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Editorial on the Research Topic
Neuroscience, computing, performance, and benchmarks: Why it matters
to neuroscience how fast we can compute

Introduction

At the turn of the millennium the computational neuroscience community realized that
neuroscience was in a software crisis: software development was no longer progressing as
expected and reproducibility declined. The International Neuroinformatics Coordinating
Facility (INCF) was inaugurated in 2007 as an initiative to improve this situation. The INCF
has since pursued its mission to help the development of standards and best practices. In
a community paper published this very same year, Brette et al. (2007) tried to assess the
state of the field and to establish a scientific approach to simulation technology, addressing
foundational topics, such as which simulation schemes are best suited for the types of models
we see in neuroscience.

In 2015, a Frontiers Research Topic “Python in neuroscience” by Muller et al. (2015)
triggered and documented a revolution in the neuroscience community, namely in the usage
of the scripting language Python as a common language for interfacing with simulation
codes and connecting between applications. The review by Einevoll et al. (2019) documented
that simulation tools have since further matured and become reliable research instruments
used by many scientific groups for their respective questions. Open source and community
standard simulators today allow research groups to focus on their scientific questions and
leave the details of the computational work to the community of simulator developers.
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A parallel development has occurred, which has been barely
visible in neuroscientific circles beyond the community of
simulator developers: Supercomputers used for large and complex
scientific calculations have increased their performance from ~10
TeraFLOPS (10'3 floating point operations per second) in the early
2000s to above 1 ExaFLOPS (10'® floating point operations per
second) in the year 2022. This represents a 100,000-fold increase
in our computational capabilities, or almost 17 doublings of
computational capability in 22 years. Moore’s law (the observation
that it is economically viable to double the number of transistors
in an integrated circuit every other 18-24 months) explains a
part of this; our ability and willingness to build and operate
physically larger computers, explains another part. It should be
clear, however, that such a technological advancement requires
software adaptations and under the hood, simulators had to
reinvent themselves and change substantially to embrace this
technological opportunity. It actually is quite remarkable that—
apart from the change in semantics for the parallelization—this has
mostly happened without the users knowing.

The current Research Topic was motivated by the wish to
assemble an update on the state of neuroscientific software (mostly
simulators) in 2022, to assess whether we can see more clearly
which scientific questions can (or cannot) be asked due to our
increased capability of simulation, and also to anticipate whether
and for how long we can expect this increase of computational
capabilities to continue.

Larger brain and brain tissue models

A promising advance compared to the state of the field 15
years ago is that we now see an increase in the complexity of
network models. Earlier, the balanced random network model
composed of a population of excitatory neurons and a population
of inhibitory neurons was dominating the literature and few studies
reached beyond it. Today, biologically much more realistic network
models are in widespread use and have become the new de facto
standard (Albers et al; Tiddia et al.; Awile et al; Borges et al.).
These newer models represent the anatomy of the local circuitry
of the mammalian cortex at full scale, meaning with all the neurons
and synapses. As a consequence, neuron and synapse numbers have
increased by an order of magnitude compared to earlier models.
The ability to simulate at full scale is decisive because this removes
all uncertainties on the scaling of emerging network phenomena
with network size which have plagued and occupied theoreticians
for along time (van Albada et al,, 2015).

Expansion to the subcellular realm

Most articles in this collection concentrate on describing
models developed at the level of neurons and synapses. However,
some articles also show how our advances in computing and
simulation technology can be used to extend our modeling and
simulation capability to the membrane and subcellular biochemical
realm. Awile et al. show how subcellular dynamics can be
integrated into NEURON simulations. The works of Chen et al.
and McDougal et al. enable neuroscientists to study the biophysics
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of synaptic plasticity and the processes in the spine in detail. As
generally accepted models of plastic processes have not yet been
established on a phenomenological level, the capability to simulate
on the level of subcellular processes is of high relevance.

The role of simulators and workflows

The number of codes targeting the same level of description has
decreased somewhat and remaining codes like NEURON (Awile
et al.) and NEST (Albers et al; Pronold et al.) have increasingly
embraced and advanced community-based development models
and incorporated ideas of the emerging field of research software
engineering (RSE). At the same time, it is remarkable that after
15 years of intense research the seemingly fundamental question
of whether an event-driven or a clock-driven approach to the
simulation of spiking neuronal networks is more efficient, does not
seem to have found a consensus (Mo and Tao; Hanuschkin et al.,
2010; Krishnan et al., 2018). A reason for this could of course be
that there is simply no general answer for any model and hardware,
and that in practice simulation codes such as NEURON and NEST
employ hybrid approaches.

Furthermore, various variants of language interfaces were
developed for the traditional simulation codes (Borges et al;
Herbers et al.). Also new simulation codes were developed
expressing network models entirely in Python or implementing
code generators for performance critical sections (Dinkelbach
et al; Alevi et al.). Of similar importance to the advances of
individual tools is the progress in the digitalization of scientific
workflows (Albers et al.; Awile et al.; Feldotto et al; Herbers
et al.) and the observation that not only the source codes but also
executable model descriptions of simulation engines are available
in publicly curated repositories.

Keeping innovations
around—Sustainability of scientific
software

Software codes that have been around for 15 years, are still
in widespread use by the community today. Neuroscience must
therefore acknowledge, as other scientific fields already have, that
scientific software can easily have life spans of 40 years or more.
Sustainability and portability are consequently of high relevance
for software tools that serve a whole community rather than a
specific scientific goal as showcased in Chen et al. and Awile et al..
While often new features or increased performance (especially in
the case of simulators) are the milestones of such projects, the
authors observed that a focus on software sustainability can be
an important driver for innovations. Both publications show how
the modernization of complex scientific software can be made
more tractable by first focusing on putting in place a robust
continuous integration, testing, and documentation workflow. As
the software developed in the field is becoming more complex
to satisfy the scientific needs (e.g., supporting multiple numerical
methods, multiphysics simulations, and heterogenous hardware
platforms), the implementation of software modularity and
composability is concurrently becoming increasingly important.
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These methodologies feature prominently in Feldotto et al.. The
authors focus here on container technologies to enable complex
software setups and workflows for embodied simulations of spiking
neural networks.

If simulator engines are on track, how
about analysis packages?

Only one paper in this series discusses the performance of a data
analytics problem (Porrmann et al.). This may reflect the possibility
that the availability of HPC methods is not the most pressing
problem in the analysis of neuroscientific data. There is certainly
considerable activity in processing pipelines for neuroimaging, but
this field finds other forums (Halchenko et al., 2021). Maybe the
discrepancy also reflects the fact that in the research field concerned
with the spiking activity of neuronal networks, researchers doing
simulations have always been somewhat advanced in embracing
new hardware and software technologies compared to those
involved in analysis.

Embracing the course of computing
architecture evolution

A thread running through many of the articles in this
collection is how to make the best of the currently available but
rapidly changing hardware systems. Since clock frequencies for
processors flattened out in the mid-2000s, processor architectures
have become progressively more parallel. This applies to latency-
optimized CPUs which have become moderately parallel (<100
superscalar cores/CPU) as well as GPUs (>1000s of simple
cores/GPU). It is heartening to see that the community is
embracing this opportunity and challenge. Alevi et al. present
new software for exploiting NVIDIA GPU hardware to accelerate
simulation with the popular Brian simulator (Stimberg et al., 2019),
complementing the existing Brian2GeNN software (Stimberg
et al, 2020). Awile et al. show how code generation can be
used to run the NEURON simulator on GPUs. In a similar
vein, Tiddia et al. present work on how to efficiently run a
large spiking neural network model on a GPU cluster and
Dinkelbach et al. describe work on one specific aspect of efficient
simulations of spiking neural networks on GPU hardware in
their ANNarchy simulation software. Ladd et al. furthermore
present an evolutionary algorithm able to run on GPUs that
accelerates the building of multi-compartment neuron models.
Challenges of how to handle massive parallelism and distributed
computing also arise in the context of classical HPC clusters,
and Pronold et al. describe how one key bottleneck can
be overcome.

Emerging computing architectures

The unsure future of CMOS scaling will present the neural
simulation community with an even broader set of architectures
beyond CPUs and GPUs. There is an increasing trend toward more
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specialized components, particularly those that enable artificial
intelligence applications such as artificial neural networks (Reed
et al, 2022). We hope that such specialization may also
enable simulations of biological neural networks without too
many adaptations. Looking beyond ANN accelerators, it is also
reasonable to expect to see even more diversity through platforms,
such as neuromorphic hardware, obtaining widespread use in
HPC systems, particularly since they are proving suitable for
conventional computing applications (Aimone et al., 2022). Beyond
exploiting specific characteristics of biological neural networks,
today’s neuromorphic computing systems such as SpiNNaker,
BrainScales, and Loihi attempt an integration at scale. As a result
they enable complex models to be programmed, with biologically fit
neurons shown to be realizable on Intel Loihi (Dey and Dimitrov),
BrainScaleS-2 (Miiller et al.), and SpiNNaker (Peres and Rhodes;
Ward and Rhodes).

Rethinking the underlying algorithms

Not only is the computational neuroscience community
embracing the challenges of rapidly developing processor
architectures but it is also capitalizing on the additional computing
power to explore different simulation algorithms and schemes.
For instance, Osborne and de Kamps extend the population
density technique for neural network simulations to higher-
dimensional neuron models and Chen et al. improve on memory
efficiency and simulation speed for detailed molecular simulations
of neurons. Similarly, McDougal et al. describe the efficient
simulation of 3D reaction-diffusion processes in neuronal
networks extending on more traditional 1D simulations for
dendrites and axons.

Time

While GPUs and large, massively-parallel HPC clusters were
not built for the purpose of brain simulations, the inherently
parallel nature of how brains operate, makes such systems
reasonably well-suited to simulating brain models. However, we
must not forget that while computers have become more powerful
(i.e., they are able to do more things in parallel), they have
not become much faster—ever since frequency scaling (Dennard
Scaling) had to stop due to limits in how much heat can be
dissipated from an integrated circuit. This puts in question certain
scientific problems which require the simulation of long time
durations such as needed, for example, in plasticity studies, or
extensive training runs in the emerging field of neuro-inspired
machine learning. While algorithmic innovations may help us to
rethink the supposedly critical sequential paths of computational
problems (e.g., AlphaFold applied these to the problem of
protein folding), an alternative approach may be the acceleration
factors that can be achieved from mapping the computational
problem to physical instantiations of the computation such
as done by Brainscales-2 (Miiller et al) or as indicated by
Trensch and Morrison through spatial computations using SoCs
and FPGAs.
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Benchmarking as the compass

As the diversity of hardware architectures grows, it will be
increasingly important to quantify the suitability of those platforms
for actual brain tissue model simulations. It is thus necessary to
develop benchmarks (models) and benchmarking (measuring) to
objectively quantify the performance of such platforms. While HPC
systems have often varied in components and configurations, there
have long been standards for linear algebra such as Linpack that
allowed rigorous, even if not perfect, comparisons. Herbers et al.,
Albers et al,, and Schmitt et al. make a step toward generic and
simulator agnostic frameworks for benchmarking and simulation.
However, as we look toward a future with specialized neural
network accelerators and general purpose von Neumann systems,
the challenge in benchmarking will become more pronounced.
This is especially a challenge with neuromorphic hardware, which
is both rapidly evolving and exhibits a diversity of approaches
with mixed advantages in speed and energy, resulting in a
complex basis for evaluation (Trensch and Morrison; Miiller
et al.). Furthermore, the concept of a FLOP or matrix multiply
operation is less meaningful in spiking neural simulations which
may be event-driven and sparse. One proposed approach is to
develop concrete benchmark spiking networks that can be tested
on both neuromorphic systems and conventional processors, which
is proving useful in obtaining an early assessment of the relative
efficiency of neuromorphic systems compared to both conventional
systems and real brains (Ostrau et al.; Kurth et al., 2022).
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Acceleration of the SPADE Method
Using a Custom-Tailored FP-Growth
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Florian Porrmann ™, Sarah Pilz', Alessandra Stella®°, Alexander Kleinjohann?2,
Michael Denker?, Jens Hagemeyer' and Ulrich Riickert’

" Cognitronics and Sensor Systems, CITEC, Bielefeld University, Bielefeld, Germany, ? Institute of Neuroscience and Medicine
(INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10),
Jlich Research Center, Jllich, Germany, ° RWTH Aachen University, Aachen, Germany

The SPADE (spatio-temporal Spike PAttern Detection and Evaluation) method was
developed to find reoccurring spatio-temporal patterns in neuronal spike activity (parallel
spike trains). However, depending on the number of spike trains and the length of
recording, this method can exhibit long runtimes. Based on a realistic benchmark data
set, we identified that the combination of pattern mining (using the FP-Growth algorithm)
and the result filtering account for 85-90% of the method’s total runtime. Therefore, in this
paper, we propose a customized FP-Growth implementation tailored to the requirements
of SPADE, which significantly accelerates pattern mining and result filtering. Our version
allows for parallel and distributed execution, and due to the improvements made, an
execution on heterogeneous and low-power embedded devices is now also possible.
The implementation has been evaluated using a traditional workstation based on an Intel
Broadwell Xeon E5-1650 v4 as a baseline. Furthermore, the heterogeneous microserver
platform RECS|Box has been used for evaluating the implementation on two HiSilicon
Hi1616 (Kunpeng 916), an Intel Coffee Lake-ER Xeon E-2276ME, an Intel Broadwell
Xeon D-D1577, and three NVIDIA Tegra devices (Jetson AGX Xavier, Jetson Xavier NX,
and Jetson TX2). Depending on the platform, our implementation is between 27 and 200
times faster than the original implementation. At the same time, the energy consumption
was reduced by up to two orders of magnitude.

Keywords: FP-growth, pattern mining, spike train analysis, embedded devices, performance optimization, low
power, parallel and distributed computing, heterogeneous computing

1. INTRODUCTION

Increasing evidence from neuroscience suggests that in order to understand the principles of
information processing in the brain, it is important to study not only the activity of isolated neurons
in response to the environment and behavior, but also to investigate the concerted dynamics
of neuronal networks as a whole. With the rapid advancement of electrophysiological recording
techniques in the recent decades, scientists are now able to monitor the spiking activity of individual
nerve cells in large neuronal populations, enabling the investigation of the dynamics of hundreds
of neurons recorded in parallel (e.g., Jun et al., 2017; Brochier et al., 2018; Steinmetz et al., 2018;
Juavinett et al., 2019; Chen et al., 2020). The cell assembly hypothesis (Hebb, 1949) postulates
that information is represented by interactions within groups of neurons. Signatures of assemblies
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in the observed dynamics are groups of synchronously active
neurons (e.g., Harris, 2005), or spatio-temporal sequences of
neuronal activation. Efficient methods to detect and characterize
this coordinated activity are in high demand (Quaglio et al.,
2018). Such methods need to deal with challenges related to
the highly non-stationary spike time series and the statistical
complexity of high-dimensional activity patterns, since the
number of possible patterns exponentially increases with the
number of observed neurons. Several complementary methods
have been developed and calibrated in the past (e.g., Griin
et al.,, 2002a,b; Pipa et al., 2008; Gerstein et al., 2012; Lopes-
dos Santos et al., 2013; Torre et al., 2013; Russo and Durstewitz,
2017; Diana et al., 2019; Watanabe et al., 2019; Williams et al.,
2020). While the nature and underlying assumptions of these
approaches differ, they share the need to scale in runtime
performance as the number of observed neurons or the length
of the recording increases. This holds true, in particular, with
an increasing interest to employ such techniques to analyze and
validate simulations of large-scale models of neuronal networks
(cf., e.g.,, Trensch et al, 2018; Gutzen et al, 2018) that easily
exceed the volume of available experimental data.

One of the state-of-the-art methods to detect spatio-temporal
patterns in large sets of parallel spike trains (Quaglio et al,
2018) is SPADE!, originally proposed by Torre et al. (2013).
The method is based on frequent itemset mining (Agrawal
et al,, 1993). The existing Python implementation of the SPADE
method in the Electrophysiology Analysis Toolkit? (Elephant;
RRID:SCR_003833; Denker et al., 2018) is able to analyze current
data sets of moderate size at relatively high computational
cost, making the availability of distributed compute resources
mandatory and discouraging interactive exploratory analyses.
In this work, we put forward an accelerated version of SPADE
by optimizing the underlying pattern mining flow using a
custom-tailored FP-Growth® (Han et al., 2000) implementation
to address the need for enhanced scalability and thereby increase
the range of data sets for which the method is practically
applicable. Additionally, we show that our optimizations enable
the execution of SPADE on heterogeneous and low-power
embedded devices, which is significantly more energy-efficient
than the execution on a modern workstation.

Previously, the focus of development efforts related to SPADE
concentrated on improving or extending the capabilities of the
method, which makes this work the first to address performance
and energy efficiency. After Torre et al. (2013) developed the
concepts for the statistical evaluation of synchronous spike
patterns through FP-Growth, Yegenoglu et al. (2016) introduced
a technique to identify spatio-temporal patterns in massively
parallel spike trains using formal concept analysis (FCA; Ganter
and Wille, 1999), extending the detection of patterns from
synchronous to spike patterns with delays. In 2017, these
approaches were combined by Quaglio et al. (2017). Since the
FCA implementation used by Yegenoglu et al. (2016) required
significantly more time and computational power, it was replaced

ISpike PAttern Detection and Evaluation.
Zhttp://python-elephant.org
3 Frequent Pattern Growth.

by FP-Growth. Stella et al. (2019) introduced an extension to
SPADE, called 3d-SPADE, which also accounts for the temporal
extent of patterns with delays in the significance estimation. The
SPADE method is explained in more detail in section 2.3.

On a similar path, the FP-Growth algorithm used in
SPADE (Picado-Muifio et al., 2013) was subject to numerous
extensions and modifications from a methodological perspective.
Picado Muifio et al. (2012) and Borgelt and Picado-Muifio (2013)
introduced a version of FP-Growth in continuous time called
CoCoNAD, which avoids the need to discretize the input spike
train. CoOCoNAD was used for benchmarking of artificial data
(Picado-Muifo et al., 2013) and analyses of electrophysiological
experiments (Torre et al., 2016). Furthermore, CoCoNAD was
extended in Borgelt et al. (2015) to account for patterns
with selective neuronal participation, or fuzzy patterns. When
extending the SPADE analysis to delayed patterns, it was
necessary to resort back to discretizing data (Quaglio et al., 2017).

In contrast to SPADE, where performance improvements were
never the main focus, several publications focused primarily on
improving and accelerating FP-Growth through, e.g., parallel or
distributed computing. A detailed explanation of the pattern
mining and FP-Growth related terms used in this section can be
found in sections 2.1, 2.2. The first parallel FP-Growth variation,
called MLFPT, was developed by Zaiane et al. (2001). It divides
the input database across all available processors and creates a
local FP-tree?, the data structure used by FP-Growth, on each.
Afterward, a global header table, a linked list used by FP-Growth,
is created, linking the different items to their occurrences in local
FP-trees. Each processor is assigned an equal portion of the entire
itemset on which it performs the pattern mining step.

Chen et al. (2009) developed a parallel FP-Growth variant,
called Grided FP-Growth (GFP-Growth), designed to be used on
large compute clusters. The main difference to the original FP-
Growth is that they skip the FP-tree construction by directly
mining the conditional pattern bases, sub-databases, created
from the FP-tree, using the projection method proposed in Bin
and Li (2008). This allows them to split the mining process into
independent groups, which can be executed in parallel on any
number of compute nodes.

Li et al. (2008) proposed a massively parallel and distributed
implementation, called PFP-Growth. Their approach is based on
MapReduce (Dean and Ghemawat, 2004), a programming model
for large-scale distributed computing. By dividing the input
data into independent groups, they can distribute the workload
across massive compute clusters without any computational
dependencies between the different nodes. In their tests, they
achieved nearly linear performance scaling when executing their
implementation with a data set consisting of 802,939 web
pages on between 100 and 2,500 computers. Zhou et al. (2010)
improved PFP-Growth by adding load balance features, resulting
in a new version they called BPFP-Growth. Through proper
load balancing during the parallel execution of the pattern
mining process, a speedup of 1.5 over the original PFP-Growth
implementation was achieved. Xia et al. (2018) improved the
performance of PFP-Growth when processing a massive number

4Frequent Pattern Tree.
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of small files on a Hadoop compute platform, resulting in
the creation of MR-PFP-Growth. Shi et al. (2017) proposed a
distributed FP-Growth algorithm, using Apache Spark® called
DEFPS, which achieved a significant speedup over PFP-Growth.

The previously introduced parallel implementations for FP-
Growth are designed for use with large data sets, containing a
vast number of transactions (1-100 million) and items (more
than 10 million), and target large-scale compute clusters with
up to several thousand nodes. The algorithms were developed to
make pattern mining on these data sets possible in a reasonable
time frame. In addition, the use of such massive compute clusters
requires good load balancing and fault tolerance so that the
computation does not have to be restarted in case a node fails.
In contrast, the data sets used with SPADE are relatively small,
consisting of only a few thousand transactions with, on average,
two to three thousand items. Furthermore, while the cited
implementations target the parallelization of the baseline FP-
Growth algorithm, the version developed in this work is custom-
tailored for the use in the SPADE method. As such, the improved
implementation presented here, based around a rather naive
approach to parallel and distributed computing of FP-Growth, is
more suitable for the given problem, as it does not inhibit the
portability and can be easily disabled if required. One of the main
differences between our implementation and the ones described
previously is based on the filter function, a part of the SPADE
algorithm which significantly reduces the number of patterns
mined. It enables us to pursue an implementation approach
that would not be possible under normal conditions. Therefore,
using code optimizations and minimized overhead, we managed
to achieve high performance and high energy efficiency using
server- and distributed embedded processors.

The main contributions of this work are as follows.

1. We propose an optimized FP-Growth implementation,
custom-tailored to the problem presented by the SPADE
method. A significant performance increase was achieved by
incorporating the pattern filtering function used by SPADE
into the pattern mining. Furthermore, we have implemented
parallelization and distributed computing concepts in our
customized version of FP-Growth to take full advantage of the
available hardware.

. Moving the pattern filtering task into FP-Growth resulted
in a considerable decrease in memory consumption, to the
point where execution on low-power embedded devices is now
possible.

3. We evaluated our implementation’s performance and showed

that a significant performance increase could be achieved with
our optimizations compared to the original.

The remainder of this article is structured as follows. In
section 2, we first provide an introduction to pattern mining.
Subsequently, we introduce the SPADE method, in particular,
its core algorithm, FP-Growth. We identify the bottlenecks
of the current implementation and present our optimizations
in terms of efficient data handling, memory optimizations,
and parallelizations. In section 3, we compare the runtime,

Shttp://spark.apache.org/

energy efficiency, and memory consumption of the original
implementation to our optimized solution. For this purpose,
we run the optimized version on several different platforms.
We demonstrate that our improvements can achieve up to 280
times higher energy efficiency in addition to an acceleration by a
factor of up to 200. Finally, in section 4, we discuss the impact
of our optimizations on SPADES overall runtime and energy
efficiency and present possible future research to improve its
performance further.

2. METHOD

In this section, we propose an optimization to significantly
accelerate the SPADE method used to detect spike patterns
in massively parallel spike trains. Therefore, we first discuss
the method itself, focusing on the FP-Growth algorithm used
to identify frequent spike patterns. Afterward, we present our
version of FP-Growth, optimized for use in the SPADE pipeline.
By integrating the result filtering step, that had previously been
performed separately, directly into the pattern mining process,
we achieve a significant performance improvement.

2.1. Introduction to Frequent Pattern
Mining
In this paragraph, we first give a short introduction into frequent
pattern mining and its terminology. Afterward, these concepts
are showcased in a small example. Frequent pattern mining
refers to the task of identifying reoccurring patterns within large
databases. Agrawal et al. (1993) initially introduced this concept
to find patterns in large databases of customer transactions, e.g.,
from large stores or businesses. Such patterns can, for instance, be
used to optimize the product placement in a supermarket, as they
provide information about products commonly bought together.
In the following, the terms used in conjunction with pattern
mining and the concept itself are explained in more detail. Most
terms reflect the method’s origin in purchase analysis, i.e., item
and transaction. Given an itemset I, a transaction T is defined
as a subset of items from I. A transaction database D is defined
as a collection of transactions. A frequent pattern (itemset) is
a combination of items within a transaction that reoccurs in
one or more different transactions of the same database. The
occurrence count of a pattern is called support S. There are
different ways to limit the number of patterns produced, e.g.,
by setting a minimum pattern length, i.e., that a pattern has
to contain at least n-items to be counted or by specifying a
minimum occurrence count, i.e., that a pattern has to occur at
least m-times to be counted. Additionally, there are two unique
categories of frequent patterns: closed frequent patterns and
maximal frequent patterns. A pattern P is considered closed when
there exists no superset, i.e., a pattern containing P with the same
support S as P. Similarly, a pattern P is regarded as a maximal
frequent pattern if it has no frequent superset, i.e., there exists no
frequent pattern containing P.

The following example showcases the concepts defined above.
A pattern P is depicted in the form P = {iy, ..., i,} (S) with i € I.
Given the itemset I = {a, b,c, d} and database D = {T1, T», T3}
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example transactions.

T, ={a,b,c}
T, ={a,cd}
Ts = {a,b,c,d}
n=>1 n=2 n=2
s>0 s>0 s=>2 /
a(3) ac(3)| ac(3)
c3)|  ab)| ab(2)
b(2) a,d(2)| ad(2)
d2)|  be@)| be@) o 7z
ac®| cd@)]| cd®@) 3 a @
ab(2)|  bd(1)|abc(2) 2 o e
ad2)| abc(2)]|acd(2) / AN
be(2)| acd(2) & ks
cd(2)| abd(1) 2 d N @
bd(1)| b,cd(1) . ‘
a,b,c(2)| ab,cd(1)
a,c,d(2) ‘r"
ab,d(1)
b,c,d(1)
a,b,c,d(1)

FIGURE 1 | Left: All patterns from the pattern mining example presented in section 2.1. Right: The header table and FP-tree created from the same

where the transactions are Ty = {a,b,c}, T» = {a,c¢,d} and
T; = {a, b, c,d}, without any limitations, 15 frequent patterns
can be found in D, as shown in Figure 1. Once the minimum
pattern length # is increased to 2, only 11 patterns remain. If
now also a minimum occurrence s of 2 is specified, the amount
of patterns is reduced to 7. Of these patterns, a,c(3), a,c,d(2)
and a, b, c(2) are closed and a, ¢, d(2) and a, b, ¢(2) are maximal
frequent patterns.

2.2. FP-Growth-Based Pattern Mining

The FP-Growth algorithm is a highly efficient method to mine
frequent patterns from a transaction database. Other well-known
algorithms for frequent pattern mining, such as the Eclat (Zaki,
2000) or the Apriori (Agrawal and Srikant, 1994) algorithm,
perform this task through candidate generation, which has the
drawback that it can consume a large amount of memory. FP-
Growth builds a so-called FP-tree, which contains all information
about the relations between different items in all transactions. By
traversing this tree and recursively creating so-called conditional
sub-trees, it is possible to find all frequent patterns without
candidate generation, while also requiring significantly less
memory. The algorithm operates as follows. First, it iterates over
the entire database to store all unique items and their occurrence
in a list L, sorted by occurrence. Afterward, all items with an
occurrence count below the threshold can directly be discarded.
The same applies to transactions that have fewer items than
required for the minimum pattern length. Next, the items in
each transaction are sorted in descending order based on their

occurrence. Subsequently, the actual FP-tree is created by first
creating a root-node and sequentially inserting the transactions
into the tree. Starting at the root node, for the first item of the
current transaction, either a new node is created (if no node
for this item exists) or the counter is incremented (if a node
exists). This process is repeated for each item in the transaction,
always using the newly created node as a base. Once the current
transaction has been fully processed, the same process is done for
the next transaction, starting once again at the root node. This is
repeated until all transactions have been processed and the FP-
tree is completed. In parallel to the FP-tree, a header table is built,
linking each unique item to its first occurrence in the tree, which
then, in turn, links to the second occurrence, and so on. These
links are known as node-links. The items’ order is defined by their
occurrence and is equal to the order in the previously created list
L. The header table and the FP-tree for the example presented in
section 2.1 are depicted in Figure 1.

After the FP-tree and the header table are created, the frequent
patterns are mined. This is done by iterating over the header
table and evaluating the node-link for the respective item i. If i
only occurs once within the tree, the frequent patterns can be
determined by creating all combinations of i with its preceding
nodes. Should i occur multiple times in the tree, the preceding
nodes form the so-called conditional pattern base of i, from
which a sub-FP-tree is created, called conditional FP-tree of i. The
mining process is recursively performed on the conditional tree
until all patterns have been mined. Once all patterns for a header
table entry have been computed, the same process is repeated for
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the next entry until the entire header table has been processed,
and therefore, all frequent patterns have been mined. It should
be noted that there exist no dependencies between the different
header table iterations, meaning that they could, in theory, all be
performed in parallel. The compute complexity of the FP-Growth
algorithm depends on the number of items in the header table
and the maximum depth of the FP-tree, i.e., again, the number of
items. Let n be the number of items. Therefore, the complexity of
FP-Growth is O(n?) (Wicaksono et al., 2020).

2.3. Spike Activity Analysis Using the

SPADE Method

The SPADE method was introduced by Torre et al. (2013) and
has since been continuously advanced and improved (Quaglio
et al., 2017; Stella et al., 2019). Using SPADE, it is possible to
detect spatio-temporal spike patterns in parallel spike trains.
Spatio-temporal spike patterns are precisely reoccurring delayed
sequences of spikes across neurons. They are defined by the
times of their occurrences, by the neurons involved, and by
the temporal delays between spikes. In order to detect spatio-
temporal patterns, SPADE employs frequent itemset mining to
find reoccurring candidate patterns in the parallel spike train
data given as input. The mined patterns are then evaluated for
significance by Monte Carlo testing. First, different realizations
of surrogate data are generated, which are mined using FP-
Growth similarly to the original data. Second, patterns detected
in surrogates are grouped by shared characteristics, i.e., their
number of spikes, duration in time, and number of occurrences,
and a p-value is estimated for each group. In a third step,
candidate patterns are selected according to their p-value,
correcting for multiple testing. Finally, the set of statistically
significant patterns is further reduced by conditionally testing
each pair of patterns with common spikes. Within this study, we
concentrate on the mining of frequent patterns without taking
into consideration the statistical tests.

In terms of required computation, between 85 and 90% of
SPADE’ runtime is spent detecting spike patterns within the
parallel spike train data fed into the method. For this, first, the
spike trains for all N neurons are discretized into time bins
by segmenting time into small intervals with a bin size b of
typically a few milliseconds and mapping each spike onto one
bin. If two spikes of the same neuron fall into the same bin, they
are considered as one spike. This binning technique accounts
for small temporal variability that could prevent patterns from
being detected. As a next step, in order to detect delayed spike
patterns, a sliding window with a length of w bins (duration
equal to w - b) is shifted bin by bin over the data (Figure 2A).
The quantity w coincides with the maximal allowed duration of
a pattern, calculated as the difference in bins between the first
and the last spike. Each window is first provided in a matrix
representation with the neurons mapped to the rows and the bins
to the columns. For further computation, the matrix is converted
to a row vector (cf., Figure 2B). For each element within the
window, its position in the vector is calculated as n - w + B,
where # is the neuron id (row), w the length of the window,
and B the bin id (column). We use w to denote the index of

the window positions (cf. Figures 2A,C). This row vector equals
a transaction, as described in section 2.1. The vectors of all
windows compose the input data for FP-Growth (see section 2.2),
the pattern mining algorithm employed by SPADE. Figure 2C
shows a highly simplified version of the pattern mining process,
and Figure 2D depicts the spike trains fed into SPADE with the
found pattern highlighted in green.

Since typically, a large number of neurons is involved, only
closed frequent patterns are kept, while non-closed patterns
are rejected (Torre et al., 2013). After the mining is done, the
output can still contain repeating patterns caused by the shifting
window. A pattern with a duration shorter than the shifting
window size will reoccur several times in different windows.
Therefore, only those patterns whose first spike occurs in the
first bin are kept, and all others are discarded. This can be
quickly done, assuming that P is the position of the pattern
within the row vector by checking if P mod w = 0 for any of
the occurrences of the pattern. Furthermore, a pattern should
also contain a minimum number of individual neurons and only
occur a maximum number of times to be considered relevant.
Patterns with fewer individual neurons or too many occurrences
are therefore also ignored. Due to the use of the window and
binning, the same neuron can be part of a pattern multiple times,
therefore, it is checked, that at least a minimum number of
individual neurons are part of the pattern. This entire filtering
step is done by applying a custom filter function (cf. Algorithm 1)
to all found patterns, removing a significant portion of them. Of
the three filter criteria mentioned, most patterns are discarded
when performing the first bin check. Thereby, a large part
(typically, between 90 and 100%) of all found patterns are
removed. While SPADE is in most parts implemented using
Python, for the FP-Growth algorithm, the highly optimized
C-implementation PyFIM®, developed by Christian Borgelt, is
used (Borgelt and Picado-Muifio, 2013; Picado-Muifo et al,
2013).

2.4. Identification of Bottlenecks

As mentioned in section 2.3, one of the most time-consuming
parts of the SPADE method consists of the closed frequent
pattern mining, using the FP-Growth algorithm, and the
result filtering. Therefore, we will first analyze the current
implementations of the aforementioned parts and identify their
respective bottlenecks. Subsequently, in section 2.5, we will
present our optimized version, which achieves a significant
speedup compared to the original.

Figure 3 illustrates the current implementation of SPADE’s
pattern mining flow and its pre-processing steps, on the example
of the movement_PGHF data set, which is also used during the
evaluation (cf., section 3.1). As described in section 2.3, the
input spike data is first discretized using binning and the sliding
window. Afterward, FP-Growth is applied to analyze the resulting
row vectors, and all closed patterns are identified. After filtering,
only relevant patterns remain and are further processed. For this
data set, from 3 MB of spike input data, 200 MB of row vectors
are generated and transferred to FP-Growth. Depending on the

Chttps://borgelt.net/pyfim.html
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FIGURE 2 | Data preprocessing and evaluation flow of SPADE [based on Stella et al. (2019)]. (A) Example of 4 spike trains recorded in parallel, where each black line
represents a spike. Time is divided into bins (gray vertical areas) of length b. A sliding window of size w is shifted bin by bin over the data (in blue, purple and orange).
(B) The window matrix representation is converted to a row vector. (C) Simplified visualization of the pattern mining process (also called incidence table), where spikes
occurring in the same bin in two window positions (w = i and w =i + n) are detected. Coincident spikes across the two windows are indicated with a green cross. (D)
Representation of the original spike trains as in panel A, where the spike pattern is detected and indicated with green lines.
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FIGURE 3 | Representation of the original FP-Growth embedding in SPADE with special regard to transferred data volumes.

Algorithm 1: Filter function used by SPADE

Input: The pattern P, the support of the pattern S, the minimum
number of neurons mn and the maximum support ms.
Output: Whether to keep the pattern or discard it.
function FILTER_RESULT(P, S, w, mn, ms)
if S > ms then
return false
end if
valid < false
neurons < ||
cnt <=0
for each e € P do
ife mod w = 0 then > Check if the spike occurred in
the first bin
valid < true
end if

e
?’l(—w

> Initialize the list of known neurons

> Get the neuron id
if n ¢ neurons then  Check if the neuron has already
been checked
neurons[cnt] < n > Add the neuron to the known
list
cnt <—cnt + 1 > Increment the counter
end if
end for
if cnt < mn then
valid < false
end if
return valid
end function

minimum support and occurrence configurations, FP-Growth
can consume up to 70 GB of memory.

From our analysis of the current state, we identified three main
factors for the long runtime of this part of the algorithm. First,
a generic FP-Growth implementation is used instead of one that
is custom-tailored to the problem at hand. Second, all frequent
patterns found by the algorithm are sent back to the Python
code. Last, the filtering of the results is performed in Python.

As noted in section 2.3, the highly optimized C-implementation
of the FP-Growth algorithm is used in SPADE. However, due
to the way SPADE operates, it does not need all possible closed
patterns; it, in fact, only needs a fraction of them. Therefore,
using an implementation that mines all closed patterns, as is
currently the case, can significantly impact the performance.
Furthermore, due to the data structures used internally by the FP-
Growth implementation, all items of each found pattern have to
be mapped back to their original data elements and inserted into
a numpy-array to be usable in Python. This process can require
a significant amount of time and memory and will be referred to
as conversion to Python. Depending on the number of patterns,
this can take several tens of minutes and consume up to 70 GB of
memory. Finally, filtering out the repeating patterns takes a long
time, as this is done in pure Python, without the assistance of an
optimized C or C++ function, which could considerably speed up
the process.

2.5. Optimized Implementation

We resolved the bottlenecks identified in section 2.4, thereby
increasing the performance by several orders of magnitude.
This was done by developing a custom C++-based FP-Growth
implementation, which directly includes the result filtering in an
external C++-library.

2.5.1. Custom FP-Growth Implementation With
Result Filtering

The developed custom C++-based FP-Growth implementation
is, in parts, based on PyFIM by Christian Borgelt. The core
implementation of the closed pattern detection, using conditional
itemset repositories (Grahne and Zhu, 2003), is entirely adopted
from PyFIM. There are two significant differences between our
version of FP-Growth and the general-purpose solution used
before. First, the result filter function, applied by SPADE to the
found closed frequent patterns, is integrated directly into FP-
Growth. This shifts the filtering from Python to C++, thereby
significantly decreasing the runtime and memory consumption,
as only a fraction of all patterns needs to be saved. Second, the
closed detection is not performed during the pattern mining
process but instead afterward. This step was taken because, as
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mentioned before, the runtime of the closed frequent pattern
detection scales with the number of patterns to check. Therefore,
integrating the filter function into FP-Growth considerably
reduces the number of patterns to check for closure. This
decreases the runtime of the closed pattern detection and
thus results in pattern mining requiring most of the runtime.
Furthermore, the implementation for closed frequent pattern
detection used in this work cannot be parallelized, in contrast
to the pattern mining, which, as noted in section 2.2, can be
reasonably easily performed in parallel. In a situation where the
closed pattern detection has to be performed on all patterns, i.e.,
when there is no filter in place, splitting the mining and detection
usually either does not affect the runtime or can even increase
it. This is because detecting closed patterns is significantly more
complex than pattern mining. Figure4 shows how SPADEs
pattern mining flow changes when using our optimized FP-
Growth module. Compared to the original flow, the peak memory
consumption was reduced from up to 70 GB down to 4 GB.

2.5.2. Pattern Collector

In our custom FP-Growth version, we implemented a pattern
collector to efficiently and adequately store the found patterns.
It stores the pattern, its length, and support directly in memory.
The collector allocates a block of memory each time the previous
block is full or the new pattern’s size exceeds the remaining space.
Additionally, access functions have been integrated to allow for
fast iteration over all stored patterns. Furthermore, we directly
integrated the pattern filter function into the collector. This way,
whenever a new pattern is passed to the collector, it first runs
through the filter, and if it is invalid, it is discarded. As a result,
only valid patterns are stored, and all others are discarded.

2.6. Parallelization and Distributed
Computing

As an additional step, we integrated OpenMP’ into our
FP-Growth implementation, allowing us to parallelize the
pattern mining process across all available CPU-cores, thereby
significantly increasing the performance. As mentioned in

7Open Multi-Processing - https://www.openmp.org/.

section 2.2, parallelization of the pattern mining is possible
because, when iterating over the header table, all iterations are
entirely independent of each other, allowing them to be executed
in parallel and in any order. Memory conflicts and potential
race conditions were evaded by replicating the internal memory
structures for each thread, preventing the threads from affecting
each other. However, the closed frequent pattern detection
algorithm requires its input patterns to be in an orderly fashion,
i.e., the results of the first iteration, followed by the results of
the second iteration, and so on. Therefore, we further modified
the code to instantiate #n pattern collector objects, where # is the
header table’s size. This way, each entry in the header table has its
own pattern collector to store all found patterns. This allows the
closed detector to operate correctly and removes overhead caused
by the threading, as all threads no longer share a single pattern
collector. Once the pattern mining process is finished, the closed
pattern detector iterates over all n collector objects and identifies
the closed frequent patterns. As mentioned in section 2.5.1,
our implementation uses the closed pattern detector developed
by Christian Borgelt, which cannot be easily parallelized, as
mentioned in section 2.2. Therefore, at the moment, the closed
pattern detection is performed sequentially on a single core.

The complete independence of the header table iterations
allows for the pattern mining to be performed in parallel on all
cores of a local processor and computed in parallel on several
compute nodes. For this purpose, we integrated MPI® into our
application to distribute the workload across different compute
nodes. Through the use of the MPI execution environment
mpirun, it is possible to spawn an arbitrary number of processes
for a given application. Furthermore, spawning processes is not
limited to the local system but can be done on an arbitrary
number of remote nodes, e.g., a compute cluster. However,
without integrating MPI-specific modifications into the code,
execution across multiple nodes will only cause each node to run
the entire application. Therefore, the MPI-API provides a large
selection of functions to allow the processes to communicate,
i.e., pass messages between each other. Each process possesses a
unique identification number, the so-called rank. The rank will

8Message Passing Interface.
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be a number between 0 and the number of processes spawned
by MPI. In most cases, one process, usually with rank 0, collects
all results from all processes once they are finished and presents
them to the user or continues working with them.

When integrating MPI into our code, only a few modifications
were necessary. First, the header table loop was modified to start
at the rank of the current process and stops iterating in steps of
one, but instead in steps of size p, where p equals the total number
of processes. This way, each process processes % iterations. We

equally distributed the workload across all nodes using a round-
robin-styled loop to decrease the chance that one process finishes
significantly ahead of the others. Finally, after the header table has
been processed and all patterns have been mined, all processes
except for the root process send their mined patterns, in the
correct order, to the root, where they are added to the correct
collectors. Afterward, all but the root process terminate, and the
root process performs the closed pattern detection and outputs
the final results to the user. It should be noted that our distributed
approach requires the entire FP-tree to be built on each node,
which can take a significant amount of time for large data sets.
However, this is not of any concern because due to the nature
of the data, the data sets used with SPADE are relatively small,
causing the FP-tree creation to only take a few seconds.

3. RESULTS

In this section, we evaluate the performance, in terms of runtime,
memory consumption, and energy efficiency, of our optimized
pattern mining flow on several different devices and compare it to
SPADES original program flow. Since in this work, we primarily
focused on accelerating the pattern mining and filtering, only the
runtimes of the associated steps are examined in the following.
Therefore, full runtime refers to the total runtime required by all
tasks, i.e., pattern mining, data conversion to Python, and pattern
filtering. Since in the original implementation, the pattern mining
step also included closed pattern detection and data conversion
to Python, for the baseline, these steps are not listed separately.
Because we have separated these steps in our optimized version,
we include the corresponding runtimes. We show that using
our optimizations considerably reduces the runtime and memory
consumption and noticeably increases energy efficiency, while
producing the same results as the original. Furthermore, due
to the memory optimizations, it is now possible to perform the
pattern mining on low-power embedded devices.

3.1. Test Setup

We used different platforms for evaluation. The first platform,
serving as a baseline, was a workstation equipped with an
Intel Xeon E5-1650 v4 (6 cores running at 3.60 GHz) server
CPU and 256 GB quad-channel DDR4 memory, running
Ubuntu 16.04. For the other evaluations, we used our
RECS|Box’ server (Oleksiak et al., 2019), a modular and scalable
microserver platform for resource-efficient heterogeneous high-
performance computing.

9Resource-Efficient Cluster Server - https://embedded.christmann.info/products.

The RECS|Box is a heterogeneous cluster server that allows
the user to choose between several computer architectures,
network systems, network topologies, and microserver sizes. In
this context, a microserver refers to an independent computer-
on-module (CoM) that integrates all components (e.g., CPU,
memory, 10, and power subsystem) in a small, compact form
factor for integration into a server or embedded environment.
In contrast to existing homogeneous microserver platforms
that support only a single microserver architecture, RECS|Box
seamlessly integrates the full range of microserver technologies
in a single chassis, including various CPUs as well as accelerators
based on FPGAs!® and GPUs. Hence, it can be used to
easily set up heterogeneous processing platforms optimized
for specific application requirements. CoMs are available for
all major computing platforms in both low-power and high-
performance versions. Like the big-little approach known from
mobile processors, this can be used to further increase energy
efficiency by dynamically switching, e.g., between 64-bit ARM
server processors and 64-bit ARM mobile SoCs!! or between
different FPGA/GPU devices.

Figure 5 gives a high-level overview of the modular approach
used for the design of the RECS|Box system architecture.
This modularity guarantees flexibility and reusability and thus
high maintainability. Microservers are grouped on carrier
boards that support hot-swapping and hot-plugging, similar
to a blade-style server. Three different carriers are available:
one integrating 16 low-power microservers, one for three
high-performance microservers, and one integrating PCle-
based hardware accelerators. All microservers are designed
based on well-established CoM form factors!2, which facilitates
the integration of third-party microserver modules into the
RECS|Box. Not only can the platform be individually adapted
to the given problem due to its modularity, but it is also able
to monitor the power consumption of the individual compute
modules very precisely. Furthermore, the installed modules can
communicate with each other through high-speed Ethernet
over PCI-Express, allowing for fast data exchange, e.g., when
performing distributed computing.

For our evaluation, we used high-performance as well as low-
power microservers. Firstly, we used a microserver equipped
with a HiSilicon Hil1616 (Kunpeng 916) dotriaconta-core ARM
processor (32 cores running at 2.4 GHz) and 64 GB of quad-
channel DDR4 memory, running CentOS 7.6, in a dual-socket
configuration (resulting in 64 cores/128 GB). In the following,
this will be referred to as the Hil616 microserver. Next, an
ADLINK Express-BD7'3 module, equipped with an Intel Xeon D-
1577 (16 cores running at 1.30 GHz) and 32 GB dual-channel
DDR4 memory running Ubuntu 18.04 was used. Additionally,
we used an ADLINK Express-CFR-E' microserver, equipped
with an Intel Xeon E-2276ME (6 cores running at 2.8 GHz)

10Fjeld Programmable Gate Array.

1System-on-a-Chip.
2https://www.picmg.org/openstandards/com-express/
Bhttps://www.adlinktech.com/Products/Computer_on_Modules/
COMExpressType7/Express-BD7
Yhttps://www.adlinktech.com/Products/Computer_on_Modules/
COMExpressType6/Express- CFR
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FIGURE 5 | Overview of the RECS|Box hardware platform.

and 32 GB of dual-channel DDR4 memory, also running
Ubuntu 18.04. Finally, we executed our implementation on
three different types of embedded NVIDIA Jetson devices, each
running Ubuntu 18.04.

As mentioned above, we also evaluated energy efficiency by
measuring each platform’s system power consumption during
the execution of the test. System power consumption refers to
the amount of power consumed by the entire system after the
power supply unit (PSU), i.e., CPU, memory, storage, and system
accessories. We measure after the PSU because, depending on
the units quality and overall load, there can be a significant
difference between the system’s power and the PSU. Using the
monitoring features of the RECS|Box, we were able to accurately
measure the power consumption of the different devices installed
in it. For the workstation, the power consumption was calculated
based on continuous voltage and current measurements using
a Tektronix MDO4054B-6'° oscilloscope in combination with
a Tektronix TCP0030A'® current probe. Using the TCP0O030A
probe, it is possible to continuously measure the electrical current
of the 12 V power supply with a sampling rate between 500 and

https://www.tek.com/oscilloscope/mdo4054b-6
16https://www.tek.com/datasheet/30-ac-dc-current-probe

2,500 samples per second. All tests were performed in an air-
conditioned room at about 19°C; therefore, the DC gain accuracy
of the probe is < 1% (cf. Tektronix, 2006).

For the evaluation, we used neural data extracted from in-vivo
experimental recordings. In the experiment, a macaque monkey
performs a delayed reaching and grasping task, while its neural
activity is recorded using a 10x10 electrode array chronically
inserted in the premotor and motor cortex (Riehle et al., 2013;
Brochier et al., 2018). The experimental protocol is as follows:
the monkey is trained to self-initiate the trial by pressing a start
button, then to wait for a first visual cue, indicating the type of
grip that it has to perform (either precision grip -PG- or side grip
-SG-). After a delay period of 1 s, the monkey receives the GO
signal, together with the information of the amount of force to
apply on the object (high force -HF- or low force -LF-). After the
monkey has successfully grasped and pulled the object with the
correct grip, a reward is given. In this study, we consider session
i140703-001 of Monkey N which lasts 1003 s, and consists of 141
correct trials with randomized trial type order (i.e., combinations
of grip and force conditions: PGHE, PGLF, SGHE SGLF). Detailed
descriptions of this published data set are given in Brochier et al.
(2018). For this data, the SPADE method can be used to detect
behaviorally-locked spatio-temporal spike patterns, mimicking
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the analysis performed in (Torre et al., 2016). In this scenario,
it is necessary to segment the data in order to perform a time-
resolved analysis: we segment trials into six 500 ms long epochs,
each related to a behaviorally relevant event of the trial (start, cue
presentation, early delay, late delay, movement, reward). Identical
epochs belonging to the same trial type are concatenated to form
a total of 6x4 = 24 data sets to be analyzed with SPADE. In this
example, we consider the segment in which the monkey performs
the reaching and grasping movement with precision grip and
high force (movement_PGHF). The data set has a total duration
of 22.32 s, consists of 32 concatenated trials, and has 150 units
recorded in parallel after pre-processing. We select specifically
only single unit activities (SUA) exhibiting signal to noise ratio
(SNR) > 2.5. Furthermore, a buffer time of 200 ms is inserted
between successive trials.

This data set is a typical use case for SPADE in both length
and number of observed neurons, making it a fitting example to
benchmark the performance of the method. When transforming
the input data, as described in section 2.3, 3602 transactions
with 3,000 unique items were created, using a bin size of
5 ms and a window length of 100 ms (20 bins). We divide
the analysis into eight different jobs, each for a fixed pattern
size (number of spikes), starting from 2 and ending at 10+ in
steps of one. For each pattern size, the minimum number of
occurrences is estimated for optimizing the pattern mining: the
distribution of number of occurrences of a chance pattern of fixed
size is estimated with a Poisson assumption using the average
estimated rate of all neurons. By taking the 95% percentile of this
distribution, we estimate the number of occurrences that a non-
significant pattern would have under independence, giving us a
lower bound for the support in the pattern search. The absolute
lower bound for pattern occurrences is fixed to 10. In fact, in a
classical use case of the method, we would focus on behavior-
specific patterns. Thus, patterns occurring in less than 30% of
the total number of trials (~ 30 trials per combination of epoch
and trial type) are not considered. The different configurations
of pattern sizes and number of pattern occurrences are described
in Table 1. In addition to the configurations, the table also lists
the total number of unfiltered frequent patterns found for each
job and how many are left after filtering. With these values,
the impact of one of our main optimizations, i.e., filtering the
patterns directly when they are mined, can be seen very clearly.
This significantly reduces the number of patterns to be stored,
thus reducing overall memory consumption and reducing the
number of patterns fed to the closed detector to a fraction of the
original amount. Through filtering, between 90 and 100% of the
mined patterns are discarded.

3.2. Evaluation of the Software Baseline on
x86 Server

To determine the runtime, memory consumption, and energy
efficiency of the current flow, i.e., create a performance baseline,
we executed the latest SPADE version (v0.9.0) on the workstation
mentioned before, base on an Intel Broadwell Xeon E5-1650 v4.
The considerable memory consumption of the baseline flow
made execution on the embedded devices impossible. Table 2

TABLE 1 | Configurations of the eight jobs used for the evaluation.

Job Min. occ. Min. spikes Patterns Filtered patterns
0 88 2 200,971 22,709

1 25 3 16,477,189 1,662,086

2 12 4 246,958,100 8,486,483

3 10 5 424,713,012 398,618

4 10 6 259,915,712 41

5 10 7 109,269,024

6 10 8 29,385,509

7 10 9 4,637,531

TABLE 2 | Workstation runtime and memory consumption of the implementation
currently used in SPADE.

Job FP-growth Filtering Full Peak mem.
runtime (s) runtime (s) runtime (s) Consumption (GB)

0 0.9 0.9 1.8 0.4

1 41.4 83.6 125.0 3.3

2 2299.0 1386.9 3685.9 44.0

3 6506.7 2351.9 8858.6 77.5

4 3033.1 1451.7 4484.8 45.8

5 1651.5 647.5 2299.0 21.3

6 1369.1 187.7 1556.8 8.0

7 1336.7 30.8 1367.5 3.7
Sum 16238.4 6141.0 22379.4

depicts the time, in seconds, required for the entire C-based
FP-Growth flow, the time, in seconds, to perform the result
filtering in Python, and the accumulated runtime, in minutes.
The runtime for the FP-Growth flow includes the data conversion
from Python to C, the pattern detection (including closed pattern
detection), and the conversion of the results back to Python.
Furthermore, the table also lists the peak memory consumption
for each job. As can be seen, increasingly complex jobs can take
from a few minutes up to 2 h and consume more than 70 GB
of memory. As mentioned in section 2, these high memory
requirements are mainly caused by the need to convert all
closed patterns (up to 400 million, depending on the job) back
to Python, where the filtering is performed. The baseline flow
required 6 h and 13 min to complete all eight jobs. Based on the
workstations’ average power consumption of 64.8 W', the entire
computation consumed 1.45 MJ'8.

Afterward, we executed our optimized implementation both
in single- and in multi-threaded (12-threads) mode. Both
runtimes, as well as the peak memory consumption, are depicted
in Table 3. As only the FP-Growth implementation is affected by
threading, there was no noticeable difference in the time required
for the closed frequent pattern detection or the conversion
to Python, so only the results from the single-threaded test
are listed. By filtering the results directly during the creation

7Watt.
18Joule (watt-second).
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TABLE 3 | Workstation runtime of the optimized implementation in single (ST)- and multi (MT)-threaded mode.

FP-growth ) A Peak mem.
Job runtime (5) Closed Conversion Full runtime (s) cons. (GB)
det. (s) to Python (s)
ST MT ST MT ST MT
0 1.2 0.5 0.0 0.0 1.3 0.6 0.5 0.5
1 14.9 2.4 1.3 1.0 17.2 4.7 1.3 1.3
2 116.4 17.4 13.3 14.3 143.9 451 3.5 3.5
3 205.4 32.7 0.5 0.7 206.6 34.0 3.4 3.4
4 195.9 31.3 0.0 0.0 196.0 31.4 1.9 1.9
5 180.9 29.8 0.0 0.0 181.0 29.9 1.8 1.8
6 1741 25.7 0.0 0.0 1741 25.8 1.8 1.8
7 171.0 25.2 0.0 0.0 1711 25.3 1.8 1.8
Sum 1059.8 165.0 15.1 16.0 1091.2 196.8

TABLE 4 | Runtime of the multi-threaded implementation on the ADLINK Express-BD7, the ADLINK Express-CFR-E and the HiSilicon Hi1616 microserver.

Job FP-growth runtime (s) Closed detection (s) Conv. to Python (s) Full runtime (s)

BD7 CFR Hi16 BD7 CFR Hi16 BD7 CFR Hi16 BD7 CFR Hi16
0 0.9 0.5 0.8 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.5 0.9
1 2.6 2.2 1.2 2.9 1.1 2.4 1.5 0.6 2.2 7.1 4.0 6.0
2 16.0 16.8 5.0 24.8 10.8 22.9 20.3 8.2 35.6 61.2 35.8 63.7
3 28.0 31.8 8.6 0.8 0.4 0.8 1.1 0.4 1.6 30.0 32.7 11.1
4 27.0 32.0 8.0 0.0 0.0 0.0 0.0 0.0 0.0 27.2 321 8.1
5 25.0 30.2 7.5 0.0 0.0 0.0 0.0 0.0 0.0 25.2 30.3 7.6
6 23.8 31.0 7.2 0.0 0.0 0.0 0.0 0.0 0.0 24.0 31.1 7.3
7 231 30.4 7.0 0.0 0.0 0.0 0.0 0.0 0.0 23.3 30.5 74
Sum 146.4 174.9 45.3 28.5 12.3 26.1 22.9 9.2 39.4 199.0 197.0 111.8

process, it was possible to significantly reduce the peak memory
consumption to a maximum of 4 GB. The single-threaded version
required 18 min and 11 s to complete all eight jobs, while the
multi-threaded version finished all jobs in 3 min and 17 s, making
it 114 times as fast as the baseline (see Table 7). Regarding energy
efficiency, 65 W (70,876 J) and 109.9 W (21,638 J) were consumed
in single- and multi-threaded mode, respectively. The multi-
threaded implementation achieved an energy efficiency 67 times
higher than the current implementation (see Table 7).

3.3. Evaluation on RECS|Box for Server

Processors

Due to its combined 64 cores running at 2.4 GHz, the Hil616
microserver achieved the highest parallel processing speed and
overall lowest runtime of all considered platforms (cf. Table 4).
In terms of overall runtime, compared to the workstation, it
finished all jobs in 57% of the time, with an average power
consumption of 123.3 W (13,780 J), 64% of the energy the
workstation required. Compared to the baseline, a speedup of
200 was achieved while being 105 times as energy efficient (see
Table 7). The Intel Xeon D-1577 in the ADLINK Express-BD7,
on the other hand, required just 2 s longer (3 min and 19 s) than

the workstation to finish all jobs. However, the average power
consumption of the Xeon D was only 51.1 W (10,164 J), meaning
only 47% of the energy was required to finish all jobs compared
to the workstation. When comparing the results to the baseline,
the Xeon D achieved a speedup of 113 while being 143 times
more energy efficient. Finally, the Intel Xeon E-2276ME finished
all jobs in the same time as the workstation while requiring
on average only 60.3 W (11,887 ), i.e.,, 55% of the energy the
workstation required. Compared to the baseline, a speedup by a
factor of 114 together with a 122 times higher energy efficiency
was achieved (see Table 7).

3.4. Evaluation on RECS|Box for Embedded

Processors

Over the last decade, energy efficiency has become increasingly
important in data centers, especially when focusing on cloud
computing (Oleksiak et al., 2017). Therefore, we evaluated our
implementation’s performance and energy efficiency on several
embedded devices, namely the NVIDIA Jetson AGX Xavier!?,
the NVIDIA Jetson Xavier NX2°, and up to four NVIDIA Jetson

Yhttps://developer.nvidia.com/embedded/jetson-agx-xavier- developer-kit
2https://developer.nvidia.com/embedded/jetson-xavier-nx
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TABLE 5 | Runtime of the multi-threaded implementation on all three embedded devices.

Job FP-growth runtime (s) Closed detection (s) Conversion to Python (s) Full runtime (s)

AGX NX TX2 AGX NX TX2 AGX NX TX2 AGX NX TX2
0 1.0 1.7 1.9 0.0 0.0 0.0 0.0 0.0 0.0 1.1 1.9 2.1
1 5.9 10.5 8.7 1.6 2.5 1.9 1.8 2.7 2.8 9.3 15.8 13.6
2 39.3 75.5 55.3 15.0 21.7 19.6 19.3 35.9 31.2 73.6 133.3 106.3
3 71.3 143.8 941 0.5 0.7 0.6 0.8 2.2 1.7 72.6 146.8 96.5
4 68.6 137.2 90.6 0.0 0.0 0.0 0.0 0.0 0.0 68.6 137.4 90.8
5 69.6 119.9 89.0 0.0 0.0 0.0 0.0 0.0 0.0 69.7 120.0 89.1
6 68.6 132.5 83.7 0.0 0.0 0.0 0.0 0.0 0.0 68.7 132.6 83.8
7 67.0 128.2 88.9 0.0 0.0 0.0 0.0 0.0 0.0 67.1 128.3 89.0
Sum 391.4 749.3 512.2 174 24.9 221 21.9 40.7 35.7 430.7 816.1 571.2

TX2%, each running Ubuntu 18.04. These devices feature low
power consumption along with a small form factor and are
equipped with between four and eight ARM cores. In addition
to its quad-core ARM Cortex-A57 CPU, the Jetson TX2 also
possesses a dual-core NVIDIA Denver 2 CPU. In contrast to
that, the Jetson AGX and NX use hexa- and octa-core NVIDIA
Carmel ARMv8.2 CPUs, respectively. With its 32 GB of DDR4
memory, the AGX Xavier possesses four times as much memory
as the Xavier NX and the Jetson TX2, which each are equipped
with 8 GB. Changing the power mode makes it possible to adjust
the CPU and GPU clock frequency and disable all but one core,
e.g., disable the Denver cores on the TX2 and only use the ARM
cores or only use four of the eight cores on the AGX Xavier.
For our tests, we configured each device to use all available CPU
cores at their maximum clock frequency. While each core of
the Jetson TX2 and the AGX Xavier can achieve a maximum
frequency of 2 GHz, the cores on the Xavier NX are limited
to 1.4 GHz when all cores are enabled. Because currently, the
GPUs integrated in the devices are not used at all, the GPU
frequency was limited as much as possible to reduce power
consumption. The achieved performance and energy efficiency
values were compared to the original flow and the results from
the workstation test presented in section 3.2.

3.4.1. Execution on a Single Device

Table 5 summarizes the runtimes of the three different embedded
platforms for all eight jobs. The best performance is achieved
by the NVIDIA Jetson AGX Xavier, which completed all jobs in
7 min and 11 s, followed by the Jetson TX2 and the Xavier NX
with 9 min, 31 s, and 13 min, 36 s, respectively. Although
compared to the workstation, the embedded devices’ runtime
is between 2.2 and 4.4 times longer, they required significantly
less power and consumed overall less energy. The most power
was required by the AGX Xavier, which consumed an average
of 20.4 W, resulting in an energy consumption of 8,786 J,
followed by the Xavier NX with 6.7 W (5,468 ], one-fourth of
the workstation), and the least amount of energy was required
by the Jetson TX2 with 9.1 W (5,181 J, less than one-fourth of

2 https://developer.nvidia.com/embedded/jetson- tx2

the workstation). Compared to the baseline flow, the embedded
devices are between 52 and 27 times faster and between 280 and
165 times more energy efficient (see Table 7). These results show
that even though the runtime is higher than on a workstation, the
use of embedded platforms may be more suitable in situations
where energy efficiency is of a higher priority than runtime.

3.4.2. Execution on Multiple Devices

In addition to the previous single device execution, we also
utilized the OpenMPI-based distributed flow described in
section 2.6 to run the implementation on up to four NVIDIA
Jetson TX2. As mentioned before, only the FP-Growth part is
accelerated using multi-threading and distributed computing,
while everything else is performed sequentially on the root
node. Therefore, the runtimes for the closed detection and the
conversion to Python are omitted here, as they equal those of
the single node execution, depicted in Table 5. Table 6 shows
the time required for the FP-Growth-based pattern mining, the
full runtime of the accelerated section, and the communication
overhead. It should be noted that the communication time is
part of the FP-Growth runtime and is listed separately to show
its impact. When looking at the accumulated runtime of the
FP-Growth part, a noticeable improvement compared to the
execution on a single node is visible. For a single TX2, this part
took 8:32 min, while, when using two, three, or four TX2, it was
reduced to 4:36, 3:15, and 2:32 min, respectively. Two Jetson TX2
significantly outperform the AGX Xavier in terms of runtime and
energy efficiency, as the two TX2 only consume 5,986 ] 68% of the
energy required by the AGX. As only a part of the computation is
performed in parallel, an increase in compute nodes will result in
a decrease in energy efficiency. However, four TX2 modules are
able to finish all jobs in nearly the same amount of time as the
workstation (16 s slower) while only consuming 31% (6,670 J)
of the energy required by the workstation. Compared to the
baseline, the use of between two and four TX2 modules achieved
an acceleration by a factor of 66 to 105 and an increase in energy
efficiency by a factor of 217 to 242 (see Table 7). Ultimately, the
decision to make is whether to decrease the runtime by adding
more TX2 nodes, resulting in increasing energy consumption or
increasing energy efficiency at the cost of an increased runtime.

Frontiers in Neuroinformatics | www.frontiersin.org

22

September 2021 | Volume 15 | Article 723406


https://developer.nvidia.com/embedded/jetson-tx2
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Porrmann et al.

Acceleration of SPADE

TABLE 6 | Runtime of the multi-threaded implementation on up to four NVIDIA Jetson TX2.

Job FP-growth runtime (s) Communication (s) Full runtime (s)

2TX2 3TX2 4 TX2 2TX2 3 TX2 4 TX2 2 TX2 3 TX2 4 TX2
0 1.5 1.7 1.7 0.1 0.2 0.3 1.7 1.8 1.9
1 5.3 41 3.8 0.5 0.6 0.9 9.8 0.9 8.3
2 29.5 21.9 17.4 1.5 2.0 2.3 82.7 71.2 70.4
3 52.6 35.3 27.4 0.3 0.5 0.6 55.1 37.8 30.0
4 50.4 33.9 27.9 0.2 0.4 0.5 50.5 34.0 28.0
5 47.4 34.0 23.7 0.2 0.4 0.5 47.5 341 23.9
6 45.2 31.5 23.9 0.2 0.4 0.5 45.3 31.6 24.0
7 441 32.3 26.0 0.2 0.4 0.5 44.2 32.4 26.1
Sum 276.0 194.7 151.8 3.2 4.9 6.1 336.8 243.8 212.6
TABLE 7 | Runtime and energy consumption of all platforms.

) Energy Improvement over baseline
System Power (W) Runtime (s)
Joule Wh Energy Runtime
Workstation (Baseline) 64.8 22,379.4 1,450,182 402.83 1 1
Workstation (ST) 65.0 1091.2 70,879 19.69 20 21
Workstation (MT) 109.9 196.8 21,638 6.01 67 114
Express-BD7 51.1 198.9 10,164 2.82 143 113
Express-CFR-E 60.3 197.0 11,887 3.30 122 114
Hi1616 123.3 111.8 13,780 3.82 105 200
AGX Xavier 20.4 430.7 8,786 2.44 165 52
Xavier NX 6.7 816.1 5,468 1.52 265 27
Jetson TX2 9.1 571.2 5,181 1.44 280 39
2x Jetson TX2 17.8 336.8 5,986 1.66 242 66
3x Jetson TX2 25.0 243.8 6,093 1.69 238 92
4x Jetson TX2 31.4 212.6 6,670 1.85 217 105
TABLE 8 | Full runtime (in seconds) comparison of the original and the optimized flow for different data sets.
Original flow Optimized flow
Data set Length (s) Neurons Found patterns
Runtime Baseline-% Runtime Baseline-%

Baseline 22.32 150 10,214,712 22379.4 100% 196.8 100%
Long 1003.00 150 7,097,875 - - 3052.6 1551%
Short 5.00 150 73,172 89.4 0.4% 4.0 2%
300 Neurons 22.32 300 28,077,304 28257.7 126% 432.2 220%
450 Neurons 22.32 450 64,933,631 64167.5 287% 12411 631%
3.5. Scalability implementations handle long data sets. Next, to test the opposite,

We analyzed the scalability of our optimized flow in terms of
increased compute power, e.g., multiple NVIDIA Jetson TX2 and
with regards to data sets with varying properties, i.e., longer
and shorter recordings as well as recordings with up to 450
neurons. All measurements for both the original flow and our
optimized version were performed on the workstation system.
For this evaluation, we used four different data sets. First, the
entire 1,003 s long recording session of 150 neurons mentioned
in section 3.1 was used as a baseline data set to analyze how both

the first 5 s of the movement_PGHF data set were used to analyze
the performance when working with short inputs. Finally, to
test the effect an increase in neurons has on the runtime, we
created two data sets, each with a length of 22.32 s and with
300 and 450 neurons, respectively, by stacking spike trains of
the original data set. The total runtime, i.e., FP-Growth, filtering,
closed detection, and conversion to Python, for each data set
and both flows, is given in Table 8. Furthermore, the table lists
the runtime as a percentage of the baseline data set’s runtime.
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The original flow was unable to process the long recording, as
we had to stop it after 30 h after it consumed over 200 GB
of memory.

When analyzing the table, it can be seen that when the number
of neurons is increased, our implementation does not scale as
well as the original. This becomes particularly evident when
considering that a tripling of the neurons leads to a more than
sixfold increase of the runtime in our version. In comparison, the
runtime of the original version did not even triple. In contrast
to this, when the recording duration increases or decreases, the
scaling is comparable to the original. On the one hand, when
the recording time is decreased from 22.32 to 5 s, only 2% of
the original runtime was required, i.e., a reduction by a factor of
50. On the other hand, when the recording length is increased
by a factor of 45, the runtime increases only by a factor of
about 15. The main bottleneck and one of the primary factors
for the inadequate scaling of the optimized flow are the closed
detection and the data conversion to Python. As seen before, in
jobs where many valid patterns are found by FP-Growth, these
two steps significantly impact the overall performance, as they are
currently executed sequentially on a single CPU core in contrast
to the parallel FP-Growth. This is also the primary reason for the
weaker scaling when the number of neurons increases, which can
lead to a significant increase in found patterns. Concluding, it
can be said that although our implementation scales not as well
as the original, it still scales adequately even when confronted
with long data sets or ones containing several hundred neurons.
Furthermore, due to the overall significantly lower runtime, our
proposed flow is between one and two orders of magnitude faster
than the original.

4. DISCUSSION

Finding spike patterns in parallel spike trains using the FP-
Growth pattern mining algorithm and a custom filter function
is one of the most time-intensive parts of the SPADE method.
In the currently available implementation, pattern mining is
performed using a C-based Python module, while the filtering is
done directly in Python. There are some significant flaws in the
current flow that result in a significantly increased runtime. On
the one hand, all found patterns need to be converted from C to
Python, which takes a long time and consumes a large amount
of memory. On the other hand, performing the pattern filtering
in the Python programming language also negatively affects
the runtime. Therefore, in this work, we developed a multi-
threaded C++-based Python module that, while maintaining
the original flow’s functionality, performed the task between
27 and 200 times faster, while at the same time being 67
to 280 times as energy efficient depending on the executing
hardware. By integrating the pattern filtering function directly
into the FP-Growth implementation developed in this work, we
dramatically reduced the number of produced patterns that need
to be converted to Python. This reduced not only the runtime
but also the memory consumption. Furthermore, we integrated
multi-threading and distributed computing capabilities into our
FP-Growth implementation to fully utilize the CPU of one
or more compute nodes. Additionally, we showed that our
implementation scales reasonably when the number of neurons

or the length of the recording is changed and is able to finish the
processing of a very large data set (1,003 s of neuron activity) in
less than an hour, a task that was not possible using the original
version. As a result, the improvement of the method enables
the analysis of experimental data in a feasible amount of time
together with the statistical evaluation of mined patterns, i.e., in
the case where FP-Growth is applied not only on the original
data set, but also on its surrogates, as explained in section 2.3.
Our optimized flow opens up the possibility to perform more
complex analyses due to the highly reduced amount of time. This
makes it possible to handle large state-of-the-art data sets, such
as data recorded from multiple Utah arrays (Chen et al., 2020),
or Neuropixel probes (Juavinett et al.,, 2019), and to combine
the results of SPADE with other approaches to investigate the
correlative structure of neuronal dynamics (Diana et al., 2019;
Watanabe et al., 2019; Williams et al., 2020).

4.1. Platform Comparison

Here, we perform a concluding comparison of the results
achieved by our optimized implementation on the different
platforms. The performance, in terms of runtime, memory
consumption, and energy efficiency of our implementation
was evaluated on a workstation system, a Hil616 microserver
equipped with two HiSilicon Hi1616 CPUs, an ADLINK Express-
BD7 equipped with an Intel Xeon D-1577, an ADLINK Express-
CFR-E equipped with an Intel Xeon E-2276 and three different
embedded computing devices from NVIDIA, namely Xavier NX,
AGX Xavier and Jetson TX2. For an easy comparison, some of
the most distinctive features of each platform focused on the
respective CPU are shown in Table 9. These are, among others,
the architecture, TDP?2, and ISA?® of the CPU, as well as the type
of memory installed. Figure 6 shows the performance, in terms
of FP-Growth runtime only, total execution time, and energy
consumption, of the different platforms. The graph is sorted by
total execution time. Total Pattern Mining Flow refers to the
time required for the entire accelerated flow, i.e., FP-Growth-
based pattern mining, pattern filtering, closed detection, and data
conversion to Python, while FP-Growth Only exclusively shows
the time required for the FP-Growth-based pattern mining and
the pattern filtering.

Except for the Hi1616 microserver, FP-Growth consumed the
largest portion of the runtime on all platforms. Thanks to its
64 cores, the Hil616 microserver achieved the highest parallel
processing performance and overall fastest execution time
(111 s). However, due to the low individual core performance, a
significant amount of time was required for the flow’s sequential
parts, which noticeably increased the full runtime. This, in turn,
affected the power consumption, which resulted in the third-
highest energy consumption (13,780 J). As can be expected, the
longest runtime (1,091 s) and the highest energy consumption
(70,876 J) belong to the single-threaded version’s execution on
the workstation. However, these values are still one order of
magnitude lower than the original implementation, whose results
are 20 times higher in both aspects (22,379 s and 1,450,185 J).

22Thermal Design Power.
2nstruction Set Architecture.
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TABLE 9 | Overview of the different platforms and their distinctive features.

Platform CPU Architecture Memory Cores Threads Clockrate TDP ISA
Workstation E5-1650 v4 Haswell DDR4 6 12 3.6 GHz 140 W x86
Exp.-BD7 D-1577 Broadwell DDR4 16 32 1.3 GHz 45 W Xx86
Exp.-CFR-E E-2276ME Coffee Lake DDR4 6 12 2.8 GHz 45 W x86
Hi1616 Hi1616 Kunpeng DDR4 32 32 2.4 GHz 85 W AB4
Cortex-A57 ARMVS-A LPDDR4 4 4 2.0 GHz 75 W AB4
Jetson TX2
Denver Denver LPDDR4 2 2 2.0 GHz 75 W AB4
AGX Xavier Carmel Carmel LPDDR4X 8 8 2.0 GHz 30 W A64
Xavier NX Carmel Carmel LPDDR4X 6 6 1.4 GHz 15W AB4
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FIGURE 6 | Runtimes of the optimized flow on all considered platforms (cf. Table 7). MT refers to the multi-threaded, ST to the single-threaded and Original to the
baseline (currently used) version. A detailed overview over the different platforms and their features is presented in Table 9.

For identifying the most suitable platform for the given
application, both runtime, and energy consumption have to
be considered. The lowest energy consumption was obtained
using one Jetson TX2 (5,181 J), while the fastest runtime was
achieved on the Hi1616 microserver (111 s). Comparing the two
in consideration of the respective other value, the TX2 takes
five times longer, while the Hil616 microserver consumes about
2.7 times more energy. When focusing on only one of these
values, it is straightforward to choose the most suitable platform.
However, when both factors are of equal importance, the decision
becomes significantly more challenging. The most balanced ratio
between runtime and energy consumption was achieved on the

platforms we looked at when two or three Jetson TX2 were used
in parallel.

