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Editorial on the Research Topic

Impact of novel omic technologies on biological control against

plant pathogens

Control of plant diseases is mainly achieved by applying chemical pesticides to the crops.

Although these chemical treatments have greatly contributed to spectacular improvements

in food production and crop yields, their indiscriminate use causes significant environmental

damage such as water pollution, soil contamination, increased pathogen resistance and loss

of biodiversity, among others. Nowadays, strict regulations control the extensive use of

chemical pesticides, and there is increasing the public pressure to remove themost hazardous

chemicals from the market. Consequently, the use of biological control (BC) through

the application of microorganisms as biological control agents (BCA) or bio-pesticides to

reduce plant diseases has emerged as a low-cost, environmentally friendly and sustainable

alternative to chemical disease control. However, biocontrol approaches are not as widely

adapted as chemical pesticides. Thus, it becomes essential to progress, among many other

aspects, in a better understanding of the mechanisms governing biocontrol mediated by

microorganisms to improve the efficacy and robustness of treatments. A new generation of

molecular technologies has recently provided a powerful approach to better understand the

relationship of BCA-host plant-pathogen-environment. These new technologies are known

under the term “omics” and include techniques such as micro and macroarrays, next

generation sequencing (NGS) technology, proteomics, metabolomics, genomics (including

its derivatives pangenomics and metagenomics), and transcriptomics, among others. This

Research Topic collects different strategies to better understand BCA-host-pathogen-

environment interactions. The use of different omics approaches and synthetic biology, and

integrating themwith traditional technologies, may thus accelerate the development of BCAs

against plant pathogens.

This topic includes manuscripts that focus on new approaches leading to a more

successful selection of potential BCAs. Microbiome analysis allow for the discovery of new

BCAs. In this sense, Ciancio et al. describe a metabarcoding study to examine the soil/root

microbiota (bacteria, fungi, and nematodes) of banana, across several farms with different

locations and cultivation techniques. The relationship between the microbiota and these

factors is highly relevant in the development of pest control strategies. Anguita-Maeso

et al. characterized the xylem sap microbial communities in almond trees, identifying
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microorganisms that would be good candidates to produce almond

plants more resilient to Xylella fastidiosa infection. Also, Zhang et

al. studied the microbial communities in two cultivars of tea plants,

a resistant and a susceptible cultivar. They observed that the relative

abundance of Penicillium was significantly different between

the susceptible and resistant plants, and identified Penicillium

as a potential biomarker. Zhang et al. analyzed the secondary

metabolites produced by resistant and susceptible plants and

correlated this with the microbiome. In brief, the authors observed

that Penicillium correlated with the secondary metabolite quercetin

among others.

Increasing our knowledge of the biocontrol mechanism of

BCAs is critical for the subsequent development of appropriate

formulations and optimal application timing and methods. Thus,

omics disciplines are among the key tools that have significantly

improved our understanding of the action mode of BCAs against

plant pathogens. Here Ye et al. identified a potential BCA

against Meloidogyne graminicola which employs multiple anti-

nematode mechanisms, including triggering the expression of

resistance-related genes and defense enzyme activity to enhance

plant resistance. Other works identified the genetic basis of

biofilm production based on poly-γ-glutamic acid (γ-PGA) by

Bacillus atrophaeus NX-12. By generation of a strain lacking the

biosynthetic γ-PGA cluster they correlated the formation of biofilm

with the colonization of rhizosphere and the biocontrol activity

exhibited by this bacteria (Xue et al.).

In the interaction of BCA with the host and the pathogen

it is also very important to clarify the mode of action of the

target pathogen. Li et al. identified potential genes in the pathogen

Rhizoctonia solani involved in the production of metabolites and

extracellular proteins. This basidiomycete produces a large number

of potentially secreted enzymes and small proteins with a putative

function as effectors involved in virulence. The reverse genetics and

transcriptomic analysis allowed to Lu et al. to explain the role of

mating in the virulence of the fungus Sporisorium scitamineum.

This basidiomycete is the causative agent of sugarcane smut

disease in which the formation of dikaryotic strains is essential for

filamentous growth and infection in sugarcane plants.

High-throughput analyses are fundamental to the study of

the complex tripartite interaction of BCA, host and pathogen.

Requena et al. used NGS to compare at the genomic level two

strains of Penicillium rubens, S27 and PO212. PO212 is an effective

BCA against a large number of fungal plant pathogens that

infect different horticultural crops while S27 lacks this biocontrol

capacity. Comparative genomics showed that PO212 and S27 have

a high genomic similarity in gene content. Requena et al. points

out the importance to complement this genomic approach with

a transcriptomic approach to explain the high similarity in gene

sequence but different phenotype. Similarly, Moshe et al. used

comparative genomics to study the biocontrol potential of several

Bacillus strains. The Bacillus strains showed different in-vitro

antagonism against three plant pathogens, Pythium, Rhizoctonia

and Fusarium. The antagonistic effect depended on unique

secondarymetabolite and chitinase-encoding genes in each Bacillus

strain discovered in the comparative genome approach. In this line,

Ma et al. use comparative genomic analysis to study two formae

speciales of Setosphaeria turcica. In this regard, some pathogens

might act as BCAs in an incompatible host. S. turcica f. sp. zeae

and S. turcica f. sp. sorghi cause northern leaf blight disease of

corn and sorghum, respectively. In this study, S. turcica f. sp.

zeae was predicted to have fewer secreted proteins, pathogen-host

interaction (PHI) genes and carbohydrate-active enzymes (CAZys)

than S. turcica f. sp. sorghi but there were eight effector protein-

encoding genes specifically in S. turcica f. sp. zeae, among which

cellulase genes had a major role in pathogenicity.

These contributions highlight the progress in the field of BCA

research and its potential to bring solutions from the laboratory

to the farm. They also highlight the still unanswered questions

about BCA-plant-pathogen-environment interactions and thus

provide opportunities for continued research. We hope that the

information provided in this topic will be helpful to scientists

and students.
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Rhizosphere 16S-ITS Metabarcoding
Profiles in Banana Crops Are
Affected by Nematodes, Cultivation,
and Local Climatic Variations
Aurelio Ciancio 1*, Laura Cristina Rosso 1, Javier Lopez-Cepero 2 and

Mariantonietta Colagiero 1*

1Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Bari, Italy, 2Departamento Técnico de

Coplaca S.C., Organización de Productores de Plátanos, Santa Cruz de Tenerife, Spain

Agriculture affects soil and root microbial communities. However, detailed knowledge

is needed on the effects of cropping on rhizosphere, including biological control

agents (BCA) of nematodes. A metabarcoding study was carried out on the microbiota

associated with plant parasitic and other nematode functional groups present in

banana farms in Tenerife (Canary Islands, Spain). Samples included rhizosphere soil

from cv Pequeña Enana or Gruesa and controls collected from adjacent sites,

with the same agroecological conditions, without banana roots. To characterize

the bacterial communities, the V3 and V4 variable regions of the 16S rRNA

ribosomal gene were amplified, whereas the internal transcribed spacer (ITS) region

was used for the fungi present in the same samples. Libraries were sequenced

with an Illumina MiSeqTM in paired ends with a 300-bp read length. For each

sample, plant parasitic nematodes (PPN) and other nematodes were extracted from

the soil, counted, and identified. Phytoparasitic nematodes were mostly found in

banana rhizosphere. They included Pratylenchus goodeyi, present in northern farms,

and Helicotylenchus spp., including H. multicinctus, found in both northern and

southern farms. Metabarcoding data showed a direct effect of cropping on microbial

communities, and latitude-related factors that separated northern and southern controls

from banana rizosphere samples. Several fungal taxa known as nematode BCA

were identified, with endophytes, mycorrhizal species, and obligate Rozellomycota

endoparasites, almost only present in the banana samples. The dominant bacterial

phyla were Proteobacteria, Actinobacteria, Planctomycetes, Bacteroidetes, Chloroflexi,

and Acidobacteria. The ITS data showed several operational taxonomic units (OTUs)

belonging to Sordariomycetes, including biocontrol agents, such as Beauveria spp.,

Arthrobotrys spp., Pochonia chlamydosporia, and Metarhizium anisopliae. Other taxa

included Trichoderma harzianum, Trichoderma longibrachiatum, Trichoderma virens,

and Fusarium spp., together with mycoparasites such as Acrostalagmus luteoalbus.

However, only one Dactylella spp. showed a correlation with predatory nematodes.

Differences among the nematode guilds were found, as phytoparasitic, free-living, and

predatory nematode groups were correlated with specific subsets of other bacteria

and fungi. Crop cultivation method and soil texture showed differences in taxa
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representations when considering other farm and soil variables. The data showed

changes in the rhizosphere and soil microbiota related to trophic specialization and

specific adaptations, affecting decomposers, beneficial endophytes, mycorrhizae, or

BCA, and plant pathogens.

Keywords: 16S rRNA, Helicotylenchus multicinctus, ITS, Pratylenchus goodeyi, microbiota

INTRODUCTION

Banana (Musa acuminata) is an economically important crop
in the Canary Islands (Spain), where it represents a source
of income for many small holders, with around 50% of
cultivated areas and yields that supply around 70% of national
consumption. Dwarf Cavendish (Pequeña Enana, AAA) and
derived selections represent the most widespread genotype
(>90% of plants) due to its productivity and commercial
performance. The crop is cultivated in small parcels, with alkaline
volcanic soils often proceeding from different sites, amended
with organic matter in part originating from old leaves left
rotting on the soil surface. Themain adversities of this cultivation
include nematode pests, banana weevil (Cosmopolites sordidus),
and Fusarium wilt caused by Fusarium oxysporum f. sp. cubense
(Foc). The latter disease affects 2–12% of plants, with some
farms reaching up to 30% prevalence (Gómez-Lama Cabanás
et al., 2021). Pest and Foc management include a conventional
approach, based on nematicides and insecticides, pheromone
traps or products based on cloripirifos, spirodiclofen, and other
active components. Alternative organic approaches for pest and
disease management include the use of natural products with
nematocidal or fungicidal properties, combined with pheromone
traps (Supplementary Table 1).

PPN found in the Canary Islands banana farms include lesion
nematodes Pratylenchus spp., spiral nematodes Helicotylenchus
spp., and occasionally root-knot nematodes, Meloidogyne spp.
These parasites are widespread in banana cultivated areas of the
world (Moens et al., 2006; Coyne et al., 2018). Fusarium wilt is
the most severe soil-borne vascular disease encountered in the
Canary Islands. Its virulence depends on the race as well as on
plant tolerance level (Bubici et al., 2019; Gómez-Lama Cabanás
et al., 2021). The races reported in the Canary Islands are the
subtropical races 4 (SR4), R2, and R1 (vegetative compatibility
group 0120), highly virulent on cv. Gros Michel but not on
GrandNaine (Domínguez et al., 2001). The low virulence of those
races appears to be related to suppressive soil factors, such as the
scarcity of iron and high levels of sodium and clay (Domínguez
et al., 2001).

Plant and soil microbiota have an important effect on

crop productivity. They include species with a varying degree

of specialization, underpinning fundamental services such as

nutrient recycling and pest or disease regulation. Is it recognized
that many species, including BCA, contribute significantly to
crop production by sustaining the rhizosphere and plant health
(Bulgarelli et al., 2013; Granzow et al., 2017; Jacoby et al.,
2017; Berg et al., 2020). The rhizosphere microbiota may hence
represent a natural reservoir of BCA and a possible alternative

tool for PPNmanagement (Berg et al., 2017). However, due to the
complexity of the rhizosphere environment, natural pest/disease
regulation in intensive crops is not as frequent as expected. This
often occurs in the case of PPN in intensive cropping systems
(Topalović and Heuer, 2019; Topalović et al., 2020). The severity
of PPN attacks mostly depends on the changes induced in soil by
agriculture, such as the environmental pressure of monocultures
and/or the low genetic diversity of crops. These conditions occur,
and are particularly evident, in banana crops, in which all plants
are usually clones of one or few lineages (mostly Cavendish),
selected for commercial or technical reasons including resistance
to one or more Foc diseases.

Knowledge of soil and rhizosphere microbial diversity and
composition is hence fundamental to implement sustainable crop
management, as well as to determine the impact of one or more
biological/technical factors on the indigenous BCA. Progress
has been achieved in determining the links between Fusarium
wilt and banana-associated microorganisms (Effendi et al., 2019;
Kaushal et al., 2020; Gómez-Lama Cabanás et al., 2021; Ravi
et al., 2021). However, the potential of soil microorganisms to
manage plant production in a more sustainable way, relying
solely on indigenous species, is not yet fully exploited. Intensive
banana crop management still remains highly dependent on
frequent applications of synthetic pesticides. In particular, it is
unknown if and how co-occurring microbial species, as well as
their interactions with the BCA present, act on soil pests such as
PPN. Soil-inhabiting organisms form a complex foodweb system,
whose final outcomes may range from the natural regulation
of noxious organisms to the insurgence of severe pest attacks
(Bardgett et al., 1999; Ram et al., 2008).

Soil microbial communities, including BCA with other
cryptic co-occurring species, may reveal undetected but useful
interactions with the farm and the local agroenvironment (i.e.,
soil physical properties and pests), or depending on other
external variables (i.e., selection of cropping practices and
climate). In this regard, belowground links among species and
trophic groups are becoming more and more informative as a
huge amount of data is made available through deep sequencing
and -omics technologies (Berg et al., 2020; Martínez Arbas
et al., 2021). A detailed knowledge of soil microbial profiles
may allow the setup of information-based crop management
practices, exploiting natural pest/disease regulation, reinforcing
or sustaining soil, and rhizosphere health.

Beneficial microorganisms that contribute to plant production
include species acting as generalists or, on the contrary,
inhabiting specific trophic niches, ranging from endophytes to
pathogens or BCA, which affect plant health and thus farm
productivity (Bulgarelli et al., 2013; Xue et al., 2015; Granzow
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et al., 2017; Kaushal et al., 2020; Zhang et al., 2020; Gómez-
Lama Cabanás et al., 2021; Ravi et al., 2021). Apart from plant
growth promoters, soil harbors endosymbionts or BCA often
specifically associated with their hosts. Some isolates are already
exploited as active ingredients in a number of commercial
products, worldwide. These include, for example, host-specific
PPN antagonists such as the bacteria Pasteuria spp. or Bacillus
spp. (Tian et al., 2007; Mohan et al., 2020), and ubiquitous fungi
such as Pochonia chlamydosporia, a root endophyte and a parasite
of nematode eggs (Manzanilla-López et al., 2013). As a root
endophyte, P. chlamydosporia also elicits the expression of a wide
range of plant defense genes (Larriba et al., 2015; Mingot-Ureta
et al., 2020; Tolba et al., 2021; Zhuang et al., 2021).

Other fungi of interest for exploitation as BCA are the
members of genera Metarhizium and Trichoderma. The former,
phylogenetically close to Pochonia, is characterized by the
root endophytism and soil insect parasitism. Within the genus
Trichoderma, several BCA and/or endophytes are present,
including its teleomorph genus Hypocrea (Sivan and Chet, 1986;
Chaverri and Samuels, 2002). However, data are needed on
the competence and persistence of these BCA in the soil and
rhizosphere, in particular when they are naturally present, as well
as on their interactions with associated bacteria.

A further factor impacting the rhizosphere environment, and
thus natural pest or disease regulation, originates from anthropic
activities including, i.e., practices adopted by producers through
organic or conventional farming, and the related aboveground
cover, which also affect belowground microbiota profiles (Leff
et al., 2018). Few data are available on the effect of organic
and low-impact agriculture, soil properties, climate, on the
microbiota diversity and, indirectly, on BCA species distribution,
prevalence, and co-occurrence.

Considering the important role played by soil microorganisms
in crop production and pest regulation, the focus of this study
was to evaluate the interactions of the banana crop with the
rhizosphere microbiota and the indigenous BCA of nematodes
present in the soil, also to evaluate additional variables. In
this study, we produced and analyzed metabarcoding data to:
(1) determine the effect of cropping on rhizosphere bacteria
and fungi in banana farms, in a subtropical environment, (2)
investigate the effect of farm properties on rhizosphere microbial
profiles, (3) estimate the impact that factors, such as climate or
soil properties, and nematodes have on soil microbiota profiles,
and (4) evaluate the crop effects on naturally occurring BCA
species as well as their potential for PPN regulation.

MATERIALS AND METHODS

A total of 38 samples were collected in Tenerife (Canary
Islands, Spain) from the rhizosphere of M. acuminata var.
Pequeña Enana or Gruesa (Cavendish clones), on farms
applying conventional (only synthetic chemicals), integrated
pest management (IPM, using chemical pesticides and natural
products), or organic cropping techniques (EU regulation n.
848/2018) (Supplementary Table 1). A total of 36 samples were
collected in February 2018 (mean month temperature = 18◦C,

humidity = 65%). Rhizosphere soil samples (ca. 300ml) were
collected at an average depth of 20 cm with banana root
fragments. Other local control samples, with mostly grass or
weed roots, were collected on the same farms from adjacent,
banana root-free sites, within 5–10m from the sampled banana
plants, at the same depth. The three replicate banana samples
and corresponding controls (each formed by three or more
nearby subsamples, mixed to form a sample) were collected
in six farms, located in the northern and southern areas of
the island (Supplementary Table 1). Two other samples from
banana rhizosphere, collected from a northern farm in September
2017 and stored at 4◦C, were also included in this study. A
subsample (300 g of mixed soil and roots) from each soil bag
was stored at −80◦C before processing for subsequent analyses.
The remaining soil used for nematode and soil analysis was then
stored at room temperature.

Samples were classified by latitude (northern or southern
coast farm location), farm of origin and cultivation method,
soil texture (measured by decanting and weighting of the
three soil fractions), pH (Kettler et al., 2001; Schoeneberger
et al., 2012) and number of PPNs, free-living, and predatory
nematodes. The soil sieving and decanting technique was used
for the extraction of nematodes by suspending a 200-ml soil
subsample in tap water, followed by filtering and decanting,
with a set of 500- and 75-µm sieves. The filtered suspension
was then examined for nematode identification and density
measurement with light microscopy, using a Hawksley counting
chamber at 50×, in three replicates. PPN were identified at
the species level using available taxonomic keys (Boag and
Jairajpuri, 1985; Handoo and Golden, 1989; Uzma et al., 2015;
see Table 1 for variables considered) with a Leitz Orthoplan light
microscope, at 312–500×. Hand-picked nematode specimens
were placed on slides in temporary water mounts. We classified
the free-living (Rhabditida and Aphelenchoides) and predatory
nematodes (Mononchida and non-plant parasitic Dorylaimida)
during counts using a Hawksley counting chamber at 40-
100× and available nematode descriptions (Goodey, 1963). Free-
living (bacterial and fungal feeders) and predatory nematodes
(mononchids and dorylaims) were counted as groups. The
remaining soil was then used to measure soil texture and pH, for
each sample. Spearman’s correlations among nematode and soil
variables were calculated using PAST (Hammer et al., 2001).

Metabarcoding Analyses
Rhizosphere soil samples were analyzed for the presence of
bacteria and fungi using a metabacoding sequencing approach.
For metabacoding analyses, 2 g of soil collected from banana
roots or from controls were used from each sample. Total
RNA was extracted with the RNeasy PowerSoil R© Total RNA
kit (Qiagen R©, UK—MoBio Laboratories, Inc.), following the
manufacturer’s instructions. RNA concentration was determined
with a NanodropTM spectrometer at 260 nm. The extracted
material was subjected to reverse transcription according to the
IlluminaTM sequencing protocol, using SuperScript III or IV
(Invitrogen, USA), following the manufacturer’s protocol. The
material obtained was then purified using the QIAquick PCR
Purification kit (Qiagen R©, UK). The nucleic acid integrity was
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TABLE 1 | Variables used for the identification of plant parasitic nematodes.

Nematode taxa Variables used References/keys

Helicotylenchus multicinctus Adults tail and head shape hemispherical; presence of males; spermatheca functional and

slightly offset; stylet length < 24µm; < 5 lip annules; phasmids anterior to anus; lateral fields

without striae; habitus = open C; V = 61–76; L = 400–673.

Boag and Jairajpuri, 1985;

Uzma et al., 2015

Pratylenchus goodeyi Presence of males; V = 73–75%; posterior uterine branch short, around one body width at

vulva; tapering and almost pointed tail; four lip annules.

Handoo and Golden, 1989

checked by electrophoresis on 1.5% agarose gel. The cDNA
was then subjected to PCR amplification of the bacterial 16S
ribosomal RNA gene and the fungal internal transcribed spacer
(ITS) regions.

16S Data Analysis
Both ends of the V3–V4 hypervariable region were
used for the amplification of the 16S rRNA ribosomal
gene, which is considered capable of yielding sufficient
information for taxonomic classification (Yang et al., 2002;
Liu et al., 2007, 2008; Caporaso et al., 2010). The primers
341F (5′-CCTACGGGNGGCWGCAG-3′) and 805R (5′-
GACTACHVGGGTATCTAATCC-3′), with affinity for flanking
conserved motifs, were used to amplify the V3–V4 of the 16S
hypervariable region (Van de Peer et al., 1996; Baker et al.,
2003; Clarridge, 2004; Takahashi et al., 2014). MiSeq System
Illumina platforms, provided by a commercial service (IGA-
Technology Services, Udine, Italy1), were used for sequencing.
Two amplification steps were used in the library workflow: an
initial PCR amplification using locus-specific PCR primers and
a subsequent amplification integrating the relevant flow-cell
binding domains and unique indices (NexteraXT Index kit
FC-131-1001/FC-131-1002), used to amplify the variable V3 and
V4 regions of the 16S rRNA gene. Libraries were sequenced on a
MiSeq run in paired end features with a 300-bp read length2.

For the bioinformatic assembly of the single read contigs, raw
sequences were processed using the PandaSeq3 pipeline (Masella
et al., 2012). Forward and reverse 16S reads were merged by
applying the following PandaSeq parameters: sequences with
unidentified nucleotides= filtered; lengths of overlapping region
(min–max) = 100–180 nt; contig lengths (min–max) = 200–
450 nt (Claesson et al., 2010). For each sample, the single fasta
format file of high-quality assembled sequences was obtained by
merging data, and then used as the first input for processing
with QIIME 1.9 (Caporaso et al., 2010), on a Linux emulator
in a Windows R© 7 environment. QIIME was applied to filter
the chimeras, to assemble the replicate sequences and to analyze
the operational taxonomic units (OTUs) assigned through the
implementation of UCLUST, applying a 97% identity threshold to
discriminate at the species level (Caporaso et al., 2010). Next, an
OTU table was constructed using a combined fasta file generated
by add_qiime_labels.py using labels from a metadata mapping

1www.igatechnology.com
2https://www.illumina.com/content/dam/illumina-marketing/documents/

products/appnotes/16S-Metagenomic-Library-Prep-Guide.pdf
3https://github.com/neufeld/pandaseq

file, and then using pick_de_novo_otus.py. An OTUs.biom file
was obtained by picking OTUs defined based on 97% sequence
similarity, and taxonomy was assigned to individual OTUs
through the Greengenes data set (ver._gg 13.5) (McDonald et al.,
2012). The HDF5 OTU.biom file with sequence abundance per
sample and treatments was converted to JSON.biom format
using the BiomCS 1.0.6 online conversion server4 (ver. 1.0.6).
OTUs were filtered using the sum of five sequences per OTU in
total (sum of all samples) as minimum threshold, and analyzed
with the graphical interface provided by Statistical Analysis of
Metagenomic Profiles5 (STAMP, ver. 2.1.3) (Parks and Beiko,
2010; Parks et al., 2014). To compare sample pairs or samples
organized into two or more groups identified by treatment
and/or other traits listed in the mapping file (such as farm,
crop cultivation method, soil pH or texture, density levels
of phytoparasitic, free-living or predatory nematodes, sample
latitude, or their combinations), the entire samples were used
as the parent level with different profile levels, applying a two-
tailed Student’s t-test, with other comparative statistics. We
kept unclassified OTUs and their higher levels in the analyses,
by identifying the latter in the hierarchy (and eventually in
STAMP plots) using the OTUs codes as tags of the higher,
unclassified taxonomic levels. Heatmap plots of only significantly
different OTUs [analysis of variance (ANOVA, with a 0.95 post-
hoc Tuckey–Kramer test, filtering threshold: p < 0.05)] were
produced with the average neighbor UPGMA algorithm and a
0.65 dendrogram clustering threshold. Two-group comparisons
were performed by applying a two-sided, equal variance t-test
(p < 0.05, effect size as ratio of proportions = 0.8). Principal
component analysis for all samples (except the outlier sample N1)
was also performed with STAMP.

The .biom OTU table was used for further analyses with
the R library mctoolsr6 ver. 0.1.1.2 (R Core Team, 2013) for
the production of samples Bray–Curtis dissimilarity matrices
and MDS plots, for the whole data set or selected taxonomic
lineages or sample groups, and for Kruskal–Wallis t-test and
permutational multivariate analysis of variance (PERMANOVA).
PAST was used to calculate sample α-diversity indices. Further R
libraries used included phyloseq (McMurdie and Holmes, 2013),
ggplot2 (Wickham, 2016), and boxplot for graphics, psych, and

4https://biomcs.iimog.org
5http://kiwi.cs.dal.ca/Software/STAMP
6Leff J. W. (2016). mctoolsr: Microbial Community Data Analysis Tools. R package

version 0.1.0.12. Available online at: https://github.com/leffj/mctoolsr/.
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TABLE 2 | Spearman’s rank correlation coefficient (ρ) among nematode population densities and other soil variables*.

Pratylenchus goodeyi Predatory nematodes Helicotylenchus spp. Free living pH Sand (%) Silt (%) Clay (%)

Pratylenchus goodeyi 0.59213 0.00116 0.14411 0.55280 0.00031 0.00735 0.00026

Predatory nematodes −0.08973 0.10610 0.93726 0.30108 0.24468 0.73659 0.00932

Helicotylenchus spp. 0.50705 −0.26628 0.02984 0.18466 0.00000 0.00364 0.00001

Free living 0.24150 0.01321 0.35276 0.34169 0.00077 0.00059 0.08825

pH −0.09937 −0.17225 0.21990 0.15856 0.47186 0.97493 0.39637

Sand (%) –0.55431 0.19339 –0.67035 –0.52229 −0.12030 0.00000 0.00000

Loam (%) 0.42803 –0.05641 0.46034 0.53208 −0.00527 –0.87657 0.00055

Clay (%) 0.55959 –0.41634 0.66588 0.28033 0.14162 –0.81552 0.53408

*All samples (n = 37). Upper matrix shows p levels (italics, significant values at p < 0.05 are shown in bold). Lower matrix shows ρ values (significant coefficients are shown in bold).

corr.test for correlations. Venn diagrams were produced using an
online public service7 (Heberle et al., 2015).

ITS Data Analysis
Two amplification steps were used in the library workflow:
an initial PCR amplification using locus-specific PCR primers
and a subsequent amplification, integrating the relevant
flow-cell binding domains and unique indices (NexteraXT
Index kit FC-131-1001/FC-131-1002), used to amplify the
ITS RNA gene. Libraries were sequenced in a MiSeq run
in paired end with a 300-bp read length. The primers
ITS1 5′-TCCGTAGGTGAACCTGCGG-3′ and ITS4 5′-
TCCTCCGCTTATTGATATGC-3′ were used for the ITS locus
(White et al., 1990). ITS sequences were processed by the
sequencing provider using fast length adjustment of short
(FLASH) reads, filtering out the sequences with unidentified
nucleotides by applying 15–250 nt (min–max) lengths of the
overlapping region (Magoc and Salzberg, 2011). For each sample,
the single fasta format file of assembled sequences was obtained
by merging data, and then used as the first input for processing
with QIIME 1.9 (Caporaso et al., 2010), on a Linux emulator
in a Windows R© 7 environment. Next, an OTU table was
constructed using pick_otus.py based on 97% sequence similarity
and an OTUs.biom file was obtained. Taxonomy was assigned
to individual OTUs using the UNITE data set (ver._7.1) using
UCLUST (Edgar, 2010; Tedersoo et al., 2018). The resulting
Excel R© database was then edited to eliminate redundancies at
the species or genus level by summing all reads counts into single
representative OTUs or taxa. Unclassified OTUs were kept in
the data set by adding the highest taxonomic descriptor to the
unclassified, lower level tags. The same statistics and software
tools applied for the 16S analysis were then used for the ITS data.

Sequence Data Deposition
All sequence data were deposited in the sequence read archive
(SRA) of the National Center for Biotechnology Information
(NCBI) under accession number BioProject PRJNA540248.

7http://bioinformatics.psb.ugent.be/webtools/Venn/

RESULTS

Nematodes
Plant parasitic nematodes found in the banana rhizosphere
included Pratylenchus goodeyi Sher and Allen, and
Helicotylenchus spp. (H. multicinctus Cobb, Golden, and
H. abunaamai Siddiqi), found in 45% (density range: 67–
1,750 × 100 cc soil−1) and 70% (60–2,300 × 100 cc soil−1)
of samples, respectively. Pratylenchus goodeyi is a severe
root endoparasite of banana worldwide, with a migratory
phase in the soil on or around the roots. This species
is considered to have been introduced to the Canary
Islands, likely through the infested plant propagation
material. Helicotylenchus multicinctus, a further severe
banana ecto–endoparasite, was more prevalent in banana
samples. In control samples, P. goodeyi was not detected,
whereas Helicotylenchus spp. were only found in one sample
(Supplementary Table 2).

Free-living nematodes included Rhabditidae as bacterial
feeders and fungal feeders such as Aphelenchoides spp.
Microbial feeders were present in 79% of the samples
(density range: 120–13,533 nematodes × 100 cc soil−1)
(Supplementary Table 2). Predatory nematodes belonged
to Dorylaimida and Mononchida. They were found in
26% of the samples (60–360 nematodes × 100 cc soil−1)
(Supplementary Table 2).

Soil profiles showedmost prevalent texture class as sandy clay,
with a mean pH for all samples around 7.4 (min-max: 6.3–8.8)
(Supplementary Table 2).

Spearman’s correlations of P. goodeyi and Helicotylenchus
densities with soil variables showed a significant inverse
relationship with sand and a positive correlation with the
other soil fractions. A significant positive correlation also
occurred between the density of P. goodeyi and the number
of Helicotylenchus spp., as well as between the latter and the
density of free-living nematodes. Predatory nematodes were only
negatively correlated with soil clay content (Table 2).

16S Data
A total of 4,426,081 single reads of the 16S V3-V4 region
were obtained from the 37 samples analyzed (one sample
was discarded due to a low number of reads). PandaSeq
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produced 1,250,383 contigs that were analyzed with QIIME,
yielding a total 469,205 sequences, used for taxonomic
assignments in each sample. The 3,938 OTUs obtained
after filtering were represented among the different samples

with different frequencies, of which only 68 (1.7%) were
classified at the species level. The OTUs belonged to 190
classified genera (2,667 OTUs unclassified at this level), 128
families (1,166 unclassified), 400 orders (308 unclassified),

FIGURE 1 | Venn diagrams showing the distribution of bacterial operational taxonomic units (OTUs) (A), classified genera (B), and fungal ITS OTUs (C), among all

samples, grouped by crop and latitude.

FIGURE 2 | Principal component analysis (PCA) plots (A,B = PC1 vs. PC2, C,D = PC1 vs. PC3) showing samples classified by crop and latitude, based on 16S

sequence data, at the family (A,C) and genus (B,D) levels (all samples except N1).
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97 classes (31 unclassified), and 21 bacterial phyla. Archaea
were represented by only 14 OTUs from phyla Crenarcheota
and Euryarchaeota.

Venn diagrams showed a core microbiota of 1,681
OTUs, either classified or not, from 190 classified genera,
of which 114 were in common for all samples. A higher

number of OTUs were observed in northern samples,
which also showed the highest number of unique OTUs
(Figures 1A,B).

Principal component (PCA) plots showed distinct
separations among the sample groups (Figure 2A) in
relation to latitude and presence of banana roots, as did

FIGURE 3 | Multidimensional scaling (MDS, stress = 0.14) plots of all samples based on latitude and density of Helicotylenchus spp. (A), and crop cultivation method

(B). Nematode density levels (expressed as adult and juvenile nematodes × 100 cc soil−1) are: L = low or absent (0–290), M = medium (291–804), H = high

(805–1,319), VH = very high (>1,319) (mean density and standard deviation (SD) = 290 ± 514 nematodes × 100 cc soil−1).

FIGURE 4 | MDS plots (stress = 0.14) of all samples when considering only Proteobacteria (rarefied to 1,800 taxa) and based on latitude and crop (A). MDS plots of

only Rhizobiales (B, rarefied to 940 taxa, stress = 0.14) with crop, latitude and soil pH. MAL, moderately alcaline; N, neutral; SAC, slightly acid; SLAL, slightly alcaline;

SAL, strongly alcaline.
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non-metric multidimensional scaling (NMDS) analyses.
The clusterings reflected changes in the microbiota, with
groups accounting for the presence and density level of
H. multicinctus and for the effect of the crop cultivation
method and latitude (Figures 3A,B). A more homogeneous
clustering was observed in the PCA plots at the genus level,
indicative of a higher similarity among the samples, at a
lower taxonomic level (Figure 2B). PERMANOVA analysis
showed significant differences in false discovery rate (FDR)
among groups, mainly related to the presence/absence of
banana roots, latitude, and number of Helicotylenchus spp.
(Supplementary Table 3).

Separated sample clusterings were also shown by NMDSwhen
the analysis was limited to specific taxa, such as Proteobacteria,

separating samples by crop and latitude (Figure 4A), or
Rhizobiales, with clusters distinguished by latitude and soil pH
(Figure 4B).

A higher representation of Proteobacteria, Acidobacteria,
and Chloroflexi was observed in the banana rhizosphere,
when considering the most abundant taxa by comparing
plant and control samples, whereas Actinobacteria were
more prevalent in adjacent control sites (Figure 5A). This
repartition was reflected in a higher prevalence of the classes
Alphaproteobacteria, Clostridia, Solibacteres, and Anaerolineae
in the banana rhizosphere, with Actinobacteria more represented
in control sites (Figure 5B). At the order level, a higher
frequency of Rhizobiales and Solibacterales characterized
the banana rhizosphere samples, with Actinomycetales

FIGURE 5 | Top 10 more represented phyla (A), classes (B), orders (C), and 15 more represented families (D), in the samples proceeding from Musa acuminata

rhizosphere vs. adjacent banana root-free control sites.
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FIGURE 6 | Heatmaps of 16S rRNA sequence abundance among all samples (A,C), and in a subset of northern samples (B), showing the separation of taxa

between banana plant rhizosphere and adjacent controls, at the order (A) and genus (B,C) levels (filtered at p < 0.05, effect size filter for difference or proportions =

0.8). Extended error bar plot showing the mean sequence proportions for differentially represented bacterial taxa (p < 0.05), at the genus level (D).

TABLE 3 | Most represented bacterial families and relative abundance as shown by 16S sequence reads, accounting for differences among banana rhizosphere, and

other adjacent, crop-free control sites. Samples were classified by crop and latitude.

Abundance (%)*

Families Banana North Banana South Control North Control South P Bonferroni P** FDR P

Geodermatophilaceae 0.013 0.018 0.074 0.062 2.470368e-05 0.00027 0.00027

Bradyrhizobiaceae 0.011 0.014 0.052 0.023 1.058206e-04 0.00116 0.00058

Solibacteraceae 0.092 0.089 0.035 0.022 1.656480e-04 0.00182 0.00060

Hyphomicrobiaceae 0.114 0.116 0.039 0.036 1.671030e-04 0.00183 0.00045

Phyllobacteriaceae 0.056 0.048 0.015 0.030 2.181649e-04 0.00239 0.00047

Sphingomonadaceae 0.026 0.031 0.075 0.044 5.658774e-04 0.00622 0.00103

Micromonosporaceae 0.017 0.029 0.079 0.018 6.404280e-03 0.07044 0.01006

Nocardioidaceae 0.033 0.032 0.045 0.076 8.032507e-03 0.08835 0.01104

*Min. 5%, in at least one sample group. Most represented families are shown in bold (analyzed with the R library mctoolsr).

**p-values based on Kruskal–Wallis tests, with Bonferroni and false discovery rate (FDR) corrections (significance at p< 0.05 is shown in bold; rarefaction level applied= 4,500 sequences

per sample; total samples retained = 37).

more prevalent in the control soils (Figures 5C, 6A). The
families Hyphomicrobiaceae and Solibacteraceae were more
prevalent in the banana rhizosphere samples, whereas members
of Bradyrhizobiaceae were more represented in controls
(Figure 5D). A similar distribution was observed at the
family level when samples were grouped by crop and latitude

(Table 3). Differences between banana and control samples
were also observed at the genus level, with distinct clusterings
(Figure 6C), more evident when considering only the northern
samples (Figure 6B). The data showed a higher abundance of
Pedomicrobium, Rhodoplanes with other unclassified taxa in
banana rhizosphere, whereas Microbispora, Kaistobacter, Ca.
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FIGURE 7 | PCA plots (PC1 vs. PC2 and PC1 vs. PC3) by crop and latitude of the samples based on internal transcribed spacer (ITS) data, showing clustering at the

family (A,C) and genus (B,D) levels.

Solibacter, and Skermanella were more represented among the
controls (Figure 6D).

ITS Data
A total of 1,725,692 contigs were obtained from 37 samples
analyzed with QIIME, yielding 572,389 ITS sequences. After
filtering out sequences from plants and other clades, taxonomic
assignments for the Kingdom Fungi across all samples yielded a
total of 429 OTUs classified into six phyla and 24 classes. The
classification showed fungi in 60 orders (with 15 additional ones
unclassified), 106 families (with 48 additional unclassified), and
a total of 314 genera (65 of which were unclassified). OTUs
classified to the species level were 189, whereas 175 could be only
assigned at the genus level, with 65 OTUs also unclassified at the
species level.

Venn diagrams showed a common core fungal microbiota
of 94 OTUs, either classified or not, including BCA such
as Metarhizium anisopliae (NCBI accession n. JN377427),
Arthrobotrys oligospora, and Acrostalagmus luteoalbus
(AJ292420). A higher frequency of OTUs was observed in
the northern control and banana samples, which also showed

the highest number of unique OTUs (Figure 1C). Several
fungal species known as predatory or parasitic on nematodes
or other fungi showed, in the banana rhizosphere samples,
higher frequencies and/or sequence numbers, including
P. chlamydosporia, M. anisopliae, and species of genera
Arthrobotrys, Beauveria, Dactylaria, Dactylella, Lecanicillium,
Nematoctonus, and Trichoderma (Supplementary Tables 4, 5).
OTUs also included plant pathogenic fungi such as Musicillium
theobromae (EF543859; JQ647444), the causal agent of cigar
end rot (found in northern and southern banana samples),
Macrophomina phaseolina (KF766195) (core microbiota),
or other pathogens belonging to the genera Alternaria,
Cladosporium, and Fusarium. Arbuscular mycorrhizal fungi
(AMF) included Funneliformis spp. (HF970250) and the
ericoid mycorrhiza Oidiodendron spp. (KF156313, AF062793
core microbiota). Species reported in the literature as human
pathogens, i.e., Basidiobolus ranarum, Lichtheimia corymbifera
(GQ342878), or Actinomucor elegans, were also recorded
(JN205828) (Supplementary Table 5).

Internal transcribed spacer PCA plots showed a clear
repartition of samples in relation to the presence/absence of
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FIGURE 8 | Heatmaps of ITS sequence abundance among all samples showing the differential groupings of fungi between banana plants rhizosphere and adjacent

controls, at the order level (A), shown by hierarchical cluster analysis (filtered at p < 0.05, effect size filter for difference or proportions = 0.8). Error bar plots of

differences in mean proportions among samples (B).

banana plants and latitude, visible at different taxonomic levels
(Figures 7A,B).

Differences in taxa representation between the banana and
control sample groups were observed for mycoparasitic fungi
from the phyla Rozellomycota (endoparasites of other fungi)
and Zygomycota (i.e., Mortierella spp.), which were more
represented in the banana rhizosphere, whereas Ascomycota
and Basidiomycota were more frequent among adjacent controls
(Figure 8A; Supplementary Figures 2A,B). Hierarchical cluster
analysis of samples using ITS sequence abundance showed
a major effect of banana plants and, to a lesser extent,
of latitude, whereas the crop cultivation method did not
appear to affect the clusterings (Supplementary Figure 2C).
Species of nematophagous fungi within Orbiliales appeared

more represented in the banana samples, although with a low
proportion, mostly represented by Arthrobotrys (Figures 8B,
9A,B; Supplementary Table 4), together with Mortierellales
and an unclassified order from the phylum Rozellomycota
(Supplementary Figure 3).

The more represented fungi at the family or genus
level were analyzed by comparing sequence representation
(%) in samples grouped by crop and latitude, as well as
by other classification variables. Differences were found for
fungal families in relation to the sample origin (banana
rhizosphere vs. controls), age of crops, density levels of predatory
or free-living nematodes, plant germplasm, and location of
farms (Supplementary Figure 4). When comparing banana
rhizosphere vs. control samples, the most represented families
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FIGURE 9 | Error bar plots (p < 0.05) showing the differences of ITS sequence abundance (mean proportions) among samples at the genus level (A). Bar plot

showing the proportion of sequences for the nematophagous genus Arthrobotrys, considering rhizosphere and control samples, and latitude (B).

showed a higher abundance of Microascaceae, Wallemiaceae,
and Hypocreaceae in the banana rhizosphere, whereas AMF
(Glomeraceae and Claroideoglomeraceae) were more abundant
in the control soils, as also in younger (<5 years old) plantations
(Supplementary Figures 4A,B). Considering the location, an
effect was shown for fungi associated with organic matter (with
a higher abundance of Wallemiaceae in the northern samples,
and Trichocomaceae in the southern ones) together with a higher
abundance of Glomeraceae and Hypocreaceae in the northern
farms (Supplementary Figure 4E).

Considering both combined factors, a higher representation
was found for Wallemia spp. (most represented in the banana
northern fields >40 years old), with Hypocreaceae, a Petriella
sp. and an unclassified member of Claroideoglomeraceae
(most frequent in the northern and southern banana samples).
Unclassified members of Glomeraceae and Bolbitiaceae

were more represented in the northern controls, whereas
Metarhizium spp. with an unclassified Cystolepiota were most
common in the southern controls. An unclassified member
of Hypocreaceae was more represented in conventional crops
when grouping samples by the cultivation method, whereas
Arthrobotrys and Microascus spp. were more frequent in
integrated crops (Supplementary Table 6). Banana cv Gruesa
showed, when compared to the most prevalent cv Gran Enana
and controls, a low abundance of Claroideoglomeraceae and
Microascaceae, with a higher content of Vibrisseaceae and an
unclassified family within Pezizomycetes (ectomycorrhizae)
(Supplementary Figure 4D).

Grouping by soil type showed a significantly higher
representation of: Penicillium, Coniochaeta, and an uncl.
Chaetomiaceae in clay soils, Leucoagaricus with an uncl.
Agaricales in sandy soils, Phialocephala and Wallemia in
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sandy-clay soils, Sagenomella in sandy-clay-loamy soils, and
Metarhizium in sandy-loamy soils. For the effect of pH,Diaporthe
was more frequent in moderately alkaline soil (pH 7.9–8.4), and
an unclassified member of Zygomycota was more represented in
slightly acidic soil (pH 6.3–6.5) (Supplementary Table 6).

Grouping by nematodes showed a higher representation
of Wallemia, Petriella, Phialocephala, and Ceratobasidium
with higher densities of Helicotylenchus spp., and of
Diaporthe and Petriella with medium densities of P. goodeyi
(Supplementary Table 6). Phialocephala, Paraconiothyrium,
Coniothyrium, Meyerozyma, and Beauveria, with unclassified
members of Glomerales, Bionectriaceae, and Sordariomycetes,
were significantly more represented in samples with high
densities of free-living nematodes. An unclassified member of
Tulasnellaceae, along with Zopfiella spp. and Cunninghamella
spp., were more represented in samples with medium to highest
densities of predatory nematodes (Supplementary Table 6).
Higher densities of predatory nematodes were associated
with a higher abundance of Wallemiaceae and Hypocreaceae,
whereas free-living nematodes were associated with an increase
in Debaryomycetaceae (budding yeasts), Vibrisseaceae,
and an unclassified family within Saccharomycetales
(Supplementary Figures 4C,F).

Plant pathogenic fungal genera Alternaria, Macrophomina,
and Pyrenochaeta along with others were mostly found in
control samples, except Ceratobasidium and Chaetomium, which
were more represented in the banana rhizosphere samples
(Supplementary Figure 5).

A number of diversity indexes were calculated for the
ITS data to verify the effects of cropping and latitude
on the sample groups examined. Dominance levels in all
sample groups were low (0.1–0.2 range), indicating that there
were no outstanding taxa (Supplementary Tables 7A,B). As
shown by the mean comparisons (Student’s t-test, p < 0.05,
Supplementary Table 7C), the α-diversity analysis for the ITS
data showed no significant differences between banana samples
when they were only grouped by southern vs. northern
latitude. On the contrary, most indexes showed significant
differences when adjacent, northern, and southern controls
were compared. Comparison of northern banana plants vs.
adjacent controls showed an effect on the number of taxa,
richness (Menhinick, Margalef, and Fisher alpha), and Chao-
1 only, indicating that the effect occurred at the level of the
rarest taxa. The northern controls also differed significantly
from the southern banana and control groups, for the same
indexes. Comparison of the southern banana samples vs.
adjacent controls showed differences for individuals, Simpson
and Shannon indexes, and Menhinick and Margaleff indexes,
confirming differences for species richness, as for all sample
groups (Supplementary Table 7C).

Cooccurrence and Correlations
The correlations between nematodes and fungi or bacteria
appeared specific to each nematode species or functional
group, when density data and the number of sequences were
used. Spearman’s correlations showed positive links of P.
goodeyi densities with bacteria from the genera Pedomicrobium,

Afifella, Pilimelia, Hyphomicrobium, Rhodoplanes, Microlunatus,
Clostridium, and Streptomyces, and unclassified members
of Solibacterales and Rhizobiales, Rhodospirillaceae and
Ellin329. Significant inverse relationship were found for this
nematode with an unclassified member of Rhodobacteraceae
and, among fungi, with Zopfiella (Sordariomycetes),
Ceratobasidium (Cantharellales), unclassified Pezizomycetes,
Spiromastix, Sordaria, Arthrographis, and Chaetomium
(Supplementary Table 8).

A broader set of taxa was correlated with Helicotylenchus
spp. Positive correlations included, among fungi, the plant
pathogen Thanatephorus cucumeris (teleomorph of Rhizoctonia
solani), Mortierella oligospora, Cyphellophora, Sarocladium, and
unclassified Rozellomycota, Hypocreales, Stramenopiles,
Eurotiales, and Onygenales. Among bacteria, positive
correlations includedmembers of the genera Iamia,Amaricoccus,
Planctomyces, and Kribbella. Unclassified taxa positively
correlated with Helicotylenchus spp. included members of
different bacterial lineages, both unclassified (C111, X0319_7L14,
S085, WD2101, SAR202, Ellin6529, Ellin6075, and Ellin329) or
classified (Nocardioidaceae, Sphingomonadales, Micrococcales,
Solibacterales, Hyphomicrobiaceae, Hyphomonadaceae,
Erythrobacteraceae, Pseudonocardiaceae, and Acidimicrobiales)
(Supplementary Table 8). As for P. goodeyi, inverse correlations
were also found for Helicotylenchus spp. with Zopfiella and,
among the fungi, Chaetomium and Spiromastix. Further
negative correlations for these nematodes included members
of Acidimicrobiales, Rhodobacteraceae, and the fungus
A. luteoalbus.

Fungi correlated with predatory nematodes (dorylaims and
rhabdites) included Venturia spp., A. luteoalbus, an unclassified
member of Mytilinidiaceae and a nematophagous Dactylella
spp. Negative correlations involved the fungus Malassezia
globosa, and unclassified bacterial taxa from Streptomyces,
Caulobacteraceae, Rhodospirillales, and Acidimicrobiales
(Supplementary Table 8).

Free-living nematodes were positively correlated with a
different group of bacteria, including Cryptococcus randhawii
and members of the genera Rhodoplanes, Roseomonas,
Sphingomonas, Leptolyngbya, Kaistobacter, Streptomyces,
and Microlunatus, with further unclassified taxa (members
of Caldilineaceae, WD2101, Ellin6075, Acidimicrobiales,
Bradyrhizobiaceae, and Solibacterales). Fungi positively
correlated with free-living nematodes included Stemphylium
herbarum, species from the genera Articulospora, Westerdykella,
Stramenopiles, Cyphellophora, Mortierella, and members of
Olpidiales, Chaetothyriales, and Agaricales. Inverse correlations
involved Streptomyces spp., Mesorhizobium spp., and members
of Nocardioidaceae, Rhodospirillaceae, Rhodobacteraceae,
S085, and Ellin6529. Among fungi, negative correlations were
found with Spiromastix sp. and a member of Sordariomycetes
(Supplementary Table 8).

Arthrobotrys and Microascus were significantly more
represented on farms applying IPM, whereas an unclassified
member of Hypocreaceae was more represented on
conventional farms (Supplementary Table 6). A plant
pathogenic fungus, Diaporthae spp., and an organic matter
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decomposer, Petriella spp., were more represented at
medium densities of P. goodeyi (151–533 nematodes ×

100 cc soil−1). The latter was also more represented,
with Wallemia and the endophytes Phialocephala and
Ceratobasidium spp., an orchid mycorrhyza and biocontrol
agent, respectively (Mosquera-Espinosa et al., 2013),
in samples with higher Helicotylenchus spp. numbers
(Supplementary Table 6).

Positive or negative correlations with soil pH were found
within the same bacterial lineages (i.e., Acidimicrobiales and
Rhodospirillaceae). Taxa most negatively correlated with pH
included unclassified members of Ellin329, AKIW874, S085,
Alphaproteobacteria, Rhodospirillaceae, Hyphomonadaceae,
Rhodospirillaceae, with Ca. Solibacter, Pilimelia spp. and, among
fungi,Mortierella capitata (Supplementary Table 8).

DISCUSSION

Metabarcoding data showed a clear separation of microbial and
fungal samples on the PCA and MDS planes, with clusterings
associated with the presence/absence of banana roots, and
latitude (Figures 2–4, 6). The representation of the samples
hence appears indicative of both anthropogenic effects due to
cultivation and, to a lesser extent, farm local climate, which
affects a number of microbial taxa. The local climate depends
on latitude, differing between northern areas (more humid and
cooler, due to exposure to trade winds and ocean currents) and
southern zones (arid and more exposed to Sahara heatwaves).

Both climate and aboveground cover have been consistently
recognized as key factors influencing soil microbiota profiles. The
effect of the aboveground cover on belowgroundmicroorganisms
has been reported under different agroecological conditions,
ranging from pot trials to natural ecosystems. Cropping affects
soil microorganisms through many factors including cultivation
regimes, plant cover and age, root exudates, and soil types (Berg
and Smalla, 2009; Reinhold-Hurek et al., 2015; Compant et al.,
2019; Delitte et al., 2021). Experimental data from assays carried
out under controlled conditions (with faba bean and wheat
plants) for example, showed an effect of the plant species on
the soil fungal communities profiles, with differences related to
the sample origin (bulk soil or rhizosphere). The tested cropping
regimes (monocultures vs. intercroppings) also showed an effect
of rhizosphere soil on bacterial diversity and richness (Granzow
et al., 2017).

The differences observed between the banana and control
samples were also reflected in the different fungal families
(Wallemiaceae, Microascaceae, and Agaricaceae) and
genera (unclassified member of Claroideoglomeraceae),
which were more represented in the banana samples
(Supplementary Table 6). These changes, including organic
matter decomposers and an AMF, appear to be consistent with
the introduction and cultivation of the plants. The mechanisms
underpinning such an effect are likely related to the farming
practices applied, including an enriched organic matter content
in the first soil layers, due to the practice of covering the soil
surface with banana decaying leaves, adopted locally by farmers.

Fertilization, organic matter decomposition, root exudates, and
irrigation are likely factors responsible for the observed changes
in microbiota structures. Metabarcoding data on banana root
endophytes, proceeding from the same environment, showed
significant differences between mother plants and suckers, with
Pseudomonas spp. as the most prevalent endophytic bacteria
(Gómez-Lama Cabanás et al., 2021). The microbial community
structure originally present in the soil is hence dependent on
microenvironmental changes, shifting composition profiles
from soil to rhizosphere, up to plants tissues, suggesting a
progressive adaptation to the changes that characterize the
colonized microhabitats.

The metabarcoding data also showed the presence of
several known BCA species of nematodes or fungi. Microbial
antagonists of nematodes have a potential to naturally regulate
or even suppress PPN numbers, as well as to induce a
defense reaction in plants (Oka, 2010; Liang et al., 2019;
Topalović and Heuer, 2019). Although correlations may not
be considered as a sufficient determinant of an antagonistic or
cooperative/exclusion interaction, our data showed specific links
of taxa with the variables considered. However, only a limited
number of known nematophagous species was directly linked
to PPN in the banana samples. Surprisingly, the co-occurrence
analysis showed that, apart from the nematode trapping fungus
A. oligospora, the bacterial and fungal taxa correlated to
nematode densities did not include known nematophagous BCA
species (Supplementary Table 8). The data instead indicated an
effect of the nematode guilds as each considered group (two plant
parasites, a free-living and a predatory species group) showed
significant correlations with a specific subset of unique bacteria
and fungi. In particular, the densities of both P. goodey and
Helicotylenchus spp. showed positive correlations with different
microbial species. The latter was correlated with a broader range
of taxa, different from that of P. goodeyi, including, among
others, the plant pathogenic fungus T. cucumeris (teleomorph of
R. solani), with other unclassified and poorly studied bacterial
lineages (i.e., C111,WD2101, SAR202, and Ellin6529). Moreover,
a few significant negative correlations with fungi or bacteria
were found for both PPN groups, that included Spiromastix
spp., a genus of fungi producing antibacterial compounds (Niu
et al., 2014), also inversely correlated to free-living nematodes
(Supplementary Table 8). Negative correlations were found
more frequently for free-living, microbiovorous nematodes,
likely related to the short life cycle of microbiovorous species,
to their direct exposure to fungi or bacteria and possibly to the
release of microbial toxic compounds. In this case, a microbial
antagonistic activity affects hosts and antagonists almost at the
same time, yielding inverse relationships. As the PPN spend
part of their cycle in the roots a delay usually occurs between
the pathogen and nematode density shifts, affecting correlations.
This may be also due to the PPN longer life cycle (4–5 weeks),
and to the more complex dispersal and infection strategies of
their antagonists.

Data thus indicate that the links between the nematophagous
BCA species found and their target PPN hosts are more complex
than expected, characterized also by a microbial trophic range
and adaptive metabolic capability likely wider than known.
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An example of this complexity is given by OTUs classified
in the genus Beauveria, a fungus usually associated with
insects, whose higher frequency in banana samples and higher
representation with the highest densities of free-living nematodes
(together with other BCA of fungi such as Paraconiothyrium)
(Supplementary Tables 4, 6) is worth further investigation.
Despite suggestive of an association, direct assays are needed to
establish a dependence of Beauveria spp. on nematodes, as both
may be correlated to a further, unknown factor (i.e., increased
invertebrate densities in the rhizosphere due to higher fertility
levels or enhanced freeder roots development). Further assays
are hence needed to clarify this aspect. Few data are, moreover,
available in the literature for a Beauveria nematophagous activity,
apart from an isolate of Beauveria bassiana obtained from cysts
of Heterodera filipjevi and successfully tested as a BCA vs. the
nematode juvenile stages, in controlled conditions (Zhang et al.,
2020).

The data also suggest a probable association of the
entomopathogenic fungus M. anisopliae with insects other than
the banana weevil C. sordidus, which may represent a secondary
host, as the fungus was more represented, with similar frequency
levels, in the control samples. An inverse relationship of this
fungus with soil pH was also found (Supplementary Table 4). A
phylogenetically close species, the endophyte P. chlamydosporia,
was also found in the banana rhizosphere samples, although
with a low frequency (Supplementary Table 4). As an endophyte,
this species is capable to colonize banana roots, inducing plant
growth promotion (Mingot-Ureta et al., 2020). The fungus is also
a nematode egg parasite, and is known to activate defense-related
genes in endophytically colonized roots (Manzanilla-López et al.,
2013), an effect also observed in banana aboveground tissues
(Tolba et al., 2021). This fungus may also produce secondary
metabolites with insecticidal activities (Lacatena et al., 2019).

The nematode BCA data also showed a number of
Trichoderma spp., which were found with a higher frequency
in the banana samples (Supplementary Table 4). Several
Trichoderma spp. have been reported as an efficient BCA of
nematodes, including Trichoderma harzianum (Sharon et al.,
2001; Sahebani and Hadavi, 2008; Fan et al., 2020). However, no
correlation was found for Trichoderma spp. with PPN among
the samples examined (Supplementary Table 8). Moreover, an
effective role of Trichoderma spp. against plant pathogens, i.e.,
Fusarium spp., has been reported for many hosts, including
Musa spp. (Sivan and Chet, 1986; Thangavelu and Gopi, 2015;
Chaves et al., 2016; Bunbury-Blanchette and Walker, 2019).

