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STRUCTURE-RELATED INTRINSIC ELECTRICAL 
STATES AND FIRING PATTERNS OF NEURONS 
WITH ACTIVE DENDRITES

Snapshots of color-coded membrane potentials in function 

of path distance from soma mapped on the dendrogram and 

3D image of modeled pyramidal neuron generating complex 

intrinsic pattern of action potentials.  

Image: “Dancing dendrites” by Sergey M. Korogod.

Topic Editor: 
Sergey M. Korogod, Bogomoletz Institute of Physiology, National Academy of 
Sciences of Ukraine, Ukraine

Activity of the multi-functional networked neurons depends on their intrinsic states 
and bears both cell- and network-defined features. Firing patterns of a neuron are 
conventionally attributed to spatial-temporal organization of inputs received from 
the network-mates via synapses, in vast majority dendritic. This attribution reflects 
widespread views of the within-cell job sharing, such that the main function of the 
dendrites is to receive signals and deliver them to the axo-somatic trigger zone, 
which actually generates the output pattern. However, these views are now revisited 
due to finding of active, non-linear properties of the dendritic membrane in neurons 
of practically all explored types. Like soma and axon, the dendrites with active 
membrane are able to generate self-maintained, propagating depolarizations and 
thus share intrinsic pattern-forming role with the trigger zone. Unlike the trigger zone, 
the dendrites have complex geometry, which is subject to developmental, activity-
dependent, or neurodegenerative changes. Structural features of the arborization 
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inevitably impact on electrical states and cooperative behavior of its constituting 
parts at different levels of organization, from sub-trees and branches to voltage- 
and ligand-gated ion channels populating the dendritic membrane. More than two 
decades of experimental and computer simulation studies have brought numerous 
phenomenological demonstrations of influence of the dendritic structure on neuronal 
firing patterns. A necessary step forward is to comprehend these findings and build a 
firm theoretical basis, including quantitative relationships between geometrical and 
electrical characteristics determining intrinsic activity of neurons.

The articles in this eBook represent progress achieved in a broad circle of laboratories 
studied various aspects of structure and function of the neuronal dendrites. The 
authors elucidate new details of dendritic mechanisms underlying intrinsic activity 
patterns in neurons and highlight important questions that remain open in this 
important domain of cellular and computational neuroscience.
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Editorial on the Research Topic

Structure-Related Intrinsic Electrical States and Firing Patterns of Neurons With Active

Dendrites

Activity of neurons embedded in networks is an inseparable composition of intrinsic and evoked
processes. Prevalence of either component depends on the neuron’s function (e.g., signal pacemaker
vs. transmitter) and state (e.g., low vs. high depolarization states). Complex firing patterns of a
neuron are conventionally attributed to complex spatial-temporal organization of inputs received
from the network-mates via synapses, in vast majority dendritic. However, these views require
revisiting with account of active properties of the dendrites. Structural features of the arborization
inevitably impact on electrical states of its constituting parts at different levels of organization,
from branches and sub-trees to ion channels. This Research Topic aimed at bringing together
contributions of researches from different domains and gaining deeper insight into the nature
of neuronal intrinsic firing patterns. Being cross-listed in Frontiers in Cellular Neuroscience and
Frontiers in Computational Neuroscience, it contains 22 articles (14 and 8 in the respective journal
specialties, respectively) including 14 original research articles, 4 reviews; 1 mini review, 1 methods,
and 2 hypothesis and theory articles.

HISTORICAL PERSPECTIVES OF STUDIES OF

STRUCTURE-RELATED INTRINSIC NEURONAL ACTIVITY

Llinás who pioneered in discovery of activemembrane properties of neuronal dendrites and putting
forward the notion the intrinsic activity of neurons, provides a historical perspective of studies,
which flagged beginning of modification of the reflex viewpoint of brain function, as the global
neuroscience paradigm, toward one, in which sensory input modulates rather than dictates brain
function. The author explains how unique firing signatures of different type neurons are related to
their specific sets of voltage-gated ion channels, dendritic in particular, and notes that complex
intrinsic properties allow neurons to function either as relay systems, or as oscillators and/or
resonators.

Bower describes his view of the history, achievements andmerits of the first “communitymodel,”
a Purkinje neuron model with detailed morphology and appropriate active conductances of the
dendrites. The author emphasizes on importance of using such models for testing, interpreting,
and predicting experimental data rather than for demonstrating the plausibility of a particular idea
and illustrates implementations of this approach in their “community model” of Purkinje cell.
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DENDRITIC ORIGINS OF FIRING

PATTERNS IN NEURONS

Alford and Alpert review dendritic mechanisms of synaptic
integration in neurons forming the spinal central pattern
generator in lamprey. These mechanisms transform an
unpatterned glutamatergic input into a patterned, rhythmic
output that is a feature of the spinal network. Dendritic origin
of the intrinsic oscillatory activity is defined by the interplay of
Ca2+ entry through NMDA-type glutamatergic channels with
contribution from voltage-gated Ca2+ channels and outward
current through Ca2+-sensitive K+ channels producing in-phase
oscillations of intracellular Ca2+ and the membrane potential in
the dendrites.

Magnani et al. address specific oscillatory and firing
properties of stellate cells in layer II of the medial entorhinal
cortex. Using the quadratic sinusoidal analysis the authors
compare characteristics of subthreshold membrane potential
oscillations and supra-threshold firing of action potentials
(APs) generated in response to multi-sinusoidal current
stimulation. The quadratic responses were likely dominated
by the dendrites and contained frequencies that were not
present in the input signal and the characteristics of the
subthreshold oscillations at resonance frequencies near the
threshold were similar to those of the supra-threshold spike
trains.

Based on the analysis of somatic and dendritic plateau
properties observed in spiny neurons of amygdala, striatum,
and cortex Oikonomou et al. describe their hypothesis stating
that the somatic voltage upstates are determined by dendritic
plateau potentials. This view is supported in experiments
using voltage-sensitive dye imaging, which reported rising of
the somatic plateau after the onset of the dendritic voltage
transient and collapsing with the breakdown of the dendritic
plateau depolarization. It is hypothesized that dendritic
plateau potentials underlay detection and transformation
of coherent network activity into a ubiquitous neuronal
upstate.

Psarrou et al. investigated the effects of the basal dendrites
morphology on the firing behavior on models of reconstructed
pyramidal neurons in layer V of rat prefrontal cortex. Earlier
studies revealed in these cells characteristic firing patterns:
regular spiking (RS), intrinsic bursting (IB), and repetitive
oscillatory bursting. Variation of dendritic geometry and
distribution of ion conductances allowed the authors to derive
pattern-predictive structural characteristics. The RS- or IB-
generating cells were best discriminated by the total length,
volume, and branch number, regardless of the distribution of
conductances in basal trees.

Tran-Van-Minh et al. review the biophysical determinants
of linear, sublinear, and supralinear effects of multiple co-
activated synapses contacting active neuronal dendrites. The
authors highlight the interplay of dendritic morphology and
channels, spiking threshold and distribution of synaptic inputs.
Sublinear relations are favored by the combination of thin
dendritic diameter and low expression of voltage-gated channels,
whereas thick dendrites expressing voltage-gated channels of

inward current favor supralinear relations, from boosting
synaptic depolarization to regenerative dendritic spikes.

FIRING PATTERNS IN NORMALLY

DEVELOPING AND DEGENERATING

NEURONS

The geometry, expression and properties of membrane ion
channel of neuronal dendrites are subject to changes during
normal development and neurodegenerative disease. Some of
these aspects are addressed in the following contributions.

Durand et al. explored mouse lumbar motoneurons in
isolated spinal cord at a postnatal age of P3-P9 just before
mice weigh-bear and walk. The authors characterized the
reconstructed dendritic geometry and firing patterns evoked
by somatically applied depolarizing currents, particularly
of triangular ascending-descending time course (ramps). A
transient type pattern was firing during the ascending phase
of the current. It was observed in about 40% of cells between
P3 and P5 and tended to disappear with age. Linear and
clockwise hysteresis firing patterns dominated at P6–P7 age.
Prolonged sustained and counterclockwise hysteresis (mature)
firing patterns emerged at P8–P9 age and likely were related
to maturation of dendritic L-type Ca2+ channels. Hence, it is
P8–P9 age, when the electrical properties of mouse motoneurons
rapidly change to provide the mature motor behaviors.

Dhupia et al. on a model of reconstructed CA1 pyramidal
neuron studied the role of geometry of atrophied dendrites in
electrical responsiveness of the dendritic tree with distributed
hyperpolarization-activated h-channels. The atrophy was
mimicked by pruning outer branches. Based on analysis of
responses evoked by sinusoidal currents of constant amplitude
and linearly increasing frequency, the authors conclude that,
in the presence of an h-channel gradient, atrophied neurons
respond to incoming inputs and transfer signals across the
dendritic tree more efficiently, have significantly diminished
spatial gradients of input resistance and local/transfer impedance
than those in unpruned cell.

FUNCTIONAL COMPARTMENTALIZATION

OF DENDRITES AND SOMATO-DENDRITIC

COUPLING

Firing patterns of spinal motoneurons containing channels of
persistent inward current (PIC) in the dendritic membrane
were explored by Kim and Heckman on a two-compartment
model. The authors analyzed model responses to application
of triangular current depending on the somato-dendritic
electrical coupling, dendritic location and activation of PIC
conductances. A variation of PIC activation parameters
mimicking neuromodulatory effects of brain stem systems led to
narrowing the structure-dependent coupling resistance range, in
which the model generated nonlinear (hysteretic) firing patterns.
Outside the range, the firing mode became linear irrespectively
of PIC location. It is concluded that neuromodulation by the
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brainstem systems may play a role in switching the motoneurons
between linear and non-linear firing modes.

Manuel et al. investigated a two-compartment model of
lumbar motoneuron expressing L-type Ca2+ conductance
and Ca2+ -sensitive K+ conductance responsible for
afterhyperpolarization (AHP) and having a strong electrical
coupling of the somatic and dendritic compartments. The
cells with different somato-denritic distribution of those
conductances were stimulated by triangular ramp currents to
determine conditions for a counterclockwise hysteresis of firing
frequency-to-current relation associated with the motoneuron
bistability. This occurred when L-type conductance in proximal
dendrite or soma was co-expressed with and counterbalanced
by the AHP conductance. The authors conclude that for the
motoneuron firing pattern the dynamical interaction between
the L-type and AHP currents is as fundamental as the segregation
of the L-type current in dendrites.

Simões-de-Souza et al. developed computational models of
three classes of the olfactory bulb granule cells with distinct
distributions of spines along their active reconstructed dendrites
and investigated how each class integrate synaptic inputs. The
classes were defined by the regions, to which their dendrites were
confined: the whole external plexiform layer for class I, and lower
or upper 1/2 to 1/3 of this layer for class II or III, respectively.
Independently of the location of the stimuli and the dendritic tree
morphology, the AP always originated in the terminal dendrites
and required different quantities of spines to be activated in
each dendritic region. The authors conclude that these model
predictions might have important computational implications in
the context of functioning of olfactory bulb circuits.

Yang et al. studied response properties of CA1 pyramidal
neurons in acute brain slices employing the 3D digital
holographic photolysis to uncage glutamate at multiple dendritic
sites. The somatic responses were integrated supra-linearly or
sub-linearly if the stimulation sites were, respectively, clustered
on a single dendrite or distributed across multiple dendrites.
Such difference was observed for oblique and basal dendrites,
but not for the tuft dendrites responding linearly to both types
of stimulation. Multi-branch integration occurring at oblique
and basal dendrites allows somatic AP firing to follow the
driving stimuli over a significantly wider frequency range than
in case of single branch integration. However, multi-branch
integration requires greater input strength to drive the somatic
APs. These data show that integration of such driving signals in
a single dendrite is fundamentally different from that in multiple
dendrites.

In a study on models of reconstructed CA1 pyramidal cells,
Ferrante and Ascoli analyzed how synaptically evoked spiking in
these neurons exhibiting higher or lower excitability is regulated
by different feedforward inhibition (FFI) GABAergic pathways.
The pathways mediated by fast-spiking, perisomatic-targeting
basket cells and regular-spiking, dendritic-targeting bistratified
cells were stimulated separately or jointly at different strengths.
Bistratified interneurons affected low-, but not high-excitable
pyramidal cells; whereas basket cells affected both pyramidal
cell types similarly. Selective FFI produced by bistratified
and basket cells alone modulated respectively, threshold and

gain of pyramidal cell firing. Simultaneous FFI via both
pathways acting synergistically enlarged the dynamic range
of response. The authors conclude that their results provide
experimentally testable hypotheses of the differential function of
those interneurons.

Iannella and Launey used a biophysically detailed model of a
reconstructed neocortical layer 2/3 pyramidal cell to investigate
the effect of changes in parameters of the spike timing-dependent
plasticity (STDP) of dendritic synapses on the formation of the
so-called “dendritic mosaic” composed of clusters of synapses
with similar efficacies. The mosaic formation depended on the
balance between potentiation and depression, mean presynaptic
firing rate and, crucially, the dendritic morphology. Any
imbalance led to degradation of such cluster organization. The
authors suggest that, synaptic plasticity favors the formation of
clustered efficacy engrams.

TOOLS FOR STUDIES OF DENDRITIC AND

AXONAL PROCESSES

Du et al. describe an approach to the reduction of models of
neurons possessing weakly excitable large dendritic trees and the
strongly excitable small spike initiation zone. It is illustrated on
an example of the lobula giant movement detector neuron of the
locust. An initial 879-compartment model was transformed by
decoupling its branches, reducing separately active and quasi-
active branches, re-coupling these two reduced components
into a resulting model. The latter being faster retained the full
integrative qualities of the original two-order larger model as
follows from close similarity of these two models responses to
similar stimuli.

Slice preparations are common in electrophysiological studies
of neurons and identification of their processes as axon or
dendrites in the ongoing experiment is not trivial. Petersen et al.
describe a new method allowing reliable identification of axon
initial segment (IS) and dendrites by timing of averaged somatic
spike and local field potential (LFP) recorded near a targeted
neurite. Informative is the timing of the negative LFP event
relative to the spike threshold calculated as the first positive
peak on the third derivative of the LFP: the event starting
before or after reaching the somatic spike threshold indicated
location of the LFP electrode near axon IS or dendrite origin,
respectively.

Biophysical properties of synaptic receptor channels
are important for determining of both efficacy of synaptic
transmission and activation of dendritic voltage-gated
channels underlying active properties of dendrites. Stepanyuk
et al. describe a new method using a maximum likelihood
approach to non-stationary fluctuation analysis that allows
to estimate a number of synaptic transmission parameters
from a small set of postsynaptic current recordings. The
method is illustrated on examples of processing of simulated
macroscopic synaptic currents, from which the pre-defined
parameters of synaptic receptor channels were accurately
retrieved.
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Korogod Editorial: Dendritic Structure-Related Activity of Neurons

Singh and Zald describe a new form of dendrite-to-
soma transfer function employing separation of slow and fast
components of the dendritic electrical events. On an example of
analysis of postsynaptic signal transfer along dendrites possessing
non-linear NMDA-type conductance, the authors show that
their linear “hook” function, being a computational cost-efficient
alternative to sigmoid transfer functions, correctly reproduces
saturation and linear behaviors for large and small inputs,
respectively.

FINE TEMPORAL STRUCTURE OF FIRING

PATTERNS

Mrówczyński et al. in their mini-review discuss occurrence and
functional significance of the doublets of the APs frequently
observed at the onset of contractions of mammalian motor units
during recruitment to strong or fast movements. The authors
draw attention to the duration of the AHP, which follows the APs,
results from activation of corresponding potassium conductance
and significantly influences firing rate in both slow and fast
motoneurons.

Mlinar et al. examined spiking activity in a large number
of genetically identified serotonergic neurons of the dorsal
raphe nucleus (DRN) in slices. They found wide homogeneous
distribution of firing rates suggesting that, in terms of intrinsic
firing properties, the DRN serotonergic neurons represent a
single cellular population. The majority of neurons exhibited
regular, pacemaker-like activity with the spiking regularity
proportional to the firing rate. In a small subset of neurons, the
firing rate exhibited low frequency oscillations. The observed

transitions between regular and oscillatory firing suggested that
the oscillatory firing mode is an alternative to regular firing in
serotonergic neurons.

Cho et al. explored fine temporal structure of firing APs
evoked in nociceptive cutaneous C-fibers by application of
noxious chemical stimuli and related the firing patterns with
pain behavior. They extracted groups of three consecutive
spikes (spikelets) and analyzed their duration and within-
group inter-spike intervals. The analysis revealed substance-
specific patterns: continuous firing for KCl, single or multiple
bursts for capsaicin, and repeated short bursts (chattering)
for GABA. The authors suggested that information about
the agonist chemicals may be encoded by C-afferents in
specific temporal patterns, which, via different temporal
summation of postsynaptic responses, may influence the pain
sensation.
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This brief review summarizes work done in mammalian neuroscience concerning the
intrinsic electrophysiological properties of four neuronal types; Cerebellar Purkinje cells,
inferior olivary cells, thalamic cells, and some cortical interneurons. It is a personal
perspective addressing an interesting time in neuroscience when the reflex view of brain
function, as the paradigm to understand global neuroscience, began to be modified toward
one in which sensory input modulates rather than dictates brain function. The perspective
of the paper is not a comprehensive description of the intrinsic electrical properties of all
nerve cells but rather addresses a set of cell types that provide indicative examples of
mechanisms that modulate brain function.
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INTRODUCTION
That the function of the nervous system is ultimately to be defined
as the product of interacting networks woven by nerve cells has
been the central dogma of neuroscience for almost a century.
Fundamental to this view has been the realization that nerve cells
are truly individual elements. Indeed, while the variety of forms
that nerve cells may display was described in elegant detail by
the work of brilliant morphologists of the turn of the century,
their most significant contribution was the proposal of the neuron
doctrine (cf. Ramón y Cajal, 1904).

On the other hand, from a physiological point of view the neu-
ron doctrine was considered for a long time to signify a unity
of excitability, where the variance among the different neurons
related to their shape and connectivity, but not to their individ-
ual electrophysiological properties. Thus, following the discovery
of excitatory and inhibitory synaptic potentials, it was assumed
that the necessary and sufficient functional coinage for the expres-
sion of functionality in nerve nets had been defined. Over the
past 30 years, however, another fundamental issue has arisen with
respect to the physiological properties of nerve cells—that of their
intrinsic electroresponsive properties. This concept may be stated
simply: “Neuronal types are not interchangeable.” That is, a neu-
ron of a given type (e.g., a thalamic cell) cannot be functionally
replaced by one of another type (e.g., an inferior olivary cell), even
if their synaptic connectivity and the type of neurotransmitter
outputs are identical. (The difference is that the intrinsic elec-
trophysiological properties of thalamic cells are extraordinarily
different from those of inferior olivary neurons).

This being the case, the intrinsic electrophysiological signa-
ture of nerve cells becomes a central theme in neuronal function.
Indeed, when such elements interconnect, the dynamics of the
resulting neuronal networks are governed not only by the flow

of synaptic current, but also by the intrinsic properties of the
neurons partaking in such circuits. Likewise, the electrical activity
observed in a network is not only related to the excitatory and
inhibitory interactions among neurons but also to their inher-
ent or intrinsic electrical activity (Llinás and Hess, 1976; Llinás,
1988).

The term “intrinsic electrical properties” has been used to
encompass both passive and active membrane characteristics
(for example, see van Lunteren and Dick, 1992). In this review
it is used in a more restricted sense to designate those active
membrane properties that endow a cell with the ability to
shape incoming stimuli and indeed to fire or maintain sub-
threshold oscillations in the absence of synaptic input. That is,
these cells are capable of more than the classical input-output
relationship of increasing their firing frequency with stimulus
strength or action of neuromodulators (see Binder et al., 1993,
for motoneurons). Due to the presence of bursting, neurons
with such usual properties were first recognized in systems
concerned with rhythmic activity such as breathing, swallowing
and chewing. Indeed, the rhythmic firing of hypoglossal neurons
was reported as early as 1973 (Lund and Dellow, 1973). However,
the contribution of intrinsic electrical properties of hypoglossal
motoneurons to such periodicity was not recognized, but rather
thought to arise from the action of excitatory and inhibitory
synaptic inputs, the presence of gap junctions, and input from
a central pattern generator. It was not until much later that
the role of the intrinsic electrical properties of the neurons
themselves was recognized (see Ramirez and Richter, 1996, for
a review of respiratory neurons). In fact, when hippocampal
neurons were observed to fire spontaneously when inhibitory
input was blocked, the authors concluded “It remains to be
determined whether neural properties and connectivity found to
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Llinás Intrinsic electrical properties of mammalian neurons

be important in this hippocampal rhythm may also play a role
in the generation of other rhythmic activities in the mammalian
CNS” (Wong et al., 1984). Such spontaneous rhythmicity had
been reported for the inferior olive (IO) in vivo as early as 1968
(Armstrong et al., 1968). That they were indeed intrinsic to the
IO cell was shown in 1986 (Llinás and Yarom, 1986).

Below, some examples are given from our work that illus-
trate different intrinsic electrical properties in mammalian central
neurons. Very surprising, the role of intrinsic activity in the gen-
eration of motricity, initially proposed by Graham-Brown (1911),
was forgotten for more than halve a century.