4.2. Summary and Future Work

We have presented our optimized version of the SPADE method’s
pattern mining flow in this work, using a custom-tailored FP-
Growth implementation. Using a data set containing spike trains
from experimental data, we performed our evaluation on a
typical SPADE use case. We showed how our implementation
handles different input settings by varying the parameter
configuration for the minimum size and occurrence number.
Furthermore, using our distributed approach on up to four TX2,
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a near-linear scaling for the part computed in parallel, i.e., the
FP-Growth-based pattern mining, was achieved. In this work, our
primary focus was the acceleration of the pattern mining and
result filtering tasks, as they account for between 85 and 90%
of the overall runtime. On the one hand, we showed that our
improved version was, depending on the platform used, between
27 and 200 times faster compared to the original implementation.
On the other hand, all platforms’ energy consumption was up
to two orders of magnitude lower than the original FP-Growth
version currently used in SPADE. The highest energy efficiency
was achieved by the embedded devices, which, when executing
our flow, required only between 41% and 24% of the energy
consumed by the workstation, running the multi-threaded
version of our optimized implementation. Furthermore, the
execution on embedded devices is now possible; previously, this
was prevented by the high memory requirements.

In the future, we intend to further improve our flow by looking
at ways to accelerate the sections currently executed sequentially,
i.e., the closed pattern detection and the data conversion to
Python. Depending on the number of patterns found by FP-
Growth, these parts become the bottleneck, as mentioned in
section 3.5. An example of this can be seen in job 2, where,
depending on the platform, these tasks account for a significant
portion of the jobs and the overall runtime. For this reason,
we will be looking into implementations for parallel closed
pattern detection, e.g., the propositions made by Lucchese et al.
(2007) and Huynh et al. (2017). Besides the acceleration of these
sections, we plan to integrate the filtering even deeper into
our FP-Growth implementation, e.g., by marking all items that
reside in the first bin of their respective windows. This could
enable even faster filtering and, in addition, might also reduce
the number of header table entries to check. Furthermore, we
want to evaluate the usability of GPU-based FP-Growth and
closed pattern detection implementations, like the ones described
in Wang and Yuan (2014), Jiang and Meng (2017), and Wu
et al. (2019). At the same time, it will also be of interest to
analyze the applicability of a heterogeneous CPU and GPU
implementation, i.e., where the workload is shared between the
CPU and the GPU. This is something from which especially the
embedded devices could significantly benefit, as their GPU is
directly connected to the DDR memory allowing for fast data
exchange. We also intend to further improve our distributed
computing setup performance by exploring different strategies
like the ones proposed by Li et al. (2008) and Chen et al. (2009).
Additionally, we suggest to investigate different pattern mining
algorithms, e.g., LCM?2* (Uno et al., 2004) or DPT% (Qu et al.,
2020), and evaluate their performance in the given use case.
Finally, we want to analyze further the SPADE code surrounding
FP-Growth to find more potential improvement points. At the
same time, it might be worthwhile to analyze the SPADE code
as a whole and identify bottlenecks that can be accelerated using
custom C/C++ modules.

24Linear time Closed itemset Miner.
% Dynamic Prefix Tree.
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An open challenge on the road to unraveling the brain’s multilevel organization is
establishing techniques to research connectivity and dynamics at different scales in
time and space, as well as the links between them. This work focuses on the design
of a framework that facilitates the generation of multiscale connectivity in large neural
networks using a symbolic visual language capable of representing the model at different
structural levels—ConGen. This symbolic language allows researchers to create and
visually analyze the generated networks independently of the simulator to be used, since
the visual model is translated into a simulator-independent language. The simplicity of
the front end visual representation, together with the simulator independence provided
by the back end translation, combine into a framework to enhance collaboration among
scientists with expertise at different scales of abstraction and from different fields. On the
basis of two use cases, we introduce the features and possibilities of our proposed visual
language and associated workflow. We demonstrate that ConGen enables the creation,
editing, and visualization of multiscale biological neural networks and provides a whole
workflow to produce simulation scripts from the visual representation of the model.

Keywords: multiscale simulation, large scale simulation, visual language, neural networks, connectivity
generation, connectome

1. INTRODUCTION

The brain has a multilevel organization, with anatomical and dynamic features spanning orders of
magnitudes. Understanding the nature of its components and how they are connected with each
other is critical to unraveling this complexity (Evanko and Pastrana, 2013; Morgan and Lichtman,
2013; Peyser et al., 2019), for both healthy and diseased brains (e.g., Chen et al., 2021). Indeed,
connectivity is an essential aspect defining the functionality at all organizational scales of the brain
(Sporns et al., 2005).

The 21st century has seen multiple interdisciplinary research initiatives initiated to address this
important topic (Collins and Prabhakar, 2013; Markram et al., 2015); however, despite advances and
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efforts toward standardization in this field (Gadde et al., 2012;
Gorgolewski et al., 2016), there is no consistent way to represent,
visualize, explore, and generate connectivity for simulation
or analysis across different scales. Consequently, developing
the tools to support investigations of multiscale functional
organization remains an open challenge.

A central method in such investigations is numerical
simulation of the brain. Existing simulation engines capture
the brain behavior at different levels of detail: detailed multi-
compartment simulations (e.g., Arbor—Akar et al., 2019; Abi
Akar et al., 2021, Neuron—Carnevale and Hines, 2006), point
neuron simulations (e.g., NEST—Jordan et al., 2019, Brian—
Stimberg et al., 2019) or whole brain level simulations (e.g., The
Virtual Brain—TVB Sanz Leon et al.,, 2013). By exploiting high
performance computing we are now able to simulate large scale
networks as well as those which represent the brain at different
scales simultaneously. However, the absence of methods to create,
and explore complex connectivity in these types of networks
limits investigations in the relationships between connectivity
and function.

Creating a framework that enables simulation of large and
multiscale models of heterogeneous neuron populations is only
possible by making use of well-defined interfaces, either new
or existing. These interfaces must allow weak coupling between
software systems and the necessary front ends to interact with
them, but at the same time be able to leverage the native functions
of the simulation engines and their inherent scaling capabilities.
The development of tools and standards which take advantage
of these interfaces will additionally enable the comparison of
performance and function metrics between different simulation
engines. This will allow the formulation of more robust
scientific conclusions and move the field of computational
neuroscience forward. The implementation of easy to use
and flexible tools for benchmarking different simulation tools
remains a critical and still unfulfilled requirement by the
neuroscience community.

This work focuses on the design and implementation
of ConGen, a framework that facilitates the generation of
connectivity in large neural networks using a new symbolic
visual language capable of representing the model at different
structural levels. This symbolic language is specifically designed
to provide researchers with a tool to represent and explore the
connectivity in models of multiscale and large scale networks.
ConGen provides an agnostic way to represent models and
later instantiate them with specific simulation frameworks.
The connectomes represented in the visual language can be
exported to the standardized network representation format
NeuroML (Gleeson et al., 2010). These descriptions can be
used directly by simulation engines which support the format.
ConGen adds functionality with a back end, also interfaced
with NeuroML.

The ConGen back end enables interfacing with efficient
connection generation approaches (e.g., Djurfeldt et al., 2014)
and allows users to launch simulations using the simulation
engines’ native scaling capabilities. For convenience, the ConGen
back end encapsulates a set of basic templates allowing users to
generate the connectivity using the standard description. The

ConGen back end also includes a number of thin simulator-
specific interfaces, enabling basic launching, i.e., using default
model parameters, on the target simulator. Users can edit and
extend the thin simulator-specific scripts in the ConGen back end
to define their own simulation and model parameters. Currently
the ConGen back end supports execution of the NEST and TVB
simulators, as well as the generation of EBRAINS co-simulation
model scripts ready for execution by external tooling. However,
due to its modular design it is possible to easily extend the back
end to support other simulators.

With this work we provide a bridge between a simple, yet
expressive, visual language (see section 2.1.1) embedded into a
simulator-agnostic graphical interface, simulation frameworks,
and high performance computing infrastructure. By providing
a language to describe connectivity in a simulator-agnostic way,
ConGen also represents a new platform to assist benchmarking
using a generic description of networks based on model
description standards. As such, ConGen helps to address the
unfulfilled requirement for an easy to use and flexible tool
for benchmarking.

This paper is structured as follows: first, we present the
state of the art in connectivity visualization and representation
techniques, as well as standards for network description. Then,
we describe the front end which implements the symbolic visual
language: ConGen. Afterwards, we discuss the implementation
of the back end which takes the standard output representation
from the visual language and translates it into a model instance in
one or multiple simulators. In the results section we show two use
cases for this framework. The first refers to the well-known model
of the cortical mircrocircuit by Potjans and Diesmann (2014) and
the second is a multiscale model which combines a simulation
in TVB and NEST. Finally, we discuss the use cases and the
current limitations of the framework, provide some conclusions,
and point toward future directions.

1.1. State of the Art
1.1.1. Visual Representations of Connectivity
Connectivity matrices have long been used as a way to represent
connections in the brain. For example, the work of Rubinov
and Sporns (2010) presents a Matlab Toolbox intended to
generate connectomes at the scale of brain regions using this
type of representation. Here, binary entries in the matrix indicate
the presence or absence of connections; real-valued entries
can be used to represent magnitudes regarding correlational
or causal interactions. Although the authors state that the
neuroimaging methods available for them were unable to directly
detect anatomical or causal directionality, the matrices produced
using the Toolbox can incorporate this information if it is
available. Mijalkov et al. (2017) created another Matlab Toolbox
that allows the user to create visualizations mainly based
in connectivity matrices derived from different neuroimaging
modalities with the aim to study large scale brain connectivity
applying techniques from graph analysis theory.

An alternative representation of connectivity is given by
a Connectivity Pattern Table (CPT), a 2D schematic and
compact representation intended to shown the spatial structure
of connections as well as their strength, proposed by Nordlie
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and Plesser (2010). The main features of CPTs are a clutter-free
presentation of connectivity, the ability to represent connectivity
at several levels of aggregation and a high information contents
regarding the spatial structure of connectivity.

Other approaches have focused on morphologically detailed
connectivity. For example, NeuroLines (Al-Awami et al., 2014)
is a multiscale abstract visualization technique for the analysis of
neurites and their connections. Here, each neurite is represented
as a tree structure based on 3D data of their morphology. Once a
synapse is selected, all other synapses linked to the same neurites
are visually highlighted for contextual information. In related
work, Bottger et al. (2014) developed an edge bundling method
which depicts clear and high-resolution pictures of functional
brain connectivity data across functional networks in the 3D
brain space.

Additional tools address MEG/EEG data import and pre-
processing. NeuroPycon (Meunier et al., 2020) is a Python
toolbox for the visualization of connectivity analysis in MEG
sensors. The visualization is built from the sensor-level
connectivity matrix obtained from the computation of the
coherence among MEG sensors in alpha band. The colors of the
connectivity edges indicate the strength of the connection, and
the node size and color represent the number of connections
per node. Similarly, Espinoza-Valdez et al. (2021) presented a 3D
visualizer of the brain connectivity for EEG data. The selection of
electrodes is performed in a dynamic way; graph theory is then
applied to characterize brain connectivity in 3D images.

Finally, Fujiwara et al. (2017) introduced a visual analytics
system to enable neuroscientists to compare networks. The
system provides visual tools for comparison at both individual
and population levels. The main visualization techniques they use
are based on representations of connectivity and node-linkage
matrices (both 2D and 3D).

1.1.2. Abstract Representations of Connectivity
Unfortunately, often the descriptions of network model
connectivity do not adhere to any standards (Nordlie et al.,
2009). Model definitions rely on a combination of complex text
descriptions, pieces of pseudo-code or simulator-specific code,
tables, and connectivity patterns without formal definitions.
Consequently, ambiguities in the model description make it
difficult to independently reproduce the network, or port it from
one simulation environment to another (Pauli et al., 2018).

To provide a formal standard that can be used to convey the
connectivity of a model, not only in written text and formulas, but
also among neuronal simulators, Djurfeldt (2012) developed the
Connection Set Algebra (CSA): a mathematical representation
of connections between populations of neurons based on set
algebra. With this abstract formalism, a connectivity pattern can
be defined independently of the implementation by the various
simulators. This independence is an important aspect of the
modular nature of CSA, allowing it, in principle, to be used
in combination with any simulator. The connection with the
simulators is formalized in the Connection Generation Interface
(CGI; Djurfeldt et al., 2014). The CGI allows the simulator to
query connections from the linked connection generator. Both

the simulator and the connection generator need to implement
the interface.

1.1.3. Standardized Network Model Descriptions

A number of domain languages exist to describe networks at
different scales, notably PyNN (Davison et al., 2009), NeuroML
(Gleeson et al,, 2010), and NineML (Raikov et al., 2011). PyNN
is a Python based simulator-independent language. It supports
modeling at multiple levels of abstraction. The instruction
set of each simulator and PyNN code can be mixed, so
models described in PyNN can still access features specific to
individual simulation engines. Importantly for our work, PyNN
implements the CGI, which allows connection generation using
the CSA. During the development of ConGen, PyNN did not
support NeuroML, but a NeuroML file export for networks
generated with PyNN has since been added. While PyNN enables
easier interfacing with various simulators, it has been designed
primarily as a scripting tool. No visual tools are available for
PyNN, instead network creation follows procedural instructions.

NeuroML is a simulator-independent XML-based formalism
that is supported by a variety of neuroscience tools and supports
a more biophysically detailed level of modeling than PyNN. The
standard consists of three levels, which are built hierarchically
and provide a standard for describing morphologically detailed
neurons, spiking neurons and populations of neurons. The most
recent version of NeuroML (NeuroML2) combined with LEMS
(Cannon et al., 2014) has been developed in order to be able
to represent both network structure and model dynamics in a
standardized and domain specific fashion.

Finally, NineML is an XML-based modeling language similar
to NeuroML formalized in an XML Schema Definition (Raikov
et al., 2011). Its primary focus is on definitions on the network
level, such as populations and connections; as a consequence
of this focus it lacks many of the detailed elements present in
NeuroML, e.g., biological cell structures of neurons and synapses.

The computational neuroscience community needs to further
use and define standards in order to promote reproducibility
and robustness of results. With this in mind, efforts like Open
Source Brain (Gleeson et al., 2019) try to integrate graphic user
interfaces, model description languages and simulation engines
into a cohesive effort to simulate the brain.

1.1.4. Simulation Engines
Simulators are an important tool in computational neuroscience.
Simulation engines enable the creation and simulation of models
at different scales. They typically provide a language, usually a
scripting language, for the user to access the simulator’s functions.
Some common spiking neuron simulation tools are NEURON
(Carnevale and Hines, 2006), NEST (Jordan et al., 2019), and
BRIAN (Stimberg et al., 2019). For a detailed comparison on
these and other simulators see Tikidji-Hamburyan et al. (2017).
Of the three simulators, NEURON is the one with the longest
history and largest user community. Arbor (Akar et al., 2019)
is a new simulation framework, developed in the context of
the HBP, at the morphologically detailed scale and is designed
to take full advantage of new computing architectures and
reach high scalability. While NEURON and Arbor are used
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for detailed cell models, NEST is used to simulate primarily
point neurons, and multi compartment neurons with up to
three compartments. NEST is optimized for simulations of
large scale networks—including up to hundreds of millions of
neurons and their synapses—on high performance computers
while still having great performance on smaller devices. BRIAN
supports simulations of both detailed and large scale networks
with a focus of separating model definition and simulator
implementation details. For ease of use all these simulators have
implemented Python interfaces, or can be controlled using a
simulator specific language [e.g., PYNEST (Eppler et al., 2009)
for NEST].

Simulations of the whole brain are also possible at a coarse
resolution. For example, The Virtual Brain is a simulation
framework which allows the representation of the brain using
neural mass models and simulate them to generate synthetic
Electroencephalography ~ (EEG),  Magnetoencephalography
(MEG), or Blood Oxygen Level Dependent (BOLD) signals.
Another emerging simulator at the whole brain scale level
is neurolib (Cakan et al., 2021). Similar to TVB, neurolib
provides the end user with a variety of neural mass models, the
ability to create networks based on empirical connectivity data
and generate simulated signals which can be optimized using
parameter fitting methods against empirical data.

2. METHODS

This section describes the two components of the proposed
framework: the description of the multiscale connectivity using
a symbolic visual language, and the translation of the generated
models into simulator-specific instructions.

The ConGen front end provides end users with a standardized
description of their models in NeuroML. This description can be
directly used by simulation engines which support this standard.
For convenience, the ConGen back end encapsulates a set of
basic functionality allowing users to read the NeuroML file
and generate the connectivity. The ConGen back end includes
simulator specific thin interfaces, allowing for basic launching on
the target simulator. To increase the compatibility of ConGen
to multiple simulators, we have extended the NeuroML scheme
used to define the models. Illustrating the flexibility of the
toolset, one of our use-case expands on the standard NeuroML
interface with new functionality. We show that new simulators
and functionality can be added by adapting the ConGen back
end. Users can also directly interact with the output of the
ConGen front end in NeuroML format to create more complex
simulations with detailed model specifications which go beyond
basic configuration and connectivity definition e.g., cell model
specific parameters, pre and post- processing of input and output
data, etc.

2.1. Visual Front End for Connectivity

Generation

ConGen facilitates the creation, editing and visualization of
multiscale neural networks. Connections can be created and
visualized at the desired level of abstraction, and mechanisms

for the propagation and aggregation of connectivity along the
hierarchy are provided. This approach allows the researcher to
generate large scale scenarios capturing global behavior and local
details at the same time.

The ConGen front end has been integrated into Neuroscheme
(Pastor et al., 2015), a visual framework to guide exploration and
knowledge extraction from complex neural scenes. Neuroscheme
allows the creation of domains that define the set of elements that
conform a neuronal scene. For example, Neuroscheme includes
the cortex domain, which provides elements corresponding to
the organizational levels of column, minicolumn and neuronal
cell, as well as defining the properties associated with each
element. ConGen has been conceived and developed as a new
domain within Neuroscheme, defining a new set of abstract
neural elements (i.e., not corresponding to specific brain areas)
and connections between them in order to represent models of
large scale and multiscale neural networks.

Neuroscheme offers an environment with multiple views
where different representations of the data can be visualized
in a coordinated manner. In this way, abstract views can be
combined with accurate representations of cellular anatomy.
The iconic view of a circuit provides a global, simplified view
with summarized or aggregated information, while the realistic
view provides all details of the neuronal anatomy and spatial
distribution. ConGen has been designed to act as a front end
for interactive visual definition of neural connectivity, thereby
facilitating the creation and manipulation of neural circuit
models. Following a top-down approach, ConGen enables the
creation of a hierarchy of super-populations and populations
and the specification of their connections by establishing the
necessary connectivity parameters. Populations constitute the
leaves of the hierarchy and grouping them together gives rise to
a superpopulation. In turn, superpopulations can be grouped
iteratively, also giving rise to hierarchical superpopulations.
Figure 1 shows a hierarchy of superpopulations and populations.
Our approach to interaction and visual representation
emphasizes simplicity, depicting views using easy symbolic
representations. The models so created can be exported using
an extended version of NeuroML for further simulator-specific
translation. The following subsection details the operations
supported by ConGen.

2.1.1. Creation and Parameterization of a Hierarchical
Network Structure

ConGen supports the creation of a neural scene and its
connectivity by providing an interface that visually displays the
created entities and relationships. Each entity will be represented
by a circular shape. Entities of the same type will share the same
color (superpopulations, populations, inputs and outputs). The
number of inner circles will represent the number of descending
levels of a superpopulation and the filling of the horizontal bar
will be proportional to the number of neurons in each grouping.
By simply right-clicking with the mouse, a context menu appears
allowing entities to be created and hierarchically structured. To
create one or more super-populations, the user simply sets the
number of entities to be created, their name and the other
configurable parameters. Figure 2A shows the super-population

Frontiers in Neuroinformatics | www.frontiersin.org

32

January 2022 | Volume 15 | Article 766697


https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Herbers et al. ConGen—Visual Connectivity Generation

LEVEL 0

LEVEL 1

FIGURE 1 | Hierarchical structure of a scene. Level O shows three superpopulations that group either populations or descendant superpopulations, as shown in level
1. Superpopulations SP_0_0 and SP_0_1 contain two neuron populations each, as depicted in level 2.

creation panel as well as the visual representation of the three  showing the scene at higher levels of abstraction, as shown in
super-populations created. Figure 2B illustrates the creation of  Figure 4B.
two populations of neurons within the super-population SP_2. In addition to neuron populations, input and output entities
Note that the visual representation of the super-population  can be created. These entities are external to the hierarchy. Input
SP_2, compared to its appearance in Figure 2A, now reflects the  entities stimulate one or more populations of neurons. An input
existence of a hierarchical descendant level (presence of an inner  entity is connected to its target population analogously to the
circle) and the number of neurons in the descendant populations ~ connections between populations. Figure 4C shows the result of
(green filling of the horizontal bar). including an input connected to example populations NP_0_0_1
Continuing the procedure outlined above, the hierarchy = and NP_0_1_0; note that input entities appear at all levels of
initially shown in Figurel can be easily created. Figure3A  abstraction. Output entities, such a measurement devices, can
shows this scene depicted at level 0, composed of three super-  receive a connection from one or more populations of neurons.
populations (SP_0, SP_1 and SP_2). SP_0 in turn contains two . .
child super-populations (SP_0_0 and SP_0_1); each of them, as 2.2. From Visual Representatlon to
well as SP_1 and SP_2, containing two populations of neurons. Simulation
The super-populations can be expanded to show their children, In this section, we introduce the back end of ConGen, which
either in the same panel or in a different panel; Figure3B  is used to generate the hierarchical neural network models
shows the result of expanding all super-populations in a different  and interact with the simulation engines (see division of front
panel, thus allowing the scene to be visualized at two levels of  end/back end in Figure 5). The ConGen front end has to serialize
abstraction simultaneously (level 0 on the left, and level 1 onthe  the model expressed in ConGen’s graphical language by some
right). Similarly, the SP_0_0 and SP_0_1 super-populations can  means. Here, we make use the pre-existing NeuroML standard
be expanded into a further panel, depicting the scene at the lowest  rather than developing a new declarative language to achieve this

level of abstraction in the right panel of Figure 3C. goal. Any simulator that supports NeuroML can be considered a
Connections are created by dragging with the mouse from  potential execution target.
the source population to the target population. Figure 4A shows The back end of ConGen consists of a modular translator

the parameterization options of the connections as well as the  system. Its purpose is to translate the NeuroML descriptions of
context menu that allows auto-connections (i.e., connections ofa  the models created in the GUI described in the previous section
population to itself) to be added. Each connection is represented  into simulator-specific code. It is important to highlight that the
by an arrow whose thickness is proportional to the strength of =~ ConGen back end is not a simulation engine but is able to call
the connection. Since the views shown in the different panels  functions from different target simulators using the simulator
are coordinated, the connections created at the lowest level of  interface. The translation system was designed with the following
abstraction are reflected in an aggregated way in the panels  technical requirements in mind:
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File Panes View Events Help
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Entity Inspector ox
Creating new: NeuronSuperPop
Entty name s
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Close New
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Entiy Inspector ox
Creating new: NeuronPop
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Number of entities 2

Close New
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FIGURE 2 | Creation of super-populations and populations. (A) The panel on the right sets the name root of the super-populations (SP in this example) and the
number of entities (three in this example) to be created. (B) Right clicking on SP_2 allows the creation of descendant neuron populations. The panel on the right sets
the name root of the populations (NP_2 in this example) and the number of entities (two in this example) to be created.

1. The translation system should enable the simulation of a
model defined in the ConGen GUI by a supported simulator

2. The simulation should be able to be performed in
different simulators

3. Adding support for a new simulator should require a low
development cost

4. The translation system should be functionally separate from
the ConGen GUI

5. The overhead of the system should be low: performance
should be close to that of using the simulator directly.

The back end of ConGen is designed to be separate from the
GUI (technical requirement 4). This separation allows the front
end and back end to be used as independent modules. For
example, the front end can run on a desktop computer, while
the back end runs and then executes the simulations on a
high performance computing system. This modular design also
allows individual components to be easily maintained or replaced
(technical requirement 3). A modular design requires careful
construction of interfaces and data exchange; these are illustrated

in Figure 5, which shows the overall flow of data from the visual
tool to the simulator.

2.2.1. Using NeuroML

The main data exchange between the front end and the back
end is via NeuroML: ConGen serializes its visual models to
NeuroML files for storage or data exchange. This separation
through a common data standard allows the ConGen translator
to be entirely independent of the GUL ConGen uses NeuroML
version 1.8.2, which allows networks, layers, and connections to
be represented by XML files. At the time that the back end was
developed, NeuroML version 2 was still in development. For this
reason, the work presented here is based on version 1.8.2, but will
be ported to version 2 in the future.

The structure and validity of files is defined by XML
schemas, which allows extensions of the described file
format. To increase the compatibility of ConGen to multiple
simulators, we have extended the NeuroML scheme used for
translation. These additions include spatial connectivity and
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FIGURE 3 | Creation of scenes in ConGen. (A) A scene where SP_0 has two hierarchical descendant levels (indicated by the two inner rings) while SP_1 and SP_2
have one hierarchical descendant level each. The green filling of the horizontal bars indicates that SP_1 and SP_2 have the same number of neurons while SP_0 has
twice the amount. (B) Super-populations can be expanded to visualize the next hierarchical level. Left panel: the three super-populations in a collapsed view. Right
panel: The three super-populations have been expanded to show their direct children. (C) The panels show the three hierarchical levels of the scene simultaneously.
Left: Neuron super-populations at the highest level of abstraction. Middle: The hierarchical entities tree displayed at depth level 2. Right: All entities have been drilled
down to show the lowest level of abstraction. Icons have been arranged in a circular layout for convenience for connectivity creation.
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FIGURE 4 | Connections and inputs. (A) Connections are created by dragging with the mouse from the source to the target population. The panel on the right shows
the parameterizable features. Auto-connections can be created through the context menu that appears when right-clicking on a population. (B) Connectivity
simultaneously displayed at three levels of abstraction. Note the connections of superpopulations represent the aggregation of the connections of their descendant
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FIGURE 5 | Flow of data from visual representation to simulation. The user creates a model in ConGen and exports it as a NeuroML file. The translator parses the
NeuroML file and converts the connectivity into the Connection Set Algebra. The populations and inputs are built directly in the simulator. Using the Connection
Generation Interface (CGl), connections are generated from the connection generation library and passed to the simulator, which can then start the simulation. A
future extension of this workflow will allow simulation results to be processed and passed back to ConGen (dotted line).

TABLE 1 | XML connectivity pattern tags and their corresponding Python classes and CSA structures.

CSA structure

NetworkML tag Python class
<all_to_all/> Al'l ToAl'l
<one_t o_one/ > OneToOne

<fi xed_probability/>
<per _cel | _connection/ > Per Cel |

<gaussi an_connectivity_2d/>

Fi xedPr obabi lity

Gaussi anSpat i al Connectivity

csa. full

csa. oneToOne

csa. randony( p)

csa. randon( f anl n=n)
gaussi an(si gma)

The Gaussian spatial connectivity has to be combined with CSA’s random operator, which samples from the distribution.

synapse parameter distributions. All changes are listed in the
Supplementary Material (see section Changes to NeuroML).

2.2.2. The ConGen Back End
After a visual model has been saved as a NeuroML file, the file
can be used as an input to the ConGen translator. The translator
parses the defined network structure, translates the layer
and connectivity information, and generates simulator-specific
instructions. The translator and the subsequent simulation can be
called either independently or invoked directly by ConGen. In the
following, we describe the workflow resulting in a set of simulator
specific commands which enable the model simulation using
specific simulation engines, and how ConGen can be extended
to support new simulators.

First, the ConGen back end parses the NeuroML file for
translation. XML tags correspond to a Python class, as shown

for the example of connectivity patterns in Table 1. The parser
first reads the populations, then the projections, and lastly the
inputs, outputs, and translators. If the model is to be simulated
by different simulators at different scales, the back end splits
the model into scale-specific sub-models. After the model has
been parsed successfully, all string references between objects
are replaced with object references. Any errors present in the
file (schema mismatch, undefined references) are raised as
an exception.

Connectivity — patterns  are  represented by  the
ConnectivityPattern class, which may be subclassed
when adding new types of connectivity patterns. When an object
of this class is created, the connectivity patterns are transformed
to CSA masks, as seen in Table 1. Spatial connectivity patterns,
based on e.g., 2D euclidean distances, are also supported. To
this end, neuron positions can be defined either by neuron
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instance elements in the NeuroML file or sampled by a template
distribution (e.g., Gaussian sampling). Synapse parameters such
as weight and delay can be defined in analogously, by explicitly
stating neuron instance parameters or by using distributions for
whole layer connections. Currently, only Gaussian and Uniform
distributions are defined, but additional distributions can be
registered by sub-classing the Di stribution class. In the
case of region-to-region connectivity, atlas based connectivity
is also supported. Additional details about the implementation
of the different connectivity patterns can be found in the
Supplementary Material.

After parsing, the layers and connections that make up a
network are instantiated for the chosen simulator. First, the
layers and neuron populations are translated to simulator specific
instructions. If the simulator requires neuron positions, any
distributions used are sampled at this point. Then, connections
between layers are instantiated. Since this connection generation
is computationally intensive, we use the Connection Generation
Interface (CGI). The CGI calls available internal simulation
engine functions to optimally generate connections instead of
the high level calls through the Python interface (Djurfeldt et al.,
2014). These native calls are typically more efficient (technical
requirement 5). We use the | i bneur osi m package, which
supports the CGI and enables the generation of populations and
connections in the simulator (i.e., NEST). Due to the modular
nature of the implementation, individual components of ConGen
can be easily replaced. For example, the C++ implementation of
CSA (I i bcsa) offers increased performance over the Python
implementation when generating connectivity, but has limited
functionality. Thus, the Python implementation of CSA can be
replaced by | i bcsa to accelerate the connectivity generation of
large but simple networks.

For convenience to the users and in order to enable the
simulation of the generated model in an specific framework, the
ConGen back end contains a set of thin layer scripts which can
call the target simulation engine (technical requirements 1, 2, and
3). Extending the ConGen back end to support new simulator
engines is low effort and consists in the generation of a script
which takes the connectivity objects, instantiates the model and,
if desired, specifies simulator specific parameters. Pre- and post-
processing of input and output data can also be added to this
script by the user. At the moment the ConGen back end has a
thin layer execution script for NEST and TVB.

The population and cell model parameters have to be defined
by the user using simulator specific functions. This can be done
either when the user imports the NeuroML file in his or her script
or by modifying the thin layer simulator specific file in ConGen
in order to add these parameters before model execution. In the
current paper we focus specifically on connection generation as
this is a complicated task on its own. Setting of model parameters
could also be integrated into the ConGen front end, but is left as
future work.

ConGen also allows representation and
generation of multiscale co-simulation models, and
supports the output of multiscale configuration files. The
orchestration and deployment of these multiscale simulations
is complex (Klijn et al, 2019) and falls outside of the

the

visual

scope of the template based ConGen Translator simulation
launching functionality.

3. RESULTS

In this section we will describe first two use cases which are used
to demonstrate the functionality of ConGen while addressing
specific needs from the neuroscience community. Please refer
to the Supplementary Material section to see where to find and
how to execute the example files for these use cases. This section
ends with an overview of the supported simulators.

3.1. Use Case 1: The Cortical Microcircuit
Model

The Potjans and Diesmann microcircuit model (Potjans and
Diesmann, 2014) is an abstraction of 1 mm® volume of
cortical tissue comprising four layers, each with one excitatory
and one inhibitory population. The model has been used to
address a variety of scientific questions and is able to show
spiking dynamics similar to those observed in real cortical
tissue. Due to its importance, we chose this model to test the
whole functionality of ConGen, from visual language definition
to simulation.

We constructed the model on two levels of abstraction: on
the higher level, the representation of the column; on the lower,
the representation of the single populations and their connection
probabilities. It is important to note that ConGen provides the
ability to define how the connectivity should be instantiated by
the simulation on a probabilistic or deterministic way. By using
CSA below the NeuroML description generated by ConGen, it
is possible to create stable, portable and constant instantiations
of connectivity patterns which will be the same independently of
the target simulator. A step by step description of the model using
ConGen is described in the following.

First, the user can start by creating a super-population to
represent the cortical microcircuit entity and the Thalamic
region. The user can then go one level down in the visualization
of the cortical microcircuit super-population to create the eight
different populations of the cortical microcircuit using the Add
NeuronPop option in the menu. After the eight populations
have been created, the user can create connections between
the populations by clicking and dragging the cursor from the
source population to the target population. As the connectivity
in the cortical microcircuit model is defined by a set of
connection probabilities, the user defines a random connection
with Gaussian distributions for the weights and the delays. In
order to create an auto-connection, the user right-clicks on the
desired population and selects Add Auto Connection from the
menu. The model at this stage of creation is depicted in Figure 6.
It is important to highlight that the connectivity in the original
manuscript by Potjans and Diesmann (2014) is calculated under a
specific set of considerations that are not reflected in the random
distribution used in this use case. More specifically, the original
model makes use of a fixed number of connections derived from
the connection probability: K,,,,, = In(1 — Py, )/ In((NyN,, —
1)/N,Ny,), where K, ,, is the total number of connections
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FIGURE 6 | Views at different levels of cortical microcircuits. Panel (A) shows microcircuit super-population and the Thalamic super-population. Panel (B) presents the
microcircuit super-population where all 8 populations can be seen with their respective connections.

between population # and population m, P,,,, is the connection
probability between the two populations, and Ny denotes the
number of neurons in population x. In our implementation, the
connectivity of the model is generated using a pairwise Bernoulli
distribution with probability P,,,,. Therefore, variations in the
actual number of connections between the model created with
ConGen and the original model are to be expected.

Next, the user can create a set of input devices, in this
case Poisson generators, in order to represent input arriving
from other regions in the brain. This is done using the Add
Input option and defining the frequency of the random stimuli
produced by the Poisson generator. The input devices can be then
connected using the click and drag operation from the source
input to the target population.

Finally, in order to create the Thalamic connections, the
user goes one level up in the visualization and then selects to
expand the children of both the Thalamic and the microcircuit
super-populations. This allows a Thalamic super-population to
be created that can be then connected with the desired probability
to the subpopulations representing the layer 4 and layer 6 of the
microcolumn. See Figure 7 for the final version of the model.

The user can then export the resulting model to JSON or save
as NeuroML, producing the file which can be then used by the
generation back end to call NEST and execute the simulation.
The time required by the ConGen backend to read, generate
the model and create the connections using CSA is negligible
compared to the actual connectivity generation step using CGI
and the following execution of the model in NEST. This goes

in agreement with the technical requirement 5 in section 2.2.
An expert user is able to define the model in this use case in
about 10 min. The resulting NeuroML file is easy to explore and
understand by the users.

3.2. Use Case 2: Co-simulation of The
Virtual Brain and NEST

The need to simulate the brain at different scales is an
emerging requirement of modern computational neuroscience.
Researchers may want to simulate the whole brain at a coarse
resolution while simultaneously simulating specific areas that are
relevant to answer a particular scientific question at a higher
resolution. This interaction between simulators is complex (Klijn
et al, 2019) and has been addressed in the past by several
tools such as MUSIC (Djurfeldt et al., 2010). Having a common
language to describe simulations which connects different scales
and simulation back ends is essential for providing a usability
layer to facilitate this ambitious next step in neuroscience. As
ConGen’s visual language is agnostic with respect to the target
simulation platform, it can be used to define complex multiscale
models for co-simulation.

In this second use case of ConGen we generate simulation
scripts which are compatible with the co-simulation framework
of the EBRAINS infrastructure developed by the Human Brain
Project.! In particular, we target a whole human brain co-
simulation model where different parts are simulated at two

Uhttps://ebrains.eu/
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scales using two simulators, The Virtual Brain (T'VB; Sanz Leon
et al, 2013) and NEST (Jordan et al, 2019). The coupling
between the simulators is in part performed using the Elephant
framework (Denker et al., 2018). For information going from
NEST into TVB, the spike activity is translated into firing
rates using Elephant. For information flowing from TVB into
NEST, firing rates are tunneled to the NEST I/O back ends and
defined as firing rates in heterogeneous Poisson generators. It
is important to highlight that the coordination and deployment
of the simulators is provided by external multiscale simulation
infrastructure (Klijn et al., 2019) and not by ConGen itself.

ConGen is used to define the model and simulator at
each scale, the connection points between simulators, and the
translation modules to be used in order to transform data
produced from one simulator and input to the other. In order
to make it possible for the ConGen back end to identify which
parts of the model belong to each scale, a prefix label is to be used
for each component in the multiscale model. In this use case, we
use “1” for all model components which should be simulated at
the point neuron scale with NEST (in agreement with the model
definition in use case 1) and the label “Brain_region” for all model
components to be simulated at the whole scale level by TVB.

For the coarse scale, we divide the brain into 68 regions
according to the Desikan Killiani cortical atlas (Desikan et al.,
2006). Of the 68 regions, 67 are represented using a neural mass
model, which in this case is the Kuramoto model (Kuramoto,

1975, 2003), and are to be simulated in TVB. The remaining
region is represented as a cortical microcircuit as described in use
case 1 and to be simulated in NEST. In this specific use case NEST
will simulate a region in the atlas related to the auditory cortex
on the right hemisphere, the right Transverse temporal cortex
region. The model can be used to study the propagation of audio
information from the auditory cortex to the rest of the brain and
its interactions using simulations with sound stimuli. Please note
that here for simplicity we assume that the phase represented by
the state variable in the Kuramoto model can be linked to an
indirect measure of the mean neural activity in the region and
translated into spikes using the Rate to Spike translator available
in the co-simulation framework.

The user starts by generating two super-populations, one
will represent the brain regions modeled in TVB and the
other one the brain region modeled in NEST. Additionally,
the user will create one spike to rate translator and a rate to
spike translator (see Figure 8). These input devices are used
to exchange information between scales and will be connected
to specific populations within each super-population. Although
obviously not existing in the real brain, translator components
are nonetheless required to produce a functional multiscale co-
simulation model.

Now the user can go one level down in the two super-
populations. In the NEST region, the hierarchy, connectivity and
inputs of the cortical microcircuit are defined as in use case 1. In
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FIGURE 8 | Modeling of the co-simulation use case starting with the super-population for the brain region represented by NEST, the super-population for the brain
regions represented by TVB and the translator modules which have the task of translating spikes to rates and vice versa.

SpikeToRate_

RateToSpike_

the TVB super-population, 68 population elements are created.
The neuron model to be used for 67 of the 68 regions will be
a neuron mass model called “nmm kuramoto” corresponding
to the Kuramoto model. The last region (correspond to ID
27) is modeled as a proxy for the NEST cortical microcolumn
using the model called “proxy.” These elements are automatically
numbered from 0 to 67 when created by ConGen and are linked
to the correct region ID in the Desikan Kiliani brain atlas for
simulation by the back end tool.

The next step is to define the connectivity between all the 68
regions. The type of connection to be used in the TVB models is
Atlas based and the value in the Connectivity Matrix field should
correspond to the connectivity matrix file to be used at simulation
time (see Figure 9A). The value indicates a zip file which contains
at least two files, one containing the weights matrix and another
one containing the tract lengths matrix. The weights matrix is
an NxN matrix which defines the strength of the connections
between brain regions and where N is the number of regions
in the specific parcellation to be used. The tract lengths matrix
has the same dimensions as the weights matrix and specifies the
distance between brain regions. These matrices are plain CSV
files derived from empirical Diffusion Tensor Imaging (DTT) data
[for more information please refer to Sanz Leon et al. (2013),
section 1.1]. This ensures that the weight and the delay are loaded
from the desired connectivity matrices before simulation. The
user only needs to connect the first and the last region which
will be connected with the desired atlas. It is important that the

regions in the atlas match the range of regions selected in the
model and that all regions involved are created with an index e.g.,
Brain_region_{index}.

In order to connect the two simulations on different scales,
the output of all 67 regions in the TVB super-population, which
are to be simulated in TVB, need to be connected to the Rate to
Spike translator device created before. The output of the Spike
to rate translator device must also be connected as input to the
67 regions in the TVB super-population. As mentioned before,
region 27 serves as a proxy of the NEST super-population and,
together with the translator modules, it is also used to simplify
the exchange of information between both scales. As all regions
in the TVB super-population are connected between each other
using the atlas based connectivity, including region 27, it is only
necessary to connect the output of region 27 to the Rate to Spike
translator and the output of the Spike to rate translator as input
to region 27. This way, the information exchange will be tunneled
via the proxy region 27 in TVB.

Now the user can also connect the output of the Rate to
Spike translator device as input to the excitatory and inhibitory
populations in layers 4 and 6 of the cortical microcircuit model
of the NEST super-population. The output of the excitatory
population in layer 5 is then connected to the Spike to rate
translator device (see Figure 9B).

Finally, the user can export the NeuroML file and execute
the back end tool in order to generate the simulation files
for TVB, NEST and the spike/rate translator modules. Using
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FIGURE 9 | Views of the multiscale model. (A) Establishing connectivity within the brain regions in the TVB super-population using the Atlas based connectivity. A
single connection from Brain_region_0 to Brain_region_67 is used to specify the atlas based connectivity. The connection from region 27 to the rate to spike translator
device is also visible at this step. (B) The final whole connectivity setup visualized on the right and the inside view of the cortical microcircuit model on the left.

ConGen, and using the cortical circuit model as a starting  and proxy interfaces in TVB, NEST, and the translator module
point, the user takes about five additional minutes to specify  files to enable co-simulation. The resulting files can then
the connectivity of this multiscale model. In return, the ConGen  be executed using tools from the EBRAINS co-simulation
back end inputs the specific identifiers, connectivity patterns,  framework (see the Supplementary Material section for more
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TABLE 2 | Simulator support by ConGen in different modalities: Connectivity
setup and generation by ConGen back end, connectivity setup and basic
simulator launching via ConGen back end, support for NeuroML file generated by
ConGen front end using only standard features (see Supplementary Material for
details on ConGen’s extended connectivity features), and CGI connectivity
generation through the ConGen back end.

Type of support NEST TVB EBRAINS All NeuroML
multiscale compatible
co-simulation simulators

Connectivity setup YES YES YES NO

Basic simulation launching  YES YES NO NO

Standard NeuroML YES YES YES YES

CGI compatibility YES NO NO NO

Available use cases YES YES YES NO

details). The performance of the connectivity generation is
almost identical between having a single scale model or as part
of a multiscale model. The only difference is in the connectivity
to and from the translation modules, which depends on the
co-simulation infrastructure.

3.3. Supported Simulation Engines

Even though the two use cases presented in this manuscript
focus on NEST and TVB, ConGen can be easily extended
to work with any simulator that supports the CGI. The
only requirement is that a thin interfacing file needs to be
generated to deal with importing, accessing the model data
with the simulator-specific CGI commands, and launching the
simulation. Simulation engines which support NeuroML can
directly read the file generated by the ConGen interface and use
it as a base for simulation. To summarize we provide an overview
of the different simulators supported directly or via the diverse
interfaces in Table 2.

4. DISCUSSION

ConGen provides an easy way to generate networks at different
scales, providing users the ability to visualize the relationships
between scales in independent but correlated views and in side by
side panels. As a concise but expressive visual language, ConGen
provides a new way to define and navigate complex neural
network models. The transcription of the defined circuits into
NeuroML provides independence with respect to the ultimate
choice of simulator.

The interaction offered by the ConGen’s visual front end
enables a rapid construction of neural network models through
simple contextual menus, from defining a hierarchical structure
with complex connectivity to parameterizing the neuronal and
synaptic properties. The symbolic representations of the language
synthesizes the most relevant features while eliminating less
important details. The combination of schematic representations
together with their arrangement in levels of abstraction yields
simplified views of complex models.

The two use cases presented in this work illustrate the
visual creation of connectivity in neural network models for
their subsequent integration into simulation engines. Figure 7

provides a good example of how a user can examine the different
levels of abstraction and easily identify the relationships between
the components in the network. Use case 2 illustrates new
possibilities to interact with abstractions that allow definition
of multiscale models. At the higher level (Figure8) we see
the coarse components that form the model together with the
abstract modeling components required to translate information
between scales. Figure 9A shows an alternative view of the model,
with the abstract high-level multiscale components on the left
and the whole brain scale region definition on the right. In
contrast, Figure 9B ConGen provides a more detailed view of
the cortical microcircuit region and makes the relationship to
translation and other components in the model easy to see and
manipulate by the user. One important feature of the ConGen
front end is the ability to have multiple panels concurrently
showing different hierarchical levels of the model. These panels
are connected between each other, so any actions done on one
panel are automatically reflected on the others. This is useful for
the exploration and design of multiscale models because it allows
the user to visualize propagation of model changes from lower
scales into higher scales as seen in Figure 9B.

Use case 2 provides an initial proof of concept for the
definition of multiscale models compatible with the EBRAINS
co-simulation infrastructure. The capabilities of the ConGen
back end on this area are still limited and need to be extended
to support further use cases and more complex interactions
between simulators.

When comparing ConGen to existing simulator front ends,
such as PyNN, further advantages become apparent. In PyNN,
network creation code is inherently sequential, a characteristic
that is contrary to the structure of a neuronal network. The visual
language introduced in ConGen allows for a holistic view of a
network model, which makes it easier to interpret the network
or to spot errors. Other front ends like NEST Desktop (Spreizer
et al,, 2021), the TVB framework, and the NEURON graphic
user interface (Carnevale and Hines, 2006) also allow the user to
define networks and their connectivity in a visual way but are by
definition, in contrast to ConGen, simulator-specific. We hope
that ConGen can serve to decouple the way we create network
models from the technical aspects of simulation, such as specific
execution and deployment definitions, something that projects
such as PyNN still require.

5. CONCLUSIONS AND FUTURE WORK

ConGen addresses the complexity inherent to model generation
in computational neuroscience from two perspectives. Firstly, it
supports the visualization of complex models at different scales,
allowing a reduction in the number of elements at higher scales
and thus simplifying the visual complexity present in images
with a high number of elements. Secondly, it reduces cognitive
complexity by structuring the model in hierarchical levels of
abstraction that summarize relevant features while eliminating
less important details.

Multiscale modeling is a particularly demanding branch of
computational neuroscience which exhibits a high degree of
abstraction complexity. With the second use case provided in
this manuscript we provide a proof of concept for a new visual
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approach to manage the complexity of constructing such models.
The execution of multiscale models, which is not contemplated
by the ConGen back end, has high computational demands
which can only be efficiently fulfilled by using a dedicated
framework such as the EBRAINS co-simulation infrastructure.
Further extensions of ConGen may be required to fully facilitate
current and future research in this field. With this in mind,
ConGen was designed and implemented in a modular fashion; its
integration with network definition standards allows developers
and users to extend its functionality to include other simulation
and emulation platforms (e.g., neuromorphic hardware like
SpiNNaker; Furber et al., 2014) in the future.

The current version of ConGen does not fully constrain
the modeler with regards to the types of connections it
allows between network components scales. NeuroScheme has
basic functionality to support this kind of aided connectivity
generation but it would need additional metadata for each
component to fully enable this functionality. For example, in the
case of multiscale use cases, ConGen does not have any metadata
which allows it to suggest or prevent possible connections to or
from translators or devices. Adding such metadata would be a
good extension for the future, and would further increase the
usability for beginner users.

The next step for the ConGen back end is to update
to NeuroML version 2 with LEMS. The network description
of NeuroML version 2 has a different definition of the
populations, which makes it necessary to describe cells within
populations instead of providing generic cell types for all
elements in a population. This is useful for small networks and
morphologically detailed networks, but not suitable for the large
scale networks targeted by ConGen. As discussed in the section
2, to allow generation of networks using the CSA we had to
expand on the NeuroML interface. Although there is currently
no direct way to port our work to NeuroML2, our next steps
include working with the NeuroML2 development team in order
to extend the language with at least a subset of the connectivity
patterns available in CSA such as all-to-all or one-to-one. This
will probably be implemented with a new population description
using LEMS. Another alternative is to move toward NeuroMLite
(https://github.com/NeuroML/NeuroMLlite) which is still in
development but seems to move toward standardized description
of biological and artificial networks with features which are
compatible with the ConGen goals and architecture.

Future work also involves extending the back end to
incorporate more cases for different simulators and allow
more complex models, especially for co-simulation. Plasticity
is also an important feature of connectivity that may require
new visual language concepts. The direct next extension of
ConGen is to allow plastic synapses to be defined and to
implement an interactive loop (see Figure 5), the dashed arrow
indicates the transport of simulation results back to ConGen)
where connectivity can be refreshed based on data produced
during simulation. This new step will provide a new graphic
interface to study dynamic changes in the connectivity of large
scale networks.

PyNN has evolved as a strong domain specific language for
network representation in the last years. Future work will also

involve extending NeuroScheme and the back end in order to
support PyNN as a description language. This can be achieved
through the porting to NeuroML version 2. The automatic benefit
here is that PyNN already incorporates CSA in its description and
an extension will increase the range of potential target simulators
which can benefit from the visual language proposed by ConGen.
Adding models generated by the ConGen front end to Open
Source Brain (Gleeson et al., 2019) would also be a step forward
to increase integration with current efforts in the direction of
standardization. Additionally, the ConGen back end could be
later integrated into Open Source Brain, thanks to their usage of
common standard like NeuroML and PyNN.

In summary, with this work we propose a novel simulator-
agnostic method for the definition and generation of connectivity
in multiscale neural network models. ConGen also represents a
new way to generate models which can be ported to different
simulators using NeuroML or the ConGen back end in order to
perform benchmarking and compare functional and execution
metrics between simulation engines at different scales. Using
the ConGen framework does not require any programming
experience; any scientist, regardless of background, can employ a
common visual language to express, share, study, and implement
connectivity for in-silico experimentation, in order to solve
complex questions regarding the relationships between structure
and function in the brain.
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Generic simulation code for spiking neuronal networks spends the major part of the
time in the phase where spikes have arrived at a compute node and need to be
delivered to their target neurons. These spikes were emitted over the last interval between
communication steps by source neurons distributed across many compute nodes and
are inherently irregular and unsorted with respect to their targets. For finding those
targets, the spikes need to be dispatched to a three-dimensional data structure with
decisions on target thread and synapse type to be made on the way. With growing
network size, a compute node receives spikes from an increasing number of different
source neurons until in the limit each synapse on the compute node has a unique source.
Here, we show analytically how this sparsity emerges over the practically relevant range
of network sizes from a hundred thousand to a billion neurons. By profiling a production
code we investigate opportunities for algorithmic changes to avoid indirections and
branching. Every thread hosts an equal share of the neurons on a compute node. In
the original algorithm, all threads search through all spikes to pick out the relevant ones.
With increasing network size, the fraction of hits remains invariant but the absolute
number of rejections grows. Our new alternative algorithm equally divides the spikes
among the threads and immediately sorts them in parallel according to target thread
and synapse type. After this, every thread completes delivery solely of the section of
spikes for its own neurons. Independent of the number of threads, all spikes are looked
at only two times. The new algorithm halves the number of instructions in spike delivery
which leads to a reduction of simulation time of up to 40 %. Thus, spike delivery is a
fully parallelizable process with a single synchronization point and thereby well suited for
many-core systems. Our analysis indicates that further progress requires a reduction of
the latency that the instructions experience in accessing memory. The study provides the
foundation for the exploration of methods of latency hiding like software pipelining and
software-induced prefetching.

Keywords: spiking neural networks, large-scale simulation, distributed computing, parallel computing, sparsity,
irregular access pattern, memory-access bottleneck
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Routing Spikes by Parallel Sorting

1. INTRODUCTION

Over the last two decades, simulation algorithms for spiking
neuronal networks have continuously been improved. The largest
supercomputers available can be employed to simulate networks
with billions of neurons at their natural density of connections.
The respective codes scale well over orders of magnitude of
network size and number of compute nodes (Jordan et al., 2018).
Still, simulations at the brain scale are an order of magnitude
slower than real time, hindering the investigation of processes
such as plasticity and learning unfolding over hours and days
of biological time. In addition, there is a trend of aggregating
more compute power in many-core compute nodes. This further
reduces the strain on inter-node communication as one limiting
component but increases the urgency to better understand the
fundamental operations required for routing spikes within a
compute node.

The spiking activity in mammalian neuronal networks is
irregular, asynchronous, sparse, and delayed. Irregular refers
to the structure of the spike train of an individual neuron.
The intervals between spike times are of different lengths and
unordered as if drawn from a random process. Consequently, the
number of spikes in a certain time interval also appears random.
Asynchronous means that the spikes of any two neurons occur
at different times and exhibit low correlation. The activity of
neurons is sparse in time as compared to the time constants of
neuronal dynamics; only few spikes are emitted in any second of
biological time. Last, there is a biophysical delay in the interaction
between neurons imposed by their anatomy. The delay may be
a fraction of a millisecond for neurons within a distance of a
few micrometers but span several milliseconds for connections
between brain regions (refer to Schmidt et al.,, 2018a, for an
example compilation of parameters).

The existence of a minimal delay in a network model together
with the sparsity of spikes has suggested a three-phase cycle
for an algorithm directly integrating the differential equations
of the interacting model neurons (Morrison et al., 2005). First,
communication between compute nodes occurs synchronously
in intervals of minimal delay. This communication transmits
all the spikes that have occurred on a compute node since
the last communication step to the compute nodes harboring
target neurons of these spikes. Second, the received spikes
are delivered to their target neurons and placed in spike ring
buffers representing any remaining individual delay. Finally, the
dynamical state of each neuron is propagated for the time span
of the minimal delay while the ring buffer is rotating accordingly.
Once all neurons are updated, the next communication is due and
the cycle begins anew.

Progress in each update phase is shaped by the spiking
interaction between neurons and independent of the level of
detail of the individual model neurons constituting the network.
The choice of the neuron model, however, influences the
distribution of computational load across the phases of the
simulation. Some studies require neuron models with thousands
of electrical compartments (Markram et al., 2015), and efficient
simulation codes are available for this purpose (Carnevale
and Hines, 2006; Akar et al, 2019; Kumbhar et al.,, 2019).

Here, we focus on simulation code for networks of model
neurons described by a handful of differential equations as
widely used in the computational neuroscience community.
These investigations range from studies with several thousands
of neurons on the fundamental interplay between excitation
and inhibition (Brunel, 2000) to models attempting to capture
the natural density of wiring (Potjans and Diesmann, 2014;
Billeh et al., 2020) and the interaction between multiple cortical
areas (Joglekar et al, 2018; Schmidt et al., 2018b). Previous
measurements on a production code (Jordan et al, 2018)
already show that for networks of such simple model neurons
the dominating bottleneck for further speed-up is neither the
communication between computes nodes nor the update of the
dynamical state of the neurons, but the spike-delivery phase.
The empirical finding is elegantly confirmed by an analytical
performance model encompassing different types of network and
neuron models (Cremonesi and Schiirmann, 2020; Cremonesi
etal,, 2020). These authors further identify the latency of memory
access as the ultimate constraint of the spike-delivery phase.

Profiling tools like Intel VTune provide measures on where an
application spends its time and how processor and memory are
used. Two basic measures are the total number of instructions
carried out and the number of clock ticks the processor required
per instruction (CPI). The former characterizes the amount of
computations that need to be done to arrive at the solution.
The latter describes how difficult it is on average to carry out
an individual instruction due to the complexity of the operation
and the waiting for accessing the corresponding part of memory.
The product of the two measures is the total number of clockticks
and should correlate to the wall clock time required to complete
the simulation phase under investigation. Methods of software
pipelining and software-induced prefetching attempt to improve
the CPI by better vectorization of the code or by indicating to
the processor which memory block will soon be required. These
optimizations may lead to an increase in the actual number of
instructions but as long as the product with the reduced CPI
decreases, performance is improving. Nevertheless, a low CPI
does not mean that the code is close to optimal performance.
If the code is overly complicated, for example by recalculating
known results or missing out on regularities in the data it may
underutilize data that has been retrieved from memory rendering
advanced methods of optimization fruitless. Therefore, in the
present study, as a first step, we do not consider pipelining and
prefetching but exclusively assess the number of instructions
required by the algorithm. It turns out that a better organized
algorithm indeed avoids unnecessary tests and indirections. This
decrease in the number of instructions also decreases CPI as
a side effect until with increasing sparseness of the network
CPI climbs up again. The control flow in the code becomes
more predictable for the processor until the fragmentation of
memory limits the success. The results of our study give us some
confidence that further work can now directly address improving
the CPL

In Section 2, we expose spike delivery as the present
bottleneck for the simulation of mammalian spiking neuronal
networks, characterize analytically the transition to sparsity with
growing network size, and present the original algorithm as
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well as state-of-the-art performance data. Next, we introduce the
software environment of our study and the neuronal network
model used to obtain quantitative data (Section 3). On the basis
of these preparatory sections, Section 4 presents a new algorithm
streamlining the routing of spikes to their targets. Subsequently,
Section 5 evaluates the success of the redesign and identifies
the origin of the improvement by profiling. Finally, Section 6
embeds the findings into the ongoing efforts to develop generic
technology for the simulation of spiking neuronal networks.

The conceptual and algorithmic work described here is
a module in our long-term collaborative project to provide
the technology for neural systems simulations (Gewaltig and
Diesmann, 2007). Preliminary results have been presented in
abstract form (Kunkel, 2019).

2. SPIKE DELIVERY AS MEMORY-ACCESS
BOTTLENECK

The temporally sparse event-based communication between
neurons presents a challenging memory-access bottleneck
in simulations of spiking neuronal networks for modern
architectures optimized for dense data. In the neuronal simulator
NEST (Section 3.1), which we use as reference implementation
in this study, delivery of spikes to their synaptic and neuronal
targets involves frequent access to essentially random memory
locations, rendering automatic prediction difficult and leading
to long data-access times due to ineffective use of caches. The
following subsection provides an analysis of the sparsity of
the network representation for increasing numbers of Message
Passing Interface (MPI) processes and threads. Based on this,
there follows a description of the connection data structures
and spike-delivery algorithm in the original implementation. The
final subsection provides example benchmarking data for this
state-of-the-art simulation code.

2.1. Sparsity of Network Representation

We consider a network of N neurons distributed in a round-robin
fashion across M MPI processes and T threads per process. Each
neuron receives K incoming synapses, which are represented on
the same thread as their target neuron. In a weak scaling scenario,
the computational load per process is kept constant. This implies
that the number of thread-local synapses

S = NK/(MT) (1)

does not change. The total network size, in contrast, increases
with MT. In the limit of large network sizes, each synapse on
a given thread originates from a different source neuron. This
scenario was already considered (Kunkel et al., 2014, section 2.4)
at the time to analyze the increase in memory overhead observed
with increasing sparsity. For completeness, we briefly restate this
result in the parameters used in the present work.

The probability that a synapse has a particular neuron j as
source neuron is 1/N and, conversely, the probability that the
synapse has a different source neuron is 1 — 1/N. The probability
that none of the S thread-local synapses has neuron j as a source is
py = (1 — 1/N)S. Conversely, p = 1 — py denotes the probability

that j is the source to at least one of the thread-local synapses.
Therefore, the expected number of unique source neurons of the
thread-local synapses are given by Ny = pN expanding to

NS
1—[(1—N>} N ()

which is Equation (6) of Kunkel et al. (2014). In weak scaling, MT
grows proportionally to N such that

o7 )

where they further identified the term [-] in the limit of large N as
the definition of the exponential function with argument —1 and

therefore
N, 1 SY) v
u = — exX _—— .
PATN

They confirm that the limit of Ny, is indeed S and that a fraction
¢ of Sis reached at a network size of

Ny =

Ny =

S
Ne=—. 3)
20-9)
Figure 1 illustrates the point where in weak scaling the total
network size N equals the number of thread local synapses S.
Here, the number of unique source neurons Ny of the thread-
local synapses bends. According to the definition (1) of S, here a
particular target neuron chooses its K incoming synapses from
the same total number of threads MT = K and already half
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FIGURE 1 | Expected number of unique source neurons N, (pink curve) of all
thread-local synapses as a function of the number of the MPI processes M
assuming T = 12 threads and 125, 000 neurons per MPI process in a
weak-scaling scenario; the total number of neurons N (dashed blue curve) and
number of thread-local synapses S (dashed pink horizontal line for

K = 11,250 synapses per neuron). Inset: Expected number of thread-local
synapses per unique source neuron S, = S/N,, (light pink curve). All graphs in
double logarithmic representation.
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local threads
|:||:| Y
synapse types

synapses sorted by source neuron

pool of thread-local neurons

FIGURE 2 | Memory layout of synapse and neuron representations on each
MPI process. Each process stores the local synapses (pink filled squares) in a
three-dimensional resizable array sorted by hosting thread and synapse type.
At the innermost level, synapses are arranged in source-specific target
segments (dark pink: first synapse; light pink: subsequent targets); only one
innermost array is shown for simplicity. Target neurons (blue filed squares) are
stored in neuron-type and thread-specific memory pools; only one pool is
shown for simplicity. Each neuron maintains a spike ring buffer (dotted light
blue circles). Synapses have access to their target neurons through target
identifiers (dark pink arrows).

¢ = %) of the source neurons of the thread-local synapses are
unique. The number of thread-local synapses per unique source
neuron S, indicates the sparsity of the network representation on
a compute node (inset of Figure 1). The measure converges to
one exhibiting a bend at the same characteristic point as Nj,.

2.2. Memory Layout of Synapse and

Neuron Representations

A three-dimensional resizable array stores the process-local
synapses sorted by hosting thread and synapse type (Figure 2),
where synapses are small in size, each typically taking up few
tens of Bytes. Each synapse has access to its target neuron, which
is hosted by the same MPI process and thread (Morrison et al.,
2005). The target identifier provides access either through a
pointer to the target neuron consuming 8 B or an index of 2 B
that is used to retrieve the corresponding pointer. Here, we use
the latter implementation of the target identifier reducing per-
synapse memory usage at the cost of an additional indirection
(refer to Section 3.3.2 in Kunkel et al., 2014).

In the innermost arrays of the data structure, synapses are
sorted by source neuron, which is an optimization for small
to medium scale systems (see Section 3.3 in Jordan et al,
2018) exploiting that each neuron typically connects to many
target neurons (out-degree). Thereby, synapses are arranged in
target segments, each consisting of at least one target synapse
potentially followed by subsequent targets (Section 2.1). In a
weak-scaling experiment, the increasing sparsity of the network
in the small to medium scale regime (Section 2.1) influences
the composition of the innermost array. As synapses are to an
increasing degree distributed across MPI processes and threads,

the expected number of source-specific target segments increases
while the average segment size decreases (cf. N, and S, in
Figure 1, respectively). Note that the degree of distribution also
depends on the number of synapse types, which is however not
considered in this study.

A model neuron easily takes up more than a Kilobyte of
memory. Multi-chunk memory pools enable contiguous storage
of neurons of the same type hosted by the same thread, where
due to the many-to-one relation between target synapses and
neurons, the order of memory locations of target neurons is
independent of the order of synapses in the target segments.

Synaptic transmission of spikes entails delays, which influence
the time when spikes take effect on the dynamics of the target
neurons. As typically synapses from many different source
neurons converge on the same target neuron (in-degree), it is
more efficient to jointly account for their delays in the neuronal
target. Therefore, each neuron maintains a spike ring buffer
serving as temporary storage and scheduler for the incoming
spikes (Morrison et al., 2005).

2.3. Original Spike-Delivery Algorithm

Every time all local neurons have been updated and all recent
spikes have been communicated across MPI processes, the spike
data needs to be delivered from the process-local MPI receive
buffers to the process-local synaptic and neuronal targets. Each
spike entry is destined for an entire target segment of synapses
(Section 2.2), which is an optimization for the small to medium
scale regime introduced in Jordan et al. (2018). Therefore, each
entry conveys the location of the target segment within the three-
dimensional data structure storing the process-local synapses
(Figure 2), i.e., identifiers for the hosting thread and the type of
the first synapse of the target segment, as well as the synapse’s
index within the innermost resizable array.

In the original algorithm, each thread reads through all spike
entries in the MPI receive buffer but it only proceeds with the
delivery of a spike if it actually hosts the spike’s targets - all spike
entries indicating other hosting threads are skipped. Each thread
delivers the relevant spikes to every synapse of the corresponding
target segments one by one. On receiving a spike, a synapse
transfers synaptic delay and weight to the corresponding target
neuron, where the stored target identifier provides access to the
neuron. The transmitted synaptic properties, delay and weight,
define the time and amplitude of the spike’s impact on the
neuron, respectively, allowing the neuron to add the weight of
the incoming spike to the correct position in the neuronal spike
ring buffer.

In a weak-scaling experiment, the increasing sparsity of the
network in the small to medium scale regime (Section 2.1)
influences algorithmic progression and memory-access patterns.
Access to target neurons and their spike ring buffers is
always irregular regardless of the degree of distribution of the
network across MPI processes, but memory access to synapses
become progressively irregular. The number of spike entries
communicated via MPI increases to cater to the growing
number of target segments (Section 2.2). In consequence, each
thread needs to process even more spike entries, delivering
relevant spikes to even more but shorter target segments, where
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successively visited target segments are typically in nonadjacent
memory locations. In the sparse limit where each target segment
consists of a single synapse, spike delivery to both neuronal and
synaptic targets requires accessing essentially random locations
in memory. As many synapses of different source neurons
converge on the same target neuron, it is impossible to arrange
target neurons in memory such that their order corresponds to
the order in synaptic target segments. The pseudocode in 2.3.1
summarizes this original spike-delivery algorithm.

2.3.1. Pseudocode

ORI nrn: Original Recei ve() procedure in neuron;
RB marks access to the spike ring buffer.

Data: spike_ring_buffer

Recei ve( delay, weight)
RB Lspike_ring_buﬁer.AddVal ue( delay, weight)

ORI syn: Original Send() function in synapse, which
calls the Recei ve() procedure of the target neuron
(ORI nrn) passing on synaptic properties.

Data: subsq, target_neuron, delay, weight

Send()
target_neuron.Recei ve( delay, weight)
return subsq

ORI: Original algorithm delivering spikes to local targets

with support for multi-threading, where TID denotes
the identifier of the executing thread. TS marks iteration
over a synaptic target segment. SYN marks access to an
individual target synapse (ORI syn).

Data: recv_buffer, synapses

foreach spike in recv_buffer do
(tid, syn_id, Icid) < spike.GetTargetLoc()
if tid == TID then
subsq <— true
while subsq do
L subsq < synapses|tid][syn_id][lcid].Send()

leid < lcid + 1
The original algorithm delivers spikes to the neuronal
spike ring buffers through the target synapses. Each neuron
owns a spike_ring_buffer, where the neuron member function
Recei ve() triggers the spike delivery by calling the spike ring
buffer member function AddVal ue(), which then adds the
weight of the spike to the correct position in the buffer (ORI nrn;

TS
SYN

RB). To this end, both Recei ve() and AddVal ue() require
the synaptic properties delay and weight.

Each synapse stores properties such as delay and weight, an
identifier enabling access to the target neuron (target_neuron),
and an indicator (subsq) of whether the target segment continues
or not (ORI syn). The synapse member function Send() calls
the member function Recei ve() of the target neuron passing
on the synaptic properties and returns the indicator subsq.

The original spike-delivery algorithm has access to the MPI
spike-receive buffer (recv_buffer) containing all spike entries
that need to be delivered and to a three-dimensional resizable
array of process-local synapses ordered by hosting thread and
synapse type (ORI; see Figure 2). For each spike entry, the 3D
location of the first target synapse is extracted and assigned
to the variables tid, syn_id, and Icid, which indicate hosting
thread, synapse type, and location in the innermost synapses
array, respectively. If the executing thread (TID) is the hosting
thread of the target synapse, then the variable Icid is used in
the enclosed while loop to iterate over the spike’s entire synaptic
target segment within the innermost array synapses[tid][syn_id]
(1s). To deliver a spike to the target synapse at position
lcid, the synapse member function Send() is called on
synapses|tid][syn_id][lcid] returning the indicator subsq (SYN).

2.4. Simulation Time

The work of Jordan et al. (2018) shows that spike delivery is the
dominating phase of simulation time from networks with a few
hundred thousand neurons to the regime of billions of neurons.
In the latter, the number of neurons in the network exceeds
the number of synapses represented on an individual compute
node; each synapse on a given compute node has a unique source
neuron (Section 2.1). Therefore, a neuron finds either a single
target neuron on a compute node or none at all. Assuming
a random distribution of neurons across MPI processes, the
network is fully distributed in terms of its connectivity. From this
point on, the computational costs of spike delivery on a compute
node do not change with growing network size in a weak scaling
scenario; each synapse receives spikes with a certain frequency
and all spikes come from different sources. What is still increasing
are the costs of communication between the compute nodes.
Nevertheless, for smaller networks below the limit of sparsity,
Jordan et al. (2018) provide optimizations (their section 3.3)
exploiting the fact that a spike finds multiple targets on a compute
node. This reduces both communication time and spike-delivery
time, but the effect vanishes in the limit (as shown in Figure 7C
in Jordan et al., 2018; 5g-sort) where the code continues to scale
well with the maximal but invariant costs of spike delivery.

The network model of Jordan et al. (2018) exhibits spike-
timing dependent plasticity in its synapses between excitatory
neurons. The spike-delivery phase calculates the plastic changes
at synapses because synaptic weights only need to be known
when a presynaptic spike is delivered to its target (Morrison
et al., 2007a). Depending on the specific plasticity rule, these
computations may constitute a considerable fraction of the total
spike delivery time. Therefore, from the data of Jordan et al.
(2018), we cannot learn which part of the spike-delivery time
is due to the calculation of synaptic plasticity and which part is
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due to the actual routing of spikes to their targets. In order to
disentangle these contributions, the present study uses the same
network model but considers all synapses as static (Section 3.2).

Figure 3 shows a weak scaling of our static neuronal network
model across the critical region where sparsity has not yet
reached the limit. This confirms that even in the absence of
synaptic plasticity spike delivery is the dominant contribution to
simulation time independent of the number of MPI processes.
The network on a single MPI process roughly corresponds to
the smallest cortical network in which the natural number of
synapses per neuron and the local connection probability of 0.1
can simultaneously be realized (Potjans and Diesmann, 2014).
While our weak scaling conserves the former quantity, the latter
drops. In the regime from 2 to 512 MPI processes, the absolute
time required for spike delivery almost quadruples (factor of 3.9).
Beyond this regime, the relative contribution of spike delivery
to simulation time drops below 50% because the time required
for communication is increasing. The absolute time for neuronal
update remains unchanged throughout as the number of neurons
per MPI process is fixed.

3. BENCHMARKING FRAMEWORK

3.1. Simulation Engine

Over the past two decades, simulation tools in computational
neuroscience have increasingly embraced a conceptual
separation of generic simulation engines and specific models of
neuronal networks (Einevoll et al., 2019). Many different models
can thus be simulated with the same simulation engine. This

800 1 [ total sim time |
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= [ spike delivery
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FIGURE 3 | Contributions to the simulation time (sim time) for spiking neural
network simulations with NEST (Section 3.1) where the number of MPI
processes increases proportionally with the total number of neurons.
Weak-scaling experiment running 2 MPI processes per compute node and 12
threads per MPI process, with a workload of 125, 000 neurons per MPI
process (network model see Section 3.2). The network dynamics is simulated
for 1 s of biological time; spikes are communicated across MPI processes
every 1.5 ms. Time is spent on spike delivery (red bars), communication of
spike data (yellow bars), neuronal update (green bars), and total sim time
(black outline). Error bars (for most numbers of MPI processes hardly visible)
indicate the SD over three repetitions. Timings obtained via manual
instrumentation of the respective parts of the source code, measured on
JURECA CM (Section 3.3).

enables the community to separate the life cycle of a simulation
engine from those of specific individual models and to maintain
and further develop simulation engines as an infrastructure.
Furthermore, this separation is useful for the cross-validation of
different simulation engines.

One such engine is the open-source community code NEST!
(Gewaltig and Diesmann, 2007). The quantitative analysis of the
state-of-the-art in the present study is based on this code and
alternative concepts are evaluated in its software framework. This
ensures that ideas are immediately exposed to the complications
and legacy of real-world code. NEST uses a hybrid between an
event-driven and a time-driven simulation scheme to exploit that
individual synaptic events are rare whereas the total number
of spikes arriving at a neuron is large (Morrison et al., 2005).
Neurons are typically updated every 0.1 ms and spike times are
constrained to this time grid. For high-precision simulations,
spikes can also be processed in continuous time (Morrison
et al., 2007b; Hanuschkin et al., 2010). In contrast, synapses are
only updated when a spike is arriving from the corresponding
presynaptic neuron. The existence of a biophysical delay in the
spiking interaction between neurons enables a global exchange of
spike data between compute nodes in intervals of minimal delay.
The data structures and algorithms for solving the equations
of neuronal networks of natural size (Morrison and Diesmann,
2008; Helias et al., 2012; Kunkel et al., 2012, 2014; Jordan et al.,
2018) as well as technology for network creation (Ippen et al.,
2017) and the language interface (Eppler et al.,, 2009; Zaytsev
and Morrison, 2014; Plotnikov et al., 2016) are documented
and discussed in the literature in detail. For the purpose of the
present study, it suffices to characterize the main loop of state
propagation (Section 1) and concentrate on the details of spike
delivery (Section 2).

Besides spikes, NEST supports gap junctions (Hahne et al.,
2015; Jordan et al., 2020) as a further biophysical mechanism of
neuronal interaction. To allow modeling of mechanisms affecting
network structure on longer time scales, NEST implements
models of neuromodulated synaptic plasticity (Potjans et al.,
2010), voltage-dependent plasticity (Stapmanns et al., 2021),
and structural plasticity (Diaz-Pier et al., 2016). For the
representation of more abstract network models, NEST, in
addition, supports binary neuron models (Grytskyy et al., 2013)
and continuous neuronal coupling (Hahne et al., 2017) for rate-
based and population models.

The present work is based on commit 059fe89 of the NEST
2.18 release.

3.2. Network Model

As earlier studies on neuronal network simulation technology
(latest Jordan et al., 2018), we use a generic model of mammalian
neuronal networks (Brunel, 2000) for measuring and comparing
proposed algorithmic modifications. The model description and
parameters are given in parameter Tables 1-3 of Jordan et al.
(2018), and Section 2.4 gives an overview of performance for
state-of-the-art code. A figure illustrating the structure of the

Uhttps://www.nest-simulator.org
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model is part of the NEST user-level documentation?. The sole
difference of the investigated model with respect to previous
studies is the restriction to static synapses for excitatory-
excitatory connections. These synapses have a fixed weight
whereas in former studies they exhibited spike-timing dependent
plasticity (Morrison et al., 2007a).

The network is split into two populations: excitatory (80%)
and inhibitory neurons (20%). These are modeled by single-
compartment leaky-integrate-and-fire dynamics with alpha-
shaped postsynaptic currents. Parameters are homogeneous
across all neurons. Each neuron receives a fixed number of
excitatory and inhibitory connections with presynaptic partners
randomly drawn from the respective population. Thus, every
neuron has 11,250 incoming and, on average, 11,250 outgoing
synapses, independent of the network size. Inhibitory synapses
are stronger than excitatory synapses to ensure the stability of
the dynamical state of the network. The simulation of 10 ms of
biological time, called the init phase, is followed by the further
simulation of 1 s of biological time. The former initiates the
creation and initialization of data structures that are unchanged
in the simulation of subsequent time stretches. The measured
wall-clock time of the latter, called the simulation phase, is
referred to as “sim time.” The mean firing rate across all network
sizes considered in this study is 7.56 Hz with a SD of 0.1 Hz.