The densities of P. goodeyi and Helicotylenchus spp. in soil
varied largely among samples. The endoparasite P. goodeyi was
only found in the northern banana fields, with a maximum
density of 1,100 nematodes × 100 cc soil−1. Helicotylenchus spp.
were found in 90% of the northern samples and <10% in the
southern samples, with a maximum of 2,300 individuals× 100 cc
soil−1 (Supplementary Table 2; Supplementary Figure 1). Both
nematodes are severe parasites of Musa spp., and may reach
high densities in roots (Ssango et al., 2004; Roderick et al.,
2012). Due to the low amounts of roots collected and required
for metabarcoding analyses, nematode densities were preferably
assessed in the soil. Density levels appeared, however, sufficient

to sustain a severe root infestation, and compatible with the
field data reported on other Musa cvs from other regions
(Talwana et al., 2000; Aguirre et al., 2016). The presence of
several BCA and the observed PPN densities appear indicative
of complex rhizosphere interactions, based on the BCA host
preference, polyphagy, and other interactions that may affect
nematode regulation.

The metabarcoding analysis also showed the occurrence
of antagonists of fungi, including A. luteoalbus and
unclassified species of phyla Rozellomycota and Zygomycota
(Supplementary Figures 2A,B). The former has been reported
as an antagonist of Alternaria, Fusarium, and Phytophthora
spp. (Lv et al., 2019). It was reported as a causal agent of ginger
rhizome rot (Moreira et al., 2013), as an antagonist of fungi and
a mushroom pathogen (He et al., 2010; Zhang and Tang, 2015),
and as an endophytic plant growth promoter (Khalmuratova
et al., 2021). Rozellomycota include mostly unclassified zoosporic
species characterized by thick-walled resting spores and obligate
parasitism on protozoa and fungi (Doweld, 2013). They were
found almost uniquely in the banana rhizosphere (Figures 7, 8).
Although the biology of these taxa is still poorly investigated,
a natural regulatory role may be assigned to members of these
clades, which include endoparasitic species in fungi and other
eukaryotes. Their density and frequency in banana samples may
have been favored by the organic matter applied to plants and by
irrigation, providing beneficial services in the rhizosphere such
as carbon and nutrients recycling, as well as the regulation of
fungal root pathogens.

Finally, the effect of cropping regimes on microbial
community structures is considered to be more effective
over a longer cultivation period, resulting more evident
in older crops or plants (Granzow et al., 2017). Farm
age, however, did not show significant differences in the
sequence representations (%) of fungi, apart from Wallemia,
a basidiomycete genus including species inhabiting highly
osmotic environments including dry and hypersaline substrates
(Zajc and Gunde-Cimerman, 2018), more represented in farms
>40 years old (Supplementary Table 6).

CONCLUSIONS

The comparison of microbiota composition between banana
rhizosphere samples and close, adjacent controls deprived
of banana roots showed differences affecting both bacterial
and fungal profiles, indicating an effect of cropping. When
considering other variables, sample clusterings also reflected
latitude effects for both bacteria and fungi. Metabarcoding
data showed the occurrence of taxa reported as BCA of
nematodes, as well as other endophytes, mycorrhizal species,
and obligate endoparasitic taxa (i.e., Rozellomycota), almost
only present in the banana samples. However, apart from a
Dactylella spp., the nematophagous fungi did not show a strict
association or correlation with the two PPN species found,
P. goodeyi and Helicotylenchus spp. Instead, differences were
found among the nematode guilds as each phytoparasitic, free-
living, and predatory nematode group showed correlations with
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a specific and different subset of bacteria and fungi. Other
factors considered, such as crop cultivation method and soil
texture, showed differences in fungal sequence representations as
a function of the different variables examined. They were mostly
related to trophic specialization and specific biotic requirements
or adaptations to a range of decomposers, beneficial endophytes,
mycorrhizae, or BCA, as well as plant pathogens. In conclusion,
the belowground bacterial and fungal microbiota profiles were
affected by plants and latitude, and showed different links to
the nematode taxa present. As the impact of microbial species
depends not only on their relative but also on their absolute
abundance, direct, and specific quantification measurements
of the rhizosphere microbial loads for most differential taxa
may result informative to exploit the nematode and BCA
interactions detected.
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Xylella fastidiosa represents a major threat to important crops worldwide including
almond, citrus, grapevine, and olives. Nowadays, there are no efficient control measures
for X. fastidiosa, and the use of preventive measures and host resistance represent
the most practical disease management strategies. Research on vessel-associated
microorganisms is gaining special interest as an innate natural defense of plants to
cope against infection by xylem-inhabiting pathogens. The objective of this research
has been to characterize, by next-generation sequencing (NGS) analysis, the microbial
communities residing in the xylem sap of almond trees affected by almond leaf scorch
disease (ALSD) in a recent X. fastidiosa outbreak occurring in Alicante province,
Spain. We also determined community composition changes and network associations
occurring between xylem-inhabiting microbial communities and X. fastidiosa. For that,
a total of 91 trees with or without ALSD symptoms were selected from a total of eight
representative orchards located in five municipalities within the X. fastidiosa-demarcated
area. X. fastidiosa infection in each tree was verified by quantitative polymerase chain
reaction (qPCR) analysis, with 54% of the trees being tested X. fastidiosa-positive.
Globally, Xylella (27.4%), Sphingomonas (13.9%), and Hymenobacter (12.7%) were the
most abundant bacterial genera, whereas Diplodia (30.18%), a member of the family
Didymellaceae (10.7%), and Aureobasidium (9.9%) were the most predominant fungal
taxa. Furthermore, principal coordinate analysis (PCoA) of Bray–Curtis and weighted
UniFrac distances differentiated almond xylem bacterial communities mainly according
to X. fastidiosa infection, in contrast to fungal community structure that was not
closely related to the presence of the pathogen. Similar results were obtained when
X. fastidiosa reads were removed from the bacterial data set although the effect was less
pronounced. Co-occurrence network analysis revealed negative associations among
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four amplicon sequence variants (ASVs) assigned to X. fastidiosa with different bacterial
ASVs belonging to 1174-901-12, Abditibacterium, Sphingomonas, Methylobacterium–
Methylorubrum, Modestobacter, Xylophilus, and a non-identified member of the family
Solirubrobacteraceae. Determination of the close-fitting associations between xylem-
inhabiting microorganisms and X. fastidiosa may help to reveal specific microbial players
associated with the suppression of ALSD under high X. fastidiosa inoculum pressure.
These identified microorganisms would be good candidates to be tested in planta,
to produce almond plants more resilient to X. fastidiosa infection when inoculated by
endotherapy, contributing to suppress ALSD.

Keywords: almond leaf scorch (ALS), xylem, microbiome, network associations, Xylella fastidiosa, quarantine
pathogens

INTRODUCTION

Xylella fastidiosa has been identified as the major transboundary
plant pest posing a serious threat to food security and the
environment worldwide (Regulation EU, 2019; Regulation EU,
2020; Sanchez et al., 2019). Indeed, X. fastidiosa has been
identified as the quarantine pathogen with the highest potential
impact in the EU, in all economic, social, and environmental
domains. Furthermore, it was ranked first in the priority list of
quarantine pest/pathogens in the EU in a full spread scenario
using a composite indicator (I2P2) developed by the Joint
Research Center (Sanchez et al., 2019).

Xylella fastidiosa causes a relevant number of important
diseases that induce severe yield losses in highly economic
important crops, such as Pierce’s disease in grapevines (PD)
(Hopkins and Purcell, 2002), citrus variegated chlorosis (CVC)
(Coletta-Filho et al., 2020), olive quick decline syndrome (OQDS)
(Saponari et al., 2017), and almond leaf scorch disease (ALSD)
(Moralejo et al., 2020). X. fastidiosa infects not only crops
of high economic importance, but also a wide host range
of plants including species of cultural/patrimonial importance,
ornamental, and landscape plants (EFSA, 2018, 2019b; Delbianco
et al., 2022). The overall number of Xylella spp. host plants
now reach 407 plant species, 185 genera, and 68 families if
we consider those reports where the positive infection by the
bacterium was determined by at least two different detection
methods or with one method only if sequencing or pure culture
isolation was used. These numbers rise to 655 plant species,
293 genera, and 88 families if we do not consider the method
applied for its detection (Delbianco et al., 2022). This remarkable
wide host range is related, in part, to its high efficient natural
transmission between plants by diverse xylem sap-feeding insect
species. Once inoculated into the plant, the bacterium survives
within the xylem vessels of its host plants where its multiplication
and biofilm formation result in a detriment of regular sap
flow, and a progressive reduction of water and nutrient uptake,
causing impairment of plant growth, and eventually, plant death
(Chatterjee et al., 2008; Deyett and Rolshausen, 2019).

Xylella fastidiosa is taxonomically divided into three major
subspecies (subsp. fastidiosa, subsp. multiplex, and subsp.
pauca) (Schaad et al., 2004) although additional subspecies
have been proposed (subsp. sandyi and subsp. morus)

(Almeida and Nunney, 2015). Furthermore, each subspecies
consists of multiple genetic lineages, grouped as sequence types
(ST), each with different host ranges and virulence, although
there is some host overlap and most of them infect several hosts
(Sicard et al., 2018; Nunney et al., 2019; Landa et al., 2022).

In 2013, X. fastidiosa subsp. pauca was reported for the
first time in Europe and was associated with a lethal disease
outbreak affecting olive trees in Apulia, Italy (Saponari et al.,
2013). After this detection and following mandatory EU annual
surveys (Regulation EU, 2016; Regulation EU, 2020), several
X. fastidiosa STs belonging to fastidiosa, pauca, multiplex, and
sandyi subspecies have been intercepted and/or detected in
Europe, where the bacterium has been detected in open fields
and in the natural environment in France (2015, 2016, and
2020), Spain (2016), and Portugal (2018), and an outbreak in the
Tuscany region of Italy (2018) (Denancé et al., 2017; EPPO Global
Database; Landa et al., 2017; Regulation EU, 2019; Saponari et al.,
2019; Olmo et al., 2021). Recent studies indicated that imports
of plant material infected by X. fastidiosa from the American
continent have probably been the origin of outbreaks of this
bacterium in the Apulia region (Italy) and on the island of
Majorca and in Alicante (Spain) (Jacques et al., 2016; Loconsole
et al., 2016; Giampetruzzi et al., 2017; Landa et al., 2020; Moralejo
et al., 2020).

In Spain, X. fastidiosa is causing severe yield losses in almond
crops and the eradication of 1,000 trees. X. fastidiosa was first
reported in 2016 in Majorca, in the Balearic Islands, infecting
cherry (Prunus avium) and Polygala myrtifolia plants (Olmo
et al., 2017). Early after, in 2017, more than 100 almond trees were
diagnosed positive for the bacterium. Currently, more than 79%
of almond trees in Majorca are estimated to be affected by ALSD
(Moralejo et al., 2020). Four STs of X. fastidiosa infecting almond
trees in the Balearic Islands have been detected: X. fastidiosa
subsp. fastidiosa ST1 and X. fastidiosa subsp. multiplex ST7 on
the island of Majorca, X. fastidiosa subsp. multiplex ST81 on
the islands of Majorca and Menorca, and X. fastidiosa subsp.
pauca ST80 on the island of Ibiza (Delbianco et al., 2022).
Simultaneously to the outbreak detected in Majorca, in the
summer of 2017, the symptoms of ALSD were also observed
for the first time in mainland Spain on 30-year-old almond
trees in several orchards in the municipality El Castell de
Guadalest of Alicante province, in the Eastern coast of the Iberian
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Peninsula (Marco-Noales et al., 2021). Currently, the X. fastidiosa
demarcated area (DA) in the Valencian Community covers an
extension of >136,200 ha (>135,000 in Alicante province and
>1,200 in Valencia province). Within the DA, the infected
zone (IZ) covers >2,700 ha, of which over 1,100 ha have been
already eradicated. This outbreak represents one of the largest
eradication campaigns for a plant disease ever carried out in
Europe, with around 12,500 orchards and 90,000 trees already
destroyed as of November 20211 (Vicente Dalmau, Plant Health
Service of Valencian Community, personal communication). In
this outbreak area, only X. fastidiosa subsp. multiplex ST6 has
been identified in infected almond trees (Marco-Noales et al.,
2021).

Nowadays, there are no tools available to cure X. fastidiosa
once a plant becomes infected in the field (EFSA, 2019a).
Consequently, the use of preventive strategies focuses on the
eradication of infected host plants, the control of the sap-feeding
insect vectors, and restrictions on plant material movements
(EFSA, 2019a; Serio et al., 2019; Morelli et al., 2021). Research
on plant-associated microorganisms is gaining importance as a
key component for the control of plant pathogens by exploiting
and using single inoculants or microorganisms consortia that
coexist in plant tissues to protect them against pathogen infection
(Backman and Sikora, 2008). Plant-associated microorganisms
are involved in several biotic and abiotic processes in the
host, from the acquisition of nutrients to the increase of plant
tolerance to abiotic stresses, without overlooking their role in
plant defense against pathogens. In this context, the acquisition
and maintenance of an efficient microbiota capable of adapting
more rapidly to a changing environment may be undoubtedly a
selective advantage (Doty, 2017; Rabiey et al., 2019).

Some studies have described the microbial community
structure and composition within xylem vessels and its
relationship to plant health and crop productivity (e.g., Deyett
et al., 2017; Fausto et al., 2018; Deyett and Rolshausen, 2019;
Anguita-Maeso et al., 2020, 2021a,b; Zicca et al., 2020; Haro
et al., 2021). However, a very scarce number of studies have
focused on the relationships between X. fastidiosa and xylem
sap microbiota to assess the level of dysbiosis and the potential
role of microbial endophytes in protecting host plants from
disease development or stimulating plant immunity (Lacava
et al., 2004; Azevedo et al., 2016; Deyett et al., 2019; Pacifico
et al., 2019; Giampetruzzi et al., 2020; Vergine et al., 2020;
Landa et al., 2022). For instance, Lacava et al. (2004) reported
in vitro growth stimulation of X. fastidiosa by Methylobacterium
extorquens and inhibition by Curtobacterium flaccumfaciens, two
plant endophytes; whereas Deyett et al. (2017) found that the two
endophytic bacteria Pseudomonas fluorescens and Achromobacter
xylosoxidans showed significant negative correlations in their
abundance with X. fastidiosa.

For almond trees, microbiota studies have mainly focused
on the epiphytic communities on the phyllosphere (flowers
and leaves) using culture-dependent and culture-independent
approaches (Fridman et al., 2012; Izhaki et al., 2013; Aleklett
et al., 2014), on fungal pathogens associated with almond
wood decay based on conventional culture-dependent techniques

1https://agroambient.gva.es/es/web/agricultura/xylella-fastidiosa

(Gramaje et al., 2012; Olmo et al., 2016) or Prunus replant
disease (Khan et al., 2021). However, to our knowledge, no
study has addressed the characterization of xylem sap microbial
communities in almond trees despite the fact that the microbial
profile serves as a basis to identify bacterial and fungal taxa with a
potential antagonistic activity that could be used to fight vascular
pathogens or as potential biocontrol agents to suppress ALSD.

This study was designed to characterize, for the first time,
xylem-inhabiting bacterial and fungal communities from almond
trees grown in the X. fastidiosa–DA of the Valencian Community
(Spain) using a next-generation sequencing (NGS) approach.
Next, we determined to what extent the infection of xylem vessels
by X. fastidiosa affects the composition, diversity, and structure
of the xylem microbiota. Finally, we determined the potential
existence of tight interactions between specific xylem-inhabiting
microorganisms and X. fastidiosa by network analysis. Our
results could contribute to the development of sustainable and
environmentally friendly biocontrol strategies to control ALSD
by identifying key microbial players that might contribute to
produce almond plants more resilient to infection by X. fastidiosa.

MATERIALS AND METHODS

Study Area, Disease Assessment, and
Sampling of Almond Trees
The study was conducted in July of 2018 in the DA of the
Valencian Community in the province of Alicante (Spain)
affected by X. fastidiosa subsp. multiplex ST6. The incidence and
severity of ALSD were assessed in a previous study in 20 almond
orchards within the outbreak IZ (Camino et al., 2021). In each
plot, ALSD severity (DS) was assessed by visual inspection of each
tree for foliar symptoms using a rating scale of 0–4 according
to the percentage of foliage with disease symptoms, where 0
corresponds to no visual symptoms (asymptomatic), and 1, 2,
and 3 correspond to trees with visual ALSD symptoms between
1% and –25%, 25% and 50%, and 50% and 75% of the tree-
crown, respectively, and 4 corresponds to a tree with mostly dead
branches (≥75% of the crown canopy; with leaf collapse or leaf
scorch) (Figure 1) (Camino et al., 2021).

From the 20 almond orchards evaluated by Camino et al.
(2021), we selected for sampling and xylem analysis eight
orchards within the municipalities of Benifato (two orchards),
Benissa (two orchards), La Vall d’Alcala (one orchards), Polop
(one orchard), and Xaló (two orchards) (Table 1). These plots
were selected as the most representative of the 20 evaluated
ones covering the geographic area evaluated and a wide range
in terms of plot size and disease incidence and severity of ALSD
symptoms determined by visual inspection (Camino et al., 2021).
Table 1 shows the disease- and climate-related variables for the
eight almond orchards analyzed in this study. Climate variables
were selected based on annual temperature and precipitation
values, as well as those that were found to be associated with the
sensitivity of the bacterium to low winter temperature (Purcell,
1980) and the effects of water stress or warm conditions in
the establishment of X. fastidiosa (EFSA, 2019b; Martinetti and
Soubeyrand, 2019). Bioclimatic variables were obtained from the
Chelsa Climatologies database that is based on the downscaled
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FIGURE 1 | Detection of Xylella fastidiosa by next-generation sequencing (NGS) and quantitative polymerase chain reaction (qPCR) from xylem samples obtained
from asymptomatic (blue color) and almond leaf scorch disease (ALSD) symptomatic almond trees showing different ALSD severity values (from 0.5 to 3, orange
color). No trees showing a disease severity of four were sampled.

ERA-interim global circulation model with Global Precipitation
Climatology Centre (GPCC) and Global Historical Climatology
Network (GHCM) bias correction, and a resolution of 30 arc s
(approximately 1 km) (Karger et al., 2017). Bioclimatic variables
were derived from monthly temperature and precipitation values
and are intended to approximate climate dimensions meaningful
to biological species.

A total of 94 trees were selected for microbiome analysis
within the different evaluated plots, with 6–19 trees sampled per
plot (Table 1). Trees included asymptomatic and symptomatic
ALSD trees and were representative of the different disease
severity scores present in the plot, from 0 (asymptomatic) to
<3 (symptomatic), described above. We discarded those trees
with a disease severity of 4 for sampling, as they had most of
the canopies showing leaf scorch with dead branches (Figure 1).
Sampling of the plant material was performed according to
the standard protocol of the European and Mediterranean
Plant Protection Organization for X. fastidiosa (EPPO, 2019).
Briefly, samples for laboratory analysis were composed of almond

branches/cuttings with attached mature leaves avoiding young
growing shoots. Samples were kept refrigerated and shipped to
the laboratory within a day. Sampling was supervised by the
Plant Health Service of the Regional Ministry of Agriculture of
the Valencian Community (Spain) and TRAGSATEC (Grupo
TRAGSA) helped in the locations of the selected plots. Prior to
sampling, an official permit was requested from the competent
Phytosanitary Authority in the Valencian Community to move
the plant material from the DA to the IAS-CSIC Laboratory
in Córdoba, Spain. Trees could only be sampled once due to
the eradication enforcement of the Regulation EU (2019) that is
carried out in an IZ in Europe and that obliges to remove all trees
tested positive for X. fastidiosa immediately after diagnosis.

DNA Extraction From Xylem Tissues and
Real-Time PCR Analysis
It is known that, for deciduous plant species (e.g., Prunus
spp.), a detectable concentration of the bacterium is commonly
obtained on leaf petioles at the end of summer for symptomatic
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TABLE 1 | Disease incidence and severity of almond leaf scorch disease (ALSD), and climatic characteristics of almond orchards sampled in this study within the
demarcated area (DA) for Xylella fastidiosa in Alicante province.

Municipality Plot
number

Number of
trees in the

plot

Number of
trees analyzed

by NGS

Disease-related variablesa Climate-related variablesb

Disease
incidence
(0–100%)

Disease
severity

(0–4)

Disease
severity range

(0–4)

Annual mean
temperature

(◦C)

Mean temperature
of the coldest

month (◦C)

Annual
precipitation

(mm)

Precipitation
of the driest
quarter (mm)

Benifato 650 30 10 80.0 ± 40.7 1.43 ± 1.05 0 to 3 13.9 4.9 583.0 40.0

Benifato 652 21 9 61.9 ± 49.8 0.61 ± 0.61 0 to 1.5 13.9 4.9 583.0 40.0

Benissa 75 120 9 71.7 ± 45.3 1.51 ± 1.30 0 to 4 17.0 9.4 529.0 34.0

Benissa 405 69 7 43.5 ± 49.9 0.78 ± 1.24 0 to 4 15.5 7.5 568.0 39.0

Polop 47 456 19 32.5 ± 46.9 0.57 ± 1.04 0 to 4 16.5 7.9 476.0 38.0

Vall d’Alcala 48 43 19 16.3 ± 37.4 0.30 ± 0.80 0 to 3 14.3 5.0 686.0 33.0

Xaló 20A 154 12 94.2 ± 23.5 1.95 ± 1.23 0 to 4 17.1 9.0 487.0 32.0

Xaló 20B 80 6 8.8 ± 2.8 0.11 ± 0.52 0 to 4 17.1 9.0 487.0 32.0

aDisease incidence: Percentage of almond trees showing almond leaf scorch symptoms; Disease severity: mean disease severity assessed by visual inspections of each
individual tree using a 0–5 rating scale, where 0 is asymptomatic and 5 is death tree. Data show the mean ± standard deviation (SD).
bClimate-related variables were estimated using the bioclimatic variables: bio 1 (annual mean temperature), bio 6 (mean temperature of the coldest month), bio 12 (annual
precipitation), and bio 17 (precipitation of the driest quarter) obtained from the Chelsa Climatologies database, which is based on the downscaled ERA-interim global
circulation model with the Global Precipitation Climatology Centre (GPCC) and the Global Historical Climatology Network (GHCM) bias correction, and a resolution of 30
arcs (approximately 1 km) (Karger et al., 2017). Bioclimatic variables were derived from monthly temperature and precipitation values and are intended to approximate
climate dimensions that are meaningful to biological species.

plants, but asymptomatic leaves collected early in the season
during the vegetative period from the same trees can be
negative. For this reason, we processed mature branches
(i.e., woody cuttings) to maximize the chance of detecting
X. fastidiosa. Xylem tissue was recovered by obtaining woody
chip shavings as previously described by Anguita-Maeso
et al. (2020). Shortly, three 6-cm-long pieces from mature
almond branches were debarked and disinfested with a sterile
paper moistened in ethanol to avoid microbial contamination
of the xylem from bark and phloem. Once ethanol had
evaporated, xylem chips were obtained by scraping the most
external layer of the debarked woody pieces with a sterile
scalpel. The xylem chips from the different pieces were
mixed, and a 0.5-g sample was placed in a Bioreba bag
containing 5 ml of cetyltrimethylammonium bromide (CTAB;
2% hexadecyltrimethylammonium bromide, 0.1 M Tris–HCl
pH 8, 20 mM EDTA, and 1.4 M NaCl); the bags were closed
with a thermal sealer and the content was macerated with a
hand homogenizer (BIOREBA, Reinach, Switzerland). Extracts
were stored at –80◦C until DNA extraction. All the processes
described above were carried out under sterile conditions inside
a flow hood chamber.

DNA was extracted from aliquots of xylem sap samples
(0.5 ml) obtained from CTAB-macerated xylem chips following
the EPPO procedure (2019). DNA was eluted in a final
volume of 50 µl of ultrapure, filter-sterilized distilled water,
DNA purity (absorbance 260/280 nm ratio) was determined
using a NanoDrop R©156 ND-1000 UV-Vis spectrophotometer
(Thermo Fisher Scientific, Inc., Waltham, MA, United States),
and yield concentration was quantified using the Quant-iTTM

PicoGreenTM dsDNA Assay kit (Thermo Fisher Scientific).
The quantitative polymerase chain reaction (qPCR) assays

of Harper et al. (2010) and Francis et al. (2006) were used
to determine the presence of X. fastidiosa in the trees with

each DNA sample run in duplicate according to EPPO (2019).
It should be noted that the analytical sensitivity of the real-
time PCR test of Harper et al. (2010) is higher than that
of the tests based on Francis et al. (2006). A sample was
considered positive if the Cq ≤ 35 and an exponential
amplification curve was obtained for both technical replicates.
When a doubtful result was obtained, qPCR reactions were
repeated. Appropriate negative and positive isolation controls
and negative and positive amplification controls were included
during DNA extraction and qPCR assays as described by
EPPO (2019).

Bacterial and Fungal rRNA Gene
Amplification
For bacteria, the primers 799F (5′-AACMGGATTAGAT
ACCCKG-3′) and 1115R (5′-AGGGTTGCGCTCGTTG-3′)
targeting V5–V6 of 16S rRNA were used for metabarcoding
analysis as previously described (Anguita-Maeso et al., 2020,
2021a,b). Briefly, PCR products were purified using Agencourt
Ampere XP (Beckman Coulter) and the barcodes and sequencing
adaptors were attached using Fluidigm barcodes (Access
Array Barcode Library for Illumina R© Sequencers – 384, Single
Direction). PCR products were quantified using the Quant-iTTM

PicoGreenTM dsDNA Assay kit (Thermo Fisher Scientific) and
a Tecan Safire microplate reader (Tecan Group, Männedorf,
Switzerland). Equimolecular amounts of each individual sample
were combined in 10 mM of Tris, and the pooled library was
sequenced by the Genomics Unit of the “Fundación Parque
Científico de Madrid,” Madrid, Spain, using the Illumina MiSeq
platform (V3; PE 2 bp× 300 bp).

For fungal communities, the quantified DNA was sent to the
Integrated Microbiome Resource (IMR) at Dalhousie University
(Canada) to amplify the ITS2 region of the fungal ITS rRNA
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with the primers ITS86F (5′-GTGAATCATCGAATCTTTGAA-
3′) and ITS4R (5′-TCCTCCGCTTATTGATATGC-3′) using the
Illumina MiSeq platform (V3; PE 2 bp× 300 bp).

In both the cases, the ZymoBIOMICS microbial standard
(Zymo Research Corp., Irvine, CA, United States) and water
(no template DNA) were used as internal positive and negative
controls, respectively, for library construction and sequencing.

Bioinformatics and Statistical Analysis
Quality control and adapter trimming of the demultiplexed raw
fastq files of bacterial and fungal sequences were performed
with the TrimGalore v.0.6.6 tool2. The first 10 pb of all reads
were trimmed and a truncation length of 240 and 200 pb was
needed in the forward and reverse bacterial reads, respectively,
to reach an adequate Phred quality score (Q > 30). In contrast, a
truncation fixed length was not appropriate in fungal reads due
to a variation in ITS biological length and additional quality steps
were conducted using the Cutadapt v.3.4 tool (Martin, 2011) to
overcome this limitation.

High-quality reads were then analyzed using the DADA2
method for the identification of the amplicon sequence variants
(ASVs) present in the samples (Callahan et al., 2016) and
taxonomically classified using the Silva SSU v.138 and UNITE
v.8.3 databases for bacteria and fungi, respectively. Singletons
were discarded for taxonomy assignation and statistical analysis.
Differences in bacterial and fungal communities were calculated
using α-diversity indexes (Richness and Shannon) at the ASV
level. The non-parametric Scheirer–Ray–Hare test (p < 0.05) was
used to assess the effects of the X. fastidiosa infection status of the
trees (presence of the pathogen as determined by qPCR), sampled
plots, and their interaction on α-diversity indexes, using the
package rcompanion v.2.4.1 (Mangiafico, 2020) in R. β-diversity
was analyzed using principal coordinate analysis (PCoA) of
weighted UniFrac and Bray–Curtis distance matrices and the
Permutational multivariate analysis of variance using distance
matrices (ADONIS function) within the vegan package in R
(999 permutations) was performed to test the effects (p < 0.05)
of X. fastidiosa tree infection, the sampled orchards, and their
interaction. α- and β-diversity were conducted after resampling
abundance values to the minimum number of reads found to
achieve parity in the total number of counts between samples.
Furthermore, a negative binomial model approach based on
the DESeq2 package in R (Love et al., 2014) was used to find
differences in microbiota composition at the genus level among
the different treatments (p < 0.05). Finally, a 40% prevalence
of ASV was fixed before performing a co-occurrence network
inference analysis of microbial communities by combining an
ensemble of the Pearson and Spearman correlation coefficients,
and the Bray–Curtis and Kullback–Leibler dissimilarity indices
using CoNet v.1.1.1 (Faust and Raes, 2016) and MCODE (Bader
and Hogue, 2003) in Cytoscape v.3.8.2 software to determine
key network properties and highly interconnected regions to
ascertain the existence of potential differences in microbial
interactions occurring in the xylem of almond trees with or

2http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/

without X. fastidiosa infection. Statistical significance of co-
occurrence and mutual exclusions was computed using edge-
specific permutation and bootstrap score distributions with
1,000 iterations (Barberán et al., 2012; Faust et al., 2012). All
data analyses were repeated by removing reads assigned to
X. fastidiosa from the data set.

RESULTS

Disease Assessment and qPCR
Of the 94 sampled trees, 52.7% were asymptomatic (DS = 0),
17.6% showed initial symptoms (0 < DS≤ 1), 18.7% showed low
severity symptoms (1 < DS ≤ 2), and 11.0% showed moderate
symptoms (2 < DS ≤ 3) (Figure 1). X. fastidiosa infection was
analyzed by the qPCR of Harper and Francis (EPPO, 2019) on
all sampled trees, obtaining congruent results between the two
protocols. The qPCR analysis indicated that 54% of the trees were
infected by X. fastidiosa, and in the remaining 46%, X. fastidiosa
could not be detected. After performing library amplification,
good-quality reads were not obtained for three of the 94 trees
analyzed, and these data were discarded for further analysis.
The vast majority of trees showing visual ALSD symptoms were
positive for X. fastidiosa by qPCR analysis (93.0%) with Cq values
ranging from 23.2 to 35.7 for Francis qPCR, and from 20.4 to 31.0
for Harper qPCR, respectively. Of the asymptomatic trees, 18.8%
were determined to be infected by X. fastidiosa by qPCR, with Cq
values ranging from 25.2 to 34.9 for Francis qPCR, and from 21.3
to 33.2 for Harper qPCR.

For NGS analysis, a sample was considered as X. fastidiosa
–positive if ≥5 reads were taxonomically assigned to the
bacterium. X. fastidiosa reads identified by NGS ranged from
1,032 to 21,452, whereas the Cq values of same samples ranged
from 23.2 to 36.6 for Francis qPCR and from 20.4 to 36.0 for
Harper PCR. There was good agreement between the qPCR and
NGS analysis, as indicated by the significant linear relationship
between the Log(reads) and the Cq values of positive samples
for both qPCR protocols assessed (Supplementary Figure 1).
In addition, lower Cq values were found for the Harper qPCR
protocol compared to the Francis qPCR protocol, when testing
the same positive sample, as expected from the higher sensitivity
of the former (Supplementary Figure 1).

Next-generation sequencing results supported the results
obtained by qPCR and allowed the detection of X. fastidiosa in
93.0% of the symptomatic trees (Figure 1), with X. fastidiosa
reads per sample between 49 and 21,452, representing between
0.3% and 97.7% of the total reads. A total of 18.8% (9/48) of the
asymptomatic trees were found to be positive by NGS (Figure 1),
with X. fastidiosa reads between 51 and 6,709, representing
between 3.6 and 74.5% of the total reads. Although a similar
proportion of asymptomatic trees were determined to be infected
by the bacterium when using qPCR, some differences were found.
Thus, in two samples from X. fastidiosa–infected asymptomatic
trees (i.e., qPCR positive with Cq > 32) no reads of X. fastidiosa
could be detected by NGS. Also, in two asymptomatic trees that
were qPCR negative, X. fastidiosa reads could be detected, albeit
in very low numbers (8 and 18 reads, respectively). Finally, a 7.0%
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(3/43) of the trees were found to be negative by both the methods,
although those trees showed symptoms (DS < 1) similar to those
of the initial ALSD (Figure 1). Negative results were obtained
for those trees upon repeat qPCR analysis with and without
sample dilution.

α- and β-Microbial Diversity Measures
Illumina MiSeq sequencing resulted in a total of 2,360,992 and
8,840,606 raw reads for bacterial and fungal communities,
respectively. After removal of chimeras, unassigned, or
mitochondrial reads, 928,850 and 6,840,847 good-quality
reads were assigned to bacteria and fungi, respectively. No
chloroplast reads were detected in our samples.

For bacterial communities, a total of 1,217 ASVs were
identified among all treatments, with 776 ASVs being retained
for α- and β-diversity analysis after rarefying all data to the
minimum number of reads and singleton removal. A total of four
ASVs were taxonomically assigned to X. fastidiosa. The Scheirer–
Ray–Hare test indicated no significant differences (p > 0.05)
for the Richness α-diversity index according to X. fastidiosa
infection (H = 2.57, p = 0.108) whereas orchards were significant
(H = 14.65, p = 0.040) with no significant interaction (H = 1.67,
p = 0.892) between both the factors. Conversely, Shannon
α-diversity index showed significant differences for X. fastidiosa
infection (H = 5.34, p = 0.020), whereas orchards were not
significant (H = 11.20, p = 0.130) with no significant interaction
(H = 2.11, p = 0.833) (Figure 2A). On the contrary, when we
removed X. fastidiosa ASVs reads from the data set, the Richness
and Shannon α-diversity indices presented significant differences
according to both orchards (H > 27.62, p < 0.001) and to the
tree infection status (H < 5.25, p < 0.027) with no significant
interaction (H < 1.99, p > 0.850) (Figure 2B).

For fungal communities, a total of 708 ASVs were identified
for all treatments, with 356 ASVs retained for α- and β-diversity
analysis. Both Richness and Shannon α-diversity indices showed
significant differences according to the orchard (H > 55.16,
p < 0.001) with no significant differences according to the
tree infection status (H < 0.92, p > 0.342), nor its interaction
(H < 0.96, p > 0.965) (Figure 2C).

Principal coordinate analysis of Bray–Curtis and weighted
UniFrac distances differentiated almond xylem bacterial
communities mainly according to X. fastidiosa infection, in
contrast to fungal communities, where the presence of the
bacterium had a minor effect on its distribution. Thus, there
was a clear tendency to group bacterial communities according
to the presence of X. fastidiosa on the trees along Axis 1, which
explained 22.8 and 18.6% of the variation for Bray–Curtis
and weighted UniFrac measures, respectively (Figure 3A).
Interestingly, this trend was not observed when X. fastidiosa
ASVs reads were removed from the datasheet indicating the
crucial effect that X. fastidiosa has in displacing bacterial
community composition (Figure 3B). These results were
also observed when data from each orchard were considered
separately (Supplementary Figures 2A,B). On the other
hand, fungal communities did not show a clear distribution
according to X. fastidiosa infection, neither when all data

were analyzed together (Figure 3C) nor by sampled orchard
(Supplementary Figure 2C).

ADONIS analysis supported the results described above and
indicated a significant main effect on X. fastidiosa infection
in the weighted UniFrac model when the X. fastidiosa reads
were maintained in the datasheet (R2 = 0.211, p < 0.001);
and also when X. fastidiosa reads were removed from the
data set (R2 = 0.022, p = 0.036). However, in both cases,
the main effect on community composition was due to the
orchard for both the Bray–Curtis and weighted UniFrac distance
(R2 = 0.196, p < 0.001) and (R2 = 0.270, p < 0.001), respectively.
In addition, fungal communities were mainly affected by the
sampled orchard at both dissimilarity distances for Bray–Curtis
(R2 < 0.358, p < 0.001) and for UniFrac (R2 < 0.400, p < 0.001),
and to a lesser extent by X. fastidiosa infection (R2 = 0.014,
p = 0.033) at the Bray–Curtis distance, with no significant effect
for the weighted UniFrac distance (R2 = 0.009, p = 0.206)
(Supplementary Table 1).

Composition of Xylem Tissue Bacterial
and Fungal Communities
A total of 11 phyla, 22 classes, 125 orders, 256 families, and
584 genera of bacteria were taxonomically identified. Globally,
the phyla Proteobacteria (68.89%), Bacteroidota (18.53%), and
Actinobacteriota (10.83%) and the genus Xylella (27.39%),
Sphingomonas (13.93%), and Hymenobacter (12.68%) were the
most abundant taxa when analyzing all experimental treatments
together (Figure 4A). As expected, Xylella was the genus with
the highest relative abundance in X. fastidiosa-infected almond
trees (58.23%), reaching maximum frequencies for infected trees
sampled in orchard 405 (75.79%). In addition, Sphingomonas
(with 35.20% in orchard 405 and 34.82% in orchard 20B) and
Hymenobacter (with 36.13 and 31.31% in orchards 47 and 650,
respectively) were the next two predominant genera in the
xylem tissue from X. fastidiosa non-infected trees. Interestingly,
a noticeable lower relative abundance of the main predominant
genera was found in X. fastidiosa-positive almond trees compared
to those with negative detection of the pathogen in each orchard
(Figure 5A). In fact, when removing the genus Xylella from
the data, slight differences in microbial relative abundance were
found between X. fastidiosa qPCR-positive and negative trees
(Figure 5B). On the contrary, a higher relative abundance of
two members of the family Sphingobacteriaceae (ASV7 and
ASV9) reached the highest frequencies in orchards 650 and
652 (3.52 and 3.34%, respectively) when compared to the other
orchards. Similarly, the genus Tatumella presented a high relative
abundance in X. fastidiosa non-infected trees in orchard 652
(23.86%), Friedmanniella in orchard 20B (17.33%), and Massilia
in orchard 405 in non-infected trees (16.66%) (Figure 5B).

Overall, three phyla, 66 classes, 123 orders, 266 families, and
408 genera were taxonomically identified as fungi. Globally,
the phyla Ascomycota (98.38%), Basidiomycota (1.61%), and
Mucoromycota (0.006%) and the genus Diplodia (30.18%), the
families Didymellaceae (10.66%) and Aureobasidium (9.91%)
were the most abundant taxa when exploring all experimental
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FIGURE 2 | Boxplots of Richness (observed) and Shannon diversity indices for bacterial (A,B) and fungal communities (C) at the amplicon sequence variant (ASV)
taxonomic level in the xylem of Xylella fastidiosa-qPCR negative and positive almond trees sampled in different orchards in Alicante province. X. fastidiosa ASVs were
maintained (A) or removed (B) from the data set before analysis. The boxes represent the interquartile range, while the horizontal line within the box defines the
median and whiskers represent the lowest and highest values of four values for each treatment combination.

treatments together (Figure 4B). Diplodia and Neofusicoccum
increased their relative abundance (37.95 and 8.52%, respectively)
from non-infected X. fastidiosa trees, whereas the genus
Collophora followed an opposite trend, with a reduction
of 3.14% in its relative abundance. When analyzing the
data according to orchard, the genus Diplodia presented a
high relative abundance in X. fastidiosa–infected trees in
orchard 75 (79.86%), Neofusicoccum (24.71%) in orchard 20B,
Lasiodiplodia (18.02%) in non-infected trees in orchard 48,
and Trichothecium (29.06%) in infected trees in orchard
650. However, there was no clear pattern of prevalent
fungal genera among orchards or X. fastidiosa infection.
Indeed, Diplodia presented the highest relative abundance in
X. fastidiosa-positive trees in orchard 75 (79.86%), whereas the
trend was the opposite in non-infected trees in orchard 47
(43.07%) (Figure 6).

Differential Abundance of Bacterial and
Fungal Taxa Associated With Xylella
fastidiosa Infection
In line with these results, DESeq2 analysis was used to identify key
genera that could be differentially associated with the presence
or absence of X. fastidiosa in tree xylem vessels. Globally, a
greater number of significant bacterial and fungal genera were
found with higher frequencies in X. fastidiosa–infected trees
(Figure 7 and Supplementary Figures 3,4). Thus, DESeq2
identified a bacterial enrichment (log2 fold change >0) of 50
bacterial members including ASVs from the Class Actinobacteria
(two ASVs), family Acetobacteraceae (eight ASVs), and phylum
Proteobacteria (two ASVs), and ASVs belonging to the genera
Variovorax, Sediminivirga, Kineosporia, and Erwinia. On the
contrary, Cupriavidus and the two unidentified genera from
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FIGURE 3 | Principal coordinate plots of Bray–Curtis and weighted UniFrac distances of bacterial (A,B) and fungal communities (C) at the ASV taxonomic level in
the xylem of Xylella fastidiosa-qPCR negative and positive almond trees sampled in different orchards in Alicante province. X. fastidiosa ASVs were maintained (A) or
removed (B) from the data set before analysis. Points are colored by X. fastidiosa detection and shaped by municipality.

the families Sphingobacteriaceae (ASV59) and Acetobacteraceae
(ASV41) (log2 fold change <0) showed a distinct behavior
(Figure 7A). Regarding fungal communities, Neofusicoccum and
Fitzroyomyces presented a major enrichment in the xylem when
almond trees are infected with the pathogen (log2 fold change
>0) whereas the genera Rosellinia and Chaetomium showed
the opposite behavior. In addition, distinct ASVs from the
family Didymellaceae showed significantly different enrichment
according to the presence of X. fastidiosa in the xylem of almond
trees (Figure 7B).

When analyzing the data by each sampled orchard, DESeq2
identified Cedecea in orchard 405, and Hoyosella and Erwinia
in orchard 650, as bacteria with the highest significant

enrichment in the xylem of almond trees showing a qPCR
X. fastidiosa–positive detection. In contrast, Erwiniaceae ASV61
in orchards 652 and 48, and Pantoea in orchard 20A were
the ASVs with the greatest significant enrichment in the
different municipalities in the xylem of almond trees with
a negative qPCR detection for X. fastidiosa (Supplementary
Figure 3). Focusing on fungal communities, Trichothecium in
orchards 405 and 650, and Diaporthe in orchard 20A showed
the greatest significant enrichment in the xylem of almond
trees infected by X. fastidiosa, whereas Cytospora in orchard
650, ASV248 of the order Tubeufiales in orchard 48, and
Neophaeomoniella in orchard 652 were enriched in non-infected
trees (Supplementary Figure 4).
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FIGURE 4 | Global relative bacterial (A) and fungal (B) taxa abundance at the genus level present in the xylem of almond trees for all experimental combinations
evaluated in the study.

Co-occurrence Network Inference
Analysis
Network analysis indicated aggregation or exclusion interactions
between the four ASVs of X. fastidiosa identified with the
different bacterial and fungal taxa detected in the xylem
vessels of almond trees. The fungal phyla Ascomycota and
Basidiomycota showed negative interactions within the
network, whereas X. fastidiosa showed exclusion mainly
with the phylum Ascomycota (Figure 8A) and a negative
interaction mainly with Proteobacteria, and more specifically
with Sphingomonas (Supplementary Figure 5A). Interestingly,
the ASVs of Diplodia and Pringsheimia showed the greatest
number of negative interactions (35 and 17, respectively)
among all the microorganisms, whereas a member of the

Family Acetobacteraceae and Sphingomonas showed the greatest
number of positive associations (52 and 41, respectively)
(data not shown).

On the other hand, when analyzing only bacterial
communities, a cluster of positive interactions was found among
the four identified X. fastidiosa ASVs, and negative interactions
were found between X. fastidiosa ASVs and a total of 22 ASVs
corresponding to the genera Sphingomonas, 1174-901-12, a
member of the family Solirubrobacteraceae, Abditibacterium,
Methylobacterium–Methylorubrum, Modestobacter, and
Xylophilus (Supplementary Figure 5A), with the four first
genera being the most strongly and negatively connected
(Figure 8B). Remarkably, only positive interactions between
different ASVs were found in the network analysis after
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FIGURE 5 | Bar plots showing the relative abundance of bacterial taxa at the genus level in the xylem of almond trees sampled in different orchards in Alicante
province before (A) or after (B) the removal of Xylella fastidiosa ASVs from the data set. X. fastidiosa (+) and X. fastidiosa (–) refer to X. fastidiosa-infected or
non-infected almond trees, respectively.

FIGURE 6 | Bar plots showing the relative abundance of fungal taxa at the genus level present in the xylem of almond trees sampled in different orchards in Alicante
province. X. fastidiosa (+) and X. fastidiosa (–) refer to Xylella fastidiosa-infected or non-infected almond trees, respectively.
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FIGURE 7 | DESeq2 analysis of differentially enriched bacterial (A) and fungal (B) genera present in the xylem of Xylella fastidiosa-qPCR negative and positive
almond trees sampled in different orchards in Alicante province. The color scale bar indicates log2 fold change. Only significant genera (p < 0.05) are shown.

removing X. fastidiosa ASVs from the data set (Figure 8C and
Supplementary Figure 5C). Overall, nine keystone species,
the ASV members of the families Acetobacteraceae and
Beijerinckiaceae, Sphingomonas, Acidiphilium, Friedmaniella,
Hymenobacter, and Methylobacterium–Methylorubrum with
positive interactions and Diplodia and Modestobacter with
negative interactions, were predicted based on the network
parameters of high closeness and degree, and low betweenness
centrality (Supplementary Table 2).

DISCUSSION

This study describes for the first time the endophytic bacterial and
fungal communities colonizing the xylem vessels of almond trees
using a metabarcoding approach, and describes the changes in the
diversity and structural profile of those microbial communities
associated with the infection of the tree by X. fastidiosa. The
study has also revealed the existence of positive and negative
associations between xylem-inhabiting microorganisms and the
presence of this plant pathogenic bacterium. These results
establish the bases to unravel the impacts of X. fastidiosa
infection on the xylem microbial communities and to identify
potential microorganisms that change in response to infection
by X. fastidiosa or that are predominant in non-infected

trees that grow in orchards with high inoculum pressure
from the pathogen.

Several studies described the microbial communities
inhabiting different ecological niches of almond trees, such as
the phyllosphere (Izhaki et al., 2013), flowers (Aleklett et al.,
2014), and their nectar (Fridman et al., 2012), or the soil
associated to almond roots (Theofel et al., 2021). However, xylem
vessels, as a plant niche with very specific characteristics, have
been overlooked despite their decisive role in plant growth,
as it provides an interconnected route for the circulation and
transport of micronutrients and macronutrients (White, 2012)
and is an optimal niche for the colonization of microbial
endophytes (Malfanova et al., 2013).

As expected, using NGS analysis we identified four different
ASVs belonging to X. fastidiosa that correspond to the subsp.
multiplex associated to ALSD in the DA of the Valencian
Community, in the province of Alicante (Spain) (Arias-Giraldo
et al., 2020; Marco-Noales et al., 2021). Additionally, we
found good agreement between X. fastidiosa reads obtained by
NGS analysis and the Cq values obtained by the two qPCR
protocols used to detect X. fastidiosa infection. The results
also indicated that Harper qPCR showed greater sensitivity
than Francis qPCR. Besides, we observed similar sensitivity of
qPCR as compared with NGS analysis for detecting X. fastidiosa
in asymptomatic trees. In a study comparing the nanopore
amplicon sequencing methodology and the qPCR protocol
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FIGURE 8 | Co-occurrence network inference plot based on the MCODE method showing highly interconnected regions of bacterial and fungal communities (A), or
bacteria present in the xylem of almond trees before (B) or after (C) the removal of Xylella fastidiosa ASVs from the data set. Nodes in blue and black represent
fungal and bacterial ASVs, respectively, and pink nodes correspond to X. fastidiosa ASVs. Copresence (green) and mutual exclusion (red) are shown as the edges
between the nodes.

of Francis et al. (2006) on the efficacy of X. fastidiosa
detection, Faino et al. (2021) found a lower number of
samples identified as X. fastidiosa-positive using nanopore
sequencing, although the percentage of agreement between both
approaches was lower than in our study (78.6%). However,
they used the whole genome instead of 16S rRNA amplicons
for sequencing and a different sequencing platform than those
used in our study.

Our metabarcoding results suggest that X. fastidiosa infection
reshapes almond xylem microbial composition by altering
microbial structure and diversity. Thus, X. fastidiosa infection
was correlated with a reduction in the relative abundance of
two of the most predominant bacterial genera inhabiting almond
xylem vessels (i.e., Sphingomonas and Hymenobacter). These
bacterial genera have been described as endophytes in other
plant species including elm trees (Mocali et al., 2003), maple
trees (Wemheuer et al., 2019), rice (Wang et al., 2016), or
potato (Tangapo et al., 2018), and more specifically as common
xylem inhabitants of woody crops including olive (Anguita-
Maeso et al., 2020, 2021a), grapevines (Bruez et al., 2020), and
citrus (Ginnan et al., 2020). Additionally, Sphingomonas has been
described as a bacterium with several functional plant beneficial
traits including plant growth promotion and plant protection
(Innerebner et al., 2011; Asaf et al., 2020), whereas Hymenobacter

is a well-known psychrotrophic bacteria involved in plant growth
development and bioremediation of heavy metal pollution in
natural soils (Dimitrijević et al., 2018; Ubogu and Akponah,
2021).

On the other hand, X. fastidiosa infection was also correlated
with changes in xylem-associated fungal communities. Thus,
X. fastidiosa infection was correlated with a general increase
of Diplodia and Neofusicoccum, although this trend was not
consistent among the different sampled orchards, which suggest
a lower influence of X. fastidiosa infection on fungal xylem-
associated communities, or that other factors (agronomic
practices, climatic conditions, age, or genotype of the tree,
etc.) may also play a role. In our study, although we did
not have precise information on the age and variety of the
sampled trees, we speculated that those factors might have a
minor role, since most of orchards sampled were of similar
age, and “Marcona” was the most common almond variety
grown in the area. Concerning climatic variables, there were
small differences among the eight orchards in the study, with
annual mean temperature and precipitation ranging from 13.9
to 17.1◦C and from 487 to 686 mm, respectively. In the same
context within the eight sampled orchards, slight differences
in climatic suitability for X. fastidiosa establishment have been
described (EFSA, 2019b; Table 1). Indeed, orchards 20A and
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20B, located in Xaló municipality and orchard 75 located in the
northeastern part of the municipality of Benissa are classified
as highly suitable for the establishment of X. fastidiosa, while
the remaining five orchards are classified as moderately suitable.
Interestingly, the three plots with higher versus moderate
suitability for X. fastidiosa establishment, present higher values
for both mean annual temperature (17–17.1◦C vs. 13.9–16.5◦C)
and the coldest month (9.0–9.4◦C vs. 4.9–7.9◦C), while they tend
to have lower precipitation levels (Table 1). This indicated that
the environmental conditions in those orchards differ and may
affect not only the establishment and further development of
X. fastidiosa, but also the entire xylem microbiome, and may
explain, at least in part, the significant differences in α- and
β-diversity measurements found among orchards for both fungal
and bacterial communities, which deserves further study.

Diplodia and Neofusicoccum have been described as fungal
endophytes belonging to the diverse Botryosphaeriaceae family
(Slippers et al., 2013; Shetty et al., 2016) and have been found in
wood samples of almond trees from Majorca that showed dieback
symptoms (Gramaje et al., 2012), as well as in other woody
plants, such as olive (Moral et al., 2010), grapevine (Gramaje and
Armengol, 2011), mangrove (Osorio et al., 2017), and eucalyptus
trees (Barradas et al., 2016). The procedure used for xylem
microbiome extraction by macerating structural xylem tissues
may explain, in part, why those fungi that are not common
inhabitants of the xylem vessels were found. Additionally,
although these genera include well-known pathogenic species,
members of the genus Neofusicoccum are often symbiotically
associated with different plant species and are involved in
functions related to the response to environmental factors and
internal signals that can modulate the production of secondary
metabolites by the host (Salvatore et al., 2021). Interestingly, the
two orchards sampled in Benissa, although showing an incidence
(72 and 44%) and ALSD severity (1.51 and 0.78) similar to other
sampled plots, included most of the trees with a higher severity
score [i.e., (2 < DS ≤ 3)], which can be related to a more
advanced stage or earlier infection by X. fastidiosa in those plots
(Moralejo et al., 2020).

In parallel to the results described above, X. fastidiosa infection
was correlated with a reduction in α-diversity measures estimated
by Richness and Shannon indices, although this effect was
more pronounced in the α-diversity of xylem-inhabiting bacteria
compared to that of fungal populations. The decrease in the
relative abundance of specific microbial taxa detected in our study
in X. fastidiosa trees may be explained by: (i) the displacement of
the natural xylem microbiota due to niche exclusion (X. fastidiosa
colonizes and occludes xylem vessels forming microcolonies); (ii)
the secretion by X. fastidiosa of specific molecules directly or in
outer membrane vesicles with antimicrobial, signaling, and cell
wall degrading activity (Feitosa-Junior et al., 2019; de Souza et al.,
2020) can induce a direct modification of the xylem microbiome
or induce changes if used as nutrient sources; and/or (iii) the
triggering of a series of host physiological responses that result
in a decrease in the abundance of specific components of the
xylem microbiome. Thus, the interaction between X. fastidiosa
and the plant xylem microbiome is bidirectional and there is still
a need to unravel the molecular mechanisms underlying these

interactions (Landa et al., 2022). These hypotheses emphasize the
need to expand our knowledge on the changes that may take place
in xylem microbial communities after infection by vascular plant
pathogens (Anguita-Maeso et al., 2021b).

The potential interactions occurring between X. fastidiosa
and different members of the microbial community into the
xylem have been considered by some authors (Deyett et al.,
2017; Giampetruzzi et al., 2020; Vergine et al., 2020; Zicca et al.,
2020). However, to the best of our knowledge, this study is the
first to address interactions between X. fastidiosa and microbial
composition into the xylem of almond trees via network analysis.
Among the nine keystone species detected in the co-occurrence
network analysis with significant interactions with X. fastidiosa,
Sphingomonas showed the strongest negative interaction with
the pathogen when bacterial and fungal communities were
analyzed together. Although this study did not further evaluate
the antagonistic activity of Sphingomonas against X. fastidiosa
in vitro, we suggest that it might be worthwhile to assess
the biocontrol potential in planta of Sphingonomas against
X. fastidiosa covering the major subspecies and STs, because of
its determinant position in the network community structure
analysis. Although some authors have not found antagonistic
activity of Sphingomonas against X. fastidiosa in vitro (Zicca
et al., 2020), it might occur that its antagonistic effect is due
to other biocontrol mechanisms rather than antibiosis. Thus,
the role of Sphingomonas as a biological control agent has
been widely studied in other pathosystems, which revealed
that substrate competition plays a role in plant protection by
Sphingomonas. In particular, differences in carbon source profiles
have been identified between protecting and non-potecting
strains (Innerebner et al., 2011; Wachowska et al., 2013).

This research is pioneering in providing new insights into
the characterization of bacterial and fungal communities that
colonize the xylem vessels of almond trees. These results can
contribute to complement the current knowledge regarding
the interaction between X. fastidiosa and xylem endophytes to
determine the changes correlated with X. fastidiosa infection in
the xylem-associated microbiome, describing the composition,
diversity, and structure of the almond xylem microbial profile
in X. fastidiosa –infected and non-infected trees. Also, this study
provides for the first time the description of significant co-
presence and mutual exclusion interactions between X. fastidiosa
with bacterial and fungal microbial inhabitants of the xylem in
almond trees. Some specific limitations can be raised in this
study, mainly linked to the sampling of the microbiome in a
single season. Thus, for other woody crops, a strong seasonality
effect on the diversity and composition of the xylem microbiome
has been found for grapes (Deyett and Rolshausen, 2019) and
olive (Anguita et al., unpublished results). This fact was forced
because infected trees were eradicated soon after they were
confirmed as positive for X. fastidiosa as imposed by legislation
(Regulation EU, 2016, 2020). Nevertheless, we consider our
results relevant for future studies aimed at identifying xylem-
inhabiting microorganisms potentially involved in host tolerance
and/or plant defense against xylem-inhabiting pathogens, or may
help select key microorganisms that can be tested in planta to
determine their ability to suppress ALSD.
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Supplementary Figure 1 | Linear regression between log [Xylella fastidiosa reads]
obtained by next-generation sequencing (NGS) sequencing and Cq values from
the quantitative polymerase chain reaction (qPCR) protocols of Francis et al.
(2006) and Harper et al. (2010) obtained from DNA extracted from xylem samples
of X. fastidiosa-infected almond trees.

Supplementary Figure 2 | Principal coordinate plots of Bray–Curtis and
weighted UniFrac distances of bacterial (A,B) and fungal communities (C) at the
amplicon sequence variant (ASV) taxonomic level in the xylem of Xylella fastidiosa
–qPCR negative and positive almond trees sampled in each orchard in Alicante
province. X. fastidiosa ASVs were maintained (A) or removed (B) from the data set
before analysis. Points are colored by X. fastidiosa detection.

Supplementary Figure 3 | DESeq2 analysis of differentially enriched bacterial
genera present in the xylem of Xylella fastidiosa–qPCR negative and positive
almond trees in the different sampled orchards in Alicante province. The color
scale bar indicates log2 fold change. Only significant genera (p < 0.05) are shown.

Supplementary Figure 4 | DESeq2 analysis of differentially enriched fungal
genera present in the xylem of Xylella fastidiosa–qPCR negative and positive
almond trees in the different sampled orchards in Alicante province. The color
scale bar indicates log2 fold change. Only significant genera (p < 0.05) are shown.

