cores. We compared
the S1 results using the standard NEURON simulation engine
vs. CoreNEURON, a state-of-the-art solver optimized for large
scale parallel simulations on both CPUs and GPUs (Kumbhar
et al., 2019). Both simulation engines produced very similar

Frontiers in Neuroinformatics 11 frontiersin.org

342

https://doi.org/10.3389/fninf.2022.884245
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

fninf-16-884245 September 22, 2022 Time: 6:33 # 12

Borges et al. 10.3389/fninf.2022.884245

firing rates for each population (Figure 5E), with excitatory and
L1-L3 inhibitory cells showing overall lower firing rates than L4-
L6 inhibitory cells. The overall average firing rate across the 2
simulated seconds was 0.95 Hz in both cases (NEURON: 59,779
spikes; CoreNEURON: 59,749 spikes). This demonstrates the
consistency of results obtained from both simulation engines,
making CoreNEURON a viable alternative to study the S1
network. CoreNEURON was 2.4x faster to create the network
and 2.2x faster to run the simulation (Figure 5F).

Somatosensory cortex circuit response
to background inputs with short term
plasticity (no thalamocortical
connections)

We simulated the response of the S1 cortical circuit to
background inputs but including short term plasticity (STP)
in its local synaptic connections (Figure 6A). Adding STP
resulted in the emergence of synchronous bursting within the
S1 cortical column at approximately 1 Hz frequency (compare
S1 raster in Figures 5A, 6A). The spontaneous synchronous
bursts first appeared in L5, and then spread to all S1 cells
within 100 ms. Figure 6B shows an amplified raster plot of
L4-L6 with 70 ms of activity at the time when spontaneous
synchronous bursts started. Figure 6C shows example voltage
traces of cortical and thalamic neurons, illustrating the spike
synchrony of S1 and the thalamic bursts. These results are
comparable to the simulations presented in Figures 11B,C of the
original publication (Markram et al., 2015).

Somatosensory cortex and thalamic
circuit response with bidirectional
thalamic connectivity and cortical
short term plasticity

We then simulated the full circuit with bidirectional
connections between S1 and thalamus and STP in the thalamus
to S1 connections (Figure 7A). The full cortico-thalamo-cortical
circuit exhibited overall increased activity with S1 oscillations
around 6 Hz frequency, and strong thalamic oscillatory activity
at the same frequency. Oscillations were now synchronized
across all S1 and thalamic populations. Figure 7B shows
the voltage traces of several cortical and thalamic neurons,
illustrating the spike synchrony of S1 and thalamic populations.
Finally, in Figure 7C we compare the mean firing rate for all
S1 and thalamic populations with (red bars) and without (blue
bars) bidirectional TC connectivity. All 55 model populations
now exhibited physiological firing rates. Adding bidirectional
TC connectivity resulted in a modest increase of the overall
mean firing rate, from 4.96 to 5.29 Hz, with more pronounced

increases in the average firing rates of L1 and L2/3 inhibitory
populations. These results do not have a direct correspondence
to any in the original BBP publication, since the original
model did not include thalamic populations bidirectionally
connected to cortex.

Somatosensory cortex and thalamic
circuit response after reducing the
extracellular calcium concentration to
reproduce asynchronous in vivo-like
state

Experimental evidence shows that extracellular calcium
concentration ([Ca2+]o) in vivo is lower than in vitro, and, as
a consequence, PSP amplitudes are also lower (Borst, 2010).
Markram et al. (2015) divided the dependency of PSPs on
[Ca2+]o into three classes for specific connection types: steep,
intermediate, and shallow. Here, the PSP amplitudes were set
to have steep dependence for connections between PC-PC
and PC-distal targeting cell types (DBC, BTC, MC, BP) and
a shallow dependence for connections between PC-proximal
targeting (LBCs, NBCs, SBCs, ChC). An intermediate level of
dependence was assumed for other connections. To simulate
reduced [Ca2+]o in the NetPyNE implementation we decreased
the cao parameter from 2.0 to 1.2 in all cells, and modified
the use parameter of synaptic transmission (U) adding a
factor to multiply its value from 0.25 to 0.75. This resulted
in a transition from synchrony (in vitro-like, Figures 6, 7)
to asynchrony (in vivo-like, Figure 8) network states, as in
Markram et al. (2015). The increased asynchrony happened
both for the S1-TH disconnected (Figure 8A) and the S1-
TH connected (Figure 8B) cases. Decreasing extracellular
calcium concentration resulted in decreased firing rates for most
populations (compare Figures 7C, 8C). In both the in vitro and
in vivo conditions, cortical firing rates were generally slightly
higher for the S1-TH connected case. However, bidirectional
thalamic connectivity (S1-TH connected) resulted in increased
thalamic population firing rates in vitro, whereas under in vivo
conditions (low [Ca2+]o), it lowered thalamic firing rates and
decreased synchrony.

Local field potentials recorded from
the in vivo-like somatosensory cortex
circuit

We simulated extracellular LFP recordings at multiple
depths and horizontal distances in the S1 cortical column
during the in vivo-like state (Figure 9). The LFP calculation
was based on the transmembrane currents across all segments
of neurons. To reduce the computational cost of the calculation,

Frontiers in Neuroinformatics 12 frontiersin.org

343

https://doi.org/10.3389/fninf.2022.884245
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

fninf-16-884245 September 22, 2022 Time: 6:33 # 13

Borges et al. 10.3389/fninf.2022.884245

FIGURE 6

NetPyNE S1 circuit response to background inputs with short-term plasticity (STP). (A) Spiking raster plot of S1 with STP. S1 and thalamus were
not interconnected; only intracortical connections were included. (B) Amplified spiking raster plot (A) showing the 70 ms around the time when
synchronous bursts first occur in L5 (black) and then propagate to L6 (red) and L4 (blue). (C) Example traces from (A) showing spike synchrony
across cortical populations. Rasters in A show 2.5 s after steady state was reached.

FIGURE 7

NetPyNE S1 and thalamic circuit response with bidirectional thalamic connectivity and cortical STP. (A) Spiking raster plot of the fully connected
circuit model, including bidirectional connections between S1 and thalamus (shows 2.5 s of simulation after steady state was reached).
Oscillations at ∼6 Hz were now synchronized across all S1 and thalamic populations. (B) Example traces from (A) during 800 ms showing spike
synchrony across cortical and thalamic populations. (C) Comparison of mean firing rates of each of the 55 S1 and 6 thalamic m-types with
(S1-TH connected) and without (S1-TH disconnected) bidirectional thalamocortical connectivity (compare rasters in panel A and Figure 6A,
respectively).

Frontiers in Neuroinformatics 13 frontiersin.org

344

https://doi.org/10.3389/fninf.2022.884245
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

fninf-16-884245 September 22, 2022 Time: 6:33 # 14

Borges et al. 10.3389/fninf.2022.884245

FIGURE 8

NetPyNE S1 and thalamic circuit response with low extracellular calcium (in vivo-like asynchronous states). (A) Spiking raster plot of
spontaneous activity with only intracortical and intrathalamic connections (S1-TH disconnected). (B) Spiking raster plot of the fully connected
circuit model, including bidirectional connections between S1 and thalamus (S1-TH connected). (C) Comparison of mean firing rates of each of
the 55 S1 and 6 thalamic m-types without (S1-TH disconnected) and with (S1-TH connected) bidirectional thalamocortical connectivity.

we included only the 1,376 morphologically detailed neurons
(4.4% of the total neurons) within a central cylinder of
84 µm diameter (Figures 9A,B). The remaining 29,970 S1
and 7,266 thalamic neurons were simulated using artificial
spike generators (VecStims) to ensure the dynamics of the
detailed neurons were identical as in the full scale simulation
(Figure 9D). The simulated morphologically-detailed neurons
therefore included the same 2,702,107 synapses with STP as
those in the full in vivo simulation. We inserted recording
electrodes at 4 different cortical depths (500, 1000, 1500 and
2000 um) and 2 radial (x-z plane) distances (0 and 297 µm)
from the cylinder center (Figure 9C). Recorded LFP amplitudes
were in the order 1–1,000 µV consistent with the experimental
literature (Reimann et al., 2013; Hagen et al., 2018; Figures
9E,F). The amplitudes of LFPs recorded further away from
the cylinder were attenuated ∼10 to 20x compared to those
closer to the cylinder center, for example, the peak amplitudes
for electrodes 1 and 5 were 401 and 24 µV, respectively. This
is consistent with LFP amplitude being inversely proportional
to the squared distance between electrode and current

sources. When compared to the in vitro recorded LFPs (see
Supplementary Figures 2, 3), which exhibited stronger slow
frequency oscillations, the attenuation measured at the distant
electrodes was only 5x. This is consistent with the observed
frequency-dependent attenuation phenomenon, where high
frequency signals are attenuated more than low frequency
oscillations (Buzsáki et al., 2012; Reimann et al., 2013). The LFP
power spectral densities generally depict an inverse relationship
between power and frequency, which is typically described
in animal LFP recordings. Overall, these preliminary results
demonstrate the model can be used to simulate and capture
several physiological features of extracellular LFPs.

Discussion

We provide here the first large-scale S1 model that
is accessible to the wider community, building on the
details of the prior state-of-the-art BBP S1 model. The
model closely reproduced the original cell morphologies

Frontiers in Neuroinformatics 14 frontiersin.org

345

https://doi.org/10.3389/fninf.2022.884245
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

fninf-16-884245 September 22, 2022 Time: 6:33 # 15

Borges et al. 10.3389/fninf.2022.884245

FIGURE 9

Local field potentials (LFPs) recorded from the in vivo-like S1 circuit. (A,B) Lateral and top-down 2D representation of the location of 1,376
morphological cells within a cylinder with 2,082 µm height and 84 µm radius. Morphologically-detailed neurons are shown in red (L1, L4, and
L6) and blue (L23 and L5); whereas the 29,970 simplified cells (spike generators) are shown in orange (L1, L4, and L6) and cyan (L23 and L5)
circles. (C) 3D representation of the morphologically-detailed neurons with the location of all synapses (red dots), and the location of the 8 LFP
recording electrodes at 4 different depths and 2 radial distances (color triangles). (D) Spiking raster plot of the morphologically-detailed neurons
used to calculate the LFP. (E) LFP signals recorded at the 4 electrodes in the center of the cylinder (colors correspond to triangles in panel C).
Electrodes numbered 0, 1, 2, and 3 correspond with cortical depths (y) 500, 1,000, 1,500, and 2,000 µm, respectively. (F) Same as E, but for the
LFPs recorded at a radial distance of 297 µm; electrodes 4–7. (G–J) Power spectral densities (PSDs) for electrodes 0, 3, 4, and 7 calculated over
a 10-s simulation (initial transient period was not included). PSDs exhibit an inverse relationship between power and frequency.

and electrophysiological responses for the 207 morpho-
electrical (me) cell types, with 5 examples for each, totaling
1,035 cell models (Figure 1); the spatial distribution of
these cells across layers; and the connectivity properties
of the 1,941 pathways, including synaptic dynamics and
short-term plasticity (Figures 2, 3). After tuning, the
simulations produced reasonable dynamics with rates and
activity patterns corresponding to in vivo measures of cortical
activity (Figures 5, 6). There was no direct comparison to
the full network dynamics of the original BBP model since
original simulation data was not available. However, firing
rates and overall 1 Hz underlying oscillation when using STP
was comparable to that seen in the original model version
paper (Markram et al., 2015; Figure 11). We also extended
the model by adding thalamic circuits, including 6 distinct
thalamic populations that reproduced cell and circuit-level
dynamics, and with intrathalamic, TC and corticothalamic
connectivity derived from experimental data (Figure 4). The
addition of the thalamic circuit resulted in distinct activity
patterns and synchronous activity across cortical and thalamic
populations (Figure 7). Finally, we decreased the extracellular
calcium concentration ([Ca2+]o) to simulate in vivo-like
states with asynchronous activity (Figure 8). LFPs recorded

at multiple cortical depths and horizontal distances exhibited
realistic oscillatory patterns and power spectra, including the
experimentally observed distance- and frequency-dependent
attenuation (Figure 9).

The S1 model now joins other NetPyNE cortical
simulations: generic cortical circuits (Romaro et al., 2021),
auditory and motor TC circuits (Sivagnanam et al., 2020;
Dura-Bernal et al., 2022a,b), as well as simulations of thalamus
(Moreira et al., 2021), dorsal horn of spinal cord (Sekiguchi
et al., 2021), Parkinson’s disease (Ranieri et al., 2021) and
schizophrenia (Metzner et al., 2020). These large cortical
simulations can be extremely computer-intensive, which is a
major motivation for NetPyNE’s facilities that allow one to
readily simplify the network by swapping in integrate-and-fire
or small-compartmental cell models, or by down-scaling to
more manageable sizes. CoreNEURON is a state-of-the-art
solver optimized for large scale parallel simulations, now
included as part of the official NEURON package. The
optimization on CPUs and the ability to run across GPUs in
CoreNEURON is another key NetPyNE feature enhancing
runnability. In the present case, the original S1 model is
largely inaccessible, despite the cooperation of its designers,
since it requires specialized tools, workflows, and training.

Frontiers in Neuroinformatics 15 frontiersin.org

346

https://doi.org/10.3389/fninf.2022.884245
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

fninf-16-884245 September 22, 2022 Time: 6:33 # 16

Borges et al. 10.3389/fninf.2022.884245

Nonetheless, most of the data required to replicate it is available
via the NMCP, which we ourselves used to implement the
NetPyNE version.

We were able to get substantial speedup (> 2x) for both
model setup and run using CoreNEURON despite only using
CPUs with no GPU at this time. We note that using CPU
cycles/timestep would provide a more direct measure than the
total simulation time, which may be affected by other factors
such as background processes (Girardi-Schappo et al., 2017).
Nonetheless, the speedup obtained is consistent with the 2–7x
speedups recently reported when using CoreNEURON on CPUs
to simulate large-scale models (Kumbhar et al., 2019; Awile et al.,
2022). For example, the NetPyNE-based motor cortex model
exhibited a speedup of 3.5x on Google Cloud. When using
GPUs, speedups of up to 40x were reported. The differences
in firing activity seen with NEURON vs. CoreNEURON are
expected due to vectorization of the compute kernels in
CoreNEURON and potential differences due to different solvers
when using NMODL with sympy. Further differences are to be
expected once this is extended to GPUs (Jézéquel et al., 2015;
Kumbhar et al., 2019).

We made 2 significant changes in our port to NetPyNE.
First, we did not replicate the stochastic K channels that appear
in 3.6% of the neurons, making our port somewhat simpler than
the original. This channel required writing custom code and
made simulations slower, but it could be added to the model in
a future iteration. Second, we have not utilized the original cell-
to-cell connection mappings that were obtained by BBP from
direct microscopic observations of overlap between pre-synaptic
axonal fields and post-synaptic dendritic fields (so-called Peter’s
principle). In the original BBP S1 model, the use of cell-to-cell
connections necessarily limited the simulation to use precisely
the original model’s cell morphologies, cell positions and scales.
It also required storing and loading large files of connection
data. We therefore replaced this connection framework with one
based on connection probability based on cell type (including
layer), inter-cell distance, and dendritic pattern of post-synaptic
locations. Although saving somewhat on space, there is a time-
space tradeoff since this requires further calculations on start-
up. Despite these limitations, we had excellent agreement with
both cell model matching and connection density matching.

Our implementation also incorporates a novel model of
thalamic circuitry that recapitulates multiple experimental
findings at the single neuron and circuit levels. Thalamic
and reticular cell models were adjusted to reproduce the
reported resting membrane potential, approximately –60 and
–80 mV, respectively (Jahnsen and Llinás, 1984; Destexhe
et al., 1996b; Sherman and Guillery, 2009). In the networks,
TC cells fired at low frequencies (2–4 Hz), while reticular
cells fired at higher rates (6–14 Hz), consistent with values
previously reported in the literature (Kim and McCormick,
1998). Thalamic simulations also showed rhythmic rebound

bursting when hyperpolarized and regular spiking activity at
depolarized potentials (Destexhe and Contreras, 2011). The
thalamic network exhibited synchronous activity within and
across several populations, as well as synchronous firing with
cortical populations, particularly in the in vitro condition. These
synchronous patterns likely emerged as a consequence of the
implemented intrathalamic and TC connectivity, including the
topological organization based on axonal footprints (Lam et al.,
2006; Lam and Sherman, 2007, 2011). Taken together, these
results make the thalamic circuit a valuable extension to the S1
model, by providing a more realistic input source to the cortical
circuit and enabling the study of TC interactions.

Recording the intracellular potential of multiple neurons
in vivo requires an elaborate set up and is generally challenging.
Extracellular recordings are more accessible and therefore
more commonly used in experimental studies. Extracellular
potentials are generated by transmembrane currents resulting
from neuronal activity. Evidence suggests the main contributor
to extracellular signals are synaptic currents (Buzsáki et al.,
2012; Reimann et al., 2013). Computational modeling coupled
with recordings of field activity in animals can provide
insights into the cooperative behavior of neurons and increase
our understanding of how these processes contribute to the
extracellular signal (Buzsáki et al., 2012; Reimann et al.,
2013). The simulated LFPs exhibited a similar range of
amplitudes as those recorded experimentally, and reproduced
several features of LFPs, including the distance-dependent and
frequency-dependent attenuation. This opens the door to future
validation of the model by comparing LFPs to those recorded
experimentally under different conditions, and to future studies
of the biophysical sources of LFPs and the exact contribution of
different network populations (Hagen et al., 2018).

To place our model in the context of recent literature, we
follow the classification proposed by a recent review of data-
driven models structural connectivity at the microcircuit level
(Shimoura et al., 2021). Our model can be classified as using
conductance-based, morphologically-detailed neurons, with a
network size of 38,612 neurons, synaptic plasticity and network
spatiality (e.g., distance-based connectivity). Our NetPyNE
implementation, together with the original BBP implementation
(Markram et al., 2015), constitute the only conductance-based,
morphologically-detailed models of S1. These contrast with
previous models of S1 (Huang et al., 2022) or of generic
sensory cortex (Potjans and Diesmann, 2014) that employ
simpler neuron models (leaky integrate and fire point neurons).
Models with detailed conductance-based and morphologically-
detailed neurons have been developed for other cortical regions,
including V1 (Arkhipov et al., 2018; Billeh et al., 2020), M1
(Dura-Bernal et al., 2022b), A1 (Dura-Bernal et al., 2022a),
and CA1 (Bezaire et al., 2016; Ecker et al., 2020). Our
model is also unique in incorporating thalamic neurons and
TC bidirectional topological connectivity. Previous TC circuit

Frontiers in Neuroinformatics 16 frontiersin.org

347

https://doi.org/10.3389/fninf.2022.884245
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

fninf-16-884245 September 22, 2022 Time: 6:33 # 17

Borges et al. 10.3389/fninf.2022.884245

models included less biophysically-detailed neuron models and
simpler connectivity (Izhikevich and Edelman, 2008), or focused
on single cell (Iavarone et al., 2019) or small circuit models
(Destexhe et al., 1996a). An impressively detailed model of
the thalamoreticular microcircuit has recently been developed,
although this is limited to the VPL and RTN somatosensory
thalamus regions (Iavarone et al., 2022).

As outlined above, the level of biophysical, morphological
and connectivity detail in the model is very high compared
to most existing models. Although this makes it harder to
simulate and tune, it also enables exploration of a unique
set of scientific questions that simpler models cannot address,
or at least not with the same level of realism. Here we
included two results that require and justify the level of
detail of the model. First, we simulated a network state with
lower extracellular calcium concentration that more closely
resembles the in vivo conditions (Figure 8). Secondly, we
calculated realistic LFPs, which critically depend on the sum of
transmembrane currents along detailed neuronal morphologies
(Figure 9). We also describe the methodology for future model
parameter explorations, and provide a basic code set up example
to explore the effects of inhibitory GABAergic connections
on network dynamics. Examples of parameter explorations
in NetPyNE-based biophysically detailed circuit models can
be found in our related publications on motor and auditory
cortex models (Sivagnanam et al., 2020; Dura-Bernal et al.,
2022a,b), including an exploration of the effects of long-range
and neuromodulatory inputs.

Consequently, our port of the S1 model provides a
quantitative framework that can be used in several ways. First,
it can be used to perform in silico experiments to explore
sensory processing under the assumption of various coding
paradigms or brain disease, including the representation of
whisker motion (Bosman et al., 2011; Huang et al., 2022),
maximization of sensory dynamic range (Gautam et al., 2015),
response to unexpected sensory inputs (Amsalem et al., 2020)
schizophrenia (Metzner et al., 2020) and Parkinson’s disease
(Ranieri et al., 2021). Second, drug effects can be directly tested
in the simulation (Neymotin et al., 2016)—this is an advantage
of a multiscale model with scales from molecule to network,
which is not available in simpler models that elide these details.
Third, the model constitutes a unified multiscale framework for
organizing our knowledge of S1 which serves as a dynamical
database to which new physiological, transcriptomic, proteomic,
and anatomical data can be added. This framework can then be
utilized as a community tool for researchers in the field to test
hypotheses and guide the design of new experiments.

Data availability statement

The model and data for this study can be found in
the following repositories and online platforms: GitHub

(https://github.com/suny-downstate-medical-center/S1_Thal_
NetPyNE_Frontiers_2022), ModelDB (https://senselab.med.
yale.edu/ModelDB/), Open Source Brain (https://www.
opensourcebrain.org/), and EBRAINS Model Catalog
(https://ebrains.eu/).

Author contributions

FB, JM, WL, and SD-B conceived and designed research and
drafted the manuscript. FB, JM, LT, and SD-B implemented and
optimized the simulation code. FB and JM prepared the figures.
All authors contributed to the manuscript revision, read, and
approved the submitted version.

Funding

This work was funded by the following grants: NIH NIBIB
U24EB028998, NSF 1904444-1042C, NYS SCIRB DOH01-
C32250GG-3450000, and NIH NIDCD R01DC012947. This
research was funded in part by the Aligning Science Across
Parkinson’s (ASAP-020572) through the Michael J. Fox
Foundation for Parkinson’s Research (MJFF).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
fninf.2022.884245/full#supplementary-material

Frontiers in Neuroinformatics 17 frontiersin.org

348

https://doi.org/10.3389/fninf.2022.884245
https://github.com/suny-downstate-medical-center/S1_Thal_NetPyNE_Frontiers_2022
https://github.com/suny-downstate-medical-center/S1_Thal_NetPyNE_Frontiers_2022
https://senselab.med.yale.edu/ModelDB/
https://senselab.med.yale.edu/ModelDB/
https://www.opensourcebrain.org/
https://www.opensourcebrain.org/
https://ebrains.eu/
https://www.frontiersin.org/articles/10.3389/fninf.2022.884245/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fninf.2022.884245/full#supplementary-material
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

fninf-16-884245 September 22, 2022 Time: 6:33 # 18

Borges et al. 10.3389/fninf.2022.884245

References

Amsalem, O., King, J., Reimann, M., Ramaswamy, S., Muller, E., Markram, H.,
et al. (2020). Dense computer replica of cortical microcircuits unravels cellular
underpinnings of auditory surprise response. BioRxiv [Preprint]. doi: 10.1101/
2020.05.31.126466

Arkhipov, A., Gouwens, N. W., Billeh, Y. N., Gratiy, S., Iyer, R., Wei, Z., et al.
(2018). Visual physiology of the layer 4 cortical circuit in silico. PLoS Comput.
Biol. 14:e1006535. doi: 10.1371/journal.pcbi.1006535

Awile, O., Kumbhar, P., Cornu, N., Dura-Bernal, S., King, J. G., Lupton, O., et al.
(2022). Modernizing the NEURON simulator for sustainability, portability, and
performance. Front. Neuroinform. 16:884046. doi: 10.3389/fninf.2022.884046

Azarfar, A., Calcini, N., Huang, C., Zeldenrust, F., and Celikel, T. (2018). Neural
coding: A single neuron’s perspective. Neurosci. Biobehav. Rev. 94, 238–247. doi:
10.1016/j.neubiorev.2018.09.007

Barthas, F., and Kwan, A. C. (2017). “Secondary motor cortex: Where ‘sensory’
meets ‘motor’ in the rodent frontal cortex. Trends Neurosci. 40, 181–193. doi:
10.1016/j.tins.2016.11.006

Bezaire, M. J., Raikov, I., Burk, K., Vyas, D., and Soltesz, I. (2016). Interneuronal
mechanisms of hippocampal theta oscillations in a full-scale model of the rodent
CA1 circuit. Elife 5:e18566. doi: 10.7554/eLife.18566

Billeh, Y. N., Cai, B., Gratiy, S. L., Dai, K., Iyer, R., Gouwens, N. W., et al. (2020).
Systematic integration of structural and functional data into multi-scale models
of mouse primary visual cortex. Neuron 106, 388.e–403.e. doi: 10.1016/j.neuron.
2020.01.040

Bonjean, M., Baker, T., Bazhenov, M., Cash, S., Halgren, E., and Sejnowski,
T. (2012). Interactions between core and matrix thalamocortical projections in
human sleep spindle synchronization. J. Neurosci. 32, 5250–5263. doi: 10.1523/
JNEUROSCI.6141-11.2012

Borst, J. G. (2010). The low synaptic release probability in vivo. Trends Neurosci.
33, 259–266. doi: 10.1016/j.tins.2010.03.003

Bosman, L. W., Houweling, A. R., Owens, C. B., Tanke, N., Shevchouk, O. T.,
Rahmati, N., et al. (2011). Anatomical pathways involved in generating and
sensing rhythmic whisker movements. Front. Integr. Neurosci. 5:53. doi: 10.3389/
fnint.2011.00053

Buzsáki, G., Anastassiou, C. A., and Koch, C. (2012). The origin of extracellular
fields and currents — EEG, ECoG, LFP and spikes.Nat. Rev. Neurosci. 13, 407–420.
doi: 10.1038/nrn3241

Carnevale, N. T., and Hines, M. L. (2006). The neuron book. New York, NY:
Cambridge University Press.

Dai, K., Hernando, J., Billeh, Y. N., Gratiy, S. L., Planas, J., Davison, A. P., et al.
(2020). The sonata data format for efficient description of large-scale network
models. PLoS Comput. Biol. 16:e1007696. doi: 10.1371/journal.pcbi.1007696

Destexhe, A., and Contreras, D. (2011). “The fine structure of slow-wave sleep
oscillations: From single neurons to large networks,” in Sleep and anesthesia:
Neural correlates in theory and experiment, ed. A. Hutt (New York, NY: Springer
New York), 69–105. doi: 10.1007/978-1-4614-0173-5_4

Destexhe, A., Bal, T., McCormick, D. A., and Sejnowski, T. J. (1996a). Ionic
Mechanisms underlying synchronized oscillations and propagating waves in a
model of ferret thalamic slices. J. Neurophysiol. 76, 2049–2070. doi: 10.1152/jn.
1996.76.3.2049

Destexhe, A., Contreras, D., Steriade, M., Sejnowski, T. J., and Huguenard, J. R.
(1996b). In vivo, in vitro, and computational analysis of dendritic calcium currents
in thalamic reticular neurons. J. Neurosci. 16, 169–185. doi: 10.1523/JNEUROSCI.
16-01-00169.1996

Dura-Bernal, S., Neymotin, S. A., Suter, B. A., Dacre, J., Schiemann, J., Duguid,
I., et al. (2022b). Multiscale model of primary motor cortex circuits reproduces
in vivo cell type-specific dynamics associated with behavior. bioRxiv [Preprint].
doi: 10.1101/2022.02.03.479040

Dura-Bernal, S., Griffith, E. Y., Barczak, A., O’Connell, M. N., McGinnis, T.,
Schroeder, C. E., et al. (2022a). Data-driven multiscale model of macaque auditory
thalamocortical circuits reproduces in vivo dynamics. bioRxiv [Preprint]. doi:
10.1101/2022.02.03.479036

Dura-Bernal, S., Suter, B. A., Gleeson, P., Cantarelli, M., Quintana, A.,
Rodriguez, F., et al. (2019). NetPyNE, a tool for data-driven multiscale modeling
of brain circuits. Elife 8:e44494. doi: 10.7554/eLife.44494

Ecker, A., Romani, A., Sáray, S., Káli, S., Migliore, M., Falck, J., et al.
(2020). Data-driven integration of hippocampal ca1 synaptic physiology in silico.
Hippocampus 30, 1129–1145. doi: 10.1002/hipo.23220

Erö, C., Gewaltig, M. O., Keller, D., and Markram, H. (2018). A cell atlas for the
mouse brain. Front. Neuroinform. 12:84. doi: 10.3389/fninf.2018.00084

Fuhrmann, G., Segev, I., Markram, H., and Tsodyks, M. (2002). Coding of
temporal information by activity-dependent synapses. J. Neurophysiol. 87, 140–
148. doi: 10.1152/jn.00258.2001

Gal, E., London, M., Globerson, A., Ramaswamy, S., Reimann, M. W.,
Muller, E., et al. (2017). Rich Cell-type-specific network topology in neocortical
microcircuitry. Nat. Neurosci. 20, 1004–1013. doi: 10.1038/nn.4576

Gautam, S. H., Hoang, T. T., McClanahan, K., Grady, S. K., and Shew,
W. L. (2015). Maximizing sensory dynamic range by tuning the cortical state to
criticality. PLoS Comput. Biol. 11:e1004576. doi: 10.1371/journal.pcbi.1004576

Girardi-Schappo, M., Bortolotto, G. S., Stenzinger, R. V., Gonsalves, J. J., and
Tragtenberg, M. H. (2017). Phase diagrams and dynamics of a computationally
efficient map-based neuron model. PLoS One 12:e0174621. doi: 10.1371/journal.
pone.0174621

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella,
M., et al. (2010). NeuroML: A language for describing data driven models of
neurons and networks with a high degree of biological detail. PLoS Comput. Biol.
6:e1000815. doi: 10.1371/journal.pcbi.1000815

Gleeson, P., Cantarelli, M., Marin, B., Quintana, A., Earnshaw, M., Sadeh, S., et
al. (2019). Open source brain: A collaborative resource for visualizing, analyzing,
simulating, and developing standardized models of neurons and circuits. Neuron
103, 395–411.e5. doi: 10.1016/j.neuron.2019.05.019

Guo, K., Yamawaki, N., Barrett, J. M., Tapies, M., and Shepherd, G. M. G. (2020).
Cortico-Thalamo-cortical circuits of mouse forelimb S1 are organized primarily
as recurrent loops. J. Neurosci. 40, 2849–2858. doi: 10.1523/JNEUROSCI.2277-19.
2020

Hagen, E., Næss, S., Ness, T. V., and Einevoll, G. T. (2018). Multimodal
Modeling of neural network activity: Computing LFP, ECoG, EEG, and MEG
signals with LFPy 2.0. Front. Neuroinform. 12:92. doi: 10.3389/fninf.2018.
00092

Hennig, M. H. (2013). Theoretical models of synaptic short term
plasticity. Front. Comput. Neurosci. 7:154. doi: 10.3389/fncom.2013.
00154

Hill, S., and Tononi, G. (2005). Modeling sleep and wakefulness in the
thalamocortical system. J. Neurophysiol. 93, 1671–1698. doi: 10.1152/jn.00915.
2004

Huang, C., Zeldenrust, F., and Celikel, T. (2022). Cortical representation of
touch in silico. Neuroinformatics doi: 10.1007/s12021-022-09576-5 [Epub ahead
of print].

Iavarone, E., Simko, J., Shi, Y., Bertschy, M., García-Amado, M., Litvak, P., et al.
(2022). Thalamic control of sensory enhancement and sleep spindle properties
in a biophysical model of thalamoreticular microcircuitry. bioRxiv [Preprint].
doi: 10.1101/2022.02.28.482273

Iavarone, E., Yi, J., Shi, Y., Zandt, B. J., O’Reilly, C., Van Geit, W., et al. (2019).
Experimentally-constrained biophysical models of tonic and burst firing modes in
thalamocortical neurons. PLoS Comput. Biol. 15:e1006753. doi: 10.1371/journal.
pcbi.1006753

Izhikevich, E. M., and Edelman, G. M. (2008). Large-scale model of mammalian
thalamocortical systems. Proc. Natl. Acad. Sci. US.A. 105, 3593–3598. doi: 10.1073/
pnas.0712231105

Jahnsen, H., and Llinás, R. (1984). Ionic basis for the electro-responsiveness
and oscillatory properties of guinea-pig thalamic neurones in vitro. J. Physiol. 349,
227–247. doi: 10.1113/jphysiol.1984.sp015154

Jézéquel, F., Lamotte, J.-L., and Saïd, I. (2015). “Estimation of numerical
reproducibility on CPU and GPU,” in Proceedings of the 2015 Federated Conference
on Computer Science and Information Systems, (Piscataway, NJ: IEEE), 675–680.
doi: 10.15439/2015f29

Kim, U., and McCormick, D. A. (1998). The functional influence of burst
and tonic firing mode on synaptic interactions in the thalamus. J. Neurosci. 18,
9500–9516. doi: 10.1523/JNEUROSCI.18-22-09500.1998

Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King, J., Delalondre, F.,
et al. (2019). CoreNEURON : An optimized compute engine for the NEURON
Simulator. Front. Neuroinform. 13:63. doi: 10.3389/fninf.2019.00063

Lam, Y. W., and Sherman, S. M. (2007). Different topography of the
reticulothalmic inputs to first- and higher-order somatosensory thalamic relays
revealed using photostimulation. J. Neurophysiol. 98, 2903–2909. doi: 10.1152/jn.
00782.2007

Lam, Y. W., and Sherman, S. M. (2011). Functional organization of the thalamic
input to the thalamic reticular nucleus. J. Neurosci. 31, 6791–6799. doi: 10.1523/
JNEUROSCI.3073-10.2011

Frontiers in Neuroinformatics 18 frontiersin.org

349

https://doi.org/10.3389/fninf.2022.884245
https://doi.org/10.1101/2020.05.31.126466
https://doi.org/10.1101/2020.05.31.126466
https://doi.org/10.1371/journal.pcbi.1006535
https://doi.org/10.3389/fninf.2022.884046
https://doi.org/10.1016/j.neubiorev.2018.09.007
https://doi.org/10.1016/j.neubiorev.2018.09.007
https://doi.org/10.1016/j.tins.2016.11.006
https://doi.org/10.1016/j.tins.2016.11.006
https://doi.org/10.7554/eLife.18566
https://doi.org/10.1016/j.neuron.2020.01.040
https://doi.org/10.1016/j.neuron.2020.01.040
https://doi.org/10.1523/JNEUROSCI.6141-11.2012
https://doi.org/10.1523/JNEUROSCI.6141-11.2012
https://doi.org/10.1016/j.tins.2010.03.003
https://doi.org/10.3389/fnint.2011.00053
https://doi.org/10.3389/fnint.2011.00053
https://doi.org/10.1038/nrn3241
https://doi.org/10.1371/journal.pcbi.1007696
https://doi.org/10.1007/978-1-4614-0173-5_4
https://doi.org/10.1152/jn.1996.76.3.2049
https://doi.org/10.1152/jn.1996.76.3.2049
https://doi.org/10.1523/JNEUROSCI.16-01-00169.1996
https://doi.org/10.1523/JNEUROSCI.16-01-00169.1996
https://doi.org/10.1101/2022.02.03.479040
https://doi.org/10.1101/2022.02.03.479036
https://doi.org/10.1101/2022.02.03.479036
https://doi.org/10.7554/eLife.44494
https://doi.org/10.1002/hipo.23220
https://doi.org/10.3389/fninf.2018.00084
https://doi.org/10.1152/jn.00258.2001
https://doi.org/10.1038/nn.4576
https://doi.org/10.1371/journal.pcbi.1004576
https://doi.org/10.1371/journal.pone.0174621
https://doi.org/10.1371/journal.pone.0174621
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.1016/j.neuron.2019.05.019
https://doi.org/10.1523/JNEUROSCI.2277-19.2020
https://doi.org/10.1523/JNEUROSCI.2277-19.2020
https://doi.org/10.3389/fninf.2018.00092
https://doi.org/10.3389/fninf.2018.00092
https://doi.org/10.3389/fncom.2013.00154
https://doi.org/10.3389/fncom.2013.00154
https://doi.org/10.1152/jn.00915.2004
https://doi.org/10.1152/jn.00915.2004
https://doi.org/10.1007/s12021-022-09576-5
https://doi.org/10.1101/2022.02.28.482273
https://doi.org/10.1371/journal.pcbi.1006753
https://doi.org/10.1371/journal.pcbi.1006753
https://doi.org/10.1073/pnas.0712231105
https://doi.org/10.1073/pnas.0712231105
https://doi.org/10.1113/jphysiol.1984.sp015154
https://doi.org/10.15439/2015f29
https://doi.org/10.1523/JNEUROSCI.18-22-09500.1998
https://doi.org/10.3389/fninf.2019.00063
https://doi.org/10.1152/jn.00782.2007
https://doi.org/10.1152/jn.00782.2007
https://doi.org/10.1523/JNEUROSCI.3073-10.2011
https://doi.org/10.1523/JNEUROSCI.3073-10.2011
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

fninf-16-884245 September 22, 2022 Time: 6:33 # 19

Borges et al. 10.3389/fninf.2022.884245

Lam, Y. W., Nelson, C. S., and Sherman, S. M. (2006). Mapping of the functional
interconnections between thalamic reticular neurons using photostimulation.
J. Neurophysiol. 96, 2593–2600. doi: 10.1152/jn.00555.2006

Łęski, S., Lindén, H., Tetzlaff, T., Pettersen, K. H., and Einevoll, G. T.
(2013). Frequency Dependence of signal power and spatial reach of the local
field potential. PLoS Comput. Biol. 9:e1003137. doi: 10.1371/journal.pcbi.100
3137

Luczyńska, A., Dziewiatkowski, J., Jagalska-Majewska, H., Kowiański, P.,
Wójcik, S., Labuda, C., et al. (2003). Qualitative and quantitative analysis of the
postnatal development of the ventroposterolateral nucleus of the thalamus in rat
and rabbits. Folia Mophol. 62, 75–87.

Lytton, W. W., Seidenstein, A. H., Dura-Bernal, S., McDougal, R. A.,
Schürmann, F., and Hines, M. L. (2016). Simulation neurotechnologies for
advancing brain research: Parallelizing large networks in NEURON. Neural
Comput. 28, 2063–2090. doi: 10.1162/NECO_a_00876

Ma, P. M. (1991). The barrelettes–architectonic vibrissal representations in the
brainstem trigeminal complex of the mouse. I. Normal structural organization.
J. Comp. Neurol. 309, 161–199. doi: 10.1002/cne.903090202

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M.,
Sanchez, C. A., et al. (2015). Reconstruction and simulation of neocortical
microcircuitry. Cell 163, 456–492. doi: 10.1016/j.cell.2015.09.029

McDougal, R. A., Bulanova, A. S., and Lytton, W. W. (2016). Reproducibility in
Computational neuroscience models and simulations. IEEE Trans. Biomed. Eng.
63, 2021–2035. doi: 10.1109/TBME.2016.2539602

Metzner, C., Mäki-Marttunen, T., Karni, G., McMahon-Cole, H., and Steuber,
V. (2020). The effect of alterations of schizophrenia-associated genes on gamma
band oscillations. bioRxiv [Preprint]. doi: 10.1101/2020.09.28.316737

Meyer, H. S., Wimmer, V. C., Hemberger, M., Bruno, R. M., de Kock, C. P., Frick,
A., et al. (2010). Cell type-specific thalamic innervation in a column of rat vibrissal
cortex. Cereb. Cortex 20, 2287–2303. doi: 10.1093/cercor/bhq069

Migliore, M., Cannia, C., Lytton, W. W., Markram, H., and Hines, M. L. (2006).
Parallel network simulations with NEURON. J. Comput. Neurosci. 21, 119–129.

Moreira, J. V. S., Borges, F. S., Doherty, D., Lytton, W. W., and Dura-
Bernal, S. (2021). Topographically detailed computational model of the motor and
somatosensory thalamic circuits. Available online at: https://www.abstractsonline.
com/pp8/#!/10485/presentation/16321 (accessed February 25, 2022).

Murray Sherman, S., and Guillery, R. W. (2001). “Chapter II – the nerve cells
of the thalamus,” in Exploring the thalamus, eds S. Murray Sherman and R. W.
Guillery (San Diego, CA: Academic Press), 19–58. doi: 10.4324/9781315152837-8

Murray, J. D., and Anticevic, A. (2017). Toward understanding thalamocortical
dysfunction in schizophrenia through computational models of neural
circuit dynamics. Schizophr. Res. 180, 70–77. doi: 10.1016/j.schres.2016
.10.021

Neymotin, S. A., Dura-Bernal, S., Moreno, H., and Lytton, W. W. (2016).
Computer modeling for pharmacological treatments for dystonia. Drug Discov.
Today Dis. Models 19, 51–57.

Ohno, S., Kuramoto, E., Furuta, T., Hioki, H., Tanaka, Y. R., Fujiyama, F., et al.
(2012). A morphological analysis of thalamocortical axon fibers of rat posterior
thalamic nuclei: A single neuron tracing study with viral vectors. Cereb. Cortex 22,
2840–2857. doi: 10.1093/cercor/bhr356

O’Reilly, C., Iavarone, E., Yi, J., and Hill, S. L. (2021). Rodent Somatosensory
thalamocortical circuitry: Neurons, synapses, and connectivity. Neurosci.
Biobehav. Rev. 126, 213–235.

Parasuram, H., Nair, B., D’Angelo, E., Hines, M., Naldi, G., and Diwakar, S.
(2016). Computational modeling of single neuron extracellular electric potentials
and network local field potentials using LFPsim. Front. Comput. Neurosci. 10:65.
doi: 10.3389/fncom.2016.00065

Peña-Rangel, T. M., Lugo-Picos, P. I., Báez-Cordero, A. S., Hidalgo-Balbuena,
A. E., Luma, A. Y., Pimentel-Farfan, A. K., et al. (2021). Altered sensory
representations in parkinsonian cortical and basal ganglia networks. Neuroscience
466, 10–25.

Petrof, I., Viaene, A. N., and Sherman, S. M. (2015). Properties of the Primary
somatosensory cortex projection to the primary motor cortex in the mouse.
J. Neurophysiol. 113, 2400–2407. doi: 10.1152/jn.00949.2014

Potjans, T. C., and Diesmann, M. (2014). The Cell-type specific cortical
microcircuit: Relating structure and activity in a full-scale spiking network model.
Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358

Ramaswamy, S., Courcol, J. D., Abdellah, M., Adaszewski, S. R., Antille, N.,
Arsever, S., et al. (2015). The neocortical microcircuit collaboration portal: A
resource for rat somatosensory cortex. Front. Neural Circuits. 9:44. doi: 10.3389/
fncir.2015.00044

Ranieri, C. M., Montino Pimentel, J., Romano, M. R., Elias, L. A., Romero,
R. A. F., Lones, M. A., et al. (2021). A data-driven biophysical computational
model of Parkinson’s disease based on marmoset monkeys. IEEE Access 9, 122548–
122567.

Reimann, M. W., Anastassiou, C. A., Perin, R., Hill, S. L., Markram, H., and
Koch, C. (2013). A biophysically detailed model of neocortical local field potentials
predicts the critical role of active membrane currents. Neuron 79, 375–390. doi:
10.1016/j.neuron.2013.05.023

Reimann, M. W., King, J. G., Muller, E. B., Ramaswamy, S., and Markram, H.
(2015). An algorithm to predict the connectome of neural microcircuits. Front.
Comput. Neurosci. 9:120. doi: 10.3389/fncom.2015.00120

Reimann, M. W., Horlemann, A., Ramaswamy, S., Muller, E., and Markram,
H. (2017b). Morphological diversity strongly constrains synaptic connectivity and
plasticity. Cereb. Cortex 27, 4570–4585. doi: 10.1093/cercor/bhx150

Reimann, M. W., Nolte, M., Scolamiero, M., Turner, K., Perin, R., Chindemi,
G., et al. (2017a). Cliques of neurons bound into cavities provide a missing link
between structure and function. Front. Comput. Neurosci. 11:48. doi: 10.3389/
fncom.2017.00048

Romaro, C., Najman, F. A., Lytton, W. W., Roque, A. C., and Dura-Bernal, S.
(2021). NetPyNE Implementation and rescaling of the potjans-diesmann cortical
microcircuit model. Neural Comput. 33, 1993–2032. doi: 10.1162/neco_a_01400

Sekiguchi, K., Medlock, L., Dura-Bernal, S., Prescott, S. A., and Lytton, W. W.
(2021). Multiscale computer model of the spinal dorsal horn reveals changes in
network processing associated with chronic pain. bioRxiv [Preprint]. doi: 10.1101/
2021.06.09.447785

Shepherd, G. M. G., and Yamawaki, N. (2021). Untangling the cortico-thalamo-
cortical loop: Cellular pieces of a knotty circuit puzzle. Nat. Rev. Neurosci. 22,
389–406. doi: 10.1038/s41583-021-00459-3

Sherman, S. M., and Guillery, R. W. (2009). Exploring the thalamus and its role
in cortical function, 2nd Edn. Cambridge, MA: Mit Press.

Shimoura, R. O., Pena, R. F. O., Lima, V., Kamiji, N. L., Girardi-Schappo, M.,
and Roque, A. C. (2021). Building a model of the brain: From detailed connectivity
maps to network organization. Eur. Phys. J. 230, 2887–2909.

Sivagnanam, S., Gorman, W., Doherty, D., Neymotin, S. A., Fang, S.,
Hovhannisyan, H., et al. (2020). Simulating large-scale models of brain neuronal
circuits using google cloud platform. PEARC20 (2020) 2020, 505–509. doi: 10.
1145/3311790.3399621

Sugitani, M., Yano, J., Sugai, T., and Ooyama, H. (1990). Somatotopic
organization and columnar structure of vibrissae representation in the rat
ventrobasal complex. Exp. Brain Res. 81, 346–352. doi: 10.1007/BF00228125

Vázquez, Y., Salinas, E., and Romo, R. (2013). Transformation of the neural code
for tactile detection from thalamus to cortex. Proc. Natl. Acad. Sci. U.S.A. 110,
E2635–E2644. doi: 10.1073/pnas.1309728110

Frontiers in Neuroinformatics 19 frontiersin.org

350

https://doi.org/10.3389/fninf.2022.884245
https://doi.org/10.1152/jn.00555.2006
https://doi.org/10.1371/journal.pcbi.1003137
https://doi.org/10.1371/journal.pcbi.1003137
https://doi.org/10.1162/NECO_a_00876
https://doi.org/10.1002/cne.903090202
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1109/TBME.2016.2539602
https://doi.org/10.1101/2020.09.28.316737
https://doi.org/10.1093/cercor/bhq069
https://www.abstractsonline.com/pp8/#!/10485/presentation/16321
https://www.abstractsonline.com/pp8/#!/10485/presentation/16321
https://doi.org/10.4324/9781315152837-8
https://doi.org/10.1016/j.schres.2016.10.021
https://doi.org/10.1016/j.schres.2016.10.021
https://doi.org/10.1093/cercor/bhr356
https://doi.org/10.3389/fncom.2016.00065
https://doi.org/10.1152/jn.00949.2014
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.3389/fncir.2015.00044
https://doi.org/10.3389/fncir.2015.00044
https://doi.org/10.1016/j.neuron.2013.05.023
https://doi.org/10.1016/j.neuron.2013.05.023
https://doi.org/10.3389/fncom.2015.00120
https://doi.org/10.1093/cercor/bhx150
https://doi.org/10.3389/fncom.2017.00048
https://doi.org/10.3389/fncom.2017.00048
https://doi.org/10.1162/neco_a_01400
https://doi.org/10.1101/2021.06.09.447785
https://doi.org/10.1101/2021.06.09.447785
https://doi.org/10.1038/s41583-021-00459-3
https://doi.org/10.1145/3311790.3399621
https://doi.org/10.1145/3311790.3399621
https://doi.org/10.1007/BF00228125
https://doi.org/10.1073/pnas.1309728110
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

TYPE Original Research
PUBLISHED 29 September 2022
DOI 10.3389/fnins.2022.944262

OPEN ACCESS

EDITED BY

Markus Diesmann,
Helmholtz Association of German
Research Centres (HZ), Germany

REVIEWED BY

Cyrille Mascart,
Cold Spring Harbor Laboratory,
United States
Mingyuan Meng,
The University of Sydney, Australia

*CORRESPONDENCE

Lingfei Mo
lfmo@seu.edu.cn

SPECIALTY SECTION

This article was submitted to
Neuromorphic Engineering,
a section of the journal
Frontiers in Neuroscience

RECEIVED 15 May 2022
ACCEPTED 30 August 2022
PUBLISHED 29 September 2022

CITATION

Mo L and Tao Z (2022) EvtSNN:
Event-driven SNN simulator optimized
by population and pre-filtering.
Front. Neurosci. 16:944262.
doi: 10.3389/fnins.2022.944262

COPYRIGHT

© 2022 Mo and Tao. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

EvtSNN: Event-driven SNN
simulator optimized by
population and pre-filtering

Lingfei Mo* and Zhihan Tao

FutureX Lab, School of Instrument Science and Engineering, Southeast University, Nanjing, China

Recently, spiking neural networks (SNNs) have been widely studied by

researchers due to their biological interpretability and potential application

of low power consumption. However, the traditional clock-driven simulators

have the problem that the accuracy is limited by the time-step and the

lateral inhibition failure. To address this issue, we introduce EvtSNN (Event

SNN), a faster SNN event-driven simulator inspired by EDHA (Event-Driven

High Accuracy). Two innovations are proposed to accelerate the calculation

of event-driven neurons. Firstly, the intermediate results can be reused in

population computing without repeated calculations. Secondly, unnecessary

peak calculations will be skipped according to a condition. In the MNIST

classification task, EvtSNN took 56 s to complete one epoch of unsupervised

training and achieved 89.56% accuracy, while EDHA takes 642 s. In the

benchmark experiments, the simulation speed of EvtSNN is 2.9–14.0 times that

of EDHA under di�erent network scales.

KEYWORDS

spiking neural network (SNN), event-driven, acceleration, simulator, unsupervised

learning

1. Introduction

Spiking neural networks (SNNs) (Maass, 1997) have attracted increasing attention

because of their characteristics, including preferable biological interpretability and low-

power processing potential (Akopyan et al., 2015; Shen et al., 2016; Davies et al., 2018;

Moradi et al., 2018; Pei et al., 2019; Li et al., 2021; Pham et al., 2021). Compared to

traditional artificial neural networks (ANNs), SNNs increase the time dimension so that

they naturally support information processing in the temporal domain. To introduce the

extra time dimension into the calculation, twomethods are usually adopted: clock-driven

and event-driven. The idea of clock-driven is to discretize the time and update the state

of all neurons in each timestamp. The clock-driven method is widely used in the existing

SNN frameworks (simulators) (Goodman and Brette, 2008; Hazan et al., 2018; Stimberg

et al., 2019) because it is simulated by the iterative method which can be compatible

with the differential equations of most neuron models. However, this method has two

problems that cannot be ignored. Firstly, there is a conflict between simulation accuracy

and calculation speed. The smaller the time step, the higher the simulation accuracy

and the larger the calculation amount. Secondly, lateral inhibition cannot be effective

on other neurons that fire lately in the same time slice.