3.3. Systems

The JURECA Cluster Module (JURECA CM) and the K
computer are already specified in Jordan et al. (2018), their
characteristics are repeated here in the same words for
completeness except the renaming of JURECA to JURECA CM
after the addition of a booster module not used here. JURECA
CM (Krause and Thornig, 2018) consists of 1,872 compute nodes,
each housing two Intel Xeon E5-2680 v3 Haswell CPUs with 12
cores each at 2.5 GHz for a total of 1.8 PFLOPS. Most of the
compute nodes have 128 GB of memory available. In addition,
75 compute nodes are equipped with two NVIDIA K80 GPUs,
which, however, are not used in this study. The nodes are
connected via Mellanox EDR Infiniband.

Dynamical Exascale Entry Platform-Extreme Scale
Technologies (DEEP-EST)* is an EU project exploring the
usage of modular supercomputing architectures. Among other
components, it contains a cluster module (DEEP-EST CM)
tuned for applications requiring high single-thread performance
and a modest amount of memory. The module consists of one
rack containing 50 nodes, each node hosting two Intel Xeon
Gold 6146 Skylake CPUs with 12 cores each. The CPUs run
at 3.2 GHz and have 192 GB RAM. In total, the system has
45 TFLOPS and aggregates 45 TB of main memory. The system
uses Mellanox InfiniBand EDR (100 GBps) with fat tree topology
for communication.

Both on JURECA CM and DEEP-EST CM, we compile the
application with OpenMP enabled using GCC and link against
ParaStationMPI for MPI support. In our benchmarks, to match
the node architecture, we launch 2 MPI processes each with 12

Zhttps://nest-simulator.readthedocs.io
Shttps://www.deep-projects.eu

threads on every node and bind the MPI processes to sockets
using - - cpu_bi nd=socket s to ensure that the threads of
each process remain on the same socket.

The K computer (Miyazaki et al., 2012) features 82,944
compute nodes, each equipped with an 8-core Fujitsu SPARC64
VIIIfx processor operating at 2 GHz, with 16 GB RAM per
node, leading to a peak performance of about 11.3 PFLOPS
and a total of 1,377 TB of main memory. The compute
nodes are interconnected via the “Tofu” (“torus connected full
connection”) network with 5 GBps per link. The K computer
supports hybrid parallelism with OpenMP (v3.0) at the single
node level and MPI (v2.1) for inter-node communication.
Applications are compiled with the Fujitsu C/C++ Compiler and
linked with Fujitsu MPIL. Each node runs a single MPI process
with 8 threads.

3.4. Software for Profiling and Workflow

Management

Optimizing software requires the developer to identify critical
sections of the code and to guarantee identical initial conditions
for each benchmark. This is all the more true in the
field of simulation technology for spiking neuronal networks.
Despite the advances (Schenck et al., 2014; Cremonesi, 2019;
Cremonesi and Schiirmann, 2020; Cremonesi et al., 2020)
in the categorization of neuronal network applications and
the identification of bottlenecks, performance models are not
yet sufficiently quantitative and fundamental algorithms and
data structures are evolving. Therefore, the field still relies on
exploration and quantitative experiments. The present work
employs the profiling tool VTune to guide the development
as well as the benchmarking environment JUBE for workflow
management. In addition, the NEST code contains manual
instrumentation to gather the cumulative times spent in the
update, communicate, and deliver phases and to determine the
total simulation time.

3.4.1. VTune

VTune Profiler* is a proprietary performance analysis tool
developed by the company Intel providing both a graphical user
interface and a command-line interface. It collects performance
statistics across threads and MPI processes while the application
is running. VTune supports different analysis types instructing
the profiling program executing the application to focus on
specific characteristics. From the rich set of statistical measures,
we select only three basic quantities: Instructions Retired,
Clockticks, and Clockticks per Instructions Retired (CPI). The
Instructions Retired show the total number of completed
instructions, while the CPI is the ratio of unhalted processor
cycles (clockticks) relative to the number of instructions retired
indicating the impact of latency on the application’s execution.

3.4.2. JUBE

Documenting and reproducing benchmarking data requires the
specification of metadata on the computer systems addressed and
metadata on the configurations for compiling the application,

“https://software.intel.com/vtune
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for running the simulations, and for evaluating the results. The
Jillich Benchmarking Environment (JUBE) *(Liihrs et al., 2016)
is a software suite developed by the Jiilich Supercomputing
Centre. We employ JUBE to represent all metadata of a particular
benchmark by a single script.

4. REDESIGN OF SPIKE-DELIVERY
ALGORITHM

The algorithmic redesign concentrates on the initial part of
spike delivery and access to the spike ring buffers. The initial
part of the original algorithm (Section 2.3) does not fully
parallelize the sorting of spike events according to the target
thread (Section 4.1). Furthermore, access to the spike ring
buffers is hidden from the algorithm as the buffer is considered
an implementation detail of the object representing a neuron
(Section 4.2). Acronyms given in the titles of the subsections label
the specific modifications for brevity and serve as references in
pseudocode and figures.

4.1. Streamlined Processing of Spike
Entries (SRR)

In the original spike-delivery algorithm (Section 2.3), each thread
needs to read all spike entries in the MPI receive buffer, even
those not relevant for its thread local targets, causing an overhead
per spike entry, and hence per process-local synaptic target
segment. Moreover, for each relevant spike entry, the thread
hosting the targets needs to identify the correct innermost array
in the three-dimensional resizable array storing the process-
local synapses (Figure 2) based on the synapse-type information
provided by the spike entry. This entails additional per target-
segment overhead.

To address these issues, we adapt the original spike-delivery
algorithm such that instead of directly dispatching the data from
the receive buffer to the thread-local targets, we introduce a
two-step process: First, the threads sort the spike entries by
hosting thread and synapse type in parallel, and only then the
threads dispatch the spikes, now exclusively reading relevant
spike entries. To this end, we introduce a new data structure
of nested resizable arrays, called spike-receive register (SRR),
where each thread is assigned its own domain for writing. After
each spike communication, a multi-threaded transfer of all spike
entries from the MPI receive buffer to the spike-receive register
takes place: each thread reads a different section of the entire
receive buffer and transfers the entries to their SRR domains.
The domains are in turn organized into separate resizable arrays,
one per hosting thread. Nested resizable arrays enable the further
sorting by synapse type. In this way, each element of the MPI
receive buffer is read only once and spike entries are immediately
sorted. This allows for a subsequent multi-threaded delivery of
spikes from the spike-receive register to the corresponding target
synapses and neurons such that all spike entries are exclusively
read by their hosting thread. At this point, all a hosting thread
has to do is to sequentially work through every resizable array

Shttps://www.fz-juelich.de/jsc/jube

exclusively prepared for it in the sorting phase. The additional
sorting by synapse type allows the hosting thread to deliver all
spikes targeting synapses of the same type in one pass.

4.2. Exposure of Code Dependencies

(P2RB)

In the original spike-delivery algorithm (Section 2.3), the target
synapse triggers the delivery of a spike to its target neuron,
which then adds the spike to its spike ring buffer. For the
entire spike-delivery process, this results in alternating access to
target synapses and target neurons, or more precisely, the target
neurons’ spike ring buffers. As synapses store the target identifiers
and other relevant information, access to a target synapse is a
precondition for access to its target neuron.

In order to expose this code dependency, we separate the two
delivery steps: spike delivery to target synapse and corresponding
target neuron are now triggered sequentially at the same call-
stack level. Moreover, instead of storing a target identifier,
each synapse now stores a pointer to the target neuron’s spike
ring buffer allowing for direct access when delivering a spike.
Therefore, the quantitative analysis (Section 5.1) refers to this
set of optimizations as P2RB as an acronym for “pointer to ring
buffer”.

4.3. Pseudocode

SRR+P2RB syn: Adapted Send() function in synapse,

which returns the pointer to the spike ring buffer of
the target neuron (target_rb) owned by the synapse and
the synaptic properties required for spike delivery to the
target neuron.

Data: subsq, target_rb, delay, weight

Send()
Lreturn (subsq, target_rb, delay, weight)

The pseudocode SRR+P2RB illustrates the changes to the
original spike-delivery algorithm (ORI) resulting from the two
new algorithms SRR (Section 4.1) and P2RB (Section 4.2).

Instead of a target-neuron identifier, each synapse now owns
a pointer (target_rb) to the neuronal spike ring buffer. The
synapse member function Send() returns the pointer and the
synaptic properties delay and weight in addition to the indicator
subsq (SRR+P2RB syn). This allows the algorithm to directly call
AddVal ue() on the spike ring buffer (SRR+P2RB; RB) after
the call to the synapse member function Send() (SYN). The
Recei ve() member function of the target neuron (ORI nrn) is
no longer required. Additionally, the algorithm now makes use of
a spike receive register (spike_reg) for a preceding thread-parallel
sorting of the spike entries from the MPI receive buffer by hosting
thread (tid) and synapse type (syn_id), where each thread writes
to its private region of the register (spike_reg[TID]). Spikes are
then delivered from the spike receive register instead of the MPI
receive buffer, where each thread processes only those regions

Frontiers in Neuroinformatics | www.frontiersin.org

54

March 2022 | Volume 15 | Article 785068


https://www.fz-juelich.de/jsc/jube
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Pronold et al.

Routing Spikes by Parallel Sorting

SRR+P2RB: Detailed reference algorithm delivering
spikes to local targets with support for multi-threading,
where TID denotes the identifier of the executing thread.
TS marks iteration over a synaptic target segment. SYN
marks access to an individual target synapse (SRR+P2RB
syn); RB marks access to the spike ring buffer of the
corresponding target neuron. Based on ORI.

Data: recv_buffer, synapses, spike_reg

parallel foreach spike in recv_buffer do
(tid, syn_id, Icid) < spike.GetTargetLoc()
B spike_reg[ TID][tid][syn_id].PushBack ( spike)

for syn_id <— 0 to MAX_SYN_ID do

for tid < 0 to MAX_TID do

foreach spike in spike_reg[tid][TID][syn_id] do
lcid < spike.lcid

subsq < true

TS while subsq do
SYN (subsq, target_rb, d, w) <
synapses[TID][syn_id][lcid].Send()
lcid < Icid + 1
RB target_rb.AddVal ue( d, w)

of the register that contain spike entries for thread-local targets
(spike_reg[tid][TID] for all possible tid).

5. RESULTS

The new data structures and algorithms of Section 4 can be
combined because they modify different parts of the code. As
the efficiency of the optimizations may depend on the hardware
architecture, we assess their performance on three computer
systems (Section 5.1). Subsequently, we investigate in Section 5.2
the origin of the performance gain by evaluating the change in the
total number of instructions required and the average number of
clockticks consumed per instruction.

5.1. Effect of Redesign on Simulation Time
We select three computer systems for their differences in
architecture and size (Section 3.3) to measure simulation
times for a weak scaling of the benchmark network model
(Section 3.2). The number of neurons per MPI process is
significantly larger on the DEEP-EST CM and the JURECA
CM (125,000) than on the K computer (18,000) making use
of the respectively available amount of memory per process.
On all three systems, we observe a relative reduction in
simulation time by more than 30% (Figure 4) for the combined
optimizations compared to the original code (ORI, Section 2.3).
This includes the removal of a call to a function named
set _sender _gi d() from the generic spike delivery code
(noSSG). This function attaches identifying information about
the source of the corresponding spike which is only required
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FIGURE 4 | Cumulative relative change in simulation time after a redesign of
spike delivery as a function of the number of MPI processes M. Top left panel
DEEP-EST CM and top right panel JURECA CM: linear-log representation for a
number of MPI processes M € {2; 4; 8; 16; 32; 64, 90} and

M e {2; 4; 8; 16; 32; 64; 128; 256; 512; 1024}, respectively. Weak scaling
of benchmark network model with the same configuration as in Figure 3; error
bars show SD based on 3 repetitions. Bottom panel K computer: number of
MPI processes M € {32; 64; 128; 256; 512; 1024; 2048; 4096;

8192; 16,384; 32,768; 82,944}, gray dotted curve: M € {32; 2048;

32, 768}. Weak scaling with different configurations (1 MPI process per
compute node; 8 threads per MPI process; 18,000 neurons per MPI process).
The black dotted line at zero indicates the performance of the original code
(ORI, Section 2.3). The light carmine red curve indicates a change in sim time
(shading fills area to reference) due to sorting of spike entries prior to delivery
(SRR, Section 4.1). The dark carmine red curve indicates an additional change
in sim time due to providing synapses with direct pointers to neuronal spike
ring buffers (P2RB, Section 4.2). The dashed brown curve shows an additional
change in sim time after removal of an unrequired generic function call
(noSSG). Gray dotted curve indicates a hypothetical limit to the decrease in

sim time assuming spike delivery takes no time.

by specific non-neuronal targets such as recorders. However,
it causes per-target-segment overhead in all simulations. The
functionality can hence be moved to a more specialized part
of the code, e.g., the recorder model, and thereby regained if
required. The DEEP-EST CM hardly benefits from the removal
of the call but the batchwise processing of target segments has an
increasing gain reaching 20% at 90 MPI processes. On JURECA
CM, the function call does limit the performance and its removal
alone improves the performance by 20% for large numbers of
MPI processes. Across systems and a number of MPI processes,
the combined optimizations lead to a sustained reduction in
simulation time.

The new data structures and algorithms address the spike-
delivery phase only, but an optimization can only reduce
simulation time to the extent the component of the code
to be optimized contributes to the total time consumed as
indicated by the limiting curve in Figure4. In the neuronal
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network simulations considered here, the delivery of spikes
from MPI buffers to their targets consumes the major part of
simulation time. Initially, spike delivery takes up 80% of the
simulation time for the DEEP-EST CM and the JURECA CM
and 70% for the K computer, but on all three systems, the
relative contribution decreases with an increasing number of
MPI processes. Under weak scaling into regimes beyond 1,024
MPI processes, the absolute time required for spike delivery also
initially grows but converges as the expected number of thread-
local targets per spike converges to one (cf. Jordan et al., 2018).
Although spike-delivery time increases throughout the entire
range of MPI processes on DEEP-EST CM and JURECA CM,
the relative contribution to simulation time declines because
the time required by communication between MPI processes
increase more rapidly (for JURECA CM data cf. Figure 3).

P2RB increases the size of synapse objects by introducing an
8 B pointer to the neuronal spike ring buffer replacing the 2 B
local neuron index of the original algorithm (Section 2.3). We
hypothesize that this increase underlies the declining success
and ultimately disadvantageous effect observed on JURECA
CM. Control simulations using the original code but with an
artificially increased object size confirm this hypothesis (data not
shown).

5.2. Origin of Improvement

The new data structures and algorithms realize a more fine-
grained parallelization and avoid indirections in memory
accesses (Section 4). These changes significantly speed up the
application (Figure 4) across architectures and network sizes. In
order to understand the origin of this improvement, we employ
the profiling tool VTune (Section 3.4.1) which gives us access
to the CPU’s microarchitectural behavior. In the analysis, we
concentrate on the total number of instructions executed and the
clockticks per instruction retired (CPI).

The total number of instructions decreases by close to 50%
on all scales. Nevertheless, the contribution of noSSG to the
reduction in the number of instructions becomes larger as
this algorithm removes code which is called for every target
segment. The number of target segments, however, increases
with the number of MPI processes until a limit is asymptotically
approached (Figure 1).

For small problem sizes, the CPI decreases when compared
against the baseline (SRR+P2RB), but at around 32 MPI
processes, the instructions start to consume more clockticks
than in the original algorithm (Figure5). This behavior is
apparent on DEEP-EST CM as well as JURECA CM where the
additional noSSG optimizations improve performance slightly.
We interpret this observation as follows. Initially the more
orderly organization of memory enables a shorter latency in
memory access. At larger network sizes, CPI is dominated by
memory access to the fragmented target segments and this
dominance is more pronounced as the new code spends fewer
instructions on reading the receive buffer.

Taken individually, the two metrics alone are not sufficient
for explaining the decrease in simulation time (Figure 4). The
product of the number of instructions retired and CPI expresses
their interplay and reduces to the total number of clockticks
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FIGURE 5 | Relative change in instructions retired (top row), clockticks per
instruction retired (CPI, middle), and clockticks (bottom) during spike delivery
for P2RB (including SRR as in Figure 4), and noSSG as a function of the
number of MPI processes. Raw data for all three quantities was obtained by
VTune (Section 3.4.1). Left column DEEP-EST CM and right column JURECA
CM: linear-log representation for number of MPI processes
M e {2; 4; 8; 16; 32; 64; 90} and M € {2; 4; 8; 16; 32; 64;
128; 256; 512}, respectively. Black dotted line at zero percent (ORI,
Section 2.3) indicates the performance of the original code. Weak scaling of
benchmark network model as in Figure 4.

required. Thus, this product is a quantity that directly relates
to the separately measured sim time. Indeed, the comparison
of this measure, depicted in Figure5, with Figure4 shows
that the product qualitatively explains the change in sim
time. While CPI increases beyond the baseline, the growth
in sim time is slowed down by having fewer instructions
in total.

6. DISCUSSION

Our investigation characterizes the dominance of the spike-
delivery phase in a weak-scaling scenario for a typical random
network model (Section 2.4). At small to medium network
sizes, spike delivery is the sole major contributor to simulation
time. Only if thousands of compute nodes are involved,
communication between nodes becomes prominent (Figure 3)
while spike delivery remains the largest contributor (Jordan et al.,
2018). The absolute time spent on spike delivery is dominating
for small networks and grows with increasing network size. The
reason for this is that the random network under study takes into
account that in the mammalian brain a neuron can send spikes
to more than ten-thousand targets. With increasing network
size, these targets are distributed over more and more compute
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nodes until in the limit a neuron either finds a single target on
a given compute node or more likely none at all. As the number
of synapses a compute node represents is invariant under weak
scaling, the node needs to process an increasing number of spikes
from different source neurons. For the simulation parameters in
this study, the expected number of unique source neurons and
thereby absolute costs approach the limit when the network is
distributed across thousands of compute nodes (Section 2.1) thus
also limiting the costs of spike delivery.

In spike delivery, a thread inspects all spikes arriving at the
compute node. If the thread hosts at least one target neuron
of a spike, the thread needs to access a three-dimensional data
structure (Figure 2) to activate the corresponding synapses and
ultimately under consideration of synapse specific delays place
the spike in the ring buffers of the target neurons. The present
work investigates whether an alternative algorithm can reduce
the number of instructions and decisions when handling an
individual spike. The hypothesis is that a more compact code
and more predictable control flow allows modern processors
a faster execution. On purpose, no attempt is made to apply
techniques like hardware prefetching or software pipelining to
conceptually separate improvements of the logic of the algorithm
from further optimizations that may have a stronger processor
dependence. Nevertheless, we hope that the insights of the
present work provide the basis for any future exploration of
these issues.

The first step in our reconsideration of the spike-delivery
algorithm is to look at the initial identification of the relevant
spikes for each thread. Originally, each thread inspects all spikes.
This means that the algorithms perform many read operations
on spikes without further actions and that their proportion
increases with an increasing number of threads per compute
node. The alternative algorithm which we refer to as SRR
(Section 4.1) carries out a partial sorting of the spikes. Each
thread is responsible for an equally sized chunk of the incoming
spikes and sorts them into a data structure according to the
thread on which the target neuron resides and according to
the type of the target synapse. Once all threads have completed
their work, they find a data structure containing only relevant
spikes and complete the spike delivery entirely independently
from the other threads. This already leads to a reduction of
simulation time between 10 and 20 % on the three computer
systems tested while the detailed development of this fraction
differs with network size.

As a second step, we remove an indirection originating
in the initial object oriented design of the simulation code.
Following the concept of describing entities of nature by
software objects, neurons became objects receiving and emitting
spikes and neuronal spike ring buffers an implementation
detail of no relevance for other components. As a consequence
when a neuron object receives a spike it needs to decide in
which ring buffer to place the spike, for example, to separate
excitatory from inhibitory inputs, and delegate this task to the
respective buffer. Our alternative algorithm (P2RB, Section 4.2)
exposes the corresponding spike ring buffer to the synapse
at the time of network construction. The synapse stores the
direct pointer and no further decision is required during

simulation. This change further reduces simulation time by 10
to 20 %.

One computer system (JURECA CM) shows a pronounced
decline in the computational advantage of the combined new
algorithm (SRR+P2RB) for large network sizes, which in the
case of P2RB, we assume to be due to an increase in synaptic
memory footprint. An additional optimization removing a
generic function call that enriches spike events by information
on the identity of the source neuron mitigates the loss in
performance. As this functionality is not required for the
interaction between neurons, we moved the function to a more
specialized part of the code (noSSG, Section 5.1).

The  achievement of the combined algorithm
(SRR+P2RB+n0SSG) needs to be judged in light of the potential
maximum gain. For small networks, spike delivery consumes 70
to 80 % of simulation time, depending on the computer system,
while this relative contribution declines with growing network
sizes as communication becomes more prominent. Thus, the
streamlined processing of spikes reduces spike delivery by 50 %
largely independent of network size. In conclusion, with the
new algorithm, spike delivery still substantially contributes to
simulation time.

In the small to medium scale regime (DEEP-EST CM,
JURECA CM), the new code gains its superiority from executing
only half of the number of instructions of the original
implementation (Section 5.2). The reduction becomes slightly
larger with increasing network size. This is plausible as for a given
thread, the algorithm avoids processing a growing number of
irrelevant spikes (SRR). As the number of synapses per compute
node is fixed, but neurons have a decreasing number of targets
per compute node, the number of relevant spikes increases.
Therefore, decreasing the number of function calls per spike has
an increasing benefit.

The picture is less clear for the average number of clockticks
required to complete an instruction (Section 5.2). For small
networks, the new algorithms exhibit an advantage. However,
with increasing network size, eventually more clockticks per
instruction are required than by the original algorithm.
Nevertheless, these latencies are hard to compare as the new
algorithm executes only half of the instructions and may
therefore put memory interfaces under larger stress. This result
already indicates that methods of latency hiding may now be
successful in further reducing spike-delivery time. The product
of the number of instructions and the clockticks per instruction
gives an estimate of the total number of clockticks required. The
observed stable improvement across all network sizes confirms
the direct measurements of simulation time.

Faster simulation can trivially be achieved by reducing the
generality of the code or by reducing the accuracy of the
simulation. While the SRR optimization does not touch the
code of individual neuron or synapse models, a critical point
in the P2RB optimization with regard to code generality is
the replacement of the target identifier in the synapse object
(Section 2.3) by a pointer to the corresponding spike ring buffer.
Synaptic plasticity is the biological phenomenon by which the
strength of a synapse changes in dependence on the spiking
activity of the presynaptic and the postsynaptic neuron. This is
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one of the key mechanisms by which brains implement system-
level learning. For a wide class of models of synaptic plasticity,
it is sufficient to update the synaptic weight when a presynaptic
spike arrives at the synapse (Morrison et al., 2008; Stapmanns
et al., 2020). However, at this point in time, the synapse typically
needs to inspect a state variable of the postsynaptic neuron or
even retrieve the spiking history of the postsynaptic neuron since
the last presynaptic spike. This information is only available
in the neuron, not in the spike ring buffer. Still, generality is
preserved as in the reference simulation engine (Gewaltig and
Diesmann, 2007) synapses are not restricted to a single strategy
for accessing the target neuron or its spike ring buffer. A static
synapse can implement the P2RB idea while a plastic synapse
stays with the target identifier from which the state of the neuron,
as well as the spike ring buffer, can be reached. But in this way, a
plastic synapse does not profit from the advantages of P2RB at
all. There are two alternatives. First, the spike ring buffer can be
equipped with a pointer to the target neuron. This requires an
indirection in the update of the synapse but still avoids the need
to select the correct ring buffer during spike delivery. Second,
the synapse can store both a target identifier and a pointer to
the ring buffer. This removes the indirection for the price of
additional per-synapse memory usage. There are no fundamental
limitations preventing us from making both solutions available
to the neuroscientist via different synapse types. In fact, this
strategy is currently in use, for example, to provide synapse
types with different target identifiers either consuming less
memory or requiring fewer indirections (Section 2.2), where
template-based solutions prevent the duplication of entire model
codes. Users can thus select the optimal synapse-type version
depending on the amount of memory available. However,
making multiple versions of the same model available reduces
the user-friendliness of the application. A domain specific
language like NESTML (Plotnikov et al, 2016) may come
to the rescue here generating more compact or faster code
depending on hints of the neuroscientists to the compiler.
This idea could be extended to other parts of the simulation
cycle where further information is required to decide on a
suitable optimization.

The incoming spike events of a compute node specify the
hosting thread as well as the location of the synaptic targets,
but they are unsorted with respect to the hosting thread and
synapse type. Nevertheless, the present work shows that the
processing of spikes can be completely parallelized requiring only
a single synchronization between the threads at the point where
the spikes are sorted according to target thread and synapse
type, which is when all spikes have been transferred from the
MPI receive buffer into the novel spike-receive register. This
suggests that spike delivery fully profits from a further increase
in the number of threads per compute node. Although here we
concentrate on compute nodes with an order of ten cores per
processor, we expect that the benefits of parallelization extend to
at least an order of magnitude more cores, which matches recent
hardware developments. The scaling might still be limited by the
structure of the spike-receive register having separate domains
for each thread writing spike data from the MPI spike receive

buffer to the register. If the same number of spikes is handled
by more threads, the spikes are distributed to more domains of
the register such that during the actual delivery from the register
to the thread-local targets each thread needs to collect its spikes
from more memory domains.

The local processing of a compute node is now better
understood and for large networks, the communication
between nodes begins to dominate simulation time already
for the machines investigated here. Current chip technology is
essentially two-dimensional in contrast to the three-dimensional
organization of the brain and parallelization in the brain
is more fine grained. Inside, a compute node technology
compensates for these advantages by communication over
buses. After substantially reducing the number of instructions,
we see indications that memory latency is a problem when
spikes from many sources need to be processed. Therefore,
it remains to be seen whether techniques of latency hiding
can further push the limits imposed by the von Neumann
bottleneck. Any neuromorphic hardware based on compute
nodes communicating by a collective spike exchange in fixed
time intervals needs to organize routing of the spikes to
target neurons. The ideas presented in the present study on
streamlining this process by partial parallel sorting may help
in the design of adequate hardware support. However, between
compute nodes, the latency of state-of-the-art inter-node
communication fabrics is likely to be the next limiting factor
for simulation. A possible approach to mitigate this problem
is the design of dedicated neuromorphic hardware explicitly
optimized for communication. The SpiNNaker project (Furber
et al., 2013; Furber and Bogdan, 2020), for example, follows an
extreme approach by routing packets with individual spikes to
the respective processing units.

Part of the improvements in performance this study achieved
come at the price of an increase in the number of lines of code and
an increase in code complexity. In general, one needs to weigh the
achieved performance improvements against detrimental effects
on maintainability. This is particularly relevant for a community
code like the one under consideration, in which experienced
developers are continuously replaced by new contributors.
Highly optimized code may be more difficult to keep up to
date and adjust to future compute node architectures. Next to
conceptual documentation of optimization to core algorithms,
code generation, as explored in the NESTML project (Plotnikov
et al, 2016), may be come part of a strategy to reduce
this friction between performance and code accessibility. A
domain specific language lets a spectrum of users concentrate
on the formal description of the problem while experienced
developers make sure the generator produces optimized code,
possibly even adapted to specific target architectures. Until
simulations are fast enough to enable the investigation of
plastic networks at natural density we have to find ways to
cope with increasing complexity of the algorithms and their
respective implementations.

Over the last two decades, studies on simulation technology
for spiking neuronal networks regularly report improvements
in simulation speed on the order of several percent and
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improved scaling compared to the state-of-the-art technology.
The stream of publications on simulation technology in the
field shows that there was and still is room for substantial
improvements. Nevertheless, at first sight, it seems implausible
that over this time span no canonical algorithm has emerged
and progress shows no sign of saturation. The solution to this
riddle is that new articles tend to immediately concentrate
on the latest available hardware and are interested in their
limits in terms of network size. This is driven by the desire
of neuroscience to overcome the limitations of extremely
downscaled models and arrive at a technology capable of
representing relevant parts of the brain. Moreover, investigations
of novel models in computational neuroscience have a life-cycle
of roughly 5 years, the same time scale at which supercomputers
are installed and decommissioned. Thus, both representative
network models and the hardware to simulate them are in flux,
which makes comprehensive performance studies difficult. The
software evolution of spiking network simulation code is largely
unknown and the community may profit from a review exposing
dead ends and volatile locations of the algorithm. For more
systematic monitoring of technological progress, the community
needs to learn how to establish and maintain reference models
and keep track of benchmarking data and their respective
metadata.

The present study streamlines the routing of spikes in a
compute node by a fully parallel partial sorting of incoming
spikes and refactoring of the code. This halves the number
of instructions for this phase of the simulation and leads to
a substantial reduction in simulation time. We expect that
our work provides the basis for the successful application of
techniques of latency hiding and vectorization.
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Learning and development in real brains typically happens over long timescales, making
long-term exploration of these features a significant research challenge. One way to
address this problem is to use computational models to explore the brain, with Spiking
Neural Networks a popular choice to capture neuron and synapse dynamics. However,
researchers require simulation tools and platforms to execute simulations in real- or
sub-realtime, to enable exploration of features such as long-term learning and neural
pathologies over meaningful periods. This article presents novel multicore processing
strategies on the SpiNNaker Neuromorphic hardware, addressing parallelization of
Spiking Neural Network operations through allocation of dedicated computational units
to specific tasks (such as neural and synaptic processing) to optimize performance.
The work advances previous real-time simulations of a cortical microcircuit model,
parameterizing load balancing between computational units in order to explore trade-offs
between computational complexity and speed, to provide the best fit for a given
application. By exploiting the flexibility of the SpiNNaker Neuromorphic platform, up to 9x
throughput of neural operations is demonstrated when running biologically representative
Spiking Neural Networks.

Keywords: neuromorphic computing, SpiNNaker, real-time, parallel programming, event-driven simulation,
spiking neural networks

1. INTRODUCTION

The human brain is capable of operating using less energy than a light bulb (Levy and Calvert,
2020). However, simulation of biologically representative Spiking Neural Networks (SNN) is a
challenging task on conventional computer hardware. Models from the literature can produce
millions of spikes per second, which need to be delivered to hundreds of thousands of neurons
(Potjans and Diesmann, 2012; Schmidt et al., 2018; Casali et al., 2019) with very tight timing
constraints. A common way to simulate these network dynamics is through CPU-based HPC
platforms, using dedicated software such as NEST (Gewaltig and Diesmann, 2007). However,
because of the timing constraints and the intrinsic high parallelism of these tasks, they fail to
keep energy consumption low when attempting to run these applications, and performance gain is
limited by the latency of MPI-based (Ippen et al., 2017) communications. An alternative approach,
namely Neuromorphic engineering, inspired by the structure of the brain (Mead, 1990), has proven
effective when dealing with this type of simulation (Rhodes et al., 2019), efficiently addressing the
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sparsity of signals typical of these applications and keeping
energy consumption low. This approach is characterized by
simple computational units with close access to distributed
memory (Mead, 1990; Indiveri et al., 2011). To date, several
Neuromorphic platforms have been developed, both in the
digital, analog and mixed signal domains (Furber et al., 2014;
Akopyan et al., 2015; Schemmel et al., 2017; Davies et al., 2018;
Moradi et al., 2018). From a digital perspective, neurons (or
neural compartments) are implemented by processors, which
usually simulate both the neural dynamics and the synaptic
receptors. Analog platforms on the other hand, employ a circuit
implementation of models from literature. The efficiency of
such systems is usually measured in terms of synaptic events
(namely one spike targetting one synapse) per second and
neurons they can simulate, with these two measures limited by
the on-core memory capacity and computational power in digital
neuromorphic platforms and by the physical implementation for
analog architectures.

High synaptic fan-in represents one of the biggest challenges
in biologically representative SNNs and it usually prevents
real-time execution, requiring to slow down the simulations
(i.e., resulting in a simulated time longer than the biological
time) to process all network activity. Another strong limitation
is given by long-range connections between different brain
areas (Schmidt et al., 2018), which are typically represented by
extremely sparse connectivity patterns. Recent work (Rhodes
et al., 2019) demonstrated that, by performing more efficient
task-partitioning and by acting on the placement of networks on
Neuromorphic hardware, it is possible to improve significantly
the throughput of these systems, enabling real-time execution of
models that were not possible before.

Real-time simulations of biologically-representative SNNs are
a common target in the field. Several solutions have been
proposed to address the presented issues, including a procedural
generation of the synaptic weights whenever a spike is received,
instead of storing these, to reduce the memory footprint and
improve performance (Knight and Nowotny, 2021). Some digital
simulation platforms managed to achieve remarkable results
in terms of real-time simulations, even reaching sub real-time
performance for established benchmarks in the field (Knight
et al., 2021; Kurth et al., 2021; Heittmann et al., 2022).

This work offers an improved parallelization strategy, namely
the Multi-target partitioning, on how to efficiently deploy
Spiking Neural Networks on Neuromorphic hardware. This
strategy aims at addressing the major bottlenecks of SNN
simulations and informing the design of the next generation of
Neuromorphic platforms. The use-case platform chosen for this
work is SpiNNaker, a many-core digital Neuromorphic platform
designed at The University of Manchester (Furber et al., 2014).

Following this introduction, Section 2 provides a background
on SNNs simulations in general, together with the critical
aspects of real-time simulations and their challenges. Section 3
gives details about the SpiNNaker Neuromorphic platform
and how SNNs are mapped on it through the available
partitioning strategies. The Multi-target partitioning approach
is then presented in Section 3.4. Section 4 demonstrates the
advantages of this new strategy through benchmarking on

SpiNNaker. Finally, Section 5 contains a discussion about the
potentialities of this approach and possible future applications.

2. BACKGROUND

2.1. Neural Processing

SNN simulations are typically performed starting from a high
level description of the network characteristics, through high
level specification languages such as PyNN (Davison et al., 2009).
Groups of neurons sharing the same properties are grouped into
ensembles called Populations, and the connections between them
are called Projections. Starting from these high level descriptions,
Populations and Projections are typically fragmented (or
partitioned) such that they can fit the requirements set by
the underlying hardware platform. Digital platforms commonly
employ a discrete time resolution, using fixed length timesteps,
within which all spikes are considered to happen at the same
time. Each computational unit involved in the simulation is in
charge of handling a subset of a Population, meaning that it needs
to update the state of a predefined number of neurons, generate
output spikes for those neurons and receive input spikes.

A representation of a neural simulation is shown in
Figure 1. Two Populations are shown (left), called Pre and Post,
respectively, and the neurons are connected with a probability
P, meaning that each presynaptic neuron has a probability
P to connect to each postsynaptic neuron. An interaction of
simulation events is shown on the right, where 3 simulation
timesteps are presented for both Populations. In this case
each Population is simulated by a separate computational unit.
Timesteps are indicated by At, and are synchronized among the
involved computational units. Both computational units update
the neural state for their implemented neurons according to the
neuron model equations (light and dark green, respectively, in
Figure 1). After the state update, neurons will fire, generating
spikes that will be delivered to the Post neurons. The remaining
fraction of the timestep (fp in Figure 1) is commonly used to
process the incoming spikes (light blue).

During a simulation, the length of the green bar (f,,4) is
constant. Increasing the number of neurons per computational
unit extends the green bar. When the input firing activity is
high (commonly when the number of input connections is
high), or P is increased, the blue bar grows. The length of the
blue bar therefore varies according to the amount of synaptic
inputs received during the timestep. In order to maintain real-
time processing, both the bars need to complete the execution
before the beginning of the subsequent timestep (therefore
before the next green bar is due to start). Figure 1 shows an
example of a non real-time simulation, where the first timestep
for the Post computational unit completes in time, however,
during the second timestep the synaptic processing overflows
on the third timestep, causing it to start delayed for the Post
computational unit. Some platforms allow this case to happen,
performing soft real-time simulations, and therefore allowing
to overrun timesteps and then recover for the lost time in
future timer periods, where the load is reduced. This however
violates the hard real-time requirements, which mandate to
simulate each individual timestep in the corresponding amount
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FIGURE 1 | Representation of neural processing. The schematic of a SNN composed of 2 Populations (Pre and Post) with connectivity P is shown on the left. On the
right the interaction of simulation events for 3 simulation timesteps, with real-time requirements violation is presented. The green bars show the neural state update,

of wall-clock time: i.e., each 0.1 ms of biological time is completed
in 0.1 ms.

A reduction of the size of the green bar (neural state
update) can be achieved by reducing the number of neurons
per computational unit. However, this operation has the effect
of requiring additional hardware, since the network becomes
more distributed and adds burdens to the communication
fabric, increasing the number of destinations for the generated
spikes. The time taken to process spikes, as indicated by
the length of the blue bar in Figurel, is a function of the
number of postsynaptic neurons simulated per unit. When
the number of neurons simulated per unit increases, each
spike can potentially target more postsynaptic neurons, hence
requiring more processing time. While the fan-in to each
postsynaptic neuron is independent of the number of neurons
simulated, the fan-out of each arriving spike is proportional
to the number of available target neurons (defined by the
number of neurons simulated per core). Therefore, when this
number is reduced, the total available target neurons are reduced,
meaning the cost of processing a spike is amortized over
fewer individual connections. This reduction in efficiency is
a significant problem, as spike processing tends to dominate
computation in biologically-representative SNN simulations
(Schmidt et al., 2018; Casali et al., 2019).

A more efficient partitioning strategy (Knight and Furber,
2016; Rhodes et al., 2019), demonstrated that it is possible
to separate the two phases (neural state update and spike
processing) onto separate computational units. This enables
simulations with higher numbers of neurons per unit, together
with higher efficiency for the synaptic input processing. This

approach however still shows some limitations in dealing with
very sparse connectivity patterns, as the number of target
synapses per spike is still limited by the amount of neurons
that can be simulated on a single computational unit. Section 3
presents a novel parallelization approach which overcomes this
limitation, maximizing the number of postsynaptic receptors and
improving spike processing performance.

3. MATERIALS AND METHODS

3.1. The SpiNNaker System

SpiNNaker is a Globally Asynchronous Locally Synchronous
(GALS) many-core digital Neuromorphic platform, specifically
designed to simulate SNNs in real time (Plana et al,, 2011;
Furber et al, 2014). From a hardware perspective, its main
building block is the SpiNNaker chip, which contains 18 ARM968
cores (ARM, 2006), each having two separate Tightly Coupled
Memories (TCMs), to store local data and simulation code,
respectively. Additionally the chip includes a 32 KB shared
memory (SysSRAM), a 128 MB off-chip shared memory (SDRAM)
and a tree-based routing infrastructure which allows direct
packet-based communication with 6 other neighboring chips.
Each on-chip router can be used as an intermediate hop to
forward packets to other chips (Furber et al., 2013; Painkras et al.,
2013; Mavaridas et al., 2015). For fault tolerance purposes, the
available cores per chip are 17. Access to the shared memories can
be performed through bridge or Direct Memory Access (DMA).
Bridge access is slow (> 100 ns/word), while a DMA controller
provides more efficient bulk transfers (=~ 10 ns/word) up to 64
KB per request, with DMA requests broken down into bursts 128
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B wide. Access to the memory controller is however limited to a
single channel. Simultaneous attempts to access shared memory
give rise to a phenomenon called contention, where a single
requesting processor is given access to the memory controller and
the others are queued (Painkras et al., 2013; Sharp and Furber,
2013; Rhodes et al., 2018).

SNNs models are simulated through dedicated software
(Rhodes et al., 2018; Rowley et al., 2019), with each processor
simulating a predefined number of neurons, each implemented
through mathematical models governing their neural dynamics.
All the available processors (excluding two service cores Rowley
et al., 2019, used for system purposes) perform the simulation.
This consists in updating the neural state of the implemented
neurons in sequential fashion, generating postsynaptic action
potentials where necessary, receiving incoming spikes and
extracting the synaptic events from incoming packets. SNN
simulations on SpiNNaker follow an event-driven approach
(Sharp et al., 2011), where cores remain in a low-power state,
until an event triggers a processing callback. Periodic timer events
are used to advance the simulation time through discrete fixed-
length timesteps, while asynchronous events signal the reception
of a spike and trigger synaptic processing (Rhodes et al., 2018).
Timesteps allow for discretization of continuous time models
and, provided the timestep resolution is high enough (commonly
0.1 or 1 ms), allow modeling of neuron state updates via
exponential integration (Rotter and Diesmann, 1999), calculating
the dynamics timestep by timestep.

The spike processing activity spans through most of the
simulation timestep and, in case of large networks (Potjans and
Diesmann, 2012; Schmidt et al., 2018; Casali et al., 2019), the
number of received spike events can cause the neural state
update to be preempted and delayed beyond the boundaries
of the simulation timesteps (van Albada et al., 2018; Bogdan
et al, 2021), resulting in non real-time performance. Real-
time performance means that the simulation time of a network
matches the modeling time of the network itself, therefore 1
s of activity needs to be simulated in 1 s for it to be in
biological real-time.

On SpiNNaker, spikes are delivered through multicast packets
in the Address Event Representation (AER) format (Mead, 1989),
therefore only containing information about the sender. All
synaptic information for a given presynaptic spike (i.e., number
of postsynaptic connections, weights and delays) is stored on
the postsynaptic side in the SDRAM shared memory. This
reduces the amount of information that is transmitted over
the communication network, by only specifying the sender.
Therefore, upon the reception of a spike packet, each core
performs a DMA request to retrieve the associated synaptic data
(Rhodes et al., 2018). This information is stored as a sparse
synaptic matrix using the compressed-row format, row-indexed
by the presynaptic neuron ID. Postsynaptic cores therefore, upon
the reception of a spike have a unique identifier of the sender
available (given by AER spike packets), and use this as an index
to locate the correct synaptic row inside the matrix. By storing
the synaptic matrices in the SDRAM memory it is possible
to simulate SNNs where neurons have much larger individual
fan-ins (a common aspect of biologically-representative SNNs).

This overcomes the limitations set by reduced local memory
typical of Neuromorphic platforms. This solution also allows
simulations of plastic networks, as opposed to the procedural
approach (Knight and Nowotny, 2021), and it is more suited
to platforms where the memory access is faster than generating
pseudo-random values, such as Neuromorphic hardware. This
however comes with the penalty of retrieving synaptic rows
every time a spike is received, and, in case of plastic networks,
a write-back operation for the updated weights is required.

3.2. Homogeneous Parallelization

SNNs on SpiNNaker are commonly partitioned following a
Homogeneous parallelization approach (Rhodes et al., 2018;
Rowley et al.,, 2019), where each core simulates a subset of a
Population, as described in Section 1. An example of the synaptic
matrix representation under the Homogeneous parallelization
approach is shown in Figure 2. Here, we show a network
composed of 2 populations having 12 neurons each, connected
with 20% probability (represented on the left). The full synaptic
matrix is displayed (top right), where each row corresponds to a
presynaptic neuron and each column to a postsynaptic neuron.
Where a connection is formed a weight is added to the respective
cell. Figure 2 shows how synaptic matrices are partitioned and
mapped to SpiNNaker cores. The right bottom representation
shows 3 cores each with its own sparse representation of
the synaptic matrix, assuming a limit of 4 neurons per core.
This representation reduces the size of the stored matrix, only
including the relevant information.

Despite reducing the required memory to store synaptic
matrices, this partitioning approach is inefficient; indeed, for
sparse connectivity patterns it generates several empty rows, as
seen in Figure 2. Each core has access to all the presynaptic
rows pertaining to the implemented neurons. This limits the
number of neurons that can be simulated per core, resulting in
an inefficient allocation. Furthermore, for large networks, simply
limiting the number of neurons per core is not sufficient, as
the amount of incoming synaptic events requires a processing
time larger than the timestep itself (van Albada et al., 2018;
Bogdan et al.,, 2021). Also, by reducing the number of neurons
per core, the length of the synaptic rows shrinks (as shown
in Figure 2). This happens because SNNs typically have low
connectivity probabilities, especially for long-range connections,
therefore having a small number of postsynaptic neurons per core
increases the chance of no connections being made, resulting in
empty rows in the synaptic matrix. Empty rows are problematic
because they cannot be detected until the core has completed the
DMA transfer, resulting in wasted processing cycles retrieving
meaningless information from SDRAM.

The cost of retrieving a synaptic row from shared memory
is however amortized by the number of postsynaptic neurons
implemented on each core, as a single transfer per packet is
performed. This means that, by simulating more neurons per
core it is possible to reduce the number of accesses to memory. A
higher number of neurons per core however requires to process
additional information, which might not be possible within the
boundaries of the timestep.
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FIGURE 2 | Synaptic matrix partitioning under the homogeneous partitioning. The presented matrix comes from an example network composed of 2 populations
having 12 neurons each with 20% connectivity (schematic on the left). The full synaptic matrix is shown on top right. The sparse representation partitioned into 3
different cores is shown on bottom right (with colors matching the full synaptic matrix). The partitioning assumes a limit of 4 neurons per core, therefore 3 cores are

Synaptic processing throughput is defined as the maximum
number of synaptic events that can be processed per timestep,
while maintaining real-time performance (Rhodes et al., 2018).

tp — tyst — tias

E = +2|Pn (1)
tspike

tp = At — tupd (2)

Lspike = msPn + ¢ (3)

This can be evaluated according to Equations (1)-(3), where
E represents the number of synaptic events per timestep, tp
indicates the fraction of the timestep available to process synaptic
information, and is obtained by subtracting from the timestep
duration (At) the time required to update the neural state (¢,p4)
of all the neurons simulated on core. The time required to process
a single spike is defined by tspike- This value is expressed by
Equation (3) and can be broken in a fixed contribution (c,), which
is paid once per spike packet, corresponding to context switches,
synaptic row location in the shared memory and transfer time,

and a variable contribution (m;) which corresponds to the
cost of processing a single synaptic event. Spike processing on
SpiNNaker is handled through a pipelined approach, therefore
the cost of processing the first and the last spike in the pipeline
are different due to different API calls (Rhodes et al., 2018). These
values are indicated by #s+ and f;,, respectively, and follow the
same rule as fgk., but have different values for fixed and variable
costs (Rhodes et al., 2018).

The processing time (tp — tj« — tige) is divided by Zoie
to obtain the processed spikes per timestep. This number is
then incremented by 2, to account for t;« and tj,y previously
subtracted. The number of synaptic events that can be processed
in a single timestep is, therefore, given by multiplying the number
of spikes by the connectivity probability (P), which indicates the
number of postsynaptic connections per spike and then by the
number of postsynaptic neurons on core ().

3.3. Heterogeneous Parallelization

The Heterogeneous Programming Model (Rhodes et al., 2019) is
a simulation approach which evolved from a previous study on
the partitioning of synaptic matrices on SpiNNaker (Knight and
Furber, 2016). This approach aimed at improving the placement
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FIGURE 3 | Synaptic matrix partitioning under the Heterogeneous Programming Model. The same matrix presented in Figure 2 is used. Synapse cores allow to
partition the matrix by presynaptic index, and to relieve Neuron cores from processing spikes, enabling the possibility of simulating more neurons per core, which in
turn allows to increase the length of synaptic rows. A schematic of the ensembles generated by this partitioning is shown on the right, where each Neuron core

of SNNs on SpiNNaker to achieve real-time simulations of
complex SNNs (Rhodes et al, 2019). By partitioning the
synaptic matrices horizontally (see Figure 3), as opposed to
the vertical approach (see Figure 2), it is possible to maintain
longer postsynaptic rows and parallelize processing of incoming
spikes. This is achieved by introducing separate cores, called
Synapse cores, dedicated to the spike processing phase only,
each implementing a subset of the synaptic receptors for
each postsynaptic neuron (see Figure3). The postsynaptic
neurons are simulated on dedicated Neuron cores, having
the role of advancing the neural state and generating action
potentials only. These cores combine the inputs coming from
the connected Synapse cores, through shared memory. This
partitioning strategy allows simulations of higher numbers
of neurons per core, therefore increasing the length of the
synaptic rows maintained by the connected Synapse cores. This
enables simulations of sparser connectivity patterns. Through

this approach it is furthermore possible to connect multiple
Synapse cores to each Neuron core, increasing the synaptic event
throughput of the overall system (Knight and Furber, 2016;
Rhodes et al., 2019). The communication between connected
Synapse and Neuron cores happens via the chip-local SDRAM
shared memory. Each Synapse core writes at the end of each
timestep the synaptic contributions (representing partial input
currents) coming from the receptors simulated by the core. The
Neuron core reads all the contributions in a single memory block
read and computes the total input currents by adding together
the values from different Synapse cores.

An example of the partitioning of synaptic matrices under
this approach is shown in Figure 3. In this example the same
synaptic matrix addressed in Figure 2 is used, however it is
now split horizontally by presynaptic neurons. Therefore, one
Synapse core (S11) receives inputs from the lower 6 presynaptic
neurons (dark green in Figure 2) and the other Synapse core (S,1)
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from the higher 6 (light green in Figure 2). This increases the
number of neurons per core, as the Neuron core’s sole task is
to update the neural state. In this simple example, each Neuron
core can therefore now simulate 8 neurons, allowing to double
the length of the synaptic rows associated to each Synapse core.
The remaining 4 neurons are simulated by a separate Neuron
core which replicates the structure of the other ensemble. The
two ensembles are shown in Figure 3 right. N; simulates the
lower 8 postsynaptic neurons, N, the remaining 4 neurons.
Each Neuron core receives its inputs from 2 Synapse cores.
The synaptic labels correspond to the cores depicted on the
left.

The number of synaptic events that can be processed in a
timestep under this approach per Synapse core is expressed by
Equations (4)-(7), adapted from Equation (1). For this model,
tp represents the spike processing window, which is obtained
by subtracting from the duration of the timestep (At) the time
required by the Synapse cores to write the synaptic contributions
to shared memory (t,,), minus the time taken by the postsynaptic
Neuron core to read the contributions from shared memory
(t;). These last two components represent a fraction of the
timestep which is wasted, as during f,, no additional spikes can
be processed, and during t, the Neuron core has to wait, as it
is retrieving the information necessary to update neuron state.
The number of neurons is indicated by n. These are simulated
by the Neuron core of the ensemble. The spike processing
times fopike, t1+ and fy follow the same rule presented in
Equation (3).

po 2 " tas L oipy @)
tspike

ty= At —t, — 1 (5)

ty =aS.+b (6)

t,=cS.+d (7)

A description of the read and write times is given by Equations
(6) and (7) and they depend on the number of involved Synapse
cores (S;). This dependency can be easily explained by the
increase in size of the memory block containing the synaptic
contributions (which size is directly proportional to the number
of connected Synapse cores) to be read by the Neuron core
every timestep, and by memory access contention, arising when
multiple Synapse cores try to write to memory at the end
of each timestep simultaneously. The lower case coefficients
(a, b, ¢, and d) are hardware specific values. Previously measured
quantities, obtained from experimental analysis on SpiNNaker,
are shown in Table 1. The value described in Equation (4)
represents the number of synaptic events per Synapse core. The
total number of synaptic events per ensemble is calculated by
adding together the values for each Synapse core belonging
to the ensemble. Compared to the Homogeneous partitioning
case, with the same number of postsynaptic neurons, this
represents a pseudo-linear increase in the processed events per

TABLE 1 | Reading and writing time coefficients for the Heterogeneous and
Multi-target partitioning measured on SpiNNaker.

SpiNNaker reading and writing time coefficients

Coefficient Heterogeneous Multi-target partitioning
partitioning value value
a 0.4 0.9
b 4 0.1
c 0.3 0.6
d 3.9 1.3
e - 1.2
f - 0.4
g - 0.2

Column 2 refers to Equations (6) and (7). Column 3 to Equations (10) and (11).

timestep. A demonstration of this can be seen in Figure 4,
which shows the number of synaptic events processed by
SpiNNaker for a 10% connectivity network, with increasing
numbers of Synapse cores. Here, the blue line shows the 1
ms case and the green line 0.1 ms. For the latter it is not
possible to include more than 8 Synapse cores per ensemble,
as the synaptic contribution reading time from the Neuron
core’s perspective becomes predominant, therefore preventing
real-time execution.

The Heterogeneous Programming model can achieve
impressive performance improvements, however it also presents
limitations, as seen in the example shown in Figure 3. The
length of the synaptic rows is still not optimal, requiring two
additional (or more, according to the presynaptic partitioning)
Synapse cores (S12 and Sy,), to simulate the last four columns,
resulting in additional resources being allocated and a sub-
optimal partitioning of the matrices. Furthermore the number
of synaptic events that can be processed for 0.1 ms timestep
simulations is limited to the throughput of 8 Synapse cores,
which does not allow to fully exploit the available parallelism.

3.4. Multi-Target Synapse Cores

Here, we present a novel parallelization approach enabling
more efficient use of the available system resources, to address
peak synaptic throughput performance and increased sparsity in
synaptic connections.

This new approach, termed Multi-target Partitioning, extends
the concept of Synapse cores introduced in Section 3.3, by
assigning multiple Neuron core targets. Therefore, each neural
ensemble will have multiple Synapse cores implementing the
postsynaptic receptors of multiple Neuron cores, instead of
matching the neurons of a single Neuron core. This technique
improves partitioning of the synaptic matrices, by allowing
longer rows. This therefore reduces the chance of empty rows for
very sparse networks, and, at the same time, allows to amortize
the fixed cost of processing a spike (i.e., preprocessing, context
switches, and DMA cost) over a larger number of synapses.

An example of the Multi-target partitioning of synaptic
matrices is shown in Figure5. The Synapse cores now span
over a much larger synaptic matrix, covering the entire rows
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8 10 12

in the example. The partitioning is performed presynaptically
(horizontally), similarly to the Heterogeneous Model. However
for the Multi-target partitioning, each Synapse core can target
multiple postsynaptic Neuron cores, implementing all receptors
for all target Neuron cores (effectively reducing the vertical
partitioning). This approach allows to save resources (2 Synapse
cores in the case of the example in Figure 5) and further reduces
the chance of having empty rows for a given probability of
connection. The number of synaptic events that can be processed
per timestep is now modeled by Equations (8)-(13).

tp — tist — tiag

E=] +2]PN (8)
Lopike

th=At—t, —t )

tw = aS; — bN; + cN.S. +d (10)

tr=eSc+fN.— ¢ (11)

N = nN, (12)

tspike = MsPN + ¢ (13)

The components are similar to the Heterogeneous model case,
however N depends now on the number of Neuron cores
connected to each Synapse core, and is obtained by multiplying
the number of neurons per core (1) by the number of connected

Neuron cores (N;). This reflects also on the spike processing
times, as shown in Equation (13), where the variable cost
is now multiplied by the total number of neurons targeted
by the spike, therefore by the Synapse core. The reading (t,)
and writing (t,,) times now depend on the structure of the
ensemble, as both contention and size of the transfer play a key
role. The lower case coeflicients (a to g) are hardware specific
values, which therefore change according to the chosen platform.
Table 1 reports values for the SpiNNaker platform obtained by
profiling execution.

3.4.1. Neuromorphic Implementation

A schematic of the core interactions and memory structures
for the Multi-target partitioning implementation is shown in
Figure 6. The ensemble demonstrates 2 Synapse cores each
targeting 3 Neuron cores.

In the Multi-target approach the synaptic matrices are
partitioned according to the synaptic view of the ensemble,
meaning that the postsynaptic neurons simulated by multiple
Neuron cores can now be included in a single matrix. Therefore,
Synapse cores allocate the shared memory region for the current
timestep synaptic contributions (blue and green blocks in
SysRAM and SDRAM memories in Figure 6). This is opposed
to the Heterogeneous Model, where the Neuron core of the
ensemble sets the shared regions. This allows to perform a single
block write per Synapse core per timestep, instead of fragmenting
into multiple regions. This choice is motivated by architectural
features, as the read throughput is higher than the write for the
SpiNNaker chip (Painkras et al., 2013), therefore it is preferred to
have fewer writes per timestep. Neuron cores retrieve the address
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FIGURE 5 | Synaptic matrix partitioning for the Multi-target approach. The used network is the same shown in Figures 2, 3. Here, Synapse cores have much longer
synaptic rows, further reducing the risk of empty rows, therefore fewer resources are required. The generated ensemble is shown on the right.

of each memory block of each connected Synapse core, and
compute the offset according to the indices of the implemented
neurons (blue and green sub-blocks in Figure 6). This results in
one write per Synapse core and multiple reads per Neuron core,
according to the number of afferent Synapse cores.

During simulation initialization, Synapse core 1 allocates the
blue region in SDRAM in Figure 6, which is large enough to
store the contributions to postsynaptic neurons of all 3 Neuron
cores. Synapse core 2 allocates the green region, having the same
characteristics. The Neuron cores then retrieve the addresses
of both memory regions and compute the starting address of
their sub-regions according to the implemented postsynaptic
neurons. Therefore, Neuron core 1 has the N1 sub-region from
both the green and blue region, Neuron core 2 has the N2
sub-region and Neuron core 3 has N3. During a simulation
timestep, when a spike is received, Synapse cores act the same
way as the Heterogeneous Model (Rhodes et al.,, 2019). They
extract the synaptic row address for the received spike, retrieve
the correct row from the synaptic matrix and then add the

connection weight to the synaptic input buffer (shown as circles
in Figure 6 in blue for Synapse core 1 and in green for Synapse
core 2), according to delay and postsynaptic index. Synaptic
input buffers (Morrison et al.,, 2005; Rhodes et al., 2018) are
structures employed to handle synaptic delays, and store the
input currents for postsynaptic neurons. These are typically two-
dimensional data structures, indexed by postsynaptic neuron
ID and delay. When a spike is received on a postsynaptic
core, for each postsynaptic neuron, the correct buffer slot is
located, according to the delay and destination of the spike.
Then, the weight of the connection is added to that buffer
slot.At the end of the timestep, the slots of the synaptic input
buffers representing the next timestep’s synaptic input are written
to shared memory (these include all the slots having delay 1
timestep). Therefore, Synapse core 1 writes N1, N2 and N3
sub-regions of the blue region, which will contain one slot per
postsynaptic neuron having 1 timestep delay, and Synapse core 2
does the same for the green region. Different Synapse cores write
to different memories (either SDRAM or SysRAM), to reduce
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FIGURE 6 | Synapse and Neuron cores memory interaction for the Multi-target partitioning. 2 Synapse cores targeting 3 Neuron cores are shown with all the steps
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contention on the SDRAM memory controller. The destination
is decided according to the physical core ID,evenly spreading
the contributions between the two memories. Both memories are
part of the system memory map, therefore the allocation can be
performed simply by specifying the correct memory heap, and
the address retrieval is transparent to this operation.

At the beginning of the subsequent timestep, all Neuron cores
perform reads of the sub-regions. Upon completion, the input
currents for each postsynaptic neuron are calculated by adding
together all contributions from the Synapse cores for the specific
neuron. The synaptic currents are then used to update the neuron
state, according to the implemented neuron model and, if the
model mandates it, a spike is generated.

The time required to read the memory regions is a crucial
design parameter, because it sets a boundary on when the Neuron
core can generate the first spike. In fact until all the contributions
are read, the Neuron cores cannot start processing the neural state
updates. This reflects on when postsynaptic Synapse cores can
start receiving spikes, effectively reducing the spike processing
window. It is therefore of paramount importance to reduce this
reading interval as much as possible. In order to address this
issue, Neuron cores are instructed to perform out-of-order read
operations of the sub-regions. This means that, based on the
Neuron core ID, the first read region will be either from SysRAM

or SDRAM. This effectively halves the Neuron cores accessing
the same memory at the same time, by explicitly instructing
half of them to first read from SDRAM and half of them from
SysRAM. After each read is completed, each Neuron core sends
the subsequent request to the other memory.

3.5. Plasticity
The Heterogeneous model and the Multi-target partitioning can
be extended to include simulations of plastic SNNs. For plastic
networks, the time required to process synaptic events is higher
compared to the static case, as a weight update phase is needed.
Therefore, simulations of plastic SNNs would also benefit from
reduced processing time per synaptic event. Here, we present
the steps to extend the plasticity framework, in order to include
the Multi-target partitioning. This framework is independent
from the implemented plasticity rule, and the synaptic update
is fully handled by Synapse cores, which implement the chosen
rule for a simulation. Figure 6 also shows the memory structures
necessary for the implementation of STDP, as well as the weight
update framework.

The plasticity framework adopted by the SpiNNaker toolchain
performs synaptic weight updates upon receiving a spike
(Galluppi et al.,, 2015). This minimizes the accesses to shared
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memory, as synaptic rows are commonly retrieved whenever a
spike is received. After a row is stored in local memory, before
adding the weight contribution to the correct synaptic input
buffer, each weight is updated according to the implemented
plasticity rule. STDP rules commonly require information
about postsynaptic firing activity (Morrison et al, 2008).
This information is stored into a postsynaptic buffer, locally
maintained by the Neuron cores, which contains one slot per
postsynaptic neuron, and is updated every time a neuron fires.
The introduction of plasticity into the Multi-target approach adds
complexity, since the Neuron cores need to communicate back to
the Synapse cores which neurons have spiked during the timestep,
to correctly update the synaptic weights. This operation is again
performed through shared memory. All Synapse cores share the
same postsynaptic region (red region in Figure 6), therefore this
area is allocated into SDRAM by the Synapse core of the ensemble
having the lowest index, and the address is retrieved by all the
other Synapse cores. The Neuron cores get the address in the same
way as the synaptic contributions, and will use the same offset to
get access to their specific sub-regions.

During each timestep, after all the neurons on core have been
updated, the postsynaptic buffer (red sub-blocks in the Neuron
cores), which contains information on whether each neuron has
spiked or not, is written to SDRAM by each Neuron core. The
Synapse cores can read this region and update the postsynaptic
history (purple buffers in Figure 6) for each receptor. In order
to keep the memory operations short, the postsynaptic buffers
are saved as binary flags, indicating whether each neuron has
spiked or not. The update of the postsynaptic history depends
on the simulated plasticity rule, which is implemented on the
Synapse cores (as only these have visibility of the timing of
incoming spikes). Only after this read operation is completed is
it possible to update the weights and to process the incoming
spikes. Therefore, the received spikes before this operation are
buffered and ready to be processed when the read is completed.
The Synapse core read is scheduled to happen after a fixed
amount of time (for a given configuration), as the Neuron cores
require a fixed amount of time to update the neural state and
write back the postsynaptic buffers.

4. RESULTS

The performance of the Multi-target partitioning approach
presented in Section 3.4 is now evaluated from the perspectives
of: system memory (Section 4.1), peak synaptic event throughput
(Section 4.2) and the effect of connection sparsity (Section 4.3).

4.1. Memory Access

4.1.1. Experiment Description

This first experiment measures the impact of writing and reading
the synaptic contributions between Synapse and Neuron cores
under the new ensembles scheme, showing timings for each
possible combination of Neuron and Synapse cores on a chip.
Each Neuron core is set to simulate 64 Leaky Integrate-and-
Fire (Gerstner and Kistler, 2002) neurons, and afferent Synapse
cores handle their synaptic receptors. In order to isolate the
transfer times, the values are sampled in the context of a

neural simulation in absence of spike packets. Therefore, the
standard neural state is updated, but the spike processing
pipeline and the spike generation phases are turned off. This
prevents neural processing from increasing contention, while
maintaining the characteristics required by SNN simulations.
Each test simulates 100 timesteps, and is repeated 10 times
to ensure consistency. For each arrangement timings are
presented for both the SysRAM + SDRAM case, and the
SDRAM only case. The results are presented in form of
heatmaps, where the horizontal axis shows the number of
employed Synapse cores, while the vertical axis the Neuron
cores. All the Synapse cores for each case are connected to
all the Neuron cores of the same case. The reported values
are the worst case transfer times obtained by this test. These
values are fundamental to estimate the impact of memory
access time on the approach. Through these measurements
it is possible to correctly allocate timings which allow the
processors to initiate DMA transfers in time to maintain real-
time performance.

4.1.2. Reading Times

Reading time measurements are shown in Figure7 (all times
measured in us). The plot on the left presents values using
both the shared memories available to the SpiNNaker chips
(SysRAM and SDRAM), while the plot on the right contains
timings relative to the SDRAM use only. All the purple boxes
without a number are combinations of cores not allowed by the
machine. The case with a single Synapse core has been omitted,
since the transfer was completed quickly enough not to impact
performance. The timings have been extracted in the context
of a neural application simulating 64 neurons per core. Each
synaptic weight is stored on a 16 bit (2 B) integer, meaning
the contributions of a Synapse core targeting a single Neuron
core amount to 64 x 2 B = 128 B (each DMA read has this
fixed length).

By increasing the number of Synapse cores (moving from
left to right on the horizontal axis), the number of reads per
timestep per Neuron core increases. Reads are scheduled by the
Neuron cores at the beginning of the timestep and performed
sequentially, since there is a single DMA engine. As expected,
for both the plots, the case with a single Neuron core (first
line), shows linearly increasing reading times. The use of two
separate memories does not influence this aspect, as one read
at a time is performed. However it is observed that times in the
dual memories plot are slightly lower. This is due to half of the
Synapse cores contributions being stored into SysRAM which
has a lower access time than SDRAM, therefore providing faster
access. By increasing the number of Neuron cores (from top to
bottom on the vertical axis), the contention increases, as multiple
Neuron cores try to access shared memory to retrieve their
synaptic contributions simultaneously. This case demonstrates
the benefits of having two different memories in use with separate
access. The SysRAM + SDRAM case indeed performs generally
better than the single memory case allowing a gain up to 4 us.
There are, however, some isolated allocations where the single
memory case performs better. This is probably due to a bad
allocation of the cores on the chip, which results in a slower access
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FIGURE 7 | Memory heatmaps showing worst case DMA reading timings for increasing Synapse and Neuron cores. Synapse cores are represented on the horizontal
axis, target Neuron cores on the vertical. All the measured times are in us. The two plots represent the dual memory (left) and the SDRAM only case (right). Purple

to memory. Core allocation affects the memory access time, as
to grant fairness, access to memory is regulated by a binary tree
with arbiters at every junction point. The cores are on the leaves
of the tree. A situation where the allocation of Synapse cores
is unbalanced can cause higher contention between memory
requests, as requests coming from more populated branches of
the tree need to be filtered by multiple arbitration steps. This
results in additional delays, which increase the total memory
transfer time from the cores’ perspective. Cores are assigned
by the SpiNNaker toolchain during the placement phase. The
values reported here represent the measured worst case reading
times, therefore they are likely to represent the worst allocation
of cores.

The worst case for both the experiments happens with 14
Synapse cores, which represents the placement with the highest
number of sequential reads, performed by a single Neuron
core. Furthermore, by keeping the number of Synapse cores
constant, and increasing the Neuron cores, the transfer time
becomes higher, as the reading contention increases. This reduces
the portion of the timestep available for neural processing.
It is therefore of paramount importance to understand the
requirement of the SNN to be simulated, in order to determine
the appropriate number of Synapse cores to allocate per Neuron
core. It is noted that the values shown here represent the worst
case scenario, thus presenting the highest recorded reading times.
A more detailed analysis including best and average cases, is
provided in the Supplementary Material.

The worst case analysis is important from a reading
perspective to understand when the Neuron cores will start to
fire, as the read phase must precede the neural state update and
therefore Neuron cores must wait until this phase is completed
before processing the neuron state update.

4.1.3. Writing Times

The measurements for the writing times are shown in Figure 8:
the left plot shows the dual-memory case, while the right plot
contains the SDRAM only case. Times are measured in us, and
each square represents a single write. Increasing Synapse cores
are displayed horizontally, while increasing Neuron cores on the
vertical axis. By increasing the number of Synapse cores, the
contention grows, as multiple cores attempt to write to shared
memory simultaneously. By increasing the number of Neuron
cores however, the size of each write becomes larger. This is
because each Synapse core performs one single write per timestep.
Therefore, by increasing the number of postsynaptic receptors
(connected Neuron cores), the number of synaptic contributions
to be written grows as well. The size of each write is expressed
by Equation (14), where n is the number of neurons per Neuron
core (64 in this case), w is the size of a contribution (2 B for
standard SNNs) and T is the number of target Neuron cores for
each Synapse core. Therefore, in Figure 8, T increases vertically
from top to bottom.

C=nwT (14)

Similarly to the read case, the reported times are the worst
case measured writing times, and, for some cases, the access
time is worse for the dual memory case. This can be due
to several factors, as Synapse core contributions are partially
located in SysRAM and partially in SDRAM. Although SysRAM
provides a faster access, it has a slower transfer rate, therefore,
for larger transfers, it can result in similar or worse performance
compared to SDRAM. This, combined with a bad cores
placement, can result in losing the advantages of using SysRAM,
negating the faster memory access, due to contention on
the memory controller. Average and best case measurements
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however highlight that this is an isolated case, and show that the
dual memory approach is more effective for the arrangements
of interest. For more details and analysis, please refer to the
Supplementary Material.

From a writing perspective, the worst case scenario is useful
to instruct Synapse cores on when to stop processing incoming
spikes and start writing the synaptic contributions to shared
memory (in order to meet real-time requirements). The highest
recorded writing time is when using SDRAM only with 6 Synapse
cores targeting 7 Neuron cores. This time amounts to 26.98 us.
This does not represent an issue in 1 ms timesteps simulations,
but amounts to more than a quarter of the timestep for real-time
simulations with 0.1 ms timesteps.

The worst case writing and reading measurements therefore
allow to Taylor synaptic contribution writing and reading times
to the required number of Synapse and Neuron cores per
ensemble. This avoids overestimations which would further
reduce the processing time shown in Equation (9). This analysis
shows the importance of balancing the number of Synapse and
Neuron cores according to the application requirements, in order
to incur minimal memory access penalties. Network sparsity and
firing activity also play a key role in the choice of core allocations,
therefore the next sections focus on these aspects.

4.2. Peak Processing Profiling

4.2.1. Experiment Description

The most useful metric when evaluating throughput performance
of the Multi-target partitioning is the maximum number
of processed synaptic events per timestep. This experiment
therefore compares the peak throughput performance for the
Multi-target partitioning to previous works. To perform a fair
comparison, the same SNN is profiled using the different

approaches: Multi-target and Heterogeneous models. The same
number of cores is allocated for both configurations, but
with different internal connections between Synapse cores and
target Neuron cores. A third configuration is also presented,
referred to as single target expanded. This consists of a standard
Heterogeneous partitioning which maintains the same number
of Neuron cores as the previous two cases, but allocates the
same input Synapse cores capacity per Neuron core as the
Multi-target approach. This last configuration provides a useful
comparison, as the number of cores required for the single
target Heterogeneous partitioning is adjusted to match the input
capability of the Multi-target partitioning. The aim of including
these cases is, therefore, twofold: first to compare the Multi-target
partitioning to its Heterogeneous counterpart employing the
same hardware resources, evaluating the performance difference;
second, to show that, to achieve the input processing capability
of the Multi-target approach, while using the Heterogeneous
partitioning, is necessary to employ a larger number of hardware
resources. This is represented by the single target expanded case.

A schematic of core allocations for the three approaches is
shown in Figure 9. The experiments run to evaluate this metric
are structured in test cases defined by 2 numbers in the form
[Se, Nc], where S; is the number of Synapse cores and N, the
number of Neuron cores — the case shown in Figure 9 is [3, 3].
The Multi-target partitioning is shown on the left, where all
the Synapse cores are connected to all the Neuron cores. The
Heterogeneous partitioning is shown on the right, including
the two different mappings explored: single target and single
target expanded. The single target Heterogeneous partitioning
presents 3 Neuron cores receiving input from a single Synapse
core each, showing an input capacity reduced by a third compare
to the Multi-target case. The single target expanded in the
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FIGURE 9 | Arrangement of Synapse and Neuron cores under the explored configurations: Multi-target partitioning (left); Heterogeneous partitioning (right). The
example shown demonstrates the [3, 3] test case, with 3 Synapse cores and 3 Neuron cores. For the Multi-target partitioning configuration, each Synapse core
targets all Neuron cores. Comparison to the Heterogeneous approach is provided by: the Single-target partitioning, where the same overall number of cores are used,
but connected one Synapse core to each Neuron core; and the Single-target expanded partitioning, where the same number of Neuron cores is maintained, but each
with the same number of Synapse cores as implemented in the Multi-target approach.

experiment is therefore comparable with the [3,3] cases for
the two other configurations, however the number of cores
allocated is [9,3]. This single-target expanded configuration
matches the input capacity per Neuron core of the Multi-target
partitioning, keeping the same number of neurons and Neuron
cores (therefore in the presented example each Neuron core
receives inputs from 3 Synapse cores similarly to the Multi-target
case, but each Synapse core is single target). The intent here
is to show that the Multi-target partitioning can reach similar
performance compared to this extended configuration, requiring
only a fraction of the allocated resources.

The SNN model used for this experiment consists of 2
populations of neurons, configurable with a range of sizes and
connectivity (similar to that shown in Figure1 left). All the
presynaptic neurons are Leaky Integrate-and-Fire (Gerstner and
Kistler, 2002) spiking neurons, with current-based exponentially-
decaying synapses. Neurons are initialized with the internal
voltage above firing threshold to produce spikes in a controlled
manner. This approach is adopted to send spikes, instead of
using spike sources, as it better represents the interaction between
cores when simulating biologically-representative SNNs. This is
because spike sources on SpiNNaker generate and send all spike
packets together, causing a high firing activity concentrated at the

beginning of the timestep, and then they remain silent. Cores
implementing Populations (Neuron cores in this case) on the
other hand, generate spike packets every time a neuron is updated
and the model equations require it to spike, therefore distributing
the spike packet generation over the timestep.

The size of the presynaptic Population changes according
to the number of incoming partitions (number of Synapse
cores per ensemble) of the postsynaptic Population. These
Population sizes have been obtained experimentally, such that
the postsynaptic Population receives more spike packets than
it can process. This allows saturation of the receivers in order
to determine their limits. The number of generated spike
packets however needs to be limited, due to limitations set
by the SpiNNaker communication infrastructure (Mavaridas
et al, 2015). An excessive firing activity would cause higher
congestion at the routing level, causing spike packets to be
delivered late. This would result in lower processed synaptic
events, compared to the real peak throughput, due to late
arrivals. More details about Population sizes can be found in the
Supplementary Material. The postsynaptic Population employs
the same type of neurons as the presynaptic Population, and has
variable size between 64 to 896 neurons (corresponding to 1-14
Neuron cores, respectively). Different connectivity patterns have
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been tested to demonstrate the robustness of the approach. Here,
the 1% connectivity case is shown, as it is commonly found in
biologically-representative SNNs (Potjans and Diesmann, 2012;
Schmidt et al., 2018). For 0.1, 5, and 10% connectivities, please
refer to the Supplementary Material.

The same experiment was run both with 1 and 0.1
ms timesteps. The importance of showing results with both
timestep resolutions is given by the requirement of biologically-
representative SNNs to be modeled using tighter timing
resolutions, to better capture their dynamics. Real-time 0.1 ms
timestep simulations, indeed, present additional challenges due
to tighter timing constraints and a reduced spike processing
window (as demonstrated in Section 4.1), which is not amortized
by a smaller number of neurons or synaptic receptors.

The simulated network in this experiment was the same for
both 1 and 0.1 ms timestep cases, with the exception of the
presynaptic Population size, which was scaled down of a factor
~ 10x (see Supplementary Material for exact values). The same
experiment was run both for plastic and static networks and
the results are presented separately. In order to provide a fair
comparison the number of neurons per core is kept fixed at 64.
For additional cases, please refer to the Supplementary Material.

4.2.2. Static Networks

Figure 10 shows peak synaptic event throughput in the form of
barcharts for the experiment with static connections, for both 0.1
ms (left) and 1 ms (right) timesteps. The connectivity between
the two Populations is randomly generated with a probability of
a connection between a pre- and postsynaptic neuron set to 1%.
The Multi-target case is represented by the blue bars, while the
single target with the same amount of cores by the green bars.
The purple bars represent the single target expanded case. Finally,
the yellow bars show the processed synaptic events using the
Homogeneous partitioning with the same network and neurons
per core.