INTRINSIC ELECTRICAL PROPERTIES OF SPECIFIC CELL
TYPES
CEREBELLAR PURKINJE CELLS
The question of intrinsic electroresponsive properties in verte-
brate CNS neurons was first encountered in the detailed study
of cerebellar Purkinje cells (Llinás and Hess, 1976; Llinás and
Sugimori, 1980a,b). These studies demonstrated that Purkinje
cells have intricate firing properties and that the dendritic
and somatic membranes each have markedly different voltage-
dependent conductances that are supported by different types of
ionic channels, which combine to give these cells their unique fir-
ing signature. At the somatic level, in addition to the Na+ and K+
conductances that generate the fast action potential, a voltage-
dependent, persistent, or very slowly inactivating Na+ conduc-
tance [gNa(p) (p for persistent)] was also initially encountered in
these neurons (Llinás and Sugimori, 1980a). This latter conduc-
tance generates a slow, tetrodotoxin (TTX)-sensitive depolariz-
ing response, which, once activated generates prolonged plateau
potentials that may last for tens to hundreds of milliseconds
(presently known as an “up state”).

This gNa(p) has also been described in cortical (Connors
et al., 1982; Stafstrom et al., 1982) and thalamic (Jahnsen and
Llinás, 1984a,b) neurons. The dendrites of Purkinje cells, by con-
trast, do not support voltage-gated Na+ conductances, but rather
voltage-gated Ca2+ conductances that generate dendritic Ca2+-
dependent spikes and/or plateau potentials (Llinás and Hess,
1976; Llinás and Sugimori, 1980a,b) and are supported by a cal-
cium channel named the P channel (for Purkinje cell). These
different membrane conductances and their distribution over the
somato-dendritic plasmalemmal membrane endow Purkinje cells
with intricate electroresponsive properties, including intrinsic
transmembrane voltage oscillations. Such activity can be evoked
by direct current injection or by extracellular iontophoretic appli-
cation of an excitatory transmitter such as glutamic acid at the
dendritic level (Figure 1).

The characteristics of somatic and dendritic electrorespon-
siveness to dendritic glutamate application have been studied
using double impalement of Purkinje cells in cerebellar slices.
Recordings made during one such experiment in which glutamic
acid was applied to the distal dendritic tree are shown in Figure 1.
The schematic to the left shows the approximate location of the
dendritic and somatic recording electrodes and the iontophoretic
glutamate electrode. The trace in B illustrates the main fea-
tures of dendritic electroresponsiveness. There are two types of
Ca2+-dependent responses: maintained all-or-none depolarizing
plateau responses and slow-rising spikes. The plateau responses

FIGURE 1 | Simultaneous intracellular recording from Guinea pig

cerebellar Purkinje cell dendrite and soma in vitro. (A) Diagram of
intracellular recording sites at somatic and dendritic levels and the location
of the extracellular glutamic acid iontophoretic application site. (B)

Intradendritic recording. The large amplitude wide action potentials are
Ca-dependent while the smaller fast action potentials represent the passive
invasion of the somatic action potentials into the dendritic tree. Note the
presence of a sustained plateau depolarization at the dendritic level
following the spiking phase of the dendritic response. (C) Simultaneous
intrasomatic recording showing fast somatic Na-dependent action
potentials. Note that each of the large somatic spikes is seen at dendritic
level with a short delay and that the calcium dependent dendritic spikes
generate high frequency spiking as somatic level. (D) Superposition of
dendritic (red) and somatic (blue) spikes to illustrate the temporal
relationship between somatic and dendritic spikes and plateau amplitudes
(Llinás and Sugimori, 1980a,b. This example is unpublished).

have constant amplitude, may last for hundreds of milliseconds,
are accompanied by a large conductance increase, and are usually
not seen in the soma. On the other hand, the Ca2+-dependent
spikes in the dendrites are large and are usually elicited in pro-
longed bursts (Figure 1B), which influence somatic electrore-
sponsiveness. As shown in Figure 1C, they may be recorded in
the soma as slow changes in the membrane potential that trigger
increases in the firing frequency of the fast, sodium-dependent
somatic action potentials. In turn, the somatic action potentials
can be observed in the dendrites below the mid-dendritic level as
small, fast-rising depolarization.

The ionic basis for Purkinje cell firing was examined by study-
ing the response to depolarizing pulses in the absence of Ca
currents and in the absence of Na currents (Figure 2). Addition
of Co to the bath blocked the calcium conductance. Direct depo-
larization elicited fast somatic spikes on a slow depolarizing ramp
bringing the membrane to a plateau potential. When the ampli-
tude of the depolarizing pulse was increased the depolarizing
ramp occurred earlier (Figure 2B, arrows) without changing the
spike threshold or plateau level (Figure 2B). Pharmacological
block of the fast sodium channel by addition of TTX to the
bath changed the firing pattern as shown in Figure 2D. The fast
somatic spikes were blocked while the slow dendritic spike burst
and afterdepolarization (Figure 2D, arrow) remained (compare
Figure 2C and Figure 2D).
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FIGURE 2 | Ionic basis for Purkinje somatic recordings. (A) Activity
elicited from Purkinje cell soma by direct depolarization. Note fast spikes
and underlying slower depolarizations. (B) After blocking the calcium
conductance by addition of Co to the bath direct depolarization elicited fast
spikes. Note that with increased depolarization spike onset moved to the
left (arrows), but the plateau level of spike threshold did not change. (C)

Repetitive response to somatic depolarization. (D) Block of sodium
channels with TTX reveals underlying slow spikes and afterdepolarization
(arrow). (From Llinás and Sugimori, 1980a.).

These experiments have provided valuable information relat-
ing to the ionic basis of the electrical responsiveness of the soma
and dendritic trees and allowed the determination of electrotonic
length and some of the active membrane properties of Purkinje
cells in general. Yet, they do not provide a direct demonstration
of the spatio-temporal distribution of electroresponsiveness over
the entire soma dendritic membrane. This requires the use of
techniques such as ion-sensitive dyes.

The spatial distribution of ionic channels over the plasmalem-
mal membrane and the associated compartmentalization of both
the physiological and the cell biological properties are critical
issues in the characterization of central neuronal function. For
example, the precise distribution of specific channels with respect
to the locus of synaptic input may address not only electrical
integrative properties but also the precision with which different
compartments may be addressed biochemically. Indeed, the spa-
tial distribution of second messenger systems activated by [Ca2+]i

(Hemmings et al., 1986) will be determined by the distribution of
calcium channels.

An early experiment of this type was carried out 26 years ago
by Tank et al. (1988). In these experiment Fura II signals were
used to determine [Ca2+]i in Purkinje cells (Tank et al., 1988).
Fura II was injected ionophoretically into the cell and a quan-
titative evaluation of changes in [Ca2+]i was made using the
fluorescence ration at 340/380 nM as seen in Figure 3.

The results agreed with the hypotheses of the dendritic seg-
regation of Ca2+ conductances that was suggested by early elec-
trophysiological experiments (Llinás and Hess, 1976; Llinás and
Sugimori, 1980a,b). They also allow a general mapping of the
location of voltage-gated Ca2+ channels as inferred from the spe-
cific regions of the neuron, where [Ca2+]i demonstrate transients
lasting 5–15 ms.

FIGURE 3 | High-resolution fluorescent image of a dendritic calcium

spike in a Purkinje cell filled with fura-2 by microinjection (380-nm

excitation). (From Tank et al., 1988.).

With respect to the functional significance of the results, these
findings indicated that the Ca2+-dependent plateau potentials
are a dendritic boosting mechanism for the synaptic current
generated in Purkinje cell dendrites leading to a high-frequency
burst of sodium spikes at the soma and axon. This provides a
mechanism for spatial and temporal summation of inhibition
at the cerebellar nuclear neurons. Other possibilities to be con-
sidered relate to role in increased intracellular calcium in the
modulation of cell biological mechanisms and the modification
of long-term cell biological properties.

The next approach in Purkinje cells was to carry out direct
single channel recordings (Figure 4) at both the somatic and den-
dritic levels (Usowicz et al., 1992). The location of channels on
dendrites made it clear that, given the dendritic surface to vol-
ume factor relationship, calcium dye imaging would be more
effectively implemented at dendritic level. On the other hand, it
was also clear that the final calcium concentration change at the
cytosolic level would be larger and probably longer lasting at the
dendritic than at the somatic level.

In short then, the evidence was clear that Purkinje cells
have complex intrinsic properties from the merging of den-
dritic and somatic conductances giving these cells a unique
electrophysiological signature.

INFERIOR OLIVARY CELLS AND REBOUND CALCIUM SPIKES
Cells of the inferior olivary nucleus have also been shown to have
dendritic and somatic conductances underlying an intrinsic elec-
trophysiological profile. Indeed, in vitro experiments using brain-
stem slices (Llinás and Yarom, 1981, 1986) first demonstrated
that IO neurons have a set of voltage-gated ionic conductances
that give these cells intrinsic oscillatory properties (Figure 5).
Thus, the firing of IO cells is characterized by an initial fast-rising
action potential (a somatic sodium spike), which is prolonged to
10–15 ms by an afterdepolarization (a Ca2+-dependent dendritic
spike).
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FIGURE 4 | Multiple conductance of Ca2+ channels in the somata and

dendrites of cerebellar Purkinje cells. (A) Single Ca2+ channel currents
carried by 110 mM Ba2+ in a somatic patch, evoked by voltage step jumps
(≈70 ms) applied once every 5 s. Three opening levels are indicated by solid,

dashed, and dotted lines. (B) Currents in a dendritic patch. Same conditions as
in (A). Voltage dependence (C,D) for the currents levels illustrated in (A,B).
Pooled data for 8 somatic and 5 dendritic patches. The indicated conductances
are the slope of the lines through the dots (from Usowicz et al., 1992).

The abrupt long-lasting afterhyperpolarization (AHP) fol-
lowing the plateau afterdepolarization totally silences the spike-
generating activity. This hyperpolarization is typically terminated
by a sharp, active rebound response (Figure 5A, arrow), which
arises when the membrane potential is negative to the rest-
ing level. This rebound response is due to the activation of
a somatic Ca2+-dependent action potential and results from
a second voltage-dependent Ca2+ conductance, which is inac-
tive at the resting membrane potential (−65 mV). Membrane
hyperpolarization deinactivates this conductance, and, as the
membrane potential returns to baseline, a “low threshold”
Ca2+-dependent spike is generated (Llinás and Yarom, 1981).
The rebound potential can be modulated by small changes in
the resting membrane potential such that a full Na+ spike,
which, in turn, can set forth the whole sequence of events
once again, is activated. In this way, the cell will fire at a fre-
quency determined largely by the characteristics of the AHP
(Figure 5B).

A direct demonstration of time course and amplitude of the
“low threshold” transient calcium current [ICA (T)], encoun-
tered in this neuron (Llinás and Yarom, 1981) is shown in

Figure 6, following a voltage clamp study of IO neuronal calcium
currents.

The low threshold, transient calcium current is a powerful
modulator of IO rhythmicity and is responsible for IO membrane
potential oscillations. IO neuron oscillations can occur at two
distinct frequencies, as determined by examining the firing prop-
erties of spontaneous bursts of spikes. A set of such events is
shown in Figure 7.

It is evident, given the above, that individual IO cells can
oscillate with two main limit cycles, one near 10 Hz (9–12 HZ)
and the other near 4 HZ (3–6 HZ). Oscillation at the higher
frequency seems to be governed by the resting potential of
the neuron. Thus, when the cell is depolarized, its excitabil-
ity would be dominated by the dendritic conductances and fire
near 4 Hz. However, when the cell is hyperpolarized, its out-
put is dependent on somatic conductances and will fire near
10 Hz.

Beyond its intrinsic oscillatory behavior, one of the most unex-
pected and novel properties of the dynamics of IO neurons
was their phase-reset ability. Thus, synaptic input large enough
to activate action potentials also produces a phase reset of the
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FIGURE 5 | Ionic conductances and the mechanism for oscillation in

inferior olivary cells. Left: Drawing of an inferior olivary cell by Ramón y
Cajal. Center: Table giving the distribution of ionic conductances in somatic
and dendritic regions. At the soma a set of conductances (gNa and gk)
generating fast action potentials may be observed. In addition, a strongly
inactivated Ca2+ conductance is present, which produces rebound spikes, as
seen in (B) [gCa (somatic)]. Also recorded at the soma is a large Ca2+-dependent

dendritic spike [gCa (dendtritic)] that generates the afterdepolarization and the
powerful, long-lasting afterhypolarization, which is produced by a
Ca2+-dependent K+ conductance [gK (Ca)]. In addition, a voltage-dependent
K+ conductance (gK) seems to be present in the dendrites. Right A: Rebound
spikes in the inferior olivary neuron (arrow) following blockage of the Na spike
with tetrodotoxin (TTX). Right B: Summary of the ionic conductances that
generate single-cell oscillations in neurons of the inferior olive.

FIGURE 6 | Inward current in inferior olive cell after block of sodium

and potassium currents with TTX and TEA, respectively. (A) A set of
transmembrane square voltage camp steps of increasing amplitude
generated a rapidly inactivating, transient, Ca current (Ica). (B) This current
is blocked by addition of octanol. (C) Plot of the current voltage relation in
(A). (From Llinás and Yarom in Llinás et al., 1989).

oscillatory rhythm that is independent of the phase point at which
the stimulus arrived. As shown in Figure 8A, a stimulus large
enough to generate a spike discharge is immediately followed by
a rapid return of the membrane potential oscillatory behavior.
If the spike-activating stimulus is repeated, as in Figure 8B, it

becomes apparent that the resultant oscillatory phase reset is the
same regardless of the moment in time when the stimulus was
delivered.

These oscillatory membrane potential properties can also be
demonstrated to have interesting dynamic properties. Analysis of
the oscillatory dynamics such as shown in Figures 8A,B demon-
strated that IO cells have attractor properties as reconstructed
from a time series analysis that has a structure close to a limit cycle
with a regular periodic trajectory (Makarenko and Llinas, 1998).
Average mutual information and false near neighbor methods
were calculated and are shown in Figures 8C,D.

To reconstruct the attractor and Lyapunov exponents were
derived and the results demonstrate zero, positive and nega-
tive exponents values indicating that the system displays low-
dimensional chaotic dynamics, that actually explain the phase
rest properties of their oscillation, as shown in Figure 8B. The
application of this modeling to IO dynamics shown that the sub-
threshold oscillations support low dimensional chaotic dynamics
and that IO electronic coupling leads to rapidly generated com-
plex functional states without increasing the dimensionality of the
system (Makarenko and Llinas, 1998).

Thus, in addition to uniform membrane potential oscillatory
properties, because of their dynamics IO neurons have the unique
ability to reset their oscillatory phase when activated (Leznik et al.,
2002; Lefler et al., 2013). This reset property has been found
to be functionally very significant as it allows a rapid reset of
motricity when dominated by the somatic conductances and fire
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FIGURE 7 | Spontaneous bursts of spikes recorded intracellularly from

an IO neuron displayed at different sweep speeds. (A) The neuron fired
four action potentials and a fifth subthreshold response that corresponds to
a subthreshold somatic Ca2+-dependent spike. (B) A longer burst of spikes
is shown at a slower sweep speed. Note that the first interspike interval in
the burst was longer than the rest. (C) The rising phase of the action
potentials in (B) are superimposed to illustrate the change in
after-depolarization duration during the train. Note that the first action
potential (which arises from the resting membrane potential level) has the
longest after-depolarization. The other spikes in the train became
progressively shorter until failure of spike generation occurred and the burst
terminated. (D) The same set of records as in (B), showing the duration of
the after-hyperpolarization and the rebound somatic Ca2+-dependent
spikes. (Modified from Llinás and Yarom, 1986).

near 10 Hz—the basic rhythmicity of motor control in vertebrates
(Vallbo and Wessberg, 1993; Lang et al., 2006). It has also been
shown to be essential in the rapid reorganization of motricity fol-
lowing motor stumbling, even under robotic control (Porras and
Llinás, 2014).

At the cerebellar level the functional significance of the oscilla-
tory properties illustrated in Figure 8 is an increased probability
of Purkinje cell complex spike activation relating to rapid recov-
ery of motor execution following stumbling, or other unpredicted
motor events. Ultimately, then IO oscillatory activity is required
for proper motor execution, as demonstrated by the total ataxia
that follows T type calcium channels knockout (Choi et al., 2010).

THALAMIC CELLS
Thalamic neurons also have complex intrinsic properties that
allow them to function either as relay systems, or as oscillators
and/or resonators. That these two modes are intrinsic to the cells
and are controlled by their membrane potential has been stud-
ied both in vitro (Llinás and Jahnsen, 1982; Jahnsen and Llinás,
1984a,b; Hirsch et al., 1985; McCormick and Prince, 1986, 1987;
Crunelli et al., 1987; Wilcox et al., 1988) and in vivo (Deschenes
et al., 1984; cf. Steriade and Llinás, 1988) The basic electro-
physiological phenomenology observed in these cells is shown in
Figure 9.

From a slightly depolarized membrane potential, the out-
ward current injection elicited a subthreshold depolarization
(Figure 9A, second trace). When the current pulse was deliv-
ered from a more depolarized potential, regular, tonic firing
was elicited as shown in the top trace of Figure 9A. Thus, at

FIGURE 8 | IO oscillatory properties following spike activation. (A) One
extracellular stimulus briefly interrupted the spontaneous oscillation.
(B) Superimposition of six traces demonstrating the reset oscillatory phase is
the same regardless at which point of the intrinsic oscillation the stimulus was

delivered. Inset, power spectra for traces. (Leznik et al., 2002). (C) Lissageu
figure obtained from the analysis of an IO neuron oscillation. The regularity of the
figure shows that the IO attractor has a regular, periodic trajectory. (D) Calculated
Lyapunov exponents indicative of low-dimensional chaotic dynamics.
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FIGURE 9 | Electrophysiological properties of thalamic cells recorded

in vitro. (A,B) Depolarizing current pulses (bottom traces) elicited no
response when delivered from the resting potential, tonic firing when
delivered from a depolarized potential (A) and a burst response when

delivered from a hyperpolarized level (B). (C) Rebound response seen after
hyperpolarizing pulses. (D,E) Calcium currents elicited by membrane
depolarization from a hyperpolarized potential (D) and current–voltage
relationship (E). (Geijo-Barrientos and Llinás, unpublished observations).

or near the resting potential, tonic firing is elicited by mem-
brane depolarization. Accordingly, the response to an excitatory
synaptic input would be a single excitatory postsynaptic potential
(EPSP) that may trigger single spikes. A very different response
was elicited when a similar current pulse was delivered from a
hyperpolarized level as in Figure 9B. Under these conditions, the
same outward current pulse showed in A, triggered an all-or-
none burst of spikes. The uniformity of the waveform of the
burst is demonstrated by the fact that several traces are superim-
posed in Figure 9B. The response comprises two distinct parts, a
low-threshold spike (LTS), a slowly rising and falling triangular-
like potential, and a rapid succession of fast spokes. As in the
IO, the LTS is due to activation of a Ca2+ conductance that is
deinactivated by membrane hyperpolarization. The amplitude of
the low-threshold response is related to the membrane potential
before its generation. This is shown in Figure 9C where a series
of hyperpolarizing pulses of increasing amplitude was delivered
from a slightly hyperpolarized membrane level.

The rate of rise and amplitude of the rebound response
elicited at the current break increased with progressively larger
hyperpolarizing pulses. At the two highest levels, the rebound
potential reached the firing threshold for Na+ -dependent spikes.
The deinactivation of the low-threshold Ca2+-dependent spike is
also time-dependent; hyperpolarizing pulses of increasing dura-
tion produce graded deinactivation (Jahnsen and Llinás, 1984a),
and complete recovery of the LTS occurs after a refractory
period of 170–200 ms. Another characteristic of thalamic neu-
rons, the presence of an A-like potassium current, may also
be seen in Figure 9C as a longer time course to repolarization.
Deinactivation of this conductance is responsible for the delay in
the return of the potential to the holding potential at the end of
the current injection.

A direct demonstration of the low threshold calcium conduc-
tance can best be described by the results from thalamic neuron
voltage clamping. Such results are illustrated in Figures 9D,E.
Indeed, the time course of the calcium inactivating T current
is clearly demonstrable from a holding potential of 75 mV fol-
lowing Na and K conductance block by TTX and TEA respec-
tively. The activation property of this current is shown in graph
Figure 9E.

In addition to these voltage dependent conductances, thala-
mic neurons can modify their synaptic properties depending on
membrane potential in a quite remarkable fashion. These prop-
erties are often not taken into account when considering their
effects on arousal. Thus, fast reversible synaptic plasticity occurs
in the thalamus by changes in postsynaptic membrane potential,
independently of presynaptic volley size, and is rapidly reversible.
It represents one of the few examples of rapid postsynaptically
dependent synaptic plasticity as illustrated in Figure 10.

Three mechanisms are involved in this synaptic facilitation;
(1) presynaptic short-term facilitation, (2) frequency–dependent
activation of NMDA receptors, and (3) amplification of EPSP
amplitude by intrinsic high-threshold conductances (Pedroarena
and Llinás, 2001).

The significance of such finding resides in the fact that the tha-
lamocortical system can quickly select functional states relating
to gamma band allowing cognitive attractors to be continu-
ously modulated by the combination of recurrent thalamocortical
activity and the sensory input from the external world.