Frontiers inNeuroscience 01 frontiersin.org

351

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.944262
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.944262&domain=pdf&date_stamp=2022-09-29
mailto:lfmo@seu.edu.cn
https://doi.org/10.3389/fnins.2022.944262
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.944262/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Mo and Tao 10.3389/fnins.2022.944262

In the event-driven method, the state of neurons is updated

when spikes are received, which means that the sparsity of spikes

can be fully utilized to reduce computations. The realization

of event-driven simulation on hardware (Davies et al., 2018;

Li et al., 2021) has the ability of parallel computing and the

potential of low-power processing, but it is costly and less

flexible than software. Our team previously proposed an event-

driven software simulation framework EDHA (Event-Driven

High Accuracy), whose core task is to maintain the pulse priority

queue (Mo et al., 2021). During the simulation, the earliest spike

is popped from the queue, and then postsynaptic neurons are

updated independently. However, the high complexity of its

single update limits the overall simulation speed.

In this paper, an event-driven software simulator named

EvtSNN (Event SNN) is introduced, which includes two

contributions. To begin with, neurons are clustered into

populations, which means that intermediate results can be

reused. In addition, pre-filtering is adopted to avoid unnecessary

calculations according to the condition. After rewriting the

framework code with the C++ programming language and

combining these two innovations, the simulation speed of

EvtSNN has been greatly improved. In the ablation experiment

task, the processing capacity of EvtSNN(C++) reached 117.8 M

spikes × fan-outs/s, which was 13 times that of EDHA(java). In

the unsupervised training task ofMNIST, the network (784–400)

took 56 s to train one epoch with an accuracy of 89.59%, which

is 11.4 times faster than EDHA.

In Section 2, we describe the related work, including

unsupervised learning and supervised learning, as well as clock-

driven and event-driven simulation. In Section 3, the principle

of EDHA is reviewed, and two innovations are proposed

to accelerate the event-driven simulation. Section 4 contains

several comparison experiments and results. And the discussion

is in Section 5. Finally, Section 6 summarizes the current work.

2. Related works

The learning methods of SNN mainly include supervised

learning and unsupervised learning. Supervised learning is

similar to the traditional ANN, which can be trained by the

gradient back-propagation (BP) method. However, the spike

is non-differentiable, so ANN to SNN (Sengupta et al., 2019;

Deng and Gu, 2021) or surrogate gradient (Neftci et al., 2019) is

often used to handle this problem. Unsupervised learning refers

to the learning style of neurons in biology, which has better

biological interpretability. Similar to EDHA, EvtSNN pays more

attention to biological interpretability, and currently mainly

supports unsupervised learning rules, such as the spike time-

dependent plasticity (STDP) (Masquelier and Kheradpisheh,

2018) learning rule.

Most SNN simulators need to deal with the temporal

dimension. Clock-driven and event-driven approaches are

often used to deal with this problem. Owing to high model

compatibility, the clock-driven method is mostly used in

software SNN simulation frameworks, such as Brian (Goodman

and Brette, 2008), Brian2 (Stimberg et al., 2019), and BindsNET

(Hazan et al., 2018), etc. Brian and Brian2 were frameworks

based on code generation, which can specify the neuron dynamic

equation and synapse update rule to generate corresponding

codes. On the other hand, BindsNET was based on PyTorch

(Paszke et al., 2019) and implemented the behaviors of neurons

and synapses by writing code. Its advantage is that Graphics

Processing Unit (GPU) acceleration can be conveniently carried

out based on PyTorch. Although with high model compatibility,

the clock-driven method also has some problems. Firstly, the

existence of time-slice limits the simulation accuracy, and the

calculations increase inversely with the decrease of time-step.

Secondly, when using lateral inhibition, multiple neurons in

the same layer can activate in a time step, leading to multiple

winning neurons that are unfavorable for training.

The event-driven method is mostly used in Field

Programmable Gate Array (FPGA) and Application Specific

Integrated Circuit (ASIC). FPGA is an expensive and flexible

chip with limited resources, which is suited for laboratory

prototype validation and not for actual deployment (Pham et al.,

2021). Some researchers have made ASIC for simulating SNN,

such as DYNAPs (Moradi et al., 2018), TrueNorth (Akopyan

et al., 2015), and Loihi (Davies et al., 2018), etc. The power

consumption of these is at the milliwatt level, but they have

expensive costs for design, and it is not convenient to add

new functions.

Event-driven simulation can take advantage of the sparsity of

spike events and neural connections. EDHA is an event-driven

framework proposed by our team earlier, whose core task is to

maintain the spike priority queue. Without the concept of time-

slice, it solves the problems of lateral suppression failure and the

conflict between accuracy and speed in the clock-drivenmethod.

However, there are large calculations in the update of neurons in

EDHA, which limits the overall simulation speed. Therefore, two

innovations have been proposed to solve this problem.

3. Methods

3.1. Workflow of EDHA framework

The SNN simulation framework needs to deal with

additional time dimensions. The clock-driven method is similar

to polling, while the event-driven method calculates only when

pulse events are received.

As an event-driven simulation framework, the core task of

EDHA is to maintain the spike priority queue. The specific

steps are as follows: (1) take out the earliest spike event that

should be issued from the priority queue; (2) update the neurons

which are connected behind the fired neuron (i.e., post-synaptic

Frontiers inNeuroscience 02 frontiersin.org

352

https://doi.org/10.3389/fnins.2022.944262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Mo and Tao 10.3389/fnins.2022.944262

neurons); (3) adjust the priority queue elements according to the

predicted spike information. Figure 1 is a flow chart of the above

processing details.

3.2. Neuron and synapse model

The leaky integrate-and-fire (LIF) model (Gerstner et al.,

2014; Mo et al., 2021) was adopted in this paper, which is

represented by Equations (1) and (2). δ(t) in the formula is the

impulse function, and other parameters are explained in Table 1.

It should be noted that there is no dependence on membrane

potential in Equation (2), which facilitates the derivation of

other formulas.







dv
dt

= − v
τv

+ gE v < vth

v = vreset v ≥ vth
(1)











dgE
dt

= −
gE
τg

+ C
∑

i,j
wiδ(t − ti,j) v < vth

gE = 0 v ≥ vth

(2)

The adaptive threshold method is often used to avoid a few

neurons firing too frequently. It is increased by the fixed item

(θ) at each fire, and otherwise exponentially decays toward θ0

with a time constant (τθ). It is more difficult to generate new

spikes after increasing the threshold, which is beneficial for other

neurons’ learning (Masquelier and Kheradpisheh, 2018). Owing

to large τθ , the decay of vth in a short time can be ignored in

practice, which simplifies some calculations.

The plasticity synaptic model is an important part of

unsupervised learning. Like EDHA, the STDP learning rule was

employed in this paper, see formula (3) (Mo et al., 2021). In

which σ+ and σ− are the amplitude constants of LTP and LTD,

τ+ and τ− are the time constant, and tpre and tpost are the firing

time of the pre-/post-synaptic neuron.

1w =











σ+ · e
−

tpost−tpre
τ+ tpre < tpost

σ− · e
−

tpre−tpost
τ− tpre > tpost

(3)

3.3. Update steps of neuron

In step (2) of the event-driven framework workflow, there

are three sub-steps: (a) calculate the current state according

to the update interval, (b) handle the currently input spike

event, and (c) estimate the potential pulse based on the current

state. Figure 2 shows the diagram of the above three sub-steps,

and the formula of each step is related to the neuron model.

It is important to note that the neuron’s membrane potential

may continue to increase for some time after receiving a single

spike, so sub-step (c) is required to estimate the potential pulse

of neurons.

Unless received spike or activated, v and gE will not change

instantaneously, and Equations (4) and (5) are obtained. T

represents the time of the currently received spike. At any time

from T to the next pulse received, the state can be solved by

the above two equations, which is the computing formula in

sub-step (a).

v(T + 1t) = v(T) · e−
1t
τv + gE(T) ·

τgτv

τg − τv
(e
−1t

τg − e
−1t

τv)

(4)

gE(T + 1t) = gE(T) · e
−1t

τg (5)

In sub-step (b), the influence of the pulse on the current state

is calculated. According to Equation (1) and (2), v is unchanged

and gE increases by Cwi,j instantaneously when received spike.

In sub-step (c), the neuron needs to estimate whether it can

generate a new spike according to current states. After receiving

the spike, the conductance of the neuron increases, which

indirectly promotes the increase of the membrane potential, and

it is difficult to predict the precise timing of the pulse firing.

Instead, the method of calculating the peak value of voltage was

adopted. If the peak exceeds the threshold, combined Equation

(4), the dichotomy method was employed to calculate the exact

spike time (Mo et al., 2021).

Here are the details of solving peak membrane potential.

Equation (1) shows that the membrane potential is affected

by the self-attenuation term and conductance. The voltage will

increase when the conductance is large and plays a leading role.

In the case no subsequent spikes are received, the conductance

gE decays exponentially to 0. In other words, if the conductance

is large enough, the voltage will rise first and then fall, and

reach the peak during this period. In other cases, potential

decreases monotonically under the influence of attenuation

term. According to Equation (4), the extreme point t
′
and the

corresponding peak membrane potential were obtained, i.e.,

Equations (6) and (7).

t
′

=
τgτv

τg − τv
· [ln(

τg

τv
)+ ln(1−

τg − τv

τgτv
·
v(T)

gE(T)
)] (6)

vmax =







gE(T)τv[
τg
τv
(1−

τg−τv
τvτg

·
v(T)
gE(T)

)]
−

τv
τg−τv t

′
> 0

v(T) else
(7)

In the above formula, there is a large computational

complexity in sub-step (a) and (c), which is the bottleneck in

the whole simulate computation. However, it is found that two

points can be optimized in the actual calculation. First, there

are many same 1t of postsynaptic neurons (fan-outs), which

means the decay factors can be reused. Second, the complicated

Frontiers inNeuroscience 03 frontiersin.org

353

https://doi.org/10.3389/fnins.2022.944262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Mo and Tao 10.3389/fnins.2022.944262

FIGURE 1

The computational flow chart of EDHA and EvtSNN, which core task is to maintain the spike priority queue.

TABLE 1 Explanation and experimental value of the parameters in the LIF neuron model.

Parameter Explanation Section 4.1 Section 4.2 Section 4.3

v Membrane potential

gE Excitatory conductance

τv The leaky time constant of voltage 20 20 50

τg The leaky time constant of conductance 1 5 5

C Conductivity gain coefficient 1 1,000/(N·Fr) Variable

wi Weight connect to presynaptic neuron i Rand (0, 0.3) 1 Rand (0.45, 0.55)

ti,j The time of jth spike of presynaptic neuron i

vth Activation threshold of neuron

vreset Reset potential after fire 0 0 0

θ0 Adaptive threshold baseline 40 100 75

θ Increment of adaptive threshold 0.5 0.5 2.5

τθ Time constant of adaptive threshold 1e7 1e7 1e7

calculation in sub-step (c) can be omitted if the neuron will

not be activated in the current state. Therefore, in the following

sections, the two innovations of population computing and pre-

filtering were proposed, which avoid repeated calculation and

unnecessary calculation, respectively.

3.4. Population computing

The supported connection style in EDHA was the fine-

grained (one-to-one) connection between neurons, and it

is extremely flexible. However, the coarse-grained (layer-to-

layer) connection is usually adopted due to its convenience.

Furthermore, all neurons in the population will be updated

when they receive a spike so that they have the same update

interval. According to Equations (4) and (5), the decay factors

of neurons in the population can be reused due to the same

update interval.

To cooperate with the population, the local priority queue
was introduced, which sorted the pulses in the population
and provided the earliest spike to the global queue. It slightly

increases the complexity of the program and reduces some

flexibility. However, using the concept of the population to

Frontiers inNeuroscience 04 frontiersin.org

354

https://doi.org/10.3389/fnins.2022.944262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Mo and Tao 10.3389/fnins.2022.944262

FIGURE 2

Event-driven neuron updated diagram. The neuron is updated when a spike is received, which consists of three sub-steps: updating states,
processing the input spike, and predicting the potential spike.

manage multiple neurons achieves high cohesion and low

coupling, which is beneficial to follow-up work.

In addition, due to the introduction of the concept of

population, the simulation could support more operations, such

as the delayed update of the adaptive threshold. In EDHA,

neurons update the threshold when receiving a spike, but

usually, the threshold change is very small. The delay update

threshold has little effect on the simulation accuracy while

avoiding a lot of exponential calculations.

3.5. Pre-filtering

In sub-step (c), the peak potential is calculated according to

the current state. In most cases, the peak potential of the neuron

will not exceed the threshold after receiving the spike, which

means that many peak calculations are unnecessary. Therefore,

the judgment condition of pre-screening was proposed to filter

out unnecessary calculations at a low cost.

At time tf , the membrane potential increases to vth, and

inequality (8) can be derived. This inequality is a necessary

condition for activation. If the current conductance does not

meet this condition, it means that the neuron will not generate a

spike in the future unless more input events are received.

v
′

(tf) = −
v(tf)

τv
+ gE(tf) ≥ 0 (8)

Inequality (8) can be used as the condition of pre-filtering,

but it does not involve other information. For example, when

the difference between v and vth is large, a greater gE is required

to boost v. When voltage attenuation is neglected, it is easy to get

the contribution of conductance to the potential which is shown

in inequation (9). After integration and arranging, inequality

(10) is obtained, which reflects the contribution of conductance

to membrane potential. Combining inequality (8), the judgment

condition (11) can be obtained finally.

dv

dt
= −

v

τv
+ gE ≤ gE (9)

1v ≤

∫

gE dt =

∫

−τg
dgE

dt
dt = −τg1gE (10)

gE(T) ≥ gE(tf)+
v(tf)− v(T)

τg
≥

vth
τv

+
vth − v(T)

τg
(11)

Inequation (11) is also an essential condition for the neuron

to activate and then emit a spike. If the current state does not

meet this condition, no pulse will be generated in the future

(unless more input events are received), which means that

complicated peak calculations can be ignored. This inequality

makes use of most information, such as voltage, threshold, and

two time-constants (the “leak” terms τv and τg), and it is a good

pre-filtering condition. Figure 3 shows the pre-filtering effect,

and only a few cases (the purple solid dots) need to calculate the

peak value, thus avoiding unnecessary computational overhead.

Frontiers inNeuroscience 05 frontiersin.org

355

https://doi.org/10.3389/fnins.2022.944262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Mo and Tao 10.3389/fnins.2022.944262

FIGURE 3

E�ect of conductance pre-filtering. The peak value needs to be
calculated only when the updated conductance is greater than
the condition.

3.6. Method summary

In this section, the principle of the event-driven simulator

EDHA is reviewed, and two innovations are proposed to

optimize the problem of a large amount of calculation in a

single update, which is shown in Figure 4. Based on EDHA and

the above two optimizations, we propose the new simulation

algorithm, named EvtSNN.

4. Experiments and results

In this section, Brian2 (python), BindsNET (python), and

EDHA (java) were selected as comparison frameworks. To

be fair, each framework was tested on the central processing

unit (CPU) platform with one thread. The test platform is a

workstation with Intel Xeon Silver 4215R@3.2 GHz CPU and

the operating system is Ubuntu20.04. The parameters used

in the experiments are shown in Table 1. The test programs

of this section are shown in http://www.snnhub.com/FutureX-

Lab/EvtSNN-exe.

In Brian2 simulator, one can specify different device

as the backend, including runtime (cython or numpy),

cpp_standalone, genn and so on. For the cpp_standalone and

genn backends, they can avoid repeating compilation by setting

build_on_run to False, but this approach cannot adjust the

parameters of the next run according to the simulation results of

this run. The runtime (cython) is the relatively fastest backend

when the simulation time is short, and it is also selected as

the default backend of Brian2 in the follow-up experiments.

Furthermore, without changing the network structure and

parameters, an empty function could be used tomask before_run

after run(0ms), which can avoid generating duplicate code,

named Brian2*.

4.1. Performance test

The network structure used in the test included an input

neuron layer (200 neurons), an output neuron layer (200

neurons), and fully connected synapses. With a 10 Hz average

fire rate and 10,000 ms simulation time, there were 20 k

spikes in total. For testing, we used the algorithm described in

Bautembach et al. (2020) for generating the input spikes to the

networks.

Table 2 shows the performance test results of the above

four simulators. It can be seen that the simulation time of

the clock-driven framework changes inversely with dt. When

dt was reduced from 1.0 to 0.01 ms, the simulation accuracy

was improved, but the simulation time was increased to nearly

100 times. Thanks to no time-step limitation, the event-driven

simulator has extremely high simulation accuracy, which was

almost the same as the output spikes of the clock-driven

simulator with dt = 0.01 ms (∼511). And the computation

of event-driven simulator is only affected by the number

of spikes and neuron fan-outs. According to Table 2, the

processing capacity of EvtSNN reached 20 k×200/0.033958 s =

117.8 M spikes×fan-outs/second. Compared with EDHA, the

performance of EvtSNN has greatly improved without loss of

simulation accuracy.

In addition, we compare the results of Brian2 and BindsNET

using GPU acceleration. Among them, Brian2GeNN (GPU)

takes a long time to compile, and when dt is reduced from 1.0

to 0.01 ms the time-consuming increment of Brian2GeNN is

similar to that of Brian2 (CPU), whichmeans that the processing

capacity of Brian2GeNN has not been significantly improved. At

the same time, the speed of BindsNET-GPU is not as fast as that

of BindsNET (CPU). It can be seen that in some cases, such as

small networks and sparse pulses, using the GPU does not make

the SNN simulation faster.

4.2. Benchmarking

The amount of computation of event-driven simulation

is related to the number of spikes and neuron fan-outs.

Theoretically, when the number of neurons in each layer

increases and the firing rate of the input layer remains, the

time-consuming increases in square trend. In this section,

the simulation experiments of different scale networks were

designed. The time step (dt) of Brian2 and BindsNET was set

to 1.0 ms.

The structure of the network was two neuron layers, which

were fully connected. We marked the number of neurons in

both layers as N and the firing frequency of the input layer

Frontiers inNeuroscience 06 frontiersin.org

356

https://doi.org/10.3389/fnins.2022.944262
http://www.snnhub.com/FutureX-Lab/EvtSNN-exe
http://www.snnhub.com/FutureX-Lab/EvtSNN-exe
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Mo and Tao 10.3389/fnins.2022.944262

FIGURE 4

The optimization principle of innovation points. Population computing uses the hidden information of the same update interval to reuse decay
factors to avoid repeated calculations. Pre-filtering adopts a low-cost judgment condition to filter out unnecessary calculations to reduce the
average time-consuming.

as Fr. Under different N and Fr, we recorded the execution

time of simulating the network for 1,000 ms. To avoid spike

number drastic change, the impact factor of weight (i.e., C)

changed inversely according to N and Fr, thus stabilizing the

firing frequency of the output layer.

The experimental results are shown in Figure 5. The

horizontal and vertical coordinates of the chart were logarithmic

coordinates, which could easily see the time-consuming

growth trend. As predicted by the previous theory, the time

consumption of the four simulators increased approximately

square with the increase of the number of neurons (purple

dotted baseline). Without the learning rule, in the case of small

network scale (e.g., hundreds of neurons), the fastest simulator

was EvtSNN, otherwise, it was Brian2*. When Fr increased

(e.g., 20 Hz), compared with the clock-driven simulator,

the performance of EvtSNN and EDHA decreased relatively.

EvtSNN was the fastest framework at different N and Fr when

using the STDP learning rule. The speed of EvtSNN is 2.9–14.0

times that of EDHA under the same calculation flow.

Brian2* performs better when it comes to large-scale

network simulation, but the following points should be noted.

Firstly, the statistical time taken by Brain2* does not include

the time taken to generate the code, so it appears to be faster.

In many cases it is necessary to change the run parameters, at

which point Brian2 needs to recompile the code, so the extra

time taken to compile cannot be ignored. Secondly, the input

layer in the benchmark experiments had the same frequency

of pulse delivery for each neuron, and there was no channel

TABLE 2 Performance test results of simulators.

Simulator Method dt (ms) Time-

consuming

(s)

Output

spikes

BindsNET Clock-driven 1.0 2.353 499

0.1 22.486 508

0.01 231.169 510

BindsNET-GPU Clock-driven 1.0 4.068 499

0.1 38.851 508

0.01 383.747 510

Brian2 Clock-driven 1.0 0.667 587

0.1 3.169 519

0.01 30.284 511

Brian2* Clock-driven 1.0 0.312 587

0.1 3.035 519

0.01 29.915 511

Brian2GeNN Clock-driven 1.0 19.630 587

0.1 21.787 519

0.01 49.443 511

EDHA Event-driven None 0.439 510

EvtSNN(ours) Event-driven None 0.034 511

sparsity, so the event-driven framework, EvtSNN, did not take

full advantage of sparse computation. Finally, the time step(dt)

of the clock-driven framework in the benchmark experiments

Frontiers inNeuroscience 07 frontiersin.org

357

https://doi.org/10.3389/fnins.2022.944262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Mo and Tao 10.3389/fnins.2022.944262

FIGURE 5

Benchmark simulation results. (A–D) No learning rule, the firing frequency of input layer neurons is 2, 5, 10, and 20 Hz, respectively. (E–H) Using
the STDP learning rule, the firing frequency is 2, 5, 10, and 20 Hz, respectively.

is 1.0 ms, and decreasing dt for higher simulation accuracy will

increase the time consumption inversely; whereas EvtSNN has

no time step limitation and has a fixed time consumption and

high simulation accuracy.

4.3. Unsupervised training task on MNIST
dataset

In this section, the performances of several simulation

frameworks were compared on the unsupervised training

task of MNIST. The network mainly included the input

neuron layer, output neuron layer, feature synapses layer, and

suppression layer, which was inspired by Diehl’s paper (Diehl

and Cook, 2015). In EDHA and EvtSNN, the suppression

layer was replaced by direct lateral inhibition, because it

can be efficiently realized by the event-driven framework,

and the network structure after modification is shown

in Figure 6. The training code for Brian2 and BindsNET

come from https://github.com/zxzhijia/Brian2STDPMNIST and

https://github.com/BindsNET/bindsnet, respectively.

The MNIST dataset is image style data with 28 × 28 input

pixels and 60,000 training samples (LeCun et al., 1998). Before

being fed to the spike neural network, the image data should

be encoded in spikes format. In EDHA, to reduce the number

of input spikes and the amount of event-driven calculation, the

time encoding method was adopted, and each pixel was coded

into at most one pulse. The average pulse number of samples

FIGURE 6

Unsupervised training network structure. Input images are
encoded into spikes and then fed into the spiking neural
network. The network includes an input layer and an output
layer (excitation layer), there are synapses with learnable weights
between them. Any neuron in the output layer has inhibitory
connections with fixed weights to the others to achieve lateral
inhibition.

encoded in time encoding is far less than that of frequency

coding, which can greatly reduce the calculation and speed up

the simulation of the event-driven framework.

Unsupervised training configuration, simulation time, and

training results are shown in Table 3. The number of neurons

in the input layer is the same as the number of image pixels,

Frontiers inNeuroscience 08 frontiersin.org

358

https://doi.org/10.3389/fnins.2022.944262
https://github.com/zxzhijia/Brian2STDPMNIST
https://github.com/BindsNET/bindsnet
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Mo and Tao 10.3389/fnins.2022.944262

TABLE 3 Comparison of simulators performance in task of MNIST unsupervised training (1 epoch).

Simulator dt(ms) Encodemethod Sample duration (ms) Average spikes Accuracy (%) Training time (s)

Brian2 0.5 Frequency 350 2285.64 87.90 1.538E+05

Brian2* 0.5 Frequency 350 2285.64 87.90 1.479E+04

BindsNET 0.5 Frequency 250 1632.60 90.10 8.274E+04

BindsNET-GPU 0.5 Frequency 250 1632.60 88.58 3.288E+04

EDHA None Frequency 350 2285.64 89.71 9.128E+03

EDHA None Time 100 136.54 88.86 6.418E+02

EvtSNN(ours) None Frequency 350 2285.64 89.19 4.790E+02

EvtSNN(ours) None Time 100 136.54 89.59 5.637E+01

FIGURE 7

(A) Weight visualization after 1 epoch of unsupervised learning on the MNIST training set. (B) Confusion matrix for classification on the MNIST
test set. The network size used for training and testing is 784–400.

which is 784. The more neurons in the output layer, the better

the expressive ability of the network. When the output layer

has 400 neurons, the network training speed is fast and the

classification accuracy is acceptable. After one epoch of training,

the test accuracy of four simulators was similar. Training on the

EvtSNN framework took only 56 s, which was much faster than

other frameworks. In this task, EDHA and EvtSNN use the same

parameters, the latter is 11.4 times faster (with time encoding)

and 19.1 times faster (with frequency encoding) than the former.

Figure 7A is the weight visualization after 1 epoch of training. It

can be seen that the features of the image have been learned by

the network and stored in the weights. Figure 7B is the confusion

matrix on the test set, with an accuracy of 89.59%.

After turning on the GPU, with the support of PyTorch for

GPU, the speed of BindsNET-GPU is 2.5 times faster than that of

BindsNET. In this experiment, it is necessary to judge whether

the network has pulse output after inputting the sample, so

Brian2GeNN needs to compile and run to obtain the simulation

results. However, each compilation takes tens of seconds, which

is a considerable overhead, so no relevant experiments have

been done.

As shown in Figure 8, when the number of neurons in

the output layer is increased, the classification accuracy of the

network will be improved. Similar to the results of Diehl and

Cook (2015), our network can achieve 95.16% accuracy when

using 6,400 neurons, which demonstrates the feasibility of event-

driven simulation combined with time coding.

5. Discussion

5.1. Simulation accuracy

In the experiment of Section 4.1, the membrane potential

of neurons during the simulation of Brian2 and EvtSNN were

Frontiers inNeuroscience 09 frontiersin.org

359

https://doi.org/10.3389/fnins.2022.944262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Mo and Tao 10.3389/fnins.2022.944262

FIGURE 8

Classification accuracy of MNIST under di�erent output layer
scales. We use the EvtSNN framework combined with time
coding for simulation, and the accuracy is no less than the Brian
framework and frequency coding in Diehl’s paper.

FIGURE 9

Voltage curves of neurons in Brian2 and EvtSNN simulations.
The clock-driven framework Brian2 has higher simulation
accuracy when using smaller time steps (e.g., dt = 0.01 ms), and
its voltage is close to the result of the event-driven framework
EvtSNN. When using a larger time step (e.g., dt = 1 ms), the
simulation accuracy of Brian2 decreases and leads to changes in
the firing pattern.

recorded and plotted, as shown in Figure 9. It can be seen that

the voltage variation trend in the two simulations is basically

the same, but sometimes there are small errors that affect spike

delivery. Interestingly, even if the pulses do not match, the

voltage will tend to be consistent after a while. This may be

due to the decay of membrane potential. As time passes, the

subsequent state is mainly affected by the input pattern rather

than the initial state.

The simulation accuracy of the clock-driven method is

limited by the time step, which may cause a small number

of spike mismatches. However, in most cases, there are

similar voltage curves in clock-driven (Brian2) and event-driven

(EvtSNN) simulation, and the overall spike pattern is not much

different, which means that the error of clock-driven simulation

could be ignored many times. To sum up, there are some

simulation errors in the clock-driven method, which can be

ignored in most cases; the precision of the event-driven method

can be very high, and it can use network sparsity to reduce the

amount of calculation, which has a higher potential.

5.2. Quantitative analysis of sub-steps
acceleration

In this section, a dynamic code analysis tool (Clion Profiler)

was employed to count the time-consuming of each part.

With the 10 kHz sampling frequency and 100 times repeated

tasks (same as Section 4.1), the simulation time-consuming

composition is shown in Figure 10. Population computing

reduces the calculation time of sub-step (a) from 77.75 to 34.34

ms, while pre-filtering reduces the time consumption of sub-step

(c) from 76.3 to 0.86ms. It can be seen that the accelerating effect

of pre-filtering is commendable so that the time consumption

of sub-step (c) can be neglected. Even poor filtering in extreme

cases does not slow down the overall simulation because its

computational overhead is negligible.

5.3. Acceleration ability in multi-scale
network

To measure the contribution of each innovation in different

network scales, we combined the benchmark and ablation

experiment, and the results are shown in Figure 11. Firstly,

the acceleration effect of population calculation and pre-

filtering under different network scales is relatively stable,

reducing the time consumption by about 25 and 35%,

respectively compared with EvtSNN (base). Secondly, when

the average input frequency (Fr) of the neuron group is

higher than the output frequency, the delayed update term

can have some acceleration effect, otherwise, it will have

a negative effect. In addition, after code optimization and

rewriting, the speed of EvtSNN (base) is 2.6–4.5 times

that of EDHA under the same calculation flow. Finally,

EvtSNN using all optimization items is 2.9–14.0 times faster

than EDHA.

5.4. Limitations

Of course, there are some limitations to our framework.

First, as an event-driven framework, EvtSNN has poor

model compatibility, requiring the derivation of time-domain

Frontiers inNeuroscience 10 frontiersin.org

360

https://doi.org/10.3389/fnins.2022.944262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Mo and Tao 10.3389/fnins.2022.944262

FIGURE 10

Time-consuming components in simulation. Using Pre-filtering (+filter) avoids unnecessary computation and can significantly reduce the
time-consuming of sub-step (c). Enabling population computing (+popu) avoids repeated calculations and speeds up sub-step (a). (A) EvtSNN
(base), (B) EvtSNN (+filter), (C) EvtSNN (+filter+popo).

FIGURE 11

Time-consuming comparison chart. (A–C) EvtSNN time-consuming reduction after enabling popu, lazy, and filter, respectively. (D,E)
Time-consuming comparison of EvtSNN and EDHA with none/all optimizations.

equations and the solution of spike firing time. Secondly,

the pre-filtering formulation is only used for the neuronal

model used. However, pre-filtering formulas for other

neuronal models can draw on the derivation process in this

paper (3.5).

6. Conclusion and future work

Based on the SNN event-driven framework EDHA, a

simulator named EvtSNN is introduced. In this paper,

two innovations are proposed to speed up the simulation

Frontiers inNeuroscience 11 frontiersin.org

361

https://doi.org/10.3389/fnins.2022.944262
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Mo and Tao 10.3389/fnins.2022.944262

without any accuracy loss. Firstly, repeated calculations

are avoided according to the hidden information of the

population. Secondly, the unnecessary calculation is filtered

by the conditions derived from differential inequality. In

the benchmark experiment, without the learning rule, the

EvtSNN was the fastest in small network scale simulation

(hundreds of neurons). EvtSNN always kept the lead when

using the STDP learning rule. In the unsupervised training

task of MNIST, EvtSNN only took 56 s to complete one

epoch and reached 89.59% accuracy, which is 11.4 times faster

than EDHA.

Our work can be further improved. Firstly, large-scale

network simulation can be optimized in combination with the

clock-drivenmethod. Secondly, multithreading acceleration and

parallel computing can be used with the single-layer parallel

structure of Inception (Szegedy et al., 2015; Meng et al., 2021)

for population-level concurrent acceleration.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further inquiries

can be directed to the corresponding author/s.

Author contributions

LM proposed the idea of EvtSNN. ZT implemented

the code of the EvtSNN framework and performed the

experiments. Both authors participated in the writing of

the manuscript.

Funding

This work was sponsored by the Blue Project for the

University of Jiangsu Province 2021.

Acknowledgments

We would like to thank all the members of FutureX LAB of

Southeast University for their help and support.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,
et al. (2015). TrueNorth: design and tool flow of a 65 mW 1 million neuron
programmable neurosynaptic chip. IEEE Trans. Comput. Aided Design Integr.
Circuits Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Bautembach, D., Oikonomidis, I., Kyriazis, N., and Argyros, A. (2020).
“Faster and simpler SNN simulation with work queues,” in Proceedings of the
International Joint Conference on Neural Networks (Glasgow: Institute of Electrical
and Electronics Engineers Inc.). doi: 10.1109/IJCNN48605.2020.9206752

Davies, M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., et al.
(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Deng, S., andGu, S. (2021).Optimal Conversion of Conventional Artificial Neural
Networks to Spiking Neural Networks. Available online at: http://arxiv.org/abs/2103.
00476

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit
recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci.
9:99. doi: 10.3389/fncom.2015.00099

Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014). Neuronal
Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge:
Cambridge University Press. doi: 10.1017/CBO9781107447615

Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural
networks in python. Front. Neuroinformatics 2:5. doi: 10.3389/neuro.11.005.2008

Hazan, H., Saunders, D. J., Khan, H., Patel, D., Sanghavi, D. T., Siegelmann,
H. T., et al. (2018). BindsNET: a machine learning-oriented spiking neural

networks library in python. Front. Neuroinformatics 12:89. doi: 10.3389/fninf.2018.
00089

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proc. IEEE 86, 2278–2323.
doi: 10.1109/5.726791

Li, S., Zhang, Z., Mao, R., Xiao, J., Chang, L., and Zhou, J. (2021). A fast
and energy-efficient SNN processor with adaptive clock/event-driven computation
scheme and online learning. IEEE Trans. Circuits Syst. I 68, 1543–1552.
doi: 10.1109/TCSI.2021.3052885

Maass, W. (1997). Networks of spiking neurons: the third
generation of neural network models. Neural Netw. 10, 1659–1671.
doi: 10.1016/S0893-6080(97)00011-7

Masquelier, T., and Kheradpisheh, S. R. (2018). Optimal localist and
distributed coding of spatiotemporal spike patterns through STDP and
coincidence detection. Front. Comput. Neurosci. 12:74. doi: 10.3389/fncom.2018.
00074

Meng, M., Yang, X., Bi, L., Kim, J., Xiao, S., and Yu, Z. (2021). High-
parallelism Inception-like spiking neural networks for unsupervised feature
learning. Neurocomputing 441, 92–104. doi: 10.1016/j.neucom.2021.02.027

Mo, L., Chen, X., and Wang, G. (2021). Edha: Event-driven high
accurate simulator for spike neural networks. Electronics 10:2281.
doi: 10.3390/electronics10182281

Moradi, S., Qiao, N., Stefanini, F., and Indiveri, G. (2018). A scalable multicore
architecture with heterogeneous memory structures for dynamic neuromorphic

Frontiers inNeuroscience 12 frontiersin.org

362

https://doi.org/10.3389/fnins.2022.944262
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1109/IJCNN48605.2020.9206752
https://doi.org/10.1109/MM.2018.112130359
http://arxiv.org/abs/2103.00476
http://arxiv.org/abs/2103.00476
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1017/CBO9781107447615
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.3389/fninf.2018.00089
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/TCSI.2021.3052885
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.3389/fncom.2018.00074
https://doi.org/10.1016/j.neucom.2021.02.027
https://doi.org/10.3390/electronics10182281
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Mo and Tao 10.3389/fnins.2022.944262

asynchronous processors (DYNAPs). IEEE Trans. Biomed. Circuits Syst. 12, 106-
122. doi: 10.1109/TBCAS.2017.2759700

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient
learning in spiking neural networks: bringing the power of gradient-based
optimization to spiking neural networks. IEEE Signal Process. Mag. 36, 51–63.
doi: 10.1109/MSP.2019.2931595

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al.
(2019). “PyTorch: an imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems, Vol. 32 (Vancouver, BC).

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S., et al. (2019). Towards
artificial general intelligence with hybrid Tianjic chip architecture. Nature 572,
106–111. doi: 10.1038/s41586-019-1424-8

Pham, Q. T., Nguyen, T. Q., Hoang, P. C., Dang, Q. H., Nguyen, D. M., and
Nguyen, H. H. (2021). “A review of SNN implementation on FPGA,” in 2021
International Conferenceon Multimedia Analysis and Pattern Recognition, MAPR

2021 - Proceedings (Hanoi: Institute of Electrical and Electronics Engineers Inc.).
doi: 10.1109/MAPR53640.2021.9585245

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in
spiking neural networks: VGG and residual architectures. Front. Neurosci. 13:95.
doi: 10.3389/fnins.2019.00095

Shen, J., Ma, D., Gu, Z., Zhang, M., Zhu, X., Xu, X., et al. (2016).
Darwin: a neuromorphic hardware co-processor based on Spiking Neural
Networks. Sci. China Inform. Sci. 59, 1–5. doi: 10.1007/s11432-015-
5511-7

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and
efficient neural simulator. eLife 8:e47314. doi: 10.7554/eLife.47314.028

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al.
(2015). “Going deeper with convolutions,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (Boston, MA: IEEE
Computer Society), 1–9. doi: 10.1109/CVPR.2015.7298594

Frontiers inNeuroscience 13 frontiersin.org

363

https://doi.org/10.3389/fnins.2022.944262
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1109/MAPR53640.2021.9585245
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1007/s11432-015-5511-7
https://doi.org/10.7554/eLife.47314.028
https://doi.org/10.1109/CVPR.2015.7298594
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

TYPE Original Research
PUBLISHED 26 October 2022
DOI 10.3389/fninf.2022.883742

OPEN ACCESS

EDITED BY

Sharon Crook,
Arizona State University, United States

REVIEWED BY

Patrick K. Quoika,
Technical University of Munich,
Germany
Hans Ekkehard Plesser,
Norwegian University of Life Sciences,
Norway
Neslihan Serap Sengor,
Istanbul Technical University, Turkey

*CORRESPONDENCE

Erik De Schutter
erik@oist.jp

†These authors share first authorship
‡These authors share senior authorship

RECEIVED 25 February 2022
ACCEPTED 30 September 2022
PUBLISHED 26 October 2022

CITATION

Chen W, Carel T, Awile O, Cantarutti N,
Castiglioni G, Cattabiani A, Del
Marmol B, Hepburn I, King JG,
Kotsalos C, Kumbhar P, Lallouette J,
Melchior S, Schürmann F and De
Schutter E (2022) STEPS 4.0: Fast and
memory-e�cient molecular
simulations of neurons at the
nanoscale.
Front. Neuroinform. 16:883742.
doi: 10.3389/fninf.2022.883742

COPYRIGHT

© 2022 Chen, Carel, Awile, Cantarutti,
Castiglioni, Cattabiani, Del Marmol,
Hepburn, King, Kotsalos, Kumbhar,
Lallouette, Melchior, Schürmann and
De Schutter. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

STEPS 4.0: Fast and
memory-e�cient molecular
simulations of neurons at the
nanoscale

Weiliang Chen1†, Tristan Carel2†, Omar Awile2,

Nicola Cantarutti2, Giacomo Castiglioni2,

Alessandro Cattabiani2, Baudouin Del Marmol2, Iain Hepburn1,

James G. King2, Christos Kotsalos2, Pramod Kumbhar2,

Jules Lallouette1, Samuel Melchior2, Felix Schürmann2‡ and

Erik De Schutter1*‡

1Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan, 2Blue
Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland

Recent advances in computational neuroscience have demonstrated

the usefulness and importance of stochastic, spatial reaction-di�usion

simulations. However, ever increasing model complexity renders traditional

serial solvers, as well as naive parallel implementations, inadequate. This

paper introduces a new generation of the STochastic Engine for Pathway

Simulation (STEPS) project (http://steps.sourceforge.net/), denominated

STEPS 4.0, and its core components which have been designed for improved

scalability, performance, and memory e�ciency. STEPS 4.0 aims to enable

novel scientific studies of macroscopic systems such as whole cells while

capturing their nanoscale details. This class of models is out of reach for

serial solvers due to the vast quantity of computation in such detailed models,

and also out of reach for naive parallel solvers due to the large memory

footprint. Based on a distributed mesh solution, we introduce a new parallel

stochastic reaction-di�usion solver and a deterministic membrane potential

solver in STEPS 4.0. The distributed mesh, together with improved data

layout and algorithm designs, significantly reduces the memory footprint of

parallel simulations in STEPS 4.0. This enables massively parallel simulations

on modern HPC clusters and overcomes the limitations of the previous

parallel STEPS implementation. Current and future improvements to the

solver are not sustainable without following proper software engineering

principles. For this reason, we also give an overview of how the STEPS

codebase and the development environment have been updated to follow

modern software development practices. We benchmark performance

improvement and memory footprint on three published models with di�erent

complexities, from a simple spatial stochastic reaction-di�usion model, to

a more complex one that is coupled to a deterministic membrane potential

solver to simulate the calcium burst activity of a Purkinje neuron. Simulation

results of these models suggest that the new solution dramatically reduces the

Frontiers inNeuroinformatics 01 frontiersin.org

364

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.883742
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.883742&domain=pdf&date_stamp=2022-10-26
mailto:erik@oist.jp
https://doi.org/10.3389/fninf.2022.883742
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2022.883742/full
http://steps.sourceforge.net/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

per-core memory consumption by more than a factor of 30, while maintaining

similar or better performance and scalability.

KEYWORDS

STEPS, stochastic simulation, molecular neuroscience, HPC, supercomputing

1. Introduction

For several decades computational modeling has

progressively proven its importance in neuroscience research,

covering a wide range of research domains and disciplines:

from sub-cellular molecular reaction-diffusion dynamics to

whole-brain neural network simulations. Breakthroughs in

experimental methods and community-driven data sharing

portals have significantly increased the amount of available

experimental data, enabling the advance of complex data-driven

modeling and analysis. These efforts are further enhanced by

large collaborative projects such as the US BRAIN initiative

(Insel et al., 2013), and the EU Human Brain Project (Markram

et al., 2011; Amunts et al., 2016, 2019), where complex

computational modeling plays an essential role. The rapid

progress of neuroscience modeling brings critical advances to

our understanding of neuronal systems, yet unprecedented

challenges to simulator software development have emerged

from two primary directions: first, the need to simulate

neuronal functionalities across multiple spatio-temporal scales,

and second, the requirement of simulating such systems with

extraordinary efficiency.

1.1. The STEPS project and its
applications

The STochastic Engine for Pathway Simulation (STEPS)

project has evolved following the above trends over the years.

The STEPS project started as a mesoscopic scale stochastic

reaction-diffusion solution (Hepburn et al., 2012) driven by a

spatial variant of the well-known Gillespie Stochastic Simulation

Algorithm (SSA) method (Gillespie, 1977). Over the years,

serial STEPS has contributed to a wide range of research

domains, such as studies on long-term depression in cerebellar

Purkinje cells (Antunes and De Schutter, 2012; Zamora Chimal

and De Schutter, 2018), viral RNA degradation and diffusion

(Schelker et al., 2016), longitudinal anomalous diffusion in

neuron dendrites (Mohapatra et al., 2016), and calcium signaling

in astrocytes (Denizot et al., 2019). We gradually expanded

STEPS to support electrical potential calculation on tetrahedral

meshes with the EField solver (Hepburn et al., 2013), allowing

combined simulations of reaction-diffusion and membrane

potential dynamics on a single mesh reconstruction of neuronal

morphology. This solution was important for research that

showed that stochastic activation of ion channels, in particular

calcium-activated potassium channels, produces significant

variability in Purkinje cell dendritic calcium spike shape (Anwar

et al., 2013). However, it was soon clear to us that the serial

nature of STEPS was the major bottleneck for simulating

such complicated models; even a sub-branch of a Purkinje

neuron often took weeks to complete one realization of 500 ms

biological time. This issue was partially addressed in STEPS 3.0

by introducing the parallel operator splitting method to the

reaction-diffusion solution (Hepburn et al., 2016; Chen and

De Schutter, 2017), which aided research such as platform

development for automatic cancer treatment discovery (Stillman

et al., 2021). A parallel EField implementation supported by the

PETSc library (Abhyankar et al., 2018) was added to STEPS 3.1.

The parallel solution dramatically improved performance by

thousand folds compared to the serial counterpart, making it

possible to model a complete neuron with detailed morphology

and channel mechanisms (Chen et al., 2022).

1.2. The need of a new parallel solver

Moving to parallel STEPS has greatly improved performance

compared to the serial solution. However, as the hardware

and software of high-performance computing have advanced

in recent years, noticeable bottlenecks have been observed in

modeling applications with STEPS. The main objective of this

article is to identify these bottlenecks and address them with a

new parallel implementation.

For many scientific applications, the memory capacity

of High-Performance Computing (HPC) systems is one of

the main constraints for running simulations at scale. A

large number of today’s HPC systems have about 2~3GB

of main memory per core (Zivanovic et al., 2017). This

is an improvement compared to previous BlueGene-like

systems where memory capacity is typically ~1GB per core.

Current systems are increasingly heterogeneous with the

use of accelerators such as GPUs. The memory capacity of

such a system is significantly lower compared to what is

commonly available on host CPUs. In the case of Intel Knights

Landing processors (Sodani et al., 2016), the total capacity

is approximately 0.2GB per core. The next generation of

processors such as Intel Sapphire Rapids will most likely have

Frontiers inNeuroinformatics 02 frontiersin.org

365

https://doi.org/10.3389/fninf.2022.883742
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

a per-core memory capacity similar to the current generation.

This poses a significant challenge to application developers:

on the one hand the raw computing power is significantly

increasing with architectures like GPUs, while on the other

handmaintaining a lowmemory footprint becomes increasingly

important to achieve better performance.

Onemajor limitation of the existing parallel implementation

in STEPS comes from the mesh data architecture inherited

from the serial solution. While bridging the gap between serial

and parallel STEPS and making many non-parallel components

reusable, the serial nature of the design requires the complete

data of the whole mesh and the molecule state of each mesh

element to be stored in every computing core. This poses a

hard limit on the maximum model size determined by the

per-core memory availability, the model complexity, and the

mesh size. Thanks to support from the parallel solver, realistic

simulations with a large number of chemical reactions for a

great period of biological time can now be accomplished in a

reasonable computing time. However, this in turn raises research

interests in even more complicated models and more realistic

morphologies, reaching the limits of the implementation. The

memory constraints in modern HPC systems further amplify

such limitations.

The solution to this issue is a new parallel implementation

constructed on the foundation of a sophisticated distributed

mesh library, Omega_h (Ibanez and Roberts, 2018). Thanks to

the distributed nature of the mesh library and the redesigns of

other STEPS components, we are able to dramatically reduce the

memory footprint of the simulation while maintaining similar

or better performance and scalability.

1.3. Other solutions for spatial
reaction-di�usion simulations

Traditionally, spatial reaction-diffusion simulation solutions

are divided into two major categories, voxel-based and off-voxel

particle-based. Voxel-based simulators divide the geometry into

small voxels, where the Reaction-Diffusion Master Equation is

solved by variants of the Gillespie SSA method (Gillespie, 1977).

Example simulators in this category include STEPS (Hepburn

et al., 2012), MesoRD (Hattne et al., 2005), and NeuroRD

(Oliveira et al., 2010). Off-voxel particle-based solutions

represent eachmolecule in the system individually as sphere-like

physical entities, track the Brownian motion of each molecule in

a continuum space, and simulate molecular reactions caused by

collisions. Example simulators of this category include Smoldyn

(Andrews and Bray, 2004), MCell (Kerr et al., 2008), and

ReaDDy (Schöneberg and Noé, 2013). Solutions between these

twomajor categories also exist, for instance, Spatiocyte (Arjunan

and Tomita, 2010), which simulates individual molecule particle

movement with reactions on a hexagonal close-packed lattice.

Some early attempts of parallel spatial reaction-diffusion

simulation solutions have been reviewed in Chen and

De Schutter (2017). Here we report the latest developments in

the field since then. In the voxel-based simulator domain, apart

from STEPS 3.x in our previous report, Patoary et al. (2019)

further optimized the multi-threading Neuron Time Warp

solution, and achieved 5.5x speedup with 7 logical processors,

comparing to the single logical processor simulation. In the

off-voxel particle-based domain, the ReaDDy 2 simulator

reported an approximately sixfold speedup with 11 threads,

using single thread simulation as the baseline (Hoffmann et al.,

2019). The parallel implementation of Spatiocyte, pSpatiocyte

(Arjunan et al., 2020), reported a 7,686x speedup with 663,552

cores on the RIKEN K computer, compared to the 64 core

baseline simulation. It is worth noting that direct performance

comparisons of these simulators are often challenging, as

different theoretical solutions and model abstractions are

applied in the implementations.

1.4. Naming conventions and the
structure of the article

To avoid confusion, we will hereby call the non-parallel,

spatial STEPS solver “serial STEPS,” the existing parallel

implementation reported in Chen and De Schutter (2017)

“STEPS 3,” and the new parallel implementation supported by

Omega_h that we introduce in this paper “STEPS 4.” Note

that serial STEPS, STEPS 3 and STEPS 4 are all integrated

solutions of the STEPS 4.0 release, and the users are free

to choose any of them for their simulations based on the

research requirements.

In Section 2, we first describe our design principles and the

implementation details of STEPS 4, and then introduce some

software engineering techniques applied to the overall STEPS

project for maintainability and efficiency improvements. In

Section 3, we present the validations of the implementation with

a series of well-establishedmodels, followed by performance and

scalability analysis of results. In Section 4, we further discuss the

achievements, limitations and potential solutions of this study,

as well as the future development plans for STEPS 4 and the

STEPS project in general.

2. Methods

The STEPS development project follows three major

methodological principles. First, it aims toward the researchers.

STEPS attempts to provide a user-friendly modeling interface,

and to progressively reduce the need for manual coding efforts

with implementations of auxiliary supports. Second, we focus on

improving its performance, as this determines if the simulations

can be completed within the expected research time frame.

Frontiers inNeuroinformatics 03 frontiersin.org

366

https://doi.org/10.3389/fninf.2022.883742
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

Third, it aims to be future-proof. Since the first public release,

the STEPS project has more than 10 years of history. Over the

years, many new standards and solutions in programming and

software engineering have been established and become the new

standard in software development. Some of them have been

adopted in previous STEPS development, but more work is still

required to ensure that the software development infrastructure

is ready for future project expansions. The following

sections detail how these principles are practically applied in

the project.

2.1. Code modernization and
future-proofing

Although STEPS introduced many new features and

additions in the following years since its first release in 2012

the core coding components and style remained relatively

unchanged. With this in mind, in this work we have

implemented various changes in STEPS in general and

adopted modern software design principles to STEPS 4

in particular. All these changes have the aim to reduce

bugs, improve maintainability and usability of the code

and increase the performance of time-critical data structures

and routines.

First, we have adopted the C++17 standard for STEPS. This

allowed us to take advantage of modern programming

language features, increasing code expressiveness and

compactness through meta-programming techniques such

as SFINAE (Substitution Failure Is Not An Error). We

have also removed raw pointers in favor of references and

other safer data-passing and access strategies provided by

the C++ standard and the Guidelines Support Library1.

Second, we have reduced code branching and indirections

using meta-programming techniques, which streamline code

execution. Third, when choosing container data structures

we avoid C++ Standard Template Library (STL) associative

containers, which are known to be very inefficient in terms

of memory management and performance. The intrinsic

arborescent memory layout of std::map brings very poor

data locality that makes it unusable in computational kernels.

Using std::unordered_map is a better choice since it

uses a contiguous arrays to store the hash values, but its

implementation relies on std::list to store the values for

backward compatibility reasons of the API, which brings back a

data locality issue. Because the dataspace of the keys in STEPS 4

is made contiguous, the best data structure based on the STL is

std::vector<std::vector<>> because the data access

is O(1) and data locality, though still flawed, is a bit better

than std::unordered_map since the values of a key are

1 https://github.com/microsoft/GSL

FIGURE 1

Memory layout of the flat-multimap container in comparison
with a vector of vectors container constructed using the
Standard Template Library to store the following key-values:
0 → [a, b, c], 2 → [d]. The flat-multimap class
relies on 2 member variables, a2ab and ab2c. a is the top
element index, ab is an index to retrieve the data of a in ab2c.
Data are stored contiguously in flat-multimap to reduce
heap fragmentation and increase data locality. In contrast, data
stored in the STL container are more fragmented. With
flat-multimap, the values of key a are stored in the range
ab2c[a2ab[a]] and ab2c[a2ab[a + 1]] - 1. In this
example, values of key 0 are in ab2c[0, 2] i.e [a, b ,c], key 1 has
no value since a2ab[1] == a2ab[2], finally values of key 3 are in
ab2c[3, 3] i.e [d].

stored contiguously. Instead, we have designed a new optimized

data structure to maximize both access and data locality, the

flat-multimap.