Both the single target cases (green and purple) make use of
the Heterogeneous model. The number of employed cores for
each test case is indicated on the horizontal axes. The lower axis
refers to the Multi-target (blue) and the single target (green). The
upper axis shows values for the single target expanded (purple).
The chosen configurations of cores allow direct comparison of
the approaches. The left number in each tuple represents the
Synapse cores of that test case, the right number the Neuron
cores (as shown by the example presented in Figure9). In the
case of the Multi-target partitioning, all the Synapse cores of
the ensemble target all the Neuron cores. For the single target
cases the number of Synapse cores per Neuron core is obtained
dividing the first number by the second. The blue and green bars
are on the same axis because they employ the same number of
cores, the difference between these two cases is in the connections
between cores. This demonstrates that it is possible to improve
the peak processing by rearranging the available units. The purple
cases use the same number of Synapse cores per ensemble of the
green tests, however, in this case each Synapse core has one single
target (therefore there is a single Neuron core per ensemble). This
replicates the input capabilities of the Multi-target partitioning
per ensemble, but requires a considerably higher amounts of

cores compared to the Multi-target case, resulting in the worst
case of 56 total cores compared to 14 (8" test case).

In all the cases the Multi-target approach (blue) performs
better compared to the single target model (green). This
is because the Multi-target partitioning performs a more
efficient use of the available system resources compared to the
Heterogeneous partitioning, allocating a higher input processing
capacity to each Neuron core.

For the 1 ms timestep experiment the highest synaptic
event throughput is given by the [7,7] configuration, where
the Multi-target partitioning processes &~ 9x more synaptic
events than the heterogeneous partitioning. The reason why
this happens is due to a full exploitation of the source-
based partitioning offered by the approach. Each Synapse
core in the Multi-target case receives inputs from one
seventh of the presynaptic neurons and targets all the 448
postsynaptic neurons. The single target partitioning on the
other hand, has each Synapse core receiving inputs from all
the presynaptic neurons, but targets only 64 neurons. Because
the connectivity is very sparse, a reduced input traffic achieves
better results.

The Multi-target approach performs well also compared to the
single target expanded (purple), which represents a remarkable
result, since the amount of resources in use is much lower,
especially in the [7, 7] case. The single target expanded approach
employs the same number of Synapse cores per ensemble
as the Multi-target partitioning, but has a single target per
ensemble. Therefore, in the [7, 7] case ([49, 7] for the single
target expanded), each Synapse core receives input from one
seventh of the presynaptic neurons and targets 64 postsynaptic
neurons only.

The trend is similar for 0.1 ms timesteps, with the
Multi-target partitioning performing better than the single
target case. However, with higher numbers of Synapse cores
targeting higher numbers of Neuron cores, performance
compared to the single target expanded case tends to be
lower. This is due to the tight constraints set by the timestep
resolution and the fact that memory read and write times
for the synaptic contributions do not scale down with the
timestep resolution.

This experiment shows that, by efficiently using the Multi-
target partitioning, it is possible to achieve comparable results
to the single target expanded case, but with a fraction of the
hardware resources (a quarter in the [7, 7] case). Furthermore,
with the same amount of resources it is possible to achieve
considerably higher synaptic event throughput.

The general trend for the three approaches, together with the
Homogeneous partitioning baseline is compared in Figure 11,
where the horizontal axis shows the total number of allocated
cores, and the vertical axis the processed synaptic events
per timestep. The simulations are analogous to those shown
in Figure 10. Each point in Figure 11 matches one of the
bars (refer to the Supplementary Material for a case by case
labeled representation of this plot). The Multi-target approach
shows the best gain, having the steepest increase compared
to the other three approaches, performing the best use of the
available resources. Additional analysis is performed in the
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partitioning (yellow) cases. The horizontal axes show the number of cores per ensemble in the form of [S¢, N¢], as indicated in Section 4.2.1 and Figure 9. The top
axis refers to the single target expanded case (purple), the bottom to the other cases.
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FIGURE 11 | Resource allocation vs. peak performance for the different partitioning strategies (single target expanded, multi-target, single target, and baseline
homogeneous). The network is the same used for Figure 10, with 1% connectivity and static connections. The color scheme matches that used in Figure 10. For a
case by case labeled version of this plot, please refer to the Supplementary Material.

Supplementary Material including 0.1, 5, and 10% connectivity ~ configurations, demonstrating again that the approach makes

patterns for both the 0.1 and 1 ms timestep resolutions. better use of the available resources. For very sparse networks,
with plastic synapses, the Multi-target approach achieves peak
4.2.3. Plastic Networks synaptic event throughput very close to the single target expanded

Figure 12 shows the results of the experiment with the addition  simulations. This is due to the differences in processing plastic
of synaptic plasticity. The color scheme for the bar chart is  synapses compared to static synapses. Plasticity, requires the
analogous to the static case and the network is run with 1 ms  updated weights to be written back to shared memory, therefore
timestep. Connectivity probability is set at 1%, additional analysis ~ doubling the accesses to SDRAM compared to the static case.
(including 0.1%, 5% and 10% connectivities) can be found in  This operation becomes extremely costly when the number of
the Supplementary Material. The same type of experiment was  receptors per row are limited. Therefore, having longer synaptic
run for the plastic case, with the exception of the connections  rows, as in the case of the Multi-target approach, allows to further
being defined through STDP with Spike-Pair rule for timing  increase the number of synaptic events that can be processed per
dependence and additive weight dependence (Morrison et al.,  timestep. Figure 13 contains a comparison of the general trend
2008). The number of firing neurons has been reduced compared  for the three approaches (refer to the Supplementary Material
to the static case, as synaptic processing for plastic synapses  for a case by case labeled representation of this plot). Similarly
requires additional steps (as highlighted in Section 3.5). For  to the static case, the Multi-target partitioning shows the steepest
details regarding population sizes and the employed plasticity  increase of processed synaptic events per timestep (vertical axis)
rule, please refer to the Supplementary Material. with increasing allocated resources (horizontal axis). This further

Similarly to the static case, the Multi-target approach shows  demonstrates that the Multi-target partitioning achieves better
better performance than the single target case for all simulated  performance than previous approaches when the same hardware
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Timestep resolution is set to 1 ms. The plot shows results for the single target
expanded (purple), multi-target (blue) and single target (green) cases. The
horizontal axes show the number of cores per ensemble in the form of

[[Sc, Nc]], as indicated in Section 4.2.1 and Figure 9. The top axis refers to the
single target expanded case (purple), the bottom to the other cases.
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network is the same used for Figure 12, with 1% connectivity and plastic
connections. The color scheme matches that used in Figure 12. For a case by
case labeled version of this plot, please refer to the Supplementary Material.

resources are available and comparable results with reduced
hardware requirements, also for SNN simulations involving
synaptic plasticity.

4.3. Sparsity Profiling

4.3.1. Experiment Description

Profiling of peak synaptic event throughput with a range of
connection sparsity levels is now explored. This experiment
shows the variation of the processed synaptic events per timestep
with increasing numbers of target Neuron cores. The number
of Synapse cores is kept fixed and the target Neuron cores are
gradually increased. In order to provide a good balance (and
according to the peak performance shown in Section 4.2), the
chosen number of Synapse cores is 7 and the target Neuron cores
range from 1 to 7, guaranteeing to fit on a single chip. This
allocation also allows equal comparison between simulations
with 1 ms timestep resolution and 0.1 ms, having set the number

of neurons per Neuron core in both cases to 64. The connectivity
probabilities investigated are: 0.1, 1, 10, and 50%. Connectivity
patterns above 50% are beyond the scope of this study, as they are
extremely rare in biology (Hagmann et al., 2008), and are handled
sufficiently well by traditional hardware (GPUs, CPUs, etc.). The
network employed for this experiment has a structure analogous
to that described in Section 4.2.1. For this case various sparsity
patterns are shown, together with different cores allocations per
chip. This experiment is useful to demonstrate the flexibility of
the approach in handling multiple sparsity levels, a common
feature in biologically-representative SNNs (Schmidt et al., 2018).

4.3.2. Sparsity Results

The results for this experiment are shown in Figure 14 left for
0.1 ms timestep resolution and in Figure 14 right for 1 ms
timestep resolution. The horizontal axis shows the connectivity
probabilities, the vertical axis the processed synaptic events
per timestep. Each line represents a different configuration of
Synapse cores to Neuron cores, where each Synapse core is
connected to all the targets of that configuration. The number of
postsynaptic receptors per Synapse core therefore can be obtained
by multiplying the number of Neuron cores by 64 (number of
neurons per Neuron core).

For the 1 ms case (Figure 14 right), as expected, simulations
with higher number of targets process the highest number of
synaptic events per timestep. The most evident jump happens
between the configurations with 1 and 2 targets, respectively,
where the synaptic rows double in size. This shows that having
larger synaptic rows impacts processing times, especially for very
sparse networks, by improving the processed synaptic events of
~ 1 order of magnitude for 0.1% connectivity between worst and
best case. This gain reduces when the connectivity probability
increases, because of multiple synaptic events are carried per
spike. Therefore, the time processing per spike increases as well.

The 0.1 ms case (Figure 14 left) follows a similar trend to the
1 ms case, however the examples with 6 and 7 targets do not give
any improvements. The reason for this is due to the time required
to perform the transfers between shared and local memories for
the synaptic contributions, which have a higher impact on the
timestep relative to the 1 ms case. For the sparse simulations
(0.1% and 1% connectivity), having multiple target Neuron cores
gives advantage similarly to the 1 ms case, however, when the
network becomes denser the trend starts to invert, as the cost
of processing a single incoming spike dominates over the gain
introduced by this approach.

5. DISCUSSION

This work presents a novel parallelization approach for neural
processing on Neuromorphic hardware, which improves the
performance of SNN simulations by acting on the way
synaptic matrices are partitioned and processed. The Multi-
target partitioning approach provides additional freedom when
designing SNN simulations, by allowing to target applications
more specifically, according to their requirements. By allowing
parameterization of synaptic and neural processing units, it is
possible to allocate the appropriate amount of resources for a
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FIGURE 14 | Processed synaptic events for different connectivity configurations. Both the 0.1 ms timestep (left) and 1 ms timestep (right) cases are shown. The
vertical axis shows the total processed synaptic events per timestep, the horizontal axis different connectivity probabilities. Each line represents a different neural
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given requirement, prioritizing the number of Neuron processing
units for sparser applications and increasing the number of
Synapse processing units when the fan-in dominates. Thanks to
these improvements it is possible to maximize the performance,
while using minimal hardware resources and therefore reducing
power consumption.

Through a SpiNNaker implementation of the Multi-target
partitioning approach, it is possible to improve the peak synaptic
processing throughput up to 9x compared to previous results
for the same hardware resources. Furthermore, it is possible to
obtain comparable processed synaptic events per ms, by reducing
the hardware resources to a quarter, resulting in a much smaller
machine (and energy consumption) dedicated to the simulation
(as detailed in Section 4.2).

The Multi-target partitioning approach additionally enables
optimal processing of incoming spike packets, providing a
larger pool of target neurons for each spike, hence increasing
the length of processed synaptic rows for a given connection
density. This greatly reduces the required number of accesses
to shared memory per timestep, therefore allowing more
efficient processing of sparsely connected networks (detailed in
Section 4.3). This is shown by Equations (8) and (13), where the
number of target neurons of each spike grows according to the
number of target Neuron cores, expanding the limit beyond a
single postsynaptic Neuron core. This has the effect of reducing,
by a factor N, the number of destination processors per spike
packet, facilitating the routing of spike packets and so reducing
the pressure on the communication fabric. Furthermore, this
increased number of targets per spike packet allows to amortize
the dominating fixed cost of processing a spike (¢;) (Rhodes
et al., 2018) over a higher number of postsynaptic receptors,
which can now be larger than that of a single Neuron core,
overcoming this limitation which is still observed for the
Heterogeneous partitioning.

The Multi-target partitioning approach is optimal as it comes
with minimal additional costs compared to previous approaches.
However, the SpiNNaker implementation is limited by the
different access patterns to shared memory. The shared memory
access time plays a key role in the fraction of the timestep

available for spike processing, as shown by Equation (9) and by
the recorded values presented in Sections 4.1.2 and 4.1.3. The
relatively old technology employed by SpiNNaker represents a
bottleneck in this context, resulting in both memory contention
and transfer size limiting the total system throughput. This
causes the synaptic contributions writing (¢,,) and reading (t,)
times (Equations 9-11) to increase with the number of cores
in the ensemble, consuming approximately half the timestep
duration for high timestep resolution simulations such as 0.1
ms. For this reason the need for faster access to shared memory
is proven, by showing that there is a large potential gain in
having access to multiple separate shared memories, compared
to a single shared memory. This consideration opens up to
the possibility of using more advanced memory architectures
for Neuromorphic hardware, such as multiport memories, since
structures like synaptic matrices and synaptic contributions are
non-overlapping and therefore would benefit from the capability
of separate independent accesses.

The flexibility of the approach also makes it portable and
extendable for the next generation of digital Neuromorphic
platforms. SpiNNaker 2, by exploiting its chip organization of
cores in quartets, namely QPEs (Hoppner et al., 2021; Yan et al.,
2021), could map a cluster-based implementation of multiple
neural ensembles per chip, where each processor (PE) represents
either a Neuron core or a Synapse core. Since each PE has
the capability to efficiently access the local memory of other
PEs on the same QPE, it is possible to efficiently share the
synaptic contributions within a QPE, overcoming the contention
issue. A step further would include a tree-like structure, where
QPEs could implement a group of 4 Synapse cores, which
generate the synaptic contributions as a single block for the
4 cores. Then, a single PE per QPE accesses the chip shared
memory to communicate with other QPEs implementing blocks
of Neuron cores. Following the same strategy, a single Neuron
core per Neuron QPE accesses the shared memory to retrieve the
contributions. This would expand the ensemble capabilities to a
full chip (up to 160 cores), limiting the memory contention to a
quarter of the cores in use, which combined with the much higher
memory throughput (6 vs. 1 GB/s for the SpiNNaker SDRAM)

Frontiers in Neuroscience | www.frontiersin.org

78

May 2022 | Volume 16 | Article 867027


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Peres and Rhodes

Parallelization on Neuromorphic Hardware

would have a large impact on the synaptic contributions reading
and writing times.

The Multi-target partitioning approach also has potential
benefits in Neuromorphic systems where all synaptic information
is stored locally to the computational units. For these systems
the approach would allow synaptic compartments to target
multiple neural compartments, improving the handling of sparse
connections, and overcoming the limitations set by the fixed
coupling between synaptic and neural units. Furthermore the
added benefits seen when processing plastic connections offers
advantages for online learning applications, particularly in
sparsely-connected biologically-representative SNNs.
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Modern computational neuroscience strives to develop complex network models to
explain dynamics and function of brains in health and disease. This process goes
hand in hand with advancements in the theory of neuronal networks and increasing
availability of detailed anatomical data on brain connectivity. Large-scale models that
study interactions between multiple brain areas with intricate connectivity and investigate
phenomena on long time scales such as system-level learning require progress
in simulation speed. The corresponding development of state-of-the-art simulation
engines relies on information provided by benchmark simulations which assess the
time-to-solution for scientifically relevant, complementary network models using various
combinations of hardware and software revisions. However, maintaining comparability of
benchmark results is difficult due to a lack of standardized specifications for measuring
the scaling performance of simulators on high-performance computing (HPC) systems.
Motivated by the challenging complexity of benchmarking, we define a generic workflow
that decomposes the endeavor into unique segments consisting of separate modules.
As a reference implementation for the conceptual workflow, we develop beNNch: an
open-source software framework for the configuration, execution, and analysis of
benchmarks for neuronal network simulations. The framework records benchmarking
data and metadata in a unified way to foster reproducibility. For illustration, we measure
the performance of various versions of the NEST simulator across network models
with different levels of complexity on a contemporary HPC system, demonstrating how
performance bottlenecks can be identified, ultimately guiding the development toward
more efficient simulation technology.

Keywords: spiking neuronal networks, benchmarking, large-scale simulation, high-performance computing,
workflow, metadata
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1. INTRODUCTION

Past decades of computational neuroscience have achieved a
separation between mathematical models and generic simulation
technology (Einevoll et al., 2019). This enables researchers to
simulate different models with the same simulation engine,
while the efficiency of the simulator can be incrementally
advanced and maintained as a research infrastructure. Increasing
computational efficiency does not only decrease the required
resources of simulations, but also allows for constructing
larger network models with an extended explanatory scope
and facilitates studying long-term effects such as learning.
Novel simulation technologies are typically published together
with verification—evidence that the implementation returns
correct results—and validation—evidence that these results are
computed efficiently. Verification implies correctness of results
with sufficient accuracy for suitable applications as well as a
flawless implementation of components confirmed by unit tests.
For spiking neuronal network simulators, such applications are
simulations of network models which have proven to be of
relevance for the field. In a parallel effort, validation aims at
demonstrating the added value of the new technology for the
community. To this end, the new technology is compared to
previous studies on the basis of relevant performance measures.
Efficiency is measured by the resources used to achieve
the result. Time-to-solution, energy-to-solution and memory
consumption are of particular interest. For the development of
neuromorphic computing systems, efficiency in terms of low
power consumption and fast execution is an explicit design goal:
simulations need to be able to cope with limited resources, for
example, due to hardware constraints. Real-time performance,
meaning that simulated model time equals wall-clock time,
is a prerequisite for simulations interacting with the outer
world, such as in robotics. Even faster, sub-real-time simulations
enable studies of slow neurobiological processes such as brain
development and learning, which take hours, days, or more
in nature. High-performance computing (HPC) benchmarking
studies usually assess the scaling performance of the simulation
architecture by incrementally increasing the amount of employed
hardware resources (e.g., compute nodes). In weak-scaling
experiments, the size of the simulated network model is increased
proportionally to the computational resources, which keeps
the workload per compute node fixed if the simulation scales
perfectly. Scaling neuronal networks, however, inevitably leads
to changes in the network dynamics (van Albada et al., 2015b).
Comparisons between benchmarking results obtained at different
scales are therefore problematic. For network models of natural
size describing the correlation structure of neuronal activity,
strong-scaling experiments (in which the model size remains
unchanged) are more relevant for the purpose of finding the
limiting time-to-solution. For a formal definition of strong and
weak scaling refer to page 123 of Hager and Wellein (2010) and
for pitfalls in interpreting the scaling of network simulation code
see van Albada et al. (2014). When measuring time-to-solution,
studies distinguish between different phases of the simulation, in
the simplest case between a setup phase of network construction
and the actual simulation phase of state propagation. Such

benchmark metrics not only depend on the simulation engine
and its options for time measurements (see, e.g., Jordan et al.,
2018; Golosio et al., 2021), but also on the network model. The
simulated activity of a model may not always be stationary over
time, and transients with varying firing rates are reflected in the
computational load. For an example of transients due to arbitrary
initial conditions see Rhodes et al. (2019), and for an example
of non-stationary network activity, refer to the meta-stable state
of the multi-area model described by Schmidt et al. (2018a).
Studies assessing energy-to-solution need to specify whether only
the power consumption of the compute nodes is considered or
interconnects and required support hardware are also accounted
for (van Albada et al., 2018).

The omnipresence of benchmarks in studies on simulation
technology demonstrates the relevance of efficiency. The
intricacy of the benchmarking endeavor, however, not only
complicates the comparison between these studies, but also
reproducing them. Neuroscientific simulation studies are already
difficult to reproduce (Crook et al., 2013; McDougal et al., 2016;
Rougier et al, 2017; Gutzen et al, 2018; Pauli et al., 2018;
Gleeson et al,, 2019), and benchmarking adds another layer
of complexity. Reported benchmarks may differ not only in
the structure and dynamics of the employed neuronal network
models, but also in the type of scaling experiment, soft- and hard-
ware versions and configurations, as well as in the analysis and
presentation of the results. Figure 1 illustrates the complexity of
benchmarking experiments in simulation science and identifies
five main dimensions: “Hardware configuration”, “Software
configuration”, “Simulators”, “Models and parameters”, and
“Researcher communication”. The following presents examples
specific to neuronal network simulations, demonstrating the
range of each of the five dimensions.

Different simulators, some with decades of development,
allow for large-scale neuroscientific simulations (Brette
et al, 2007). We distinguish between simulators that run
on conventional HPC systems and those that use dedicated
neuromorphic hardware. Prominent examples of simulators for
networks of spiking point-neurons are NEST (Morrison et al.,
2005b; Gewaltig and Diesmann, 2007; Plesser et al., 2007; Helias
et al., 2012; Kunkel et al., 2012, 2014; Ippen et al., 2017; Kunkel
and Schenck, 2017; Jordan et al., 2018; Pronold et al., 2021, 2022)
and Brian (Goodman and Brette, 2008; Stimberg et al., 2019)
using CPUs; GeNN (Yavuz et al., 2016; Knight and Nowotny, 2018,
2021; Stimberg et al., 2020; Knight et al., 2021) and NeuronGPU
(Golosio et al., 2021) using GPUs; CARLsim (Nageswaran et al.,
2009; Richert et al., 2011; Beyeler et al.,, 2015; Chou et al., 2018)
running on heterogeneous clusters; and the neuromorphic
hardware SpiNNaker (Furber et al., 2014; Rhodes et al., 2019).
NEURON (Carnevale and Hines, 2006; Migliore et al., 2006; Lytton
et al,, 2016) and Arbor (Akar et al., 2019) aim for simulating
morphologically detailed neuronal networks.

The hardware and software configurations used in published
benchmark studies are diverse because both underlie updates
and frequent releases. In addition, different laboratories may not
have access to the same machines. Therefore, HPC benchmarks
are performed on different contemporary compute clusters or
supercomputers. For example, NEST benchmarks have been
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FIGURE 1 | Dimensions of HPC benchmarking experiments with examples from neuronal network simulations. Hardware configuration: computing architectures and
machine specifications. Software configuration: general software environments and instructions for using the hardware. Simulators: specific simulation technologies.
Models and parameters: different models and their configurations. Researcher communication: knowledge exchange on running benchmarks.

conducted on the systems located at Research Center Jiilich in
Germany but also on those at the RIKEN Advanced Institute
for Computational Science in Japan (e.g., Helias et al., 2012;
Jordan et al., 2018). To assess the performance of GPU-based
simulators, the same simulation is typically run on different GPU
devices; from low-end gaming GPUs to those installed in high-
end HPC clusters (Knight and Nowotny, 2018; Golosio et al.,
2021). This variety can be beneficial; performing benchmark
simulations on only a single system can lead to unwanted
optimization toward that type of machine. However, comparing
results across different hard- and software is complicated and
requires expert knowledge of the compared technologies in order
to draw reasonable conclusions.

The modeling community distinguishes between functional
models, where the validation is concerned with the questions
if and how well a specific task is solved, and non-functional
models, where an analysis of the network structure, dynamics,
and activity is used for validation. Simulating the same model
using different simulation engines often results in activity data
which can only be compared on a statistical level. Spiking activity,
for example, is typically evaluated based on distributions of

quantities such as the average firing rate, rather than on precise
spike times (Senk et al., 2017; van Albada et al., 2018). Reasons
for that are inevitable differences between simulators such as
different algorithms, number resolutions, or random number
generators, combined with the fact that neuronal network
dynamics is often chaotic, rapidly amplifying minimal deviations
(Sompolinsky et al., 1988; van Vreeswijk and Sompolinsky,
1998; Monteforte and Wolf, 2010). The most frequently used
models to demonstrate simulator performance are balanced
random networks similar to the one proposed by Brunel (2000):
generic two-population networks with 80% excitatory and 20%
inhibitory neurons, and synaptic weights chosen such that
excitation and inhibition are approximately balanced, similar to
what is observed in local cortical networks. Variants differ not
only in the parameterization but also in the neuron, synapse, and
plasticity models, or other details. Progress in NEST development
is traditionally shown by upscaling a model of this type, called
“HPC-benchmark model”, which employs leaky integrate-and-
fire (LIF) neurons, alpha-shaped post-synaptic currents, and
spike-timing-dependent plasticity (STDP) between excitatory
neurons. The detailed model description and parameters can be
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found in Tables 1-3 of the Supplementary Material of Jordan
et al. (2018). Other versions include a network of Izhikevich
model neurons and STDP (Izhikevich, 2003) used by Yavuz et al.
(2016) and Golosio et al. (2021), the COBAHH model with
Hodgkin-Huxley type neurons and conductance-based synapses
(Brette et al., 2007) used by Stimberg et al. (2020), and a version
with excitatory LIF and inhibitory Izhikevich model neurons
where excitatory synapses are updated with STDP and inhibitory-
to-inhibitory connections do not exist is used by Chou et al.
(2018). Even though balanced random networks are often used
for weak-scaling experiments, they describe the anatomical and
dynamical features of cortical circuits only at a small spatial scale
and the upscaling affects the network dynamics (see van Albada
et al., 2015b as indicated above). At larger scales, the natural
connectivity becomes more complex than what is captured
by this model type. Therefore, models of different complexity
need to be benchmarked to guarantee that a simulation engine
performs well across use cases in the community. In addition
to the HPC-benchmark model, this study employs two more
elaborate network models: the “microcircuit model” proposed
by Potjans and Diesmann (2014) and the “multi-area model” by
Schmidt et al. (2018a). The microcircuit model is an extension
of the balanced random network model with an excitatory and
an inhibitory neuron population in each of four cortical layers
with detailed connectivity derived from experimental studies.
The model spans 1 mm? of cortical surface, represents the
cortical layers at their natural neuron and synapse densities,
and has recently been used to compare the performance of
different simulation engines; for instance, NEST and SpiNNaker
(Senk et al., 2017; van Albada et al, 2018; Rhodes et al.,
2019); NEST, SpiNNaker, and GeNN (Knight and Nowotny,
2018); and NEST and NeuronGPU (Golosio et al., 2021). The
multi-area model comprises 32 cortical areas of the visual
system where each is represented by an adapted version of the
microcircuit model; results are available for NEST (van Albada
et al,, 2021) and GeNN (Knight and Nowotny, 2021). Comparing
the performance of the same model across different simulators
profits from a common model description. The simulator-
independent language PyNN (Davison et al., 2009), for example,
enables the use of the same executable model description for
different simulator back ends. Testing new technologies only with
a single network model is, however, not sufficient for general-
purpose simulators and comes with the danger of optimizing the
code base for one application, while impairing the performance
for others.

Problems to reproduce the simulation outcome or compare
results across different studies may not only be technical but
also result from a miscommunication between researchers or a
lack of documentation. Individual, manual solutions for tracking
the hardware and software configuration, the simulator specifics,
and the models and parameters used in benchmarking studies
have, in our laboratories, proven inefficient when scaling up
the number of collaborators. This effect is amplified if multiple
laboratories are involved. Similar inter-dependencies are also
present between the other four dimensions of Figure 1, making
it hard to produce long-term comparable results; the exhibited
intricacy of benchmarking is susceptible to errors as, for instance,

small details in parameterization or configuration may have a
large impact on performance.

Standardizing benchmarks can help to control the
complexity but represents a challenge for the fast-moving
and interdisciplinary field of computational neuroscience. While
the field had some early success in the area of compartmental
modeling (Bhalla et al., 1992) and Brette et al. (2007) made
initial steps for spiking neuronal networks, neither a widely
accepted set of benchmark models nor guidelines for performing
benchmark simulations exist. In contrast, benchmarks are
routinely employed in computer science, and established
metrics help to assess the performance of novel hardware and
software. The LINPACK benchmarks (Dongarra et al., 2003),
for example, were initially released in 1979, and the latest
version is used to rank the world’s top supercomputers by
testing their floating-point computing power (TOP500 list).
Although this strategy has been successful for many years, it
has also been criticized as misguiding hardware vendors toward
solutions with high performance in formalized benchmarks but
disappointing performance in real-world applications!. For the
closely related field of deep learning, Dai and Berleant (2019)
summarize seven key properties that benchmarking metrics
should fulfill: relevance, representativeness, equity, repeatability,
cost-effectiveness, scalability, and transparency. There exist
standard benchmarks for machine learning and deep learning
applications such as computer vision and natural language
processing with standard data sets and a global performance
ranking. The most prominent example is MLPerf? (Mattson
etal., 2020). Another example is the High Performance LINPACK
for Accelerator Introspection (HPL-AI) benchmark® which is
the mixed-precision counterpart to the LINPACK benchmarks.
Ostrau et al. (2020) propose a benchmarking framework for
deep spiking neural networks and they compare results obtained
with the simulators Spikey (Pfeil et al., 2013), BrainScales
(Schemmel et al., 2010), SpiNNaker, NEST, and GeNN.

For measuring and comparing the scaling performance
of large-scale neuronal network model simulations, there
exists, to our knowledge, no unifying approach, yet. Recently,
more laboratories make use of established simulators rather
than developing their own, and computing resources have
become available and interchangeable. The resulting increase
in the size of user-communities comes with the demand for
even more flexible and efficient simulators with demonstrated
performance. To keep up with this progress, we see the
need for a common benchmarking framework. We envision
a consistently managed array of standard benchmark models
together with standard ways for running them. The five
dimensions outlined above lend themselves to a modular
framework integrating distinct components which can be
updated, extended, or replaced independently. The framework
needs to cover all steps of the benchmarking process from
configuration, to execution, to handling of results. For enabling

Uhttps://www.technologyreview.com/2010/11/08/199100/why-chinas-new-
supercomputer-is-only- technically- the- worlds- fastest
Zhttps://mlcommons.org

Shttps://www.icl.utk.edu/hpl-ai
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comparability and reproducibility, all relevant metadata and
data need to be tracked. In this work, we develop a conceptual
benchmarking workflow that meets these requirements. For a
reference implementation named beNNch, we employ the JUBE
Benchmarking Environment? and the simulator NEST in different
versions (Gewaltig and Diesmann, 2007), and we assess the time-
to-solution for the HPC-benchmark model, the microcircuit
model (Potjans and Diesmann, 2014), and the multi-area model
(Schmidt et al,, 2018a) on the contemporary supercomputer
JURECA-DC (Thornig and von St. Vieth, 2021). The goal of
this study is to set the cornerstone for reliable performance
benchmarks facilitating the comparability of results obtained
in different settings, and hence, supporting the development
of simulators.

The Results section of this manuscript formalizes the
general concepts of the benchmarking workflow (Section 2.1),
implements these concepts into a reference benchmarking
framework for the NEST simulator (Section 2.2), and applies the
framework to generate and compare benchmarking data, thereby
making a case for the relevance of benchmarking for simulator
development (Section 2.3.1). After a discussion of our results
in Section 3, Section 4 provides details of specific performance
optimizations addressed in this work.

2. RESULTS
2.1. Workflow Concepts

We devise a generic workflow for performance benchmarking
applicable to simulations running on conventional HPC
architectures. The conceptual workflow depicted in Figure 2
consists of four segments which depend on each other in a
sequential fashion. The segments are subdivided into different
modules which are related to the specific realizations used in
our reference implementation of the workflow (Section 2.2).
We use the term “workflow” to describe abstract concepts
that are of general applicability with regard to benchmarking
efforts, and “framework” to refer to the concrete software
implementation we have developed. Further, we make the
distinction between “internal” and “external” modules. Internal
modules are considered essential building blocks of the workflow
while external modules can be exchanged more readily. The
following introduces each of the workflow’s conceptual segments
and explains how the proposed solution addresses the identified
problems (cf. Figure 1).

2.1.1. Configuration and Preparation

The first of the four workflow segments consists of five distinct
modules that together set up all necessary prerequisites for the
simulation. First, the installation of the simulation software and
its dependencies is handled by “software deployment”, while
“machine configuration” specifies parameters that control the
simulation experiment conditions, as for example, how many
compute nodes to reserve. Together, these two modules target

4https://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.
html

the problem dimensions “hardware configuration”, “software
configuration”, and “simulators”. Addressing “models and
parameters”, the module “model” provides the network model
implementation, while “model configuration” allows for passing
parameters to the model such as the biological model time to
be simulated, thereby separating the model from its parameters.
Finally, the “user configuration” module confines user-specific
data, such as file paths or compute budgets, to a single location.

2.1.2. Benchmarking

The second segment encompasses all modules related to actually
running the benchmark simulation. Compute clusters typically
manage the workload of the machine via queuing systems;
therefore, compute-intensive calculations are submitted as jobs
via scripts which define resource usage and hold instructions for
carrying out the simulation. In the workflow, this is handled by
the module aptly named “job script generation”. Here, the first
link between modules comes into play: the workflow channels
model, user and machine configuration to create a job script
and subsequently submit the script to the job queue via the
module “job submission”. With the simulator software prepared
by the software-deployment module, “job execution” performs
the model simulation given the job-submission parameters.
While a simulation for neuroscientific research purposes would
at this point focus on the output of the simulation, for
example, neuronal spike times or voltage traces, benchmarking
is concerned with the performance results. These are recorded in
the final benchmarking module called “data generation”.

2.1.3. Data- and Metadata Handling

A core challenge in conducting performance benchmarks is
the handling of all produced data and metadata. While the
former type of data here refers to the results of the performance
measurements, the latter is an umbrella term describing the
circumstances under which the data was recorded according
to the dimensions of benchmarking (Figure 1). Since executing
multiple simulations using different configurations, software,
hardware, and models is an integral part of benchmarking, data
naturally accumulates. Recording the variations across these
dimensions leads to a multitude of metadata that needs to
be associated to the measured data. Standardized formats for
both types of data make the results comparable for researchers
working with the same underlying simulation technology. The
workflow segment “Data- and metadata handling” proposes the
following solution. First, the raw performance data, typically
stemming from different units of the HPC system, are gathered
and unified into a standardized format, while the corresponding
metadata is automatically recorded. Next, the metadata is
associated to the unified data files, alleviating the need for
manually keeping track of parameters, experiment choices and
software environment conditions. While there are different
possible solution for this, attaching the relevant metadata directly
to the performance-data files simplifies filtering and sorting of
results. Finally, “initial validation” allows for a quick glance at the
results such that erroneous benchmarks can be swiftly identified.
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FIGURE 2 | Conceptual overview of the proposed benchmarking workflow. Light gray boxes divide the workflow into four distinct segments, each consisting of
multiple modules. Internal modules are shown in orange and external ones in pink. Blue boxes indicate their respective realization in our reference implementation.

2.1.4. Data Presentation

This final workflow segment addresses the challenge of making
the benchmarking results accessible and comparable such that
meaningful conclusions can be drawn, thereby aiming to
cope with the complexity that “Researcher communication”
introduces. In a first step, “metadata based filtering and sorting”
allows the user to dynamically choose the results to be included
in the comparison. Here, dynamic means that arbitrary cuts
through the hypercube of metadata dimensions can be selected
such that the filtered results only differ in metadata fields of
interest. Second, the data is presented in a format for which
switching between benchmarks is intuitive, key metadata is given
alongside the results, and data representation is standardized.
The presentation of data should be comprehensive, consistent,
and comparative such that the benchmarking results are usable
in the long term. Thereby, the risk of wasting resources through
re-generation of results is eliminated, making the corresponding
software development more sustainable.

2.2. beNNch: A Reference Implementation

Building on the fundamental workflow concepts developed
in Section 2.1, we introduce a reference implementation for
modern computational neuroscience: beNNch®—a benchmarking

Shttps://github.com/INM-6/beNNch

framework for neuronal network simulations. The framework
serves not only as a proof-of-concept, but also provides a software
tool that can be readily used by neuroscientists and simulator
developers. While beNNch is built such that plug-ins for any
neuronal network simulator can be developed, we specifically
implement compatibility with the NEST simulator (Gewaltig and
Diesmann, 2007) designed for simulating large-scale spiking
neuronal network models. In the following subsections, we detail
software tools, templates, technologies, and user specifications
needed to apply beNNch for benchmarking NEST simulations.
Each of the conceptual modules of Figure 2 is here associated
with a concrete reference.

2.2.1. Builder

Reproducible software deployment is necessary for repeatability
and comparability of the benchmarks. In favor of the usability
of the benchmarking framework, however, we need to abstract
non-relevant information on the hardware architecture and the
software tool chain. The tool set is required to install software in a
platform independent way and should not depend on a particular
flavor of the operating system, the machine architecture or overly
specific software dependencies. Additionally, it needs to be able
to make use of system-provided tools and libraries, for example,
to leverage machine specific MPI implementations. beNNch uses
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the tool Builder® for this purpose. Given a fixed software
stack and hardware architecture, Builder provides identical
executables by deriving the install instructions from “plan files”.
Integration with other package management systems such as
easy_build (Geimer et al., 2014) or Spack (Gamblin et al., 2015)
is achieved by using the same environment module systems’.
Thereby, the required user interaction is minimized and, from
a user perspective, installation reduces to the configuration
of installation parameters. Given a specified variation of the
software to be benchmarked, beNNch calls Builder to deploy
the requested software. In doing so, Builder checks whether the
software is already available and otherwise installs it according to
the specifications in the plan file. The depth to which required
dependencies need to be installed and which mechanisms are
used depend on the conventions and prerequisites available
at each execution site. For any installation, the used software
stack—including library versions, compiler versions, compile
flags, etc.—are recorded as metadata.

2.2.2. NEST

beNNch implements compatibility with the NEST simulator
(Gewaltig and Diesmann, 2007), enabling the performance
benchmarking of neuronal network simulations at the resolution
of single neurons. The NEST software is complex, and the
consequences of code modifications for performance are often
hard to predict. NEST has an efficient C++ kernel, but network
models and simulation experiments are defined via the user-
friendly Python interface PyNEST (Eppler et al., 2009; Zaytsev and
Morrison, 2014). To parallelize simulations, NEST provides two
methods: for distributed computing, NEST employs the Message
Passing Interface (MPI, Message Passing Interface Forum, 2009),
and for thread-parallel simulation, NEST uses OpenMP (OpenMP
Architecture Review Board, 2008).

2.2.3. Instrumentation

We focus our performance measurements on the time-to-
solution. Acquiring accurate data on time consumption is critical
for profiling and benchmarking. To this end, we make use of
two types of timers to collect this data: the timers are either
built-in to NEST on the C++ level, or they are included on the
Python level as part of the PyNEST network-model description.
The latter type of timers are realized with explicit calls to
the function time.time() of the Python Standard Library’s
time. To achieve consistency throughout the framework, we
use standardized variable names for the different phases of the
simulation. Figure 3 shows the simulation flow of a typical
NEST simulation. During “network construction”, neurons and
auxiliary devices for stimulation and recording are created
and subsequently connected according to the network-model
description. Afterwards, in the course of “state propagation”, the
network state is propagated in a globally time-driven manner.
This comprises four main phases which are repeated until
the entire model time has been simulated: update of neuronal
states, collocation of spikes in MPI-communication buffers,

Shttps://github.com/INM-6/Builder
7https://modules.readthedocs.io and http://Imod.readthedocs.io
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FIGURE 3 | Instrumentation to measure time-to-solution. Successive phases
of a NEST simulation; time is indicated by top-down arrow. Fanning arrows
denote parallel operation of multiple threads. The main phases network
construction (cyan) and state propagation (pink) are captured by external
timers on the Python level. Built-in NEST timers on the C++ level measure
sub-phases: node creation and connection (both gray, not used in benchmark
plots); update (orange), collocation (yellow), communication (green), and
delivery (blue). The sub-phases of the state propagation are repeated until the
simulation is finished as shown by the dashed arrow connecting delivery

and update.

communication of spikes, and delivery of the received spikes
to their respective thread-local targets. NEST’s built-in timers
provide a detailed look into the contribution of all four phases
of state propagation, while timers on the Python level measure
network construction and state propagation.

In NEST, the postsynaptic connection infrastructure is
established during the “connection” phase. However, the
presynaptic counterpart is typically only set up at the beginning
of the state propagation phase (see Jordan et al., 2018, for details).
In this work, we trigger this step deliberately and include it in our
measurement of network-construction time rather than state-
propagation time. Besides, it is common practice to introduce
a short pre-simulation before the actual simulation to give the
network dynamics time to level out; the state propagation phase
is only recorded when potential startup transients have decayed
(Rhodes et al., 2019). The model time for pre-simulation can be
configured via a parameter in beNNch. For simplicity, Figure 3
does not show this pre-simulation phase.

2.2.4. beNNch-models
We instantiate the “model” module with the repository
beNNch-models® which contains a collection of PyNEST neuronal

Shttps://github.com/INM-6/beNNch-models
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network models, i.e., models that can be simulated using the
Python interface of NEST (Eppler et al., 2009). In principle, any
such model can be used in conjunction with beNNch; only a
few adaptations are required concerning the interfacing. On
the input side, the framework needs to be able to set relevant
model parameters. For recording the performance data, the
required Python timers (Section 2.2.3) must be incorporated.
On the output side, the model description is required to
include instructions to store the recorded performance data and
metadata in a standardized format. Finally, if a network model is
benchmarked with different NEST versions that require different
syntax, as is the case for switching between NEST 2.X and NEST
3.X, the model description also needs to be adjusted accordingly.
Which model version is used in a simulation can thereby be
deduced from knowing which simulator version was tested. For
fine-grained version tracking, we additionally record the commit
hash of beNNch-models and attach it as metadata to the results.
Instructions on how to adapt existing models are provided in the
documentation of beNNch-models.

The current version of beNNch provides benchmark versions
of three widely studied spiking neuronal network models:
the two-population HPC-benchmark model®, the microcircuit
model'® by Potjans and Diesmann (2014) representing 1 mm?
of cortical surface with realistic neuron and synapse densities,
and the multi-area model!! by Schmidt et al. (2018a,b) consisting
of 32 microcircuit-like interconnected networks representing
different areas of visual cortex of macaque monkey. The model
versions used for this study employ the required modifications
described above.

2.2.5. config files

When executing benchmarks, the main user interaction with
beNNch consists of defining the characteristic parameters. We
separate this from the executable code by providing yaml-based
templates for “config files” to be customized by the user. Thereby,
the information that defines a benchmark experiment is kept
short and well arranged, limiting the number of files a user
needs to touch and reducing the risk of user errors on the
input side. Listing 1 presents an excerpt from such a config
file which has distinct sections to specify model, machine, and
software parameters. While some parameters are model specific,
standardized variable names are defined for parameters that are
shared between models.

2.2.6. JUBE

At this point, the first segment of the benchmarking workflow
(Figure 2) is complete and hence all necessary requirements
are set up: the software deployment provides the underlying
simulator (here: NEST with built-in instrumentation), the models
define the simulation, and the configuration specifies the
benchmark parameters. This information is now processed by
the core element of the framework: generating and submitting

9Original repository: https://github.com/nest/nest-simulator/blob/master/pynest/
examples/hpc_benchmark.py.

00riginal  repository:  https:/github.com/nest/nest-simulator/tree/master/
examples/nest/Potjans_2014.

" Original repository: https://github.com/INM-6/multi-area-model.

parameterset:

- name: model_parameters

parameter:

# can be either "metastable” or "ground”

- {name: network_state, type: string, _: "metastable”}
# biological model time to be simulated in ms

- {name: model_time_sim, type: float, _: "10000."}
# "weak” or "strong” scaling

- {name: scaling_type, _: "strong”}

- name: machine_parameters
parameter:

# number

- {name:

# number

- {name:

# number

- {name:

of compute nodes
num_nodes, type: int, _:
of MPI tasks per node
tasks_per_node, type: int,
of OpenMP threads per task
threads_per_task, type: int,

"4,8,12,16,24,32"}
_: "g"}
_: "16"}

- name: software_parameters
parameter:
# simulator used for executing benchmarks
- {name: simulator, _: "nest-simulator”}
# simulator version

- {name: version, _: "3.0"}

Listing 1: Excerpt of a config file in yaml-format for setting
model, machine, and software parameters for benchmarking
the multi-area model. When giving a list (e.g., for num_nodes),
a job for each entry of the list is created. Model parameters:
network_state describes particular model choices that induce
different dynamical fixed points; model_time_sim defines the
total model simulation time in ms; scaling_type sets up the
simulation for either a weak- or a strong-scaling experiment.
The former scales the number of neurons linearly with the
used resources which might be ill-defined for anatomically
constrained models. Machine parameters: num_nodes defines
the number of nodes over which the scaling experiment shall be
performed; tasks_per_node and threads_per_task specify
the number of MPI tasks per node and threads per MPI task
respectively. Software parameters: simulator and version
describe which version of which simulator to use (and to install
if not yet available on the machine).

simulation jobs and gathering and unifying the obtained
performance data. We construct this component of beNNch
around the xml-based JUBE* software tool using its yaml
interface. Built around the idea of benchmarking, JUBE can
fulfill the role of creating job scripts from the experiment,
user and machine configuration, their subsequent submission,
as well as gathering and unifying of the raw data output.
Here, we focus on the prevalent scheduling software SLURM
(Yoo et al., 2003), but extensions to allow for other workload
managers would be straightforward to implement. Our approach
aims at high code re-usability. Model specific code is kept to
a minimum, and where necessary, written in a similar way
across models. Adhering to a common interface between JUBE
scripts and models facilitates the integration of new models,
starting from existing ones as a reference. Since JUBE can
execute arbitrary code, we use it to also record metadata in
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conjunction with each simulation. This includes specifications of
the hardware architecture as well as parameters detailing the run
and model configuration.

2.2.7. git-annex
Without a mature strategy for sharing benchmark results,
communication can be a major obstacle. Typically, each
researcher has their preferred workflow, thus results are shared
over different means of communication, for example, via email
attachments, cloud-based storage options, or git repositories.
This makes it difficult to maintain an overview of all results,
especially if researchers from different labs are involved. Ideally,
results would be stored in a decentralized fashion that allows for
tracking the history of files while allowing on-demand access for
collaborators. To this end, we use git-annex!? as a versatile base
technology; it synchronizes file information in a standard git
repository while keeping the content of large files in a separate
object store, thereby keeping the repository size at a minimum.
git-annex is supported by the GIN platform!3 which we employ
for organizing our benchmark results. In addition, it allows for
metadata annotation: instead of relying on separate files that store
the metadata, git-annex can directly attach them to the data
files, thereby implementing the “metadata annotation” module.
Previously this needed to be cataloged by hand, whereas now
the framework allows for an automatic annotation, reducing
the workload on researchers and thus probability of human
mistakes. A downside of following this approach is a limitation
to command line-based interaction. Furthermore, git-annex is
not supported by some of the more widely used git repository
hosting services such as GitHub or GitLab in favor of Git LFS.
A difficult task when scaling up the usage of the framework
and, by extension, handling large amounts of results, is providing
an efficient way of dealing with user queries for specific
benchmark results. Attaching the metadata directly to the
performance data not only reduces the visible complexity of the
repository, but also provides an efficient solution: git-annex
implements a native way of selecting values for metadata keys
via git-annex “views’, automatically and flexibly reordering
the results in folders and sub-folders accordingly. For example,
consider the case of a user specifying the NEST version to
be 3.0, the tasks_per_node to be either 4 or 8, and the
network_state to be either metastable or ground. First,
git-annex filters out metadata keys for which only a single
value is given; in our example, only benchmarks conducted with
NEST version 3.0 remain. Second, a hierarchy of directories
is constructed with a level for each metadata key for which
multiple options are given. Here, the top level contains the
folders “4” and “8”, each containing sub-folders metastable
and ground where the corresponding results reside. However,
it may be difficult to judge exactly what metadata is important
to collect; oftentimes, it is only visible in hindsight that certain
metadata is relevant for the simulation performance. Therefore,
recording as much metadata as possible would be ideal, allowing
for retrospective investigations if certain metadata becomes

P2https://git-annex.branchable.com
Bhttps://gin.g-node.org

relevant after run time. Importantly, a balance needs to be
struck between recording large amounts of metadata and keeping
the volume of annotations manageable. In our implementation,
we choose to solve this issue by recording detailed metadata
about the system, software, and benchmarks, but only attaching
what we currently deem relevant for performance to the data.
The remaining metadata is archived and stored alongside the
data, thereby sacrificing ease of availability for a compact
format. This way, if future studies discover that a certain
hardware feature or software parameter is indeed relevant
for performance, the information remains accessible also for
previously simulated benchmarks while staying relatively hidden
otherwise. Furthermore, using git as a base technology allows
to collect data sets provided by different researchers in a curated
fashion by using well-established mechanisms like branches
and merge-request reviews. This use of git-annex thereby
implements the “metadata based filtering and sorting” module
of Figure 2.

2.2.8. beNNch-plot

To enable a comparison between plots of benchmark results
across the dimensions illustrated in Figure 1 it is paramount
to use the same plotting style. To this end, we have developed
the standalone plotting package beNNch-plot!4 based on
matplotlib (Hunter, 2007). Here, we define a set of tools to
create individual plot styles that can be combined flexibly by
the user. The standardized definitions of performance measures
employed by beNNch directly plug into this package. In addition,
beNNch-plot includes default plot styles that can be readily
used, and provides a platform for creating and sharing new
ones. beNNch utilizes the default plot styles of beNNch-plot for
both initial validation—a preliminary plot offering a quick glance
at the results, thereby enabling a swift judgement whether any
problems occurred during simulation—and visualization of the
final results.

2.2.9. Flip-Book

When devising a method of presenting benchmark results
we found the following aspects to be of crucial relevance
for our purposes. First, it should be possible to navigate the
results such that plots are always at the same screen position
and have the same dimensions, thereby minimizing the effort
to visually compare results. To achieve such a format, we
decided to create a flip-book in which each slide presents the
results of one experiment. Second, relevant metadata should be
displayed right next to the plots. This can include similarities
across the runs, but more importantly should highlight the
differences. As each user might be interested in different
comparisons, we let the user decide which kind of metadata
should be shown. Third, it should be easy to select only the
benchmarks of interest in order to keep the number of plots
small. This is already handled by the filtering provided by
git-annex views as described in Section 2.2.7. As an underlying
technology for programmatically creating HTML slides we use

Mhttps://github.com/INM-6/beNNch-plot
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TABLE 1 | Shorthand notation and description of NEST versions used in this work.

Shorthand notation
of NEST version

Description

2.20.2

3.0rc

3.0rc+ShrinkBuff
3.0rc+ShrinkBuff+SpikeComp

Official 2.20. 2 release (Fardet et al., 2021)
Release candidate for 3.0

3.0rc plus shrinking MPI buffers
3.0rc+ShrinkBuff plus spike
compression

3.0 Official 3.0 release (Hahne et al., 2021) =
3.0rc+ShrinkBuff+SpikeComp plus
neuronal input buffers with multiple
channels

jupyter notebooks!® in conjunction with the open source HTML
presentation framework reveal.js!®. An exemplary flip-book
containing the NEST performance results described in this work is
published alongside the beNNch repository'”. By respecting these
considerations, our proposed solution offers a way of sharing
benchmarking insights between researchers that is both scalable
and flexible.

2.2.10. Exchanging External Modules

beNNch is written in a modular fashion; as such, it is
possible to exchange certain modules without compromising
the functionality of the framework. In particular, the “external
modules” (see Figure 2) are implemented such that an exchange
is straight-forward to implement. This section presents a recipe
to exchange the “job execution” module, i.e., the simulator,
along with necessary changes in “data generation” and “model”
that follow:

First, the simulator to be substituted instead of NEST needs
to be properly installed. Builder—our implementation of the
“software deployment” module—provides the flexibility to install
any software as well as make it loadable via a module system.
Thus, a plan file specifying dependencies as well as source
code location and installation flags needs to be created for the
new simulator.

Second, models compatible with the new simulator need to be
added. On the framework side, the execute commands may need
to be adapted. Required adaptations to the models are the same
as for PyNEST models and are described in Section 2.2.4.

Third, the instrumentation needs to be changed. As NEST has
built-in instrumentation, only superficial timing measurements
are necessary on the model level. Depending on the new
simulator’s existing ability to measure performance, timing
measurements might need to be implemented on the simulator
or model level. If different measurements than implemented
are of interest, a simple addition to an existing list in
beNNch suffices to add the recorded data to the csv-format
result file.

Bhttps://jupyter.org
16https://github.com/hakimel/reveal js
17https://inm-6.github.io/beNNch

2.3. Using beNNch for Simulator

Development
For the development of simulation software with the goal to
optimize its performance, it is vital to focus efforts on those
parts of the simulation loop that take the most time to complete.
Benchmarking can help in identifying performance bottlenecks
and testing the effect of algorithmic adaptations. However, the
dimensions of benchmarking identified in Figure 1 make this
difficult: to guarantee that observed differences in performance
are caused by changes in the simulator code, many variables
need to be controlled for, such as hardware and software
configurations as well as simulator versions. General-purpose
simulators also need to be tested with respect to different settings
and applications to ensure that a performance improvement
in one case does not lead to a crucial decline in another
case. Neuronal network simulators are one such example as
they should exhibit reasonable performance for a variety of
different models with different resource demands. A systematic
assessment of the scaling performance covering the relevant
scenarios is therefore a substantial component of the iterative
simulator development.

beNNch, as an implementation of the workflow outlined in
Section 2.1, provides a platform to handle the complexity of
benchmarking while staying configurable on a low level. The
following suggests how beNNch can support the process of
detecting and tackling performance issues of a simulator. In a
first step, exploration is necessary to identify the performance
bottlenecks of the current version of the simulation engine.
As many software and model parameters need to be explored,
the centralized location of configuration parameters built
into beNNch helps in maintaining an overview of conducted
experiments. Neuronal network simulations can usually be
decomposed into separate stages, such as neuronal update and
spike communication. The instrumentation and visualization of
these stages is part of beNNch and points the researcher to the
respective sections in the code. If a potential bottleneck for
a certain model is identified, tests with other models provide
the basis for deciding whether these are model- and scale-
specific or are present across models, hinting at long-reaching
issues of the simulator. beNNch’s native support for handling the
benchmarking of multiple models alleviates the researchers from
operating a different code base for every model. In the process
of solving the simulator issue, running further benchmarks
and directly comparing new results can assist in deciding
which adaptations bear fruit. The standardized visualization
tools of beNNch support spotting differences in performance
plots. Finally, an ongoing development of a neuronal network
simulator should respect the value of insights gained by resource-
intensive benchmarks. To this end, beNNch implements a
decentralized storage of standardized performance results. In
addition to preserving information for the long term, this also
helps in communicating between researchers working on the
simulator’s development.

2.3.1. Use Case: NEST Development
This section illustrates the relevance of performance benchmarks
for the development of neuronal network simulators with the
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example of recent changes to the NEST code base; for historical
context see Section 4.1.1. We use beNNch to outline crucial steps
of the development from the release candidate NEST 3.0rc to
the final NEST 3.0 and also discuss improvements compared
to the latest NEST 2 version (NEST 2.20.2, Fardet et al,
2021). Table1 summarizes the NEST versions employed in
this study.

Regarding the dimensions of HPC benchmarking in Figure 1,
this use case primarily addresses the “Simulators” dimension by
testing different NEST versions and the “Models and parameters”
dimension by testing different network models; the approach can
be extended similarly to the other dimensions.

Our starting point is the weak-scaling experiments of
the HPC-benchmark model (Jordan et al., 2018); the times
for network construction and state propagation as well as
the memory usage remain almost constant with the newly
introduced 5g kernel (see their Figures 7, 8). Figure4 shows
similar benchmarks of the same network model conducted
with beNNch using the release candidate in Figure 4A and
the final release in Figure4B. The graph design used here
corresponds to the one used in the flip-book format by the
framework. A flip-book version of the results shown in this
work can be accessed via the GitHub Pages instance of the
beNNch repository!”. While the release candidate in Figure 4A
exhibits growing state-propagation times when increasing the
number of nodes, network-construction times stay constant
and are, for Ty odel 1s, small, making up less than
10% of the total simulation time. The phases “delivery” and
“communication” both contribute significantly to the state-
propagation time. Jordan et al. (2018) report real-time factors
of about 500 (e.g., their Figure7C) in contrast to values
smaller than 40 shown here and their simulations are by
far dominated by the delivery phase (see their Figure 12).
A comparison of our data and the data of Jordan et al
(2018) is not straightforward due to the inherent complexity
of benchmarking and we will here emphasize a few concurring
aspects: first, Jordan et al. (2018) run their benchmarks on the
dedicated supercomputers JUQUEEN (Jiilich Supercomputing
Centre, 2015) and K Computer (Miyazaki et al., 2012) while our
benchmarks use the recent cluster JURECA-DC (Théornig and
von St. Vieth, 2021). Each compute node of the BlueGene/Q
system JUQUEEN is equipped with a 16-core IBM PowerPC
A2 processor running at 1.6 GHz and each node of the K
Computer has an 8-core SPARC64 VIIIfx processor operating at
2 GHz; both systems provide 16 GB RAM per node. In contrast,
the JURECA-DC cluster employs compute nodes consisting of
two sockets, each housing a 64-core AMD EPYC Rome 7742
processor clocked at 2.2 GHz, that are equipped with 512 GB
of DDR4 RAM. Here, nodes are connected via an InfiniBand
HDRI100/HDR network. Second, Jordan et al. (2018) use 1
MPI process per node and 8 threads per process while our
simulations are performed throughout this study with 8 MPI
processes per node and 16 threads per process. Third, Jordan et al.
(2018) simulate 18,000 neurons per MPI process while we only
simulate 11, 250 neurons per process. This list of differences is not
complete and only aims to illustrate that potential discrepancies
in benchmarking results may be explained by differences in

hardware, software, simulation and model configuration, and
other aspects exemplified in Figure 1.

Having demonstrated that beNNch can perform weak-scaling
experiments of the HPC-benchmark model as done in previous
publications, we next turn to strong-scaling benchmarks of
the multi-area model (Schmidt et al., 2018a). To fulfill the
memory requirements of the model, at least three compute nodes
of JURECA-DC are needed; here, we choose to demonstrate
the scaling on four to 32 nodes. Initially, we compare the
latest NEST 2 version (Figure 5A) with the release candidate
for NEST 3.0 (Figure 5B). The improved parameter handling
implemented in NEST 3.0rc reduces the network-construction
time. However, the communication phase here largely dominates
state propagation in both NEST versions shown; both use the
original 5g kernel. Previous simulations of the HPC-benchmark
model have not identified the communication phase as a
bottleneck (Jordan et al., 2018, Figure 12). Communication only
becomes an issue when then smallest delay in the network is of
the same order as the computation step size because NEST uses the
smallest delay as the communication interval for MPI. While the
HPC-benchmark model uses 1.5 ms for all connections—which
is a good estimate for inter-area connections—the multi-area
model and microcircuit use distributed delays with a lower bound
of 0.1 ms leading to a fifteen-fold increase in the number MPI
communication steps.

The following identifies and eliminates the main cause
for the large communication time in case of the multi-area
model, thus introducing the first out of three performance-
improving developments applied to NEST 3.0rc. Cross-node
communication, handled in NEST by MPI, needs to strike a
balance between the amount of messages to transfer and the size
of each message. The size of the MPI buffer limits the amount
of data that fits into a single message, and is therefore the main
parameter controlling this balance. Ideally, each buffer would fit
exactly the right amount of information by storing all spikes of
the process relevant for the respective communication step. Due
to overhead attached to operating on additional vectors, a scheme
in which the buffer size adapts precisely for each MPI process
for each communication step can be highly inefficient. Therefore,
in cases where communication is roughly homogeneous, it is
advantageous to keep the exchanged buffer between all processes
the same size, as is implemented in NEST 3.0rc. While buffer
sizes are constant across processes, NEST does adapt them
over time to minimize the number of MPI communications.
Concretely, whenever the spike information that a process needs
to send exceeds what fits into one buffer, the buffer size for
the next communication step is increased. However, the original
5g kernel of NEST does not shrink buffer sizes. In networks
such as the multi-area model, the firing is not stationary over
time; transients of high activity propagate through the network
(Schmidt et al., 2018a). In general, startup transients may cause
high spike rates only in the beginning of a simulation unless
the network is carefully initialized (Rhodes et al., 2019). If the
rates decrease, the spiking information becomes much smaller
than the available space in the MPI buffer. Consequently, the
original 5g kernel preserves unnecessarily large buffer sizes
which results in the communication of useless data. To address
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FIGURE 4 | Weak-scaling performance of the HPC-benchmark model on JURECA-DC. (A) NEST 3.0rc. The left graph shows the absolute wall-clock time Ty
measured with Python-level timers for both network construction and state propagation [legend in (B)]; the model time is Tmogel = 1's. Error bars indicate variability
across three simulation repeats with different random seeds. The top right graph displays the real-time factor defined as wall-clock time normalized by the model time.
Built-in timers resolve four different phases of the state propagation [legend in (B)]: update, collocation, communication, and delivery. Pink error bars show the same
variability of state propagation as the left graph. The lower right graph shows the relative contribution of these phases to the state-propagation time. Same colors used
for phases as in Figure 3. (B) NEST 3.0. Same display as (A).

this issue, a mechanism for automatically shrinking the buffer
sizes has been introduced. For details see Section 4.1.2. The
release candidate with the implementation of shrinking MPI
buffers (NEST 3.0rc+ShrinkBuff) approximately halves the
time spent in the communication phase compared to the original
implementation (compare Figures 5B,C).

Next, we assess the strong-scaling performance of the
microcircuit model (Potjans and Diesmann, 2014). The model
size is similar to the size of one of the 32 areas of the multi-
area model. The microcircuit therefore requires fewer resources.
We show results of the model run on one to six compute nodes;
for a detailed analysis of NEST’s thread scaling performance
on the example of this model refer to Kurth et al. (2021).
Using NEST 3.0rc, the microcircuit is simulated faster than
the HPC-benchmark and the multi-area models and achieves
approximately real time (T\ay1/ Timodel & 1, Figure 6A). The finer
resolution of the vertical axis of the top-right graph reveals a
small gap between the state propagation measured with Python
timers and the sum of the phases timed on the C++ level which
is not visible for the other models. The state-propagation time

of the microcircuit is also dominated by the communication
phase similarly to the respective benchmarks with the multi-
area model (Figure 5B) and even increases with the number of
nodes used. However, shrinking MPI buffers does not reduce
communication significantly (data not shown), indicating that
we face a different bottleneck with the microcircuit model.
With on the order of 10> outgoing connections per neuron,
a single neuron of this model has multiple targets on each
MPI process and, in particular, on multiple threads of a
given process. Since the 5g kernel is designed to send out
a separate copy of a neuron’s spiking information to each
target thread, multiple copies of identical information about
the activity of a presynaptic neuron may be sent to the same
process, causing unnecessary communication load. To tackle
this, we devise a spike compression algorithm which only
requires transmitting the spiking information once to each MPI
process where it is locally routed to the receiving threads. For
details see Section 4.1.3. This algorithm leads to a significant
reduction in communication time for the microcircuit model
(compare Figures 6A,B).
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FIGURE 5 | Strong-scaling performance of the multi-area model on JURECA-DC. Same display as in Figure 4. The multi-area model is simulated in its meta-stable
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The microcircuit model easily fits within the main memory
of one compute node of JURECA-DC. Due to the simplicity
of the employed model neurons and the absence of synaptic
plasticity mechanisms, the network model causes little workload
during update and delivery in a strong-scaling experiment—
real-time simulation is already possible with a single compute
node. Consequently, communication naturally starts to dominate
the state-propagation time at a few compute nodes even with
the spike-compression optimization described above. While
increasing the number of compute nodes from one to two still

results in a fair reduction of state-propagation time, scaling
is already sublinear, and increasing the number of compute
nodes further hardly results in further improvement. Therefore,
simulation phases other than the so far discussed communication
become important if the objective of the optimizations is,
for example, achieving real-time performance with even fewer
resources. In the following we highlight an algorithm adaptation
that concentrates on the update phase. A redesign of the
neuronal input buffers prevents neurons from retrieving the
input values for different channels, for example, excitatory and
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inhibitory, from separate locations in memory. Thereby, the
cache can be better utilized during neuronal updates. Instead
of maintaining separate buffers for the input channels as in the
original 5g kernel, neurons maintain a single buffer with all
inputs for a particular simulation time step stored contiguously
in memory. For details see Section 4.1.4. This adaptation is
most effective for network models with short minimum synaptic
delays; both the microcircuit and the multi-area model use
0.1 ms. Figure 6C shows the resulting decrease in update time for
few compute nodes.

In summary, the analysis with beNNch exposes the
communication phase as a major performance bottleneck
in microcircuit and multi-area model simulations with the
release candidate NEST 3.0rc. The underlying problem is,
however, a different one for each of the two models, and they
are rectified with different adaptations to the code: the shrinking
MPI buffers (Section 4.1.2) improve the performance of the
multi-area model while spike compression (Section 4.1.3)
increases simulation speed of the microcircuit model. Notably,
none of the adaptations introduce performance regressions for
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the respective other model (data not shown). In addition, the
update phase is improved by introducing neuronal input buffers
with multiple channels (Section 4.1.4). Returning to the HPC-
benchmark model, Figure 4B shows that the kernel adaptations
are not detrimental to the originally tested model; the overall
state-propagation time is preserved with the final NEST 3.0
release. However, the reduced communication and update
times here come at the cost of increased delivery times due to
an additional indirection introduced with spike compression.
Ongoing work targets the delivery phase (Pronold et al., 2021,
2022) and gives a perspective for performance improvements in
future NEST releases.

3. DISCUSSION

Benchmarking studies in the field of neuronal network
simulations are often hard to reproduce and compare.
To overcome this problem, we propose a unified and
modular workflow for defining, running, and analyzing
benchmark simulations. We identify five dimensions spanning
the space of the benchmarking endeavor, and work out
their specific challenges: hardware configuration, software
configuration, simulators, models and parameters, and
researcher communication. The benchmarking concept
developed in this study encompasses all five dimensions and
proposes solutions for the posed challenges in the form of self-
contained and interacting modules. Each module contributes
to one of the main workflow segments: configuration and
preparation, actual benchmarking, data- and metadata handling,
and data presentation. As a proof of concept, we provide a
reference implementation of the framework (beNNch), describe
the concrete underlying technologies, and apply it to a specific
use case: assessing and comparing the performance of different
versions of the neuronal network simulator NEST for three
different network models. The reference implementation goes
beyond existing benchmarking environment software such
as JUBE: it adds an interface to models, installs and deploys
simulation software, automates data and metadata annotation,
and implements storage and presentation of results. The use
case illustrates how the framework helps to focus simulator
development by detecting performance bottlenecks, and
demonstrates the relevance of an accessible and comprehensive
benchmarking setup. The software is ready to use, not only for
developers of simulation technology, but also for researchers
seeking to find optimal performance configurations for
their models.

The proposed workflow is generic and not restricted to
benchmarking neuronal network simulations with NEST. The
reference implementation, however, still faces limitations and
open problems. First, it is a priori unclear what parameters,
configurations or external influences may possibly contribute
to differences in the performance of complex software systems
such as simulation engines. beNNch seeks to address this problem
by employing a metadata archive which—in addition to the
selection of metadata directly attached to the performance
results—tracks further metadata that are seemingly insignificant

at the time of simulation but may become relevant in
future investigations. Exhaustiveness, however, can not be
claimed. For the exploration and presentation of benchmarking
data, the reference implementation uses metadata to filter
benchmark results and to highlight differences in a flip-
book format. However, even if all relevant metadata were
tracked, selecting sensible metadata keys for filtering and
highlighting is a hard problem. In the current implementation,
this requires knowledge about existing results and, therefore,
human input. Future solutions could, for example, categorize
and hierarchically structure metadata keys to facilitate and semi-
automatize these steps. Second, the network model specifications,
expressed in the PyNEST set of commands for the Python
language, require adaptations to interface with the benchmarking
framework. These include accepting parameters passed by
JUBE benchmarking files, adjusting the model specification to
work with different versions of the simulation engine, and
storing recorded metadata and performance measures such
as the duration of simulation phases. At the moment, it
is a manual task to keep the benchmarking model version
up to date with the original model version, which is error
prone. We use rigorous version control of the code, automatic
checking for errors (via exceptions), and continuous testing for
correct simulation outcome to reduce the risk of errors. This
strategy could be automatized further in the future by finding
methods to automatically inject respective instrumentation into
the executable model descriptions. To mitigate the additional
overhead, we keep the necessary changes as minimal as
possible, thereby lowering the entry barrier for new models.
Third, the reference implementation makes concrete choices
on the employed tools. Alternatives, however, may be viable.
For example, the required software for the simulations is
installed with Builder which can be integrated with other
package management systems or replaced by a different
solution. Our strategy exploits the native software environment
available on a compute cluster which is typically specifically
configured for the underlying hardware. An alternative is to
use containerized systems such as Docker!® or Singularity!®.
Replacing NEST by a different simulator requires adapting the
model implementations. Expressing the models in the simulator-
independent language PyNN (Davison et al., 2009) instead
of PyNEST would avoid this. However, additional layers of
complexity such as PyNN may have an impact on performance,
making it more challenging to pinpoint bottlenecks in the
simulator backend. JUBE as an environment to manage jobs
on compute clusters could be substituted by tools such as
ecFlow®®, AiiDA?! (Huber et al, 2020), or cylc (Oliver
et al, 2021). Further, one could replace git-annex with,
e.g., DatalLad?? which is based on the same technology but
extends its functionality and provides slightly different metadata
handling. The flip-book-style presentation of results could also

Bhttps://www.docker.com

Yhttps://sylabs.io
2Ohttps://confluence.ecmwt.int/display/ECFLOW
https://www.aiida.net
Zhttps://www.datalad.org
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be replaced or supplemented with other approaches, for example
an automatically generated overview figure showing results from
multiple benchmarking runs together, similar to Figures 4-6 in
this article. Furthermore, tools like Rust Compiler Performance
Monitoring and Benchmarking®® or Sacred?* cover multiple
aspects of the workflow and can be a source of inspiration for
further development of beNNch. Fourth, beNNch presently focuses
on a single performance measure: the time-to-solution. However,
different performance aspects, such as energy-to-solution and
memory consumption, may also be of interest. Energy-to-
solution, for example, combines power consumption and time-
to-solution. Monitoring both power consumption and time-to-
solution enables researchers to determine an optimal number
of compute nodes balancing speed and energy consumption
(van Albada et al, 2018). The memory consumption of the
simulation dictates, for instance, the smallest number of nodes
required to simulate a network of a given size, or the largest
network size possible to simulate on a given machine. Reducing
memory requirements was a major driving force behind the
improvements to the NEST kernel (Helias et al., 2012; Kunkel
et al.,, 2012, 2014; Jordan et al., 2018) in the past decade. The
spike compression introduced here reduces the time-to-solution
(communication phase, Figures 4, 6). However, this code change
directly affects the memory consumption. Assuming that the
number of postsynaptic targets per neuron is fixed, the memory
overhead is negligible if the number of MPI processes is small.
But in the limit of a large number of MPI processes, i.e., when
each neuron has at most one target on each process, the effective
size of each synapse is increased by 8 byte. In this limit, users thus
are encouraged to actively deactivate the “spike compression”
feature. This example illustrates that performance optimizations
often have to find a balance between acceptable solutions for
different measures. Due to its modular structure, beNNch is ready
to include further performance measures.

To achieve long term sustainability, organized and openly
available communication on development is essential. Adhering
to this guideline, we have developed beNNch as an open source
software project from the start, making use of a public issue
tracker, suggestions via pull requests, public code reviews, and
detailed documentation. This approach facilitates constructive
communication between users and developers which enables a
targeted progression of the framework by demand. While the
concrete application of NEST benchmarks of neuronal network
models shaped our specific implementations, the modular
structure allows for adaptation to other use cases. In certain
domains of software development, it is already common practice
to verify each code change on the basis of syntax, results, and
other unit tests. The proposed automated approach to execute
performance benchmarks creates the opportunity to integrate
an aspect of validation directly into the development cycle.
This way, performance regressions of algorithm adaptations
are immediately exposed, while positive effects can readily
be demonstrated. For high-performance software, however,
comprehensive checks for scaling performance are particularly

Bhttps://github.com/rust-lang/rustc- perf
2https://github.com/IDSIA/sacred

costly because they require compute time on state-of-the-art
clusters and supercomputers. Therefore, it is important to
conduct the performance benchmarks purposefully and with
care. By organizing benchmarking results and keeping track
of metadata, beNNch helps to avoid redundant benchmark
repeats and instead encourages a direct comparison with
previous results.

It has long been recognized that software development
in science underlies different constraints and needs to fulfill
different requirements as compared to industry (Diesmann
and Gewaltig, 2002). The software crisis in neuroscience at
the beginning of the century led to the foundation of the
International Neuroinformatics Coordinating Facility (INCF)
in 2005. A first INCF report in 2006 addresses the software
challenges of large-scale modeling in neuroscience (INCF
Secretariat et al., 2018) and recommends establishing a common
set of benchmark models and a corresponding framework
for assessing accuracy and efficiency. Furthermore, the report
advocates benchmarking neuroscientifically relevant published
models rather than network models constructed specifically for
the purpose of benchmarking only. In 2007, the community made
a first effort in verifying simulation codes by using a number of
simple network models (Brette et al., 2007). Executable model
descriptions are, in part, already expressed in the simulator
independent language PyNN (Davison et al., 2009), but there
is no support by a common benchmarking framework, and a
focus is set on correctness rather than computational efficiency.
The emerging field of Research Software Engineering (RSE) is
studying how, in the scientific setting, reliable and sustainable
software can be developed, developers can be educated for this
purpose, and science organizations and politics can be made
aware of its strategic relevance (Manifesto®® and Akhmerov
et al., 2019). Obvious differences to software engineering in
the industrial setting include research code being developed
by scientists rather than experienced software developers, the
time-constrained and thesis-bound nature of scientific projects,
and the continuous integration of new contributors into the
development process. Our study contributes to RSE conceptually
by identifying the dimensions of benchmarking simulation
technology and proposing a general workflow capable of coping
with the complexity, and practically by developing a reference
implementation of a benchmarking framework which can be
used to test and refine the concepts. It is too early to tell
quantitatively whether the benchmarking framework improves
the collaboration in a joint project and the communication
between researchers in the community.

The proposed framework enables benchmarking of research
software to evolve from one-off tasks of individual researchers
to a collaborative routine effort, thereby increasing the
benchmarking capacity and reducing its susceptibility to
errors. Making beNNch accessible to the community as an
open-source software puts the concept to the test. We are
looking forward to learn how the current implementation of
the framework’s components are received and adapted to other
applications. Due to the conceptual foundation and modular

Zhttps://www.software.ac.uk/about/manifesto
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structure, we hope that beNNch can adjust to future requirements
and ultimately help increase the complexity and explanatory
scope of brain models. The benchmarking concepts developed in
this work are not limited to neuroscience and can be transferred
to other types of simulation research.