THALAMIC 40 Hz OSCILLATIONS
In addition to the now well-known thalamic currents responsi-
ble for the wake-sleep cycle (Steriade and Llinás, 1988), in vitro
studies indicate that, in addition to the low frequency and alpha
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FIGURE 10 | The spike generation properties and EPSP amplitude

generated by a thalamic neurons to cortico-thalamic volleys is membrane

potential depend. (A) At −70 mV the thalamic cell generated spikes at
frequencies bellow 10 Hz. Note that the EPSPs generated are all of the same

amplitude (bottom trace). (B) At a resting potential of −56 mV the EPSP
amplitude for the same cortical volley was initially smaller, but increased in
amplitude with stimulus frequency. It could follow high frequency stimulation
and produce rapid neuronal spike firing. (From Pedroarena and Llinás, 2001.).

rhythms, a gamma band rhythm is also present in thalamic
neurons. This is particularly clear at dendritic levels and is sup-
ported by P/Q type calcium channels (Pedroarena and Llinás,
1997) and is essential in the generation of cognitive functions
(Llinás et al., 2007). Indeed depolarization by direct current injec-
tion elicits well defined high frequency at potentials of −46 and
−43 mV (Figure 11A) and the oscillations that can reach thresh-
old for spike initiation at −40 mV (Figure 11B). These high
frequency oscillations were blocked by P/Q channel blocker SFtx
(Llinás et al., 1989; Mintz et al., 1992; cf Nimmrich and Gross,
2012).

The relationship of dendritic spikes and gamma oscillations
was examined in a mathematical model of thalamocortical relay
cells (Rhodes and Llinás, 2005). The model incorporated the gen-
eration of somatic spikes, low threshold rebound spike bursts, and
fast somatic oscillations near threshold. In the distal dendrites
the model neuron generated both isolated high-threshold cal-
cium spikes and low threshold calcium spikes that did not require
a high dendritic density of calcium channels. Somatic depolar-
ization elicited firing in a dendrite (Figure 11C, red electrode;
Figure 11D, red traces) that leads to subthreshold oscillations in
the some (Figure 11D, white trace). When somatic depolarization
ended, arrows in Figure 11C, dendritic spiking stopped. A simi-
lar pattern was seen when the location of the dendritic electrode
was moved (blue and green in Figures 11C,D). The period of
firing in the distal dendrites controlled the somatic oscillation
frequency.

The gamma oscillations are generated in the dendrites as
shown by dye imaging studies such as shown in Figure 11E where
fluorescence of the calcium-specific dye flura 2 is restricted to the
dendrites (Pedroarena and Llinás, 1997).

In thalamo-cortical slices, where the reciprocal connectiv-
ity is intact, thalamic stimulation results in the recurrent

activity of the thalamocortical loop (Figure 11F). It is inter-
esting to note that the high frequency cortical return excita-
tion is mostly restricted to the dendritic thalamic compart-
ment (Figure 11E). From the above it has been concluded
that this dendritic conductance are not only related to oscil-
latory gamma band activity, but are essential in the gener-
ation of brain gamma band activity and of cognitive func-
tions, as was demonstrated in mice genetically modified to
delete P/Q type channels (Cav 2.1 null mice) (Llinás et al.,
2007).

In all then, six ionic conductances have been described in tha-
lamic neurons, in addition to those that underlie the axosomatic
action potential as summarized in Figure 12.

(1) A voltage-dependent persistent, or very slowly inactivating
somatic, Na+ conductance, [gNa(Ip)] This conductance gen-
erates a slow rebound depolarization in thalamic cells and
plays a role in the genesis of the 10-Hz oscillation Figure 10
(Jahnsen and Llinás, 1984b).

(2) A Ca2+-dependent potassium somatic conductance, [gK(Ca)]
which underlies the AHP. This conductance was demon-
strated in vitro by the marked reduction of the AHP, after
application of Ca2+ channel blockers (Jahnsen and Llinás,
1984b). The AHP amplitude is about 12 mV and can be
reversed by inward current injection (Deschenes et al., 1984;
Jahnsen and Llinás, 1984b).

(3) A fast, transient somatic potassium conductance (gIA),
responsible for the slow return to baseline following hyper-
polarization (Jahnsen and Llinás, 1984b; Kita and Kitai,
1986), which can prevent the abrupt recovery of neurons
from a hyperpolarized condition. In fact, the duration of
the hyperpolarization that generates the rebound response is
aided by the presence of the transient K+ current.
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FIGURE 11 | Generation of gamma band oscillation by thalamic

dendrites. (A) Three different levels of membrane potential are accompanied
by a rapid membrane potential oscillation with clear gamma band frequency
at −46 and −43 mV. This is demonstrated by the dominant frequency at
37.5 Hz at −43 mV as shown in the auto-correlogram (insert). (B) At a
membrane potential of −40 mV action potentials were generated at the peak
of each oscillatory wavelet and so the subthreshold oscillatory membrane
properties are transformed into gamma band spike frequency projected via
thalamocortical axons on to the cortical mantle. (C,D) The mechanism for this

gamma band oscillation was of dendritic origin was tested with a computer
model. (E) Direct demonstration that the gamma oscillations are mostly
dendritic and carried by calcium ions was accomplished using calcium
specific fura 2 fluorescence imaging. The cell was depolarized to the level
that elicited fast firing calcium entry was restricted to the dendritic tree
(yellow and red) (F). Diagram of the oscillatory properties of thalamic neurons
and the recurrent inhibition at somatic level via the thalamic nucleus reticular
nucleus. [(A,B,E,F) from Pedroarena and Llinás, 1997; (C,D) from Rhodes and
Llinás, 2005.].

(4) A low-threshold, rebound, somatic Ca2+ conductance
[gCa(T)]. This conductance is inactive at the resting potential
and deinactivates with hyperpolarization.

(5) A high-threshold, dendritic Ca2+ conductance [GCa(P/Q)].
This conductance triggers all-or-none depolarizing responses
followed by activation of a Ca-gated K conductance.

(6) A somatic h-type potassium channel.

In contrast to the IO, the high threshold Ca2+ conductance
is not strong in thalamic cells. Because of this difference, the

dendritic Ca2+-dependent spike does not dominate the firing of
the thalamic neuron, allowing it a wider range of firing prop-
erties that that in IO neurons. The amplitude of the dendritic
Ca2+ channels current in thalamic dendrites is smaller than that
in inferior olivary neuron.

The six conductances combine to give thalamic neurons their
unique oscillatory properties, as diagramed in Figure 12. At
membrane potentials positive to −55 mV, fast action potentials
are generated (red traces). At membrane levels near −55 mV,
two types of firing are seen (black traces). In one case, the
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FIGURE 12 | Conducances underlying the oscillatory properties of

thalamic neurons. In black, usual Na+ dependent spike is followed by an
after hyperpolarization generated by the classical voltage-sensitive K+
conductance. Depending on membrane potential, this event can be
followed by a persistent sodium current [(gNa(Ip)) black spikes]. Following an
inhibitory synaptic potential a hyperpolarization dependant deinactivation of
type a gCa(T)conductance, and the simultaneous inactivation of the
potassium conductance gK(Ih) together generate a rebound response
(green). The membrane potential is brought back to the threshold for the
fast spike by the slow potassium conductance. In addition to the 10-Hz
oscillations, slower oscillations (about 6 Hz) can occur by the rebound
excitation (blue trace) following hyperpolarization of the cell [gK (Ca)] and
inhibitory postsynaptic potentials (IPSPs). Such hyperpolarization
deinactivates the low-threshold Ca2+ conductance generating a rebound
low threshold spike, which triggers the process once again activating
potassium conductance (Ih). (Jahnsen and Llinás, 1984b,c; McCormick and
Prince, 1986).

fast sodium-dependent spike is followed by an AHP, due to an
increase in both the classical voltage-activated potassium conduc-
tance (gK) and by a Ca2+-activated K+ conductance [gK (Ca)] that
generates an AHP lasting for 70 ms or so, allowing the cell to fire
at a frequency near 10 Hz. The response can be further augmented
as a rebound from the inhibitory postsynaptic potential (IPSP) in
blue.

Thalamic cell firing is basically produced by a slow depolariza-
tion of the cell produced by the activation of the persistent Na+
conductance [gNa(IP)], which can serve as a continuous depolariz-
ing drive once it is activated. Once the [gNa(IP)] takes over it depo-
larizes the cell until another spike is generated and the process
repeats itself, with a 10-Hz rhythmicity. If, on the other hand, the
hyperpolarizing potassium conductances are combined with an A
potassium current and/or IPSPs, the neurons are hyperpolarized
sufficiently to deinactivate the low-threshold Ca2+ conductance
[gNa(Ip)] and to inactivate a potassium conductance (Ih) resulting
in an oscillatory responses at frequencies near 6 Hz. Thus, their
intrinsic properties allow thalamic neurons to display a versatil-
ity whereby they switch between tonic and phasic responses as
diagrammed in Figure 12.

The point to be emphasized here is not the difference
between these two groups of cells but rather the fact that they
both have intrinsic properties that give them distinctive firing
characteristics. From the above, it follows that the nervous system

FIGURE 13 | In vitro intracellular recording from a sparsely spinous

neuron of the fourth layer of the frontal cortex of guinea pig. (A)

Characteristic response obtained in the cell following direct depolarization,
consisting of sustained subthreshold oscillatory activity on which single
spikes can be observed. (B) Autocorrelogram of the intrinsic oscillatory
frequency indicated a 42 Hz intrinsic oscillation (Llinás et al., 1991).

is constantly in action and that the patterns of activity arising
from the sensory inputs and from the corollary discharge of
motor outputs, are but a small modulatory component of the
overall activity of the brain. Beyond these conductances, the
thalamic neuron oscillatory patterns can also be generated via
synaptic activation as elegantly demonstrated in vitro studies by
Sohal et al. (2006).

CORTICAL NEURONS
The electrophysiology of cortical neurons has been extensively
studied (Yuste et al., 2005) and the morphology-related intrin-
sic firing patterns in simulated neocortical pyramidal cells has
been examined as well (Korogod and Tyc-Dumont, 2009). In this
summary I will touch briefly on neuronal aspects of cortical neu-
rons that relate very specifically to 40 Hz activation in relation to
the intrinsic properties of a particular type of interneuron, the
sparsely spinous neurons of the fourth cortical layer.

From an in vitro point of view, our research in the cerebral
cortex of the guinea pig points to the existence of neurons in
the fourth layer that have intrinsic subthreshold electroresponsive
properties that endow these cells with a 30- to 45-Hz membrane
potential oscillation (Llinás et al., 1991). These cells, which are
often silent after penetration, demonstrate oscillation on direct
membrane depolarization. On occasion, the cells may also show
spontaneous oscillations at that frequency. When this occurs,
further depolarization produced by direct current injection will
generate a spike at the peak of the depolarizing phase of each
oscillation. In other recordings in similar neurons, it was also
found that a voltage-dependent persistent sodium conductance
may underlie the generation of 40-Hz oscillation, which, in that
case, outlasts the duration of the depolarizing pulse.

Examples of such recordings are shown in Figure 13A.
Autocorrelation analysis of this response (Figure 13B) demon-
strates that the frequency of oscillation of this cell was 42-Hz.

Following intracellular staining, these fourth-layer neurons
were recognized as the sparsely spinous neurons that have been
described by anatomists as being GABAergic and as having axons
that ascend to the third layer and descend to the fifth layer in the
cortex (Peters and Saint-Maie, 1984).
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As opposed to the oscillations observed in the IO and tha-
lamus, the oscillation of these fourth-layer inhibitory interneu-
rons appears to be generated by a voltage-dependent sodium
conductance followed by a potassium conductance, probably of
the voltage- or Na+-dependent variety. The sodium dependence
of this oscillation was demonstrated by the addition of TTX to the
bath, which blocked the oscillations generated by direct stimula-
tion as well as those spontaneously generated. The subthreshold
oscillations were, in fact, the first to disappear, followed by the
blockage of the all-or-none fast spikes.

Other examples of similar types of oscillations, but with a
lower frequency, have been observed in the giant stellate cells
of the entorhinal cortex (Alonso and Llinás, 1992) as well as
in the neurons of the nucleus parabrachialis in the brainstem
(Leonard and Llinás, 1990). In contrast to the 40-Hz oscillations
displayed by the cortical neurons, the latter two cell types oscil-
late at a frequency of 6–12 Hz, i.e., in the range of the theta and
low alpha rhythms. The point of interest here is that similar cur-
rent may generate different oscillatory frequencies, depending on
the kinetics of the voltage-dependent conductances. Equally sig-
nificant is the fact that oscillations at a similar frequency may
have different ionic bases in different types of cells. This is prob-
ably related to secondary events that oscillation may ultimately
regulate. Thus, as some cell oscillations may be a form of commu-
nication, in others, the hippocampus for example, oscillation may
serve to trigger secondary changes such as long-term potentiation
(Larson and Lynch, 1986). These latter require the activation of
Ca2+-dependent second messengers, in which case Ca2+ -based
oscillation would be a significant parameter (Llinás and Steriade,
2006).

In vivo cortical studies that have taken a broader perspec-
tive than that provided by single cell in vitro electrophysiology
have demonstrated in the cat, that high-frequency activity occurs
in motor areas 4y, 6aB and in the posterior parietal associative
area 5a during motionless focused attention (Bouyer et al., 1987).
These recordings were obtained from the surface of the cortex,
as well as from depth field analyses. With respect to the visual
cortex, it was demonstrated (Gray et al., 1989) that, following spe-
cific visual input, a 40-Hz oscillation may be observed as a field
potential envelope, and as single units in the overall envelope.
This 40-Hz oscillation appears to be present only when the given
cortical area is activated by an optimal physiological stimulus.

The question of the role of the intrinsic electrical properties of
neurons in the overall function of the CNS must be defined, then,
at the cell ensemble level. Perhaps one of the most interesting
issues concerning global brain function relates to the rediscovery
in recent years of 40-Hz oscillation, which may be observed in the
cortex under certain conditions. In fact, 40-Hz oscillations have
been observed in the cortex under certain conditions. For exam-
ple, there are 40-Hz oscillations during physiological stimulation
of the visual (Gray et al., 1989) or auditory cortex (Galambos
et al., 1981; Spydell et al., 1985; Mäkelä and Hari, 1987; Johnson
et al., 1988). In its absence, as occurs when P type calcium chan-
nels are (Ca 3.1) are deleted, there is a total lack of cognitive
function. Such oscillations have also been recorded during inten-
sive attention states such as occur when a predator is stalking
its prey (Bouyer et al., 1987), or in humans, during the state

of elevated attention prior to the execution of complicated tasks
(Sheer, 1984). Similar activity as measured from the scalp by elec-
tric and magnetic means in humans appears to be well correlated
with cognitive tasks and seems to be altered under pathological
conditions (Ribary et al., 1989, 1991).

The issue here is that the oscillatory events may be used in
intercellular communication as well as in the modulation of the
intracellular milieu. From the point of view of 40-Hz oscilla-
tions, the oscillation in the GABAergic neurons may, in fact,
be the origin of the macroscopic 40-Hz observed in the cortex.
Indeed, since these cells receive direct synaptic input from thala-
mic neurons, and since they relay inhibition to pyramidal cells at
a 40-Hz frequency, this will, in turn, produce a resonance activa-
tion of the pyramidal cells at a frequency of 40 Hz. The question
of interest, then, is the mechanism by which such oscillations may
become sufficiently synchronous to generate macroscopic events.
Our own view on this matter is illustrated in Figure 14.

Thalamic input via projection neurons reaches the neurons
of the fourth layer of the cortex that generate 40-Hz oscilla-
tion. These cells, which are GABAergic, can generate a 40-Hz
IPSP on pyramidal neurons and allow them to fire at 40-Hz as
a rebound from abrupt inhibition. Pyramidal cells, in turn, acti-
vate, via collaterals, the thalamic projection neurons as well as the
neurons of the reticular thalamus and the interneurons at the tha-
lamus itself. The direct excitatory input at 40-Hz to the projection

FIGURE 14 | Diagram of the proposed cortico-thalamo-cortical

reverberating circuit, which may underlie 40-Hz oscillation at the

cortex. See text.
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FIGURE 15 | Magnetoencephalographic (MEG) recordings in three

functional states. (A) Magnetic recording demonstrating gamma band
activity following a sensory stimulus in awake subject. (B) Recordings from
same subject during deep, dreamless sleep. (C) Gamma band activity while
dreaming. (D) Instrument noise in the absence of a subject. (E) Localization

of gamma band activity in an awake subject note frontal and parietal and
temporal association lobe activity. (F) Localization of gamma band activity
recorded when the subject was dreaming. Note the lack of frontal lobe
activity and the powerful activation of the temporal pole. (Llinás and Ribary,
1993 and unpublished observations.).

thalamic cells, as well as their disynaptic inhibition via the retic-
ularis and intrathalamic GABAergic neurons, contributes to the
thalamic oscillations at 40-Hz. This thalamic oscillation is then
signaled back to the cortex, establishing a large resonant oscil-
lation between the thalamus and the cortex, which can recruit
sufficient elements to generate the synchronicity observed at both
intracellular and extracellular levels in the cortex and thalamus.

According to this view, the inhibitory neurons that contact
pyramidal cells directly may force them in combination to a
synchronous excitatory input to rebound oscillation. These cells
will then generate, via their descending axons, 40-Hz excitation
of cells in the nucleus reticularis thalami (NRT), the intrinsic
inhibitory neurons in the thalamus, and the projection thalamic
neurons themselves.

Since the NRT cells are inhibitory (cf. Steriade and Llinás,
1988) they would further increase the resonance property of the
thalamocortical system by their own driven 40-Hz input back
through the fourth-layer interneurons. In this manner, a cortico-
thalamo-cortical resonance even may actually be the basis of this
40-Hz rhythm recorded at the cortical level.

While Gray et al. (1989) have not recorded oscillation in the
thalamus at 40-Hz, other investigators (Fuster et al., 1965) had, in
fact, published intracellular recordings from geniculate neurons
following light stimulation demonstrating clear 40-Hz activity.

This indicates that activity at such frequencies is not a cortical
phenomenon exclusively but may also be seen at the thalamic
level.

The MEG recordings shown in Figure 15 suggest that mostly
somatosensory and visual auditory association cortices are active
as well as the anterior temporal pole (amygdala) are the main
players during dreaming while the frontal lobe remains only
sparsely active (Figure 15F). Similar findings have been reported
using MEG by Ioannides et al. (2004).

The functional significant of 40-Hz oscillation in the tha-
lamocortical system becomes particularly interesting when one
considers that it may serve as the basis for the temporal corre-
lation of events that must be considered as a single perceptual
or motor entity, the so called conjunction principle. This tem-
poral superposition, in fact, may be at the very core of global
brain function. Indeed, it may actually be observed using mag-
netic recording in humans, where 40-Hz activity can be demon-
strated to be organized quite widely, demonstrating a phase shift
from the front of the brain onto the back with a sweep speed
in the rostro-caudal direction of about 5–10 ms (Ribary et al.,
1989, 1991). This phase shift suggests that, via the activation
of the NRT, a conjunctional type of activity may be generated
at the thalamus, which allows thalamocortical resonance in a
global, organized manner. This, in its most simplified form,
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could serve to scan the brain front to back 200 times a second.
Such scanning would be viewed as the basis for the generation
of unitary perceptual entities out of many sensory and motor
vector components, which represent the details of the perceived
world.

Ultimately, we are then faced with a system that addresses the
external world, not as a slumbering machine to be awoken by the
entry of sensory information, but rather as a continuously hum-
ming brain willing to internalize and incorporate into its intimate
activity an image of the external world, but always in the con-
text of its own existence and its own intrinsic electrical activity.
Most fundamental, however, is the fact that the system is not
merely a computational entity, but rather that issues are substrate
dependent (neurons) and, moreover, that ionic events such as the
presence of P/Q calcium channel activity are actually crucial to its
ultimate function. From a more global perspective it is the dialog
between the incoming information arising, in mammals, from the
dorsal thalamus that provides the content in our everyday cogni-
tive activity, and the nonspecific system that provides context (i.e.,
the attention), that we give to such inputs (Llinás et al., 1994).
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The subject of the effects of the active properties of the Purkinje cell dendrite on
neuronal function has been an active subject of study for more than 40 years. Somewhat
unusually, some of these investigations, from the outset have involved an interacting
combination of experimental and model-based techniques. This article recounts that 40-
year history, and the view of the functional significance of the active properties of the
Purkinje cell dendrite that has emerged. It specifically considers the emergence from
these efforts of what is arguably the first single cell “community” model in neuroscience.
The article also considers the implications of the development of this model for future
studies of the complex properties of neuronal dendrites.

Keywords: Purkinje cells, modeling, cerebellum, cerebellar, dendrite, active conductnaces, history

INTRODUCTION

Analysis of the complex behavior of the mammalian cerebellar Purkinje cell has contributed
significantly to our understanding of the role and function of active electrical properties in central
nervous system dendrites. Further, as reviewed in this article, the study of the active properties
of the dendrites of this neuron is unusual for neuroscience in the extent to which it has involved
an interaction between ‘‘realistic’’ biophysically accurate computer models and laboratory-based
experiments. Accordingly, in addition to considering the possible functional significance of the
active dendritic properties of the mammalian Purkinje cell, this article also recounts in some detail
the evolution of the models on which that analysis is based. Ideally, this history should serve as a
model for the analysis of all aspects of the functional organization of nervous systems.