Figure 1 illustrates the memory layout of the

flat-multimap container in comparison with a naive

STL implementation by employing a vector of vectors data

structure. The STL implementation exhibits poor data locality

as the number of heap allocations required is O(n) whereas

flat-multimap is O(1) as it always requires 2 allocations.

This gives flat-multimap several advantages over the

STL counterpart. First, it reduces heap fragmentation in the

memory. In addition, as the data are stored contiguously

in flat-multimap, data locality is greatly improved

and the solution is more cache-friendly. In exchange, the

flat-multimap container requires a fixed size and shape

upon creation, which can not be changed throughout the

simulation. However, this restriction is mostly irrelevant to

STEPS 4, as the sizes of the majority of data are determined and

fixed by the model.

With the increased complexity of a software, there is a

growing concern about introducing bugs in the code that remain

undetected. In the best case, these bugs will lead to crashes

during runtime. In the worst case, they may silently introduce

Frontiers inNeuroinformatics 04 frontiersin.org

367

https://doi.org/10.3389/fninf.2022.883742
https://github.com/microsoft/GSL
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

erroneous results and non-reproducible behavior. Although

STEPS runs an extensive validation set to try and ensure this

doesn’t happen, it is difficult to make sure that every base is

covered by such efforts. In an attempt to address this issue at least

partially, we introduced C++ vocabulary types meant to indicate

to the compiler the different entities used in a STEPS simulation

(e.g., species, membrane, channel, patch, etc., but also

tetrahedron, triangle, etc.).

A vocabulary type is a type whose name carries a specific

meaning in addition to its data. For example, an instance

of a class Width made of a floating-point value carries

both the value and the nature of this value, in opposition

to fundamental types like integers or floating-points. Usually

fundamental types don’t tell much about the meaning of

their instances. Vocabulary types can be used to create

interfaces comprehensible, expressive, and robust. For instance,

vocabulary types can improve functions like below:

void p r o c e s s _ l o c a l _ t e t r a h e d r o n (i n t i ndex) ;

In the signature of this function, most of the information

about the parameter is carried by the variable name and

function name, which the compiler cannot use. For the compiler,

process_local_tetrahedron is only a function that

takes a 32 bits integer in parameter. For the developer, this

integer is an index of a tetrahedron, local to the current process.

Vocabulary types allow us to transfer information traditionally

held by the name of the symbols to the typing system by

rewriting the signature of the function like this:

s t r u c t l o c a l _ t e t r a h e d r o n _ i d {
i n t v a l u e { } ;

} ;
void p r o c e s s (l o c a l _ t e t r a h e d r o n _ i d e n t i t y) ;

Thus, the compiler is now able to report an issue when the

index of one type is erroneously passed to a function expecting

another type.

Furthermore, by ensuring the code compiles with GCC,

clang, AppleClang and Intel OneAPI, we ensure that language

and system compatibility is maintained, further increasing code

safety. Numerous compilation flags have been added into our

build system, which allow us to spot and fix potential issues in

the code early in the development process. We have also moved

to a more modular build design where features can be enabled

via build configuration flags, which also benefits overall software

architecture.

Finally, we have tackled software sustainability beyond

code modernization. To improve developer confidence and bug

detection we have added continuous integration (CI) pipelines

into the review process. Proposed patches are automatically built

and tested before they can be merged into the development

trunk. We have also created a STEPS package for the Spack

(Gamblin et al., 2015) package manager. This not only

adds a software distribution channel for HPC systems but

also provides the developers with a comprehensive build

environment that allows them to conveniently test STEPS with

various dependency versions and build options. The choice of

the underlying libraries (see Section 2.2.2) plays an important

role in ensuring that STEPS remains well maintainable, and

easily extensible toward new features and use-cases while

continuing to support the latest hardware architectures and

parallel programming paradigms.

2.2. Implementing a parallel solver with
distributed mesh backend

2.2.1. Implementation criteria

To be able to make informed choices about the STEPS 4

implementation, we set early in the development a number

of criteria by which to make decisions. Clearly the first and

most important criterion is simulation runtime. The goal of the

STEPS 4 implementation is to develop a new efficient solution

for large-scale modeling with complex geometries. From a user’s

perspective, the most straightforward and important concern

is time-to-solution, how fast a simulation reaches a desired

stopping time. For parallel simulations, another important

concern is scalability. In high performance computing, parallel

scalability is commonly described by two notions, strong scaling

and weak scaling. The former describes runtime performance

at increasing number of cores and a fixed problem size,

while the latter scales the problem size with the number of

cores. In practice, the problem size of a STEPS production

simulation is often determined by the source materials. Thus,

we focus on strong scaling as our parallel performance criterion.

STEPS 4 is designed mainly for simulations that run on high

performance computing clusters. As mentioned previously, one

key characteristic of modern clusters is the large amount of

computing cores together with the limited amount of per-

core memory, thus memory footprint management is essential

to support large scale simulations. We regard it as our third

implementation criterion.

These criteria often affect each other in a simulation. For

instance, the reduction of memory footprint could substantially

improve the efficiency of memory caching, and further improve

scalability. Therefore, we do not focus on an individual criterion,

but consider them as a whole when making implementation

decisions.

2.2.2. Prototyping STEPS 4

Choosing the distributedmesh library with the most suitable

abstractions and best performance properties is vital for the

success of STEPS 4. This library is the backbone of the

whole implementation, providing fundamental data layout and

access functionalities, which tightly associates with the criteria

Frontiers inNeuroinformatics 05 frontiersin.org

368

https://doi.org/10.3389/fninf.2022.883742
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

discussed above. Besides performance considerations, from a

developer’s perspective, the mesh library should also provide a

rich and extendable API that can be connected with other STEPS

components with ease. Furthermore, while STEPS 4 mainly

targets CPUs, the algorithms themselves could in principle be

implemented on other hardware architectures and the right

abstraction layer should allow a relatively smooth transition

toward supporting shared-memory parallelism or GPUs.

To investigate the advantages and drawbacks of different

distributed mesh libraries, we used them to implement a series

of stand-alone mini-applications to cover a wide range of STEPS

functionalities, from simple mesh importing and exporting in a

distributed manner, to a functional reaction-diffusion solution

integrated with various validations and use case models. These

mini-applications were gathered in a library named Zee. Using

the Zee library we were able to investigate how different

components of STEPS, for example, the operator splitting

method, can be implemented on top of different distributed

mesh libraries, and to investigate the coding flexibility as well as

the performance of our implementations. These investigations

provided us essential insight for the choice of a suitable

distributed mesh library for STEPS 4, and prototypes for the

actual implementation.

We put our evaluation focus on two distributed mesh

library candidates, Omega_h (Ibanez and Roberts, 2018) and

the DMPlex module from the PETSc library (Abhyankar et al.,

2018). Both libraries provide very well-suited features and

showed promising performance. The choice of library, however,

depends on factors beyond pure technical considerations. On

the one hand, PETSc seemed a natural choice since STEPS 3’s

parallel EField solver already uses PETSc as a backend. Choosing

PETSc’s DMPlex would eliminate the need for an extra library,

as well as the associated data conversions and transfers between

libraries. Additionally, PETSc is an extremely well-known and

supported library with a large active community. On the other

hand, DMPlex is a minor component in the PETSc framework,

supported only by few developers and with a small user

community. Since the Zee mini-applications revealed that not

all functionalities required in STEPS 4 are currently present in

DMPlex, and some of which have considerably low priority on

the PETSc development roadmap, our choice had to fall on

Omega_h.

Omega_h is a C++14 library providing highly-scalable

distributed adaptive meshing primitives. Distributed-memory

parallelism is natively supported through Message Passing

Interface (MPI), while on-node shared-memory parallelism

is supported via Kokkos (Trott et al., 2022), a C++ library

that provides abstractions for parallel execution with

OpenMP on CPU and CUDA on GPU. Omega_h ensures

a fully deterministic execution. Given the same mesh, global

numbering and size field, mesh operations produce the exact

same results regardless of parallel partitioning and ordering.

This does, however, not extend to changing compilers or

hardware. Omega_h is being actively developed and is used for a

number of ongoing projects. Moreover, its codebase being much

smaller than PETSc, it allowed us to have a comprehensive

overview of its capabilities. Despite the lack of documentation,

the source code is concise and self-explanatory. Contributing to

Omega_h has been much easier than it would have been with

PETSc. We were for instance able to add support to the MSH

multi-part file format version 4 into Omega_h quite easily.

Omega_h’s modern C++ interface was a significant

advantage over PETSc as its ease of use allowed us to implement

compact yet expressive mini-applications very quickly. We

found that the C-oriented API of PETSc makes the library hard

to comprehend and is much more error prone than Omega_h’s.

Additionally, the data management policies of DMPlex are quite

complex and require a deep knowledge of PETSc internals as

entity data is not directly exposed to the user as it is in Omega_h.

This leads to the code being more cluttered and difficult to

maintain.

2.2.3. Solver components and the simulation
core loop

Fundamentally, STEPS 4 adopts the same operator splitting

solution for reaction-diffusion simulation as in STEPS 3

(Hepburn et al., 2016), but with significant differences in the

implementation details due to its distributed nature and other

optimization goals.

In STEPS 3, the data and operators are intermixed in

the solver, and data that are associated may be stored

sparsely due to the data structures inherited from previous

STEPS implementations. For instance, the molecule state of

a tetrahedron and the states of its neighboring tetrahedrons

may be stored far away from each other in memory. This

is because the molecule state is stored sparsely in individual

tetrahedrons together with other data such as mesh connectivity

and kinetic processes. This means operator visits to the molecule

state often require significant address jumps across memory,

decreasing cache efficiency. The bundle of operators and data

also make their optimization cumbersome, as new operator

solutions or new data structures can not be implemented directly

as independent alternatives.

In STEPS 4 one critical implementation change is the

separation and encapsulation of different solver components.

The two major components are: SimulationData, the data that

represents the current state of the simulation, and the operator

collection, which are applied to the data so that the simulation

evolves to the next state. The simulation state consists of the

molecule state M, where the distribution of molecule species

is stored and updated, the kinetic process state K, which stores

and maintains all kinetic processes such as reactions and surface

reactions in the simulation and the information of each kinetic

process, including the propensity and update dependencies, and

finally the voltage state V of the mesh if voltage-dependent

Frontiers inNeuroinformatics 06 frontiersin.org

369

https://doi.org/10.3389/fninf.2022.883742
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

surface reactions and channels are expressed in the model. The

voltage state contains the electrical potential at each vertex of

the mesh, as described in Hepburn et al. (2013). The operator

collection consists of the operators needed for each step of the

simulation core loop, mainly, the reaction SSA operator, the

diffusion operator and the PETSc EField operator. As the state

data is encapsulated and accessed by operators via a unified

interface, new operators can be easily developed and provided

to the solver as alternative solutions. The encapsulation of

simulation states M, K and V also allows the state data to be

stored contiguously in memory space, thus improving caching

efficiency of the solution.

As mentioned in Section 1, while the kinetic processes

and their dependency graphs are partitioned and distributed

among computing cores in STEPS 3, all mesh elements and

their molecule states are duplicated, leading to high memory

consumption and communication overhead when dealing with

large scale models. In STEPS 4, the mesh itself is partitioned

and distributed, thus each computing core only operates on the

data for the sub-domain problem of its associated partition.

Ghost layers were implemented for partition boundaries so

that simulation states of the boundaries can be synchronized

through regular data exchange. This solution ensures a relatively

consistent memory footprint for any given sub-domain problem

with a fixed partition size, regardless of the size of the overall

problem.

Figure 2 schematically illustrates the simulation core loop.

When the simulation enters the core loop that advances the

simulation state from time Tstart to Tend = Tstart + 1T,

the simulation period is divided into multiple time windows,

whose period is either determined by a user-defined EField

period 1TEField if the EField operator is involved, or equals 1T

otherwise.We call this the EField timewindow. Each EField time

window is then further subdivided by a period of 1TRD, where

1TRD is determined by the mesh and the diffusion constants

of the simulated model. This is the reaction-diffusion (RD) time

window.

At the beginning of each RD time window, the reaction

SSA operator is applied to the simulation data repeatedly. Each

time, the SSA operator first randomly selects a kinetic process

event kp from the kinetic process state K and the event time 1t

according to the SSA solution described by the operator and the

propensities of the kinetic processes. It then applies the molecule

changes caused by the event to the molecule state M, updates

the propensities of all kinetic processes that depend on kp in K,

and advances the simulation state time for1t. The SSA iteration

stops when the state time reaches the end of the RD time

window. As explained in Hepburn et al. (2016) and Chen and

De Schutter (2017), the SSA operator is executed independently

by each MPI rank without the need for any communication.

At the end of the RD time window, the diffusion operator

computes the number of molecules that should diffuse out

of each tetrahedron for the time window period 1TRD. For

this calculation the diffusion rates of each diffusive molecule

species must be taken into account. The operator then removes

them from their original tetrahedrons and redistributes them to

their target tetrahedrons. The redistribution is stored in a delta

molecule state 1M, which is then synchronized by Omega_h

across all simulation ranks. After the synchronization, each rank

applies the changes in 1M to M for the tetrahedrons it owns,

and updates the propensities that are affected by the changes.

This completes the operations in a single RD time window.

The solver then repeats this process until the state time

reaches the end of the EField time window, at which point the

EField operator evolves the voltage state V for the period of

1TEField, based on the electric currents computed from M and

K. This concludes the operations in a EField time window.

If 1TEField < 1T the EField time window process is

repeated, otherwise the simulation core loop is completed and

the user regains the simulation control for data inquiry.

2.2.4. Optimization on kinetic process
dependency graph

A kinetic process dependency graph describes the update

dependency of each kinetic process in the system. Technically,

it returns a list of kinetic processes whose propensities must

be updated when a certain kinetic process is selected and

applied by the SSA operator. Under the operator splitting

framework, the reactions in each tetrahedron are independent

until the diffusion operator is applied. Therefore, it is possible to

divide the dependency graph into independent subgraphs and

apply the SSA operator to them separately. This independent

graph optimization further compresses the targeting domain

of the SSA operator, providing potentially substantial gains in

simulation performance.

An example of the optimization for a small model is depicted

in Figure 3. This model has two tetrahedrons, each with three

volume reactions. One tetrahedron also contains four surface

reactions. Each colored node in the figure represents a kinetic

process. An arrow goes from one node to the other if the

occurrence of an event of the first entails a change in propensity

of the second. The whole dependency graph of the model can

therefore be subdivided into two independent subgraphs, in red

and blue as shown in the figure. Each subgraph can be evolved

freely by a SSA operator without the other’s interference in a RD

time window period.

Note that this optimization heavily relies on the hit rate of

drawing SSA events that take place within the time window

in each subgraph. Its advantage diminishes and eventually

becomes a burden if most of the drawn events happen

beyond the time window and are discarded. This hit rate

positively correlates to the duration of the time window, the

molecule concentrations and the reaction rates. Therefore, this

optimization favors simulations with a large RD time window,

high molecule concentrations and highly active reactions, but

Frontiers inNeuroinformatics 07 frontiersin.org

370

https://doi.org/10.3389/fninf.2022.883742
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

FIGURE 2

Schematic representation of the STEPS 4 simulation core loop. In this example, when running the simulation from Tstart to Tend, the simulation
time is first split into 1TEField time windows (blue ticks). Each 1TEField time window is further subdivided into 1TRD time windows (red ticks).
Kinetic process events are represented as green ticks, their number in each time window depends on the propensities of the reactions. Current
state time is denoted t. The leftmost Run(Tend) box is the entry point into the core loop, it splits the time in 1TEField time windows. The second
box (Run_EF(TEFend)) runs a full EField time step until TEFend, the end-time that was passed from the first loop. It first subdivides the EField time
window in 1TRD time windows and calls Run_RD for each one. When state time t reaches TEFend, it runs the EField operator. The third box
(Run_RD(TRDend)) represents one RD time window, it is composed of the SSA operator and the di�usion operator. The SSA operator first selects
and applies kinetic processes until the state time reaches TRDend; it’s in this loop that the state time is updated. The di�usion operator is then
applied: it computes the changes 1M to the molecule state and applies them. Each of these steps can involve the modification of the simulation
data. When it does, a letter with a colored background is present to its right. The letter M with an orange background signifies that this operation
modifies the molecule state; the letter K with a yellow background signifies that it modifies the kinetic process state; and the letter V on a purple
background signifies that it modifies the voltage state. Finally, steps with a darker background and a dashed outline involve MPI communication
between processes.

disfavors simulations with a small time window, low molecule

concentrations and less active reactions.

In the STEPS 4 parallel scheme, a simulation core loop

is completed after every MPI process finishes its operations,

therefore the overall performance of the solution is determined

by the slowest computing core. Due to concentration gradients

as well as spatial variations of channel density in the model, large

scale simulations with complex morphology may exhibit high

variability of event drawing hit rate among computing cores. In

this case, switching off the independent graph optimization is

preferred.

2.2.5. EField solver improvements

Generally, in order to obtain the most accurate results and

the best performance, the solver and preconditioner in PETSc

need to be tailored to the particular simulation. Previously

STEPS 3 used by default the Conjugate Gradient iterative

solver (CG) and the Geometric Algebraic Multigrid (AMG)

preconditioner. However, performance tests have consistently

shown that they do not scale well for large problems. Thus, for

STEPS 4 we replaced solver and preconditioner with the widely

used Pipelined Conjugate Gradient method (KSPPIPECG)

and the Point Block Jacobi preconditioner (PCPBJACOBI),

respectively. The same configuration was also applied to STEPS 3

as the new default option. We have not performed a thorough

investigation on solvers and preconditioners as it was out of the

scope of the present paper.

Another improvement is the distribution of PETSc vectors

and matrices for the EField computation. STEPS 3 distributes

them equally among computing cores without considering if the

mesh elements represented by the matrix partition are owned

by the same core. This causes owner mismatches between the

EField solution data and the reaction-diffusion solution data,

which need to be resolved by expensive cross process data

exchanges. In order to avoid this issue, STEPS 4 assembles the

vectors andmatrices so that each processor only takes care of the

degrees of freedom corresponding to the sub-part of the mesh

that is owned locally on this processor. This greatly increases

data locality and performances since reaction-diffusion and the

EField solvers exchange data only locally.

2.2.6. Coupling with other STEPS components

Setting up a simulation in STEPS 4 is mostly done in

the same way as in STEPS 3: it involves the declaration of

Frontiers inNeuroinformatics 08 frontiersin.org

371

https://doi.org/10.3389/fninf.2022.883742
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

FIGURE 3

Structure of the reaction dependencies graph on a mesh with two connected tetrahedrons labeled 0 and 1. (A) The two tetrahedrons and the
reactions they contain. Both tetrahedrons contain reactions A → B, B → C and C → A. Tetrahedron 0 also contains four surface reactions:
Species C can be transferred back and forth to a triangle (Ctet → Ctri and Ctri → Ctet); and species C can cross the membrane back and forth as a
GHK current (since the amount of C outside of tetrahedron 0 is not modeled, it is equivalent to creating and removing species C). (B,C) The
corresponding reaction dependencies graphs. Each colored node represents a kinetic process. An arrow goes from one node to the other if the
occurrence of an event of the first entails a change in propensity of the second. In blue and red are the extracted connected components of the
graph.

a biochemical model and a description of the geometry in

which the model will be simulated. The biochemical model

is composed of species, channels, reactions, diffusion rules

and currents that are grouped by volume or surface systems.

Although most of the biochemical modeling features available

in STEPS 3 are also available in STEPS 4, surface diffusion rules

are not yet supported. Internally, the same classes are used for

declaring a biochemical model in STEPS 3 and in STEPS 4.

While in STEPS 3 tetrahedral meshes were managed with the

TetMesh class, a different class (DistMesh) was added for

distributed meshes in STEPS 4. This class inherits from the same

Geom base class as TetMesh but acts as a wrapper around

the Omega_h::Mesh distributed mesh class. Classes related

to the declaration of compartments (DistComp), patches

(DistPatch) and membranes (DistMemb) in a distributed

mesh are also different from the ones used in STEPS 3. Most

notably, as explained in the previous section, while tetrahedral

compartments in STEPS 3 are usually built from a list of

tetrahedron identifiers, STEPS 4 makes use of physical tags

in distributed meshes to create distributed compartment and

distributed patches. On solver creation, theDistTetOpSplit

distributed solver class in STEPS 4 initializes the relevant

data structures from the biochemical model and geometry

description classes. Although this type of initialization through

the python API corresponds to the most frequent use case,

the distributed solver can also be used and initialized directly

in C++, without requiring the creation of STEPS biochemical

model and geometry classes.

2.3. Validation strategy

In order to ensure accurate results, STEPS 4 is validated

on a series of published models. We extend the validation

pack described in Hepburn et al. (2012, 2016) to validate the

reaction-diffusion solver and the basic functionalities of other

data structures introduced in the new implementation. The

faster validations are integrated into the STEPS release and used

in continuous integration while the others are available in the

STEPS validation repository 2.

The package also contains fast validations with the EField

solution. However, since these models are stochastic models

designed to run in a reasonable amount of time, they each

contain a small tolerance that could mask minor numerical

2 https://github.com/CNS-OIST/STEPS_Validation

Frontiers inNeuroinformatics 09 frontiersin.org

372

https://doi.org/10.3389/fninf.2022.883742
https://github.com/CNS-OIST/STEPS_Validation
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

inaccuracies. So as to rigorously test our new methods and

implementations in STEPS 4 and ensure even no small loss of

numerical accuracy, we go further in this study and investigate

STEPS 4 in a series of models, comparing either to STEPS 3

results or analytical solutions to a high degree of accuracy.

Validating stochastic simulation solutions presents several

challenges. Often, analytical solutions exist only for a few trivial

problems and, even in those cases, the stochastic nature of the

simulator makes results fluctuate around the analytical solution

depending on the particular seed provided to the random

number generator (RNG). Unfortunately, fixing the seeds and

numerically comparing STEPS 3 and STEPS 4 results is not a

meaningful strategy since the two simulators use RNG streams

in different ways. Thus, we validate STEPS 4 in a statistical sense.

2.3.1. Statistical analysis

We extract meaningful statistical data from multiple

realizations with different RNG seeds and compare either with

STEPS 3 results or the analytical solution when available.

The general steps are:

• Record relevant trace results such as the voltage traces in a

particular location in the mesh from multiple realizations

of STEPS 3 and STEPS 4 simulations.

• Refine traces to extract key features of the simulation, e.g.,

the frequency of a spike train.

• Collect refined features among the various simulation runs

and statistically compare STEPS 3 and STEPS 4.

The choice of what must be recorded and what are the

relevant features depends on the particular model at hand.

In literature, many goodness of fit tests exist. One of themost

used is the Kolmogorov-Smirnov test (KS test) (Massey Jr, 1951).

It is demonstrated that it produces conservative results in case

of discrete distributions (Noether, 1963). Since our analysis also

consider peak time stamps which are inherently discretized, we

decide to use the Cramér-von Mises test (CVM test) (Cramér,

1928; Von Mises, 1928) for our statistical comparisons between

STEPS 3 and STEPS 4, utilizing the Scientific Python (SciPy)

library. The null hypothesis is that the two samples come from

the same distribution. Perhaps a common misconception is that

a p-value below a chosen level such as 0.01 means that the null

hypothesis must be rejected and, therefore, the distributions are

different. In fact, when comparing two identical distributions

the p-value is expected to be uniformly distributed on [0,1],

and so if this test is repeated many times one would expect to

see a p-value below 0.01 1% of the time. In our tests, where

multiple distributions are compared within one model, we reject

the null hypothesis only if there is strong evidence that p-values

are consistently low, evidenced by significantly more than 1% of

the p-values generated being below the 0.01 level.

Conversely, when traces are relatively smooth and the

features are few, we study directly the confidence intervals at a

99% confidence level. In this case, we reject the null hypothesis

if the mean of the STEPS 3 traces does not lie in the confidence

interval of the STEPS 4 traces or vice versa.

3. Results

3.1. Validations

As STEPS 4 contains multiple operator components

targeting different sub-systems, such as molecular reaction-

diffusion and EField, we carefully select the models and

independently validate each component before testing the whole

implementation on a complex, real case scenario.

3.1.1. Validations of the reaction-di�usion
solver

As mentioned in Section 2.3, the reaction-diffusion

validations have been discussed in previous publications and

are included in the STEPS validation package. STEPS 4 passes

all the validations in the package. For the sake of brevity we do

not provide detailed analysis of these validations here.

3.1.2. Validations of the EField solver

To validate the EField solver we use the Rallpack models

described in Bhalla et al. (1992), focusing on Rallpack 1 as a basic

validation of our solution, and we introduce a new statistical

analysis of a stochastic implementation of Rallpack 3.

• Rallpack 1 simulates a simple uniform unbranched passive

cable. No randomness is involved in this validation and

STEPS 4 results are compared directly to the analytic

solution.

• Rallpack 2 model solution is equivalent to Rallpack 1

but based on branching morphology. This mathematical

morphological description is in practice very difficult to

capture realistically in a mesh (Hepburn et al., 2013), and

since Rallpack 1 already provides a basic passive validation

we do not provide a Rallpack 2 solution here.

• Rallpack 3 examines the interaction between the EField

system and the stochastic channel activities of the well-

known Hodgkin-Huxley model (Hodgkin and Huxley,

1952). No analytical solution is available for this test, thus

we compare STEPS 3 and STEPS 4 solutions using the

statistical validation framework illustrated in Section 2.3.1.

3.1.2.1. Rallpack 1

Rallpack 1 (Bhalla et al., 1992) focuses on the validation of

the EField solver in a passive model, with no active properties. It

consists of a leaking, sealed straight cable with a current injection

Frontiers inNeuroinformatics 10 frontiersin.org

373

https://doi.org/10.3389/fninf.2022.883742
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

TABLE 1 Parameters for rallpack 1.

Parameters Value

Leak conductance 0.25 S/m2

Reversal potential −65mV

Resistance 1Ω

Current 0.1 nA

Cable length 1mm

Membrane capacitance 0.01 F/m2

EField time step (1TEField) 5 µs

Number of tetrahedrons 1,135

(J) at zmin. Rallpack 1 setup is depicted in Figure 4A. Current

is injected in a leaking cable with sealed ends. Table 1 provides

the parameters. A leak channel is introduced on every surface

triangle. This is slightly different from the analytic solution setup

where the leak is uniformly distributed along the cable. However,

the effects should be negligible if the mesh is sufficiently refined.

Without loss of generality, we can focus on the voltage traces

at the extremes of the cable, where the voltage taps (V taps)

are located. This is because the equations are linear and all the

intermediate solutions are super-positions of the results at the

extremities.

Figure 4 visually compares STEPS 4 results with the analytic

solution. As expected, there is close agreement with mean

square errors (mse) mseVzmin
= 0.069mV2 and mseVzmax

=

0.019mV2. STEPS 3 presents almost exactly the same results.

When comparing STEPS 3 with STEPS 4 on the same mesh, the

mse is < 10−15mV2 for both Vzmin and Vzmax and is due to

numerical precision (results not shown).

Convergence to the analytical solution through

mesh refinement proceeds as expected with an initial

steep drop followed by a plateau at numerical precision

(Supplementary Section S2.1).

3.1.2.2. Rallpack 3

Rallpack 3 is an active model that builds on Rallpack 1

by adding Hodgkin-Huxley sodium and potassium channels,

and is simulated on the same simple, uniform, unbranched

cable geometry. The model tests ion channel activation as

well as spike propagation. Rallpack 3, when run stochastically,

presents sources of randomness and the problem cannot be

solved analytically. A statistical analysis is employed to study this

simulation and validate the code.

The degree of randomness strongly depends on the

single-channel conductance and resulting density of

channels, which are parameters that must be introduced

when running the model stochastically. Using biologically-

plausible values for single-channel conductance, with 20 pS

the Rallpack 3 model demonstrates a significant number

of failed spikes as illustrated in Figure 5A. Even if this

behavior is an interesting stochastic effect, it strongly hinders

statistical analysis. For this reason, we chose single-channel

conductance of both sodium and potassium channels to

be 4 pS. This almost entirely extinguishes failed spikes

whilst maintaining biological plausibility. Figures 5B,C

and the additional studies in Supplementary Section S2.1.1

were produced using single-channel conductance

of 4 pS.

The two sample sets consist of 10,000 simulation runs each

performed with STEPS 3 and STEPS 4 respectively. As for

Rallpack 1, we record voltages at the extremes of the cable (Vzmin

Vzmax) (the raw traces).

The voltage trace at zmin presents a high peak of ~40 mV

followed by a regular spike train with peaks just surpassing 20

mV. The spike train at zmax has no bigger spike at the beginning

and spike peaks are above 40 mV. For both traces valleys are at

~-65 mV and frequencies are ~69 Hz. The simulated time span

is 250 ms.

Given that traces are spike trains with, possibly, a single

greater initial peak, the key features extracted and statistically

analyzed are:

• peak heights;

• peak timestamps.

The null hypothesis is that STEPS 3 and STEPS 4 simulation

results come from the same population, in other words, the

simulations are identical. We use the CVM test to refute it

with a 99% confidence level. In order to study uncorrelated

events we divide the two sample sets into 100 batches each

with 100 samples and we compare each STEPS 3 batch with

each STEPS 4 batch, producing a set of p-values. Thus, for

each key feature (e.g., time stamp of peak number 3) we

obtain 10,000 p-values. If the two initial samples are taken

from the same population, p-value distributions are expected to

be uniform (Murdoch et al., 2008). If the number of p-values

below 0.01 is higher than would be expected from a uniform

distribution, we refute the null hypothesis. Figures 5B,C present

the p-value distributions for peak heights and time stamps as

boxplots. For the sake of clarity and brevity here we show

only the results for the traces at zmax. At zmin the results are

qualitatively identical. We briefly recall here that the boxplot

of a uniform distribution of p-values is centered around 0.5,

the median is at 0.5, min and max are at 0 and 1 and Q1 and

Q3 quartiles are at 0.25 and 0.75, respectively. All the boxplots

follow this trend.

For these reasons, we cannot refute the null hypothesis

and we accept that the two samples are taken from the same

population.

Supplementary Section S2.1.1 offers a thorough overview

of the peak statistics (distributions, means, and standard

deviations) while Supplementary Section S2.2 reports all the p-

value distributions in detail.

Frontiers inNeuroinformatics 11 frontiersin.org

374

https://doi.org/10.3389/fninf.2022.883742
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

FIGURE 4

(A) The general setup for Rallpack 1. Current is introduced into a leaking cable with sealed ends. Voltage is recorded at the extremities (V taps).
(B) The voltage di�erence between the analytic solution and STEPS 4 at zmin and zmax. The inset shows the overlapping curves.

FIGURE 5

(A) Voltage traces at zmin and zmax for one realization of the simulation with STEPS 4. Failed spikes can occur with single-channel sodium and
potassium conductances of 20 pS, as shown, but are eliminated with 4pS. (B) With single-channel conductance of 4pS, boxplots for each peak
height at zmax of the p-values generated by dividing the two samples in 100 batches of 100 runs and then comparing them with the CVM test. As
expected, the distributions are uniform. (C) The same analysis for the peak heights. Their intrinsic discretization does not a�ect the p-value
distributions.

3.1.3. Validation of the reaction-di�usion and
EField combined solution

Finally, we validate all components of the STEPS 4 simulator

together by combining reaction-diffusion and EField features

and their possible interactions.

3.1.3.1. The calcium burst model

A previously published calcium burst model (Anwar

et al., 2013) is selected for the full validation. It contains

most of the modeling features supported by STEPS 4, such

as regular molecule reaction-diffusion events, ligand-based

channel activation and electric potential dynamics. Thus, it

contains all the mechanics required to validate STEPS 4 as a

whole. Minor modifications are applied to the original model

in Anwar et al. (2013) in order to run on a full dendritic mesh,

as opposed to the sub-branch mesh used in previous studies.

Figure 6A illustrates the full dendritic morphology. The full

dendritic mesh was created from reconstruction retrieved from

Frontiers inNeuroinformatics 12 frontiersin.org

375

https://doi.org/10.3389/fninf.2022.883742
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

FIGURE 6

(A) The Purkinje dendrite mesh reconstruction for both calcium burst models. The mesh consists of 853,193 tetrahedrons. Dendrite elements
are further classified and annotated into two components, representing smooth dendrite and spiny dendrite. (B) Raw voltage traces for 100 runs
of STEPS 4 at the four di�erent spatial locations indicated by a–d in (A). After the first depolarization to ~18 ms the systems starts to behave
stochastically coinciding with calcium-activation of potassium channels.

NeuroMorpho.Org (Ascoli et al., 2007), data ID: NMO_35058

(Anwar et al., 2014)3. The calcium burst model is also used

to analyze the performance of the implementation in Section

3.2.

In order to sample a good representation of the dendritic

tree we recorded voltage at the four disparate points shown in

Figure 6A. Two points (a and b) were recorded from the smooth

part of the dendrite, characterized by high diameter and low

capacitance, and two (c and d) in separate regions of the spiny

dendrite, characterized by low diameter and high capacitance.

Figure 6B presents these traces for 100 runs of STEPS 3. In

brief and as described in Anwar et al. (2013), AMPAR channel

activation by a simulated glutamate burst beginning at 10 ms

gives a strong depolarization, and corresponding activation

of Cav2.1 P-type calcium channels gives rise to a peaks at

~18 ms and ~28 ms. Calcium activity activates mslo BK

and SK2 calcium-activated potassium channels, producing the

repolarization.

As for Section 3.1.2.2, our null hypothesis is that the two

simulators run the same simulation and results are picked from

the same population. We try to refute this statement, computing

the confidence intervals of the averages of the traces at 99%

probability. By definition, the confidence intervals mark a region

where the trace average lies with 99% probability. Thus, if

the average of the traces of the STEPS 3 set does not lie in

between the confidence intervals of the STEPS 4 set or vice

3 http://neuromorpho.org/neuron_info.jsp?neuron_name=10-2012-

02-09-001

versa we reject the hypothesis. Figure 7 presents average and

confidence intervals for all the four traces. Since confidence

bands are extremely narrow, each picture is also shown with

the average of the averages removed. This greatly enhances the

small differences that exist between the two simulation results.

STEPS 4 averages almost always lie in the confidence intervals

of the STEPS 3 simulation set and vice versa. For these reasons

we cannot reject the null hypothesis and we consider STEPS 4

validated even in this complex scenario.

3.2. Performance

We evaluated the performance of the implementation using

three models with gradually increased complexity to cover

the use cases from a wide range of research interests. The

first one is a simple reaction-diffusion model on a simple

cuboid mesh (we term the "simple" model). In the second

model, we simulate the background activities of the calcium

burst model to investigate the performance of the reaction-

diffusion solution on complex Purkinje cell morphology with

resting calcium activity (the "background" model). Finally,

in the third model we simulate the complete calcium burst

model by adding calcium channels, potassium channels and

AMPAR activation (see Figure 6) to study how the combined

solution performs with a real world model (the "complete"

model). The simple model and the background model have

previously been used to study performance and scalability of

the reaction-diffusion operator splitting solution in STEPS 3

Frontiers inNeuroinformatics 13 frontiersin.org

376

https://doi.org/10.3389/fninf.2022.883742
https://www.NeuroMorpho.Org
http://neuromorpho.org/neuron_info.jsp?neuron_name=10-2012-02-09-001
http://neuromorpho.org/neuron_info.jsp?neuron_name=10-2012-02-09-001
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

FIGURE 7

The panels illustrate average and confidence intervals (at 99% probability) of STEPS 3 and STEPS 4 simulation sets for the voltages measured at:
(A) root and (B) middle point on the spiny membrane, and on (C) left and (D) right tip on the smooth membrane. Since confidence intervals are
extremely narrow, the lower subplot in each panel presents the results relative to the average of all traces so that the confidence intervals can be
seen clearly. Each sample consists of 100 runs. Since averages lie everywhere in each other confidence intervals we cannot refute the null
hypothesis.

Frontiers inNeuroinformatics 14 frontiersin.org

377

https://doi.org/10.3389/fninf.2022.883742
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

TABLE 2 Hardware and software configurations of the Blue Brain 5 (Phase 2) supercomputer.

System HPE SGI 8600

Hardware Compute Node (880×) 2× Intel Xeon Gold 6248 Cascadelake @2.5GHz (20 physical cores per CPU)

Memory 384GB of main memory (12× 32GB DDR4-2933 DIMMS)

Network InfiniBand EDR 100Gbps / Fat-tree topology

Accelerator GPFS/ IBM Spectrum Scale Filsystem (6.2PB)

Software Compiler GCC C++ compiler 9.3.0

Operating System Red Hat Enterprise Linux Server 7.9

MPI HPE MPI (SGI MPT) 2.25

Python 3.8.3

Linked Libraries
PETSc 3.14.1, Omega_h 9.34.6, Intel MKL 2018.3, Eigen 3.3.8,

SUNDIALS 2.7.0, mpi4py 3.1.3, NumPy 1.21.4, GMSH 4.9.0

Supercomputer.

(Chen and De Schutter, 2017). As the implementation has been

improved since the initial implementation, and the hardware

used in the previous research is now outdated, new simulation

series of these two models are performed to acquire up-to-

date results for comparison. The parallel performance of the

combined solution with the complete calcium burst model has

not been reported previously. We also investigate the effect

of the independent graph optimization on the simple model

with different molecule concentration setups. We disable this

optimization for the calcium burst background and complete

models as the complex morphology of Purkinje cell could lead

to poor SSA event hit rates in some partitions, and worsens the

overall performance of these simulations if this optimization is

enabled.

3.2.1. Benchmarking setup

All simulation benchmarks were run on the Blue Brain 5

(BB5) supercomputer hosted at the Swiss National Computing

Center (CSCS) in Lugano, Switzerland. A complete description

of the hardware and software configuration details of the BB5

system are provided in Table 2. All benchmarks were executed

in pure MPI mode by pinning one MPI rank per core. As the

number of cores used for simulation needs to be a power of 2

(see Supplementary Section S1.1), for each series of benchmark

we first choose an initial core count as a baseline and then double

the core count.

The code instrumentation for the performance

measurement in STEPS is performed through an

Instrumentor interface. This is a light wrapper that allows

for marking/profiling code regions of interests either by

calling a start/stop method or by C++ Resource Acquisition Is

Initialization (RAII) style. Various backends are used by this

interface, in particular in this work we use Caliper 2.6 (Boehme

et al., 2016), and LIKWID 5.2.0 (Treibig et al., 2010).

For each benchmark configuration, we repeat the simulation

30 times, and show the average results in the figures. The

standard deviations of the results are reported as the error

bars for each data point in the figures. Per-core memory

consumption of each simulation is alsomeasured using the psutil

Python module (Rodola, 2020) and reported. The comparisons

are mainly conducted between STEPS 3 and STEPS 4. For

the scalability studies, we also compare the results with the

theoretical ideal speedup scenarios. We further investigate the

contribution and scaling properties of operator components in

STEPS 4, namely, the SSA operator, the diffusion operator and

the EField operator, by measuring their individual speedup as

well as the proportion in the overall simulation time cost.

3.2.2. The simple model

We reuse the simple model in Chen and De Schutter (2017)

which consists of 10 diffusing species with different initial

molecule counts within simple cuboid geometry with 13,009

tetrahedrons. These species interact with each other through 4

different reversible reactions with different rate constants. The

details of the model can be found in Table 3. We choose 2

cores as the performance baseline and increase the core count

to 211 = 2, 048 as the maximum. Note each core has less than

10 tetrahedrons with this maximum, at which point it is unlikely

that the simulations remain scalable. However, the result is still

interesting as it illustrates the behavior of our solution under

extreme scaling scenarios.

The effect of the independent graph optimization is also

investigated using the simple model with different initial

molecule counts. We first simulate the model in Table 3 without

the optimization and use it as the baseline configuration. We

then modify the baseline model with four new settings, the

first two reduce the initial count of each molecular species by

10x and 100x, and the other two increase molecule counts by

10x and 100x. We name these simulation series “0.01x,” “0.1x,”

Frontiers inNeuroinformatics 15 frontiersin.org

378

https://doi.org/10.3389/fninf.2022.883742
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

TABLE 3 Species and reactions as well as the initial configuration of

the simple model.

Species Diffusion coefficient (µm2 / s) Initial count

A 100 1,000

B 90 2,000

C 80 3,000

D 70 4,000

E 60 5,000

F 50 6,000

G 40 7,000

H 30 8,000

I 20 9,000

J 10 10,000

Reaction Rate Constant

A+ B ⇋ C kf : 1, 000(µM· s)−1 , kb : 100s−1

C + D ⇋ E kf : 100(µM· s)−1 , kb : 10s−1

F + G ⇋ H kf : 10(µM· s)−1 , kb : 1s−1

H + I ⇋ J kf : 1(µM· s)−1 , kb : 1s−1

“1x,” “10x,” and “100x” respectively. We also repeat these series

with independent graph optimization enabled and record the

results for comparison. As this optimization solely targets the

SSA operator, a single core is used to run the simulation series,

and the time cost of the SSA operator instead of the overall

simulation time cost is measured.

Simulation results of the simple model are summarized

in Figure 8. Both STEPS 3 and STEPS 4 implementations

demonstrate a steady decrease of simulation time early on until

26 = 64 cores, and maintain roughly the same time cost for the

rest of the configurations. The memory footprint improvement

from STEPS 4 is significant. In the baseline simulations,

STEPS 4 consumes 45.6MB of memory per core, about 60%

of the required memory for STEPS 3. When simulating the

model with thousands of cores, the memory consumption of

STEPS 4 further decreases to about 4.5MB per core, 10% of

the baseline simulation consumption, thanks to the completely

distributed nature of the solution. While the memory footprint

of STEPS 3 simulations also decreases with high core counts,

the number stabilizes at 16MB, 2.6 times more than STEPS 4

requires. The strong scaling speedup for both STEPS 3 and

STEPS 4 in Figure 8C suggests that the STEPS 4 achieves close-

to-ideal speedup until 26 = 64 cores, reflecting the time

cost result in Figure 8A. In fact, the SSA component further

maintains a linear speedup until 29 = 512 cores according

to the component scalability analysis in Figure 8D. However,

due to the high scalability, its proportion in the overall time

cost reduces significantly in high core count simulations. For

these simulations, the diffusion operator and other background

maintenance routines become the two major proportions of the

simulation time cost.

The performance difference caused by the independent

graph optimization is illustrated in Figure 8F by the ratio

between enabling and disabling the optimization. In the baseline

1x simulations and other series with reduced molecule counts,

enabling the optimization results in a slight performance

decrease as the SSA time cost ratios in these series are all above

1.0, ranging from 1.15 in the 0.01x series, to 1.09 in the 1x series.

The benefit of the optimization is noticeable in the 10x series

with a ratio of 0.97, and becomes significant in the 100x case,

which shortens more than half of the simulation time. These

results agree with our analysis in Section 2.2.4.

3.2.3. The calcium burst background model

We extend our investigation on the reaction-diffusion

component with the calcium burst background model with

complex Purkinje cell morphology as described in Section

3.1.3.1. There is no voltage component nor any ion channels in

this model, only background buffering reaction and diffusion.

In total, the model consists of 15 molecule species, 8 of which

are diffusive, and 22 reactions. The simulated mesh consists

of 853,193 tetrahedrons. To eliminate any difference caused by

partitioning, we pre-partition themesh in Gmsh then import the

partitioned mesh to the simulations, therefore the partitioning is

always the same for each benchmark configuration. We start the

simulation series from 25 = 32 cores within a single node, then

double the core count each time until themaximumof 512 nodes

with 214 = 16, 384 cores is reached.

Figure 9 presents the key results of the simulation series.

In general, STEPS 4 performs slightly worse than STEPS 3 in

low core count configurations, but eventually achieves similar

performance as the core count increases. This is because

currently STEPS 4 implements the widely accepted Gibson

and Bruck (Gibson and Bruck, 2000) next reaction method as

the default SSA operator. This method provides logarithmic

computational complexity with simple data structures that we

find suitable for the distributed solution. On the other hand,

STEPS 3 inherits the serial implementation of the Composition

and Rejection method (Slepoy et al., 2008), which requires a

more complex data structure but takes advantage of its constant

time complexity, particularly when dealing with large number

of reactions in low core count simulations. It is worth noting

that the compartmental design in STEPS 4 supports multiple

operator implementations, therefore more efficient operators

can be easily integrated to the solution in the future.

Dramatic improvement in memory consumption can be

observed for STEPS 4 in Figure 9B. All STEPS 3 simulations

require no less than 2GB of memory per core; on the other hand,

the highest per-core memory footprint for STEPS 4 is about 630

MB with 25 = 32 cores, and drops down to about 67MB with

210 = 1, 024 cores and above, roughly 3% of what is required by

STEPS 3.

Both STEPS 4 and STEPS 3 demonstrate linear to super-

linear speedup until 212 = 4, 096 cores in Figure 9C.

Component scaling analysis in Figure 9D suggests that both

Frontiers inNeuroinformatics 16 frontiersin.org

379

https://doi.org/10.3389/fninf.2022.883742
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

FIGURE 8

The performance results and scalability of the simple model. (A) Both STEPS 3 and STEPS 4 implementations demonstrate a steady decrease of
time cost early on, then maintain similar time cost beyond 26 = 64 cores. (B) STEPS 4 consumes significantly less per-core memory than
STEPS 3, ranging from 60% in the baseline simulation, to approximately 30% in high core count simulations. (C) STEPS 4 achieves close-to-ideal

(Continued)

Frontiers inNeuroinformatics 17 frontiersin.org

380

https://doi.org/10.3389/fninf.2022.883742
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

FIGURE 8 (Continued)

speedup until 26 = 64 cores, but has poor scalability afterward. Similar but slightly worse scalability can be observed for STEPS 3. (D)
Component scalability analysis of STEPS 4. The SSA operator shows a linear speedup until 29 = 512 cores. (E) Component proportion analysis of
STEPS 4. Due to the highly scalable SSA operator, the time cost of high core-count simulations is dominated by the di�usion operator and other
non-scalable bookkeeping routines, resulting in poor scalability in high core count scenarios. (F) The SSA operator time cost ratio with and
without independent graph optimization in di�erent initial molecule count setups. Enabling the optimization results in performance decrease in
low molecule density simulations, but provides significant speedup in simulations with high molecule density.

the SSA and the diffusion operators contribute to this result.

The diffusion operator maintains close-to-linear speedup until

212 = 4, 096, while the SSA operator demonstrates super-linear

speedup throughout the series. We investigated this scaling

behavior and further profiling on the SSA operator indicates that

the super-linear speedup mainly comes from the update routine

of the operator, including the propensity calculations and the

priority queue updates. This suggests that the improvement on

memory caching may play an important role here.

The diffusion operator is the dominating component in this

series, as shown in Figure 9E. Its proportion in the overall time

cost increases from 65 to 95%. The proportion of other non-

scaling routines also rises but is still less than 10% with the

maximum 214 = 16, 384 cores. Overall the performance profile

of the background model is very similar to the simple model

profile. This is not surprising as they both involve the same

operators but the background model has more tetrahedrons and

reactions per core compared to the simple model.

3.2.4. Complete calcium burst model

The complete calcium burst model as described in Section

3.1.3.1 extends the background model by coupling molecular

reaction-diffusion updates with voltage-dependent channel

activation as well as membrane potential changes. Different

channel density parameters are assigned to the smooth and the

spiny sections of the mesh to approximate the effect caused

by regional spine density difference. The model consists of 15

regular species, 8 of which are diffusive, 5 types of channels

with in total 27 different channel states, 59 regular reactions

and 16 voltage-dependent reactions. Compared to the previous

two models, the complete model produces a simulation with

extremely complex dynamics and imbalanced computational

load, both spatially and temporally. We consider it as an

excellent demonstration of STEPS 4 performance in realistic

research projects.

Figure 10 summarizes the key results of the simulation

series. While STEPS 4 performs slightly worse than STEPS 3

initially, it reaches similar performance with 29 = 512 cores,

and outperforms STEPS 3 for the rest of the series. As expected,

STEPS 4 continues its advantage on per-core memory footprint

management, starting from 1.5GB for 25 = 32 core simulations,

to approximately 500MB for 29 = 512 cores and above. The

minimum memory requirement for STEPS 3 is 5GB, 10 times

what is needed with STEPS 4. While the BB5 cluster has high

memory capacity per compute node and is able to provide

12GB of memory per core for simulations (given the 32 active

processes per node), many HPC clusters commonly have the

memory capacity restriction of about 4GB per core (Zivanovic

et al., 2017), therefore only STEPS 4 simulations can be run on

those clusters.

Overall, STEPS 4 achieves a better scalability compared

to STEPS 3, with linear speedup from the diffusion operator,

and the super-linear speedup from the SSA operator. However,

the EField operator has limited scalability, reaching maximum

10x speedup relative to the baseline. This results in a great

increase of EField operator time cost in proportion to the total

computation time, from 10% in the baseline simulations to 76%

in the 214 = 16, 384 core simulations, making it the major

performance bottleneck of the series, as shown in Figure 10E.

3.2.5. Memory footprint with refined mesh

As shown in the above results, the significantly reduced

memory footprint is one of the major advantages of

STEPS 4. To further investigate the memory consumption

difference between STEPS 4 and STEPS 3, we refine the

Purkinje cell mesh and rerun both the calcium burst

background model and the complete calcium burst model

with the new mesh. The refined mesh consists of 3,176,768

tetrahedrons. For simplicity, we name the original mesh

as the “1M” mesh, and the refined mesh as the “3M”

mesh accordingly. As the 3M simulations exhibit similar

performance profiles as the 1M versions, we focus on the

memory footprint of the simulations. Performance and

scalability results of the 3M simulations can be found in the

Supplementary Section S2.3.

Figures 11A,B provide an overall view of the results. For

all simulation series, the baseline configuration, i.e., the one

with the lowest core count, has the highest memory footprint,

then progressively reduces to a consistent minimum. This is

essential as any cluster with per-core memory capacity below the

minimum can not execute the simulation regardless how many

cores are available. Thus, we hereby use the minimum memory

consumption from each series for comparison. Figure 11A

presents the memory consumption of the background model,

for both STEPS 3 and STEPS 4, and for both the 1M and 3M

meshes. For the 1M mesh simulations, STEPS 4 requires 67MB

memory per core, while STEPS 3 requires approximately 2GB,

30x of the STEPS 4 requirement. For the 3M mesh simulations,

Frontiers inNeuroinformatics 18 frontiersin.org

381

https://doi.org/10.3389/fninf.2022.883742
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

FIGURE 9

The performance results and scalability of the calcium burst background model. (A) Steady decrease of simulation time cost can be observed in
both STEPS 4 and STEPS 3 simulations. STEPS 4 performs slightly worse than STEPS 3 in low core count simulations, but both eventually achieve
similar performance as core count increases. (B) The memory footprint of STEPS 4 is superior compared to the STEPS 3 counterparts, requiring
about 630MB for 25 = 32 core simulations, and 67MB for 210 = 1, 024 core and above simulations. STEPS 3 consumes more than 2GB of
memory per core for the whole series. (C) Both STEPS 4 and STEPS 3 demonstrate linear to super-linear scaling speedup. (D) Component
scalability analysis of STEPS 4 suggests that the di�usion operator in STEPS 4 exhibits linear speedup until 210 = 1, 024 cores, while the SSA
operator shows a remarkable super-linear speedup throughout the series. (E) Component proportion analysis of STEPS 4. The di�usion operator
is the dominating component, taking from 65 to 95% of the overall computational time.

200MB memory per core is required by STEPS 4, while 6.6GB

is required by STEPS 3, about 33x of the STEPS 4 requirement.