Supplementary Figure 5 | Co-occurrence network inference plot of bacterial and
fungal communities (A) present in the xylem of almond trees with the presence (B)
or absence (C) of Xylella fastidiosa ASVs in the data set before analysis.
Copresence (green) and mutual exclusion (red) are shown as the edges
between the nodes.
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Tea (Camellia sinensis) is an important crop that is mainly used in the food industry. This

study using the metabolome and microbiome investigates the resistance factors of wild

tea plant resources against tea gray blight disease, which is caused by Pestalotiopsis

theae (Sawada) Steyaert. According to the interaction analysis of tea leaves and

pathogenic fungus, the resistance of wild tea plant resource “R1” (Resistance 1) to tea

gray blight disease was significantly higher than that of wild tea plant resource “S1”

(Susceptibility 1). The difference between “R1” and “S1” in the metabolome was obvious.

There were 145metabolites that significantly changed. The phenolic acids and flavonoids

were the major increased categories in “R1,” and it included 4-O-glucosyl-sinapate and

petunidin-3-o-(6”-o-p-coumaroyl) rutinoside. Six metabolic pathways were significantly

enriched, including aminoacyl-tRNA biosynthesis, flavone, and flavonol biosynthesis. In

terms of bacteria, there was no significant difference between “S1” and “R1” in the

principal component analysis (PCA). Pseudomonas was the major bacterial genus in

“S1” and “R1.” In addition, each of the two resources had its own predominant genus:

Cellvibirio was a predominant bacterial genus in “S1” and Candidatus_competibacter

was a predominant bacterial genus in “R1.” In terms of fungi, the fungal diversity and

the abundance of the two tea plant resource samples could be distinguished clearly.

The fungal component of “S1” was more abundant than that of “R1” at the genus

level. Toxicocladosporium was the predominant fungal genus of “S1,” and Filobasidium

was the predominant fungal genus of “R1.” The relative abundance of unclassified-

norank-norank-Chloroplast and Penicillium were significantly different between “S1” and

“R1.” Penicillium was identified as a potential biomarker. They correlated with some

metabolites enriched in “S1” or “R1,” such as L-arginine and quercetin-3-o-(2”-o-

rhamnosyl) rutinoside-7-o-glucoside. Overall, phenolic acids, flavonoids, and Penicillium

could be functional metabolites or microorganisms that contributed to improving the

resistance of wild tea plant resources to tea gray blight disease.

Keywords: wild tea plant resource, Camellia sinensis, Pestalotiopsis theae, microbiome, metabolome
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INTRODUCTION

Tea (Camellia sinensis) is an important crop that is mainly
used in the food industry. Metabolites of polyphenols, alkaloids,
theanine, tea saponin, and tea polysaccharides are rich in tea, and
they have nutrients and functions in healthcare (Yang et al., 1999;
Zheng et al., 2011). Tea gray blight disease, a destructive disease
caused by the pathogen Pestalotiopsis theae (Sawada) Steyaert,
can seriously harm tea leaves and the new shoots of the tea plant.
Tea gray blight disease can greatly affect the yield of the tea
product (Pallavi et al., 2012). The screening of tea plants’ disease-
resistance resources plays an important role in the tea industry.
It is also important to study the disease-resistance mechanisms
in tea.

Previous research has shown that tea plants contain many
metabolites with obvious antibacterial properties, such as tea
polyphenols and alkaloids (Karou et al., 2006; Ma et al.,
2020). Primary and secondary metabolites compose a complex
metabolic network in plants. Secondary metabolites can be used
as biochemical barriers to resist pathogen invasion and can also
be used as signal substances to participate in the transduction
of plant-disease resistance response (Escobedo-Martínez et al.,
2010; El-Hadidy and El-Ati, 2014). Secondary metabolites that
are involved in the plant disease resistance process mainly
include lignin, callose, and peroxidase (Luna et al., 2011; Schmelz
et al., 2011; Ahuja et al., 2012; Sattler and Funnell-Harris, 2013;
Yamane, 2013). Lignin, an important physical antimicrobial
substance, causes lignification around the cell wall of the necrotic
area to prevent the spread of pathogens (Qiao and Dixon, 2011;
Sattler and Funnell-Harris, 2013). When the plant is infected by
pathogens, callose can be deposited in a large number of plant
cells, which is a response to biological stress such as pathogen
invasion. Therefore, the accumulation of callose is an indicator
of disease resistance in the study of plant disease resistance
(Mt et al., 2003; Luna et al., 2011). Tea polyphenols have
various biological activities, such as eliminating free radicals, and
antioxidation (Liu et al., 2000). Caffeine also has an inhibitory
effect on fungi such asHydromycetes, Rhizopus serpentonum, and
Rhizopus piriocephalus (Zhou et al., 2018; Thangaraj et al., 2020).

Microorganisms are important biological resources in nature
and are ubiquitous in plants. Some microorganisms cannot
cause disease symptoms when they survive in plant tissues. Some
endophytic fungi can produce biochemical substances with
insecticidal, antimicrobial, antitumor, immunosuppression,
antioxidant, and other biological activities. Endophytic
microorganisms can be positively involved in the growth
and development of plants, for example, by promoting the
ability to defend against biotic stresses. B. subtilis strain 330-2
produces lytic enzymes (laminarase, cellulase, and protease) that
can degrade the cell walls of pathogenic fungi and inhibit the
growth of Rhizoctonia solani Kühn. The leaf microbiome is very
important for the biological control of leaf diseases (Bruisson
et al., 2019; Becker et al., 2020). The special epiphytic bacteria
around peach leaves have a great influence on the colonization of
pathogenic bacteria (Randhawa, 1986). The endophytic fungus
extracted from the leaves and stems of Nyctanthes arbortristsi
can effectively inhibit pathogenic bacteria and fungus. Thus,

these microbiomes have been regarded as potential biological
resources to improve plant disease resistance. This present
research on the metabolome and microbiome of the disease-
resistant wild tea resources can further improve the theory of
resistance in tea plants.

This study aimed to investigate the potential microorganisms
and metabolites that contribute to disease resistance in tea
plants via the metabolome and microbiome. The bacterial and
fungal compositions of tea leaves were analyzed using 16S rRNA
and ITS high-through sequencing, respectively. Additionally, the
quadrupole time of flightmass spectrometry (UPLC–QTOF–MS)
was applied to identify the metabolic profiles of the resistance
and susceptibility of tea plant resources. The results of this
research would provide directions for the mining of functional
metabolites and microorganisms of tea tree resources against tea
gray blight disease. They can also provide theoretical support for
the prevention and control of tea gray blight disease, which would
help guide the development of breeding tea plants with improved
disease resistance.

MATERIALS AND METHODS

Plant Materials
Fresh disease-free leaves from wild tea plant resources “S1”
(Susceptibility 1), “R1” (Resistance 1), and “SR1” (Sub-resistance
1) were used for the analysis of disease resistance. The
wild tea plant resources were collected in Yuntai Mountain,
Anhua County, Yiyang City, Hunan Province, and non-artificial
cultivation. “R1,” with obvious resistance to tea gray blight
disease, and “S1,” with susceptibility to tea gray blight disease,
were selected for microbiome and metabolome analysis. The
tea leaves for the metabolome and microbiome were collected
from nine tea plants, cleaned, and disinfected. This disinfection
procedure ensures that there were no other microorganisms
on the leaves’ surface. The disinfection process was as follows:
the leaves were washed 2-3 times with sterile water, soaked in
1% NaClO for 1min, soaked in 75% alcohol for 1min, and
then washed 2-3 times with sterile water. Finally, the sterile
water that was used for the last step of washing was cultured
for microorganisms to determine whether the leaves’ surface
was thoroughly disinfected. Three tea plants were taken as one
biological replicate, and three replicates of “S1” and “R1” were
used for the microbiome and metabolome analysis.

Resistance Phenotype to Pestalotiopsis

theae
The third leaves of the three candidate tea plant resources
were collected. After surface cleaning and disinfection, they
were moisturized and placed in a plastic box. Fungal samples,
5mm in diameter, were selected from the pathogenic fungus
plate, cultivated for 5 days, and inoculated on the leaves. After
inoculation for 24 h, the fungal samples were removed and the
cultivation of leaves continued, which were observed for the
formation of leaf spots. The diameters of the disease spots at
different time points were measured with vernier calipers.
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Widely Targeted Metabolomics
The tea samples were freeze-dried with a vacuum freeze-dryer
(Scientz-100F). The metabolite extraction method was based
on Wang et al. (2020). The extracts were filtrated (SCAA-104,
0.22µm pore size; ANPEL, Shanghai, China) before UPLC-
MS/MS analysis.

For UPLC conditions and ESI-Q TRAP-MS/MS processing,
the sample extracts were analyzed using the UPLC-ESI-MS/MS
system (UPLC, SHIMADZUNexera X2; MS, Applied Biosystems
4500 Q TRAP) equipped with a C18 column (Agilent SB-C18,
1.8µm, 2.1 ×100mm). The mobile phase consisted of solvent
A, pure water with 0.1% formic acid, and solvent B, acetonitrile
with 0.1% formic acid. The measurement procedure of the tea
sample was based on Chen et al. (2013). Linear ion trap (LIT)
and triple quadrupole (QQQ) scans were acquired on a triple
quadrupole-linear ion trap mass spectrometer, AB4500 Q TRAP
UPLC/MS/MS System, equipped with an ESI Turbo Ion-Spray
interface, and controlled using Analyst 1.6.3 software (AB Sciex,
Framingham, MA, USA). The ESI source operation parameters
were based on Wang et al. (2020).

For UPLC-MS/MS baseline data analysis, unsupervised
PCA was performed using the prcomp function in R.
Data were assessed for unit variance prior to unsupervised
PCA. The hierarchical cluster analysis (HCA) results of
samples and metabolites were presented as heatmaps with
dendrograms, while Pearson correlation coefficients (PCC)
between samples were calculated using the cor-function in
R and presented only as heatmaps. Significantly changed
metabolites between the control (“S1”) and treatment (“R1”)
groups were determined by VIP ≥ 1 and absolute Log2FC
(fold change) ≥ 1. VIP values were derived from the OPLS-
DA result, which also contains score plots and permutation
plots. To avoid overfitting, a permutation test (200 permutations)
was performed. The identified metabolites were annotated
using the KEGG compound database (http://www.kegg.jp/kegg/
compound/). The annotated metabolites were subsequently
associated with the KEGG pathway database (https://www.kegg.
jp/kegg/pathway.html).

Microbiome Profile of Tea Leaf Samples
The genomic DNA of the microbial community was extracted
from the tea leaf sample using FastDNA R© Spin Kit for Soil
(MP Biomedicals, USA) as directed by the manufacturer.
The hypervariable region V5-V7 of the bacterial 16S rRNA
gene and the fungal ITS gene were amplified with primer
pairs 799F (5’-AACMGGATTAGATACCCKG-3’) and
1193R (5’-ACGTCATCCCCAC CTTCC-3’), and ITS1F
(5’-CTTGGTCATTTAGAGGAAGTAA-3’) and ITS2R (5’-
GCTGCGTTCTTC ATCGATGC-3’), respectively. The resulting
PCR products of the 16S rRNA and ITS gene were extracted
and purified. Following standard protocols, the Illumina MiSeq
PE300 (Illumina, USA) platform was used for sequencing by
Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China).
The sequenced results were analyzed through the Majorbio
Cloud Platform (https://www.majorbio.com). The sequences
were demultiplexed and quality-filtered using QIIME (version
1.9.1) with some criteria. The criteria reference was Zhang et al.

(2018). The bioinformatics procedure is as follows: in-house
Perl scripts were used to analyze the alpha- and beta-diversity.
Ribosomal Database Project (RDP) was used to annotate
the taxonomic information from OTUs (Cole et al., 2014).
Significant differences between the two groups of samples were
evaluated using the paired Student’s t-test in the a-diversity
indices. Taxonomical and functional differences between the
two groups of samples were analyzed using the STAMP 2.1.3
software (Parks et al., 2014), and the p-values were calculated
via Welch’s t-test. LEfSe analysis was performed to identify
the most differentially abundant taxa between the two groups
of samples (Segata et al., 2011), and the most discriminant
taxa were distinguished by linear discriminant analysis (LDA)
score > 2 and p < 0.05. Differences in relative taxa abundance
between the two groups of samples were calculated using a non-
parametric Wilcoxon rank-sum test. Taxa-relative abundance in
the difference between the two groups of samples was calculated
by a non-parametric Wilcoxon rank-sum test. Population
differences were analyzed with a unidirectional ANOVA. p <

0.05 was deemed statistically significant.

Statistical Analysis
All statistical analyses have been carried out using SPSS
22 statistics. The differences between the control (“S1”) and
treatment groups (“R1”) were analyzed using the Student t-tests.
Statistical significance was assessed by p < 0.05. Correlations
between the microbiotas and metabolites were analyzed by
Spearman correlation analysis.

RESULTS

Resistance Phenotypes to Pestalotiopsis

theae
The interaction analysis results of the third tea leaves and the tea
gray blight pathogen showed that the wild tea plant resource “R1”
had obvious resistance to tea gray blight disease, and no obvious
disease spots were found in the leaves during the whole infection
cycle (Figure 1A). Tea plant resource “S1” was sensitive to tea
gray blight disease. On the 6th day of infection, the leaves showed
obvious browning (Figure 1). On the 12th day, the “S1” leaves
were dead (Figure 1). The resistance of the tea plant resource
“SR1” to tea gray blight disease was between those of “S1”
and “R1” (Figure 1). Consequently, “S1” and “R1” were selected
for subsequent analysis of the microbiome and metabolome to
obtain differences in microbial diversity and metabolites between
“S1” and “R1.”

Metabolism Differences Between the Two
Wild Resources
The tea leaf samples were analyzed using UHPLC-MS/MS in
positive and negative modes (Supplementary Figure 1A). A
typical TIC plot of one QC sample and the multipeak detection
plot of metabolites in the multiple reaction monitoring (MRM)
modes were illustrated in Supplementary Figures 1B,C. The TIC
plot represents a continuous description of the intensity sum
of all ions in the mass spectrum at different time points. The
multipeak detection plot of metabolites in the MRM mode
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FIGURE 1 | (A) Analysis of the interaction between wild tea leaves and tea

gray blight pathogen. (B) Disease resistance analysis of wild tea plant

resources and tea gray blight pathogen. S1, Susceptibility 1; R1, Resistance 1;

SR1, Sub-resistance 1. Different lowercase letters in the histogram indicate

significant difference of disease spot score among “S1”, “SR1”, and “R1” at

the same time of infection (p < 0.05, SNK-q test).

revealed the substances that were detected in the samples. In the
multipeak detection plot, each peak in a different color represents
a detected metabolite. Information on metabolite serial numbers,
peak integration values, and metabolite names are listed in
Supplementary Table 1.

In total, 728 metabolites were identified, including 184
flavonoids, 121 phenolic acids, 92 lipids, 76 amino acids and
their derivatives, 51 nucleotides and their derivatives, 50 organic
acids, 39 alkaloids, 31 tannins, 20 lignans and coumarins, 3
terpenoids, and 61 others (Figure 2, Supplementary Table 1).
The metabolites of class II belong to class I in Figure 2. All
metabolites were analyzed by ANOVA (Supplementary Table 1).
As shown in the Venn plot, the most detected and identified
metabolites can be found in the two tea leaf samples (Figure 3A).

The quality control samples (QC) were prepared by mixing
extracts from two tea leaf samples. As shown in the principal
component analysis (PCA) plots, there was a large separation
of trends between the “S1” and “R1” leaves and little intragroup
variation was observed (PC1=50.52% and PC2=10.54%,
Figure 3B). OPLS-DA modeling can maximize the difference
between different groups and can be performed to evaluate the
data quality and identify potential biomarkers. As is shown, the
values of R2Y (0.999) were high and the values of Q2 were >0.5
(Supplementary Figure 2A), indicating good reliability and
predictability of the model. In the permutation test of the OPLS-
DA, the sequential order of categorical variable Y was randomly
changed many times (n=200) (Supplementary Figure 2B).
Three corresponding OPLS-DA models were established on
each occasion (Supplementary Figures 2C,D). Thus, the
R2 and Q2 values of the stochastic models were obtained.
The results suggested that these methods were of great

importance for preventing the test model from overfitting and
for evaluating the statistical significance of the model. As shown
in Supplementary Figure 2B, the original model’s R2Y values
were close to 1 in “S1” and “R1,” respectively. The results indicate
that the established models were an accurate description of
the real situation in all sample data. The Q2 values in “S1”
and “R1” were close to 1 (0.966), and these show that a similar
distribution would be generated if other new samples were added
to the models. As a whole, the original model of the “S1” and
“R1” groups can ideally explain the difference between each
treatment group and the control group. Furthermore, there was
a gradual decrease in the retention degree of the permutation.
The R2Y’ and Q2’ values of permutation models are less than
those of the R2Y and Q2 of the stochastic model shown in
Supplementary Figure 2B. Therefore, these results indicate that
the PCA and OPLS-DA models in the present study demonstrate
good repeatability and reliability. The potential biomarkers were
screened according to the VIP value (VIP > 1), the absolute
value of fold change≥ 2, and statistical tests p < 0.05.

Based on the PCA and OPLS-DA results, the VIP can be used
for the preliminary screening of different metabolites between
the treatment and the control groups. Moreover, differential
metabolites can be further screened by combining the VIP
value with the fold-change value. In this study, there were 145
metabolites that significantly changed (|Log2Foldchange|≥ 1 and
VIP > 1). Among them, compared with “S1,” 96 metabolites
were significantly decreased and 49metabolites were significantly
increased in “R1” (Figure 4, Supplementary Table 2). Flavonols,
phenolic acids, amino acids and their derivatives, and flavonoids
were the main categories of significantly changed metabolites
(SCMs). The most increased categories were phenolic acids and
flavonoids in “S1” (Figure 4A). Among all the differentially
enriched metabolites, 21 metabolites were particularly obvious,
such as quercetin-7-o-rutinoside-4’-o-glucoside and petunidin-
3-o-(6”-o-p-coumaroyl) rutinoside (Supplementary Figure 3).

The potential biomarkers were used for pathway analysis
using KEGG topology analysis. In this study, 145 SCMswere used
for KEGG analysis. The differential metabolites were classified
into corresponding pathways according to the information
from the pathway database (Supplementary Table 3). The
pathway analysis of SCMs involved a total of 52 pathways
(Supplementary Figures 4, 5). Six metabolic pathways (rich
factor value > 0, p < 0.05) were significantly enriched, including
aminoacyl-tRNA biosynthesis (rich factor value = 0.56);
glucosinolate biosynthesis (rich factor value = 0.75); tropane,
piperidine, and pyridine alkaloid biosynthesis (rich factor value
= 0.67); 2-oxocarboxylic acid metabolism (rich factor value
= 0.39); flavone and flavonol biosynthesis (rich factor value
= 0.42); and valine, leucine, and isoleucine degradation (Rich
factor value = 0.50). It should be noted that aminoacyl-tRNA
biosynthesis, 2-oxocarboxylic acid metabolism, and flavone and
flavonol biosynthesis encompass a large portion of the total
metabolites in “S1” and “R1” (Supplementary Figure 5).

Microbial Difference Analysis in Tea Leaves
The bacterial and fungal compositions of “S1” and “R1” leaves
were analyzed using 16S rRNA and ITS high-throughput
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FIGURE 2 | Number of metabolite categories identified in all samples.

FIGURE 3 | Venn diagrams of metabolites detected in each group (A) and principal component analysis (PCA) score plot for mass spectrum data of tea samples and

quality control samples (B). The X-axis represents the first principal component (PC1) and the Y-axis represents the second principal component (PC2) in the PCA

score plot.

sequencing, respectively. A total of 69,996 raw reads of 16S rRNA
and 4,06,834 raw reads of ITS were obtained from six tea leaves
samples (n = 3 for each group) with an average of 11,666 reads
of bacterial and 67,805 reads of fungi per sample. The average
read lengths of 16S rRNA and ITS were 377.18 bp and 232.51
bp, respectively. A total of 207 distinct operational taxonomic
units (OTUs) of bacteria and 191 OTUs of fungi were observed
in all samples. The Simpson index and Sobs index of bacteria
and fungi did not show a significant difference between “S1”
and “R1” (Supplementary Figures 6A,B). Genus-based principal
component analysis (PCA) showed distinct fungal profiles

between “S1” and “R1” (Supplementary Figure 7A), but the PCA
of bacteria did not show distinct bacterial profiles between “S1”
and “R1” (Supplementary Figure 6C). Also, the results of the
hierarchical clustering of fungus and bacteria did not show better
separations (Supplementary Figures 6D, 7B).

In Supplementary Figure 6E, Proteobacteria and
Actinobacteria dominated the leaf microbiota composition
at the phylum level of bacteria, contributing to 92 and 7.1%
of the leaves’ microbiota in “S1,” and 91 and 8% of the leaves’
microbiota in “R1,” respectively. At the genus level, the relative
abundance of microbes showed a difference between “S1” and
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FIGURE 4 | Number of different categories (A) and volcano plot of metabolites (B) in “R1” vs. “S1.”

FIGURE 5 | The significantly enriched bacterial and fungal species in “S1” and “R1” samples. (A) The significantly enriched bacterial species. (B) The significantly

enriched fungal species.

“R1” (Supplementary Figure 6F). In Supplementary Figure 7C,
Ascomycota and Basidiomycota dominated the leaf microbiota
composition at the phylum level of fungi, contributing to
83 and 17% of the microbiota in “S1,” and 70 and 30% of
the microbiota in “R1,” respectively. At the genus level, the
relative abundance of fungi showed the difference between
“S1” and “R1” (Supplementary Figure 7D). The differences in
leaf microbiota among these groups were also evidenced by
linear discriminant analysis effect size (LEfSe), which showed
the most different abundant taxon of two tea plant resource
samples (Supplementary Figures 8, 9). Using a metagenomic
biomarker discovery approach, Cyanobacteria was found to be
significantly enriched in the “S1” samples (LDA score > 3),
while Burkholderia–Caballeronia–Paraburkholderia (LDA score
> 3.5) and Penicillium, Plectosphaerella, and Plectosphaerellaceae

(LDA score > 4) were identified as biomarkers of the “R1” group
(Supplementary Figures 8, 9).

At the genus level of bacteria, 151 genera coexisted in
the two tea resources. A total of 40 genera only existed in
the “S1” resources and 29 genera only existed in the “R1”
resources (Supplementary Figure 10A). Pseudomonas was the
predominant genus, contributing to 79.74% of the common
microbiota in the two tea samples (Supplementary Figure 11A).
Cellvibirio was the predominant genus (10.82%) only in “S1,” and
Candidatus_competibacter was the predominant genus (28.90%)
only in “R1” (Supplementary Figures 11B,C).

At the genus level of fungi, 102 genera coexisted in
the two tea resources. A total of 41 genera only existed
in the “S1” resources and 27 genera existed in the “R1”
resources (Supplementary Figure 10B). Cutaneotrichosporon
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was the predominant genus, contributing to 23.12%
of the common microbiota in the two sample groups
(Supplementary Figure 12A). Toxicocladosporium was the
predominant genus (18.85%) only in “S1” and Filobasidium
was the predominant genus (13.30%) only in “R1”
(Supplementary Figures 12B,C). The results show that the
microbiota composition at the genus level of “S1” is more
abundant than that in “R1.”

Norank_norank_Chloroplast (p=0.04451) was a significantly
different enrichment bacterial genera between the two tea
resources (Supplementary Figure 13). Penicillium (p =

0.02156) was a significantly different enrichment fungal genera
between the two tea resources (Supplementary Figure 14).
At the species level of bacteria, the relative abundance of
unclassified_norank_norank_ Chloroplast (p = 0.04451)
showed a significant difference between the two tea
resources (Figure 5A). At the species level of fungi, the
relative abundance of unclassified_Penicillium (p = 0.03377)
showed a significant difference between the two tea samples
(Figure 5B).

Correlations Between Microorganisms and
Metabolites in Tea Leaves
Correlation analysis between the leaves” microorganisms
and metabolites indicates potential mutual contributions. To
investigate the contributions of metabolites to leaves’ microbiota,
we performed RDA on the significantly changed metabolites
related to the leaves’ microbiota (Supplementary Figure 15).
The top three high-enrichment or low-enrichment metabolites
contributed to the leaves’ microbiota. We found that the
top three high-enrichment metabolites, namely quercetin-7-
o-rutinoside-4’-o-glucoside, 2,3-di-o-galloyl-d-glucose, and
L-arginine contributed to the bacteria and fungi of “S1”
leaves. However, the top three low-enrichment metabolites,
namely luteolin-6-c-glucoside-7-o-(6”-p-coumaroyl) glucoside,
isovitexin-2”-o-(6”’-p-coumaroyl) glucoside, and vitexin-7-o-
(6”-p-coumaroyl) glucoside contributed to bacteria and fungus
of “R1” leaves (Supplementary Figure 15).

In addition, the metabolites, and the bacterial and fungal
genera in two tea resources were used for Spearman’s
correlation analysis. In Supplementary Figures 16, 17, the
relative abundance of unclassified_Gammaproteobacteria,
Microbacterium, norank_norank_ Gaiellales, Aeromonas,
Bacillus, norank_norank_Chloroplast, Pseudomonas,
Ralstonia, unclassified_Enterobacteriaceae, Sphingomonas
and Penicillium, Pseudocercospora, Plectosphaerella,
Cladosporium, unclassified_Ascomycota, Phyllosticta,
Strelitziana, Toxicocladosporium, Bipolaris, Trichoderma,
and unclassified_Xylariales were significantly correlated with
the top twenty-one metabolites enriched in “S1” or “R1.”
The positive and negative correlations were as follows:
Microbacterium, norank_norank_Gaiellales, Aeromona, and
unclassified-norank-norank-Chloroplast were significantly
positively correlated with the levels of delphinidin-3-
o-(2”’-o-p-coumaroyl) rutinoside and isorhamnetin-3-o-
rutinoside-7-o-rhamnoside, but were significantly negatively

correlated with some SCMs, such as 1,2,3-tri-o-galloyl-d-
glucose and castanoside. Bacillus, norank_norank_Chloroplast,
Pseudomonas, Ralstonia, unclassified_ Enterobacteriaceae,
and Sphingomonas were significantly positively correlated
with the levels of some SCMs, such as 2,3-tri-o-galloyl-
d-glucose, 2,3-di-o-galloyl-d-glucose, dicaffeoylquinic
acid-o-glucoside, kaempferol-3-o-(2”-p-coumaroyl) galactoside,
feruloylmalic acid, feruloyltartaric acid (fertaric acid), and
p-coumaroylmalic acid, but were significantly negatively
correlated with delphinidin-3-o-(2”’-o-p-coumaroyl)rutinoside,
quercetin-3-o-(2”-o-rhamnosyl)rutinoside-7-o-glucoside,
petunidin-3-o-(6”-o-p-coumaroyl) rutinoside, isorhamnetin-
3-o-rutinoside-7-o-rhamnoside, luteolin-7-o-sophoroside-
5-o-arabinoside, etc. Penicillium, Pseudocercospora, and
Plectosphaerella were significantly positively correlated
with the levels of delphinidin-3-o- (2”’-o-p-coumaroyl)
rutinoside, quercetin-3-o- (2”-o-rhamnosyl) rutinoside-7-
o-glucoside, petunidin-3-o-(6”-o-p-coumaroyl) rutinoside,
and isorhamnetin-3-o-rutinoside-7-o-rhamnoside but were
significantly negatively correlated with some metabolites such
as L-arginine, eriodictyol-7-o-glucoside, cyanidin-3-o- (6”-o-p-
coumaroyl) rutinoside-5-o-glucoside, and 6-c-methylquercetin-
3-o-rutinoside. Strelitziana, Toxicocladosporium,
Bipolaris, Trichoderma, and unclassified_Xylariales were
significantly positively correlated with the levels of L-
arginine and eriodictyol-7-o-glucoside. Trichoderma and
unclassified_Xylariales were significantly negatively correlated
with delphinidin-3-o-(2”’-o-p-coumaroyl) rutinoside.

DISCUSSION

Although some secondary metabolites, such as lipids (Lim
et al., 2017), flavonoids (Cushnie and Lamb, 2011), alkaloids
(Yang et al., 2016), polyphenols (Bazzaz et al., 2016), and
glycoside (Escobedo-Martínez et al., 2010), are not directly
involved in plant growth and development, they can nonetheless
act as a chemical defense. That is, they can be used for
defending against the damage caused by plant diseases in specific
environments and physiological conditions. Flavonoids, as one
of the substances with defense functions, are widely found in
plants. In maize, 2,4-dihydroxy-7-methoxy-2H-1,4- benzoxazin-
3(4H)-one (DIMBOA) can resist fungus (Frey et al., 1997).
The isoflavones also have antimicrobial functions (Undhad
et al., 2021). Research has shown that under the stimulation
of pathogenic bacterial infection, tea leaves can increase
polyphenols as antibacterial factors, and the cortex of roots and
stems can also produce antitoxin (Turkmen et al., 2007).

In the present study, the tea plant resource “R1” had obvious
resistance to tea gray blight disease, but “S1” was susceptible.
Flavonoids, phenolic acids, amino acids, and derivatives were the
major differential accumulated categories of SCMs. The major
SCMs include kaempferol, luteolin, vitexin, quercetin, and their
glycosides. “R1” sample specifically enriched petunidin, luteolin,
vitexin, isovitexin, quercetin, and isorhamnetin’s glycoside.
In Arabidopsis, quercetin can protect Arabidopsis against
Pseudomonas syringae pv. Tomato DC3000 infection through
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both quercetin-mediated H2O2 generation and the involvement
of SA and NPR1 (Jia et al., 2010). Isovitexin is a biologically
active flavone C-glycosylated derivative of apigenin that possesses
anti-inflammatory and antioxidant properties in vegetables and
fruits (Zielińska-Pisklak et al., 2015; Lv et al., 2016). Isorhamnetin
augments the cellular antioxidant defense capacity by activating
the Nrf2/HO-1 pathway (Hyun, 2016). Sinapate helps to improve
pathogen resistance for Botrytis cinerea by UV-B radiation in
Arabidopsis (Demkura and Ballaré, 2012). Vitexin has been
reported to have inhibitory effects on Gram-negative bacteria,
especially Pseudomonas aeruginosa and Bordetella petrii (Das
et al., 2016; Rath et al., 2016; Corrêa et al., 2021), and vitexin’s
glucoside has a significant antioxidant effect (Fang et al., 2016;
Wu et al., 2021). Thus, the enriched metabolites in the “R1”
sample may contribute to the disease resistance to tea gray
blight disease. These metabolites therefore provided the research
directions for analyzing the function of metabolites through the
interaction between metabolites and pathogens.

The dominant species and compositions of antimicrobial
bacteria are closely related to plants’ resistance to disease
(Mendes et al., 2011; Lareen et al., 2016). Bacteria can have
wide-ranging effects on the host plants. For example, they
can affect many plant processes such as disease resistance,
drought tolerance, life cycle phenology, and overall vigor
(Panke-Buisse et al., 2017). The research on the microorganisms
and Cassava phenotype shows that Lactococcus sp., Pantoea
dispersa, and Saccharomyces cerevisiae are closely associated with
cassava disease resistance (Bonito et al., 2014). An antagonistic
function has been reported for the pathogen Pantoea dispersa,
an indigenous endophytic bacterium of rice seeds that can
produce auxins to inhibit the pathogen Fusarium oxysporum,
allowing it to play an important role in the defense against
pathogens (Verma et al., 2017). Pantoea dispersa has fungicidal
properties and was found to significantly inhibit the growth
of Ceratocytis fimbriata on the leaves and tuberous roots of
a susceptible sweet potato cultivar (Jiang et al., 2019). Gu
et al. (2020) found that the modulation of siderophore plays
an important role in iron competition and biocontrol of the
soil-borne pathogen Ralstonia solanacearum. In our study,
Proteobacteria, Actinobacteria, Ascomycota, and Basidiomycota
dominated the microbiota composition at the phylum level.
At the genus level, Pseudomonas and Cutaneotrichosporon
were the predominant genera in the two sample groups.
Cellvibirio, Toxicocladosporium or Candidatus_competibacter,
and Filobasidium were the predominant genera only in “S1”
or “R1.” Cellvibrio has been isolated from soil environments;
nevertheless, strains belonging to the genus have also been
found in aquatic environments (Rhee et al., 2010). The Cellvibrio
genus, especially C. japonicus, has been recognized and studied
for its industrial enzymic potential to degrade a variety of
polysaccharides, including those present in the plant cell wall
(DeBoy et al., 2008). This means that the members of Cellvibrio
might hurt plant cells. The yeast Filobasidium has been described
as an important member of the wine consortia for its role
in creating specific flavor profiles or reducing final alcohol
content (Cureau et al., 2021). At the species level, the relative
abundance of unclassified_norank_norank_Chloroplast and

unclassified_Penicillium have shown significant differences
between the two groups of samples. Furthermore, we found
that the proportional abundance of Penicillium in the “R1”
group was particularly significantly increased. A high level of
Penicillium was identified as a potential biomarker of the “R1”
group via LEfSe analysis. According to the correlation research
between metabolites and microorganisms, the predominant
genera, such as norank_norank_Chloroplast, Pseudomonas,
Penicillium, and Toxicocladosporium are significantly correlated
with the top SCMs enriched in “S1” or “R1,” including L-
arginine, castanoside B, cyanidin-3-o-(6”-o-p-coumaroyl)
rutinoside-5-o-glucoside, dicaffeoylquinic acid-o-glucoside,
isorhamnetin-3-o-rutinoside-7-o-rhamnoside, luteolin-7-o-
sophoroside-5-o-arabinoside, p-coumaroylmalic acid, and
quercetin-3-o-(2”-o-rhamnosyl) rutinoside-7-o-glucoside.

Overall, the present study demonstrated an obvious difference
between “S1” and “R1” tea plant resources in their metabolomes.
The phenolic acids and flavonoids were the categories in
“R1” samples with major increases and they included 4-
O-glucosyl-sinapate and petunidin-3-o-(6”-o-p-coumaroyl)
rutinoside. The major bacterial genus was Pseudomonas
in “S1” and “R1.” Cellvibirio was predominant genus in
“S1” and Candidatus_competibacter was predominant genus
in “R1.” The microbiota of “S1” is more abundant than
that in “R1.” Unclassified_norank_norank_Chloroplast and
unclassified_Penicillium showed significant differences between
“S1” and “R1.” Penicillium was identified as a potential
biomarker. They were both significantly correlated with some
metabolites. Phenolic acids and flavonoids, as well as Penicillium
can be functional metabolites and microorganisms that may
contribute to tea plants’ resistance to tea gray blight disease.
These will be used for further research on the mechanism of
disease resistance.
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Comparative genomic analysis 
reveals cellulase plays an 
important role in the 
pathogenicity of Setosphaeria 
turcica f. sp. zeae
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Yuanhu Xuan 1, Bo Liu 2* and Zenggui Gao 1*
1 Institute of Plant Immunology, College of Plant Protection, Shenyang Agricultural University, 
Shenyang, China, 2 College of Life Sciences, Yan’an University, Yan’an, China

Setosphaeria turcica f. sp. zeae and S. turcica f. sp. sorghi, the two formae 

speciales of S. turcica, cause northern leaf blight disease of corn and 

sorghum, respectively, and often cause serious economic losses. They have 

obvious physiological differentiation and show complete host specificity. 

Host specificity is often closely related to pathogen virulence factors, 

including secreted protein effectors and secondary metabolites. Genomic 

sequencing can provide more information for understanding the virulence 

mechanisms of pathogens. However, the complete genomic sequence of S. 

turcica f. sp. sorghi has not yet been reported, and no comparative genomic 

information is available for the two formae speciales. In this study, S. turcica 

f. sp. zeae was predicted to have fewer secreted proteins, pathogen-host 

interaction (PHI) genes and carbohydrate-active enzymes (CAZys) than S. 

turcica f. sp. sorghi. Fifteen and 20 polyketide synthase (PKS) genes were 

identified in S. turcica f. sp. zeae and S. turcica f. sp. sorghi, respectively, 

which maintained high homology. There were eight functionally annotated 

effector protein-encoding genes specifically in S. turcica f. sp. zeae, among 

which the encoding gene StCEL2 of endo-1, 4-β-D-glucanase, an important 

component of cellulase, was significantly up-regulated during the interaction 

process. Finally, gluconolactone inhibited cellulase activity and decreased 

infection rate and pathogenicity, which indicates that cellulase is essential 

for maintaining virulence. These findings demonstrate that cellulase plays an 

important role in the pathogenicity of S. turcica f. sp. zeae. Our results also 

provide a theoretical basis for future research on the molecular mechanisms 

underlying the pathogenicity of the two formae speciales and for identifying 

any associated genes.
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Introduction

Northern leaf blight caused by Setosphaeria turcica is a major 
disease of gramineous crops and leads to serious yield losses of 
cereal crops in the world, especially during the growing season 
when the temperature is moderate (15°C–25°C) and the dew is 
heavy (Ramathani et al., 2011; Galiano-carneiro and Miedaner, 
2017). Under natural conditions, S. turcica infects a broad range 
of plants, including corn, sorghum, Sudan grasses, and other 
sorghum species (Robert, 1960; Bhowmik and Prasada, 1970; 
Martin et  al., 2011). Mitra (1923) first reported a clear 
physiological differentiation of S. turcica, with different formae 
speciales. S. turcica is classified as S. turcica f. sp. zeae, S. turcica f. 
sp. Sorghi, and S. turcica f. sp. complexa, based on the pathogen 
infecting a specific host or group of hosts and producing the 
typical spots. S. turcica f. sp. zeae can only infect corn, S. turcica f. 
sp. sorghi is virulent to sorghum and Sudan grasses, whereas 
S. turcica f. sp. complexa infects more plants (Bergquist and 
Masias, 1974).

Previous studies on S. turcica mainly focused on strains 
isolated from corn (S. turcica f. sp. zeae). With the completion of 
the genome sequencing of S. turcica f. sp. zeae in recent years 
(Ohm et  al., 2012), considerable genetic information became 
available to understand its infection mechanism and its interaction 
with corn. At present, molecular-level studies on the pathogenicity 
of S. turcica f. sp. zeae mainly focus on signal transduction 
pathways and extracellular secretions of pathogens, such as cell 
wall degrading enzymes, host-specific toxin, and melanin (Cuq 
et al., 1993; Degefu et al., 2004; Ni, 2004). Previous studies have 
shown that HT (from Helminthosporium turcicum) toxin can 
induce typical symptoms of northern leaf blight in corn. Further, 
1, 8-dihydroxynaphthalene (DHN) melanin has been shown to 
be closely related to pathogenicity (Butler et al., 2001; Nosanchuk 
and Casadevall, 2003). The secretion of melanin promotes the 
production of adhesive cells and increases the turgor pressure, 
which enhances the penetration of S. turcica into the corn tissue 
(Lagunas-Muñoz et al., 2006). Many genes (StLAC2, StPKS and 
St4HNR) have been proved to play important roles in the melanin 
synthesis pathway (Wen et al., 2008; Zhang et al., 2011; Ma et al., 
2017). Some oxidoreductases are involved in various physiological 
metabolic activities of pathogens. Deletion of peroxisomes might 
interfere with the development of pathogenic fungi, reduce 
virulence, and decrease the ability to resist plant defense enzymes 
(Segmüller et al., 2008). However, the virulence factors of S. turcica 
f. sp. sorghi have not yet been investigated at the molecular level.

The two formae speciales of S. turcica could not 
be distinguished by morphology and internal transcribed spacer 
(ITS), but inoculation results showed that S. turcica f. sp. zeae and 
S. turcica f. sp. sorghi have high specificity on host and have no 
obvious cross-infection (Tang et  al., 2014). Meanwhile, 
microsatellites had also been used to distinguish S. turcica from 
corn and sorghum (Nieuwoudt et al., 2018). With the advent of 
new molecular research techniques, the study of pathogens has 
remarkably benefited from the information of the genome and the 

analysis of comparative genomics. A comparative genomic study 
was conducted on the two pathogens in corn, Ustilago mayais and 
Sporisorium reilianum; 43 variant regions were identified in the 
two species. These regions mainly encode secretory effectors and 
some virulence clusters (Schirawski et al., 2010). The specialized 
secondary metabolites and small secretory protein effectors of 
pathogens are closely related to host specificity (Buiate et  al., 
2017). Alternaria longipes and A. alternata can also cause tobacco 
brown spot disease, but comparative genomic analysis revealed 
that A. longipes has more plant-pathogen-associated genes, 
carbohydrate-active enzymes (CAZys), secreted protein genes and 
conditionally dispensable chromosomes (Hou et  al., 2016). 
Therefore, exploring the differences in pathogenicity mechanism 
between the formae speciales of S. turcica and host interaction 
requires the genomic information of the two formae speciales.

It was reported that pathogens can secrete a large amount of 
cellulase during the pathogenesis process, which softens the host 
cell wall leading to faster infection rates and longer disease 
duration (Wanjiru et al., 2002). In cellulase-inhibited mutants of 
Erwinia carotovora subsp. carotovora, this process of cell wall 
softening was significantly reduced in potato tissues (Walker et al., 
1994). Owing to the secretion of other cell wall degrading 
enzymes, the pathogenicity of Cochliobolus carbonum was not 
affected by the destruction of the CEL1 gene (Sposato et al., 1995). 
Furthermore, a highly aggressive strain of Phaeosphaeria nodorum 
secreted more cellulase than a weakly aggressive strain (Lalaoui 
et  al., 2008). The cellulase activity of S. turcica f. sp. zeae was 
slightly higher than that of S. turcica f. sp. sorghi, and the cellulase 
genes of S. turcica f. sp. zeae and S. turcica f. sp. sorghi were 
significantly upregulated at 72 and 36 h after inoculation, 
respectively (Tang et al., 2015). D-glucono-l, 5-lactone, a mixed 
inhibitor of cellulase activity in Trichoderma reesei, mainly affects 
the activity of glucosidase, but also has a inhibitory effect on the 
activity of exoglucanase, endoglucanase, and related enzymes, and 
it can induce cellulase gene expression (Reese et al., 1971; Kou 
et al., 2014).

Obvious host specializations are noted in S. turcica f. sp. zeae 
and S. turcica f. sp. sorghi. The whole genome sequencing and 
comparative genomic analysis of the two formae speciales of 
S. turcica can help in the identification of the relevant pathogenic 
genes that help in host-specific interactions; the whole genome 
sequence of S. turcica f. sp. zeae has been published in 2012 (Ohm 
et al., 2012). In the present study, a strain named GD003 was 
isolated from sorghum leaves infected with northern leaf blight by 
using the monospore separation method, and then identified 
using Koch’s postulates and ITS sequencing of S. turcica f. sp. 
sorghi. Whole-genome sequencing and gene function annotations 
revealed important genomic information about S. turcica. 
Comparative genomic analysis revealed differences in the 
genomes between the two formae speciales, including secreted 
proteins, pathogen-host interaction (PHI) genes, CAZys and 
secondary metabolic pathways. Furthermore, we  used 
gluconolactone to alter the pathogenicity of S. turcica f. sp. zeae 
and speculated that the cellulase was one of the important reasons 

54

https://doi.org/10.3389/fmicb.2022.925355
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ma et al. 10.3389/fmicb.2022.925355

Frontiers in Microbiology 03 frontiersin.org

for its pathogenicity. The study findings might provide important 
theoretical information for the pathogenic differentiation 
mechanism of the formae speciales of S. turcica and provide an 
effective reference for the prevention of northern leaf blight and 
genetic breeding of resistant varieties.

Materials and methods

Fungal isolation and identification

Strain GD003 was isolated from sorghum leaves infected with 
northern leaf blight by using the single-spore isolation method 
(Gao et al., 2010). The spores were transferred to water agar (WA: 
17 g agar and 1 L ddH2O) by tapping the leaves, and then the single 
spore was directly picked up under low magnification and 
transferred to potato dextrose agar (PDA: 200 g potato, 20 g 
glucose, and 17 g agar, and 1 L ddH2O) by using a simple 
homemade needle. The strain GD003 was deposited in the 
Institute of Plant Immunology, Shenyang Agricultural University 
and used to study pathogenic mechanism of the pathogen for 
5 years. The strain was incubated under continuous darkness 
at 25°C.

ITS sequences and the inoculation and were used for the 
identification of strain GD003. Mycelia were collected from potato 
dextrose broth, the DNA was separated using the modified CTAB 
method, and the ITS sequences were amplified using PCR by 
using primers ITS1 and ITS4 (Gardes and Bruns, 1993; Okori 
et  al., 2004). The amplified product was sequenced, and 
phylogenetic relationships were analyzed using MEGA4.0 
(Tamura et al., 2007) as well as the neighbor-joining (NJ) model. 
Bootstrap replication was set to 1,000, and the bootstrap value was 
at the branch node. Sweet sorghum variety LR115 and corn variety 
Huobai susceptible to northern leaf blight were obtained from Dr. 
Jiang (Liaoning Academy of Agricultural Sciences, China). Three 
germinated seeds were sown in pots having 15 cm diameter and 
cultivated in a greenhouse with a temperature of 21/18°C day/
night and light intensities of 35–50 Klux. When the plants grew to 
the V6 stage, the strain incubated for 2 weeks was added to a small 
amount of sterile water and filtered through a double-layered 
gauze to form a suspension of 1 × 106 conidia per milliliters. 
Tween-20 was added to the prepared spore suspension to a final 
concentration of 0.1%, and the seedlings were inoculated the spore 
suspension by using a sprayer; after inoculation, the seedlings 
were transferred to a plastic shed for 48 h for moistening, and then 
transferred to a greenhouse. The leaves of plants were inspected 
for symptoms of infection at 14 days after inoculation.

Genome sequencing and assembly

The improved CTAB method was used to extract genomic 
DNA from GD003, a sorghum-specific strain of S. turcica. After 
DNA was qualified by electrophoresis, two DNA libraries were 

constructed, of which 350 bp small fragment library was 
sequenced at paired-end by HiSeq PE150 and 20 kb SMRT Bell 
library was sequenced at single-molecule by PacBio 
RSII. Sequencing was performed at the Beijing Novogene 
Bioinformatics Technology Co., Ltd. (Beijing, China). The low 
quality reads were filtered by the SMRT Link v5.0.1 (Li et al., 2010) 
and the filtered reads were assemblied to generate contigs. The 
relationship between the contigs were determined by 
SOAPdenovo2 (Luo et  al., 2012) to obtain the final assembly 
results that reflecting the basic conditions of the sample genome, 
including total data, GC content, read coverage depth, and mass 
value distribution.

Comparative genomic analysis

The genome sequences of S. turcica f. sp. zeae Et28A was 
deposited at joint genome institute (JGI) with project ID 401988. 
The open reading frames across the genome were predicted and 
filtered using Augustus software (Stanke et  al., 2006), and the 
number, total length, average length, and proportion of encoding 
genes were recorded. The gene function annotation was mainly 
based on the comparison of protein sequences, and the local 
comparison tool BlastP (Gao et al., 2011) was used for homology 
matching with the annotation results on GenBank, gene ontology 
(GO; Ashburner et al., 2000), kyoto encyclopedia of genes and 
genomes (KEGG; Kanehisa et al., 2004), cluster of orthologous 
groups (COG; Tatusov et  al., 2003), non-redundant protein 
sequence (NR; Li et al., 2002), transporter classification database 
(TCDB; Milton et al., 2009), Swiss-Prot (Bairoch and Apweiler, 
2000), PHI (Urban et al., 2015) and CAZy (Cantarel et al., 2009) 
databases to obtain the corresponding functional annotation 
information. SignalP (Petersen et al., 2011) was used to analyze 
the N-terminal signal peptide of encoded proteins, TMHMM 
(Krogh et  al., 2001) was used for transmembrane structure 
prediction, and TargetP (Emanuelsson et al., 2007) was used to 
predict the subcellular localization of encoded proteins. Proteins 
located extracellularly, with signal peptide and lacking 
transmembrane domains, were defined as secreted proteins. 
Further, effectors in secreted proteins were screened by EffectorP 
(Sperschneider et al., 2016).

The key genes for secondary metabolite syntheses were 
identified using antiSMASH v4.0.2 program (Medema et  al., 
2011), especially polyketide synthase (PKS) coding genes. The 
MEGA4.0 (Tamura et al., 2007) was used to compare the protein 
domains encoded by PKSs of two formae speciales and other plant 
pathogenic fungi, and to construct phylogenetic tree, including 
Bipolaris maydis T-toxin synthesis related to PKS1 (GenBank 
accession number: AAB08104), Fusarium graminearum 
zearalenone synthesis related to PKS4 (GenBank accession 
number: ABB90283), Aspergillus nidulans locastatin synthesis 
related to LovF (GenBank accession number: AAD34559), 
F. verticillioides fumonisin synthesis related to Fum1p (GenBank 
accession number: AAD43562), A. steynii ochratoxin synthesis 
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related to PKS (GenBank accession number: AHZ61902), and 
A. alternate ACT-toxin synthesis related to ACTTS3 (GenBank 
accession number: BAJ14522), as well as genes closely related to 
melanin synthesis such as B. oryzae PKS1 (GenBank accession 
number: BAD22832), S. turcicia PKS (GenBank accession 
number: AEE68981), Ascochyta rabiei PKS1 (GenBank accession 
number: ACS74449), Podospora anserine PKS1 (GenBank 
accession number: CDP25014), Colletotrichum lagenarium PKS1 
(GenBank accession number: BAA18956), A. fumigatus A1b1p 
(GenBank accession number: ACJ13039), Ceratocystis resinifera 
PKS1 (GenBank accession number: AAO60166).

Real-time PCR analysis of genes 
encoding the specific effectors of 
Setosphaeria turcica f. sp. zeae

The mycelium disk of strain Et28A with diameter of 1 cm was 
inoculated onto corn leaves in vitro, and 50–100 mg of the leaves 
under the disk were cut with RNA-free scissors at different 
infection periods (0, 24, 48, 72, and 96 h), wrapped in tin foil and 
immediately frozen in liquid nitrogen for 10 min, transferred to 
−80°C for storage. Total cellular RNA was isolated using an 
Ultrapure RNA Kit (CWBIO, Beijing, China), and then cDNA was 
synthesized using the PrimeScript™ RT reagent Kit with gDNA 
Eraser (Perfect Real Time; TaKaRa, Tokyo, Japan). The reaction 
mixture contained 10 μl of TB Green Premix Ex Taq II (Tli 
RhaseH Plus; TaKaRa, Tokyo, Japan), 1 μl of forward primer, 1 μl 
of reverse primer, 2 μl of cDNA, and 6 μl of ddH2O. The reactions 
were performed in the CFX-96 system (BioRad, Hercules, CA, 
United  States), and all samples were tested in triplicate and 
repeated twice. All reaction conditions were performed as follows: 
initial denaturation at 95°C for 30 s, followed by 40 cycles of 
denaturation at 95°C for 5 s and annealing at 60°C for 30 s. The 
cycle threshold (Ct) values were analyzed using CFX Manager and 
relative expression levels of functionally annotated effector 
protein-coding genes specific for S. turcica f. sp. zeae were 
calculated at each period according to the 2-△△Ct method.

Effect of gluconolactone on 
Setosphaeria turcica f. sp. zeae

The gluconolactone solution was sterilized and cooled, and 
then added to a PDA medium under sterile conditions to final 
concentrations of 0.2, 0.4, and 0.8% (w/v). Five millimeter agar 
disks containing mycelium of strain Et28A were transferred to the 
medium with an inoculation needle. Then the side of the hyphae 
was pressed down to the medium and one agar disk was placed in 
the center of each dish. Each treatment was repeated five times 
and cultured at 25°C for 5 days. The gluconolactone solution was 
replaced by sterile water for the control group. For each treatment 
group, the colony diameter was measured then the growth 
inhibition rate was calculated (Quiroga et al., 2001).

To analyze the effect of gluconolactone on cellulase activity, 
preparation of the crude enzyme solution was slightly modified 
based on the methods of Lee and Blackburn (1975). The agar 
disks containing mycelium of strain Et28A that were cultured 
on the PDA were added to Czaper liquid culture medium (2 g 
KNO3, 0.5 g KCl, 0.01 g FeSO4, 1 g K2HPO4, 0.5 g MgSO4, 10 g 
sodium carboxymethyl cellulose, and 1 L ddH2O) both with and 
without gluconolactone (0.2, 0.4, and 0.8%; w/v). Then, nine 
disks were inoculated in 150 ml medium and were shaken for 
1 h per day (120 rpm), incubated for 15 days at 25°C in the dark, 
and then filtered through sterile double gauze (22 mesh). The 
filtrate was centrifuged at 4°C and 10,000 g for 20 min and the 
crude enzyme solution was the supernatant. Cellulase activity 
was determined based on the method described by Eveleigh 
et al. (2009). Briefly, 1 ml of 1% sodium carboxymethyl cellulose 
in 0.1 M citrate buffer (pH 4.5) and 0.5 ml extracted crude 
enzyme solution were placed in a test tube and then incubated 
in a 50°C water bath for 30 min. After the reaction mixture was 
cooled, 3 ml of 3, 5-dinitrosalicylic acid reagent was added, and 
the solution was heated to 100°C for 5 min. The absorbance at 
540 nm of the reaction mixture after appropriate dilution was 
measured with a spectrophotometer. A cellulase activity unit 
(U) was defined as the amount of enzyme required to catalyze 
the reaction to produce 1 μmol of reducing sugar per min  
under specific conditions. All enzyme activity assays were 
repeated three times. The protein content was determined using 
the Coomassie brilliant blue G250 staining method 
(Bradford, 1976).

Analysis of expression levels was used to measure the effect of 
gluconolactone on endo-1, 4-β-D-glucanohydrolase encoding 
gene A2464. The agar disks containing the mycelium of S. turcica 
f. sp. zeae Et28A that were cultured on the PDA were inoculated 
in vitro on corn leaves at the 6–8 leaf stage. One hundred 
microliter gluconolactone solutions (0.2 and 0.4%, w/v) were 
added to the edge of the disks each day, and the control group was 
treated with sterile water. The expression levels of A2464 were 
determined at different infection periods (0, 6, 12, 24, 36, 48, 72, 
and 96 h). All samples were tested in triplicate and repeated twice. 
Finally, the infection rate and pathogenicity were determined and 
the inoculation method was described above. Pathogenicity was 
determined after culturing for 72 h in the dark at 25°C for 
moistening. Then it was stained with trypan blue, dehydrated with 
saturated chloral hydrate, and rinsed with sterile water before 
being placed under a microscope to observe the infection 
efficiency of S. turcica f. sp. zeae Et28A. Each treatment was 
repeated three times.

Statistical analysis

All statistical tests were calculated in SPSS Statistics 19 
software. Data were represented as means ± standard error of at 
least three repeated experiments. p < 0.05 was defined as a 
statistically significant difference.
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Results

Identification of Setosphaeria turcica f. 
sp. sorghi GD003

Phylogenetic tree of the ITS sequences showed that GD003, 
S. turcica f. sp. zeae strain QDY1307 (GenBank accession number: 
KJ922736.1) and S. turcica f. sp. sorghi strain LLG1302 (GenBank 
accession number: KJ922728.1) were in the same branch (only 
four differential bases; Figure  1A). The ITS sequences do not 
distinguish the two formae speciales of S. turcica. Within 14 days 
after inoculation, this GD003 strain formed a typical long spindle 
lesion on sorghum leaves, while no visible reaction was evident on 
corn leaves (Figure 1B), so the pathogenicity tests identified strain 
GD003 as S. turcica f. sp. sorghi.

Genomic sequencing and assembly of 
Setosphaeria turcica f. sp. sorghi GD003

After electrophoresis, 159.60 ng/ml DNA yielded OD260/280 
of 1.87 and OD260/230 of 2.24; the fragment size was mainly 
distributed above 30 K, and the genome was slightly broken, 
which met the requirements for single-sequencing database 
creation. A total of 7.82 Gb of reads were obtained by sequencing 

the genome of S. turcica f. sp. sorghi GD003 (depth: 177×), 
including 938,546 reads. The length of the sequence N50 was 
11,965 bp, and the average sequencing quality value was 0.86. The 
genome assembly revealed 22 contigs (Supplementary Fasta 1) 
with a total length of 44,063,561 bp and a GC content of 50.7%. 
The scatter diagram of S. turcica f. sp. sorghi GD003 genomic 
GC-depth was mostly concentrated in the range of 40%–60% 
(Supplementary Figure 1).

Genome comparison of two formae 
speciales of Setosphaeria turcica

A total of 10,428 protein-coding genes (Supplementary Fasta 2) 
were predicted in the genome of S. turcica f. sp. sorghi GD003, 
accounting for 35.47% of the total length of the genome sequence, 
and the average length of the coding genes was 1,499 bp. In 
contrast, only 8,276 protein-coding genes (Supplementary Fasta 3) 
were found in the genome of S. turcica f. sp. zeae Et28A, 
accounting for 26.86% of the total length of the genomic sequence, 
and the average length of the coding genes was 1,396 bp (Table 1). 
From the gene distribution map, the most abundant S. turcica f. 
sp. sorghi GD003 and S. turcica f. sp. zeae Et28A genes were found 
to be concentrated in the region of 2,500 bp or more, including 
1,431 and 882 genes, respectively.