It turns out that the co-dependence between modeling and experimental studies of
Purkinje cells was established at the earliest stages of study of this neuron’s complex electrical
behavior. This early interaction between models and experiments was induced by a claim
made by Llinas et al. (1968) based on experimental results, that Purkinje cell dendrites were
electrically active. That claim, based on experimentally obtained time delays in shock induced
field potentials recorded at different depths of the alligator cerebellum, was immediately
challenged by Calvin and Hellerstein (1969) who, citing Rall’s (1964) pioneering cable
modeling results, suggested that such delays were likely a simple consequence of passive
dendritic current conduction alone. In defending their interpretation, Llinas and colleagues
asserted in return that models based on volume conductors rather than cable models were
a more appropriate basis for the analysis of extracellular field potentials. A few months
later, Zucker (1969) entered the debate by actually performing calculations comparing both
types of models, concluding that neither approach, in its classical form, could resolve the issue.
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However, Zucker pointed out that similarities in simulated
field potential results recently obtained from the more active
cable theory models for mitral cells developed by Rall and
Shepherd (1968) likely supported Llinas’ original interpretation.
In response, Calvin suggested that Zucker’s model had too many
free parameters, and defended his own argument as based on
‘‘the simplest possible model consistent with our objective (to
demonstrate that a) commonplace explanation for conduction
velocities was as good as the more esoteric’’ (Calvin, 1969, p. 637).
It took 10 more years and the development of experimental brain
slice procedures and the application of intracellular recording
techniques for Llinas and Sugimori (1980a) to provide conclusive
experimental evidence that Purkinje cell dendrites are in fact
electrically active.

It is important to point out that while references to
computational modeling was at the heart of this very early
controversy, no effort was actually made by any of the discussants
to actually build a model of the Purkinje cell dendrite (Calvin
and Hellerstein, 1969). Instead, the first model of a Purkinje
cell dendrite was published by Pellionisz and Szentagothai
as the last of a series of early cerebellar network modeling
studies (Pellionisz, 1970; Pellionisz and Szentágothai, 1973,
1974). As shown in Figure 1, in that model, the complex
Purkinje cell dendrite was represented by only four branches in
which synaptic influences were calculated independently, using
a simple algebraic summation. On reaching threshold, each
branch independently generated dendritic spikes which were
then simply summed at the soma. Comparing results of network
simulations using these four branch Purkinje cells to previous
results with no dendritic structure these authors concluded that:
‘‘the simulation experiments are giving quite strong hints in
favor of the importance of dendritic geometry’’ (Pellionisz and
Szentágothai, 1974, p. 28).

Perhaps reflecting the influence of the original debate between
Llinas and Calvin and Hallerstein in the 1960’s, Llinas and
Nicholson (1976) published the first true compartmental model
of the Purkinje cell dendrite to specifically test new speculations
on cerebellar physiology based on field potential recordings.
In this case, the experiments involved climbing fiber-evoked
responses in cat cerebellar cortex. As shown in Figure 2, while
their compartmental model included conductances represented
with Hodgkin Huxley model parameters (Hodgkin and Huxley,
1952), the model included only three dendritic compartments
whose active properties were limited to the synapses.

One year later, as shown in Figure 3, Llinas now working with
Pellionisz, published the first compartmental Purkinje cell model
with more a more complex dendritic tree (Pellionisz and Llinás,
1977). Using as a base a previously published compartmental
model of a spinal motorneuron (Dodge and Cooley, 1973), the
new Purkinje cell model consisted of 62 compartments with
the soma and initial segment incorporating Hodgkin Huxley
channels (Hodgkin and Huxley, 1952). With this model the
authors sought, for the first time, to use the model to replicate
actual experimental responses of frog Purkinje cells including: (1)
the rapid ‘‘antidromic’’ decrement in action potential amplitude
in the dendrite following somatic current injection (Llinas et al.,
1969b; Freeman and Nicholson, 1975); (2) the orthodromic

FIGURE 1 | Schematic representation of a model Purkinje cell model
simulated in Pellionisz and Szentágothai (1974). The dendritic tree is
divided into four non-overlapping synaptic territories meant to represent the
main Purkinje cell dendritic branches. (A) shows the distribution of parallel
fiber synapses on each dendritic branch, (B) is the modeled Purkinje cell
viewed in a parasagittal plane and (C) is the Purkinje cell viewed from the top.
The fine structure within each branch in this figure is only for illustrative
purposes and did not influence the summation of synaptic inputs.
Reproduced with permission from Pellionisz and Szentágothai (1974).

activation of Purkinje cells following parallel fiber stimulation
(Eccles et al., 1966a); and (3) the spike burst resulting from
climbing fiber synaptic input (Eccles et al., 1966b, 1967). While
the authors’ state explicitly in their article that compartmental
modeling is an essential technique to: ‘‘(handle) a partially
or totally active dendritic tree’’ (Pellionisz and Llinás, 1977,

FIGURE 2 | The first published compartmental model of a Purkinje cell,
consisting of a soma and three dendritic compartments. As shown in
(A), the model consisted of a soma and three dendritic compartments, with
only the soma and the first two dendritic compartments receiving synaptic
input. (B) Represents the electrical diagram representing the model.
Compartments are separated by a resistance Qi. Potential across the soma
and the first two dendritic compartments is represented by a variable battery
(Ej) and a variable resistor (Rj) to simulate synaptic input in parallel with the
membrane capacitance (Cj). The last compartment (4), had a constant resting
emf. (C) Further describes the electrical variable battery and resistance.
Further explanation for the structure of the model can be obtained from the
original manuscript. The model was used in conjunction with experimental
data to support the hypothesis that the climbing fiber made multiple synaptic
inputs on the proximal Purkinje cell dendrite. Reproduced with permission
from Llinas and Nicholson (1976).
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FIGURE 3 | The first full compartmental model of the Purkinje cell
dendritic tree represented by 62 dendritic compartments (A), with
each of the compartments (B) simulating ionic conductances using an
equivalent electrical circuit (C). (D–F) show the responses of three different
compartments after a simulated somatic current injection (dendritic branch
point, upper row; soma middle row; node of Ranvier, lower row). Reproduced
with permission from Pellionisz and Llinás (1977).

pg. 37) the model they reported still included no active voltage
dependent dendritic conductances.

DEDUCING FUNCTION FROM
STRUCTURE

In their original justification for building the first more
realistic Purkinje cell model, Llinas and Pellionisz explicitly
state that: ‘‘Rigorous mathematical models of the electrical
activity of central neurons (are) a powerful tool to test and
interpret experimental data’’ (Pellionisz and Llinás, 1977, p. 37).
However, the model they actually published was clearly built
to demonstrate the plausibility of dendritic mechanisms the
authors had previously inferred from physiological results.
In reviewing the cerebellar (and generally the neuroscience)
modeling literature, this type of ‘‘demonstration model’’ is still
the most common, with most published models specifically built
to demonstrate the plausibility of one prior interpretation or
another. Accordingly, these models are not intent on testing or
interpreting experimental data, but instead on demonstrating the
plausibility of a particular idea.

As described in the rest of this article, models can, and in
the case of the cerebellar Purkinje cell have, instead been used
to reveal unexpected and new interpretations of experiment
and function. These models however, have been built first
and foremost on anatomical structure and to replicate basic
physiological responses, making as few functional assumptions as
possible. As also demonstrated in the following history, models
of this sort are also more likely to result in the kind of model
sharing by multiple investigators in multiple laboratories which

in principle can lead to cooperation, accelerating progress and
understanding.

The first published Purkinje cell model that explicitly set
out to deduce function from structure, without assuming the
function to begin with was published by Shelton (1985) using,
for the first time, an actual anatomical dendritic reconstruction
of a real Purkinje cell (Figure 4). While structurally realistic,
this model, like the earlier Purkinje cell models, did not include
active dendritic properties, an omission justified by the authors
assertion that: ‘‘the part of the dendritic tree of the Purkinje cell
which is thought to be essentially passive forms a very large fraction
of the total membrane surface area of the cell’’ (Shelton, 1985,
p. 111), although the author later notes that dendritic passivity is
an assumption of themodel, rather than a conclusion. Instead the
model was used to provide a description of the expected passive
electrical properties of the Purkinje cell given the morphology
of its dendrite. This was accomplished by tuning the model to
replicate experimentally observed differences in dendritic and
somatic input conductances. It should be noted that while this
model was built on an actual anatomical reconstruction of a
rat Purkinje cell, for technical reasons the only physiological
data available was from Guinea Pigs. Accordingly the author

FIGURE 4 | From Shelton (1985) showing details of each of the
modeled Purkinje spiny dendritic branches. Used with permission from
Shelton (1985).
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‘‘stretched’’ the rat dendrite to better resemble a Guinea Pig
Purkinje cell. In regard to the possible active properties of
the Purkinje cell dendrite, Shelton’s explicitly stated that his
exploration of the passive properties of the dendrite should ‘‘form
the substrate for extensions which would treat more complex
properties’’ (Shelton, 1985, p. 111).

Reflecting Shelton’s original intent, the next realistic model
of the cerebellar Purkinje cell was published by Rapp et al.
(1994, p. 114) explicitly as ‘‘an essential step—a skeleton—for
constructing biologically more realistic models of PC dendrites’’.
These authors, who based their model on Guinea Pig
morphology, also explicitly tested Shelton’s speculated on
the possible influence of active synaptic conductances on
passive membrane properties by applying the first synaptic
inputs to the dendrite (Rapp et al., 1992). The Rapp et al.
modeling publications also, for the first time, included new
experimental data obtained by the author’s specifically to
parameterize the model, while also considered in some detail the
application of newly developed parameter estimation methods
for large compartmental models (Holmes and Rall, 1992).
Rapp et al. (1994) also tested their results using different
reconstructed dendritic morphologies. Harkening back to the
original controversy about the appropriate form of modeling
to explore dendritic function, these authors also explicitly
compared compartmental modeling results to analytical cable
model solutions pioneered by Rall (1964), Calvin and Hellerstein
(1969), Zucker (1969) and Segev et al. (1985). In publishing
their model, Rapp et al. (1994, p. 114) however, explicitly stated,
once again, that it was now essential that Purkinje cell models,
‘‘incorporate a variety of non-linear voltage- and ligand-gated
channels that we know exist in the Purkinje cell dendrite’’.

Returning to the community model sub-theme for this article,
in addition to being the first Purkinje cell model (and one of
the first in neuroscience) to be based on an actual anatomically
reconstructed dendrite, the Shelton model was also the first
Purkinje cell model whose components were reused by other
modelers (Bush and Sejnowski, 1991; Genet et al., 2010; Blum
and Wang, 1990; Brown et al., 2011), in each case adding active
dendritic properties to the model. However, once again, in each
modeling study, the intent was to demonstrate a previous idea
about the functional significance of this property.

While Shelton’s model was the first realistic Purkinje cell
model, and was used by others to build new models, these
versions of the Shelton models have not generated further
versions. Likely this is due in part to the fact that these models
were intended to demonstrate, rather than discover function,
but also because the models were not written in a form easily
transmitted to others. Instead, it is the original Rapp et al.
(1992, 1994) Purkinje cell model (Figure 5) that lead to the
model that has emerged as ‘‘among the most successful, cited, and
re-used/updated in computational neuroscience’’ (Ascoli, 2007,
p. 156). It is clear from the history that my laboratory played a
critical role, first by translating the Rapp model into GENESIS,
the general purpose simulator also built in my laboratory (Bower
and Beeman, 1995, 2007) and second, because by adding a full
set of active conductances to the model, independent of a set
of underlying functional assumptions or objectives. This second

FIGURE 5 | The original Rapp et al Purkinje cell model, reconstructed
from a Guinea Pig. Reproduced with permission from Rapp et al. (1992).

feature of our modeling efforts I think is especially important,
because it means that other investigators don’t have to ‘‘buy’’ our
interpretations or assumptions about function.

After obtaining a copy of the model from Rapp and colleagues
even before their final article was published (De Schutter et al.,
1993; Jaeger et al., 1993), we used GENESIS to included 10
active conductances differentially distributed in the soma and
dendrite, parametrized on data from a wide range of in vitro
voltage clamp experiments. The initial model-based results of
the consequences of active dendritic processes for the basic
physiological responses of recorded Purkinje cells were published
in a series of three articles published in De Schutter and Bower
(1994a,b,c). The first of these articles De Schutter and Bower
(1994a) explicitly extended the work of Shelton (1985) and Rapp
et al. (1992, 1994) with an analysis of the electrical structure of the
Purkinje cell dendrite now including active voltage dependent
conductances (Figure 6). The second article De Schutter and
Bower (1994b) explored dendritic responses to climbing fiber
input extending the study of themodel to understand the possible
influence of background excitatory synaptic inputs again first
explored by Rapp et al. (1992, 1994) but now also including
inhibitory synapses. The third article considered for the first
time the response of an active Purkinje cell dendrite to the
type of synaptic activity expected to result from stimulus driven
input (De Schutter and Bower, 1994c). As the first neuronal
model to use concurrent supercomputers (De Schutter and
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FIGURE 6 | Schematic description of the De Schutter and Bower
Purkinje cell model with equivalent circuit diagrams for the modeled
ionic conductance included in each section of the cell. Reproduced with
permission from De Schutter (1999).

Bower, 1992), these simulations involved a much more extensive
test of parameter space than previously possible, demonstrating
that modeled responses were quite robust to changes in its
primary parameters. Importantly for the reuse of this model by
others, the use of the GENESIS simulation system specifically
developed for sharing realistic neurobiological models (Bower
and Beeman, 1995) made the Purkinje cell model one of the
first if not the first published online (De Schutter, 1994). Again,
availability of the model to anyone—its construction within
a modeling platform, and I believe its focus on physiological
rather than functional interpretations has led this model to
be one of the first, if not the first community model in
neuroscience.

EMERGENCE OF A COMMUNITY
PURKINJE CELL MODEL

The articles by Rapp et al. (1992, 1994) and De Schutter and
Bower (1994a,b,c) have collectively been cited more than 500
times, with the first description of the active Purkinje cell model
De Schutter and Bower (1994a) responsible for almost half
those citations. Importantly, the model, we now refer to as the
‘‘R-DB model’’, has formed the basis for considerable subsequent
work from my own students both within my laboratory (Jaeger
et al., 1996; Baldi et al., 1998; Sultan and Bower, 1998; Jaeger
and Bower, 1999; Mocanu et al., 2000; Santamaria et al., 2002,
2007; Santamaria and Bower, 2004; Lu et al., 2005, 2009; Cornelis
et al., 2010) and within their own independent laboratories
and research (Staub et al., 1994; De Schutter, 1998; Vos et al.,
1999; Howell et al., 2000; Steuber and De Schutter, 2001, 2002;
Gauck and Jaeger, 2003; Solinas et al., 2003, 2006; Kreiner and

Jaeger, 2004; Koekkoek et al., 2005; Santamaria et al., 2006, 2011;
Shin and De Schutter, 2006; Shin et al., 2007; Steuber et al.,
2007; Achard and De Schutter, 2008; De Schutter and Steuber,
2009; Anwar et al., 2012, 2013, 2014; Coop et al., 2010; Tahon
et al., 2011; Cao et al., 2012; Couto et al., 2015). Perhaps more
importantly the R-DB model has become a true ‘‘community
model’’ as it is now being used by a growing number of authors
as a base for further modeling work outside its laboratories of
origin (Coop and Reeke, 2001; Mandelblat et al., 2001; Miyasho
et al., 2001; Roth and Häusser, 2001; Chono et al., 2003; Khaliq
et al., 2003; Steuber and Willshaw, 2004; Ogasawara et al., 2007;
Yamazaki and Tanaka, 2007; Kulagina et al., 2008; Traub et al.,
2008; Brown et al., 2011; Brown and Loew, 2012; Forrest et al.,
2012; Forrest, 2015;Masoli et al., 2015). Several of thesemodeling
efforts have now started their own lineage sequences, with, for
example, the adaptation of the original R-DB Model by Miyasho
et al. (2001), being further extended by Chono et al. (2003),
Kulagina et al. (2008), and Brown et al. (2011). Importantly,
the model has also been translated from the original GENESIS
files to multiple other modeling platforms. As described in this
next section, much of that modeling work has been focused on
replicating and understanding the complex responses of Purkinje
cells resulting from the active properties of its dendrite.

One of the first uses of the R-DB Model outside of my
own laboratory’s lineage, explicitly tested the model’s ability to
replicate PC responses obtained from new in vitro experimental
studies using ion channel blockers (Miyasho et al., 2001). Using
dendriticmorphology from the rat (Shelton, 1985) parameterized
with data from the R-DB Model, Miyasho et al. (2001) modified
channel descriptions and conductance densities to reproduce the
repetitive Ca2+ spike firing they had found experimentally after
the application of TTX in vitro. Importantly, these authors also
refined the kinetics of the K+ delayed rectifier current, applying a
new mechanism for calculating intracellular Ca2+ concentration
while also changing the Ca2+ sensitivity of the calcium-activated
dendritic K+ conductance. With these changes, the model was
extended to replicate physiological responses including: (1)
characteristic Ca2+ dendritic spikes in the presence of TTX;
(2) repetitive Ca2+ spiking patterns resulting from the presence
of TTX; (3) the lack of Ca2+ spikes found after application
of a P-type Ca2+ channel blocker; (4) the slow onset of the
Ca2+ spikes in response to a depolorizing current steps; and
(5) the marked shortening of the Ca2+ spike onset seen in the
presence of 4-AP. Two years later, Chono et al. (2003) further
refined the Miyasho et al. (2001) model by adding new channel
descriptions as well as refinements in the conductance values for
the simulated Ca2+ and Ca2+ dependent K+ channels. These
enhancements have since been incorporated into Purkinje cell
modeling efforts by other groups (Traub et al., 2008; Brown et al.,
2011).

Having extended the ability of the R-DB Model to
replicate physiological data obtained under new pharmacological
conditions, Miyasho et al. (2001) then explored the possible
contribution to dendritic calcium spike generation of two low
threshold dendritic calcium related conductances they had
recently discovered in their own experimental studies (Watanabe
et al., 1998). Adding Ni2+ sensitive Ca2+ channels to the
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dendrites, these authors demonstrated that the model could now
replicate the longer onset Ca2+ spikes found in the presence of
Ni2+.

This is the kind of cumulative refinement and advancement
that can best, or perhaps can only take place with community
models. However, equally important to changes in the structure
of a community model, is the use of that model to explore
new forms of behavior or perform new forms of analysis not
considered by the original model’s authors. To this end, several
authors have used the R-DB Model in a reduced from to more
closely examine neuronal dynamics (Mandelblat et al., 2001;
Fernandez et al., 2007). In a series of publications, Brown
et al. (2011) adapted the original R-DB Model to explore how
mechanisms at the subcellular (biochemical) levels could be
linked to somatic output (Rapp et al., 1992; Brown et al.,
2011; Brown and Loew, 2012). While building a new model in
Fortran, Traub et al. (2008) never-the-less extended R-DBModel
parameters to explore the possible role of gap junctions between
the initial axon segments of Purkinje cells in cerebellar cortical
oscillations. To do so, he reduced overall dendritic complexity
while maintaining a ‘‘realistic’’ path from the distal dendrite to
the soma (see Figure 7).

The R-DBModel is also now being used in the context of both
subcellular and network level scales. Sub-cellularly, the model
has been used as a base to consider the effects of molecular or

FIGURE 7 | Schematic representation of the cerebellar Purkinje cell
model in Traub et al. (2008). Reflecting the focus of the study on putative
gap junctions between the initial axon segments of Purkinje cells, this axonal
region was represented by six compartments while the dendrite was reduced
to 553 compartments with a particular emphasis on the spiny branchlets.
Used with permission from Traub et al. (2008).

biophysical mechanisms on Purkinje cell function (Holmes and
Rall, 1992; Brown et al., 2011; Brown and Loew, 2012), and to
provide a larger context for studies of subcellular modeling of
calcium diffusion (Santamaria et al., 2006, 2011; Anwar et al.,
2012) as well as biophysical mechanisms of synaptic plasticity
(Vladimirescu et al., 1981; Antunes and De Schutter, 2012; De
Schutter, 2013). The model has also been used to build network
level simulations in reduced (Yuen et al., 1995; Coop and Reeke,
2001; Sarro, 2004), and full form (Howell et al., 2000; Solinas
et al., 2003; Santamaria et al., 2007).

The R-DB model has also been applied to new analytical
studies, including, for example, questions involving the
information processing potential of dendrites (Coop et al.,
2010) as well as possible spike coding strategies (Jaeger and
Bower, 1999; Steuber and De Schutter, 2001, 2002; De Schutter
and Steuber, 2009). Efforts have also been made to link the
structure of the R-DB Model to the kind of analysis involved in
the field of artificial neural networks (Steuber and De Schutter,
2001; Sarro, 2004).

Finally, the R-DB Model is being used as a base for assessing
modeling technology itself, including parameter estimation
techniques (Van Geit et al., 2007) and the relationship between
parameter variations and modeling results (Achard and De
Schutter, 2008).