Results of the complete model are shown in Figure 11B. For

the 1M series, STEPS 4 requires about 500MB of memory,

while STEPS 3 requires approximately 5.1GB, resulting in a

10x difference. For the 3M series, the memory footprint of

Frontiers inNeuroinformatics 19 frontiersin.org

382

https://doi.org/10.3389/fninf.2022.883742
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

FIGURE 10

The performance results and scalability of the calcium burst complete model. (A) STEPS 4 performs slightly worse than STEPS 3 in low core
count simulations, but reaches similar performance with 29 = 512 cores, and outperforms STEPS 3 afterward. (B) STEPS 4 requires about 1.5GB
for the 25 = 32 core baseline simulations. Its memory footprint quickly decreases to 500MB for 29 = 512 cores and above. STEPS 3 consumes
more than 5GB of memory per core for the whole series. (C) STEPS 4 achieves a better scalability compared to STEPS 3. (D) Component
scalability analysis of STEPS 4. The SSA operator shows super-linear speedup throughout the series. The di�usion operator also exhibits linear
speedup until 213 = 8, 192 cores. However, the EField operator shows limited scalability with maximum 10x speedup with 210 = 1, 024 cores and
above. (E) Component proportion analysis of STEPS 4. The EField operator progressively dominates the computational time, from 10% in the
baseline simulations to 76% in the 214 = 16, 384 core simulations, due to its limited scalability compared to the other operator components.

STEPS 4 increases to 770MB. We are unable to simulate the

3M complete model in STEPS 3 with 12GB of memory per

core.

To further explore the capability of STEPS 4 in supporting

super-large scale models, we refine the Purkinje cell mesh using

Gmsh, then simulate the complete model with the refined

Frontiers inNeuroinformatics 20 frontiersin.org

383

https://doi.org/10.3389/fninf.2022.883742
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

FIGURE 11

Memory footprint analysis and exploration of super-large scale models. In general, per-core memory consumption decreases as the core count
increases, until a stabilized minimum consumption is reached. (A) Results of the background model simulations. The memory required per core
hardly changes for STEPS 3 from 2.1GB to 2.0GB, while it declines rapidly for STEPS 4 from 626MB to 67MB. Similar results can be observed in the
3M series, where per-core memory consumption declines from 6.9GB to 6.6GB for STEPS 3, and from 2.1GB to 200MB for STEPS 4. (B) Results
of the complete model simulations. In the 1M series results, memory consumption decreases from 5.5GB to 5.1GB for STEPS 3, and from 1.5GB
to 500MB for STEPS 4. STEPS 4 in the 3M series consumes 3.2GB to 770MB of memory per core as core count increases. The 12GB memory
capacity of the cluster per core is inadequate for the 3M complete model simulations with STEPS 3. (C) Memory consumption in GB at the
initialization stage for the 1, 3, 25, and 100M meshes. (D) Total memory consumption in GB of STEPS 4 for the 1, 3, 25, and 100M mesh models.
From our estimation, the 200M mesh requires a little over the 12GB memory capacity per core in the current setup using 16,384 MPI tasks.

meshes on 214 = 16, 384 cores, and record the memory

consumption at both the initialization and execution stages.

The refined meshes have 25.4 million, 101.6 million and

203.3 million tetrahedrons, and are named “25M”, “100M”,

and “200M” meshes respectively. Due to the large scale and

consequently long execution time of thesemodels, we do not run

the full simulations but stop them after the first time point when

memory consumption is stabilized. As shown in Figure 11C,

memory consumption at the initialization stage increases from

213MB for the 1M mesh to 6.16GB for the 100M mesh. Slightly

more memory is required for the simulation stage (Figure 11D),

varying from 480MB for the 1M mesh, to 7.77GB for the

100M mesh. We are unable to initialize and execute simulations

with the 200M mesh as the 12GB memory capacity is reached.

From our estimation based on curve fitting of the results, a

successful execution of the 200Mmesh simulation would require

approximately 13GB of memory on each core.

3.2.6. Single node roofline analysis of STEPS 4

In general, STEPS 4 demonstrates similar or better

performance compared to STEPS 3 in high core count

simulations, but has lower performance in small core count

simulations. As discussed previously, one of the reasons is

the different SSA operator implementations, but other factors

may also be involved. As the performance with small core

Frontiers inNeuroinformatics 21 frontiersin.org

384

https://doi.org/10.3389/fninf.2022.883742
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

count simulations is also important for STEPS 4 usage,

a detailed performance analysis of current simulations is

necessary to determine the direction of future optimizations.

We choose the complete model as the profiling target since

all major operators are included in the simulation. Note

that in low core count configuration, the SSA and the

diffusion operators are the dominating components in the

simulation, thus they are the main focus of the analysis

here. This is different from the optimization of high core

count simulations, where the EField operator dominates the

computation.

The analysis is based on the Roofline model (Williams

et al., 2009), evaluating the scaling trajectory (Ibrahim et al.,

2018) of the most computationally expensive routines,

in our case, the SSA reaction operator, the Diffusion

operator, and the EField operator. The Roofline model is

one of the simplest tools to apply hardware/software co-

design, enabling investigation on the interaction between

hardware characteristics like memory bandwidth and

peak performance, and the software characteristics such

as memory locality and arithmetic intensity. Thus, it

provides essential information on whether the investigated

components are memory bandwidth or compute bound,

and consequently vital suggestions on optimization

strategies.

The Roofline model shown in Figure 12 for the Cascade

Lake node on BB5 is constructed from a measured memory

bandwidth (≈ 197GB/s) and a measured peak core performance

(≈ 78Gflop/s, where flop stands for floating-point operations).

Both metrics are measured with the likwid-bench utility

(Treibig et al., 2010). In the Roofline graph, the x-axis

is the arithmetic (or computational) intensity, computed as

the ratio of floating point operations to transferred bytes

from the main memory (DRAM traffic), and the y-axis is

the observed performance. To obtain a scaling trajectory

(Ibrahim et al., 2018) the measures are taken for varying

core counts. Additionally, we run simulations with hyper-

threading (26 = 64 processes) in order to utilize maximum

resources.

For the measurements of the routine with LIKWID, a MPI

synchronization barrier is added before and after each measured

kernel. This is done to ensure that the measured metrics (e.g.,

hardware counters) indeed belong to the respective routines.

From Figure 12, it can be seen that all routines have a

low arithmetic intensity. Each routine is represented by a

different symbol and each data point is labeled by the number

of processes. As described in Ibrahim et al. (2018), for ideal

scaling a doubling of concurrency corresponds to a change

in 1y (observed Flop/s) of ≈ 2× without a corresponding

change in 1x (arithmetic intensity), a behavior observed in

our experiments. The SSA kernel is the one with the lowest

arithmetic intensity and it is well into the arithmetic intensity

regime where we expect the kernel to be memory bound.

FIGURE 12

Roofline single-node scaling trajectories. The solid black lines
are the full node hardware limits and the dashed gray line is the
peak memory bandwidth for one socket. Each data point is
labeled by the number of processes. All the computational
kernels present a low arithmetic intensity mainly due to not ideal
data locality (not optimal cache utilization). Nevertheless, the
scaling is close to ideal (especially for the SSA and Di�usion
operators) given that the doubling of concurrency leads to a
corresponding 1y > 0. Hyper-threading at 64 cores does not
give any substantial performance increase.

The Diffusion kernel presents similar behavior but with higher

arithmetic intensity. Both kernels reach a saturation point as

they approach the peak memory bandwidth. This observation

suggests that there would be little to no gain to be had by

vectorizing these kernels, instead possible improvements would

have to come from algorithmic changes and/or cache blocking

strategies in order to either increase the arithmetic intensity or

fit the working memory set into the last level cache (LLC). For

the EField kernel, we observe both 1y > 0 and 1x > 0 as

we perform the strong scaling. This transition indicates that

the number of floating-point operations has remained constant,

so data movement must have decreased (Ibrahim et al., 2018).

Finally, for all the computational kernels hyper-threading does

not lead to any substantial performance increase.

To reach the maximum performance of a compute node,

we need to efficiently utilize the cache memory hierarchy. In

the Roofline graph, the higher the cache efficiency the higher

the computational intensity. In our case, the low arithmetic

intensity could be explained by the use of data structures that

do not favor data locality (e.g., maps/dictionaries over vectors).

Thus, a substantial improvement in the computational intensity

of STEPS 4 can be achieved by favoring data locality and thus

higher cache utilization, such as by a more extensive use of the

flat-multimap.

Frontiers inNeuroinformatics 22 frontiersin.org

385

https://doi.org/10.3389/fninf.2022.883742
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

4. Discussion

4.1. Achievements

With this continuous development and modernization of

STEPS, we achieved several major goals:

• We modernized the existing code base of the entire

framework adopting modern programming standards and

practices such as C++17 and continuous integration.

Particular care was posed on safety features such as

vocabulary types. These improvements provided a solid

modern foundation for STEPS 4 development.

• We developed a distributed solution that addressed the

bottlenecks of STEPS 3.

STEPS 4 achieves similar performance and scalability as

STEPS 3while dramatically reducing thememory footprint. This

is a key feature for future realistic modeling using STEPS. The

Purkinje dendrite morphology simulated in the calcium burst

model was reconstructed from light microscopic imaging. The

spines were ignored and only the skeleton of the dendrite was

preserved. It is possible to reconstruct a highly realistic Purkinje

neuron containing all visible spines from high resolution

electron microscopic imaging, however, the mesh generated

from such morphology is expected to have 10 to 100 times more

tetrahedrons than those used in current simulations. Such large

models are completely out-of-reach for STEPS 3 since even the

relatively small 3M calcium burst model already exceeds the

12GB per-core memory capacity on a state-of-the-art cluster like

BB5. Conversely, STEPS 4 showed its potential on supporting

simulations with such scale in the refined mesh simulations.

4.2. Limitations and solutions

STEPS 4 is not a complete replacement for STEPS 3.

It is a highly specialized version of the operator-splitting

solution specifically tailored for cluster-based, super-large scale

simulations. Thus, we paid particular attention to performance

optimizations whilst maintaining accuracy.

Even if STEPS 4 covers most features available in STEPS 3,

some remain missing. For instance, the diffusion of species

on surfaces (i.e., between patch triangles), and the associated

surface diffusion boundaries, are not yet available. Patches

between compartments are in principle supported but meshes

have to be partitioned in such a way that tetrahedrons on

both sides of patch triangles are owned by the same process.

In STEPS 3, this constraint is enforced by ad-hoc partitioning

adjustment; in STEPS 4 since the mesh is handled by Omega_h,

this constraint is not enforced and it is up to the modelers

to generate suitable partitioned meshes for their simulations,

which is a limitation of this approach. We plan to support

automatic partitioning adjustment with constraints in STEPS 4

in the future, however this requires further collaboration with

the Gmsh and Omega_h developers as these libraries need

further development to support such functionality. Finally, some

auxiliary features in STEPS 3 such as the Region of Interest

(ROI) functionality and visualization are not yet supported as

implementations of new STEPS modeling toolkits are required

to adapt the new distributed mesh formats and protocols.

4.3. Potential enhancements for STEPS 4

The distributed mesh backend of STEPS 4, Omega_h,

not only supports traditional MPI based distributed-memory

parallelism, but also shared-memory parallelism through

OpenMP, and GPU parallelization via the CUDA framework.

It also provides unique features such as mesh adaptation

suitable for GPUs using flat array data structures and bulk

transformations. These advanced features are currently not

utilized in STEPS 4 as it relies solely on CPU based MPI

parallelism. With the importance of GPU based fat compute

nodes in modern HPC clusters, such features will play important

roles when STEPS 4 is transitioned to other parallelism schemes.

In addition, the scalability analysis in Section 3.2 suggests

two major axes for future development. Firstly, the EField

operator is shown to be the major bottleneck in high core

count simulations due to its poor scalability. Detailed profiling

is required in the future to investigate the fundamental cause

of this bottleneck, and to address it. Secondly, the Roofline

analysis shows low computational intensity for all major kernels

(SSA, Diffusion, EField). This behavior points to unsatisfactory

use of cache memory, mainly caused by containers/data

structures with poor data locality. A more extensive use of the

flat-multimap could greatly improve cache utilization and

increase the arithmetic intensity of these computational kernels.

4.4. Choosing between STEPS 3 and
STEPS 4 in research projects

It is difficult to provide a solid guideline for choosing

between STEPS 3 and STEPS 4 in a research project as different

factors need to be considered. At the current stage, because

not all the features in STEPS 3 are supported by STEPS 4,

we recommend the researcher to firstly check if the features

required in the model are supported by STEPS 4. If the model

is supported by both implementations, then the researcher needs

to consider what platform themodel will be simulated on. Due to

the efficiency difference of the current SSA operator, simulations

on multi-core desktop workstation may be in favor of STEPS 3,

while simulations on large scale clusters with limited memory

resource may prefer STEPS 4 thanks to its memory footprint

optimization. It is also worth mentioning that converting a

Frontiers inNeuroinformatics 23 frontiersin.org

386

https://doi.org/10.3389/fninf.2022.883742
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

STEPS 3 model to STEPS 4 is a relatively trivial task, often only

involving several lines of code changes in the modeling script.

Therefore, the researcher can conduct a pilot benchmark with

both solutions, then choose the suitable one for later simulation

tasks based on the benchmark results.

4.5. Other current developments and
future directions

4.5.1. Vesicle modeling

Currently STEPS, as all SSA methods in general, models

molecules as points that do not occupy a significant volume

of the space in which they reside. This is an obvious

limitation if one wants to model certain types of structures

in the cell such as vesicles. Vesicles are relatively large

structures (∼40 nm diameter in the case of synaptic vesicles

for example) that play many important roles in biology,

and their complex structure and diverse functionality mean

they cannot be realistically simulated by the point-molecule

approach. Vesicles undergo processes such as endocytosis and

exocytosis, interact with cytosolic and surface-bound molecules,

and can be spatially organized into clusters such as in the

presynaptic readily-retrievable pool. In an upcoming release,

STEPS aims to support all of these features in an initial parallel

implementation.

While the vesicle modeling development has been a separate

project from STEPS 4, one tantalizing prospect is to marry many

of the novel features of STEPS 4 with the vesicle modeling

to allow bigger, more detailed simulations that can be run for

longer biological times. This will, however, require substantial

development on STEPS 4.

4.5.2. Coupling of STEPS with other simulator
software

As part of the BBP mission to create a large scale

reconstruction of brain tissue, a multi-scale approach for

simulation is deemed necessary to capture elements at various

temporal and spatial scales: one time scale for rapidly

changing neuron voltages, a different, slower time scale for

changing ion concentrations. Likewise, neuron morphologies

can be distributed among computing ranks irrespective of

geometric boundaries whereas bulk ion concentrations and

metabolism use a coarse grain division of the spatial scale.

For this purpose different simulators are used to leverage

their specialized capabilities. NEURON (Carnevale and Hines,

2009) is used to solve relevant equations for membrane

voltage and communication between neurons in addition

to calcium in astrocyte morphologies. Meanwhile STEPS is

employed to compute concentrations of diffusing ions in

the extracellular space. A more memory efficient STEPS

enables better sharing of computing resources between the two

simulators.

5. Conclusion

The STEPS 4.0 project development reported in this

article addresses several issues in previous STEPS releases,

improving the user modeling experience, as well as

modernizing the existing code base in order to aid future

development. The main contribution of this research is a new

parallel stochastic reaction-diffusion solver supported by a

sophisticated distributed mesh library. While maintaining

similar performance and scalability, the new solver dramatically

reduces the memory footprint of simulations, resolving the

major bottleneck in previous solutions. This breakthrough

empowers future neuroscience research by enabling super-large

scale molecular reaction-diffusion simulations with biologically

realistic models.

Data availability statement

The STEPS simulator is available at http://steps.sourceforge.

net/. Models for validation and performance investigation, as

well as simulation data presented in this publication are available

at https://github.com/CNS-OIST/STEPS4ModelRelease/tree/

Frontiers2022.

Author contributions

ED and FS conceptualized and led this study. TC andWC led

the overall software development of STEPS 4. SM and TC added

in Omega_h the support to Gmsh file format 4 and features

required in STEPS 4. BD, SM, TC, and WC contributed to the

Zee library development and evaluations. AC, BD, CK, GC,

JL, SM, TC, and WC contributed to the software development

of STEPS 4. AC, CK, IH, JL, TC, and WC contributed to the

pre-release testing, debugging and optimization of STEPS 4. JL

contributed to the python interface development for STEPS 4

and model conversions from STEPS 3 to STEPS 4. AC and IH

designed and conducted the validation benchmarks. CK, GC,

and WC designed and conducted the performance benchmarks.

NC checked statistical soundness of the tests and contributed in

CI. OA, JK, and PK contributed to technical discussions and

supervised the BBP team. WC coordinated the writing of the

paper. All authors gave feedback and contributed to the article

and approved the submitted version.

Funding

Research reported in this publication was supported by

the Okinawa Institute of Science and Technology Graduate

Frontiers inNeuroinformatics 24 frontiersin.org

387

https://doi.org/10.3389/fninf.2022.883742
http://steps.sourceforge.net/
http://steps.sourceforge.net/
https://github.com/CNS-OIST/STEPS4ModelRelease/tree/Frontiers2022
https://github.com/CNS-OIST/STEPS4ModelRelease/tree/Frontiers2022
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

University (OIST) and funding to the Blue Brain Project,

a research center of the École polytechnique fédérale de

Lausanne (EPFL), from the Swiss government’s ETH Board of

the Swiss Federal Institutes of Technology and the European

Union’s Horizon 2020 Framework Programme for Research and

Innovation under the Specific Grant Agreement No. 785907

(Human Brain Project SGA2).

Conflict of interest

The authors declare that the research was conducted in

the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fninf.2022.883742/full#supplementary-material

References

Abhyankar, S., Brown, J., Constantinescu, E. M., Ghosh, D., Smith, B. F., and
Zhang, H. (2018). Petsc/ts: a modern scalable ode/dae solver library. arXiv preprint
arXiv:1806.01437. doi: 10.48550/arXiv.1806.01437

Amunts, K., Ebell, C., Muller, J., Telefont, M., Knoll, A., and Lippert, T. (2016).
The human brain project: creating a european research infrastructure to decode
the human brain. Neuron 92, 574–581. doi: 10.1016/j.neuron.2016.10.046

Amunts, K., Knoll, A. C., Lippert, T., Pennartz, C. M., Ryvlin, P., Destexhe,
A., et al. (2019). The human brain project–synergy between neuroscience,
computing, informatics, and brain-inspired technologies. PLoS Biol. 17, e3000344.
doi: 10.1371/journal.pbio.3000344

Andrews, S. S., and Bray, D. (2004). Stochastic simulation of chemical
reactions with spatial resolution and single molecule detail. Phys. Biol. 1, 137–151.
doi: 10.1088/1478-3967/1/3/001

Antunes, G., and De Schutter, E. (2012). A stochastic signaling networkmediates
the probabilistic induction of cerebellar long-term depression. J. Neurosci. 32,
9288–9300. doi: 10.1523/JNEUROSCI.5976-11.2012

Anwar, H., Hepburn, I., Nedelescu, H., Chen, W., and De Schutter, E.
(2013). Stochastic calcium mechanisms cause dendritic calcium spike variability.
J. Neurosci. 33, 15848–15867. doi: 10.1523/JNEUROSCI.1722-13.2013

Anwar, H., Roome, C. J., Nedelescu, H., Chen, W., Kuhn, B., and
De Schutter, E. (2014). Dendritic diameters affect the spatial variability of
intracellular calcium dynamics in computer models. Front. Cell Neurosci. 8, 168.
doi: 10.3389/fncel.2014.00168

Arjunan, S., and Tomita, M. (2010). A new multicompartmental reaction-
diffusion modeling method links transient membrane attachment of E. coli MinE
to E-ring formation. Syst. Synth. Biol. 4, 35–53. doi: 10.1007/s11693-009-9047-2

Arjunan, S. N.,Miyauchi, A., Iwamoto, K., and Takahashi, K. (2020). pspatiocyte:
a high-performance simulator for intracellular reaction-diffusion systems. BMC
Bioinform. 21, 33. doi: 10.1186/s12859-019-3338-8

Ascoli, G. A., Donohue, D. E., and Halavi, M. (2007). NeuroMorpho.Org:
a central resource for neuronal morphologies. J. Neurosci. 27, 9247–9251.
doi: 10.1523/JNEUROSCI.2055-07.2007

Bhalla, U., Bilitch, D., and Bower, J. (1992). Rallpacks: a set of
benchmarks for neuronal simulators. Trends Neurosci. 15, 453–458.
doi: 10.1016/0166-2236(92)90009-W

Boehme, D., Gamblin, T., Beckingsale, D., Bremer, P.-T., Gimenez, A.,
LeGendre, M., et al. (2016). “Caliper: performance introspection for HPC software
stacks,” in SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (Salt Lake City, UT: IEEE), 550–560.

Carnevale, N. T., and Hines, M. L. (2009). The NEURON Book, 1st Edn.
Cambridge: Cambridge University Press.

Chen, W., and De Schutter, E. (2017). Parallel STEPS: Large scale stochastic
spatial reaction-diffusion simulation with high performance computers. Front.
Neuroinform. 11, 13. doi: 10.3389/fninf.2017.00013

Chen, W., Hepburn, I., Martyushev, A., and De Schutter, E. (2022). “Modeling
neurons in 3d at the nanoscale,” in Computational Modelling of the Brain (Cham:
Springer), 3–24.

Cramér, H. (1928). On the composition of elementary errors: II, Statistical
applications. Scand. Actuar. J. 11, 141–180. doi: 10.1080/03461238.1928.10416872

Denizot, A., Arizono, M., Nägerl, U. V., Soula, H., and Berry, H. (2019).
Simulation of calcium signaling in fine astrocytic processes: effect of spatial
properties on spontaneous activity. PLoS Comput. Biol. 15, e1006795-e1006795.
doi: 10.1371/journal.pcbi.1006795

Gamblin, T., LeGendre, M., Collette, M. R., Lee, G. L., Moody, A., de Supinski,
B. R., et al. (2015). “The spack package manager: bringing order to HPC software
chaos,” in Supercomputing 2015 (SC’15). (Austin, TX: LLNL-CONF-669890).

Gibson, M. A., and Bruck, J. (2000). Efficient exact stochastic simulation of
chemical systems with many species and many channels. J. Phys. Chem. A 9, 104.
doi: 10.1021/jp993732q

Gillespie, D. T. (1977). Exact stochastic simulation of coupled
chemical reactions. J. Phys. Chem. 81, 2340–2361. doi: 10.1021/j100540
a008

Hattne, J., Fange, D., and Elf, J. (2005). Stochastic reaction-diffusion simulation
with MesoRD. Bioinformatics 21, 2923–2924. doi: 10.1093/bioinformatics/bt
i431

Hepburn, I., Cannon, R., and De Schutter, E. (2013). Efficient calculation of the
quasi-static electrical potential on a tetrahedral mesh and its implementation in
steps. Front. Comput. Neurosci. 7, 129. doi: 10.3389/fncom.2013.00129

Hepburn, I., Chen, W., and De Schutter, E. (2016). Accurate reaction-
diffusion operator splitting on tetrahedral meshes for parallel stochastic molecular
simulations. J. Chem. Phys. 145, 054118. doi: 10.1063/1.4960034

Hepburn, I., Chen, W., Wils, S., and De Schutter, E. (2012). STEPS: efficient
simulation of stochastic reaction-diffusion models in realistic morphologies. BMC
Syst. Biol. 6, 36. doi: 10.1186/1752-0509-6-36

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of
membrane current and its application to conduction and excitation in nerve. J.
Physiol. 117, 500–544. doi: 10.1113/jphysiol.1952.sp004764

Hoffmann, M., Fröhner, C., and No,é, F. (2019). Readdy 2: fast and flexible
software framework for interacting-particle reaction dynamics. PLoS Comput. Biol.
15, e1006830. doi: 10.1371/journal.pcbi.1006830

Ibanez, D., and Roberts, N. (2018). Omega_h. [Software] Available online at:
https://github.com/sandialabs/omega_h.

Ibrahim, K., Williams, S., and Oliker, L. (2018). “Roofline scaling trajectories:
a method for parallel application and architectural performance analysis,” in 2018
International Conference on High Performance Computing and Simulation (HPCS)
(Orleans: IEEE), 350–358.

Insel, T. R., Landis, S. C., and Collins, F. S. (2013). The nih brain initiative.
Science 340, 687–688. doi: 10.1126/science.1239276

Frontiers inNeuroinformatics 25 frontiersin.org

388

https://doi.org/10.3389/fninf.2022.883742
https://www.frontiersin.org/articles/10.3389/fninf.2022.883742/full#supplementary-material
https://doi.org/10.48550/arXiv.1806.01437
https://doi.org/10.1016/j.neuron.2016.10.046
https://doi.org/10.1371/journal.pbio.3000344
https://doi.org/10.1088/1478-3967/1/3/001
https://doi.org/10.1523/JNEUROSCI.5976-11.2012
https://doi.org/10.1523/JNEUROSCI.1722-13.2013
https://doi.org/10.3389/fncel.2014.00168
https://doi.org/10.1007/s11693-009-9047-2
https://doi.org/10.1186/s12859-019-3338-8
https://NeuroMorpho.Org
https://doi.org/10.1523/JNEUROSCI.2055-07.2007
https://doi.org/10.1016/0166-2236(92)90009-W
https://doi.org/10.3389/fninf.2017.00013
https://doi.org/10.1080/03461238.1928.10416872
https://doi.org/10.1371/journal.pcbi.1006795
https://doi.org/10.1021/jp993732q
https://doi.org/10.1021/j100540a008
https://doi.org/10.1093/bioinformatics/bti431
https://doi.org/10.3389/fncom.2013.00129
https://doi.org/10.1063/1.4960034
https://doi.org/10.1186/1752-0509-6-36
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1371/journal.pcbi.1006830
https://github.com/sandialabs/omega_h
https://doi.org/10.1126/science.1239276
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Chen et al. 10.3389/fninf.2022.883742

Kerr, R. A., Bartol, T. M., Kaminsky, B., Dittrich, M., Chang, J. C., Baden,
S. B., et al. (2008). Fast monte carlo simulation methods for biological reaction-
diffusion systems in solution and on surfaces. SIAM J. Sci. Comput. 30, 3126.
doi: 10.1137/070692017

Markram, H., Meier, K., Lippert, T., Grillner, S., Frackowiak, R., Dehaene, S.,
et al. (2011). Introducing the human brain project. Procedia Comput. Sci. 7, 39–42.
doi: 10.1016/j.procs.2011.12.015

Massey Jr, F. J. (1951). The kolmogorov-smirnov test for goodness of fit. J. Am.
Stat. Assoc. 46, 68–78. doi: 10.1080/01621459.1951.10500769

Mohapatra, N., Tønnesen, J., Vlachos, A., Kuner, T., Deller, T., Nägerl, U.
V., et al. (2016). Spines slow down dendritic chloride diffusion and affect short-
term ionic plasticity of gabaergic inhibition. Scientific Rep. 6, 23196–23196.
doi: 10.1038/srep23196

Murdoch, D. J., Tsai, Y.-L., and Adcock, J. (2008). P-values are random variables.
Am. Stat. 62, 242–245. doi: 10.1198/000313008X332421

Noether, G. E. (1963). Note on the kolmogorov statistic in the discrete case.
Metrika 7, 115–116. doi: 10.1007/BF02613966

Oliveira, R., Terrin, A., di benedetto, G., Cannon, R., Koh, W., Kim,
M., et al. (2010). The role of type 4 phosphodiesterases in generating
microdomains of camp: large scale stochastic simulations. PLoS ONE 5, e11725.
doi: 10.1371/journal.pone.0011725

Patoary, M. N. I., Tropper, C., McDougal, R. A., Lin, Z., and Lytton,
W. W. (2019). Parallel stochastic discrete event simulation of calcium
dynamics in neuron. IEEE/ACM Trans. Comput. Biol. Bioinform. 16, 1007–1019.
doi: 10.1109/TCBB.2017.2756930

Rodola, G. (2020). psutil. Available online at: https://github.com/giampaolo/
psutil.v5.8.0.

Schelker, M., Mair, C. M., Jolmes, F., Welke, R.-W., Klipp, E., Herrmann,
A., et al. (2016). Viral rna degradation and diffusion act as a bottleneck for
the influenza a virus infection efficiency. PLoS Comput. Biol. 12, e1005075.
doi: 10.1371/journal.pcbi.1005075

Schöneberg, J., and Noé, F. (2013). Readdy-a software for particle-based
reaction-diffusion dynamics in crowded cellular environments. PLoS ONE 8,
e74261. doi: 10.1371/journal.pone.0074261

Slepoy, A., Thompson, A. P., and Plimpton, S. J. (2008). A constant-time kinetic
Monte Carlo algorithm for simulation of large biochemical reaction networks. J.
Chem. Phys. 128, 205101. doi: 10.1063/1.2919546

Sodani, A., Gramunt, R., Corbal, J., Kim, H.-S., Vinod, K., Chinthamani, S., et al.
(2016). Knights landing: second-generation intel xeon phi product. IEEE Micro 36,
34–46. doi: 10.1109/MM.2016.25

Stillman, N. R., Balaz, I., Tsompanas, M.-A., Kovacevic, M., Azimi, S.,
Lafond, S., et al. (2021). Evolutionary computational platform for the automatic
discovery of nanocarriers for cancer treatment. NPJ Comput. Mater. 7, 1–12.
doi: 10.1038/s41524-021-00614-5

Treibig, J., Hager, G., and Wellein, G. (2010). “LIKWID: a lightweight
performance-oriented tool suite for x86 multicore environments,” in Proceedings
of PSTI2010, the First International Workshop on Parallel Software Tools and Tool
Infrastructures (San Diego, CA).

Trott, C. R., Lebrun-Grandi,é, D., Arndt, D., Ciesko, J., Dang, V., Ellingwood,
N., et al. (2022). Kokkos 3: programming model extensions for the exascale era.
IEEE Trans. Parallel Distribut. Syst. 33, 805–817. doi: 10.1109/TPDS.2021.3097283

Von Mises, R. (1928). Wahrscheinlichkeit Statistik und Wahrheit.
(Berlin:Springer).

Williams, S., Waterman, A., and Patterson, D. (2009). Roofline: an insightful
visual performancemodel for floating-point programs andmulticore architectures.
ACM Commun. 52, 65–76 doi: 10.1145/1498765.1498785

Zamora Chimal, C. G., and De Schutter, E. (2018). Ca2+ requirements for long-
term depression are frequency sensitive in purkinje cells. Front. Mol. Neurosci. 11,
438. doi: 10.3389/fnmol.2018.00438

Zivanovic, D., Pavlovic, M., Radulovic, M., Shin, H., Son, J., Mckee, S. A., et al.
(2017). Main memory in hpc: do we need more or could we live with less? ACM
Trans. Archit. Code Optim. 14, 1–26. doi: 10.1145/3023362

Frontiers inNeuroinformatics 26 frontiersin.org

389

https://doi.org/10.3389/fninf.2022.883742
https://doi.org/10.1137/070692017
https://doi.org/10.1016/j.procs.2011.12.015
https://doi.org/10.1080/01621459.1951.10500769
https://doi.org/10.1038/srep23196
https://doi.org/10.1198/000313008X332421
https://doi.org/10.1007/BF02613966
https://doi.org/10.1371/journal.pone.0011725
https://doi.org/10.1109/TCBB.2017.2756930
https://github.com/giampaolo/psutil.v5.8.0
https://github.com/giampaolo/psutil.v5.8.0
https://doi.org/10.1371/journal.pcbi.1005075
https://doi.org/10.1371/journal.pone.0074261
https://doi.org/10.1063/1.2919546
https://doi.org/10.1109/MM.2016.25
https://doi.org/10.1038/s41524-021-00614-5
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.3389/fnmol.2018.00438
https://doi.org/10.1145/3023362
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

TECHNOLOGY AND CODE
published: 31 October 2022

doi: 10.3389/fninf.2022.883700

Frontiers in Neuroinformatics | www.frontiersin.org 1 October 2022 | Volume 16 | Article 883700

Edited by:

James Courtney Knight,

University of Sussex, United Kingdom

Reviewed by:

Jochen Martin Eppler,

Helmholtz Association of German

Research Centres (HZ), Germany

Felix Benjamin Kern,

International Research Center for

Neurointelligence (IRCN), Japan

*Correspondence:

Denis Alevi

denis.alevi@tu-berlin.de

Received: 25 February 2022

Accepted: 09 May 2022

Published: 31 October 2022

Citation:

Alevi D, Stimberg M, Sprekeler H,

Obermayer K and Augustin M (2022)

Brian2CUDA: Flexible and Efficient

Simulation of Spiking Neural Network

Models on GPUs.

Front. Neuroinform. 16:883700.

doi: 10.3389/fninf.2022.883700

Brian2CUDA: Flexible and Efficient
Simulation of Spiking Neural Network
Models on GPUs
Denis Alevi 1,2*, Marcel Stimberg 3, Henning Sprekeler 1,2, Klaus Obermayer 2,4 and

Moritz Augustin 2,4

1 Technische Universität Berlin, Chair of Modelling of Cognitive Processes, Berlin, Germany, 2 Bernstein Center for

Computational Neuroscience Berlin, Berlin, Germany, 3 Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris,

France, 4 Technische Universität Berlin, Chair of Neural Information Processing, Berlin, Germany

Graphics processing units (GPUs) are widely available and have been used with

great success to accelerate scientific computing in the last decade. These advances,

however, are often not available to researchers interested in simulating spiking neural

networks, but lacking the technical knowledge to write the necessary low-level code.

Writing low-level code is not necessary when using the popular Brian simulator, which

provides a framework to generate efficient CPU code from high-level model definitions

in Python. Here, we present Brian2CUDA, an open-source software that extends the

Brian simulator with a GPU backend. Our implementation generates efficient code

for the numerical integration of neuronal states and for the propagation of synaptic

events on GPUs, making use of their massively parallel arithmetic capabilities. We

benchmark the performance improvements of our software for several model types and

find that it can accelerate simulations by up to three orders of magnitude compared

to Brian’s CPU backend. Currently, Brian2CUDA is the only package that supports

Brian’s full feature set on GPUs, including arbitrary neuron and synapse models, plasticity

rules, and heterogeneous delays. When comparing its performance with Brian2GeNN,

another GPU-based backend for the Brian simulator with fewer features, we find that

Brian2CUDA gives comparable speedups, while being typically slower for small and

faster for large networks. By combining the flexibility of the Brian simulator with the

simulation speed of GPUs, Brian2CUDA enables researchers to efficiently simulate

spiking neural networks with minimal effort and thereby makes the advancements of

GPU computing available to a larger audience of neuroscientists.

Keywords: spiking neural networks, simulator, GPU, CUDA, Python, software, open-source, parallel algorithm

1. INTRODUCTION

In computational neuroscience, there is high demand for computationally efficient simulations
allowing for realtime applications or exhaustive parameter explorations. Efficient simulations
require both optimized simulation software and powerful hardware. In practice, there is always
a trade-off between the performance of the hardware and its price and accessibility. A promising
technology with a very beneficial performance–cost trade-off are graphics processing units (GPUs)
with their massively parallel arithmetic capabilities.While they were initially designed for computer

390

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2022.883700
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2022.883700&domain=pdf&date_stamp=2022-10-31
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:denis.alevi@tu-berlin.de
https://doi.org/10.3389/fninf.2022.883700
https://www.frontiersin.org/articles/10.3389/fninf.2022.883700/full

Alevi et al. Brian2CUDA

graphics, they have since become commonly used for general-
purpose computing, leading to their designation as general-
purpose graphics processing units (GPGPUs). The most popular
framework is the Compute Unified Device Architecture (CUDA;
NVIDIA Corporation, 2007–2022) which allows users to
write parallel code for GPUs in an extension of the C/C++
programming languages. To make efficient use of GPUs,
simulation code has to perform computations in a highly parallel
way. This parallelization is rather straightforward to implement
for some aspects of neuronal models, e.g., the numerical
integration of neuronal state variables over a simulation time
step, but is non-trivial for other aspects, e.g., spike propagation
with synaptic delays (cf. Brette and Goodman, 2012).

The earliest attempts at using the GPU (e.g., Bernhard and
Keriven, 2006; Nageswaran et al., 2009) explored the general
feasibility of accelerating simulations of spiking neural networks,
and described many of the challenges that are still relevant today.
To benefit from the capabilities of a GPU, a simulation needs to be
parallelized efficiently, parallel memory access to shared memory
has to be handled carefully, and synaptic connections have to be
stored in sparse data structures to fit into the limited memory
of GPUs (Nageswaran et al., 2009). The earliest implementations
were typically technology demonstrations, but not released as
software packages to be used by other researchers. This changed
in the following years, as a number of general-purpose simulators
such as NEMO (Fidjeland et al., 2009; Fidjeland and Shanahan,
2010), CNS (Mutch et al., 2010), CARLsim (Richert et al., 2011;
Chou et al., 2018), and NCS6 (Hoang et al., 2013) were released.
While these simulators could be adapted to a researcher’s needs,
they typically only supported specific neuron models or network
structures: The NEMO, CARLsim, and NCS6 simulators were
built to simulate networks of leaky integrate-and-fire or quadratic
integrate-and-fire model (Izhikevich, 2003) neurons, and the
CNS simulator was built to simulate networks structured in
cortical layers. Extending these simulators to other models
requires a researcher to write CUDA code and is therefore not
accessible to many researchers without the necessary technical
background.

Most recent simulators (e.g., Abi Akar et al., 2019; Panagiotou
et al., 2021; Ben-Shalom et al., 2022) do not come with predefined
neuron models, but instead translate neuron model definitions
created for the NEURON simulator (Carnevale and Hines, 2006)
or model definitions exported to NeuroML (Cannon et al., 2014)
by a compatible simulator. An advantage of this approach is
that it makes it possible to immediately reuse a large number
of existing neuron models. On the other hand, this workflow is
not ideal for researchers that want to adapt and change existing
models, or introduce completely new ones. For these use cases,
the fact that the model description and its simulation require
more than one software package can be a major hurdle.

A number of simulators addressed this issue by using code
generation (Goodman, 2010; Blundell et al., 2018). In such a
framework, the model description in a convenient high-level or
domain-specific language is an integral part of the simulator
itself. When starting a simulation, these model descriptions are
translated into efficient low-level code, compiled, and executed.
Two simulators that have used this approach to generate code

for GPUs are ANNarchy (Vitay et al., 2015), which specializes
in networks that mix rate and spike-based elements, and GeNN
(Yavuz et al., 2016), where model descriptions have to be specified
in a variant of C++ (but note that the main simulation code can
be written as a Python script via the PyGeNN interface; Knight
et al., 2021b).

The Brian1 simulator (Stimberg et al., 2019a) is a widely used
neural simulator that provides a user-friendly system for model
descriptions based on mathematical equations, as well as an
extensible code generation framework. So far, this framework was
only capable of generating C++ code for multithreaded execution
on central processing units (CPUs). Recently, Brian’s framework
has been extended to generate code for the GeNN simulator
(Brian2GeNN; Stimberg et al., 2020b), making it finally possible
to run Brian simulations on the GPU. However, this approach
limits simulations to the common feature set provided by Brian,
GeNN, and the Brian2GeNN interface: some of Brian’s features
(e.g., multicompartmental models) are not supported by GeNN
at all, and the support for other features (e.g., heterogeneous
synaptic delays) was added after the creation of the Brian2GeNN
interface, and they are therefore also unsupported at this time.

Here, we present a new approach to GPU code generation with
the Brian simulator. This interface, named Brian2CUDA, directly
generates CUDA code for the GPU, and supports the full set of
features that the Brian simulator offers. It can therefore be used
as a drop-in replacement in all situations where multithreaded
CPU code generation was used previously, including simulations
of detailed network models of neurons, synapses, and glia cells
(Stimberg et al., 2019b), or when optimizing neuronal models
with the brian2modelfitting toolbox (Teska et al., 2020).

We describe how our approach exploits non-trivially
parallelizable simulation parts, in particular the data structures
and algorithms for the propagation of neuronal spikes through
a network taking into account – potentially hetereogeneous
– synaptic delays. For several relevant generic model classes,
we compare the performance of Brian2CUDA with Brian’s
built-in multithreaded execution on CPUs and – where possible
– with the Brian2GeNN interface. The results show that
Brian2CUDA strongly outperforms the multithreaded execution
on CPUs, sometimes by orders of magnitudes. Its performance
is comparable to the performance of Brian2GeNN. For large
networks, Brian2CUDA is faster, while for smaller networks
slightly slower.

Our code is available as open source software under a free
license at GitHub: https://github.com/brian-team/brian2cuda.

2. METHOD

Brian2CUDA implements a new Brian backend, which runs
spiking neural network simulations on NVIDIA graphics
processing units (GPUs). It makes use of Brian’s code generation
system to generate C++/CUDA code based on a user’s model
definition in Python.

1Note that while its Python package is named “brian2,” we will use the name
“Brian” in this paper for simplicity.

Frontiers in Neuroinformatics | www.frontiersin.org 2 October 2022 | Volume 16 | Article 883700391

https://github.com/brian-team/brian2cuda
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Alevi et al. Brian2CUDA

In the following, we provide in Section 2.1 background
on the Brian simulator and describe how our proposed
CUDA backend can be used. In Section 2.2, we outline GPU
programming essentials. Section 2.3 contains the algorithms
implemented in Brian2CUDA including neuronal state updates,
spike propagation, and synaptic effect application. Section 2.4
summarizes the alternative CUDA-based simulator Brian2GeNN
and in Section 2.5 we specify the benchmark models and
experimental procedure.

2.1. Brian Simulation and Code Generation
Brian is a simulator for spiking neural networks written in
Python (Stimberg et al., 2014, 2019a). It is designed to be highly
flexible and easy to use by using its own domain language to
define models. This allows users to define arbitrary differential
equations in Python strings. As an example, consider the model
(Brunel and Hakim, 1999) depicted in Figure 1A. It consists
of a population of N leaky integrate-and-fire (LIF) neurons
with sparse random recurrent inhibitory connections, which are
driven by Gaussian white noise. This model can be described
by the differential equation depicted in Figure 1B. Since the
inhibitory feedback is strong enough, the model exhibits fast
global oscillations in the population firing rate while the single
neuron firing rates remain small (see Figure 1C). A Python script
that implements this model in Brian is shown in Figure 1D. By
changing two lines of code, the simulation can be switched from
Brian’s C++ backend to our new Brian2CUDA backend.

Both backends generate simulation code in their target
language (C++ or CUDA) which is then compiled and
executed. The generated code implements the simulation loop,
memory management, and all computations; it can be executed
independently of Python. Figure 1E illustrates the Brian C++
backend, showing a simplified example of the generated C++
code for updating all neuronal states at a single time step of the
simulation. In our example, one central processing unit (CPU)
thread sequentially updates the membrane voltage Vi for each
neuron i. To speed up simulations, the Brian C++ backend
can be configured to use OpenMP to parallelize computations
over multiple CPU threads (not shown here). Our Brian2CUDA
backend extends the C++ backend to generate C++/CUDA code.
The simulation loop and memory management are implemented
in C++ and executed on a single CPU thread, while most
computations are implemented in CUDA and are parallelized
on the GPU. Figure 1F shows the same neuronal state updates
as before, but now implemented in CUDA. The voltages of all
neurons are updated in parallel by all available threads on a GPU.

2.2. GPU Programming With CUDA
To implement software that runs on NVIDIA GPUs, the
Compute Unified Device Architecture (CUDA) programming
model is used. CUDA works with multiple programming
languages, and here we use the CUDA API implemented in C++.

2.2.1. CUDA Programming Logic

2.2.1.1. Thread Hierarchy
A typical C++/CUDA program is executed on a single CPU
thread, which calls special GPU functions that are executed on

the GPU (see Figure 2A). These functions are called CUDA
kernels. When called, kernels execute their code in parallel by
multiple CUDA threads (see Figure 2B), which are grouped into
CUDA blocks (see Figure 2C). The number of threads per block
Nthreads and the number of blocks Nblocks in this thread hierarchy
is set when calling the kernel (see Figures 2A,D).

2.2.1.2. Memory Hierarchy
Each GPU has its own memory, which is separate from the
CPU’s memory. GPU memory is split into different types,
which are hierarchically organized (see Figures 2B–D). Global
memory is large (several gigabytes depending on specific
hardware) and accessible by all threads, but memory access
is very slow. Shared memory is accessible by all threads
within the same thread block. This memory is much faster
to access, but limited in size (up to a few megabytes split
across all blocks). And finally, each thread has its own
registers with the fastest access time, but which are also
limited in number (up to a few megabytes split across all
threads). Threads use registers to store the intermediate results
during their computations, shared memory to communicate
intermediate results during kernel execution between threads of
the same block and global memory to communicate between
threads in different blocks and to store results between kernel
calls.

2.2.2. Execution Control Logic
On the hardware level, NVIDIA GPUs consist of multiple
streaming multiprocessors (SMs). During the execution of
CUDA kernels, thread blocks are assigned to streaming
multiprocessors (SMs) (see Figure 2). Each SM can execute a
limited number of blocks concurrently, which are referred to
as active blocks. All remaining thread blocks are queued for
execution on the next available slot on any of the SMs. The
maximal number of active blocks per SMdepends on the resource
requirements of the executed kernel and resource limits per SM
(e.g., howmany registers are required vs. available).When a block
is executed on an SM, its threads are executed in groups of 32
threads, which are called warps. Each thread of a warp executes
the same instructions at each clock cycle, which implements the
single instruction multiple threads (SIMT) paradigm.

2.2.3. Performance Considerations

2.2.3.1. Occupancy
Occupancy per SM is defined as the ratio of active warps on
an SM to the maximum number of active warps supported
by the SM. Given the number of threads and blocks of a
kernel and its resource requirements, an upper occupancy
limit can be determined, the theoretical occupancy. There are
multiple hardware limits that determine how well a kernel
can be parallelized on the GPU. Here, we will only introduce
a few of them which are relevant for our algorithms. Each
SM has a limit on the number of threads in all active
blocks, a limit on registers available to all threads in all
active blocks, and a general limit on the number of active
blocks. If any of these limits is exceeded, the number of
active blocks per SM is automatically reduced such that the

Frontiers in Neuroinformatics | www.frontiersin.org 3 October 2022 | Volume 16 | Article 883700392

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Alevi et al. Brian2CUDA

FIGURE 1 | Brian model definition and C++/CUDA code generation. (A) Population of leaky integrate-and-fire (LIF) neurons with recurrent inhibitory coupling J,

average number of random synapses per neuron C and synaptic transmission delays dij between neurons j and i. The neurons are driven by external Gaussian white

noise with mean µext and standard deviation σext (model from Brunel and Hakim, 1999). (B) Corresponding stochastic differential equation defining the dynamics of

the membrane potential Vi of a single LIF neuron i [with i = 1, . . . ,N; membrane time constant τ ; unit Gaussian white noise process ξi (t) that is uncorrelated across

neurons; j ∈ pre(i) runs over all neurons j that are presynaptic to neuron i; tj are all spike times of neuron j; Dirac delta function δ(x)]. When the voltage Vi crosses

threshold 2, the neuron spikes and is set to the reset voltage Vr for a refractory period τref. (C) Network dynamics from simulating the model with N = 5000 LIF

neurons in Brian. Top panel: voltage trace for one exemplary neuron i. Middle panel: raster plot of the spike times for all neurons in the network. Bottom panel:

instantaneous mean firing rate across all neurons. (D) A Python script implementing the model in Brian, either with its C++ backend (black blox) or with Brian2CUDA’s

CUDA backend (red box). In this example, the synaptic transmission delays are independently sampled from a uniform distribution dij ∼ U(0, 4)ms. (E) Simplified

version of generated C++ code to update all neuronal states defined by the voltages Vi when using the C++ backend in Brian. (F) The same for the CUDA backend in

Brian2CUDA. Here the CUDA kernel gpu_stateupdater is launched with Nblocks × Nthreads parallel threads.

Frontiers in Neuroinformatics | www.frontiersin.org 4 October 2022 | Volume 16 | Article 883700393

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Alevi et al. Brian2CUDA

FIGURE 2 | CUDA programming model. (A) A simplified, exemplary C++/CUDA program that is executed on a single CPU thread. The CPU manages memory on the

GPU and calls CUDA kernels that are executed on the GPU. (B–D) GPU resources and CUDA execution and memory hierarchy when running CUDA kernels on the

GPU. (B) Each CUDA thread on a GPU has access to its own memory registers. (C) Each CUDA block groups together multiple CUDA threads. All threads of the

same block have access to the same shared memory. (D) CUDA kernels can be executed with different numbers of blocks Nblocks, threads per block Nthreads and

shared memory per block. The kernels called in (A) are executed sequentially on the GPU, while multiple CUDA blocks are executed in parallel on the streaming

multiprocessors (SMs) of the GPU. The example program in (A) calls kernel 0 without any shared memory and kernel 1 with enough shared memory to store one

floating point number per thread. This memory could e.g., be used to calculate the sum of a variable over all threads in a block, using fast shared memory instead of

slow global memory.

limits are fulfilled, reducing the theoretical occupancy of the
kernel. Table 1 lists these limits for the GPUs used in this
work.

2.2.3.2. Coalesced Memory Access
Memory accesses are issued in warps or half-warps (depending
on the GPU and the memory request). When accessing
global memory, always chunks of 32, 64 or 128 bytes
are transferred – even if less memory was requested. That
means, if a single thread wants to read 4 byte from global
memory, a 32 byte transfer will be issued (the smallest
transfer possible). If multiple threads read 4 byte from
different non-contiguous memory addresses in global memory,
there will be one 32 byte transfer per thread. But if all
threads in a warp request 4 byte memory from contiguous
memory addresses, a single 32 × 4 byte = 128 byte
transfer will be issued to transfer all memory requested

by all threads. This is called a coalesced memory access,
which reduces latencies (i.e., waiting time) for global memory
accesses significantly. Hence, it is crucial to layout data
structures such that as many memory accesses as possible are
coalesced.

2.3. Brian2CUDA Algorithms
Brian is a clock-driven simulator, which performs the same
set of computations after each discrete time step 1t of a
simulation. In this section, we will explain the algorithms and
data structures used in Brian2CUDA by going through the
different simulation steps necessary to simulate one time step
of the recurrent LIF network from Figure 1. All data structures
introduced in the following reside in global GPU memory
and all kernels introduced are executed sequentially on the
GPU.

Frontiers in Neuroinformatics | www.frontiersin.org 5 October 2022 | Volume 16 | Article 883700394

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Alevi et al. Brian2CUDA

TABLE 1 | Hardware limits relevant to determine theoretical occupancy of GPU kernels.

GPU (cc) Active threads Threads Active blocks Registers Registers per thread

per SM per block per SM per SM for 100% occupancy

A100 (8.0) 2,048 1,024 32 65,536 32

RTX2080 Ti (7.5) 1,024 1,024 16 65,536 64

The values are the same for all GPUs with the same compute capability (cc) and represent upper limits. To get the maximal registers per thread for 100% occupancy, we divided the

maximal registers per SM by the maximally active threads per SM. Only GPUs used in our experiments are listed.