A

B
a b

FIGURE 1

Identification of GD003 based on ITS sequences and pathogenicity. (A) Phylogenetic analysis of ITS sequences of GD003. The numbers in 
parentheses indicate the accession numbers of ITS sequences of the species in GenBank. (B) Pathogenicity of GD003 strain on sorghum and corn. 
(a) Typical lesions of GD003 on sorghum. (b) No visible reaction of GD003 on corn.
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Different numbers of genes in the two formae speciales 
genomes were annotated in each functional database (Table 2). By 
comparing S. turcica f. sp. sorghi GD003 and S. turcica f. sp. zeae 
Et28A, 704 and 521 secreted proteins were predicted, respectively 
(Supplementary Figure  2), containing 161 and 137 effectors, 
which were required for the pathogens to act directly or indirectly 
on the hosts. The findings suggested that the S. turcica f. sp. sorghi 
GD003 and S. turcica f. sp. zeae Et28A could directly secrete 42 
and 33 small cysteine-rich proteins (SCRPs; the number of amino 
acids is less than or equal to 200, and cysteine content is 4% or 
more), respectively, of which 30 SCRPs existed in both 
formae speciales.

In the present study, 796 and 673 PHI genes were detected in 
S. turcica f. sp. sorghi GD003 and S. turcica f. sp. zeae Et28A, 
covering 609 and 539 PHI accessions, respectively, but they had 
seven types of phenotypic mutations (Supplementary Table 1). 
The PHI information of 655 genes was identical in the two formae 
speciales. Among 141 PHI genes unique to S. turcica f. sp. sorghi 
GD003, excluding 81 genes that did not affect the pathogenicity, 
phenotypic mutants of 45 genes (accession number: PHI139, 
PHI323, PHI339, PHI3837, PHI3865, PHI4992, etc.) had reduced 
virulence. Further searches revealed that the secreted proteins of 
S. turcica f. sp. sorghi GD003 and S. turcica f. sp. zeae Et28A 
contained 62 and 54 PHI related genes, respectively, of which 51 
PHI genes were homologous and 11 PHI genes were specific in 
S. turcica f. sp. sorghi GD003.

Blastp alignment was performed using the genomically 
encoded proteins and CAZy database, and 480 and 442 CAZys 
were identified from S. turcica f. sp. sorghi GD003 and S. turcica f. 
sp. zeae Et28A, respectively; the related CAZys were mainly 
involved in carbohydrate degradation, modification, and 
biosynthesis (Figure 2). The most common CAZys were glycoside 
hydrolases (GHs) containing 224 and 216 genes, respectively, and 
the remaining were auxiliary activities (AAs), glycosyltransferases 
(GTs), carbohydrate binding modules (CBMs), carbohydrate 
esterases (CEs) and polysaccharide lyases (PLs). Further analysis 
found that 216 (30.68%) and 178 (34.17%) CAZy genes were 
identified in the secreted proteins of S. turcica f. sp. sorghi GD003 
and S. turcica f. sp. zeae Et28A, respectively, and most of these 

genes were associated with GHs in the subfamily classification 
(Supplementary Table 2).

Further, 20 and 15 PKSs were predicted for secondary 
metabolic gene clusters in S. turcica f. sp. sorghi GD003  
and S. turcica f. sp. zeae Et28A genomes, respectively 
(Supplementary Table  3). The PKS genes of the two formae 
speciales were mainly divided into two types (Figure 3A). The 
core domain of type I  consisted of ketoacyl synthase (KS), 
acyltransferase (AT) and dehydratase (DH), including 
16 S. turcica f. sp. sorghi GD003 PKSs, 12 S. turcica f. sp. zeae 
Et28A PKSs, and 6 other PKSs related to the synthesis of 
phytopathogenic mycotoxins. The other type of core domain was 
KS + AT, including 4 S. turcica f. sp. sorghi GD003 PKSs, 3 
S. turcica f. sp. zeae Et28A PKSs, and 7 known melanin synthesis-
related PKSs from phytopathogenic fungi. Further analysis of 
PKSs associated with melanin synthesis revealed that the two 
formae speciales shared the same core domain, including one KS, 
one AT, two acyl carrier proteins (ACPs) and one thioesterase 
(TE), and both coding sequences were 99.48% similar to the 
known S. turcica PKS (GenBank accession number: AEE68981; 
Figure 3B).

Analysis of the expression levels of 
Setosphaeria turcica f. sp. zeae specific 
effector coding genes

In our study, 21 effector protein-coding genes were found 
specifically in S. turcica f. sp. zeae Et28A, and 13 of them were 
defined as encoding hypothetical proteins. 18S rRNA was used as 
a reference gene, primer sequences of eight functionally 
annotated effector protein-encoding genes specific to S. turcica f. 
sp. zeae were designed (Table 3). Compared with the 0 h control, 
only A1078 was downregulated after inoculation, while the 
expression levels of A0353, A2199, A2464, A3017, A6166, and 
A8125 were significantly upregulated. The expression level of 

TABLE 1 Setosphaeria turcica f. sp. sorghi GD003 and S. turcica f. sp. 
zeae Et28A genome features.

Features S. turcica f. sp. 
sorghi GD003

S. turcica f. sp. 
zeae Et28A

Genome size (bp) 44,063,561 43,014,577

Gene number 10,428 8,276

Gene length (bp) 15,630,591 11,553,107

Gene GC content (%) 55.94 56.52

% of genome (genes) 35.47 26.86

Gene average length (bp) 1,499 1,396

Gene internal length (bp) 28,432,970 31,461,470

Gene internal GC content (%) 47.83 49.57

% of genome (internal) 64.53 73.14

TABLE 2 Number of genes annotated by different functional 
databases in Setosphaeria turcica f. sp. sorghi GD003 and S. turcica f. 
sp. zeae Et28A genomes.

Database 
type

S. turcica f. sp. sorghi 
GD003

S. turcica f. sp. zeae 
Et28A

Number Percent 
(%)

Number Percent 
(%)

GO 7,000 67.13 5,708 68.97

KEGG 9,570 91.77 7,762 93.79

COG 2048 19.64 2043 24.69

NR 10,161 97.44 8,013 96.82

TCDB 428 4.10 411 4.97

SwissProf 3,039 29.14 2,952 35.67

PHI 796 7.63 673 8.13

CAZy 480 4.60 442 5.34

Secretory protein 704 6.75 521 6.30
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A2464 after 72 h of inoculation increased by more than 150-fold 
compared with that before (Figure 4).

Inhibition effect of gluconolactone on 
cellulase activity and pathogenicity of 
Setosphaeria turcica f. sp. zeae

At a concentration of 0.4% (w/v), hyphal growth was 
significantly inhibited. When the concentration increased to 0.8% 
(w/v), the inhibition rate reached 46.12%, which indicated that 
gluconolactone inhibited the hyphal growth of S. turcica f. sp. zeae 
Et28A (Figure 5A). The cellulase activity of S. turcica f. sp. zeae 
Et28A was significantly inhibited by different concentrations of 
gluconolactone (p < 0.05), and the effect increased with increasing 
concentration (Figure  5B). Despite different gluconolactone 
concentrations (0.2 and 0.4%, w/v), StCEL2 gene expression 
showed a consistent trend, all peaked at 72 h. StCEL2 gene 
expression level increased with increasing gluconolactone 
concentration during the same infection period (Figure  5C). 
Differently-treated pathogens could invade the host and caused 
corn leaf lesions after 72 h of inoculation. However, the number of 
invasion sites observed in the control group was significantly 
higher than that in the gluconolactone treatment group. 
Furthermore, the number of invasion sites decreased with 
increasing concentration (Figure  5D), indicating that 
gluconolactone affected the infection and pathogenicity of 
S. turcica f. sp. zeae Et28A.

Discussion

Previous studies have shown that the variability of ITS 
sequences among different formae speciales of the same fungus is 
limited. For example, the ITS and EF-alpha elongation factor 
analyses cannot identify the formae speciales of F. oxysporum 
(Zhang et  al., 2013). Since the ITS information of GD003, 

S. turcica f. sp. zeae strain QDY1307 (GenBank accession number: 
KJ922736.1), and S. turcica f. sp. sorghi strain LLG1302 (GenBank 
accession number: KJ922728.1) reveal a difference of only four 
bases, it proves once again that ITS could not identify the formae 
speciales of S. turcica. Because of the obvious host-specificity 
between the formae speciales (Mitra, 1923), the inoculation of 
sorghum leaves showed a clear feature of northern leaf blight. 
Finally, GD003 was identified as S. turcica f. sp. sorghi and named 
S. turcica f. sp. sorghi GD003.

In this study, we comprehensively reported the first genome 
information of S. turcica f. sp. sorghi and compared it with the 
published genomic data of S. turcica f. sp. zeae Et28A (JGI ID: 
401988), which can provide a reference for revealing the 
pathogenic mechanism of S. turcica. Different strains of the same 
species also have large differences in genomic structure and 
encoded proteins (Condon et al., 2013). Several random amplified 
polymorphic DNA haplotypes uniquely present in sorghum 
strains of S. turcica were not observed in strains collected from 
corn (Borchardt et al., 1998; Ferguson and Carson, 2004). Genetic 
differences were confirmed in two formae speciales of S. turcica by 
universally primed polymerase chain reaction (Tang et al., 2014). 
The genome size of S. turcica f. sp. zeae GD003 (44.06 Mb) is 
greater than that of S. turcica f. sp. sorghi Et28A (43.01 Mb), which 
may be caused by the pressure of host selection (Thrall et  al., 
2002). Changes of GC content were speculated to prompt 
Curvularia lunata to mutate more frequently in virulence 
differentiation (Gao et al., 2014). The GC content of the same 
species shows a concentrated distribution in the sequencing depth 
profile (Forsdyke, 1996). Concentration of most of the points in 
the distribution map in a narrow range (40%–60%) indicates no 
pollution in the assembly results.

Secreted protein is a generic term for a class of proteins that are 
produced by cells at specific times and conditions and transported 
extracellularly, which is often directly related to PHI, is a candidate 
effector, and is more likely to exhibit population differences during 
natural selection (Klein et al., 1996). Therefore, studies on secreted 
proteins might help understand host specificity issues in PHIs. The 

A B

FIGURE 2

Classification and comparison of the two formae speciales by using whole genome CAZy database. (A) Setosphaeria turcica f. sp. sorghi GD003. 
(B) S. turcica f. sp. zeae Et28A. GH, glycoside hydrolase; AA, auxiliary activity; GT, glycosyltransferase; CBM, carbohydrate-binding module; CE, 
carbohydrate esterase, and PL, polysaccharide lyase.
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secreted proteins related to pathogenicity are mainly avirulence 
genes of pathogens, products of pathogenic genes, and related 
regulatory proteins (Rep, 2005), such as cell wall degrading enzymes 

can reduce or even overcome the host’s barrier to pathogen infection 
(Brito et  al., 2006), elicitor substances can induce pathogenic 
responses in host plants (Kamoun et al., 1998), and some of the 

A

B

a

b

a b c

FIGURE 3

Comparative analysis of polyketide synthase (PKS) key genes of two formae speciales of Setosphaeria turcica. (A) Phylogeny and domain 
comparison of PKSs from Setosphaeria turcica f. sp. sorghi GD003 and S. turcica f. sp. zeae Et28A with that from other known plant pathogenic 
fungi. (a) Phylogenetic analysis of proteins encoded by PKS genes. (b) PKS-related toxin and melanin from other known phytopathogenic fungi. (c) 
PKS-associated protein domains. KS, ketoacyl synthase; AT, acyltransferase; DH, dehydratase; ER, enoylreductase; KR, ketoacyl reductase; ACP, 
acyl carrier protein; TE, thioesterase; and TD, tudor domain. Words marked in green and red indicate gene names for S. turcica f. sp. zeae Et28A 
and S. turcica f. sp. sorghi GD003, respectively. The red and blue boxes indicate common domains. (B) Comparison of gene clusters and core 
gene-coding sequences of melanin synthesis in S. turcica f. sp. sorghi GD003 and S. turcica f. sp. zeae Et28A genomes. (a) Melanin synthesis gene 
clusters of the two formae speciales. (b) Differences in protein sequence of the melanin synthesis core gene from known S. turcica.
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secreted proteins can also degrade the antifungal toxin produced by 
host plants to facilitate the progression of infection (Sperschneider 
et al., 2016). In this study, more secreted proteins were predicted in 
S. turcica f. sp. sorghi GD003. Many phytopathogenic fungi can also 
directly secrete SCRPs, which have a close relationship with the 
mechanism of pathogenesis (Rep et al., 2004). These small molecular 
proteins can act as virulence effector proteins and have carbohydrate-
binding activity; they can directly play a role by interfering with host 
cell signal transduction or inhibiting host PAMP-triggered immunity 
responses (Marcet-Houben et al., 2012). Twelve SCRPs unique to 
S. turcica f. sp. sorghi GD003 were all uncharacterized proteins, and 
further studies are warranted to determine the function of SCRPs 
specific to the two formae speciales in PHI.

The genes involved in the interaction between pathogens and 
hosts play a crucial role in pathogenesis; their products are directly 
involved in the adaptation and response of pathogens to the host-
infecting environment, and the secreted elicitors can directly induce 
the host plants to express the symptom (Barrett et al., 2009). The PHI 
database integrates pathogen-related genes to different hosts such as 
animals, plants, and microorganisms and is widely used to investigate 
plant pathogen genomes and genes implicated in virulence 
(Winnenburg et al., 2006; Urban et al., 2015). In this study, 45 genes 
with phenotypic mutations with reduced pathogenicity were 
specifically present in S. turcica f. sp. sorghi GD003, such as PHI139 
was required for Cryptococcus neoformans to maintain virulence 
(Chang and Kwon-chung, 1999), the loss of PHI339 significantly 
reduced the pathogenicity of C. lindemuthianum (Siriputthaiwan 
et al., 2005), and PHI4992 was required for Candida albicans biofilm 
formation in vitro and in vivo (Desai et al., 2015). Differences in these 
PHI-related genes might lead to differences in pathogenicity between 
the two formae speciales. Significantly, there were 11 PHI genes 
specific for the secreted protein encoding genes of S. turcica f. sp. 
sorghi GD003, the knockout of PHI323 significantly reduced the 

virulence of Verticillium fungicola (Amey et al., 2003), and PHI3865 
was required for Penicillium expansum to cause blue mold rot (Barad 
et al., 2012), while the related genes PHI569, PHI2849, and PHI6126 
reported in Fusarium did not affect their pathogenicity.

The plant pathogenic fungi CAZys play a crucial role in 
degrading plant cell walls, breaking through host passive defense 
systems, and establishing PHI relationships (Cantarel et al., 2009). 
The enzymes encoded by the GH, CE, and PL family genes play a 
role in depolymerizing cell walls (Walton, 1994), and they had only 
slight differences between the two formae speciales. Considering the 
errors in gene sequencing and energy prediction, the CAZy species 
and quantity of the two formae speciales could basically be thought 
to be consistent at the genome level. Further, 32 and 26 CBM family 
genes were found in the S. turcica f. sp. sorghi GD003 and S. turcica 
f. sp. zeae Et28A genomes, respectively; the modules of approximately 
40 residues in the family genes were unique to the fungi and played 
a key role in cellulose degradation in plant cell walls (Quentin et al., 
2002). Comparison of CAZy annotation results in secreted proteins 
of the two formae speciales revealed that the content of GHs in 
S. turcica f. sp. sorghi GD003 was significantly higher than that in 
S. turcica f. sp. zeae Et28A, which might suggest that the former has 
stronger pathogenic ability than the latter.

Among the secondary metabolites of plant pathogens, 
melanin and toxin are the two key pathogenic factors in S. turcica. 
The synthesis of these two virulence substances is mainly mediated 
by PKSs. PKS1 had been successfully cloned in B. oryzae and 
C. resinifera and was found to affect the synthesis of melanin and 
reduce pathogenicity (Moriwaki et al., 2004; Tanguay et al., 2006). 
StPKS of S. turcica f. sp. zeae was shown to play a role in the DHN 
melanin synthesis pathway, and its decreased expression reduced 
melanin production (Zhang et al., 2011). Moreover, S. turcica f. sp. 
zeae Et28A had an additional betaenone biosynthetic gene cluster 
unlike in S. turcica f. sp. sorghi GD003; this cluster acted as a 

TABLE 3 Primer sequences and amplification lengths of functionally annotated effector protein-coding genes in Setosphaeria turcica f. sp. zeae.

Gene ID Accession 
number Functional description Primer Seq (5’to3’) Amplification 

length (bp)

A0353 XP_008021443.1 Carbohydrate-binding module family 18 protein CBM18-F CCAAGAACGACATCCAGGACCAG 138

CBM18-R GACCGCAGCTCTCGCCATTC

A1078 XP_008022422.1 Glycoside hydrolase family 20 protein GH20-F CGCACTGGCAACGGTCCTTAC 178

GH20-R GCGGTTGAAGGCGTTGGAGAC

A2199 XP_008024103.1 Carbohydrate esterase family 1 protein CE1-F CAGGCGACAAGGCAGAAGTGG 153

CE1-R CTCACGGTTGCCTGGCTGTATC

A2464 XP_008024638.1 Glycoside hydrolase family 7 protein GH7-F GGTGGTCGCTCCAAGCTCAAC 144

GH7-R AATCTGAGTCGCCTGGCTGTTG

A3017 EKG13298.1 Argonaute/Dicer protein PAZ PAZ-F GCAACGCCTACGACTTCTTCCTC 121

PAZ-R GTCATGGCCTGCATCTGGTCTG

A3531 XP_008025955.1 Glycoside hydrolase family 62 protein GH62-F TACCTGCGAACCTCCGTCCATC 111

GH62-R GGTTGCGGCTGTCCTTCTTGG

A6616 XP_008029324.1 Glycoside hydrolase family 16 protein GH16-F AAGTCACGGCAGGAAGCATCAAC 173

GH16-R GGATTGGAGAATGGCAGACGACAC

A8125 XP_008031550.1 Glycoside hydrolase family 10 protein GH10-F GCACTGACAATCCGCAATGACAAC 121

GH10-R CTTGACTTGGTTCCGTGGCATCC
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phytotoxin that inhibited multiple protein kinases (Patrick and 
Heimbrook, 1996) and caused significant growth inhibition of 
Beta vulgaris (Haraguchi et al., 1983). This study was the first to 
identify the core domain of the PKS genes related to melanin and 
toxin biosynthesis of the two formae speciales of S. turcica, and it 
was found that they had high homology with PKS genes of other 
pathogenic fungi (common domain of toxin-synthesized PKS 
genes: KS + AT + DH; common domain of melanin-synthesized 
PKS genes: KS + AT). Differences in key genes involved in 
secondary metabolite synthesis have less effect on pathogenic 
differentiation of the two formae speciales of S. turcica.

The determination of the host range in plant pathogens is 
often closely related to the fungal effectors (Baroncelli et  al., 
2016). A total of 346 candidate effectors in S. turcica were 
identified by time-course RNAseq, and SIX13-like proteins of 
S. turcica isolated from corn and sorghum were demonstrated to 
have host-specific polymorphisms (Human et al., 2020). In this 
study, we first excluded the influence of shared effector protein 
coding genes of pathogens on host specificity, and only analyzed 
the expression of specific effector protein-coding genes in 
S. turcica f. sp. zeae during the interaction with corn. In the 
future, further verification of the functions of differential genes is 
required. During the interaction between plants and pathogens, 
the activity of hydrolase is conducive to the invasion of the 
pathogen and the expansion of the disease course. The hydrolytic 
enzymes related to pathogenicity mainly include cellulase, 
hemicellulase, pectinase, xylanase, etc. (van den Brink and de 
Vries, 2011). The significant up-regulation of 

α-L-arabinofuranosidase encoding gene-A3531 (targeting xylan 
in plant fibers) during the infection process once again proves 
that many pathogenic related genes are simultaneously expressed 
in the interaction, and the time and level of expression determine 
the pathogenic level of the pathogen to the host (Kim et al., 2016).

Cellulose, an important component of plant cell walls, has a 
stable structure, which functions effectively to resist pathogen 
invasion and exogenous stress (Hu et  al., 2018). Many cell wall 
degrading enzymes produced by pathogens cooperate to degrade 
host cell walls and infect the host (Cooper et al., 1988). Novo et al. 
(2006) found high levels of activity for endo-1, 4-β-D-glucanase, and 
β-1, 4-D-glucosidase in invasive V. dahliae strains. Furthermore, 
highly invasive P. nodorum strains can produce more cellulase 
(Lalaoui et al., 2008). The cellulase activity of S. turcica f. sp. zeae was 
previously reported to be slightly higher than that of S. turcica f. sp. 
sorghi, and it was noted that differences in cell wall degrading 
enzymes might be one of the reasons for its pathogenic specialization 
(Tang et al., 2015). The protein encoded by A2464 was annotated as 
a member of the seventh family of GHs with endo-1, 
4-β-D-glucanohydrolase activity (EC 3.2.1.4). This is an important 
component of cellulase gene and might be  a cause of the 
pathogenicity of S. turcica f. sp. zeae Et28A. Therefore, we selected 
the highest expressed S. turcica f. sp. zeae specific cellulase gene 
(StCEL2) for analysis. In this study, we used gluconolactone to treat 
S. turcica f. sp. zeae and analyzed its inhibitory effect on cellulase 
activity, and our results are consistent with those of Holtzapple et al. 
(1990). Interestingly, the expression of StCEL2, an endo-1, 
4-β-D-glucanase coding gene, was upregulated, and increased with 

FIGURE 4

Relative expression level of Setosphaeria turcica f. sp. zeae specific effector coding genes at different infection periods postinoculation. Error bars 
represent means ± SE of three repeated experiments (n = 3). Different letters indicate significant differences (p < 0.05). A0353 encodes carbohydrate 
binding module family 18 protein; A1078 encodes glycoside hydrolase family 20 protein; A2199 encodes carbohydrate esterase family 1 protein; 
A2464 encodes glycoside hydrolase family 7 protein; A3017 encodes Argonaute/Dicer protein PAZ; A3531 encodes glycoside hydrolase family 62 
protein; A6616 encodes glycoside hydrolase family 16 protein; A8125 encodes glycoside hydrolase family 10 protein.
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FIGURE 5

Effect of gluconolactone on Setosphaeria turcica f. sp. zeae. (A) Effect of gluconolactone on colony diameter. Error bars are presented as 
means ± SE (n = 5). Different letters indicate significant differences (p < 0.05). (B) Effect of gluconolactone on cellulase activity. Error bars indicate 
means ± SE (n = 3). (C) Effect of glucolactone on the expression level of endo-1, 4-β-D-glucanase encoding gene StCEL2. Data represent means ± SE 
(n = 3). (D) Effect of gluconolactone on the pathogenicity and infection rate. Arrow positions are the infection dots. Scale bars are equal to 50 μm.

63

https://doi.org/10.3389/fmicb.2022.925355
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ma et al. 10.3389/fmicb.2022.925355

Frontiers in Microbiology 12 frontiersin.org

increasing concentration of gluconolactone. This is probably due to 
gluconolactone inhibiting cellulase activity, and the pathogen taking 
advantage of this stress to invade the host, inducing the expression 
of related genes (Kou et al., 2014). In summary, gluconolactone can 
reduce infection rate and pathogenicity by inhibiting the cellulase 
activity of S. turcica f. sp. zeae. Furthermore, methods such as gene 
knockout will be applied to reveal the reasons of two formae speciales 
infect specific hosts. These results provide useful information for 
understanding the mechanism of infection and pathogenic 
differentiation of S. turcica f. sp. zeae.

Conclusion

In this study, we reported the genome sequence of S. turcica f. sp. 
sorghi and compared it with the number of genes of S. turcica f. sp. 
zeae in each functional database. Because of the obvious host 
specificity of the two formae speciales, we focused on the differences 
in the coding genes of secreted proteins and secondary metabolites, 
and pointed out the expression levels of specific effector protein-
coding genes in S. turcica f. sp. zeae at different infection periods. 
Furthermore, the close relationship between cellulase and 
pathogenicity of S. turcica f. sp. zeae was determined by the inhibitory 
effect of enzyme activity, and it was clear that cellulase was one of the 
important factors of its pathogenicity. In summary, our results 
provide a novel ideas for studying the interaction between pathogens 
and the host, and lay a strong foundation for further knockout of 
cellulase genes and mining of pathogenicity-related genes. Obviously, 
our data improve the understanding of important pathogens of 
S. turcica, increase the genomic information of S. turcica f. sp. sorghi, 
and contribute to the study of pathogenic mechanisms.
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Secretion of poly-γ-glutamic 
acid by Bacillus atrophaeus 
NX-12 enhanced its root 
colonization and biocontrol 
activity
Jian Xue , Tong Tong , Rui Wang , Yibin Qiu , Yian Gu , 
Liang Sun *, Hong Xu * and Peng Lei *

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and 
Light Industry, Nanjing Tech University, Nanjing, China

Bacilli are used as biocontrol agents (BCAs) against phytopathogens and 

most of them can produce poly-γ-glutamic acid (γ-PGA) as one of the major 

extracellular polymeric substances (EPSs). However, the role of γ-PGA in plant 

biocontrol is still unclear. In this study, Bacillus atrophaeus NX-12 (γ-PGA 

yield: 16.8 g/l) was screened, which formed a strong biofilm and has been 

proved to be  a promising BCA against Cucumber Fusarium wilt. Then, the 

γ-PGA synthesis gene cluster pgsBCA was knocked out by CRISPR-Cas9n. 

Interestingly, the antifungal ability of γ-PGA synthetase-deficient strain NX-

12Δpgs (γ-PGA yield: 1.65 g/l) was improved in vitro, while the biocontrol 

ability of NX-12Δpgs was greatly diminished in situ. Data proved that γ-PGA 

produced by NX-12 contributes to the biofilm formation and rhizosphere 

colonization, which effectively improved biocontrol capability. Taken together, 

these findings prove that the mechanism of γ-PGA promotes the colonization 

of NX-12 and thus assists in controlling plant diseases, which highlight the key 

role of γ-PGA produced by BCA in biocontrol.

KEYWORDS

Bacillus atrophaeus, antifungal, biocontrol, poly-γ-glutamic acid, rhizosphere 
colonization

Introduction

Fusarium wilt is a very serious disease and it is caused by Fusarium oxysporum 
(Dr et  al., 2003; Dean et  al., 2012). This disease has become one of the main factors 
restricting cucumber production worldwide as the fungus is present in all types of soil 
worldwide (Cao et al., 2011). Because of the lack of effective chemical control methods, 
biological control has become a potential alternative to chemical pesticides and other 
conventional control methods (Compant et al., 2005; Raza et al., 2016). Biocontrol agents 
(BCAs) can colonize plant rhizosphere or tissues and therefore resist plant root pathogens 
through direct action (including the secretion of antibiotics and production of various 
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hydrolases) or indirect action (including nutritional or space 
competition with pathogenic microorganisms and induction of 
systemic resistance; Backer et  al., 2018). Reducing the use of 
chemical fertilizers and pesticides in agriculture is slowly 
becoming a reality (Olanrewaju et al., 2017). However, after BCAs 
are applied in the field, they cannot successfully occupy favorable 
competition spaces and achieve effective colonization and survival 
in the rhizosphere native microbial community, which is one of 
the main bottlenecks limiting their function (Rilling et al., 2019). 
In recent years, evidence has suggested that the colonization of 
plant roots by BCAs and the formation of root-related biofilms are 
key to their use as a method of biocontrol (Kolter and Greenberg, 
2006; Compant et al., 2010; Chen et al., 2012; Santoyo et al., 2021).

As an important member of the BCAs family, Bacillus has 
attracted the attention of researchers (Brannen and Kenney, 1997; 
Ngugi et al., 2005). How this bacterium uses its advantages to 
colonize the roots and establish beneficial interactions with the 
roots of the plants is not clearly understood. In recent years, it has 
been found that some microorganisms with the ability to produce 
strong extracellular polymeric substances (EPSs) can form a 
biofilm adhesion structure, which makes it easier to occupy a 
favorable space in the competition for rhizosphere colonization 
space (Jayathilake et al., 2017; Karygianni et al., 2020). EPSs are 
mainly composed of extracellular polysaccharides, nucleic acids 
(eDNA and eRNA), proteins, lipids, and other biomolecules 
(Flemming et al., 2016). Because of the physical and chemical 
properties of EPSs, such as stability, viscosity, gelation, suspension 
ability, chelation, film formation, and water-holding capacity, 
biofilms can bind a large number of cells together. In this way, 
information exchange and interactions can occur to form a 
microenvironment that cooperates and co-exists with plants 
(Costa et al., 2018). Studies have shown that the knockout of genes 
related to EPSs synthesis often leads to the loss of EPS secretion 
ability of the strain, which makes it unable to form a biofilm 
structure and eventually leads to the failure of its colonization in 
the rhizosphere or plant tissue (Wang et  al., 2008; Meneses 
et al., 2011).

Many reports have found that in some Bacillus spp. strains 
with the ability of EPSs secretion, γ-polyglutamic acid (γ-PGA) is 
the main component of its EPS (Yiyang et al., 2016; Maruzani 
et al., 2019). The γ-PGA biosynthesis genes are highly conserved 
in various Bacillus species. In B. subtilis, the biosynthesis of γ-PGA 
relies on the conserved operon pgsB-pgsC-pgsA-pgsE (Ashiuchi 
and Misono, 2002). In recent years, research on γ-PGA in 
agriculture has mainly focused on its biological functions, such as 
water retention, chelation of heavy metals, fertilizer synergism, 
antioxidant effect, stress resistance, and growth promotion (Wang 
et al., 2022). However, little is known about how γ-PGA affects 
biofilm formation and how it can control plant diseases. Although 
γ-PGA is similar to other biofilm matrix components, it is not 
clear whether γ-PGA plays a structural role in biofilm matrix 
assembly. One study showed that the pgs-deletion mutant of the 
B. subtilis model strain NCIB 3610 had no differences in the 
biofilm phenotype (Branda et al., 2006). Another study showed 

that γ-PGA had an effect on the biofilm phenotype when different 
medium conditions were used (Stanley and Lazazzera, 2005).

In this study, we screened a strain of B. atrophaeus, NX-12, from 
the rhizosphere of a cotton plant as a potential BCA. The biocontrol 
effect, biofilm-forming ability, and antagonistic activity of this strain 
against various plant pathogens were characterized. The main 
component of the EPS was identified as γ-PGA through the 
extraction and identification of the EPS. Based on the technology of 
CRISPR-Cas9n, we  constructed a pgsBCA-deletion mutant 
(NX-12Δpgs). We have demonstrated that a lack of γ-PGA led to a 
decrease in the biofilm formation and colonization ability of the 
strain, which, in turn, significantly reduced the biocontrol effect of 
the strain in cucumber Fusarium wilt. Our findings are consistent 
with those of a previous study that reported an inseparable 
relationship between biofilm formation and plant protection (Bais 
et  al., 2004). We  further showed that the extracellular matrix 
secreted by bacteria, especially γ-PGA, is an important factor that 
affects bacterial rhizosphere colonization and plant protection.

Materials and methods

Strain isolation

Samples were collected from the Juxin cotton farm in Hutubi 
County, Xinjiang, China. They were divided into four parts (root, 
stem, leaves, and rhizosphere soil). The rhizosphere soil samples 
were collected at a depth of 20 cm from the cotton planting fields. 
Bacterial isolation was performed using modified methods based 
on a previous study (Saravana Kumar et al., 2014). Tissues (root, 
stem, and leaves 0.2 g each) were sterilized with 75% (v/v) ethanol 
and 0.3% (m/v) mercuric chloride solution. The tissues were then 
thoroughly crushed in liquid nitrogen-containing glass beads to 
make them completely uniform, and they were then resuspended 
in a 0.9% (m/v) sterile NaCl solution. The rhizosphere soil sample 
(0.2 g) was mixed with a 0.9% (m/v) sterile NaCl solution, followed 
by shaking and mixing well for 30 min. The mixture was diluted 
10 folds and plated onto Luria-Bertani (LB) agar plates. After 
incubation at 30°C for 24 h, colonies were picked and further 
purified by repeated streaking onto LB medium. The pure isolates 
were preserved in sterile glycerol (20% v/v) at −80°C. Subsequently, 
the antifungal activity was tested on PDA plates. Briefly, a 
6-mm-diameter plug containing mycelium was plated at the 
center of the PDA plates, and 5 μl of the bacterial suspension 
(OD600 = 1.0) was patched 3 cm away from the fungus. After 
incubation at 28°C for 72 h, the strain with the largest antibacterial 
circle was selected and named NX-12 for use in further  
experiments.

Characteristics of the strain NX-12

The characteristics of strain NX-12 were determined 
according to Bergey’s Manual of Systematic Bacteriology. The 

68

https://doi.org/10.3389/fmicb.2022.972393
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Xue et al. 10.3389/fmicb.2022.972393

Frontiers in Microbiology 03 frontiersin.org

NX-12 genome was extracted using a genomic DNA purification 
kit and used for a polymerase chain reaction (PCR) amplification 
of the 16S ribosomal DNA (rDNA) gene using the primers 27F 
(5′-AGAGTTTGATCMTGGCTCAG-3′) and 1492R (5′-TACG 
GYTACCTTGTTACGACTT-3′). The sequences were compared 
to the reference sequences of other bacterial isolates deposited in 
the NCBI nucleotide database using the BlastN algorithm.

Plant growth conditions

Cucumber seeds (“Jinchun No. 4”) were purchased from the 
Tianjin Kerun Cucumber Research Institute and surface-sterilized 
(Li et al., 2015). The seeds were surface-sterilized for 10 min in 
30% sodium hypochlorite and rinsed three times with distilled 
water. The seeds were then incubated at 28°C for 48 h on a sterile 
wet filter paper. The sprouted seeds were then planted in sterilized 
soil (Laoshan National Forest Park, Nanjing, China). The initial 
moisture content of the soil was 30%. After 7 days of cultivation, 
the uniform cucumber seedlings were randomly divided into 
three groups: group CK, uninoculated group; group FOC, 
inoculated with spores of Fusarium. oxysporum f. sp. cucumber 
(FOC) up to a final concentration of 1 × 105 CFU/g soil; and group 
NX-12 + FOC, which was inoculated with strain NX-12 up to a 
final concentration of 1 × 107 CFU/g soil and spores of FOC up to 
a final concentration of 1 × 105 CFU/g soil. The plants were then 
cultured for 4 weeks. The samples were then harvested. All 
cucumber seedlings were cultivated in a growth chamber with a 
16-h photoperiod (26°C, 4,000 lx) at 65% relative humidity and 
fertilized twice a week with 1/4 MS liquid fertilizer.

Plant growth measurements and 
physiological indices

Four weeks after inoculation with FOC, the disease severity 
was assessed for each plant on a 0–4 rating scale according to  
the percentage of defoliation (0 = healthy plant, 1 = 1–33%, 
2 = 34–66%, 3 = 67–97%, and 4 = dead plant; Huang et al., 2006), 
and was calculated according to the following formulas: leaf wilt 
index (LWI) = Σ(disease score × the number of plants with that 
score)/(the total number of plants investigated × 4; Li et  al., 
2012), and biocontrol efficacy = [(LWI of control plants–LWI of 
treated plants)/disease incidence of control] × 100% (Chen et al., 
2019). For each treatment, there were three replicates with six 
seedlings each. The height of cucumber plants was measured 
using a measuring tape. The leaf area of fully expanded leaves 
was recorded before flowering using a ScanMaker (i800 plus, 
Microtek, China). Stomatal conductance, net photosynthetic 
rate, transpiration rate, and intercellular carbon dioxide 
concentration were measured using a portable photosynthetic 
system (LI-800, LI-COR, United States). The MDA and POD 
indices were elucidated using previously described methods 
(Bilal et  al., 2018). The quantity of FOC in the cucumber 

rhizosphere soil was determined as described previously 
(Faheem et al., 2014).

Identification of extracellular polymers

Strain NX-12 was incubated in an LB medium at 37°C and 
200 rpm for 8 h. It was then transferred into the selected medium, 
which contained (per liter) glucose, 30 g, sodium glutamate 30 g, 
(NH4)2SO4 5 g, K2HPO4 2 g, MgSO4 0.1 g, and MnSO4 0.03 g at an 
inoculum volume of 5% (v/v). The fermentation was carried out 
at 30°C and 200 rpm for 48 h. The EPS was purified using a 
previously described method (Qiu et  al., 2017). The total 
carbohydrate content was determined by the phenol–sulfuric acid 
method. Simultaneously, the prepared extracellular polymer was 
scanned at wavelengths between 200 and 600 nm, and γ-PGA was 
used as a control. The amino acid composition was determined 
according to the procedure recommended by Amino Acid 
Analysis (AAA; AdvanceBio, Agilent, United States).

Construction of the γ-PGA-deficient 
strain NX-12Δpgs and the 
complementary strain NX-12Δpgs 
(pMA5-pgs)

The strains and plasmids used in the present study are listed 
in Supplementary Table S1. The construction of mutants was 
based on the CRISPR-Cas9n system, as described previously 
(Qiu et al., 2020), and this procedure was modified appropriately. 
The strain was cultured overnight in a fresh NA medium at 37°C 
and 200 rpm, and it was then transferred into an SPI medium 
until the OD600 reached 1.5. The solution was then transferred 
into an SPII medium at 37°C and 100 rpm. When the OD600 
reached 0.6, EGTA solution was added at a final concentration of 
0.1 mM and incubated for 10 min. The culture broth (50 ml) was 
centrifuged at 6,000 × g for 15 min at 4°C. The cells were washed 
twice with ice-cold deionized water (15 ml) and then washed 
twice again with an equal volume of cold 10% glycerol (v/v). 
Finally, the cells were suspended in 10% sterile glycerol (v/v) so 
that the cell density was 1 × 1010 CFU/ml. Precooled plasmid 
DNA (100 ng) and competent cells (100 μl) were mixed gently 
and then transferred into pre-cooled 2-mm electroporation 
cuvettes. The sample was then exposed to a single electrical pulse 
(2 kV, 4 ms). Next, an NA medium (800 μl) was immediately 
added. After growth at 30°C and 200 rpm for 3 h, the cells were 
plated onto LB agar (Spec, 25 μg/ml; Kar, 50 μg/ml; Cm, 10 μg/ml 
if necessary). The PCR primers listed in Supplementary Table S2 
were used to screen and identify positive colonies. Specifically, 
overnight cultured cells were transferred to a new resistant LB 
medium containing 1% of the inoculum. When the OD600 
reached 0.8, IPTG was added at a final concentration of 
1 mM. After induction at 30°C and 200 rpm for 10 h, the positive 
clones were grown at 30°C for 12 h in LB medium containing 
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spectinomycin and then subcultured for more than 20 
generations. A single colony with a dry morphology was selected 
for culture. The results were verified by PCR and synchronized 
with the sequencing results.

The pgsBCA gene was amplified using the primers pMA5-
pgsBCA-F and pMA5-pgsBCA-R from the NX-12 genome, and a 
fragment of the plasmid pMA5 was used to construct the 
recombinant plasmid pMA5-pgsBCA by In-Fusion cloning. The 
mutant NX-12Δpgs was complemented with pMA5-
pgsBCA. Analysis of the EPS from NX-12Δpgs (pMA5-pgs) was 
performed as described above.

Comparison of the antibacterial activity 
and biocontrol abilities of NX-12 and 
NX-12Δpgs

The antibacterial activity of the wild isolate toward five 
important types of Fusarium oxysporum (FO; f. sp. cucumerium, 
strawberry, cotton, lotus root, and watermelon) was measured. 
Strains were cultured in an LB medium for 12 h at 30°C and 200 rpm. 
The culture broth’s pellets were then washed with a PBS buffer (pH 
7.0) and resuspended to OD600 = 1.0. A suspension of the wild isolate 
of NX-12 was placed around the fungal inocula at a distance of 3 cm. 
After incubation at 28°C for 72 h, the zones of inhibition were 
measured, as described previously (Berg et al., 2005). The fungus 
FOC with the best inhibition effect was used for the comparison of 
the antibacterial activities between NX-12 and NX-12Δpgs, and the 
experimental steps were consistent with those described above.

The plants were grown under the same conditions as those 
described in Plant growth conditions, with some modifications. 
Uniform seedlings were randomly divided into four groups. 
Group CK was the uninoculated group; group FOC was 
inoculated with spores of the FOC up to a final concentration of 
1 × 105 CFU/g soil; group NX-12 + FOC was inoculated with strain 
NX-12 up to a final concentration of 1 × 107 CFU/g soil; and group 
NX-12Δpgs + FOC was inoculated with strain NX-12Δpgs up to a 
final concentration of 1 × 107 CFU/g soil. After 4 weeks of 
cultivation, the samples were collected, and the LWI, dry weight, 
and height were measured.

qPCR analysis

The prediction and analysis of the secondary metabolite genes 
of the strain were analyzed using antiSMASH (https://antismash.
secondarymetabolites.org/). The complete genome sequence of 
NX-12 was determined using Novogene (Beijing, China). 
According to the standard protocol, bacterial RNA was extracted 
using an RNA isolation kit (RC112-01, Vazyme). It was necessary 
to lyse the cell wall with lysozyme at a final concentration of 20 mg 
/mL before extraction. The primer sequences used for qPCR are 
listed in Supplementary Table S2. qPCR was performed according 
to the recommended protocol (R323-01/Q711-02/Q711-03, 

Vazyme). The 2-ΔΔCT method was used to analyze the qPCR data 
(Kenneth and Thomas, 2002).

Biofilm formation assay

Biofilm formation was determined by crystal violet staining 
(Hsueh et  al., 2006) with some modifications. NX-12 and 
NX-12Δpgs were grown in LB broth at 30°C and 200 rpm overnight 
to generate inoculum cultures. They were then adjusted to an 
optical density at 600 nm (OD600) of 0.01. Specifically, the modified 
Msgg medium (0.005 M potassium phosphate buffer, 0.1 M Mops, 
0.002 M MgCl2, 0.7 M CaCl2, 0.05 M MnCl2, 0.05 M FeCl3, 0.002 M 
VB1, 1.2% (m/v) glucose, and 1.2% (m/v) sodium glutamate) was 
pre-formulated. Next, 2 ml of modified Msgg medium was added 
to the wells of polystyrene 24-well plates, followed by incubation at 
30°C for 24 h. The planktonic bacteria were removed and the wells 
were washed with distilled water and air-dried. The remaining 
biofilm cells were stained with 2 ml of 0.3% crystal violet for 10 min, 
then washed with distilled water, and were finally air-dried. The 
crystal violet in the biofilm cells was solubilized with 2 ml of 70% 
ethanol, and the optical density at 570 nm (OD570) was measured.

Rhizosphere colonization assay

The general methods for the rhizosphere colonization assay 
followed published protocols (Tian et  al., 2021) with some 
modifications. NX-12-gfp, NX-12Δpgs-gfp, and NX-12Δpgs-gfp 
(PMA5-pgsBCA) were constructed according to the protocol 
described in Construction of the γ-PGA deficient strain 
NX-12Δpgs and the complementary strain NX-12Δpgs (pMA5-
pgs). The uniform seedlings were divided into four groups: NX-12, 
NX-12Δpgs, NX-12Δpgs + γ-PGA, and NX-12Δpgs (PMA5-
pgsBCA). The cucumber seeds were cultured in plastic pots 
(70 mm × 70 mm × 75 mm) containing 15 g sterilized vermiculite, 
and the pots were incubated in moist chambers (26°C/23°C day/
night temperatures, 4,000 Lux light for 16 h/day, and 65% relative 
humidity). The pots were watered weekly with 1/4 MS. After 
15 days of incubation, 5 ml of cell suspension containing freshly 
cultivated B. atrophaeus cells (1.0 × 108 CFU/ml) supplemented 
with γ-PGA (0.1 mg/ml) was added to the pot by pouring onto the 
surrounding root. After another 3 days of incubation, the roots of 
the seedlings were removed and rinsed with sterilized water. A 
0.2-g root ripening zone for each sample was collected and 
immediately stored in a sterile Eppendorf tube for fluorescence 
microscopy (FM) and plate recovery counting.

The green fluorescent protein (GFP) gene was biosynthesized 
using GenScript (Nanjing, China) and amplified using the primer 
pairs pM-GFP-F and pM-GFP-R. pMA5-GFP was constructed 
using In-Fusion cloning as described above. Next, pMA5-GFP was 
electroporated into NX-12 and NX-12Δpgs. The cucumber seedlings 
were treated as described above, and the roots were observed under 
a fluorescence microscope to detect the presence of the bacteria.
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Results

Isolation and identification of Bacillus 
atrophaeus NX-12

The initial purpose of this work was to screen candidate 
strains for BCAs. We isolated strains from both four parts (root, 
stem, leaves, and rhizosphere soil) of samples and the strains 
co-existing in the four parts were selected as the target strains. 
Supplementary Figure S1 shows the microbiological of the strain 
NX-12. This strain is a Gram-positive, motile, spore-forming, 
rod-like bacterium. A partial 16S rRNA gene sequence analysis 
(1,416 bp) demonstrated that strain NX-12 was most likely 
B. atrophaeus strain JCM9070 (98%), indicating that strain NX-12 
belongs to the species B. atrophaeus (Supplementary Figure S1). 
Therefore, we designated this strain as B. atrophaeus NX-12.

Strain NX-12 exhibits high biocontrol 
efficacy against Fusarium wilt on 
cucumber

To evaluate the inhibition ability of the strain to the pathogen 
of Fusarium wilt, five Fusarium wilt Pathogens from different plant 
specialization types were used to test, in which NX-12 had the 
strongest effect on FOC (Figure 1A). The biocontrol efficacy of 
Fusarium wilt on cucumber seedlings was also verified. Fusarium 
wilt in cucumber plants peaks 4 weeks after the challenging 
inoculation with FOC. The stomatal conductance, net 
photosynthetic rate, and transpiration rate of cucumber seedlings 
in the pathogen treatment group were the lowest among the three 
treatments, which were decreased by 65.05, 41.73, and 64.74%, 
respectively, when compared with the control group. At the same 
time, the intercellular carbon dioxide concentration was 21.91% 
lower than that in the control group. However, the above conditions 
were significantly changed by the treatment with NX-12 + FOC, 
which meant that the above values changed to be 56.75, 103.14, and 
55.12% of the control group, respectively (Supplementary Figure S1). 
The leaf wilt index (LWI) value obtained in the seedlings treated 
with FOC was 51.39%, which was significantly higher than the 
LWI of the NX-12 + FOC group (26.39%; Figure 1B). The contents 
of MDA (8.91 μmol mg−1 for FOC versus 5.11 μmol mg−1 for 
NX-12 + FOC) and POD (5.42 U mg−1 protein min−1 for FOC 
versus 2.81 U mg−1 protein min−1 for NX-12 + FOC) indicated that 
strain NX-12 exhibits great biocontrol efficacy against Fusarium 
wilt in terms of the physiological indicators (Figure 1C).

Main component of the extracellular 
polymeric substances is γ-PGA

Because strain NX-12 is a robust biofilm-forming strain, it can 
form a strong biofilm on the surface of solid and liquid 
(Supplementary Figure S2). The formation of biofilm is closely 

related to the secretion of extracellular matrix. We then measured 
the yield of its EPSs, the yield of which reached 16.8 g/l in the 
selected medium. At the same time, it was also proved that the 
effect of nitrogen source on yield was greater than that of carbon 
source (Figure 2A). However, there was no significant difference 
in the polysaccharide content of the EPS, regardless of the medium 
(Figure 2B). This also prompted us to think about polypeptides 
rather than polysaccharides. Spectral analysis revealed that EPS 
and γ-PGA had a consistent maximum absorption peak at 209 nm 
(Figure 2C). Subsequently, the results of High-Performance Liquid 
Chromatography (HPLC) analysis verified that the content of 
glutamate after hydrolysis reached 89.5% of the EPSs (Figure 2D).

Knockout of pgsBCA significantly 
reduced the yield of the EPS

To better understand the function of γ-PGA, the γ-PGA 
synthase gene pgsBCA of NX-12 was knocked out using the 

A

B

C

FIGURE 1

Antifungal activity and biocontrol efficacy of Bacillus atrophaeus 
NX-12. (A) The inhibitory effect of NX-12 on Fusarium oxysporum 
of different plant specialization types; (B) Biocontrol efficacy of 
strain NX-12 against Fusarium wilt in cucumber; (C) Activities of 
MDA and POD in Cucumber Leaves. Error bars represent 
standard deviations. ** indicated value of p < 0.01; *** indicated 
value of p < 0.001.
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Crispr-Cas9n system (Figure 3A). It can be clearly seen that the 
colony morphology on the plate changed from wet to dry. PCR 
screening was used to verify whether the target gene fragment 
(pgsBCA) had been effectively deleted. A 2048-bp PCR product 
was amplified using the mutant chromosome DNA as a template, 
which was 2,813 bp less than the PCR product using the NX-12 
chromosome DNA as a template (Figure 3B). The mutant strain 
was designated B. atrophaeus NX-12Δpgs. The EPS yield of 
NX-12Δpgs was 90.2% lower than that of NX-12 (Figure 3C). 
There was no significant difference between the wild-type and 
mutant bacteria in the LB medium (Figure 3D).

The transcription levels of genes related 
to antimicrobial peptide synthesis and 
glutamate metabolism were different 
between wild and the mutant strain

In order to confirm whether the knockout of pgsBCA has an 
effect on the antifungal ability of the strain, we  verified the 

antifungal ability of wild bacteria and mutant bacteria by 
punching holes on the plate. Contrary to our expectations, it can 
be  clearly seen that NX-12Δpgs had significantly improved 
inhibition activity against pathogenic fungi when compared with 
NX-12 (Figure  4A; Supplementary Figure S3). However, the 
growth curve of NX-12 and NX-12Δpgs in the PDA liquid 
medium showed no significant difference within 48 h (Figure 4B). 
We  therefore tested the transcription of genes related to 
antimicrobial peptide synthesis as well as glutamate transferase. 
Six lipopeptide antibiotics were predicted according to the 
antiSMASH website, and key synthetic genes were identified using 
the NCBI comparison database. The results of qPCR showed that 
when compared with NX-12, the synthesis of fengycin, rhizocticin 
A, bacillibactin, and bacillaene genes of NX-12Δpgs was 
significantly upregulated. No significant differences were observed 
between surfactin and subtilisin A. The transcription level of the 
glutamate dehydrogenase gene rocG, which is related to nitrogen 
metabolism (Feng et  al., 2015), was significantly decreased 
(Figure 4C). These results suggest the enhancement of antifungal 
ability in vitro.

A C

B D

FIGURE 2

Isolation and Identification of EPS from NX-12. (A) Comparison of the production of EPSs by fermentation; (B) Comparison of the production of 
extracellular polysaccharide by fermentation; (C) Spectral analysis of EPS from NX-12 and γ-PGA. (D) Comparison of monomer liquid phase 
analysis after hydrolysis of EPS and γ-PGA; Error bars represent standard deviations. ** indicated value of p < 0.01; **** indicated value of p < 0.0001.
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The biocontrol ability of NX-12Δpgs 
against Cucumber Fusarium wilt 
decreased significantly

As described above, the deletion of pgsBCA led to the 
enhancement of antifungal activities. Therefore, we  wondered 
whether wild bacteria and mutant bacteria have the same effect in 
plant biocontrol as in vitro. The biocontrol abilities of NX-12 and 
NX-12Δpgs in cucumber seedlings were tested. Contrary to the 

antibacterial effect in vitro, the leaf wilt index (LWI) value 
obtained in the seedlings treated with strain NX-12Δpgs was 50%, 
which was significantly higher than the LWI of the NX-12 group 
(33.3%). Whether the seedlings were treated with NX-12 or 
NX-12Δpgs, the LWI of cucumbers after treatment was 
significantly lower than that of the FOC group (90.3%; Figure 5A). 
In addition, the height and dry weight of the cucumber seedlings 
were measured. Compared to the NX-12Δpgs + FOC group, both 
the height and dry weight were significantly increased in the 

A

B D

C

FIGURE 3

Knockout of pgsBCA based on CRISPR-Cas9n system. (A) Construction of double plasmid system; (B) Comparison of colony morphology and 
verification by PCR after knockout; (C) Yield of EPS between NX-12 and NX-12Δpgs; (D) Growth curves of NX-12 and NX-12Δpgs in LB medium.

A B C

FIGURE 4

Comparison of the transcription levels of genes related to antimicrobial peptide synthesis between NX-12 and NX-12Δpgs. (A) Comparison of 
antibacterial ability of NX-12 and NX-12Δpgs against FOC in vitro; (B) Growth curves of NX-12 and NX-12Δpgs in PDB medium; (C) Transcription 
levels of synthetic genes related to antimicrobial peptides in NX-12 and NX-12Δpgs. Error bars represent standard deviations. * indicated value of 
p < 0.05.
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NX-12 + FOC group (Figures 5B,C). This indicated that strain 
NX-12 was more effective than strain NX-12Δpgs at suppressing 
cucumber Fusarium wilt.

Synergistic action between γ-PGA and 
NX-12 to enhance the ability of 
colonization and biocontrol

Since the function of BCA is related to the interaction between 
host plants, we further hypothesized that NX-12 could realize the 
function of biological control by enhancing the formation of 
biofilm and promoting its colonization in the rhizosphere with the 
help of secreted γ-PGA. The biofilm-forming ability of NX-12 was 
significantly higher than that of NX-12Δpgs (Figure 6A). NX-12 
could form a clear thick layer of biofilm (OD570 = 20.44), whereas 
the biofilm formation ability of NX-12Δpgs (OD570 = 2.57) was 
significantly diminished, which was only 12.6% when compared 
to NX-12. Under pot soil conditions, colonization of NX-12 and 
NX-12Δpgs in the rhizosphere was determined by plate counting 
and fluorescence observation. It was found that NX-12Δpgs 
(0.98 × 107 CFU/g root) failed to colonize roots as effectively when 
compared to NX-12 (1.66 × 107 CFU/g root). To further support 
the idea that γ-PGA plays a key role in rhizosphere colonization, 
the mutant NX-12Δpgs was complemented with pMA5-pgsBCA 
and we  named NX-12Δpgs (pMA5-pgs). The EPS yield of 
NX-12Δpgs (pMA5-pgs; 11.17 mg/ml) recovered significantly 
compared to that of NX-12Δpgs (2.77 mg/ml; Supplementary  
Figure S4). As expected, NX-12Δpgs (pMA5-pgs) restored most 
of its biofilm formation (Figure 6A) and colonization ability. At 
the same time, the exogenous addition of γ-PGA improved the 
colonization ability of NX-12Δpgs (1.23 × 107 CFU/g root), 
although it did not reach the level of NX-12Δpgs (pMA5- 
pgs; 1.51 × 107 CFU/g root; Figure  6B). The FOC population  
was monitored using plate counting and remained high 
(28.83 × 103 CFU/g soil) in the NX-12Δpgs group compared to that 

in the NX-12 group (2.67 × 103 CFU/g soil). However, the FOC 
population in the rhizosphere was significantly reduced by the 
application of NX-12Δpgs (pMA5-pgs; 7.8 × 103 CFU/g soil). 
Exogenous addition of γ-PGA also slightly reduced the FOC 
population to 22.33 × 103 CFU/g soil (Figure 6C).

Fluorescence microscopy images also confirmed that γ-PGA 
significantly affected the colonization ability of NX-12 (Figure 6D).

Discussion

Rhizosphere bacteria play a key role in protecting plants and 
promoting plant growth and health (Berendsen et  al., 2012). 
Bacillus subtilis, as well as other Bacilli, have been used as 
important BCAs in agriculture (Nagórska et al., 2007; Ongena 
and Jacques, 2008; Liu et al., 2021). The newly isolated strain, 
B. atrophaeus NX-12, demonstrated strong antifungal efficacy 
toward FOC in vitro and biocontrol activities in situ. The 
mechanism by which B. atrophaeus exerts a strong biocontrol 
activity in the rhizosphere is not well understood. Previous 
studies have provided evidence that the production of 
antimicrobial agents, biofilm formation, and triggering host 
systemic resistance can contribute to the biocontrol activities of 
Bacillus (Bais et  al., 2004; Chen et  al., 2019). Here, we  have 
focused on the role of biofilm formation in plant biocontrol, and 
we  have provided several types of evidence documenting 
its importance.

In view of the high yield of γ-PGA in NX-12, which is not 
common in most Bacillus sp. strains, we first knocked out the 
key genes for γ-PGA synthesis, pgsBCA, through CRISPR-Cas9n. 
A strain NX-12Δpgs with low γ-PGA yield was obtained and 
used to study the differences between NX-12Δpgs and wild 
strains. Interestingly, NX-12Δpgs showed better antifungal 
activity against the pathogen than NX-12, which was not as 
expected. Previous studies have found that Bacillus species have 
become the most successfully commercialized biocontrol agents 

A B C

FIGURE 5

The biological control ability of NX-12Δpgs decreased significantly. (A) The leaf wilt index (LWI) under different treatments; (B) Seeding height of 
cucumber treated by NX-12 and NX-12Δpgs in controlling Fusarium wilt; (C) Seeding dry weight of cucumber treated by NX-12 and NX-12Δpgs in 
controlling Fusarium wilt. Error bars represent standard deviations. * indicated value of p < 0.05; ** indicates value of p < 0.01; **** indicates value of 
p < 0.0001.
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owing to their ability to produce a broad spectrum of 
antimicrobial secondary metabolites (Koumoutsi et al., 2004; 
Sansinenea and Ortiz, 2011; Xingshan et  al., 2021). These 
substances can inhibit many phytopathogens, including fungi 
and bacteria (Bais et al., 2004; Koumoutsi et al., 2004; Sansinenea 
and Ortiz, 2011; Liu et al., 2021). We predicted some secondary 
metabolites that NX-12 might produce according to the 
secondary metabolite prediction analysis website antiSMASH 
and mined its key genes using NCBI. qPCR analysis showed that 
genes related to antimicrobial peptide synthesis (fen, rhi, bac, and 
bae) were significantly upregulated in the mutants, while rocG, 
a gene related to glutamate synthesis (Feng et al., 2015), was 
significantly downregulated. Therefore, we hypothesized that the 
increased antifungal ability of mutant bacteria was due to the 
fact that more nitrogen was used for the synthesis of 
antimicrobial substances, while in wild bacteria, more nitrogen 
was used for the synthesis of γ-PGA.