UNDERSTANDING PURKINJE CELL
RESPONSES TO DIFFERENT TYPES
OF INPUT

Having established the community status of the R-DB model,
the remainder of this article will consider what has been learned
as a result of the use of the model. While general reuse
and improvement are important, ultimately the utility of any
model, whether used by the community or not, is its ability
to generate and truly test hypothesis regarding function (De
Schutter, 1999). This is also the most complex and challenging
application for any model, especially given the tendency of all
scientists to want to see what they want to see. Accordingly
especially important, in my view, is a clear establishment of
community standards for model performance. In this regard,
the next section is organized around a set of Purkinje cell
behaviors actually identified by Pellionisz and Llinás, (1977,
p. 42) as necessary for, ‘‘any Purkinje cell model which claims
to be adequate’’. As described in subsequent sections of this
article, all of these behaviors turn out to depend on the active
properties of the Purkinje cell dendrite, and replicating and
understanding these core response properties has provided the
basis for further analysis of the functional significance of active
dendritic processes.

Antidromic Spike Activation of the Purkinje
Cell Dendrite
Perhaps the most straightforward characteristic Purkinje cell
response, identified by Pellionisz and Llinas, is the fact that action
potentials generated in the Purkinje cell soma do not propagate
into its dendrite (Figure 8). At the time of the first Purkinje
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cell modeling studies, this lack of antidromic dendritic invasion
had already been predicted based on field potential recordings
(Llinas et al., 1969b; Freeman and Nicholson, 1975), although
the phenomenon was not directly observed experimentally until
much later (Llinas and Sugimori, 1980b). In the early passive
models, the lack of back propagation was attributed to the
relative surface area of the cell dendrite compared to its soma
(Pellionisz and Llinás, 1977; Rapp et al., 1994). This explanation
was further elaborated in another passive modeling study using
parameters obtained from the R-DB Model (although with
different dendritic morphology) as due to a large cumulative
impedance mismatch resulting from the high branching density
of the Purkinje cell dendrite (Roth and Häusser, 2001). With
respect to active dendritic mechanisms the models have shown
that the very low Na+ channel density in Purkinje cell dendrites
provides no mechanism to overcome these morphological effects
(De Schutter, 1999; Kitamura and Häusser, 2011) a result also
reported in models of other types of mammalian neurons (Vetter
et al., 2001).

Responses to Somatic Current Injection
It has been known since intracellular recordings were first made
in Purkinje cells, that their response to current injection is
complex (Llinas and Sugimori, 1980b). The modeling results
shown in Figure 8 were obtained from a passive Purkinje cell
dendritic model after current injection in the soma. In fact,
as shown in Figure 9, current injection in a real Purkinje
cell (and the active R-DB model), produces a much more
complex pattern of somatic and dendritic activity (Gähwiler
and Llano, 1989; Hirano and Hagiwara, 1989; Kaneda et al.,
1990; Regan, 1991; Wang et al., 1991; Lev-Ram et al., 1992).
In part for this reason, although not explicitly a part of the
original Pellionisz and Llinás (1977) standard for Purkinje cell
models, the ability to replicate the results of in vitro current
injection studies has become the defacto standard for testing
and tuning active Purkinje cell models (Bush and Sejnowski,
1991; De Schutter and Bower, 1994b; Coop and Reeke, 2001;

FIGURE 8 | Simulation of the lack of antidromic action potential
dendritic invasion in a modeled Purkinje cell following simulated
current injection in the soma. Used with permission from Rapp et al.
(1994).

Mandelblat et al., 2001; Miyasho et al., 2001; Forrest et al.,
2012).

While a full description of the mechanisms responsible for
these in vitro response patterns is beyond the scope of this article,
the general result from modeling studies is that this behavior of
the Purkinje cell is a function of a complex interaction between
all its biophysical and anatomical properties (De Schutter, 1999).
This conclusion is somewhat in contrast with the more typical
analysis from experimental studies which usually associate
different features of the in vitro response properties to specific
kinds of afferent input (Gähwiler and Llano, 1989; Hirano
and Hagiwara, 1989; Kaneda et al., 1990; Regan, 1991; Wang
et al., 1991; Lev-Ram et al., 1992; Miyasho et al., 2001), i.e.,
fast events associated with somatic action potential generation;
the somewhat slower Ca2+ related dendritic bursting behavior
assumed to be related to climbing fiber inputs; and longer time
course events assumed to be influenced by granule cell related
synaptic inputs (Traub et al., 2008; Brown et al., 2011; Isope
et al., 2012; Kitamura and Kano, 2012). The models clearly show
that these responses are actually related to the entire structure
of the Purkinje cell and the interaction between its different
afferent inputs. Bursting responses to climbing fiber inputs, for
example, are also dependent on the level of background granule
cell synaptic input.

It turns out that this co-dependence discovered in the models
sheds new light on the importance of the experimental conditions
under which Purkinje cells are studied. For example, it has
actually been known for many years that the spontaneous
behavior of Purkinje cells in vitro is quite different from

FIGURE 9 | Simulation of somatic responses to three different
amplitude synaptic current injections in two models with different
dendritic morphologies. Model (A) produced responses (C), Model (B),
responses (D). The results specifically replicate the typical rapid spiking to
bursting pattern seen in vivo in response to somatic current injection. Given
that identical amounts of current are injected, and each model has the same
electrical parameters, the variations in response properties are due to the
different morphologies of the modeled cells. Reproduced with permission from
De Schutter and Bower (1994a).
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the spontaneous behavior of Purkinje cell in vivo (Llinas
and Sugimori, 1980b). As shown in the modeling results
of Figure 10A, in vitro behavior consists of relatively rapid
(usually >100 Hz) action potentials, interrupted periodically by
spontaneous dendritic calcium spikes. In contrast, as simulated
in Figure 10C, Purkinje cells in vivo generate spontaneous
action potentials at lower frequencies (usually <80 Hz) that are
quite irregular. Dendritic Ca2+ spikes are also believed to only
appear in vivo in response to climbing fiber inputs (Llinas and
Nicholson, 1976) whereas in vitro they occur spontaneously.
Understanding how the response properties of the cell changes
in vitro is important given how much of the study of the
active properties of neurons has been done using this technique.
What modeling results have suggested is that it is the lack of
background synaptic input in what is essentially a deafferented
brain slice preparation that is reasonable for differences in
in vivo and in vitro behavior (Jaeger et al., 1996). Perhaps
particularly important in Purkinje cells which are known to
receive 150,000 excitatory parallel fiber inputs. However, when
provided with background excitatory input alone, the R-DB
Model produced a pattern of output that resembled neither the
in vitro nor in vivo conditions (Figure 10B; De Schutter, 1999).
Instead, replication of in vivo patterns required spontaneous
input from both excitatory and inhibitory synaptic inputs
(Figure 10C). Accordingly, the models predict both in single cell
(Jaeger et al., 1996; Watanabe et al., 1998) and network form
(Howell et al., 2000) that normal Purkinje cell behavior likely
depends on current from constant background synaptic inputs,

FIGURE 10 | Comparison of responses of the R-DB Model in the
absence of background synaptic input to the dendrite (A), in the
presence of only excitatory synaptic input (B) and both excitatory and
inhibitory input (C). As described in the text, the firing pattern in
(A) resembles Purkinje cell activity recorded in vitro, while (C) resembles
in vivo activity. Figure used with permission from De Schutter (1999).

interacting with the active Ca2+ and K+ dependent channels
in the dendrite and soma (De Schutter, 1998). Experimental
studies specifically designed to test these modeling predictions
are consistent with this interpretation (Jaeger and Bower, 1999;
Kreiner and Jaeger, 2004). Realistic models have therefore
provided an essential tool to relate in vitro response properties
to the natural in vivo behavior of Purkinje cells especially
challenging given the complexity of this cells active dendritic
properties.

Purkinje Cell Responses to Climbing Fiber
Activation
The fact that the Purkinje cell responds to climbing fiber
activation in vivo with a burst of action potentials has been
known for many years (Eccles et al., 1966b). In fact as
already noted, the first compartmental Purkinje cell model
was specifically constructed to test this experimentally derived
prediction (Llinas andHillman, 1969) that this response behavior
was a consequence of the multiple synaptic contacts distributed
over the Purkinje cell dendrite by a single climbing fiber (Llinas
and Nicholson, 1976), with subsequent modeling focused on
the actual biophysical mechanisms responsible for producing
the ‘‘oscillatory wavelets’’ or ‘‘spike burst’’ characteristic (see
Figure 11F) of climbing fiber responses (Pellionisz and Llinás,
1977). At the time, these authors concluded that the different
peaks in the somatic burst response were generated by repetitive
firing of the initial segment of the axon rather than by an active
dendritic mechanism as had been previously proposed (Eccles
et al., 1966b).

Neither Shelton (1985) nor Rapp et al. (1992, 1994) attempted
to replicate Purkinje cell responses to climbing fiber activation,
however, this was an important component of the initial analysis
of the active dendritic and somatic model of De Schutter
and Bower (1994b). In fact, after tuning model parameters
to replicate responses to somatic current injection data, the
ability of the model to generate climbing fiber burst responses
without further tuning parameters was the first indication of
the model’s likely realism (see Figure 11). As already described,
the model predicted that the correct in vivo form of the
climbing fiber response was dependent on background patterns
of excitatory and inhibitory synaptic input. However, analysis
of the model also predicted that the dendritic response was
dependent on the activation of P type Ca2+ channels in both
the cells smooth and the spiny dendrites, with the duration
of the dendrite spike being regulated by Ca2+ activated K+

conductances. The modeling results also suggested that the
biphasic reversal potential of the climbing fiber induced EPSP,
with an early portion reversing before the later portion (i.e.,
the climbing fibers ‘‘duel reversal potential’’) previously shown
experimentally (Llinas and Hillman, 1969) and attributed solely
to the spatial distribution of climbing fiber synapses (Llinas
and Nicholson, 1976) was also likely dependent on the details
of the active properties of the Purkinje cell dendrite. Further,
an unexpected but important prediction of the model was
that climbing fiber activation resulted in substantial increases
in intracellular calcium not only in the smooth dendrites,
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FIGURE 11 | False color representation of membrane potential and Ca2+ concentration during simulation of a climbing fiber input. (A) Membrane
potential 1.4 ms after beginning of the resulting complex spike. (B) Membrane potential 4.0 ms after beginning of complex spike. (C) Membrane potential 10.0 ms
after beginning of a complex spike (after the last somatic action potential). (D,E) Submembrane Ca’+ concentration at same times as (A,B), respectively.
(F) Complex spike as it appears in the soma (red) and distal dendrite (green) at the same times represented by (A–C) as indicated. Note the non-linear [Ca’+] scales.
Figure used with permission from De Schutter and Bower (1994a).

where climbing fiber synapses actually terminate, but also in
the smallest spiny dendritic branches receiving granule cell
synaptic inputs (Gundappa-Sulur et al., 1999; Lu et al., 2009)
again showing the interrelatedness of the anatomical and
physiological components of the dendrite. The involvement of
the entire dendrite in the climbing fiber event was simultaneously
shown experimentally (Konnerth et al., 1992; Miyakawa et al.,
1992). The model also predicted that inhomogeneity in local
levels of calcium activation in the dendrite did not depend
on a non-uniform distribution of Ca2+ channels as had
previously been proposed Tank et al. (1988) and Llinas and
Sugimori (1992). Instead the pattern of calcium response was a
consequence of the non-uniform geometry of the Purkinje cell
dendrite, and likely varied from Purkinje cell to Purkinje cell.
Thus, unlike Rapp et al. (1994), who reported little effect of
individual dendritic variations on cellular passive properties, the
active model suggested that differences in individual Purkinje
cell morphologies might, in fact have important functional
significance.

Replication of the Simple Spike Firing of
Purkinje Cells
The final, and it turns out most difficult standard for Purkinje cell
modeling proposed by Pellionisz and Llinás (1977) was the ability
to replicate simple spike firing in response to granule cell (parallel
fiber) input. This is, of course, mor difficult because, in principle,
understanding the important features of this behavior is likely
linked directly to questions of neuronal coding, which we really

know about nothing about. Never-the-less, it is the attempt to
replicate this behavior of the Purkinje cell with the R-DB Model
has produced the most interesting and provocative structural
and functional predictions resulting in several new hypotheses
regarding the cell’s overall function and in fact the function of
the cerebellum itself (Bower, 2002). The following sections will
consider several examples.

The Natural Function of the Purkinje Cell Dendrite
Depends on the Presence of Background Synaptic
Inputs
As already described, one important prediction of the R-
DB Model is that the natural behavior of the Purkinje cell
dendrite depends on the presence of continuous excitatory
and inhibitory synaptic input from the granule cell pathway.
Again, while background excitatory granule cell (parallel fiber)
synaptic activity had been anticipated for some time to influence
ongoing Purkinje cell firing (Llinas et al., 1969a), in order
to get realistic patterns of spiking out of the active Purkinje
cell model it was necessary to also add background inhibitory
synaptic inputs (De Schutter and Bower, 1994a). These modeling
efforts resulted in several predictions. First the model predicted
that Purkinje cell behavior was dependent on the ability of
the soma, itself, to spontaneously generate action potentials.
This ability has now been demonstrated experimentally (Pugh
and Raman, 2009), and has recently also been further studied
using a model derived from the R-DB line (Forrest et al.,
2012). Second, as shown in Figure 12, the model predicted
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that the large intrinsic voltage gated currents and not the
relatively smaller currents associated with synaptic activation
most influenced ongoing somatic spiking (Jaeger et al., 1996;
De Schutter, 1998; Jaeger and Bower, 1999). In fact, the model
predicted that the Purkinje cell dendrite is actually dominantly
a current sink rather than a source, making the behavior of the
Purkinje cell very different from that of a traditional integrate
and fire neuron (see below). Further, the model suggested
that background spontaneous parallel fiber inputs had much
less of an effect on the actual timing of Purkinje cell spikes
than did inhibitory synaptic input (Jaeger et al., 1996). While
a full description of the dendritic dynamics underlying this
behavior is beyond the scope of this chapter (for more details,
see De Schutter and Bower, 1994b,c; Jaeger et al., 1996; De
Schutter, 1999; Jaeger and Bower, 1999), experimental (Jaeger
and Bower, 1999; Womack and Khodakhah, 2002a,b, 2004;
Womack et al., 2004; Santamaria et al., 2007) and subsequent
R-DB Model related studies (Howell et al., 2000; Miyasho
et al., 2001; Coop et al., 2010; Brown et al., 2011; Forrest
et al., 2012) have supported these unexpected but model-
predicted interactions between the Purkinje cell dendrite and
soma.

“Dendritic Democracy” and the Influence of Distal
Synaptic Inputs
The influence of excitatory synaptic input in such a large dendrite
has been a central issue for Purkinje cell modeling for many
years. In fact, the publication by Llinas et al. (1968) that sparked
the first consideration of modeling in Purkinje cells (Calvin
and Hellerstein, 1969; Calvin, 1969; Zucker, 1969) started by
posing the following fundamental question: ‘‘In studying the

anatomy of the Purkinje cell, one wonders how the distal region
of (these large) dendrites can act upon the soma and axon . . .’’
(Llinas et al., 1968, p. 1132). That article went on to identify
two possibilities: (i) by direct electrotonic spread from the distal
dendrite to the soma, or (ii) by the initiation of action potentials
or local responses which can be conducted either in an all- or-
none manner or in a decremental fashion down to the axon.’’
(Llinas et al., 1968, p. 1132). Considering this question was also a
primary objective of the modeling efforts of both Shelton (1985)
and Rapp et al. (1992, 1994), who both predicted, based on
their passive models, that the Purkinje cell dendrite was actually
electrotonically compact and therefore that distal synaptic inputs,
in principle should have an influence on the soma similar to those
more proximal. Shelton specifically describes the functional
significance of the high passive dendritic input resistance as ‘‘a
specialization which optimizes the dendrites for signaling (the
soma) with minimum (synaptic) attenuation’’ (Shelton, 1985,
p. 127). This apparent characteristic of the passive electrical
properties of the Purkinje cell dendrite has been described
as promoting ‘‘dendritic democracy’’ so that: ‘‘somatic EPSP
amplitude is only weakly dependent on synaptic location on
Purkinje cell spiny branchlets’’ (Roth and Häusser, 2001, p. 469).

In the description of the behavior of their passive models,
Llinas et al. (1968), Pellionisz and Llinás (1977), Shelton
(1985) and Rapp et al. (1994) all mentioned that this baseline
‘‘dendritic democracy’’ likely only applied to the passive electrical
properties of the dendrite, and was therefore likely to change
with the addition of active conductances. Shelton (1985,
p. 128), specifically predicted that the addition of synaptic
conductances would likely ‘‘swamp’’ the passive membrane
conductivity significantly extending the electrotonic length of

FIGURE 12 | False color representation of membrane potential and Ca2+ concentration during a 2.0 nA current injection in the soma of the modeled
Purkinje cell. Simulated membrane potential is shown during a somatic action potential (A), at the beginning of a dendritic spike (B) and 1.6 ms later (C). (D) shows
predicted somatic (red) and dendritic (Green) membrane potential at the times indicated. (E,F) indicated submembrane Ca2+ concentration at the same time as
(B,C) respectively. Reproduced with permission from De Schutter and Bower (1994b).
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the dendrite. Actual simulations by Rapp et al. (1992, 1994)
again using a passive model, supported Shelton’s speculation,
predicting that individual parallel fiber synapses ‘‘essentially
loose their functional meaning (in the presence of large amounts
of background synaptic input) and only activation of a large
number of parallel fibers will significantly displace the membrane
potential’’ (Rapp et al., 1992, p. 530).

In fact, in our active dendritic models adding both synaptic
conductances as well as the large voltage dependent dendritic
Ca2+ related membrane conductances did further extend the
electrotonic length of the dendrite (De Schutter and Bower,
1994b) a modeling result subsequently confirmed experimentally
(Staub et al., 1994; Ascoli, 2007). However, as described in
the third article in the series (De Schutter and Bower, 1994c),
the addition of dendritic voltage dependent Ca2+ membrane
conductances revealed a new and unexpected biophysical
mechanism in which synchronously activated granule cell
inputs induced a sub-threshold Ca2+ dependent amplification
mechanism that restored ‘‘democracy’’ to the dendrite even in
the presence of ongoing background synaptic input (Figure 13).
While Llinas had suggested the general possibility that active
membrane properties could facilitate the influence of synapses
on the soma, and Shelton (1985, p. 128), specifically speculated
that ‘‘active dendritic spikes or active graded potentials may
act as a booster mechanism to overcome the electrotonic
lengthening of the dendrite due to synaptic activation’’, the specific
mechanism that emerged from the R-DBModel was unexpected.
Instead of being dependent on a dendritic calcium spiking
mechanism as previously assumed (Pellionisz and Szentágothai,
1974), the mechanism involved activation of a sub-spiking
threshold calcium event (Figure 13). As a result, in these
simulations, a small number of synchronously activated granule
cell synaptic inputs produced a similar level of depolarization
in the soma regardless of where they were located on the
dendrite, a form of ‘‘dendritic democracy’’ that turned out
to be dependent and reflect the actual temporal pattern of
synaptic input. Further, and importantly, while generating a
somatic spike in the passive dendritic models required the
activation of large numbers of excitatory synapses (Llinas and
Sugimori, 1980b; Rapp et al., 1992, 1994), the active model
predicted that somatic spike generation due to synchronously
activated synaptic input required an order of magnitude
fewer active synapses (De Schutter and Bower, 1994c). This
prediction was subsequently confirmed experimentally (Isope
and Barbour, 2002). The model has also predicted a similar
amplification effect on synchronized inhibitory inputs (Solinas
et al., 2006).

Purkinje Cells are Tuned to Operate in Context of
Activity in the Overall Cerebellar Cortical Network
Another very general but critically important insight gained from
the models is that understanding neuronal function requires that
a neurons physiological properties be considered in the context
of the network in which they are embedded, and in particular
in the context of the temporal and spatial patterns of afferent
information converging on that cell as a consequence of network
structure. While this might at first seem completely obvious, by

FIGURE 13 | False color images of the response of the R-DB Model to
a synchronous synaptic input on a distal (A–F) and proximal (G-I)
branchlet. Membrane potential in (A–C) and (G–I). (D–F) Submembrane
Ca2+ concentrations corresponding to activity in (A–C). Reproduced with
permission from De Schutter and Bower (1994c).

embedding the R-DBModel within realistic network simulations,
very specific new predictions were obtained on this relationship
(Santamaria et al., 2007). As with single cell modeling, it is our
view that for models to generate new predictions (rather than
simply demonstrate pre-conceived functional notions) network
level modeling must also be tested against a clearly defined set
of physiological behaviors, preferably not yet well understood
(Bower, 1990). To be able to interpret the significance of the
active properties of the Purkinje cell dendrite with respect to
network organization, it will be necessary to first consider these
network level physiological behaviors.

As it turns out the original motivation for cerebellar
modeling in my laboratory was to investigate an unexpected
and counterintuitive pattern of Purkinje cell responses to
peripheral sensory stimuli (see Figure 14) observed in vivo
(Bower and Woolston, 1983). Specifically, the spatial extent of
Purkinje cell responses to peripheral stimuli was found to be
far more restricted than was expected from the organization of
cerebellar cortical circuitry and in particular the considerable
anatomical spread of the parallel fibers within cerebellar
cortex (Eccles et al., 1967, 1971; Bell and Grimm, 1969;
Bower and Woolston, 1983). Results consistent or directly
supporting this finding have now been reported in numerous
subsequent experiments (Kolb et al., 1997; Cohen and Yarom,
1998; Lu et al., 2005; Holtzman et al., 2006; Heck et al.,
2007; Rokni et al., 2008; de Solages et al., 2008; Brown
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FIGURE 14 | (A–C) show the restricted spatial pattern of excitatory (dark
stippling) and inhibitory (light hatching) Purkinje cell responses following
peripheral stimulation in three experiments. The stimulus activated only
granule cells beneath the region of excitatory PC responses. (D) shows the
expected pattern of activation if parallel fibers drove Purkinje cell responses.
(E) Original drawing from Llinas (1982) illustrating the hypothesis that
synapses associated with the ascending segment of the granule cell axon
drove the excitatory Purkinje cell responses. Reprinted with permission from
Bower and Woolston (1983).

and Ariel, 2009; Walter et al., 2009; Dizon and Khodakhah,
2011).