2.3.1. Neurons
In Brian, neurons are defined in populations, where each
neuron is described by the same set of dynamical equations and
hence the same set of state variables (e.g., Vi in Figure 1B).
In Brian2CUDA, for each neuronal population typically three
separate CUDA kernels are defined: one for integrating the
neuronal states (see Figure 1F), one for detecting spikes
and one for resetting state variables of spiking neurons2.
Since these computations are independent for all neurons,
parallelization on the GPU is trivial: Each thread performs all
computations for a single neuron. Nevertheless, it is important
to coalesce global memory access (see Section 2.2.3.2). This
is ensured in the integration kernel by storing neuronal state
variables in contiguous global memory arrays (one entry per
neuron) and accessing those such that consecutive threads
access consecutive entries of the state variable arrays. In the
spike detection kernel, the threshold crossing (typically of the
membrane voltage) can be detected efficiently in parallel in
the same way as in the integration kernel. The challenge
here is to select and count the spiking neurons of the
current timestep which naturally involves serialization. The
implemented solution relies on a method from the CUDA
programming API: threads that detect a spike perform an
atomic increment of a population spike counter and use
the counter value to store their neuron ID in a spiking
neuron array. An atomic operation is an operation on a
single variable that can be safely called by multiple threads,
guaranteeing that all updates get applied correctly. These atomic
increments limit the parallelization in the spike detection
kernel when multiple threads try to increment the counter
at the same time, and the writing of spiking neuron IDs
into the spiking neuron array is generally not coalesced.
The reset kernel is parallelized over spiking neurons and
therefore the reading of spiking neuron IDs is coalesced,
but the reset updates of the neuronal state variables are
generally not. Since for the majority of models in computational
neuroscience, the number of spikes per time step is much lower
than the number of neurons per population, the potentially
inefficient computations in the spike detection and reset
kernels often contribute only little to the total computation
time3.

2Note that using separate kernels allows us to support Brian’s flexible execution
scheduling, e.g., synaptic effect application between threshold detection and reset.
3In a population of neurons firing at 1 s−1 and a simulation time step of 1t =

0.1ms, on average only 0.01% of the neurons spike at each time step.

2.3.2. Synapses
A population of synapses in Brian is defined between a pre- and
a postsynaptic population of neurons (for the recurrent synapses
defined in Figure 1D, pre- and postsynaptic populations are the
same). The simulation of synapses can generally be separated into
synapse generation, synaptic state updates, spike propagation
and synaptic effect application. The synapse generation in
Brian2CUDA is performed on the CPU, using the same algorithm
as Brian’s C++ backend and thereby supporting all of Brian’s
connection methods. Synaptic state updates in Brian can be
clock-driven or event-driven. Clock-driven updates are performed
at every time step and are implemented in Brian2CUDA in
a separate kernel in the same way as neuronal state updates.
Event-driven updates are performed only when the pre- or
postsynaptic neuron of a synapse spikes. These are performed
during the synaptic effect application of the corresponding
spike. With spike propagation, we refer to the processing of
synaptic delays, which can be either homogeneous (the same for
all synapses) or heterogeneous (varying across synapses). With
synaptic effect applications, we refer to the modifications of
synaptic target variables based on spikes (e.g., the reduction
of the postsynaptic voltage potential by J for each presynaptic
spike in the model from Figure 1). In Brian, both the pre-
and postsynaptic spikes can have synaptic effects on pre- and
postsynaptic neurons and the synapse itself. In the following, we
will illustrate how Brian2CUDA implements spike propagation
and synaptic effect application for different delay types and
for the case of presynaptic neurons that modify postsynaptic
variables, but the algorithms generalize to all other synaptic effect
types. For both, spike propagation and effect application, kernels
are parallelized over synapses in Brian2CUDA.

2.3.2.1. Connectivity Information
Consider the example connectivity for our recurrent LIF network
shown in Figure 3A, where synaptic effects are triggered by
presynaptic spikes. The (sparse) connectivity matrix of synapse
IDs sorted by presynaptic neuron ID is stored in YALE format
(Figure 3B; Eisenstat et al. 1982). This connectivity matrix can
optionally (via a Brian2CUDA preference) be split into multiple
partitions of postsynaptic neurons, in which case synapses
per presynaptic neuron are sorted by partition (Figure 3C).
This creates synapse groups defined by presynaptic neuron
and postsynaptic partition (different colors in Figure 3C). If
synaptic effects are triggered by postsynaptic spikes, e.g., for
models with spike-timing dependent plasticity (STDP), a separate
connectivity matrix is created, sorted by postsynaptic neurons

Frontiers in Neuroinformatics | www.frontiersin.org 6 October 2022 | Volume 16 | Article 883700395

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Alevi et al. Brian2CUDA

and partitioned by presynaptic neurons (not shown here). To
access the neurons connected by a synapse, two additional arrays
store the pre- and postsynaptic neuron IDs for all synapses, sorted
by synapse ID (Figure 3D).

2.3.2.2. Synapses Without Delays
When synapses have no transmission delay, there is no need
for a separate spike propagation phase, and synaptic effects
can be applied directly after spike detection. Effect application
is parallelized over all synapses of all spiking neurons, where
each CUDA block processes the synapses of one synapse
group (Figure 3E). Each thread reads one synapse ID from the
connectivity matrix, uses it as an index to read the postsynaptic
neuron ID of that synapse, which is then used to index the
postsynaptic membrane voltage. The synaptic effect (decreasing
Vpost by J in our inhibitory LIF network example) is performed
using atomic operations to avoid race conditions from multiple
threads writing to the same memory location, cf. Figure 3E.
Reading synapse IDs from the connectivity matrix is coalesced,
while reading the corresponding postsynaptic neuron IDs and
membrane voltages is generally not. Partitioning the connectivity
matrix can increase occupancy for networks with homogeneous
delays if the overall number of spikes per time step is small
enough (less than the limit on maximally active CUDA blocks;
see Table 1) and the number of synapses per neuron is large
enough (more than there are threads in each CUDA block).
Under such conditions and without partitioning, there are
too few active blocks with too many threads to parallelize all
synaptic effects. Partitioning the connectivity matrix then moves
threads from too full blocks into new active blocks, increasing
parallelization.

2.3.2.3. Synapses With Homogeneous Delays
When synapses have homogeneous delays d = k1t, the spiking
neuron array is stored for k time steps before the synaptic
effects are applied. This results in a circular list of k + 1
spiking neuron arrays. Figure 3F shows an example for k =

2. The synaptic effect application algorithm is the same as
for the no delay case (see Figure 3E), but using the neurons
that spiked k time steps ago. Spike propagation for networks
with homogeneous delays amounts to incrementing the circular
list index referencing the spiking neuron array that is due
for synaptic effect application. Therefore, adding homogeneous
delays to a network comes at close to no computational cost at
each time step, but increases memory requirements for storing
multiple spiking neuron arrays.

2.3.2.4. Synapses With Heterogeneous Delays
In networks with heterogeneous synaptic delays, synapses
connected to spiking neurons are sorted into spike queues based
on their synaptic delay. Analogously to the spiking neuron arrays
used in the homogeneous delays case (cf. Figure 3F), k+ 1 spike
queues are created, which are arranged in a circular list and
where k is the number of time steps in the highest delay in the
network max(dij) = k1t. As before, the connectivity matrix
can be partitioned by postsynaptic neurons, in which case each
partition gets its own spike queues. To reduce the number of

elements that need to be inserted into spike queues, the synapses
with the same delay that would be propagated together, are
grouped into synapse bundles and those bundles are inserted
into the spike queues instead of synapses. Figure 4A shows the
example network from Figure 3, but now with heterogeneous
delays and additionally with synapse bundle IDs (instead of
just synapse IDs). Figure 4B shows how the spike propagation
algorithm sorts bundle IDs into spike queues. Since the maximal
number of synapse bundles that will be stored in any of the
spike queues is generally not known before a simulation, a
custom dynamic vector implementation is used, which allows
increasing spike queue sizes in GPU kernels on demand. This
resizing requires reallocating spike queue contents in global
GPU memory. While this is generally very expensive, it only
happens at the beginning of a simulation until the spike queues
are large enough and hence has an overall negligible effect on
performance.

During spike propagation, parallelization is over synapse
bundles, where each CUDA block operates on a different
bundle group (different colors in Figure 4B; analogous to
the synapse groups in Figure 3C). All CUDA blocks for the
same postsynaptic partition and for different spiking neurons
collect synapse bundles in the same spike queues. To avoid
race conditions from potential memory reallocation, a critical
section code allows only one CUDA block per partition to
add bundle IDs into the spike queues at any time. All
threads of this block can parallelize the pushing of synapse
bundle IDs into the spike queues over threads, since each
bundle with a different delay will be added to a different
queue. Note that CUDA blocks from different postsynaptic
partitions operate on different spike queues and can be
executed concurrently. Therefore, increasing the number of
partitions decreases the amount of serialization during spike
propagation of heterogeneous delays. This can lead to better
performance as long as the additional CUDA blocks don’t
exceed the maximal number of active CUDA blocks on the GPU
(see Table 1).

During synaptic effect application, the synaptic effects of all
synapses in the bundles in the 01t spike queue are applied. In
our toy example, where we only consider a single time step, these
are all synapses without delays (Figure 4C). In general, multiple
different synapses from neurons that spiked at different times
are collected in each spike queue. Figure 4D shows how the
synaptic effect application parallelizes over synapses. The number
of CUDA blocks during effect application equals the number of
partitions. A fixed number of CUDA threads per synapse bundle
performs the effect application for all synapses of each bundle. In
the present work, the largest bundle size is used as the number
of threads per bundle, but this can be set by the user. Bundle
sizes depend on the delay distribution and number of synapses
per neuron in the network. If all bundles have the same size,
each thread applies the synaptic effects of one synapse. The more
bundle sizes vary, the less efficient is the parallelization given a
fixed number of threads per bundle. In general, spike propagation
performance benefits from partitioning the connectivity matrix
as long as the typical size of the spike queue is larger than the
number of threads per CUDA block.

Frontiers in Neuroinformatics | www.frontiersin.org 7 October 2022 | Volume 16 | Article 883700396

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Alevi et al. Brian2CUDA

FIGURE 3 | Synaptic algorithm for networks with no or homogeneous delays. (A) Example connectivity for the recurrent network from Figure 1, restricted to

homogeneous synaptic transmission delays d and N = 5 neurons. Colored neurons 1 and 4 are spiking in the current time step. Color of their synapse IDs correspond

to the parallelization over CUDA blocks in (E). (B) Connectivity stored in compressed form (YALE format) in global GPU memory as one concatenated array of synapse

IDs sorted by presynaptic neuron ID (bottom view). Top view shows this array split by presynaptic neurons for visualization. Two additional arrays (not shown) store the

start indices and number of synapses in the synapse array for each presynaptic neuron. Coloring correspond to the parallelization over CUDA blocks in (E). (C)

Connectivity matrix for two postsynaptic neuron partitions, visualized as in (B). Each color shows one synapse group, defined by presynaptic neuron (red or blue) and

postsynaptic partition (bright or dark). The synapse array is sorted in memory first by presynaptic neuron ID and then by partition (bottom view). (D) Pre- and

postsynaptic neuron IDs for all synapses are stored in two arrays, sorted by synapses IDs. (E) Fully parallelized synaptic effect application for the network from (A)

without delays (d = 01t) and with the partitioned connectivity matrix from (C). Each of the 4 CUDA blocks (cf. colors) applies synaptic effects for all synapses of its

respective synapse group. Membrane voltage updates are performed using CUDA’s atomic operations to avoid race conditions. Potential atomic conflicts at the same

memory location are marked in green. Without connectivity matrix partionioning (B), only two CUDA blocks (one per spiking neuron) would process the synapses (not

shown). (F) Circular list of spiking neuron arrays for the network from (A) with homogeneous delays d = 21t. Spiking neuron arrays are labeled with the time in which

their synaptic effects are due for application. Spiking neurons of the current time step are stored in the array labeled with d = 21t. Synaptic effects are applied for the

neurons in the array labeled with 01t. After each time step, all array labels are rotated clockwise and the applied spiking neuron array will be overwritten by the new

spikes of the next time step.

2.4. CUDA Code Generation With
Brian2GeNN
Our benchmarks compare Brian2CUDA’s performance with the
performance obtained when using the Brian2GeNN interface

(Stimberg et al., 2020b). Since both are implemented as backends
for the Brian 2 simulator, the exact same models can be run
and easily compared. Note that the Brian2GeNN interface
does not support synaptic connections with heterogeneous

Frontiers in Neuroinformatics | www.frontiersin.org 8 October 2022 | Volume 16 | Article 883700397

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Alevi et al. Brian2CUDA

FIGURE 4 | Spike propagation and synaptic effect application for synapses with heterogeneous delays. (A) Same connectivity as shown in Figure 3A, but with

heterogeneous delays dij from neuron j to i. Neurons spiking in the current time step and their outgoing synapses are colored. Colors of synapse labels correspond to

the parallelization over CUDA blocks during spike propagation in (B). Bundles group together synapses with same presynaptic neuron, postsynaptic partition as

shown in (B) and delay value. All bundles for the same presynaptic neuron and postsynaptic partition define a bundle group (same color), each with a different delay. In

this toy example, only bundle 0 has two synapses (0 and 5), the other bundles contain only one synapse. Additionally only the bright red bundle group consists of two

bundles (2 and 4), while the other bundle groups contain only one bundle. (B) Spike propagation step. Bundles for all spiking neurons are sorted into spike queues

based on their delay value and postsynaptic partition. Maximal delay in (A) is d0,4 = 31t, requiring 4 spike queues per partition. Each of the 4 CUDA blocks

propagates all bundles of its respective bundle group. A critical section code ensures that only one CUDA block per partition (red or blue) has access to the spike

queues of its partition at any time. Two CUDA blocks of different partitions (dark and light) can operate concurrently on separate spike queues. For each partition,

delay queues are constructed as a circular list of arrays and their labels are rotated at the end of each time step [after (D)] analogously to the circular list of spiking

neuron arrays in the case of homogeneous delays in Figure 3F. (C) Synaptic effect application. Same connectivity as in (A). Colors now indicate neurons receiving

synaptic effects in the current time step (yellow) and their incoming synapses (red and blue, these are the synapses from (A) without delay). Colors of synapse labels

correspond to the parallelization over CUDA blocks during effect application in (D). (D) Effect application step. Synaptic effects of all synapses in all bundles in the 01t

spike queues are applied to their targets. One CUDA block per partition processes all bundles of its partition. Bundles are unpacked and each thread applies the effect

on one synapse (e.g, two threads are processing the two synapses in bundle 0).

delays, therefore the corresponding benchmarks only compare
Brian2CUDA to CPU performance.

The Brian2GeNN interface uses Brian’s C++ framework
to generate synaptic connections, initialize variables, and to
generate the numerical update steps based on the given model

equations. In the next step, the interface converts synaptic data
structures and model descriptions to the GeNN format, and
runs GeNN’s own code generation process. Finally, the generated
code gets integrated into a run loop running on the CPU that
also takes care of exchanging memory between CPU and GPU

Frontiers in Neuroinformatics | www.frontiersin.org 9 October 2022 | Volume 16 | Article 883700398

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Alevi et al. Brian2CUDA

when necessary (for details see Stimberg et al., 2020b). The
internally used data structures and algorithms are identical to
running a simulation with the GeNN simulator (for details
see Yavuz et al., 2016). GeNN allows the user to choose data
structures and algorithms most adapted to their model, and
many of these choices are exposed in the Brian2GeNN interface.
All benchmarks presented in this paper use GeNN’s sparse
connectivity method, and chose the—for the respective model
configuration—faster of its two parallelization modes: pre mode,
i.e., parallelization over pre-synaptic sources and sequential loops
over post-synaptic targets, or post mode, i.e., parallelization over
post-synaptic targets and sequential loops over pre-synaptic
sources.

2.5. Benchmarks
2.5.1. Benchmark Models
To assess the runtime performance of Brian2CUDA in
comparison to Brian2 on CPU and Brian2GeNN we use as
benchmarks different models that cover popular types used in
computational neuroscience. Here, we give an overview of the
model characteristics and behaviors. The simulation code with all
model implementations, parameters and benchmark procedures
that were used to generate the results of this paper are available in
our Brian2CUDAGitHub repository4 and archived as Alevi et al.
(2022).

2.5.1.1. HH Benchmark: Hodgkin-Huxley Type Neurons

With Static Synapses
For the first benchmark, we use a model of excitatory
and inhibitory conductance-based Hodgkin-Huxley (HH) type
neurons (also used in Brette et al. 2007; Stimberg et al. 2020b
and based on Traub andMiles 1991). This neuron model consists
of six coupled ordinary differential equations describing the
dynamics of the membrane voltage, three gating variables, and
excitatory and inhibitory synaptic conductances. We initialized
membrane voltages and synaptic conductances independently
from Gaussian distributions, such that all neurons had slightly
different initial conditions (for details see Stimberg et al., 2020b).
We simulated populations of N neurons (80% excitatory and
20% inhibitory) with random recurrent synapses. Synapses from
spiking presynaptic excitatory and inhibitory neurons modify
postsynaptic excitatory and inhibitory conductances based on
their synaptic weights wE and wI , respectively. Connectivity was
randomly Bernoulli-sampled for each pair of neurons (including
self-connections) with fixed probability p = C

N , where C =

1,000 is the average number of synapses per neuron. For N <

1,000, all neuron pairs were connected. The model is identical
to the COBAHH benchmark in Stimberg et al. (2020b), where a
mathematical description of the model and a list of parameters
can be found.

For Figure 5A, we simulatedN neurons without any synapses,
i.e., an uncoupled HH-type population. For an example of
the activity in this network, see Supplementary Figure S2. For
Figure 5B, we simulated the model with an average of C =

4https://github.com/brian-team/brian2cuda/tree/paper2022/brian2cuda/tools/
benchmarking.

1,000 synapses per neuron and with random synaptic weights
uniformly sampled from wE,wI ∼ U(0,wmax) with wmax =

10−18 S. The weights are chosen small enough to have no
substantial effect on postsynaptic conductances such that the
network activity does not change when increasing the population
size, but synaptic propagation and effect application is still
performed during the simulation (same procedure as in Stimberg
et al., 2020b).

2.5.1.2. LIF Benchmark: Noisy Integrate-and-Fire Neurons

With Synaptic Transmission Delays
The LIF benchmark consists of a population of N noise-driven
LIF neurons with recurrent inhibitory connections (based on
Brunel and Hakim, 1999). This is the same model we introduced
in Figure 1. The dynamics of each neuron are described by a
single ordinary differential equation for the membrane voltage
shown in Figure 1B. For all benchmark results, we simulated
the model with spike threshold 2 = 20mV, reset potential
Vr = 10mV, membrane time constant τ = 20ms and inhibitory
coupling J = 0.1mV. Neurons have a refractory period of τref =

2ms. Recurrent random connectivity is implemented in the same
way as in the HH benchmark, with connection probability p = C

N
with the same average number of synapses per neuronC = 1,000.
Synapses from spiking presynaptic neurons modify postsynaptic
membrane voltages.

For the benchmark version with homogeneous delays
(Figures 5C, 7A), the synaptic transmission delay was dij = 2ms
for each synapse from neuron j to neuron i. The parameters
of the external drive (Gaussian white noise) were chosen
as µext = 25mV and σext = 1mV. For the benchmark
version with heterogeneous delays (Figures 6A, 7C), the synaptic
transmission delays were uniformly sampled from a uniform
distribution dij ∼ U(0, 4)ms. Resolved on the integration time
grid with 1t = 0.1ms, this resulted in up to 41 different delay
values. The external drive parameters were chosen as µext =

27mV and σext = 0.33mV. These parameters ensured that
both benchmark versions had the same mean synaptic delay and
that network activities showed qualitatively similar slow global
oscillations (see Brunel and Hakim 1999; example activity for the
heterogeneous version with N = 5,000 shown in Figure 1C).

2.5.1.3. STDP Benchmark: Dynamic Synapses With

Spike-Timing Dependent Plasticity
The spike-timing dependent plasticity (STDP) benchmark
consists of N Poisson generators with dynamic feedforward
synapses to a population of N

1,000 LIF neurons (for an example of
the activity in the network, see Supplementary Figure S3). The
Poisson generators have no dynamics that need to be integrated,
but produce random Poisson spike trains with a mean firing rate
of 15 s−1 (each generator performs one independent Bernoulli
trial per time step). The dynamics of the LIF neurons are
described by two differential equations, one for the membrane
voltage and one for an excitatory synaptic conductance. The
connection probability is p = C

N , where C = 1,000 is the
average number of incoming synapses per LIF neuron (while each
Poisson generator has on average only one outgoing synapse).
Each synapse has a dynamic weight, which determines the

Frontiers in Neuroinformatics | www.frontiersin.org 10 October 2022 | Volume 16 | Article 883700399

https://github.com/brian-team/brian2cuda/tree/paper2022/brian2cuda/tools/benchmarking
https://github.com/brian-team/brian2cuda/tree/paper2022/brian2cuda/tools/benchmarking
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Alevi et al. Brian2CUDA

synaptic effect that a presynaptic spike has on the postsynaptic
neuron. The dynamics of the weights implement an all-to-all,
additive STDP rule (Song et al., 2000; Morrison et al., 2008).
Each pre- and postsynaptic spike increases a corresponding
trace variable, stored for each synapse (necessary to support
heterogeneous delays). In the absence of spikes, these trace
variables decay exponentially, which is implemented through an
event-driven update (see Section 2.3.2), and is therefore only
calculated when necessary. When a presynaptic spike arrives, the
current postsynaptic trace is used to decrease the synaptic weight,
and conversely a postsynaptic spike triggers an increase in the
synaptic weight based on the current presynaptic trace. Together,
these changes implement the observed asymmetry of the STDP
rule, where a presynaptic spike followed by a postsynaptic spike
leads to synaptic facilitation, and the inverted sequence leads
to synaptic depression (Bi and Poo, 2001). The technically
challenging aspect of this model is that there aremultiple synaptic
effects triggered by pre- and postsynaptic spikes: synaptic
trace variables are bidirectionally affected and additionally
presynaptic spikes influence postsynaptic neurons via increasing
the excitatory synaptic conductance. In Brian2CUDA, for this
model, two separate connectivity matrices are generated, one for
pre- and one for postsynaptically triggered synaptic effects. Both
matrices are sorted differently, the former one by pre- and the
latter one by postsynaptic neurons (see Section 2.3.2.1).

We use two versions of this model for benchmarking: with
homogeneous delays (Figures 5D, 7B) and with heterogeneous
delays (Figures 6B, 7D). The delays are the same as in the LIF
benchmarks with the corresponding delay type. Note that the
transmission delays are implemented as axonal delays, i.e., they
only apply to synaptic effects triggered by the presynaptic
population, while the synaptic effects from the postsynaptic
population have no delays.

2.5.1.4. Mushroom Body Benchmark: Complex Model With

Multiple Neuronal Populations, Spike-Timing Dependent

Plasticity and Noise
As the final benchmark (for Figure 5E), we consider a more
“realistic,” complex model with multiple neuronal populations
and synapse types, that combines several of the features of the
previous benchmarks. For an example of the activity in the
network, see Supplementary Figure S4. This model is inspired
by the mushroom body of insects, based on the model by
Nowotny et al. (2005), and used as a benchmark in earlier
studies (Yavuz et al., 2016; Stimberg et al., 2020b). Briefly,
this model consists of three populations: the first population
consists of 100 pattern generators (i.e., does not simulate any
dynamics but replays a pre-defined spike pattern), connecting to
N HH-type neurons in the second population with a connection
probability of p = 0.15 for each possible connection (Bernoulli
sample). These connections are modeled as static, excitatory
synapses. The neurons of the second population are modeled
with the same equations (but different parameters) as in the HH
benchmark presented earlier, except that they have no inhibitory
conductance, which is not required without inhibitory synapses.
This second population connects further to a third population
of 100 HH-type neurons, with a connection probability of p =

10,000
N (with all-to-all connectivity for N < 10,000). These

connections are plastic, following the STDP rule presented in
the STDP benchmark. Finally, the third population has recurrent
synapses to itself with all-to-all connectivity and static inhibitory
synapses. For more details and parameters of this model, see
Yavuz et al. (2016) and Stimberg et al. (2020b).

2.5.2. Benchmark Procedure
All our benchmarks running on GPUs were executed on a single
A100 data-center GPU (40 GB global memory), except for some
results in Figure 9, which were executed on a single consumer-
level GeForce RTX2080 Ti GPU (11 GB global memory). Brian’s
C++ backend was executed on an Intel Xeon Gold 6226R CPU
with 16 physical cores, using 16 threads. Benchmarks were run
on Brian2CUDA commit-tag paper20225 (Alevi et al., 2022),
Brian version 2.4.2 (Stimberg et al., 2020a), GeNN version 4.5.1
(Knight et al., 2021a) and Brian2GeNN commit5f844d0 (based
on version 1.6; Stimberg et al., 2021). We modified the Brian
and Brian2GeNN versions with custom patches to execute our
benchmarks and to get more detailed profiling information than
available in the original implementations. Note that we ensured
that these modifications had no significant impact on the runtime
durations. The correct versions of these packages are stored as
Git submodules in our GitHub repository, together with the
necessary patch files and instructions on how to apply them.
C++ code was compiled with gcc version 9.3.0 and CUDA code
was compiled with nvcc version 11.2 based on CUDA toolkit
version 11.2. The operating system on the computers with the
A100 GPUs and Intel Xeon Gold 6226R CPUs was CentOS Linux
release 7.4.1708 and on the computers with RTX2080GPUs it was
Ubuntu Linux version 20.04.3 LTS.

For all benchmarks, we first recorded network activities for
different network sizes and inspected that network activities were
as expected. Additionally, we compared the results of Brian’s
C++ backend with the results of the Brian2CUDA backend for
validation. For the final computation time measurements, we
disabled the recording of any network activities. All benchmarks
were simulated once for 10 s biological time (except for Figure 8)
with a simulation time step of 1t = 0.1ms, and the computation
times were divided by 10 to produce computation times relative
to biological time (referred to as Time [comp / bio] in our
figures). Simulations that exceeded 1,000 s of total computation
time were interrupted before the end of the simulation (except
for Figure 8). The computation time for the entire simulation
was then linearly extrapolated based on the fraction of biological
time that was simulated (data points marked in all figures).
All figures except for Figure 8 show the computation time
only for the main simulation loop, which consists of all
simulation kernels that are executed at each time step of a
simulation. This time does therefore not include compilation,
network initialization, synapse generation, or result storage.
For the Brian2CUDA profiling simulations in Figure 7, the
CPU and GPU were synchronized after each kernel launch
(forcing the CPU to wait for the kernel to terminate before
continuing execution, which results in increased computation

5https://github.com/brian-team/brian2cuda/tree/paper2022

Frontiers in Neuroinformatics | www.frontiersin.org 11 October 2022 | Volume 16 | Article 883700400

https://github.com/brian-team/brian2cuda/tree/paper2022
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Alevi et al. Brian2CUDA

time) and kernel times were measured using timing functions
in C++ code. For the Brian2GeNN profiling experiments,
Brian2GeNN’s own kernel timing preference was enabled, which
records kernel times with CUDA events and without additional
CPU/GPU synchronization. All Brian2CUDA simulations of
benchmarks with no or homogeneous delays were executed
without partitioning the connectivity matrix. For benchmarks
with heterogeneous delays, the number of connectivity matrix
partitions is shown in the figure labels or captions. In all
benchmarks with heterogeneous delays, synapse bundles are used
(and not individual synapses as Brian2CUDA can be configured
to do). For Figure 8, the STDP benchmark with homogeneous
delays was simulated for the biological times and network
sizes shown in the figure legends and simulations were not
interrupted after 1,000 s computation time. Code generation and
compilation times were recorded from within the Brian package.
Tomeasure the initialization and finalization times, we computed
the difference between the time spent within the main loop of
the generated code and the total execution time of the compiled
binary.

3. RESULTS

To illustrate how different model features affect simulation
performance on GPUs in Brian2CUDA and what speedup levels
are typical, we consider multiple benchmark models covering
various model types often used in computational neuroscience.
In Sections 3.1–3.4, we focus on the computation time needed
for the main simulation loop, which is the part of the simulation
that is executed at every simulation time step. In particular,
we summarize simulation performance for models without
synaptic delays or with homogeneous delays in Section 3.1
and for models with heterogeneous delays in Section 3.2. In
Section 3.3, we analyze the contributions of different algorithm
parts to the runtime and in Section 3.4, we illustrate how
recording of network activity and state variables influences
runtimes. Section 3.5 then quantifies the overhead of preparing
a simulation in terms of compilation and synapse initialization
runtime beyond the main simulation loop. Finally, we show
in Section 3.6 how the performance depends on the choice of
floating point precision (single vs. double) and specific GPU
hardware.

3.1. Benchmark Models Without Delays or
With Homogeneous Synaptic Delays
3.1.1. Hodgkin-Huxley Benchmark
To make efficient use of GPUs, simulation code has to perform
highly parallel computations. The independent integration
of neuronal state variables performed at each simulation
time step for all neurons is trivial to parallelize on a
GPU. In Brian2CUDA, each GPU thread computes the full
state update for a single neuron (see Section 2.3.1). For
a network of Hodgkin-Huxley (HH) type neurons without
synapses, Brian2CUDA achieves a speedup of 3 orders of
magnitude compared to Brian’s single-threaded C++ backend
for large enough network sizes (N > 105; Figure 5A). The

speedup of the GPU backend implemented in Brian2GeNN
is comparable to the speedup of Brian2CUDA. With single-
precision floats as shown here, Brian2CUDA performs slightly
better than Brian2GeNN for large network sizes (Figure 5A),
while for double-precision floats this difference is negligible
(shown in Supplementary Figure S1F). Both backends also
have comparable memory requirements, but Brian2GeNN is
slightly more efficient. For example, on an RTX2080 Ti with
11GB memory, Brian2GeNN can simulate a network that has
about 1.4 times the size of the biggest network that can be
simulated with Brian2CUDA (about 2.8 · 108 vs. 2.0 · 108

neurons).
Next we turn to networks with synapses, where the application

of postsynaptic effects is less trivial to parallelize, since the effects
of multiple spikes at the same target neuron cannot be applied at
the same time in GPUmemory (see Section 2.3.2.2).We therefore
extend our benchmarkmodel to a network of recurrently coupled
HH-type neurons with conductance-based synapses without
transmission delays (Figure 5B). In this model, each neuron has
on average 1,000 synapses. To analyze the particular effect of the
added recurrent synapses, we ensured that they do not change the
network activity. In this benchmark, Brian2CUDA still achieves
a speedup of 3 orders of magnitude compared to Brian’s single-
threaded C++ backend for large enough network sizes (N >

105; Figure 5B). Notably, Brian2CUDAperforms roughly 5 times
faster than Brian2GeNN for the largest investigated network size
(N = 106), while being 2–3 times slower for smaller network
sizes (N < 104). The performance differences for small networks
can be explained by the sequential execution from multiple small
kernels in Brian2CUDA compared to the execution of fewer
merged kernels in Brian2GeNN, see Section 4 for more details.
In comparison to the network without synapses, the speedups
gained through parallel computations in the multithreaded C++
backend and the GPU backends are reduced by a factor of 2–5
when including synapses (see Figures 5A vs. 5B). This illustrates
that synaptic computations are generally less parallelizable than
neuronal computations.

3.1.2. Leaky Integrate-and-Fire Benchmark
The speedups of the GPU backends for the HH benchmarks
demonstrate that neuronal computations benefit much more
from parallelizations on the GPU than synaptic computations.
Consequently, models for which the single-threaded C++
backend spends relatively less time for neuronal computations,
should benefit less from computations on the GPU. To illustrate
this effect, we next consider a population of noise-driven
recurrently connected leaky integrate-and-fire (LIF) neurons
with homogeneous synaptic transmission delays (based on
Brunel and Hakim, 1999). This benchmark has the same number
of synapses per neuron as the HH benchmark, but its neurons
are described by only one dynamic state variable, compared
to six state variables in the HH neuron model. Therefore, the
single-threaded C++ backend spends relatively less of the overall
computation time for neuronal computations when using LIF
neurons. While Brian2CUDA still achieves a speedup of almost
3 orders of magnitude compared to Brian’s single-threaded C++
backend for large enough network sizes (N > 105; Figure 5C),

Frontiers in Neuroinformatics | www.frontiersin.org 12 October 2022 | Volume 16 | Article 883700401

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Alevi et al. Brian2CUDA

FIGURE 5 | Benchmark results for networks without delays or with homogeneous delays. (A) Hodgkin-Huxley (HH) population without synapses. (B) Sparsely

coupled recurrent HH network with 80% excitatory and 20% inhibitory neurons, without synaptic delays. (C) Leaky integrate-and-fire (LIF) network with sparse

random connectivity and homogeneous synaptic delays dij ≡ d = 2ms for all synapses. (D) Spike-timing dependent plasticity (STDP) benchmark with homogeneous

delays dij ≡ d = 2ms. (E) Mushroom body benchmark with non-plastic synapses in the first layer and synapses with STDP in the second layer, both randomly

connected and without delays. For all panels: The text annotations on the right of the axes show the factor by which each simulation was faster than Brian’s

single-threaded C++ backend (i.e., obtained speedup) at the largest displayed N. Brian2CUDA was simulated without partitioning the connectivity matrix in all

simulations (corresponding to Figure 3B). Brian2GeNN was simulated using its post parallelization strategy for (A–C) (dark blue) and pre parallelization strategy for

(D,E) (light blue), which was the respective faster simulation mode compared to the other (not shown). All simulations were run once for 10 s biological time. All times

shown are computation times for the main time loop (i.e., without code generation, compilation, synapse generation or network initialization/finalization) and are

relative to the simulated biological time. All simulations were interrupted if the main time loop took longer than 1,000s and the total computation time was extrapolated

based on the fraction of biological time that was simulated (simulations for which this was done are indicated by small circular markers). All simulations were

performed with Brian’s single-precision preference for floating point numbers, i.e., 32-bit arithmetic, on A100 GPUs.

the speedup is approximately halved compared to that of the
recurrent HH benchmark (Figures 5B vs. 5C). Note that the
addition of homogeneous synaptic transmission delays comes
at almost no additional computational cost in Brian2CUDA
(see Section 2.3.2.3). In relation to Brian2GeNN, Brian2CUDA
performs 3 − 4 times better for the largest network sizes (N ≥

106), while being 2 − 3 times slower for smaller network sizes
(N < 104). As observed previously, Brian2GeNN is more
memory-efficient than Brian2CUDA. It is able to simulate this
benchmark on an RTX2080 Ti for a network with more than
2.0 · 106 neurons, about 2.3 times the size supported by
Brian2CUDA (about 8.6 · 105 neurons).

3.1.3. Spike-Timing Dependent Plasticity Benchmark
The benchmarks presented so far are based on static synapses,
which do not change over the course of the simulation.
However, an important subfield of computational neuroscience
is interested in synaptic plasticity, where synaptic weights
continuously adapt. Of particular interest in spiking neural
networks are spike-timing dependent plasticity (STDP) rules,
where the change in synaptic weight depends on the precise
timing of pre- and post-synaptic spikes (Bi and Poo, 2001).
Such plasticity rules present particular challenges for GPU
acceleration, since they require more complex memory access
patterns during the spike effect application phase than common

Frontiers in Neuroinformatics | www.frontiersin.org 13 October 2022 | Volume 16 | Article 883700402

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Alevi et al. Brian2CUDA

static synapse models (cf. Brette and Goodman, 2012). To
investigate the acceleration of models with STDP, we next
examine a network with dynamic feedforward synapses from
a large population of N Poisson generators to a much smaller
population of N

1,000 LIF neurons (Figure 5D). The synapses in
this network have (again) homogeneous transmission delays.
Brian2CUDA achieves here 2 orders of magnitude speedup
compared to Brian’s single-threaded C++ backend for large
enough network sizes (N > 106), but the speedup is reduced
by a factor of 3 compared to the LIF benchmark. This is due
to the increased relative computation time required for synaptic
computations from the STDP learning rule (as will be shown
in more detail below). Compared to Brian2GeNN, Brian2CUDA
is again slower for small network sizes (N ≤ 106) while being
slightly faster for the largest network size (N = 107).

3.1.4. Mushroom Body Benchmark
In the final benchmark on simulations without or with
homogeneous delays, we consider a model of an insect
mushroom body based on Nowotny et al. (2005), in an
implementation already used in Stimberg et al. (2020b). It is a
three-layer network with HH-type neurons and STDP in some
of its synapses (Figure 5E). Since this model includes HH-type
neurons with relatively few synapses, most of the computational
effort is spent on the integration of the neuronal state variables.
More precisely, there are two operational regimes: For smaller
network sizes (N ≤ 104), the number of synapses is 2 orders of
magnitude higher than the number of neurons in the network
and the performance is comparable to the HH benchmark with
synapses (cf. Figure 5B). For larger network sizes (N ≥ 105),
the number of synapses is only 1 order of magnitude higher
than the number of neurons and the performance is closer to
that of the HH benchmark without synapses (cf. Figure 5A).
Surprisingly, Brian2CUDA’s speedup for large network sizes in
the mushroom body model is even larger than for the HH
benchmark without synapses. This behavior is probably due
to an extra dynamic inhibitory conductance variable in the
neuron model of the HH benchmark, which requires additional
registers during the neuronal integration. Due to hardware limits
of available registers on the GPU, this decreases the maximal
theoretical occupancy of the neuronal integration kernel to
62.5% for the HH benchmark compared to 100% in the
mushroom body benchmark (48 registers per thread vs. 32
registers per thread; cf. Section 2.2.3.1 and Table 1). Note that the
number of registers needed by a kernel is not easily predictable,
and does not directly reflect the number of state variables.
The number of intermediate computation steps in the chosen
integration method, additional temporary variables introduced
by Brian’s code generation process, but also the CUDA compute
capability of the GPU and even seemingly irrelevant details such
as the order of variable declarations, all affect register usage. This
demonstrates that minor differences in a model can have large
effects on performance.

Note that for Brian2GeNN, which performs about 5x slower
for the largest network size, we again show the performance
of its pre parallelization mode, for which the performance
is better at larger network sizes. For smaller network sizes,

Brian2GeNN in post parallelizationmode performs slightly better
(see Supplementary Figure S1E).

All results in Figure 5 are from simulations with
single-precision floats and with preferences that gave the
best performance. Results for additional preferences and
simulations with double-precision floats are shown in
Supplementary Figure S1.

3.2. Benchmark Models With
Heterogeneous Synaptic Delays
Brian supports the simulation of networks with heterogeneously
distributed synaptic delays. To simulate such networks,
presynaptic spikes have to be sorted by delay and stored before
their synaptic effects are applied. This spike propagation is
challenging to parallelize efficiently on GPUs and additionally
influences the parallelization of the synaptic effect application
(Brette and Goodman 2012; Section 2.3.2.4). To evaluate the
performance of Brian2CUDA’s spike propagation and effect
application algorithms, we include heterogeneously distributed
synaptic delays in our LIF and STDP benchmarks, without
qualitatively changing their network dynamics. We further
evaluate Brian2CUDA’s performance when partitioning its
connectivity matrix (see Section 2.3.2.1).

Note that while the GeNN simulator has recently added
support for heterogeneously distributed synaptic delays, this
feature is currently not available in the Brian2GeNN interface.
We therefore compare Brian2CUDA’s performance only to
Brian’s C++ backends.

Figures 6A,B show the results for the LIF and STDP
benchmarks, respectively. The performance of Brian’s single-
threaded C++ backend is not significantly affected by the
presence of heterogeneous delays, while Brian2CUDA’s
performance drops by an order of magnitude for the LIF
benchmark and between one and three orders of magnitude
for the STDP benchmark (cf. Figures 5C,D), depending on
the partitioning of the connectivity matrix. Note that Brian’s
multithreaded C++ backend does not efficiently parallelize spike
propagation or the computations for Poisson generators, and
hence performs similarly as its single-threaded backend in the
STDP benchmark. Partitioning the connectivity matrix has little
effect on overall runtime for the LIF benchmark, but increases
performance by up to two orders of magnitude in the STDP
benchmark. This strongly depends on the number of partitions
and best performance was reached for 64 partitions (Figure 6C).
To understand the effects of partitioning the connectivity
matrix, we next consider profiling experiments to analyze the
contribution of different parts of the simulation to the overall
runtime.

3.3. Runtime Decomposition Into Different
Algorithm Parts
We examine the contributions of the different algorithm
parts by profiling the simulation. The following individual
runtimes are available: the computation times for (1) performing
neuron related computations (integration of dynamics and
spike detection), (2) spike propagation and (3) synaptic effect

Frontiers in Neuroinformatics | www.frontiersin.org 14 October 2022 | Volume 16 | Article 883700403

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Alevi et al. Brian2CUDA

FIGURE 6 | Benchmark results for networks with heterogeneous delays.

(A) LIF benchmark model from Figure 5C but with heterogeneous delays.

(B) STDP benchmark from Figure 5D but with heterogeneous delays. Delays

for all synapses in both models (A,B) were uniformly sampled dij ∼ U(0, 4)ms.

The external drive for the LIF benchmark was additionally modified to maintain

the same regime of network activity as in the case of homogeneous delays

(see Section 2.5.1.2). (C) Computation times for LIF (blue line) and STDP

(green line) benchmarks for different numbers of connectivity matrix partitions

in Brian2CUDA, for the maximal network sizes from (A,B) [indicated with blue

and red triangular markers in (A,B)]. Triangular markers in (C) indicate the

number of partitions plotted in (A,B) in the corresponding colors. All

simulations were performed as described in Figure 5.

application (including the event-driven integration of synaptic
dynamics in the STDP benchmark). The decomposed runtimes
for the LIF and STDP benchmarks with homogeneous delays
are shown in Figures 7A,B, those for heterogeneous delays are
contained in Figures 7C,D.

Brian’s multithreaded C++ backend spends around half
the computation time for spike propagation and synaptic
effect application in the LIF benchmarks (Figures 7A,C
yellow), while spending almost all time in the neuronal
state updates and Poisson spike generation in the STDP
benchmarks (Figures 7B,D blue). This is because the ratio

of synapses to neurons (including Poisson generators) is
much lower in the STDP benchmark compared to the LIF
benchmark. The speedup of the GPU backends compared to the
multithreaded C++ backend comes mostly from parallelizing the
neuronal state updates and Poisson spike generation (including
random number generation) on the GPU. When comparing
Brian2CUDA and Brian2GeNN, both require similar times for
the neuronal state updates and Poisson spike generation, but
their efficiency for the synaptic effect applications differs for
both benchmarks with homogeneous delays (Figures 7A,B). For
the LIF benchmark, Brian2CUDA’s synaptic effect application
is more efficient compared to Brian2GeNN since the former
parallelizes CUDA threads over all synapses while the latter
parallelizes over postsynaptic neurons, requiring sequential
looping over presynaptic spikes (using the post parallelization
strategy of Brian2GeNN). In the STDP benchmark on the other
hand, Brian2CUDA is only slightly more efficient in the synaptic
effect application because Brian2GeNN’s pre parallelization
strategy is particularly suited to the case of many spiking neurons
and few postsynaptic partners as explained above.

For heterogeneous delays, Brian2CUDA spends most of the
computation time on spike propagation and synaptic effect
application relative to neuronal state updates (Figures 7C,D).
For the LIF benchmark with heterogeneous delays, increasing
the number of partitions increases spike propagation times but
decreases synaptic effect application times (Figure 7C). Each
neuron in this benchmark has on average 1,000 synapses grouped
into 41 synapse bundles per partition (see Section 2.3.2.4).
Without partitioning the connectivity matrix, each CUDA block
sorts all synapse bundles of one spiking neuron into spike queues,
using one CUDA thread per bundle. This results in small CUDA
blocks with only 41 active threads during spike propagation. For
the large network size here, the number of spikes per time step
is of the same order as the maximal number of active CUDA
blocks on the GPU (see Table 1). Partitioning the connectivity
matrix under these conditions reduces the size and increases the
number of the already small CUDA blocks without being able
to execute them concurrently. Consequently, spike propagation
times increase with partition number (Figure 7C, red). On
the other hand, the synaptic effect application profits from
partitioning the connectivity matrix.Without partitioning, only a
single CUDA block applies all synaptic effects of the spike queue
for the current time step. For large networks with large spike
queues, partitioning distributes synapses across multiple CUDA
blocks, significantly increasing effect application performance
(Figure 7C, yellow). Note that partitioning also has a small
impact on the memory usage: on an RTX2080 Ti, Brian2CUDA
can simulate a LIF network with heterogeneous synapses with
around 5.6 · 105 neurons when using a single partition, but with
only about 0.77 times the size (around 4.3 · 105 neurons) when
using 68 partitions.

For the STDP benchmark with heterogeneous delays,
increasing the number of partitions decreases both, the spike
propagation and the effect application times up to an optimal
number of 64 partitions (Figure 7D). Without partitioning, the
spike propagation is so inefficient that the total runtime exceeds
that of the single-threaded C++ simulation (cf. Figure 6B). For

Frontiers in Neuroinformatics | www.frontiersin.org 15 October 2022 | Volume 16 | Article 883700404

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Alevi et al. Brian2CUDA

FIGURE 7 | Profiling results for benchmarks with homogeneous and heterogeneous delays. (A,B) Profiling results for LIF (A) and STDP (B) benchmarks with

homogeneous delays for the respectively largest population of Figures 5C,D. (C,D) Profiling results for LIF (C) and STDP (D) benchmarks with heterogeneous delays

for the largest population size of Figures 6A,B. For the STDP benchmarks in (B,D), the Poisson spike generators are included in the neuronal computation times

(blue). The gray shaded areas in the lower part of (A–D) contain zooms of the respective GPU simulations in the middle (indicated by the magnifying glass symbol). (C,

left) and (D, right) show profiling results for different numbers of partitions of the connectivity matrix in Brian2CUDA. Black lines are the total computation times for the

main time loop (cf. Figure 6C). In all panels, Brian C++ was simulated with 16 threads, Brian2CUDA was simulated without connectivity matrix partitioning if not

stated otherwise and Brian2GeNN was simulated in post mode for (A) and in pre mode for (B). For Brian2GeNN, only the combined time of spike propagation and

effect application (striped bars) was recorded since both are combined into a single CUDA kernel. All simulations were performed as described in Figure 5, but with

enabled profiling measurements leading to slightly higher total computation times.

this benchmark, every Poisson neuron has on average only 1
synapse. This is the worst-case scenario for Brian2CUDA’s spike
propagation algorithm, since all CUDA blocks have only a single
thread and the hardware limit on maximally active blocks per SM
strongly limits the number of synapse bundles that can be added
to the spike queues concurrently. Additionally, the resulting
small workload per SM leads to a low parallelization across active
CUDA blocks since only one CUDA block can access all spike
queues at any time. Increasing the number of partitions also
partitions the spike queues. Since concurrent access of different
CUDA blocks to different spike queues is possible, this increases
spike propagation performance. This benchmark shows that for

large neuronal populations with extremely sparse synapses (here
only 1 synapse per neuron), Brian2CUDA’s connectivity matrix
partitioning can have drastic benefits on performance.

3.4. Runtime Contribution of Network
Activity and State Variable Recordings
To analyze a spiking network model, Brian allows recording
spike times, state variables and population firing rates. In
Brian2CUDA, recorded variables are stored in GPU memory
during a simulation and are transferred to CPU memory and
written to disk at the end of a simulation. The contribution to
overall computation time of such recordings strongly depends on

Frontiers in Neuroinformatics | www.frontiersin.org 16 October 2022 | Volume 16 | Article 883700405

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Alevi et al. Brian2CUDA

FIGURE 8 | Additional time required during a simulation with Brian2CUDA for

the STDP benchmark with homogeneous delays (Figure 5D). Code

generation and compilation times (yellow) are independent of network size and

biological time. Network initialization and finalization (blue) depend on network

size but not on biological time. Simulation of the main time loop (red) scales

with both, biological time (linearly) and with network size. Compilation was

performed in parallel on 16 CPU threads.

the details of a model (e.g., neuronal firing rates) and the number
of recorded variables.

Consider for example Figure 1C, which shows the results for
a simulation of the LIF benchmark with heterogeneous delays.
To record this data, a spike recorder records all spikes in the
network, a state variable recorder records the voltage of a single
neuron for all time steps of the simulation and a population rate
recorder records the fraction of spiking neurons at each time
step. When adding these recorders to the largest LIF network
with heterogeneous delays shown in Figure 6A (N = 3.2 · 105),
they require around 6% of the computation time in the main
simulation loop. Half of this additional time is spent on the
spike recordings. For networks with overall less computation
time per recorded unit, the contribution of recordings to total
computation time naturally increases. For the extreme case of
the HH benchmark without synapses (Figure 5A; recorded data
shown in Supplementary Figure S2), the same recordings as
above require around 40% of the computation time for N = 106

neurons. Of this additional time around 2/3 is spent on spike
recordings.

While Brian2CUDA stores recordings in GPU memory until
the end of a simulation, Brian2GeNN copies them at each time
step from GPU to CPU memory. Therefore, GPU memory can
be a limiting factor for recordings in Brian2CUDA, whereas
Brian2GeNN requires very little GPU memory. For the HH
benchmark above, spike and population rate recordings in
Brian2GeNN perform similarly to those in Brian2CUDA, while
state variable recordings perform significantly worse. This is
because of an inefficient implementation of the state variable
recorder in Brian2GeNN, which copies at each time step all state
variables of all neurons to the CPU, independent of the number

of recorded neurons. This results in up to 2 orders of magnitude
longer computation times when recording a single voltage trace
in the HH benchmark example above.

Compared to Brian’s C++ backends, absolute network
recording runtimes in Brian2CUDA are comparable for large
recordings (e.g., for the HH benchmark example), and can
be slower for smaller recordings (around 5 times slower for
LIF benchmark example). This is because memory copies in
GPU memory are slow, and Brian2CUDA benefits more from
parallelizing the copy process for larger recordings. Given the
large speedups for other computations in Brian2CUDA, network
activity and state variable recordings contribute relatively much
more to total computation times than in Brian’s C++ backends.

3.5. Additional Computation Time Factors:
Code Generation, Compilation,
Initialization, and Finalization
So far we have been analyzing the computation time needed for
the main simulation loop, i.e., only that part of the simulation
that is executed at every simulation time step. For long running
simulations of large networks or for real-time applications, this is
the most relevant performance measure. But in order to get from
a Brian model script to the results, the Python code needs to be
translated into the target language, which needs to be compiled
and executed and finally, the results need to be transferred back
into the Python environment. Furthermore, at the beginning
of the simulation, the model needs to be initialized, which
includes generating synapses, setting up connectivity matrices
in the necessary format and for GPU backends, transferring
data to GPU memory. Figure 8 shows how compilation and
network initialization contribute to the overall execution time
for the STDP benchmark with homogeneous delays simulated
with Brian2CUDA (cf. Figure 5D). The time spent in the
simulation loop is proportional to the simulated biological time
and also depends on the population size N of the network.
The initialization time during the simulation is independent of
the simulated biological time and increases with network size.
And finally, the compilation time is independent of both, the
simulated biological time and the network size.

Generally, for smaller networks (here N ≤ 106) with shorter
biological times (here T < 200 s), most of the computation time
is spent on compilation, while this becomes negligible for larger
networks simulating longer biological times. The compilation
time for Brian’s C++ backends Brian2GeNN and Brian2CUDA
is mostly comparable, but can differ for some models. Brian’s
C++ backends and Brian2CUDA generate separate (CUDAC++)
source files for each neuronal population object or synapse object.
This can increase compilation times for networks with many
objects, in particular for Brian2CUDA, which suffers from slower
CUDA code compilation. The mushroom body benchmark for
example requires almost twice the time for compilation as the
STDP benchmark shown here because it consists of twice asmany
neuronal populations and synapse groups. While Brian2GeNN
requires additional time for first generating GeNN code from the
Brian model, it can compile the final CUDA code faster because

Frontiers in Neuroinformatics | www.frontiersin.org 17 October 2022 | Volume 16 | Article 883700406

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Alevi et al. Brian2CUDA

FIGURE 9 | Benchmark results for single- vs. double precision on consumer-grade vs. data-center GPUs. (A–E) Same benchmarks as shown in Figure 5. Simulated

without connectivity matrix partitioning in Brian2CUDA, with single-precision floats (dark colors) and double-precision floats (bright colors) and on A100 data-center

GPUs (red colors) and GeForce RTX2080 Ti consumer-grade GPUs (blue colors). Dark red lines show same data as in Figure 5.

it merges multiple computations into fewer CUDA kernels and
source files.