On the contrary, the biocontrol effect of NX-12Δpgs was 
significantly decreased in situ. This showed that antifungal 
ability was not the only criterion for considering biocontrol 
ability. Many studies have shown that the effective colonization 
of microorganisms in plant rhizosphere determines whether 
they can play the corresponding biological functions. Biofilm 
formation is critical for bacterial rhizosphere colonization (Cao 
et al., 2011; Allard-Massicotte et al., 2016). Here, we found that 
the biofilm-forming capacity of NX-12Δpgs was significantly 
lower than that of NX-12. Although extracellular 
polysaccharides are thought to be  the main component of 
biofilms; in fact, in some strains with high yield of γ-PGA, it is 
the main component of biofilms (Stanley and Lazazzera, 2005). 
In addition, we  found that the number of rhizosphere 
colonization of NX-12 was significantly higher than that of 
NX-12Δpgs due to its strong biofilm-forming ability. 
Interestingly, we  also found that FOC colonization in 

A B

C D

FIGURE 6

γ-PGA helps colonize and control pathogens. (A) Difference in biofilm formation between NX-12 and NX-12Δpgs in vitro; (B) Number of bacteria 
cells colonized on the root surface of cucumber under the treatments of NX-12, NX-12Δpgs, NX-12Δpgs + γ-PGA, and NX-12Δpgs (pMA5-pgs); 
(C) Number of fungal cells colonized on the root surface of cucumber under the treatments of NX-12, NX-12Δpgs, NX-12Δpgs + γ-PGA, and NX-
12Δpgs (pMA5-pgs); (D) Colonization of fluorescent strains in the rhizosphere. Error bars represent standard deviations. * indicates value of 
p < 0.05; ** indicates value of p < 0.01; *** indicated value of p < 0.001; **** indicates value of p < 0.0001.
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rhizosphere in NX-12 group was significantly less than that in 
NX-12Δpgs group. These results indicated that γ-PGA enhanced 
the biofilms formation of NX-12, promoted the colonization of 
NX-12  in the rhizosphere, and occupied the dominant 
ecological niche, thus enhancing the resistance of plants to 
biological stress through this indirect way.

In conclusion, our research shows that the newly isolated 
B. atrophaeus NX-12 with high yield of γ-PGA owns strong 
antifungal ability against FOC in vitro and biocontrol effects in 
situ. It is found that γ-PGA enhances plant tolerance to biotic 
stress by promoting the formation of NX-12 biofilm and 
rhizosphere colonization ability. Our results reveal that the 
effective colonization of BCAs in the rhizosphere is very important 
for its function. Our work broadens the research direction of 
biofilms and has enhanced our knowledge of the application of 
γ-PGA in biocontrol.
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The basidiomycete fungus Sporisorium scitamineum is the causative agent of

sugarcane smut disease. Mating between two strains of the opposite mating

type is essential for filamentous growth and infection in sugarcane plants.

However, the mechanisms underlying mating and pathogenicity are still not

well understood. In this work we used gene disruption to investigate the role

of Ssubc2, the gene encoding a kinase regulator in S. scitamineum. Deletion

of Ssubc2 did not alter the haploid cell morphology or growth rate in vitro

or tolerance to stress, but mutants with both alleles deleted lost mating

ability and infectivity. Deletion of one Ssubc2 allele in a pair with a wild-

type strain resulted in impaired mating and reduced virulence. Transcriptome

profiling revealed that about a third of genes underwent reprogramming

in the wild types during mating. Although gene expression reprogramming

occurred in the pairing of Ssubc2-null mutants, their transcriptomic profile

differed significantly from that of the wild types, in which 625 genes differed

from those present in the wild types that seemed to be among the required

genes for a successful mating. These genes include those known to regulate

mating and pathogenicity, such as components of the MAPK pathway and

hgl1. Additionally, a total of 908 genes were differentially expressed in an out-

of-control manner in the mutants. We conclude that SsUbc2 functions as a

key factor to coordinate the reprogramming of gene expression at the global

level and is essential for the transition from monokaryotic basidial growth to

dikaryotic hyphal growth through mating.
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Introduction

Sugarcane smut, first reported in Natal, South Africa, in
1877, is a fungal disease with enormous economic impact on
the sugarcane industry worldwide (McMartin, 1945; Ershad
and Bani-Abbassi, 1971; Leu and Teng, 1974; Akalach and
Touil, 1996; Ramesh Sundar et al., 2012). A whip-like structure
composed of plant tissue, fungal hyphae, and teliospores in the
apex of the plant in the late stage of infection is a hallmark
of sugarcane smut (Ramesh Sundar et al., 2012). Sporisorium
scitamineum, the causative agent of sugarcane smut, has three
distinct phenotypes during its life cycle: yeast-like haploid
basidiospore, dikaryotic hypha, and diploid teliospore (Pombert
et al., 2015). The formation of dikaryotic hyphae through
the fusion of two non-pathogenic haploid basidiospores from
strains of opposite mating types (MAT-1 and MAT-2) via sexual
mating is required for the fungus to infect host sugarcane
plants (Yan et al., 2016). Previous studies have revealed that
certain genes (e.g., Sskpp2, SsSln1, Ssprf1, SsAgc1, and SsSln1)
and cAMP-dependent protein kinase A pathways are involved in
the regulation of mating/filamentation and pathogenicity (Deng
et al., 2018; Chang et al., 2019; Wang et al., 2019; Zhu et al.,
2019; Cai et al., 2021). However, the mechanisms underlying
the regulation of mating and virulence in this fungus are still
far from clear.

In the yeast Saccharomyces cerevisiae, the adaptor
protein Ste50p, a protein kinase regulator, is necessary for
pheromone-induced signal transduction and hormone-induced
differentiation of cells. Ste50 bridges the downstream α-
pheromone receptor (Ste2) and upstream Ste11 and Ste7 kinase
cascades (Xu et al., 1996). It is also involved in regulating
pseudohyphal development by regulating the kinase function
of mitogen extracellular signal-regulated kinase kinase (MEKK)
Ste11 (Wu et al., 1999, 2006; Grimshaw et al., 2004), a protein
that also functions in hypertonicity and pheromone response
(Ekiel et al., 2009; Sharmeen et al., 2019). In the human
pathogen Cryptococcus neoformans, Ste50p is required for
monokaryotic fruiting and sexual reproduction (Fu et al., 2011).
In the maize smut fungus Ustilago maydis, a homolog of yeast
Ste50, designated Ubc2, is essential for filamentous growth
and virulence (Mayorga and Gold, 2001; Klosterman et al.,
2008).

In this work, we used gene disruption to investigate the role
of a U. maydis Ubc2 homolog called SsUbc2 in S. scitamineum.
Ssubc2 deletion mutants did not alter the morphology, growth,
or response to stress in haploid basidiospores but had an
adverse impact on mating and pathogenicity. Comparative
transcriptome analysis revealed that SsUbc2 functioned as
a master to coordinate gene reprogramming at the global
level. Deletion of Ssubc2 resulted in extensive change in gene
expression patterns in monokaryotic basidiospores and in the
mating process and impairment of mating, filamentation, and
pathogenicity with a dose-response effect.

Results

Identification of Ssubc2 in Sporisorium
scitamineum

By blasting the nucleotide database of S. scitamineum1 using
the sequence of Ubc2 of U. maydis (accession no. taxid:49012)
as a query, we identified a deduced protein (accession no.
ON164841) with 76.3% similarity to Ubc2. The gene encoding
this protein, designated Ssubc2, encodes a protein of 837
amino acids without any introns. Alignment with selected Ubc2
homologs from other fungi showed that SsUbc2 possesses all
three domains [Sterile Alpha Motif (SAM), Ras-Association
(RA), Src Homology 3 (SH3); Figure 1A]. Phylogenetic analysis
revealed that Ubc2 of the basidiomycetous fungi formed a
unique clade separate from Ubc2 of the ascomycetous fungi
(Figure 1B).

Phenotypic characterization and gene
expression profile of Ssubc2 deletion
mutants

Mutation of the Ssubc2 gene in both mating types,
JG36 (MAT-1) and JG35 (MAT-2), was achieved by the
transformation of wild-type strains with the CRISPR-Cas9/T-
DNA system for S. scitamineum (Lu et al., 2017; Figure 2A). We
screened Ssubc2 disruptants using PCR (Figure 2B). A total of
six mutants (three for JG35 and three for JG36) were obtained.
Complementation of the Ssubc2 disruptants was achieved
through the introduction of a copy of Ssubc2 with a modified
target sequence to avoid recognition by the CRISPR-Cas9
system carried by the disruptants (Figure 2C). Quantification
of transcript accumulation confirmed that no Ssubc2 expression
was detected in the disruptants; Ssubc2 expression was fully
restored in the complemented 135-ubc2-C and restored up
to 55% of the wild-type level in complemented 136-ubc2-C
(Figure 2D). When haploid Ssubc2-null mutants were grown
in liquid YEPS medium, no obvious defects in cell morphology,
growth rate, or tolerance to stress were detected (Figures 2E–G).
These results indicate that Ssubc2 is not involved in basidial
growth and may not play an essential role in hyperosmotic or
oxidative stress response or in cell wall integrity.

Filamentous growth is a simple indicator of successful
mating between strains of smut fungi of opposite mating
types. As shown in Figure 3A, co-spotting of JG35 and JG36
resulted in a fluffy white colony after 48 h of growth, whereas
colonies developed from co-spotting of 135-ubc2 and JG36 or
of JG35 and 136-ubc2 were significantly less fluffy and delayed
in filamentous growth. No dikaryotic hyphae were observed

1 https://www.ncbi.nlm.nih.gov/assembly/GCA_900002365.1
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FIGURE 1

Sequence analysis of S. scitamineum adaptor protein SsUbc2. (A) Structure of the Ste50 and Ubc2 proteins. Conserved domains of Sterile Alpha
Motif (SAM), Ras-Association (RA), and Src Homology 3 (SH3) are in boxes. (B) Phylogenetic tree constructed with amino acid sequences of
Ste50 and Ubc2 proteins from ascomycetous and basidiomycetous species. The evolutionary history was inferred using the maximum
likelihood method based on the JTT matrix-based model (Jones et al., 1992). Evolutionary analyses were conducted in MEGA7 (Kumar et al.,
2016). Accession numbers are CBQ70036.1 for S. reilianum, XP_011391983.1 for U. maydis, XP_029739906.1 for S. graminicola, ELU43665 for
Rhizoctonia solani, XP_001239789.2 for Coccidioidea immitis, XP_003712743.1 for M. oryzae, NP_009898.1 for Saccharomyces cerevisiae, and
NP_596828.1 for Saccharomyces pombe. The star indicates the position of Ubc2 from Sporisorium scitamineum.

from mating the two Ssubc2 disruptants (135-ubc2 × 136-
ubc2), even after 96 h (Figures 3A,B and Supplementary
Table 1). However, the reintroduction of a copy of the wild-type
Ssubc2 into the 1Ssubc2 mutants (135-ubc2-C and 136-ubc2-
C) fully restored the mating phenotype of the 1Ssubc2 mutants
(Figure 3A). Indeed, microscopic examination and statistical
data in three independent biological replicates confirmed that
Ssubc2 deletion in both mating types prevented the mutants
from mating (Figure 3B and Supplementary Table 1).

Loci a and b are known to regulate sexual mating process of
S. scitamineum. The mfa and pra genes in the a locus encode
pheromone and pheromone receptor that are responsible for
recognition and fusion of the opposite haploid sporidia. The b
locus harbors bE and bW genes which encode a heterodimeric
transcription factor involved in dikaryotic filamentation and
invasion of host plants (Zhu et al., 2019). To identify the reasons
for the mating defect in the Ssubc2 mutants, we used RT-qPCR

to quantify the expression of genes in a and b loci known to
be involved in the pheromone and filamentation pathway. All
genes investigated were expressed at the same or higher level in
the Ssubc2 mutant strains before mating compared to the wild-
type strains (Figure 3C). However, after mating, mfa2, pra2,
bE2, and bW2 were significantly downregulated in the mating
pair 135-ubc2 × 136-ubc2 compared to the wild-type pair
of JG35 and JG36 (Figure 3D). These results suggest that the
low accumulation of pheromone, pheromone receptor, and the
heterodimer transcription factor likely contributes to the lost or
weak mating ability of Ssubc2-null mutants.

Ssubc2 is essential for pathogenicity

To determine whether Ssubc2 is required for the
development of smut disease in sugarcane, we conducted
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FIGURE 2

Characterization of S. scitamineum Ssubc2 deletion and complementation strains. (A) Schematic representation of the Ssubc2 gene disruption
strategy. (B) PCR verification of insertion fragments. The primer pair ubc2F/ubc2R was used to amplify the Ssubc2 gene (538 bp). The primer
pairs ubc2F/Cas9R01 and ubc2R/Hyg9R01 were used to amplify the left (1,087 bp) and right (878 bp) ends of the disrupted insertion fragments,
respectively. (C) Nucleotide and amino acid sequences of wild-type and base-modified Ssubc2 targets. (D) Quantification of the Ssubc2 gene
transcript in 1Ssubc2 mutants and complementation strains. (E) Microscopic images of basidiospores of wild-type strains and 1Ssubc2
mutants. Bar, 20 µm. (F) Growth rates of wild-type strains and 1Ssubc2 mutants. The strains were cultured in liquid YEPS medium with an initial
inoculum of 1 × 105 cells mL-1 at 28◦C with shaking at 200 rpm. Data shown are an average of three independent cultures for each strain, and
error bars represent standard deviations. (G) Stress assays for osmolarity, ROS, and cell wall integrity. Cell concentrations are indicated at the
right. Test strains were spotted onto YEPS medium supplemented with stressors and incubated at 28◦C for 72 h.
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FIGURE 3

Sexual mating is attenuated in Ssubc2 deletion mutants. (A) Wild-type strains, 1Ssubc2 mutants, and complementation strains were co-spotted
on YEPS plates and incubated at 28◦C for 48 h (left) or 96 h (right). Dikaryotic filaments formed colonies with a characteristic fuzzy white
appearance. (B) Cells from a region of the colony were placed on a glass slide for observation under a microscope. Bar, 20 µm. (C,D)
Quantification of gene transcript accumulation by quantitative real-time PCR. The relative gene expression fold change was calculated with the
2−11Ct method. The actin gene of S. scitamineum was used as a control. Gene expression in the wild-type haploid strains or pairs of wild-type
strains was set as 1.0. *p < 0.05.

virulence assays using tissue culture seedlings derived from the
smut-susceptible sugarcane variety ROC22 (Lu et al., 2021). An
average of 85.7% of whip development was recorded for the
wild-type strain JG35 × JG36 within 90 days of inoculation,
whereas only 7.1–8.7% of whip-producing seedlings were

observed for 135-ubc2 × JG36 and JG35 × 136-ubc2 in
the same period of time, and no whips were observed for
135-ubc2 × 136-ubc2 up to 120 days after inoculation
(Figure 4A). Teliospores harvested from the whips induced
by the different inoculum sources did not differ in their
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morphology. Histopathological examination revealed that
a fraction of the inoculated plantlets was infected by 135-
ubc2 × JG36 (28 out of 65) or JG35 × 136-ubc2 (22 out of 63),
but none were infected by 135-ubc2 × 136-ubc2 or the control
H2O (Figure 4B and Table 1). No obvious difference in the
morphology of teliospores from whips induced by the wild-type
strains or 135-ubc2 × JG36 or JG35 × 136-ubc2 was found.
The teliospores germinated at a similar rate, with spores from
135-ubc2 × JG36 and JG35 × 136-ubc2 reaching 85–90% that
of the wild types or the complementation strains.

Ssubc2 influences a large number of
gene expression in haploid cells

To obtain a better understanding of Ssubc2 function in
haploid growth, we performed a transcriptome analysis by
comparing the 1Ssubc2 and corresponding wild type strains
under haploid condition. In total, 2,555 differentially expressed
genes (DEGs) were identified in the Mat-2 strain comparison
group (135-ubc2 vs. JG35) and 583 DEGs were identified in
the Mat-1 strain comparison group (136-ubc2 vs. JG36), in the
three biological replicates (Supplementary Figure 1). Although
there was no detectable difference in haploid phenotype between
the disruptants and the mutants, there were still a large
number of genes whose transcription were altered, and these
DEGs were mainly enriched in the cell cycle, peroxisome
related pathway (peroxisomal transport, protein targeting to
peroxisome, protein localization to peroxisome), membrane,
catalytic activity, and G protein-coupled receptor signaling
pathway (Supplementary Tables 2, 3).

Ssubc2 regulates gene expression at
the global level and coordinates the
massive change in gene expression
during mating

To probe the mechanisms by which SsUbc2 regulates
mating and pathogenicity in the fungus, we compared the
transcriptomes of the wild types and the mutants in a time
course manner. Profound changes in the transcription profile
at time 0 were observed in the mutants compared to the wild
types, with a total of 1,540 DEGs, 560 upregulated and 980
downregulated (Figures 5A,B). In terms of function, the most
enriched genes were involved in cell cycle and chromosome
organization in the upregulated DEGs, and the most enriched
genes were involved in the rRNA and ribosome process in the
downregulated DEGs (Figures 5C,D).

Comparing transcriptomes at different time points after
mating might give a complete picture of the change in gene
expression. Impressive gene expression reprogramming was
observed during the first 24 h of co-spoting for all three

mating pairs, the wild types (WT × WT), JG35 × 136-ubc2
(WT × 1), and 135-ubc2 × 136-ubc2 (1 × 1; Figure 6A).
In the case of WT × WT, 2,405 genes representing more than
one third of the total genes annotated were reprogrammed
compared to time 0, and much fewer DEGs were seen afterward
(Supplementary Figure 1). Similar trends in gene expression
reprogramming were observed in WT × 1 and 1 × 1

(Figure 6B and Supplementary Figure 2). The first sign of
filamentous growth appeared 24 h after mating for the wild
types, vigorous growth of the mycelium was observed at 48 h,
and a steady colony was observed at 72 h. Thus, we speculate that
the fungal cells experience a massive change in gene expression
to respond to and cope with the mating event in the first 24 h of
pairing.

We then performed a transcriptome correlation analysis of
WT × WT, WT × 1, and 1 × 1 at 0, 24, 48, and 72 h. At time
0, all three pairs clustered together, but at 24 h, the wild-type
pair distanced itself from the other pairs. It is intriguing that
WT × 1 (48 h) and WT × 1 (72 h) clustered around WT × WT
(24 h), whereas 1 × 1 mostly maintained a distance from the
wild types at 24 h and onward (Figure 7A). Because 24 h after
mating is considered crucial for reprogramming gene expression
to make the transition from yeast-type growth to filamentous
growth, we further analyzed the reprogrammed genes (DEGs)
by comparing their expression with expression at time 0. Venn
analysis of DEGs identified a set of 1,813 genes shared by both
WT × WT and WT × 1 at 24 h, representing 68.88% of
the DEGs in WT × 1 (designated as DEGs/WT × 1/24).
However, 82.38% of the DEGs/WT × 1/48 and 79.45% of the
DEGs/WT × 1/72 were shared with the DEGs/WT × WT/24
(Figure 7B), which suggests a delay in the change in gene
expression during sexual mating in WT × 1. The shifts of
DEGs in WT × 1 were in accordance with the transcriptome
profiles shown in Figure 7A. In contrast, the mating-defect

TABLE 1 Phenotypic characterization of sugarcane plantlets
inoculated with wild-type or Ssubc2mutant strains of
S. scitamineuma.

Inoculum No.
plantlets
inoculated

No.
whips
(rate)

No.
whip-less
infections

Total
infection

rate

JG35 × JG36 70 59 (84.2%) 1 85.7%

JG35 × 136-ubc2 69 6 (8.7%) 22 40.6%

135-ubc2 × JG36 70 5 (7.1%) 28 47.1%

135-ubc2 × 136-
ubc2

88 0 0 0%

JG35 × 136-ubc2-C 20 17 (85%) 1 90%

135-ubc2-C × JG36 20 18 (90%) 0 90%

135-ubc2-C × 136-
ubc2-C

40 38 (95%) 0 95%

H2O 30 0 0 0%

aRecorded up to 120 days after inoculation.
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FIGURE 4

The influence of Ssubc2 deletion on pathogenicity. (A) Progression of whip development induced by Ssubc2 deletion mutants and
complementation strains. Sugarcane culture tissue-derived plantlets were inoculated with combinations of wild-type strains, 1Ssubc2 mutants,
and/or complementation strains at a concentration of OD600 = 1.0. Significance was set at p = 0.05. ****p < 0.0001. (B) Symptoms of plantlets
inoculated with 1Ssubc2 mutants or wild-type strains. Arrows indicate whips. Histopathology of the plantlets was performed by dissecting the
plantlets and staining them with 0.4% trypan blue. No hyphae were detected in plantlets inoculated with H2O or 135-ubc2 × 136-ubc2. Scale
bar, 20 µm.

mutant pair 1 × 1 shared only a relatively constant portion of
DEGs with WT × WT: 53.04, 50.56, and 47.32% at 24, 48, and
72 h (Figure 7B). Although only a single sample at a time point
was taken for the analysis, multiple time points at the mating
course unveiled a specific set of genes that were responding in
WT × WT and WT × 1, but never in 1 × 1, suggesting that
these genes are regulated by SsUbc2.

As both DEGs/WT × 1/48 and DEGs/1 × 1/48 had
the highest match with DEGs/WT × WT/24, we then looked
into the nature of the set of 625 DEGs shared only by
WT × WT and WT × 1 but not 1 × 1 (Supplementary
Table 4). GO enrichment analysis showed that all 26
kinase activity–associated genes, all nine signal transduction–
associated genes, and 21 out of the 32 transcription-associated

genes were upregulated, whereas 11 out of the 32 transcription-
associated genes were downregulated (Table 2). KEGG pathway
enrichment analysis showed that all seven genes in MAPK
signaling and 11 genes involved in PI3K-AK signaling, calcium
signaling, AMPK signaling, and other signaling pathways were
upregulated; all five genes in PPAR signaling, one gene in cAMP
signaling, and one gene in the adipocytokine signaling pathway
were downregulated (Table 3).

Discussion

Protein kinases play vital roles in the cell by phosphorylating
target proteins to activate or suppress their cellular activity.
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FIGURE 5

Ssubc2 regulates the expression of a wide range of genes in the basidiospore stage. (A) Heat map of the RPKM values of differentially expressed
genes (DEGs) of WT × WT, WT × 1, and 1 × 1 combinations at time 0. Red indicates high expression, and blue indicates low expression.
(B) Scatter plot of DEGs in 1 × 1 compared to WT × WT at time 0. Red dots indicate upregulated genes, and blue dots indicate downregulated
genes. (C) Go enrichment analysis of upregulated genes in 1 × 1 compared to WT × WT at time 0. (D) Go enrichment analysis of upregulated
genes in 1 × 1 compared to WT × WT at time 0.
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FIGURE 6

Time course of transcriptional reprogramming during mating. (A) Heat maps generated on the basis of RPKM values. Red indicates high
expression, and blue indicates low expression. Samples were taken at 0, 24, 48, and 72 h. (B) Scatter plots of differentially expressed genes
(DEGs) of 1 × 1 with 0 h as a reference.

Likewise, the regulation of kinase activity by kinase regulators
is essential for keeping biological processes in the cell in
order. Since the first kinase regulator in yeast, Ste50, was
reported, many kinase regulators have been identified and
demonstrated to function in the regulation of various aspects of

growth and/or development—such as the osmolarity response,
mating, filamentous growth, and pathogenicity—in fungi
ranging from single-cell yeast to multicellular ascomycetes and
basidiomycetes (Schamber et al., 2010; Yamamoto et al., 2010;
Jung et al., 2011; Bayram et al., 2012; Gu et al., 2015). Ubc2,
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FIGURE 7

Comparison of transcriptional reprogramming during sexual mating among pairing strains. (A) Hierarchical cluster diagram of transcriptomes.
The color scale from green to red represents lower to higher sample correlations based on gene expression. Branch lines generated by the
same node indicate that the corresponding samples can be grouped into one cluster, and the length of the branch represents the similarity of
the samples: the shorter the branch, the greater the similarity between samples. (B) Comparison of reprogrammed genes (DEGs) at different
time points. DEGs were defined by reference to time 0 for each of the samples, respectively.

the homolog of Ste50 in the basidiomycetous fungus U. maydis,
differs from Ste50 homologs in that it possesses two extra SH3
domains (Mayorga and Gold, 2001). Because SsUbc2 of the
sugarcane smut fungus S. scitamineum is highly homologous
to Ubc2 of U. maydis (Figure 1), it is assumed that these two
proteins may have similar biochemical and biological functions
in their respective fungi. Indeed, characterization of Ssubc2-
disrupted mutants revealed that SsUbc2 is essential for mating,
filamentation, and pathogenicity. Interestingly, there seems to

be a dosage effect for SsUbc2, in that half dosage (one out of two
alleles) resulted in weaker and delayed mating and filamentation
and reduced virulence to the sugarcane plants, and the loss of
both alleles totally abolished the ability of the fungus to mate or
infect sugarcane plants (Figures 3, 4). However, unlike STE50 of
Saccharomyces cerevisiae, SsUbc2 does not seem to be involved
in the stress response in S. scitamineum (Figure 2).

The mechanisms by which STE50/Ubc2 regulates the
cellular process have been investigated using molecular
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TABLE 2 Functional categories of DEGs that do not respond to mating in Ssubc2-null mutants.

Function Shared only byWT × WT andWT × 1

GO term No. of DEGs Upregulated Gene ID Downregulated Gene ID

Kinase
associated

Kinase activity 16 16 g_000815, g_001439,
g_001470, g_001476,
g_001588, g_002441,
g_003156, g_003450,
g_003664, g_003976,
g_004071, g_004156,
g_004192, g_004306,
g_005858, g_006323

0

GTPase activity; GTP binding 10 10 g_000645, g_001368,
g_001950, g_001986,
g_001993, g_002305,
g_003162, g_005322,
g_005401, g_006652

0

Transcription
associated

Transcription cofactor activity 4 3 g_002196, g_003047,
g_001330

1 g_001238

Cofactor binding 1 1 g_004423 0

Transcription corepressor activity 1 0 1 g_001238

DNA binding transcription factor
activity

4 3 g_004499, g_004877,
g_006179

1 g_004566

Zinc ion binding; RNA
polymerase II transcription factor
activity

12 6 g_006181, g_005758,
g_000133, g_004877,
g_002445, g_003128

6 g_001515,
g_002926,
g_000570,
g_002497,
g_006705,
g_002297

Transcription factor TFIID
complex

1 1 g_002332 0

CCAAT-binding factor complex 1 0 1 g_004566

Regulation of transcription 5 4 g_002233, g_005138,
g_005226, g_005715

1 g_000657

Regulation of transcription by
RNA polymerase II

2 2 g_002196, g_003047 0

Transcription 1 1 g_001119 0

Signal
transduction
associated

Small GTPase-mediated signal
transduction

4 4 g_001950, g_002795,
g_003162, g_005202

0

Intracellular signal transduction 2 2 g_003664, g_005963 0

Signal transduction 1 1 g_005322 0

Regulation of ARF protein signal
transduction

1 1 g_005213 0

Phosphorelay signal transduction 1 1 g_006179 0

genetics. Through its RA domain, STE50 conducts cell signal
transduction between activated G protein and STE11 and is
also an essential component of three MAPK signaling pathways
that control mating reaction, invasion/filament growth, and
the HOG pathway, respectively (Sharmeen et al., 2019). This
domain interacts with the small GTPase Cdc42 to activate the
Ste11p/Ste7p/Kss1p MAP kinase cascade to control filamentous
growth (Truckses et al., 2006). SH3 of Ubc2 acts as a modular
component and has been implicated in mediating protein–
protein interactions in receptor signaling processes, regulating

enzyme activity, facilitating complex formation, and changing
the subcellular localization of signaling pathway components
(Bar-Sagi et al., 1993; Li, 2005; Sharmeen et al., 2019). However,
one question remains: On what scale does Ubc2 influence the
cellular function of a fungus?

By taking advantage of Ssubc2-null mutants and the half
dosage mating pair (one out of two alleles) and RNA-seq
technology, it could be possible to estimate the scale of the
impact of SsUbc2. To our surprise, deletion of Ssubc2 resulted
in a change in expression of more than 2,000 genes, some of
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TABLE 3 Signaling-involved DEGs that do not respond to mating in Ssubc2-null mutants.

Function Shared only byWT × WT andWT × 1

KEGG term No. of DEGs Upregulated Gene ID Downregulated Gene ID

PI3K-AKT signaling pathway 1 1 g_005988 0

MAPK signaling pathway 7 7 g_004248, g_005322,
g_004192, g_005202,
g_002642, g_004306,

g_001939

0

PPAR signaling pathway 5 0 5 g_005724,
g_002970,
g_006649,
g_004876,
g_000462

cAMP signaling pathway 1 0 1 g_000462

Calcium signaling pathway 1 1 g_005963 0

AMPK signaling pathway 1 1 g_005988 0

Ras signaling pathway 1 1 g_005322 0

Phosphatidylinositol signaling pathway 2 2 g_003685, g_005963 0

Sphingolipid signaling pathway 1 1 g_005988 0

FOX0 signaling pathway 1 1 g_003086 0

mTOR signaling pathway 2 2 g_003665, g_002639 0

Adipocytokine signaling pathway 1 0 1 g_002970

TGF-beta signaling pathway 1 1 g_005988 0

FIGURE 8

Proposed working model of SsUbc2 in S. scitamineum. SsUbc2 functions as a coordinator to orchestrate the transcriptome of the fungus by
regulating key transcription factors that have a global impact on the transcriptome. More secondary transcription factors, protein kinases,
signaling components, and other essential genes initially regulated may further exert their influence on transcription to refine gene regulation
and cell function, including responses to mating and infection. Loss of SsUbc2 causes chaos in the regulation of gene expression, resulting in
impairment in key signaling transduction pathways such as the MAPK pathway and dysfunction in the cell that further results in failed
mating/filamentation and pathogenicity (Brefort et al., 2009). TFs, transcription factors. Arabic numerals indicate the number of DEGs.
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which are essential for the fate of the cell (e.g., cell cycle, rRNA
processing and ribosome biogenesis, and nitrogen metabolism)
at the basidial stage (Figure 5). Thus, we speculate that SsUbc2
may function at a top level of the kinase regulation hierarchy.
Despite its extensive impact on the transcriptome, deletion of
Ssubc2 does not seem to have an apparent impact on the yeast-
type growth of basidiospores (Figure 3). We further investigated
the behavior of Ssubc2-null mutants in mating. With time 0 as a
reference, the number of DEGs at 24, 48, and 72 h was 2,530,
2,130, and 2,272, respectively (Figures 6, 7B), which suggests
that the mutants can detect signals from the opposite strains
and respond at the transcription level accordingly. However, this
transcriptional response was not in accordance with the wild-
type strains or with the mating pair involving a mutant and a
wild-type strain. With the DEGs of the wild types 24 h after
mating as a reference, just about 50% of the DEGs of the mutants
matched those of the wild types. It is interesting that about 80%
of the DEGs from the pair with a half dose of SsUbc2 (WT × 1)
matched those of the wild types. Because a positive mating could
be achieved in WT × 1, we assumed that some of the genes
shared by WT × WT and WT × 1 were required for mating.
In this regard, the mutants failed to orchestrate some 600 genes
that appear to be required for mating, although some 1,000
genes did respond (Figure 7B and Supplementary Table 4).
An inspection of these 625 genes revealed many kinases,
transcription factors, and signal transduction components—
including hgl1 (g_003889), Rho (g_00195), Mck1 (g_004306),
and Ssk2 (g_0041932)—which are required for hyphal growth,
the stress response, and sporulation in other pathogenic fungi
(Durrenberger et al., 2001; Bahn et al., 2007; Jeon et al., 2008;
Levin, 2011).

The impairment of the MAPK pathway and kinases caused
by the lack of the Ssubc2 gene not only affects the sexual
mating of mutants but also attenuates their pathogenicity to the
host plant. Deletion of one Ssubc2 allele in the pairing strains
significantly reduced the virulence to sugarcane, with only 7.1–
8.7% of the plantlets developing whip symptoms, even if the
ability to mate was not much affected. Furthermore, when both
alleles were deleted in both mating partners, the pathogenicity
to sugarcane plantlets was completely abolished (Figure 4). This
is distinct from the genes Sskpp2 and Ssprf1 and component
genes of cAMP pathway, which reduce pathogenicity possibly
by impairing mating/filamentation (Deng et al., 2018; Zhu
et al., 2019), suggesting that the influence of Ssubc2 deletion on
pathogenicity is not entirely due to the weakened ability to form
dikaryotic hyphae.

Because Ubc2 does not seem to possess a nuclear
translocation signal (Figure 1), its direct involvement in gene
transcription could be largely ruled out. A more likely possibility
is that high-level transcription factor(s) in the transcription
regulation hierarchy is activated by a kinase with Ubc2 as
an adaptor to exert its broad-spectrum effect on the fungal
transcriptome. Atf1 orthologs, bZIP-type transcription factors,

play an important role in vegetative growth, sexual and
asexual development, the stress response, secondary metabolite
production, and virulence in both human and plant fungal
pathogens (Leiter et al., 2021). We noticed that many genes that
encode transcription factors or transcription-related proteins
and protein kinases were among the DEGs regulated by
SsUbc2 upon mating (Tables 2, 3). These DEGs likely represent
events downstream of the initial SsUbc2 function, but they
could amplify the effect of SsUbc2. Thus, we propose that
SsUbc2 functions as a coordinator to orchestrate the global
transcriptome of the fungus by regulating phosphorylation
of key substrate proteins in the core of the transcription
regulation network. The broad and extensive impact on the
transcriptome observed in Ssubc2-null mutants may result
from the exaggeration of many downstream regulators, such as
kinases and transcription factors (Figure 8).

Because Ssubc2 is required in pathogenicity and functions at
the core of the regulation of gene expression in the pathogen,
it appears that this gene could be an ideal target for antifungal
strategies. Of importance is that the sugarcane genome does not
seem to have significant sequence homology to Ssubc2. Given
the conserved SAM and RA domains in both ascomycetes and
basidiomycetes, a broad spectrum of resistance against many
plant fungal diseases caused by ascomycetous pathogens (e.g.,
rice blast pathogen Magnaporthe oryzea, cotton blight pathogen
Verticillium dahlia, and sugarcane Pokkah boeng pathogen
Fusarium species complex) and basidiomycetes pathogens
(e.g., maize smut pathogen U. maydis, rice sheath blight
pathogen Rhizoctonia solani, and sugarcane smut pathogen
S. scitamineum) could be developed by using host-induced gene
silencing (HIGS) to target Ubc2 transcripts (Hua et al., 2018;
Koch and Wassenegger, 2021). In this regard, a current report
showed that HIGS was highly efficient for developing transgenic
lines in rice resistant to sheath blight caused by R. solani (Zhao
et al., 2021). In fact, recombinant microRNAs expressed by
cotton plant could inhibit virulent gene expression in V. dahlia,
and the transgenic plants showed elevated resistance to cotton
blight (Zhang et al., 2016). In summary, Ssubc2 may serve as a
potentially valuable target for the control of sugarcane smut.

Experimental procedures

Strains, plasmids, and growth
conditions

Wild-type strains JG36 (MAT-1) and JG35 (MAT-2) of the
sugarcane smut fungus S. scitamineum are haploid basidiospores
that represent opposite mating types (Zhu et al., 2019).
S. scitamineum basidiospores were cultured in liquid YEPS
medium at 28◦C on a rotary shaker at 220 rpm for 1 day or
were plated on solid YEPS plates for 3 days (Brachmann et al.,
2001). Escherichia coli strain DH5α (Vazyme, Nanjing, China)
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was plated on Luria Agar (LA) plates or in Luria Broth (LB) at
37◦C and shaken in a rotary shaker at 220 rpm. Agrobacterium
tumefaciens strain Agl1 (Sun et al., 2014) was used for fungal
transformation and was grown on LA plates at 28◦C or cultured
in LB liquid medium with shaking at 220 rpm.

Generation of gene deletion and
complementation mutants

The Ssubc2 gene was deleted with the CRISPR/Cas9/T-DNA
system of S. scitamineum as described previously (Lu et al.,
2017). In brief, the target sequence (5’-ggcaagctggagccggcag-
3’) of Ssubc2 was inserted between the Pu6 promotor and the
sgRNA sequence by PCR with pSgRNA-SsU6 as the template
and four primers, U-F and gR-R and gRT ubc2 + and U6T
ubc2–, for 30 cycles. This PCR product served as a template
to amplify the sgRNA expression cassette with primer pair
U-Fs-BamHI/gR-R-HindIII. The sequences of primers used in
this study are listed in Supplementary Table 5. The sgRNA
expression cassette was cloned into the BamHI and HindIII
restriction sites of binary vector pLS-HCas9 to yield the
disruption construct pLS-ubc2. A. tumefaciens strain Agl1
carrying pLS-ubc2 was used to transform S. scitamineum JG35
and JG36 basidiospores as described previously (Sun et al.,
2014).

For complementation, the target sequence of Ssubc2 was
modified by base substitution without changing the amino
acid sequence to avoid it being recognized and cleaved by
Cas9 in the 1Ssubc2 genome. Then the modified Ssubc2 and
its promoter were amplified with wild-type S. scitamineum
genomic DNA as the template and primer pairs ubc2-pst1-
F/ubc2-com-R and ubc2-com-F/ubc2-pst1-R. The products
were cloned into the PstI restriction site of pLS-Ncom to yield
complementation construct pUbc2-com. A. tumefaciens strain
Agl1 carrying pUbc2-com was transformed into basidiospores
of Ssubc2 deletion strains.

Quantification of gene expression

S. scitamineum cells for DNA and RNA isolation were
grown on solid YEPS plates at 28◦C for 3 days. DNA and
RNA were extracted from fungal cells with a MiniBEST Plant
Genomic DNA Extraction Kit and a MiniBEST Plant RNA
Extraction Kit (TaKaRa, Beijing, China) following the protocols.
A PrimeScript RT Reagent Kit was used for cDNA synthesis.
Gene expression was determined with TaKaRa TB Green
Premix Ex Taq II on a LightCycler R© 480 II. The sequences of
primers used for qRT-PCR are listed in Supplementary Table 5.
Relative gene expression was calculated with the 2−11CT

method with the S. scitamineum actin gene as an endogenous
control.

Phenotypic characterization

S. scitamineum cells for stress assay were cultured in liquid
YEPS medium at 28◦C on a rotary shaker at 220 rpm until they
reached an OD600 of 1.0. Ten-fold serial dilutions were made,
and 1 µL of each dilution was spotted onto YEPSA medium
with or without 0.5 M NaCl, 2.0 mM H2O2, 0.5 M Congo red,
or 0.1 mM SDS, respectively, and incubated at 28◦C for 3 days
before observation.

Haploid basidiospores of S. scitamineum for mating assay
were grown in liquid YEPS until they reached an OD600 of 1.0.
A volume of 0.5 µL of mixture of compatible basidiospores was
co-spotted onto solid YEPS medium and incubated at 28◦C.
Images were taken on days 2 and 4 after cultivation (Lu et al.,
2021).

RNA isolation and sequencing

S. scitamineum cells were collected for RNA extraction after
0, 24, 48, and 72 h of co-spotted for mating on solid YEPS
plates, respectively. Total RNA was extracted from fungal cells
with TRIzol reagent, and DNA was then digested with DNase
I following the manufacturer’s instructions. Construction of the
cDNA library, UID (Unique Identifier) RNA sequencing, and
data analysis were conducted by Wuhan SeqHealth Technology
(Wuhan, China). Clean reads were aligned to reference genome
sequences of S. scitamineum JG36 (unpublished data). The
expression of each gene was calculated and normalized by
corresponding reads per kilobase of transcript per million
mapped reads (RPKM). DEGs between samples were selected
on the basis of their fold change (| log2[fold change] | > 1) and
p-value (< 0.05).

Pathogenicity assay

The pathogenicity assay was performed with the root-
dipping method as described previously (Lu et al., 2021).

Microscopy

Tissue samples were harvested from sugarcane seedlings
and stained with 0.4% trypan blue according to the protocol
described previously (Lu et al., 2021). Samples were visualized
with an Olympus CX33 microscope operated with CellSens
Dimension software.
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Rhizoctonia solani has a broad host range and results in significant losses

in agricultural production. Here, an integrated transcriptomic analysis was

performed to reveal the critical genes responsible for the pathogenesis of

R. solani AG-3 TB on Nicotiana tabacum at different infection stages. The

results showed that various differential expressed genes (DEGs) were enriched

in fatty acid metabolism, amino sugar, carbon metabolism, and cellular

carbohydrate biosynthetic process at the early (6–12 hpi), middle (24–36 hpi),

and late stage (48–72 hpi) of infection. Specifically, several critical genes such

as shikimate kinase that were involved in the biosynthesis of an important

fungal toxin, phenylacetic acid (PAA) showed markedly increase at 24 hpi.

Additionally, the genes expression levels of carbohydrate-active enzymes

(CAZymes) and cell wall degrading enzymes (CWDEs) were significantly

increased at the late infection stage. Furthermore, we identified 807 potential

secreted proteins and 78 small cysteine-rich proteins, which may function

as fungal effectors and involved in the pathogenicity. These results provide

valuable insights into critical and potential genes as well as the pathways

involved in the pathogenesis of R. solani AG-3 TB.

KEYWORDS

Rhizoctonia solani AG-3 TB, pathogenic molecular mechanism, secondary
metabolites, carbohydrate-active enzymes, cell wall degrading enzymes, effector
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Introduction

Rhizoctonia solani kühn (teleomorph: Thanatephorus
cucumeris) belongs to the soil-borne basidiomycete and
ubiquitously causes diseases on roots, stem and leaves of plant
(Ogoshi, 1987; Vidhyasekaran et al., 1997; Yang et al., 2008).
R. solani can be classified into at least 14 different anastomosis
groups (AG-1 to AG-13 and a bridging isolate AG-BI) based
on its morphological diversity, physiological diversity, host
specificity and pathogenic diversity (Taheri and Tarighi, 2011).
For instance, R. solani AG-3 PT is the main causal agent of
potato black scurf which causes wilt and stalk rot on potato
seedlings (Kuninaga et al., 1997, 2000). While R. solani AG-3
TB is the main pathogen of tobacco target spot, which induces
necrosis and perforation lesions on the leaves that significantly
reduced the economic quality of the plants (Lucas, 1975; Sneh
et al., 1996; Gonzalez et al., 2001). R. solani AG-3 TB was first
recorded in tobacco fields in the United States in the early
20th century (Lucas, 1975). This disease spread quickly and
caused considerable losses nearly $ 20 million in Carolina (Shew
and Main, 1985). In China, the tobacco target spot caused by
R. solani AG-3 TB was first reported in 2006 in the tobacco
fields of Liaoning province (Wu et al., 2012), and successively
reported in Yunnan, Guangxi, and Sichuan province (Xu et al.,
2018, 2021). The losses caused by the tobacco target spot are
serious. In 2018, the tobacco yield in Gulin and Xuyong County
of Luzhou, Sichuan Province was reduced by 20%, and the yield
of serious fields was reduced by up to 90% (Xu et al., 2021). Due
to its rapid transmission and genetic diversity, it is an urgent
issue to clarify the pathogenesis of the fungus and explore
effective disease resistance genes in the host plant.

Bioactive molecules such as toxins, enzymes and secreted
proteins play important roles during R. solani infection
(Yamamoto et al., 2019). Typical fungal pathogenic toxins such
as succinic acid, PAA, furancarboxylic acid are isolated from
R. solani AG-1IA, among which, PAA significantly inhibits the
growth of roots of sugar beet (Aoki et al., 1963). A recent
integrated study revealed that PAA and 3-Methylthiopropionic
Acid (MTPA) produced by R. solani AG-3 PT, can cause
degradation of the cell membrane, rough mitochondrial and
cell walls, change of the shape of chloroplasts, and swollen
endoplasmic reticulum (Kankam et al., 2016; Yamamoto et al.,
2019). In addition to the toxins, enzymes involved in the
production of secondary metabolites such as the non-ribosomal
peptide synthases (NRPSs), polyketide synthases (PKSs), hybrid
NRPS-PKS enzymes, prenyltransferases (DMATSs), and terpene
cyclases (TCs) play the pathogenic role in fungi (Slot and
Rokas, 2010). Moreover, a study demonstrated that the
saprophytic nature of fungi has a close relation to their
type and quantity of carbohydrate-active enzymes (CAZymes)
(Cantarel et al., 2009). Currently, an array of CAZymes
produced by R. solani was reported to degrade the cell wall
of plants and express significantly during disease development

(Lakshman et al., 2012). A total of 223 CAZymes and an
expanded set of other cell wall degrading enzymes (CWDEs)
genes, including those of pectinase, xylanase and laccase were
secreted by R. solani AG-1 IA, which was associated with the
pathogenicity and had a connection to the saprophytic lifestyle
of fungi (Zheng et al., 2013). Furthermore, secreted proteins
have been reported in many pathogenic fungi and play various
roles in pathogenesis (Dutheil et al., 2016; Anderson et al.,
2017; Fang et al., 2019). Some of the secreted proteins serve
as ‘effectors’ that facilitate the infection of the pathogen as
well as suppress host immunity responses (Dickman and de
Figueiredo, 2013), while the reported numbers of the effectors
differ between various fungi (Zheng et al., 2013; Anderson
et al., 2017). A total of 1546 and 949 secretory proteins were
predicted in Magnaporthe grisea and A. laibachii, respectively,
and these proteins include the unusual carbohydrate-binding
domains (Dean et al., 2005). In contrast, 965 secretory proteins
have been predicted in R. solani AG-1 IA and most of their
functions generally remain unclear (Zheng et al., 2013). Some of
the effectors, such as AGLIP1, is a possible effector in R. solani
AG-1 IA which inhibits basal defenses and promote disease
development in plants (Li et al., 2019).

Until now, effective fungicides and highly resistant cultivars
for R. solani are still very limited. Therefore, research in the
molecular pathogenic mechanism of R. solani will provide
valuable theoretical basis for disease control. Here, we analyzed
the transcriptomes of R. solani AG-3 TB infecting leaves
of Nicotiana tabacum at different time points, which were
designated as early (6–12 h post inoculation, hpi), middle (24–
36 hpi), and late (48–72 hpi) infection stage. The results of
RNA-seq showed that several crucial genes involved in PAA
synthesis of R. solani AG-3 TB were significantly increased,
especially at the middle infection stage. And the expression of
CAZymes and CWDEs genes gradually increased and peaked at
the late infection stage. We also predicted 807 secretory proteins
which may play a key pathogenic role during infection. These
results provide extensive molecular basis for the pathogenic
mechanisms of pathogen R. solani AG-3 TB during its infection
in the host plants.

Materials and methods

Rhizoctonia solani AG-3 TB isolates
and inoculation of tobacco

The R. solani AG-3 TB (YC-9) strain was isolated from
severely infected tobacco plants in Kuandian County, Dandong
City, Liaoning province of China (Wu et al., 2012). The YC-9
strain was activated in potato dextrose agar medium at 28◦C for
3 days in the dark. The potato dextrose agar (PDA) medium
with R. solani AG-3 TB (6 mm diameter) were inoculated on
the acupuncture point and the cotton with sterile water was
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used for moisturizing. A time course study was performed by
acupuncture inoculating R. solani YC-9 on the 5th and 6th leaf
of tobacco variety Yunyan 87 (one of the commonly cultivated
susceptible variety) at the 9th leaf stage, and harvested at 0,
6, 12, 24, 36, 48, 72 hpi. The center of the acupuncture part
was taken, which was drilled with a 1.5 cm diameter punch,
then the inoculated leaves were collected and frozen with liquid
nitrogen. Four leaves were inoculated per tobacco and each leaf
was inoculated four acupuncture points. A total of 105 tobacco
plants were inoculated at 0, 6, 12, 24, 36, 48, 72 hpi, among
which, 15 tobacco plants were inoculated at each time point
and five of them were measured once as one biological replicate.
Tobacco leaves inoculated with PDA medium serve at 0, 6, 12,
24, 36, 48, 72 hpi as mock treatment, the method of sample
collection was the same as above. At the same time, the fungi
were cultivated at PDA (0, 6, 12, 24, 36, 48, and 72 h), which
were taken as the fungal control group for subsequent analysis.

RNA extraction, library preparation,
and sequencing

Total RNAs were extracted from the fungus inoculated leaf
tissues at each time point using TRIzol Reagent (Invitrogen cat.
NO.15596026). All the RNA samples were treated with DNase
prior to mRNA isolation and sequencing, then the quality was
determined using NanodropTM One Cspectrophotometer. And
the 1.5% agarose gel electrophoresis using to determine the
RNA integrity and using the Qubit 3.0 to quantify the final
qualified RNAs. The total RNAs were subjected to stranded
RNA sequencing library preparation. Each sample mentioned
above was measured one time as one biological replicate. The
generation sequencing library was constructed followed the
Illumina’s recommendations. Oligo (dT) was used to purify
poly (A)-containing mRNA from total RNA. Then the purified
mRNA was fragmented and reverse transcribed to cDNAs.
The short fragments were connected with adapters at both
ends. Thereafter, the adaptor-ligated cDNA was performed
using AxyPrep Mag PCR clean-up (Axygen) and recovered the
fragments of ∼360 bp. The products were purified and enriched
by PCR (11 cycles), and generated the indexed double-stranded
cDNA library. The cDNA libraries were analyzed by Agilent
2100 Bioanalyzer and quantified by a Qubit 3.0 Fluorometer
(Invitrogen, Carlsbad, CA, USA). Subsequently, the libraries
were sequenced by paired-end sequencing under the platform
of an Illumina HiSeq 6000 (SeqHealth Co., Ltd, Wuhan, China).

RNA-seq data analysis and gene
annotation

For transcriptomic analysis of R. solani AG-3 TB, raw
sequencing data was first filtered by fastp (version 0.23.0)

(Chen S. et al., 2018), low-quality reads were removed and the
reads with adaptor sequences were trimmed. Then clean and
deduplicated data were mapped to the reference genomes of
Nicotiana tabacum from https://ftp.ncbi.nlm.nih.gov/genomes/
all/GCF/000/715/135/GCF_000715135.1_Ntab-TN90/using
STAR software (version 2.5.3a) with default parameters (Dobin
et al., 2013) to remove the host transcripts. Then unmapped
reads were de novo assembled by Trinity with the default
parameters (Grabherr et al., 2011). Sequencing reads were
mapped back to the assembled transcripts for assessing the
quality of the transcriptome assembly using the Bowtie2
(Langmead and Salzberg, 2012). The longest transcripts of the
same genes were screened as the unigenes for annotation and
DEG analysis. For functional annotations of the unigenes, the
protein databases Nr (NCBI non-redundant protein database),
UniProt (universal protein database), Pfam (homologous
protein family), eggNog (orthologous groups of genes), GO
(Gene Onotology), and KEGG (Kyoto encyclopedia of genes
and genomes) were used to infer the amino acid sequences.

Differentially expressed gene analysis

The reads per kilobase per million mapped reads (RPKM)
were used to compare the levels of differentially expressed genes
(DEGs). Each sample in different time points (0, 6, 12, 24, 36,
48, and 72 hpi) was compared with the control. The tool of
the EdgeR package (version 3.12.1) was utilized to identify the
expression of DEGs (Robinson et al., 2010; McCarthy et al.,
2012). The p value cut-off of 0.05 and a fold-change cut-off
of 2 was used to determine the statistical significance of gene
expression differences. The gene ontology (GO) analysis and
Kyoto encyclopedia of genes and genomes (KEGG) enrichment
for DEGs were analyzed by KOBAS software (version: 2.1.1)
with a p value cut-off of 0.05 to determine the statistically
significant enrichment (Wu et al., 2006).

Secretory protein prediction

The screening of secretory proteins was performed based
on the presence or absence of the predicted coding sequence
of the signal peptide, transmembrane domain, ω-sites for
glycosylphosphatidylinositol (GPI) anchor, transit peptides
to mitochondrion and nuclear localization signal (Zheng
et al., 2013). SignalP6.01 was used to perform signal peptide
cleavage site prediction. Transmembrane helices in the proteins
were predicted using TMHMM.2 GPI-anchored proteins were
identified using PredGPI.3 Proteins located in the mitochondria

1 https://services.healthtech.dtu.dk/service.php?SignalP-6.0

2 http://www.cbs.dtu.dk/services/TMHMM-2.0/

3 http://gpcr.biocomp.unibo.it/predgpi/pred.htm

Frontiers in Microbiology 03 frontiersin.org

96

https://doi.org/10.3389/fmicb.2022.1001327
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/715/135/GCF_000715135.1_Ntab-TN90/using
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/715/135/GCF_000715135.1_Ntab-TN90/using
https://services.healthtech.dtu.dk/service.php?SignalP-6.0
http://www.cbs.dtu.dk/services/TMHMM-2.0/
http://gpcr.biocomp.unibo.it/predgpi/pred.htm
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-1001327 October 5, 2022 Time: 16:23 # 4

Li et al. 10.3389/fmicb.2022.1001327

were determined by TargetP.4 Nuclear localization signal
was predicted using NetNES.5 The proteins that comprise
signal peptide cleavage sites and nuclear localization signal,
helices without transmembrane domain together with the
GPI-anchored proteins were retrieved as secreted proteins.
Effector candidates were searched from among the predicted
coding sequences of the transcriptome contigs using effectorP.6

Localization of probable effectors was predicted using the
apoplastP.7

Real-time quantitative PCR of
candidate differentially expressed
genes

To analyze the gene expression of the selected DEGs
from each time point, Real-time quantitative PCR (qRT-PCR)
was performed using a real-time PCR system Q711 (Vazyme
Biotechnology, Nanjing, China) according to the manufacturer’s
instruction. The quantitative PCR reaction was carried out in a
20 µl volume containing 1 µl of reverse transcription product,
10 µl of ChamQ Universal SYBR qRCR Master Mix, 0.4 µl
of each primer (10 µM) and 8.2 µl of dd H2O. The reaction
conditions for RT-qPCR including three steps (Step 1: 95◦C,
30s, Reps1; Step 2: 95◦C, 10s, 60◦C, 30s, Reps40; Step 3: 60–
95◦C, increment 0.5◦C/5s, Reps1). To verify gene expression of
R. solani AG-3 TB during the growth and invasion stage, total
cDNA was extracted from total RNA by time course (0, 6, 12,
24, 36, 48, and 72 hpi). The primers were designed by Primer
Premier 5 (Supplementary Table 1).

Results

Tissue infection, transcriptome
sequencing, de novo assembly and
differentially expressed genes analysis

A time course observation and sampling were conducted
to clarify the induction of host symptoms and gene expression
of pathogenic fungus R. solani AG-3 TB at different infection
stages. The results indicated that tobacco leaves with pathogen
did not show observable symptoms at 6 and 12 hpi, while the
obvious yellow halo can be observed at the inoculated site at
24 hpi. The symptom aggravated with the appearance of wheel
pattern after 72 hpi (Figure 1A). The diameters of the necrotic

4 https://services.healthtech.dtu.dk/service.php?TargetP-2.0

5 https://services.healthtech.dtu.dk/service.php?NetNES-1.1

6 http://effectorp.csiro.au/

7 http://apoplastp.csiro.au/data.html

lesions were 0.0036, 0.0152, 0.1709, 0.2633, 0.3939, 0.6434 cm at
6, 12, 24, 36, 48, 72 hpi, respectively (Figure 1B).

Thereafter, an integrated transcriptomic analysis was
conducted to globally reveal the crucial genes and pathways
involved in R. solani AG-3 TB infection on N. tabacum at
different stages, specifically at 6, 12, 24, 36, 48, and 72h after
pathogen inoculation. The assembly statistics of R. solani AG-
3 TB infection showed a total of 35,415,039 contigs, lengths of
N50 and N90 with 1487 and 321 bp, respectively, with 49.06%
GC content, of which the GC content maximum was 87.07% and
the GC content minimum was 22.52% (Table 1).

The six time points were designated as the early stage
(6–12 hpi), middle stage (24–36 hpi), and late stage (48–72
hpi) after R. solani AG-3 TB inoculation. The DEGs change
showed that 37,999 DEGs were detected in the early stage,
including 18,317 up-regulated genes and 19,682 down-regulated
genes after R. solani AG3 TB inoculation. In contrast, the
number of DEGs were 43,371, including 28,133 up-regulated
and 15,238 down-regulated genes in the middle stage, which
comprised largest amounts of DEGs (Supplementary Figure 1
and Supplementary Table 2). These results suggested that the
number change of DEGs have the difference during in various
hours post inoculation, which may be related to pathogenic
factors secreted of R. solani AG-3 TB.

Enrichment analysis of differential
gene pathway

Functional enrichment analysis is an important way
to retrieve some significant DEGs for organisms. The
Gene Ontology related to three items including biological
processes, molecular function and cellular components
was analyzed. The results showed that DEGs involved in
biological processes including the fatty acid metabolism
process, pyridine-containing compound metabolic process
and cellular components including proton-transporting V-type
ATPase complex and cytosolic were significantly enriched
compared with other items in the early infection stage of
R. solani AG-3 TB (6–12 hpi) (Supplementary Figure 2A).
At 24 hpi after the fungus inoculation, the critical items
such as biological processes involved in cellular carbohydrate
biosynthetic process, response to stress were enriched, and
cell periphery related to cellular components was enriched
(Supplementary Figure 2B). In addition, the MAPK cascades
involved in biological processes was significantly enriched in the
late stage of infection (48 –72 hpi) (Supplementary Figure 2C).