4. MATERIALS AND METHODS

4.1. NEST Developments

4.1.1. Brief History of NEST

The series of NEST 2.X releases includes enhancements, bug
fixes, and contributions to maintenance with only marginal
effects on the PyNEST user interface (Eppler et al, 2009).
Performance-related updates to the simulation kernel are
accomplished under the hood. The 3g kernel (Helias et al., 2012;
Kunkel et al., 2012) is in use from NEST 2.2.0 (van Albada
et al., 2015a). NEST 2.12.0 (Kunkel et al., 2017) introduces the
4g kernel (Kunkel et al., 2014) which implements novel data
structures allowing for an efficient and flexible representation
of sparse network connectivity on highly distributed computing
systems such as supercomputers. The 5g kernel (Jordan
et al, 2018) in NEST 2.16.0 (Linssen et al., 2018) continues
this direction of development toward an optimal usage of
HPC systems for large-scale simulations by disentangling the
memory usage per compute node from the total network
size. The transition from NEST 2 to NEST 3 corresponds to
a refurbishment of the simulator code which also breaks the
backwards compatibility of the user interface. While improved
high-level functionality and parameter handling are the primary
goals of this transition, the 5g kernel is supposed to remain.
In the past, performance changes due to kernel updates have
been predominantly assessed using the HPC-benchmark model.
The performance of the NEST 3.0 release candidate (“3.0rc”),
however, is in addition evaluated with the microcircuit and
multi-area model which exhibit a more complex connectivity
structure and a different distribution of synaptic delays. In this
way, so far undetected performance bottlenecks are discovered
and subsequently resolved, leading to the official release NEST
3.0 (Hahne et al,, 2021).

4.1.2. Shrinking MPI Buffers

Motivated by reducing the memory footprint of the postsynaptic
infrastructure—necessary to deliver spikes to their process-
local targets—the 5g kernel of NEST 3.0rc prepares a separate
part of the MPI send buffer for each target process and only
includes the relevant spikes. Thus, each process is responsible
for sending the spikes of its neurons to all target processes
for each communication time step. NEST 3.0rc implements a
homogeneous buffer size across processes to avoid overhead
introduced by variable buffer sizes; in the latter case, each process
would need to complete two rounds of communication, one for
transmitting the size, and one for the actual spiking information.
Similarly, transmitting a certain amount of information via
sending MPI buffers is more efficient when fewer buffers—each
carrying more information—are sent. NEST 3.0rc consequently
aims to reduce the number of needed MPI buffers to only 1 by
dynamically increasing the global buffer size whenever a process
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FIGURE 7 | Spike compression adds an additional indirection to post-synaptic
spike routing. Green arrow denotes original spike delivery introduced with the
5g kernel (Jordan et al., 2018, same display as their Figure 4A). Blue arrow
illustrates additional indirection with compressed spike delivery. Dashed arrows
indicate spikes from the same source neuron with target on a different thread.

cannot fit all spikes into the buffer. Specifically, every time more
than a single buffer needs to be sent by a process, NEST increases
the buffer size of the following communication step by a factor of
1.5. In this scheme, a reduction of buffer sizes is not implemented,
meaning that buffer sizes can only increase or stay constant. The
kernel of NEST 3.0rc+ShrinkBuff addresses this by introducing
the following algorithm for shrinking the global buffer size. In
each communication round in which only a single send buffer is
required, the buffer for the following round decreases by a factor
of 1.1. Even though this implementation leads to an oscillation of
buffer size for constant spiking activity, tests show that this simple
mechanism only introduces negligible cost while being robust.

4.1.3. Spike Compression

NESTs 5g kernel (Jordan et al, 2018) introduces a two-tier
connection infrastructure for routing spikes. The connection
infrastructure consists of data structures on the presynaptic side
(the MPI process of the sending neuron) and the postsynaptic
side (the MPI process of the receiving neuron), cf. Section 2.2.3.
Communication of spikes is organized as follows: when a neuron
becomes active, its targets are retrieved from the local presynaptic
data structure. These targets represent indices of synapses in
the “thread-local” post-synaptic data structure through which
spikes are routed to the target neurons. The presynaptic side
then creates MPI buffers containing collections of such indices
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which are subsequently communicated to the postsynaptic side
via the MPI Alltoall function. To deliver spikes on the
postsynaptic side, each thread uses the received spikes to index
its local postsynaptic data structure and register a spike in the
corresponding synapse (Figure 7, “original spike delivery”). If a
presynaptic neuron has targets on multiple threads of a process,
it hence has to send multiple spikes, i.e., indices in different
thread-local data structures, to the target process.

Here, we adapt this infrastructure as follows. We introduce
an additional data structure on the post-synaptic side which
is shared across threads (“process local”). This data structure
contains, arranged by source neuron, the indices of all process-
local synapses. While the pre-synaptic part of communicating
spikes remains essentially identical, the postsynaptic part incurs
an additional indirection: each entry in the MPI receive buffer
now represents an index in the new process-local postsynaptic
data structure. Using this index, each thread can retrieve the
indices of thread-local targets, to which it can then deliver spikes
as previously (Figure 7, “compressed spike delivery”; note that
the origin of the dashed arrow changes). In contrast to the
previous implementation, each presynaptic neuron thus sends at
most one spike to each process.

In NEST 3.0, spike compression is turned on by default, but
the previous 5g behavior can be recovered by setting:

nest.SetKernelStatus({"use_compressed_spikes"”: False})

4.1.4. Neuronal Input Buffers With Multiple Channels

Simulation technology for spiking neuronal networks requires
techniques to handle synaptic transmission delays. The reference
simulation code (Section 2.2.2) follows a globally time-
driven approach: spikes are constrained to a time grid and
regularly exchanged between MPI processes using collective
communication. The time grid defines the simulation time
step for neuronal updates, whereas the minimum synaptic
delay dmin in the network model defines the communication
interval (Morrison et al, 2005a), which comprises at least
one simulation time step. In the microcircuit model and the
multi-area model used in this study the minimum delay is
0.1 ms (ie., dpin = 1 simulation time step) and in the HPC-
benchmark model it is 1.5ms (i.e., dmin = 15 simulation
time steps). While communication and subsequent process-local
delivery of spikes define interaction points between neurons,
within a communication interval each neuron independently
updates its state for all time steps without interruption. Hence,
a simulation cycle of neuronal update, spike-communication,
and spike-delivery phase propagates the network state by one
communication interval, but within each update phase neurons
propagate their state in potentially shorter simulation time steps.
All spikes emitted by the process-local neurons during such
an update are immediately transmitted during the subsequent
communication and on the receiver side delivered to their target
neurons. Hence, to account for synaptic delays, neurons cannot
immediately integrate the incoming spikes into their dynamics,
but they need to buffer the inputs until the corresponding delays
elapse. To this end, neurons maintain input buffers of dyin +dmax
time slots, where dp,x denotes the maximum synaptic delay in
the network (Figure 8A). The relative time origin S defining
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FIGURE 8 | Neuronal input buffers accounting for synaptic delays in
simulations of spiking neuronal networks. (A) Structure of neuronal input
buffers assuming a minimum synaptic delay dmi, of three simulation time steps
and a maximum delay dmax = 2dmin. To buffer upcoming inputs during
simulation a total buffer size of dmin + dmax time slots is required, which
corresponds to three communication intervals of three simulation time steps
each. After every spike communication and subsequent spike delivery to local
targets, simulation time is advanced, meaning that the relative time origin S

of the neuronal input buffers advances by dnin time slots with a wrap-around
at the buffer end. A pre-calculated and continuously updated look-up table
maps the index relative to S to the actual buffer index. Example: The relative
time origin S is located at the fourth time slot. Synaptic delays of the inputs of
the middle buffer segment elapse with the upcoming three simulation time
steps; the neuron integrates these inputs updating its state. Spikes are then
communicated and new inputs delivered to the neuron are added to the time
slots in the last or first buffer segment depending on the delay, which is at least
dmin and at most dmax. Relative time origin S then advances to the seventh
buffer slot (not shown). (B) Original neuronal spike buffers for two input
channels (e.g., excitatory and inhibitory synaptic inputs). For each channel a
separate resizable array buffers the inputs for the upcoming time slots.

(C) Multi-channel input buffer for two input channels. A single resizable array
stores the inputs for the upcoming time slots, where for each time slot a fixed
size array holds the inputs sorted by channel.

the time slots from which to retrieve inputs during update and
the time slots for adding inputs during spike delivery advances
by dmin time slots at the end of every simulation cycle. In this
way, the time slots that were read and reset during the update
of the current cycle become available for adding new inputs
during the spike delivery in the next cycle. For cases where
the communication interval comprises multiple simulation time
steps (e.g., HPC-benchmark model), input retrieval is most
costly for the first step as the corresponding buffer entry needs
to be loaded into cache, but then benefits from the already
cached subsequent buffer entries in the subsequent steps of
the communication interval. If, however, the communication
interval consists of only one simulation step due to a very short
minimal synaptic delay (e.g., microcircuit and multi-area model),
input retrieval is costly for every simulation step as each step
is handled in a separate simulation cycle, and hence caching of
relevant input buffer entries is rendered ineffective during the
spike communication and delivery that follows each neuronal
update phase.
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Most neuron models need to distinguish between input
channels to treat the corresponding inputs dynamically
differently, as for example, excitatory and inhibitory synaptic
inputs causing different post-synaptic responses. The original
input-buffer design required a separate resizable array per
channel storing the channel’s input values per time slot
(Figure 8B). This entailed retrieval of the input values for a
particular time step from separate locations in memory, which
amplifies the cache inefficiency during update for network
models with short minimum delays described above. To alleviate
this issue, the newly introduced input buffer allows storing the
input values for multiple channels per time slot contiguously in
fixed size arrays in a single resizable array (Figure 8C). Thus,
neurons now retrieve all input values for a particular time step
by accessing subsequent locations in memory in one pass.
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Neuronal activity is the result of both the electrophysiology and chemophysiology. A
neuron can be well-represented for the purposes of electrophysiological simulation as a
tree composed of connected cylinders. This representation is also apt for 1D simulations
of their chemophysiology, provided the spatial scale is larger than the diameter of the
cylinders and there is radial symmetry. Higher dimensional simulation is necessary to
accurately capture the dynamics when these criteria are not met, such as with wave
curvature, spines, or diffusion near the soma. We have developed a solution to enable
efficient finite volume method simulation of reaction-diffusion kinetics in intracellular
3D regions in neuron and network models and provide an implementation within the
NEURON simulator. An accelerated version of the CTNG 3D reconstruction algorithm
transforms morphologies suitable for ion-channel based simulations into consistent 3D
voxelized regions. Kinetics are then solved using a parallel algorithm based on Douglas-
Gunn that handles the irregular 3D geometry of a neuron; these kinetics are coupled to
NEURON’s 1D mechanisms for ion channels, synapses, pumps, and so forth. The 3D
domain may cover the entire cell or selected regions of interest. Simulations with dendritic
spines and of the soma reveal details of dynamics that would be missed in a pure 1D
simulation. We describe and validate the methods and discuss their performance.

Keywords: reaction-diffusion, computer simulation, 3D, multi-scale modeling, reusability

INTRODUCTION

The brain’s behavior in health and disease is most naturally observed at the level of functional
outcomes, but these outcomes are often indirect consequences of subcellular chemical kinetics (e.g.,
oxygen and ATP in stroke; amyloid beta and tau in Alzheimer’s Disease). The connection between
these two scales is non-intuitive due to the many nonlinear-interactions within the brain (e.g.,
action potentials, networks). Dedicated tools like MCell (RRID:SCR_007307; Stiles et al., 1998) and
STEPS (RRID:SCR_008742; Hepburn et al., 2012) enable highly-detailed 3D simulation of parts
of neurons to entire cells, enabling the study of microdomains (see e.g., Keller et al., 2008) and
other highly localized phenomena but with limited ability to extend to the full cell or a network of
neurons to study the implications of these localized dynamics on a broader scale.
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The NEURON simulator (RRID:SCR_005393; Hines et al.,
2019) has long supported simultaneous simulation of chemical
dynamics and networks of neurons, originally through re-
purposing MOD files—traditionally used for ion channel
kinetics—and later through the introduction of a dedicated
Python-based reaction-diffusion specification (McDougal R.A.
et al, 2013). These early methods were most applicable to
phenomena that behave analogously to electrical signaling, such
as when a wave of elevated calcium concentration spreads over
a large region of the dendritic tree (e.g., Neymotin et al., 2015).
Even for these large scale phenomena, a 1D approximation of
the tree (so called despite the cell’s branching structure because
concentration and voltage states are governed by differential
equations only on the interior of non-branching sections,
with conservation laws governing the branch points) breaks
down in regions where the cell is not radially symmetric (e.g.,
the predicted curvature of a calcium wave front where the
dendrite meets the soma) and is inappropriate for smaller scale
phenomena on the same spatial scale as the dendrite diameter
(e.g., diffusion between neighboring spines); see the examples in
the results section.

We have developed a set of approaches with implementations
freely available in the development version of NEURON—
to efficiently address the need to incorporate 3D intracellular
dynamics for subcellular compartments, whole cell and network
models. Combining local discretizations and preserving segment
mappings accelerates the Constructive Tessellated Neuronal
Geometry algorithm (CTNG; McDougal R. et al, 2013) for
generating a 3D volume consistent with a neuron point-and-
diameter 3D reconstruction, of the sort available via, e.g.,
NeuroMorpho.Org (RRID:SCR_002145; Ascoli et al., 2007).
Reaction-diffusion (rxd) kinetics are specified as for 1D
simulations, with selected regions of interest simulated selected
for 3D simulation via a single line function call, while other
parts simulated in 1D. The 3D regions of interest are voxelized
(meshed into cubic voxels) and any overlapping 3D regions are
connected together and with neighboring 1D regions. Threaded,
deterministic simulation is enabled using an irregular boundary
extension of Newton et al. (2018)’s operator-splitting parallelized
Douglas-Gunn Alternating Direction Implicit method (Douglas
and Gunn, 1964). Ion channel activity is based on concentrations
at the surface of the cell, and ions enter the cell through the
surface voxels. Single cell results are validated by comparison to
analytic solutions, by comparison of 3D results with other tools,
and by comparison of hybrid 1D-3D simulations with pure 3D
simulations.

METHODS

Methods and results are described for a development version
of NEURON 8.1, although the initial version of most of these
methods was introduced in NEURON 7.7. The source code
is available at github.com/neuronsimulator/nrn, installers for
major platforms are available at neuron.yale.edu, and NEURON
can also be installed for linux and macOS via pi p i nstal |

neur on. The voxelization algorithm is written in a mix of

Python, Cython, and C/C++. The interface code is written
in Python. For performance reasons, all NEURON reaction-
diffusion code used during an active simulation is written in
C/C++.

For analyses requiring many simulations, simulation
and visualization were split into separate scripts with each
simulation’s data stored in a SQLite database. To be robust
against the possibility of interrupted calculation, simulation
scripts checked the database to see if a given set of parameters
had already been tested before running the simulation. Graphs
were rendered using plotly (for 3D images), plotnine/ggplot, and
matplotlib.

Python code for all figures in this manuscript is available
on ModelDB (RRID:SCR_007271; McDougal et al,, 2017) at
modeldb.yale.edu/267018.

Voxelization

3D simulation requires the specification of a 3D domain, typically
defined by a mesh (e.g., in VCell; RRID:SCR_007421) or a
boundary (e.g., MCell, Smoldyn). Neuron morphologies, by
contrast, are typically reconstructed using a series of (x, y,z; d)
optical measurements with tree-structured connectivity rooted
at the soma, which is sometimes a special case with an outline,
typically in 2D. (A neuron’s morphology is a graph-theoretic tree
in the sense that every non-root section has exactly one parent
section, namely the connecting section that is closer to the root.)
This information is sufficient for electrophysiology simulation
where the space constant is typically on the order of tens of
microns, but under-determines the 3D structure for chemical
simulation. Several algorithms have been proposed to generate
consistent geometries, including our Constructive Tessellated
Neuronal Geometries (CTNG) algorithm (McDougal R. et al,
2013) and others (e.g., Lasserre et al., 2011; Morschel et al., 2017).
The full CTNG method is described in our previous paper, but in
brief consecutive point-diameter measurements are interpreted
as defining the frustum of a right circular cone. Neighboring
frusta are joined using clip spheres, with a clipping rule that
depends on the taper of frustra and the angle of intersection.
Soma outlines are approximated using sheared frusta with
dendrites attached to the soma extended to the soma axis to
avoid any gaps from the assumption of local radial symmetry
given a 2D soma outline. NEURON'’s Import3D tool stores soma
outline points in a Python dictionary; these soma outlines are not
used in pure electrophysiology simulations, but the voxelization
algorithm checks each section against the dictionary to see if it
should be treated as a sequence of frusta or if there is a 2D outline
to use.

To accelerate CTNG voxelization and to facilitate its use in
simulations incorporating one-dimensional electrophysiology
dynamics, we enhanced the original implementation in
several ways: (1) additional interpolated points are inserted at
electrophysiological compartment (“segment” in NEURON)
boundaries so every frusta belongs to exactly one compartment;
(2) each electrical compartment is voxelized separately, thus
preserving the relationship between voxels and electrical
compartments; (3) each frusta and joining sphere is voxelized
separately, exploiting convexity to rapidly identify all the
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relevant voxels; and (4) voxelized meshes are merged together,
with voxels being assigned to the segment closest to the root of
the electrophysiological tree (typically the soma).

In CTNG, the constructed 3D volume of the neuron is the
union of frusta and spheres clipped by planes. These component
objects are voxelized using a modified flood-fill algorithm,
starting from the center of an end-face for a frustum or the center
of the sphere. In the case of a clipped sphere with a small angle,
the resulting wedge may be very small, causing all corners of the
voxel to be outside. In this case, additional points in the sphere
are tested until a voxel is found with at least one interior corner;
this voxel is then used as the seed for the flood-fill. Since the
spheres serve to smooth the joins between neighboring frusta, in
practice they comprise a small percentage of the total voxels, so
this search introduces minimal overhead.

The flood fill is propagated through the surface of the shape
as much as possible, using the convexity of the objects to
automatically fill in interior voxels between two surface points.
This is done by traversing rows of voxels perpendicular to the
¥, z plane. No matter the orientation of the object, any row of
voxels that contains part of the object contains one or more
surface voxels at each endpoint of the row’s intersection with the
object. The modified flood fill calculates these endpoints along
with any additional surface voxels in the row, and then fills in
any non-surface voxels between the endpoints as interior voxels.
To find all the rows intersecting the object, the flood fill searches
all the rows bordering an intersecting row, using the endpoints
of the original row as “guesses” to retain information about
the surface and expedite finding endpoints for the surrounding
rows. The signed distance to each surface voxel corner is also
computed and stored throughout the flood fill; as in the original
CTNG implementation, these signed distances are supplied to
the marching cubes algorithm (Lorensen and Cline, 1987) to
approximate the surface with a triangular mesh.

To approximate the surface, the marching cubes algorithm
requires that at least one corner of a voxel containing the surface
be outside the object and at least one corner be inside. NEURON
generates a warning suggesting a smaller dx (the length of a
voxel edge) if any frustum length or diameter is less than the
largest distance that fits within a voxel (v/3 dx). Some publicly
available reconstructions are sampled with very little distance
between the 3D points, leading to a very small suggested value
of dx and as noted in McDougal R. et al. (2013), sometimes
a bumpy 3D reconstruction; in this case, subsampling the 3D
points before loading the morphology into NEURON avoids both
the bumpiness and the recommendation of a small dx. The extra
segment boundaries added by a very high (per unit length) value
of nseg (the number of electrical compartments in a section)
can produce a similar effect; in this case, the solution is to reduce
nseg to a value appropriate for the electrical space constant. In
NEURON, an appropriate choice of nseg can be determined for
each section based on the so-called d_| anbda rule (Hines and
Carnevale, 2001).

The areas of the triangles in the surface mesh are summed
to estimate surface area, and the portion of each surface voxel
inside the object is estimated to be the fraction of test points
inside the object. As the voxel has been identified as a surface

voxel, at least one corner is inside, and thus the volume estimate
will never be 0. Test points are sampled on a uniform grid in
1+options.ics_partial_volume_resol ution steps
in each direction along the voxels edge, starting and ending at
a voxel corner. NEURON versions 7.7-8.0 used an alternative
rule for estimating partial volumes using dynamic subsampling,
however the approach described above and used beginning in
NEURON 8.1 is simpler and provides better scaling.

As neurons occupy a small fraction of the volume of their
bounding box (1.498 = 3.406%) for the neurons in Section voxels
are stored as a set of locations (3, j, k) within an imaginary grid
comprising a padded bounding box. Thus, memory usage to store
the discretization is proportional to the volume of the neuron
not to the volume of the bounding box. Likewise, NEURON’s
simulation times scale proportionally to the number of voxels in
the cell, not the number of voxels in the bounding box.

Discretization into a 3D grid happens as needed, allowing
interactive changes to grid hyperparameters and morphology
without the overhead of re-voxelizing the cell. The mesh is
typically generated on the first request for a pointer (e.g., for
recording concentration at a point), or when the simulation
is initialized. NEURON’s internal counters for structure or
diameter changes are monitored for subsequent changes at
each initialization, pointer request, or simulation step, and the
morphology is re-discretized if needed; such re-discretization is
expected to be rare in practice as NEURON models typically
assume cells do not change shape or size during simulation.

Model Specification
Reaction-Diffusion Kinetics
NEURON’s basic reaction-diffusion model specification,
introduced in McDougal R.A. et al. (2013), is independent
of numerical simulation details such as whether the
model is to be simulated in 1D or 3D. Readers are
directed to the 2013 paper or for a more complete and
updated treatment to the relevant section of the online
NEURON documentation (nrn.readthedocs.io/en/latest/rxd-
tutorials) for full details, but in brief: domains of a cell
are specified in Python using rxd. Regi on, chemical
species and their properties using rxd. Speci es, and
chemical reactions using rxd.Reaction, rxd.Rate,
or rxd.MiltiConpartnent Reaction. The classes
rxd. Parameter and rxd.State allow fixed values
that change with location and non-diffusing state variables,
respectively. Dynamics at a specific point (e.g., localized pump)
are specified using node. i ncl ude_fl ux where node
represents the spatial compartment and the flux is measured in
changes in mass. Using mass changes instead of concentration
changes allows the same amount of a substance to enter the
cell regardless of the spatial discretization. To specify that
all reaction-diffusion kinetics should be simulated in 3D, call
rxd. set _sol ve_t ype(di mensi on=3).

NEURON automatically translates the Python kinetics
specification into C and compiles them for use during simulation
as described in Newton et al. (2018).
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Boundary Conditions

Flux across the plasma membrane (the boundary of the 3D
intracellular simulation region) is assumed to be fully defined
by explicitly modeled mechanisms such as ion channels and
pumps; if there are no such mechanisms defined, the boundary
is assumed to be fully reflective (no flux). For compatibility
with 1D simulation, no special 3D boundary condition syntax is
introduced. Instead, all plasma membrane spanning mechanisms
may be described in NMODL (Hines and Carnevale, 2000),
NeuroML/LEMS and translated to NMODL via j Neur oML
(Cannon et al.,, 2014), NEURON’s ChannelBuilder tool, or a
rxd. Mul ti Conpart nent React i on. The last option is the
most flexible and allows using an r xd. Par anet er to specify
different values in different 3D compartments as well as defining
the movement of uncharged particles. The other mechanisms
work for charged particles and support variation at the level of
a NEURON segment; the currents they generate are distributed
proportionally across the segment’s surface voxels by the voxel
surface area. Faraday’s and Avogadro’s constants along with the
surface voxel volume and the charge of the particle are used to
convert the currents into rates of change of concentration at the
boundary due to flux across the plasma membrane.

3D Simulation

To efficiently simulate intracellular regions in 3D, we generalized
the parallel Douglas-Gunn algorithm of Newton et al. (2018)
to support the irregular 3D boundary of a neuron. Unlike
extracellular simulation in NEURON— which is simulated
coarsely enough that the morphological details can be subsumed
into an effective volume fraction— in intracellular simulation
the voxels are necessarily much smaller and need to respect the
3D boundary of the cell. As described in the Section 2.1, voxels
may have widely varying amounts of surface, and each voxel
must be associated with a specific electrical compartment (with
a “segment” in NEURON terminology).

The conceptual algorithm for integration is the same as in
Newton et al. (2018), however with voxels only existing inside
the cell membrane, the number of voxels in any row is no longer
necessarily the same. This variation means that although the
memory locations for concentration in a particular voxel and in
the voxel above it are fixed for a simulation, the offset between
voxels and the voxels above them varies throughout the cell and
cannot be calculated using a simple arithmetic expression. To
work with this irregularity, the indices of every voxel in each line
are precomputed at initialization. To find neighbors, NEURON
constructs a dictionary (hash array) keyed by the (i, j, k) voxel
location with the value of the index of the voxel in memory.
Lines in each direction are formed by starting from an arbitrary
voxel, backtracking to the beginning of the line (e.g., if forming
the lines parallel to the x axis, we successively check for the
presence of (i — 1,5, k), (i — 2,j,k), ... until such a voxel is not
in the dictionary), and then recording the indices of the voxels
in the line until there is no next voxel indexed in the dictionary.
Although Python is used to calculate the indices comprising
each line, the results are cached and transferred to C++ code
that uses them during integration. This process is repeated if
and only if the 3D structure is changed (e.g., more segments,
different diameters, ...).

All memory indices are relative to a given r xd. Speci es,
(or rxd. Paranet er or rxd. St at e), each of which has its
memory allocated independently, allowing for one to be added
or removed without requiring memory for the others to be
reallocated.

Fixed step integration proceeds using the two-phase operator-
splitting approximation as in McDougal R.A. et al. (2013):
reactions and fluxes are calculated using an implicit method first
and then diffusion is calculated with DG-AD], also an implicit
method. This introduces a source of error that converges to 0
as dt — 0, and has the advantage of keeping the matrices that
need to be inverted (a O(n?) task in the general case) small,
involving only one location’s concentrations for each reaction
matrix or one line for each diffusion matrix. No calculations
are done for memory associated with r xd. Par amet er objects,
only reactions are calculated for rxd. St ate objects, and
both reactions and diffusions are calculated for r xd. Speci es
objects. Fluxes from ion channels specified with MOD files are
converted into mass changes per segment and then distributed
proportionally across the surface voxels assigned to the segment
by voxel surface area. Here, it is assumed that every segment has
surface voxels. All diffusion calculations explicitly incorporate
the effect of voxel by voxel interior volume as voxels with surface
do not have their entire volume inside the cell.

Variable step integration uses the CVODE solver from the
SUNDIALS suite (Hindmarsh et al., 2005) with all NEURON
rates of change (membrane potentials, ion channel states,
reactions, and diffusion) represented in one derivative vector.
The approximate Jacobian used for the reaction-diffusion part of
the problem is a permutation of a block-diagonal matrix, where
each block includes the full reaction Jacobian for a given spatial
location but only the diagonal part of the diffusion Jacobian.
This simplifying approximation allows the approximate Jacobian
to be quickly invertible at a tradeoft of a decrease in accuracy,
potentially forcing smaller timesteps than CVODE might use
with the exact Jacobian.

NEURON concentrations are tied to segments and the
surface nodes are assigned the concentration. In general, there
are multiple surface nodes per segment. To address this, the
segment concentrations are updated at each time step with
the weighted average concentration from the segment’s surface
voxels. In some cases, using only the surface nodes can cause
an artificially high concentrations due to relatively few 3D
voxels diffusing with a single 1D segment. This effect can be
mitigated by using all 3D nodes to calculate concentrations with
options. concentration_nodes_3d = "all".

Multiple threads, specified with r xd. nt hr ead( n) where
n is the number of threads, may be used to accelerate
intracellular simulation. Load balancing is achieved using a
longest-processing-time first greedy algorithm based on the line
length for each direction, which is guaranteed to run in no worse
than 4/3 the optimal time (Graham, 1969).

Hybrid Simulation

For performance reasons and to better support simulations with
narrow dendrites that would otherwise require a small dx, a
Python iterable of sections (list, set, ...) may be provided when
specifying the simulation dimension to indicate which sections
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are being set, e.g., rxd.set_sol ve_type(apicals,
di mensi on=3) . Chemical simulations within a given section
must either be in 1D or 3D (i.e., this cannot vary by Region),
but each section can be set independently. Capturing the 3D
nature of the dynamics within a section generally requires
that its neighboring sections also be in 3D as otherwise all the
incoming diffusive fluxes from neighboring sections are the same
regardless of 3D location. As with specification of the full model,
multiple dimension specifications for a given section are allowed,
with the last one taking effect.

Boundary Identification

At initialization, each rxd. Regi on identifies which of the
sections it contains are to be simulated in 1D and which are to
be simulated in 3D. If a region does not contain both sections
to be simulated in 1D and in 3D, no additional analysis is done
and the simulation is purely in the specified dimension. When
both dimensions are present, for every given r xd. Speci es
instance, every 3D section’s parent, if it exists, is checked to
see if it is on the 1D section list. Likewise, every 1D section’s
parent is checked to see if it is on the list of 3D sections.
In recommended usage each cell has its own r xd. Speci es
instance for a given conceptual molecule (e.g., each cell would
have a sel f. ca for its internal calcium concentrations), the
search space is constrained to a given cell. Within any given
rxd. Regi on containing both 1D and 3D sections, there may
be zero (if the 1D and 3D sections are not contiguous), one, or
arbitrarily many places where 1D and 3D sections meet.

For each case where 3D and 1D sections meet, boundary
voxels are identified by finding the voxels belonging to the
3D section and its spherical endcap that intersect the plane
perpendicular to the line segment defined by the two (x, y,z; d)
points at the appropriate edge of the 1D section. In particular, this
algorithm requires that the boundary or boundaries must occur
at either end of a NEURON Section, not in the middle. Each 1D-
3D juncture potentially has many boundary voxels, depending on
the 3D discretization. Mass diffuses between each 3D boundary
voxel and 1D boundary segment at a rate based on the distance
between the center of the voxel and the center cross-section of the
boundary segment (estimated as the sum of half the voxel dx and
half the segment length) and the cross-sectional area of where
the voxel meets the 1D region (estimated as its volume raised
to the 2/3 power). Boundary voxel identifiers and distances
to the 1D boundary nodes are computed at initialization and
cached in a data structure passed to the C++ compute engine
via Ct ypes. Any subsequent changes to the morphology trigger
recalculation of the discretization—including identification of
boundary voxels—at the next initialization, advance, or node
request event.

Simulation

At the beginning of each timestep, fluxes between 1D and
3D boundary compartments are computed according to the
finite volume method and FicK’s laws: fluxes are proportional
to the concentration gradient and inversely proportional to
the 1D distance between the centers of the compartments. In
particular, we use the common approximation of neglecting the

effects of charge on diffusive spread, i.e., we do not consider
electrodiffusion (see e.g., Ellingsrud et al., 2020). The 1D and
3D regions are then advanced independently, applying the
fluxes as appropriate, thereby weakly coupling them. This weak
coupling introduces minimal performance overhead, but at the
cost of reduced numerical stability, thereby potentially requiring
a smaller timestep (see e.g., Benedikt and Drenth, 2019).

Random Realistic Neuron Morphologies

To assess performance on realistic morphologies, we identified
21 random reconstructions from NeuroMorpho.Org (Ascoli
et al, 2007) with metadata indicating realistic diameters
and a 3D reconstruction. These were obtained by querying
NeuroMorpho.Orgs “Browse by Random” tool, once for 50
random cells and once for 10 random cells, and filtering for
those meeting the stated criteria. The randomly selected
morphologies as identified by their NeuroMorpho.Org
name are: 9CL- | VxAnk2-1R_ddaC (Nanda et al., 2018),
29-1-8 (Martinez-Canabal et al., 2013), 64-8-L-B-JB
(Ehlinger et al., 2017), 243- 3- 39- AW (Nguyen et al., 2020),
2017-25-04-slice-2-cell-2-rotated (Scala et al,
2019), 070601- expl- zB (Groh et al, 2010), 160524_7_4
(Kunst et al, 2019), 15892037 (Takagi et al, 2017),
AE5_EEA Quterthirds_DG Ml _secl-cel 4-aev5ne
(de Oliveira et al, 2020), AM61-2-1 and AMB1-2-3
(Trevelyan et al, 2006), B4-CAl-L-D63x1zACR3_1
(Canchi et al,, 2017), Dnnt 3bKO-cel | -8 and
WI-i PS-derived-cel | -12MR (Tarusawa et al.,
2016), Fi gb5C (Herget et al, 2017), glia_4090
(Helmstaedter et al., 2013), KC-s-4505762 (Takemura
et al., 2017), Mouse_CA2_Ma_Cel | _5 (Helton et al., 2019),
Rat S1- 6- 107 (Nogueira-Campos et al., 2012), RP4_scal ed
(Weiss et al., 2020), and WI'- nPFC- A- 20X- 3- 2 (Juan et al.,
2014).

Timings

All reported times are based on measurements on Yale’s Farnam
HPC’s general partition, which has a mix of mostly Intel Xeon E5-
2660 v3 CPUs with 119 GiB memory per node and some Xeon
6240 CPUs with 181 GiB memory per node.

RESULTS

Validation

Convergence on a Cylinder and the Role of Voxel
Refinement

To assess convergence of surface area and volume calculations,
we began by considering a cylinder of diameter 2 pm and
length 5 pm. Cylinders, unlike neuron morphologies from
reconstructions, have analytically known values for surface area
and volume; in particular, here the volume is 57 pum? and the
surface area is 1277 um?. Errors were measured for one thousand
random orientations (specified as (¢, 0) in spherical coordinates)
at negative integer powers of /2, approximately dx= 0.5, 0.3536,
0.25, 0.1768, 0.125, 0.0884, and 0.0625 pm without using partial
volume resolution on the surface voxels. For reasons that are
explored later, we did not choose this to be NEURON’s default
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behavior; using the defaults produces volume errors typically
around 4x lower.

Volume estimates converged with error scaling at
approximately O(dx*'®), with the average absolute error
at dx= 0.5 um being approximately 0.3976 + 0.4396 pm?
and the error at dx= 0.0625 pm being approximately
4271 x 1072 £ 8590 x 1073 pm?, a 93.10-fold reduction.
This convergence compares favorably to the simpler volume
estimating approach of counting the full volume of every
voxel that is included in the geometry, which converges at
approximately O(dx). In contrast to that approach, which by
definition gives overestimates of volumes, our algorithm gave
more underestimates than overestimates (582 out of 1,000 test
orientations) when dx=0.25 pm, with an average signed error of
—4.205 x 1072 pm?.

Surface area converged at approximately O(dx “"): absolute
errors at dx = 0.5 um were 2.963 #+ 0.313 wm?, and at dx =
0.0625 wm were 0.2384 £ 0.0251 pm?, an ~12.43-fold reduction.
For a convex shape such as a cylinder, surface areas estimated
using marching cubes are expected to be under-estimates (and
this holds for 999 out of 1,000 of our test cylinder orientations) as
the computed surfaces are planes lying strictly inside the shape; as
neurons are not convex, surface areas need not be underestimates
in those morphologies.

As interior voxels always contribute their full volume—and
therefore do not contribute to volume error—and have no
surface, we examined if it was advantageous to use a refined mesh
on the surface voxels only to reduce error without incurring the
full speed penalty from using a finer global mesh. As explained
in the methods, we subdivide surface voxels into VR? subvoxels,
compute the volumes and surface areas for each, and sum the
results together for the total values for the voxel. Although this
approach is similar to increasing the overall mesh resolution, it
still depends on the coarser mesh’s determination of which voxels
are surface or not, and thus differences may arise in complex
morphologies when, for example, small branches pass near each
other.

To examine the effect of voxel subdivisions, we held the
cylinder orientation constant, parallel to the x-axis, and
recorded the errors and runtime for various subdivision
levels VR. In NEURON, subdivisions used for volume and
surface area calculations are independently configurable, using
rxd.options.ics_partial_volune_resol ution
and rxd.options.ics_partial _surface_
resol uti on, respectively. In general, as shown in Figure 1,
increasing VR provides volume errors and discretization
times comparable to using a higher resolution grid but
without introducing additional voxels that would significantly
increase simulation overhead. Subdividing for surface
area calculation did not improve the error for a given
discretization time, likely due to this strategy increasing
the number of marching cubes to compute since it must
process domains that would otherwise be classified as
fully interior or fully exterior. As such, NEURON’s default
rxd. options.ics_partial _vol une_resol ution of
2andrxd.ics_partial _surface_resol utionoflare
used for all subsequent calculations, i.e., volume calculations use

1.21

1 -1 ]
5 — 2VRs
10—3 4
1075 A
-1 ]
10 — 4VRs
10—3 =
S 10-5 4
@
[ -1 ]
E = — 6VRs
S 1073 A
>
21075 1
E o
& — 8VRs
10—3 a
10—5 A
107!
— 10 VRs
1073 \W\—V\"’\\W/\/\/
10_5 1 T T T T T
107t 10° 10t 102 10®
Runtime (s)
FIGURE 1 | Sub-sampling surface voxels tends to improve the accuracy of
the volume estimate for any discretization resolution at the cost of increasing
voxelization time. VR is the partial volume resolution, the voxelization times of a
cylinder of fixed size and orientation are shown for 50 different values of dx
(from 0.01 wm to 0.5 wm) and five values of VR (2, 4, 6, 8, 10). Each subplot
highlights one of the VRs, with the others shown in grey. As dx decreases,
discretization time increases and relative error tends to decrease, but the error
is non-monotonic due to changing alignment of the cylinder with the grids.

subdivided surface voxels while surface area calculations do not.
As discussed below, we found that the accuracy of the surface
voxel partial volume calculations affects the error introduced in
1D-3D hybrid models.

Convergence of Discretization on Realistic
Geometries

To assess the convergence of volume and surface area estimates
on realistic morphologies, we used our voxelization algorithm
to estimate these values for 21 randomly chosen neuron
reconstructions from NeuroMorpho.Org as described in Section
2.5. For most cells, we tested 12 choices of dx from 0.05 to
0.5 wm, omitting the smaller values for large cells that would
require prohibitive setup time or memory at those resolutions.
As the true surface area and volumes are unknown, we compared
each value for a given morphology to the corresponding value
calculated with the smallest dx (Figure 2). With dx = 0.5 pm,
the majority of whole cell morphologies (13 out of 21) had
an estimated relative volume error of <1% with one having
error <0.1%. At NEURON’s default resolution of dx = 0.25 pum,
15 out of 21 morphologies had a volume error <1% with 5
having a volume error <0.1%. By dx = 0.15 pm, these rates
increase to 19 out of 21 and 10 out of 21, respectively. The
volume error scaling varies per morphology but scales between
0(dx?) and O(dx>) (Figure 2B). With dx=0.15 pm, 10 out of
21 whole cell morphologies had estimated surface area errors
<1% and two morphologies had surface area errors <0.1%. For
most morphologies, the surface area error scaled between O(dx)
and O(dx?) (Figure 2A). Thus, the scaling rates for volume
and surface area errors with realistic neuron morphologies are
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Estimated Relative Surface Area Error (%)

0(dx?)
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~o— 15892037 o~ 9CL-IVXAnk2-IR_ddaC

160524_7_4 AE5_EEA_Outer-thirds_DG-Mol_sec1-cel4-aev5me

2017-25-04-slice-2-cell-2-rotated AM61-2-1

243-3-39-AW AM81-2-3

29-1-8

FIGURE 2 | Log-log plots of estimated (A) surface area and (B) volume relative error as a function of dx for the voxelization of 21 entire morphologies (all sections)
chosen randomly from NeuroMorpho.Org. Points indicate measured values; colored lines indicate best-fits. Black lines indicate first-, second-, and third-order
convergence, as marked, for reference. Note that the y-axis scale is different between (A) and (B).

Estimated Relative Volume Error (%)
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broadly consistent with the rates observed for the cylinder. While
the relative errors for the surface area are higher than that for the
volume, we note that as described in the methods, for consistency
with models not including 3D reaction-diffusion, NEURON
always computes ion current influx based on the summed frusta
surface areas for the 1D model and only uses the 3D surface areas
to distribute the total segment currents into individual voxels.

Voxel-Segment Assignment

For currents through the membrane to correctly alter and be
modulated by local near-surface concentrations, each voxel must
be assigned to the correct segment and surface voxels must be
distinguished from interior voxels. To test these classifications,
we constructed a simple geometry, consisting of two parallel
connected cylinders, with length 5 pm, diameter 5 pm, and
9 segments, and length 5 pm, diameter 1 pm, 5 segments,
respectively. We plotted the quarter of the surface-voxels with
x > 0,y > 0,and z > 0 in 3D and color-coded by
segment (Figure3A). (The x > 0 condition removes the
end-face of one of the cylinders.) Visual inspection revealed
that our algorithm constructed a continuous surface with no
holes and no interior mis-identified voxels. Similar results were
found for the other sections of the geometry (not shown),

suggesting that the algorithm correctly distinguishes surface and
non-surface voxels. To test the voxel-segment assignment, we
projected this image into the x, y plane and added markers for
the analytically computed segment boundaries (every 5/9 pm
for the bigger cylinder and every 1 pm for the smaller cylinder).
We additionally added a line segment that passes through the
corner of the big cylinder and the midpoint of the first segment
of the smaller cylinder which by default in NEURON is assigned
a 3D point, and thus this line segment marks the projection of
the cone that CTNG adds to join the two cylinders. All segment
boundaries aligned with the analytically computed ones and the
join cone tapered as expected (Figure 3).

Three-Dimensional Simulation

Conservation of Mass

Physically, mass diffusing in any domain should be constant,
however the finite limits of computer precision and large
numbers of voxels in 3D simulations allow the opportunity for
round-off error to accumulate.

To quantify this effect for the serial (1 thread) simulation,
we simulated diffusion on a Y-shaped geometry consisting of
three sections, each of length 10 pm and diameter 2 wm. One
section is positioned from (0, 0, 0) to (10, 0, 0). The other sections
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FIGURE 3 | Segment alignment validation. (A) 3D plot and (B) 2D-projection of surface voxels of a morphology with an abrupt change in diameter and a change in
segment length, colored by segment. Vertical lines in (B) illustrate the locations of the 1D segment boundaries, which align with the 3D surface nodes. The diagonal
black line connects the edge of the last wide segment with the top-middle of the first narrow segment and matches the corresponding 3D cone taper.

continue from there to (10 + 5+/3, =+ 5,0), i.e., 30° changes
in either direction. While the exact orientation would have no
effect on 1D chemical or electrical simulation, we specify these
details because they affect the exact number of voxels in the
3D simulation as narrow angles would lead to more overlap
of the logical shapes in 3D space and hence less total voxels.
We used the default discretization with voxels with dx = 0.25
pm on each side, for a total of 7,904 voxels in our model.
Substance diffused with diffusion constant of 1 pm?/ms) starting
from a concentration of 1 wM on the section parallel to the
x-axis and 100 nM on the other two sections and ran for
varying lengths of time. For fixed step simulation, we started
with a timestep of dt = 0.025 ms, NEURON’s default. After 4
million timesteps (i.e. by + = 100,000 ms) conservation error
accumulation led to a relative change of about 8.2219 x 10710
of the total mass. As timestep reduced to dt = 0.0125 ms and
dt = 0.00625 ms, the relative change in mass after 100,000
ms reduced to 7.004 x 10712 and 1.7741 x 1073, respectively.
For variable step, using NEURON’s default tolerance and an
atol scal e of 107 for the state variable. Without scaling,
NEURON?’s default error tolerance would be 1 M, small enough
for sodium and potassium, but far too large for physiological
concentrations of, e.g., calcium which are often about 50-100
nM (Grienberger and Konnerth, 2012). With these settings, by
t = 100,000 ms, variable step integration accrued a relative
change of 2.7389 x 1013 of total mass over 33,233,603 timesteps.
We note that in practice, many NEURON simulations run for
orders of magnitude less time, and can expect even smaller error
accumulation.

We further examined conservation of mass by running the
same simulation with four compute threads. The relative errors

in both fixed step and variable step matched the results reported
above for the serial case.

Diffusion
To assess the error in our numerical diffusion algorithm, we
compared the simulated distribution of concentration on a large
finite cylinder to the known analytical solution for the infinite line
and infinite space.

In particular, on an infinite 1D line, the Green’s function
for diffusion with diffusion constant D from initial conditions
described by the Dirac delta function §(x) is well-known to be:

1 —x2
G(x, t) = Teh exp <4T)t) , (1)

see e.g., Balluffi et al. (2005). In particular, this implies that
for diffusion on an infinite line with initial concentration
0 everywhere except between A and B where the initial
concentration is C, the concentration at position x at time ¢ > 0

will be equal to
c b —(x—§)? )

— — ) dt&. 2

JaxDi /A o ( o )% .

This integral may be evaluated numerically or expressed in terms
of the error function (erf). For diffusion on a finite line with
reflective boundary conditions (such as an unattached section in
NEURON), the exact concentration is an infinite sum of values
of that form (with adjusted values of A and B; this is the so-called
method of images), however this may be numerically neglected as
long as the section is sufficiently long and the time sufficiently
small.
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Likewise, on a right circular cylinder, the solution (Equation
5) applies for all points (r,¢,x) (in cylindrical coordinates)
provided zero-flux boundary conditions, initial concentrations
uo(r,¢,x) = ip(x) are independent of r and ¢ (that
is, the concentration is uniform on any given cross-section
perpendicular to the axis), and a spatially uniform D. This
follows immediately from the diffusion equation in cylindrical
coordinates as upy = u, = 0 (this is immediate at t = 0 from
the initial conditions and can be shown to hold for t > 0) and

thus
du o} 3 [ du N 1 0%  9%u 3)
77 _ (2= 2= . 2%
ot ror \ or r2 o2 Ox?
reduces to
ou 9%u
— =D—, 4
ot 9x2 @

the 1D diffusion equation. A similar reduction applies for any
right cylinder regardless of the shape of the base that satisfies the
other conditions.

We thus began our diffusion validation by considering a right
circular cylindrical section 200 pm long with diameter 1 pm
oriented along the x-axis with concentration 0 everywhere except
1 mM between positions 95 and 105 pwm with diffusion constant
D = 1 wm?/ms with dx values of 0.5, 0.25, and 0.125 pum. The
maximum absolute error at time t = 100 ms when simulated
using NEURON’s default 0.025 ms time step when compared
to the theoretical values reduced at approximately O(dx*): the
maximum absolute error with dx = 0.5 wm was 5.29 x 107> mM,
with dx = 0.25 wm was 1.28 x 10> mM, and with dx = 0.125
pwm was 2.79 x 10~¢ mM. The distribution of absolute errors and
concentration vs position for this problem is shown in Figure 4.

Analogously, we used the Green’s function for diffusion in 3D
space from a point source at the origin,

GG, t) = ! exp X , (5)
(47 Dt)3/2 4Dt

to assess the numerical accuracy of our 3D diffusion algorithm
in space as opposed to in a cylinder. Again, we chose a
domain sufficiently large and time point sufficiently small to
neglect the reflective boundary conditions; in particular, we
consider a cylinder centered around the origin of diameter 40
pm and height 40 pm. Within this domain, we take initial
concentration of 0 everywhere except in the cube [—2,2] x
[—=2,2] x [—2,2] where we take initial concentration of 1 mM,;
as before, we suppose the substance diffuses with a diffusion
constant of 1 pm?/ms. Analytic solutions follow from Equation
(5) analogously to Equation (2) but with a triple integral over
the domain with the non-zero initial conditions. We simulated
until + = 20 ms using the default spatial discretization of
0.25 pm and plotted the relative error at 100 randomly chosen
points within a sphere of radius 10 wm centered around the
origin (Figure5). As the initial source was not spherically
symmetric, the concentrations themselves are not spherically
symmetric, however the relative error (always under 0.1%)
exhibits a clear relationship to the distance from the origin,
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FIGURE 4 | (A) Distribution of absolute errors as functions of spatial
discretization dx at t = 100 ms from simulation of a diffusion problem on a
cylinder of length 200 pm, diameter 1 um from an initial concentration of 1
mM between positions 95 and 105 um, O elsewhere. The apparent bumpy
shape is an artifact of plotting the absolute value on a log scale; at each
sudden drop in error the 3D simulated values switch from being an over- to an
under-estimate or vice-versa. (B) Distribution of concentration at the same
time point as determined by the analytic solution.
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FIGURE 5 | Relative error vs. distance from the origin in 3D diffusion
simulation from a cube of elevated concentration centered at the origin,
simulated using the default spatial discretization; see text for details.

with the relationship becoming weaker as distance (and thus
concentration) increases.

Ion Channel Fluxes
To examine the interplay between membrane potential, ion
channels, and diffusion, we simulated sodium dynamics at
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various diffusion rates within a cylindrical “soma” geometry 10
pm in length and 10 pm in diameter with Hodgkin-Huxley
channels under a continuous current injection of 0.1 nA. This
current injection was sufficient to cause the cell to fire a train of
action potentials, each of which admits sodium current into the
cell, raising the sodium concentration. (Sodium concentration
change is only simulated when sodium dynamics are explicitly
modeled, either through NEURON’s rxd mechanism as here or
through certain MOD file mechanisms.) As shown in Figure 6,
with a low sodium diffusion rate, the sodium concentration near
the surface builds up rapidly. As the diffusion rate increases,
the surface concentration approaches that of the corresponding
1D simulation as the sodium is more able to spread across the
dendrite’s cross-section. By definition, the difference in sodium
concentration in the surface voxels leads to a difference in the
sodium Nernst potential (which is automatically recalculated by
NEURON), which affects subsequent sodium currents and hence
spike timing and shape, leading to the separation of spike times
for the different diffusion rates shown in the inset to Figure 6A.

With larger values of dx, the surface voxels extend deeper
into the soma, providing an averaging effect that approaches that
of the 1D solution. The resulting numerical difference is most
pronounced for small diffusion constants: With dx = 0.5 pum, the
surface concentrations at t = 100 ms for D = 10~ pm?/ms and
D = 0.01 wm?/ms were 13.35 and 11.24 mM, respectively. With
dx = 0.25 pm (NEURON’s default), the surface concentrations at
the same time point and diffusion constants were 15.59 and 11.16
mM, respectively.

In the case of a single section, the same dynamics would
be observed for a 2D model using radial shells to incorporate
the difference between near-plasma-membrane concentrations
and interior concentrations, however the 3D approach used here
avoids the non-physical-realizability of radial shells at branch
points (see, e.g., Figure 1 in Chen and De Schutter, 2017).

3D Simulation on Realistic Geometry

For a more complete test, we compared simulations of scalar
bistable dynamics on a realistic cell morphology using our
algorithm with using the 3D cell biology simulator VCell (Schaff
et al., 1997; Cowan et al., 2012). We used CTNG in NEURON
to voxelize the morphology of NeuroMorpho.Org:NMO_02699
(Ascoli et al., 2007; Nikolenko et al., 2007). The voxelized data
was exported to a stack of PNG images, where each image
represents a z-slice with a value of 0 for voxels not in the cell
and a value of 255 for voxels in the cell. These image stacks
were then loaded into VCell with each pixel corresponding to
one voxel. We note, however, that while this transfer approach
correctly transfers information about which voxels are included,
it loses the fractional volume calculated for surface voxels within
NEURON, so the two tools are not expected to produce identical
results as the boundaries vary slightly. In each tool, the initial
concentrations were set to be 1 mM in the distal apical and 0 mM
elsewhere. Reaction-diffusion was simulated until time ¢t = 220
ms, and corresponding z-slices were compared. With both tools,
the wavefront was at the same approximate location mid-soma
and showed comparable curvature (Figure 7).
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FIGURE 6 | (A) Membrane potential and (B) surface voxel sodium
concentration of a 3D cylindrical soma with Hodgkin-Huxley channels and
sodium accumulation, 10 wm in diameter and 10 pm in length with a constant
current injection of 0.1 nA at various diffusion constants D (um?/ms). Legend
applies to both sub-figures. Insets: magnified views of indicated regions
showing differences in 3D results depending on the diffusion constant and
convergence to the 1D solution (black dashed line) as the diffusion constant
increases.

NEURON

FIGURE 7 | NEURON vs. VCell comparison. Reaction-diffusion NEURON and
VCell simulation results of one cell z-slice at t = 220 ms. Image cropped to
show relevant cell slice areas. Note the similarity between the characteristics of
the wave curvature, approximate wave position, and the thickness of the wave
front in each simulation.

Orientation Sensitivity With Propagating Wave

The orientation of a section affects how many voxels will be
on the boundary and how the surface cuts through them,
but the boundary voxel partial volumes and surface areas are
inherently only approximations. To assess the impact of these
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FIGURE 8 | Distribution of relative error in wave speed for the scalar bistable
wave with « = 0.25 derived from 100 random orientations of a 251 um long, 2
um diameter cylinder simulated in 3D at three choices of dx (measured in um);
all graphs are on the same scale. Simulations with 6 within 0.1 radians of O,
/2, or w corresponding to cylinders nearly parallel to either the x, y plane or
the z axis are in cyan and tended to have lower errors than those that were
oriented otherwise. Dashed lines indicate mean values.

approximations on models incorporating both 3D reaction and
diffusion and components that are sensitive to 1D concentrations
(e.g., ion channel kinetics specified using NMODL; Hines and
Carnevale, 2000), we considered wave propagation governed by
the the scalar bistable equation, u; = D Au — u(l — u)( — u),
and timed wave propagation based on 1D concentrations. Here
A is the Laplacian operator, D is the diffusion constant, and
« is a threshold concentration, above which in the absence of
diffusion concentrations will tend to increase and below which
concentrations will tend to decrease. As observed in McDougal
R.A. et al. (2013), these dynamics exhibit key characteristics
of some intracellular signaling processes, like calcium waves.
Furthermore, this equation has a known analytic solution in the
1D infinite line case that can be used for validation.

To quantify this effect, we tested 100 random orientations of a
251 pwm long dendrite of diameter 2 pm. We initialized the wave
with a concentration of 1 on the first 50 pm and 0 elsewhere,

then let it diffuse with a diffusion constant of D = 1 um?/ms.
(Concentration by default in NEURON is represented in mM,
however the units are omitted here as the dynamics are the same
as long as the units are consistent.) For each orientation, we
estimated wave speed for three different choices of « (0.15, 0.25,
0.35) and three values of dx (0.5 wm, 271> & 0.3536 um, 0.25
pm). A plane wave in an infinite cylinder with these dynamics is
known to propagate with a wave speed of ¢ = ﬁ(% — «) (see,
e.g., Fife, 1979). We estimated the wave speed in each simulation
by measuring the time it took for the wave front (defined as
the farthest point with an average 1D concentration over 0.5) to
move from position 100-200 pm. These positions and the total
length of the dendrite were chosen as they were found to allow
reasonably accurate approximations of the wave speed in 1D
simulations—i.e., a large enough distance to be free of boundary
effects—while keeping the geometry small enough that the 900
total 3D simulations involved in this study could be run in a
reasonable amount of time.

For o = 0.25, the average relative error in the estimated wave
speed decreased proportionally to dx (4.59 + 2.24 % for dx =
0.5 pm, 3.12 £ 1.56 % for dx ~ 0.3536 pwm, and 2.17 & 1.09 %
for dx = 0.25 pum). At NEURON’s default resolution of dx = 0.25
pm, all orientations led to <4% relative error in estimated wave
speed; about three-quarters (74 out of 100) showed <3% relative
error, and about one-fifth (21 out of 100) had <1% relative error,
with the minimum being 0.13% (Figure 8). All three values of
o tested showed similar distributions of relative errors of wave
speed (not shown). Cylinders whose axis was parallel to the x, y
plane or mostly vertical gave less error in wave-time estimates
than cylinders whose axes were not aligned with the Cartesian
grid.

Hybrid 1D-3D Simulation Validation
Conservation of Mass

Simulations of diffusion should conserve mass for 3D and
hybrid 1D-3D models. To test hybrid conservation, simple hybrid
models were used, where one section joined to one or two other
sections, either aligned or a Y-shaped join. A region of initially
elevated concentration was placed in one section away from the
join and diffusion to the neighboring sections was simulated.
Using different voxel sizes and time-steps showed similar change
in total concentrations, on the order of 10711% of initial amount,
consistent with the expected numerical error.
Diffusion
We tested the accuracy of 1D-3D hybrid simulation using a
cylindrical dendrite of length 153 pwm and diameter 2 pm. For
all simulations we used a 1D discretization of two segments per
micron. We simulated for 50 ms with a diffusion constant of 1
pm?/ms from an initial distribution of 0 mM everywhere except
for a concentration of 1 mM between positions 70 and 83 pm.
We compared four different discretization strategies—pure 1D
simulation, pure 3D simulation, 1D on the middle 51 wm and
3D elsewhere, and 3D on the middle 51 pm and 1D elsewhere—
at time t = 50 ms to the analytical solution calculated using
Green’s functions as described under “Conservation of mass.”
The analytical solution’s concentration at the midpoint of our
cylinder at the end time is ~0.4843 mM. Since there are many 3D
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FIGURE 9 | Comparison of the magnitude of signed absolute errors as a
function of position for 1D (red), 3D (green), and two hybrid cases (cyan and
purple) for diffusion from an area of elevated concentration near the middle of
a 153 um long cylindrical domain ; all plots are for t = 50 ms. (A) With different
choices of dx. (B) With dx = 0.25 pm and different levels of accuracy for
estimating the partial volume of voxels that are partly inside and partly outside
the cylinder; see text for details. (C) Analytically computed concentration
distribution.

voxels per x coordinate, we examined the weighted (by volume)
concentration as a function of position. In both hybrid cases for
both dx = 0.25 wm (the default) and dx = 0.125 pum, numerical
absolute error for the weighted concentration at the points where
the 1D and 3D domains join exceeded that of the highest absolute
error for the pure 3D simulation, however it was generally of
the same order (Figure 9A). For the 1D in the middle model,
when dx was reduced by a factor of two, the maximum error

was reduced by a factor >2: the maximum absolute error of the
weighted average concentration dropped from 1.21 x 1073 to
5.17x 10~* mM. In surface voxels containing only a small volume
of the cell, the error can be larger, reaching up to 1.99 x 1073 mM
and 7.93 x 107% mM in the dx = 0.25 wm and dx = 0.125
pwm cases on the same hybrid problem, respectively. Maximum
errors for the weighted average for the 3D on the middle hybrid
problem reduced from 6.72 x 10™* to 4.76 x 10~* mM as dx was
reduced from 0.25 to 0.125 pm. While all simulations conserve
mass, only the fully 1D and fully 3D error curves in Figure 9A
have an integral of ~0. This apparent discrepancy is due to
inconsistencies in the way 1D and 3D approximate the volume
of the cylinder; in this simple geometry, the 3D volumes are
consistently under-estimated.

Exploring the volume issue further and motivated
by the fact that decreasing dx increases simulation
time and the corresponding quantity of generated,

we examined the effect of increasing the accuracy of
surface voxel partial volume estimates by increasing
rxd.options.ics_partial _vol une_resol ution.
In particular, for the same setup and holding dx = 0.25 pm
constant, we found that the maximum error of the weighted
concentrations in the 3D on the outer thirds hybrid case dropped
from 1.21 x 1073 mM when the partial volume resolution was
set to 2 (the default) to 4.38 x 10~% mM when the partial volume
resolution was set to 6. Likewise the 3D on the inside case error
reduced from 6.72 x 107* to 2.37 x 10~* mM (Figure 9B).
The analytically computed solution is shown for reference in
Figure 9C. In both hybrid cases, increasing the accuracy of
the partial volume estimates for the surface voxels in this way
reduced the absolute error by an amount exceeding that of
halving dx. Importantly, after initialization, simulation time
is unaffected by the improved partial volume estimates but is
greatly affected by dx.

Performance

Defining and simulating a 3D model are logically separate
activities: a model only needs to be defined once to be
simulated many times (e.g., with different parameters). The
most time-consuming part of the definition phase is the
voxelization process. Furthermore, in principle, any voxelization
that generates the appropriate data structures and maps voxels
to segments could be used by the simulation engine. As such,
we measure the performance of voxelization (currently single-
threaded; described in Section 3.2.1) and the performance of
simulation (multi-threaded; described in Section 2.3) separately.
To assess the performance using realistic cell shapes, we tested
21 randomly selected morphologies (listed in Section 2.5)
with realistic diameters and 3D data from NeuroMorpho.Org
(Ascoli et al., 2007).

Voxelization

To assess the voxelization performance, we loaded each of the
21 randomly chosen neuron morphologies one at a time and
recorded the initialization time and estimated volume for many
choices of spatial resolution dx, typically from 0.05 to 0.5 pm.
Each timing was run in a separate process, as NEURON caches
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the results to avoid voxelizing the same cell more than once (i.e.,
subsequent model initializations skip the voxelization step). As
shown in Figure 10A, the time required to voxelize/discretize
the cell scaled nearly consistently at about O(dx?) regardless of
the morphology, with the main exceptions happening for large
dx. As before, relative volume error was estimated using the
volume calculated for the smallest measured dx as the estimated
true volume. The relationship between estimated relative volume
error as calculated in the convergence on a cylinder section
and time spent doing the discretization was noisy and less
consistent across morphologies but the error generally scaled
between error = O(time™2) and error = O(time™!) as shown
in Figure 10B.

3D Simulation

To assess the scaling of our simulation algorithm with the
number of threads used, we simulated three different dynamics
(pure diffusion, bistable wave, and calcium wave) across two
morphologies (a cylinder of length 50 pm and diameter 1
pwm) and a reconstructed cell (NeuroMorpho.Org’s NMO_77436
(Canchi et al, 2017)), with three spatial resolutions (dx =
0.25, 0.125, and 0.0625 pm). The pure diffusion dynamics

were governed by FicKs laws. The bistable wave modeled here
implements the scalar bistable wave equation uy = DAu —
u(l — u)(a¢ — u) analyzed in Fife (1979), and previously used
as an example of reaction-diffusion phenomena in McDougal
RA. et al. (2013). The calcium wave model implements
Ca**-induced-Ca?* -release (CICR) driven by the endoplasmic
reticulum (ER), and is a simplified version of Neymotin et al.
(2015). Waves were initiated by an area of elevated cytosolic
concentration (u for the bistable wave and IP3 for the calcium
wave) in the first 25 pm in the cylinder case and in section
dend_7[ 19] of the apical dendrite which starts approximately
9.35 wm from the soma in the morphologically detailed case.
Excluding the cylinder diffusion and cylinder bistable wave
on the coarsest resolution (dx = 0.25 pm), which both initially
ran in under 1 second (and for whom threading overhead is
thus non-trivial), the rest of the simulations showed speedup as
the number of threads increased (Figure 11). For the 16 other
combinations of morphology, model, and dx: using four threads
reduced runtime by up to a factor of 3.63 (2.0040.65 on average);
using eight threads reduced runtime by up to a factor of 6.39
(3.20 £ 1.29 on average); using 16 threads reduced runtime by
a factor of up to 9.76 (5.07 & 2.28 on average). The reported
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runtimes here are based on the best of three runs to limit the
contribution from background tasks.

Reported times exclude voxelization time, analyzed above,
which is currently single-threaded and is only performed once
for a given morphology regardless of the number of simulation
studies performed.

To further test performance speed-up, we experimented with
different settings of cache prefetch, which in our experiments
ultimately did not show significant difference in parallel scaling.

Examples

Three-dimensional simulation offers the ability to explore both
the role of a neuron’s three-dimensional shape—which is
especially relevant wherever the neuron is not approximately
conical, such as where the dendrites meet the soma or a
spine connects to a dendrite—and the role of precise spatial
positioning for, e.g., synapses. In this subsection, we examine
examples of each of these, discuss relevant implementation
details, and examine different visualization strategies for the
resulting volumetric data.

Dendrite-Soma Intersection
Certain cellular phenomena are typically found in one region
of the cell and typically not present in neighboring regions

even when the neighboring regions are known to be able
to support the phenomena. For example, waves of elevated
intracellular calcium in pyramidal cells observed in apical
dendrites only sometimes invade the soma but when they do
are capable of propagating across the soma (Hagenston et al.,
2008). There exist mathematical models of wave phenomena
where it is known that domain geometry affects wave propagation
(e.g., Dronne et al, 2009); 3D simulation allows us to
study if the morphology plays a similar role in problems of
neuroscientific importance.

For example, we simulated the scalar bistable equation
with a threshold ¢ = 0.1 mM in the morphology of
NeuroMorpho.Org:NMO_53113 (Ascoli et al., 2007; Malik et al.,
2016) starting with a concentration of 1 mM on the distal
apical and 0 mM elsewhere, and a diffusion constant of 0.25
pm?/ms. No other dynamics were included; in particular, no
ion channels were simulated and there was no flux across the
plasma membrane (Neumann boundary conditions). We chose
this cell in part because the soma of this cell was specified using
a soma outline in ASC format, allowing NEURON to construct
a non-cylindrical approximation to the soma shape. Using a
fixed-step simulation (dt = 0.25 ms), we simulated the volume
containing the soma and all sections whose center was within
a path distance of 70 pwm from the soma’s center in 3D, with
the rest of the cell in 1D. Within this volume of 3D simulation,
the smallest diameter was 0.18 pwm, and we used a dx = 0.17
pm. Under these conditions, a wave of elevated concentration
propagated from the apical toward the soma at approximately
uniform speed. Near the soma, the wave front curved and slowed,
but propagated into the soma where it eventually straightened
and resumed its initial speed (Figure 12A) shows the progression
of the wave front over time using contours on a 2D projection of
the cell.

To assess if the hybrid approach was accurately simulating
wave behavior within our region of interest near the soma,
we repeated the experiment using all sections whose center
was within a path distance of 100 pm from the center of the
soma; this expansion added an additional 19 sections to the
3D domain. Simulating in 3D on this expanded domain gave a
visually identical contour map of wave propagation (not shown),
and an identical prediction for when the wave would cross the
center of the soma (t = 188.255 ms), defined as the first time
the 1D concentration at the center of the soma exceeded the
half-maximal value. This consistency suggests that our original
simulation was not losing significant accuracy near the soma
despite simulating distal parts of the cell in 1D. By contrast,
simulating only the soma and the sections directly connected
to the soma in 3D led to a different wave crossing time
(t = 194.58 ms), which therefore indicates this smaller region is
not a sufficiently large 3D region for studying behavior near
the soma.

We note that Figure7 presents a similar experiment on
a different morphology showing a color-coded 2D slice at a
specific time point. The visualization in the latter figure shows
more detail on the concentration distribution near the wave
front, but cannot show the propagation of the wave front
over time.
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Spines

Numerous publications have examined the interactions of spines
with each other (e.g., Chiu et al, 2013), how concentrations
may be compartmentalized within spines (e.g., Yuste et al., 2000)
and the relationship between membrane potential in spine and
dendrite (e.g., Jayant et al., 2017). As with dendrites meeting
the soma, the exact nature of dynamics at the spine-dendrite
juncture depends on the shape of this connection. This is in
part dependent on the angle with which the spine attaches to its
dendrite, a detail completely lost in 1D simulation, but analagous
to the issues arising at the soma.

Spine-dendrite modeling, however, also introduces a new
challenge arising from non-physically realizable models where
the same volumes is part of two separate sections. Such
overlapping sections are common in NEURON, as sections are by
default connected to the centroid of the parent section. For most
models, the length of most sections is longer than the length of
the diameter and the child diameters are generally comparable
to the parent diameters, so any discrepancies in local surface
area or volume due to the overlaps are typically minimal. Models
with spines are a notable exception; spine necks vary in shape
and size but for example in layer 6 pyramidal cells of the mouse
somatosensory cortex are typically <0.2 pm in diameter and
<2 pm long (Ofer et al., 2021), and so attaching the spine at
the centroid places much of the neck inside the dendrite. Here
our choice of mapping the voxel to the 1D compartment closest
to the presumptive soma assures that the spine neck is only
that portion extending beyond the dendrite proper, but the 3D
volume and surface area calculations will be based only on the
part that extends beyond the dendrite, and thus the volumes
will disagree, and it is possible that some segments may not
have any true surface area. This discrepancy between the 1D
and 3D representations can be mitigated by shifting the start
of the spine neck to be some distance (almost a radius) away

from the centroid of the parent dendrite using the appropriate
NEURON pt 3dst yl e while keeping the perimeter inside the
parent dendrite. In the case of a cylindrical dendrite with a
smaller orthogonal spine, the maximum spine distance from the
dendrite centroid can be found by considering the circular cross-
section of the dendrite meeting the rectangular cross-section of
the spine neck, placed inside the dendrite such that the two
lower vertices are on the perimeter of the dendrite. The resulting
distance d from the centroid is determined by a right triangle,
formed by the center of the dendrite, one of the lower vertices of
the spine neck, and the center of the lower edge of the spine neck.
This gives a triangle with hypotenuse 4, adjacent r,, and opposite
rq — d, where 7, is the radius of the dendrite and r,, the radius of

the spine neck. Then by Pythagoras’s theorem d = r;—,/ r{zj -

Using this rule, we constructed a cylindrical dendrite 2.5 pm
in diameter and 6 pm long. We attached two spines at position
3 pm orthogonal to the dendrite with necks of length 3 pm,
diameter 0.1 pm and cylindrical heads of length 0.5 pm and
diameter 0.6 um. To simulate the spread of a substance from the
spines, they were initially filled with substance to a concentration
of 2 mM, with 0 mM in the dendrite. When the substance was
allowed to diffuse at a rate of 0.01 jum?/ms, the dynamics of the
concentrations within the dendrite varied depending on the angle
separating the two spines (Figure 12B). We considered two cases:
spines 30° apart, and spines 180° apart. We note that in a non-3D
simulation these two cases would give identical results. The peak
dendritic concentration in each case was reached within the first
0.5 ms, with the closer spines leading to a peak concentration 89%
as high as with the spines on the opposite side of the dendrite.
All voxels dropped below a concentration of 0.15 mM 17.575
ms earlier when the dendrites were near each other than when
they were opposite each other. If the threshold for triggering
another reaction was around 0.15 mM, this difference in time
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above that value could make the difference between whether or
not the downstream reaction was triggered. For different choices
of parameters (e.g., with a thinner dendrite), the same model
could have the peak concentration drop below the threshold in
the other order.

Three-Dimensional Localization of Synapses
Metabotropic receptors and other mechanisms exist at specific
points in 3D space. Such dynamics in 1D are often specified
using files written in NMODL (Hines and Carnevale, 2000), a
domain specific language for ion channel, receptor, and artificial
cell kinetics supported by NEURON, Arbor (Akar et al., 2019),
and the Python nnodl module (github.com/bluebrain/nmodl).
We can apply the same approach to synapses located in 3D space,
but a few extra considerations are necessary.

First, we begin by defining our post-synaptic response
kinetics. In principle, these can be arbitrarily complicated
to reproduce experimental observations, however as a first
approximation it is not uncommon in modeling to see
mechanisms where the rate of production jumps abruptly in
response to synaptic and decays exponentially; such an NMODL
file is shown in Figure 13. In this file, g denotes the rate of
production of a substance; physically, this corresponds to a
change in mass per ms. To support traditional NMODL files, all
currents generated by an NMODL mechanism are distributed
over the entire segment surface. As a segment is the smallest
electrical compartment, that behavior is correct for the electrical
aspects of the simulation, however distributing, e.g., sodium
currents across the surface would result in sodium changes in
all surface voxels. To avoid this issue, a 3D targeted NMODL
mechanism must generate only NONSPECI FI C_CURRENT with
chemical changes driven solely by the rate g.

NMODL mechanisms must be compiled before they can be
used. This is typically done by running nr ni vnodl , but we
note additional compilation options are sometimes available.
NEURON loads compiled NMODL mechanisms from the
current directory at startup and can also load them on demand
via h. nrn_l oad_dl | . Once loaded, the PO NT_PROCESS
name (RXDSyn in Figure 13) is available as a class in NEURON’s
h object. That is, a new instance could be created by r =
h. RxDSyn( seg) , where seg is the segment that contains the
mechanism.

Once we have picked the kinetics, the next step is to identify
the 3D location to place them. If ca is an rxd. Speci es
on a 3D region, then ca.nodes[(Xx, y, z)] is an
rxd. NodeLi st of ca nodes containing the point (X, Y,
z) . As each node covers a volume, there are many points within
a Node but at most one Node that contains the point unless
the r xd. Speci es is present on more than one region (e.g.,
calcium might be present in both the ER and the cytosol, as in
Neymotin et al., 2015). The coordinates of the center of a Node’s
voxel are (node. x3d, node. y3d, node. z3d).Note that
if node is on the surface, then node. sur f ace_ar ea should
be strictly positive. If the surface exactly touches a grid corner, it is
possible that some voxels with zero surface area will be included
in the mesh, but as such, these should not be used for surface-
based kinetics. If the segment containing the mechanism was

NEURON {
POINT_PROCESS RxDSyn
RANGE tau

PARAMETER {
tau = 1 (ms)

STATE { g }
INITIAL { g=0 }
BREAKPOINT {SOLVE state METHOD cnexp}

DERIVATIVE state { g' = —-g/tau }
NET_RECEIVE (weight) {

g = g + weight
}

FIGURE 13 | Source code for a generic NMODL mechanism called RxDSyn
that receives synaptic events (NET_RECEI VE block) causing the flux g to
increase abruptly in response to an event by an associated weight, with the
flux decaying exponentially with time constant t au thereafter (DERI VATI VE
block).

initially unknown, it can be obtained from the selected node via
node. segnent .

Mechanisms may be connected to one or more
nodes by passing a pointer to the rate to the nodes
include_flux method; in our example, this is
node. i nclude_flux(r._ref_g). By default, this
method assumes g is measured in molecules per second; these
units ensure that the same total amount of substance is enters
the cell regardless of the discretization. The same flux rate may
optionally be applied to other nodes.

Once this is done and the post-synaptic dynamics are
connected to a presynaptic event source (e.g., a membrane
potential crossing a threshold or a random spike train),
then presynaptic events will trigger production of the node’s
substance at a rate that decays over time (if using the kinetics of
Figure 13) and that substance is free to diffuse away (Figure 14).

DISCUSSION

NEURON 8.1 provides built-in support for parallel, 3D
deterministic simulation of intracellular reaction-diffusion
dynamics (e.g., protein and ion interactions and diffusion) in
whole neurons and in modeler-selected Sections of interest; the
remaining Sections, with kinetics expressed identically, continue
to use 1D reaction-diffusion simulation, allowing computational
resources to be targeted toward locations where the 3D shape
is likely to matter such as the relatively large volumes near the
soma. Selected cells or Sections are voxelized using an updated
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FIGURE 14 | Simulated diffusion in a cylindrical dendrite of a substance produced at (2.5, 0.975, 0.275) in response to synaptic input at time t = 5 ms. The volumetric
images highlight translucent level sets with all concentrations above 10 um displayed the same. Bottom-right: concentration (on a log scale) vs. time at five distances
from the source on the surface of the dendrite. Inset: a volumetric view from a different angle showing the extent of diffusion into the interior of the dendrite.

version of the CTNG algorithm (McDougal R. et al., 2013)
that exploits convexity. Synapses can optionally target their
effects to specific 3D compartments (e.g., production of a certain
mass of messenger from activation of a metabotropic synapse).
Electrophysiology simulations remain simulated as branching
1-dimensional sections as is appropriate given their larger space
constants.

NEURON—uvia its | npor t 3D library—supports a variety of
neuroscience formats for specifying the overall cell morphology,
including SWC (Cannon et al, 1998), MorphML (Crook
et al., 2007), and Neurolucida ASC (Glaser and Glaser, 1990).
Morphologies specified using Neurolucida ASC may include
a soma outline; CTNG uses this outline when available to
construct a more accurate soma shape than is possible when
reading morphologies specified in the other formats. SWC is
especially useful as the over 170,000 neuron reconstructions on
NeuroMorpho.Org (Ascoli et al., 2007) are all available in SWC
format. To study the effects of cell morphology on reaction-
diffusion dynamics, modelers may alter a morphology file directly
or may modify it using NEURON’s standard techniques, such
as adding new Sect i on objects to insert e.g. spines or using
Sect i on. pt 3dchange and related methods to adjust (x, y, z)
or diameter values.