In the original experimental studies published in the early
1980’s, the restricted extent of Purkinje cells activated by
peripheral stimuli was interpreted in the most obvious way by
suggesting that parallel fibers were simply less influential on
Purkinje cell output than had previously been assumed (Bower
et al., 1980; Bower and Woolston, 1983). However, it was
not clear why responding Purkinje cells were only found over
regions of active granule cell layer. In Llinas (1982) suggested
that this experimental result (Bower et al., 1980; Bower and
Woolston, 1983) could be explained if Purkinje cells were driven
by synchronous input from synapses made by granule cells
as they ascend through the molecular layer past the Purkinje
cell dendrite (Mugnaini, 1972), but not by more asynchronous
parallel fiber inputs (Llinas, 1982). Llinas, however, attributed
this effect simply to the reduced synchrony of parallel fiber
inputs.

When considered now in the context of the R-DB Modeling
results, this explanation seemed perfectly consistent with the
relative lack of direct influence of background parallel inputs
on Purkinje cell spiking, combined with the amplification
mechanism for synchronize excitatory inputs (De Schutter and
Bower, 1994c). Accordingly it was fully expected that the R-DB
Model, once placed in a network context, would confirm Llinas
speculation, that the effect simply had to do with the timing
of the different synaptic inputs. It was surprising therefore,

that even the most desyncronized pattern of parallel fibers,
still induced the dendritic boosting mechanism driving somatic
output (Santamaria et al., 2007). Resolving this difference
between experimental data and modeling results required the
introduction of feed-forward inhibitory synaptic inputs to the
network model (Santamaria et al., 2007; Walter et al., 2009).

The modeling efforts intended to replicate the restricted
pattern of Purkinje cell activation to afferent input (Bower and
Woolston, 1983), have perhaps most fundamentally changed
how we think of cerebellar cortical processing (Bower, 2010).
While most previous theories of cerebellar function have focused
on the parallel fiber system as the primary driver of Purkinje
cell somatic firing (Braitenberg, 1967; Marr, 1969; Albus, 1971;
Pellionisz and Szentágothai, 1974; Medina and Mauk, 2000;
Vetter et al., 2001; Heck and Sultan, 2002; Ito, 2006; Kitamura
and Kano, 2012), model analysis suggests that it is actually the
synapses associated with the ascending segment of the granule
cell axon, firing nearly synchronously and not the parallel
fibers, which influence spike timing in the soma (De Schutter
and Bower, 1994c). Further, the model has also predicted
that ongoing somatic spiking activity is not directly influenced
by synaptic input, but instead is mediated through the large
active conductances in the soma and dendrite. In this view,
the synchronous ascending input simply modifies the timing
of action potentials that would have been generated anyway
(Santamaria and Bower, 2004).

As just briefly described, perhaps one of the more important
consequences of the modeling effort has been to clarify and
make quite clear predictions regarding different functional roles
of the parallel fibers and the ascending segment synapses of
the same granule cell axon (Bower, 1997c). While parallel
fiber inputs modulates the overall state of the dendrite, it is
the ascending segment inputs that more closely drive output.
Interestingly, this functional difference turns out to actually
be manifest in the fine physical structure of the Purkinje cell
dendrite itself. As shown in Figure 15, anatomical studies have
demonstrated that the synapses associated with the ascending
granule cell axon segments are found only on the distal regions
of the dendrite (Gundappa-Sulur et al., 1999; Lu et al., 2009),
where our network models predict that these synapses will be
synchronously active in response to afferent mossy fiber stimuli
(Santamaria et al., 2007). Our single cell models predict that the
active properties of the dendrite mediate a boosting mechanism
allowing this distant input to influence somatic spiking (De
Schutter and Bower, 1994c). Anatomical studies have also shown
that parallel fiber synapses are found primarily on the more
proximal spiny dendrites (Gundappa-Sulur et al., 1999; Lu et al.,
2009), where both the network (Santamaria et al., 2007) and
single cell (Jaeger et al., 1996) models suggest they interact
with feed forward inhibition to regulate the activation state of
the large dendritic voltage dependent Ca2+ and Ca2+ activated
K+ conductances. This places parallel fibers in a position to
influence or modulate, the response of the dendrite to the
synchronous ascending segment synapses. The models predict
that this modulation by the parallel fibers and molecular layer
inhibition is mediated through their control of the membrane
voltage in the dendrite, and thus the state of activation of the large
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FIGURE 15 | Schematic representation of the proposed synaptic and functional structure of cerebellar Purkinje cells. Each element and region is color
coded as shown in the figure legend. The diagram demonstrates that the influence of ascending segment synapses must traverse regions of the spiny dendrite
influenced by parallel fibers and molecular layer inhibitory interneurons. This is predicted to form the anatomical basis for parallel fiber modulation. Reproduced with
permission Bower and Bower (2013).

dendritic voltage dependent conductances. Thus the same active
voltage dependent dendritic conductances are responsible for
mediating the amplification mechanism for distal synchronous
ascending segment inputs as well as the spiking behavior of the
soma in general (Bower, 2010). As an aside, these results also
suggest that climbing fiber activation resets these modulatory
mechanisms (Bower, 1997b), a role consistent with another
original prediction of the R-DB Model, that calcium influx from
climbing fiber activation would spread to the distal most regions
of the dendrite (De Schutter and Bower, 1994b). In this way,
the use of anatomically and physiologically realistic models has
resulted in predictions that, in effect, merge the anatomical and
physiological properties of this cell. In my view, this is what is
meant by exploring structure function relationships. Importantly
again, the models were not built with these relationships in mind,
they came out of running the models.

IMPLICATIONS AND THE IMPORTANCE
OF COMMUNITY MODELS

In summary, while it was first suggested more than 40 years
ago that the active properties of the Purkinje cell dendrite
significantly influence the computation performed by this
neuron, it has taken 40 years of combined modeling and
experimental work to reach the beginning of an understanding
about this relationship. Further, that emerging understanding
suggests that much of our intuition over the last 40 years has
been largely wrong. Changes in thinking about the physiological
structure of the Purkinje cell dendrite has, in turn, driven, at least
in our laboratory, a fundamental reconsideration regarding the
function of the cerebellum as a whole (Bower, 1997a,b; Bower

et al., 2012; for context for in the overall field see: Manto et al.,
2012).

While general speculations on this subject can still be found in
many experimental papers, the combination of realistic modeling
and experimental studies described here has specifically revealed
that Purkinje cell responses to granule cell-related excitatory and
inhibitory synaptic inputs are quite different from the parallel
fiber dominant, integrate and fire type cellular dynamics assumed
by the most current theories of cerebellar function (Braitenberg,
1967; Marr, 1969; Albus, 1971; Pellionisz and Szentágothai, 1974;
Medina and Mauk, 2000; Vetter et al., 2001; Heck and Sultan,
2002; Ito, 2006; Hong and Optican, 2008; Kitamura and Kano,
2012). In fact, while the 500+ references in the literature for
the R-DB Model is very high compared to almost all models
of its kind, in the last 20 years, there have actually been over
10,000 Purkinje cell experimental papers published, almost none
of reference models of any kind. It is also completely standard,
40 years after Purkinje cell modeling started, for review articles
on Purkinje cell function to make no mention what-so-ever
of these modeling efforts or their results (e.g., from the last
2 years; Gallian and De Zeeuw, 2014; Grasselli and Hansel,
2014; Jörntell, 2014; Lewis and Raman, 2014; Voogd, 2014;
Cerminara et al., 2015; Cheron et al., 2015; Dar, 2015; Louis,
2015; Tada et al., 2015). In fact, even review articles on subjects
as central to the modeling as the active properties of the Purkinje
cell dendrite can quite remarkably be published with hardly
any mention of modeling results (Kitamura and Kano, 2012).
Yet, many of the issues raised in those reviews, as well as the
experimental papers they are based on raise issues that modelers
have been investigating for years and many that have been
resolved years ago.
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How then are we to proceed in an organized way to
understand function at any level, from the cerebellum itself
down to the voltage dependent conductances in the Purkinje
cell dendrite. This article is an example of how such study can
proceed if based on realistic models shared by a community.
Yet most published models are still designed to demonstrate
a preexisting functional idea. In this regard, it is a remarkable
fact that Pellionisz and Llinas first proposed more than 25
years ago a standard of ‘‘adequacy’’ for representing Purkinje
cells (Pellionisz and Llinás, 1977). Yet most published models
of Purkinje cells and certainly almost all published network
models make no attempts what-so-ever to demonstrate that their
Purkinje cells behave like actual Purkinje cells (Blum et al., 1993;
Buonomano and Mauk, 1994; Yuen et al., 1995; Barto et al.,
1999; Chauvet and Chauvet, 1999; Medina and Mauk, 2000;
Spoelstra et al., 2000; Kistler and De Zeeuw, 2002; Brunel et al.,
2004; Mauk and Ohyama, 2004; Yamazaki and Tanaka, 2007;
Carrillo et al., 2008; Kulagina et al., 2008; de Gruijl et al., 2009;
Abrams et al., 2010; Dean et al., 2010; Ohyama et al., 2010;
Dean and Porrill, 2011; Li et al., 2012; Yamazaki and Nagao,
2012). It is entirely unclear what the value of a model is if the
properties of its neurons, in this case a neuron with important
active dendritic conductances, bears little resemblance to its
actual physiological properties. Philosophers of science have
long recognized the distinction between observation-based story
telling and quantitative model-based analysis (Kuhn, 1962). In
my view, models that misrepresent the actual physical properties
of their neurons, including in this case usually neglecting the
active properties of their dendrites, are essentially an extension
of the story telling tradition. It is also worth noting that many
of the models referenced above concern, perhaps, issues that
many consider to be more directly related to cerebellar function,
aging, learning, ataxia, effects of alcohol abuse, etc. These are
clearly of interest to the cerebellar community, especially with

the pressure for so-called translational science. In my view, a real
understanding of these kinds of issues will absolutely depend on
the continued construction and further elaboration of the level of
realistic model described here, best done as part of a community.
However, given the current state of the model, I see no reason
why questions involving synaptic plasticity, pharmacological
effects on specific ion channels, and even, possibly the kinds of
aberrant behavior seen in Purkinje cells in some conditions of
ataxia, can’t begin to be studied with a model of this type.

This in fact, is perhaps the most important reason that
over the next 20 years it will be critical for the computational
neuroscience community to adopt and build community
models (Bower and Bower, 2013). If we are all simply
working on our own disconnected individual models, we have
little chance of establishing the kind of tested and accepted
underlying quantitative framework that is likely essential for
real scientific progress. By committing to the use of community
models we also establish a common structure that can be
presented to the larger neuroscience community, not as
just another model, but as a model that has been built,
tested, verified and accepted by multiple researchers. Why
shouldn’t these models, then find their way into graduate
training programs, or neuroscience textbooks? Why shouldn’t
such a model be used as a standard against which other
models are tested? As long as modelers fail to cooperate,
they will likely continue to be largely ignored, not only
be experimentalists, but also by their fellow modelers. It is
only through the cooperative building and testing of models
that an underlying quantitative infrastructure will begin to
be constructed for neuroscience. In my view, the last 40
years demonstrates that it is only through that kind of
infrastructure that we will ever understand complex phenomena,
like, for example, the functional implications of active neuronal
processes.
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The neurons in layer II of the medial entorhinal cortex are part of the grid cell network
involved in the representation of space. Many of these neurons are likely to be
stellate cells with specific oscillatory and firing properties important for their function.
A fundamental understanding of the nonlinear basis of these oscillatory properties is
critical for the development of theories of grid cell firing. In order to evaluate the
behavior of stellate neurons, measurements of their quadratic responses were used to
estimate a second order Volterra kernel. This paper uses an operator theory, termed
quadratic sinusoidal analysis (QSA), which quantitatively determines that the quadratic
response accounts for a major part of the nonlinearity observed at membrane potential
levels characteristic of normal synaptic events. Practically, neurons were probed with
multi-sinusoidal stimulations to determine a Hermitian operator that captures the quadratic
function in the frequency domain. We have shown that the frequency content of the
stimulation plays an important role in the characteristics of the nonlinear response,
which can distort the linear response as well. Stimulations with enhanced low frequency
amplitudes evoked a different nonlinear response than broadband profiles. The nonlinear
analysis was also applied to spike frequencies and it was shown that the nonlinear
response of subthreshold membrane potential at resonance frequencies near the
threshold is similar to the nonlinear response of spike trains.

Keywords: entorhinal cortex, stellate neurons, grid cells, quadratic sinusoidal analysis, frequency domain,

nonlinear oscillations, resonance

1. INTRODUCTION
The stellate cells in layer II of the medial entorhinal cortex have
long been noted for their oscillatory character (Erchova et al.,
2004) consisting of membrane potential oscillations (MPOs) and
resonance properties (Engel et al., 2008; Giocomo and Hasselmo,
2008; Pastoll et al., 2012; Shay et al., 2012). More recently, it has
been suggested that these cells participate in the grid-like fir-
ing fields with regard to an animals position in space. In intact
animals, grid cells have increased activity at particular locations
representing a hexagonal grid. It is unclear how stellate cells
along with pyramidal neurons participate in the grid cell net-
works (Burgalossi and Brecht, 2014; Ray et al., 2014). It has been
proposed that nonlinear stochastic current fluctuations from ion
channels, rather than an internal periodic oscillator, is responsi-
ble for this behavior (Erchova et al., 2004; Dodson et al., 2011).
These neurons project to the hippocampus and are implicated in
the activity of place cells that encode a single location. Thus, it is
of some interest to understand in detail the nonlinear properties
of stellate cells and how these are utilized in neural networks that
compute spatial position.

Quantitative information about the linear and quadratic
behaviors can be obtained from a current clamp of the soma,
which provides a basis to understand the just threshold behavior

of these neurons in a particular neural network. We have used
multi-sinusoidal stimulations to elicit stellate neuronal quadratic
responses in the frequency domain, which are then encoded into
a matrix representing a Hermitian operator. The underlying the-
ory, termed quadratic sinusoidal analysis (QSA), was published by
Magnani and Moore (2011) for voltage clamped neurons and in
this paper, is applied to current clamp. The QSA not only quan-
titatively characterizes experimental data from stellate cells, but
it also provides an evaluation of the corresponding conductance
based models.

The method of frequency probing used here is based on a
practical measurement technique, namely harmonic probing on
Volterra kernels (Victor and Shapley, 1980; Boyd et al., 1983).
Multi-sinusoidal stimulations enable nonlinear measurements of
the neuronal response at harmonics 2fi and interactive frequen-
cies |fi ± fj|. These measurements constitute the coefficients of the
QSA matrix, which represents an operator as an algebraic object
similar to a Volterra kernel rather than just an array of numbers.
It provides a precise signature of the nonlinear voltage dependent
conductances and their particular representation on the dendritic
and somatic membranes.

Importantly, these studies show in detail how quadratic prop-
erties of neurons are dependent on the frequency content of the
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stimulation and demonstrate that the nonlinear behavior accu-
rately describes membrane potential responses at the level of
normal synaptic activity (1–5 mV).

2. MATERIALS AND METHODS
2.1. TISSUE PREPARATION
All experimental protocols were approved by the Boston
University and University of Utah Institutional Animal Care and
Use Committees. Horizontal sections of entorhinal cortex were
prepared from 14- to 28 d-old LongEvans rats. All chemicals were
obtained from Sigma (St. Louis, MO) unless otherwise noted.
After anesthetization with isoflurane and euthanasia, brains were
removed and immersed in 0◦C artificial CSF (ACSF) consisting
of the following (in mM): 125 NaCl, 25 NaHCO3, 25 D-glucose,
2 KCl, 2 CaCl2, 1.25 NaH2PO4, 1 MgCl2, and buffered to pH
7.4 with 95/5% O2/CO2. Horizontal slices were cut to a thick-
ness of 400 µm (Vibratome 1000+; Vibratome, St. Louis, MO).
Slices were incubated in a 32◦C bubbled ACSF for 30 min before
being cooled to room temperature (20◦C). After the incubation
period, slices were moved to the stage of an infrared, differential
interference contrast-equipped microscope (Axioscope 2+; Zeiss,
Oberkochen, Germany). All recordings were conducted between

32 and 34◦C. Solutions and preparation were identical to those
described in Fernandez and White (2008).

2.2. ELECTROPHYSIOLOGY
Electrodes were drawn on a horizontal puller (P97; Sutter
Instruments, Novato, CA) and filled with an intracellular solu-
tion consisting of the following (in mM): 120 K-gluconate, 20
KCl, 10 HEPES, 7 diTrisPhCr, 4 Na2ATP, 2 MgCl2, 0.3 Tris-GTP,
and 0.2 EGTA, buffered to pH 7.3 with KOH. Final electrode
resistances were between 3 and 4 M�, with a range of mea-
sured access values between 4 and 12 M�. All recordings were
taken from the medial entorhinal cortex (MEC). Stellate cells were
identified as neurons within layer II of the MEC exhibiting a
large sag profile in response to hyperpolarizing current and hav-
ing a peak between 2 and 7 Hz in their subthreshold impedance
spectrum. Electrophysiological recordings were performed with
a current-clamp amplifier MultiClamp 700A; Molecular Devices,
Union City, CA), and data were acquired using custom soft-
ware developed in MATLAB 2014 (MathWorks, Natick, MA)
using the data acquisition toolbox. All additional details of the
electrophysiological measurements are given in Fernandez et al.
(2013).

FIGURE 1 | Membrane potential response to multi-sinusoidal current

stimulation with holding current adjusted to give −64 and −46 mV

average membrane potentials. (A) Stimulation current with range of

frequencies from 0.2 Hz to 2 kHz. (B) Membrane potential response
at −64 mV. (C) Membrane potential response at −46 mV with spontaneous
oscillations preceding the stimulation.
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2.3. THEORETICAL SIMULATIONS
The simulations were done by implementing Hodgkin-Huxley
type conductance based models in MATHEMATICA 8 and 9
(Wolfram Research, Champaign, IL, USA). The parameter esti-
mation methods for all models is identical to that used for
experiments on prepositus hypoglossi neurons in Idoux et al.
(2008). The model structure consists of a soma and eight den-
dritic compartments with uniform distributions for three voltage
dependant ionic conductances : persistent sodium gNaP, potas-
sium gK and hyperpolarization activated conductance gH. In
particular, since action potentials are not being simulated, the
total sodium conductance is treated as one non-inactivating
conductance gNaP. The gating variables are considered without
power functions. Thus, the nonlinear behavior is essentially due
to rate constants rather than power functions. Statistics were
done with the PairedZTest of the Hypothesis Testing package of
MATHEMATICA.

2.4. QSA THEORY
Linear systems are completely characterized by the linear super-
position principle, which means that the response to a linear
superposition of sine waves is a linear superposition of sine
waves with the same frequencies but different amplitudes and
phases. In contrast, the response of a nonlinear system can
have frequencies not present in the stimulation. More precisely,
if a multi-sinusoidal stimulation has frequencies fi and fj then

the linear response will have frequencies fi and fj whereas the
quadratic response will have additional harmonics 2fi, 2fj and
interactive frequencies |fi ± fj|. There also exist higher order inter-
actions, such as fi + fj + fk, however the neurons studied in this
paper mainly manifest quadratic nonlinearities. In particular,
multi-sinusoidal stimulations require small amplitudes such that
only linear and quadratic responses are significant, although the
amplitudes must be large enough to overcome the background
noise.

A major obstruction to experimental measurements of non-
linear responses is due to frequency overlaps. This means that
two (or more) input frequencies can generate the same output
frequency. For example, the input frequencies 1, 2, 3, 4 (in Hz)
generate ambiguous output frequencies such as 3 − 1 = 4 − 2 (in
Hz). A solution consists of choosing carefully the input frequen-
cies without overlap up to the second order, higher orders being
assumed negligible. An algorithm was written by Magnani and
Moore (2011) to generate nonoverlapping frequencies.