The KEGG pathway analysis indicated that the enrichment
pathways of R. solani AG-3 TB were diverse in different
infection stages. The results showed that amino sugar and
nucleotide sugar metabolism, carbon metabolism, biosynthesis
of amino acids and other pathway were significantly enriched
in the early infection stage (6 –12 hpi) (Figure 2A). In

Frontiers in Microbiology 04 frontiersin.org

97

https://doi.org/10.3389/fmicb.2022.1001327
https://services.healthtech.dtu.dk/service.php?TargetP-2.0
https://services.healthtech.dtu.dk/service.php?NetNES-1.1
http://effectorp.csiro.au/
http://apoplastp.csiro.au/data.html
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-1001327 October 5, 2022 Time: 16:23 # 5

Li et al. 10.3389/fmicb.2022.1001327

FIGURE 1

Symptoms change of Nicotiana tabacum inoculated with R solani AG-3 TB strain at different infection stages. (A) The symptoms on the Yunyan
87 leaf at 6, 12, 24, 36, 48, 72 hours post inoculation (hpi), respectively. (B) Measurement of the lesion diameter (cm) at 6 (control), 12, 24, 36, 48,
72 hpi. The asterisks show the statistical significances using the two-tailed t-test (*p < 0.05, **p < 0.01, ***p < 0.001).

contrast, the ubiquitin mediated proteolysis pathway was
the most significantly enriched item in the middle stage
(Figure 2B). Specifically, pyrimidine metabolism pathway
was only enriched in the middle infection stage (24 hpi).
Furthermore, the amino sugar and nucleotide sugar metabolism,
and biosynthesis of amino acid pathways were enriched, while
the carbon metabolism pathway was not enriched at 72 hpi stage
(Figure 2C).

Gene expression involved in the
biosynthesis of fungal toxin

The synthesis of fungal toxin PAA requires five important
enzymes, including shikimate kinase, 3-phosphoshikimate 1-
carboxyvinyltransferase (EPSP synthase), chorismate synthase,

TABLE 1 Data statistics of the transcriptome sequencing in R solani
AG-3 TB subgroups.

Type Trinity Unigene

N50 2126 1487

N90 554 321

average length 1293.52 826.3

Max length 17497 17497

Min length 201 201

Total base 108235063 35415039

Total contigs 83675 42860

GC content (%) 49.36 49.06

GC content max 87.07 87.07

GC content min 22.52 22.52

prephenate dehydrogenase and prephenate dehydratase, of
which, shikimate is used as the initial material and the phenyl-
pyruvate is the precursor of PAA (Cook et al., 2016; Figure 3A).
In the DEGs during R. solani AG-3TB infection, the critical
enzymes required for PAA synthesis were retrieved, and their
expression levels were gradually increased in different infection
stages. A total of 10 DEGs were selected and the expression
levels of chorismate synthase, prephenate dehydrogenase were
increased in the early and middle stage, while those of shikimate
kinase, EPSP synthase and prephenate dehydratase were up-
regulated in the middle and late stage of infection (Figure 3B).
Specifically, the expression of five enzyme genes in PAA
synthesis pathway increased to the highest levels in the middle
infection (24 hpi).

Prenyltransferases (DMATSs) and polyketide synthases
(PKSs) are two important enzymes involved in the production
of secondary metabolites (Slot and Rokas, 2010). The number
of DMATSs and PKSs were 11 and 2, and those DMATSs
and PKSs genes expression continuously increased from 24 to
48 hpi stage (Figure 3C). The expression levels of most DMATSs
were increased at 24 hpi and peaked at 48 hpi. As for PKSs,
the expression of DN1756_c0_g1_i1 was increased in the early
stage, while the expression of DN14539_c0_g1_i2 increased
significantly at 48 hpi (Figure 3C).

Gene expression of Rhizoctonia solani
AG-3 pathogenic related enzymes

Carbohydrate-active enzymes (CAZymes) is a large gene
family involved in the construction and breakdown of complex
carbohydrates and glycoconjugates, and mainly comprise

Frontiers in Microbiology 05 frontiersin.org

98

https://doi.org/10.3389/fmicb.2022.1001327
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-1001327 October 5, 2022 Time: 16:23 # 6

Li et al. 10.3389/fmicb.2022.1001327

FIGURE 2

KEGG pathway analysis the DEGs of R solani AG-3 TB at different stage. (A) KEGG pathway analysis at 6 hpi stage. (B) KEGG pathway analysis at
24 hpi stage. (C) KEGG pathway analysis at 72 hpi stage.

FIGURE 3

The DEGs for secondary metabolites production. (A) The biosynthetic pathway for PAA production, including the five key synthetases (shikimate
kinase, EPSP synthase, chorismate synthase, prephenate dehydrogenase, and prephenate dehydratase) of PAA and six synthetic compounds
associated with shikimate 3-phosphate, 5-O-(1-carboxyviny)-3-phosphoshikimate, chorismite, prehenate, phenyl-pyruvate, PAA. (B) The
expression patterns of candidate genes on the five key synthetases of PAA biosynthetic pathway. The heatmap describes the expression of
candidate genes (RPKM in log2-scale) associated with shikimate kinase, EPSP synthase, chorismate synthase, prephenate dehydrogenase, and
prephenate dehydratase. The red circles next to the heatmap were candidate genes tested by qRT-PCR. (C) The expression patterns of
candidate genes on DMATSs and PKSs. The heatmap describes candidate gene expression of DMATSs and PKSs.

Glycoside hydrolases (GHs), Glycosyl transferases (GTs),
Polysaccharide lyases (PLs), Carbohydrate esterases (CEs) and
Carbohydrate-binding modules (CBMs) (Cantarel et al., 2009).

The transcriptomic results showed that the gene expression
levels of 12, 13, 51, 55, 69, and 53 CAZyme families were
gradually up-regulated from the 6 to 72 hpi (Figure 4A). In
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FIGURE 4

Changes of different enzyme genes during various infection stages. (A) The number of CAZymes at different infection stage. (B) The number of
CWDEs at different infection stages. (C) Expression patterns of candidate genes on CAZymes (glycosy hydrolase family 45, glycosy hydrolase
family 18, glycosy hydrolase family 16, polysaccharide lysae family 1, carbohydrate esterase family 4, carbohydrate-binding module family 12),
CWDEs (xylanase, cutinase, polygalacturonase PG1) and respiratory burst oxidase homologs (catalase, glutathione S-transferase). The heatmap
describes the enzyme gene expression at different stages (RPKM in log10-scale). The red circles next to the heatmap were candidate genes
tested by qRT-PCR.

the early infection stage (6–12 hpi), the secretion of CAZymes
was low. Then, the number of CAZymes related DEGs rapidly
increased at 24 hpi and peaked at 48 hpi (Figure 5). The
quantities of GHs and PLs were slightly higher than other
components during R. solani AG-3 TB infection. Results of the
heatmap indicated that expression levels of GH45, GH18 and
GH16 genes were progressively increased in the early infection
stage, while those of PL1, CE4 and CBM12 genes were increased
in the middle and late infection stages, respectively (Figure 4C).

Cell wall-degrading enzymes (CWDEs) produced by plant
pathogenic fungi, especially those without special penetration,

can damage the cell wall polymers (Kubicek et al., 2014).
Among these fungi, R. solani can produce CWDEs including
pectinase, xylanase, laccase, cutinase and cellulase (Zheng
et al., 2013). Here, the pectinase, xylanase, laccase, cutinase
and cellulase of R. solani AG-3 TB were retrieved from
the RNA-seq (Supplementary Figure 3). The result indicated
that expression of 7 CWDEs genes (pectinase and cellulose)
were increased in the initial stage of infection (6 hpi),
while 79 total genes including pectinase, xylanase, laccase,
cutinase and cellulase were significantly increased at 72
hpi (Figure 4B). According to the expression levels of
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FIGURE 5

The heatmap of the expression levels of CAZymes genes in
different stages expression patterns of candidate genes (RPKM in
log10-scale) for CAZymes were represented in heatmaps
(numerals indicate hours after inoculation onto tobacco).

CWDEs, xylanase (TRINITY_DN21213_c0_g1_i1) and cutinase
(TRINITY_DN2158_c0_g1_i1) were increased at 24 hpi, while
those of the PG1 (TRINITY_DN22192_c0_g1_i1) were up-
regulated at 6 hpi (Figure 4C).

When pathogenic fungi infect plants, the respiratory burst
oxidase homologs play an important role to increase their
pathogenicity (Ghosh et al., 2014). To clarify the gene change
involved in respiratory burst oxidase homologs during the
interaction between R. solani AG-3 TB and tobacco, the catalase,
glutaredoxin, glutathione peroxidase, glutathione S-transferase,
copper/zinc superoxide dismutase, and iron/manganese
superoxide dismutase were retrieved for further analysis. The
results showed that the expression of respiratory burst oxidase
homologs increased exponentially in the middle and late
stages of infection (Supplementary Figure 4). Additionally,
the expression of catalase (TRINITY_DN19585_c0_g1) was
significantly up-regulated in the middle stage of infection
(36 hpi), and the expression of glutathione S-transferase
(TRINITY_DN14304_c0_g1) was increased in the late stage of
infection (48 hpi) (Figure 4C).

The gene sequences of Rhizoctonia
solani AG-3 TB for the secretomes

The secretion of biologically active proteins is a fundamental
infection strategy during the interaction between plants and
fungi (Lo Presti et al., 2015). Secretomes of fungi play important
roles in infection, colonization and pathogenicity (Xia et al.,
2020). We adopted the classical secretion pathway (searching
protein domains) as well as the apoplastic and cytoplasmic
effectors (Effectrop 2.050 and ApoplastP) to retrieve the secreted
proteases during the R. solani AG-3 TB infection. A total of
807 potential secretomes were retrieved, and 124 apoplastic
effectors and 236 cytoplasmic effectors were predicted. There
are few reports on apoplastic and cytoplasmic effectors of
fungus, but some report had revealed that cytoplasmic effectors
in phytophthora sojae encoding conservative sequences such
as RxLR can cause tissue necrosis of plants (Zhang et al.,
2015; Sperschneider et al., 2018). A total of 13 cytoplasmic
effectors and 28 apoplastic effectors were retrieved, and
most of these effectors can be classified in to serine protease
(TRINITY_DN17844_c0_g3_i1), eukaryotic metallothionein
(TRINITY_DN22450_c1_g5_i2), polysaccharide deacetylase
(TRINITY_DN3377_c0_g1_i1), acetylxylan esterase (TRINI
TY_DN7106_c0_g1_i1), extracellular metalloproteinases
(TRINITY_DN18673_c0_g3_i1), and deuterolysin
metalloprotease (TRINITY_DN19525_c0_g1_i1) families
(Supplementary Table 3). The expression analysis of pathogenic
protease genes showed that the candidate cytoplasmic effector
genes were significantly up-regulated at the late infection stage
(48 hpi), while the genes of apoplastic effector were enriched
significantly in the middle and late infection stages (24, 48 hpi)
(Figure 6).

Small cysteine-rich proteins play functional roles in the
molecular interaction between fungi and plant (Stergiopoulos
and de Wit, 2009), and generally have a classical structural
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FIGURE 6

Expression patterns of candidate apoplastic and cytoplasmic effectors The heatmap represents apoplastic and cytoplasmic effectors genes
expression (RPKM in log10-scale). The genes retrieved from Pfam, Blast and reads counts (>50). The up-regulated clusters were showed in dot
black boxes. The red circles next to the heatmap were candidate genes tested by qRT-PCR.

characteristic with a less than 300aa protein and more than 4%
cysteine (Yamamoto et al., 2019). Here, a total of 78 potential
small cysteine-rich proteins were retrieved from R. solani
AG-3 TB data (Supplementary Table 4). It should be noted
that most of the small cysteine-rich proteins are unnamed
protein products, which still require further investigation for
clarification of their functions.

qPCR verification of transcriptome
up-regulated genes

We chose the DEGs with large difference expression
and revealed the potential critical roles (CAZymes, toxins
and effectors) during R. solani AG-3 TB infection in different

infection stages (6 hpi, 12 hpi, 24 hpi, 36 hpi, 48 hpi, 72 hpi). The
expression levels of DN3377 (TRINITY_DN3377_c0_g1_i1),
DN14681 (TRINITY_DN14681_c0_g1_i2), DN17797 (TRINI
TY_DN17797_c0_g2_i1), DN18673 (TRINITY_DN18673_c0
_g3_i1), DN20404 (TRINITY_DN20404_c0_g2_i1), DN20778
(TRINITY_DN20778_c0_g1_i1), DN29708 (TRINITY_DN2
9708_c0_g1_i1), DN21213 (TRINITY_DN21213_c0_g1_i1),
DN18070 (TRINITY_DN18070_c0_g1_i4), DN21085(TRIN
ITY_DN21085_c0_g1_i1) were verified by qRT-PCR. The
result indicated that CAZymes (DN29708, DN3377, DN20778,
DN21213, and DN17797) expression were diverse, but increased
levels were found for those five genes in the middle and late
infection stages. EPSP synthase (DN14681) and chorismite
synthase (DN18070) were two important genes involved in PAA
synthesis pathway, and their expression started increasing at 24
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hpi. The 36 hpi and 48hpi were important infection stages for
secretory protein (DN20404, DN18673, and DN21085). These
results indicated that the pathogenic genes expression obviously
changed and also proved the reliability of transcriptomics
during R. solani AG-3 TB infection (Figure 7).

Discussion

Rhizoctonia solani is an important group of saprophytic
soilborne basidiomycetes that causes significant losses to a
variety of crops. The complex multiple AGs and multi-nuclear
nature of R. solani make it difficult to thoroughly understand
its pathogenesis and development mechanism. Therefore,
clarification of gene expression patterns in the development and
infection of R. solani is crucial for the following research on the
pathogenic mechanism and effective control of the fungus.

Before doing transcriptomic analysis, the AG3-T58 (Kaushik
et al., 2020) as the reference genomes was mapped with
the sequencing data of AG-3 TB. But the mapped rates
of reads were low (<41%) (Supplementary Table 5). The
low mapping rates may suggest that the reported strains
with genetic data is quite distinct from AG-3 TB. Therefore,
we used the transcriptome assembly from RNA-Seq data
without reference genome. And according to the way of RNA-
Seq data analysis without a reference genome, the quantity

8 https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/905/219/615/GCA_
905219615.1_AG3-T5/

of DEGs was large than other R. solani. The reason for
this result related to the fragmented genes and isoform
genes were produced caused an increase in the number of
DEGs.

In this study, many lines of critical DEGs in different
stages of R. solani AG-3 TB infection were investigated, and
showed various enrichment of the pathways. In the early
infection stage, fatty acid metabolism, amino sugar, nucleotide
sugar metabolism, carbon metabolism and biosynthesis of
amino acids were significantly enriched. Such metabolisms
have been indicated to correlate with branching, initiation
and elongation, cell wall and biofilm matrix of fungal hyphae
(Chen et al., 2020; Liboro et al., 2021). In the middle stage
of infection, the cellular carbohydrate biosynthetic process
of R. solani AG-3 TB began to be enriched. One gene in
cellular carbohydrate biosynthetic process was predicted as
trehalose-phosphate phosphatase (TRINITY_DN20403_c0_g1),
and it associated with the development of sclerotia, stress
response, and protection of cells from hydrogen peroxide in
some pathogenic fungi (Jiang et al., 2017; Wang et al., 2018).
Furthermore, ubiquitin-proteasome mediated protein turnover
and the pyrimidine metabolic pathway was significantly
enriched in the middle stage, which have a close relation to
stress response, host adaptation and fungal pathogenesis (Qin
et al., 2020). Herein, the detailed results of DEGs variation
and pathway analysis indicated that mycelial growth and
development should occur in the early stage of infection (6–12
hpi), while the crucial pathogenic stage of R. solani AG-3 TB
may occur in the middle and late stages of infection.

FIGURE 7

The expression levels of candidate genes expression patterns of candidate genes associated with toxins, enzymes, and secreted proteins using
quantitative real time RT-PCR verification at 0, 6(control), 12, 24, 36, 48, and 72 hours after inoculation. The asterisks showed the statistical
significances using the two-tailed t-test (*p < 0.05, **p < 0.01 ***p < 0.001).
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Phenylacetic acid is an organic compound that can be
produced by many kinds of fungi with various functions (Moore
and Towers, 1967; Moore et al., 1968; Siddiqui and Shaukat,
2005). For example, PAA is the side chain precursor in the
biosynthesis of penicillin (Mohammad-Saeid et al., 2018), and
the catabolism of PAA is closely related to the virulence of
Burkholderia cenocepacia (Lightly et al., 2019). PAA was also
indicated to be an important signal molecule during microbial
interactions with their hosts (Lightly et al., 2017). In a previous
study, we isolated and purified a PAA derivative, namely 3-
methoxyphenylacetic acid (C9H10O3) from R. solani AG-3 TB,
and confirmed its structure using thin layer chromatography
(TLC), high performance liquid chromatography (HPLC), IR
and NMR spectra (Hou, 2018). Importantly, five enzymes
including shikimate kinase, EPSP synthase, chorismate synthase,
prephenate dehydrogenase and prephenate dehydratase were
considered to play crucial roles in the synthesis of PAA (Cook
et al., 2016). Among those genes, prephenate dehydrogenase
is an important enzyme associated with virulence and defense
in fungi (Lopez-Nieves et al., 2019). A study showed that the
expression of prephenate dehydratase of R. solani AG-1 IA was
markedly increased at 18 h after infection (Zheng et al., 2013).
In this study, we investigated the time-course expression of the
five genes involved in PAA synthesis of R. solani AG-3 TB,
and noted most of these genes were rapidly up-regulated at 24
hpi, which may be a critical time point for toxin production
of the fungus. While precise detection of PAA at each infection
stage should be conducted in the following study to clarify this
hypothesis. In addition, many lines of secondary metabolites
may also play roles in R. solani AG-3 TB infection. We
herein investigated several ‘backbone’ enzymes for the synthesis
of secondary metabolites from R. solani AG-3 TB, including
prenyltransferases (DMATSs) and polyketide synthases (PKSs)
(Slot and Rokas, 2010). Studies have indicated that DMATSs
are involved in the production and secretion of indole alkaloids
secondary metabolites (Julia et al., 2016; Arndt et al., 2017),
while the PKSs are required for pigment production in fungi,
which have a central role in the pathogenicity of fungi (Chen X.
et al., 2018; Liu et al., 2021). In this study, our results showed
that expression levels of DMATSs and PKSs genes significantly
increased in the early and middle infection stage. These results
collectively suggested that R. solani AG-3 TB may produce
secondary metabolite classes or complex compounds to damage
the plant or play the function of parasite life cycle.

Cell wall degrading enzymes (CWDEs) secreted by
pathogenic fungi are advantageous to the colonization,
expansion and spread of fungi. Furthermore, the amount and
species of CWDEs produced by the pathogenic fungi during
infection differ between monocot or dicot host plants (Cuomo
et al., 2007; King et al., 2011). The fungus Macrophomina
phaseolina was reported to secrete 49 kinds of CWDEs involved
in cellulose and homogalacturonan degradation when infecting
sorghum (Bandara et al., 2018). In the study of genome analysis

interaction between R. solani AG-1 IA and rice, the pectinase
genes, xylanase genes, and laccase genes can be produced by
R. solani AG-1 IA, among which the laccase genes, pectinase
genes may play specific roles to necrotrophic life cycle (Zheng
et al., 2013). In addition, treatment in vitro expressed pectinase
PG2 of R. solani AG-1 IA can cause necrosis symptoms in the
rice tissue (Chen et al., 2020). In the previous study, we have
shown that the pectinase (PG, PMG, PGTE, and PMTE) and
cellulase (Cx, β-Glucosidase) of R. solani AG-3 TB have the
highest activity in the culture medium of Marcus in 18 hpi
during R.solani AG-3 TB infection (Fu, 2011). In this study, the
results of RNA-seq and qRT-PCR demonstrated that expression
levels of 7 CWDEs in R. solani AG-3 TB were increased in 6
hpi, while those of 79 CWDEs (pectinase, xylanase, laccase,
cutinase, and cellulase) were significantly up-regulated in 48-72
hpi. These results systemically investigated the expression of
these critical CWDEs at each infection stages, and suggested
their possible functions in the pathogenesis of R. solani AG-3
TB as well as the induction of necrotic symptoms of the
host.

Moreover, we also found that respiratory burst oxidase
homologs genes including catalase, glutaredoxin, glutathione
peroxidase, glutathione S-transferase, copper/zinc superoxide
dismutase, and iron/manganese superoxide dismutase were
differentially regulated in the transcriptome of R. solani
AG-3 TB infection. The respiratory burst oxidase homologs
were reported to detoxify ROS produced by plant (Ghosh
et al., 2014). Studies have shown that the fungal respiratory
burst oxidase homologs were involved in the colonization of
necrotrophic fungi as well as the induction of host necrotic
symptoms (Kámán-Tóth et al., 2018). An RNA-seq study
indicated that the expression levels of two respiratory burst
oxidase homologs genes of R. solani AG-1 IA were increased
during ROS production (Zhang et al., 2017), and the oxidases
were reported to be associated with the colonization of
this fungus (Pauly, 2012). In this study, the expressions of
respiratory burst oxidase homologs genes were increased in
the middle and late infection stage, which indicated that
these critical genes may be associated with the detoxification
and oxidative stress for the pathogen of tobacco target
spot.

Generally, pathogens can produce many kinds of effectors
that are particularly important in promoting pathogen
expansion and inhibiting host defense (Giraldo and Valent,
2013; Lo Presti et al., 2015). R. solani has become one of the
most devastating plant fungal pathogens in the past decade
and it is difficult to clarify its genetic characteristics and
pathogenicity because of anastomosis groups and multinuclear
nature (Yamamoto et al., 2019). During genomic analysis
of R. solani AG-1 IA, a total of 965 secreted proteins were
predicted, including 103 potential small cysteine-rich proteins
(Zheng et al., 2013). In contrast, little is known about the
secreted proteins as well as the effectors produced by R. solani
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AG-3 TB. In this study, 807 possible secretory proteins were
predicted from R. solani AG-3 TB, which comprise possible 124
apoplastic effectors and 236 cytoplasmic effectors. In addition,
41 genes were predicted as deuterolysin metalloprotease, serine
protease, and extracellular metalloproteinases. The fungal
deuterolysin metalloprotease (M35) family was reported to be
involved in cell wall degradation, epidermal growth inhibition,
and cell activity of insects (Huang et al., 2020). The serine
protease is an important pathogenic marker for Alternaria
solani (Chandrasekaran et al., 2014). We presumed that these
deduced secreted proteins in pathogen of tobacco target spot
may serve as potential effectors that may play important roles
in the pathogenicity of fungus, and remains to be further
investigated in the following work.

In this study, we conducted integrated transcriptomic
analysis and revealed many lines of potentially critical genes
involved in the pathogenesis of R. solani AG-3 TB on Nicotiana
tabacum at different infection stages. The results showed that
various enzymes, toxins as well as effectors may play different,
but critical roles in the interaction between pathogen and
plant. Based on the results of systemic analysis of RNA-seq,
we proposed the pathogenic mechanisms of R. solani AG-
3 TB infecting plants. The hypha of R. solani AG-3 TB
should begin to develop and grow in the leaves during the
early infection stage (6–12 hpi). Then, the critical toxins and
effectors may synergistically suppress plant defense response
and regulate the infection of R. solani AG-3 TB in the
middle stage (24–36 hpi). At the late stage (48–72 hpi),
the plant cell structure and tissue were continuously eroded
by toxins and CWDEs, which resulted in necrosis in leaves
(Supplementary Figure 5). These results collectively provide
critical insights into many lines of potentially functional genes
as well as the pathways involved in the pathogenesis of tobacco
target spot, and provide valuable theoretical basis for the
accurate prevention and control of the disease. This is the
first time to predict potentially functional genes for AG-3
TB, the agent of tobacco target spot by the transcriptome
analyses. According to our results, the functional genes between
AG-1 IA and AG-3 TB have big difference, for instance,
the number of enzymes and effectors in AG-1 IA is larger
than AG-3 TB (Zheng et al., 2013). Moreover, the PAA is
a potential pathogenicity toxin in AG-1 IA, AG-3 TB, and
AG-3 PT (Kankam et al., 2016; Yamamoto et al., 2019).
Therefore, comparison the difference in candidate effectors or
toxin genes from different AG strains will be an important
aspect to investigate the genetic characteristics and pathogenic
differences.
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Biocontrol potential of 
Pseudomonas rhodesiae GC-7 
against the root-knot nematode 
Meloidogyne graminicola 
through both antagonistic 
effects and induced plant 
resistance
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Plant-parasitic nematodes (PPNs) cause serious damage to agricultural 

production worldwide. Currently, because of a lack of effective and 

environmental-friendly chemical nematicides, the use of microbial 

nematicides has been proposed as an eco-friendly management strategy to 

control PPNs. A nematicidal bacterium GC-7 was originally isolated from the 

rice rhizosphere, and was identified as Pseudomonas rhodesiae. Treatment 

with the fermentation supernatant of GC-7 in vitro showed a highly lethal effect 

on second-stage juveniles of Meloidogyne graminicola, with the mortality rate 

increasing to 95.82% at 24 h and egg hatching significantly inhibited, with a 

hatch inhibition rate of 60.65% at 96 h. The bacterium significantly reduced 

the level of damage caused by M. graminicola infestations to rice (Oryza 

sativa) in greenhouse and field experiments. Under greenhouse conditions, 

the GC-7 culture efficiently reduced the gall index and nematode population 

in rice roots and soils, as well as inhibited nematode development compared 

to the control. Under field conditions, application of the GC-7 consistently 

showed a high biocontrol efficacy against M. graminicola (with a control 

efficiency of 58.85%) and promoted plant growth. In addition, the inoculation 

of GC-7  in M. graminicola-infested rice plant fields significantly suppressed 

final nematode populations in soil under natural conditions. Furthermore, 

activities of plant defense-related enzymes, peroxidase, polyphenol oxidase, 

and phenylalanine ammonia-lyase were remarkably increased in plant roots 

treated with GC-7 compared with roots that were challenge to M. graminicola. 

Moreover, quantitative real-time PCR analysis showed that GC-7 significantly 

enhanced the expression of defense genes (PR1a, WRKY45, JaMYB, AOS2, 

ERF1, and ACS1) related to salicylic acid, jasmonic acid, and ethylene signaling 

pathways in rice roots after inoculation with GC-7 at different levels. The 
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results indicated that GC-7 could be an effective biological component in the 

integrated management of M. graminicola infecting rice.

KEYWORDS

Meloidogyne graminicola, biological control, nematicidal activity, defense enzyme, 
systemic resistance

Introduction

Plant-parasitic nematodes (PPNs) are one of the most 
destructive groups of soilborne pathogens and are responsible for 
annual agricultural losses estimated at USD 358.24 billion 
worldwide in past years (Abad et al., 2008; Abd-Elgawad, 2022). 
The most damaging and yield-limiting group among PPNs are the 
root-knot nematodes (RKNs), which have a broad host range, 
including many economically important crops (Abad et al., 2003; 
Forghani and Hajihassani, 2020). The rice RKN Meloidogyne 
graminicola is one of the most devastating pests of rice, causing 
substantial yield losses in rice-producing areas, especially in Asia 
(De Waele and Elsen, 2007; Kyndt et al., 2012; Mantelin et al., 
2017). M. graminicola is an obligate, sedentary endoparasite that 
occurs across a range of different rice ecosystems. Although it 
cannot penetrate rice roots in flooded soils, this RKN can survive 
long periods in anoxic environments and rapidly reinvade roots 
whenever soils are drained (Bridge and Page, 1982). The infective 
second-stage juvenile (J2) of M. graminicola penetrates rice roots 
and induces the formation of giant cells as nutrition resource 
throughout its life cycle. The infection is characterized by hook-
shaped galls (root-knots) mainly on the root tips (Kyndt et al., 
2013). Once established in the roots, J2s become sedentary and 
undergo three molts to become third (J3) and fourth stages (J4) 
and adult stage. Females remain in the galled roots, and laying 
eggs inside the root. On average, M. graminicola complete life 
cycle in about 19 to 27 days during the early summer, but the 
period can extend by 5 to 12 days (Khan et al., 2021; Rusinque 
et al., 2021). M. graminicola is difficult to control because it has a 
short generation and high reproduction rate (Jang et al., 2016). At 
present, the main strategy for controlling PPNs relies on chemical 
nematicides; however, they are often highly toxic to human health 
and the environment, causing multi-drug resistance in nematodes 
(Medina-Canales et al., 2019; Rajasekharan et al., 2020). Therefore, 
environmentally-friendly treatments targeted towards nematodes 
are urgently needed.

Microorganisms have shown great potential as biological 
agents for controlling nematode infections. Bacteria, in particular, 
have received considerable attention (Abd-Elgawad, 2021; Khanna 
et al., 2021; Migunova and Sasanelli, 2021; Zhao et al., 2021). In 
recent years, studies have shown the efficacy of several bacteria to 
control nematodes, and the use of plant growth-promoting 
rhizobacteria (PGPR) is considered as the most applicable and 
promising strategy for PPN biocontrol (Hu et al., 2017; Zhao et al., 

2018; Liu et al., 2020). Previous studies have shown that Bacillus 
cereus and Burkholderia arboris isolated from the plants’ 
rhizosphere significantly induced mortality in J2s of Meloidogyne 
incognita, and markedly reduced nematode infection in host plant 
roots (Yin et  al., 2021; Zhang et  al., 2022). Similarly, Bacillus 
altitudinis can promote plant growth and showed high nematicidal 
activity against Meloidogyne javanica (Antil et al., 2022). Moreover, 
Bacillus megaterium and Klebsiella pneumoniae significantly 
inhibit the invasion, development, and reproduction of Heterodera 
glycines by inducing systemic resistance, promoting soybean 
growth (Liu et al., 2018; Zhou et al., 2021). So far, there are few 
microbial biological based nematicides, Bacillus subtilis and 
B. amyloliquefaciens are prevalent in the market of products used 
to promote plant growth and biological control (Migunova and 
Sasanelli, 2021). However, there was some limitations, including 
their relative low efficiency and high inconsistency in agricultural 
environments (Liang et al., 2019).

Biocontrol bacteria inhibit nematode infection via various 
mechanisms, including direct antagonisms (e.g., predation, 
competition for nutrients, and release of toxic metabolites) and 
indirect antagonisms through the induction of host systemic 
resistance (Bukhat et al., 2020; Forghani and Hajihassani, 2020). 
Typically, plants have two types of induced resistance, termed 
induced systemic resistance (ISR) and systemic acquired resistance 
(SAR) (Vallad and Goodman, 2004). ISR is activated by 
nonpathogenic rhizobacteria such as specific PGPR and relies on 
the jasmonic acid (JA)/ethylene (ET) signaling pathways in plants 
(Subedi et  al., 2020). Generally, SAR is caused by different 
necrotizing pathogens and is dependent on the signaling molecule 
salicylic acid (SA; Conn et al., 2008). A previous study indicated 
that B. cereus Bc-cm103 activated the defense-responsive genes 
related to the SA, JA, and ET signaling pathways in host plants in 
response to M. incognita (Yin et  al., 2021). Ghahremani et  al. 
(2020) reported that Bacillus firmus I-1582 can degrade 
M. incognita eggs by inducing systemic resistance in tomato. The 
expression of JA and SA pathway-related genes were upregulated 
at different times in plants inoculated with I-1582 (Ghahremani 
et al., 2020). In addition, the development of inducible resistance 
in host plants is associated with enhanced activities of plant 
enzymes, including phenylalanine ammonia lyase (PAL), 
polyphenol oxidase (PPO), and peroxidase (POD) (Amil-Ruiz 
et al., 2011). Several studies show the ability of beneficial microbes 
to stimulate the activity of defense enzymes in host plants in 
response to pathogen infection (Narendra Babu et  al., 2015; 
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Salla et al., 2016; de Oliveira et al., 2021; Yan et al., 2021). The 
PGPR Bacillus spp. suppressed Pyricularia oryzae infection in rice 
by elevating the activity of antioxidant enzymes (PAL, PPO, and 
POD) (Rais et al., 2017). Similarly, Pseudomonas spp. effectively 
improved the growth parameters and inhibited the nematode 
infection by upregulating the activities of defense enzymes (SOD, 
POD, and PPO) (Sharma and Sharma, 2016; Khanna et al., 2019). 
Streptomyces spp. have also been reported to markedly increase 
PPO activity in RKN-exposed tomato plants (Ma et al., 2017).

Despite M. graminicola’s widespread occurrence in Asian rice 
production systems, the research carried out on its biological 
control remains limited. To date, only a few fungi and bacteria 
have been reported to possess antagonistic potential against 
M. graminicola and reduce the number of root knots (Padgham 
and Sikora, 2007; Le et al., 2016; Haque et al., 2018; Liu et al., 2019; 
Yang et al., 2020; Khan et al., 2021). Identifying novel nematicidal 
microorganisms and investigating their underlying mechanism 
are necessary for the biological control of M. graminicola and are 
of vital practical and economic significance. The Pseudomonas is 
one of the most frequently studied groups of bacteria used for 
biological control agents. The genus Pseudomonas is gram-
negative, rod-shaped straight or slightly curved cells with polar 
flagella (Sah et  al., 2021). Researchers have indicated that 
biological control by Pseudomonas spp. involves a variety of 
mechanisms, including antibiosis, nutrient competition, and 
induction of host systemic resistance (Walsh et  al., 2001). 
Pseudomonas rhodesiae is a strain that promotes plant growth and 
biocontrol of tomato and rice diseases (Romero et  al., 2016; 
Forghani and Hajihassani, 2020). However, reports of P. rhodesiae 
antagonistic against M. graminicola are still lacking.

The objectives of the present study were to screen for a novel 
effective bacterial isolate against M. graminicola, and investigate 
the effects of P. rhodesiae GC-7 on M. graminicola eggs and J2s 
through in vitro experiments. The study also evaluated the 
biocontrol potential of GC-7 under greenhouse and field 
conditions and assessed the effect of GC-7 inoculation on plant 
growth and on nematode infestation and development. In 
addition, the expression levels of defense genes related to the SA, 
JA, and ET pathways and the enzymatic activities of PAL, POD, 
and PPO in the roots of rice induced by isolate GC-7 were 
examined to explore the mechanism by which GC-7 suppressed 
M. graminicola.

Materials and methods

Isolation and identification of isolate 
GC-7

Isolate GC-7 was isolated from the rhizosphere soil of a rice 
field in Changsha city, Hunan Province, China using the serial 
dilution technique (up to 10−7-fold). A single bacterial colony was 
selected, streaked on beef extract-peptone medium (NA) (1% 
tryptone, 0.3% beef extract, 0.5% NaCl, 1.5% agar), and incubated 

for 24 h at 30°C to obtain the pure isolate. The bacteria were then 
cultured in beef extract-peptone broth (NB) at 30°C, with shaking 
at 200 rpm for 48 h (approximately 2 × 109 cfu/ml) for 
further experiments.

Routine physiological and biochemical tests of isolate GC-7 
were performed according to Bergey’s Manual of Determinative 
Bacteriology (8th Ed.). They included gram staining, the methyl 
red (MR) Voges-Proskauer (VP), and indole tests, testing for 
oxidase and catalase activity, nitrate reduction, citrate utilization, 
starch and gelatin hydrolysis, as well as utilization of carbon 
sources. The identity of GC-7 was further confirmed through 16S 
rRNA and gyrB gene sequencing. Bacterial genomic DNA was 
extracted using the Bacteria Genomic DNA Extraction Kit 
(Takara, Dalian, China) according to the manufacturer’s 
instructions. The 16S rRNA gene fragment of this isolate was 
amplified via PCR using the universal bacterial primers 27F 
(AGAGTTTGAT CCTGGCTCAG) and 1492R (GGTTACCTTG 
TTACGACTT). The gyrB gene was amplified by using the primers 
UP-f 5′-AGCAGGGTACGGATGTGCGAGCCRTCNACRTCN 
GCRTCNGTCAT-3′ and UP-r 5′-GAAGTCATCATGACCG 
TTCTGCAYGCNGGNGGNAARTTYGA-3′ (Yamamoto and 
Harayama, 1995). The PCR products were sequenced by 
Shenggong Biotechnology Co. Ltd., Shanghai, China. The GC-7 
sequence was analyzed via a BLASTN search in the National 
Center for Biotechnology Information (NCBI)1 database. The 
partial 16S rRNA and gyrB sequences were submitted to GenBank 
(NCBI) to obtain the accession number. The alignment of 
sequences and construction of the phylogenetic tree were 
performed using Clustal X 2.1 (Thompson et al., 1997) and MEGA 
7.0 (Kumar et al., 2016), respectively.

Cultivation of rice plants and preparation 
of nematode inoculum

Rice (Oryza sativa variety Nipponbare) seeds were obtained 
from the United States Department of Agriculture (GSOR-100). 
Seeds were germinated on wet filter paper for 4 days at 30°C, and 
seedlings were transferred to synthetic absorbent polymer 
SAP-substrate and further grown in a greenhouse at 28 ± 2°C 
under a 14-h photoperiod and 70–75% relative humidity (Reversat 
et al., 1999). Plants were watered with distilled water twice per 
week and fertilized once per week with 10 ml of Hoagland 
solution. A population of M. graminicola isolated from lowland 
rice in Pingjiang County, Hunan Province, China was maintained 
on susceptible O. sativa variety Nipponbare in a greenhouse in 
ChangSha. Infected roots and root galls were cut into pieces, and 
nematode eggs were isolated from the root galls. The egg masses 
were surface-sterilized with 1% sodium hypochlorite for 1 min 
and placed on double-layered tissue paper in a Baermann funnel 
containing distilled water for 3–5 days at 25°C to obtain 

1 http://www.ncbi.nlm.nih.gov/
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second-stage juveniles (J2s). The freshly hatched J2s were used for 
in vitro assays and pot-based experiments.

Nematicidal activity of Pseudomonas 
rhodesiae GC-7 in vitro

Pseudomonas rhodesiae isolate GC-7 was cultured in NB at 
30°C on a shaker at 200 rpm for 48 h. The bacterial fermentation 
broth (2 × 109 cfu/ml) was centrifuged at 10,000 rpm for 10 min, 
and the crude supernatant was passed through a 0.22-μm 
nitrocellulose filter to obtain the cell-free supernatant. The GC-7 
fermentation supernatant was diluted with sterile water to 10, 20, 
and 50% (v/v) concentrations. The NB medium was diluted to a 
concentration of 10, 20, and 50% with sterile water.

Lethal activity assay of isolate GC-7 against J2s 
of Meloidogyne graminicola

The lethal activity of isolate GC-7 to J2s of M. graminicola was 
determined. The assay of mortality was performed in a 24-well 
plate. Each well contained approximately 100 J2s of M. graminicola 
and 1 ml of the different concentrations of GC-7 supernatant, 
separately. Treatments with different concentrations of NB 
medium were included as the control. The plates were incubated 
at 28°C. After 24 h, the dead and living nematodes were counted 
using an inverted microscope (Olympus, Tokyo, Japan). A 
nematode that was malformed, immobile, or motionless even 
when probed with a fine needle was deemed dead (Cayrol et al., 
1989). Each treatment had six replicates and was performed three 
times independently. Mortality was calculated according to the 
following formula:

 

( )
( )

J2smortality %
Thenumber of deadJ2s / The Number of totalJ2s 100= ´

Inhibition of egg hatching by isolate GC-7 
in vitro

The effect of isolate GC-7 on egg hatching was tested in 
24-well plates, using a method similar to the J2 mortality test 
described previously. One hundred sterilized eggs were mixed 
with 1 ml of the 50% GC-7 fermentation supernatant. Eggs mixed 
in 1 ml of 50% NB medium were used as control. The plates were 
covered and incubated at 28°C. The number of unhatched eggs 
was counted using a microscope at 24 h, 48 h, 72 h, and 96 h after 
incubation. The experiment had six replicates and the test was 
repeated three times. The egg hatching rate and hatch inhibition 
rate were calculated using the following formulae:

 

( )
( )

Egghatching rate %
Number of hatchedeggs / Totalnumber of eggs 100= ´

 

( )Hatchinginhibition rate %
(Thenumber of hatched eggs in the control

Thenumber of hatchedeggs
in thebacteria treated group)

/ The number of hatched eggs in the control 100

=
-

-
´

Effect of isolate GC-7 on infection by 
Meloidogyne graminicola J2s

Meloidogyne graminicola were inocubated on rice seedlings 
(Oryza sativa variety Nipponbare) treated with GC-7 to determine 
the direct effect of isolate GC-7 on the infectivity of nematodes. 
The roots of rice seedlings were immersed in a 50% GC-7 isolate 
fermentation culture (1 × 109 cfu/ml) for 8 h. Roots soaked in NB 
medium for 8 h were used as controls. Pluronic F-127 powder 
(Sigma Aldrich, St Louis, United States) was added to sterile water 
and allowed to dissolve with stirring at 4°C for 24 h. Next, treated 
rice seedlings were placed in F127 gel plot, then 100 μl of 
M. graminicola suspension (1,000 vigorous J2s/mL) was added 
surrounding to each seedling. The F127 plot was incubated in 
greenhouse previously described. At 5 and 14 days post 
inoculation (dpi), the plant roots were carefully collected and 
stained using the NaOCl-acid fuchsin method (Bridge and Page, 
1982). The total number of nematodes inside root galls per rice 
seedling was counted using a stereomicroscope (Nikon, Tokyo, 
Japan). The number of nematodes at different life stages was 
determined using a stereomicroscope to calculate their ratio and 
analyze the effect of GC-7 on nematode development. Each 
treatment had four replicates and was performed three 
times independently.

Biocontrol efficacy of isolate GC-7 
against Meloidogyne graminicola and the 
biomass changes of rice plants in the 
greenhouse

A pot-based validation experiment was conducted under 
greenhouse conditions at Hunan Agricultural University, China. 
Bacteria was prepared as described above. The bacterial 
fermentation broth was cultured to approximately 2 × 109 cfu/ml, 
then diluted to obtain concentrations of 50% (1 × 109 cfu/ml), 20% 
(4 × 108 cfu/ml), and 10% (2 × 108 cfu/ml). Seeds were treated as 
described previously. Five two-leaf stage rice seedings were 
transplanted into sterile soil in each pot (15 cm in diameter and 
10 cm in height), it is about 1 kg of soil per pot. Different 
concentrations of the bacterial fermentation broth (40 ml each) 
and fluopyram (0.33 g a.i./L, Lufta, Bayer Crop Science, China) 
were added to each pot. An equal amount of sterile water was 
added to the pots as a control. Two days after inoculation with the 
bacterial fermentation broth, 2 ml of M. graminicola suspension 
(750 vigorous J2s/mL) was drenched into each pot. All pots were 
arranged in a completely randomized block design on a bench in 
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the greenhouse, and each treatment consisted of four replicates. 
The rice plants were uprooted and washed free of adhering soil 
21 days post inoculation. The number of root galls on the rice 
plants were examined to assess nematode penetration. The disease 
index of the roots was confirmed using the 0–10 scale described 
by Bridge and Page (Bridge and Page, 1980). Gall indices and 
biocontrol efficacy were calculated as follows:

 

( )
( )

Gall index %
[ The number of diseased plants in each grade
/ (Total number of plants investigated

The highest grade)] 100

= å

´ ´

 

( )
( )

Bio control efficiency %
Gall index in the control Gall index in the treated group
/ (Gall index in the control) 100

= -

´

-

Soil samples from each pot were examined to obtain the actual 
frequency and relative number of nematodes and eggs in the soil. 
The soil was mixed, and the sucrose solution-elutriation-
centrifugation method was used to extract soil nematodes and 
eggs from approximately 100 g of fresh soil (Li et al., 2016). The 
total number of nematodes and eggs in each soil sample was 
counted under a dissecting microscope, and a statistical analysis 
was performed. Biomass values, including total length, root 
length, and fresh weight of the entire plants and roots, were 
measured to survey the promotion of plant growth.

Biocontrol efficiency of isolate GC-7 
against Meloidogyne graminicola in the 
field

Field trials were carried out in a field infested with 
M. graminicola in Pingjiang County City, Hunan Province, 
China (113.67 E, 28.57 N) in 2021. The soil in the field was a 
sandy loam containing 55.6% sand, 9.2% silt and 36.4% clay, 
with a pH of 5.0, a water holding capacity of 30%, and an 
organic matter content of 1.0%. The initial M. graminicola 
population consisted of 393 ± 32 J2/100g soil. The experiment 
consisted of three treatments: fermentation broth GC-7 
(2 × 109 cfu/ml), 41.7% fluopyram SC (250.2 g a.i/ha; Lufta, 
Bayer Crop Science, China), and water (as control). Sprouted 
seeds of the rice variety HuangHuaZhan were sown in the 
fields and irrigated with different treatments (750 l/ha). The 
experiment was set up in a completely randomized block 
design, and each treatment was applied to four replicated plots 
5.0 m long and 3.0 m wide. The trial was fertilized with 375 kg/
ha carbamide and 750 kg/ha diammonium phosphate 2 days 
before sowing, and with 75 kg/ha carbamide and 75 kg/ha 
potassium chloride at the middle tillering stage. After 60 days, 
15 seedlings were randomly selected (using the Z-shaped 

sampling method) from each plot, a total of 60 seedlings were 
obtained from each treatment.

The rice plants were observed and disease index of the 
roots was recorded as described above. The plants were also 
used to record the effect of the GC-7 isolate on the following 
growth parameters: shoot and root length (cm), shoot and 
root fresh weight (g), and total chlorophyll content (Konica 
Minolta, Inc., SPAD-502 Plus, Japan). At the time of harvest 
(4 months after planting), the grain yield was recorded and the 
rhizosphere soil samples randomly selected from each plot 
were returned to the laboratory. The nematodes and eggs in 
each 100 g soil sample were isolated and counted as 
described above.

Resistance-related enzymes assays

Rice seedlings were treated with different concentrations of 
isolate GC-7 and grown as described for the pot-based experiment 
to detect resistance-related enzymes. The experiment consisted of 
five treatments: rice seedlings treated with (1) sterile water (CK), 
(2) sterile water and inoculated with M. graminicola J2 (J2), (3) 
50% GC-7 and inoculated with M. graminicola (50% GC-7 + J2), 
(4) 20% GC-7 and inoculated with M. graminicola (20% 
GC-7 + J2), and (5) 10% GC-7 and inoculated with M. graminicola 
(10% GC-7 + J2).

Defense-related enzymes, including PAL, PPO, and POD, 
were quantified from rice plants grown under pot conditions after 
2 days, 4 days, 6 days, and 8 days of nematode inoculation. Plants 
were carefully uprooted, causing no damage to root tissues. The 
activities of PAL, PPO, and POD were extracted and measured 
from fresh rice root samples using commercial assay kits (Nanjing 
Jiancheng Bioengineering Institute, China).

PPO activity was measured using the assay kit based on the 
principle that PPO can catalyze quinone production from the 
substrate phenol, which is characterized by light absorption at 
420 nm. PPO activity was calculated by the decrease in absorbance 
at 420 nm; one unit (U) of PPO activity was defined as a change in 
absorbance by 0.01 for 1 g fresh weight (FW) per minute in the 
1-mL reaction system.

PAL catalyzes the decomposition of L-phenylalanine into 
trans-cinnamic acid and ammonia. The maximum absorption 
value for trans-cinnamic acid was obtained at 290 nm, and 
PAL activity was calculated by measuring the change in 
absorbance value at 290 nm. One unit of PAL activity was 
defined as a change in absorbance by 0.1 for 1 g FW per 
minute in the 1-mL reaction system. The obtained values for 
absorbance were converted into enzyme activity according to 
the formula used for assay kits.

POD activity was measured based on the change of absorbance 
at 420 nm by catalyzing H2O2. One unit was defined as the amount 
of enzyme which was catalyzed and generated 1 μg substrate by 1 g 
fresh weight tissues in the reaction system at 37°C. POD activity 
was calculated as the formula according to POD assay kit. The 
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enzymes were expressed as U/g FW, and the experiment was 
performed in three replicates.

RNA extraction and gene expression 
analysis

Rice seedlings were treated with isolate GC-7 and grown as 
previously described, with sterile water used as control. The 
seedlings were carefully drenched with 40 ml of P. rhodesiae 
GC-7 (1 × 109 cfu/ml). Each individual pot was inoculated with 
approximately 1,500 freshly hatched M. graminicola J2s 2 days 
later and it is about 1 kg of soil per pot. The experiment 
consisted of four treatments: rice seedlings treated with (1) 
sterile water as the non-treated control (CK), (2) sterile water 
and inoculated with J2 (J2), (3) GC-7 (GC-7), and (4) GC-7 and 
inoculated with M. graminicola (GC-7 + J2). To measure the 
transcript levels of defense-related genes in real time, whole rice 
roots were collected at 1 d and 4 d after nematode inoculation, 
frozen immediately in liquid nitrogen, and stored at −80°C 
until further use. Total RNA was extracted from the rice roots 
using the MiniBEST Universal RNA Extraction kit (TaKaRa, 
Dalian, China). Total RNA from each sample (1 μg) was reverse-
transcribed using the PrimeScript RT Reagent kit (TaKaRa, 
Dalian, China). Quantitative real-time RT-PCR assays were 
performed using gene-specific primers for the genes 
Pathogenesis-related 1a (PR1a), WRKY TF 45 (WRKY45), 
Allene oxide synthase2 (AOS2), JA-inducible Myb TF (JaMYB), 
Aminocyclopropane-1-carboxylic acid synthase 1 (ACS1) and 
Ethylene-responsive factor 1 (ERF1) (Takaki et  al., 2015; 
Leonetti et  al., 2017; Salman et  al., 2022), described in 
Supplementary Table S1. Quantitative real-time PCR (qRT-
PCR) was performed in a CFX Connect Real-Time PCR 
Detection System (Bio-Rad, California, United States) using a 
SYBR green I quantitative PCR master mix (TaKaRa, Dalian, 
China). The reaction conditions were 95°C for 30 s followed by 
40 cycles at 95°C for 5 s, and 60°C for 30 s. A melting curve 
analysis was performed after 40 cycles to confirm that a single 
product was present for each reaction. qRT-PCR was performed 
on three biological replicates and each reaction was replicated 
three times. Expression of the rice gene actin was used as an 
internal reference gene, and the data were quantified using the 
2−ΔΔct method (Livak and Schmittgen, 2001).

Statistical analysis

Statistical analysis was performed with SPSS Statistics version 
20.0.0 (International Business Machines Corporation, 
United States). Both data normality and homogeneity of variances 
were assessed. Ninety-five percent fiducial limits of the experiment 
data were determined via probit analysis. For multiple-group 
comparison, ANOVA was performed followed by Tukey’s multiple 
comparison test. Statistical differences were considered significant 

at p ≤ 0.05. Different lowercase letters indicate significant 
differences between treatments (p < 0.05).

Results

Isolation and characterization of 
bacterium Pseudomonas rhodesiae 
isolate GC-7

GC-7 colonies grown on nutrient agar were round, white, and 
non-transparent, with a smooth surface. The bacterium had 
Gram-negative staining reaction with a rod-shaped structure. The 
detailed morphological and physiological characteristics are 
summarized in Table 1.

Furthermore, identification was confirmed using 16S rRNA 
and gryB analysis. The nucleotide sequences of 16S rRNA 
(accession number OP160002.1) and gryB (accession number 
OP429596) deposited in GenBank of NCBI. According to a 
phylogenetic tree constructed using the neighbor-joining method, 
isolate GC-7 was found most closely related to P. rhodesiae 
(Figure 1). Based on the phylogenetic trees and morphological 
features, isolate GC-7 was identified as P. rhodesiae and was 
deposited at the China Center for Type Culture Collection 
(CCTCC) under accession number CCTCC M 2020346.

Evaluation of the nematicidal activity of 
isolate GC-7 in vitro

To determine whether P. rhodesiae GC-7 has nematicidal 
activity against M. graminicola, a mortality assay was carried out 
using a direct contact method in vitro. Following incubation in a 
suspension of GC-7 for 24 h, all treatments at different 
concentrations exhibited significant larvicidal potential. The 
collected mortality at concentrations of 50, 20, and 10% GC-7 was 
95.82, 87.86, and 58.79%, respectively, which were significantly 

TABLE 1 Morphological and physiological characteristics of isolate 
GC-7.

Characteristics Reaction Characteristics Reaction

Colony color White Citrate utilization +

shape Rod shaped Indole experiment −

Gram-stain − Hydrolysis of starch +

Oxidase activity + Decomposition of 

casein

+

Catalase activity + Gelatin liquefaction +

Nitrate reduction + Carbohydrate 

utilization

Methyl red test + D-Glucose +

Voges-Proskauer test − Lactose −

Anaerobic growth − Sucrose +

+, positive reaction; −, negative reaction.
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higher than that in the controls (Figure 2A). The results indicated 
that the cell-free culture filtrate of P. rhodesiae GC-7 was highly 
antagonistic to M. graminicola.

Moreover, the effect of GC-7 on M. graminicola egg hatching 
is shown in Figure 2B. The GC-7 suspension significantly reduced 

nematode egg hatching compared with CK at each stage of 
incubation. After incubation for 48 h, percentage egg hatching in 
the GC-7-treated and control sample was 15.61 and 29.73%, 
respectively, and the hatch inhibition rate was up to 47.48% in 
GC-7 compared to the control treatment (Figure 2B). The hatch 

FIGURE 1

Phylogenetic tree of isolate GC-7 based on 16S rRNA and gyrB gene sequences. The neighbor-joining method was used to construct the tree, 
which shows the relationships between isolate GC-7 and closely related species. Only values greater than 50% are provided. The scale bar 
indicates 0.01 nucleotide substitutions per nucleotide position. The numbers at the nodes represent percentages after 1,000 bootstrap replicates.

A B

FIGURE 2

Evaluation of the nematicidal activity of Pseudomonas rhodesiae GC-7 in vitro. (A) Effects of isolate GC-7 on second stage juveniles (J2s) 
mortality of M. graminicola in vitro. Mortality rates were assessed by M. graminicola J2 incubated in fermentation cell-free supernatant of 
GC-7 at different concentrations in 24-well plates at 28°C for 24 h. J2 suspension mixed with different concentrations of NB medium, and 
sterilized water was used as control (CK). (B) The egg hatching rate of M. graminicola exposed to Pseudomonas sp. GC-7 cell-free 
supernatant in vitro. The egg hatching rate was evaluated by treating approximately 100 eggs with 50% GC-7 supernatant for 24 h, 48 h, 72 h, 
and 96 h at 28°C. The negative control was sterilized water. The results are from three independent experiments, each containing four 
replicates. The data were analyzed by Tukey’s multiple range test (p < 0.05) using SPSS software. Error bars represent standard deviation, 
different letters represent a significant difference at p < 0.05.
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inhibition rate of isolate GC-7 was 60.65% at 96 h after treatment. 
These results indicated that isolate GC-7 could significantly inhibit 
the hatching of M. graminicola eggs.

Effect of isolate GC-7 on infection by 
Meloidogyne graminicola J2s

The nematode penetration recorded at 5 and 14 days post 
inoculation (dpi) is shown in Figure 3. Nematode observation in 
roots after staining showed that the total number of nematodes 
was significantly lower in GC-7-treated plants compared to the 
untreated controls. The reduction in the number of nematodes 
inside GC-7-treated roots was 64.58 and 48.50% at 5 dpi and 14 
dpi, respectively (Figure 3A).

The development of nematodes in GC-7-treated plants was 
slightly delayed compared with that in untreated control plants. 
At 5 dpi, the percentage of third-stage juvenile (J3) in GC-7-
treated plants (64.36%) was significantly lower than that in 
untreated plants (83.93%). At 14 dpi, the ratio of fourth-stage 
juvenile (J4) and adult females was higher in untreated plants 
(77.01%) than in GC-7-treated roots (58.42%). By contrast, the 
percentage of J3s was lower in untreated plants (22.99%) than in 
GC-7-treated plants (41.58%) (Figures 3B–D). These data showed 
that isolate GC-7 not only lowered infection by M. graminicola but 
also slightly inhibited nematode development in rice roots.

Biocontrol of Meloidogyne graminicola 
in pot-based experiments

Pot-based experiments were carried out to further evaluate 
the biocontrol efficiency of isolate GC-7 in vivo using a soil 
drenching method. Here, M. graminicola infection was severe, 
forming numerous large root galls on the roots of control rice 
plants. By contrast, fewer and smaller galls were observed on rice 
roots following treatment with GC-7 fermentation broth. The 
average root gall index of the control group was 53.56, and the 
average root gall index with all dilutions (50, 20, 10%) of isolate 
GC-7 were 23.44, 27.81, and 29.36, respectively (Figure 4A). All 
concentrations of the GC-7 fermentation broth showed a high 
control effect on M. graminicola with a control efficiency of 45.19 
to 56.23% (Figure  4B), However, application of different 
concentrations of GC-7 did not show dose effect on gall index and 
control efficacy. In addition, the final nematode density in soil 
treated with GC-7 was also significantly lower than that of the 
CK. Inhibition rates for treatment with 20 and 10% GC-7 
fermentation broth reaching 75.84 and 82.84%, respectively, 
higher than treatment with fluopyram (70.42%; Figure  4C). 
Moreover, the number of eggs in soil treated with isolate GC-7 was 
lower than in the control soil, with inhibition rates reaching 72.52 
to 78.18% (Figure 4D).