Alternative Strategies

There are two main alternative approaches in the literature for

combining 3D reaction-diffusion kinetics with electrophysiology.
The first alternative approach is to have an integrated solver

that uses a single mesh. STEPS, for example, simulates ion

channel and pump activity on the surface of the 3D mesh
(Hepburn et al., 2013); a similar approach was used in the Virtual
NEURON study (Brown et al, 2011). Using the same mesh
eliminates the possibility of numerical artifacts from coupling,
automatically ensures consistent surface areas, and eliminates the
possibility of interior surface (e.g., from spines mis-connected
at the centroid). We have avoided this approach, instead using
1D electrical with 3D reaction-diffusion as in Grein et al. (2014)
to allow the electrical dynamics to be consistent regardless of
the dimensionality of the reaction-diffusion simulation, to take
advantage of the O(n) implicit simulation of electrical dynamics
on such a 1D-structure (Hines, 1984), and for compatibility
with the over 2,000 existing NEURON models (i.e., extending
an existing NEURON model with 3D intracellular reaction-
diffusion dynamics does not require modifying the existing
components, unless a change is desired to their behavior).

The second alternative approach is to use multisimulation;
that is, to combine a solver specializing in ion channels and the
cable equation like NEURON or MOOSE (RRID:SCR_008031;
Dudani et al., 2009) with an external solver specializing in
reaction-diffusion simulation. We and our colleagues have
used this approach for stochastic 3D model simulation with
NEURON Time Warp (Lin et al, 2017). KappaNEURON
likewise combines NEURON with the rule-based reaction-
diffusion simulator SpatialKappa (Sterratt et al., 2014). Grein
et al. (2014) used a similar approach for deterministic 3D
simulation coupling NEURON with uG. Additionally, we note
that NEURON supports the general multisimulation framework
MUSIC (Djurfeldt et al., 2010) which has been used to connect
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MOOSE and NeuroRD (Brandi et al., 2011). The multisimulation
approach is appealing as it allows each simulator to specialize
in its own problem domain, providing a rich set of simulatable
features, with each simulator programmed independently. While
recognizing the benefits and flexibility of multisimulation, we
chose to build our 3D intracellular simulation capability within
NEURON to allow for a unified Jacobian matrix, allowing
for variable step simulation, to provide consistent coupling
semantics, to avoid the need for syncing data between two
different potentially parallel tools, and to avoid the need for users
to learn two simulator tools.

Special Considerations

Models with exactly zero diffusion of a species that enters or
leaves through ion channels pose specific issues in comparing
ID and 3D simulations or 3D simulations with different
discretizations. Although mathematically convenient, these
models are non-physical as diffusion is necessary to bring a
molecule to or through an ion channel. Concentration changes
in 1D are based on the active geometry, typically the whole
dendrite. Increasing the spatial resolution (e.g., tripling nseg) in a
1D model with no diffusion has no direct effect on concentration
dynamics as the volume and total current both scale by the same
fraction. In contrast, in a 3D model as ions must enter via the
surface, with no diffusion, they are trapped there. Reducing voxel
edge size by a factor of 2 changes the volume by a factor of 8
but the surface area contained in the voxel by only a factor of 4
on average, leading to a factor of 2 change in the rate at which
concentration in surface voxels changes, which could affect ion
channel kinetics.

In principle, multigriding could be extended to be used within
the chemical dynamics in 1D or 3D; i.e., a species prone to
steeper gradients could be simulated on a finer grid, but this
risks introducing artifacts, especially in the case of slow or
zero diffusion. For example, suppose molecule A on a coarse
grid bound with molecule B from a refinement of the grid to
form molecule AB. If AB is represented on the same fine grid,
then when it dissociates A and B can return to their correct
points of origin. If on the other hand, AB is represented on
the coarse grid then when it dissociates B could end up in any
of the corresponding fine meshes. Thus, even if the diffusion
rate was set to zero for all species, molecule B could move
by binding to A, entering the coarse grid, and then returning
to a different fine grid compartment. A similar problem exists
regardless of the relative sizes of the grids if they do not align
perfectly. Meshless simulators, like MCell (Stiles et al., 1998),
avoid this class of problems entirely at the cost of having to
simulate each molecule separately. We note that this problem
only pertains to overlapping meshes; separate mesh resolutions
on different parts of the cell (e.g., large near the soma, smaller
in the distal dendrites) are potentially compatible, although the
mesh transition would not in general be expected to align to the
boundary between Sections.

We note that the insight gained by a 3D simulation
depends on the quality of the 3D mesh. CING or any of the
alternative rules for converting point-diameter representations
into a 3D mesh are inherently approximations as the full

shape of the cell is under-determined by the reconstruction
data. For a given reconstruction, the mesh quality in
NEURON is primarily driven by the choice of dx (with
smaller values of dx giving generally higher quality meshes)
as well as the i cs_partial _vol unme_resol ution and
ics_partial _surface_resol ution options. At least
as important is the quality of the reconstruction itself; even
when working from the same image stacks, different approaches
can lead to logically different reconstructions with branches
connected at different points (see e.g., Gillette et al., 2011). Details
of the imaging approach can likewise affect the detail present in
image stacks of a cell (e.g., dyes may not fill a neuron entirely or
a neuron’s branches may be amputed by a slice). We recommend
that—regardless of metadata annotations—morphologies should
be manually reviewed for slice artifacts (e.g., when we randomly
selected 21 morphologies, we found that while none were strictly
planar several showed minimal z-axis variation), for realistic and
non-uniform diameters, for electrical connectivity (no pinch
points where the diameter gets very small), and for z-axis errors
(some reconstructions show abrupt changes in z values). There
is no value in doing a 3D simulation if the 3D morphology is
unrealistic.

3D time-series data is in general large and hard to visualize.
We deal with the large volume of data by only automatically
keeping the current state in memory. The time series of the
concentration of a specific species at a specific compartment
may be recorded using a Vect or. For modelers needing to
store or visualize all the states at a specific time, simulations
may be stopped at a specific time point, where the states
are then captured to an appropriate Python data structure.
Throughout this paper, we have deliberately illustrated several
approaches to visualizing such data: (1) line plots of a single
species at a single point as in Figure 12B; (2) for traveling
waves, plots of the location of the wave front at evenly spaced
time points on a 2D projection or slice as in Figure 12A;
(3) plots of the concentrations at the surface, analagous to
the surface segment identities in Figure 3A; (4) heatmaps of
a slice or projection at a specific time point as in Figure 7;
and (5) translucent contour maps of concentration level sets
at given time points as in Figure 14. Example Python code
for each type of graph is available in this paper’s entry
on ModelDB.

Conclusions and Future Directions

From our examples, we make a few observations that apply
broadly to other 3D reaction-diffusion simulations: (1) areas
that are far from the region of interest do not need to be
simulated in 3D; when studying effects at the dendrite-soma
intersection, this allows larger dx values than would be possible
if the fine distal dendrites also needed to be simulated in 3D.
(2) Conversely, such experiments are fundamentally about the
role of boundary conditions, therefore other boundaries must
be at a far enough distance from the region of interest so as
not to affect the results. (3) The accuracy of any results arising
from such simulations depends on the accuracy of the voxelized
reconstructions. For this reason, we currently recommend using
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reconstructions in ASC format with a soma outline, as this will
provide a non-cylindrical soma. Future versions of NEURON
will allow importing a predefined voxelization to more accurately
reflect the observed shape, but this will necessarily require
matching the surface areas and volumes on the 3D chemical
domain with that used for electrophysiology simulation. (4)
Regenerative waves have a leading edge that can be plotted on a
contour map at regular intervals showing the progression of the
wave over time.

NEURON is under continuous development. We intend to
improve its support for 3D simulation by streamlining mesh
generation: the CTNG algorithm is in-principle embarrassingly
parallel and meshes and the data on them could in principle
be saved and reused when relaunching NEURON. The first
will require reimplementation of CING in pure C++ to avoid
parallel limitations from Python’s GIL, and the second will
require an efficient way of validating that the mesh aligns with
the 1D skeleton. Both of these enhancements will make it
more practical to use the high-quality volume estimates that
are necessary to keep 1D-3D coupling errors low but currently
require a potentially time-prohibitive initialization. We intend to
integrate support for stochastic simulation to study more classes
of dynamics and to more faithfully capture phenomena arising
from very low concentrations or very small regions (such as
spines and boutons). To more accurately capture the dynamics of
smaller regions, we intend to add support for optionally including
electrodiftusion effects.

We believe that the approach described in this paper provides
an intuitive way of incorporating intracellular reaction-diffusion
dynamics in computational neuroscience models in a way that
more faithfully captures the effects of geometry than is possible
in a 1D or 1D + radial simulation. We hope that this allows
new insights into the multi-scale processes that underlie our
neural activity.
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Neuromorphic systems open up opportunities to enlarge the explorative space for
computational research. However, it is often challenging to unite efficiency and usability.
This work presents the software aspects of this endeavor for the BrainScaleS-2
system, a hybrid accelerated neuromorphic hardware architecture based on physical
modeling. We introduce key aspects of the BrainScaleS-2 Operating System: experiment
workflow, API layering, software design, and platform operation. We present use
cases to discuss and derive requirements for the software and showcase the
implementation. The focus lies on novel system and software features such as
multi-compartmental neurons, fast re-configuration for hardware-in-the-loop training,
applications for the embedded processors, the non-spiking operation mode, interactive
platform access, and sustainable hardware/software co-development. Finally, we
discuss further developments in terms of hardware scale-up, system usability, and
efficiency.

Keywords: hardware abstraction, neuroscientific modeling, accelerator, analog computing, neuromorphic,
embedded operation, local learning

1. INTRODUCTION

The feasibility and scope of neuroscientific research projects is often limited due to long simulation
runtimes and therefore long wall-clock runtimes, especially for large-scale networks (van Albada
et al, 2021). Other areas of neuromorphic research—such as lifelong learning in robotic
applications—inherently rely on very long network runtimes to capture physical transformations of
their embodiment on the one hand and evolutionary processes on the other. Furthermore, training
mechanisms relying on iterative reconfiguration benefit from low execution latencies.

Traditional software-based simulations typically still often rely on general-purpose
high-performance computing (HPC) hardware. While some efforts toward GPU-based
accelerators provide an intermediate step to improve scalability and runtimes (Yavuz et al,
2016; Abi Akar et al., 2019), domain-specific accelerators—a subset of which are neuromorphic
hardware architectures—, have come more and more into the focus of HPC (Dally et al., 2020).
Such systems specifically aim to improve on performance and scalability issues—both, in the
strong and in the weak scaling cases. Particularly, the possibility to achieve high throughput at low
execution latencies can pose a crucial advantage compared to massively parallel simulations.

Frontiers in Neuroscience | www.frontiersin.org 123

May 2022 | Volume 16 | Article 884128


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.884128
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.884128&domain=pdf&date_stamp=2022-05-18
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mueller@kip.uni-heidelberg.de
https://doi.org/10.3389/fnins.2022.884128
https://www.frontiersin.org/articles/10.3389/fnins.2022.884128/full

Mdiller et al.

Neuromorphic Modeling, a Scalable Approach

The BrainScaleS (BSS) neuromorphic architecture is an
accelerator for spiking neural networks based on a physical
modeling approach. It provides a neuromorphic substrate for
neuroscientific modeling as well as neuro-inspired machine
learning. Earlier work shows its scalability in wafer-scale
applications, emulating up to 200 k neurons and 40 M synapses
(Schmitt et al., 2017; Kungl et al., 2019; Miiller et al., 2020b;
Goltz et al, 2021), as well as its energy-efficient application
as standalone system with 512 neurons and 128 k synapses in
use cases related to edge computing (Stradmann et al., 2021;
Pehle et al., 2022). Compared to the biological time domain, the
model dynamics evolve on a 1.000-fold accelerated time scale
making the system interesting for iterative and long-running
experiments. Constant model emulation speed is attractive for
hardware users. However, it often comes with algorithmic
challenges. Similar to other neuromorphic systems based on
the physical modeling concept, neuroscientific modeling on
the BrainScaleS-2 (BSS-2) system requires a translation from
a user-defined neural network experiment to a corresponding
hardware configuration. BSS-2 operates in continuous time and
does not support pausing or resuming of model dynamics.
The algorithmic problem statement is global for the user-
defined experiment. Therefore, the complexity of the translation
process cannot be reduced by partitioning the problem. Many
neuromorphic systems have been providing software solutions
to solve this problem and enable higher-level experiment
descriptions. We developed a software stack for the wafer-
scale BrainScaleS-1 (BSS-1) system covering the translation of
user-defined experiments from the PyNN high-level domain-
specific description language to a hardware configuration (Miiller
et al., 2020b). While the BSS-2 neuromorphic architecture hasn’t
been scaled to full wafer size yet, other feature additions such
as structured and non-linear neuron models as well as single
instruction, multiple data (SIMD) processors make BSS-2 an
appealing substrate for modeling of smaller network sizes. In
particular, a new challenge is posed by the introduction of
SIMD processors in BSS-2 as programmable elements with real-
time vectorized access to many observables from the physical
modeling substrate. Observables such as correlation sensors
are implemented in the synapse circuits, yielding an immense
computational power by offloading computational tasks into the
analog substrate. Moreover, the configuration space increases
significantly: in addition to a static configuration of network
topology, the processors allow for flexible handling of dynamic
aspects such as structural plasticity, homeostatic behavior,
and virtual environments enabling robotic or other closed-
loop applications. This “hybrid” approach requires modeling
support in the software stack integrating code generation
for the processors as well as mechanisms to parameterize
plasticity algorithms and other code parts running on the
embedded processors.

We present recent modeling advances on the substrate
showcasing new features of the system: complex neurons
(section 3.1), neuro-inspired machine-learning experiments
(section 3.2), closed-loop sensor-motor interaction (section 3.3)
and non-spiking operation (section 3.4). We demonstrate
network-attached accelerator operation as well as standalone

operation. We argue that for successful and sustainable advances
in the usage of neuromorphic systems a deep integration between
hardware and software is crucial on all layers. The complete
system—software together with hardware—needs to be explicitly
designed to support access with varying abstraction levels: high-
level modelers, expert users and component developers possess
different perceptions of the system; in order for a modeling
substrate to be successful, it has to deliver on all of these aspects.

1.1. The BrainScaleS-2 Hardware

In this section, we introduce the BSS-2 system and highlight the
basic hardware design which is guiding the development of the
accompanying software stack. For a more in depth description
of the hardware aspects of the BSS-2 system refer to Aamir et al.
(2018), Schemmel et al. (2020), and Pehle et al. (2022).

BrainScaleS is a family of mixed-signal neuromorphic
accelerators; analog circuits emulate neuron as well as synapse
dynamics in continuous time, while communication of spike
events and configuration data is handled in the digital domain.
In this paper we focus on the single chip BSS-2 system with
512 neurons and 131.072 synapses circuits (see Figure 1A). Due
to the intrinsic properties of the silicon substrate, the physical
emulation of neuron dynamics is 1.000 faster than in biological
real time. Currently, the BSS-2 ASIC is integrated in a stationary
laboratory setup (Figure 1C), as well as in a portable system
(Figure 1B).

The high configurability of the BSS-2 system facilitates many
different applications (see Section 3). For example, the neuron
circuits replicate the dynamics of the adaptive exponential
integrate-and-fire (AdEx) neuron model (Brette and Gerstner,
2005) and are individually configurable by a number of analog
and digital parameters. By connecting several neuron circuits
together to form one logical neuron, more complex multi-
compartmental neuron models can be formed and the synaptic
fan-in of individual neurons can be increased; a single neuron
circuit on its own has access to 256 synapses (Figure 1D).
In addition to the emulation of biologically plausible neural
networks, BSS-2 also supports non-spiking artificial neural
networks (ANNs). This is facilitated by disabling spiking as
well as the exponential, the adaptive and the leak current
of the AdEx neuron model, turning the neuron circuits into
simple integrators. Furthermore, the high configurability allows
countering device-specific deviations between analog circuits
which result from imperfections during the manufacturing
process (see Section 2.3.6).

The digital handling of spike events enables the
implementation of various network topologies. All spikes,
including external spikes as well as spikes generated in the
neuron circuits, are collected in the “event handling” block
and subsequently routed oft chip for recording or via the
synapse drivers and synapses to post-synaptic on-chip partners
(cf. Figure 1D). One of the key challenges during experiment
setup is the translation of neural networks to valid hardware
configurations. This includes assigning specific neuron circuits
to the different neurons in the network as well as routing events
between neurons (cf. Sections 2.3.2, 2.3.3).
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FIGURE 1 | Overview of the BSS-2 system. (A) BSS-2 ASIC bonded to a carrier board. The ASIC is organized in two hemispheres each hosting 256 neurons and the
accompanying synapse matrix (cf. D). (B) Portable BSS-2 system. (C) Laboratory setup. (D) Overview over the signal flow in the BSS-2 system. The depicted analog
neural network core and SIMD processor represent one of the two hemispheres visible in (A), which are mirrored vertically below the neurons.

Apart from forwarding spikes, the synapse circuits are also
equipped with analog correlation sensors which measure the
causal and anti-causal correlation between pre- and post-synaptic
spikes. The measured correlation can be accessed by two
columnar ADCs (CADCs), which measure correlations row-wise
in parallel and can be used in the formulation of plasticity rules
(cf. Sections 3.2, 3.3). An additional analog-to-digital converter
(ADC), the so-called membrane ADC (MADC), offers the
possibility to record single neurons with a higher temporal and
value resolution.

Aside the analog neural network core, two embedded SIMD
processors, based on the Power™ architecture (PowerISA,
2010), which allow for arbitrary calculations and reconfigurations
of the BSS-2 ASIC during hardware runtime and are the
experiment master in standalone operation. They are equipped
with 16 KiB static random-access memory (SRAM) memory each
and feature a weakly-coupled vector unit (VU), which can access
the hemisphere-local synapse matrix as well as the CADC.

Communication to the BSS-2 ASIC as well as real-time
runtime control is handled by a field-programmable gate array
(FPGA). It provides memory buffers for data received from
a host computer or from the chip, with which it orchestrates
experiment executions in real time (see Section 2.1). To allow
for more complex programs and larger data storage, the on-chip
processors can access memory connected to the FPGA.

The software stack covered in this paper handles all the
necessary steps to turn high-level experiment descriptions into
configuration data, spike stimuli or programs for the on-chip
SIMD processor.

In the following we will at first describe the BSS-2 Operating
System (BSS-2 OS) in Section 2, before showcasing several

applications in Section 3. We conclude the paper with a
discussion in Section 4.

2. BRAINSCALES-2 OPERATING SYSTEM

This section introduces key concepts and software components
that are essential for the operation of BrainScaleS-2 systems.
First, we introduce the workflow of experiments incorporating
BSS-2, derive an execution model and specify common modes
of operation in Section 2.1. Continuing, we give a structural
overview of the complete software stack including the foundation
developed in Miiller et al. (2020a) in Section 2.2. Following this,
we motivate key design decisions and show their incorporation
into the development of the software stack in Section 2,3. Finally,
we describe advancements in platform operation toward seamless
integration of BSS-2 as an accelerator resource in multi-site
compute environments in Section 2.4.

Higher abstraction layers scale down the level of required
hardware detail knowledge. Naturally, such abstractions impose
constraints on and reduce the flexibility of system usage
introducing tradeoffs. Therefore, there are tradeoffs between
abstraction level and the flexibility to exploit system capabilities.
In the following, we explain existing tradeofs at their occurrence.

2.1. Experiment Workflow

Unlike numerical simulations, which are orchestrated as number-
crunching on traditional computers, experiments on BSS-2 are
more akin to physical experiments in a traditional lab. Just like
for these there is an initialization phase, which ensures the correct
configuration of the system for this particular experiment and a
real-time section, where the network dynamics are recorded and
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FIGURE 2 | Time evolution of a single execution instance. The initialization is
followed by possibly multiple real-time executions with input spike-trains
represented by vertical lines.

the actual emulation happens. If multiple emulations share (parts
of) the configuration, those experiments can be composited
by concatenating the trigger commands for both input and
recording (see Figure 2).

The fundamental physical nature of the emulation on BSS-2
requires these control commands to be issued with very high
temporal precision as the dynamics of the on-chip circuitry can
neither be interrupted nor exactly repeated. To achieve this,
the accompanying FPGA is used to play-back a sequence of
instructions with clock-precise timing, in the order of 10 ns. In
order to limit the FPGA firmware complexity, the play-back unit
is restricted to sequential execution, which includes blocking
instructions (used for times without explicit interaction), but
excludes branching instructions. Concurrently to the FPGA-
based instruction sequence execution, the embedded single
instruction, multiple data central processing units (SIMD CPUs)
can be configured to perform readout of observables and
arbitrary alterations to the hardware configuration. This means
that conditional decisions, e.g., the issuance of rewards, can
be performed either via the SIMD CPU if they are not
computationally too complex or via synchronization with the
executing host computer which in the current setup has no
guaranteed timing.

The initialization phase typically includes time-consuming
write operations to provide an initial state of the complete
hardware configuration. This is due to both, the amount
of data to be transmitted, e.g., for the synapse matrix, and
required settling-time for the analog parameters. Since this
can take macroscopic amounts of time, at least around
100 us due to round-trip latency, around 100ms for a
complete reconfiguration, back-to-back concatenation of real-
time executions is needed to keep their timeshare high and
therefor the configuration overhead low.

Due to the hardware’s analog speed-up factor compared to
typical biological processes, a single real-time section can be short
compared to the initialization phase. Therefore, we concatenate
multiple real-time sections after a single initialization phase to
increase the real-time executions’ timeshare. In the following,
this composition is called execution instance and is depicted in
Figure 2.

Alternatively, instead of this asynchronous high-throughput
operation, the low minimal latency allows for fast iterative
workflows with partial reconfiguration, e.g., iterative
reconfiguration of a small set of synaptic weights.

Based on this we differentiate between three modes of
operation. First, in batch-like operation one or multiple

execution instances are predefined and run on hardware. Second,
in the so-called hardware in-the-loop case hardware runs are
executed iteratively where the results of previous runs determine
the parameters of successive runs. Last, in closed-loop operation
is characterized by tightly coupling the network dynamics of the
analog substrate to the experiment controller, either the SIMD
CPU or the control host.

2.2, Software Stack Overview

Structuring software into well-defined layers is vital for keeping
it maintainable and extendable. The layers are introduced and
implemented via a bottom-up approach matching the order of
requirements in the current stage of the hardware development
and commissioning process. This means, that first raw data
exchange and transport from and to the hardware via the
communication layer is established. Subsequently, the hardware
abstraction layer implements translation of typed configuration,
e.g., enabling a neuron’s event output, to and from this raw data.
On this level, the calibration layer allows to programmatically
configure the analog hardware to a desired working point.
Then, hardware-intrinsic relations between configurables and
their interplay in experiments (cf. Section 2.1), is encapsulated
in a graph structure. Lastly, automated generation of hardware
configuration from an abstract network specification enables
embedding into modeling frameworks for high-level usage.

Figure 3 gives a graphical overview of this software architecture!.

2.2.1. Communication

From the software point of view, the first step to utilize
hardware systems is the ability to exchange data. With proper
abstraction the underlying transport protocol and technology
are interchangeable. Communication is therefore structured
into a common connection interface hxcomm? that supports
various back-ends.

For most hardware setups, we use a custom, reliable regarding
data integrity, transport protocol on top of the user datagram
protocol (UDP), Host-ARQ provided by sctrltp. Additionally, we
support connection to hardware design simulations via flange®,
compare Section 3.6 for both the use during debugging of current
and unit testing of future chip generations. Multi-site workflows
are transparently enabled already at this level via the micro
scheduler quiggeldy®.

2.2.2. Hardware Abstraction

A major aspect of any system configuration software is hardware
abstraction, which encapsulates knowledge about the raw bit
configuration, e.g., that bit i at address j corresponds to enabling
neuron ks event output. It therefore decouples hardware usage
and detailed knowledge about its memory layout, which is an
important step toward providing hardware access beyond the
group of developers of the hardware. Responsibility of this layer

YAll the repositories mentioned in the following are available at https:/github.
com/electronicvisions under the GNU Lesser General Public License v2/v3.
2hxcomm is available at https://github.com/electronicvisions/hxcomm.

3sctrltp is available at https://github.com/electronicvisions/sctrltp.

“flange is available at https://github.com/electronicvisions/flange.

Squiggeldy is available at https://github.com/electronicvisions/hxcomm.
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FIGURE 3 | Overview of the BSS-2 software architecture and its applications. Left side: Colored boxes in the background represent the separation of the software
into different concerns. White boxes represent individual software APIs or libraries with their specific repositories names and dependencies. Right side: Various
applications concerning different system aspects. The arrows represent dependencies in the stack, where the dependent points to its dependencies. For embedded

operation additional dependencies on libnux are needed (dashed arrows).

can be compared to device drivers. The layers provide an abstract
software representation of various hardware components, such as
synaptic weights on the chip or values of supply voltages on the
periphery board, as well as their control flow.

Within this category the lowest layer is fisch® (FPGA
Instruction Set arCHitecture), the abstraction of FPGA
instructions. Combined with communication software this is
already suflicient to provide an interface for prototyping in early
stages of system development, i.e., the possibility to manually
read and write words at memory locations. With knowledge of
the hardware’s memory layout this allows specifying addresses
and word values directly, e.g., bit i (and all other bits in this word
with possibly unrelated effects) at address j which then enables
the neuron k’s event output.

The heterogeneous set of entities on the hardware as well
as their memory layout is arranged via geometric pattern and
contain symmetries, e.g., a row of neurons or a matrix of
synapses. An intuitive structure of this fragmented address
space is provided by the coordinate layer halco’. It represents
hardware components by custom ranged types that can be
converted to other corresponding coordinate types, e.g., a

Sfisch is available at https://github.com/electronicvisions/fisch.
7 halco is available at https://github.com/electronicvisions/halco.

SynapseOnSynapseRowas a ranged integer i € [0, 256), that
allows conversion to a neuron column (see Miiller et al., 2020a).

A software representation of the configuration space
of hardware components is implemented by the container
layer haldls®. For example a NeuronConfi g contains a
boolean parameter for enabling the spike output. These
configuration containers are translatable (e.g., a neuron
container represents one, but not a specific one, of the
neurons) and also define methods for de- and encoding
between their abstract representation and the on-hardware
data format given a location via a supplied coordinate. A
logical function- instead of a hardware subsystem-centered
container collection is implemented by the lola® layer. For
example the At omi cNeur on collects the analog and digital
configuration of a single neuron circuit, which is scattered over
two digital configurations and a set of elements in the analog
parameter array.

The runtime control layer stadls'® provides an interface to
describe timed sequences of read and write instructions of pairs
of coordinates and containers, e.g., changing the synaptic weight
of synapse i,j at time f, as well as event-like response data,

8haldls is available at https://github.com/electronicvisions/haldls.
°lola is available at https://github.com/electronicvisions/haldls.
stadls is available at https://github.com/electronicvisions/haldls.
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e.g., spikes or ADC samples. These timed sequences, also called
playback programs, can then be loaded to and executed on the
FPGA which records the response data. Afterwards, the recorded
data is transferred-back to the host computer.

We track the constitution of all hardware setups in a database,
hwdb'!. Tt is used for compatibility checks between hardware
and software as well as for the automated selection of stored
calibration data. We also use it to provide the resource scheduling
service with information about all available hardware systems.

This set of layers is feature-complete to formulate arbitrary
hardware-compatible experiments and was used as basis
for experiments in Schemmel et al. (2020), Goltz et al
(2021), Klassert et al. (2021), Czischek et al. (2022), and
Cramer et al. (2022).

2.2.3. Embedded Runtime

In addition to the controlling host system, the two SIMD CPUs
on the BSS-2 ASIC require integration into the BSS-2 OS. To
enable users to efficiently formulate their programs, we provide a
development environment based on C++. It specifically consists
of a cross-compilation toolchain based on gcc (GNU Project,
2018) that has been adapted to the custom SIMD extensions
of the integrated microprocessors (Miiller et al., 2020a). More
abstract functionality is encapsulated in the support library
libnux'?, which provides various auxiliary functionality for
experiment design. Moreover, the hardware abstraction layer of
the BSS-2 OS (cf. Section 2.2.2) supports the SIMD CPUs as an
additional cross-compiled target for configuration containers as
well as coordinates.

2.2.4. Calibration

In order to tune all the analog hardware parameters to the
requirements given by an experiment, we provide a calibration
framework, calix!®. For example, an experiment might require
a certain set of synaptic time constants for which analog
parameters are to be configured while counteracting circuit
inequalities. In Section 2.3.6, this layer’s design is explained in
detail. The Pyt hon module supplies a multitude of algorithms
and calibrations for each relevant component of the circuitry: A
calibration provides a small experiment based on the hardware
abstraction layer (see Section 2.2.2), which is executed on the chip
for characterization. An iterative algorithm then decides how
configuration parameters should be changed in order to match
the measured data with given expectations.

The user-interfacing part provides functions that take a
set of target parameters and return a serializable calibration
result that can be injected to experiment toplevels (cf. Section
2.2.6). Additionally, we have the option to calibrate the analog
circuits locally on chip, using the embedded processors. Aside of
enabling arbitrary user-defined calibrations, we provide default
calibrations for spiking operation (cf. for example Sections 3.1,
3.2), and non-spiking matrix-vector multiplication (cf. Section

"hwdb is available at https://github.com/electronicvisions/hwdb.
2Jibnux is available at https://github.com/electronicvisions/libnux.
Bcalix is available at https://github.com/electronicvisions/calix.

3.4) for convenient entry. They are generated nightly via
continuous deployment (CD).

2.2.5. Experiment Description

With rising experiment and network topology complexity,
a coherent description ensuring topology and data-flow
correctness becomes beneficial. Therefore, a signal-flow
graph is defined representing the hardware configuration and
experiment flow. Compilation and subsequent execution via the
hardware abstraction layer (cf. Section 2.2.2), of this graph in
conjunction with supplied data, e.g., spike events, then forms
an experiment execution. The applied execution model follows
the experiment workflow described in Section 2.1. It, therefore,
restricts flexibility to enable network-topology-based experiment
descriptions and the separation of data-flow description
and data.

While this aids in construction of complex experiments,
detailed knowledge of configuration and its interplay is still
required. Solving this, a high-level abstract representation of
neural network topology building on top of the signal-flow
graph description is developed. An automated translation from
this high-level abstraction to a valid hardware configuration is
handled by a place-and-route algorithm. This enables hardware
usage without detailed knowledge of event routing capabilities
and interplay of configuration. While relieving users from
providing a valid hardware configuration, this automatism
requires tradeoffs to be made between the computational
complexity of the algorithms and the size of the explored
configuration space to find a matching hardware configuration
for a given abstract network representation.

This layer is contained in grenade'®, short for GRaph-based
Experiment Notation And Data-flow Execution. Its design is
explained in detail in Section 2.3.2.

2.2.6. Modeling Wrapper

Various back-end-agnostic modeling languages emerged to
provide access to various simulators or neuromorphic hardware
systems to a wide range of researchers. The BSS-2 software
stack comprises wrappers to two of such modeling frameworks:
PyNN (Davison et al, 2009) via pyNN.brainscales2'> and
PyTorch (Paszke et al., 2019) via hxtorch'® (Spilger et al., 2020).
Their goal is to provide a common user interface and to embed
different back-ends into an existing software ecosystem. This
allows users to benefit from a consistent and prevalent interface
and integration into their established work-flow. The design of
these layers’ integration with BSS-2 is explained in detail in
Section 2.3.4 for PyNN and in Section 2.3.5 for PyTorch.

2.3. Software Design

We base the full-stack software design on the principles laid
out in Miller et al. (2020a). We use C++ as the core language
to ensure high performance and make use of its compile-
time expression evaluation and template metaprogramming

grenade is available at https://github.com/electronicvisions/grenade.
15pyNN.brainscales2 is  available at https://github.com/electronicvisions/
pynn-brainscales.

1®hxtorch is available at https://github.com/electronicvisions/hxtorch.
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capabilities. Due to the heterogeneous hardware architecture we
employ type safety for logical correctness and compile-time error
detection. Serialization support of configuration and control flow
enables multi-site workflows as well as archiving of experiments.

In the following, we show enhancements of the hardware
abstraction layer (see Section 2.2.2), introduced in Miiller et al.
(2020a) as well as design decisions for the full software stack with
high-level user interfaces. First, support for multiple hardware
revisions is shown in (Section 2.3.1). Then, the signal-flow graph-
based experiment notation is derived in Section 2.3.2. Following,
an abstract network description explained in Section 2.3.3 closes
the gap to the modeling wrappers in PyNN (cf. Section 2.3.4) and
PyTorch (cf. Section 2.3.5). Closing, the calibration framework is
described in Section 2.3.6.

2.3.1. Multi-Revision Hardware Support

As platform development progresses, new hardware revisions
require software support. This holds true for both, the ASIC
and the surrounding support hardware like the FPGA and
system printed circuit boards (PCBs). Additionally, the platform
constitution evolves, e.g., by introduction of a mobile system
with still one chip but different support hardware or a multi-
chip setup.

After a potential development of a second revision, a
heterogeneous set of hardware setups may co-exist. For one
generation of chips, it is typically possible to combine different
revisions with different surrounding hardware configurations,
leading to a number of combinations given by the Cartesian
product N = Masic X Mplatform; X *** X Mbplatformp> Where
Mplatform; is the number of configurations for a given part of
the platform, e.g., the FPGA and Mjugic is the revision of the
BSS-2 ASIC.

We provide simultaneous software support by dependency
separation and extraction of common code for each affected
component across all affected software layers. This way, code
duplication is minimized, maintainability of common features
is ensured and divergence of software support is prevented.
Moreover, phasing-out or retiring hardware revisions is possible
without effecting the software infrastructure of other revisions.
The to be implemented software reduces to N’ = Masic +
Mbplatform, + * - - + Mplatformp cOnstituents, the combinations are
rolled-out automatically. We use C++ namespaces for separation
and C++ templates for common code, which depends on the
individual platform’s constituents.

2.3.2. Signal-Flow Graph-Based Experiment Notation
As stated in Section 2.2.2, the hardware abstraction developed
in Miller et al. (2020a) is already feature-complete to
formulate arbitrary hardware-compatible experiments. However,
it lacks a representation of intrinsic relations between different
configurable entities. For example, the hard-wired connections
between synapse drivers and synapse rows are not represented in
their respective configuration but only given implicitly.

Neural networks are predominantly described as graphs. For
spiking neural networks single neurons or collections thereof and
their connectivity form a graph (Goddard et al., 2001; Gewaltig
and Diesmann, 2007; Davison et al., 2009). In machine-learning,
the two major frameworks PyTorch (Paszke et al, 2019) and

Tensorflow (Abadi et al., 2016) use a graph-based representation
of tensor computation or are moving into this direction
(PyTorchs JIT intermediate representation Facebook Inc., 2021a
and XLA back end Facebook Inc., 2021b; Suhan et al., 2021).

Inspired by this, we implement a signal-flow graph-based
experiment abstraction. A signal-flow graph (Mason, 1953) is
a directed graph, where vertices receive signals from their
in-neighborhood, perform some operation, and transmit an
output signal to their out-neighborhood. We integrate this
representation at the lowest possible level to fully incorporate all
hardware features without premature abstraction.

For BSS-2, the graph-based abstraction is applied at two
granularities (see Figure4). First, the initial static network
configuration as well as virtualized computation using the
on-chip embedded processors is abstracted as a signal-flow
graph. Second, data-flow between multiple individual real-time
experiments distributed over chips and time are described as
a graph.

The signal-flow graph representation vyields multiple
advantages. Type safety in the graph constituents facilitates
experiment correctness regarding on-chip connectivity and
helps to avoid inherently dysfunctional experiments already
during specification. Debugging benefits from visualization
of the graph representation, which directly contains implicit
on-chip connectivity. Finally, the signal-flow graph is the ideal
source of relationship information for on-chip entity allocation
optimization or merging of digital operations.

However, the actual signals are not part of the signal-flow
graph representation. They are either provided separately (e.g.,
external events serving as input), will only be present locally
upon execution (e.g., synaptic current pulses) or will be generated
by execution (e.g., recorded external events). We implement the
experiment workflow described in Section 2.1 consisting of an
initial static configuration followed by a collection (batch) of time
evolutions (see Figure 2).

The signal-flow graph is a recipe for compilation toward
the lower-level hardware abstraction layer (cf. Miiller et al,
2020a), and eventual execution. The specific implementation
of the compilation and execution process is separate from the
graph representation in order to allow extensibility and multiple
solutions for different requirement profiles. Here, we present a
just-in-time (JIT) execution implementation. It supports both,
spiking and non-spiking experiments. For every execution
instance, the local subgraph is compiled into a sequence of
instructions, executed and its results processed in order for
them to serve as inputs for the out-neighborhood. While it is
feature-complete for the graph representation, it introduces
close coupling between the execution on the neuromorphic
hardware and the controlling host computer. Host-based
compilation can be performed concurrently to hardware
execution, increasing parallelism. Figure 5 shows concurrent
execution of multiple execution instances (Figure 5A)
and the compilation and execution of a single execution
instance (Figure 5B).

2.3.3. Abstract Network Description
The signal-flow graph-based notation from Section 2.3.2 eases
creation of correct experiments while minimizing implicit
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FIGURE 4 | Signal-flow graph-based experiment abstraction on BSS-2. (A) Placed feed-forward network represented as signal-flow graph. (Left) Abstract network;
(Middle) Actual layout on the chip, the arrows represent the graph edges; (Right) The network graph structure enlarged with signal type annotation on the edges. The
color links the same entities in the middle (chip schematic) and right subfigure (vertical data-flow graph). (B) Non-spiking network distributed over two physical chips,
adapted from Spilger et al. (2020). The result of two matrix multiplications on chips 1 and 2 is added on chip 1. The latter execution instance depends on the output of
the two former instances.
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FIGURE 5 | JIT compilation and execution of signal-flow graph of multiple execution instances and within a single execution instance. (A) JIT execution of a graph on
two physical chips, adapted from Spilger et al. (2020). Left: Execution instance 3 is to be executed on another physical chip than the other execution instances. Right:
The execution of instance 3, depicted in gray, can be performed concurrently to execution instance 1. (B) JIT compilation and execution of a single execution instance
subgraph. First, the static configuration is extracted by a vertex visit and transformed to hardware configuration where applicable. Then, the real-time execution is built
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by a vertex visit. This built program is executed on the neuromorphic hardware and results are transmitted back to the host computer. Finally, delayed digital
operations, which require output data from the execution, are performed on the host computer.

knowledge. However, knowledge of hardware routing capabilities
is still required to create a graph-based representation of the
hardware configuration which performs as expected. This should
not be required to formulate high-level experiments. To close this
gap, an abstract representation similar to PyNN (Davison et al.,
2009), consisting of populations as collections of neurons and
projections as collections of synapses, is developed. Given this
description, an algorithm finds an event routing configuration
to fulfill the abstract requirements and generates a concrete
hardware configuration. This step is called routing. Figure 6
visualizes an abstract network description and one corresponding
hardware configuration.

2.3.4. Integration of PyNN
When it comes to modeling spiking neural networks, a
widely used API is PyNN (Davison et al, 2009). It is

supported by various neural simulators like NEST (Gewaltig
and Diesmann, 2007), NEURON (Hines and Carnevale, 2003),
and Brian (Stimberg et al., 2019), as well as by neuromorphic
hardware platforms like SpiNNaker (Rhodes et al., 2018) or the
predecessor hardware of BSS-2: BSS-1 (Miiller et al., 2020b)
and Spikey (Briiderle et al., 2009). With the aim of easy access
to BSS-2, we expose its hardware configuration via the PyNN
interface. The module pyNN. br ai nscal es2 implements the
PyNN-API for BSS-2. It offers a custom cell type, HXNeur on,
which corresponds to a physical neuron circuit on the hardware
and replicates the | ol a. At om cNeur on from the hardware
abstraction layer, see section 2.2.2. This allows to set parameters
directly in the hardware domain and gives expert users the
possibility to precisely control the hardware configuration while
at the same time take advantage of high-level features such as
neuron populations and projections. Figure 7 illustrates how
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populations A and B are located in the neuron row, compare Figure 1D.
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FIGURE 6 | Abstract network notation. Population A consisting of five neurons is connected to population B consisting of four neurons via projection AB. (Left)
Abstract network. (Right) Placed and routed on the hardware, where the projection AB consists of synapses in the two-dimensional synapse matrix and the

neuron = lola.AtomicNeuron ()
neuron. leak.v_leak = 650
neuron.leak.i_bias = 420

pynn.Population(l, pynn.HXNeuron ({
"leak_v_leak": 650,
"leak_ i_bias": 420,

neuron. leak.enable_division = True "leak_enable_division": True}))

FIGURE 7 | Comparison between | ol a. At omi cNeur on and pynn. HXNeur on.
these parameters are available in the corresponding interfaces. An
additional neuron type supporting the translation from neuron 1000 script 1,25 (25%)
model parameters in SI units is currently in the planning. EE pyNN 0.3s (6%) ﬂ
Otherwise, the PyNN program looks the same as for any other 800 = ﬁ;i';fi:sszggg) i ‘U
back end. Since the PyNN-API is free from hardware placement W fisch 0.4s (9%)
specifications, they are algorithmically determined by mapping AA 1
and routing in grenade (cf. Section 2.3.3). This step is performed 600 i |/

automatically upon invocation of pynn. r un() , so that the user
is not required to have any particular knowledge about event
routing on the hardware. Nevertheless, the interface allows that
an experimenter can adjust any low-level configuration aside
from neuron parameters and synaptic weights.

To exploit the full potential of the accelerated hardware the
software implementation’s overhead shall be minimal. Figure 8
presents runtime and memory consumption analysis of the whole
PyNN-based stack for a high spike count benchmark experiment.
12 neurons are excited by a regular spike train with 1 MHz
frequency and their activity is recorded for one second. These
settings are chosen as they roughly equate to the maximum
recording rate without loss.

The initial overhead of importing Pyt hon libraries and
setting up the PyNN environment only needs to be performed
once for every experiment and is independent of the network
topology itself. Run time on hardware is about 1.5s of
which roughly 125ms are initial configuration and 278 ms
are transmission of the input spike train. Post-processing the
1.2 x 107 received spikes (fisch and grenade) takes about 1.9,
i.e., in the same order of magnitude as the actual hardware run.
Peak memory consumption is reached during post-processing of
results obtained after the hardware execution which corresponds
to roughly three times the minimum memory footprint of the
recorded spike train. With this the stack is well suited to also

memory [MiB]

400

200

runtime [s]

FIGURE 8 | Run time analysis of a PyNN-based experiment with large spike
count. Population of 12 neurons is excited by a regular spike train with
frequency of 1 MHz. The network is emulated for 1's on hardware resulting in
1.2 x 107 spike events. The black line represents memory consumption during
execution. Horizontal bars represent time consumption in software layers. The
annotations in the legend present the individual run time of steps and
percentage of the overall run time.

handle experiments with high spike count without introducing
a bottleneck.

2.3.5. Integration Into PyTorch
To enable access to BSS-2 for machine learning applications, we
develop a thin wrapper layer to the PyTorch-API. This extension
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is called hxtorch and was introduced in Spilger et al. (2020)
for non-spiking hardware operation emulating analog multiply-
accumulate operations and compositions thereof. There, we
build on top of the same signal-flow graph experiment
description as for the spiking mode of operation (cf. Section
2.3.2). Operations are mapped to the hardware size by using
temporal serialization and physical concurrency. The PyTorch
extension enhances this by automatic gradient calculation
for training. Same as PyTorch, we implement a functional
API in C++ wrapped to Pyt hon (e.g. hxtorch. mat nul
comparable to t or ch. mat mul ) and add modules/layers on
top in Pyt hon (e.g., hxt orch. nn. Li near comparable to
t or ch. nn. Li near ). In contrast, our operations are quantized
to the hardware-intrinsic digital resolution (5bit unsigned
activations, 6 bit weights plus sign bit and 8 bit signed results).
Execution on the hardware is performed individually for each
operation using the JIT execution (see Section 2.3.2).

2.3.6. Calibration Framework

On BSS-2, there are a multitude of voltages and currents
controlling analog circuit behavior. While some of them can be
set to default values, most of them require calibration in order
to match experiment-specific target values and to counteract
device-specific mismatch. Fundamentally, the calibration can
be executed on a host computer or locally on chip, using the
embedded processors. We provide the Pyt hon module calix to
handle all aspects of the calibration process.

Model parameters are calibrated by iteratively adjusting
relevant parts of the hardware configuration. As an example,
the membrane time constant is controlled by a bias current: In
order to calibrate the membrane time constant of all neurons,
the neurons’ membrane potentials are recorded while they decay
back to their resting potential after an initial perturbation from
the resting state. We can perform an exponential fit to the
recorded voltage trace to determine the time constant and
iteratively tweak the bias current to reach the desired target.

The calibration routine of each parameter is encapsulated
using an object-oriented API providing a common interface.
Mainly, two methods allow the iterative parameter search: one
applies a parameter configuration to the hardware, while the
other evaluates an observable to determine circuit behavior.
An algorithm calculates parameter updates during the iterative
search. In each step, the measurement from the calibration
class is compared to the target value and the parameter set is
modified accordingly.

A functional API is provided for commonly used sets
of calibrations, for example for calibration of a spiking
leaky-integrate and fire (LIF) neuron. Technical parameters
and multidimensional dependencies are handled automatically
as required in this case. This yields a simple interface
for experimenters for tweaking high-level parameters, while
calibration routines for individual parameters remain accessible
for expert users.

The higher-level calibration functions save their results in
a typed data structure, which contains the related analog
parameters and digital control bits. Further, success flags indicate
whether the calibration targets were reached within the available

parameter ranges. These result structures can either directly be
applied to a hardware setup or serialized to disk. Application
of serialized calibration is beneficial compared to repeating the
calibration in experiments due to decreased required time and
improved digital reproducibility.

Running the calibration on a host computer using Pyt hon
allows for great flexibility in terms of gathering observations from
the chip. We can utilize all observables, including a fast ADC,
which allows performing fits to measured data—as sketched
previously for the calibration of the membrane time constant.
While this direct measurement should yield the most accurate
results, fitting to a trace for each neuron takes a lot of time.
Performing a full LIF neuron calibration takes a few minutes
via the Pyt hon module. And importantly, when scaling this
approach to many chips, we need to scale the host computing
power accordingly.

In order to achieve better scalability, we can control the
calibration from the embedded processors, directly on chip,
removing the host computer from the loop. However, this
approach limits the observables to those easily accessible to the
embedded processor, the CADC and spike counters — performing
a fit to an MADC trace using the embedded processors would
consume lots of runtime and potentially counteract benefits
of scaling. As a result, some calibrations have to rely on an
indirect measurement of their observable. Again using the
neurons membrane time constant as an example, we can
consider the spike rate in a leak-over-threshold setup. However,
this introduces a dependency on multiple potentials being
calibrated beforehand.

Apart from the need for indirect measurements, on-chip and
host-based calibration work similarly: An iterative algorithm
selects parameters, we configure them on chip and characterize
their effects. Using the embedded processors for configuring
parameters and acquiring data from the two on-chip readouts is
fully supported and naturally faster than fetching them from a
host computer. We use the SIMD CPUs’ vector units for parallel
access to the synapse array and columnar ADCs. This is enabled
by cross-compiler-support (cf. Section 3.3), by which both the
scalar unit and vector unit are integrated and accessible from the
C++ language.

We provide routines for on-chip calibration, which allow
all LIF neuron parameters to be calibrated in approximately
half a minute, with this number staying constant even when
considering large systems comprising many individual chips.
Similar to the host-based calibration API, calix exposes these on-
chip routines as conveniently parameterized functions that can
be called within any experiment. Their runtime is mostly limited
by waiting for configured analog parameters to stabilize before
evaluating the effects on the circuits.

2.4. Platform Operation

Over the past decade neuromorphic systems evolved from
intricate lab setups toward back ends for the more comfortable
execution of spiking neural networks (Indiveri et al., 2011; Furber
et al., 2012; Benjamin et al., 2014; Davies et al., 2018; Pehle et al.,
2022). One major step along this development path is to provide
users with seamless access to the systems.
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Small scale prototype hardware is often connected to a single
host machine, e.g., via USB. This is also a common usage
mode for different neuromorphic hardware. To access these
devices, users have to have (interactive) access to the particular
machine the hardware is connected to. This limits the flexibility
of the user and is an operational burden as the combination of
neuromorphic hardware and host machine has to be maintained.
While this tightly coupled mode of operation is sufficient during
commissioning and initial experiments, it is not robust enough
for higher work-loads and flexible usage.

An improvement to the situation sketched above is using
a scheduler, e.g., SLURM (Yoo et al.,, 2003), where users can
request a resource, e.g., a specific hardware setup, and the jobs
get launched on the matching machine with locally attached
hardware. This is the typical mode of access also used for
other accelerator-type hardware, e.g., GPU clusters. However,
this batch driven way is not always ideal as it often requires
accounts on the local compute cluster and does not allow for
easy interactive usage. In addition, traditional compute load
schedulers optimize for throughput and not latency, therefore the
scheduling overhead can be significant especially for hardware
that is fast and experiments that are short. In the latter case, job
execution rates of the order of Hz and faster are required.

Another downside of using a traditional scheduler is that
hardware resources are not efficiently utilized when multiple
users want to use the same hardware resources at the same
time. Therefore, we developed the micro scheduler quiggeldy that
exposes access to the hardware directly via a network connection,
but still manages concurrent access from different users. It
decouples the hardware utilization from the user’s surrounding
computations such as experiment preparation, updates in
iterative workflows or result evaluation. For this to work runtime
control, configuration, input stimulus as well as output data
must be serializable which is facilitated via cereal (Grant and
Voorhies, 2017). The inter-process communication between the
user software and the micro scheduler is done with RCF (Delta V
Software, 2020). When a user requests multiple hardware runs,
it is checked whether certain already performed parts can be
omitted, e.g., resets or re-initializations. Experiment interleaving
between multiple users is also supported as the initialization state
is tracker for each user and is automatically applied when needed.

Having the correct software environment for using
neuromorphic hardware is also a major challenge. Nowadays,
software vendors often provide a container image that includes
the appropriate libraries. However, this approach does not
necessarily yield well specified and traceable dependencies, but
only a “working” black-box solution. We overcome this downside
by using the Spack (Gamblin et al., 2015) package manager with
a meta-package that explicitly tracks all software dependencies
and their version needed to run experiments on and develop for
the neuromorphic hardware. An automatically built container
embedding the Spack installation enables encapsulation and
eased distribution. This Spack meta-package is also used for the
EBRAINS’ JupyterLab service and will eventually be deployed
to all HPC sites involved in EBRAINS (EBRAINS, 2022). The
latter will facilitate multi-site workflows involving neuromorphic
hardware and traditional HPC.

3. APPLICATIONS

In this section, we show-case a range of applications of BSS-2.
Each application involves use of unique hardware features or
modes of operation and motivates parts of the software design.
First, we describe biological multi-compartmental modeling
in Section 3.1 concluding in the development of an API
for structural neurons. Continuing, functional modeling with
spiking neural network (SNN) is demonstrated for a pattern-
generation task in Section 3.2, which leads to embedding of
spiking BSS-2 usage into the machine learning framework
PyTorch and involves host-based training as well as local learning
on the SIMD CPUs. Then, embedded operation, where the SIMD
CPUs are the experiment orchestrator of BSS-2, is displayed
and their implications detailed in Section 3.3. Following, the
non-spiking mode of operation implementing ANNs and its
PyTorch interface is characterized in Section 3.4. Afterwards,
user adoption and platform access to BSS-2 is shown in Section
3.5. Finally, application of the software stack for hardware co-
simulation, co-design and verification is portrayed in Section 3.6.

3.1. Biological Modeling Example

BSS-2 aims to emulate biological inspired neuron models. Most
neurons are not simple point-like structures but possess intricate
dendritic structures. In recent years, the research interest in how
dendrites shape the output of neurons has increased (Major
et al,, 2013; Gidon et al., 2020; Poirazi and Papoutsi, 2020). As
a result, BSS-2 incorporates the possibility to emulate multi-
compartmental neuron models in addition to the AdEx point-
neuron model (Aamir et al., 2018; Kaiser et al., 2022).

In the following, we use a dendritic branch, which splits into
two sub-branches, to illustrate how multi-compartmental neuron
models are represented in our system (cf. Figure 9). At first, we
look at a simplified representation of the model (Figure 9A).
The main branch consists of two compartments, connected via a
resistance; at the second compartment, the branch splits in two
sub-branches, which themselves consist of two compartments
each. On hardware this model is replicated by connecting several
neuron circuits via switches and tunable resistors (cf. Figure 9B).
Each compartment consists of at least two neuron circuits,
directly connected via switches, compare colors in Figures 9A,B.
With the help of a dedicated line at the top of the neuron circuits
these compartments can then be connected via resistors to form
the multi-compartmental neuron model; for more details see
Kaiser et al. (2022).

In software, the Atom cNeuron class stores the
configuration of a single neuron circuit and therefore can
be used to configure the switches and resistors as desired. As
mentioned in Section 2.3.4, the HXNeur on exposes this data
structure to the high-level interface PyNN, allowing users to
construct multi-compartmental neuron models in a known
environment. However, it is cumbersome and error-prone
to set individual switches. As a consequence, we implement
a dictionary-like hierarchy on top of the At omi cNeur on,
called Logi cal Neuron in the logical abstraction layer
(cf. Section 2.2).
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FIGURE 9 | Pulse propagation along a dendrite which branches into two sub-branches. (A) Each branch is modeled by two compartments (rectangles). Different
compartments are connected via resistors (lines). (B) Hardware configuration: neuron circuits (squares) are arranged in two rows on BSS-2, compare Figure 1D.
Each compartment is represented by at least two neuron circuits. Circuits which form a single compartment are directly connected via switches (straight lines);
compartments are connected via resistors. For details see Kaiser et al. (2022). (C) Membrane responses to synaptic input: we inject synaptic input at four different
compartments; the compartment at which the input is injected is marked by a *. The membrane traces of the different compartments are arranged as in (A). For the
top left quadrant (i) the input is injected in the first compartment and decreases in amplitude while it travels along the chain. The response in both branches is
symmetric. A similar behavior can be observed when the input is injected in the second compartment, (ii). Due to the symmetry of the model, we only display
membrane responses for synaptic input to the upper branch. When injecting the input in the first compartment of the upper branch, (iii), the input causes a noticeable
depolarization within the same branch and the main branch but does not cause a strong response in the lower sister branch. All values are given in the hardware

domain.

We use a builder pattern approach to construct these logical
neurons: the user creates a neuron morphology by defining
which neuron circuits constitute a compartment and how these
compartments are connected. Upon finalization of the builder,
the correctness of the neuron model configuration is checked;
if the provided configuration is valid, a Logi cal Neur on is
created. This Logi cal Neur on stores the morphology of the
neuron as well as the configuration of each compartment.

The coordinate system of the BSS-2 software stack (cf. Section
2.2.2), allows to place the final logical neuron at different
locations on the chip (Miiller et al., 2020a). This is achieved by
saving the relation between the different neuron circuits defining
the morphology in relative coordinates. Once the neuron is
placed at a specific location on the chip, the relative coordinates
are translated to absolute coordinates.

Currently, the logical neuron is only exposed in the logical
abstraction layer. In future work, it will be integrated in the
PyNN API of the BSS-2 system. This will—for instance—allow
to easily define populations of multi-compartmental neurons and
connections between them.

3.2. Functional Modeling Example

The BSS-2 system enables energy efficient and fast SNN
implementations. Moreover, the system’s embedded SIMD CPU
enables highly parallelized on-chip learning with fast access to
observables and thus, promises to benefit the computational
neuroscience and machine learning community in terms of
speed and energy consumption. We demonstrate functional
modeling on the BSS-2 system with a pattern-generation task
using recurrent spiking neural networks (RSNNs) with an input
layer, a recurrent layer and a single readout neuron. The recurrent
layer consists of 70 LIF neurons {j} with membrane potential

v;, receiving spike trains xf from 30 input neurons {i}. Neurons

in the recurrent layer project spike events z]’? onto the single

leaky-integrate readout neuron with potential y'.

RSNNs are commonly trained using backpropagation through
time (BPTT) by introducing a variety of surrogate gradients
taking account of the discontinuity of spiking neurons (Shrestha
and Orchard, 2018; Zenke and Ganguli, 2018; Bellec et al., 2020).
However, as BPTT requires knowledge of all network states
along the time sequence in order to compute weight updates
(backwards locking), it is not just considered implausible from a
biological perspective, but also unfavorable for on-chip learning,
which effectively enables high scalability due to local learning.
Therefore, we utilize e-prop learning rules (Bellec et al., 2020),
where the gradient for BPTT is factorized into a temporal sum
over products of so-called learning signals L; and synapse-local
eligibility traces e}i. While the latter accumulates all contributions
to the gradient that can be computed forward in time, the
first depends on the networK’s error and still requires BPTT.
However, Bellec et al. (2020) provide suitable approximations for
L}, allowing computing the weight updates online (Figure 10A).
Such learning rules are favorable for the BSS-2 system, as the
SIMD CPU can compute the weight updates locally while the
network is emulated in parallel.

E-prop-inspired learning on the BSS-2 system is enabled by
adapting Bellec et al. (2020, Equation 28). Here we replace the
membrane potentials vj in e]t»i with the post-synaptic recurrent

spike train z]?,

G = R d) =8, A

Whh —HZLJ:K< i>’

(1)
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FIGURE 10 | (A) Computational graph of an RSNN for one time step. The contribution to the weight update is computed by merging learning signals L} with eligibility
traces e},. (B) Representation of the RSNN on the BSS-2 system using signed synapses. Inputs and recurrent spike trains are routed to the corresponding synapse
drivers via the crossbar. (C) s-prop training on hardware. The upper plot depicts the evolution of the MSE while training the BSS-2 system in-the-loop, where the
experiment is executed on BSS-2 and weight updates are computed on the host computer, in comparison to training with the network simulated in software,
incorporating basic hardware properties (Sim). In both cases the weights are optimized using the Adam optimizer (Kingma and Ba, 2014). The learned analog
membrane trace of the readout neuron after training BSS-2 for 1,000 epochs is exemplified in the lower plot, aligned to the spike trains z/’ of the first five out of 70
recurrent neurons. (D) NASProp simulations. The upper plot depicts the MSE over the update period P after training with Adam in comparison to a training with GD
and a training taking additional hardware properties (noise, weight saturation, etc.) into account (HW props). Optimization with pure GD mimics weight updates
computed by the SIMD CPU while on-chip learning. The lower plot shows the worst and best learned readout traces of the target pattern ensemble in simulation. (E)
Timing of NASProp weight updates. For each update n at t”, the correlation c/f,? are merged with the learning signals L]’7 by incorporating the membrane trace y".

where Fy is an exponential filter with decay constant x. The
update rule for input weights, derived in Bellec et al. (2020), is
adapted accordingly. The equation for output weights remains
untouched. With the readout neuron’s membrane trace y* and
an MSE loss measuring the error to a target trace y*!, the
learning signals are L; = tho (»* — »*"). Since this learning rule
propagates only spike-based information over time we refer to it
as s-prop.

Finally, we approach s-prop learning with BSS-2 in the loop
(cf. Section 2.1). For this, the network, represented by PyTorch
parameters WihPhho s mapped to a hardware representation
(see Figure 10B) via hxtorch (see Section 2.3.5), forwarding a
spike tensor on-chip. Inherently, grenade (see Section 2.3.2)
applies a routing algorithm, finds a graph-based experiment
description and executes it on hardware for a given time interval.
The routing algorithm allocates two adjacent hardware synapses
for one signed synapse weight in software, one excitatory and one
inhibitory. Further, grenade records the MADC-sampled readout
trace y* and the recurrent spike trains z’. Both observables are
returned as PyTorch tensors for weight optimization on the host
side. Experiment results are displayed in Figure 10C.

Implementing s-prop on-chip requires the SIMD CPU to
know and process explicit spike-times. As this comes with a
high computational cost, the correlation sensors are utilized to
emulate approximations of the spike-based eligibility traces é]’?i in
analog circuits, thereby freeing computational resources on the
SIMD CPU. The correlation sensors model the eligibility traces
under nearest-neighbor approximation (Friedmann et al., 2017)
and are accessed by the SIMD CPU as an entity cjrf», accumulated

over a period P. Hence, the time sequence is split into N chunks
of size P and weight updates on the SIMD CPU are performed at
times t* = nP + f,withn € N;N (cf. Figure 10E) and t € [0, P)
a random offset,

AW}Jh/hh =-n ZL;’.F,g (c}?/hh‘") and
n
AW = = Y (" =y T (4f), @
n
with & = exp (—P/w,) and g“j” being the recurrent spike count

in interval n. Due to the updates rules’ accumulative nature, we
refer to them as neuromorphic accumulative spike propagation
(NASProp). Simulations in Figure 10D verify that NASProp
endows RSNNs with the ability to solve the pattern-generation
task reasonable well.

NASProps SIMD CPU implementation effectively
demonstrates full on-chip learning on the BSS-2 system. In
high-level software, on-chip learning is implemented in a
PyTorch model, defined in hxtorch, holding parameters for
the network’s projections. Its forward method implicitly
executes the experiment on the BSS-2 system for a batch of input
sequences. Currently, this model learning on-chip serves as a
mere black box for the specific network at hand with a static
number of layers, as for on-chip spiking networks the network’s
topology needs to be known upon execution. Therefore, this
approach is considered a first step from common PyTorch
models to spiking on-chip models.
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As for in-the-loop learning, on forwarding a batch of inputs
sequences, grenade maps the software network to a hardware
representation with signed synapses and configures the chip
accordingly. Moreover, before executing a batch element, grenade
starts the plasticity kernel on the SIMD CPU, computing weight
updates in parallel to the network’s emulation. The plasticity rule
implementation relies on libnux (cf. Section 2.2.3) and utilizes the
VU extension for accessing hardware observables (e.g., cj’; and y")
and computing weight updates row-wise in parallel, thereby fully
exploiting the system’s speed up factor.

In hxtorch, learning parameters are configured in a
configuration object exposed to Pyt hon, which is injected
to grenade and passed to the SIMD CPU before batch execution
on hardware begins. As different projections in the network
have different update rules, relying on population-specific
observables, the network’s representation on hardware (cf.
Figure 10B) is communicated to the SIMD CPU. This allows
for identifying signed hardware synapses and neurons with
projections and populations on the SIMD CPU. Finally, before
each batch element is executed, grenade has the ability to write
trial-specific details onto the SIMD CPU (e.g. random offset ¢
and the synapse row to perform updates for). Hence, smooth
on-chip learning is granted by reliable communication between
little-endian host engine and the embedded big-endian SIMD
CPU. For serialization of information from and to the SIMD
CPU we deploy the C++ header-only library bitsery (Vinkelis,
2020), allowing for seamless transmission of objects between
systems of differing endianness.

Due to changing hardware weights during on-chip training,
the adjusted weights are reverse mapped to the software
representation and stored in the networK’s parameter tensors.
Therewith we utilize PyTorchs native functionality to load
and store network parameters. Reverse network mapping is
implemented in the hxtorch on-chip-learning model by accessing
the hardware routing result and is performed implicitly in the
model’s f or war d method after experiment execution.

Successful implementations of plasticity rules for on-chip
learning are facilitated by providing transparency of SIMD CPU
programs by means for tracing and recording data. To that end,
libnux (cf. Section 2.2.3) facilitates logging of any information
into a dedicated SIMD CPU memory region, easily accessed
from the host engine. Moreover, logging can be redirected to
the FPGA-controlled dynamic random-access memory (DRAM),
effectively allowing extensive logging of whole learning processes
and hardware observables.

3.3. Embedded Operation

Apart from operating BSS-2 tightly coupled to a host computer,
the integrated microprocessors can act as system controllers.
They can orchestrate the control flow of the experiment and
undertake tasks within it. These tasks may include calibration
routines, virtual environment simulation or optimizer loops.
Embedding them in proximity to the neural network core
yields latency and data-locality advantages. In the following, we
describe three exemplary experiments that make exhaustive use
of the embedded processors as system controllers.

First, Wunderlich et al. (2019) introduce an embedded
environment simulation of a simplified version of the Pong video
game on the SIMD CPU, see left panel in Figure 11. One of the
two involved agents plays optimally by design, the other one is
represented by a SNN on BSS-2. During the experiment, the latter
is trained on-chip using a reward-based spike timing dependent
plasticity (STDP) rule. This set-up therefore unites the control
flow, virtual environment simulation and learning rule within a
single program running on the integrated processors.

Second, Stradmann et al. (2021) describe the application of the
BSS-2 system for inference of ANNs that detect atrial fibrillation
in medical electrocardiogram (ECG) data. Targeting applications
in energy efficient devices, they aim for as little periphery as
possible and therefore let the embedded processors orchestrate
all classification routines. The resulting tight loop between the
analog inference engine and digital data in- and outputs allows
for low classification latencies and high throughput of more than
3.600 ECG traces per second.

Third, Schreiber et al. (in preparation) presents the emulation
of an insect model with strong biological inspiration on BSS-2.
The simplified brain model is embedded into an agent that is fed
with stimuli from a simulated environment, see right panel in
Figure 11. While the neural network is emulated as a SNN within
the analog core, the agent itself as well as its virtual environment
are both simulated on the SIMD CPU. The authors specifically
challenge the virtual insects with a simple path integration task:
As depicted in the right panel of Figure 11, a simulated swarm-
out phase is followed by a period of free flight, where the agent
is supposed to return to its nest. The complexity of this task
and the comparably low number of involved neurons requires
precisely controlled dynamics, which they achieve by integrating
experiment specific on-chip calibration routines directly on the
SIMD CPUs (cf. Section 2.3.6).

Supporting these complex experiments on the embedded
processors and their interaction with the controlling host
computer poses specific requirements to the BSS-2 OS.
Especially, a cross-compilation toolchain for the SIMD CPU
is required.

As described in Section 2.2.3, we therefore provide a cross-
compiler based on gcc (GNU Project, 2018), which in addition
to the processor’s scalar unit also integrates its custom vector
unit in C++ (Miiller et al., 2020a). Additional hardware specific
functionality is encapsulated in the support library libnux. It
abstracts access to configuration data and observables in the
analog neural network core, like synaptic weights or correlation
measurements. The exchange of such data with the host is
facilitated by integration of the lean, cross-platform binary
serialization library bitsery (Vinkelis, 2020).

For execution, the compiled programs need to be placed
in system memory—in case of BSS-2, each SIMD CPU has
direct access to 16kB SRAM. For a complete calibration
routine or complex locally simulated environments, this may not
suffice. We therefore utilize the controlling FPGA as memory
controller: It allows the on-chip processors to access externally
connected DRAM with significantly larger capacity at the cost
of higher latency. Programs for the embedded processor can
place instructions and data onto both the internal SRAM
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FIGURE 11 | (Left) Reinforcement learning: the chip implements a spiking neural network sensing the current ball position and controlling the game paddle. It is
trained via a reward-based STDP learning rule to achieve aimost optimal performance. The game environment, the motor command and stimulus handling, the reward
calculation and the plasticity is performed by a C++ program running on the on-chip processor. Figure taken from \Wunderlich et al. (2019). (Right) Recording of a
virtual insect navigating a simulated environment. The top panels show the forced swarm-out path in black. During this phase, the SNN emulated by the analog
neuron and synapse circuits on BSS-2 perform path integration. Afterwards, the insect flies freely and successfully finds its way back to the starting point and circles
around it (gray trajectory). The bottom panel shows the neuronal activity during the experiment. The environment simulation as well as the interaction with the insect is
performed by a C++ program running on the on-chip processor. Figure taken from Pehle et al. (2022).
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and the external memory via compiler attributes. This allows
fine-grained decisions about the access-latency requirements of
specific instruction and data sections.

Similar to experiments designed for operation from the host
system, embedded experiments often require reconfiguration of
parts of BSS-2. The hardware abstraction layer introduced in
the BSS-2 OS (cf. Section 2.2.2) has therefore been prepared
for cross-compilation on the embedded processors. As a result,
the described container and coordinate system can be used in
experiment programs running on the on-chip SIMD CPUs.

3.4. Artificial Neural Networks

The BSS-2 hardware supports a non-spiking operation mode
which supports artificial neural networks (ANNs) implementing
multiply-accumulate (MAC) operations (Weis et al., 2020). The
operation within the analog core is sketched in Figure 12A.
Each entry in the vector operand stimulates one or two rows of
synapses, when using unsigned or signed weights, respectively.
The activations have an input resolution of 5 bit, controlling the
duration of synapses’ activation. Similar to the spiking operation,
synapses emit a current pulse onto the neurons’ membranes
depending on their weight, which has a resolution of 6 bit. We
implement signed weights by combining an excitatory and an
inhibitory synapse into one logical synapse. Once all entries in
the input vector have been sent to the synapses, the membrane
potential resembles the result of the MAC operations. It is

digitized for all neurons in parallel using the CADC, yielding an
8 bit result resolution.

As a user interface, we have developed an extension to the
PyTorch machine learning framework (Paszke et al., 2019),
hxtorch (Spilger et al., 2020). It partitions ANN models into
chip-sized MAC operations that are executed on hardware
using grenade, see Section 2.2.5. Apart from a special MAC
program used for each multiplication, the majority of code
is shared between spiking and non-spiking operation. With
the leak term disabled, the neurons’ membranes represent the
integrated synaptic currents, as shown in Figure 12B. As the
MAC operation lacks any real-time requirements, it is executed
as fast as possible to optimize energy efficiency. In terms of circuit
parameterization, this means we choose a small synaptic time
constant in order for the membrane potential to stabilize quickly.
Therefore, a subset of the existing spiking calibration routines can
be reused here (cf. Section 2.3.6). There is only one additional
circuit—the encoding of input activations to activation times in
synapse drivers—that needs to be calibrated.

Defining an ANN model in hxtorch works similar to
PyTorch: The hxtorch module provides linear and convolutional
layer classes as a replacement for their PyTorch equivalents.
We introduce a few additional parameters controlling the
specifics of hardware execution, e.g., the time interval between
sending successive entries in the input vector to the synapse
matrix, or the option to repeat the vector for efficacy scaling.
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FIGURE 12 | Matrix-vector multiplication for ANN inference. (A) Scheme of a multiply-accumulate operation. Vector entries are input via synapse drivers (left) in 5 bit
resolution. They are multiplied by the weight of an excitatory or inhibitory synapse, yielding 6 bit plus sign weight resolution. The charge is accumulated on neurons
(bottom). Figure taken from Weis et al. (2020). (B) Comparison between a spiking (top) and an integrator (bottom) neuron. Both neurons receive identical stimuli, one
inhibitory and multiple excitatory inputs. While the top neuron shows a synaptic time constant and a membrane time constant, the lower is configured close to a pure
integrator. We use this configuration for ANN inference. Please note that for visualization purposes the input timing (bottom) has been slowed to match the SNN

This enables the user to optimize saturation effects when
driving the input currents as well as the gain of the MAC
operation for the particular experiment. For both we provide
default values as a starting point. The activation function
Converti ngReLU additionally converts signed 8bit output
activations into unsigned 5 bit input activations for the following
layer by a bitwise right shift.

Trained deep neural network models can be transferred to
BSS-2 by first quantizing them with PyTorch and subsequently
mapping their weights to the hardware domain. For quantization,
we need to consider the intrinsic gain factor of the hardware
MAC operation.

Figure 13 shows an example application of a deep neural
network with BSS-2, using the yin-yang dataset from Kriener
et al. (2021). One of the three classes—yin, yang, or dot—are to
be determined from four input coordinates (x, , 1 — x, 1 — y).
The network is first trained with 32bit floating point accuracy
using PyTorch, achieving 98.9 % accuracy. After quantizing with
PyTorch to the hardware resolution of 5bit activations and
6bit plus sign weights, this drops to 94.0 %. Porting the model
to BSS-2, after running a few epochs of hardware-in-the-loop
training, an accuracy of 95.8 % is finally reached.

In addition to running the ANN on the BSS-2 hardware,
a hardware-limitations-aware simulation is available. It can be
enabled per layer via the N"DCK parameter (see Figure 13B). For
mock mode, we simply assume a linear MAC operation, using
a hardware-like gain factor. To investigate possible effects of
the analog properties of the BSS-2 hardware on the inference
and training, additional Gaussian noise of the accumulators and
multiplicative fixed-pattern deviations in the weight matrix can
be simulated. The comparison with actual hardware operation
shown in Figure 13D illustrates how this simple model already
captures the most dominant non-linearities of the system. More

sophisticated software representations that embrace second-
order effects across multiple hardware instances have been
proposed by Klein et al. (2021). They have shown how pre-
training with faithful software models can significantly decrease
hardware allocation time while at the same time increasing
classification accuracy compared to plain hardware-in-the-
loop training.

3.5. User Adoption and Platform Access
The BSS-2 software stack aims to enable researchers to exploit
the capabilities of the novel neuromorphic substrate. Support for
common modeling interfaces like PyNN and PyTorch provides
a familiar entry point for a wide range of users. However,
not all aspects of the hardware can fully be abstracted away,
requiring users to familiarize themselves with unique facets of the
system. To flatten the learning curve several tutorials—verified
in continuous integration (CI) as “executable” documentation—
as well as example experiments are provided!”. They range from
introducing the hardware via single neuron dynamics to learning
schemes like plasticity rate coding. In addition to the scientific
community, they also target students, for example exercises
accompanying a lecture about Brain Inspired Computing and
hands-on tutorials.

A convenient entry point to explore novel hardware are
interactive web-based user interfaces. That is why we integrated
the BSS-2 system into the EBRAINS Collaboratory'® (EBRAINS,
2022). The Collaboratory provides a dynamic VM hosting
on multiple HPC sites for Jupyter notebooks running in
a comprehensive software environment. An BSS-2-specific

7The tutorials and example experiments are available at https://github.com/
electronicvisions/brainscales2- demos.
18Platform access is available via https://ebrains.eu.
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training set

import torch
import hxtorch

mock_parameter =

)

floating-point

hxtorch.init_hardware ()

# measure gain and standard deviation of noise
hxtorch.measure_mock_parameter ()

# use the result during backward pass and mock mode
hxtorch.set_mock_parameter (mock_parameter)

class Model (torch.nn.Module) :
"rro A simple ANN with 120 hidden neurons
def _ init_ (self,
self.classifier =
hxtorch.nn.Linear (4,
hxtorch.nn.ConvertingReLU(shift=1, mock=mock),
hxtorch.nn.Linear (120, 3, mock=mock),

def forward(self,
return self.classifier (x)

# now train the model as usual

BrainScaleS-2

mmn

mock=False) :
torch.nn.Sequential (
120, mock=mock),

)

hardware-limitations-aware simulation
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m
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FIGURE 13 | (A) The Yin-Yang dataset (Kriener et al., 2021) used for the experiment. (B) Hardware initialization and model description with hxtorch. (C) Network
response of the trained model depending on the input. (Top) 32 bit floating-point precision; (Bottom) Quantized model on BSS-2 (5 bit activations, 6 bit plus sign
weights). (D) Output of the MAC operation on BSS-2 (left) compared to the linear approximation (right). The solid line indicates the median, the colored bands contain

experiment service manages multi-user access to the hardware
located in Heidelberg utilizing the quiggeldy micro scheduler
(see Section 2.4). It allows for seamless interactive execution of
experiments running on hardware with execution rates of over
10 Hz. This, for example, was utilized during hands-on tutorials
at the NICE 2021 conference (NICE, 2021). The execution rates
of that demonstration are shown in Figure 14.