The Fourier transform applied to a multi-sinusoidal current
stimulation I(t) generates Fourier coefficients at input frequen-
cies fi. The Fourier transform applied to the membrane potential
V(t) generates Fourier coefficients at input frequencies fi as well
as at harmonics 2fi and interactive frequencies |fi ± fj|. In lin-
ear analysis, the Fourier coefficients of I(t) and V(t) can be
used to compute the linear transfer function (impedance) Z[fk] =
V[fk]/I[fk]. Following Magnani and Moore (2011), we compute

FIGURE 2 | Linear and quadratic analyses of a depolarized stellate

neuron. (A) Zoomed measured membrane potential (solid), linear
reconstruction (dashed) and linear + quadratic reconstruction (dotted).
(B) Linear impedance at input frequencies (circle symbol at fi ). (C) Quadratic
output at harmonics (diamond symbol at 2fi ), interactive sums (plus symbol

at fi + fj ) and interactive differences (inverted triangle symbol at |fi − fj |). The
linear and quadratic analyses were truncated at 40 Hz in order to better
illustrate the larger responses at the lower frequencies. Stimulation
frequencies are 0.3, 1.3, 3.5, 6.4, 8.7, 12.1, 17.5, 23.7, 30.8, 37.4, 42, 51.3,
60.2, 74.9, 85.9 (in Hz).
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FIGURE 3 | Effect of the membrane potential level on linear and

quadratic responses of a stellate neuron at −50 mV (left column)

and −69 mV (right column). The standard deviation (STD) is indicated in
parenthesis. The frequencies are indexed as fk where
k ∈ � = {−N, . . . ,−1, +1, . . . , +N} and N = 15 denotes the number of
stimulation frequencies. (A,B) Juxtaposed plots with respect to the input
frequencies, namely the amplitudes of current stimulation I, linear impedance
Z , and R function. A vertical bold line indicates the resonance frequency,
which is f4 = 6.4 Hz for (A) and f5 = 8.7 Hz for (B). The amplitude for each

plot ranges from zero to the indicated maximum. Each maximum coincides
with zero for the next juxtaposed plot. (C,D) Amplitudes of the coefficients of
the QSA matrix Q, where the darkest rectangle represents the maximum
value given by Max|Q| in the subtitle. Each matrix is indexed by � ordered
from negative to positive numbers in the direction of the arrows. For
example, column f6 and row f−3 represents the frequency interaction
f6 − f3 = 12.1 − 3.5 = 8.6 Hz. (E,F) Eigenvalues of the QSA matrix ordered by
decreasing amplitudes. Stimulation frequencies are 0.3, 1.3, 3.5, 6.4, 8.7,
12.1, 17.5, 23.7, 30.8, 37.4, 42, 51.3, 60.2, 74.9, 85.9 (in Hz).

the quadratic transfer function

Bij = γij
V[fi + fj]
I[fi]I[fj] (1)

where γii = 1 and γij = 1/2 for i �= j. The combinations fi +
fj include all sums and differences between |fi| and |fj| when
considering both positive and negative frequencies. The fre-
quencies fk are indexed over the ordered set of integers � =
{−N, . . . ,−1,+1, . . . ,+N}.

Importantly, Magnani and Moore (2011) have shown that
the complex matrix B can be turned into a Hermitian matrix
Q, termed the QSA matrix, by row flipping of the coefficients
Qi,j = B−i,j. Although a Hermitian matrix has complex coeffi-
cients, its eigenvalues are real numbers, which are much easier
to interpret physically as amplitudes in mV/nA2. In this way, the
quadratic part of the membrane potential can be expressed as an
algebraic formula

V2(t) = I∗
t QIt

where It is a time dependent vector encoding the multi-sinusoidal
stimulation.

The quadratic response can be reduced to a sum of squares
through eigenanalysis of Q

V2(t) =
∑

i∈�

di|wi|2

where di are eigenvalues (mV/nA2) and |wi|2 are stimula-
tion components (nA2) obtained from a linear transformation
(Magnani and Moore, 2011). In this way, the quadratic neuronal
function can be interpreted as a set of quadratic filters where
eigenvalues are amplitudes. When an eigenvalue is dominant and
others are small, the quadratic neuronal function is approximately
a simple square.

Bode plots are useful to represent amplitude with respect to
frequency. The QSA matrix can be represented in this way by
summing the amplitude components of each column. However,
unlike eigenanalysis, this induces information loss. The R sum-
mation function (mV/nA2) is defined by
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FIGURE 4 | Effect of the membrane potential level on linear and

quadratic responses of stellate neuronal model simulations at −49 mV

(left column) and −57 mV (right column). (A,B) Juxtaposed plots with
respect to the input frequencies, namely the amplitudes of current
stimulation I, linear impedance Z , and R function. The resonance frequencies
are respectively f8 = 8.7 Hz (A) and f9 = 12.1 Hz (B). (C,D) Amplitudes of the
coefficients of the QSA matrix Q with the maximum value given by Max|Q|.
(E,F) Eigenvalues of the QSA matrix. The model parameter values (in units
based on mV and nA) are as follows : membrane capacitance

Csoma = 0.0000542, maximal conductances gleak = 0.0005, gK = 0.023,
gNaP = 0.0024 and gH = 0.014; the reversal potentials Vleak = −55,
VK = −87, VNaP = 77 and VH = −43. The functions αn, βn, αm, βm, αh, βh

depend on the variable V and their description is given by Idoux et al. (2008) :
vn = −35, sn = 0.045, tn = 0.7543, vm = −38, sm = 0.06, tm = 0.000150,
vh = −51.65, sh = −0.06 and th = 0.05. Finally, the electronic length is
elength = 0.50 and the ratio of the dendritic area to the soma area is
Aratio = 4.5. Stimulation frequencies are 0.3, 0.4, 1.3, 1.5, 3.5, 4.0, 6.4, 8.7,
12.1, 17.5, 21.6, 23.7, 30.8, 37.4, 42.0, 51.3, 56.9, 60.2, 74.9, 85.9 Hz (in Hz).

Rj =
∑

i∈�

|Qij| (2)

Alternatively, a modified function R′ with units homogenous to a
linear transfer function (mV/nA) is defined by

R′
j =

∑

i∈�

|Qij| · |Ii| (3)

Intuitively, the R and R′ functions evaluate the sum of the ampli-
tudes at all frequencies for which they interact.

Figure 1 illustrates the membrane potential response of a
stellate neuron to a multi-sinusoidal current stimulation at
two membrane potential levels. Membrane potential oscilla-
tions (MPOs) are clearly observed before and after the stim-
ulation at the depolarized level. Also, the response shows
larger oscillations during the depolarization. This neuron has
a strong resonance in the same frequency range as the MPO’s
(Schreiber et al., 2004; Engel et al., 2008; Yoshida et al.,
2011).

Figure 2 illustrates the linear and quadratic analyses of a
depolarized stellate neuron. Figure 2A compares the measured
membrane potential in the time domain to the linear recon-
struction and linear + quadratic reconstruction. Clearly, for
these signal levels, linear analysis is insufficient and quadratic
analysis is required to capture the nonlinear neuronal behav-
ior. Figures 2B,C show the linear impedance (mV/nA) and the
quadratic output (mV) in the frequency domain. The Fourier
components of the linear impedance occur at the stimulation
frequencies, whereas those of the quadratic output occur at sec-
ond order harmonics and interactive frequencies. Clearly, the
quadratic output shows a strong overlap with the linear resonance
frequencies.

The QSA theory applied to neurons does not rely on any
assumption about their morphology or ion channel distribution.
In particular, the complexity of Hodgkin-Huxley based multi-
compartmental models with their computational overhead is
avoided. QSA analyses were done with MATLAB on both model
simulations and experimental data, allowing precise comparisons
of the quadratic responses.
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3. RESULTS
3.1. EFFECT OF MEMBRANE POTENTIAL
Figure 3 illustrates the linear and quadratic responses of a stel-
late neuron for two membrane potentials −50 and −69 mV
(left and right columns respectively). The stimulation frequen-
cies were identical to those of Figure 2 and are indexed as fk
where k ∈ � = {−15, . . . , −1,+1, . . . ,+15}. The upper panels
Figures 3A,B represent a juxtaposition of the amplitudes for the
stimulations I, linear impedances Z, and R functions with respect
to the input frequencies. The R functions are plotted as Bode
plots in the same way as the impedances although the ordinate
units are different. The maximum of each R function is close
to the impedance resonance frequency. Statistics were calculated
for a group of six stellate neurons. The maximum amplitude of
the QSA matrix increased from 275 to 715 mV/nA2 (p = 0.0004)
for a membrane potential change of +7 mV in the range −65
to −48 mV.

As explained in previous publications (Magnani and Moore,
2011; Magnani et al., 2013), the QSA matrix provides a com-
plete description of the quadratic response as ratios between
output and input coefficients (Equation 1). In contrast, the coded
points in Figure 2C show the quadratic measurements of the
output without showing the frequency interactions (fi, fj). The
QSA matrix was constructed from the Fourier coefficients of the
data, then decomposed by eigenanalysis to compute its eigen-
values. Each cell of the QSA matrix represents the amplitude of
the voltage response at two interactive frequencies divided by the
amplitude of the current at these two frequencies (Equation 1).
The matrix plots have many symmetries, which reflect particu-
lar algebraic properties of the underlying neural operator. The
matrix plot is indexed by the set � ordered from negative to
positive numbers in the direction of the arrows, that is to say
f−15, . . . , f−1, f+1, . . . , f+15. Each cell at abscissa fi and ordinate
fj encodes the ratio between the membrane potential at fi + fj and
the current at fi and fj. In particular, the white diagonal encodes
interactions fi + f−i = 0, thus the DC is set to zero. The other
diagonal fi + fi encodes the harmonics 2fi. In Figures 3C,D, the
QSA amplitudes appear concentrated at lower frequencies near
the center of the matrix, which is consistent with the maximum
of the R function.

The impedance and resonance frequency are much less depen-
dent on the membrane potential than the QSA matrix and R
function. This suggests that the quadratic neuronal function espe-
cially encodes nonlinear voltage dependent ionic conductances.
The effect of the membrane potential on stellate neurons is pro-
nounced for all nonlinearities, namely the amplitudes of the QSA
coefficients, the eigenvalues and the R functions.

In this and all subsequent figures, the R function (mV/nA2) is
juxtaposed on the linear impedance (mV/nA), which in turn is
juxtaposed on the stimulation amplitude Fourier spectrum (nA).
Although the R function is a non reversible reduction of the QSA
matrix, it provides a practical way to compare the linear and
quadratic behaviors at input frequencies. It can be observed, in
Figures 3A,B, that the R function has a resonance frequency range
comparable (but not identical) to the linear case.

At −50 mV (Figure 3, left column), the QSA matrix gives more
detail on frequency interactions showing enhanced amplitudes in

the centered square delimited by |f±4| = 6.4 Hz, namely those
that involve the resonance frequencies. At the more hyperpo-
larized membrane potential −69 mV (Figure 3, right column),
the QSA matrix shows lower amplitudes. However, there is a
peak for the harmonics of the lowest input frequency 2f1 =
0.6 Hz. Moreover, the quadratic response is enhanced around the
centered square delimited by the slightly higher resonance fre-
quency f5 = 8.7 Hz. Thus, the shift in frequency of the nonlinear
responses with membrane potential level is similar to the voltage
dependence of the linear resonance frequencies (Shay et al., 2012).

The eigenanalysis of the QSA matrix reveals that the non-
linear function is concentrated in a single dominant eigenvalue.
This suggests that the neuronal processing consists of a single
nonlinear-linear unit as opposed to a parallel combination of sev-
eral units (see Magnani and Moore, 2011). Dominant eigenvalues
are frequently observed, however there are generally multiple sig-
nificant eigenvalues. Figure 4 illustrates that a simplified model
of stellate neurons is able to capture the nonlinear behavior
described by experiments of Figure 3.

3.2. LINEAR DISTORTIONS
Previous experiments by Haas and White (2002) suggested that
the Fourier responses of stellate neurons to multiple frequencies
were dependent on the frequency content of the stimulation, and
furthermore these responses were different from that obtained
when using single sine waves. We have explored this issue in
more detail by comparing the responses of stellate neurons to
stimulations containing many frequencies vs. QSA stimulations
containing nonoverlapping frequencies. The presumed linear
responses in the mV range to many frequencies show marked
distortions compared to almost no distortions using nonoverlap-
ping frequencies. The term, distortions, is used here to describe
an irregular function with larger variations than generally seen in
our linear impedance functions.

Figures 5A,C,E (left column) illustrates distortions in the
frequency responses from stellate neurons due to nonlinear
responses at overlapping frequencies. The upper trace (A) shows a
marked distortion at −53 mV of linear responses stimulated with
a very large number of frequencies near threshold. The middle
trace (C) shows a significant reduction in the distortion of the lin-
ear response for a more hyperpolarized membrane potential with
the same number of overlapping frequencies. Finally, the bot-
tom trace (E) shows an almost undistorted linear response using
nonoverlapping frequencies (up to the second order) despite a
greater membrane potential STD.

Clearly, stimulations with overlapping frequencies generate
interactive frequencies that overlap the input frequencies and
thereby cause a distortion in the linear response. These effects nat-
urally increase with the number and amplitudes of the particular
frequencies. Similarly, Figures 5B,D,F (right column) illustrates
similar distortions from a neuronal model. The upper panel (B),
near threshold, shows that the linear response is significantly dis-
torted due to the presence of nonlinear interactive frequencies
for potential excursions in the mV range. The middle panel (D)
shows less but distinct distortions at a lower STD and a more
hyperpolarized membrane potential, which is consistent with
the experimental results (left middle panel). The bottom panel
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FIGURE 5 | Distortion of linear impedance (mV/nA) by the stimulation

profiles for experimental data and model simulations. The average
membrane potential Vm is given along with STD values of membrane potential.
The standard deviations are given in parenthesis. (A,C) Experimental data : the

same overlapping frequencies in 0.3 − 1000 Hz with 0.1 Hz intervals.
(E) Experimental data : the nonoverlapping frequencies are the same as
Figure 4. (B,D,F) Model simulations : the same overlapping frequencies in
0.3 − 500 Hz with 0.1 Hz intervals. The model parameters are given in Figure 7.

(F) shows an almost undistorted linear response with the same
overlapping frequencies for a still lower STD membrane potential.

Generally, if the output amplitude STD using many overlap-
ping frequencies is less than 0.5 mV, then the linear responses
have minimal distortion. Undistorted linear responses can be
obtained with fewer nonoverlapping frequencies for much higher
STD membrane potential responses, typically up to 4 mV. Thus,
a larger number of overlapping frequencies evoking responses in
the mV range induce significantly more nonlinear effects than
fewer nonoverlapping frequencies. Nonstationary signals, such as
the chirp or the zap, are not optimal for linear analysis since their
Fourier components distribute over all frequencies and dramat-
ically generate frequency overlaps. Nevertheless, linear analysis
is still possible for small stimulation amplitudes (Erchova et al.,
2004; Schreiber et al., 2004).

3.3. LOW PASS STIMULATION FILTERING
The above results suggest that the effect of the frequency con-
tent of the stimulation on the true nonlinear response should
be distinguished from the linear distortions. Experiments were
done with a low pass filtered stimulation using nonoverlapping
frequencies in which the high frequency amplitudes are reduced.
Nonoverlapping frequencies assure that the linear responses
are not distorted in order to accurately measure the nonlinear
behavior. Since stellate neurons have resonance frequencies

around 10 Hz or lower, it would not be surprising that these fre-
quencies compared to high frequencies would have the largest
amplitude responses and thus can easily evoke the nonlinear
behavior.

The nonlinear responses induced by differently filtered
Gaussian white noise inputs are likely to be stimulation depen-
dent. This not only leads to nonlinear frequency interactions
dependent on the frequency content of the stimulation, but linear
analysis can also be altered since Fourier components at individ-
ual input frequencies would be contaminated by nonlinearities.
Surprisingly these effects can occur at relatively small amplitudes
of membrane potential responses, namely in the mV range. Thus,
empirically, responses of neurons at their stimulating frequencies
can be dependent on the frequency content of the stimulation,
although a true linear response is not.

Figure 6 shows that the nonlinear responses of a stellate neu-
ron to various low pass filtered stimulations are remarkably
different despite identical linear behaviors. The cutoff frequen-
cies are not the same between left and right columns, showing
that the increase of high frequency interactions are related to high
frequency filtering. Statistics were calculated for a group of three
stellate neurons comparing the effect of the two low pass stimula-
tion filters. The maximum amplitude of the QSA matrix increased
from 1229 to 4204 mV/nA2 (p = 0.019) for a membrane potential
change of −60 to −55 mV.
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FIGURE 6 | Effect of stimulation profile on stellate neurons. Left column
(A,C,E) Weakly low pass filtered stimulation I in dotted lines. Right column
(B,D,F) Strongly low pass filtered stimulation I in dotted lines. The resonance
of the impedance (Z ) is f6 = 4.0 Hz for both stimulations (A,B). The

attenuation of high frequencies in the stimulation of the second column
induces enhanced quadratic responses as indicated by the R functions in the
top row (A,B) as well as the QSA matrix (C,D) and eigenvalues (E,F). The
stimulation frequencies are the same as in Figure 4.

The coefficients of the QSA matrix are defined as the ratios
between an interactive output and the product of the correspond-
ing inputs for each pair of input frequencies. Thus, although the
amplitudes of the high frequency responses decrease when the
stimulation is filtered, the above ratio tends to increase. Therefore,
the quadratic function appears sensitive to the frequency content
of the stimulation even for membrane potential responses in the
mV range.

Increases in the R functions at high frequencies are clearly
observed, however the QSA matrix gives more detail about the
interactive frequencies. The QSA matrix of the left column shows
peak amplitudes for the harmonics of input frequencies near
the linear resonance frequency, such as 2f6 = 8 Hz. Moreover,
there are significant interactive differences between high input
frequencies such as f19 − f18 = 14.7 Hz. The QSA matrix of the
right column shows greatly enhanced high frequency interac-
tions in response to the high frequency filtered stimulation.
Although the lower frequency interactions near the resonance
are not apparent, their amplitudes are similar as can be seen
from the R functions. The complexity of these responses is also
reflected through eigenanalysis that turns a single dominant
eigenvalue to multiple eigenvalues when the stimulation is fil-
tered. Figure 7 illustrates similar results for model simulations.
It will be shown below that the increases of the responses at
interactions between high frequencies are quite sensitive to the

relative amplitude ratio of the low vs. high frequency stimulation
content.

The stimulation dependence of the nonlinear response is a
good example of the dramatic difference between linear and non-
linear behaviors even at small signal amplitudes. Linear responses
are independent of stimulation amplitude for all frequencies.
However, we have shown that interactive differences between high
frequencies are not proportional to the stimulation amplitude
when sufficiently low pass filtered. The quadratic transfer func-
tion is defined as the ratio between an interactive output and
the product of two inputs. When the enhanced interaction cor-
responds to a difference between high frequencies, the ratio tends
to be maximized because the numerator reflects a significant non-
linear response and the denominator is small due to the low pass
filtering.

3.4. BAND PASS STIMULATION FILTERING
The above results demonstrate that the frequency content of the
stimulation plays an important role in the nature of the nonlinear
response, but generally has minimal effects on the linear behavior
if the membrane potential responses are less than 0.5 mV. In order
to determine if nonlinear responses have limiting small signal
responses that are independent of the content of the stimulation,
model simulations were done by applying a Gaussian-like win-
dow to the stimulation in the frequency domain. In this way, the
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FIGURE 7 | Effect of stimulation profile on stellate neuronal model

simulations. Left column (A,C,E) Weakly low pass filtered stimulation I in
dotted lines. Right column (B,D,F) Strongly low pass filtered stimulation I
in dotted lines. The resonance of the impedance (Z ) is f6 = 4.0 Hz for both
stimulations (A,B). The attenuation of high frequencies in the stimulation
of the second column induces enhanced quadratic responses as indicated
by the R functions in the top row (A,B) as well as the QSA matrix
(C,D) and eigenvalues (E,F). The stimulation frequencies are the same as
in Figure 4. The parameter values (in units based on mV and nA) are as

follows : membrane capacitance Csoma = 0.0000542, maximal
conductances gleak = 0.0005, gK = 0.0627, gNaP = 0.0065 and
gH = 0.002926; the reversal potentials Vleak = −55, VK = −87, VNaP = 77
and VH = −43. The functions αn, βn, αm, βm, αh, βh depend on the
variable V and their description is similar to those published by Idoux et al.
(2008) : vn = −38, sn = 0.035, tn = 0.75, vm = −38.76, sm = 0.046,
tm = 0.000150, vh = −51.65, sh = −0.01 and th = 0.5567. Finally, the
electronic length is elength = 0.50 and the ratio of the dendritic area to the
soma area is Aratio = 4.5.

stimulation shows a peak amplitude at a specific frequency (like a
resonance).

Figure 8 illustrates that, in contrast to the linear impedance,
if the stimulation peak is at a low frequency (panel A, near
the resonance), then the maximum of the QSA matrix is much
greater than for a stimulation peak at a higher frequency (lower
row, beyond the resonance). Both stimulations evoke potential
responses in the mV range and have identical linear impedances.

Discrete peaks can also be observed for the QSA matrix in
Figures 8B,D. The panel B shows discrete peaks close to the har-
monics of f4 = 1.5 Hz as well as high frequency interactions in the
corners. The panel D also shows discrete peaks clustered around
harmonic frequencies of f7 = 6.4 Hz and f8 = 8.7 Hz. In sum-
mary, Gaussian-like window applied near the resonance (panel A)
evokes output frequencies before and after f8 = 8.7 Hz. Gaussian-
like window applied after the resonance (panel C) leads to output
frequencies that are near the resonance. Therefore, nonlinear
responses involve a different frequency range compared to the
linear resonance frequency.

Figure 9 illustrates that the quadratic response to very small
stimulations is almost independent of the frequency content. In

particular, both linear and quadratic functions are nearly identi-
cal for flat stimulation vs. low peak stimulation, as well as higher
peak stimulation (not shown). Thus, the enhanced corners for
low peak stimulation almost disappear if the membrane poten-
tial responses have STD values of 0.1 mV or less. In particular, the
QSA matrix has a remarkable sensitivity to stimulations with low
frequency content, especially near the resonance of the neuron.
Indeed, Figure 9A shows a larger R function for such nonuniform
stimulation profile.