In addition, the effect of different dilutions of GC-7 
fermentation broth on the growth of rice parasitized by 

M. graminicola showed a significant improvement in all plant 
growth parameters compared to the control (Table 2). Rice treated 
with 50% GC-7 showed the highest average total length (53.83 cm), 
root length (15.22 cm), and total fresh weight (1.70 g), 
corresponding to increases of 17.89, 22.41, and 68.98%, 
respectively, above control treatments. The control samples 
exhibited the lowest plant growth.

Efficacy in controlling nematodes in the 
field experiment

The field experiment was carried out using the GC-7 
fermentation broth. The average root gall index corresponding 
to the GC-7 treatment against M. graminicola was 18.63 
(Table  3), which was significantly lower than that of the 
control (45.27). GC-7 culture showed a high control effect on 
M. graminicola with a control efficiency of 58.85%. In 
addition, the inoculation of isolate GC-7 in M. graminicola 
infested rice fields significantly suppressed the nematode and 
egg populations under natural conditions (Figure 5). The final 
nematode population in 100 g of GC-7-treated soil and 
chemical nematicide fluopyram-treated soil was much lower 
than CK soil (Figure 5A). The number of eggs in GC-7-treated 
soil reduced by 77.67% compared to CK soil (Figure  5B). 
Concurrently, the application of GC-7 displayed a better effect 
on the promotion of root weight and stem base width than CK 
and fluopyram. At harvest, the rice yield increased by 31.98% 
in GC-7 treated plants compared with control (Table 3).

Enhancement of resistance-related 
enzyme activities

The quantitative changes in the defense-related enzyme 
activities of POD, PPO, and PAL in rice roots were investigated. 
Supplementation of GC-7 resulted in significant enhancement 
of the PAL activities in nematode-infected plants compared to 
CK plants and challenged with the nematode-treated (J2) 
plants at all times. The highest PAL activity was recorded in 
plants treated with 50% GC-7 + J2 at 2 dpi, which was elevated 
by 4.33-fold and 2.02-fold compared to CK and nematode-
treated plants, respectively (Figure 6A). Rice plants inoculated 
with nematodes only had slightly higher PAL activity 
compared to the untreated control. PPO activity from 2 dpi 
was induced by the GC-7 fermentation broth and plants 
treated with almost all concentrations of bacteria showed the 
highest levels of PPO activity at 4 dpi. The maximum level of 
PPO activity was observed in plants treated with a 20% 
dilution of GC-7 (20% GC + J2), increasing 6.34-fold and 3.23-
fold compared to CK and nematode-treated plants, 
respectively (Figure 6B). Untreated control plants showed the 
lowest enzyme activity among all treatments. A similar pattern 
of increased POD activity was found in bacterized plants 
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treated with the challenge inoculation. Plants treated with 
each concentration of GC-7 + J2 expressed higher POD 
activity compared to untreated control and nematode-infected 
(J2) plants (Figure  6C). The enzyme activities peaked at 
approximately 4 dpi, then slowly decreased. The highest 
activity was observed in plants treated with 50% GC-7 + J2 at 
4 dpi, which increased by 4.31-fold and 2.27-fold compared to 
CK and nematode-treated plants, respectively.

Transcriptional levels of defense-related 
genes

We studied the relative expression levels of defense linked 
genes PR1a and WRKY45 associated with the SA pathway, ET 
responsive transacting factors ERF1 and ACS1, as well as 
JA-dependent gene markers JaMYB and AOS2, to obtain an 
insight into the GC-7-induced rice defense response against 

A

C

D

B

FIGURE 3

Infection and development of M. graminicola inside rice roots at 5 dpi and 14 dpi. (A) Penetration of M. graminicola in GC-7- and NB medium-
treated (CK) rice roots. (B) The ratio of nematodes in rice roots at different developmental stages at 5 dpi and 14 dpi. (C) Nematodes in CK and 
GC-7-treated plants were photographed at 5 dpi. (D) Nematodes in CK and GC-7-treated plants were photographed at 14 dpi. The roots of rice 
seedlings were immersed in a 50% GC-7 strain fermentation culture (1 × 109 cfu/ml) for 8 h, and roots soaked in 50% NB medium for 8 h were used 
as controls. Each plant was inoculated with about 100 J2s. Scale bar = 200 μm. The bars in the different graphs represent the mean ± SE of data from 
three independent biological replicates, each containing eight individual plants. Different letters indicate statistically significant differences (Tukey’s 
multiple range test at p ≤ 0.05).
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M. graminicola. The relative expression level of PR1a at 1 dpi 
decreased by 33.48% in GC-7-treated plants, 30.28% in GC-7 + J2 
plants, and 12.09% in J2 plants, compared with that in CK plants. 
However, at 4 dpi, a significant upregulation of PR1a was observed 
for all treatments. The highest relative expression level (3.48-fold 
higher than in the control) was reported in plants treated with 
GC-7, followed by GC-7 + J2 and J2, with expression levels that 
were 2.12- and 1.43-fold higher, respectively (Figure  7A). A 
significant upregulation of WRKY45 was observed in all treated 
plants at 1 dpi compared to the control. However, no differences 
were observed in plants treated with GC-7 and GC-7 + J2 
compared with CK plants at 4 dpi (Figure 7B).

At 1 dpi, significant increases in the relative expression levels 
of the JaMYB and AOS2 were observed in plants treated with 
GC-7 and GC-7 + J2 compared with control and J2-treated plants. 

The expression level of JaMYB was most notably higher in GC-7-
treated plants (5.75-fold), followed by GC-7 + J2- (3.03-fold) and 
J2- (1.15-fold) treated plants, than in control plants (Figure 7C). 
In a similar pattern, AOS2 expression level was upregulated in 
plants from all treatments compared to the control at 1 dpi. The 
highest transcriptional level was observed with GC-7 (4.59-fold), 
while the levels for the GC-7 + J2 and J2 treatments were 2.69- and 
0.89-fold higher, respectively. At 4 dpi, the JA gene expression level 
in plants from the GC-7 and GC-7 + J2 treatments was slightly 
higher than in the CK plants (Figure 7D).

A significantly and consistently enhanced transcription of 
ERF1 was induced by GC-7  in GC-7 + J2 at 1 dpi and 4 dpi, 
compared with that induced by the CK and J2 treatments. By 
contrast, the transcript level in J2-treated plants was repressed at 
4 dpi compared to CK plants (Figure 7E). Transcription of ACS1 

A B

C D

FIGURE 4

Biocontrol of M. graminicola in the pot-based experiment. (A) Gall index of GC-7 against M. graminicola in the pot-based experiment. (B) The 
control efficacy in different treatments. (C) Effects of the application of GC-7 on the final nematodes in soil. (D) Suppression of M. graminicola 
eggs by GC-7 in soil of pot-based experiment under greenhouse conditions. Each pot contains five two-leaf stage rice seedings, fourty millilitre of 
the different concentrations of the bacterial fermentation broth was applied as irrigation to each pot. The control were treated with sterilized 
water or fluopyram. Two days after inoculation with the bacterial fermentation broth, 2 ml of M. graminicola suspension (750 vigorous J2s/mL) was 
drenched into each pot. Vertical bars represent standard deviation of the mean values. Tukey’s multiple range test was employed to test for 
significant differences between treatments at p < 0.05. Different lowercase letters indicate significant difference between treatments (p < 0.05).
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in plants treated with GC-7, GC-7 + J2, and J2 was 2.14-fold, 1.73-
fold, and 0.87-fold higher, respectively, than the control at 1 dpi 
(Figure 7F).

Discussion

RKNs are a severe threat to world agriculture. Many 
nematicidal biocontrol agents have been discovered from 
microorganisms, and the application of bacteria, especially PGPR, 
have received increasing attention (Hu et al., 2017; Liang et al., 
2019). However, the microorganisms used for controlling the rice 
RKN M. graminicola are limited. In the present study, the novel 
P. rhodesiae isolate GC-7 was isolated from the rhizosphere soil of 
rice plants. This isolate could efficiently kill M. graminicola J2s 
directly, as well as suppress egg hatching in vitro. Microorganisms 
can inhibit growth of PPNs through diverse processes. Production 
of various antagonistic compounds with inhibiting effects against 
PPNs is a direct mode of action. Many bacteria produce 
nematicidal bioactive hydrolytic enzymes, antibiotics and toxins 
that directly kill nematodes or inhibit proliferation (Yang et al., 
2013; Mnif and Ghribi, 2015; Migunova and Sasanelli, 2021). In 
addition, some bacterial strains also produce nematicidal volatile 
organic compounds (VOC) against Meloidogyne (Zhao et  al., 
2018). The underlying mechanisms by which GC-7 restrains 
M. graminicola can be complicated. Further research is needed to 
determine primary nematicidal compounds of P. rhodesiae GC-7. 
Greenhouse and field tests demonstrated that GC-7 effectively 
controlled M. graminicola and promoted rice plant growth. The 

biocontrol effects of GC-7 might be because the isolate adheres to 
the rhizospheric zone and increases plant biomass to secrete 
stronger substances that kill nematode J2s and inhibit egg hatching 
(Khanna et  al., 2019; Zhao et  al., 2021). In addition, our data 
demonstrated a significant reduction in M. graminicola 
penetration in rice plants and their population densities in GC-7-
treated soil. Moreover, nematode development was inhibited in 
GC-7-treated plants compared with that in non-treated plants. 
These results are consistent with previous reports of PGPR and 
other beneficial microbes (Liu et al., 2018, 2019; Zhou et al., 2021). 
The number of egg masses was considered as the infective ability 
of the nematode as it shows the number of J2s that were able to 
penetrate and infect the root tissue and develop into egg-laying 
females (Ghareeb et al., 2020). Here, the egg populations in soil 
treated with GC-7 under greenhouse and natural conditions were 
significantly decreased compared with control. Therefore, our 
study aligns with the three key principles of biological control 
proposed by Stenberg et al. (2021), and indicates that P. rhodesiae 
isolate GC-7 could be used as a potential biological nematicide 
against M. graminicola.

Several rhizobacteria can enhance plant resistance against 
pathogens by activating defense-related enzymes (Chen et  al., 
2009; Fatma et al., 2014; Narendra Babu et al., 2015; Salla et al., 
2016; Rais et al., 2017). PAL has been reported to be involved in 
plant defense mechanisms as it is the first enzyme in 
phenylpropanoid metabolism and related to the biosynthesis of 
phenolics and SA (Jain and Choudhary, 2014; Di Lelio et  al., 
2021). PPO plays an important role in phenol metabolism related 
to the synthesis of lignin and quinone compounds, which can 
inhibit the invasion of pests and diseases (Ju et al., 2013). POD 
activity is important in lignin accumulation and ROS production, 
both important components of a plant’s active defense response 
against pathogens (de Oliveira et al., 2021). Our data indicated 
that, following M. graminicola infection, POD, PPO, and PAL 
activities showed more rapid and greater increases in the rice roots 
of GC-7-treated plants than in the controls, further revealing the 
mechanism underlying nematode control by GC-7. The highest 
PAL activity in GC-7 fermentation broth-treated plants were 
observed at 2 dpi, whereas POD and PPO activities peaked at 4 
dpi. The results suggest that isolate GC-7 can significantly enhance 
such defense enzymes and probably other defense compounds, 
leading to systemic resistance in plants. These findings are 
consistent with those of previous studies, which showed increasing 

TABLE 2 Effects of biocontrol agents (isolate GC-7) on the growth 
parameters of rice plants infected with Meloidogyne graminicola in 
pot-based experiments.

Treatments Total length 
(cm)

Root length 
(cm)

Total fresh 
weight (g)

GC-7 (50%) 53.83 ± 2.65a 15.22 ± 0.60a 1.70 ± 0.16ab

GC-7 (20%) 52.63 ± 2.47a 14.74 ± 0.58a 1.59 ± 0.10bc

GC-7 (10%) 49.86 ± 1.60ab 14.21 ± 0.37a 1.44 ± 0.08c

CK 45.67 ± 1.55b 12.43 ± 0.90b 1.01 ± 0.19d

Fluopyram 53.27 ± 2.74a 15.39 ± 0.49a 1.89 ± 0.05a

The data are mean ± SE from four replicates per treatment. Means followed by the same 
letter in the same column are not considered statistically different following Tukey’s 
multiple range test (p < 0.05).

TABLE 3 Effects of biocontrol agents (isolate GC-7) on the growth parameters and protection of rice plants infected with M. graminicola under 
natural field conditions in 2021.

Treatments Shoot 
length 
(cm)

Root 
length 
(cm)

Shoot 
fresh 

weight (g)

Root fresh 
weight (g)

Stem base 
width 
(cm)

Chlorophyll 
(SPAD)

Gall index Control 
effect (%)

Yield(kg/
ha)

CK 34.06 ± 0.94a 12.30 ± 0.10c 3.38 ± 0.20b 2.15 ± 0.17c 0.47 ± 0.03c 38.56 ± 0.59b 45.27 ± 6.41a – 4,384 ± 863b

Fluopyram 41.10 ± 2.05a 15.20 ± 0.27a 8.85 ± 0.66a 3.69 ± 0.09b 0.53 ± 0.03b 41.03 ± 0.45a 12.34 ± 3.49b 72.73 ± 7.71a 6,084 ± 606a

GC-7 39.33 ± 1.48b 13.40 ± 0.44b 8.72 ± 0.40a 4.07 ± 0.19a 0.61 ± 0.05a 40.83 ± 0.66a 18.63 ± 3.25b 58.85 ± 7.20b 5,787 ± 462a

Data are mean ± SE for four replicates per treatment. Means followed by the same letter in the same column are not considered statistically different following Tukey’s multiple range test 
(p < 0.05).

118

https://doi.org/10.3389/fmicb.2022.1025727
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ye et al. 10.3389/fmicb.2022.1025727

Frontiers in Microbiology 12 frontiersin.org

levels of defense enzymes during the early stages of defense, thus 
playing a crucial role in plant host resistance (Jain and Choudhary, 
2014; Kurth et  al., 2014). In addition, PAL, PPO, and POD 
activities in non-bacterized plants increased slightly after the 
nematode challenge, indicating that some increased enzyme 
activity is a natural response of infected plants susceptible to 
nematode attack. This finding is similar to those of previous 
studies, in which plants subjected to pathogen control showed 
higher enzyme activities of PAL, POX, and PPO than the untreated 
control (Jetiyanon, 2007; Chen et al., 2009). However, the level of 
the increase was too low to overcome nematode invasion.

The major defense mechanisms of plants are regulated 
through SA, JA, or ET signaling pathways (Shoresh et al., 2005; 
Rasool et al., 2021). Certain related defense genes are activated by 
various factors, consequently inducing systemic resistance against 
disease. ISR often relies on pathways regulated by JA/ET. JaMYB 
and AOS2 are marker genes for JA-dependent signaling pathways, 
whereas ERF1 and ACS1 are markers of the ET signaling pathway 
(Leonetti et al., 2017; Salman et al., 2022). Previous studies on rice 
have also shown that the exogenous application of plant hormones 
and antioxidants induces systemic defense against M. graminicola, 
and that the JA pathway plays a pivotal role in the induction of 
defense against RKN (Nahar et al., 2011; Singh et al., 2020; Chavan 
et al., 2022). Conversely, abscisic acid (ABA), brassinosteroids 
(BRs), gibberellic acid, and strigolactones promote the 
susceptibility of rice to M. graminicola infection by interacting 
antagonistically with the JA pathway (Nahar et al., 2012; Yimer 
et al., 2018; Lahari et al., 2019). Rhizobacteria may act against 
nematodes through ISR in plants (Ryan et al., 2015; Migunova and 
Sasanelli, 2021); however, little is known about the role of bacteria 
in the interaction between rice plants and M. graminicola. 
We studied the influence of isolate GC-7 on defense-associated 
gene expression in rice plants either challenged with 

M. graminicola or free from infection. The qRT-PCR results 
indicated that rice seedlings treated with isolate GC-7 only greatly 
enhanced the subsequent expression of JaMYB, AOS2, ERF1, and 
ACS1 (especially JA signaling pathway genes JaMYB and AOS2) 
at 1 dpi. The JA pathway, in particular, may play an important role 
in inducing defense against M. graminicola. Moreover, nematode 
infection provoked a marked increase of these gene transcript 
levels in the roots of plants pre-treated with isolate GC-7 
compared with uninoculated (J2-treated) plants at 1 dpi. JaMYB 
and ERF1 transcript levels remain high, whereas AOS2 transcript 
levels show a slight increase at 4 dpi. The high expression of 
defense-related genes in GC-7 treated roots suggests that rice 
seedlings respond rapidly to M. graminicola infection, indicating 
GC-7 ISR and the JA- and ET- dependent ISR pathways are 
involved in root resistance to nematode infection by isolate GC-7 
at an early stage.

PR1a and WRKY45 are markers of the SA signaling pathway 
and are major characteristic proteins of SAR (Salman et al., 2022). 
WRKY45 and PR1a expression were increased in GC-7- and 
J2 + GC-7-treated plants compared to control and J2-treated plants 
at 1 dpi and 4 dpi, respectively, indicating that the defense 
response of rice to M. graminicola mediated by the SA signaling 
pathway was also activated. Our result is similar to a previous 
finding, where certain PGPRs, including Bacillus spp., 
Pseudomonas spp., and fungi such as Trichoderma, can activate 
SAR and facilitate the expression of characteristic SAR genes in 
plants, thereby enhancing plant systemic resistance (Subedi et al., 
2020; Rasool et al., 2021; TariqJaveed et al., 2021). Previous reports 
have shown that Trichoderma could reduce Meloidogyne by 
triggering host defense, which was attributed first to SA-regulated 
defense that limited the root invasion of nematodes, then to 
enhanced JA-regulated defense (Martinez-Medina et al., 2017; 
Medeiros et  al., 2017). Similarly, it has been reported that 

A B

FIGURE 5

Biocontrol of M. graminicola in the field. (A) GC-7 isolate decreased the nematodes in soil. (B) Suppression of M. graminicola eggs by GC-7 in soil 
under field conditions. At the time of harvest (4 months after planting), the nematodes and eggs in each 100 g soil sample were isolated and 
counted. Vertical bars represent standard deviation of the mean values. Tukey’s multiple range test was employed to test for significant differences 
between treatments at p < 0.05. Different lowercase letters indicate significant difference between treatments (p < 0.05).
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Microbacterium maritypicum Sneb159 induced an interaction 
between the SA-dependent SAR pathway and JA-dependent ISR 
pathway to defend against H. glycines (Zhao et  al., 2019). In 
addition, treatment with isolate GC-7 suppressed the expression 

of PR1a at 1 dpi compared to CK plants, which may be to allow 
the colonization of rice roots at the early stage. Our finding was 
similar to SA-mediated plant defense, which is generally inhibited 
by certain microorganisms to achieve a compatible interaction 

A

B

C

FIGURE 6

Changes of defense enzyme (PAL, PPO, POD) activities in roots of rice plants subjected to different treatments and M. graminicola. (A) PAL activity 
(U/g FW). (B) POD activity (U/g FW). (C) PPO activity (U/g FW) in rice roots inoculated with GC-7 fermentation broth at different dilutions and 
M. graminicola. Each pot contains five two-leaf stage rice seedings, fourty millilitre of the different concentrations of the bacterial fermentation 
broth was applied as irrigation to each pot. The control rice seedlings were treated with sterilized water. Each individual pot was inoculated with 
approximately 1,500 freshly hatched M. graminicola J2s 2 days later. Values are means of three replicates and vertical bars represent the standard 
error. All treatments are significantly different from each other at p < 0.05.
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and host colonization (Leonetti et al., 2017; Zhao et al., 2019). The 
results implied that GC-7 might also activate the SA signaling 
pathways to induce plant defense against M. graminicola. Our 
report is the first to suggest that P. rhodesiae as a PGPR inducing 
protection against M. graminicola of rice plants involves both ISR 
and SAR mechanisms.

In conclusion, we isolated the novel P. rhodesiae isolate GC-7 
from the rhizoplane of rice plants. Isolate GC-7 exhibited direct 
nematicidal and egg inhibition against M. graminicola, as well as 
effectively prevented nematode invasion and delayed the 
development of M. graminicola in rice roots. Pot- and field-based 
tests showed that isolate GC-7 significantly reduced the gall index 

A B

C D

E F

FIGURE 7

Quantitative RT-PCR analysis of genes involved in the salicylic acid, jasmonic acid, and ethylene pathways in rice roots. (A) Relative expression of 
PR1a. (B) Relative expression of WRKY45. (C) Relative expression of JaMYB. (D) Relative expression of AOS2. (E) Relative expression of ERF1. 
(F) Relative expression of ACS1. Gene expression levels were analyzed from four treatments: CK, GC-7, J2, GC-7 + J2 at 1 and 4 days after M. 
graminicola infection. Each pot contains five two-leaf stage rice seedings and was drenched with 40 ml of 50% GC-7 (1 × 109 cfu/ml) or sterilized 
water. The individual pot was inoculated with approximately 1,500 freshly hatched M. graminicola J2s 2 days later. Rice seedlings were treated with 
sterile water as the non-treated control Error bars represent standard error of the mean values of three independent replicates from four biological 
replicates. All treatments are significantly different from each other at p < 0.05. For each gene and time point, bars with different letters indicate 
statistically significant differences between treatments.
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and presented remarkable growth-promoting properties in rice 
plants. In addition, GC-7 also activated resistance-related gene 
expression and defense enzyme activity to enhance plant 
resistance against M. graminicola. Our results suggest that isolate 
GC-7 employs multiple anti-nematode mechanisms and could 
be a potential biocontrol agent for M. graminicola.
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Penicillium rubens strain 212 (PO212) is a filamentous fungus belonging to the 

division Ascomycete. PO212 acts as an effective biocontrol agent against several 

pathogens in a variety of horticultural crops including Fusarium oxysporum 

f.sp. lycopersici, causing vascular wilt disease in tomato plants. We assembled 

draft genomes of two P. rubens strains, the biocontrol agent PO212 and the 

soil isolate S27, which lacks biocontrol activity. We also performed comparative 

analyses of the genomic sequence of PO212 with that of the other P. rubens and 

P. chrysogenum strains. This is the first Penicillium strain with biocontrol activity 

whose genome has been sequenced and compared. PO212 genome size is 

2,982 Mb, which is currently organized into 65 scaffolds and a total of 10,164 

predicted Open Reading Frames (ORFs). Sequencing confirmed that PO212 

belongs to P. rubens clade. The comparative analysis of the PO212 genome with 

the genomes of other P. rubens and Penicillium chrysogenum strains available 

in databases showed strong conservation among genomes, but a correlation 

was not found between these genomic data and the biocontrol phenotype 

displayed by PO212. Finally, the comparative analysis between PO212 and S27 

genomes showed high sequence conservation and a low number of variations 

mainly located in ORF regions. These differences found in coding regions 

between PO212 and S27 genomes can explain neither the biocontrol activity of 

PO212 nor the absence of such activity in S27, opening a possible avenue toward 

transcriptomic and epigenetic studies that may shed light on this mechanism for 

fighting plant diseases caused by fungal pathogens. The genome sequences 

described in this study provide a useful novel resource for future research into 

the biology, ecology, and evolution of biological control agents.

KEYWORDS

PO212, biocontrol agent, Penicillium rubens, genome, comparative genomics

TYPE Original Research
PUBLISHED 13 January 2023
DOI 10.3389/fmicb.2022.1075327

OPEN ACCESS

EDITED BY

Vinay Kumar,  
ICAR-National Institute of Biotic Stress 
Management, India

REVIEWED BY

Mehi Lal,  
ICAR-Central Potato Research Institute, 
Regional Station, India
Malkhan Singh Gurjar,  
Indian Agricultural Research Institute 
(ICAR), India

*CORRESPONDENCE

Inmaculada Larena  
 ilarena@inia.csic.es

SPECIALTY SECTION

This article was submitted to  
Microbe and Virus Interactions With Plants, 
a section of the journal  
Frontiers in Microbiology

RECEIVED 20 October 2022
ACCEPTED 06 December 2022
PUBLISHED 13 January 2023

CITATION

Requena E, Alonso-Guirado L, Veloso J, 
Villarino M, Melgarejo P, Espeso EA and 
Larena I (2023) Comparative analysis of 
Penicillium genomes reveals the absence 
of a specific genetic basis for biocontrol in 
Penicillium rubens strain 212.
Front. Microbiol. 13:1075327.
doi: 10.3389/fmicb.2022.1075327

COPYRIGHT

© 2023 Requena, Alonso-Guirado, Veloso, 
Villarino, Melgarejo, Espeso and Larena. 
This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

125

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.1075327&domain=pdf&date_stamp=2023-01-13
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1075327/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1075327/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1075327/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1075327/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.1075327/full
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.1075327
mailto:ilarena@inia.csic.es
https://doi.org/10.3389/fmicb.2022.1075327
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Requena et al. 10.3389/fmicb.2022.1075327

Frontiers in Microbiology 02 frontiersin.org

Introduction

Penicillium rubens strain 212 (PO212, ATCC201888), 
formerly known Penicillium oxalicum (Villarino et al., 2016), is a 
filamentous fungus belonging to the division Ascomycete. PO212 
is a strain that mainly attracts agricultural and biotechnological 
interest because it is an effective biocontrol agent (BCA) against 
several pathogens in a variety of horticultural crops (Larena et al., 
2003b; De Cal et al., 2008, 2009; Martinez-Beringola et al., 2013). 
Among the fungal pathogens, PO212 acts against Fusarium 
oxysporum f.sp. lycopersici (FOL; Sacc.) W. C. Snyder and 
H. N. Hans, causing vascular wilt disease in tomato plants (De Cal 
et al., 1995). The effective control of tomato wilt is based on the 
application of PO212 conidia (Pascual et al., 2000) and conidial 
contact with roots (De Cal et al., 2000). Plant–fungus contact is 
achieved by watering seedlings 7 days before transplanting, in 
seedbeds with a conidial suspension of PO212, at a final conidial 
density in the seedbed substrate and rhizosphere between 106 and 
107 conidia per gram (De Cal et al., 1999, 2000; Larena et al., 
2003b). PO212 acts against Fusarium wilt primarily through a 
mechanism of induced resistance in tomato plants (De Cal et al., 
1997b, 1999, 2000). Nevertheless, a previous study showed that the 
competition for space and nutrients (Sabuquillo et al., 2009) and 
the promotion of plant growth have been demonstrated (De Cal 
et al., 1995).

Genome sequencing is currently on the rise due to new and 
faster procedures and reduced sequencing costs. This allows for 
expanded comparative studies of the genomes of organisms with 
key roles in health, biotechnology, or agriculture. Among these 
interesting organisms are species of the genus Penicillium, 
especially Penicillium chrysogenum and P. rubens. However, 
controversy remains about the true existence of these two separate 
species (Houbraken et al., 2011). Genome sequences of several 
P. chrysogenum and/or P. rubens strains have been reported. In 
genome databases, the following strains are classified as 
P. chrysogenum: P2niaD18 (Specht et al., 2014), HKF42 (Gujar 
et al., 2018), KF-25 (Peng et al., 2014), NCPC10086 (PENC1.0 0; 
Wang et al., 2014), and v1.0 (de Vries et al., 2017). Meanwhile, the 
strains PrWis (P. rubens Wisconsin 54-1255; Van Den Berg et al., 
2008) and Biourge 1923 (IMI 15378; Pathak et  al., 2020) are 
classified as P. rubens. PrWis was the first strain of P. rubens to 
be sequenced (Van Den Berg et al., 2008). The strains P2niaD18 
and PrWis were interesting from a sanitary point of view because 
of their high penicillin-producing capacity. Notably, these two 
strains are descendants from the natural isolate NRRL 1951 which 
was classified as P. chrysogenum (Martín, 2020). Both strains have 
undergone various mutagenesis procedures and screening 
methods to improve their respective penicillin yields. This implies 
that the presence of sequence modifications and reorganizations 
in the genomes of these strains is highly expected.

Penicillium rubens strain 212 was initially misclassified as 
P. oxalicum based on morphological characteristics, such as the 
color of the spore layer on the colony surface, the size and shape 
of the colony, conidial size, and conidiophore morphology 

(Ramírez, 1982). Subsequent sequencing of internal transcribed 
spacers (ITS) regions and the isolation and identification of 
5-fluoroorotic acid (5-FOA)-resistant mutants showed that PO212 
was a P. rubens strain (Villarino et al., 2016). The first study to 
understand the genetic basis of PO212 biocontrol activity (BA) 
focused on the analysis of genes involved in nitrate assimilation 
since PO212, and other P. rubens strains showing a BA against 
Fusarium wilt lacked the ability to use nitrate as the main nitrogen 
source (Espeso et al., 2019). This nitrate assimilation-deficient 
phenotype was due to the presence of mutations in the NirA 
regulator or the nitrate transporter CrnA. However, the 
complementation of these mutations did not help to understand 
the BA of PO212 (Espeso et al., 2019).

Genome-wide analyses proved to be  a good method to 
determine the genetic basis behind the biocontrol process in 
several organisms (Pattemore et al., 2014; Sharma et al., 2017; 
Piombo et al., 2018). Moreover, comparative genomics allowed the 
identification of pathways or mutations between the genomes of 
different organisms that may be specific to organisms with BA 
(Massart et al., 2015). Comparative analyses of Trichoderma spp. 
genomes revealed notable differences in contrast to the genomes 
of other multicellular ascomycetes in comparison to publicly 
available genomes (Kubicek et  al., 2011). These analyses of 
Trichoderma spp. represent a useful new resource for the further 
development of improved and research-driven strategies to select 
and improve Trichoderma species as BCA (Kubicek et al., 2011). 
However, the comparative genomics of two biocontrol strains of 
Metschnikowia fructicola revealed a very high mutation rate, 
which may suggest that M. fructicola could undergo genomic 
changes to adapt to plant surfaces, tolerate a variety of 
environmental stresses, and survive under nutritional restrictions 
(Piombo et  al., 2018). Major efforts in technology and 
bioinformatics tools have significantly increased our knowledge 
of BCA and their properties (Massart et al., 2015).

In this study, we conducted a comparative genomic approach 
to understand the genetic basis of BA in P. rubens. We assembled 
draft genomes of two P. rubens strains, the BCA PO212 and the 
soil isolate S27, which lacks BA. We also performed comparative 
analyses of the genomic sequence of PO212 with that of the other 
P. rubens and P. chrysogenum strains. These analyses revealed 
significant conservation of genomic sequences among all strains 
compared and evidenced the absence of any specific genes related 
to biocontrol in PO212.

Materials and methods

Strains and growth conditions

Penicillium rubens strain 212 and other P. rubens strains, 
isolated from diverse agricultural soils and plant samples in Spain, 
are listed in Table 1. Conidia from these strains were stored in 20% 
glycerol for a long term at −20°C except for PO212, which was 
stored at 4°C as dried conidia. Dried conidia of PO212 were 
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produced in a solid-state fermentation system and dried as 
previously described by Larena et al. (2003a). Penicillium strains 
were grown on potato dextrose agar (PDA) or minimal medium 
(MM; Espeso et al., 2019) with 5 mM ammonium tartrate and 
D-glucose 1% (w/v) as nitrogen and carbon source, respectively, 
and incubated at 25°C for 5 days. For short-term storage, strains 
were kept at 4°C on solid media.

The biocontrol activity of P. rubens strains was tested using the 
pathogenic isolate 1A of FOL, provided by Dr. Cristina Moyano 
from the Laboratory for Assessment of Variety, Seed and Nursery 
Plants, INIA-CSIC (Madrid, Spain). FOL was stored at 4°C in 
tubes containing sterile sand. For mycelial production, conidia 
from FOL stored in sterile sand were germinated on Czapek Dox 
agar (CDA; Difco Laboratories, Detroit, MI, United States) and 
cultivated in darkness at 25°C for 7 days. Microconidial inoculum 
of FOL was produced in 250 ml flasks containing 150 ml of sterile 
Czapek Dox broth (Difco). Each flask was inoculated with three 
mycelial plugs (1 cm diameter) from the 7-day-old cultures on 
CDA (De Cal et al., 1995) and incubated for 5 days at 25°C in a 
rotary shaker (model 3527; Lab-Line Instruments, Inc.) at 
150 rpm. Microconidia were separated from the mycelial mass by 
filtration through glass wool. The conidial concentration was 
determined using a hematocytometer and adjusted to 106 
microconidia/ml.

Efficacy assays

At least two growth chamber experiments were carried out 
on tomato plants to evaluate the biocontrol efficacy of S27 
against FOL as described by Villarino et al. (2018). Seeds of 
tomato cultivar “San Pedro”, which is susceptible to races 1 and 
2 of FOL, were used in all experiments. Tomato seeds were sown 
in sterile trays (27 cm × 42 cm × 7 cm) that contained an 
autoclaved (for 1 h at pressure of 1 kg cm−2 and temperature of 
121°C, during 3 consecutive days) mixture of vermiculite 
(Termita; Asfaltex, S.A., Barcelona, Spain) and peat (Gebr. 

BRILL substrate GmbH & Co. KG; 1:1, v:v). The trays were 
maintained in a growth chamber at 25°C with fluorescent 
lighting (100 μE m−2  s−1, 16-h photoperiod) and 80–100% 
relative humidity for 3–4 weeks. Tomato seedlings (with at least 
two true leaves) were treated 7 days before transplanting with 
an aqueous conidial suspension (6 × 106 conidia per gram of 
substrate) of S27 or PO212. Conidial suspensions of PO212 and 
S27 were prepared as follows: Dried conidia of PO212 were 
rehydrated in sterile distilled water (SDW) using a rotatory 
shaker at 150 rpm for 2 h (CERTOMAT® RM). Conidia of S27 
were harvested from colonies grown on PDA and incubated in 
the dark at 25°C for 7 days. The day before treatment, the 
viability of PO212 and S27 conidia were estimated by measuring 
their germination as previously described (Larena et al., 2003a). 
For each replicate (three by sample type), the germination of 50 
randomly selected conidia was counted and viability was 
calculated and expressed as a percentage (De Cal et al., 1990). 
Seven days after treatment, tomato seedlings were transplanted 
from seedbeds into 100-ml flasks containing 100 ml of Hoagland 
solution (Hoagland and Arnon, 1950) so that the roots were in 
contact with the solution, as described by De Cal et al. (1997a). 
An aliquot of an aqueous (SDW) conidial suspension of FOL 
was added to the flasks just before transplanting so that the final 
conidial concentration in the flasks was 1 × 105 conidia/ml. 
Plants that had been inoculated with the pathogen but not 
treated with any strain of P. rubens, were used as the control. 
Five replicate flasks, each containing four plants, were used per 
treatment. The flasks were placed in a randomized complete 
block design in a growth chamber for 4 weeks under the 
conditions described earlier in this subsection. The complete 
experiment was done two times. Disease severity was graded on 
days 7, 14, 21, and 28 after the transplant. Disease severity 
followed a 1–5 index scale: 1, healthy plants (0–24%); 2, yellow 
lower leaves (25–49%); 3, dead lower leaves and some yellow 
upper leaves (50–74%); 4, dead lower leaves and wilted upper 
leaves (75–99%); and 5, dead plants (100%; De Cal et al., 1995). 
All plant roots were placed in humidity chambers at the end of 

TABLE 1 List of Penicillium rubens strains used in this work.

Strain Origin Host BCAa References

PO212 Spain Soil + De Cal et al. (1995)

S27 Spain (Ávila) Soil – Villarino et al. (2016)

S17 Spain (Segovia) Soil – Villarino et al. (2016)

S71 Spain (Segovia) Soil – Villarino et al. (2016)

S73 Spain (Segovia) Soil + Villarino et al. (2016)

CH2 Spain (Madrid) Leaf of a perennial plant –b This work

CH5 Spain (Madrid) Shoot of a perennial plant in a field of peach trees –b This work

CH6 Spain (Madrid) A deep soil sample in the field of peach trees +b This work

CH8 Spain (Madrid) A shoot of a perennial plant in a pine forest +b Espeso et al. (2019)

CH16 Spain (Lérida) Outbreak of pruning +b This work

aBCA: Biological Control Agent.  
bUnpublished results, general screenings of BCA strains INIA-CSIC. The symbol + indicates biocontrol activity. The symbol – indicates no biocontrol activity.
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each experiment, and the presence or absence of the pathogen 
in the crown after 5 days of incubation at 25°C was recorded.

Data of disease severity and incidence were analyzed by 
ANOVA with the STATGRAPHICS program (XVII Centurion. v. 
17.2.00). When the F test was significant at a value of p of < 0.05, 
means were compared using the Student–Newman–Keul’s 
multiple range test (Snedecor and Cochran, 1980).

Genomic DNA extraction, sequencing, 
and PCR

Genomic DNA (gDNA) was extracted from the mycelia of 
Penicillium strains (Table  1) grown in liquid MM at 25°C for 
2 days. Mycelia were harvested by filtration using Miracloth 
(Calbiochem, Merck-Millipore, Darmstadt, Germany). Samples 
were lyophilized for at least 6 h. For each sample, mycelium was 
pulverized using a ceramic bead in a FastPrep-24 homogenizer 
(MP Biomedicals™), one pulse for 20 s at minimum speed. A 
sample of 100 mg of powdered mycelium was mixed with 1 ml of 
DNA extraction solution (25 mM Tris–HCl pH 8.0, 250 mM 
sucrose, and 20 mM EDTA pH 8.0). Before incubation for 15 min 
at 65°C, 100 μl of 10% SDS were added to each sample. Next, 
proteins and cellular debris were removed by adding 1 ml of 
Phenol/Chloroform/Isoamyl alcohol mixture per sample and 
further mixing on a rotary shaker (Rotator Multi Bio RS-24) for 
15 min at room temperature (RT). Organic and aqueous phases 
were separated by centrifugation on a benchtop centrifuge at 
maximum speed for 5 min. gDNA was precipitated from the 
aqueous phase by the addition of 1/10 vol of sodium acetate pH 6 
and 0.6 vol of 2-propanol, followed by incubation for 15 min at RT 
and centrifugation for 5 min at RT. To wash the gDNA pellet, 1 ml 
ethanol (80%) was added, followed by centrifugation at max. 
Speed for 5 min at RT. After drying the ethanol in samples, pellets 
were dissolved in 500 μl sterile water, and samples were treated 
with DNase-free RNase A (5 mg/ml; 37°C, 60 min). gDNA was 
newly precipitated and washed as described before. Finally, gDNA 
was dissolved in 200 μl nuclease-free water and stored at −20°C 
until use.

Sequencing of PO212 gDNA was performed on an Illumina 
MiSeq 500 cycles at the “FPCM, Fundación Parque Científico de 
Madrid” sequencing facility using 150 bp and 250 bp paired-end 
sequencing reads. For S27 gDNA, Stab Vida (Portugal) performed 
the construction and sequencing of DNA libraries. DNA libraries 
were sequenced on the lllumina Hiseq 4000 platform, using 150 bp 
paired-end sequencing reads.

Standard PCR protocols were used: initial denaturation at 
95°C for 2 min, 30 cycles of denaturation at 95°C for 10 s, 
annealing at 55°C for 30 s, and extension at 72°C for 1 min/kb. 
After 30 cycles, an extension at 72°C for 10 min and storage at 
4°C. The polymerase Takara (TaKaRa Taq™) was used for 
amplification. Oligonucleotides were designed using Vector 
NTI™ Suite 8 and are listed in Table 2. The oligonucleotides for 
the amplification of MAT1-1 and MAT1-2 were previously 

described in Espeso et al. (2019). PCR products were analyzed in 
0.8% agarose-TAE electrophoresis and when required, they were 
purified using the PCR clean-Up kit (Macherey-Nagel), following 
the manufacturer’s instructions. Sequencing of DNA fragments 
was done by Stab Vida’s (Portugal) sequencing service.

Assemblies and comparative analyses of 
genomes

For sequencing of the PO212 genome, two libraries of 150 and 
250 bp paired-end fragments were produced and raw sequencing 
reads were subjected to quality control using the FastQC 
program.1 A Q > 28 along the read length and the k-mers and 
nucleotide distribution were homogeneous in both libraries. An 
A5-miseq pipeline was used (Coil et al., 2015) to assemble the 
PO212 genome. The nuclear reads were extended using FLASH 
(Magoč and Salzberg, 2011) and were assembled using the 
A5-miseq pipeline, until the output, named final.scaffolds.fasta, 
was obtained. The previously aligned mitochondrial reads were 
assembled to obtain a single mitochondrial contig of ~28 kbp.

De novo assembly of the S27 genome was performed using the 
A5-miseq pipeline (Coil et al., 2015) and further revised with 
Gapcloser from the Soapdenovo assembler (Luo et al., 2015). The 

1 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

TABLE 2 List and nucleotide sequence of the oligonucleotides used in 
this work.

Primer 
code

5′-3′ Sequence

g196 F GGACAGTACGGCATTGGATATTACGGACACC

g196 R CCAGATTGTGTCCCATAGACGTTGTCCG

g1339 F CCACACCGTCAGACTTTGGAATCCTATACC

g1339 R CGACTTGCACGACAAGATGAGTTGGTTTCC

g3160 F GCTCCGCTGGGAATGTATTATACACCTACG

g3160 R CTCGCAATTCCTCTTGAGATGGAAGCTCG

g3741 F GGATCGAACACGAGGGAAGATTCCTTGCC

g3741 R CCAACACTGTTACAGAAAGCCTCGATGG

g3975 F GCCAAAGCTCAACCAATACCCAGAGTACC

g3975 R CGACTATGTCGCTAATTCGCAGGGTCGTGTC

g4471 F CCAAGATCACCTCAACTTGTCTGCCTCACC

g4471 R CGTATGGAGGAGCAACGATGAAAGAGGATCG

MAT1-1_fw TGCAGCTCAAGTTCTACG

MAT1-1_rva AGGAGTACATCTCATCAACC

MAT1-2_fw ATGGTGAAGTCTTCCTGCC

MAT1-2_rva AGAGAGTGGCTCGACACC

nirA 1 CACTAGGCATGCGAAGAGG

nirA 2 TACATCGCTGCTGATCTCGC

aThese sequences correct the sequences previously published in Espeso et al. (2019).
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aligned S27 mitochondrial reads were assembled apart from the 
genome in 13 contigs of ~34 kbp.

Completeness of the genome assemblies was assessed by the 
Benchmarking Universal Single-Copy Orthologs (BUSCO) v.2.0.1 
software tool (Simão et al., 2015). The assembled genomes were 
annotated using the MAKER (v.2.31.9) pipeline (Campbell et al., 
2014). Before annotation, a species-specific repeat library was 
constructed using RepeatModeler (v.1.0.8) to mask repeats 
(Tempel, 2012). Gene models were predicted with AUGUSTUS 
(Stanke et al., 2006) using two strategies, ab initio gene predictors 
and training with Aspergillus nidulans as a model genome.

Gene models of the PO212 and S27 genomes were manually 
curated using the P2niaD18 (GCA_000710275) and PrWis 
(GCA_000226395) strain proteins available in the EnsemblFungi 
and the National Center of Biotechnology Information (NCBI) 
database as evidence for gene prediction using Apollo (Dunn 
et al., 2019). Predicted proteins were functionally annotated using 
BLASTp (Altschul et al., 1990) against the non-redundant database 
of the NCBI and classified using InterProScan and Pfam analysis 
(Jones et al., 2014).

The comparison of the PO212 genome with genomes from 
other strains of P. rubens and P. chrysogenum, which are available 
in the database and listed in Table 3, was performed through the 
Quast bioinformatics tool (Gurevich et al., 2013). To visualize the 
genomes of the P. rubens and P. chrysogenum strains, Icarus, a 
genome visualizer based on the Quast tool, was used (Mikheenko 
et al., 2016). These genomes are divided into two groups according 
to the literature: P. chrysogenum (P2niaD18, KF-25, HKF42, 
NCPC10086, and v1.0) and P. rubens (PrWis and Biourge 1923; 
Table 3).

Due to the current controversy in the classification of 
P. chrysogenum and P. rubens, in this study, all these strains have 
been classified as belonging to the P. chrysogenum or P. rubens 
clade, based on the barcodes of three genes encoding proteins: 
β-tubulin (BenA), RNA polymerase II second largest subunit 
(RPB2), and calmodulin (CaM). The barcodes used were JF909949 
(BenA), JX996658 (RPB2), and JX996263 (CaM) to P. rubens and 
AY495981 (BenA), JN121487 (RPB2), and JX996273 (CaM) to 
P. chrysogenum (Visagie et al., 2014). The sequences of P. rubens 
and P. chrysogenum were aligned to the barcodes with the Multiple 
Sequence Alignment tool of Clustal Omega (EMBL-EBI).

MUMmer4 software package (Marçais et al., 2018) was used 
for pairwise alignment of PO212 and S27 assemblies by setting 
PO212 as the reference; the minimum length of a matched 
group to 20 bp and the distance an alignment extension will 
attempt to extend to poor scoring regions before yielding to 
100 bp. Comparative analysis was performed using Circos tools 
(Krzywinski et al., 2009). Moreover, CLC Genomics Workbench 
12 (QIAGEN Bioinformatics; https://digitalinsights.qiagen.
com/products-overview/discovery-insightsportfolio/analysis-
and-visualization/qiagen-clc-genomics-workbench/) was used 
to align the reads of S27 to the assembled genome of PO212. 
The CLC alignment workflow was used to map the raw reads to 
a reference genome and to detect variants. Default values were 

used, except for the minimum coverage and minimum count, 
which were set to 10 and 2, respectively, to avoid loss of 
information. Of all the variations found, homozygous variations 
were selected. Only variations with 100% of frequency were 
taken into account for manual verification by PCR amplification 
using specific primers and sequencing. To visualize amino acid 
changes in genes between PO212 and S27 strains, we  used 
Integrative Genome Viewer (IGV version 2.9.4; Robinson 
et al., 2011).

Phylogenetic analysis

A phylogenetic tree was constructed based on nucleotide 
sequence from assemblies of genomes from PO212, S27, and other 
strains of P. rubens and P. chrysogenum available in the database 
and listed in Table 3. For this purpose, Aspergillus nidulans strain 
FGSC-A4 genome (Wortman et al., 2009) and P. oxalicum strain 
HP7-1 genome (Zhao et al., 2016) were used as outgroups. The 
phylogenetic tree was generated using the software JolyTree 
(Criscuolo, 2019). The algorithm uses an alignment-free distance-
based procedure for inferring phylogenetic trees from genome 
contig sequences. The pairwise dissimilarity between each pair of 
genomes was estimated using the Mash method (Ondov et al., 
2016). Balanced Minimum-Evolution (BME) was used to optimize 
the evolutionary distances calculated in the first step. Finally, the 
rate of elementary quartets (REQ) was used for assessing the 

TABLE 3 List of fungal strains whose genomes have been used in this 
work.

Strain Species Assembly References

PO212 Penicillium 

rubens

JAPDLE000000000 This work

S27 P. rubens JAPDLD000000000 This work

PrWis P. rubens GCA_000226395.1 Van Den Berg 

et al. (2008)

Biourge 1923 P. rubens GCA_902636305.1 Pathak et al. 

(2020)

P2niaD18 Penicillium 

chrysogenum

GCA_000710275.1 Specht et al. 

(2014)

NCPC10086 P. chrysogenum GCA_000523475.1 Wang et al. 

(2014)

HKF42 P. chrysogenum GCA_002080375.1 Gujar et al. 

(2018)

KF-25 P. chrysogenum GCA_000816005.1 Peng et al. (2014)

v1.0 P. chrysogenum JGI Mycocosm de Vries et al. 

(2017)

HP7-1 Penicillium 

oxalicum

GCA_001723175.3 Zhao et al. (2016)

FGSC-A4 Aspergillus 

nidulans

GCA_000011425.1 Wortman et al. 

(2009)
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branch confidence values to construct the final tree 
(Criscuolo, 2019).

In addition, a tree obtained with the concatenated sequences 
benA, caM, and RPB2 barcodes was generated using the maximum 
likelihood method with 1,000 bootstrap replications. The tree was 
drawn to scale, with branch lengths representing the inferred 
evolutionary distances. Between 1,879 and 1,931 bp were 
presented in the final data set. Sequences of P. oxalicum barcodes 
were used as an outgroup. Multiple sequence alignments were 
performed using the ClustalW algorithm (Thompson et al., 1994). 
The Tamura-Nei model and MEGA11 software were used for the 
phylogenetic analysis of sequence data (Tamura and Nei, 1993; 
Tamura et al., 2021).

Results

Genome sequencing of PO212, assembly, 
and general characteristics

The genome of PO212 was sequenced via paired-end Illumina 
MiSeq technology, providing two DNA-seq libraries: one 
paired-end small fragment library and a second obtained from 
long-range DNA fragments. The resulting assembly was 
performed de novo and evaluated in terms of N50 and L50 using 
Quast. Automated assembly and manual sequence verification 
yielded an estimated PO212 genome size of 29.82 Mb at ~200× 
coverage. PO212 genome was organized into 65 scaffolds with an 
N50 scaffold length of 1.88 Mb, comprising the first six longest 
scaffolds and reaching an N90 scaffold length of 0.38 Mb, 
corresponding to the first 18 scaffolds (Table  4 and 
Supplementary Table S1). PO212 genome had a GC content of 
49.07%, similar to that of other Penicillium genomes. After the 
manual curation of automated ORF predictions by AUGUSTUS, 
we determined at least 10,164 ORFs in the PO212 genome.

The data presented in the study are deposited in the GenBank 
repository, accession number JAPDLE000000000.

Comparative analysis of PO212 assembly 
and genomic data from Penicillium 
rubens and Penicillium chrysogenum 
strains

To perform a comparison of PO212 with other genomes, 
we chose those genomes deposited in databases of Penicillium 
species classified as P. rubens or P. chrysogenum. Given the 

controversy in the current classification of P. rubens and 
P. chrysogenum, we  first analyzed the barcode sequences 
corresponding to benA, caM, and RPB2 in these deposited 
genomes and the newly sequenced PO212 to determine which 
strains corresponded to each species.

Using the Clustal Omega Multiple Sequence Alignment tool 
(EMBL-EBI), we generated multiple alignments with each of the 
three barcode sequences (Supplementary Figure S1). These 
alignments indicated that all strains share the same sequence 
changes characteristic of P. rubens barcodes (indicated as pink 
boxes in Supplementary Figure S1). In the genomes of strains 
KF-25 and v1.0, benA, caM, and RPB2 barcodes displayed a 
mixture of sequence changes between those of P. rubens and 
P. chrysogenum. This analysis indicated that most probably all 
strains, including PO212 and with the exception of KF-25 and 
v1.0, may belong to the P. rubens clade, as the nucleotide sequences 
of the barcodes were identical to those described as P. rubens as 
compared to the sequence described as P. chrysogenum 
(Supplementary Figure S1). Supplementary Figure S2 shows the 
tree generated for all studied strains of Penicillium spp. by 
concatenating the sequences of benA, caM, and RPB2 gene 
fragments (between 1,879 and 1,931 bp). This tree clustered the 
multilocus sequence of P. rubens strain DTO 98E8 and all 
multilocus sequences from previously described P. rubens strains 
and differentiated those from P. chrysogenum strains KF-25 and 
v1.0. This cluster of P. rubens strains included PO212 multilocus. 
Consistent with the multilocus analysis shown in 
Supplementary Figure S2, a genome-based phylogenetic tree 
constructed using nucleotide sequence from assemblies of all 
studied strains showed the identical distribution of strains into 
two clusters (Figure 1).

For a more detailed comparison, multiple comparative 
analyses of these genomes were conducted using the Quast tool 
and the PO212 genome as a reference genome 
(Supplementary Table S1). The genomes of strains KF-25 and v1.0 
were included as distant members of the P. rubens and 
P. chrysogenum clades. All genomes used in this comparison 
contained similar GC content (Supplementary Figure S3). The 
percentage of the genome represented relative to the PO212 
genome ranged from 92.91 (KF-25) to 98.579% (HKF42). The 
duplication ratio was low (1.001–1.007), indicating high sequence 
conservation and the absence of major duplication events in the 
BCA PO212. In terms of mismatches, the greatest differences were 
found, as expected, with those that presented the greatest 
differences in barcode alignments (KF-25 and v1.0). However, the 
most similar strains to PO212 in the number of mismatches were 
HKF42 and Biourge 1923. The best-assembled genome, organized 

TABLE 4 Assembly and gene prediction summary of PO212 and S27 genomes.

Strain Scaffolds Assembly Size 
(Mb)

Largest 
Scaffold (Mb)

N50 (Mb) BUSCO 
completeness (%)

Predicted 
genes

PO212 65 29.82 3.49 1.88 98.5 10,164

S27 414 29.89 1.65 0.42 98.3 10,164
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into five scaffolds, is P2niaD18 and the comparison with PO212 
assembly showed the presence of 98.46 mismatches per 100 kbp, 
probably indicating the distant origins of both strains.

Quast analysis also showed the differences between the PO212 
assembly and the other selected Penicillium genomes, suggesting 
the presence of numerous variations that could prevent immediate 
identification of those causing the BCA phenotype. Figure  2 
provides an overview of the distinctive organization of the 
assemblies used in this comparison with respect to PO212. The 
excessive number of variations and the difficulties in testing 
biocontrol characteristics of the strains with a sequenced genome 
prompted us to choose for sequencing and detailed genomic 

analysis an alternative P. rubens strain that lacked the BA but was 
close to the PO212 strain.

S27 lacks efficacy against Fusarium wilt

The S27 strain was isolated from the soil and was primarily 
classified as a non-BA strain (Villarino et al., 2016). Notably, S27 
displayed similar colonial morphology to PO212 (Figure  3). 
Sequencing of ITS1-5.8S-ITS2 regions classified S27 as a P. rubens 
strain, and a dendrogram based on BOX and repetitive extragenic 
palindromic (REP) DNA fingerprints placed S27 close to the 
isolate PO212 (Villarino et al., 2016).

The efficacy of S27 against Fusarium wilt in tomato plants was 
recently determined. In contrast to PO212, strain S27 did not 
significantly (p ≤ 0.05) reduce either the disease severity or 
incidence caused by FOL in tomato plants. FOL-inoculated and 
S27-treated plants showed similar symptoms to FOL-inoculated 
and untreated control plants (control +, Figure 3). Thus, we chose 
S27 for genomic sequencing as the best tool for a comparative 
genomic analysis with PO212 to target genes potentially related to 
PO212 BA.

Comparative of PO212 and S27 genomes

The genome of the S27 strain was sequenced using the 
Illumina Hiseq 4000 platform by 150 bp paired-end sequencing 
reads that generated 2,345 Mbp (15,532,752 sequence reads). 
These reads showed coverage of ~82.3× over PO212 assembly. 
De novo assembly of the S27 genome was performed and evaluated 
in terms of N50 and L50 using Quast. Automated assembly and 
manual sequence verification allowed estimating for the S27 strain 

FIGURE 1

Genome-based phylogenetic tree among Penicillium rubens 
strains studied in this work. The phylogenetic tree was generated 
using the software JolyTree. The Aspergillus nidulans strain 
FGSC-A4 genome and Penicillium oxalicum strain HP7-1 
genome were used as outgroups.

FIGURE 2

Comparative graphs of P2niaD18, PrWis, Biourge 1923, NCPC10086, KF-25, HKF42, v1.0, S27, and PO212 genomes. Contig alignment viewer, 
showing the organization of the genomes with reference to PO212. Green regions are right contigs, blue regions are correct contigs similar 
among >50% assemblies, and in dark green are the contigs referring to correct contigs (>50% of the contigs are unaligned). Pink regions with 
garnet triangles refer to misassembled blocks (misassemblies events on the left side or the right side), whole pink regions refer to misassembled 
blocks, orange regions are misassembled blocks (similar among >50% assemblies), brown regions are misassembled blocks (>50% of the contigs 
are unaligned), and gray regions are unchecked misassembled blocks (Visualized with Icarus).
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FIGURE 4

Whole-genome dot-plot showing regions of forward alignment (in purple), translocations (displacements from the diagonal), inversions (in blue), and 
duplications (parallel diagonal lines) between Penicillium rubens strains 212 (PO212) and S27. The PO212 assembly (X axis) was used as a reference.

a genome size of 29.89 Mb. S27 genomic assembly was organized 
into 414 scaffolds with an N50 scaffold length of 0.42 Mb. At least 
10,164 coding sequences were estimated after manual curation of 
ORF prediction by AUGUSTUS.2 Barcode analyses of P. rubens 
and P. chrysogenum showed that S27 was also a P. rubens strain 
(Supplementary Figure S1). Table 4 shows a summary of the two 
genomes. The data presented in the study are deposited in the 
GenBank repository, accession number JAPDLD000000000.

Genome wide alignment showed the strong conservation of 
PO212 and S27 genomic sequences (Figure 4). MUMmer plot 
showed that 99.95% of the PO212 genome assembly matched that 
of the S27 strain with identity equal to or greater than 75%. Only 
0.05% of the genomic sequence seemed to be unique to PO212 but 
did not contain any predicted gene model.