3.6. Dependence on Floating Point Number
Precision and GPU Hardware Choice
The results above stem from simulations using single-precision
floating point arithmetics on A100 data center GPUs. Here
we compare those results with Brian2CUDA’s performance
for simulations with double-precision floats on A100 GPUs
and using a more affordable hardware GeForce RTX2080 Ti
consumer-grade GPU (Figure 9). Consumer-grade GPUs are
typically optimized for single-precision arithmetic operations
and often have very low processing power on double-precision
floats. The processing power of the RTX2080 Ti for double-
precision floats is ∼32 times lower than for single-precision
floats, while for the A100 it is only ∼2 times lower. The
processing power of single-precision floats on the A100 is
∼1.66 times larger than on the RTX2080 Ti. However, the
performance differences between GPUs and between single-
precision and double-precision simulations don’t necessarily
reflect the difference in processing power. Additional factors
play a role, such as hardware limits on memory per SM or
available data transfer bandwidths. Specifically, the hardware
limits can have double effect when comparing single- to double
precision simulations. For the mushroom body benchmark,
the speedup from double- to single-precision simulations on

the RTX2080 Ti (Figure 9E, bright blue vs. dark blue) is
much higher than in the other benchmarks. This is not only
because of the increased processing power, but also because for
double-precision simulation the extended memory requirements
reach the hardware limits on available registers (see Table 1),
forcing the simulation to run with less active threads. With
single-precision floats, the reduced memory requirements allow
higher GPU occupancy on top of the higher processing
power for single-precision floats. Additionally, only computation
bound simulations will show strong performance differences
between floating point precisions and GPUs (e.g., in the HH
benchmarks; Figures 9A,B). For simulations which are bound by
communication tasks such as spike propagation, the performance
differences are much lower (e.g., in the STDP benchmark;
Figure 9D).

In summary, these results show that one does not need
extremely expensive data-center GPUs to benefit from GPU
computations in spiking neural networks, since much cheaper
consumer-grade GPUs can perform comparably for many model
types—at least for simulations with single-precision floats.

4. DISCUSSION

Building on the user-friendly simulator Brian and its code
generation framework, the Brian2CUDA package presented here
allows users with little technical expertise to simulate arbitrary

Frontiers in Neuroinformatics | www.frontiersin.org 18 October 2022 | Volume 16 | Article 883700407

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Alevi et al. Brian2CUDA

neural and synaptic models on GPUs. As we have shown, this
can lead to an important acceleration of a wide range of model
simulations. The achievable speedup depends on the details of
the model and the size of the network. For a small network,
or a model with challenging features for parallelization such as
heterogeneous transmission delays, only a several-fold increase
in simulation speed might be possible. On the other hand,
for models that are more favorable to parallelization, such as
unconnected networks or networks with homogeneous delays
and complex neuron models, the simulation speed can increase
dramatically by several orders of magnitude. Our detailed
benchmarking has shown a number of possible routes to further
optimize the simulation speed for the challenging situations,
which we will discuss in the following section.

4.1. Limitations and Future Work
Efficiently simulating different types of synaptic models on
GPUs is challenging because there is no single algorithm that
is best for all situations (Brette and Goodman, 2012; Kasap
and van Opstal, 2018). Through partitioning the connectivity
matrix, Brian2CUDA can counteract performance degradation
for some cases where the default parallelization strategy would
be inefficient. For models with homogeneous transmission delays
and without partitioning the connectivity matrix, the effect
application of individual spiking neurons is parallelized over
CUDA blocks. Partitioning the connectivity matrix distributes
the synapses for each spiking neuron over additional CUDA
blocks. However, this increases performance only when the
number of synapses per spiking neuron is larger than the
maximal number of threads per CUDA block (1,024; cf. Table 1).
For all benchmark models here, the average number of
synapses per neuron is ≤1,000, for which partitioning does
not increase parallelization. For models with more synapses,
however, partitioning is expected to be beneficial as long
as the number of spiking neurons per time step is small
enough in order to keep the total number of CUDA blocks
below the hardware limit on active blocks on all SMs of
a GPU. For models with heterogeneous delays, partitioning
the connectivity matrix has a non-trivial effect on spike
propagation and synaptic effect application algorithms (see
Figure 7). For example, without partitioning, spike propagation
is very efficient while effect application is inefficient due to
only one CUDA block applying all synaptic effects. Future
work can further accelerate the simulation of models with
heterogeneous delays by parallelizing the effect application over
more CUDA blocks instead of using only one CUDA block per
partition.

The current implementation of Brian2CUDA is optimized
for large networks, where its speedups compared to Brian’s
C++ backends are the largest and where it outperforms
Brian2GeNN in simulating the benchmark models employed
here. For smaller network sizes, however, Brian2CUDA is often
outperformed by Brian2GeNN (see for example Figures 5B–D).
This can be at least partly explained by Brian’s modular
approach, inherited by Brian2CUDA. Each individual model
component—e.g., the numerical integration, the thresholding,
the resetting (cf. Section 2.3)—is contained in an individual

kernel, and all kernels are executed sequentially. For kernels
that don’t utilize all resources (e.g., small populations of
synapses/neurons), this leads to performance degradation. In
contrast, Brian2GeNN merges all calculations related to neurons
into one kernel and all updates of synapses in another kernel.
We are currently working on two features that are promising
to increase performance for smaller networks: (1) Using CUDA’s
concurrent kernel execution capabilities, kernels for separate
neuron and synapse objects can be executed in parallel while
keeping Brian’s modular approach. (2) Convenience functions
in Brian’s Python interface can be implemented that allow users
to easily merge multiple versions of the same (potentially small)
model into a single large model. This would not only allow
much easier parameter explorations of networks on a single
GPU but also benefit from Brian2CUDA’s optimizations for large
networks.

Brian2CUDA’s main focus is on optimizing the simulation
phase, since this typically dominates the overall time for larger
networks. To run smaller networks or simpler simulations,
however, the long code generation and compilation phase in the
beginning (cf. Figure 8), can be a major inconvenience. The long
compilation times partly stem from Brian’s modular approach
mentioned above. Each component of the simulation is contained
in a separate code file that needs to be compiled individually.
To reduce compile times, multiple code files could be combined
during code generation. It should be noted, however, that the
reported compilation times are the full compilation times for a
new simulation. If a user re-runs an existing simulation and only
changes some aspects of it, only the changed source code will be
re-compiled.

Another major future optimization for network simulations
that run for a short biological time, is the synapse generation in
the initialization phase of the simulation. At themoment, synapse
generation uses Brian’s C++ mechanism and therefore does not
benefit from the GPU at all.

Current data structures and algorithms for simulating
synapses are designed to handle all synaptic models and
connection structures supported by Brian. But they perform
better on some model types than on others. For example, for
homogeneous delays, our synaptic effect application algorithm
performs best when the number of connections is equally
distributed across neurons. For structured connectivity, variable
synapse group sizes can lead to unbalanced workloads across
CUDA blocks during effect application (cf. Figure 3E), which
can affect performance. Similarly, for heterogeneous delays,
our synaptic effect application algorithm for synapse bundles
performs best when bundle sizes are uniformly distributed
within each synapse group because the same number of threads
is assigned to each bundle (cf. Figure 4D). Strong variability
across bundle sizes would lead to unbalanced workloads across
groups of threads processing synapses of different bundles. In
order to avoid these unbalanced workloads, one future direction
could be to optimize our connectivity matrix scheme based
on connectivity details. This could allow distributing workloads
more evenly or exploiting local connectivity structures in our
algorithms (as has been done before by Fidjeland et al., 2009;
Fidjeland and Shanahan, 2010).

Frontiers in Neuroinformatics | www.frontiersin.org 19 October 2022 | Volume 16 | Article 883700408

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Alevi et al. Brian2CUDA

The presented workmostly focussed on optimizing simulation
performance and less on memory usage. However, available
memory can be a major constraint, in particular on consumer-
grade GPUs. This is especially true when recording spike
times and state variables from many neurons or synapses,
which Brian2CUDA stores in GPU memory (see Section 3.4).
In future versions, we plan a recorder implementation that
allows transferring data in regular intervals from GPU to CPU
memory, and we will focus on optimizing further unnecessary
redundancies and memory inefficiencies. This should close the
gap to Brian2GeNN, which is currently more memory-efficient.

Brian2CUDA is designed to support all features of Brian2 that
are currently supported by its C++ backend and builds on the
same code generation framework. It is therefore considerably
less limited than the Brian2GeNN backend (discussed below),
and supports a large variety of models. We have focused
the development on spiking networks of single-compartment
models, since they are most likely to benefit from GPU
acceleration. Nevertheless, Brian2CUDA has support for other
types of models supported by Brian, such as multi-compartment
models, or rate-based models. This support is preliminary,
though, and using Brian2CUDAmight not give any performance
benefits prior to improving the respective parallel algorithms.

As a general note on the limitations above, we would like
to again emphasize that due to Brian2CUDA’s implementation
as a backend for the Brian simulator, a researcher does not
need to invest any additional time or effort to port a model
to Brian2CUDA. In contrast, porting a model to a simulator
that only targets the GPU carries the risk that the effort is not
worth the benefit. Due to the backend approach, researchers can
also easily switch between the CPU and GPU-based approaches
during development of a new model. For example, a researcher
can do the initial development and testing on a small-scale model
with the CPU, without having to pay the additional cost for the
CUDA compilation, and then switch to the GPU for the final
model, where the slower compilation is more than compensated
by the faster computation time.

The Brian2CUDA backend is currently only supported for
Linux operating systems (in contrast to Brian which supports
Windows, Linux, and OS X), but this limitation will be removed
in the future.

4.2. Comparison to Existing Approaches
Accelerating neural network simulations with the parallelization
capabilities of GPUs has been a promising approach for more
than a decade. The Brian2CUDA simulator presented here, builds
on the foundations laid by these earlier simulators. For example,
Brian2CUDA’s spike propagation algorithm groups synapses
based on their pre- and postsynaptic targets, as well as their
delays into synapse bundles, similar to the approach of the NEMO
simulator (Fidjeland et al., 2009; Fidjeland and Shanahan, 2010);
in the case of homogeneous delays, Brian2CUDA’s postsynaptic
update algorithm results in a similar parallelization over synapses
as in the dynamic parallelism approach described in Kasap and
van Opstal (2018).

In recent years, several new, general-purpose simulators have
seen the light of day, with each of them making different
tradeoffs between the requirements of ease-of-use, flexibility and

performance. To give a few recent examples: the Spike simulator
(Ahmad et al., 2018) has been optimized for speed, but is
implemented as a C++ library and therefore not easily useable for
many researchers; the EDEN simulator (Panagiotou et al., 2021)
runs arbitrary NeuroML v2 models (Cannon et al., 2014), which
means it inherits NeuroML’s focus on multi-compartmental
models but also its limitations with regard to networks of spiking
neurons; the NeuronGPU simulator (Golosio et al., 2021) comes
with a convenient Python interface, but implementing new
models requires editing the C++ source code of the simulator.

The Brian2CUDA interface and its general approach is
comparable to the ANNarchy simulator (Vitay et al., 2015) and
the GeNN simulator (Yavuz et al., 2016) when used together
with its PyGeNN interface (Knight and Nowotny, 2021). By
being a fully-featured backend for the Brian simulator, however,
Brian2CUDA provides additional benefits for researchers that
other simulators lack, such as a system of physical units, support
for multi-compartmental models, and the possibility to precisely
customize execution schedules. As we have shown in this article,
Brian2CUDA not only provides flexibility and convenience, but
also shows competitive performance for a wide range of network
models.

The most similar approach to the Brian2CUDA package
presented here is obviously the Brian2GeNN package, which
is also implemented as a backend for the Brian simulator.
Instead of generating CUDA code directly, the Brian2GeNN
backend generates code for the GeNN simulator, which then in
turn generates CUDA code. This approach has its advantages—
e.g., Brian2GeNN will automatically benefit from performance
optimizations in the GeNN package—but it also leads to a much
more restricted set of Brian features that are supported.While the
GeNN simulator provides a large amount of flexibility, it does
not go as a far as Brian and Brian2CUDA, for example it does
not allow for a customized execution order for all the elements
of a simulation. The Brian2GeNN interface adds a number
of additional restrictions. As a result, less common synapse
implementations, in particular those that need access to and
change variables both on the pre- and post-synaptic side, might
not be supported. Brian2GeNN is also behind in enabling features
added in newer versions of GeNN. Most importantly, GeNN
added support for heterogeneous synaptic delays with its version
3.2, but this support is not yet available via the Brian2GeNN
interface. The benchmark results for Brian2GeNN presented in
this study should therefore be interpreted with caution and not
necessarily be taken as indicative of GeNN’s performance. For
example, it appears as if the Brian2GeNN performance does
not improve as much as expected when switching from double
to single precision floats (Supplementary Figure S1), but that
might be due to a suboptimal conversion of the model by
Brian2GeNN.

5. CONCLUSION

By combining the flexibility of the Brian simulator with the
simulation speed of GPUs, Brian2CUDA enables researchers
to efficiently simulate spiking neural networks with minimal
effort and thereby makes the advancements of GPU computing
available to a larger audience of neuroscientists.

Frontiers in Neuroinformatics | www.frontiersin.org 20 October 2022 | Volume 16 | Article 883700409

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Alevi et al. Brian2CUDA

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. The
Brian2CUDA software package is publicly available on GitHub:
https://github.com/brian-team/brian2cuda. The software
version to reproduce the simulations in this study can be found
at https://github.com/brian-team/brian2cuda/tree/paper2022
and instructions on how to run them can be found at https://
github.com/brian-team/brian2cuda/tree/paper2022/brian2cuda/
tools/benchmarking.

AUTHOR CONTRIBUTIONS

MA conceptualized and supervised the project. DA and
MA designed the Brian2CUDA algorithms and designed
the benchmarks. DA developed the Brian2CUDA software
and performed and analyzed the benchmarks, and wrote
the initial draft of the manuscript. MS supervised the
integration with Brian and contributed necessary features
to Brian itself. DA, MS, and MA revised the manuscript.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by the Deutsche
Forschungsgemeinschaft (DFG) in the framework of
collaborative research centers SFB910 and SFB1315 (project
number 327654276), the Open Access Publication Fund of
TU Berlin and by Programme Investissements d’Avenir IHU
FOReSIGHT (ANR-18-IAHU-01).

ACKNOWLEDGMENTS

We thank Sudeshna Bora for assistance during the preparation of
the first Brian2CUDA release, with benchmark simulations and
analysis, as well as with manuscript formatting and visualization.
We additionally thank Laura Naumann and Gregory Knoll for
helping with visualizations and Konrad Wartke for an early
implementation of some of the Brian2CUDA algorithms.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2022.883700/full#supplementary-material

REFERENCES

Abi Akar, N., Cumming, B., Karakasis, V., Küsters, A., Klijn, W., Peyser, A., et al.
(2019). “Arbor- A morphologically-detailed neural network simulation library
for contemporary high-performance computing architectures,” in 2019 27th

Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP), Pavia, 274–282.
Ahmad, N., Isbister, J. B., Smithe, T. S. C., and Stringer, S. M. (2018).

Spike: a GPU optimised spiking neural network simulator. bioRxiv, 461160.
doi: 10.1101/461160

Alevi, D., Augustin, M., and Stimberg, M. (2022). Brian2CUDA (Version
paper2022). Zenodo. doi: 10.5281/zenodo.6406656

Ben-Shalom, R., Ladd, A., Artherya, N. S., Cross, C., Kim, K. G., Sanghevi,
H., et al. (2022). NeuroGPU: accelerating multi-compartment, biophysically
detailed neuron simulations on GPUs. J. Neurosci. Methods 366, 109400.
doi: 10.1016/j.jneumeth.2021.109400

Bernhard, F., and Keriven, R. (2006). “Spiking neurons on GPUs,” in
Computational Science - ICCS 2006, Vol. 3994, eds D. Hutchison, T. Kanade,
J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C.
Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G.
Weikum, V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot, and J. Dongarra
(Berlin; Heidelberg: Springer Berlin Heidelberg), 236–243.

Bi, G.-,q. and Poo, M.-,m. (2001). Synaptic modification by correlated
activity: Hebb’s postulate revisited. Annu. Rev. Neurosci. 24, 139–166.
doi: 10.1146/annurev.neuro.24.1.139

Blundell, I., Brette, R., Cleland, T. A., Close, T. G., Coca, D., Davison, A. P., et al.
(2018). Code generation in computational neuroscience: a review of tools and
techniques. Front. Neuroinform. 12, 68. doi: 10.3389/fninf.2018.00068

Brette, R., and Goodman, D. F. M. (2012). Simulating spiking neural networks on
GPU. Network 23, 167–182. doi: 10.3109/0954898X.2012.730170

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., et
al. (2007). Simulation of networks of spiking neurons: a review of tools and
strategies. J. Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-0038-6

Brunel, N., and Hakim, V. (1999). Fast global oscillations in networks of
integrate-and-fire neurons with low firing rates.Neural Comput. 11, 1621–1671.
doi: 10.1162/089976699300016179

Cannon, R. C., Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini,
E., et al. (2014). LEMS: a language for expressing complex biological

models in concise and hierarchical form and its use in underpinning
NeuroML 2. Front Neuroinform. 8, 79. doi: 10.3389/fninf.2014.
00079

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge:
Cambridge University Press.

Chou, T.-S., Kashyap, H. J., Xing, J., Listopad, S., Rounds, E. L., Beyeler, M., et
al. (2018). “CARLsim 4: an open source library for large scale, biologically
detailed spiking neural network simulation using heterogeneous clusters,” in
2018 International Joint Conference on Neural Networks (IJCNN) (Rio de
Janeiro: IEEE), 1–8.

Eisenstat, S. C., Gursky, M. C., Schultz, M. H., and Sherman, A. H.
(1982). Yale sparse matrix package I: The symmetric codes. Int

J Numer Methods Eng. 18, 1145–1151. doi: 10.1002/nme.16201
80804

Fidjeland, A. K., Roesch, E. B., Shanahan, M. P., and Luk, W. (2009). “NeMo: a
platform for neural modelling of spiking neurons using GPUs,” in 2009 20th

IEEE International Conference on Application-specific Systems, Architectures

and Processors (Boston, MA: IEEE), 137–144.
Fidjeland, A. K., and Shanahan, M. P. (2010). “Accelerated simulation of spiking

neural networks using GPUs,” in The 2010 International Joint Conference on

Neural Networks (IJCNN), Barcelona, 1–8.
Golosio, B., Tiddia, G., De Luca, C., Pastorelli, E., Simula, F., and Paolucci, P.

S. (2021). Fast Simulations of highly-connected spiking cortical models using
GPUs. Front. Comput. Neurosci. 15, 627620. doi: 10.3389/fncom.2021.627620

Goodman, D. F. M. (2010). Code generation: a strategy for neural
network simulators. Neuroinform 8, 183–196. doi: 10.1007/s12021-010-
9082-x

Hoang, R. V., Tanna, D., Jayet Bray, L. C., Dascalu, S. M., and Harris, F. C. (2013).
A novel CPU/GPU simulation environment for large-scale biologically realistic
neural modeling. Front. Neuroinform. 7, 19. doi: 10.3389/fninf.2013.00019

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural

Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440
Kasap, B., and van Opstal, A. J. (2018). Dynamic parallelism for synaptic updating

in GPU-accelerated spiking neural network simulations. Neurocomputing 302,
55–65. doi: 10.1016/j.neucom.2018.04.007

Knight, J., Nowotny, T., Turner, J. P., Yavuz, E., Ali, F., Zhang, M.,
et al. (2021a). GeNN 4.5.1. (4.5.1) [Computer software]. Zenodo.
doi: 10.5281/zenodo.5121623

Frontiers in Neuroinformatics | www.frontiersin.org 21 October 2022 | Volume 16 | Article 883700410

https://github.com/brian-team/brian2cuda
https://github.com/brian-team/brian2cuda/tree/paper2022
https://github.com/brian-team/brian2cuda/tree/paper2022/brian2cuda/tools/benchmarking
https://github.com/brian-team/brian2cuda/tree/paper2022/brian2cuda/tools/benchmarking
https://github.com/brian-team/brian2cuda/tree/paper2022/brian2cuda/tools/benchmarking
https://www.frontiersin.org/articles/10.3389/fninf.2022.883700/full#supplementary-material
https://doi.org/10.1101/461160
https://doi.org/10.5281/zenodo.6406656
https://doi.org/10.1016/j.jneumeth.2021.109400
https://doi.org/10.1146/annurev.neuro.24.1.139
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.3109/0954898X.2012.730170
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1162/089976699300016179
https://doi.org/10.3389/fninf.2014.00079
https://doi.org/10.1002/nme.1620180804
https://doi.org/10.3389/fncom.2021.627620
https://doi.org/10.1007/s12021-010-9082-x
https://doi.org/10.3389/fninf.2013.00019
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1016/j.neucom.2018.04.007
https://doi.org/10.5281/zenodo.5121623
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Alevi et al. Brian2CUDA

Knight, J. C., Komissarov, A., and Nowotny, T. (2021b). PyGeNN: a python
library for GPU-enhanced neural networks. Front. Neuroinform. 15, 10.
doi: 10.3389/fninf.2021.659005

Knight, J. C., and Nowotny, T. (2021). Larger GPU-accelerated brain
simulations with procedural connectivity. Nat. Computat. Sci. 1, 136–142.
doi: 10.1038/s43588-020-00022-7

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models
of synaptic plasticity based on spike timing. Biol. Cybern. 98, 459–478.
doi: 10.1007/s00422-008-0233-1

Mutch, J., Knoblich, U., and Poggio, T. (2010). CNS : a GPU-based framework

for simulating cortically-organized networks CNS : a GPU-based framework

for simulating cortically-organized networks. Computer Science and Artificial
Intelligence Laboratory Technical Report.

Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., and Veidenbaum,
A. (2009). “Efficient simulation of large-scale spiking neural networks using
CUDA graphics processors,” in 2009 International Joint Conference on Neural

Networks, Atlanta, GA, 2145–2152.
Nowotny, T., Huerta, R., Abarbanel, H. D. I., and Rabinovich, M. I. (2005). Self-

organization in the olfactory system: one shot odor recognition in insects. Biol.
Cybern. 93, 436–446. doi: 10.1007/s00422-005-0019-7

NVIDIA Corporation (2007–2022). CUDATM ,
https://developer.nvidia.com/cuda-zone

Panagiotou, S., Sidiropoulos, H., Negrello, M., Soudris, D., and Strydis,
C. (2021). EDEN: a high-performance, general-purpose, NeuroML-
based neural simulator. arXiv:2106.06752 [q-bio]. arXiv: 2106.06752.
doi: 10.48550/arXiv.2106.06752

Richert, M., Nageswaran, J. M., Dutt, N., and Krichmar, J. L. (2011). An efficient
simulation environment for modeling large-scale cortical processing. Front.
Neuroinform. 5, 19. doi: 10.3389/fninf.2011.00019

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926.
doi: 10.1038/78829

Stimberg, M., Brette, R., and Goodman, D. F. (2019a). Brian 2, an intuitive and
efficient neural simulator. Elife 8, e47314. doi: 10.7554/eLife.47314

Stimberg, M., Goodman, D. F. M., Benichoux, V., and Brette, R. (2014). Equation-
oriented specification of neural models for simulations. Front. Neuroinform. 8,
6. doi: 10.3389/fninf.2014.00006

Stimberg,M., Goodman, D. F.M., Brette, R., and Brian contributors. (2020a). Brian
2 (2.4.2). Zenodo. 6226753.

Stimberg, M., Goodman, D. F. M., Brette, R., and Pitt,à, M. D. (2019b). “Modeling
neuron-glia interactions with the brian 2 simulator,” in Computational

Glioscience, Springer Series in Computational Neuroscience, eds M. De Pittà and
H. Berry (Cham: Springer International Publishing), 471–505.

Stimberg, M., Goodman, D. F. M., and Nowotny, T. (2020b). Brian2GeNN:
accelerating spiking neural network simulations with graphics
hardware. Scientific Rep. 10, 1–12. doi: 10.1038/s41598-019-54
957-7

Stimberg, M., Nowotny, T., Goodman, D. F. M., and Brian2GeNN contributors.
(2021). Brian2GeNN (1.6). Zenodo. doi: 10.5281/zenodo.1464116

Teska, A., Stimberg, M., and Brette, R. (2020). brian2modelfitting (0.4). Zenodo.
doi: 10.5281/zenodo.4601961

Traub, R. D., and Miles, R. (1991). Neuronal Networks of the Hippocampus.
Cambridge: Cambridge University Press.

Vitay, J., Dinkelbach, H., Ü., and Hamker, F. H. (2015). ANNarchy:
a code generation approach to neural simulations on parallel
hardware. Front. Neuroinform. 9, 19. doi: 10.3389/fninf.2015.
00019

Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a code generation framework
for accelerated brain simulations. Sci. Rep. 6, 18854. doi: 10.1038/srep18854

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Alevi, Stimberg, Sprekeler, Obermayer and Augustin. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 22 October 2022 | Volume 16 | Article 883700411

https://doi.org/10.3389/fninf.2021.659005
https://doi.org/10.1038/s43588-020-00022-7
https://doi.org/10.1007/s00422-008-0233-1
https://doi.org/10.1007/s00422-005-0019-7
https://doi.org/10.48550/arXiv.2106.06752
https://doi.org/10.3389/fninf.2011.00019
https://doi.org/10.1038/78829
https://doi.org/10.7554/eLife.47314
https://doi.org/10.3389/fninf.2014.00006
https://doi.org/10.1038/s41598-019-54957-7
https://doi.org/10.5281/zenodo.1464116
https://doi.org/10.5281/zenodo.4601961
https://doi.org/10.3389/fninf.2015.00019
https://doi.org/10.1038/srep18854
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

TYPE Original Research
PUBLISHED 10 February 2023
DOI 10.3389/fninf.2023.941696

OPEN ACCESS

EDITED BY

Thomas Nowotny,
University of Sussex, United Kingdom

REVIEWED BY

Marcel Stimberg,
Sorbonne Université, INSERM, CNRS, Institut de
la Vision, France
Johanna Senk,
Julich Research Center (HZ), Germany

*CORRESPONDENCE

Martin Paul Nawrot
martin.nawrot@uni-koeln.de

RECEIVED 23 May 2022
ACCEPTED 16 January 2023
PUBLISHED 10 February 2023

CITATION

Schmitt FJ, Rostami V and Nawrot MP (2023)
E�cient parameter calibration and real-time
simulation of large-scale spiking neural
networks with GeNN and NEST.
Front. Neuroinform. 17:941696.
doi: 10.3389/fninf.2023.941696

COPYRIGHT

© 2023 Schmitt, Rostami and Nawrot. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

E�cient parameter calibration and
real-time simulation of large-scale
spiking neural networks with GeNN
and NEST

Felix Johannes Schmitt, Vahid Rostami and Martin Paul Nawrot*

Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Cologne, Germany

Spiking neural networks (SNNs) represent the state-of-the-art approach to the
biologically realistic modeling of nervous system function. The systematic calibration
for multiple free model parameters is necessary to achieve robust network
function and demands high computing power and large memory resources. Special
requirements arise from closed-loop model simulation in virtual environments
and from real-time simulation in robotic application. Here, we compare two
complementary approaches to e�cient large-scale and real-time SNN simulation.
The widely used NEural Simulation Tool (NEST) parallelizes simulation across multiple
CPU cores. The GPU-enhanced Neural Network (GeNN) simulator uses the highly
parallel GPU-based architecture to gain simulation speed. We quantify fixed and
variable simulation costs on single machines with di�erent hardware configurations.
As a benchmark model, we use a spiking cortical attractor network with a topology
of densely connected excitatory and inhibitory neuron clusters with homogeneous
or distributed synaptic time constants and in comparison to the random balanced
network. We show that simulation time scales linearly with the simulated biological
model time and, for large networks, approximately linearly with the model size as
dominated by the number of synaptic connections. Additional fixed costs with GeNN
are almost independent of model size, while fixed costs with NEST increase linearly
with model size. We demonstrate how GeNN can be used for simulating networks
with up to 3.5 · 106 neurons (> 3 · 1012 synapses) on a high-end GPU, and up to
250, 000 neurons (25 · 109 synapses) on a low-cost GPU. Real-time simulation was
achieved for networks with 100, 000 neurons. Network calibration and parameter grid
search can be e�ciently achieved using batch processing. We discuss the advantages
and disadvantages of both approaches for di�erent use cases.

KEYWORDS

computational neuroscience, attractor neural network, metastability, real-time simulation,

computational neuroethology, spiking neural network (SNN)

Introduction

Information processing in animal nervous systems is highly efficient and robust. The vast
majority of nerve cells in invertebrates and vertebrates are action potential generating (aka
spiking) neurons. It is thus widely accepted that neural computation with action potentials in
recurrent networks forms the basis for sensory processing, sensory-to-motor transformations,
and higher brain function (Abeles, 1991; Singer and Gray, 1995). The availability of increasingly
detailed anatomical, morphological, and physiological data allows for well-defined functional
SNNs of increasing complexity that are able to generate testable experimental predictions
at physiological and behavioral levels. SNNs have thus become a frequent tool in basic

Frontiers inNeuroinformatics 01 frontiersin.org
412

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2023.941696
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2023.941696&domain=pdf&date_stamp=2023-02-10
mailto:martin.nawrot@uni-koeln.de
https://doi.org/10.3389/fninf.2023.941696
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fninf.2023.941696/full
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

(Van Vreeswijk and Sompolinsky, 1996; Brunel, 2000), translational
(McIntyre and Hahn, 2010; Eliasmith et al., 2012), and clinical
(Hammond et al., 2007; Kasabov and Capecci, 2015) neuroscience
research. In the applied sciences, brain-inspired SNNs have the
potential to shape future solutions for intelligent systems (Neftci et al.,
2013; Chicca et al., 2014; Schuman et al., 2022). This specifically
includes spike-based approaches to machine learning (Gütig and
Sompolinsky, 2006; Indiveri et al., 2010; Schmuker et al., 2014; Gütig,
2016; Pfeiffer and Pfeil, 2018; Zenke and Ganguli, 2018; Tavanaei
et al., 2019; Rapp et al., 2020), reservoir computing (Büsing et al.,
2010; Tanaka et al., 2019), and brain-inspired control architectures
for artificial agents and robots (Helgadóttir et al., 2013; Rapp and
Nawrot, 2020; Sakagiannis et al., 2021; Bartolozzi et al., 2022;
Feldotto et al., 2022). Computation with attractor networks has
been hypothesized as one hallmark of brain-inspired computation
(Hopfield, 1982; Amit and Brunel, 1997) and, with increasing
evidence, has been implicated in decision-making (Finkelstein et al.,
2021), working memory (Sakai and Miyashita, 1991; Inagaki et al.,
2019), and sensory-motor transformation (Mazzucato et al., 2019;
Wyrick andMazzucato, 2021; Mazzucato, 2022; Rostami et al., 2022).

The conventional tool for the simulation of SNNs are CPU-based
simulation environments. Several well-adopted simulators are in
community use (Brette et al., 2007; Tikidji-Hamburyan et al., 2017),
each of which has typically been optimized for specific purposes such
as the simulation of complex neuron models with extended geometry
and detailed biophysics (Hines and Carnevale, 2001), the convenient
implementation of neuron dynamics by means of coupled differential
equations (Stimberg et al., 2019), or the implementation of the
Neural Engineering Framework (NEF) (Eliasmith and Anderson,
2003; Bekolay et al., 2014). The NEural Simulation Tool (NEST,
https://www.nest-simulator.org/, Gewaltig and Diesmann, 2007) that
we consider here was designed for the parallelized simulation of large
and densely connected recurrent networks of point neurons. It has
been under continuous development since its invention under the
name of SYNOD (Diesmann et al., 1995, 1999; Rotter and Diesmann,
1999; Morrison et al., 2005, 2007; Jordan et al., 2018) and enjoys a
stable developer and a large user community. More recently, new
initiatives have formed to harness GPU-based simulation speed for
the modeling of SNNs (Fidjeland et al., 2009; Nageswaran et al.,
2009; Mutch et al., 2010; Brette and Goodman, 2012; Florimbi
et al., 2021; Golosio et al., 2021; Ben-Shalom et al., 2022). The
GPU-enhanced Neural Network (GeNN) simulation environment
(https://genn-team.github.io/genn/) developed by Thomas Nowotny
and colleagues (Yavuz et al., 2016; Knight and Nowotny, 2021;
Knight et al., 2021) is a code generation framework (Blundell et al.,
2018) for SNNs and their use in computational neuroscience and
for machine learning (Knight and Nowotny, 2022). Neuromorphic
hardware (Ivanov et al., 2022; Javanshir et al., 2022) provides an
alternative substrate for the simulation of SNNs and is not considered
here.

The present study aims to evaluate the use of a GPU-based
simulation technique (GeNN) in comparison with a CPU-based
simulation technique (NEST) with respect to simulation speed
independent of network size and in the context of efficient parameter
search. We restricted our benchmark approach to simulations on
single machines with multiple CPU cores. These machines can be
considered standard equipment in a computational lab. In addition
we compare simulation performance on a high-end GPU with

an affordable low-cost GPU that can be used, e.g., for teaching
purposes. Based on our experience, we provide practical advice in the
Supplementary material along with documented code.

Results

Spiking neural attractor network as
benchmark model

We performed simulations of the spiking cortical attractor
network model established by Rostami et al. (2022). This network
inherits the overall network structure of the random balanced
network (RBN, Van Vreeswijk and Sompolinsky 1996; Brunel 2000)
with random recurrent connections (drawn from the Bernoulli
distribution) among excitatory and inhibitory neurons (Figure 1A)
but introduces a topology of strongly interconnected pairs of
excitatory and inhibitory neuron populations (E/I clusters, Figure 1B)
by increasing the intra-cluster synaptic weights (see SectionMaterials
and methods). This E/I clustered network exhibits a complex pattern
of spontaneous network activity, where each cluster can dynamically
switch between a state of low (baseline) activity and states of increased
activity (Figure 1). This network behavior marks the desired feature
of metastability (Rost et al., 2018; Mazzucato et al., 2019; Rostami
et al., 2022) where the network as a whole cycles through different
attractors (or network-wide states) that are defined by the possible
cluster activation patterns.

The pairwise Bernoulli connectivity scheme with a connection
probability p between any pair of neurons implies that the number
of synapses M scales quadratically with the number of neurons N
as M = pN2. For the chosen network parameters, we obtain an
overall connectivity parameter of p ≈ 0.3 (see Section Materials
and methods). The clustered network topology in our benchmark
model results from stronger synaptic excitatory and inhibitory
weights within each E/I cluster than between different E/I clusters
(Figure 1B). This compartmentalized architecture suits well our
benchmarking purpose because it is reminiscent for whole-system
or multi-area modeling in large-scale models that involve several
neuropiles or brain areas (Schmidt et al., 2018; Rapp and Nawrot,
2020). We kept the number of clusters fixed to NQ = 20.

Benchmark approach and quantification of
simulation costs

We benchmark performance by measuring the wall-clock time of
the simulation. We differentiate fixed costs Tfix that are independent
of the biological model time to be simulated, and variable costs
Tvar determined by the simulation speed after model generation (see
Section Materials and methods). We used two different hardware
configurations for CPU-based simulation with NEST (servers S2
and S3 in Table 1) and two hardware configurations for GPU-based
simulation with GeNN (Table 1) comparing a low-cost GPU (S1) with
a state-of-the-art high-end GPU (S3). With GeNN, we tested two
different approaches to store the connectivity matrix of the model
(Knight and Nowotny, 2021). The SPARSE connectivity format (Sp)
stores the matrix in a sparse representation. The PROCEDURAL

Frontiers inNeuroinformatics 02 frontiersin.org
413

https://doi.org/10.3389/fninf.2023.941696
https://www.nest-simulator.org/
https://genn-team.github.io/genn/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

FIGURE 1

Metastable network activity emerges by introducing excitatory-inhibitory clusters in the random balanced network. (A) Sketch of RBN architecture with
one excitatory neuron pool (gray shaded circle, 80% of all neurons) and one inhibitory neuron pool (red shaded circle, 20% of all neurons). Excitatory
neurons (black triangles) and inhibitory neurons (red circles) make random connections within and across pools, respectively. The respective connection
strengths are tuned such that for each neuron, on average, the total synaptic input current balances excitatory and inhibitory input currents. (B) Sketch of
excitatory-inhibitory (E/I) cluster topology. Both, excitatory and inhibitory neuron pools are tiled into clusters (small shaded circles) of strongly
interconnected neurons (indicated by darker shading). In addition, each excitatory cluster is strongly and reciprocally connected to one corresponding
inhibitory cluster such that the balance of excitatory and inhibitory synaptic input is retained for all neurons. In our network definition, a single parameter
JE+ determines the cluster strength in terms of synaptic weights and allows to move from the RBN (JE+ = 1) to increasingly strong clusters by increasing
JE+ > 1. The model uses exponential leaky Integrate-and-Fire (I&F) neurons, and all neurons receive weak constant input current. (C, D) Raster plot of
excitatory (black) and inhibitory (red) spiking activity in a network of N = 25, 000 neurons during 5 s of spontaneous activity after an initial warm-up time
of 1 s was discarded. Shown are 8% of the total neuron population. The spike raster plots are generated from GeNN simulations. (C) The RBN (JE+ = 1.0,
IthE = 2.6, IthI = 1.9) exhibits irregular spiking of excitatory and inhibitory neurons with constant firing rates that are similar for all excitatory and inhibitory
neurons, respectively. (D) The E/I clustered network (JE+ = 2.75, IthE = 1.6, IthI = 0.9) shows a metastable behavior, where di�erent individual E/I clusters
can spontaneously assume states of high activity and fall back to spontaneous activity levels. The overall firing rates are higher than in the RBN.

TABLE 1 Hardware configurations and benchmark setups.

CPU GPU

No. of cores Clock speed [GHz] Memory [GB] Architecture No. of CUDA-cores Memory [GB] Performance (single) [TFLOPS]

Server 1 (S1) Ubuntu 16.04 LTS

Dual AMD Opteron 6380 GeForce GTX 970

2× 16 2.5 128 Maxwell 1,664 4 3.5

Server 2 (S2) Ubuntu 16.04 LTS

Dual Intel Xeon E5-2630 v4 -

2× 10 2.2 192 - - - -

Server 3 (S3) Ubuntu 20.04 LTS

Intel Xeon Gold 6248R Quadro RTX A6000

24 3.0 128 Ampere 10,752 48 38.7

connectivity (Pr) regenerates the connectivity on demand, i.e., after
a spike has occurred.

Fixed costs for GeNN are high but
independent of network size

We find that for NEST, the overall fixed costs scale approximately
linearly with the network connectivity as expressed in the total

number of connections M ∝ N2 (Figure 2), while the overall
fixed costs stay approximately constant for GeNN and essentially
over the complete range of tested network sizes. The fixed costs
add up different contributions as shown in Figure 2A and in
Supplementary Figure S5. These are model definition, building of
the model, and loading of the model for GeNN and node creation
and creation of connections for NEST (see Section Materials and
methods). For NEST, compilation of the model (Build phase of
GeNN) is not needed because it uses pre-compiled neuron and
synapse models (Diesmann and Gewaltig, 2002) in combination

Frontiers inNeuroinformatics 03 frontiersin.org
414

https://doi.org/10.3389/fninf.2023.941696
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

FIGURE 2

Fixed costs of simulation. (A) Individual costs for execution phases of
NEST and GeNN for two network sizes of N = 5, 000 and N = 50, 000
neurons. The GPU-based simulation requires expensive model
compilation (Build). NEST uses pre-compiled neuron models. Note
that the y-axis has di�erent linear scales for low (≤4) and high (≥4)
values of fixed costs. (B, C) Total fixed costs in seconds over network
size for the di�erent simulators and hardware configurations as
indicated. Total fixed costs are approximately constant across network
size for the GPU-based simulation with the PROCEDURAL
connectivity, while they have a small slope for the SPARSE
connectivity. (C) Extends (B) for larger network sizes. Note that the
x-axis in (B) is linear in N, while the x-axis in (C) is linear in M.

with exact integration (Rotter and Diesmann, 1999). The fixed
costs of GeNN are dominated by the wall-clock time required for
building the model and these appear to be essentially independent
of model size. The costs of model definition and loading the
model increases with model size, but make only a negligible
contribution to the overall fixed costs. Thus, for a small network
size of N = 5, 000 neurons, the overall fixed costs amount
to ≈ 30 s and ≈ 3min for the PROCEDURAL and SPARSE
connectivity, respectively, compared to only 3 s with NEST. This
picture changes for a 10 times larger network with N = 50, 000
neurons. Now, the wall-clock time for setting up the model with
NEST is more costly than building with GeNN (PROCEDURAL
connectivity) on our hardware configurations. The fixed costs

TABLE 2 Maximum network size NRT within real-time limit.

E/I-model NRT [s] MRT/106

GeNN-Pr-S3 20,500 129

GeNN-Pr-S1 6,400 13

GeNN-Sp-S3 102,000 3,204

GeNN-Sp-S1 26,900 223

NEST-S3 15,000 69

NEST-S2 7,900 19

RBN NRT [s] MRT/106

GeNN-Pr-S3 24,300 182

GeNN-Sp-S3 160,000 7,885

NEST-S3 27,500 233

E/I-model, τsyn ∈ U NRT [s] MRT/106

GeNN-Pr-S3 17,200 91

GeNN-Sp-S3 47,400 692

NEST-S3 15,100 70

The real-time limit for the E/I-model was determined in simulation steps of 500 neurons. The

real-time limits of the RBN and E/I-model with heterogeneous synaptic time constants were

estimated with a linear interpolation between the nearest data points (cf. markers in Figure 4C).

Simulations comprised 10 s of biological model time with 1t = 0.1 ms.

for NEST increase quadratically in N (linear in M) on both
hardware configurations and eventually exceed fixed costs with
GeNN (Figure 2B).

The maximal network size that we were able to simulate is
indicated by the end points in the benchmark graphs in Figures 2B,
C. It is bound by the available memory, which is required for storing
the network model and the data recorded during simulation. In the
case of simulation with NEST, this bound is determined by the RAM
configuration (Table 2). The larger RAM size of 192GB on S2 allowed
for a maximum network connectivity of M = 4 · 109 synapses and
N ≈ 114, 000 neurons, while on the faster server configuration S3
with 128GB RAM, the limit was reached earlier (Figure 2B). With
GeNN, the limiting factor for the network size and connectivity
is the hardware memory on the GPU itself. The PROCEDURAL
connectivity allows for a more efficient usage of the GPU memory
(Supplementary Figure S3) at the expense of simulation speed and
allowed for a network size of > 3.5 · 106 neurons and > 3, 000 · 109

synapses on the high-end GPU (S3) and a respectable size of N ≈

250, 000 neurons (M ≈ 20 · 109 synapses) on the low-cost GPU
(S1).

Variable costs scale linearly with biological
model time and approximately linearly with
network connectivity

We first quantify wall-clock time Tvar in dependence on
the simulated biological model time Tbio for a fixed network
size of N = 50, 000 (Figure 3A). As to be expected, simulation
time grows approximately linearly with the number of
simulated time steps and thus, for a pre-defined simulation

Frontiers inNeuroinformatics 04 frontiersin.org
415

https://doi.org/10.3389/fninf.2023.941696
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

FIGURE 3

Variable costs of simulation and real-time limitation. (A) Wall-clock
time Tvar as a function of simulated biological model time Tbio. (B)
Real-time factor RT = Tvar/Tbio as a function of network size.
Real-time capability requires a variable cost factor that remains below
RT = 1 (dashed line). On the high-end GPU, simulation faster than
real-time can be achieved for a network size of N ≈ 100, 000 neurons
and M ≈ 3.1 · 109 synapses. With the best performing NEST
configuration, a network of N ≈ 15, 000 neurons and M ≈ 0.1 · 109

synapses can be simulated in real-time. GeNN-Pr-S1 is congruent with
NEST-S2 in this view. (C) As in (B) for larger network size. Wall-clock
time scales almost linearly with the total number of synapses M (and
thus with N

2) for large network sizes. All simulations have been
conducted with a time resolution of 1t = 0.1ms in biological model
time. (B, C) The x-axis is linear in M (top axis).

time constant 1/1t, is proportional to the simulated time
with

Tvar ∝
1

1t
· Tbio

for all tested hardware platforms. We see considerably faster
simulations with the SPARSE connectivity compared to the
PROCEDURAL connectivity in our network with a total
connectivity of p ≈ 0.308. Interestingly, a previous publication

by Knight and Nowotny (2021) considering the RBN with a lower
connectivity density of p = 0.1 found that PROCEDURAL
connectivity performs equally fast or even faster, which could be due
to their lower connectivity density.

Next, we analyzed the relation between wall-clock time and
network size. As shown in Figures 3B, C, the proportionality factor
Tvar/Tbio for NEST shows an approximate linear dependence on the
total number of synapses M for large network sizes and the variable
costs are thus proportional to the squared number of neurons
Tvar ∝ pN2 ·Tbio with linear scale factor p, denoting network-specific
connectivity.

For GeNN, the graph shows a convex relation between Tvar/Tbio

and lower range network sizes. For increasing network size, this
relation becomes increasingly linear in N2. Additional model-related
factors may contribute, in particular, the average spiking activity of
neurons and the resulting spike traffic (see Section Discussion).

Real-time simulation is defined as Tsim = Tbio. For applications
in neurorobotics or when using SNNs for real-world machine
learning application, we may require the simulation to run equally
fast or faster than real time. For our attractor network model, we
determined a maximum network size of NRT = 102, 000 that
fulfills the real-time requirement using GeNN on the high-end GPU
(Figure 3B and Table 2).

The RBN is a standard model in computational neuroscience and
is used widely for the simulation of cortical activity. We therefore
repeated our calibrations for the RBN in direct comparison to
the E/I clustered network using the fastest hardware configuration
(S3). As shown in the Supplementary Figure S1, the fixed costs
are identical for both network types. This was to be expected as
the overall network connectivity is identical in both cases. The
variable costs show the same general dependence on network size
(Supplementary Figure S1C) but are smaller for the RBN mainly due
to the overall lower firing rates (Figure 1).

Simulation costs with heterogeneous
synaptic time constants

Thus far, all neuron and synapse parameters were identical
across the network with fixed synaptic weight and time constant
for excitatory and inhibitory synapses, respectively. We now
introduce heterogeneity of the excitatory and inhibitory synaptic
time constants using uniform distributions with the means
corresponding with the parameter values used earlier and with
a standard deviation of ±5%. Using the same aforementioned
neuron model in NEST, the heterogeneity applies across postsynaptic
neurons, while for each neuron, all incoming synapses have
identical time constants for excitatory and inhibitory synapses,
respectively (see Section Materials and methods). In GeNN, we
defined the neuron model and synapse model independently
and synaptic time constants are heterogeneously distributed
across all excitatory and inhibitory synapses individually,
independent of postsynaptic neuron identity (see Section
Discussion).

As a first result, we observe that the E/I clustered network
retains the desired metastable network dynamics with distributed
synaptic time constants as shown in Figure 4A. When comparing the
simulation costs to the homogeneous case on the fastest hardware

Frontiers inNeuroinformatics 05 frontiersin.org
416

https://doi.org/10.3389/fninf.2023.941696
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

FIGURE 4

Metastability and simulation costs for networks with heterogeneous
synaptic time constants. (A) Raster plot of excitatory (black) and
inhibitory (red) spiking activity in a network of N = 25, 000 neurons
with heterogeneous synaptic time constants during 5 s of
spontaneous activity shows the desired metastable behavior where
di�erent individual clusters can spontaneously assume states of high
and low activities. A portion of 8% of neurons from each of the 20
clusters is shown. Network parameters are identical to Figure 1D:
JE+ = 2.75, IthE = 1.6, and IthI = 0.9. The spike raster plot is generated
from a GeNN simulation. (B) Total fixed costs in dependence of
network size for the E/I model with (dotted lines) and without (solid
lines) distributed synaptic time constants when simulated with NEST
(green) or GeNN. For NEST, the fixed costs are indistinguishable for
both model variants. For GeNN, the fixed costs are independent of
network size but considerably higher with distributed synaptic time
constants. (C) Real-time factor in dependence of network size. For
NEST, the variable costs are the same in the case of homogeneous
and heterogeneous synaptic time constants, while GeNN has
increased variable costs in the heterogeneous case. Note that the
x-axis in (B) is linear in N, while the x-axis in (C) is linear in M.

configurations (S3), we find that fixed costs did not increase with
NEST and show an indistinguishable dependence on network size
(Figure 4B). However, with GeNN, fixed costs remain independent

TABLE 3 Fixed costs (Tfix) and variable costs (Tvar) for simulating networks

of size N = 50.000 during 10 s of biological model time.

E/I-model Tfix [s] Tvar [s]

GeNN-Pr-S3 13.6 24.9

GeNN-Pr-S1 21.6 80.3

GeNN-Sp-S3 117.3 5.2

GeNN-Sp-S1 202.8 19.8

NEST-S3 41.9 80.8

NEST-S2 104.7 280.3

RBN Tfix [s] Tvar [s]

GeNN-Pr-S3 13.4 16.0

GeNN-Sp-S3 116.6 3.3

NEST-S3 41.7 26.4

E/I-model, τsyn ∈ U Tfix [s] Tvar [s]

GeNN-Pr-S3 128.2 30.2

GeNN-Sp-S3 298.9 10.3

NEST-S3 41.9 78.5

Top: Standard benchmark model with clustered connectivity (JE+ = 10) and homogeneous

synaptic time constants (E/I-model). Middle: Random balanced network (RBN) without

clustering (JE+ = 1) and homogeneous synaptic time constants. Bottom: Clustered network

model with (JE+ = 10) and with heterogeneous synaptic time constants (τsyn ∈ U).

of network size but were strongly increased in comparison to the
homogeneous case, for both the SPARSE and the PROCEDURAL
approaches.

For the variable costs, there is again no increase with NEST with
the same linear dependence on network size as in the homogeneous
case (Figure 4C). This was to be expected, as NEST, by default, stores
one propagator for the excitatory and one for the inhibitory input
per neuron. Thus, the per neuron integration of the postsynaptic
current is performed identically to the homogeneous case. In GeNN,
on the other hand, we use independent synapse models where each
individual synapse has a different time constant. This requires to
perform the integration over time independently. Hence, we observe
a considerable increase in variable costs that follows the same convex
dependency on network size as in the homogeneous case (Figure 4C).
For the duration of 10 s of biological model time used here and for a
network size of 50.000 neurons, the total costs with GeNN are higher
than that of NEST (Table 3, see Section Discussion).

E�cient approach to parameter grid search

Achieving robust model performance requires the vital and
computationally demanding step of model calibration with respect to
independent model parameters (see Section Discussion). Generally,
the total costs for a parameter optimization directly scale with
the number of samples tested for the considered parameter
combinations. In our spiking attractor benchmark model, we have
22 independent parameters (cf. Tables 6, 7). To this end, we perform
a 2D grid search investigating the average firing rate across the entire
population of excitatory neurons in dependence on two parameters:
the constant background stimulation currents IxE and IxI measured
in multiples of the rheobase current IxX = IthX · IrheoX (Figure 5).