Furthermore, EBRAINS has begun to provide a
comprehensive software distribution that includes typical
neuroscientific software libraries next to the BSS-2 client
software. As of now, this software distribution has been already

deployed at two HPC centers and work is under way to extend
this to all sites available in the EBRAINS community. Leaving
interactive demos aside, this automatic software deployment
will simplify multi-site workflows significantly—including
BSS-2 systems—as the scientist is not responsible for software
deployment anymore.

3.6. Hardware/Software Co-development

The BSS-2 platform consists of two main hardware components:
the ASIC implementing an analog neural network core and
digital periphery, as well as an FPGA used for experiment control
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FIGURE 14 | Rate of executed experiment-steps via quiggeldy during the two BSS-2 hands-on tutorials at NICE 2021. Experiments were distributed among eight
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and digital communication. Development of these hardware
components is primarily driven by simulations of their analog
and digital behavior, where—especially in the case of the ASIC—
solid pre-fabrication test strategies need to be employed. Given
the complexity of the system, integration tests involving all
subsystems are required to ensure correct behavior.

Replicating the actual hardware systems, the setup for these
simulated integration tests pose very similar requirements on
the configuration and control software. The BSS-2 OS therefore
provides a unified interface to both, circuit simulators and
hardware systems. For the connection to the simulators, we
introduce an adapter library (flange) as an optional substitution
for the network transport layer. Implementing an additional
hxcomm back-end, flange allows for the transparent execution of
hardware experiments in simulation.

This architecture enables various synergies between hardware
and software development efforts—specifically, co-design of
both components already in early design phases. On system
level, this methodology helps to preempt interface mismatch
between components of various different subsystems. Positive
implications for software developers include the possibility
of very early design involvement as well as enhanced debug
information throughout the full product life cycle: Having
simulation models of the hardware components of the system
allows for the inspection of internal signals within the FPGA
and ASIC during program runtime. In particular, we have made
use of this possibility during the development of a compiler
toolchain for the embedded custom SIMD microprocessors,
where the recording of internal state helps to understand the
system’s behavior. Hardware development, on the other hand,
strongly profits from software-driven verification strategies and
test frameworks. BSS-2 OS especially allows to run the very same
test suites on current hardware as well as simulations of future

revisions. These shared test suites are re-used across all stages
of the platform’s life cycle for multiple hardware generations,
therefore ever accumulating verification coverage.

4. DISCUSSION

This work describes the software environment for the latest
BrainScaleS (BSS) neuromorphic architecture (Pehle et al.,
2022): the BrainScaleS-2 (BSS-2) operating system. In Miiller
et al. (2020b), we introduced the operating system for
the BrainScaleS-1 (BSS-1) wafer-scale neuromorphic hardware
platform. New basic concepts of the second-generation software
architecture were described in Miiller et al. (2020a). For
example, we introduced a concise representation of “units of
configuration” and “experiment runs” supporting asynchronous
execution by extensive usage of “future” variables. Key concepts
already existing in BSS-1—e.g., the type-safe coordinate system—
were extended for BSS-2. In particular, the systematic use of
“futures” now allows higher software levels to transparently
support experiment pipelining and asynchronous experiment
execution in general. Additionally, dividing experiments into
a definition and an execution phase also facilitates experiment
correctness, software stack flexibility—by decoupling hardware
usage from experiment definition—as well as increased platform
performance by enabling a separation of hardware access from
other aspects of the experiment.

The new software framework is expert-friendly: we designed
the software layers to facilitate composition between higher- and
lower-level application programming interfaces (APIs). Domain
experts can therefore define experiments on a higher abstraction
level in certain aspects, and are still able to access low-level
functionality. A software package for calibration routines—the
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process of tuning hardware parameters to the requirements
defined by an experiment—provides algorithms and settings
for typical parameterizations of the chip, including support
for multi-compartmental neurons and non-spiking use cases.
An experiment micro scheduler service allows to pipeline
experiment runs, and even preempt longer experiment sessions
of individual users, to decrease hardware platform latency
for other user sessions. Enabling multiple high-level modeling
interfaces—such as PyNN and PyTorch—to cover a larger user
base was one of the new requirements for BSS-2. To achieve this,
we provide a separate high-level representation of user-defined
experiments. This signal-graph-based representation is generally
suited for high-level configuration validation, optimization, and
transformation from higher- to lower-level abstractions. The
modeling API wrappers merely provide conversions between
data types and call semantics. The embedded microprocessors
allow for many new applications: Initially designed to increase
flexibility for online learning rules (Friedmann et al., 2017),
they have been also used for: environment simulations (Pehle
et al., 2022; Schreiber et al., in preparation), online calibration
(Section 3.3), general optimization tasks, as well as experiment
control (Wunderlich et al., 2019). We ported our low-level
chip configuration interface to the embedded processors and
thereby allow for code sharing between host and embedded
program parts in addition to a software library for embedded
use cases. Apart from features directly concerning platform
users, we enhanced the support for multiple hardware revisions
in parallel facilitating hardware development, commissioning
and platform operation. In combination with a dedicated
communication layer, this enables not only support for multiple
communication backends between host computer and field-
programmable gate array (FPGA), such as gigabit ethernet (GbE)
or a memory-mapped interface for hybrid FPGA-CPU systems,
but also for co-simulation and therefore co-development of
software and hardware. Finally, we operate BSS-2 as a research
platform. As a result of our contributions to the design and
implementation of the EBRAINS (EBRAINS, 2022) software
distribution, interactive usage of BSS-2 is now available to a
world-wide research community. To summarize, we motivated
key design decisions and demonstrated their implementation
based on existing use cases: Support for multiple top-level
APIs for “biological” and “functional” modeling; support
for the embedded microprocessors including structured data
exchange with the host, a multi-platform low-level hardware-
abstraction layer, and an embedded execution runtime and
helper library; support for artificial neural networks in host-based
and standalone applications; focus on the user community by
providing an integrated platform; sustainable hardware-software
co-development.

To build a versatile modeling platform, BSS-2 is a
neuromorphic system that improved upon successful
properties of predecessors, both, in terms of hardware and
software. Simulation speed continues to be an important point
in computational neuroscience. The development of new
approaches to numerical simulation promising lower execution
times and better scalability is an active field of research (Knight
and Nowotny, 2018, 2021; Abi Akar et al., 2019), as is improving

existing simulation codes (Kunkel et al,, 2014; Jordan et al,,
2018). Whereas parameter sweeps scale trivially, systematically
studying model dynamics over sufficiently long periods as well
as iterative approaches to training and plasticity can only benefit
from increases in simulation speed. The physical modeling
approach of the accelerated neuromorphic architectures allows
for a higher emulation speed than state-of-the-art numerical
simulations (Zenke and Gerstner, 2014; van Albada et al., 2021).
BSS-2 can serve as an accelerator for spiking neural networks and
therefore opens up opportunities to work on scientific questions
that aren’t accessible by numerical simulation. However, to
deliver on this promise in reality, both, hardware and software
need to be carefully designed, implemented, and applied. The
publications building on BSS-2 are evidence of what is possible
in terms of modeling on accelerated neuromorphic hardware
(Bohnsting] et al., 2019; Cramer et al., 2020, 2022; Wunderlich
et al.,, 2019; Billaudelle et al., 2020, 2021; Miiller et al., 2020a;
Spilger et al., 2020; Weis et al., 2020; Goltz et al., 2021; Kaiser
et al,, 2022; Klassert et al., 2021; Klein et al,, 2021; Stradmann
et al,, 2021; Czischek et al., 2022; Schreiber et al., in preparation).

We believe that these publications offer a first glimpse of
what will be possible in a scaled-up system. The next step on
the roadmap is a multi-chip BSS-2 setup employing EXTOLL
(Resch et al., 2014; Neuwirth et al., 2015) for host and inter-chip
connectivity. First multi-chip experiments have been performed
on a lab setup (Thommes et al., 2022). Additionally, a multi-
chip system reusing BSS-1 wafer-scale infrastructure is in the
commissioning phase and will provide up to 46 BSS-2 chips.
Similar to BSS-1, a true wafer-scale version of BSS-2 will provide
an increase in terms of resources by one order of magnitude
and thus will enable research that not only looks at dynamics
at different temporal scales, but also on larger spatial scales.
In terms of software we have been adapting our roadmap
continuously to match modelers’ expectations. For example, we
work on future software abstractions that will allow for flexible
descriptions of spiking network models with arbitrary topology
in a machine learning framework. PyTorch libraries such as
BindsNET (Hazan et al., 2018) or Norse (Pehle and Pedersen,
2021) enable efficient machine-learning-inspired modeling with
spiking neural networks and would benefit from neuromorphic
hardware support.
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Simulating the brain-body-environment trinity in closed loop is an attractive proposal
to investigate how perception, motor activity and interactions with the environment
shape brain activity, and vice versa. The relevance of this embodied approach, however,
hinges entirely on the modeled complexity of the various simulated phenomena. In this
article, we introduce a software framework that is capable of simulating large-scale,
biologically realistic networks of spiking neurons embodied in a biomechanically accurate
musculoskeletal system that interacts with a physically realistic virtual environment. We
deploy this framework on the high performance computing resources of the EBRAINS
research infrastructure and we investigate the scaling performance by distributing
computation across an increasing number of interconnected compute nodes. Our
architecture is based on requested compute nodes as well as persistent virtual machines;
this provides a high-performance simulation environment that is accessible to multi-
domain users without expert knowledge, with a view to enable users to instantiate
and control simulations at custom scale via a web-based graphical user interface. Our
simulation environment, entirely open source, is based on the Neurorobotics Platform
developed in the context of the Human Brain Project, and the NEST simulator. We
characterize the capabilities of our parallelized architecture for large-scale embodied
brain simulations through two benchmark experiments, by investigating the effects of
scaling compute resources on performance defined in terms of experiment runtime,
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brain instantiation and simulation time. The first benchmark is based on a large-
scale balanced network, while the second one is a multi-region embodied brain
simulation consisting of more than a million neurons and a billion synapses. Both
benchmarks clearly show how scaling compute resources improves the aforementioned
performance metrics in a near-linear fashion. The second benchmark in particular is
indicative of both the potential and limitations of a highly distributed simulation in
terms of a trade-off between computation speed and resource cost. Our simulation
architecture is being prepared to be accessible for everyone as an EBRAINS service,
thereby offering a community-wide tool with a unique workflow that should provide
momentum to the investigation of closed-loop embodiment within the computational
neuroscience community.

Keywords: spiking neural networks, embodiment, Neurorobotics Platform, high performance computing (HPC),

NEST, musculoskeletal modeling, large-scale brain simulation, parallel computing

1. INTRODUCTION

While theories exist that describe how brain architecture and
neuronal activity support human-specific, higher-level cognitive
abilities such as common sense, capacity for generalization and
self-awareness, their experimental validation in vivo is usually
impossible for both technical (e.g., lack of reproducibility,
observability and perturbability) and ethical reasons. As such,
simulating the human brain becomes necessary in order to test
data-driven hypotheses coming from theoretical neuroscience
regarding the structure-function-activity trifecta, and thus
establish the link between these in an ethical, reproducible and
fully observable manner.

In particular, it is only through simulation that the functional
capacity of a given brain model can be consistently evaluated
at multiple scales and under various operating conditions, or
that the individual contribution of its sub-components to the
emergence of advanced cognitive functions can be teased apart.
In short, as Nobel physicist Richard Feynman concluded, “what
I cannot create I do not understand.” Not just any isolated
simulation will do, though. To have any relevance to data
collected from living beings, the simulated brain must be afforded
with the possibility to interact with a dynamic, physically realistic
and sensory-rich environment. This is what we refer to as
embodiment. Only then can the simulated neuronal activity be
expected to somewhat match, even to a limited extent, that of an
actual brain in natural settings. This aspect is therefore essential
when studying cognitive mechanisms that involve sensorimotor
integration or motor control.

Such an embodied simulation framework must be able to
simulate the brain at scale in order to capture the contributions
of multiple brain regions involved in goal-directed actions,
and to account for the effects of various learning mechanisms,
from single synapses up to network effects of different neural
populations. It requires significant computing capabilities and a
distributed architecture to cope with the highly parallel, resource-
intensive nature of large-scale neuronal network simulations,
as well as features that allow interactive experimentation while
keeping brain and body simulation in sync.

We demonstrate a prototype for a simulation service on
the EBRAINS research infrastructure; this prototype enables
users to run custom embodied large-scale brain simulations
through the Neurorobotics Platform (NRP), the component of
EBRAINS dedicated to closed-loop neuroscience. Implemented
with the NEST simulator for large-scale spiking neural networks,
these brain simulations are run in a distributed manner on a
variable allocation of high-performance computing (HPC) nodes
of the supercomputer Piz Daint. Within this framework, large-
scale biologically plausible neuronal networks with multiple
regions are simulated in NEST and interconnected with a
physics simulation of a musculoskeletal system in Gazebo. A
dedicated graphical user interface in the NRP frontend enables
anyone entitled to adequate compute resources on EBRAINS
to schedule jobs on the Piz Daint supercomputer at the Swiss
National Supercomputing Center (CSCS) and to launch new NRP
instances. This process enables users to run, control and interact
with embodied simulation experiments online as intuitively as is
possible using local installations of the NRP, but backed by the
considerable computing power of Piz Daint.

2. STATE OF THE ART

2.1. Large-Scale Neuronal Simulations on

HPC Infrastructure
Several tools for the simulation of spiking neurons and networks
thereof have been developed. They allow to model a high degree
of biological plausibility but differ in their focus on different
aspects of the biological models or the technology they use.
Highlighting a few, NEURON (Hines and Carnevale, 1997;
Awile et al., 2022) GENESIS (Bower and Beeman, 2007) and
Arbor (Abi Akar et al., 2019) allow the modeling of complex
compartmental neurons and are tailored to the simulation from
the sub-cellular level to networks, while the Open Source Brain
(Gleeson et al., 2019) provides functionalities for visualization
and focuses on user collaboration and accessibility of neuron
models and networks.

Due to the improved availability of compute resources
for neuroscience research through programs like the Human
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Brain Project’s Fenix/ICEI!, or the Neuroscience Gateway’
and advances in simulation technology (e.g., Jordan et al,
2018; Kumbhar et al., 2019), it became routinely possible for
computational neuroscientists to run large-scale simulations of
spiking neuronal networks with great efficiency. Most modern
neuronal network simulators achieve linear scaling for a large
range of simulations of neuroscientific models and have thus
opened the way to increased model sizes and more complex
learning paradigms.

Meanwhile, a large number of projects are making use of these
technological developments, which also resulted in a number of
large-scale modeling publications (Markram et al., 2015; Senk
et al., 2018; Igarashi et al., 2019; Billeh et al., 2020). Many of
the studies are scaling to considerable portions of the world’s
largest supercomputers and reach far beyond the simple random
balanced network that has been the norm in the field for many
years. By integrating data from multiple neuroanatomical and
electrophysiological sources, they enable the study of biological
phenomena with an unprecedented level of detail. At the same
time, the developers of the simulation tools are facing new
challenges when it comes to coupling simulators amongst each
other to increase the realism of the simulated models and to allow
for an integration of physics simulators in scenarios such as those
described in the present work.

2.2. Simulations of Spiking Neural
Networks Controlling Virtual Embodied
Agents

Previous works involving simulations of spiking neural networks
connected to an embodied agent (either a robot or a
musculoskeletal system) have mostly aimed at understanding
motor control in the brain in relation to sensorimotor
integration. Many of them focused on functional performance
and were often carried out in a robotic context (e.g., Gilra and
Gerstner, 2018; Bahuguna et al., 2019; Angelidis et al., 2021).
Others more specifically investigated the robustness, versatility
and capacity for adaptation of biological motor systems, for
which there is still no satisfactory mechanistic explanatory
framework. As an example, DeWolf et al. (2016) used the Neural
Engineering Framework (NEF; Eliasmith and Anderson, 2004)
to implement a multi-area brain model capable of controlling
a three-link arm which also successfully exhibited adaptation to
changes in arm dynamics and kinematic structure.

Other research efforts found in the literature involving
spiking neural networks controlling a body were about
replicating specific features of biological motor systems, with
a focus usually placed more on simple movement generation
rather than complex, behaviorally-relevant interactions with the
environment (e.g., Allegra Mascaro et al., 2020; Fernandes et al.,
2021; Kalidindi et al., 2021). In order to achieve task completion,
these often involved some network training/optimization
process, be it biologically realistic (e.g., STDP in Fernandes
et al., 2021) or derived from AI approaches (back-propagation
through time in Kalidindi et al., 2021). As for the simulation

Uhttps://fenix-ri.eu/
2https://www.nsgportal.org/

of musculoskeletal systems, it usually attempted to remain as
biologically realistic as possible (e.g., through the use of Hill
muscle models), but the experimental implementation did not
provide straightforward means for reuse and reproducibility
testing. Very few efforts reported in the literature besides the
Neurorobotics Platform (see Section 2.3 below) actually focused
on this aspect, which makes them all the more remarkable
(e.g., Jordan et al, 2019). The latter introduces a toolchain to
connect NEST with OpenAIGym making use of the MUSIC
interface (Djurfeldt et al., 2010; Brocke, 2020). In Bahuguna
et al. (2019), MUSIC is used to connect NEST with Gazebo.
The Neurorobotics Platform connects physics and neural
simulations directly using Nengo (Angelidis et al., 2021) or
NEST (Allegra Mascaro et al., 2020).

The brain-body-environment trinity for different species at
different levels of complexity from single body limbs to full
body simulations has been simulated in multiple frameworks.
The most popular example for invertebrates can be found in
the OpenWorm platform (Szigeti et al., 2014; Sarma et al,
2018), which is made for the complete simulation of the
Caenorhabditis elegans modeled with both its full body using
fluid-simulation dynamics and the full neural network consisting
of 302 neurons. A whole body simulation model including
environment interaction of a vertebrate is found in Ferrario
et al. (2021) with the simulation of a tadpole and serves as
an experiment platform for research questions ranging from
decision-making to movement generation. While both of the
aforementioned simulation platforms are specialized for the
given species, AnimatLab (Cofer et al., 2010) is a more generic
simulation platform, which allows simulations of a wide range
of vertebrates and invertebrates. Cofer et al. (2010) described a
human arm flexion as an example.

The most complex work connecting a spiking model of the
brain to a body can be found in Yamada et al. (2016). It describes
a system encompassing a musculoskeletal model of human fetus
at 32 weeks of gestation, a brain (2.6 million leaky integrate-
and-fire spiking neurons and 5.3 billion synaptic connections)
and some limited environmental modeling, which was used to
comparatively study touch-driven cortical learning via limited
embodied interactions under intrauterine and extrauterine
environmental conditions.

2.3. Neurorobotics Platform

The HBP Neurorobotics Platform (NRP) is the backbone of
the EBRAINS Closed-Loop Neuroscience service (Knoll et al.,
2016). It provides access to a physically realistic simulated
environment within which users can simulate and use all kinds
of neural models (including spiking neural networks running
on neuromorphic chips) composed into functional architectures,
and connected to physical incarnations (musculoskeletal models
or robotic systems). The simulation of the environment is
carried out in Gazebo, an open-source robotic simulator.
The neural models can be implemented using one of several
frameworks, such as the software simulators NEST (Gewaltig
and Diesmann, 2007) or Nengo (Bekolay et al., 2014), or the
neuromorphic system SpiNNaker (Furber et al, 2014). The
execution of the various simulators involved in a given NRP
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simulation is orchestrated by a dedicated component referred
to as the Closed-Loop Engine (CLE). The connections between
the simulated agents’ bodies and brains are entirely user-
configurable, within the limitations imposed by the application
programming interfaces (APIs) of the various simulators. The
details of the connections are established through a dedicated
framework of so-called Transfer Functions, which are responsible
for the conversion and processing of data in transit for seamless
recurrent communication between simulators. The NRP can be
downloaded and installed locally for maximum experimental
convenience, or accessed online in order to leverage the
EBRAINS HPC infrastructure for large-scale experiments, as in
the present case.

The functional connection of neural models to embodied
agents allows neuroscientists to explore how the brain performs
a number of tasks in closed loop, from lower-level sensorimotor
tasks to higher cognitive functions (e.g., contextual awareness,
decision making, etc.). The NRP thus enables cognitive and
computational neuroscientists to explore the relationships that
exist between the architectural characteristics of neural circuitry
(usually constrained by anatomical and connectome data),
neuronal dynamics (activity at either population or single-cell
level), and their function expressed as the overt behavior of
an embodied agent. Furthermore, in silico simulation provides
a level of control over experimental parameters that enables
studies that would be either technically impossible or ethically
unacceptable. For example, only in simulation one can fully
observe the effect of knocking out a particular ion channel in a
specific neuronal sub-population with perfect efficiency, or carry
out lesioning studies with perfect reproducibility. As such, the
NRP provides a unique enabling platform to probe the functional
consequences of e.g., stroke (Allegra Mascaro et al., 2020) or
pharmacological tampering on the central nervous system. It
is therefore a valuable tool to elucidate outstanding questions
around motor control in both health and disease. However, until
the work reported in the present paper, the NRP was run either
locally or as a cloud service (i.e., on virtual machines). As such,
the size of simulations that could be run on the NRP was limited
by the typical computing resources of standard computers or
virtual machines.

2.4. The Neural Simulation Tool NEST

NEST is a simulator for large networks of spiking neurons
connected by phenomenological synapse models. It supports
hybrid parallel simulations using threading within CPUs and
the message passing interface (MPI) across multiple CPUs and
computing nodes. In previous studies, NEST has shown excellent
scaling over a large number of architectures even on the world’s
largest supercomputers (Kunkel et al., 2014; Jordan et al., 2018).
The details of the parallelization are entirely transparent to the
users, who do not need to handle or care about node placement
onto processes or inter-process communication. Neurons in
NEST can be anything from simple point neuron models like the
integrate-and-fire neuron to complex compartmental neurons, as
long as they can be expressed as a single C++ class. Synapses
can be either static or change their weight over time according

to a plasticity algorithm. Examples of such algorithms are spike-
timing-dependent plasticity (STDP), short-term plasticity (STP),
or third-factor neuromodulated weight dynamics. Many different
neuron and synapse models have been developed over time and
are included in any distribution of the NEST source code.

NEST can be used from Python by means of a module called
PyNEST that wraps the NEST simulation kernel, which itself is
written in C++. Simulation scripts can then use functions like
Creat e() and Connect () to create neurons and devices for
stimulation and recording, and to connect these elements using
different connection rules, respectively. A web-based graphical
frontend called NEST Desktop simplifies the task of network
creation by offering graphical metaphors and a point-and-click
interface and has been especially useful in classroom scenarios.
To keep the actual simulation of the neuronal network separate
from the graphical frontend, NEST was extended by the NEST
Server, which allows steering NEST via a RESTful API that listens
on a specific TCP/IP port and maps incoming requests of the
form http://localhost:5000/api/Create to calls of the PYNEST API
(the function Cr eat e() in the example).

When NEST is run in an MPI-distributed fashion, each
process (or task, in MPI terminology) executes the same
simulation script, but only creates its share of neurons, devices,
and connections. The individual tasks also apply configuration
changes only to local elements of the simulation and record
data only from the entities they are responsible for. This is not
a problem in many simulation experiments, where simulation
scripts are run for the full simulation time and data is analyzed
only after the simulation has finished and data from the
different result files of the different processes has been manually
combined. Due to the distributed nature of data collection in
NEST, NEST Server originally only supported non-distributed
simulation runs. To support the framework described in this
work, NEST Server has now been extended to also support
distributed scenarios by using a master-worker paradigm: The
first MPI process (MPI rank 0, master) is responsible for
both providing the RESTful API to clients, and forwarding all
incoming commands to the workers (i.e., all MPI ranks but 0) and
collecting their result data. In addition, the master process also
participates in the neuronal simulation and thus also serves as a
worker itself. A set of heuristics is used to combine and present
the worker’s response data to an outside caller as a consistent view
that does not differ from one that the caller would see when only
a single MPI process is used.

3. SOFTWARE ARCHITECTURE

The following provides the implementation details of a software
architecture that integrates the Neurorobotics Platform and
NEST Server for embodied simulations, supports browser-
based online control of and interaction with experiments, and
is highly scalable. This setup leverages a cloud computing
infrastructure and HPC computing resources, both provided by
EBRAINS. Despite the complexity of the architecture, automated
deployment and online interactivity are provided through a
dedicated graphical user interface available in the NRP frontend.
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3.1. Infrastructure

The software service presented in this article is deployed across
multiple compute systems at the Swiss National Supercomputing
Center® (CSCS). Therein, persistent virtual machines are used
in order to let users interact with the NRP continuously and
request HPC resources in the form of compute nodes. The overall
architecture is illustrated in Figure 1. The NRP frontend and
a proxy responsible for assigning NRP backends and handling
REST calls are deployed on a virtual machine on the Castor
cluster, while the actual embodied simulations (NRP backend and
NEST brain simulation) are run on requested compute nodes of
Piz Daint. For every NRP job, at least two compute nodes are
requested, the first running the NRP backend, the second and any
additional nodes running NEST Server. As such, the setup is fully
scalable in terms of computing capabilities and is able to support
custom large-scale embodied simulations.

The software interface between NRP frontend on Castor
and NRP backend on Piz Daint compute nodes is instantiated
on demand. We implement a UNICORE* (Uniform Interface
to Computing Resources) interface in the NRP proxy to
interact with the SLURM workload manager (Yoo et al., 2003).
UNICORE’s REST API is used to request compute jobs, transmit
configuration files and launch the NRP with NEST via startup
scripts. We set up an SSH tunnel between the NRP frontend
virtual machine and the cluster compute node running the NRP
backend to enable bidirectional communication during runtime.

To facilitate fast and automated update cycles in a cloud
infrastructure with our multi-component software architecture,
we integrate all software components in Docker containers, in
particular the NRP frontend, NRP backend and NEST Server.
We use Jenkins with Ansible for Continuous Integration and
Continuous Deployment (CI/CD); installation and Docker image
instantiation on Castor is fully automated; new Piz Daint NRP
backend images can be pushed to the Docker registry and then
pulled to the Piz Daint login nodes using the Sarus container
engine (Benedicic et al., 2019). The main advantage of this
approach is the fast deployment of software improvements and
new releases of the NRP and its components. This ensures
forward compatibility of the platform during the ongoing NRP
development. The architecture also allows multiple versions to
be made available in the Docker registry so that custom software
versions can be instantiated on demand.

3.2. Graphical User Interface

The setup is intended to enable future community access to
an EBRAINS service that lets users experiment with large-
scale embodied simulations without in-depth knowledge of
the required underlying supercomputing infrastructure and
architecture deployment. For this purpose, we implement a
new section in the NRP frontend as shown in Figure 2, which
can be accessed through a web browser. With it, users can
request and launch the NRP on Piz Daint as compute jobs with
customized resources, as well as manage instantiated jobs with
running NRP instances. The job duration, compute node number

Shttps://www.cscs.ch/
“https://sourceforge.net/projects/unicore/

and memory allocation can be customized depending on the
duration and complexity of the experiments to be simulated.
The frontend section also includes a list of past and running
compute jobs, and lets users abort and inspect these during and
after runtime. After starting the NRP backend distributed on
requested Piz Daint compute nodes, it is accessible and can be
selected just like any other backend running on virtual machines.
Launching an experiment lets users interact with the rendered
virtual environment and control the experiment interfaces and
procedure runtime either graphically or programmatically via
Python scripts in the NRP Virtual Coach. The Virtual Coach
includes a Python REST interface to the NRP so that users can
control simulations and observe its status via callback functions
from a Python script. Additionally, experiment scripts can be
modified programmatically and finally recorded data can be
requested for postprocessing of experimental data.

3.3. NRP-NEST Coupling Architecture

Since the beginning of the development of the NRP, NEST has
been a first-class citizen in the NRP platform. It was initially
integrated through a direct import of the Python module for
NEST into the NRP CLE, which entailed a number of drawbacks
in terms of code maintenance and distribution on multiple
compute nodes of Piz Daint. To overcome the main drawbacks of
the previous coupling, we started from the existing solutions and
devised a new architecture based on the idea of separating NEST
from the NRP by channeling all communication through the
NEST Server and its RESTful API: instead of importing PyNEST
directly, the NRP would only talk to NEST via HTTP requests
and responses. The change to this new architecture constitutes
a minimally invasive change to the NRP itself, as all code can be
encapsulated in a new module that implements the NRP interface
specification for integrating brain simulators on the one side, and
a client for the NEST Server on the other. By having NEST run
in its own process space, the issues related to code maintenance
are eliminated, because NEST can run on any suitable Python
version independently, and the version of NEST does not have
to be taken into account by the NRP as long as the RESTful
API of the NEST Server remains unchanged. The requirement
for running distributed simulations of the brain simulation is
naturally fulfilled in the new architecture as long as the MPI-
enabled version of the NEST Server is used. The complete new
coupling architecture is depicted in Figure 3.

Within the new client-server based architecture of the NRP-
NEST coupling, the NEST Client Python module exposes a
number of API functions in the client-side user API (3 in
Figure 3) that allow to configure a neuronal network and the
needed devices, run a network simulation for a given amount of
time, and retrieve the recorded data. No actual computation takes
place within the client. Rather, the latter forwards all operations
to the NEST Server, which is based on a master/worker paradigm
in which the master (MPI rank 0) provides a RESTful API to the
NEST client and coordinates the workers by exchanging data and
control commands with them. All MPI ranks (including rank 0)
together execute the neuronal simulation. By virtue of this split
in responsibilities, the actual details of the distribution remain
completely transparent to the NEST Client.
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Castor - persistent Virtual Machines Piz Daint - requested Compute Nodes

FIGURE 1 | Software architecture. Persistent virtual machines are interfaced with requested compute resources in order to offer a flexible user interface with HPC
resources. We use UNICORE as an interface to schedule compute jobs, and a SSH tunnel on demand establishes the bidirectional connection between NRP frontend
and backend running on the two distinct computing systems.
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FIGURE 2 | Graphical user interface. The large-scale simulation setup on HPC resources can be managed, accessed and controlled via a standard browser. We
implemented a dedicated tab in the Neurorobotics Platform frontend that lets users parametrize supercomputing jobs and manage allocated resources. A new
compute job running the NRP backend instance with distributed NEST can be requested and started with a single click from this frontend.

In terms of deployment, the described separation between  codes on different nodes of a given supercomputer or compute
client and server allows execution of the components on different  cluster, or even on completely independent machines. AIl NEST-
computing units. In particular, it is now possible to execute  related operations such as loading the network, stepping the
the NRP (including the NEST Client) and the NEST Server  simulation, creating devices and connectivity, are managed by the
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NEST Client that provides a set of user-friendly methods for all
relevant operations.

The methods of the client-side API are (roughly speaking)
just wrappers of the corresponding PyNEST functions. An
example of such a method is get _kernel _status(), a
call to which translates to an HTTP request for the URL
host : port/api/ Get Ker nel St at us, where host and port
are the IP address of the machine on which NEST Server
is running and the port it is listening on, respectively.
Such a request results in a call of the PyNEST function
Cet Ker nel St at us() by the NEST Server. The return value
of that function will be included in the response in the form of a
JSON-encoded dictionary.

Below is a non-exhaustive list of the methods provided by
the NEST Client client-side API to control and configure the
simulation of the neuronal network in NEST:

e get _kernel _status(): access to NEST simulation
parameters

e startup():reset the kernel and set the number of threads
and the simulation resolution

e | 0oad_network(): load a network in the form of a
simulation script

e run_simul ation(): drive a network simulation for a
given amount of time

e create_device(): create a given number of network
devices of a given type

e connect _devi ce(): connect a device to a neuron using
the provided connection parameters

e set_devi ce_params(): set the given parameters on a
device

e get_popul ati on_par anet ers(): retrieve parameters
from a neuronal population

The second component of the coupling architecture, NEST
Server, can be considered a language-independent interface to
NEST that can be deployed either locally or on a remote machine
as outlined above and in Section 2.4. Prior to any simulation, an
instance of the NEST Server has to be started independently from
the NRP and the NEST client with a degree of MPI parallelization
that is suitable for the neuronal simulation at hand. As of writing,
the NEST Server is fully integrated into the current release of
NEST (Hahne et al., 2021) and can be either used after compiling
the source from scratch, or from the NEST Docker image. All
benchmark simulations presented in Section 6 have been realized
using the containerized version of the NEST Server.

Frontiers in Neuroinformatics | www.frontiersin.org

May 2022 | Volume 16 | Article 884180


https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Feldotto et al.

Embodied Large-Scale Neural Simulations

3.4. HPC Parallelization

Since the inception and widespread use of multi-socket/multi-
core architectures several years ago, it has become more and
more evident that a purely threaded application or one that
purely relies on message passing for distributing the workload
onto multiple processes is not sufficient for achieving optimal
performance. Since then, the use of hybrid parallelization
strategies that use threads within a CPU socket and message
passing via MPI across CPU sockets and compute nodes has
become the de facto standard for neuronal simulators. As this
new paradigm has a high implementation complexity, many of
the modern simulator codes shield the user from the details of the
parallelization and provide suitable abstractions that also allow
scientists not trained in computer science to use large-scale HPC
machines efficiently.

For the NRP-NEST use case, we make use of the UNICORE
REST API for requesting an individual number of compute
nodes and running embodied simulations on compute resources
customized to the user experiment. In contrast to a usual
supercomputing job, in our case, not all compute nodes execute
the same software but in fact run different sub-components of
the overall architecture. After job approval, the execution of
the architecture startup script is initiated via UNICORE, which
launches the NRP backend, SSH tunneling service and NEST
Server with workers on specific compute nodes. The general
allocation layout is such that the user always requests N + 1
compute nodes, with the NRP and its NEST Client as well as
the tunneling services started on the first node, and NEST Server
on the remaining N nodes. This specific allocation of software
components to compute nodes is done via the Slurm Workload
Manager, assigning individual component execution scripts to
the corresponding subsets of the overall allocated compute node
list. Appropriate settings of thread pinning and process affinity
are used to achieve good performance. For the deployment of
NEST on Piz Daint for example, one MPI process is launched
per physical CPU socket and set to use all of the 36 virtual and
real cores by means of one OpenMP thread per core. NEST
itself will then take care of the distribution of neurons and
synapses onto the processes and threads by assigning neurons
to threads in a round-robin fashion and allocating synapses on
the process that is responsible for the post-synaptic neuron.
We run two NEST workers on every individual compute node
automatically (each assigned 36 CPU cores, see Section 5 for
more details) to optimally use allocated compute resources. The
described allocation scheme allows for fully customized scaling of
computing capacity, which is only limited by the physical number
of available nodes in the given HPC system.

4. MODELS AND SETUP

We implemented two different benchmark experiments in the
Neurorobotics Platform to evaluate our software architecture:
the first one is a rather synthetic balanced random network
without any body connection; the second one is based on a
biologically derived multi-region brain model connected to a
virtual musculoskeletal rodent model.

4.1. HPC Benchmark With Balanced

Networks

The random balanced network introduced by Brunel (2000)
has been adopted by the NEST development community as
a benchmark for large-scale simulations of spiking neural
networks on HPC supercomputers (Morrison et al., 2007; Helias
et al., 2012; Kunkel et al., 2014). This benchmark simulates
a network with a large number of spiking neurons split into
excitatory and inhibitory populations and random connectivity.
The excitatory—excitatory synapses exhibit the multiplicative
depression and power law potentiation model of Spike Timing
Dependent Plasticity (STDP) described in the work of Morrison
et al. (2007), while all connections targeting or originating from
inhibitory neurons are static.

The number of neurons in the network corresponds to 11,250
multiplied by a scale parameter. The indegree of each neuron
is fixed to 11,250 synapses regardless of the scale parameter. In
this work, we use a scale factor of 20 yielding a network with
225,000 neurons and roughly 2.5 billion synapses. The network
is simulated with a computational resolution of 0.1 ms for a
duration of 1s. A four-wheeled Husky robot is loaded in a static
virtual room but is left unconnected from the neural network and
merely serves as a base workload for the NRP. In this benchmark
setup, physics are simulated with Gazebo and the ODE engine.

4.2. Embodied Multi-Region Rodent Brain

Experiment

The embodied multi-region rodent brain experiment aims to
examine the dynamic mechanism of the cortico-basal ganglia-
cerebellar-thalamic (CBCT) circuit in motor control through
combined simulation of the brain model and the physical
musculoskeletal model of a mouse. The embodied simulation
includes 1,005,905 spiking neurons with 1,588,469,795 synapses
in NEST. Neuronal output from the brain simulation controls
the physical simulation of a mouse musculoskeletal model with
8 muscles in Gazebo and the Simbody physics engine. The NRP
experiment view lets the user inspect, adapt and interact with the
simulation online, Figure 6 (bottom) shows the 3D rendering of
the moving musculoskeletal body and the brain activity as a spike
raster plot in the NRP frontend.

4.2.1. The Multi-Region Rodent Brain Model

The CBCT model is based on the biologically constrained spiking
network models of the cerebral cortex (Ctx), basal ganglia (BG),
cerebellum (CB), and thalamus (TH) (Gutierrez et al., 2020). The
numbers of neurons in the CBCT loop add up to more than 90%
of the number of all neurons in rodents, primates, and humans
(Azevedo et al., 2009; Herculano-Houzel, 2009).

The model consists of a reference cortical patch of 1x1mm?
and connected BG, CB and TH models with proportional
number of neurons. In total, the model incorporates 1,005,905
neurons (Table1). Simulations of such a large network
combined with the musculoskeletal model requires efficient use
of high-performance computing (HPC), especially for model
optimization by repeated evaluations of the generated dynamics
against experimental data. The NRP infrastructure provides
the framework for managing access and execution by HPC.
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TABLE 1 | Summary statistics of the 1x1 mm? unit of the rodent brain model.

Model #Neurons #lLayers #Neuron types
M1 (Ctx) 58,805 5 19
S1(Ctx) 94,396 7 22
VL (TH) 6,144 2 3
VM (TH) 6,144 2 3
BG 10,976 5 5
CB (M1) 414,720 6 6
CB (S1) 414,720 6 6
Total 1,005,905 33 65

Parrot neurons and neurons instantiated by NRP devices as interface are not included.

Moreover, it allows easy and efficient integration of the brain
model with physical models with realistic behavioral constraints,
which facilitates better validation and improves predictive power
of the simulated models.

The CBCT model of the multi-region rodent brain (Figure 4)
is composed of the following regional models:

Cerebral Cortex: The model incorporates the primary motor
cortex (M1) and the primary somatosensory cortex (S1), based
on previous works of Igarashi et al. (2019), Sun Zhe (2019),
and Sun and Morteza Heidarinejad (2019). A unit model has
the size of 1,000 x 1,000 x 1,400 (height x width x length)
pwm?® and contains six 2D sheets for the arrangement of neural
populations in layers 1, 2/3, 4, 5A, 5B, and 6 based on
reported cortical organization and experimental data (Lev and
White, 1997; Weiler et al., 2008). Main neuron types are single
bouquet (SBC) and elongated neurogliaform (ENGC) cells in
layer 1; intratelencephalic (IT), parvalbumin-expressing (PV),
and somatostatin-expressing (SST) neurons at layers 2/3, 5A, 6;
and IT, pyramidal-tract (PT), PV and SST neurons in layer 5B
(Jiang et al., 2013; Shepherd, 2013; Tremblay et al., 2016). The
model also incorporates vasoactive intestinal peptide-expressing
(VIP) neurons in layer 2/3 and connections based on Jiang et al.
(2015). The S1 model Sun Zhe (2019) includes additional neurons
in layer (L4).

For each layer (except layer 1), the numbers of excitatory
and inhibitory neurons follow a ratio of 4:1, with a total
number of about 58,000 and 94,000 neurons in 1x1mm? for
M1 and S1, respectively. The spatial organization is based
on pseudo-randomly generated neuronal positions uniformly
distributed within layer boundaries. Connections are generated
using several 2D Gaussian probability functions describing
distance-based connectivity between excitatory and inhibitory
neurons, including recurrent connections, in different cortical
layers. The relative magnitude of the connections, as well as the
parameters of the Gaussian functions, are taken from reported
laser-scanning photo-stimulation and patch-clamp experimental
recordings (Song et al., 2005; Weiler et al., 2008; Lefort et al,,
2009; Xu and Callaway, 2009; Kitzel et al., 2011; Apicella et al.,
2012; Avermann et al., 2012; Jiang et al., 2013; Pfeffer et al., 2013;
Xue et al., 2014; Lee et al., 2015; Pala and Petersen, 2015). Leaky-
integrate-and-fire models with conductance-based synapses from
the standard NEST model library are used. To achieve resting and

functional states, neurons are stimulated by bias currents drawn
from normal distributions with optimized mean and standard
deviation parameters.

Basal Ganglia: The BG model is a topologically organized
version (Gutierrez et al., unpublished) of previous works from
Liénard and Girard (2014) and Girard et al. (2020). Fixed
parameters were defined based on biological constraints, while
free parameters were optimized against electrophysiological
recordings. The total number of neurons sum up to around
10,000 for rodents following a reference 1x Imm? cortical surface
(Table 1), with most of them being medium spiny neurons
(MSN). Neurons were spatially and uniformly organized in 2D
space. Main inputs are from cortico-striatal neurons (CSN) and
pyramidal tract neurons (PTN) in the cortex (M1 and S1) and the
centromedian/parafascicular neurons (CMPf) in the thalamus
(TH). The model considers glutamatergic excitatory inputs with
AMPA and NMDA receptors and inhibitory inputs by GABA
receptors. The model uses multi-synapse LIF neuron models
from NEST. Connections follow the same architecture as in
Girard et al. (2020), with specifications based on optimized
bouton counts, and focused or diffused axonal domains.
Simulation tests reproduced the firing rate of previous models in
the resting state.

Cerebellum: The CB model consists of two regions connected
with S1 and MI1. Each cerebellar region is a corticonuclear
microcomplex model developed in NEST based on the previous
work of Yamaura et al. (2020). The cerebellum is modeled as
seven stacked layers corresponding to 1x Imm?: upper and lower
molecular layers, Purkinje cells, granular layer, deep cerebellar
nucleus, and Pons (Eccles, 1967). The upper molecular layer was
modeled as a group of four 2D layers of stellate cells, while the
lower one as a single sheet of basket cells. Similarly, the granular
layer was composed of eight sheets of granular cells and one sheet
of Golgi cells. All other nuclei were modeled within single sheets.
Number of neurons (Table 1) for each population were defined
from previous data (Lange, 1975; Ito and Ito, 1984; Harvey
and Napper, 1991; Heckroth, 1994). The cerebellum contains
around 80% of the neurons (around 820,000 neurons) of our
full brain model. Neurons were modeled as conductance-based
leaky integrate-and-fire units, with parameters defined based on
previous studies by Yamaura et al. (2020). Excitatory synapses
were modeled as AMPA or NMDA, and inhibitory as GABA-
A or GABA-B alpha-shaped synapses. Connections were settled
according to known anatomical structures (Eccles, 1967; Apps
and Garwicz, 2005; Barmack and Yakhnitsa, 2008), using 2D
Gaussian functions for defining the spatial scope and connection
probability between neurons. Most internal parameters such as
capacitances, conductances, and synaptic weights were tuned and
tested to reproduce electrophysiological and behavioral results
on optokinetic responses, a cerebellum-dependent eye movement
task based on the previous work by Yamaura et al. (2020). On
the other hand, firing rates and synaptic weights for neurons
in Pons were adjusted to obtain the mean firing rate of mossy
fibers at 8 Hz, which resulted in reproducing plausible resting
activity patterns. At that regime, granular cells revealed different
temporal activity patterns, with random repetition of transitions
between burst and silent states.
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FIGURE 4 | The cortico-basal ganglia-cerebellar-thalamic (CBCT) model of the rodent brain. The model includes the cortex (S1, M1), the basal ganglia (BG), the
cerebellum (CB), and the thalamus (TH). Within each region, neural populations are topologically organized in 2D-layers of 1x1 mm?, with dots on their surface
indicating the spatial allocation and density for each neuron type. Only main inter-regional connections are displayed for clarity. Layers in green correspond to the
interface between different regions or simulated input, which are implemented using NEST’s parrot neurons that just relay incoming spikes to multiple targets.

Thalamus: The TH model (Igarashi et al., unpublished)
consists of two regions, ventral lateral nucleus and ventral medial
nucleus, connected with M1 and S1, respectively. The individual
thalamic nucleus is composed of excitatory and inhibitory zones
receiving inputs from the cerebellum and basal ganglia. Each
region-zone contains 1024 excitatory thalamocortical cells, 1024
inhibitory interneurons, and 1024 inhibitory thalamic reticular

cells, arranged in a unit size corresponding to 1x Imm? of the
cerebral cortex. Thalamocortical cells and two types of inhibitory
neurons are mutually connected, with no excitatory recurrent
connections among thalamocortical cells.

Inter-regional connections: Inter-regional connections are set
as topographic connections between two neural sheets. Major
inter-regional pathways include: M1 L5A to BG Striatum, S1
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FIGURE 5 | Resting-state of the CBCT circuit (Gutierrez et al., 2020). Spike rasters (right) and mean firing rate (left) per neuron type (thalamus activity is not displayed).

L5A to BG Striatum, BG GPi/SNr to TH, M1 L5B to CB Pons, = major challenge when integrating different models is to guarantee
S1 L5B to CB Pons, CB deep cerebellar nucleus to TH, M1 L6  their optimized activities are maintained after combination. For
to TH, S1 L6 to TH, TH to L2/3 MI, and TH to L4 S1. A  instance, in the basal ganglia model, inputs from cortical models
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(M1 and S1, layers L5A and L5B) were adjusted to match
the firing activity of PTN (pyramidal track neurons) and CSN
(cortico-striatal neurons) inputs from Poisson spike trains used
on the optimization of the isolated model. NEST’s parrot neurons
(models that just relay incoming spikes to their targets) were used
to gradually replace Poison-based neurons by M1 and S1 based
neurons. Thus, inputs involved in inter-regional connections
were adjusted to those used on individual optimizations, using
or not using parrot neurons on the connections.

4.2.2. Resting-State Activity

In order to reproduce resting-state neural activity that is
simulated in this benchmark experiments, Poisson noise
generators and constant current inputs were optimized
to reproduce the average firing rates of individual neural
populations based on physiological data (Figure 5). In S1, M1,
and TH, neurons showed low-rate and irregular firing. Layers
5 and 6 in S1 generated gamma oscillation of around 40 Hz.
Similarly, M1 bottom layers displayed oscillatory behavior. GPe
and GPi/SNr in BG showed high-rate firing while others were
kept low. In CB, Purkinje cells exhibited regular firing patterns,
whereas granule cells emitted spikes sparsely. We acknowledge
that the spiking activities of few neural populations could be
slightly higher. While this model is a first version of the CBCT
model used for benchmarking of the architecture presented here,
a future release of our model aims to improve firing activities as
well as other metrics.

4.2.3. Embodied Simulation

The multi-region brain model is embodied into a simulated
rodent musculoskeletal model and a virtual environment in the
NRP. We replicate the physical experiment platform introduced
in Mathis et al. (2017) as a simulation model in silico in the
Neurorobotics Platform. In this model, the animal is held in
place, rewarded by a Lickometer, and is able to manipulate a
joystick to which additional forces can be applied via a linear
solenoid magnet. We modeled a rodent housing, Lickometer
and joystick in the Neurorobotics Platform using the Robot
Designer® plugin for Blender as part of the Neurorobotics
Platform design tools. The joystick was connected to the world
with two revolute joints representing two degrees of freedom.
The mouse manipulated the joystick with its left forelimb, while
a small effort of —0.001 Nm is applied to the joystick joint.

For the musculoskeletal system, we adapted a rodent
simulation model that has been used in a stroke rehabilitation
study in the Neurorobotics Platform recently (Vannucci et al,
2019; Allegra Mascaro et al., 2020). The skeleton thereof was
modeled according to anatomical data and scans, and is an
early version of the fully parameterized rodent model presented
in Ramalingasetty et al. (2021). We anchored the rodent body
model to the experimental apparatus, leaving only three moving
segments of the left forelimb capable of movement: humerus,
ulna/radius and the foot. Body and humerus were connected via
two revolute joints, humerus and ulna/radius via one revolute
joint and the foot was attached to the joystick via a ball joint

Shttps://github.com/HBPNeurorobotics/BlenderRobotDesigner

with 3 degrees of freedom. With this configuration, the mouse
was able to move the joystick in the forward/backward and
lateral/medial directions. The skeleton was simulated as a rigid-
body simulation with the Simbody multibody physics engine in
Gazebo. We added 8 muscles to the forelimb joints, 2 for every
rotation axis, with 2-5 muscle pathpoints each. Muscles were
simulated with the OpenSim muscle implementation (Delp et al.,
2007) and modeled with type “Millard2012EquilibriumMuscle”
as described in Millard et al. (2013). Every muscle was actuated
in normalized range [0,1]. Figure 6 illustrates the overall setup
rendered in the Neurorobotics Platform frontend.

For the benchmark experiments in this study, we set up a
naive representative brain-to-body connection. We connected
one layer, the elongated neuroglia form cells of the motor cortex,
to three muscles of the rodent model. For this we made use
of spike sinks that read out the membrane potential of a leaky
integrate-and-fire neuron with infinite threshold and connected
to all neurons of the given population, and apply it as muscle
activation signal. We also instantiated spike sinks for all layers in
M1 and logged the corresponding voltages in the NRP frontend
console for inspection. Additionally, we created spike sources
consisting of Poisson neurons connected to all neurons of the
given population for three layers of M1 including the elongated
neurogliaform cells.

A base activation was sent to all muscles for the first 5
simulation steps (corresponding to 0.1s of simulation time)
to stabilize the biomechanical model. Additionally, all spike
sources including the source to the elongated neurogliaform
cells of the motor cortex were set with a spike rate of 0 in
every iteration. After 5 simulation steps, the clipped voltage
readout of the elongated neurogliaform cells was applied as
activation value to three muscles continuously (muscle activation
in range [0,1]). Reaching 25 simulations steps (0.5s simulation
time), we feed a rate of 5000.0 into the Poisson generators
representing the spike source of the elongated neurogliaform
cells. As a result, spike activity in this layer rose and the brain
layer readout devices transmitted an increased muscle activation
to the aforementioned three muscles. The overall experimental
procedure resulted in a loose stabilization of the joystick in the
first 25 simulation steps (0.5s of simulation time), followed by a
forward motion of the rodent leg pushing the joystick forward as
a consequence. Starting after 5 simulation steps a status message
was shown in the frontend to indicate the current state of network
input activation repeatedly to the user.

5. BENCHMARK EXPERIMENT
PROCEDURE

We ran the benchmark experiments on the XC40 multicore
compute nodes of Piz Daint®. Each node of this partition is
equipped with two Intel® Xeon® E5-2695 v4 18-core CPUs
running at 2.10 GHz (2 x 18 cores, each having 2 virtual cores)
and 120 GB of RAM. All experiments were executed with

Ohttps://www.cscs.ch/computers/piz-daint/
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the Neurorobotics Platform version 3.2 and NEST version 3.0
(Hahne et al., 2021).

We executed one NEST process per CPU using all 36 (virtual)
cores, hence at most two NEST processes per compute node.
Every experiment ran for 1s of simulation time (assigned as a
timeout to every experiment), consisting of 50 CLE step times
of 20ms each (meaning that data between body and brain was
exchanged every 20ms in simulation time). We carried out a
series of benchmark experiments, starting with a single NEST
process and scaling up to 64 processes, doubling the process
number at each run. At the beginning of every benchmark series,

we requested 33 compute nodes (1 NRP node, 32 NEST nodes)
to ensure all runs in the same series that included a variable
number of NEST processes were executed on the exact same
node allocation. Every benchmark series was repeated multiple
times with a new node allocation every time. Hereafter, we report
the first 8 successful repetitions of every benchmark experiment.
For reproducible experiment execution, we instantiated the NRP
NEST setup with scripts directly on a Piz Daint login node.
This experiment procedure allows us to access and collect all
recorded performance data from different sources directly. After
launching the framework, the NRP experiment was controlled
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from the main script via the NRP Virtual Coach. The experiment
procedure is presented in the pseudocode below:

for nunber of benchmark repetitionsdo
Sal | oc -
NRP -
SSH - Set up SSH tunnel
fornunber of NEST tasks n = 2/ do

Request Piz Daint job with 33 nodes
Launch backend contai ner on conpute node #1
from NRP backend to frontend

into NRP storage

NEST - Launch NEST with n processes on n/2 cluster nodes
Virtual Coach - Inport benchmark experi nent
Start experinent runtine timer
Virtual Coach - Launch NRP benchnmark experi ment
Virtual Coach - Start NRP benchmark experi nment
while Experi ment is runni ngdo
Virtual Coach - Wait for experinment to be finished
end while

Stop experiment runtine tiner
Virtual Coach - Save CLE profiler

Sacct - Save job performance data
Virtual Coach -
end for
end for

After every experiment we collected performance data from
the NEST Server (neural network creation time, connection
time and duration of last simulation step), the NRP CLE
profiler (brain/robot/transfer function step times) and Slurm
workload manager (memory and energy consumption). The
total experiment runtime was tracked manually as shown in
the pseudocode and the real-time factor was calculated as the
quotient of CLE step simulation time to real time, whereas the
CLE real time was taken to be the mean value of all CLE step
times except the first one (indeed, the first CLE step executes
initialization procedures, hence is significantly larger and does
not reflect the CLE step time of the overall experiment). The
code to run the benchmark and the results presented in this
paper can be found in the GitHub repository https://github.com/
HBPNeurorobotics/nestserver_benchmarks.

6. RESULTS

We first executed and evaluated the HPC Benchmark experiment
based on random networks without brain to body connection,
and afterwards ran the multi-region rodent brain model
with connection to the musculoskeletal rodent model. For a
succeeding comparison between the benchmarks we added a
third configuration that is a subset of the embodied multi-region
rodent brain experiment with only the motor cortex as the
brain model. This configuration shall not represent a biological
simulation, but instead serves purely as a benchmark since a
midsize brain in connection with the musculoskeletal model
provides additional insights for the distribution of computation
required for the simulation of brain and body.

Diagrams showcasing the compute node scaling use
logarithmic scaling on the x-axis. We also present a linear
expectation starting from the first point as the mean of all
first data points without outliers that are not in range mean

performance data
NEST - Save network perfornmance data

Del et e benchmark experinent from NRP storage

+12%. The CLE profiler times represent a random benchmark
repetition (here, the 4th), the y-axis is clipped as the initialization
step takes significantly longer than usual runtime executions.

6.1. HPC Random Balanced Network

Benchmark

The HPC Benchmark showed good repeatability with only
a small variance between the benchmark runs. The runtime
(Figure 7) could be reduced exponentially close to the linear
expectation from about 500 to about 40 s, more than 12 times
faster, when increasing the number of NEST processes from 1
to 64. The real-time factor increased exponentially first, but only
up to about 8 processes; with more than 16 NEST processes a
partial saturation appeared that resulted in an increase of the real-
time factor up to 64 processes, albeit with a smaller slope. Overall
the real-time factor could be increased from around 0.0036 to
0.150, a factor of more than 40. The NEST procedures scaled very
well generally. The time required to build the network in NEST
(i.e., creating and connecting nodes, Figure 8A) scaled nearly
linearly. Simulation time (Figure 8B) scaled supra-linearly, but
reached the same time performance as a linear scaling would
have with 64 processes. Scaling up from 1 to 64 processes, the
network building time could be reduced by a factor of about
61 and the time to simulate a brain step by about 60. The
maximal memory required by a single HPC node (Figure 8C)
could be reduced nearly linearly, from a maximum resident
set size of about 87GB down to approximately 2.5GB. Along
this scaling the amount of consumed energy (Figure 8D) did
not increase linearly, but only by a factor of about 12 from
104k] up to 1,200k]. We observed that the three procedures
of brain, robot and Transfer Function execution (Figure9) all
have an initial simulation step that takes significantly longer
than the usual step time and hence is not considered in our
analysis. In line with expectations, robot and Transfer Function
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execution step time varied over time but were not affected by
the experiment parallelization. We observed a decrease of brain
simulation time with increased numbers of NEST processes,
with a slight overshoot in the first simulation steps and then
stabilization at a mean value. As the robot and transfer function
step times are relatively low in contrast to the brain execution,
the latter one prominently defines the experiment runtime speed.
Overall, the HPC Benchmark scales well, in most aspects nearly
or supra-linearly, the one (beneficial) exception being the less-
than-linear increase of consumed energy.

6.2. Embodied Multi-Region Rodent Brain

The increased network size in the embodied multi-region rodent
brain experiment compared to the balanced network benchmark
(only 0.6 times the number of connections (1,588,456,283 vs.
2,531,475,000), but 4.8 times more network nodes compared to
the balanced network benchmark (1,089,147 vs. 225,001) resulted
in a larger overall experiment runtime as well as individual step
execution times. The total runtime of the experiments showed a
higher variance in repetitions (Figure 10) compared to the HPC
Benchmark, which can be partly attributed to the larger execution
times in general, and shows less than linear duration decrease
but still a big improvement in time. The execution runtime could
be reduced from about 600s down to about 100s, with two runs
decreasing the runtime only down to about 200s during scale-up.
Experiment runs that lasted longer usually took longer runtime
in all node configurations in comparison to mean runtimes.
The real-time factor of the experiment increased however only
slightly and saturated using about 32 NEST processes, with
a small decrease with 64 processes. This real-time factor was
improved from about 0.0069 to 0.0480 (for 32 processes) during
the scale-up, a factor of around 7. NEST procedures scaled
exponentially (Figure 11), the simulation time (Figure 11B)
close to linear, building time (Figure 11A) with a somewhat
flatter decrease. The network building time could be sped up by

a factor of more than 17 and the time for the last simulation step
by a factor of about 30. The required memory did scale close to
linear (factor of 17) to the number of nodes, and the consumed
energy again increased far less than linearly, from about 120 kJ up
to 1,450 kJ, by a factor of about 12 (Figures 11C,D). In contrast
to the HPC Benchmark with balanced networks, execution times
for robot and transfer functions changed over time (Figure 12),
along with the scripted experiment procedure. We could clearly
see an increase of computation time required by the Transfer
Functions when a layer of the motor cortex was addressed with
even a fixed spike rate of 0 after 5 execution steps. Changing the
input rate to a higher value at 25 CLE steps did not have an impact
on the execution time. We observed that the Transfer Function
execution time increased slightly when scaling the experiment up
to 64 NEST processes running on 32 different compute nodes.
However, the execution time of Transfer Functions was still low
compared to the brain execution time.

The robot execution time increased up to about 0.08s,
reaching the highest values at around 25 simulation steps. It
decreased afterwards at about 27 simulation steps and remained
at a relatively low value of around 0.02s until the end of the
benchmark time being 50 simulations steps. Brain step execution
times showed less variability compared to the balanced network
benchmark experiment, and were much higher in general than
robot and Transfer Function execution times. Overall, the
embodied multi-region rodent brain benchmark did not scale
as well as the HPC Benchmark and showed more variability in
terms of execution times. However, regardless of the network size,
nearly all inspected timings still scaled close to linearly in relation
to the number of nodes, which thus can be taken to speed up the
experiment execution and decrease its runtime significantly.

6.3. Comparison
In order to optimize the experiments at scale, it is important
to examine where the largest potential for improvements is,
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linearly. The time to simulate the last brain step (B) scales even supra-linearly with 2-32 NEST processes. Similarly, the required memory per compute node (C)
reduces close to linear, but the total energy consumed (D) by all tasks is only 12 times more for 64 NEST processes compared to 1 process.
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FIGURE 9 | HPC Benchmark CLE profiler times. Robot (B) and transfer function (C) execution times do not change during the scaleup, as they are not parallelized
and just run on the first compute node in the allocation. Both are neglectable compared to the brain step time (A) that runs faster with additional compute nodes. The
first timestep includes additional initialization procedures and hence takes significantly longer than the usual runtime step time, in the diagrams we clip the y-axis for
better visibility of the relevant runtime data.

and what the costs related to scaling up execution will be.  aswell as consumed node hours for all executed experiments and
Therefore, we inspected the brain-to-robot compute time ratio  executed a third benchmark run that consisted of the embodied
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multi-region rodent brain setup, but with only the motor cortex
as an active brain region.

In the NRP, at every CLE simulation step both robot and brain
simulations are executed in parallel, and only after completion
of these steps are Transfer Functions executed to process
information to be communicated between both simulations.
Obviously, when either one of the robot or brain simulation
takes consistently longer to execute than its counterpart, that
component becomes the target for optimizing the overall NRP
simulation. In the top part of Figure 13, the ratio between brain
and body simulation step time is visualized; times are mean
values over all 8 benchmark repetitions. As both simulations are
executed in parallel, the most efficient performance is achieved
with both having the same execution time. For all experiments
reported herein, the brain simulation step took longer than
the robot simulation step. With our distributed architecture the
ratio between the parallelized brain simulation step time and
the (shorter) robot simulation step time improved as the brain
simulation step time was reduced by distribution. This effect was
less significant for small neural networks such as the embodied
rodent brain experiment with a motor cortex only (B), but was
very relevant for the full embodied multi-region rodent brain
experiment (C) and balanced networks benchmark experiments
(A). For both these large neural networks, the ratio between the
two simulation time steps improved with the number of NEST
processes, with the best result obtained for the 64 NEST processes
we tested for these benchmark experiments. In the bottom part
of Figure 13, the required node hours for every benchmark
were calculated as the product of the pure experiment runtime,
including experiment launch and execution but excluding the
overall architecture setup and initialization, and the utilized
number of nodes. As can be seen, the number of required node
hours scaled less than linearly, i.e., exponentially but with small
increments when scaling up the utilized node number. For the
node hours of the HPC Benchmark (D) with balanced networks,

the increase was by a factor of less than 14 from about 0.14
to 0.67/1.87 (best case/worst case), whereas for the embodied
rodent brain experiment with Motor cortex only (E) it was by
a factor of less than 35 from around 0.04 to 0.71/1.39, and
for the full embodied multi-region rodent brain experiment
(F) (which consumes the most resources), the consumption
increased from 0.17 to 1.35/3.75 by a factor of less than 23. We
also observed a higher variability of number of required node
hours with increasing experiment complexity, and the embodied
rodent brain experiment with only motor cortex showing the
steepest increment.

7. CONCLUSION

In this paper, we presented a distributed architecture
for large-scale embodied simulations of spiking neural
networks, together with the results of benchmark
experiments run on our setup. We sought to develop
the software components of a future simulation service
on the EBRAINS research infrastructure, while at the
same time understanding the benefits and drawbacks
of distributing simulations across nodes of the Piz
Daint supercomputer.

For this purpose, we connected the Neurorobotics Platform
for physics simulation via a REST interface to NEST for
simulation of spiking neural networks used as brain models.
We distributed this brain simulation across multiple HPC
compute nodes via MPI parallelization, and thereby sped up
both experiment loading and execution times. The proposed
software architecture can be controlled via a browser-based
graphical user interface integrated into the NRP frontend, and
it extends across both persistent virtual machines and HPC
compute nodes. To facilitate the technical implementation, we
utilized standard tools such as Docker for containerization,
Jenkins for automated deployment, and UNICORE for HPC
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FIGURE 11 | Embodied multi-region rodent brain benchmark NEST times and workload manager characteristics. NEST network building time (A) scales up close to
linearly, NEST simulation time (B) nearly optimally linearly. Building time and simulation time shorten by factors of about 17 and 30, respectively. The required memory
per node (C) for running the experiment scales close to linearly, but the total amount of consumed energy (D) only increases by a factor of about 12.
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FIGURE 12 | Embodied multi-region rodent brain benchmark CLE profiler times. Experiment execution has an impact on step times, setting the spike ratio of a motor
cortex layer at step 5, and feeding the brain at 25 steps has a visible effect in Transfer Function (C) and robot (B) execution. Transfer Functions execute slightly slower
with scaling up the experiment, but is still small compared to the large improvement in the brain execution times (A). The first timestep includes additional initialization
procedures and hence takes significantly longer than the usual runtime step time, in the diagrams we clip the y-axis for better visibility of the relevant runtime data.

job handling. This should enable easy transfer of the proposed
architecture to other computing sites, in particular those that
are part of the FENIX research infrastructure and/or EBRAINS.

The presented setup is fully scalable, as the number of compute
nodes involved in the simulation can be user-defined, and as
multiple experiments executed on different job allocations can
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be launched simultaneously via the same front-end. Experiments
run interactively, meaning that the user can join the simulations
at any time via the web-based front-end, interact with the virtual
agent and environment, or change the configuration of e.g., brain
parameters, transfer functions and robot control.

We demonstrated the potential of our setup with two
benchmark experiments scaled up from 2 to 33 compute nodes
(1 to 64 NEST processes) using a balanced brain benchmark
simulation and a multi-region embodied rodent brain model. We
were able to speed up the total experiment execution time for
the HPC Benchmark with balanced networks by a factor of up
to 12, and for the RoboBrain experiment by a factor of about
6, thus demonstrating the potential benefits of distributing a
brain simulation over multiple nodes, especially as it gets larger.
Furthermore, the real-time factor could be improved, particularly
for the benchmark based on balanced networks. It saturated with
more than 32 nodes, however, potentially indicating that scaling-
up is not always beneficial in cases where the overhead required
for communication with all compute nodes at every simulation
step becomes significant in relation to the compute load on
each individual node. Nevertheless, the improvements we could
demonstrate with distribution in terms of real-time factor lay the
foundation for large-scale experiments that could otherwise not
be carried out interactively due to their slow execution.

With both benchmark experiments we also demonstrated that
NEST scales linearly, or near-linearly when parallelizing across
1-64 processes in terms of network building and simulation
time. Regarding the cost of distribution for the benchmark
experiments, we found that both energy consumed and compute
node hours required scale sub-linearly and hence provide a
strong argument for distributed simulations. The parallelization
of the brain simulation accounts for better usage of computation
time in our examples, as both brain and robot simulation are
executed in parallel at every simulation step in the NRP, and thus
can be better aligned with each other since the brain simulation
is consistently the limiting factor. This ratio may even improve
for a more complex rodent model physics simulation with more
muscle actuators.

When NEST is run in a stand-alone fashion, it shows excellent
scaling (Kunkel et al., 2014; Jordan et al., 2018) and is even
able to achieve sub-realtime performance for certain models
(Kurth et al,, 2022). There are several reasons why the scaling
is not at this level for the use-case presented in this article.
First, due to the synchronization between network and physics
simulation, NEST is executed in steps of 20 ms in the NRP
and such stepped simulations are inherently more expensive due
to the increased function call overhead and the fact that data-
structures have to be paged in and out much more frequently
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rather than operating on them in a more continuous way.
Second, both simulators are executed in parallel, but the data
exchange still needs to be executed sequentially, which adds
to the raw neural network simulation times. Third, we chose
a REST-based communication interface between the NRP and
NEST Server for the first version of the interface presented
here, since it is functionally complete and has successfully been
used in other contexts. This communication via text-based
data representations (JSON over HTTP) is obviously inefficient
compared to lower level protocols such as Google’s Protocol
Buffers’ or Cap’n Proto®. We are aware of this restrictions and
already working on moving to more optimized communication
methods with higher bandwidth and lower latency (e.g., Insite
framework). It is worth noting here, that the current setup will
support any future NEST improvements transparently, as long as
these do not change the NEST Server API.

Overall, we approached saturation when scaling up to
about 64 NEST processes. For the larger embodied multi-
region rodent brain experiment, this saturation was visible
with 32 processes in terms of both runtime and real-time
factors. With both benchmark experiments we demonstrated
that a scale-up to about 8 nodes could bring a significant
performance improvement in terms of initialization and runtime
of experiments, at the cost of only few additional node hours and
concomitant energy consumption. With more compute nodes,
additional improvements were possible, albeit less significantly
and at a slightly higher cost. We proved the repeatability of
our results by executing every benchmark experiment 8 times.
Even though we ran our benchmark experiments with only 1s
simulation time in order to save energy, we think it is safe to
assume that our results will scale, as we showed relatively stable
simulation execution step sizes in the CLE profiler data.

The setup we presented here is intrinsically highly scalable,
insofar as the number of compute nodes can be passed as
a parameter and can be much larger than the 33 compute
nodes used for the presented benchmark experiments. While we
simulated a multi-region brain model consisting of about one
million neurons in these benchmark experiments, a biological
mouse brain is assumed to have around 70 million neurons,
and therefore another scale-up by a factor of 70 would be
needed to simulate such a brain at the naturalistic scale. We are
currently not aware of any embodied brain simulation model
with larger scale that is implemented with the given software
tools and that we could have used for our benchmarks, but such
models are clearly part of future work. While the benchmarks
presented saturate in terms of performance with about 32 or 64
compute nodes, it has been demonstrated that NEST scales well
above that with a larger number of CPU cores (Kunkel et al.,
2014; Kurth et al., 2022). Knowing that there are 1813 available
multicore compute nodes on the Piz Daint supercomputer, we
could approach this simulation scale with our current setup with
just a parameter change—and a good budget. The Piz Daint
supercomputer also provides GPU compute nodes that are well
known for efficient parallel computing. However, Kurth et al.

7https://developers.google.com/protocol-buffers
8https://capnproto.org/

(2022) show that NEST distributed on CPU cores is faster and
more energy efficient than any neuromorphic and GPU based
simulation known to us.

A wide variety of experiments are supported with our setup,
as it easily enables one to add additional muscles for the
rodent model (e.g., a freely running mouse with additional
muscles), use a different musculoskeletal model altogether
(Human, monkey) or use NEST-based spiking neural networks to
control a robotic system. In particular, we posit that integration
of a detailed model of spinal cord circuitry with the whole-
brain model presented herein would be highly relevant in order
to investigate in silico experiments related to motor control,
neurotechnology and neurorehabilitation. The proposed setup is
therefore extremely versatile and can support research efforts in
multiple high-impact fields, such as neuroscience, robotics and
neuromorphic computing.

More generally, the present work lays the foundation to
address the scientific dimension of large-scale brain simulation
in addition to its technical one. The scientific investigation
and validation of the dynamics emerging from the interaction
of several types of neurons is indeed critical, as well as the
optimizations of the high-degree-of-freedom parameter space
of network models. Biological constraints were incorporated
in the different regions of the CBCT model; however, once
interconnected, the model as a whole requires a proper
framework for systematic simulation with additional naturalistic
constraints or boundary conditions, i.e., a body, for relevant
experimentation on cognitive and motor functions. The
reference model size defined herein in relation to the 1 x 1mm?
cortical patch provides an initial setup for starting such validation
process. However, the ultimate goal is the simulation of the full-
brain network. Previously, large-scale simulations of the CBCT
model were performed on the decommissioned K computer
(Miyazaki et al., 2012) using NEST 2, reaching a network size
of 7 x 7mm?; thus, 51 million neurons, more than a single
hemisphere of the mouse brain (Gutierrez et al., 2020). The
new NEST 3 (de Schepper et al., 2022), NRP, EBRAINS HPC
infrastructure, as well as the Fugaku supercomputer (Sato et al.,
2020), provide a promising new horizon for 1:1 scale simulations.

In summary, we introduced a versatile NRP-based setup
that supports embodied large-scale brain simulations. It can
accommodate spiking neural networks implemented in NEST
and connected to customizable musculoskeletal systems or
robotic agents. We tested it with several models of spiking
neural networks, including a highly complex multi-area brain
model, thus demonstrating the capacity of this setup for in
silico closed-loop neuroscience at scale. Importantly, it leverages
the HPC capabilities of a supercomputer while supporting
online interactivity with the ongoing simulations. With this
setup, we thus lay the foundations toward the democratization
of in silico behavioral experiments with large-scale multi-
area brain models. Indeed, the raison détre of this work
is to remove some of the main entry barriers that prevent
computational neuroscientists or neuromorphic engineers from
testing the functional capabilities of their models through
embodied simulations, and make it as easy as possible for
them to leverage HPC infrastructures without being a power
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user thereof. In order to achieve this vision, the upcoming
development efforts will focus on integrating the setup fully
into the EBRAINS research infrastructure, especially in terms
of federated user resource management and the creation of a
dedicated service account. With this, it is our hope that this
work will not be yet another attempt at simulating the brain,
but a blueprint that can be reused by many, and an enabling
technology for the concept of embodiment to gain traction in the
neuroscience community.
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Auto-Selection of an Optimal Sparse
Matrix Format in the Neuro-Simulator
ANNarchy

Helge Ulo Dinkelbach, Badr-Eddine Bouhlal, Julien Vitay and Fred H. Hamker*

Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany

Modern neuro-simulators provide efficient implementations of simulation kernels on
various parallel hardware (multi-core CPUs, distributed CPUs, GPUs), thereby supporting
the simulation of increasingly large and complex biologically realistic networks. However,
the optimal configuration of the parallel hardware and computational kernels depends on
the exact structure of the network to be simulated. For example, the computation time
of rate-coded neural networks is generally limited by the available memory bandwidth,
and consequently, the organization of the data in memory will strongly influence the
performance for different connectivity matrices. We pinpoint the role of sparse matrix
formats implemented in the neuro-simulator ANNarchy with respect to computation
time. Rather than asking the user to identify the best data structures required for a
given network and platform, such a decision could also be carried out by the neuro-
simulator. However, it requires heuristics that need to be adapted over time for the
available hardware. The present study investigates how machine learning methods can
be used to identify appropriate implementations for a specific network. We employ an
artificial neural network to develop a predictive model to help the developer select the
optimal sparse matrix format. The model is first trained offline using a set of training
examples on a particular hardware platform. The learned model can then predict the
execution time of different matrix formats and decide on the best option for a specific
network. Our experimental results show that using up to 3,000 examples of random
network configurations (i.e., different population sizes as well as variable connectivity), our
approach effectively selects the appropriate configuration, providing over 93% accuracy
in predicting the suitable format on three different NVIDIA devices.

Keywords: neural simulator, rate-coded networks, auto-tuning, code generation, CUDA

1. INTRODUCTION

Models in computational neuroscience are implemented with different degrees of biological
detail. Particularly at the systems-level, a significant subset of models incorporate dynamic
rate-coded neurons to explain emergent functions of such networks and link them to
experimental data. In such networks, neurons are connected to other neurons by axons
and synapses, whose joint effect is captured by so-called weights w; and describes in
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how far the firing rate x; of a presynaptic neuron i affects the
firing of a post-synaptic neuron j. As outlined by Dinkelbach
et al. (2012), the sum of weighted inputs w; - x;, required to be
computed at each time step, is the dominating operation in large-
scale rate-coded neural networks, well before other operations
such as the numerical integration of ordinary differential
equations (ODE). It was shown using a simplified network model
that the choice of either a multi-core CPU or a GPU (Graphical
Processing Unit) as the computing backend depends on the
network’s structure. GPU implementations were more efficient
on mid- and large-scale networks in comparison to a multi-
core CPU implementation. Dinkelbach et al. (2019) observed for
a linear rate-coded model that the network had to consist of
thousands of neurons in order to utilize a GPU effectively.