Quast analysis (Supplementary Table S1) also revealed the 
high similarity between PO212 and S27 genomes. Comparisons 
of the S27 and PO212 assemblies showed that up to 99.81% of the 
S27 genome was represented in PO212 and a duplication ratio of 
1.002. In this comparison 1,890 mismatches were found, a rate of 
6.34 changes per 100 kbp of genomic sequence, which was 
significantly lower than the previous genomic comparison 
(Supplementary Table S1). The phylogenetic trees using either 
multilocus or genomic analysis also confirmed the proximity of 

2 http://bioinf.uni-greifswald.de/augustus/

FIGURE 3

Cultures of 7-day-old Penicillium rubens strains 212 and S27 
growing on potato dextrose agar (PDA) at 25°C (front). The 
graph shows the effect of PO212- and S27-treatment on 
percentage of disease severity and incidence caused by 
Fusarium oxysporum f.sp. lycopersici (FOL) in tomato plants cv. 
“San Pedro” at 28 days after FOL-inoculation under controlled 
growth chamber conditions. PO212 and S27 treatments were 
applied to seedlings 7 days before transplanting by watering with 
a conidial suspension to a final concentration of 6 × 106 conidia 
g−1. Control+, untreated and FOL-inoculated plants. Data are 
the mean value of five replicates (flasks) per treatment and four 
plants per replicate. Asterisks in each parameter are significantly 
different from each other (p < 0.05) according to the Student–
Newman–Keuls multiple range test. Vertical bars represent the 
standard error of the mean of five replicates. MSE is the mean 
squared error of ANOVA. SME 182.292 (Severity) and 416.667 
(Incidence).
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the two strains PO212 and S27 and other P. rubens strains by 
joining them in a clade (Figure 1 and Supplementary Figure S2).

Figure 5 shows a circos ideogram representing a comparison 
between the assembly of PO212 and S27 raw reads. S27 sequencing 
data present full coverage of the PO212 genome. Figure 6A shows that 
97.86% of S27 reads mapped over the 65 scaffolds PO212 genomic 
assembly. The remaining 2.14% of S27 reads mapped to the 
mitochondrial genome. With the aid of Circos analysis and CLC 
software, we searched for those Single Nucleotide Variants (SNVs) 
displaying 100% allelic variation between S27 and PO212 genome. 
We detected at least 104 variations between both genomic sequences. 
Most of this low number of variations was classified as SNVs 
(Figures 5, 6B). In addition to 71 nucleotide changes found in coding 
or intergenic regions, we  found seven Multi-Nucleotide Variants 
(MNVs), 14 insertions, nine deletions, and three replacements 
(Figure 6B). Only 15 of these variations were found in coding regions 
(Figures 5, 6C). However, manual curation still reduced the number 
of variations to six with amino acid change (see Figure 7 and Table 5) 
and two silent mutations (Supplementary Table S2).

We focused on six genes that carried an SNV causing an 
amino acid change. Only one SNV caused an early stop in the 
coding sequence. In g4471.t1 gene (orthologue of Pc16g08360 in 
PrWis), the CGA codon for arginine 327 was changed to a TGA 
stop codon. This SNV caused the truncation of the hypothetical 
protein S27g3229.t1 at amino acid 326, missing 3/4 of the ORF 
compared to the predicted PO212 protein (g4471.t1; Table 5). The 

FIGURE 5

Genome wide SNVs of PO212 genome against S27. Orange 
boxes present scaffolds of the PO212 genome. The first inner 
track, the gray histogram, shows the coverage of the S27 reads 
aligned against the PO212 genome. The data show full coverage 
of the PO212 genome. The outermost track represents the SNV 
density of the PO212 genome against the aligned S27 reads. The 
innermost track, black ticks, represents genes containing SNVs in 
their coding region. 15 genes are highlighted with longer ticks in 
the innermost track and labeled in the outermost track. These 15 
genes showed 100% allelic variation on the SNV loci of PO212 
when compared with S27.

A

C

B

FIGURE 6

Variations between Penicillium rubens strains 212 (PO212) and S27 genomes. (A) S27 mapped reads vs. the un-mapped reads using PO212 as a 
reference genome. (B) Differences between two strains classified according the type of mutation: 71 SNVs, 7 MNVs, 14 Insertions, 9 Deletions, and 
3 Replacements. (C) Differences between the two strains in the coding regions with 100% of frequency: 13 SNVs and 2 MNVs. After a review with 
preliminary RNA-Seq data support, we discarded seven variations, considered them as mistakes, and classified two as silent variations, since they 
did not cause an amino acid change (Supplementary Table S2).

133

https://doi.org/10.3389/fmicb.2022.1075327
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Requena et al. 10.3389/fmicb.2022.1075327

Frontiers in Microbiology 10 frontiersin.org

remaining SNVs described in Table 5 caused punctual amino acid 
substitutions (Figure 7). Notably, these SNVs were found only in 
S27. The orthologues of PO212 showed the same nucleotide 
sequences as in the PrWis and P2niaD18 reference genomes.

We then confirmed the presence of these variations between 
S27 and PO212 genomes by PCR amplification of these regions 
and subsequent sequencing (Table 6). To investigate whether any 
of these variations were specific to the biocontrol phenotype, 
we chose eight strains from our collection of P. rubens strains 
classified accordingly to their BA. We  sequenced the regions 
where those SNVs were mapped. We found that SNVs are present 
in g196.t1, g1339.t1, and g3169.t1 genes (nomenclature as in 
PO212 genome) specific to S27 (Table 6). For the remaining genes, 
it was feasible to establish two well-differentiated groups based on 
specific changes in g3741.t1, g3975.t1, and g4471.t1 (Table 6).

Given the absence of specific mutations or genes that could 
explain the BA of PO212, we  performed a search for putative 
homologs of 13 genes involved in biocontrol in Trichoderma species 
(Table 7; Sharma et al., 2011). Twelve were found in the genomes of 
PO212 and S27 without any difference in nucleotide sequences.

Discussion

Penicillium rubens strain 212 is a BCA not only capable of 
reducing the vascular wilt of tomatoes caused by FOL but also other 
diseases in a variety of horticultural crops (Larena et al., 2003a; De 
Cal et al., 2008, 2009; Martinez-Beringola et al., 2013). The main 
mode of action for the control of Fusarium wilt by PO212 is the 
induction of resistance in tomato plants (De Cal et al., 1997b, 1999, 
2000), although plant growth promotion and competition for space 
and nutrients are also described (De Cal et al., 1995; Sabuquillo et al., 
2009). Despite these numerous studies, the molecular basis of PO212 
BA remains unexplored. Therefore, the main objective of this study 
was to understand the genetic components governing the biocontrol 
mechanism. For this purpose, we sequenced and assembled the 
PO212 genome for comparison with other Penicillium genomes 
deposited in databases.

A de novo assembly of the PO212 genome was performed, 
yielding a genomic sequence organized into 65 scaffolds. The 
estimated size of the PO212 genome (29.82 Mb) is consistent with 
the predicted genome size from other strains such as KF-25 (29.91 

FIGURE 7

Graph mapping the S27 reads against the PO212 reference genome in the genes containing the variation (PO212 genes): g196.t1 (Dimethylglycine 
oxidase), g1339.t1 (Vegetative incompatibility protein HET-E-1), g3160.t1 (Putative mitochondrial chaperone), g3741.t1 (Hypothetical protein),  
g3975.t1 (RNA polymerase I specific TF), and g4471.t1 (Hypothetical protein). Arrows indicate the point of variation and nucleotide change 
(Visualized with IGV).
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Mb; Peng et al., 2014) and Biourge 1923 (30.45 Mb; Pathak et al., 
2020). However, other Penicillium genomes have a larger genome, 
as it is the case of P2niaD18 and NCPC10086 with 32.5 and 
32.3 Mb, respectively (Specht et al., 2014; Wang et al., 2014).

With the assembled genome of PO212 and the barcodes of the 
benA, caM, and RPB2 genes (Visagie et al., 2014), we confirmed 
that PO212 belongs to the P. rubens clade, as previously described 
by Villarino et al. (2016). In addition, the PO212 genome was 
compared with the genomes of other P. rubens and P. chrysogenum 
strains to assess the quality of the PO212 assembly. These 
comparisons pointed to KF-25 and v1.0 as distant relatives of the 
other Penicillium strains, which were easily included in the 
P. rubens clade. P. chrysogenum and P. rubens are morphologically 
very similar, making it difficult to classify them into these clades 
without the aid of molecular data (Houbraken et  al., 2011). 
Genome comparisons using the Quast tool allowed us to establish 
the strains most similar to PO212, but the lack of knowledge of 
whether the strains whose genomes are compared are BCAs and 
the differences between strains do not help us to delve deeper into 
the genetic basis that governs the biocontrol mechanism. 

Therefore, we considered the sequencing and comparison of a 
local strain more similar and geographically close to strain PO212 
but lacking BA, so we selected isolate S27 (Villarino et al., 2016).

Similar studies comparing biocontrol microorganisms with 
non-biocontrol microorganisms of the same species (Hernández-
Salmerón et al., 2017) and different species (Kubicek et al., 2011) 
have found notable differences and thus provide a genetic basis for 
understanding the biocontrol process. Following that strategy, 
Wang et  al. (2014), through a comparison of the genomes of 
NCPC10086 and PrWis, identified 69 genes located in different 
scaffolds of strain NCPC10086. However, comparative analysis of 
the PO212 and S27 genomes showed strong conservation of their 
genomic sequences. Only six variants, causing an amino acid 
change, were found in the coding regions between PO212 and S27. 
Sequencing of these ORFs in eight other strains from our stock 
collection, previously classified according to their BA, showed the 
presence of specific variations in soil isolates and those taken from 
plants, but no correlation was found with their BAs. We also took 
advantage of these strains to determine whether the presence of 
known mutations or variations was the cause of BA. First, 

TABLE 5 List of the genes whose sequences present variations between PO212 and S27 strains and the affected amino acid.

Coding region 
change PO212/
S27

Scaffold in 
PO212 genome

Triplet PO212/
S27 (5′➔ 3′)

Amino acid 
change

Protein P. rubens 
Wisconsin 54-
1255

g196.t1/S27g134.t1 1.1 TGC/GGC Cys605Gly Dimethylglycine oxidase Pc13g04270

g1339.t1/S27g7851.t1 2.1 GAT/GGT Asp1447Gly Vegetative incompatibility 

protein HET-E-1

Pc12g06410

g3160.t1/S27g8511.t1 3.1 TCC/CCC Ser271Pro Putative mitochondrial 

chaperone

Pc21g18720

g3741.t1/S27g3030.t1 4.1 GGT/AGT Gly135Ser Hypothetical protein Pc06g00910

g3975.t1/S27g4439.t1 5.1 CCT/CAT Pro219His RNA polymerase I specific 

TF

E8E15_002124

g4471.t1/S27g3229.t1 5.1 CGA/TGA Arg327* Hypothetical protein Pc16g08360

TABLE 6 Nucleotide variations and alleles in loci of Penicillium rubens strains from INIA, CSIC collection.

Strain BCAa MAT 
alleles

nirA 
alleles

g196.t1 g1339.t1 g3160.t1 g3741.t1 g3975.t1 g4471.t1

PO212 + MAT1-1 nirA1 T A T G C C

S27 − MAT1-1 nirA1 G G C A A T

S17 − MAT1-1 nirA1 T A T A A T

S71 − MAT1-1 nirA1 T A T A A T

S73 + MAT1-1 nirA1 T A T A A T

CH2 − MAT1-2 WT T A T G C C

CH5 − MAT1-2 WT T A T G C C

CH6 + MAT1-1 nirA1 T A T G C C

CH8* + MAT1-1 WT T A T G C C

CH16 + MAT1-1 nirA1 T A T G C C

BCAa, biological control agent. The symbol + indicates biocontrol activity. The symbol – indicates no biocontrol activity. *CH8 carries the crnA1 mutation. The name of the genes 
corresponds to PO212.
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TABLE 7 List of genes described in Trichoderma spp. as genes related to biocontrol (Sharma et al., 2011).

Genbank 
number

Gene Function PrWis code PO212 code S27 code

AM050097 Squalene epoxidase (erg1 gene) Silencing of the erg1 gene 

enhances resistance to 

terbinafine that shows 

antifungal activity

Pc22g15550 g7259.t1 S27g7219.t1

EU124654 Putative acetyltransferase and 

monooxygenase

Antagonist activity against 

S. sclerotiorum, S. minor, 

and S. cepivorum

Pc21g05060 g8955.t1 S27g5480.t1

EU311400 Heat shock protein 70 kDa (hsp70 

gene)

Increases fungal resistance 

to heat and abiotic stresses

Pc22g11240 g9809.t1 S27g8859.t1

AJ605116 mRNA for endochitinase (ech42 

gene).

Antifungal activity in 

transgenic tobacco

Pc13g09520 g648.t1 S27g7976.t1

EF407410 Carotenoid cleavage dioxygenase 

1 (ccd1 gene)

Helps in hyphal growth, 

conidiospore development 

and carotenoid pigment 

production

Pc12g09530 g1595.t1 S27g829.t1

EU551672 Transcription factor CTF1 (ctf1 

gene)

Antifungal activity against 

R. solani, Fusarium 

oxysporum, and B. cinerea 

and production of 6- 

pentyl-2H-pyran-2

Pc21g11250 g5805.t1 S27g1152.t1

DQ910533 Protease gene SL41 Biocontrol activity against 

pathogens

AAG44693 g5366.t1 S27g8455.t1

AM421521 Endopolygalacturonase (pg1 gene) 

exons 1–5

Secretion of plant cell wall 

degrading enzymes against 

R. solani and P. ultimum

Pc22g20290 g9752.t1 S27g1693.t1

EU399786 Hypothetical kelch domain 

containing protein (Thkel1)

Expression of this gene in 

A. thaliana modulates 

glucosidase activity, and 

enhances tolerance to salt 

and osmotic stresses

Pc13g04170 g188.t1 S27g126.t1

AY156910 Xylanase (xyl gene) Helps in breakdown of 

hemicellulose

Pc12g01520 g7689.t1 S27g1384.t1

Accession number not 

available

tmkA gene Induction of plant systemic 

resistance and biocontrol 

activity against R. solani. 

(Tested in green house 

condition)

Pc22g01670 g7951.t1 S27g4744.t1

Accession number not 

available

qid74 gene Involved in cell protection 

and adherence to 

hydrophobic surfaces that 

helps in antagonism against 

R. solani

not located not located not located

Accession number not 

available

Sm1 gene A small cysteine-rich 

protein that induces 

defense responses in dicot 

and monocot plants and in 

protecting crop diseases

Pc20g15140 g6346.t1 S27g2607.t1

The GenBank number, the gene name, and the function are detailed. In addition, the code in PrWis, PO212, and S27 if the gene is present in these strains.
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we determined the presence of MAT1-1, which is believed to play 
an important role in several biotechnological traits (Böhm et al., 
2013) or MAT1-2. This analysis yielded no correlation between 
these loci and BA; in fact, both PO212 and S27 carry the MAT1-1 
locus. Second, we had previously studied the complementation of 
the nirA1 mutation causing a nitrate-assimilation deficient 
phenotype in PO212 (Espeso et  al., 2019). Although 
complementation of nirA1 mutation in PO212 transformants 
caused a reduction in their biocontrol phenotype, the S27 and 
other non-biocontrol strains carried the same nirA1 mutation, 
indicating that the loss of NirA activity has no role in BA. In 
conclusion, PO212 and S27 are two strains very similar in 
sequence, with one important difference, the biocontrol capacity 
of PO212. However, current data do not suggest any correlation 
between the presence of the SNVs found and the biocontrol 
capacity of PO212 nor the absence or presence of extra genes 
specifically related to this phenotype.

Genome comparisons of Postia placenta strains evidenced 
high similarity between their genomes while showing important 
differences in phenotypes (Kölle et al., 2020). Hence, the high 
conservation of PO212 and S27 genomic sequences points to the 
presence of specific variants located in non-coding regions as 
candidates for a role in biocontrol. When located in putative 
promoter sequences, these variations could cause changes in gene 
expression patterns. Transcriptomic analyses are a convenient 
approach to studying the expression patterns of candidate genes 
with a potential role in biocontrol as previous works have shown 
(Jiang et  al., 2019; Morán-Diez et  al., 2019). Future lines of 
research will find the basis of the biocontrol phenotype in 
Penicillium focusing on epigenetics or the presence of 
RNA-based mycoviruses.
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Comparative genomics of Bacillus 
cereus sensu lato spp. biocontrol 
strains in correlation to in-vitro 
phenotypes and plant pathogen 
antagonistic capacity
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Ehud Banin 3, Omer Frenkel 2 and Eddie Cytryn 1*
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Israel, 2 Institute of Plant Pathology and Weed Research, Agricultural Research Organization,  
Rishon-Lezion, Israel, 3 The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University,  
Ramat Gan, Israel

Bacillus cereus sensu lato (Bcsl) strains are widely explored due to their capacity to 
antagonize a broad range of plant pathogens. These include B. cereus sp. UW85, 
whose antagonistic capacity is attributed to the secondary metabolite Zwittermicin 
A (ZwA). We recently isolated four soil and root-associated Bcsl strains (MO2, S−10, 
S-25, LSTW-24) that displayed different growth profiles and in-vitro antagonistic 
effects against three soilborne plant pathogens models: Pythium aphanidermatum 
(oomycete) Rhizoctonia solani (basidiomycete), and Fusarium oxysporum 
(ascomycete). To identify genetic mechanisms potentially responsible for the 
differences in growth and antagonistic phenotypes of these Bcsl strains, we sequenced 
and compared their genomes, and that of strain UW85 using a hybrid sequencing 
pipeline. Despite similarities, specific Bcsl strains had unique secondary metabolite 
and chitinase-encoding genes that could potentially explain observed differences in 
in-vitro chitinolytic potential and anti-fungal activity. Strains UW85, S-10 and S-25 
contained a (~500 Kbp) mega-plasmid that harbored the ZwA biosynthetic gene 
cluster. The UW85 mega-plasmid contained more ABC transporters than the other 
two strains, whereas the S-25 mega-plasmid carried a unique cluster containing 
cellulose and chitin degrading genes. Collectively, comparative genomics revealed 
several mechanisms that can potentially explain differences in in-vitro antagonism of 
Bcsl strains toward fungal plant pathogens.

KEYWORDS

biocontrol agent, chitinase, comparative genomics, phytopathogen, secondary metabolites, 
zwittermicin

1. Introduction

The ban on many chemical pesticides has facilitated interest in discovery and application of 
bacteria (termed biocontrol agents) that antagonize soilborne plant pathogens. These bacteria 
protect plants from pathogens through a variety mechanisms that include niche exclusion (Wang 
et al., 2021), metabolic competition (Spadaro et al., 2010), production of siderophores (Yu et al., 
2010; Li et al., 2014), secretion of chitinases that target the chitin components of fungal cell walls 
(Veliz et al., 2017), antibacterial and antifungal compounds (Raaijmakers et al., 2002; Ongena and 
Jacques, 2008), and induction of plant resistance (Pieterse et al., 2014). Secondary metabolites (SM), 
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which include siderophores and antibiotics play a pivotal role in the 
antagonistic capacities of biocontrol agents, but the scope and the 
specific role of these compounds in different strains are not well 
understood (Braga et al., 2016).

Bacillus cereus sensu lato (Bcsl) is a phylogenetically related group 
that includes the well-studied member’s B. cereus sensu stricto (s.s.), 
B. anthracis, and B. thuringiensis (Stenfors Arnesen et al., 2008; Ehling-
Schulz et al., 2019; Bianco et al., 2021; Carroll et al., 2021). Several of 
these strains produce a variety of biologically active plant-pathogen 
antagonizing molecules, and have thus been explored as potential 
biocontrol agents (Silo-Suh et al., 1994; Kumar et al., 2014a). Bacillus 
cereus s.l. strain UW85 (ATCC 53522) has been extensively explored as 
a biocontrol agent due to its in-vitro and in-planta capacity to antagonize 
various fungal and oomycetes pathogens, which is at least partially 
facilitated by the antimicrobials ZwA and kanosamine (Silo-Suh 
et al., 1994).

Bcsl strains frequently harbor multiple plasmids, including mega-
plasmids larger than 100 kb (Zheng et al., 2013). These mega-plasmids 
have been primarily explored in obligatory and opportunistic 
B. anthracis and other B. cereus s.l. strains that carry genes and operons 
encoding for virulence factors (i.e., cya, lef, pagA, haemolysin BL, 
capABCDE and cesABCD; Okinaka et al., 1999; Hoton et al., 2005). In 
addition, certain B. thuringiensis strains harbor mega-plasmids with 
genes encoding insecticidal (Cry and Cyt) toxins that are used 
commercially to control different insect pests (Gillis et  al., 2018). 
Recently, whole-genome sequencing revealed that the biosynthetic gene 
cluster encoding ZwA and Kanosamine in certain Bcsl strains is also 
situated on a mega-plasmid (Kevany et al., 2009; Lozano et al., 2016; 
Lechuga et al., 2020), suggesting that Bcsl strain mega-plasmids play a 
role in ecological adaptation and antagonism of plant pathogens.

The objective of this study was to identify Bcsl strain mechanisms 
potentially involved in antagonizing soilborne phytopathogens and 
pinpoint specific mechanisms that are unique to individual strains 
that may explain differences in their in-vitro antagonistic capacity. 
This was achieved by combining long-and short-read (i.e., Oxford 
Nanopore Minion and Illumina) whole genome sequencing, which 
enables assembly of complete chromosomes and plasmids 
(Arredondo-Alonso et al., 2017; George et al., 2017). Concomitant to 
whole genome sequencing, the five Bcsl strains (four isolated in our 
lab from different soils around Israel, and B. cereus strain UW85) 
were screened against the soilborne pathogens Pythium 
aphanidermatum (oomycetes), Rhizoctonia solani (basidiomycetes) 
and Fusarium oxysporum (ascomycetes) using both whole cell and cell 
extract antagonistic assays.

2. Materials and methods

2.1. Bacterial and fungal strains and growth 
conditions

Bacillus cereus s.l. UW85 (coined UW85), originally isolated 
from alfalfa roots in Wisconsin, USA, was purchased from the 
American Type Culture Collection (serial number ATCC 53522). 
Bacillus cereus s.l. S-25 (coined S-25) and B. cereus s.l. S-10 (coined 
S-10) were isolated from a clay-rich wheat field soil, and B. cereus 
s.l. MO2 (coined MO2) was isolated from the roots of a Moringa 
oleifera tree within the Volcani Institute campus of the Agricultural 
Research Organization (ARO) in Rishon Lezion, Israel. Bacillus 

cereus s.l. LSTW-24 (coined LSTW-24) was isolated from a sandy 
soil from the coastal plain of Israel. The studied Bcsl strains were 
grown on Luria-Bertani (LB) broth or agar and incubated at 30°C 
overnight, with or without shaking at 180 rpm. Their antagonistic 
effects was tested against three model soilborne pathogens: R. solani 
anastomosis group AG4, isolated from a tomato plant in the Western 
Negev, Israel, whereas P. aphanidermatum strain P88 and 
F. oxysporum f.sp. radicis cucumerinum strain Hazera were isolated 
from cucumber plants in the Hefer Valley, Israel. The three model 
pathogens were routinely grown on Potato Dextrose Agar (PDA, 
DIFCO, France), which was amended with 250 mg/l chloramphenicol 
(PDA+, Sigma, Israel) for growth of R. solani and F. oxysporum.

2.2. Evaluation of in-vitro antifungal activity

The in-vitro antagonistic activity of the five Bcsl group strains 
against the three model soilborne phytopathogens was evaluated using 
a standard dual culture assay. Briefly, we streaked an overnight bacterial 
suspension in the middle of a 9 cm Petri dish containing 50% LB agar, 
and incubated it at 30°C for 3 days in a temperature controlled incubator 
(Tuttnauer, Israel). Subsequently, a 5 mm diameter mycelial disk from 
the actively growing margin of one of the three pathogens described 
above was placed on opposite sides of the Petri dish and further 
incubated at 25°C. The inhibition zone between the bacteria and the 
pathogen, and the area of the pathogen mycelium were measured daily 
for 3 to 14 days after initial inoculation, depending on the rate of 
pathogen growth. Two criteria were considered when evaluating the 
in-vitro antagonistic capacity:

(1) Mycelia area  - calculated as the proximal area of an ellipse 
according to the following formula:

 
π ∗ ∗








D D1

2

2

2

where D1 is the long diameter and D2 is the short diameter.
(2) Inhibition zone - calculated as the minimal distance between the 

pathogen and the bacteria. A schematic diagram of both criteria is 
shown in Supplementary Figure S1.

2.3. Evaluation of in-vitro cell free 
supernatant antifungal activity

The five Bcsl strains were inoculated in 100 mL of 50% LB medium 
in 250 mL Erlenmeyer flasks and incubated at 30°C with shaking at 
130 rpm for 6 days in a Witeg model WIS-30R shaking incubator (Witeg 
Labortechnik GMBH, Germany). Starting from the third day, 1 mL of 
culture from each flask was centrifuged and filtered through 0.22 µm, 
22mm membranes and the cell-free supernatants (CFS) were stored at 
4°C. PDA plates were inoculated with 4 mm diameter agar plugs 
containing one of the three model pathogens, and 50 μL of CFS (or 50% 
LB medium used as a control) was pipeted into aseptically created holes 
in the agar placed at a distance of 0.5 cm from F. oxysporum plug, 1 cm 
from R. solani plug and 1.5 cm from P. aphanidermatum plug. The plates 
were incubated at 25°C and inhibition was inspected after 1–3 days, 
depending on the pathogen growth rate. The experiment was conducted 
three times.
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2.4. Evaluation of in-vitro chitinase and 
cellulase activities and genome screening 
for associated genes

Approximately 15 μL of an overnight culture of the five Bcsl strains 
was pipetted onto agar plates containing M9 minimal medium mixed 
with 0.4% colloidal chitin as a sole carbon source (Kuddus and Ahmad, 
2013), and subsequently incubated for 20 days at 30°C. Chitinase activity 
was estimated by measuring the clearing zone around the bacterial 
colonies, calculated by subtracting the halo area from the area of the 
bacterial colony.

In tandem, we mined the five Bcsl genomes for genes associated 
with chitin metabolism (chitinases and chitin binding proteins) using 
RAST and BLASTX together with the web server dbCAN2, for 
carbohydrate-active enzyme (CAZyme) annotation (Zhang et al., 2018; 
Drula et al., 2022). The chitinase-associated genes sequences of the five 
Bcsl strains are shown in Supplementary Table S3.

The cellulose-degrading capacity of the five Bcsl strains was 
estimated by plating the strains on cellulose-amended Congo-Red agar 
media composed of: KH2PO4 0.5 g, MgSO4 0.25 g, cellulose 2 g, agar 15 g, 
Congo-Red 0.2 g, and gelatin 2 g, distilled water 1 l and at pH 6.8–7.2 
(Gupta et  al., 2011). Approximately 15 μL of an overnight culture 
normalized to 0.5 O.D. of the five Bcsl strains were pipetted onto the 
cellulose Congo-Red agar and incubated for 6 days at 30°C. Cellulytic 
activity was calculated by measuring the clearing zone around the 
bacterial colonies (Supplementary Figure S5). In addition, we mined the 
five Bcsl genomes for genes encoding for celluloses enzymes using RAST 
and the web server dbCAN.

2.5. DNA extraction and genome sequencing

Bcsl strains were inoculated in LB medium and incubated overnight 
at 30°C with shaking at 180 rpm. The overnight culture was diluted and 
incubated for an additional 3 h before harvesting 2 mL for genomic DNA 
(gDNA) isolation using the Wizard Genomic DNA Purification Kit 
(Promega, Madison, WI) according to the manufacturer’s instructions 
with slight modifications to minimize pipetting and vortex steps. gDNA 
yield and quality was examined using a Qubit flurometer (Thermo 
Fisher Scientific Inc., Waltham, MA) and a Nanodrop ND1000 
spectrophotometer (NanoDrop Technologies, Wilmington, DE), and its 
integrity was verified by gel electrophoresis (1% agarose w/v). The 
gDNA was sequenced using short (Illumina MiSeq) and long (Oxford 
Nanopore Minion) read sequencing technologies at Genotypic 
Technologies, (Bengaluru, India) as described below.

A volume of 1 μg of DNA from each isolate was used for Nextra XT 
DNA library preparation using the manufacturers protocol (Cat#FC-
131-1,024), and libraries were sequenced on an Illumina HiSeq X Ten 
sequencer (Illumina, San Diego, USA). In tandem, sequencing was 
performed on an Oxford Nanopore GridON X5 sequencing (Oxford, 
UK) using a SpotON flow cell R9.4 (FLO-MIN106) in a 48 h sequencing 
protocol. The quality of the genomes was analyzed using BUSCO 
(Manni et al., 2021).

2.6. Genome assembly and annotation

Trimmomatic software version 0.39 (Bolger et al., 2014) was used for 
removal of adaptors and low quality sequences using the following 

parameters: ILLUMINACLIP:adapters.fa:2:30:10 LEADING:3 
TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36. Subsequently, 
Unicycler version 0.4.8 (Wick et al., 2017) was used for hybrid assembly 
of the trimmed Illumina paired-end and Nanopore reads using defaults 
parameters. The RAST server version 2 (Aziz et al., 2008; Overbeek et al., 
2014; Brettin et al., 2015) was applied for the annotation of the assembled 
genomes using default parameters. OAT software was applied for 
genome comparisons of the five Bcsl strains and representative reference 
strains from the Bacillus group (B. pumilus NCTC10337, B. velezensis 
FZB42 and B. subtilis HJ5), based on OrthoANI (Average Nucleotide 
Identity) values (Lee et al., 2015). The online service OrthoVenn2 was 
used for genome wide comparisons and visualization of orthologous 
clusters based on protein sequences generated by RAST annotation tool 
(Xu et al., 2019). The pantoate-b-alanine ligase gene (panC) was used to 
identify the Bcsl strains lineage within the group (Guinebretière et al., 
2008) using MEGA11 alignment of the five Bcsl strains and representative 
reference strains from the B. cereus group (B. cereus ATCC 14579 T, 
B. thuringiensis CIP 53137 T and B. weihenstephanensis INRA1). The 
B. subtilis-associated strain NYG5 was included as an outlier for rooting 
the tree (Supplementary Figure S3). The JSpeciesWS tool was used for 
calculating identity using tetra correlation of our five Bcsl strains against 
an updated published genome reference database (Richter et al., 2015).

The webserver antiSMASH (RRID:SCR_022060) version 5.1.2 (Blin 
et al., 2019) was applied for identification and annotation of secondary 
metabolite encoding biosynthetic gene clusters (BGC) using the default 
parameters. Comparative analysis of ZwA BGCs was performed and 
visualized with EasyFig (Sullivan et al., 2011), using the UW85 ZwA 
BGC as a template. The extrachromosomal plasmids were visualized 
using BLAST Ring Image Generator (BRIG) version 0.95 (Alikhan 
et al., 2011).

3. Results

3.1. Colony expansion and in-vitro 
antagonism of model phytopathogens by 
Bcsl strains

Dual culture assays revealed substantial differences in colony 
expansion and in-vitro mycelial growth inhibition by the five tested Bcsl 
isolates (Figure 1; Supplementary Figures S1, S2). S-10 spread rapidly 
and covered approximately two-thirds of the agar (resulting in 
substantial inhibition of F. oxysporum, P. aphanidermatum and R. solani 
mycelial expansion), whereas the other Bcsl strains grew much slower. 
Strain LSTW-24 did not inhibit P. aphanidermatum but moderately 
inhibited R. solani (~67% mycelial inhibition), while MO2 strongly 
inhibited R. solani (~92%), and moderately inhibited P. aphanidermatum 
(~54%). S-25 did not substantially inhibit P. aphanidermatum (~47%) 
and R. solani (~58%) mycelial growth, but caused a clear inhibition zone 
in dual culture assays with P. aphanidermatum and R. solani (0.5 and 
0.8 cm, respectively).

3.2. Effect of Bcsl strain cell-free 
supernatant on model phytopathogen 
mycelial growth

We tested the antagonistic effect of cell-free supernatants (CFS) of 
the five Bcsl strains against the three model pathogens (Figure  2). 
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A B

FIGURE 2

Antagonistic effect of cell-free supernatant (CFS) of the five Bcsl strains against the three model phytopathogens. Images showing antagonistic effect on 
mycelial growth of the three phytopathogen, F. oxysporum, R. solani, and P. aphanidermatum inoculated in the center of 9 cm PDA plates, mediated by CFS 
of 5 days old Bcsl strains grown on 50% LB medium (A); Inhibition zone measurments of R. solani and P. aphanidermatum mycelia by the CFS of the five 
Bcsl strains (B). The graph represents data from three independent experiments, and the vertical line shows standard deviations between replicates.

FIGURE 1

Dual culture inhibition assay of the five Bcsl strains against soilborne phytopathogens. Images of dual culture experiments (A); and inhibition zones 
measurements in dual cultures of 3 days old Bcsl strains with Pythium aphanidermatum (B); Rhizoctonia solani (C); and Fusarium oxysporum (D) on 50% LB 
agar at 25°C. Images are shown following 3 days of incubation for P. aphanidermatum and R. solani and 16 days of incubation for F. oxysporum. Box plots 
represent data from three independent experiments with five replicates each. The lines in the box plot represent the median while the x symbols represent 
the mean. Different letters indicate statistically significant differences (p < 0.05) based on the ANOVA Tukey–Kramer post hoc test (α = 0.05).
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The  CFS from S-25 had a clear inhibitory effect against 
P. aphanidermatum and R. solani mycelia (suggesting that it secretes 
compounds that antagonize these phytopathogens), but not against 
F. oxysporum. In contrast, the other four strains did not show a 
clear  antagonistic phenotype against any of the screened 
model phytopathogens.

3.3. Comparative genomic analysis of Bcsl 
strains

Genome characteristics and sequencing metadata are summarized 
in Table 1. The genome sizes ranged from 5.3 to 6.3 Mbp with a mean 
GC-content of 35%, which is typical for members of the Bcsl group. 
Collectively, the genome size of Bcsl strains is larger than genomes of 
other Bacillus species used for biocontrol such as B. Pumilus, B. velezensis 
and B. subtilis (Shafi et al., 2017), whose average genome size is 3.7 Mbp, 
4 Mbp and 4.1 Mbp, respectively. The total number of Open Reading 
Frames (ORFs) varied from 5,755 to 6,564, and the number of identified 
RNA genes from 107 to 138. Except for LSTW-24, all the sequenced Bcsl 
strains contained plasmids.

Average Nucleotide Identity (ANI) comparisons revealed a high 
level of similarity (>95%) between the Bcsl strains, with the exception 
of MO2 (91%, Figure 3A). Nevertheless, phylogenetic characterization 
of the strains based on the panC housekeeping gene (involved in 
pantothenate biosynthesis), which has been used for phylogenetic 
characterization of B. cereus strains (Guinebretière et  al., 2008), 
indicated that MO2 is a closely related lineage within the Bcsl group 
(Supplementary Figure S3). Furthermore, comparing MO2 tetra-
nucleotide signatures (Tetra) to those of Bcsl strains from a large and 
continuously updated genome reference database using the 
JSpeciesWS tool, revealed a high level of identity with a correlation 
coefficient above 0.99. The pangenome comparisons of the five Bcsl 
strains identify 4,257 shared clusters out of 6,195, with 2, 17, 17, 35, 
and 26 clusters that were unique to LSTW-24, S-25, S-10, UW85 and 
MO2, respectively (Figure  3B). UW85 and MO2 accessory genes 
included: i) ABC transporter encoding genes, ii) genes encoding toxin 
and antibiotic synthesis; iii) genes linked to quorum sensing and 
biofilm formation, iv) genes encoding for siderophores and 
surfactants; v) genes encoding for carbohydrate and phosphate 
metabolism; and vi) genes associated with utilization of sulfur and 
nitrogen (Supplementary Table S1).

TABLE 1 Characteristics of the five Bcsl strain genomes used in this study.

Isolate 
name

Genome 
size (Mbp)

Total 
number of 

contigsa

Genome quality 
(% of 

completeness)

GC 
content 

(%)

N50b Total open 
reading 
frames 
(ORFsc)

RNA 
genes

Plasmids 
detected

LSTW-24 5.3 46 (14) 98.7 35.2 1,355,660 5809 107 0

MO2 5.7 6 (6) 99.8 35.2 5,250,910 5755 134 5

S-25 5.9 20 (4) 99.6 35.0 5,281,513 5795 138 2

S-10 6.0 3 (3) 99.8 34.9 5,391,120 5894 134 1

UW-85 6.3 23 (6) 99.1 34.8 2,521,153 6564 129 3

aBrackets show number of contigs larger than 2,500 bp.
bSequence length of the shortest contig at 50% of the total genome length.
cORFs predicted by Prodigal software.

A B

FIGURE 3

Heatmap and phylogenomic tree (A) showing similarity of the five-targeted Bcsl strain genomes relative to other species of Bacillus, based on average 
nucleotide identity (ANI) values, calculated using the Orthologous Average Nucleotide Identity Tool (OAT); Venn diagrams constructed using the OrthoVenn 
2 online service displaying the distribution of shared and unique orthologous clusters among the five Bcsl strains (B).
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3.4. Evaluation of chitonolytic and cellulytic 
activity and associated metabolic genes in 
the Bcsl strains

We mined the five genomes for genes associated with chitin 
metabolism concomitant to evaluation of extracellular in-vitro 
chitinolytic activity. Two chitinase encoding genes were identified in 
S-25, S-10 and MO2, three in strain UW85, and four in strain LSTW-24. 
Furthermore, three chitin binding protein (CBP) encoding genes were 
detected in the five Bcsl, an additional CBP was found in S-25, LSTW-24, 
and MO2, whereas four additional CBP encoding genes were detected 
in UW85. A single endoglucanase gene potentially involved in chitin/
cellulose degradation was also detected in S-25 but not in the other four 
Bcsl genomes. Based on blastx, each of the five isolates harbor chitinase 
genes belonging to subfamily A (ChiA) and subfamily B (ChiB) of the 
glycoside hydrolase GH18 family while only strains LSTW-24 and 
UW85 harbored additional chitinase genes. ChiA and ChiB were also 
ubiquitous in 20 additional Bcsl genomes that we screened. More than 
that, while additional genes associated with chitin degradation were only 
detected in some of the strains, the chitinases and CBPs genes found in 
LSTW-24 and UW85 strains were not detected in any of the other 20 
analyzed Bcsl genomes (Supplementary Figure S4). The extracellular 
chitinolytic activity was generally proportional to the scope of genes 
associated with chitin degradation, with UW85 and LSTW-24 showing 
higher chitinolytic activity than the three other strains and S-25 showing 
the lowest activity (Figure 4). Similarly, we tested the five Bcsl strains for 
their in vitro cellulose-degrading capacity on cellulose-amended Congo 
Red agar plates (Supplementary Figure S5). Two strains (UW85 and 
LSTW-24) showed slightly higher cellulolytic activity than the three 
other strains, while MO2 showed the lowest activity. Nevertheless, 
despite the differences in the cellulolytic activity, we could not detect any 
correlation between the cellulolytic activity and the in vitro antagonistic 
activity against the oomycetes P. aphanidermatum, whose cell wall is 
composed of cellulose instead of chitin.

Screening the five Bcsl genomes did not reveal significant 
differences in genes encoding for cellulolytic enzymes that could 
explain the variances in in-vitro cellulolytic activity. We identified a 
gene encoding for 6-phospho-beta-glucosidase (EC:3.2.1.86), and the 

PTS transporter homologs CelC, CelB, and CelA in all of the strains. 
An additional gene encoding for beta-glucosidase (EC:3.2.1.21) was 
only identified in strains S-25, UW85 and LSTW-24. We  did not 
identify genes encoding for endoglucanase (EC:3.2.1.4) in any of the 
strains except for a putative endoglucanase detected in the plasmid of 
the S-25 strain.

3.5. Annotation and comparative analysis of 
secondary metabolite encoding genes in 
Bcsl strains

The Bcsl genomes were screened for documented and potentially 
novel secondary metabolite encoding BGCs using Antismash (Medema 
et al., 2011), which ranks gene clusters by similarity to a queried gene 
cluster of known function, presenting the percentage of genes in the 
queried cluster that show similarity to the known BGC (Figure 5). All 
five genomes harbored BGCs encoding for the catecholate siderophores 
petrobactin and bacillibactin (100 and 46% similarity, respectively) 
(Lee et al., 2011). LSTW-24 harbored an additional BGC with 55% 
similarity to the siderophore fuscachelin. All genomes harbored a BGC 
with 40% similarity to fengycin, a biologically active lipopeptide 
produced by several B. subtilis strains known to antagonize filamentous 
fungi (Deleu et al., 2008). A BGC similar to Locillomycin was detected 
in UW85 (21%) and two such clusters (28 and 42% identity, 
respectively) were identified in LSTW-24. Another BGC similar to the 
lipopeptide Puwainaphycin was detected in UW85 (50% identity) and 
S-10 (60% identity). Each of the five genomes contained unique 
secondary metabolite encoding BGCs. For example, S-25 carried a 
lassopeptide-encoding BGC, MO2 harbored a BGC encoding for a 
sophorolipid (100% identity), a group of amphiphilic biosurfactants, 
and UW85 carried a BGC predicted to encode for an unknown 
cyclodipeptide. In addition, S-25 and S-10 harbored BGCs putatively 
encoding for the hybrid NRPS/PKS metabolite ZwA (81 and 100% 
similarity, respectively), which was first characterized in UW85 (Silo-
Suh et  al., 1994). This metabolite has been extensively explored in 
UW85 and other prospective Bcsl biocontrol strains, due to its 
antagonistic effect against oomycetes and other soilborne pathogens 

FIGURE 4

Chitinolitic activity of five Bcsl strains. Area of clearing zones indicating the different chitinolytic activity of the five Bcsl strains on M9 minimal medium 
containing colloidal chitin as a sole carbon source. The graph showing the mean and standard deviations of 10 independent measurements (left); and 
image illustrating the extracellular chitinolytic activity of the five isolates (right). Different letters indicate statistically significant differences (p < 0.05) based on 
the ANOVA Tukey-HSD test (α = 0.05).
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(Raffel et al., 1996; Silo-Suh et al., 1998; Broderick et al., 2000; Zhao 
et al., 2007).

3.6. Comparative analysis of ZmA harboring 
mega-plasmids

We compared the mega-plasmid harboring the ZmA encoding BGC 
in UW85 to its two homologs in S-25 and S-10. The UW85, S-25 and 
S-10 mega-plasmids were 578,721, 436,050, and 588,156 bp, encoding 
for 636, 404 and 530 genes, respectively. The GC content of all of the 
plasmids was approximately 32%, which was slightly lower than that of 
the chromosomes. A total of 257, 196 and 217 genes, respectively, were 
functionally annotated by RAST, almost half (92) of whom were shared 
between the three strains (Figure 6A).

Approximately 12% of the annotated mega-plasmid genes (16% of 
shared genes) were predicted to be part of the ZwA BGC (Figure 6B). 
Common annotated genes found on the plasmid that were not part of 
the ZmA BGC included genes encoding for putative virulence factors 
and pathogenesis factors (i.e., microbial collagenase, hemolysin B, 
reticulocyte binding protein, and type II secretion systems), ABC 
transporters, tetracycline and β-lactam resistance and quorum sensing 
and chemotaxis mechanisms (Figure 6B). In addition, 89, 53, and 64 
of the annotated genes were unique in the UW85, S-25, and S-10 
mega-plasmids, respectively, representing over 50% of the unique 
genes reported above. The UW85 mega-plasmid contained nine genes 
encoding for ABC transporters that were absent in the other two 
strains (Supplementary Table S2). The S-25 mega-plasmid contained 
genes encoding for chitin binding proteins and a predicted 
endoglucanase, potentially involved in antifungal activity, which were 

absent in the other two strains. (Supplementary Figure S6; 
Supplementary Table S2).

3.7. Comparative analysis of ZmA BGCs

Gene synteny comparisons between UW85 ZmA BGCs and 
homologs from S-25 and S-10 revealed high similarity between the 
clusters (Figure 7), except for a group of genes predicted to encode for 
the antibiotic kanosamine situated within the ZmA BGCs of UW85 and 
S-10, but absent in the S-25 BGC. In contrast, the ZmA encoding BGC 
of S-25 contained genes predicted to encode for a β-lactone containing 
protease inhibitor located proximal to the ZmaA BGC, which was 
absent in the other two strains. In addition, two hypothetical protein-
encoding genes were identified in the ZmA-encoding BGC of S-25, 
whereas a mobile element sequence proximal to the kanosamine 
encoding gene was detected in S-10.

4. Discussion

The five analyzed Bcsl strains described in this study displayed 
unique in-vitro antagonistic profiles against fungal and fungal-like (i.e., 
Ascomycota, Basidiomycota, and Oomycetes) plant pathogens as 
previously demonstrated for other Bcsl strains (Silo-Suh et al., 1994; Xu 
et al., 2014; Kumar et al., 2014b). We therefore mined their genomes to 
pinpoint genes and gene clusters encoding potential antifungal factors 
associated with the observed antagonism and performed comparative 
genomic analysis to identify specific factors that might explain 
differences in their in-vitro antagonistic phenotypes.

FIGURE 5

Occurrence of secondary metabolite encoding biosynthetic gene clusters with putative antifungal activity in the five analyzed Bcsl strains based on 
Antismash predictions. Heatmap shades represent the percentage of genes in the queried cluster that are similar to the known BGC. The darker the color 
the higher the percentage of similar genes in the cluster to the known BGC. aCDPS: cyclic dipeptides. bRiPPs: Ribosomally synthesized and post-
translationally modified peptides.
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Collectively, more unique genes were detected in UW85 and MO2 
relative to the three other Bcsl strains. This increased diversity may 
be explained by the fact that they were isolated from plant roots in 
contrast to the other three strains, which were isolated from bulk soil, 
although it is sometimes difficult to differentiate between these two 

niches. Root ecosystems are considered to be more competitive than 
bulk soil, necessitating genes encoding specific characteristics to ensure 
survival (Lugtenberg and Dekkers, 1999; Zhang et al., 2016; Ling et al., 
2022). An example are genes encoding for transporters which facilitate 
the uptake of root-associated nutrients and essential molecules, or 

A B

FIGURE 6

Comparative analysis of plasmids containing ZwA BGC homologues in Bacillus cereus spp. UW85, S-10 and S-25. (A) Venn-diagram showing similar and 
unique RAST annotated genes in the three plasmids. (B) Genetic map of the S-10 (green) and S-25 (blue) plasmids aligned against the UW85 reference 
plasmid (red) using the BRIG software package. The annotations of relevant encoded proteins from three sequenced plasmids appear in the outer black 
ring, and the GC content of the reference plasmid is displayed between the inner black and red rings.

FIGURE 7

Synteny of ZmA homolog BGCs. The reference ZwA BGC of UW-85 (middle), is flanked by S-10 (top), and S-25 (bottom) homologues. The annotations of 
relevant encoded proteins from three BGCs are indicated by arrows. ZmA BGC genes are shown in black capital letters A–V, and kanosamine encoding 
genes in red capital letters. The figure was generated using Easyfig software with a cut-off of 90% gene identity.
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remove antibiotics or other toxic compounds produced by competitors 
in the root environment from the cell (Rees et  al., 2009). The 
involvement of ABC transporters in biocontrol and rhizosphere 
competence is well established. For example, the ABC transporter 
abcG5 in the fungal biocontrol agent Clonostachys rosea was recently 
found to be essential for biocontrol activity against F. graminearium-
facilitated foot rot disease (Dubey et al., 2014), and a gene encoding for 
a putative ABC transporter from Erwinia chrysanthemi was found to 
play a role in in planta fitness of the bacterium (Llama-Palacios et al., 
2002). It is possible that the presence of additional ABC transporter 
encoding genes on the UW85 ZwA mega-plasmid may contributes to 
UW85 capacity to colonize and persist in the rhizosphere and therefore 
potentially enhances its biocontrol activity.

The presence of unique genes involved in carbohydrate and phosphate 
metabolism in the UW85 and MO2 genomes may also contribute to the 
capacity of these strains to survive in the copiotrophic plant root ecosystem. 
This is supported by a comparative genomic analysis of plant associated vs. 
non-plant-associated B. amyloliquefaciens and B. subtilis strains, which 
showed that plant-associated strains possess additional genes involved in 
utilizing plant-derived substrates, seemingly acquired through horizontal 
gene transfer (HGT; Zhang et al., 2016). UW85 and MO2 also contained 
more transposase genes, which may indicate higher occurrence of HGT 
events that can facilitate the acquisition of genes associated with 
environmental adaptation (Aminov, 2011; Raymond and Bonsall, 2013).

4.1. Linking chitinolytic activity and chitin 
degrading genes in Bcsl strains

Bacterial chitinases that degrade α-1,3-glucans, and β-1,3-glucans 
(the major components of fungal cell walls) can play a fundamental role 
in fungal antagonism by biocontrol strains (Swiontek Brzezinska et al., 
2014). For example, chiA encoded chitinases in Serratia marcescens and 
S. plymuthica were linked to biological control of plant diseases caused 
by phytopathogenic fungi (Chernin et al., 1997; Downing and Thomson, 
2000), and B. thuringiensis isolates from tomato roots only exhibited 
in-vitro antifungal activity against Verticillium spp. when harboring one 
or two putative chitinases (Hollensteiner et al., 2016; Veliz et al., 2017). 
Interestingly, the chitinolytic activity of the five Bcsl isolates investigated 
in this study correlated to their genetic potential, with higher activity 
documented in UW85 (which harbored almost twice as many CBPs as 
the other strains) and LSTW-24 (which contained more chitinases than 
the other strains). Previous reports have explored the genetic context of 
chitinase genes (Yan and Fong, 2015), the association between molecular 
structure, substrate specificity, the catalytic mechanisms that facilitate 
chitinase activity (Hamid et al., 2013), and the synergistic activity of 
different chitinases (Suzuki et  al., 2002). The linkage between the 
quantity of chitin degrading genes and the chitinolytic activity of strains 
UW85 and LSTW-24 documented here is supported by previous studies 
suggesting that synergistic interactions between CBP and chitinases 
enhance the capacity of biocontrol agents to metabolize chitin 
(Purushotham et al., 2012; Manjeet et al., 2013; Veliz et al., 2017).

S-25 harbors a unique gene encoding a probable endoglucanase on 
its mega-plasmid. Previous studies demonstrated that endoglucanase 
activity antagonized P. aphanidermatum (Natarajan et al., 2013) and 
reduced disease incidence by Pythium on cucumber seedlings (Chet 
et al., 1998). Other studies reported that a b-1,3-glucanase facilitated 
morphological changes and growth inhibition of R. solani and Fusarium 
sp. (Benitez et al., 1998; Bhat, 2000). In view of these findings, we suggest 

further examination of this endoglucanase gene, and specifically 
examination of its involvement of S-25 antagonism of P. aphanidermatum 
and R. solani. The proximity between this endoglucanase gene and three 
CBPs genes may imply combined antifungal activity of these genes.

While our analyses revealed strong correlations between chitinase 
activity and the abundance of chitinase encoding genes, there was no 
correlation between extracellular chitinolitic activity, and the antifungal 
activity of the CFS, suggesting that either particular chitinases may 
be more active against specific fungi or that additional antagonistic 
mechanisms are also required.

4.2. Presence of secondary metabolite 
encoding BGCs in Bcsl strains with putative 
antifungal activity

Secondary metabolites play a critical role in the antagonism of 
phytopathogens by bacterial biocontrol agents (Vizcaino et al., 2014) 
and many secondary metabolites with antifungal activity have been 
detected in Bacillus spp. (Shahid et al., 2021). We therefore screened the 
five Bcsl genomes for secondary metabolite encoding genes and 
performed comparative genomic analyses to uncover the genetic basis 
of the observed differences in their in-vitro antagonistic capacity.

Shared BGCs, common to all of the five analyzed strains and having 
putative antifungal activity, included clusters encoding for catecholate 
siderophores similar to petrobactin and bacillibactin, which were 
previously shown to play vital roles in the antagonistic capacity of various 
bacterial biocontrol agents against phytopathogens (Prema and Selvarani, 
2012; Li et al., 2014; Patil et al., 2014; Miljakovic et al., 2020; Sheng et al., 
2020). Another shared genes cluster is similar to the antifungal lipopeptide 
fengycin, which was shown to inhibit R. solani (Guo et al., 2013) and other 
fungal pathogens (Ongena et al., 2005; Deleu et al., 2008; Kulimushi et al., 
2017). In contrast, several unique clusters, which may contribute to the 
specific antifungal activity of each Bcsl strain, were also detected. These 
include a BGC, only detected in the UW85 and LSTW-24 genomes, having 
similarity (21%–42%) for the NRPs-PKs hybrid locillomycin, reported to 
antagonize R. solani and F. oxysporum (Luo, 2015) and a BGC found in 
S-10 and UW85 genomes with similarity (50–60%) to a puwainaphycin 
lipopeptide, which was previously shown to possess antifungal activity 
against members of the Ascomycota phylum (Mares et al., 2019; Hajek 
et al., 2021). Interestingly, in our research we did not observe inhibition of 
F. oxysporum which represent the Ascomycetes soilborne pathogen, but 
this predicted gene cluster similar to puwainaphycin need to be further 
explored for its role in the inhibition activity of these two strains against 
R. solani and P. aphanidermatum. Sophorolipid, only detected in MO2, is 
an extracellular bio-surfactant reported to inhibit mycelial growth of 
R. solani (64.3%) and P. ultimum (95%; de OCaretta et  al., 2021), in 
addition to other fungal phytopathogens in both in vitro and in planta 
experiments (Yoo et al., 2005; Sen et al., 2017; Haque et al., 2019; Chen 
et al., 2020; de OCaretta et al., 2021). The presence of this antifungal 
encoding BGC in MO2 genome may contribute to its observed antagonistic 
activity against R. solani and P. aphanidermatum. In addition, S-25 carried 
unique BGC encoding for a lassopeptide, a group of natural products 
previously shown to have therapeutic effects on fungal infections, as 
demonstrated for the class I lassopeptide humidimycin from Streptomyces 
humidus. This compound expedited activity of fungal cell wall inhibitors 
that antagonized Candida albicans and Aspergillus fumigatus (Valiante 
et al., 2015). The different profiles of secondary metabolite encoding genes 
between the five Bcsl strains may partially explain their different antifungal 
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phenotypes against the three soilborne pathogens, but additional work is 
required to clarify their exact role in the observed antagonistic activity.

4.3. Comparative analysis of ZwA BGC and 
the ZwA harboring plasmid

S-25 and S-10 harbored homologs of the well-established antifungal 
hybrid NRP/PK zwittwrmicin A, a linear aminopolyol antibiotic originally 
isolated from UW85 (Kevany et al., 2009). ZwA has been previously shown 
to supress alfalfa seedlings damping off caused by the oomycete P. medicaginis 
(Handelsman et al., 1990), it has been indicated in inhibition of other fungal 
and bacterial growth (Silo-Suh et al., 1998) and has been shown to enhance 
insecticidal activity of Cry toxins in B. thuringiensis (Broderick et al., 2003). 
The expression and activity of ZwA might likely be different in the three 
strains, because S-25 BGC lacked the five flanking kab (kabA-kabD; kabR) 
genes that encode for the antifungal element kanosamine (Janiak and 
Milewski, 2001), and S-25 contained a flanking gene encoding for a beta-
lactone containing protease inhibitor that was absent in S-10 and UW85. The 
contribution of flanking genes to zwittermicin activity is supported by Luo 
et al., who identified zmaWXY downstream of ZmA that functioned as a 
resistance conferring in addition to the previously characterized zmaR gene, 
and was found to increase the yield of ZmA (Luo et al., 2011).

The antagonistic capacity of ZwA, and the documented role of 
plasmids in environmental adaptation (Heuer and Smalla, 2012; Adams 
et al., 2014; Patino-Navarrete and Sanchis, 2016; Lechuga et al., 2020), 
led us to further explore the composition of the ZmA-harboring 
plasmids. We detected several genes on the three plasmids with putative 
roles in environmental adaptation. These include as methyl-accepting 
chemotaxis protein (MCP) which has been previously shown to 
be involved in chemical sensing (Salah Ud-Din and Roujeinikova, 2017), 
biofilm formation (Hickman et  al., 2005) and production of toxins 
(Harkey et al., 1994), and the two-component system sensor histidine 
kinase. These sensory mechanisms and response regulators are believed 
to enhance fitness in bacteria from unstable and low nutrient 
environments with multiple interactions like soil (Ashby, 2004). Each of 
the plasmids had its own set of unique genes, which may also have an 
impact on the biocontrol potential of the isolate. These included 
increased abundance of ABC transporters on the UW85 mega-plasmid, 
and the presence of chitin (CBPs) and cellulose (endoglucanase) 
metabolizing enzyme encoding genes gathered in S-25 mega-plasmid.

Collectively, we  identified both common and unique BGCs 
encoding for metabolites with putative antifungal activity in the five Bcsl 
strains, as well as chitinases with potential antifungal activity. 
Nonetheless, the potential link between these factors and the observed 
in-vitro antifungal capacity of the Bcsl strains that harbor them, needs 
to be experimentally validated by knockout (Guo et al., 2013) and/or 
heterologous expression (Luo et al., 2011), demonstrated for fengycin 
and zwittermicin, respectively. Experiments should also be conducted 
to determine the expression of candidate genes and BGCs following 
exposure to pathogens, or under different environmental conditions, as 
previously described for lipopeptides and bacilibactin (Li et al., 2014).

In summary, comparative genomics provided important insights into 
similarities and differences of mechanisms potentially linked to the 
antifungal activity of the five strains. Although there are several potential 
candidates, we were not able to specifically link genotypes to phenotypes, 
or pinpoint genetic factors that explain the elevated activity of the S-25 
cell-free supernatant relative to the other strains. Future studies will need 
to follow up on these candidates in order to validate their antifungal capacity.
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