Frontiers inNeuroinformatics 06 frontiersin.org
417

https://doi.org/10.3389/fninf.2023.941696
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

FIGURE 5

Two-dimensional parameter grid search with GeNN and NEST. (A) Shown are a subset of 4× 4 spike raster plots as generated from simulations with NEST.
The respective parameter values are indicated by the red point markers in (B). In each raster, 8% of neurons from each of the 20 clusters are displayed.
The network size was N = 25, 000 and the clustering parameter was JE+ = 2.75 as in Figures 1D, 4. (B) Average spontaneous firing rates of all excitatory
neurons in dependence of IthE and IthI across the complete grid of 40× 40 parameter pairs when simulated with NEST. The run-time for completing the
grid search was 29,692 s (≈8h: 15min). (C) Same as in (B) for the simulation with GeNN in batch mode (batch size 40). The red point marker indicates the
parameter combination used for the spike raster plot in Figure 1D. The required run-time was 2,809 s (≈47min). The dependence of wall-clock time on
the average firing rate is analyzed for NEST and GeNN in Supplementary Figure S2.

We sampled a grid of 40 × 40 parameter values, and for each
sample point, our benchmarkmodel is simulated for 10 s of biological
model time. This results in a total simulated biological model time
of 16,000 s for a network size of N = 25, 000 neurons and M =

193 · 106 connections. We obtain plausible spike raster plots for
different combinations of the background stimulation of excitatory
and inhibitory neuron populations, and metastability emerges in a
large parameter regime (Figure 5A). The activity of the excitatory
populations increases along the IthE-axis and decreases with stronger
stimulation of the inhibitory neurons. The comparison of average
firing rates across the excitatory population in simulations with NEST
(Figure 5B) and GeNN (Figure 5C) shows only negligible differences
due to the random network structure.

We first compared this grid search for simulation with NEST on
different servers and with different parallelization schemes (Table 4).
For each parameter combination, a new network instance was
generated ensuring independent samples. The fastest grid search
is achieved using server S3 (single CPU socket) with one worker
that uses all available cores as threads. This parallelization scheme
reduces the run-time by 40% in comparison to a scheme with six
simulations run in parallel with four threads each. The observed
advantage of using a single worker is in line with the results of
Kurth et al. (2022). The results are different on S2 with its two
CPU sockets where five parallel simulations, each with four threads,
resulted in a slightly improved performance compared to the case
of a single simulation on all cores. Performing the same grid search
with GeNN using independent network instances for each parameter
combination required a total of 4.500 s and was thus 6.6 times faster
than the independent grid search with NEST.

TABLE 4 Run-time of 40 × 40 grid search with GeNN and NEST with

di�erent hardware configurations and parallelization schemes.

GeNN

Server Batch size Run-time [s]

S3 40 2, 809

S3 1 4, 500

S1 4 13, 080

S1 1 14, 491

NEST

Server nW / nT Run-time [s]

S3* 1 / 24 18, 028

S3 1 / 24 29, 692

S3 6 / 4 49, 403

S2 1 / 20 83, 848

S2 5 / 4 81, 631

nw denotes the number of workers and nT the number of threads used for CPU simulation on

multiple cores. S3* denotes the NEST simulation approach where a single network instance is set

up once and reused for all samples in the grid.

To maximize GPU utilization and to save fixed costs, we here
propose an alternative batch mode for the parameter search with
GeNN. It uses the same network connectivity for all instances in a
batch and thus reduces memory consumption while using all cores of
the GPU. To this end, we distributed the instances of a single batch

Frontiers inNeuroinformatics 07 frontiersin.org
418

https://doi.org/10.3389/fninf.2023.941696
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

pseudorandomly across the entire grid. The identical connectivity
introduces correlations across all network instances within a single
batch (see Section Discussion), while a batch size of 1 results in
fully independent networks. The shortest run-time was achieved for a
batch size of 40 (Table 4) and resulted in a significant speed-up factor
of 1.6 when compared to a batch size of one.

To match the batch mode in GeNN, we tested an alternative
approach with NEST in which we generate the network model
only once and then re-initiate this same network for all parameter
combinations in the grid. Now, network connectivity is identical
across the complete parameter grid and thus not independent (see
Section Discussion). In this approach, the reduced fixed costs for
model setup (combined phases of node creation and connection)
considerably reduced the overall wall-clock time for completing the
grid search by almost 40% (S3* in Table 4), resulting in a speed-up
factor of 1.7 compared to the simulation of independent network
instances. The batch-mode approach with GeNN was thus 6.4 times
faster than the single network instance approach with NEST (S3*).

We observed a considerable dependence of wall-clock time on
the average firing rate for the grid search in NEST simulations. This
dependence is comparably weak in the currently tested SPARSEmode
with GeNN (Supplementary Figure S2).

Discussion

Limitations of the present study

We here restricted our benchmark simulations with NEST and
GeNN to single machines with multiple CPU cores equipped with
either a high-end or low-cost GPU (Table 1). We may consider
this type of hardware configuration as standard equipment in
computational labs. In our simulations with NEST on a single-
processor machine (S3), we found that matching the number of
threads to the number of cores was most efficient, in line with the
results reported by Kurth et al. (2022), while on a dual-processor
machine (S1), matching the number of threads and cores resulted
in a small loss of speed compared to multiple simulations run in
parallel (Table 4). We did not attempt to use the message passing
interface (MPI) for distributing processes across the available cores.
As pointed out by a previous study (Ippen et al., 2017), this can
increase simulation performance with respect to simulation speed but
at the same time considerably increases memory consumption, which
would further limit the achievable network size.

NEST is optimized for distributed simulation by means of
efficient spike communication across machines and processes
(Kunkel et al., 2012, 2014; Ippen et al., 2017; Jordan et al., 2018;
Pronold et al., 2022). This allows for scaling from single machines to
multiple machines and allowed for the simulation of very large SNNs
on supercomputers with thousands of compute nodes (Kunkel et al.,
2014; Jordan et al., 2018; Schmidt et al., 2018). For the E/I cluster
topology of our benchmark model, however, we do not expect a good
scaling behavior of simulation speed in distributed environments
for two reasons. One limiting factor for simulation speed is the
communication of spikes between machines and the spike delivery
on each machine. In NEST, communication between machines is
optimized by communicating packages of sequential spikes, which
requires a sufficiently large minimal synaptic delay (Morrison et al.,

2005), and thus, spike delivery on each machine dominates the cost
of communication (Jordan et al., 2018; Pronold et al., 2022). Our
current model implementation uses the minimum synaptic delay of
only a single time step (0.1ms). Second, the E/I cluster model shares
the structural connectivity of the RBN (Figure 1), where the topology
of excitatory and inhibitory clusters is defined through connection
strengths while connectivity is unaffected and comparably high with
a pairwise connection probability of p ≈ 0.3. In future work, we will
consider an alternative structural definition of the cluster topology
where the number of connections between E/I clusters is reduced,
while it remains high within clusters. Simulating one or several E/I
clusters on a single machine could then benefit distributed simulation
due to a reduced spike communication between machines. A cluster
topology defined by connectivity also opens the possibility to form
clusters by means of structural plasticity (Gallinaro et al., 2022). We
note that, in our current network definition and for large network
size, the number of synapses per neuron exceeds biological realistic
numbers in the order of 10,000 synapses per neuron reported in
the primate neocortex (Boucsein et al., 2011; Sherwood et al., 2020).
However, here we deliberately used a fixed connectivity scheme
across the complete investigated range of network sizes. The large
number of synapses creates a high computational load for the spike
propagation.

A number of GPU-based simulators are currently in use for
SNN simulation, such as ANNarchy (Vitay et al., 2015), CARLsim
(Niedermeier et al., 2022), BINDSnet (Hazan et al., 2018), GeNN,
and NEST GPU (Golosio et al., 2021). These use different design
principles (Brette and Goodman, 2012; Vlag et al., 2019) that are
optimal for specific use cases. NEST GPU, for example, follows the
design principle of NEST allowing for the distributed simulation of
very large networks on multiple GPUs (on multiple machines) using
MPI. Simulation of the multi-area multi-layered cortical network
model as defined in Schmidt et al. (2018) with a size ofN = 4.13 · 106

neurons has recently been benchmarked on different systems. Knight
and Nowotny (2021) found that NEST simulation on the JURECA
system (Thörnig, 2021) at the Jülich Supercomputing Center was ≈
15 times faster than simulation withGeNNon a single GPU (NVIDIA
TITAN RTX). The recent work by Tiddia et al. (2022) found that
NEST GPU (parallel simulation on 32 GPUs, NVIDIA V100 GPU
with 16 GB HBM2e) outperformed NEST (simulated on JUSUF HPC
cluster, Von St. Vieth, 2021, and JURECA) by at least a factor of two.

Kurth et al. (2022) reported the real-time factor for the multi-
layered model of a single cortical column introduced by Potjans and
Diesmann (2014) with about N = 80, 000 neurons and 0, 3 · 109

synapses for a simulation with GeNN as RT = 0.7 (NVIDIA Titan
RTX) and with NEST as RT = 0, 56 (cluster with two dual-processor
machines with 128 cores each). For networks with approximately
the same number of neurons and a higher number of connections,
we here report similar real-time factors. With GeNN-Sp-S3, we
achieved RT = 0, 7 (cf. Figure 3) for the E/I cluster network with
N = 80, 500 neurons and 2 · 109 synapses, and RT = 0, 56 (cf.
Supplementary Figure S1) for the corresponding RBN. The faster
simulation of the RBN results from a lower average firing rate of ≈
0.9 spikes/s as compared to≈ 8.5 spikes/s in the E/I cluster network.

Providing comparable benchmarks for the simulation of SNNs
across different simulation environments and different hardware
systems is generally hampered by two factors. First, different
simulators use different design principles. To fully exploit their

Frontiers inNeuroinformatics 08 frontiersin.org
419

https://doi.org/10.3389/fninf.2023.941696
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

capabilities in a benchmark comparison, one needs to optimize for
each simulator and use case. Second, the community has not agreed
on standardized benchmark models (Kulkarni et al., 2021; Steffen
et al., 2021; Albers et al., 2022; Ostrau et al., 2022). The RBN is widely
used in computational neuroscience (cf. Supplementary Figure S1).
However, its definition varies considerably across studies, e.g., with
respect to connection probabilities, fixed vs. distributed in-degrees of
synaptic connections, neuron and synapsemodels, or the background
stimulation by constant or noise current input. Second, SNN
simulation environments are subject to continuous development
affecting optimization for speed and memory consumption, which
complicates comparability across different versions. We thus did
not attempt to directly compare the run-time performance obtained
for the model simulations considered in the present study to the
performances reported in previous studies.

NEST provides a high degree of functionality, good
documentation, and many implemented neuron and synapse
models. This results in a high degree of flexibility allowing, for
instance, to introduce distributed parameters by using a NEST
function that passes the respective distribution parameters as
arguments when initializing the model, which is then set up from
scratch. One obvious limitation of the flexibility of GeNN is the
high fixed costs for model definition and building the model on
the CPU and for loading the model on the GPU before it can be
initialized. This limits its flexible use in cases where non-global
parameters of a model change, which cannot be changed on the
GPU. We would thus like to encourage the development of a method
that automatically translates selected model parameters into GeNN
variables for a given model definition, allowing to change those
model parameters without recompilation between simulations. This
functionality would allow to fully exploit the simulation speed on the
GPU and benefit the time-to-solution while reducing the likelihood
of implementation errors.

E�cient long-duration and real-time
simulation on the GPU

Our results show that GPU-based simulation can support the
efficient simulation over long biological model times (Figure 3). This
is desirable, e.g., in spiking models that employ structural (Deger
et al., 2012; Gallinaro et al., 2022) or synaptic (Vogels et al., 2011;
Sacramento et al., 2018; Zenke and Ganguli, 2018; Illing et al., 2021;
Asabuki et al., 2022) plasticity to support continual learning and the
formation and recall of short-term (on the time scale of minutes),
middle-term (hours), or long-term (days) associative memories.
Similarly, simulating nervous system control of behaving agents in
approaches to computational neuroethology may require biological
model time scales of minutes to hours or days. The low variable
simulation costs achieved with GeNN can also benefit real-time
simulation of SNNs, e.g., in robotic application.

We here considered spiking networks in the approximate size
range from one thousand to a few million neurons. This range
covers the complete nervous system of most invertebrate and of
small vertebrate species as shown in Figure 6 and Table 5, including,
for instance, the adult fruit fly Drosophila melanogaster with N ≈

100, 000 neurons in the central brain (Raji and Potter, 2021), the
European honeybeeApis melliferawithN ≈ 900, 000 (Witthöft, 1967;

Menzel, 2012; Godfrey et al., 2021), and the zebrafishDanio reriowith
N ≈ 10 · 106. In mammals, it covers a range of subsystems from a
single cortical column with approximately 30, 000− 80, 000 neurons
(Boucsein et al., 2011; Potjans and Diesmann, 2014; Markram et al.,
2015) to the complete neocortex of the mouse (N ≈ 5 · 106 neurons)
(Herculano-Houzel et al., 2013). Models exceeding this scale are
currently still an exception (Eliasmith and Trujillo, 2014; Kunkel
et al., 2014; Van Albada et al., 2015; Jordan et al., 2018; Igarashi
et al., 2019; Yamaura et al., 2020) and typically require the use of a
supercomputer.

Benchmarking with grid search

Spiking neural networks have a large set of parameters. These
include connectivity parameters and parameters of the individual
neuron and synapse models. Thus, both in scientific projects and for
the development of real-world applications of SNNs, model tuning
through parameter search typically creates the highest demand in
computing time. Currently available methods (Feurer and Hutter,
2019) such as grid search or random search (LaValle et al., 2004;
Bergstra and Bengio, 2012), Bayesian optimization (Parsa et al., 2019),
and machine learning approaches (Carlson et al., 2014; Yegenoglu
et al., 2022) require extensive sampling of the parameter space. We
therefore suggest to include the parameter search in benchmarking
approaches to the efficient simulation of large-scale SNNs.

To this end, we exploited two features of GeNN: batch processing
and the on-GPU initialization of the model. Batch processing was
originally introduced to benefit the execution of machine learning
tasks with SNNs. It enables the parallel computation of multiple
model instances within a batch. In our example with a network
size of N = 25, 000 and for simulating a biological model time
of 10 s, we obtained a speed-up factor of 1.6 for a batch size of 40
compared to a single model instance per run. The current version
of GeNN requires that all model instances of a batch use identical
model connectivity. Thus, quantitative results, e.g., of the average
firing rates (Figure 5) are correlated across all samples within one
batch (for batch size > 1). We distributed the 40 instances of one
batch pseudorandomly across the grid such that correlations are not
systematically introduced among neighboring samples in the grid.
An important future improvement of the batch processing that will
allow for different connectivity matrices within a batch and thus
for independent model connectivities is scheduled for the release
of GeNN 5.0 (https://github.com/genn-team/genn/issues/463). The
possibility to initialize and re-initialize a once defined model and
connectivity on the GPU (Knight and Nowotny, 2018) uses the
flexibility of the code generation framework. This allows to define,
build, and load themodel to the GPU once and to repeatedly initialize
the model on the GPU with a new connectivity matrix (per batch). It
also allows for the variable initialization of, e.g., the initial conditions
of model variables such as the neurons’ membrane potentials. In
addition, global parameters can be changed during run-time. After
initialization of a model this allows, for example, to impose arbitrary
network input as pre-defined in an experimental protocol.

We here propose that the batch processing with GeNN can
be efficiently used not only to perform parameter search but also
to perform batch simulations of the identical model with identical
connectivity in parallel. This can be beneficial, e.g., to generate

Frontiers inNeuroinformatics 09 frontiersin.org
420

https://doi.org/10.3389/fninf.2023.941696
https://github.com/genn-team/genn/issues/463
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

FIGURE 6

Full system modeling with spiking neurons. Wall-clock time relative to simulated biological model time Tvar / Tbio over a realistic range of network sizes for
spiking network simulation. Network size is projected to the total number of neurons per hemisphere for subsystems in the mouse (top) and in the CNS of
invertebrate and small vertebrate model species (bottom); (see also Table 5). The graph sketches the quadratic dependence on network size N for large N

fitted for the PROCEDURAL connectivity simulation method with GeNN (Figure 3, see Section Materials and methods). The solid line shows the range of
network sizes covered in our simulations (cf. Figure 2) using a high-end GPU with 48GB RAM (S3, Table 2). The dashed line extrapolates to a maximum
size of 10 million neurons assuming larger GPU RAM that would allow to cover the neocortex of the mouse and the complete CNS of the zebrafish.

multiple simulation trials for a given stimulation protocol allowing
for across-trial statistics, or to efficiently generate responses of
the same model to different stimulation protocols within a single
batch. In NEST, this can be efficiently achieved by re-initialization
of the identical network (Table 4). We note that we have tested
one additional alternative approach to the grid search with NEST
where we set up the model connectivity once and, afterwards,
for each initialization reconstructed the network from the stored
connectivity. This leads to a significant reduction in performance for
large networks (data not shown).

Networks with heterogeneous neuron and
synapse parameters

SNNs are typically simulated with homogeneous parameters
across all neuron and synapse elements of a certain type. Using
heterogeneous parameters that follow experimentally observed
parameter distributions increases the biological realism of a model
and has been argued to benefit model robustness and neuronal
population coding (Mejias and Longtin, 2012, 2014; Lengler et al.,
2013; Tripathy et al., 2013; Gjorgjieva et al., 2016; Litwin-Kumar et al.,
2016). In the present study, we performed benchmark simulations
with heterogeneity in the single parameter of synaptic time constant
to quantify its effect on simulation costs. The efficient solution

provided by NEST for the specific neuron model used here does
neither increase fixed costs nor variable costs (Figure 4) in line with
the results of Stimberg et al. (2019), albeit with the limitation to one
single time constant per synapse type (excitatory and inhibitory) for
each postsynaptic neuron. NEST offers an alternative neuron model
that allows the definition of an arbitrary time constant for each
synapse (see Section Materials and methods) that was not tested in
the present study. In GeNN, we had deliberately defined our neuron
and synapse models separately (see Section Materials and methods),
because in future work, we aim at introducing stochasticity of
synaptic transmission to capture the inevitable variability of synaptic
transmission in biology (Nawrot et al., 2009; Boucsein et al., 2011)
that has been argued to support efficient population coding (Lengler
et al., 2013).

Metastability emerges robustly in attractor
networks with large E/I clusters and
heterogeneous synaptic time constants

With respect to attractor network computation, an important
question is whether the functionally desired metastability can be
reliably achieved in large networks and for large population sizes
of neuron clusters. In our previous work, we had limited our study
of attractor networks to a maximum network size of 5, 000 neurons

Frontiers inNeuroinformatics 10 frontiersin.org
421

https://doi.org/10.3389/fninf.2023.941696
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

TABLE 5 Number of neurons of selected model organisms and subsystems.

Neurons
[·103]

References

Invertebrate

Round worm (Caenorhabditis
elegans)

0.302 White et al., 1986

Fruit fly larva (Drosophila
melanogaster)

15 Eschbach and Zlatic, 2020

California sea hare (Aplysia
californica)

20 Zhao and Wang, 2009

Fruit fly adult (Drosophila
melanogaster)

70–200 Godfrey et al., 2021

Raji and Potter, 2021

Ant (Novomessor spp.) 90 Godfrey et al., 2021

European honeybee, worker
(Apis mellifera)

600–900 Witthöft, 1967

Godfrey et al., 2021

Vertebrate

Human: Medial Superior olive 15.5 Kulesza, 2007

Zebrafish larva (Danio rerio) 90 Bruzzone et al., 2021

Sprague Dawley rat: Basal ganglia 2,900 Oorschot, 1996

Zebrafish adult (Danio rerio) 10,000 Hinsch and Zupanc, 2007

Smoky shrew (Sorex fumeus) 39,490 Sarko et al., 2009

Mouse (C57BL/6J) per hemisphere

Piriform cortex 350 Herculano-Houzel et al., 2013

Entorhinal cortex 400 Herculano-Houzel et al., 2013

Visual cortex V1 476 Herculano-Houzel et al., 2013

Motor cortex M1+M2 508 Herculano-Houzel et al., 2013

Hippocampus 1,500 Herculano-Houzel et al., 2013

Olfactory bulb 1,520 Parrish-Aungst et al., 2007

Cortex 5,049 Herculano-Houzel et al., 2013

and could show that the topology of excitatory-inhibitory clusters
benefit metastability for a varying number and size of clusters while
pure excitatory clustering failed to support metastability for larger
cluster size (Rost et al., 2018; Rostami et al., 2022). In our calibration
approach of Figure 5, we simulated networks of N = 25, 000
with a cluster size of 1, 000 excitatory and 250 inhibitory neurons.
This results in the robust emergence of metastable activity for a
reasonable regime of excitatory and inhibitory background currents.
Metastability was retained when introducing distributed excitatory
and inhibitory time constants (Figure 4). We hypothesize that, due
to its local excitation-inhibition balance (Rostami et al., 2022), the
E/I cluster topology affords metastability for very large network and
cluster sizes.

Materials and methods

Hardware configurations

We perform benchmark simulations on hardware systems that
can be considered as standard equipment in a computational research
lab. We did not attempt to use high performance computing facilities

that, for most users, are available only for highly limited computing
time and require an overhead in scheduling simulation jobs. We
employ three computer server systems specified in Table 1, which
were acquired between 2016 and 2022. The amount of investment at
the time of purchase has been fairly stable on the order of $7, 000 −
$10, 000 depending on whether a state-of-the-art GPU was included.
Servers S1 and S3 are equipped with GPUs. The GeForce GTX 970
(S1; NVIDIA, Santa Clara, USA) can now be considered a low-
cost GPU in the price range of $300. The Quadro RTX A6000 (S3;
NVIDIA, Santa Clara, USA) is one example of current state-of-the-art
high-endGPUs, for which prices vary in the range of $3, 000−$5, 000.
We use the job scheduler HTCondor (Thain et al., 2005) on all
servers independently, with one job scheduler per server. We ensure
acquisition of all cores and the complete GPU to a running job and
prevent other jobs from execution till the running job is finished.

Simulators

We benchmark with the Neural Simulation Tool (NEST)
(Gewaltig and Diesmann, 2007) and the GPU-enhanced Neuronal
Networks (GeNN) framework (Yavuz et al., 2016) that follow different
design principles and target different hardware platforms. The
Neural Simulation Tool (NEST) (Gewaltig and Diesmann, 2007) is
targeted toward computational neuroscience research and provides
various biologically realistic neuron and synapse models. Since the
introduction of NESTML (Plotnikov et al., 2016), it also allows
custom model definitions for non-expert programmers. NEST uses
the so-called simulation language interpreter (SLI) to orchestrate the
simulation during run-time as a stackmachine. This allows amodular
design of the whole simulator and thus the usage of pre-compiled
models. NEST supports parallelization across multiple threads via
Open Multi-Processing (OpenMP) as well as multiple processes,
which can be distributed across multiple machines via the message
passing interface (MPI). It is suitable for the whole range of desktop
workstations to multi-node high-performance clusters. We use NEST
version 3.1 (Deepu et al., 2021) (in its standard cmake setting) with
the Python interface PyNEST (Eppler et al., 2009) and Python version
3.8 to define our model and control the simulation.

GeNN is a C++ library to generate code from a high-level
description of the model and simulation procedure. It employs
methods to map the description of the neuron models, the network
topology, as well as the design of the experiment to plain C++ code,
which then is built for a specific target. GeNN supports single-
threaded CPUs or a GPU with CPU as host. The scope of GeNN is
broader than that of NEST. With features like the batch-mode, which
allows for inference of multiple inputs, GeNN becomes especially
useful for machine learning tasks with SNNs as well as for general
research in computational neuroscience. GeNN is more rigid in the
network topology and in its parameters after the code generation is
finished. It does not support general reconfiguration of the network
during the simulation. If GeNN is used on a GPU, the CPU is
used to generate and build the simulation code and orchestrate the
simulation. All other time-consuming processes such as initialization
of the connectivity and variables of the model, update of state
variables during simulation, and spike propagation are performed
by the GPU. The model construction in the GPU memory is run
by loading the model or can be rerun by reinitializing the model,
which affects the connectivity and state variables, as well as the spike

Frontiers inNeuroinformatics 11 frontiersin.org
422

https://doi.org/10.3389/fninf.2023.941696
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

buffers. The code generation framework in GeNN allows for a heavily
optimized code depending on the use case. One of these optimization
possibilities is the choice of connectivity matrices. Here, we utilize
only the SPARSE and the PROCEDURAL connectivity as explained
below.

SPARSE connectivity. The connectivity matrix is generated on
the GPU during the loading of the model and if the model is
reinitialized. It is persistent during the simulation. No additional
computational load is generated during the simulation.

PROCEDURAL connectivity. Single elements of the
connectivity matrix are generated on demand during simulation for
the spike propagation. Only fixed random seeds are saved during the
loading of the model and if the model is reinitialized. An additional
computational load is caused during the simulation, but the memory
consumption is low.

Furthermore, we use global synapse models for all simulations
except for simulations with distributed synapse parameters. In
simulations with distributed synaptic time constants, we use synapse
models with individual postsynaptic model variables. We use the
released GeNN version 4.6.0 and a development branch of version
4.7.0, which is now merged into the main and released (commit
ba197f24f), with its Python interface PyGeNN (Knight et al., 2021)
and Python version 3.6.

Neuron models and network architectures

We use the spiking neural network described by Rostami et al.
(2022) as benchmarking model. This model uses leaky integrate-and-
fire neurons with exponentially shaped postsynaptic currents. The
subthreshold dynamics evolves according to

dV

dt
=

−(V − EL)

τm
+

Isyn + Ix

Cm

and the synaptic current to a neuron i evolves according to

τ
ij
syn

dI
ij
syn

dt
= − I

ij
syn + Jij

∑

k

δ

(

t − t
j

k

)

Iisyn =
∑

j

I
ij
syn,

where t
j

k
is the arrival of the kth spike of the presynaptic neuron j and

δ is the Dirac delta function.
We use the NEST model iaf _psc_exp, which employs an exact

integration scheme as introduced by Rotter and Diesmann (1999)
to solve the above equations efficiently for two different synaptic
input ports. The input ports can have different time constants. We
implement the same integration scheme in GeNN but modify it to
fit only one synaptic input port while treated as piece-wise linear to
combine different synapse types in terms of their time constant.

We follow the widely used assumption that 80% of neurons in
the neocortex are excitatory while 20% are inhibitory to build the
network model, which is based on the statistical work in the mouse
neocortex by Braitenberg and Schüz (1998). Connections between
neurons are established with the probabilities pEE = 0.2, pEI =

pIE = pII = 0.5. Autapses and multapses are excluded. Excitatory
and inhibitory populations are divided into NQ clusters by increasing

the weights of intra-cluster connections while decreasing the weights
of inter-cluster connections. Weights are calculated to ensure a local
balance between excitation and inhibition, as introduced before for
binary networks (Rost et al., 2018). Parameters are given in Tables 6,
7. For comparability, we matched our parameters to those used in
previous related works (Litwin-Kumar and Doiron, 2012; Mazzucato
et al., 2015; Rost, 2016; Rostami et al., 2022). Synaptic weights JXY
as well as the background stimulation currents are scaled by the
membrane capacitance C. By this scaling, the capacitance has no
influence on the dynamics of the network but only on the magnitude
of PSCs and the background stimulation currents. Following previous
studies, we set the value of capacitance to C= 1pF.

In our model, each neuron can be presynaptic and postsynaptic
partner to all other neurons. As a result, the number of synapses
M scales quadratically with the neuron number N. We calculate the
expectation of the number of synapses M by using the assumption
of portioning into 80% excitatory and 20% inhibitory neurons
and calculating the expected number of synapses between the
combinations of both by using the connection probabilities. Due
to our exclusion of autapses, we have to reduce the number
of postsynaptic possibilities by one for the connections among
excitatory neurons as well as among inhibitory neurons. The overall
network connectivity p = 0.308 is determined by

E(M) = (N · 0.8) · (pEE · (N · 0.8− 1)+ pIE · (N · 0.2))

+ (N · 0.2) · (pEI · (N · 0.8)+ pII · (N · 0.2− 1))

= 0.308 · N2 − 0.25 · N ≈ 0.308 · N2.

(1)

In addition, we implement a model with excitatory and inhibitory
synaptic time constants drawn from a uniform distribution with
the same means as provided in Table 6 and a standard deviation
of 5% of the mean. In NEST, this is achieved by using the
nest.random.uniform function as argument for the parameters
tau_syn_ex and tau_syn_in of the neuron model. This results in
distributed synaptic time constants across neurons. Thus, all synaptic
inputs of one input type (excitatory and inhibitory) to a postsynaptic
neuron have the same time constant. Replacing the neuron model by
a multisynapse neuronmodel (e.g., iaf _psc_exp_multisynapse) would
enable to use different time constants for subsets of the synaptic
inputs of a single neuron. In GeNN, we implement the distribution of
synaptic time constants by re-implementing the postsynaptic model
of an exponential PSC. We provide the decay factor exp(− 1t

τsyn
) as

variable to minimize the calculations during the simulation. GeNN
only allows random number initialization for variables and not for
parameters. Parameters within a group (neurons as well as synapses
are generated as groups) have to be the same in GeNN. To initialize
the decay factors corresponding to the uniform distribution of
synaptic time constant, we define a custom variable initialization
method. The generated network model does not enforce the same
synaptic time constants for all inputs of a neuron. Deviating from the
NEST model, the synaptic time constants are thus distributed across
all connections rather than across neurons. A limited distribution
across neurons as in NEST could be implemented in GeNN by
implementing the synapse dynamics in the neuron model.

Frontiers inNeuroinformatics 12 frontiersin.org
423

https://doi.org/10.3389/fninf.2023.941696
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

TABLE 6 Constant model parameters for all simulation modalities.

Parameter Unit Value

Simulation resolution 1t ms 0.1

Resting potential EL mV 0

Threshold voltage Vth mV 20

Reset voltage Vr mV 0

Membrane capacitance C pF 1

Membrane time constant (exc. neurons) τm
E ms 20

Membrane time constant (inh. neurons) τm
I ms 10

Synaptic time constant (exc. synapses) τsyn
E ms 3

Synaptic time constant (inh. synapses) τsyn
I ms 2

Synaptic delay Dsyn ms 0.1

Absolute refractory period τr ms 5

Connectivity probability EE pEE - 0.2

Connectivity probability others pEI , pIE , pII - 0.5

Relative strength of inhibition g - 1.2

Number of clusters NQ - 20

Proportionality factor inhibitory to excitatory clustering RJ - 3/4

TABLE 7 Variable model parameters for di�erent simulation modalities.

Value

Parameter Unit 5,000 50,000 Var N Grid

Number exc. neurons NE - 4,000 40,000 0.8 · N 20,000

Number inh. neurons NI - 1,000 10,000 0.2 · N 5,000

Current stimulation exc. neurons IxE pA 2.13 2.13 2.13 0.95–2.9

Current stimulation inh. neurons IxI pA 1.24 1.24 1.24 0.7–1.675

Clustering strength exc. neurons JE+ - 10.0 10.0 10.0 2.75

Synaptic weight EE (RBN) JEE pA 0.329 0.104 f (N) 0.147

Synaptic weight IE (RBN) JIE pA 0.250 0.079 f (N) 0.112

Synaptic weight EI (RBN) JEI pA –0.877 –0.277 f (N) –0.392

Synaptic weight II (RBN) JII pA –1.337 –0.423 f (N) –0.598

f (N) denotes the dependency of the synaptic weights (JXY) on the network size. JE+ is the clustering strength of the excitatory neurons and influences the inhibitory clustering strength via the

proportionality factor RJ . Implementation details are described in Rostami et al. (2022).

Simulations

We perform two different sets of simulations with all tested
combinations of a server and a simulator. We enforce a maximum
run-time of 5 h per simulation. The first set contains simulations
of two networks with the sizes of 5,000 and 50,000 neurons and
simulation times of 0, 1, 5, 25, 50, 100, 175, 350, 625, 1,250, and 2,500
s of biological model time (0 s is used to determine the fixed costs
for simulation preparation). We discard 10% as presimulation time
from our analyses of network activity. We execute each simulation
five times with different seeds of the random number generator. All
simulations in the second set are 10 s long (biological model time; 1
s presimulation time and 9 s simulation time), and we used network
sizes between 500 neurons and ≈ 3, 6million neurons. We execute

each simulation 10 times with different seeds of the random number
generator. Based on the recorded wall-clock times, we determine the
maximum network size for each configuration that fulfills real-time
requirements.

For GeNN, we use the spike recorder, which saves the spikes
during the simulation in the RAM of the GPU and allows a block
transfer of all spikes for a given number of simulation steps. The
consumption of GPU-RAM is composed of themodel with all its state
variables and connectivity matrix, and of the memory for the spike
recorder. The memory consumption of the model is independent of
the simulated biological model time, but heavily dependent on the
network size and the choice of the connectivity matrix type. The
size of the memory of the spike recorder depends on the network
size and the number of simulation steps, and thus on the simulated

Frontiers inNeuroinformatics 13 frontiersin.org
424

https://doi.org/10.3389/fninf.2023.941696
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

biological model time. The dependence of the memory consumption
on network size and biological model time to be simulated is
analyzed in Supplementary Figure S3. We implement a partitioning
of simulations into sub-simulations, if the GPU-RAM is too small to
fit the model and the spike recorder in one simulation. We determine
the maximum number of simulation steps for a large network that fits
in the GPU-RAM and use this number as a heuristic. If the product of
network size and simulation steps exceeds the heuristic, we iteratively
divide the simulation into two until the product of both is smaller
than the heuristic. As a fallback mechanism, we include an error
handling to divide the simulation further, if the model and the spike
recorder do not fit the GPU-RAM. We transfer the spikes from the
GPU to the host after each sub-simulation and process them into one
list containing the neuron-ID and the spike time by a thread pool
with a size of 16 workers. A greater number of workers exceeded
the available RAM on our servers for large networks. All simulations
are performed once with the SPARSE connectivity format and once
with the PROCEDURAL connectivity. We delete the folder with the
generated and compiled code before we submit the first job to the
scheduler to prevent the use of code from previous code generation
runs. We run one complete sequence of all different biological model
times before switching to the other matrix type. This ensures that the
code is generated five and 10 times, respectively, for the two different
simulation sets.

We use the same order of execution for our simulations in NEST.
We match the number of OpenMP threads of the simulations in
NEST to the number of cores available nT = ncores on the server.
We do not utilize parallelization with MPI to minimize memory
consumption (Ippen et al., 2017) and despite possible advantages in
speed.

We additionally simulate the E/I cluster network model with
distributed synaptic time constants with both simulators on S3
as described earlier. The network with JE+ = 1 represents the
random balanced network (RBN) with constant background current
stimulation. For this, we use the same code and parameters as for the
clustered network model for all calibrations.

Grid search

We implement a general framework to perform a grid search.
The framework takes multiple parameters and generates a regular
mesh grid of the parameter values. It simulates each point in the
grid, analyzes the network activity in the simulation, and saves the
result together with its position in the grid to a pickle file. Pickle
is a module from the Python Standard Library, which can serialize
and de-serialize Python objects and save them to binary files. Pickle
allows saving multiple objects in one file. Simulations are performed
with the same network definition as used for the simulations before.
All simulations of individual samples are 10 s long (biological model
time; 1 s presimulation time and 9 s simulation time). We simulate a
2D grid with 40× 40 samples.

We implement the grid search in GeNN by utilizing the
batch-mode with nBatch network instances in each run. We add
global parameters to the model description. Global parameters are
not translated into constants during compilation, but can be set
independently for each instance in a batch and can be modified
during run-time. The instances share all other parameters and the

specific connectivity matrices. We use the SPARSE connectivity
format and generate the simulation code only one time and
then reinitialize the network after each batch and set the global
parameters to their respective values. The reinitialization regenerates
the connectivity matrix and resets all state variables as well as the
spike buffer. The parameters as well as the batch size nbatch can only
be changed by recompilation. Each time a number of samples equal
to nbatch is drawn without replacement from the grid until all points
in the grid are simulated. If fewer samples as nbatch are left, the free
slots are filled by setting the global parameters to 0; the results of these
slots are ignored. After a simulation, the spike times are transferred in
a block transfer and are processed by nW = 24 workers into a matrix
with the size 2 × nspikes × nbatch, where the first row contains the
spike times, the second row the ID of the neuron, which emitted the
spike, and the third dimension corresponds to the different network
instances in the batch. We use the same representation of the spike
times and the senders for GeNN and NEST. The processing takes a
reasonable amount of computation time as GeNN implements the
spike recorders in the neuron populations and returns no global
IDs but instead IDs for the neurons in the specific population.
Afterward, we analyze the spike times serially for each instance with
the specific analyses, which are the firing rates of the excitatory
and inhibitory populations in this grid search. The process writes
the results afterward to the pickle file. We test the grid search with
different batch sizes on S1 and S3 (see Table 4).

We implement the grid search in NEST by creating a list of all
parameters in the grid and then parallelizing the simulations with
Pathos by nW workers. The workers import NEST independently,
thus each simulation is completely independent. Each worker utilizes
nT threads. We match the number of cores available on the system:
ncores = nW ·nT . The workers write the results to one pickle file, which
is protected by a lock to ensure data integrity by only allowing one
worker to write at a time. This pickle file does not contain by default
the spike times but instead only the result of the specific analyses
applied. We test different combinations of nW and nT on S2 and S3
(see Table 4).

We extend the NEST implementation for grid search by
allowing the re-use of a once set up network. Before each run, the
spike recorder is reset to zero events, the membrane voltages are
reinitialized, and the parameters are set for the current run. All runs
thus use the same network with fixed connectivity.

Definition of fixed and variable simulation
costs

We divide the simulation cost into fixed and variable costs:

Tsim = Tfix + Tvar.

The fixed costs involve all steps necessary to set up and prepare
the model before the first simulation step. They are independent
of the biological model time to be simulated. The variable costs
involve the actual propagation of the network state during each
time step and the overall wall-clock time used for data collection
during a simulation. We include timestamps in the simulation scripts
to access the run-time of different execution phases. Due to the
different design principles, not all phases of GeNN can be mapped
to NEST. Table 8 shows the defined phases and the commands,

Frontiers inNeuroinformatics 14 frontiersin.org
425

https://doi.org/10.3389/fninf.2023.941696
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

TABLE 8 Execution phases of simulation.

GeNN NEST

Fi
xe
d

Model model.add_neuron_population() Node creation nest.Create()

definition model.add_synapse_population() Connection nest.Connect()

Build model.build() nest.Prepare()

Load model.load()

V
ar
ia
bl
e

Simulation model.step_time() Simulation nest.Run()

Download model.pull_recording_buffers Download nest.GetStatus(spike_recorder)

_from_device() + conversion to spike

+ conversion to spike representation

representation nest.Cleanup()

which are executed in each phase. We included in the model
definition phase of GeNN all steps necessary to set up the model
description and the simulation itself. This contains the definition
of neurons, their connectivity, the setup of the spike recorders, the
stimulation of neurons, and the definition of the neuron parameters,
as well as the parameters of the simulation itself, such as the time
resolution. During the build phase in GeNN, the code generation
is executed based on the defined model and the code is compiled
for its target, which in our case is the specific server with a GPU.
This process is not necessary for NEST because of its design using
an interpreter to orchestrate the simulation by using pre-compiled
models. The load phase in GeNN contains the construction of the
model and all needed procedures to simulate it in the host memory
and in the GPU memory and the initialization of the model. This
includes the connectivity, variables of the model, and variables of
the general simulation. The initialization of the model can be also
re-run manually to generate a fresh model based on the currently
loaded code, as used for the grid search with GeNN. The model
setup in NEST comprises the node creation and the connection
phase. The former creates the structures of neurons, spike recorders
and stimulation devices, and the general simulation parameters such
as the parallelization scheme. In the latter, the structures of the
connectivity of nodes is created. Due to the ability of NEST to use
distributed environments, presynaptic connectivity structures can
only be created after the calibration of the system. This calibration
contains the determination of delays between MPI processes if used,
the allocation of buffers, and calibrating nodes. The simulation phase
contains for both simulators the propagation of the state and the
delivery of spikes. In the case of GeNN, each call of the simulate
function only simulates one time step and thus the call has to be
issued as many times as needed to complete the simulation. In
the case of NEST, this is done automatically. The download phase
contains the query of the recorded spikes and the generation of our
used format of representation as described for the grid search. In the
case of GeNN, the conversion is proceeded by the transfer of the
recorded spikes from the GPU to the host.

We report the median values of fixed and
variable simulation costs across repeated simulations.
Supplementary Figure S4 additionally provides the mean
and standard deviation for the calibrations shown in
Figure 3.

Extrapolation to large network sizes

We can approximate the parabolic dependence of the
proportionality factor RT = Tvar/Tbio on the number of neurons N
for the PROCEDURAL simulation approach with GeNN (Figures 3B,
C) by the polynomial function

ϕ(N,ααα) = α2 · 0.308N
2 + α1 · N + α0

ℓ =

n
∑

i=1

(

λ

F(N)
+ (1− λ)

) (

ϕ(N, a)i − RTi

RTi

)2

ααα = a
ααα
rgmin (ℓ) .

(2)

To this end, we used a weighted least squares fit of Equation
2 with three modifications: (i) We scale the quadratic term by the
connection density p = 0.308 to relate this term to the number
of synapses M, (ii) we use the relative error, and (iii) we weigh the
samples by the inverse of the density along the independent variable
N. This balances the influence of the large network with a smaller
number of samples and the larger number of samples for small
networks with the factor λ = 0.75. We estimate the density F(N)
by a kernel density estimation using a Gaussian kernel (σ = 10, 000
neurons). The resulting fit is used for the extrapolation of Tvar/Tbio

to larger network sizes as shown in Figure 6. Simulation of larger
networks will require larger GPU RAM.

Data availability statement

The original contributions presented in the study are publicly
available. This data can be found here: https://github.com/nawrotla
b/SNN_GeNN_Nest.

Author contributions

FS and MN designed the research and wrote the manuscript.
FS carried out simulations and analysis of results. VR and MN
supervised project. All authors contributed to the article and
approved the submitted version.

Frontiers inNeuroinformatics 15 frontiersin.org
426

https://doi.org/10.3389/fninf.2023.941696
https://github.com/nawrotlab/SNN_GeNN_Nest
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

Funding

This research was supported by the German Research Foundation
through the Collaborative Research Center Key Mechanisms of
Motor Control in Health and Disease (DFG-CRC 1451, grant
no. 431549029 to MN, https://www.crc1451.uni-koeln.de/). FS was
funded through the DFG Research Training Group Neural Circuit
Analysis (DFG-RTG 1960, grant no. 233886668).

Acknowledgments

We are grateful to James Knight for his support with GeNN.

Conflict of interest

The authors declare that the research was conducted in
the absence of any commercial or financial relationships

that could be construed as a potential conflict
of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the reviewers.
Any product that may be evaluated in this article, or claim that may
be made by its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.2023.
941696/full#supplementary-material

References

Abeles, M. (1991). Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge:
Cambridge University Press.

Albers, J., Pronold, J., Kurth, A. C., Vennemo, S. B., Haghighi Mood, K., Patronis,
A., et al. (2022). A modular workflow for performance benchmarking of neuronal
network simulations. Front. Neuroinform. 16, 837549. doi: 10.3389/fninf.2022.83
7549

Amit, D. J., and Brunel, N. (1997). Model of global spontaneous
activity and local structured activity during delay periods in the
cerebral cortex. Cereb. Cortex 7, 237–252. doi: 10.1093/cercor/7.
3.237

Asabuki, T., Kokate, P., and Fukai, T. (2022). Neural circuit mechanisms of hierarchical
sequence learning tested on large-scale recording data. PLoS Comput. Biol. 18, 1–25.
doi: 10.1371/journal.pcbi.1010214

Bartolozzi, C., Indiveri, G., and Donati, E. (2022). Embodied neuromorphic
intelligence. Nat. Commun. 13, 1024. doi: 10.1038/s41467-022-28487-2

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T., Rasmussen, D., et
al. (2014). Nengo: a Python tool for building large-scale functional brain models. Front.
Neuroinform. 7, 48. doi: 10.3389/fninf.2013.00048

Ben-Shalom, R., Ladd, A., Artherya, N. S., Cross, C., Kim, K. G., Sanghevi,
H., et al. (2022). NeuroGPU: Accelerating multi-compartment, biophysically
detailed neuron simulations on GPUs. J. Neurosci. Methods 366, 109400.
doi: 10.1016/j.jneumeth.2021.109400

Bergstra, J., and Bengio, Y. (2012). Random search for hyper-parameter optimization.
J. Mach. Learn. Res. 13, 281–305.

Blundell, I., Brette, R., Cleland, T. A., Close, T. G., Coca, D., Davison, A. P., et al. (2018).
Code generation in computational neuroscience: a review of tools and techniques. Front.
Neuroinform. 12, 68. doi: 10.3389/fninf.2018.00068

Boucsein, C., Nawrot, M. P., Schnepel, P., and Aertsen, A. (2011). Beyond the cortical
column: abundance and physiology of horizontal connections imply a strong role for
inputs from the surround. Front. Neurosci. 5, 32. doi: 10.3389/fnins.2011.00032

Braitenberg, V., and Schüz, A. (1998). Cortex: Statistics and Geometry of Neuronal
Connectivity. Berlin; Heidelberg: Springer Berlin Heidelberg.

Brette, R., and Goodman, D. F. (2012). Simulating spiking neural networks on GPU.
Network Comput. Neural Syst. 23, 167–182. doi: 10.3109/0954898X.2012.730170

Brette, R., Rudolph,M., Carnevale, T., Hines,M., Beeman, D., Bower, J. M., et al. (2007).
Simulation of networks of spiking neurons: a review of tools and strategies. J. Comput.
Neurosci. 23, 349–398. doi: 10.1007/s10827-007-0038-6

Brunel, N. (2000). Dynamics of sparsely connected networks of
excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208.
doi: 10.1023/A:1008925309027

Bruzzone, M., Chiarello, E., Albanesi, M., Miletto Petrazzini, M. E., Megighian, A.,
Lodovichi, C., et al. (2021). Whole brain functional recordings at cellular resolution
in zebrafish larvae with 3d scanning multiphoton microscopy. Sci. Rep. 11, 11048.
doi: 10.1038/s41598-021-90335-y

Büsing, L., Schrauwen, B., and Legenstein, R. (2010). Connectivity, dynamics, and
memory in reservoir computing with binary and analog neurons. Neural Comput. 22,
1272–1311. doi: 10.1162/neco.2009.01-09-947

Carlson, K. D., Nageswaran, J. M., Dutt, N., and Krichmar, J. L. (2014). An efficient
automated parameter tuning framework for spiking neural networks. Front. Neurosci. 8,
10. doi: 10.3389/fnins.2014.00010

Chicca, E., Stefanini, F., Bartolozzi, C., and Indiveri, G. (2014). Neuromorphic
electronic circuits for building autonomous cognitive systems. Proc. IEEE 102, 1367–1388.
doi: 10.1109/JPROC.2014.2313954

Deepu, R., Spreizer, S., Trensch, G., Terhorst, D., Vennemo, S. B., Mitchell, J., et al.
(2021). Nest 3.1. Zenodo. doi: 10.5281/zenodo.5508805

Deger, M., Helias, M., Rotter, S., and Diesmann, M. (2012). Spike-timing dependence
of structural plasticity explains cooperative synapse formation in the neocortex. PLoS
Comput. Biol. 8, 1–13. doi: 10.1371/journal.pcbi.1002689

Diesmann, M., and Gewaltig, M.-O. (2002). “NEST: an environment for neural
systems simulations,” in Forschung und wisschenschaftliches Rechnen, Beiträge zum
Heinz-Billing-Preis 2001, GWDG-Bericht (Göttingen: Ges. für Wiss. Datenverarbeitung).
Available online at: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=
74eebbc23056acb83796673c6bb51dd41deb21db

Diesmann, M., Gewaltig, M.-O., and Aertsen, A. (1995). Synod: An environment
for neural systems simulations language interface and tutorial. Technical report, The
Weizmann Institute of Science, 76100 Rehovot.

Diesmann, M., Gewaltig, M.-O., and Aertsen, A. (1999). Stable propagation
of synchronous spiking in cortical neural networks. Nature 402, 529–533.
doi: 10.1038/990101

Eliasmith, C., and Anderson, C. H. (2003). Neural Engineering: Computation,
Representation, and Dynamics in Neurobiological Systems. Cambridge: MIT Press.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., et
al. (2012). A large-scale model of the functioning brain. Science 338, 1202–1205.
doi: 10.1126/science.1225266

Eliasmith, C., and Trujillo, O. (2014). The use and abuse of large-scale brain models.
Curr. Opin. Neurobiol. 25, 1–6. doi: 10.1016/j.conb.2013.09.009

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2009).
PyNEST: a convenient interface to the NEST simulator. Front. Neuroinform. 2, 2008.
doi: 10.3389/neuro.11.012.2008

Eschbach, C., and Zlatic, M. (2020). Useful road maps: studying Drosophila larva’s
central nervous system with the help of connectomics. Curr. Opin. Neurobiol. 65,
129–137. doi: 10.1016/j.conb.2020.09.008

Feldotto, B., Eppler, J. M., Jimenez-Romero, C., Bignamini, C., Gutierrez, C. E.,
Albanese, U., et al. (2022). Deploying and optimizing embodied simulations of large-
scale spiking neural networks on HPC infrastructure. Front. Neuroinform. 16, 884180.
doi: 10.3389/fninf.2022.884180

Feurer, M., and Hutter, F. (2019). Hyperparameter Optimization, Cham: Springer
International Publishing.

Frontiers inNeuroinformatics 16 frontiersin.org
427

https://doi.org/10.3389/fninf.2023.941696
https://www.crc1451.uni-koeln.de/
https://www.frontiersin.org/articles/10.3389/fninf.2023.941696/full#supplementary-material
https://doi.org/10.3389/fninf.2022.837549
https://doi.org/10.1093/cercor/7.3.237
https://doi.org/10.1371/journal.pcbi.1010214
https://doi.org/10.1038/s41467-022-28487-2
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1016/j.jneumeth.2021.109400
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.3389/fnins.2011.00032
https://doi.org/10.3109/0954898X.2012.730170
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.1038/s41598-021-90335-y
https://doi.org/10.1162/neco.2009.01-09-947
https://doi.org/10.3389/fnins.2014.00010
https://doi.org/10.1109/JPROC.2014.2313954
https://doi.org/10.5281/zenodo.5508805
https://doi.org/10.1371/journal.pcbi.1002689
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=74eebbc23056acb83796673c6bb51dd41deb21db
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=74eebbc23056acb83796673c6bb51dd41deb21db
https://doi.org/10.1038/990101
https://doi.org/10.1126/science.1225266
https://doi.org/10.1016/j.conb.2013.09.009
https://doi.org/10.3389/neuro.11.012.2008
https://doi.org/10.1016/j.conb.2020.09.008
https://doi.org/10.3389/fninf.2022.884180
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

Fidjeland, A. K., Roesch, E. B., Shanahan,M. P., and Luk,W. (2009). “NeMo: a platform
for neural modelling of spiking neurons using GPUs,” in 2009 20th IEEE International
Conference on Application-Specific Systems, Architectures and Processors (Boston, MA:
IEEE), 137–144.