When applied on populations of neurons, the weighted sum
of synaptic inputs can be computed by a sparse matrix-vector
multiplication (SpMV) between a (sparse) matrix W and a dense
vector X which results in a dense vector

y=WxXx. (1)

The SpMV operation, which is a central kernel in many scientific
applications, is considered to be memory-bound and is impaired
by irregular access patterns to the dense vector x (e.g., Temam
and Jalby, 1992; Goumas et al, 2008; Williams et al.,, 2009;
Greathouse and Daga, 2014; Langr and Tvrdik, 2016; Filippone
et al,, 2017). While each non-zero element of W is only accessed
once in the SpMV operation, there is frequent access to X at
different positions (e.g., Williams et al.,, 2009). Depending on
the distribution of the non-zeros within a row of the matrix,
this can lead to cache misses or re-loads, leading to noticeable
performance decreases on CPUs and especially on GPUs (e.g.,
shown in Dinkelbach et al., 2012). For optimal performance,
the number of these scattered accesses should be reduced,
for example through a reuse, efficient caching (CPU-oriented
architectures) or pre-loading into shared memory (GPU) of
the dense vector (e.g., Goumas et al., 2008; Williams et al.,
2009; Greathouse and Daga, 2014). To overcome this issue,
many different formats were proposed to perform the SpMV
operation efficiently on single-core, multi-core CPUs or GPUs
(see Langr and Tvrdik, 2016; Filippone et al., 2017 for more
details). Nevertheless, understanding the efficiency of applied
optimizations can be difficult as the interaction of optimizations
with each other or the underlying hardware is hard to predict
(see Goumas et al., 2008; Balaprakash et al., 2018 for a detailed
discussion). The efficiency of a single optimization may depend
on the matrix as well as on the specific platform as demonstrated
in the work of Williams et al. (2009). However, the efficiency
of an implementation can also change by advancements made
by compilers and hardware as pointed out by Steinberger et al.
(2016).

Due to the generally unknown sparsity of a matrix, choosing
an efficient parallel implementation of the SpMV operation for a
given matrix is therefore an important and hard problem (e.g.,
Liu and Vinter, 2015b; Lehnert et al., 2016; Hou et al., 2017).
However, there exists some knowledge about which given format

is more suitable for a given matrix. For example, Vazquez et al.
(2011) and Sedaghati et al. (2015) suggest that the density of
a matrix is a guiding factor for the selection of a particular
data structure. Furthermore, as shown by Vazquez et al. (2011),
the variability of row lengths can be a relevant criterion in the
selection of data formats.

Machine learning methods received increasing attention for
the tuning of implementations at various levels, including the
selection of code variants, parallelization strategies, or even
complete algorithms (see Balaprakash et al., 2018 for a recent
review). Modern multi-core CPUs and GPUs in combination
with compilers offer a rich possibility for programmers to adapt
their code to increase performance. Therefore, the possible
search space even for relatively simple operations can reach
millions of configurations (e.g., as shown by Datta et al., 2008;
Ganapathi et al.,, 2009 for the stencil operation). Auto-tuning
methods considering the SpMV operation were investigated
for single-thread, multi-core as well as GPU configurations
either using hand-tuning (e.g., Choi et al., 2010), heuristics
(e.g., Whaley et al., 2001; Sedaghati et al., 2015), or machine
learning methods (e.g., Ganapathi et al., 2009; Benatia et al.,
2018; Pichel and Pateiro-Lopez, 2018; Chen et al., 2019). As
hardware and algorithms steadily evolve, it is important to
integrate auto-tuning principles inside the specific application.
Such an integration allows to adjust the build process considering
the target platform (Balaprakash et al., 2018).

The present article shows that implementing different sparse
matrix formats in a neural simulator can improve the overall
performance of rate-coded neural networks. We present a two-
stage heuristic already embedded in our neural simulation
framework ANNarchy (Artificial Neural Networks architect,
Vitay et al., 2015). We also demonstrate that the performance
can be improved by integrating machine learning methods. This
should help developers of neural network models selecting a
suitable data structure representation for their specific network.

2. RELATED WORK
2.1. Sparse Matrix Formats for SpMV

As outlined in the introduction, the SpMV operation has been
thoroughly investigated and several sparse matrix formats have
been proposed. The following collection of formats is just a short
overview and by no means exhaustive. For more details, refer
to the reviews of Langr and Tvrdik (2016) and Filippone et al.
(2017).

Probably the most common and well-known format is the
compressed sparse row (or Yale) format (CSR). The non-zeros
of each row are stored in two arrays (one for the column indices
and the other one for the values). The start and stop indices of a
row are stored in a row pointer array. The ELLPACK/ITPACK
format (Kincaid et al., 1989) was intended to be efficient for
vector processors. This format decomposes the non-zeros into
two dense matrices whose dimensions are number of rows times
the maximum number of non-zeros within a row, one matrix
representing the column indices, the other the values. If the
matrix has heterogeneous row lengths, non-existing entries need
to be marked by a neutral element, which likely creates a large
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FIGURE 1 | Schematic representation of the compressed sparse row (CSR), ELLPACK, and ELLPACK-R formats derived from a dense matrix. The CSR format
comprises three dense vectors: a row_ptr array where the begin and end of subsequent rows are encoded. These indices are needed to select the correct values
from the column index and value array. Contrary to CSR, in ELLPACK/ELLPACK-R the column indices and the values are encoded in dense matrices. The
ELLPACK-R has an additional row-length (rl) array to encode the row lengths to spare the index checking.
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memory overhead. This format is considered as GPU-friendly
if the dense matrices are stored in column-major! order (Bell
and Garland, 2009; Vizquez et al., 2011). Vazquez et al. (2011)
proposed an extended version, ELLPACK-R, which introduces
an additional row-length array to encode varying row lengths
instead of checking each matrix entry with an if-clause. An
overview of the different sparse matrix formats is depicted
in Figure 1.

2.2. ANNarchy

The ANNarchy neural simulator is written in Python and
intended for the simulation of biologically detailed neural
networks. The equation-based interface of ANNarchy allows
a flexible and easy definition of the neuron and synapse
models (Vitay et al., 2015). Using an automatic code generation
approach, the model description is transformed into C++ code
allowing the use of parallel programming frameworks such as
OpenMP for multi-core CPUs or CUDA for GPUs for the

'This means that the data of a column is stored continuously in memory instead
of storing a row continuously (which is referred to as row-major).

efficient implementation of rate-coded and spiking models (Vitay
et al., 2015; Dinkelbach et al., 2019).

The current version 4.7.1.1 of ANNarchy provides several
sparse matrix formats for the computation of rate-coded neural
network models. In addition to the already existing list-in-
list/compressed sparse row implementation (as described in
Dinkelbach et al., 2012), an ELLPACK/ITPACK (Kincaid et al,,
1989; Vazquez et al., 2011) and a dense matrix format have been
added, which will be evaluated in Section 4. ANNarchy also
implements a Hybrid format as described by Bell and Garland
(2009) and a blocked sparse row (BSR) format as described by
Verschoor and Jalba (2012) and Eberhardt and Hoemmen (2016),
but preliminary tests have shown that those formats are not
performing well in comparison to the others on the dataset used
in this work, so they are omitted for the present article. We
hypothesize that the structure of the matrices in our dataset, i.e.,
a relatively homogeneous row length (for Hybrid) and a high
scattering across the matrix (for BSR), are limiting factors for
these data formats.

Further, we extended our code generation approach to allow
auto-vectorization (using compiler hints e.g., #pr agnma si nd)
for the continuous neural and synaptic state updates by
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reordering the code to reduce the number of branches. We
introduce for continuous transmission an implementation using
AVX-512, AVX and SSE4.2 instructions® to address most of the
currently available CPU architectures.

2.3. Auto-Tuning Methods

As outlined by Balaprakash et al. (2018), auto-tuning in high-
performance computing is utilized at various levels within an
application. Many of these works/ideas are conjuncted with
highly optimized libraries like ATLAS® (Whaley et al., 2001),
SPARSITY (Im et al., 2004), or OSKI (Vuduc et al., 2005). These
frameworks are often not limited to the SpMV operation but
implement a set of operations from the basic linear algebra
(BLAS) routines. This is in contrast to optimized libraries such as
cISpMV (Su and Keutzer, 2012) or SMAT (Li et al., 2013) which
only focus on the SpMV operation. From our perspective, there
are two types of approaches that are of special interest.

First, hand-tuning of a specific format is probably the most
common approach, where data structures are adapted to the
algorithm or processed data. Some examples are the CSR-like
(Hou et al,, 2017), ELLR-T (Vézquez et al., 2012), BCSR (Choi
etal., 2010), BELLPACK (Choi et al., 2010), and sliced ELLPACK
Kreutzer et al. (2014) data structures. Especially for GPUs arise
the question of load balancing, i.e., how many threads should
be used and how many blocks should be used for computation
at the same time. The effect of the block size can already vary
noticeably on a single example as demonstrated by Eberhardt
and Hoemmen (2016). The performance was most consistent on
a Sandy Bridge CPU in comparison to a GPU and a Xeon Phi.
Guo and Wang (2010) proposed a model-driven approach for the
fine-tuning of the blocked CSR and blocked ELLPACK format to
tackle this issue.

The second class of approaches is the selection of a suitable
format for a given matrix, as investigated by Li et al. (2013),
Greathouse and Daga (2014), Sedaghati et al. (2015), or Benatia
et al. (2018). The main idea is to derive the decision based on
a set of features. The mapping of features into a decision can
be based on either heuristics or machine learning methods. For
instance, Lehnert et al. (2016) have shown that performance
prediction using machine learning methods can outperform
explicit performance models. The predicted computation time is
then used to derive the matrix format decision. In the present
manuscript we will follow the second class of approaches, more
precisely the work of Lehnert et al. (2016) and Benatia et al.
(2018), using regression techniques to predict the performance
of a sparse matrix format applied on a given matrix.

3. METHODS

Our focus is to develop an efficient tool that can predict
with high accuracy the suitable format for each connectivity
matrix of a specific neural network. In the following, we

2We use SIMD intrinsics which should not be confused with actual inline assembly
(for more details, see: https://www.intel.com/content/www/us/en/docs/intrinsics-
guide/index.html).

3Project homepage: http://math-atlas.sourceforge.net/.

propose two methods for matrix format selection: The first
is based on a simple heuristic (Section 3.1) and the second
uses a machine learning model (Section 3.2) for predicting the
appropriate format.

3.1. Two-Stage Heuristic for Format

Selection on GPUs

We followed the idea of Sedaghati et al. (2015), who analyzed the
obtained GFLOPS (floating operations per second, see Section
4 for a more detailed description) on several matrices for
potential correlations. In their work, they showed that a quite
good heuristic can be based on the fraction of non-zeros. We
are going to compare three available implementations: the CSR
format using an updated version of the algorithm presented in
Dinkelbach et al. (2012), the ELLPACK-R presented in Vazquez
etal. (2011) as well as a dense matrix representation.

There are several factors influencing the performance
achieved with a given implementation on GPUs. One crucial
fact is to ensure coalesced memory access toward accessed data
(e.g., Bell and Garland, 2009; Dinkelbach et al.,, 2012; Yavuz
et al, 2016). A memory access is considered as coalesced if
all threads within a half-warp* can use the data loaded from
a 32-, 64-, or 128-byte segment (Bell and Garland, 2009). One
key difference between the implementations of the SpMV using
CSR and ELLPACK-R is that they are parallelized over different
dimensions: while our CSR implementation computes one row
per warp, a warp in ELLPACK-R computes a set of rows at the
same time.

Considering these different computation patterns and the fact
that a dense matrix is efficient for densely packed matrices, one
can obtain a simple decision tree as depicted in Figure 2. The
decision is two-fold: first we decide based on the matrix density,
i.e., the ratio of nonzeros to the total number of elements in
the matrix, whether the density is greater than a threshold. The
matrix is considered as dense in this case. Otherwise the average
number of non-zeros in a row (avgnzr) is considered. If this
value is lower or equal to 128, the ELLPACK-R format is selected,
otherwise CSR is chosen. The threshold for the first decision
stage is derived from observations made on the experiments
shown in Section 4.1. However, these observations should be
verified if they generalize, therefore we also analyzed the 3,000
data points generated for the machine learning model (as shown
in Supplementary Material, Section 3) and confirmed that the
threshold of 60% is appropriate for this decision stage. The
threshold for the second decision stage is based on theoretical
knowledge about the computation patterns. The threshold should
be chosen as a multiple of the warp size to ensure a full utilization
of the computation blocks. We analyzed the performance as
a function of the average number of non-zeros in a row (see
Supplementary Material, Section 3) and derived the value of
128 as suitable decision threshold for our dataset. However, the
analysis also suggests that this threshold could be fine-tuned to

4A warp is a group of 32 CUDA threads which process a given set of instructions
at the same time. Even though they can proceed in the code concurrently, the
efficiency rises if their execution does not diverge (Bell and Garland, 2009).
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FIGURE 2 | Two-stage heuristic for the matrix format selection on GPUs. The threshold values for both decision points were selected based on the analysis of our
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a specific CUDA device to achieve an optimal performance of
the heuristic.

3.2. Format Selection Using Machine

Learning

The heuristic approach is limited, as it is difficult to identify
differences arising from the execution of a given implementation
on different devices (see Section 4.2). To be efficient on diverse
devices, one would need to fine-tune the decision parameters for
each device. Therefore, it would be useful to have an automatic
selection which can be adapted through machine learning to data
obtained from each device.

The implementation of the prediction model requires three
general steps. The first step is made offline and consists in
generating the dataset necessary for the training and testing of the
model. The second step is also offline and consists in training the
model and testing it. The last one is online and consists of using
the model and performing predictions that help in selecting the
most suitable format.

3.2.1. Creation of the Dataset

For our benchmark, we follow a scheme similar to Dinkelbach
et al. (2012). We create two populations in ANNarchy. The
population sizes were randomly chosen from a fixed set of
sizes within the range of 1,000-20,000 neurons. We create
a projection between those two populations, which will be
referred to as the connectivity matrix in this section. For the
creation of this matrix, we either use a random probability (in
the range of 1-100%) or a fixed number of entries per row
(ranging from 128-4,096 entries). Using this scheme, we create
3,000 different network configurations. Each network is then
generated, compiled and simulated for 1,000 steps using each
data structure (in this case the CSR, ELLPACK-R and dense
matrix formats). At the end of this procedure, we obtained
3,000 data points which consist of a list of features (described

in the next section), the achieved computational time for each
of the three formats and the format which would be chosen by
the heuristic.

3.2.2. Feature Selection

The computation time of a rate-coded network heavily depends
on the number of connections between the different populations.
Since these various connections are structured in the format of
sparse matrices, we focus on the properties of this particular
type of matrix to define the relevant input features to the auto-
tuning network. We derive for the matrices the features depicted
in Table 1.

This set of features is a subset of features which are typically
used in the SpMV auto-tuning literature (e.g., Li et al.,, 2013;
Lehnert et al., 2016; Benatia et al., 2018; Chen et al., 2019).
In particular, the work of Lehnert et al. (2016) and Benatia
et al. (2018) suggests that the set of features used to detect
a format depends on the format itself. For instance, we left
out the difference between the maximum number of nonzeros
(MAXNZR) and the average nonzeros per row (AVGNZR)
as our preliminary experiments indicated that this feature is
not helpful on our dataset. Considering the work of Vazquez
et al. (2011) and Benatia et al. (2018), we believe this feature
is a helpful indicator for the Hybrid format which is not
used in the present work (see Section 5 for more details) and
thus we omit this criterion. Li et al. (2013) proposed two
additional values to characterize diagonals in matrices which
might indicate the usage of diagonal formats. It is worth
noting that not all approaches use such features. Pichel and
Pateiro-Lopez (2018) use for example, an image-like tensor
to represent the features of the connectivity matrix which is
scaled down to be used as input to a convolutional neural
network (AlexNet, Krizhevsky et al., 2012) to derive the optimal
matrix format.
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TABLE 1 | A set of features used to characterize the sparse matrices.

Features Description

N Number of rows in the matrix

M Number of columns in the matrix

NNZ Number of nonzeros in the matrix

DES Density of the matrix

AVGNZR Average number of nonzeros per row
MINNZR Minimum number of nonzeros per row
MAXNZR Maximum number of nonzeros per row

TABLE 2 | Best network configurations found by the Optuna library within 150
trials for each dataset.

NVIDIA K20m NVIDIA RTX 2060 NVIDIA RTX 3080
Normalization 7 7 7
Dense 119 124 155
Dense 187 195 86
Dense 199 105 85
Dense 96 127 150
Dense / / 66
Output 3 3 3

3.2.3. Machine Learning Model
The machine learning model is implemented using the
TensorFlow (Abadi et al., 2016) library version 2.6.2°. The fully-
connected feedforward neural network consists of an input layer
with seven neurons representing the features (as discussed in
Section 3.2.2), a feature normalization layer, a number of hidden
layers and one output layer with three neurons. Each of these
neurons represents a possible data structure: CSR, ELLPACK-
R, and dense. The output of these neurons, i.e., the predicted
performance for a given network in GFLOPs, is then read out to
determine the fastest configuration. The hidden layers consist of
rectified linear units (ReLu) and the number of layers as well as
the number of units in each layer is determined by Optuna (Akiba
etal,, 2019), a Bayesian optimization library for hyper-parameter
optimization used in many machine learning workflows. The
search space is here the set of possible configurations, in our
case the number of layers from 2 to 5 (motivated by the work
of Benatia et al. (2018) who identified four layers as optimal
for ELLPACK and five as optimal for CSR on their dataset),
the number of neurons in each layer (64-256) and the learning
rate (le-7 to le-2). The objective function provided to Optuna
is the test accuracy, an average resulting from a 5-fold cross-
validation (see Section 4.4.1 for more details) without repetitions.
We configured Optuna to perform 150 trials for each of the three
datasets (i.e., the three CUDA devices considered in this work)
and the obtained best configurations are depicted in Table 2.
The optimizer is Adam with the default parameters and the
learning rate is determined by Optuna. The loss function is the
mean squared error (mse), as this is a regression problem.

Shttps://doi.org/10.5281/zenodo.5645375

4. RESULTS

All the experiments were performed using the ANNarchy 4.7.1.1
release®. The measured computation times are recorded with
the Python t i me package. When we analyze the performance
in this section, we evaluate the execution of 1,000 steps within
the ANNarchy neural simulator. As the populations are not
defined by means of equations, the simulation time is almost
equal to the execution time of the SpMV. We use in this article
FLOPS (floating operations per second) as a metric to evaluate
the performance, which is used commonly across the SpMV
literature. This value is computed for a given data structure based
on the measured computation time ¢ in seconds for the 1,000
iterations (as mentioned in Section 3.2.1) and the number of
nonzeros (nnz) in the matrix:

2 x 1,000 x nnz

FLOPS = —————— )
The factor 2 comes from the fact that the SpMV requires one
multiplication and one addition for each non-zero value. For
an easier handling of the values, we transform then FLOPs
to GFLOPs (giga-FLOPs). Langr and Tvrdik (2016) suggest to
choose compiler flags for performance comparisons in order
to achieve the best possible performance. The ANNarchy
framework was therefore configured to use the optimization
flags -march=native’ -O3% -ffast-math® for the g++ compiler to
enable typical optimizations. The CUDA compiler is configured
without further compiler flags as -O3 is automatically enabled for
device codes!?. For a more detailed discussion on the effect of
-ffast-math and the CUDA compiler counterpart —use_fast_math
we would like to refer to Supplementary Material, Section 4.
The following sections will compare the performance achieved
on three NVIDIA devices: a K20m, a RTX 2060, and a
RTX 3080. Some hardware characteristics are provided in the
Supplementary Material, Section 1.

4.1. Dense vs. Sparse Matrix Formats

Sparse matrix representations require a memory overhead to
index the elements of a matrix (e.g., row pointers). When
the matrix becomes denser, it may become inefficient to
use a sparse matrix representation instead of a dense one
(see Supplementary Material, Section 2 for more details). To
illustrate this, we define a 2,000 x 2,000 matrix with varying
sparsity levels ranging from 10% to fully-connected. We compare
the achieved throughput in GFLOPs averaged across 15 runs for a
single thread on a AMD Ryzen 7 2700X CPU (Figure 3) and three
different NVIDIA devices (Figure 4). The CSR data structure
(blue), the dense format (orange) and a format selected by the
heuristic (green) are compared.

Chttps://doi.org/10.5281/zenodo.6417924

7The march flag let the compiler generate the code for a specific CPU architecture.
Providing native let the compiler determine the CPU automatically. For more
details, see https://gcc.gnu.org/onlinedocs/gcc/x86- Options.html.

8For more details, see https://gcc.gnu.org/onlinedocs/gec/Optimize- Options.html.
For more details, see https://gcc.gnu.org/wiki/FloatingPointMath.
Ohttps://docs.nvidia.com/cuda/cuda- compiler- driver- nvec/index.html#ptxas-
options-opt-level
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FIGURE 3 | Comparison between a dense matrix representation and the compressed sparse row format on a AMD Ryzen 7 2700X using a single thread. We depict
the achieved performance in GFLOPs as a function of matrix density (A). In this setup we compare a 2,000 x 2,000 matrix with varying density levels and compare a
CSR (blue) and dense (orange) implementation. We compared additionally the improvement by a hand-written AVX implementation (dashed line). The gained
improvement by this implementation is depicted in (B).

For the CPU (Figure3A), we can see that the GFLOPs
are almost constant for the CSR format, i.e., the computation
time increases linearly with the number of non-zeros in the
matrix, while the contrary applies for the dense matrix as the
computation time is not dependent on the number of non-zeros:
the achieved GFLOPs are low for sparse matrices and increase
with the matrix density. As outlined in Section 2.2, we added also
hand-written vectorization using AVX on the AMD Ryzen7 CPU.
The results for the vectorized implementations are depicted in
Figure 3A as dashed lines. The relative improvement provided by
the vectorization is also depicted as a bar graph in Figure 3B. We
can see that the improvement is below the theoretical maximum
which would be four for double precision on an AVX-capable
CPU. The reduced efficiency, especially for the dense matrix
format, should be linked to the fact that the SpMV is a memory-
bound problem. We also see that the improvement is almost the
same for a density around 20% while the improvement achieved
on the CSR depends on the density: for small densities, the
implementation benefits mostly for small row lengths and the
reduced memory consumption.

To evaluate the performance on GPUs we compare the
K20m (Figure 4A), the RTX 2060 (Figure 4B) and the RTX
3080 (Figure4C). On all three devices, we can see that for
small densities the achieved throughput of the CSR (blue line)
implementation is lower than for higher densities. This is a
consequence of the implementation [as discussed in Section 3.1;
more details can be found in Dinkelbach et al. (2012) for our
version of the CSR and in Véazquez et al. (2011) for the ELLPACK-
R format] as the thread groups processes rows together: there
must be a sufficient number of elements in a row to achieve a
high throughput.

In both experiments, we can see that, for higher matrix
densities, the CSR format is outperformed by the dense matrix
format (orange line). This motivated the first stage of our
heuristic (green line). The value 60% was originally obtained
on the K20m GPU. A comparison to the newer devices
would suggest 70%. We have analyzed this for all examples
in our dataset and determined 60% as a suitable value (see
Supplementary Material, Section 3).

4.2. Different Sparse Matrix Formats

This section illustrates the necessity for different sparse matrix
formats. We investigate the performance improvement of an
ELLPACK-R and dense implementation against the CSR on
three GPUs which is a criterion suggested by Langr and Tvrdik
(2016). To compare the formats, we compute the ratio between
the GFLOPS required by CSR and the GFLOPS of the other
format. A more detailed analysis of these values is depicted in the
Supplementary Material, Section 3.

Figure 5 depicts the average performance on the 3,000 data
points in our dataset. The orange line represents the median of
the obtained values and the green triangle represents the mean.
The CSR format outperforms the other two formats in most cases
on the K20m (Figure 5A) and the RTX 3080 (Figure 5C), as the
average performance of ELLPACK-R and dense is lower than 1.0.
However, there is a noticeable number of values > 1.0, indicating
that some matrices benefit from another format than CSR. We
also found that the results on the RTX 2060 (Figure 5B) are
different in the sense that the ELLPACK-R outperforms in many
cases the CSR format which is represented by the average >1.0.

Comparing the results obtained on the three investigated
CUDA devices supports the claim of Balaprakash et al
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FIGURE 4 | Achieved performance in GFLOPs on three devices: a NVIDIA K20m (A), a NVIDIA RTX 2060 (B), and a NVIDIA RTX 3080 (C). As for the single thread
CPU (Figure 3) we compare a CSR (blue) and dense (orange) implementation on a 2,000 times 2,000 matrix with varying filling degree. In the range of 60-70% the
dense matrix representation outperforms the CSR which motivated the first stage of our heuristic.

(2018). The performance behavior of a given implementation  4.4. Validation and Stability of the Machine
can drastically change with evolving hardware. The relative Learning Approach

performance of our ELLPACK-R and dense implementations  The performance of the ML approach depends on the correct
toward the CSR implementation indeed shrinks noticeably. selection of features and the size of the dataset dedicated to
training and testing. However, the choice of a basic cross-
validation method (random split of the data into 80% for
4.3. Automatic Format Selection training and 20% for testing) is not sufficient to estimate the
In this section, we report on the results of the two strategies  appropriateness of the trained model, since it may have by
for automatic format selection: the heuristic and the predictive coincidence excellent results only on the part selected for testing
machine learning approach_ We compare the results on the (20%). To avoid this issue, we have opted for the repetitive cross-
K20m (Figure 6A), the RTX 2060 (Figure 6B), and the RTX  validation method (Section 4.4.1). To define the proper size of
3080 (Figure 6C). Considering the distribution of the selected ~ the data required to obtain a stable model (a high accuracy
formats, we generally notice that there is no significant ~ with the lowest standard deviation), we also perform tests (using
difference between the K20m and the RTX 3080 but the results  the repetitive cross-validation method) on different dataset sizes
of RTX 2060 appears to deviate. Furthermore, the machine  (Section 4.4.2).
learning model delivers more accurate results than the heuristic,
especially on the RTX 2060. The heuristic tends to select 4.4.1. Cross-Validation
on all three devices the CSR (blue bars) in too many cases, The five-fold cross-validation procedure divides the data set
in particular on the RTX 2060. As noted earlier, this might into five non-overlapping folds. During each iteration of the
be improved by device-specific thresholds used in the second  process, a fold is retained as a test set, while all others are used
stage of the heuristic. The machine learning model was able  for the training. In the end, a total of five models are fitted
to select in 95.67% (K20m), 93.0% (RTX 2060), and 94.83%  and evaluated on the five retained test sets, and the average
(RTX 3080) of the cases the correct format resulting in the  performance accuracy is calculated. This procedure is repeated
fastest computation time. The selection of the heuristic was  ten times, and the mean performance across all folds and all
in 87.67% (K20m), 71.67% (RTX 2060), and 77.83% (RTX  repetitions is reported.
3080) of the cases correct. We hypothesize that device-specific Figure 7 shows the variation of the performance of the 10
decision thresholds could improve the performance achieved  repetitive five-fold cross-validations applied on the dataset of
on the RTX 2060 and RTX 3080, but it would be difficult to  the NVIDIA K20m. We can see that for the dataset with 3,000
derive these thresholds on all possible hardware. It might be  data points, the optimal performance selection rate slightly varies
interesting to note that CSR format was in 63.83% (K20m), depending on the fraction of data selected as training set but
44.67% (RTX 2060), and 60.17% (RTX 3080) of the cases the  retains a high level of correctness over 93% and therefore still
correct format. outperforms the heuristic.
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results obtained on the NVIDIA K20m (A), the NVIDIA RTX 2060 (B), and the NVIDIA RTX 3080 (C). Although CSR is the fastest data structure in many cases, there is
a noticeable number of cases where the other formats appear to be superior. The performance differences between the matrix formats are higher on the Tesla K20m
(A) and the NVIDIA RTX 2060 (B) than on the RTX 3080 (C) especially for the ELLPACK-R matrix format. The orange line depicts the median, the green triangle the
mean and the circle denote outliers.
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FIGURE 6 | The distribution of selected formats on three GPUs: NVIDIA K20m (A), NVIDIA RTX 2060 (B), and NVIDIA RTX 3080 (C). We compare the data (left), the
heuristic (middle), and the machine learning model (right) for each GPU. We can see that our heuristic tends to select the compressed sparse row (blue bars) in too
many cases, which leads to lower performance, in particular on the NVIDIA RTX 2060.

4.4.2. Influence of the Size of the Dataset a good accuracy of the selection of the correct matrix format.
Generating the dataset can be quite time-consuming: the  Bayesian optimization using Optuna for 150 trials is used to select
generation of the 3,000 data points required 2-3 days in this  the best architecture in each case.

case. We therefore performed experiments (multiple repetitive Figure 8 shows the accuracy variation of the optimal format
five-fold cross-validations with varying each time the size of the  selection with respect to the number of samples used for training.
dataset) to define the smallest dataset size enabling us to achieve ~ As one would expect, the performance increases with the size
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each validation stage, four folds containing 2,400 samples are used for training, and the remaining fold with 600 units is used for testing the accuracy of the best
format selection. The middle (orange) line of the box is the median, the green triangle the mean and the circles denote outliers.

of the dataset. However, already with one-third of the dataset
we could achieve an accuracy of 92.94% for the selection of the
optimal format.

5. DISCUSSION

Continuous transmission is a dominating computation kernel
for rate-coded neural networks (Dinkelbach et al., 2012) that
corresponds to the sparse matrix vector multiplication, a
well-investigated topic by many researchers over decades on
various hardware platforms. In this article, we investigated the
application of the ELLPACK-R and dense format derived from
the literature and study their performance within the neural
simulation framework ANNarchy.

As stated in the literature, there is no “one-size-fits-all”
solution, although the CSR format achieves a good performance
in many cases, which was also shown, e.g., by Benatia et al. (2018)
or Chen et al. (2019). Using a larger set of connection matrices,
we have shown that the usage of different matrix formats can
help to improve the performance on CPUs as well as GPUs by
distinguishing between sparse and dense matrices (Section 4.1).
For GPUs, we further studied the ELLPACK-R format proposed
by Vazquez et al. (2011) in addition to our CSR implementation
(Dinkelbach et al., 2012). In Section 4.2, we have shown that CSR
is in many cases the best format, but it can be outperformed
by a noticeable factor by the ELLPACK-R and the dense matrix

format. In summary, the availability of different sparse matrix
formats can be used to improve the performance but the selection
is not trivial, as expected from the literature (e.g., Liu and Vinter,
2015a).

In the case of heavy simulations, a user-friendly simulation
environment should measure and select the right sparse matrix
format for a specific network. We presented a first automatic
selection based on some simple rules which we derived from
experiments and which is implemented in ANNarchy 4.7.1.1.
We have also shown that this heuristic-based selection can be
improved by the help of machine learning techniques. Our
approach using machine learning techniques is comparable to
the work of Lehnert et al. (2016) and Benatia et al. (2018).
Based on a set of features, we build up a neural network which
predicts the performance of the format. Lehnert et al. (2016)
used computational time for the performance evaluation while
we used GFLOPs as a metric. Both our work and that of Lehnert
etal. (2016) uses regression for the prediction of the performance
of the data format. Contrary to the previously discussed works,
we do not use a fixed network but use the hyperparameter
optimization framework Optuna to find a suitable network
configuration for a given dataset. There is an important caveat:
Comparing matrix formats using FLOPS as a metric generates a
hardware dependency (Langr and Tvrdik, 2016), which we also
observed in our recorded data (see Section 4.2). This means that
the users need to generate the dataset on their own machine,
which requires several hours up to a few days for the data
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and its corresponding standard deviation represents the average of 10 repeated cross-validations.

generation, although the results in Section 4.4.2 suggest that the
number of required data points can be reduced.

The present work demonstrates the performance
improvements that can be reached by using the ELLPACK-
R format in ANNarchy. However, the ELLPACK/ELLPACK-R
formats require more memory caused by padding zeros for
strongly varying row lengths and therefore, Bell and Garland
(2009) proposed a Hybrid format, which combines an ELLPACK
format for most entries, and those elements which are in the
long rows are stored in a separate coordinate format. This was
not the case in our dataset, and its not clear to us how relevant
this is for neurocomputational models, as this would mean that
the number of synapses per neuron vary strongly within one
projection. The present CSR implementation could be further
optimized for short rows using the CSR-stream implementation
proposed by Greathouse and Daga (2014), although this
introduces another hyper parameter: the number of nonzeros
processed by one warp. The CSR5 storage format (Liu and
Vinter, 2015a) introduces additional two hyperparameters but
should be efficient for SIMD-capable CPUs, GPUs, or other
accelerators like the Xeon Phi, while introducing a memory
overhead around 2% of the original CSR (Liu and Vinter, 2015b).

Other works focus on the grouping of rows into computation
blocks, i.e., by slicing the matrix into pieces, as done for the
CSR (e.g., Oberhuber et al,, 2011) or the ELLPACK format (e.g.,
Monakov et al., 2010; Kreutzer et al.,, 2014). Kreutzer et al.
(2014) highlight that their modified sliced ELLPACK format is

applicable to GPUs as well as SIMD-capable CPUs. Another class
of formats proposed in the literature are blocked formats such
as the blocked compressed sparse row (BSR or BCSR, e.g., Choi
etal.,, 2010; Verschoor and Jalba, 2012; Eberhardt and Hoemmen,
2016; Benatia et al., 2018) or the blocked ELLPACK format (Choi
etal., 2010). The idea is that matrix is split into several small dense
matrices. As these sub-matrices are dense, a coalesced and fully
cacheable access to the dense vector is possible, which is desirable
for performance (Temam and Jalby, 1992; Im and Yelick, 2001;
Im et al., 2004; Goumas et al., 2008; Williams et al., 2009). These
formats appear to be efficient if the nonzeros in a matrix are
clustered, although the selection of the correct block size can
be challenging (Im and Yelick, 2001). For matrices where the
nonzeros are widely spread, the memory overhead will be too
large and no performance benefit can be expected in comparison
to other formats.

The present work focuses on the performance prediction
for sparse matrix formats on GPUs. Nonetheless, the same
procedure can be applied for CPUs. Preliminary tests with the
current ANNarchy 4.7.1 release has shown that the performance
differences between formats are small in comparison to
the differences observed on GPU. This hardens the correct
performance prediction and opens the question of whether the
approach is necessary at all. It is important to note that the
recent implementations of our CPU formats are not comparable
to highly optimized libraries like OSKI, SPARSITY, or ATLAS,
as low-level optimization like padding, local store blocking or
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register blocking (e.g., presented in Im and Yelick, 2001; Im
et al., 2004; Williams et al., 2009) are still missing. We started
to apply such optimizations, e.g., hand-written SpMV which
improve the performance (see Section 4.1), but this increases the
complexity of the code generation noticeably. Nonetheless, we
have implemented in the ANNarchy 4.7.1.1 the heuristic selection
of dense matrices instead of sparse matrices.

Brian2 (Stimberg et al., 2019), GeNN (Yavuz et al., 2016) as
well as ANNarchy do not switch the floating precision from
double to single precision automatically. As highlighted by
Hopkins et al. (2020), this could lead to numerical errors whose
importance need to be evaluated by the modeler. However,
the performance improvement on GPUs and CPUs (especially
using SIMD extension) could be noticeable. The reduction of
precision can improve the performance of the SpMYV, e.g., shown
by Bell and Garland (2009) or Greathouse and Daga (2014) and
is therefore beneficial for the simulation of rate-coded models
(Dinkelbach et al., 2012). Yavuz et al. (2016) have shown that
the choice of single precision in context of two spiking models
at different scales can improve the performance.

The presented findings may also be of interest for the
implementation of spiking networks. The currently available
spiking simulators use either CSR-like (e.g., Brian2, GeNN,
coreNeuron; Kumbhar et al, 2019), dense (e.g., GeNN) or
object-oriented (NEST) representation of synapses, while also
using code generation approaches (see Blundell et al., 2018
for a recent review). At the very least, the differentiation
between sparse and dense matrices could be helpful for some
models as shown by Yavuz et al. (2016), as the usage of
dense matrices does not break coalescence as CSR does (e.g.,
Dinkelbach et al., 2012; Yavuz et al., 2016). The computational
load induced by the spike propagation can be quite low in
comparison to the update of neural equations (Plesser and
Diesmann, 2009), so there is a chance that the overhead
induced by the sparse matrix format can have a negative impact
on performance.

Ongoing work will target the application of other sparse
matrix formats for the simulation of rate-coded and spiking
models in ANNarchy. For rate-coded models, this could be
formats which use structural properties, such as the diagonal
format. Some neuro-computational models developed in our
lab (e.g., Jamalian et al., 2017) contain matrices which have
a banded matrix structure. A promising direction may be the
implementation of sliced matrix formats (e.g., Kreutzer et al,
2014). For spiking models, the compressed sparse blocks format
(CSB, Bulug et al, 2009, 2011) could be beneficial for the
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Neuromorphic hardware is based on emulating the natural biological structure of the
brain. Since its computational model is similar to standard neural models, it could serve as
a computational accelerator for research projects in the field of neuroscience and artificial
intelligence, including biomedical applications. However, in order to exploit this new
generation of computer chips, we ought to perform rigorous simulation and consequent
validation of neuromorphic models against their conventional implementations. In this
work, we lay out the numeric groundwork to enable a comparison between neuromorphic
and conventional platforms. “Loihi” —Intel’s fifth generation neuromorphic chip, which is
based on the idea of Spiking Neural Networks (SNNs) emulating the activity of neurons
in the brain, serves as our neuromorphic platform. The work here focuses on Leaky
Integrate and Fire (LIF) models based on neurons in the mouse primary visual cortex
and matched to a rich data set of anatomical, physiological and behavioral constraints.
Simulations on classical hardware serve as the validation platform for the neuromorphic
implementation. We find that Loihi replicates classical simulations very efficiently with high
precision. As a by-product, we also investigate Loihi’s potential in terms of scalability and
performance and find that it scales notably well in terms of run-time performance as the
simulated networks become larger.

Keywords: neuromorphic computing, LIF models, neural simulations, validation, performance analysis

1. INTRODUCTION

The human brain is a rich complex organ made up of numerous neurons and synapses. Replicating
the brain structure and functionality in classical hardware is an ongoing challenge given the
complexity of the brain and limitations of hardware. The advent of supercomputers now allows for
complex neural models, but at a huge cost of both software complexity and energy consumption.

A recent intense focus on brain studies, with the BRAIN initiative at the US (Insel et al., 2013),
the Human Brain Project (HBP) in Europe (Markram et al., 2011), and philanthropic endeavors like
Janelia Research Campus (Winnubst et al., 2019), and the Allen Institute for Brain Science (AIBS)
(Lein et al., 2007), has produced a wealth of new data and knowledge, from records of neuronal and
network dynamics, to fine-grained data on network micro- and nano-structure, bringing in the era
of big neural data. At the same time, advances in electronics and the search for post-von Neumann
computational paradigms has led to the creation of neuromorphic systems like Intel’s Loihi (Davies
et al., 2018), IBM’s TrueNorth (Akopyan et al., 2015; DeBole et al., 2019; Lohr et al., 2020) and
HBP’s SpiNNaker (Khan et al., 2008), and BrainScaleS (Griibl et al., 2020).
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Neuromorphic chips, as the name suggests—“like the brain”—
can mimic the brain’s function in a truer sense as their design
is analogous to the brain (Thakur et al., 2018; Roy et al.,, 2019).
Inspired by its architecture, we work on developing a principled
approach toward obtaining simulations of biologically relevant
neural network models on a novel neuromorphic commercial
hardware platform.

Computers today are limited in this respect because of the way
they have been built historically and the way they process data
leading toward more energy and resource consumption in order
to maintain versatility (Nawrocki et al., 2016; Ou et al., 2020).
Neuromorphic chips on the other hand claim to be faster and
more efficient for a set of specialized tasks (Bhuiyan et al., 2010;
Sharp and Furber, 2013). In this study, we lay out a numeric
groundwork to validate this assertion based on neural models
derived from the primary visual cortex (VISp) of the mouse brain,
as seen in recent work done on SpiNNaker (Knight and Furber,
2016; Rhodes et al., 2019). Intel's neuromorphic chip “Loihi”
serves as our neuromorphic platform. Results obtained in Loihi
are validated against classical simulations (Rossant et al., 2010;
Nandi et al., 2020; Wang et al., 2020) given by AIBS’s software
package the Brain Modeling Toolkit (BMTK) (Dai et al., 2020).

In this manuscript we focus on the Loihi architecture, as
it is at present one of the most powerful platforms with
specialized digital hardware and significant software support.
While TrueNorth has a similar combination of hardware and
programming support, its inter-neuron connectivity capability is
relatively limited; Loihi approaches the human-scale connectivity
density of interest to our research. SpiNNaker has similar
capabilities, but is constructed of standard CPU hardware. Loihi’s
capabilities on the other hand, are built-in on a chip, thus
forcing us to explore new programming paradigms. And recent
and current state of the art hybrid analog-digital platforms, like
Neurogrid (Benjamin et al, 2014), Braindrop (Neckar et al.,
2019), DYNAP-SE2 (Moradi et al., 2017), and BrainScaleS(2)
(Pehle et al.,, 2022) are beyond the scope of this manuscript.
However, we believe that the simulation and programming
paradigms developed on the Loihi platform can generalize
to these analog platforms as well, and thus decrease the
development time on these unfamiliar architectures.

We present one of our main motivations for this project
in Figure 1, which highlights Loihi’s advantage in performance
when compared to standard simulations. Overall, our initial
implementation indicates that Loihi is quite efficient in terms
of compute-time in context of large brain network simulations
and thus shapes our central motivation for this work (see
Figure 1 and Table 3). This manuscript mainly focuses on
the trade-offs necessitated by these implementations, that is,
how precise are the Loihi simulations when validated against
BMTK simulations, given their very different hardware and
programming architectures?

As a starting point, we focus on a class of neural network
building blocks: point neuronal models as used in large AIBS
simulations of biological neural networks. We do so because
the Generalized Leaky Integrate and Fire Models (GLIFs, Teeter
et al.,, 2018) have been found to be appropriate for reproducing
cellular data under standardized physiological conditions. The
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FIGURE 1 | As the network size increases, Loihi outperforms consistently in
terms of time. The figure shows runtime comparison of 500 ms of dynamics
for up to 20,000 neurons for Loihi and BMTK, with the values scaled by the
respective smallest runtime. Loihi has a maximum runtime of up to 12 ms,
whereas BMTK runtime goes up to 273 s (See Table 3 for the explicit runtime
values and Section 4.4 for further details about the network.).

data used for this study is made available by the AIBS
(AIBS, 2020).

The paper is organized as follows. In Section 2, we describe
in detail the features of Loihi and the differences between
the neuromorphic and classical hardware that form the basis
for this study. Section 3 explains the implementation of the
continuous LIF equation on classical computational architecture
using BMTK vs. the discrete Loihi setting. Also, we list the
validation methods and the cost function that is used to draw
comparisons between the implementations. In Section 4, we list
out and explain the various results leading to a qualitative and
quantitative assessment between the two platforms based in part
on methods from Gutzen et al. (2018). Finally, Section 5 lays the
ground for future work with expected improvements based on
the second generation of the Loihi chip, Loihi 2 (Intel, 2022).

2. COMPARISON BETWEEN CLASSICAL
AND NEUROMORPHIC PLATFORMS

At present, various simulators are available for implementing
spiking neural networks (Brette et al., 2008). In this section, we
lay out the details of the mathematical model and the platforms
we use for our work. For the classical simulation, we use the
Brain Modeling Toolkit (BMTK) (Dai et al., 2020) developed
by the AIBS. Being open source, these resources enable us to
experiment with a varied range of data and thus support our
extensive validation of neuronal models in Loihi. Intel’s fifth-
generation chip Loihi provides us with the tools to implement
and test out the various neuromorphic features. The output
provided by Loihi simulations is then compared to the output of
classical simulations implemented in BMTK.

2.1. The Brain Modeling Toolkit (BMTK)

The BMTK is a python-based software package for creating and
simulating large-scale neural networks. It supports models of
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different resolutions, namely, Biophysical Models, Point Models,
Filter Models, and Population Models along with the use of the
rich data sets of the Allen Cells Database (Lein et al., 2007;
AIBS, 2020). It leverages the modeling file format SONATA which
includes details on cell, connectivity and activity properties of a
network along with being compatible with the neurophysiology
data format Neurodata Without Borders (NWB), thus allowing
easy access to a vast repertoire of experimental data.

In this study, we work with the Point Neuron Models with
simulations supported by the BMTK module PointNet via NEST
2.16 (Kunkel et al., 2017; Linssen et al., 2018). For analysis and
visualization, we use the HDF5 output format, underlying both
SONATA and NWB’s spike and time series storage.

The classical BMTK simulation are instantiated and run on
a single node of Kamiak, the institutional high performance
computing cluster. A typical Kamiak node contains 2 Intel Xeon
E5-2660 v3 CPUs at 2.60 GHz, with 20 cores and 128-256 GB
RAM (CIRC and WSU, 2021).

2.2. Loihi

Neuromorphic hardware inspired by the structure and
functionality of the brain, envisioned to provide advantages
such as low power consumption, high fault tolerance and
massive parallelism for the next generation of computers, is
called neuromorphic hardware. Toward the end of 2017, Intel
Corporation unveiled its experimental neuromorphic chip called
Loihi. We provide a summary of the platform here.

As of its 2020 rendition, the version on which these results
were evaluated, Loihi is a 60-mm? chip that implements 131,072
leaky-integrate-and-fire neurons. According to Davies et al.
(2018), it uses an asynchronous spiking neural network (SNN),
comprising of 128 neuromorphic cores, each with 1,024 neural
computational units; 3 x 86 cores; along with several off-chip
communication interfaces that provide connectivity to other
chips. As Loihi advances the modeling of SNNs in silicon,
it comprises of a large number of features necessary for
their implementation viz., hierarchical connectivity, dendritic
compartments, synaptic delays and synaptic learning rules. Each
neuron is represented as a compartment in the Loihi architecture,
ie, it is designed to resemble an actual biological neuron
model comprising of all the functional units (Figure 2). The
SYNAPSE unit processes all the incoming spikes from the
previous compartment/neuron and captures the synaptic weight
from the memory. The DENDRITE unit updates the different
state variables. The AXON unit generates the spike message to be
carried ahead by the fan out cores. The LEARNING unit updates
the synaptic weights based on a learning rule and is not used in
this project.

The aim of this study is to establish the groundwork required
to execute an ambitious plan of simulating about ~250,000
neurons with ~500M synapses in the future, which encapsulates
much of the experimentally observed dynamics in the mouse
visual cortex available to the AIBS, thus providing a close
functional replica of the mouse visual cortex. Loihi’s specialized
hardware features hold promise for a real-time, low-powered
version of such an implementation.

2.3. Leaky Integrate and Fire Model (LIF)

A typical neuron consists of a soma, dendrites, and a single
axon. Neurons send signals along an axon to a dendrite through
junctions called synapses. The classical Leaky Integrate and Fire
(LIF) equation (Gerstner and Kistler, 2002) is a point neuron
model which reduces much of the neural geometry and dynamics
in order to achieve computational efficiency. It is one of the
simplest and rather efficient representations of the dynamics of
the neuron, while still providing reasonable approximation of
biological neural dynamics for some classes of neurons (Teeter
etal., 2018). It is stated mathematically as:

1 1
V(t) = = | L) — =(V() — E 1
(1) C[e() z V@ L)] (1
V() <V, if V(1) >© (2)
where,
V(t) = membrane potential (state)
C = membrane capacitance (parameter)
R = membrane resistance (parameter)
Ep = resting potential (parameter)
I, = trans-membrane current (control and state)
V, = reset membrane potential
©® = firing threshold
Here,” = d/dt, t is time in ms, the membrane potential V() of

the neuron is in mV. These specific physical units are followed
based on what the AIBS datasets use to define the respective
physiology measurements. A LIF neuron fires when V(t) > ©,
i.e., the membrane potential exceeds the firing threshold © and
subsequently the membrane potential is set to a reset value V.

The classical LIF model (point generalized LIF) has been
shown to match well the dynamics of some mouse neurons under
a variety of conditions (Teeter et al., 2018), as listed in the Allen
Cell Types Database (Lein et al., 2007). In addition, this model
matches the LIF abstraction in Loihi to some extent (as Loihi uses
discrete time discrete state dynamics to emulate the continuous
time continuous state dynamics of the model). Thus, we work
with this model throughout this study to establish the basis for
comparison for the two platforms, determine how closely such a
discrete dynamical system can get to simulations of a continuous
dynamical system, validate the neuromorphic implementation
against the ground truth of a standard implementation, and
provide evidence that our neuromorphic platform performs
more efficiently.

2.4. Loihi LIF Model

In an SNN, spiking neurons form the primary processing
elements. The individual neurons are connected through
junctions called synapses and interact with each other through
single-bit events called spikes. Each spike train can be represented
as a list of event times, e.g., as a sum of Dirac delta functions
o(t) = ) ;8(t — t;) where t; is the time of the i-th spike.

Since Loihi encapsulates the working of an SNN, one of the
computational models it implements is a variation of the LIF
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model based on two internal state variables : the synaptic current
and the membrane potential (Davies et al., 2018).

u(t) =Y wilaj* 0))(t) + b 3)
j

V() = = (1) + u(t) )

w(t) <0, if v(t) >0 (5)

where,

v(t) = membrane potential
u(t) = synaptic current
w = synaptic weight
o
b
7, = time constant
0 = firing threshold

synaptic response function

constant bias current

A neuron sends out a spike when its membrane potential exceeds
its firing threshold 0, i.e., v(t) > 6. After a spike occurs, ¥(t) is
reset to 0. As in the classical LIF model, here ' = d/dt. However,
time and membrane potential values here are in arbitrary units.

Loihi follows a fixed-size discrete time-step model, similar to
an explicit Euler integration scheme, where the time steps relate
to the algorithmic time of the computation. This algorithmic
time may differ from the hardware execution time. Moreover, to
increase the efficiency of the chip, specific bit-size constraints are
imposed on the state variables. We discuss the ones relevant for
the LIF model implementation in the following section.

3. METHODS
3.1. Model Setup and Integration

The classical LIF model as represented in Equations (1) and (2)
can be rewritten as :

1 1 1
V/(t) = —=V(t) + = | L(t) + —EL (6)
Ty C R
where 7, = RC is membrane time constant of the neuron.
For a non-homogeneous linear differential equation,
daf
=~ = 7
5 af +g (7)

the solution is given by the “variation of constants” method as :

t
ft) = e“t/ g(s)e™%ds
0

Comparing Equation (6) to Equation (7), we have,

1
a=—

Ty
f=Vv(

1 1
g = E(Ie) + _?V(EL)

Here, the postsynaptic current I, is in the form of an exponent
function. However, calculating the above integral at every step
i.e., at all grid points t; < t proves to be quite expensive.

BMTK uses NEST as backend to implement the above
membrane potential dynamics. To avoid the expensive
computations, NEST chooses to use the linear exact integration

method (Rotter and Diesmann, 1999), given below as follows :
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Equation (6) is rewritten as a multidimensional homogeneous
differential equation:

d =A (8)
dty = Ay
where,
ap Ap—1 *-+ -+ ap 0
1 0 0 0 O
0
A =
0 0 O
0 0 1 0 0
0 0 0o+ L
The solution is given by :
y(t) = ety 9)
Yipn = y(t+h) = A y0) = e -y (10)

for a fixed time-step h. It saves exorbitant computations
since each evaluated step involves multiplication only, and
intermediate steps between events do not have to be computed.

3.1.1. Mapping Between BMTK and Loihi Models

In this section, we illustrate the primary step of implementing
the BMTK-NEST LIF integration with the Loihi dynamic
computational model. Loihi follows a discrete-state, discrete-
time computational model, similar to an explicit Euler
integration scheme. This allows it more flexibility for
integrating non-linear neural model, but, and unlike NEST’s
exact integration method, Loihi’s engine accumulates errors at
each time step. The time steps in the Loihi model relate to the
algorithmic time of the computation which may differ from
hardware execution time. Following the linear exact numerics in
the NEST implementation, we implement our model in the Loihi
discrete setting using the forward Euler method for guidance, as
discussed below.

Step 1

First, we rewrite the standard LIF model in Equation (1) to
resemble the Loihi form as given in Equation (4). Since Loihi
parameters are unit-less, we introduce a re-scaling parameter
Vs, which converts standard physical units used in BMTK to
Loihi units.

As we compare Equations (2) and (5), it can be seen that for
BMTK the membrane potential reset value is set to V, whereas it
is set to zero for Loihi. To account for that, we shift the BMTK
representation by V.. Thus, the forward transformation from
BMTK to Loihi looks as follows :

v=(V-V,)/Vs (11)

which produces an inverse transformation, to arrive back at the
BMTK values, given by :

V:V'V5+Vr (12)

Step 2
Substituting the expression in (12) in (1) and isolating v, we get :

V() = é [Ie(t) - %(V(n - EL)} V=Vt V, —

(13)
(Ve = ——— (Wit Vy — Ep) + ~L(0) Ve =
v s = RC VVs r L C e s
(14)
1 1E -V, 11,
() = ——wv(t) + — —— 15
V() TVV()+TV 2 c. (15)
1
= ——v(t) + u(t) (16)
Ty
with
V(t) - Vr
) = ———, 17
v(t) V. (17)
1 1 E -V,
1) = — (¢t — s 18
u(t) CVSE()+TV 2 (18)
7, = RC, (19)
-V,
0= —— 20
Vi (20)

Here, we reintroduce the LIF threshold ® and the corresponding
Loihi threshold 6 in Equation (20), which is derived from ©® by
the same shift and re-scaling that converted V to v.

To reiterate, Loihi implements the continuous LIF as a discrete
finite state machine model (Jin et al., 2008; Mikaitis et al.,
2018) implemented in silicon. The actual computation is similar
to a forward Euler scheme with some peculiarities reflecting
engineering design trade-offs. Specifically, the v(t) state evolves
on-chip according to the update rule,

v(t 4+ 1) = v(t) [1 — 2%] + b+ u(t) (21)

where 8, is the membrane potential decay constant and b is the
constant bias current listed in Equation (3).

Step 3

Using the forward Euler method :

Yn+1 = Yn +f(tn:}/n)-dt

where y,41 = y(tp41) and t,41 = t, + dt for a fixed time-step
dt, we transform the classical LIF model into a form followed
in Equation (21). Thus, transforming the LIF model into the
discrete form and grouping terms to match the Loihi integration
(9) yields the following :

w — —iv(t) + u(t) (22)
dt T
= v(t+dt) =v(t)(1 — ?) + u(t)dt (23)

where dt is the fixed time-step with which we can adjust the
temporal precision of the Euler integration scheme.
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In order to equate the Loihi computation (21) with the Euler
scheme (23), we use dt with units ms/Loihi timestep i.e., 1 BMTK
millisecond per Loihi timestep. Thus, comparing Equations (21)
and (23) defines the Loihi voltage decay parameter §, in terms of
the timestep dt, i.e.,

dt
@2 -s5)27%=01->) (24)
Ty
dt dt
— 81/ — ; 212 — R 212 (25)
v

3.1.2. Bit Constraints

Given its discrete setting, there are specific bit-size constraints
that Loihi imposes on the state variables and parameters. State
variables—membrane potential and current—are allotted £23
bits each. The membrane potential decay constant §, is allotted
12 bits and the membrane potential threshold is assigned 17 bits
interpreted as the 17 high bits of a 23 bit word to match the state
variables size. Details on other parameters can be found under
Table 1 in Davies et al. (2018) and Table 6 in Michaelis et al.
(2021).

3.2. Validation Methods
3.2.1. Data
The data used here is provided by the Allen Mouse Brain
Atlas (Lein et al, 2007; AIBS, 2020), which is a survey of
single cells from the mouse brain, obtained via intracellular
electrophysiological recordings done through a highly
standardized process. We focus on neurons of different
types with available GLIF parameters. The data used can be
accessed in the Allen Cell Types Database. Our LIF model is
implemented and simulated on BMTK based on this data, and
these simulations form the ground truth for validating the Loihi
implementations.

The datasets used for the simulations in this work can be
found in our Github repository (Dey, 2022).

3.2.2. Cost Functions

To quantify the error between the BMTK and Loihi membrane
potential values, we use two related cost functions: the Root Mean
Square Error (RMSE) and the Pearson correlation coefficient (r)
with values as follows :

RMSE = 0 — )’ (26)
i=1
where,
i = index of data point
yr = transformed Loihi values
yp = original BMTK values
n = number of data points
and

o G- e O )

where,

y1 = mean of the transformed Loihi values

yp = mean of the original BMTK values

3.2.3. Other Methods
Since BMTK and Loihi run on two different computing
environments, visual comparisons in graphs are helpful for
diagnostics of discrepancies that may be obscured in the single
numbers reported by the cost function. They also contribute to
assess the level of similarity between the two implementations.
We compare the simulation dynamics for both
implementations based on the following:

- Distribution Function: We compare the distributions of
attained state values in the two cases. We use density plot as
a representation of those distributions, thus allowing us to
compare the two implementations in terms of concentration
and spread of the values and provide a basis for comparing the
collective dynamics of the implementations.

- Raster Plot: We evaluate the membrane potential response at
each time-step. The X-axis represents the membrane potential
and the Y-axis represents the time-step. Raster plot helps
to visually communicate similarities between the BMTK and
Loihi states, and highlight potential state-localized difference
in the dynamics at each step which may otherwise be lost in
the average error measures.

- Scatter Plot: For examining association between the two
implementations, we use color-coded scatter plots identifying
the correlation relationships. We add a trend line to illustrate
the strength of the relationship and pin down the outliers to
improve the simulation results. Since we anticipate an almost
perfect linear relationship, we quantify the match with its
Pearson correlation coeflicient.

4. RESULTS

In order to lay the groundwork for simulating a network of over
250,000 neurons with a connectivity of over 500M synapses in
the neuromorphic hardware, we begin by ensuring a high quality
replication of individual neural and smaller network models. The
replication performance here is evaluated based on membrane
potential and current responses, the two state variables. We
conjecture that securing a good replica for smaller models will
ensure that parameters can be calibrated correctly and thus can
be carried forward for the bigger networks needed in biological
context (Herz et al., 2006; Gutzen et al., 2018; Trensch et al.,
2018).

We begin our work on a single-neuron network! sub-
threshold dynamics driven by both bias current and external
spikes to ensure Loihi is able to handle both stimuli efficiently.
Our test suite consists of LIF models based on 20 different
parameter sets. We perform rigorous analysis of our results based

A network is the smallest executable structure in Loihi, hence the peculiar term
single-neuron network.
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FIGURE 3 | Membrane potential response for single-neuron network based on two different neuron parameters. (A) Simulation is driven by bias current. (B)
Simulation is driven by external spikes.

on various statistical measures and visualizations to demonstrate
that we have replication of high quality. It is important to restate
here that we test our results based on neurons with different
morphologies and biophysics, which attribute to the different
parameter sets.

4.1. Simulations of a Single Neuron

We begin by simulating a single-neuron network in BMTK.
The simulation is run for 500 ms. The classical parameters are
translated to Loihi values and the corresponding LIF model is
implemented as an one-neuron SNN executed for 500/dt time
steps in Loihi. The simulations are driven either by bias current
or external spikes.

In the Loihi network, neurons are denoted by compartments.
The compartment dynamics are hardware-constrained and
determined by the parameters bias current mantissa, membrane
potential threshold, membrane potential decay, and current decay.
It is worth iterating here that the membrane potential values in
Loihi are unit-less as opposed to the BMTK values which are
assigned units of millivolts (mV) and milliseconds (ms) based on
the AIBS datasets.

We test the precision of our replication, both qualitatively and
quantitatively, for all 20 parameters sets and find that the results
are consistent with the ones described below. In Figure 3, we
illustrate the implementations achieved through bias current and

TABLE 1 | Parameter set for LIF models.

Parameters Dataset (1) Dataset (2) Units
Membrane time constant 25.0 22.0 ms
Membrane potential threshold —43.0 —43.0 mV
Resting potential —70.0 —70.0 mV
Voltage reset —70.0 —70.0 mV
Current 200.0 0.0 PA
Membrane capacitance 170.21 170.0 pF

external spikes on two different parameter sets (Table 1). The
remaining 18 parameter sets can be found in our Github page
(Dey, 2022). The parameters in the BMTK platform are mapped
to Loihi using the transformations described in Section 3.1.1 with
respect to the bit constraints described in Section 3.1.2.

It is to be noted here that stimulus bias current acts as one of
the parameters of the LIF model and hence is mapped into Loihi
according to Equation (18). When stimulating with external
spikes as stimulus, we make use of the fixed-time step dt that
we introduce in Equation (23). Here, the external spike-times are
in “ms” and we assign unit “ms/Loihi time-step” to dt. Thus, the
external spike-times are scaled as spike-time/dt and then injected
into a Loihi neural unit for each time-point, with dt guiding the
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temporal precision scale. Table 2 shows the external spike-times
used in the simulations, which are generated by five spike sources
using a random Poisson spike generator with a max firing rate
of 5Hz and then frozen to stimulate the different models in both
BMTK and Loihi.

For a qualitative comparison, it can be seen from Figure 3
that Loihi implementations simulate BMTK results very closely.
We have close correspondence in terms of spike frequency, spike
amplitude, and response values. Since Loihi membrane potential
values are unit-less, we map them back to BMTK values (mV, ms)
before performing the comparison. The inverse mapping from
Loihi to BMTK is performed based on Equation (12), i.e.,

TABLE 2 | External spike-time values.

Source Spike-times (ms)

0 446

1 355

2 53, 258, 300, 424, 457
3 88, 466

4 100, 212

TABLE 3 | Correlation and RMSE between BMTK and Loihi membrane potential

values.

Stimulus Correlation RMSE

Bias current 0.999992 1.18374 x 10~* mV/ms
External spikes 0.999942 4.208 x 107° mV/ms

V=v-Vi+V,

We perform a quantitative assessment of the replication using
RMSE and correlation coefficient between the values obtained
from the two platforms. As seen from Table 3, the values are
highly correlated with a relatively small RMSE.

Figure 4 illustrates the comparison of Loihi implementations
against the BMTK implementations for the two different
stimuli using various graphing data—(a) Distribution function
approximating the membrane potential dynamics, (b) Raster
plot of the spiking network activity, (c) Scatter Plot highlighting
the positive coefficient between the two implementations. These
visualizations help us track discrepancies which might remain
unobserved based on single quantitative averages given by the
cost function or the correlation coefficient.

4.2. Simulation Using Varied Precision
As already stated, Loihi follows a fixed-size discrete time-step
model along with bit-size constraints for the different parameters.
Thus, we examine how the numerics of Loihi affect its ability
to faithfully implement neuron models. More precisely, we
investigate how changing the precision of the time scale and
the neuron state values affects the accuracy of the simulations.
We explore this property for the two state variables—membrane
potential and current.

Figure 5 illustrates the membrane potential and current
responses of a single neuron model in BMTK which form the
basis of our comparison for the results below.
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FIGURE 4 | Validation plots for simulations based on two different stimuli— (A) Validation plots for bias current stimulus (B) Validation plots for external spike stimulus,
based on the Distribution Function, Raster Plot, and Scatter Plot, respectively.

Frontiers in Neuroinformatics | www.frontiersin.org

189 May 2022 | Volume 16 | Article 883360


https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Dey and Dimitrov

Point Neuron Model Simulations in Loihi

4.2.1. Simulation Using Varied Temporal Precision

For Loihi’s fixed simulation time-step, we assign different
time units to each step and test the corresponding simulation
precision. This is achieved through the “dt” parameters available
in our equations while transforming the classical LIF model to
Loihi neural model. It enables us to experiment with several time
units (Hopkins and Furber, 2015). Following Equation (24), the

change of a time-step while working with the Loihi neural model
necessitates a corresponding variation of the time constant “z,”
to yield the desired results.

We check the results for dt = 0.1, 1.0 and 10.0(s/timestep).
As mentioned earlier, we run the simulation for 500 s, thus the
corresponding number of time steps in Loihi for dt = 0.1 and
dt = 10.0 becomes 5000 and 50 respectively, and for dt = 1.0 it
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FIGURE 5 | Single neuron model in BMTK—(A) Membrane potential response. (B) Current response.
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FIGURE 6 | Comparison of membrane potential and current plots with different temporal precisions in Loihi. Membrane potential plots are on the left with (A) dt = 0.1
(B) dt = 1.0 (C) dt = 10.0. Current plots are on the right with (D) dt = 0.1 (E) dt = 1.0 (F) dt = 10.0. For dt = 10.0, number of time-steps are 50 and for dt = 0.1,
number of time-steps are 5,000.
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remains at 500, (i.e., 500/dt for each dt). Figure 6 illustrates the
related Loihi simulation for membrane potential and current.
Error comparison for temporal precision Unlike continuous
analysis in which the error decreases monotonically with dt,
Loihi’s discrete-time, discrete-state simulation dynamics suggests
that there may be an optimal dt which minimizes the LIF
dynamics error.

We compare the simulations in Loihi with different temporal
precisions against the simulations in BMTK. We calculate the
RMSE to be able to deduce the result. As can be seen from
Figure 7, the error is lowest when 1 ms of simulation time in

BMTK equates to 1 time-step in Loihi for membrane potential
and current. Thus, for the LIF model simulations, representing
1ms with a Loihi hardware time step provides the best match
between the two simulations. As to using larger dt for efficiency,
panels (C) and (F) clearly show that large time steps (larger than
the synaptic time constant in this case) significantly degrade the
quality of simulations.

It should be noted that the selected simulation timestep dt
affects the range of physical time constants 7, that can be
represented in Loihi. Since §, = %t 212 (Equation 24), then

7, = g—: 212 In Loihi, 8, € [1,2'2] (stored as a 12-bit word,

A
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FIGURE 7 | Error comparison for different temporal precisions—(A) Membrane potential error. (B) Current error. In both panels, the RMSE for the corresponding state
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with 0 representing 8, = 212). Hence, 7, € [1,2'%]dt, that
is, the highest physical time constant that can be represented
is 7, 212dt ~ 4,100dt. This is not a big constraint for
dt 1ms, but e.g., a higher simulation precision of dt
0.01ms can be performed only for neurons with time constants
7, <41ms, which already excludes some models found in the
Allen Institute’s Cell Types Database. This shortcoming of this
Loihi 1 platform is being addressed by Intel in subsequent
hardware like Loihi 2 (Intel, 2022), and the new Lava SDK.
Similarly affected are potential spike propagation delays (not

used here). Loihi supports ranges from 1 to 62 time steps, which
translate to df to 62dtms of physical time. This is a minor
constraint for dt = 1ms, but quickly becomes a significant
constraint for short dt.

4.2.2. Simulation Using Varied Voltage Precision

We repeat the precision study by changing the voltage precision
values using the re-scaling parameter V. To check different
precision results, we try 1K/mV, 10K/mV and 100K/mV (state
level/mV) by using Vs = 1.0 x 1073,1.0 x 10~* and 1.0 x 107>
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respectively. Figure 8 illustrates the neuron state simulations
based on different voltage precisions.

Error Comparison for Voltage Precision As can be seen from
Figure 9, for membrane potential—error decreases significantly
as the precision increases from Vy = 1.0 x 1073 to V,
1.0 x 10~*. However, the error is extremely small for the current
simulation and remains the same for V; = 1.0 x 10~% and
Ve =1.0 x 107>,

4.2.3. Effects of State Precision on Simulations

In conclusion, the effect of precision on both scales depends
on the model parameters and the information needing to
be preserved. However, there are important performance
differences. Increased voltage precision is essentially free, as
it does not tax the hardware resources any further, and the
sole risk is from computation overflow in cases of the Loihi
voltage state nearing the capacity of the voltage register.
Increased time precision on the other hand has two important
drawbacks: it increases simulation time (proportionately to
increased precision), and it decreases the range of voltage
decay timescales that can be represented (again, proportionately
to increased precision). Thus, the choice of simulation time
step and corresponding precision should be weighed against
these tradeofts.

4.3. Simulation of Different Neuron Classes
After establishing and verifying the calibrated Loihi parameters
for a single neuron, we extend our simulation to an ensemble

TABLE 4 | Correlation and RMSE for different neuron classes.

of neurons comprising of different neuron classes with
varying parameters.

Figure 10 illustrates an equivalent simulation for 20 different
neuron classes between BMTK and Loihi indicating that Loihi
is capable of emulating BMTK results in spite of varying
parameters. Here, we found an average correlation of 0.99985
with an RMSE of 0.57 x10™* mV/ms (Table4). This also
validates the fact that the calibration of parameters for a single
neuron done earlier is valid.

The scatter plots in Figure 11 capture the range of the
parameters—Figure 11(A) C,, vs. 7, and Figure 11(B) Ip;; vs.
7y, in the (E)xcitatory and (I)nhibitory classes used for the
simulations. The size of the markers represents RMSE errors
for those models, with ranges as indicated on the legend. This
lays the foundation for building more complicated networks
encompassing different neuron classes.

We reiterate here that Loihi imposes certain bit constraints
on the parameters. For instance, membrane potential threshold
ranges from 0 to £ 223, membrane time constant allows 0
to 22 bits. The membrane capacitance is integrated with bias
current (Equation 18) with bias mantissa allowed a range between
[—212,2!2] and bias exponent a range between [0, 7]. Thus,
a good range of parameters can be mapped well into Loihi
and a limit to the “exactness” can be attributed to the low-
fixed-precision nature of Loihi as most state and configuration
variables are in the range of 8-24 bits.

5. CONCLUSION AND FUTURE WORK

Inspired by the brain, neuromorphic computing holds great
potential in tackling tasks with extremely low power and high

Neuron class Correlation RMSE
efficiency. Many large-scale efforts including the TrueNorth,
Excitatory 0.999989 0.532 x 10~* mV/ms SpiNNaker and BrainScaleS have been demonstrated as a tool
Inhibitory 0.999982 0.612 x 107 mV/ms for neural simulations, each replete with its own strengths
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FIGURE 11 | Scatter plots showing the range of parameters for the 20 neurons classes comprising of both excitatory and inhibitory neurons grouped by RMSE of the
simulations. (A) Scatter plot for membrane capacitance (Cy,) vs. membrane time constant (z,). (B) Scatter plot for bias current (/pzs) vS. membrane time constant (z).
The marker size is determined by the corresponding RMSE.
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and constraints. Fabricated with Intel's 14 nm technology,
Loihi is a forward-looking and continuously evolving state-
of-the-art architecture for modeling spiking neural networks
in silicon. As opposed to its predecessors, Loihi encompasses a
wide range of novel features such as hierarchical connectivity,
dendritic compartments, synaptic delays and programming
synaptic learning rule. These features, together with solid SDK
support by Intel, and a growing research community, make
Loihi an effective platform to explore a wealth of neuromorphic
features in more detail than before.

In this work, we have demonstrated that Loihi is capable of
replicating the continuous dynamics of point neuronal models
with high degree of precision and does so with much greater
efficiency in terms of time and energy. The work comes with
its challenges as simulations built on the conventional chips
cannot be trivially mapped to the neuromorphic platform as its
architecture differs remarkably from the conventional hardware.
Classical simulations from the Brain Modeling Toolkit (BMTK)
developed by the Allen Institute of Brain Science (AIBS) serves as
the foundation of our neuromorphic validation.

For comparison between the conventional and the
neuromorphic platforms, we wuse both qualitative and
quantitative measures. It can be seen that Loihi replicates
BMTK very closely in terms of both membrane potential and
current, the two state variables on which the Loihi LIF model
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FIGURE 12 | Performance comparison between BMTK and Loihi for network
sizes ranging from 1 to 20,000 for the simulation of 500 ms of dynamics. The
values for each curve are scaled by the respective smallest runtime. The Loihi
runtime units are in “milliseconds” and BMTK runtime is in “seconds”.

TABLE 5 | Simulation runtime in Loihi and BMTK.

Network size Loihi time (ms) BMTK time (s)

20 2.52 0.12
100 3.03 0.3

500 5.21 1.13
1,000 7.56 2.72
5,000 9.57 26.47
10,000 9.73 80.45

evolves. We use different validation methods and quantitative
measures to assess the equivalence and identify sets of parameters
which maximize precision while retaining high performance
levels. Furthermore, simulation results indicate Loihi is highly
efficient in terms of speed and scalability as compared to BMTK.

This work demonstrates that classical simulations based on
Generalized Leaky Integrate-and-Fire (GLIF) point neuronal
models can be successfully replicated on Loihi with a reasonable
degree of precision.

Our future work is motivated by runtime performance
comparisons for larger networks between the two platforms. As
Loihi and BMTK are based on very different hardware systems
that follow distinct dynamics and network-setup regimes, we
use the runtime of the simulations to compare the performance
of these implementations. As has been mentioned in the
introduction, performance of Loihi far exceeds that of BMTK.
Figure 12 compares the runtime of Loihi and BMTK, for running
a network of randomly connected neurons with the same
parameters. The network consists of excitatory and inhibitory
neurons in a 1:1 ratio driven by bias current, with connection
probability set at 0.1.

As can be seen from Figure 12 and Table 5, Loihi easily scales
up to larger network sizes with a minuscule rise in runtime
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FIGURE 13 | Loihi runtime for a network of upto 250K neurons for the
simulation of 500 ms of dynamics.

TABLE 6 | Simulation runtime in Loihi for independent neurons vs. connected
network.

Network size Connected network (ms) Independent neurons (ms)

20 2.52 2.09
100 3.03 2.31
500 5.21 3.94
1,000 7.56 6.22
5,000 9.57 7.35
10,000 9.73 7.53
50,000 10.84 7.98
100,000 11.49 8.00
250,000 11.98 9.16
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whereas for BMTK the increase is quite rapid. While both seem
to exhibit a power-law scaling (string line on this graph), Loihi’s
scaling power is much smaller. It is also worth noting here that
for Loihi the unit for the runtime are in “milliseconds” whereas
for BMTK they are in “seconds”. Here we stop at 20,000 neurons
as it can be inferred from the graph that increasing the network
size would increase the time cost for BMTK substantially.

Furthermore, following the above outcome, we extend our
network size in Loihi only to 250K neurons in order to
investigate what potential Loihi holds to execute the final goal
of simulating about ~250,000 neurons with ~500M synapses
in the future, a simulation scale comprising much of the
experimentally observed dynamics in the mouse visual cortex
available to the AIBS. We record our observations for a randomly
connected network of neurons as well as an independent set
of unconnected neurons. From Figure 13 and Table 6, we can
infer that the runtime remains consistent with the above result,
with the independent set of neurons completing the simulation
marginally faster.

This shows that Loihi performs well for connected networks,
setting the stage for our main aim for neural simulations.
Additionally, it also works well for independent set of neurons
which contribute to solutions of problems that require on-chip
parameter and meta-parameter searches, e.g., for Evolutionary
Programming (Schuman et al., 2020).

We do not asses the state-based cost for these networks as
their large sizes require multi-chip simulations which we expect
to be better supported on Loihi 2 (Intel, 2022). Furthermore,
other research groups have firmly established that we cannot
expect exact replication of subthreshold network states between
simulators except for few very simple small networks (van Albada
et al., 2018; Crook et al., 2020). Thus, on the network level we
need to develop cost functions that capture appropriate network
activity details on different scales (e.g., average spike rates and
correlations on the coarsest levels, as in van Albada et al,
2018).

In closing, we want to highlight that with the advent of
Loihi 2 (Intel, 2022), we aim to address the limitations of the
larger networks and carry out the next steps of our work in
this new hardware. We are planning to investigate the full GLIF
dynamics as we would have better support for more complex
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