Finkelstein, A., Fontolan, L., Economo, M. N., Li, N., Romani, S., and Svoboda, K.
(2021). Attractor dynamics gate cortical information flow during decision-making. Nat.
Neurosci. 24, 843–850. doi: 10.1038/s41593-021-00840-6

Florimbi, G., Torti, E., Masoli, S., D’Angelo, E., and Leporati, F. (2021). Granular
layEr simulator: design and multi-gpu simulation of the cerebellar granular layer. Front.
Comput. Neurosci. 15, 630795. doi: 10.3389/fncom.2021.630795

Gallinaro, J. V., Gašparovi,ć, N., and Rotter, S. (2022). Homeostatic control of synaptic
rewiring in recurrent networks induces the formation of stable memory engrams. PLoS
Comput. Biol. 18, e1009836 doi: 10.1371/journal.pcbi.1009836

Gewaltig, M.-O., and Diesmann,M. (2007). Nest (neural simulation tool). Scholarpedia
2, 1430. doi: 10.4249/scholarpedia.1430

Gjorgjieva, J., Drion, G., and Marder, E. (2016). Computational implications of
biophysical diversity and multiple timescales in neurons and synapses for circuit
performance. Curr. Opin. Neurobiol. 37, 44–52. doi: 10.1016/j.conb.2015.12.008

Godfrey, R. K., Swartzlander, M., and Gronenberg, W. (2021). Allometric analysis of
brain cell number in Hymenoptera suggests ant brains diverge from general trends. Proc.
R. Soc. B Biol. Sci. 288, 20210199. doi: 10.1098/rspb.2021.0199

Golosio, B., Tiddia, G., De Luca, C., Pastorelli, E., Simula, F., and Paolucci, P. S. (2021).
Fast simulations of highly-connected spiking cortical models using gpus. Front. Comput.
Neurosci. 15, 627620. doi: 10.3389/fncom.2021.627620

Gütig, R. (2016). Spiking neurons can discover predictive features by aggregate-label
learning. Science 351, aab4113. doi: 10.1126/science.aab4113

Gütig, R., and Sompolinsky, H. (2006). The tempotron: a neuron that learns spike
timing-based decisions. Nat. Neurosci. 9, 420–428. doi: 10.1038/nn1643

Hammond, C., Bergman, H., and Brown, P. (2007). Pathological synchronization in
Parkinson’s disease: networks, models and treatments. Trends Neurosci. 30, 357–364.
doi: 10.1016/j.tins.2007.05.004

Hazan, H., Saunders, D. J., Khan, H., Patel, D., Sanghavi, D. T., Siegelmann, H. T.,
et al. (2018). BindsNET: a machine learning-oriented spiking neural networks library in
Python. Front. Neuroinform. 12, 89. doi: 10.3389/fninf.2018.00089

Helgadóttir, L. I., Haenicke, J., Landgraf, T., Rojas, R., and Nawrot, M. P. (2013).
“Conditioned behavior in a robot controlled by a spiking neural network,” in 2013 6th
International IEEE/EMBS Conference on Neural Engineering (NER) (San Diego, CA:
IEEE), 891–894.

Herculano-Houzel, S., Watson, C., and Paxinos, G. (2013). Distribution of neurons
in functional areas of the mouse cerebral cortex reveals quantitatively different cortical
zones. Front. Neuroanat. 7, 35. doi: 10.3389/fnana.2013.00035

Hines, M. L., and Carnevale, N. T. (2001). NEURON: a tool for neuroscientists.
Neuroscientist 7, 123–135. doi: 10.1177/107385840100700207

Hinsch, K., and Zupanc, G. (2007). Generation and long-term persistence of new
neurons in the adult zebrafish brain: a quantitative analysis. Neuroscience 146, 679–696.
doi: 10.1016/j.neuroscience.2007.01.071

Hopfield, J. J. (1982). Neural networks and physical systems with emergent
collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79, 2554–2558.
doi: 10.1073/pnas.79.8.2554

Igarashi, J., Yamaura, H., and Yamazaki, T. (2019). Large-scale simulation of a
layered cortical sheet of spiking network model using a tile partitioning method. Front.
Neuroinform. 13, 71. doi: 10.3389/fninf.2019.00071

Illing, B., Ventura, J., Bellec, G., and Gerstner, W. (2021). “Local plasticity rules can
learn deep representations using self-supervised contrastive predictions,” in Advances
in Neural Information Processing Systems, Vol. 34, eds M. Ranzato, A. Beygelzimer, Y.
Dauphin, P. Liang, and J. W. Vaughan (Curran Associates, Inc.), 30365–30379.

Inagaki, H. K., Fontolan, L., Romani, S., and Svoboda, K. (2019). Discrete attractor
dynamics underlies persistent activity in the frontal cortex. Nature 566, 212–217.
doi: 10.1038/s41586-019-0919-7

Indiveri, G., Stefanini, F., and Chicca, E. (2010). “Spike-based learning with a
generalized integrate and fire silicon neuron,” in Proceedings of 2010 IEEE International
Symposium on Circuits and Systems (Paris: IEEE), 1951–1954.

Ippen, T., Eppler, J. M., Plesser, H. E., and Diesmann, M. (2017). Constructing
neuronal network models in massively parallel environments. Front. Neuroinform. 11,
30. doi: 10.3389/fninf.2017.00030

Ivanov, D., Chezhegov, A., Grunin, A., Kiselev, M., and Larionov, D.
(2022). Neuromorphic artificial intelligence systems. Front. Neurosci. 16, 95626.
doi: 10.3389/fnins.2022.959626

Javanshir, A., Nguyen, T. T., Mahmud, M. A. P., and Kouzani, A. Z. (2022).
Advancements in algorithms and neuromorphic hardware for spiking neural networks.
Neural Comput. 34, 1289–1328. doi: 10.1162/neco_a_01499

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et
al. (2018). Extremely scalable spiking neuronal network simulation code: from
laptops to exascale computers. Front. Neuroinform. 12, 2. doi: 10.3389/fninf.2018.
00002

Kasabov, N., and Capecci, E. (2015). Spiking neural network methodology for
modelling, classification and understanding of EEG spatio-temporal data measuring
cognitive processes. Inf. Sci. 294, 565–575. doi: 10.1016/j.ins.2014.06.028

Knight, J. C., Komissarov, A., and Nowotny, T. (2021). PyGeNN: a Python
library for GPU-enhanced neural networks. Front. Neuroinform. 15, 659005.
doi: 10.3389/fninf.2021.659005

Knight, J. C., and Nowotny, T. (2018). GPUs Outperform current HPC and
neuromorphic solutions in terms of speed and energy when simulating a highly-
connected cortical model. Front. Neurosci. 12, 941. doi: 10.3389/fnins.2018.00941

Knight, J. C., and Nowotny, T. (2021). Larger GPU-accelerated brain simulations with
procedural connectivity. Nat. Comput. Sci. 1, 136–142. doi: 10.1038/s43588-020-00022-7

Knight, J. C., and Nowotny, T. (2022). “Efficient GPU training of LSNNs using
EProp,” in Neuro-Inspired Computational Elements Conference, NICE 2022 (New York,
NY:. Association for Computing Machinery), 8–10.

Kulesza, R. J. (2007). Cytoarchitecture of the human superior olivary complex: medial
and lateral superior olive. Hear Res. 225, 80–90. doi: 10.1016/j.heares.2006.12.006

Kulkarni, S. R., Parsa, M., Mitchell, J. P., and Schuman, C. D. (2021). Benchmarking the
performance of neuromorphic and spiking neural network simulators. Neurocomputing
447, 145–160. doi: 10.1016/j.neucom.2021.03.028

Kunkel, S., Potjans, T., Eppler, J., Plesser, H. E., Morrison, A., andDiesmann,M. (2012).
Meeting the memory challenges of brain-scale network simulation. Front. Neuroinform.
5, 35. doi: 10.3389/fninf.2011.00035

Kunkel, S., Schmidt, M., Eppler, J. M., Plesser, H. E., Masumoto, G., Igarashi, J., et al.
(2014). Spiking network simulation code for petascale computers. Front. Neuroinform. 8,
78. doi: 10.3389/fninf.2014.00078

Kurth, A. C., Senk, J., Terhorst, D., Finnerty, J., and Diesmann,M. (2022). Sub-realtime
simulation of a neuronal network of natural density. Neuromorphic Comput. Eng. 2,
021001. doi: 10.1088/2634-4386/ac55fc

LaValle, S. M., Branicky, M. S., and Lindemann, S. R. (2004). On the relationship
between classical grid search and probabilistic roadmaps. Int. J. Rob. Res. 23, 673–692.
doi: 10.1177/0278364904045481

Lengler, J., Jug, F., and Steger, A. (2013). Reliable neuronal systems: the importance of
heterogeneity. PLoS ONE 8, e80694. doi: 10.1371/journal.pone.0080694

Litwin-Kumar, A., and Doiron, B. (2012). Slow dynamics and high variability in
balanced cortical networks with clustered connections. Nat. Neurosci. 15, 1498–1505.
doi: 10.1038/nn.3220

Litwin-Kumar, A., Rosenbaum, R., and Doiron, B. (2016). Inhibitory stabilization and
visual coding in cortical circuits with multiple interneuron subtypes. J. Neurophysiol. 115,
1399–1409. doi: 10.1152/jn.00732.2015

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M., Sanchez, C.
A., et al. (2015). Reconstruction and simulation of neocortical microcircuitry. Cell 163,
456–492. doi: 10.1016/j.cell.2015.09.029

Mazzucato, L. (2022). Neural mechanisms underlying the temporal organization of
naturalistic animal behavior. arXiv. doi: 10.7554/eLife.76577

Mazzucato, L., Fontanini, A., and La Camera, G. (2015). Dynamics of multistable
states during ongoing and evoked cortical activity. J. Neurosci. 35, 8214–8231.
doi: 10.1523/JNEUROSCI.4819-14.2015

Mazzucato, L., La Camera, G., and Fontanini, A. (2019). Expectation-induced
modulation of metastable activity underlies faster coding of sensory stimuli. Nat.
Neurosci. 22, 787–796. doi: 10.1038/s41593-019-0364-9

McIntyre, C. C., and Hahn, P. J. (2010). Network perspectives on the mechanisms of
deep brain stimulation. Neurobiol. Dis. 38, 329–337. doi: 10.1016/j.nbd.2009.09.022

Mejias, J. F., and Longtin, A. (2012). Optimal heterogeneity for coding in spiking neural
networks. Phys. Rev. Lett. 108, 228102. doi: 10.1103/PhysRevLett.108.228102

Mejias, J. F., and Longtin, A. (2014). Differential effects of excitatory and inhibitory
heterogeneity on the gain and asynchronous state of sparse cortical networks. Front.
Comput. Neurosci. 8, 107. doi: 10.3389/fncom.2014.00107

Menzel, R. (2012). The honeybee as a model for understanding the basis of cognition.
Nat. Rev. Neurosci. 13, 758–768. doi: 10.1038/nrn3357

Morrison, A., Mehring, C., Geisel, T., Aertsen, A., and Diesmann, M. (2005).
Advancing the boundaries of high-connectivity network simulation with distributed
computing. Neural Comput. 17, 1776–1801. doi: 10.1162/0899766054026648

Morrison, A., Straube, S., Plesser, H. E., and Diesmann, M. (2007). Exact subthreshold
integration with continuous spike times in discrete-time neural network simulations.
Neural Comput. 19, 47–79. doi: 10.1162/neco.2007.19.1.47

Mutch, J., Knoblich, U., and Poggio, T. (2010). CNS: A GPU-Based Framework for
Simulating Cortically-Organized Networks. MIT CSAIL.

Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., and Veidenbaum, A. V.
(2009). A configurable simulation environment for the efficient simulation of large-
scale spiking neural networks on graphics processors. Neural Netw. 22, 791–800.
doi: 10.1016/j.neunet.2009.06.028

Nawrot, M. P., Schnepel, P., Aertsen, A., and Boucsein, C. (2009). Precisely timed signal
transmission in neocortical networks with reliable intermediate-range projections. Front.
Neural Circ. 3, 2009. doi: 10.3389/neuro.04.001.2009

Frontiers inNeuroinformatics 17 frontiersin.org
428

https://doi.org/10.3389/fninf.2023.941696
https://doi.org/10.1038/s41593-021-00840-6
https://doi.org/10.3389/fncom.2021.630795
https://doi.org/10.1371/journal.pcbi.1009836
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1016/j.conb.2015.12.008
https://doi.org/10.1098/rspb.2021.0199
https://doi.org/10.3389/fncom.2021.627620
https://doi.org/10.1126/science.aab4113
https://doi.org/10.1038/nn1643
https://doi.org/10.1016/j.tins.2007.05.004
https://doi.org/10.3389/fninf.2018.00089
https://doi.org/10.3389/fnana.2013.00035
https://doi.org/10.1177/107385840100700207
https://doi.org/10.1016/j.neuroscience.2007.01.071
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.3389/fninf.2019.00071
https://doi.org/10.1038/s41586-019-0919-7
https://doi.org/10.3389/fninf.2017.00030
https://doi.org/10.3389/fnins.2022.959626
https://doi.org/10.1162/neco_a_01499
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.1016/j.ins.2014.06.028
https://doi.org/10.3389/fninf.2021.659005
https://doi.org/10.3389/fnins.2018.00941
https://doi.org/10.1038/s43588-020-00022-7
https://doi.org/10.1016/j.heares.2006.12.006
https://doi.org/10.1016/j.neucom.2021.03.028
https://doi.org/10.3389/fninf.2011.00035
https://doi.org/10.3389/fninf.2014.00078
https://doi.org/10.1088/2634-4386/ac55fc
https://doi.org/10.1177/0278364904045481
https://doi.org/10.1371/journal.pone.0080694
https://doi.org/10.1038/nn.3220
https://doi.org/10.1152/jn.00732.2015
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.7554/eLife.76577
https://doi.org/10.1523/JNEUROSCI.4819-14.2015
https://doi.org/10.1038/s41593-019-0364-9
https://doi.org/10.1016/j.nbd.2009.09.022
https://doi.org/10.1103/PhysRevLett.108.228102
https://doi.org/10.3389/fncom.2014.00107
https://doi.org/10.1038/nrn3357
https://doi.org/10.1162/0899766054026648
https://doi.org/10.1162/neco.2007.19.1.47
https://doi.org/10.1016/j.neunet.2009.06.028
https://doi.org/10.3389/neuro.04.001.2009
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Schmitt et al. 10.3389/fninf.2023.941696

Neftci, E., Binas, J., Rutishauser, U., Chicca, E., Indiveri, G., and Douglas, R. J. (2013).
Synthesizing cognition in neuromorphic electronic systems. Proc. Natl. Acad. Sci. U.S.A.
110, E3468-E3476. doi: 10.1073/pnas.1212083110

Niedermeier, L., Chen, K., Xing, J., Das, A., Kopsick, J., Scott, E., et al. (2022).
“CARLsim 6: an open source library for large-scale, biologically detailed spiking neural
network simulation,” in 2022 International Joint Conference on Neural Networks (IJCNN)
(Padua: IEEE), 1–10.

Oorschot, D. E. (1996). Total number of neurons in the neostriatal, pallidal,
subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study
using the cavalieri and optical disector methods. J. Compar. Neurol. 366, 580–599.
doi: 10.1002/(SICI)1096-9861(19960318)366:4andlt;580::AID-CNE3andgt;3.0.CO;2-0

Ostrau, C., Klarhorst, C., Thies, M., and Rückert, U. (2022). Benchmarking
neuromorphic hardware and its energy expenditure. Front. Neurosci. 16, 873935.
doi: 10.3389/fnins.2022.873935

Parrish-Aungst, S., Shipley, M., Erdelyi, F., Szabó, G., and Puche, A. (2007).
Quantitative analysis of neuronal diversity in the mouse olfactory bulb. J. Comp. Neurol.
501, 825–836. doi: 10.1002/cne.21205

Parsa,M.,Mitchell, J. P., Schuman, C. D., Patton, R.M., Potok, T. E., and Roy, K. (2019).
“Bayesian-based hyperparameter optimization for spiking neuromorphic systems,” in
2019 IEEE International Conference on Big Data (Big Data) (Los Angeles, CA: IEEE),
4472–4478.

Pfeiffer, M., and Pfeil, T. (2018). Deep learning with spiking neurons: opportunities
and challenges. Front. Neurosci. 12, 774. doi: 10.3389/fnins.2018.00774

Plotnikov, D., Rumpe, B., Blundell, I., Ippen, T., Eppler, J. M., and Morrison, A. (2016).
“NESTML: a modeling language for spiking neurons,” in Modellierung 2016, eds S. Betz
and U. Reimer (Karlsruhe).

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical microcircuit:
relating structure and activity in a full-scale spiking network model. Cereb. Cortex 24,
785–806. doi: 10.1093/cercor/bhs358

Pronold, J., Jordan, J., Wylie, B. J. N., Kitayama, I., Diesmann, M., and Kunkel,
S. (2022). Routing brain traffic through the von Neumann bottleneck: efficient cache
usage in spiking neural network simulation code on general purpose computers. Parallel
Comput. 113, 102952. doi: 10.1016/j.parco.2022.102952

Raji, J. I., and Potter, C. J. (2021). The number of neurons in Drosophila and mosquito
brains. PLoS ONE 16, 1–11. doi: 10.1371/journal.pone.0250381

Rapp, H., and Nawrot, M. P. (2020). A spiking neural program for sensorimotor
control during foraging in flying insects. Proc. Natl. Acad. Sci. U.S.A. 117, 28412–28421.
doi: 10.1073/pnas.2009821117

Rapp, H., Nawrot, M. P., and Stern, M. (2020). Numerical cognition based on precise
counting with a single spiking neuron. iScience 23, 100852. doi: 10.1016/j.isci.2020.101283

Rost, T. (2016). Modelling Cortical Variability Dynamics. (Ph.D. thesis). Freie
Universität Berlin.

Rost, T., Deger, M., and Nawrot, M. P. (2018). Winnerless competition in clustered
balanced networks: inhibitory assemblies do the trick. Biol. Cybern. 112, 81–98.
doi: 10.1007/s00422-017-0737-7

Rostami, V., Rost, T., Riehle, A., van Albada, S. J., and Nawrot, M. P. (2022).
Excitatory and inhibitory motor cortical clusters account for balance, variability, and task
performance. bioRxiv. doi: 10.1101/2020.02.27.968339

Rotter, S., and Diesmann, M. (1999). Exact digital simulation of time-invariant
linear systems with applications to neuronal modeling. Biol. Cybern. 81, 381–402.
doi: 10.1007/s004220050570

Sacramento, J. A., Ponte Costa, R., Bengio, Y., and Senn, W. (2018). “Dendritic
cortical microcircuits approximate the backpropagation algorithm,” in Advances in
Neural Information Processing Systems, Vol. 31, eds S. Bengio, H. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Montréal, QC: Curran
Associates), 8721–8732. Available online at: https://proceedings.neurips.cc/paper/2018/
file/1dc3a89d0d440ba31729b0ba74b93a33-Paper.pdf

Sakagiannis, P., Jürgensen, A.-M., and Nawrot, M. P. (2021). A realistic
locomotory model of drosophila larva for behavioral simulations. bioRxiv.
doi: 10.1101/2021.07.07.451470

Sakai, K., and Miyashita, Y. (1991). Neural organization for the long-
term memory of paired associates. Nature 354, 152–155. doi: 10.1038/3541
52a0

Sarko, D. K., Catania, K., Leitch, D. B., Kaas, J. H., and Herculano-Houzel,
S. (2009). Cellular scaling rules of insectivore brains. Front. Neuroanat. 3, 2009.
doi: 10.3389/neuro.05.008.2009

Schmidt, M., Bakker, R., Shen, K., Bezgin, G., Diesmann, M., and van Albada,
S. J. (2018). A multi-scale layer-resolved spiking network model of resting-state
dynamics in macaque visual cortical areas. PLoS Comput. Biol. 14, e1006359.
doi: 10.1371/journal.pcbi.1006359

Schmuker, M., Pfeil, T., and Nawrot, M. P. (2014). A neuromorphic network for
generic multivariate data classification. Proc. Natl. Acad. Sci. U.S.A. 111, 2081–2086.
doi: 10.1073/pnas.1303053111

Schuman, C. D., Kulkarni, S. R., Parsa, M., Mitchell, J. P., Date, P., and Kay, B. (2022).
Opportunities for neuromorphic computing algorithms and applications. Nat. Comput.
Sci. 2, 10–19. doi: 10.1038/s43588-021-00184-y

Sherwood, C. C., Miller, S. B., Karl, M., Stimpson, C. D., Phillips, K. A., Jacobs, B.,
et al. (2020). Invariant synapse density and neuronal connectivity scaling in primate
neocortical evolution. Cereb. Cortex 30, 5604–5615. doi: 10.1093/cercor/bhaa149

Singer, W., and Gray, C. M. (1995). Visual feature integration and
the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586.
doi: 10.1146/annurev.ne.18.030195.003011

Steffen, L., Koch, R., Ulbrich, S., Nitzsche, S., Roennau, A., and Dillmann,
R. (2021). Benchmarking highly parallel hardware for spiking neural
networks in robotics. Front. Neurosci. 15, 667011. doi: 10.3389/fnins.2021.66
7011

Stimberg, M., Brette, R., and Goodman, D. F. M. (2019). Brian 2, an intuitive and
efficient neural simulator. eLife 8, e47314. doi: 10.7554/eLife.47314.028

Tanaka, G., Yamane, T., Héroux, J. B., Nakane, R., Kanazawa, N.,
Takeda, S., et al. (2019). Recent advances in physical reservoir computing:
a review. Neural Networks 115, 100–123. doi: 10.1016/j.neunet.2019.0
3.005

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier,
T., and Maida, A. (2019). Deep learning in spiking neural
networks. Neural Networks 111, 47–63. doi: 10.1016/j.neunet.2018.1
2.002

Thain, D., Tannenbaum, T., and Livny, M. (2005). Distributed computing in practice:
the Condor experience. Concurrency Pract. Exp. 17, 323–356. doi: 10.1002/cpe.938

Thörnig, P. (2021). JURECA: data centric and booster modules
implementing the modular supercomputing architecture at jülich
supercomputing centre. J. Largescale Res. Facilit. 7, A182. doi: 10.17815/jlsrf-
7-182

Tiddia, G., Golosio, B., Albers, J., Senk, J., Simula, F., Pronold, J., et al.
(2022). Fast simulation of a multi-area spiking network model of macaque cortex
on an MPI-GPU cluster. Front. Neuroinform. 16, 883333. doi: 10.3389/fninf.2022.88
3333

Tikidji-Hamburyan, R. A., Narayana, V., Bozkus, Z., and El-Ghazawi, T. A. (2017).
Software for brain network simulations: a comparative study. Front. Neuroinform. 11, 46.
doi: 10.3389/fninf.2017.00046

Tripathy, S. J., Padmanabhan, K., Gerkin, R. C., and Urban, N. N. (2013). Intermediate
intrinsic diversity enhances neural population coding. Proc. Natl. Acad. Sci. U.S.A. 110,
8248–8253. doi: 10.1073/pnas.1221214110

Van Albada, S. J., Helias, M., and Diesmann, M. (2015). Scalability of asynchronous
networks is limited by one-to-one mapping between effective connectivity and
correlations. PLoS Comput. Biol. 11, e1004490. doi: 10.1371/journal.pcbi.1004490

Van Vreeswijk, C., and Sompolinsky, H. (1996). Chaos in neuronal networks
with balanced excitatory and inhibitory activity. Science 274, 1724–1726.
doi: 10.1126/science.274.5293.1724

Vitay, J., Dinkelbach, H. O., and Hamker, F. H. (2015). ANNarchy: a code generation
approach to neural simulations on parallel hardware. Front. Neuroinform. 9, 19.
doi: 10.3389/fninf.2015.00019

Vlag, M. A., v. d., Smaragdos, G., Al-Ars, Z., and Strydis, C. (2019). Exploring complex
brain-simulation workloads on multi-GPU deployments. ACM Trans. Arch. Code Optim.
16, 1–25. doi: 10.1145/3371235

Vogels, T. P., Sprekeler, H., Zenke, F., Clopath, C., and Gerstner, W. (2011). Inhibitory
plasticity balances excitation and inhibition in sensory pathways and memory networks.
Science 334, 1569–1573. doi: 10.1126/science.1211095

Von, S.t., and Vieth, B. (2021). JUSUF: Modular Tier-2 supercomputing and cloud
infrastructure at jülich supercomputing centre. J. Largescale Res. Facilit. 7, A179.
doi: 10.17815/jlsrf-7-179

White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. (1986). The structure of the
nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Londo. B
Biol. Sci. 314, 1–340. doi: 10.1098/rstb.1986.0056

Witthöft, W. (1967). Absolute Anzahl und Verteilung der Zellen im Hirn der
Honigbiene. Zeitschrift für Morphologie der Tiere 61, 160–184. doi: 10.1007/BF00298776

Wyrick, D., and Mazzucato, L. (2021). State-dependent regulation of
cortical processing speed via gain modulation. J. Neurosci. 41, 3988–4005.
doi: 10.1523/JNEUROSCI.1895-20.2021

Yamaura, H., Igarashi, J., and Yamazaki, T. (2020). Simulation of a human-
scale cerebellar network model on the K computer. Front. Neuroinform. 14, 16.
doi: 10.3389/fninf.2020.00016

Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a code generation framework for
accelerated brain simulations. Sci. Rep. 6, 1–14. doi: 10.1038/srep18854

Yegenoglu, A., Subramoney, A., Hater, T., Jimenez-Romero, C., Klijn, W., Pérez
Martín, A., et al. (2022). Exploring parameter and hyper-parameter spaces of
neuroscience models on high performance computers with learning to learn. Front.
Comput. Neurosci. 16, 885207. doi: 10.3389/fncom.2022.885207

Zenke, F., and Ganguli, S. (2018). SuperSpike: supervised learning inmultilayer spiking
neural networks. Neural Comput. 30, 1514–1541. doi: 10.1162/neco_a_01086

Zhao, Y., Wang, D. O., and Martin, K. C. (2009). Preparation of aplysia sensory-motor
neuronal cell cultures. J. Vis. Exp. 8, 1355. doi: 10.3791/1355-v

Frontiers inNeuroinformatics 18 frontiersin.org
429

https://doi.org/10.3389/fninf.2023.941696
https://doi.org/10.1073/pnas.1212083110
https://doi.org/10.1002/(SICI)1096-9861(19960318)366:4andlt;580::AID-CNE3andgt;3.0.CO;2-0
https://doi.org/10.3389/fnins.2022.873935
https://doi.org/10.1002/cne.21205
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1016/j.parco.2022.102952
https://doi.org/10.1371/journal.pone.0250381
https://doi.org/10.1073/pnas.2009821117
https://doi.org/10.1016/j.isci.2020.101283
https://doi.org/10.1007/s00422-017-0737-7
https://doi.org/10.1101/2020.02.27.968339
https://doi.org/10.1007/s004220050570
https://proceedings.neurips.cc/paper/2018/file/1dc3a89d0d440ba31729b0ba74b93a33-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/1dc3a89d0d440ba31729b0ba74b93a33-Paper.pdf
https://doi.org/10.1101/2021.07.07.451470
https://doi.org/10.1038/354152a0
https://doi.org/10.3389/neuro.05.008.2009
https://doi.org/10.1371/journal.pcbi.1006359
https://doi.org/10.1073/pnas.1303053111
https://doi.org/10.1038/s43588-021-00184-y
https://doi.org/10.1093/cercor/bhaa149
https://doi.org/10.1146/annurev.ne.18.030195.003011
https://doi.org/10.3389/fnins.2021.667011
https://doi.org/10.7554/eLife.47314.028
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1002/cpe.938
https://doi.org/10.17815/jlsrf-7-182
https://doi.org/10.3389/fninf.2022.883333
https://doi.org/10.3389/fninf.2017.00046
https://doi.org/10.1073/pnas.1221214110
https://doi.org/10.1371/journal.pcbi.1004490
https://doi.org/10.1126/science.274.5293.1724
https://doi.org/10.3389/fninf.2015.00019
https://doi.org/10.1145/3371235
https://doi.org/10.1126/science.1211095
https://doi.org/10.17815/jlsrf-7-179
https://doi.org/10.1098/rstb.1986.0056
https://doi.org/10.1007/BF00298776
https://doi.org/10.1523/JNEUROSCI.1895-20.2021
https://doi.org/10.3389/fninf.2020.00016
https://doi.org/10.1038/srep18854
https://doi.org/10.3389/fncom.2022.885207
https://doi.org/10.1162/neco_a_01086
https://doi.org/10.3791/1355-v
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

+41 (0)21 510 17 00
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Leading journal supporting neuroscience in the

information age

Part of the most cited neuroscience journal series,

developing computational models and analytical

tools used to share, integrate and analyze

experimental data about the nervous system

functions.

Discover the latest
Research Topics

See more

Frontiers in
Neuroinformatics

https://www.frontiersin.org/journals/Neuroinformatics/research-topics

	Cover

	FRONTIERS EBOOK COPYRIGHT STATEMENT

	Neuroscience, computing, performance, and benchmarks: Why it matters to neuroscience how fast we can compute

	Table of contents

	Editorial: Neuroscience, computing, performance, and benchmarks: Why it matters to neuroscience how fast we can compute
	Introduction
	Larger brain and brain tissue models
	Expansion to the subcellular realm
	The role of simulators and workflows
	Keeping innovations around—Sustainability of scientific software
	If simulator engines are on track, how about analysis packages?
	Embracing the course of computing architecture evolution
	Emerging computing architectures
	Rethinking the underlying algorithms
	Time
	Benchmarking as the compass
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

	Acceleration of the SPADE Method Using a Custom-Tailored FP-Growth Implementation
	1. Introduction
	2. Method
	2.1. Introduction to Frequent Pattern Mining
	2.2. FP-Growth-Based Pattern Mining
	2.3. Spike Activity Analysis Using the SPADE Method
	2.4. Identification of Bottlenecks
	2.5. Optimized Implementation
	2.5.1. Custom FP-Growth Implementation With Result Filtering
	2.5.2. Pattern Collector

	2.6. Parallelization and Distributed Computing

	3. Results
	3.1. Test Setup
	3.2. Evaluation of the Software Baseline on x86 Server
	3.3. Evaluation on RECS|Box for Server Processors
	3.4. Evaluation on RECS|Box for Embedded Processors
	3.4.1. Execution on a Single Device
	3.4.2. Execution on Multiple Devices

	3.5. Scalability

	4. Discussion
	4.1. Platform Comparison
	4.2. Summary and Future Work

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	ConGen—A Simulator-Agnostic Visual Language for Definition and Generation of Connectivity in Large and Multiscale Neural Networks
	1. Introduction
	1.1. State of the Art
	1.1.1. Visual Representations of Connectivity
	1.1.2. Abstract Representations of Connectivity
	1.1.3. Standardized Network Model Descriptions
	1.1.4. Simulation Engines

	2. Methods
	2.1. Visual Front End for Connectivity Generation
	2.1.1. Creation and Parameterization of a Hierarchical Network Structure

	2.2. From Visual Representation to Simulation
	2.2.1. Using NeuroML
	2.2.2. The ConGen Back End

	3. Results
	3.1. Use Case 1: The Cortical Microcircuit Model
	3.2. Use Case 2: Co-simulation of The Virtual Brain and NEST
	3.3. Supported Simulation Engines

	4. Discussion
	5. Conclusions and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Routing Brain Traffic Through the Von Neumann Bottleneck: Parallel Sorting and Refactoring
	1. Introduction
	2. Spike Delivery as Memory-Access Bottleneck
	2.1. Sparsity of Network Representation
	2.2. Memory Layout of Synapse and Neuron Representations
	2.3. Original Spike-Delivery Algorithm
	2.3.1. Pseudocode

	2.4. Simulation Time

	3. Benchmarking Framework
	3.1. Simulation Engine
	3.2. Network Model
	3.3. Systems
	3.4. Software for Profiling and Workflow Management
	3.4.1. VTune
	3.4.2. JUBE

	4. Redesign of Spike-Delivery Algorithm
	4.1. Streamlined Processing of Spike Entries (SRR)
	4.2. Exposure of Code Dependencies (P2RB)
	4.3. Pseudocode

	5. Results
	5.1. Effect of Redesign on Simulation Time
	5.2. Origin of Improvement

	6. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Parallelization of Neural Processing on Neuromorphic Hardware
	1. Introduction
	2. Background
	2.1. Neural Processing

	3. Materials and Methods
	3.1. The SpiNNaker System
	3.2. Homogeneous Parallelization
	3.3. Heterogeneous Parallelization
	3.4. Multi-Target Synapse Cores
	3.4.1. Neuromorphic Implementation

	3.5. Plasticity

	4. Results
	4.1. Memory Access
	4.1.1. Experiment Description
	4.1.2. Reading Times
	4.1.3. Writing Times

	4.2. Peak Processing Profiling
	4.2.1. Experiment Description
	4.2.2. Static Networks
	4.2.3. Plastic Networks

	4.3. Sparsity Profiling
	4.3.1. Experiment Description
	4.3.2. Sparsity Results

	5. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	A Modular Workflow for Performance Benchmarking of Neuronal Network Simulations
	1. Introduction
	2. Results
	2.1. Workflow Concepts
	2.1.1. Configuration and Preparation
	2.1.2. Benchmarking
	2.1.3. Data- and Metadata Handling
	2.1.4. Data Presentation

	2.2. beNNch: A Reference Implementation
	2.2.1. Builder
	2.2.2. NEST
	2.2.3. Instrumentation
	2.2.4. beNNch-models
	2.2.5. config files
	2.2.6. JUBE
	2.2.7. git-annex
	2.2.8. beNNch-plot
	2.2.9. Flip-Book
	2.2.10. Exchanging External Modules

	2.3. Using beNNch for Simulator Development
	2.3.1. Use Case: NEST Development

	3. Discussion
	4. Materials and Methods
	4.1. NEST Developments
	4.1.1. Brief History of NEST
	4.1.2. Shrinking MPI Buffers
	4.1.3. Spike Compression
	4.1.4. Neuronal Input Buffers With Multiple Channels

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Efficient Simulation of 3D Reaction-Diffusion in Models of Neurons and Networks
	Introduction
	Methods
	Voxelization
	Model Specification
	Reaction-Diffusion Kinetics
	Boundary Conditions

	3D Simulation
	Hybrid Simulation
	Boundary Identification
	Simulation

	Random Realistic Neuron Morphologies
	Timings

	Results
	Validation
	Convergence on a Cylinder and the Role of Voxel Refinement
	Convergence of Discretization on Realistic Geometries
	Voxel-Segment Assignment
	Three-Dimensional Simulation
	Conservation of Mass
	Diffusion
	Ion Channel Fluxes
	3D Simulation on Realistic Geometry
	Orientation Sensitivity With Propagating Wave

	Hybrid 1D-3D Simulation Validation
	Conservation of Mass
	Diffusion

	Performance
	Voxelization
	3D Simulation

	Examples
	Dendrite-Soma Intersection
	Spines
	Three-Dimensional Localization of Synapses

	Discussion
	Alternative Strategies
	Special Considerations
	Conclusions and Future Directions

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	A Scalable Approach to Modeling on Accelerated Neuromorphic Hardware
	1. Introduction
	1.1. The BrainScaleS-2 Hardware

	2. BrainScaleS-2 Operating System
	2.1. Experiment Workflow
	2.2. Software Stack Overview
	2.2.1. Communication
	2.2.2. Hardware Abstraction
	2.2.3. Embedded Runtime
	2.2.4. Calibration
	2.2.5. Experiment Description
	2.2.6. Modeling Wrapper

	2.3. Software Design
	2.3.1. Multi-Revision Hardware Support
	2.3.2. Signal-Flow Graph-Based Experiment Notation
	2.3.3. Abstract Network Description
	2.3.4. Integration of PyNN
	2.3.5. Integration Into PyTorch
	2.3.6. Calibration Framework

	2.4. Platform Operation

	3. Applications
	3.1. Biological Modeling Example
	3.2. Functional Modeling Example
	3.3. Embedded Operation
	3.4. Artificial Neural Networks
	3.5. User Adoption and Platform Access
	3.6. Hardware/Software Co-development

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Deploying and Optimizing Embodied Simulations of Large-Scale Spiking Neural Networks on HPC Infrastructure
	1. Introduction
	2. State of the Art
	2.1. Large-Scale Neuronal Simulations on HPC Infrastructure
	2.2. Simulations of Spiking Neural Networks Controlling Virtual Embodied Agents
	2.3. Neurorobotics Platform
	2.4. The Neural Simulation Tool NEST

	3. Software Architecture
	3.1. Infrastructure
	3.2. Graphical User Interface
	3.3. NRP-NEST Coupling Architecture
	3.4. HPC Parallelization

	4. Models and Setup
	4.1. HPC Benchmark With Balanced Networks
	4.2. Embodied Multi-Region Rodent Brain Experiment
	4.2.1. The Multi-Region Rodent Brain Model
	4.2.2. Resting-State Activity
	4.2.3. Embodied Simulation

	5. Benchmark Experiment Procedure
	6. Results
	6.1. HPC Random Balanced Network Benchmark
	6.2. Embodied Multi-Region Rodent Brain
	6.3. Comparison

	7. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Auto-Selection of an Optimal Sparse Matrix Format in the Neuro-Simulator ANNarchy
	1. Introduction
	2. Related Work
	2.1. Sparse Matrix Formats for SpMV
	2.2. ANNarchy
	2.3. Auto-Tuning Methods

	3. Methods
	3.1. Two-Stage Heuristic for Format Selection on GPUs
	3.2. Format Selection Using Machine Learning
	3.2.1. Creation of the Dataset
	3.2.2. Feature Selection
	3.2.3. Machine Learning Model

	4. Results
	4.1. Dense vs. Sparse Matrix Formats
	4.2. Different Sparse Matrix Formats
	4.3. Automatic Format Selection
	4.4. Validation and Stability of the Machine Learning Approach
	4.4.1. Cross-Validation
	4.4.2. Influence of the Size of the Dataset

	5. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Mapping and Validating a Point Neuron Model on Intel's Neuromorphic Hardware Loihi
	1. Introduction
	2. Comparison Between Classical and Neuromorphic Platforms
	2.1. The Brain Modeling Toolkit (BMTK)
	2.2. Loihi
	2.3. Leaky Integrate and Fire Model (LIF)
	2.4. Loihi LIF Model

	3. Methods
	3.1. Model Setup and Integration
	3.1.1. Mapping Between BMTK and Loihi Models
	3.1.2. Bit Constraints

	3.2. Validation Methods
	3.2.1. Data
	3.2.2. Cost Functions
	3.2.3. Other Methods

	4. Results
	4.1. Simulations of a Single Neuron
	4.2. Simulation Using Varied Precision
	4.2.1. Simulation Using Varied Temporal Precision
	4.2.2. Simulation Using Varied Voltage Precision
	4.2.3. Effects of State Precision on Simulations

	4.3. Simulation of Different Neuron Classes

	5. Conclusion and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Benchmarking Neuromorphic Hardware and Its Energy Expenditure
	1. Introduction
	2. Methods
	2.1. Neuromorphic Systems and Simulators
	2.2. Benchmark Framework
	2.3. Neuromorphic Benchmarks
	2.3.1. Low-Level Characterization Benchmark
	2.3.2. Application Inspired Sub-task
	2.3.3. Full Application Benchmark

	2.4. Comparison to DNN Benchmarks
	2.5. Energy Model for Neuromorphic Hardware

	3. Experiments and Results
	3.1. Characterization Benchmarks
	3.2. Application Inspired Subtasks
	3.3. Applications
	3.4. Energy
	3.5. Comparison to Classical Solutions

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Scaling and Benchmarking an Evolutionary Algorithm for Constructing Biophysical Neuronal Models
	1. Introduction
	2. Methods
	2.1. Evolutionary Algorithm
	2.2. Implementations
	2.3. Hardware
	2.4. Software

	3. Results
	3.1. Experimental Design
	3.2. Benchmark 1
	3.3. Benchmark 2
	3.4. Benchmark 3
	3.5. Scaling Stimuli and Electrophysiological Score Functions
	3.6. Benchmark Model Fit
	3.7. Effect of Scaling Up EA Population

	4. Discussion
	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Modernizing the NEURON Simulator for Sustainability, Portability, and Performance
	1. Introduction
	2. Methods
	2.1. Improving Software Sustainability Through Code Modernization and Quality Assurance
	2.1.1. Modern Build System Adoption
	2.1.2. Continuous Integration and Build Automation
	2.1.3. Documentation Generation
	2.1.4. A Modern NEURON Python Package

	2.2. Integration of CoreNEURON Within NEURON
	2.2.1. Transparent Execution via Coreneuron Using In-memory Model Transfer
	2.2.2. Enabling GPU Offloading in NEURON Simulations
	2.2.3. Integration of Code Generation Pipelines

	2.3. Modular NEURON: The Example of NetPyNE
	2.4. Enabling New Use-Cases With Reaction-Diffusion Integration

	3. Results
	3.1. Sustainability Improvements Through Modern Development Practices
	3.1.1. Toward a Development Community
	3.1.2. Software Sustainability Through Development Ecosystem Modernization

	3.2. Improved Software and Hardware Portability
	3.2.1. Streamlined NEURON Software Distributions
	3.2.2. Improved Hardware Portability

	3.3. Performance Improvements Through Tighter Integration
	3.3.1. Accelerating 3D Olfactory Bulb Model Simulations via CoreNEURON
	3.3.2. Accelerating Rat CA1 Hippocampus Simulations Using GPUs
	3.3.3. Simulating Large-Scale Cortical Models With NetPyNE
	3.3.4. Improvements in RxD Performance

	4. Discussion
	4.1. Sustainability of the NEURON Simulator
	4.2. From Desktop to Supercomputers
	4.3. NEURON as a Building Block for Scientific Workflows
	4.4. Increased Performance for Tackling New Scientific Questions
	4.5. Simulations in the Cloud
	4.6. Efficiently Integrating Subcellular and Extracellular Detail Into Neurosimulations
	4.7. Outlook

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	A System-on-Chip Based Hybrid Neuromorphic Compute Node Architecture for Reproducible Hyper-Real-Time Simulations of Spiking Neural Networks
	1. Introduction
	2. Overview of the Hybrid Neuromorphic Compute (HNC) Node
	3. Results
	3.1. Single Node Performance
	3.2. Performance Characteristics
	3.3. Correctness

	4. Architecture
	4.1. System-Level Architecture
	4.2. Software System Architecture
	4.2.1. Node-Local Network Instantiation
	4.2.2. Recording

	4.3. Microarchitecture
	4.3.1. Connectivity Representation and Presynaptic Data Distribution
	4.3.2. Ring Buffer Processing and Ordinary Differential Equation Solver Pipeline
	4.3.3. Operating Latencies

	5. Methods and Materials
	5.1. Workload Model
	5.2. Performance Model
	5.3. Verification, Validation, and Benchmarking Model: Two-Population Izhikevich Network

	6. Discussion
	6.1. Flexibility
	6.2. Numerical Precision
	6.3. Verification of Implementations
	6.4. Performance
	6.5. Cluster Operation

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Fast Simulation of a Multi-Area Spiking Network Model of Macaque Cortex on an MPI-GPU Cluster
	1. Introduction
	2. Materials and Methods
	2.1. NEST GPU Spike Communication and Delivery Algorithm
	2.2. NEST GPU Spike Recording Algorithm
	2.3. Multi-Area Model

	3. Results
	3.1. Comparison of Model Results Between NEST and NEST GPU
	3.2. Performance Evaluation

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Beyond LIF Neurons on Neuromorphic Hardware
	1. Introduction
	1.1. Neuromorphic Hardware
	1.1.1. SpiNNaker
	1.1.2. Jib2—SpiNNaker2 Prototype

	1.2. NEURON Simulation Environment

	2. Methods
	2.1. Ion-Channels and HH Neurons
	2.1.1. Numerical Methods

	2.2. Multi-Compartment Modeling
	2.2.1. Dendritic Currents
	2.2.2. Numerical Methods

	2.3. Synaptic Model
	2.4. SpiNNaker Implementation
	2.4.1. Ion-Channels and HH Neurons
	2.4.2. Two-Compartment Model

	3. Model Validation
	3.1. Ion-Channels and HH Neurons
	3.2. Multi-Compartment Modeling
	3.3. Performance Profiling

	4. Results
	4.1. HH Model Increases Expressiveness of Single Compartment Neurons
	4.2. Dendritic Compartment Enables Single Neuron to Function as a Multi-Layer Network

	5. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	A numerical population density technique for N-dimensional neuron models
	1. Introduction
	2. Materials and methods
	2.1. Recap of the grid method in MIIND
	2.2. Extending the grid to N dimensions
	2.3. Running an ND simulation in MIIND
	2.4. Testing a single population
	2.5. An E-I network
	2.6. A four-dimensional neuron population

	3. Results
	3.1. A single population of three-dimensional neurons
	3.2. Simulation speed for different grid resolutions
	3.3. Three-dimensional neurons in an E-I population network
	3.4. A single population of four-dimensional Hodgkin Huxley neurons

	4. Discussion
	4.1. What is the theoretical output spike distribution of a population in MIIND?
	4.2. Finite size populations
	4.3. Other potential models for study
	4.4. Limitations

	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of Interest
	Publisher's note
	References

	Large-scale biophysically detailed model of somatosensory thalamocortical circuits in NetPyNE
	Introduction
	Materials and methods
	Individual neuron models
	Distribution and connectivity of cortical populations
	Synaptic physiology
	Extending the model to include thalamic populations and connectivity
	Background inputs
	Model building
	Simulation of local field potentials

	Results
	Reproduction of cell morphologies, physiological responses, spatial distribution and connectivity
	Extension to include detailed thalamic circuits
	Cortical and thalamic circuits independent response to background inputs (no thalamocortical connections)
	Somatosensory cortex circuit response to background inputs with short term plasticity (no thalamocortical connections)
	Somatosensory cortex and thalamic circuit response with bidirectional thalamic connectivity and cortical short term plasticity
	Somatosensory cortex and thalamic circuit response after reducing the extracellular calcium concentration to reproduce asynchronous in vivo-like state
	Local field potentials recorded from the in vivo-like somatosensory cortex circuit

	Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References

	EvtSNN: Event-driven SNN simulator optimized by population and pre-filtering
	1. Introduction
	2. Related works
	3. Methods
	3.1. Workflow of EDHA framework
	3.2. Neuron and synapse model
	3.3. Update steps of neuron
	3.4. Population computing
	3.5. Pre-filtering
	3.6. Method summary

	4. Experiments and results
	4.1. Performance test
	4.2. Benchmarking
	4.3. Unsupervised training task on MNIST dataset

	5. Discussion
	5.1. Simulation accuracy
	5.2. Quantitative analysis of sub-steps acceleration
	5.3. Acceleration ability in multi-scale network
	5.4. Limitations

	6. Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

	STEPS 4.0: Fast and memory-efficient molecular simulations of neurons at the nanoscale
	1. Introduction
	1.1. The STEPS project and its applications
	1.2. The need of a new parallel solver
	1.3. Other solutions for spatial reaction-diffusion simulations
	1.4. Naming conventions and the structure of the article

	2. Methods
	2.1. Code modernization and future-proofing
	2.2. Implementing a parallel solver with distributed mesh backend
	2.2.1. Implementation criteria
	2.2.2. Prototyping STEPS 4
	2.2.3. Solver components and the simulation core loop
	2.2.4. Optimization on kinetic process dependency graph
	2.2.5. EField solver improvements
	2.2.6. Coupling with other STEPS components

	2.3. Validation strategy
	2.3.1. Statistical analysis

	3. Results
	3.1. Validations
	3.1.1. Validations of the reaction-diffusion solver
	3.1.2. Validations of the EField solver
	3.1.2.1. Rallpack 1
	3.1.2.2. Rallpack 3

	3.1.3. Validation of the reaction-diffusion and EField combined solution
	3.1.3.1. The calcium burst model

	3.2. Performance
	3.2.1. Benchmarking setup
	3.2.2. The simple model
	3.2.3. The calcium burst background model
	3.2.4. Complete calcium burst model
	3.2.5. Memory footprint with refined mesh
	3.2.6. Single node roofline analysis of STEPS 4

	4. Discussion
	4.1. Achievements
	4.2. Limitations and solutions
	4.3. Potential enhancements for STEPS 4
	4.4. Choosing between STEPS 3 and STEPS 4 in research projects
	4.5. Other current developments and future directions
	4.5.1. Vesicle modeling
	4.5.2. Coupling of STEPS with other simulator software

	5. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References

	Brian2CUDA: Flexible and Efficient Simulation of Spiking Neural Network Models on GPUs
	1. Introduction
	2. Method
	2.1. Brian Simulation and Code Generation
	2.2. GPU Programming With CUDA
	2.2.1. CUDA Programming Logic
	2.2.1.1. Thread Hierarchy
	2.2.1.2. Memory Hierarchy

	2.2.2. Execution Control Logic
	2.2.3. Performance Considerations
	2.2.3.1. Occupancy
	2.2.3.2. Coalesced Memory Access

	2.3. Brian2CUDA Algorithms
	2.3.1. Neurons
	2.3.2. Synapses
	2.3.2.1. Connectivity Information
	2.3.2.2. Synapses Without Delays
	2.3.2.3. Synapses With Homogeneous Delays
	2.3.2.4. Synapses With Heterogeneous Delays

	2.4. CUDA Code Generation With Brian2GeNN
	2.5. Benchmarks
	2.5.1. Benchmark Models
	2.5.1.1. HH Benchmark: Hodgkin-Huxley Type Neurons With Static Synapses
	2.5.1.2. LIF Benchmark: Noisy Integrate-and-Fire Neurons With Synaptic Transmission Delays
	2.5.1.3. STDP Benchmark: Dynamic Synapses With Spike-Timing Dependent Plasticity
	2.5.1.4. Mushroom Body Benchmark: Complex Model With Multiple Neuronal Populations, Spike-Timing Dependent Plasticity and Noise

	2.5.2. Benchmark Procedure

	3. Results
	3.1. Benchmark Models Without Delays or With Homogeneous Synaptic Delays
	3.1.1. Hodgkin-Huxley Benchmark
	3.1.2. Leaky Integrate-and-Fire Benchmark
	3.1.3. Spike-Timing Dependent Plasticity Benchmark
	3.1.4. Mushroom Body Benchmark

	3.2. Benchmark Models With Heterogeneous Synaptic Delays
	3.3. Runtime Decomposition Into Different Algorithm Parts
	3.4. Runtime Contribution of Network Activity and State Variable Recordings
	3.5. Additional Computation Time Factors: Code Generation, Compilation, Initialization, and Finalization
	3.6. Dependence on Floating Point Number Precision and GPU Hardware Choice

	4. Discussion
	4.1. Limitations and Future Work
	4.2. Comparison to Existing Approaches

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Efficient parameter calibration and real-time simulation of large-scale spiking neural networks with GeNN and NEST
	Introduction
	Results
	Spiking neural attractor network as benchmark model
	Benchmark approach and quantification of simulation costs
	Fixed costs for GeNN are high but independent of network size
	Variable costs scale linearly with biological model time and approximately linearly with network connectivity
	Simulation costs with heterogeneous synaptic time constants
	Efficient approach to parameter grid search

	Discussion
	Limitations of the present study
	Efficient long-duration and real-time simulation on the GPU
	Benchmarking with grid search
	Networks with heterogeneous neuron and synapse parameters
	Metastability emerges robustly in attractor networks with large E/I clusters and heterogeneous synaptic time constants

	Materials and methods
	Hardware configurations
	Simulators
	Neuron models and network architectures
	Simulations
	Grid search
	Definition of fixed and variable simulation costs
	Extrapolation to large network sizes

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

	Back Cover