From a mathematical point of view, the limit value of the QSA
matrix for very small stimulations is consistent with local anal-
ysis and represents a quadratic transfer function as a Volterra
kernel. For larger stimulations, the quadratic response becomes
dependent on the stimulation and the ratio (Equation 1) can-
not be interpreted as a transfer function. However, the non-
linear output is still a quadratic signal without higher order
frequency contamination (Magnani and Moore, 2011). In fact,
larger low peak stimulations evoke the low frequency range near
the resonance, in which interactions |fi − fj| corresponding to
the enhanced corners are generated. Such an interpretation is
supported by the enhanced output amplitudes of the interactive
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FIGURE 8 | Nonlinear effects of a Gaussian-like window applied to the

stimulation Fourier components. Upper row (A,B) Gaussian-like window
applied to the stimulation Fourier components near the resonance
f8 = 8.7 Hz. This induces enhanced frequency interactions between input

frequencies near the resonance. Lower row (C,D) Gaussian-like window
applied to the stimulation Fourier components three fold above the
resonance f8 = 8.7 Hz. The QSA matrix appears much smaller than for a
stimulation peak near the resonance.

difference frequencies in Figure 2C (inverted triangles). This may
increase the quadratic response at these interactions, relative to
the stimulation.

These nonlinear effects are present at the usual membrane
potential excursions in the mV range and appear amplified
for stimulations tuned to the preferred frequency response
of a particular neuron. Interestingly, other constant stimu-
lation profiles (not represented) lead to quadratic functions
independent of stimulation amplitudes for membrane poten-
tial responses up to a few mV. For stimulation profiles with
enhanced low frequencies, this independence of stimulation
amplitude occurs only for a tenfold lower response ampli-
tude (10–100 microvolts), which again emphasizes the sensitiv-
ity of the nonlinear responses to the frequency content of the
stimulation.

These results are consistent with experimental data of Figure 6
showing that low frequency stimulation leads to an enhance-
ment of high frequency interactions for both QSA matrix and
R function. Figure 8 indicates that high frequency interactions
elicited by low frequency stimulation can nearly disappear if the
stimulation peak is shifted to higher intermediate frequencies. In
both cases, the linear responses remains identical despite major
differences in the nonlinear behavior.

3.5. DENDRITIC STIMULATION
Since cable properties of dendrites induce a signal filtering,
the marked effect of the stimulation content on the nonlinear
response could play a role in how dendrites process signal inputs.
It can be expected that distal vs. proximal synaptic inputs to single
neurons would lead to different responses in the soma. Figure 10
illustrates such effects with model simulations. It compares the
soma potential response to a current stimulation in the soma (left
column) vs. a stimulation of the most distal dendritic compart-
ment (right column). In both cases, the stimulation profile is
flat but the represented current I is not the stimulation but the
computed current flowing across the soma membrane.

In order to compare the two approaches, a somatic impedance
was calculated by determining the ratio of the soma potential and
the current flowing across the soma membrane, rather than the
total injected current typically used for either point or transfer
impedances. This procedure determines just the impedance of the
somatic compartment in isolation, which is nearly independent of
the stimulation profile, as shown in Figure 10. At smaller stimula-
tions, the two impedances converge to identical functions. Thus,
this approach can be used to analyze the effect of dendritic fil-
tering of the injected current from the dendrite on the nonlinear
responses of just the soma.
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FIGURE 9 | Equivalence of nonlinear responses for different stimulation

profiles at very small amplitudes. Upper row (A,B) Gaussian-like window
applied to the stimulation Fourier components. Lower row (C,D) constant

amplitude stimulation profile. The linear and nonlinear responses are nearly
the same, however the maximum of the R function is about two fold higher
for the Gaussian-like stimulation.

In general, the computed impedance for the somatic com-
partment is higher than the impedance of the soma plus the
dendrite. This occurs because the impedance of a single somatic
compartment is greater than the soma with attached dendritic
compartments (not shown). More precisely, a significant por-
tion of the injected current passes down the dendrite leaving a
smaller current for the soma, which has a minimum value near
the resonance frequency, at which the impedance is by definition
maximal. Thus the smaller somatic current with the same soma
potential gives a greater impedance. The total injected current
would be the sum of the somatic current and remaining current
flowing down the dendrite.

When a flat stimulation is injected at the end dendritic com-
partment (Figure 10B), the somatic current has a minimum near
the resonance frequency and the somatic impedance is nearly the
same to that determined with somatic stimulation. The simula-
tions show that the nonlinear responses (QSA matrix, R function)
are greater for the distal stimulation (right column) due to the
dendritic filtering, which can be seen to be a Gaussian-like peak
around 15 Hz.

When stimulating the end dendritic compartment, the other
compartments significantly reduce the high frequency content of
the current reaching the soma (Figure 10, right column). This
current increases from a minimum at the resonant frequency to

a maximal value and then progressively decreases with frequency
as would be expected from dendritic filtering. These effects are
the consequence of the progressive filtering of the membrane
potential by each dendritic compartment toward the soma. Each
individual dendritic compartment shows similar scaled linear
behavior, which is dependent on the potential in each compart-
ment as determined by the cable structure including the voltage
dependent channels.

The QSA matrix for the dendritic stimulation shows enhanced
corners that are similar to those observed for filtered stimulations
applied to the soma in Figures 6, 8. However, the dominating
responses at the intermediate harmonics and interactive differ-
ence frequencies are comparable for both somatic and dendritic
stimulations. Decreasing the stimulation amplitudes leads to the
same limit functions for impedances and QSA matrices (not
shown) as found for the Gaussian-like stimulations of Figure 9.

Figure 10D also shows peaks for the QSA matrix at harmon-
ics and high frequency interactions (around 2f6 = 8.0 Hz and
f20 − f19 = 11 Hz). These are similar to those observed for the
Gaussian-like window of Figure 8, which has peaks clustered
around harmonic frequencies of f7 = 6.4 Hz and f8 = 8.7 Hz.

Thus, the dendritic filtering is simulated by a Gaussian-like
stimulation applied to the soma, which is related to the effect of
a filtered stimulation applied to the soma as in Figures 6, 7. In
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FIGURE 10 | Effect of distal vs. proximal flat stimulation on somatic

nonlinearities. The linear and quadratic functions were calculated using
only the current passing across the soma membrane, as opposed to the
total injected current. Thus, the analyses apply to the soma independent
of the location of the stimulating electrode. Left column
(A,C,E) Responses to the flat stimulation of the somatic compartment.
Right column (B,D,F) Responses to the flat stimulation applied at the

most distal compartment. (A,B) Juxtaposed plots with respect to the
input frequencies, namely the amplitudes of current stimulation I, linear
impedance Z , and R function. The resonance of the impedance is
f6 = 4.0 Hz for both stimulations. (C,D) Amplitudes of the coefficients of
the QSA matrix Q with the maximum value given by Max|Q|.
(E,F) Eigenvalues of the QSA matrix. All parameters of the model neuron
are the same as in Figure 7.

summary, these results support the fact that the enhancement of
low frequency amplitudes increases nonlinear responses.

Increasing the electronic length leads to somatic current pro-
files similar to the filtered stimulations of Figures 6, 7 and QSA
matrices that are quite similar. From a physiological point of view,
these nonlinear effects due to filtering are very much dependent
on the precise dendritic location of the stimulation and appear to
be present at all input amplitudes. However, these nonlinearities
are not significant until the soma potential responses are in the
mV range where they also contribute to a distortion of the linear
behavior if the frequency content of the stimulation is overlap-
ping. Clearly, higher order nonlinearities are also generated with
very large stimulations.

3.6. SPIKE FREQUENCY MODULATION
The subthreshold nonlinear responses are markedly dependent
of the membrane potential and essentially reach their maximum
values just below the threshold. This would suggest that the
nonlinear behavior at just below the threshold membrane poten-
tial could provide a reasonable estimation of the suprathresh-
old action potential response. In order to directly determine
suprathreshold responses, a QSA analysis was done on action

potential responses using three or four stimulation frequencies
near the resonance, namely 0.3, 1.3, and 3.5, or 4, 6.4, 8.7, and
12.1 Hz, the latter encompassing the resonance range of frequen-
cies. Both linear and quadratic analyses were done using a Fourier
analysis of unit spike events constructed from their peak values,
which extracts the expected low frequency responses.

Figure 11A shows modulated action potential responses to a
multi-sinsuoidal stimulation containing three frequencies (0.3,
1.3, and 3.5 Hz) that are all below the resonance. The under-
lying traces show the linear and quadratic membrane potential
reconstructions for just these frequencies, which are sufficiently
low to minimize the contamination of the Fourier transform
by the shape of action potentials. Figure 11B represents linear
and quadratic analyses of the membrane potential for the same
neuron stimulated just below threshold. Since there are few fre-
quencies, the superimposed reconstructed linear and quadratic
responses have slight differences (Figure 11A, dashed linear vs.
dotted quadratic lines). However, the quadratic responses remain
significant (Magnani and Moore, 2011) to encode fundamen-
tal nonlinear properties of the neuron that cannot be predicted
by linear analysis. The linear impedance shows three rising val-
ues that precede the usual resonance of stellate neurons. The
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FIGURE 11 | Linear and quadratic membrane potential responses for

pre-resonance stimulation frequencies (f1 = 0.3, f2 = 1.3 and f3 = 3.5 Hz).

(A) Membrane potential responses (solid line) with modulated action potential
responses. The dashed and dotted curves show the linear and quadratic

responses of the underlying membrane potential for the three stimulating
frequencies. (B) Linear and quadratic analyses for a subthreshold response
displaced by 0.5 mV without action potentials. The corresponding reconstructed
time domain analyses are almost identical to those shown in the first row.

QSA matrix and the R function indicate that both low and
higher frequencies near the harmonics have the greater inter-
active responses, which are also chararactized by a dominant
eigenvalue.

The time instants of each action potential of Figure 11A were
converted to unit impulses (UI), as illustrated in Figure 12A. The
dashed and dotted traces show the linear and quadratic analy-
ses computed from the Fourier transform of the unit impulses.
Figure 12A shows the waveforms of both the linear and quadratic
analyses of the unit impulses, which are similar to those of the
membrane potential of Figure 11A. The QSA matrix and the R
functions are slightly different, showing a greater amplitude for
the highest frequency interactions, mainly the highest harmonic
frequencies 2f3 = 7 Hz. It is evident from Figure 12A that, when
the frequency of spiking modulation is high, namely the dotted
quadratic response has a much greater amplitude than the dashed
linear line. Also, both the membrane potential and unit impulses
analyses have a dominant eigenvalue, which suggests that they
have features in common for their nonlinear behavior.

Since the Fourier analysis of a spike train contains many high
frequency components unrelated to the lower modulated spiking
frequencies, it is useful to construct an instantaneous frequency
(IF) curve from the spike times. A slightly Gaussian filtered
IF curve is shown in Figure 12C as a solid trace for the same
time range illustrated for the unit impulses in Figure 12A. The
dashed linear and dotted quadratic traces are the reconstructed
responses of the solid trace. The linear and quadratic analyses

are shown in Figure 12D and are similar to the analysis of the
unit impulses in Figure 12B except for the details of the QSA
matrix. The QSA matrix of unit impulses shows high frequency
interactions at sums fi + fj and harmonics 2fi. The QSA matrix
of instantaneous frequency curve has increased amplitudes of
high frequency interactions at differences |fi − fj|. These various
effects are also reflected in the time domain of the reconstructed
responses (first row compared to third).

Figure 13 illustrates linear and quadratic analyses of the mem-
brane potential (Figure 13A) measured without action potentials
compared to unit impulses (Figure 13B), for a stimulation based
on four frequencies (f1 = 4, f2 = 6.4, f3 = 8.7 and f4 = 12.1 Hz)
that encompass the resonance of a stellate neuron. It is apparent
that both the linear and nonlinear behaviors are quite compara-
ble in this frequency range. The quadratic responses associated
with the middle two frequencies are enhanced for both the mem-
brane potential and unit impulses analyses. In general, the QSA
matrix of unit impulses shows a more restricted set of interme-
diate frequency interactions than observed for the QSA matrix
of the membrane potential, as can be observed on Figure 13.
Nevertheless, the similarity of the linear and quadratic analy-
ses of the subthreshold membrane potential and unit impulses
are striking. This suggests that the suprathreshold modulated
spiking behavior is reasonably well approximated by the sub-
threshold membrane potential nonlinearity, just below threshold.
As threshold is approached, the subthreshold responses take on
a more nonlinear character, which finally determines the actual
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FIGURE 12 | Linear and quadratic responses of unit impulses (UI) to

pre-resonance stimulation frequencies (f1 = 0.3, f2 = 1.3 and

f3 = 3.5 Hz). (A) Unit impulses corresponding to each action potential event
of Figure 11. The dashed and dotted lines are the reconstructed linear and
quadratic components based on the analysis of the second row. (B) Linear
and quadratic analyses computed from the Fourier transform of the unit
impulses. (C) The solid line is a slightly Gaussian filtered instantaneous

frequency (IF) trace constructed from the spike times. The dashed and solid
lines are the reconstructed linear and quadratic components based on the
analysis of the fourth row. The Gaussian filter is sufficient to remove peaks
related to spike times. The analysis of less filtered IF curves (not shown),
such that distorted spike events are visible, is very similar to scaled unit
impulses analyses. (D) Linear and quadratic analyses computed from the
Fourier transform of the filtered instantaneous frequency.

unit impulses behavior, albeit in combination with the linear
behavior.

4. DISCUSSION
The firing properties of the MEC stellate cells play a critical role
in their function as part of the grid cell network. These neu-
rons show oscillatory and nonlinear properties that are likely
to be involved in the operation of networks involved in spa-
tial awareness. We have used a novel theory, quadratic sinsoidal
analysis (QSA), to rigorously determine the nonlinearity of SCs
(stellate cells) near threshold for a direct comparison with lin-
ear behavior. This multi-sinusoidal frequency probing not only
provides a quantitative measurement of these properties through
the QSA matrix, but also an algebraic characterization of the
quadratic function as a Hermitian operator. The nature of the

quadratic responses are significantly different than subthreshold
linear behavior and gives an indication of the distinctive differ-
ences between sub- and suprathreshold responses in SC neurons
(Haas et al., 2007). We have shown that at physiological lev-
els of stimulation, neurons and their models generate significant
responses at harmonic and interactive frequencies that are not
present in the input signal. Thus, the quadratic responses con-
tain more frequencies over a wider frequency band than the input
signal. As a consequence, they provide significant amplification at
dynamically changing membrane potentials.

Previous studies have shown that the nonlinear responses
measured in neurons appears to be dominated by the dendrites
(Magnani and Moore, 2011), which receive the bulk of the synap-
tic input. It is likely that the principal source of nonlinearity
in stellate neurons near threshold is the persistent stochastic
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FIGURE 13 | Linear and quadratic analyses of membrane potential and

unit impulses for stimulation frequencies near the resonance (f1 = 4,

f2 = 6.4, f3 = 8.7 and f4 = 12.1 Hz). (A) Analysis of subthreshold membrane

potential. (B) Analysis of suprathreshold unit impulses. The linear and
quadratic behaviors for the subthreshold and suprathreshold responses have
similar form for these resonance frequencies.

sodium conductance (gNaP), which has been shown to be the
primary source of channel noise in these neurons (Dorval and
White, 2005). Thus, dendritic processing plays an important role
in the firing behavior of stellate neurons in a number of ways
(Zhuchkova et al., 2013). For example, the inherent filter prop-
erties of cable structures in combination with their active voltage
dependent channels alter the profile of the stimulation reaching
the soma. We have shown that dendritic filtering greatly alters the
nonlinear membrane potential response at the soma, which will
depend on both the spatial location and frequency content of the
stimulation. Finally, we have demonstrated that quadratic anal-
ysis of modulated spiking behavior has significant similarities to
membrane potential nonlinearities when the membrane potential
is just below threshold.

In conclusion, this analysis indicates that subthreshold lin-
ear and nonlinear responses are similar to suprathreshold firing
behavior. Thus, the combined linear and nonlinear behaviors
near threshold of the membrane potential are reasonable esti-
mates of suprathreshold behavior given by spike frequency mod-
ulation. Linear and nonlinear behaviors a few millivolts below
the threshold membrane potential are quite different with the
nonlinear component being significantly reduced. The linear
components of stellate neurons, such as resonance, are present
at membrane potentials hyperpolarized to threshold despite the
diminishing nonlinearities. In these membrane potential ranges,
the linear resonance behavior is essentially due to the H current
(Giocomo and Hasselmo, 2009). There is also a nonlinear compo-
nent of the H conductance that can be measured at hyperpolar-
ized values, however it is much smaller than nonlinear effects of
the sodium conductances near threshold (Magnani et al., 2013).

An additional effect of H conductances could occur if they are
present in the dendritic tree. In this case, distal inputs could show
bandpass resonance characteristics that would propagate to the
soma involving both active and passive dendritic filtering, and
further increase a nonlinear soma response.
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Pyramidal cells, the most abundant neurons in neocortex, exhibit significant structural
variability across different brain areas and layers in different species. Moreover, in response
to a somatic step current, these cells display a range of firing behaviors, the most
common being (1) repetitive action potentials (Regular Spiking—RS), and (2) an initial
cluster of 2–5 action potentials with short interspike interval (ISIs) followed by single spikes
(Intrinsic Bursting—IB). A correlation between firing behavior and dendritic morphology
has recently been reported. In this work we use computational modeling to investigate
quantitatively the effects of the basal dendritic tree morphology on the firing behavior of
112 three-dimensional reconstructions of layer V PFC rat pyramidal cells. Particularly, we
focus on how different morphological (diameter, total length, volume, and branch number)
and passive [Mean Electrotonic Path length (MEP)] features of basal dendritic trees shape
somatic firing when the spatial distribution of ionic mechanisms in the basal dendritic
trees is uniform or non-uniform. Our results suggest that total length, volume and branch
number are the best morphological parameters to discriminate the cells as RS or IB,
regardless of the distribution of ionic mechanisms in basal trees. The discriminatory power
of total length, volume, and branch number remains high in the presence of different
apical dendrites. These results suggest that morphological variations in the basal dendritic
trees of layer V pyramidal neurons in the PFC influence their firing patterns in a predictive
manner and may in turn influence the information processing capabilities of these neurons.

Keywords: dendrites, PFC, morphology, pyramidal cell, single neuron modeling, firing pattern, layer V

INTRODUCTION
Cortical neurons exhibit a wide range of firing behaviors
(Connors and Gutnick, 1990). Pyramidal cells in particular, the
most abundant cortical excitatory neurons, have been shown to
fire in at least three different patterns: (a) repetitive action poten-
tials with or without adaptation (Regular Spiking—RS), (b) an
initial doublet followed by single spikes (Intrinsic Bursting—IB),
or (c) repetitive bursts (2–5 action potentials with inter-spike-
intervals of less than 10 ms) (Repetitive Oscillatory Bursting—
ROB) (Yang et al., 1996; Dégenètais et al., 2002; Wang et al., 2006;
Chang and Luebke, 2007; Van Aerde and Feldmeyer, 2013).

The abovementioned firing patterns are likely to serve distinct
functions within the network and contribute differentially to its
behavior. Experimental studies have shown that bursts improve
the signal-to-noise ratio of neuronal responses and convey spe-
cific stimulus-related information (Eggermont and Smith, 1996;
Martinez-Conde et al., 2002). In synapses with short-term facil-
itation, bursts are transmitted more reliably than isolated spikes
(Lisman, 1997). Other studies have shown a link between neu-
ronal sub-types, their outputs and their target areas. IB neurons
in layer V of the auditory cortex send signals to higher-order

thalamic nuclei as well as midbrain and brainstem nuclei, whereas
RS neurons send signals to the ipsilateral and contralateral cortex
(Sun et al., 2013). Similarly, IB and RS neurons in the pre-
frontal cortex (PFC) project to the pons (cortico-pontine) or the
striatum but no IB neurons project to the contralateral cortex
(cortico-cortical) (Morishima and Kawaguchi, 2006). IB neu-
rons in the distal parts of the subiculum project primarily to
the medial enthorhinal cortex but not the amygdala (Kim and
Spruston, 2012). This segregation seen across several brain areas is
likely to be associated with some form of functional specialization
of RS and IB neurons. Therefore, it is important to under-
stand what features of their morphology, connectivity and/or
biophysics may determine the firing pattern of cortical pyramidal
neurons.

Studies have shown that sources of firing pattern variabil-
ity may be the distribution and density of active mechanisms
within a cell (Jensen et al., 1994; Andreasen and Lambert, 1995;
Migliore et al., 1995; Jensen and Yaari, 1997; Schwindt and
Crill, 1999), synaptic connectivity (Williams and Johnston, 1989;
Weisskopf et al., 1994; Nicoll and Malenka, 1995; Maccaferri
et al., 1998; Yeckel and Berger, 1998; Sidiropoulou and Poirazi,
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2012; Sun et al., 2013), morphological diversity (Bilkey and
Schwartzkroin, 1990; Chagnac-Amitai et al., 1990; Mason and
Larkman, 1990; Mainen and Sejnowski, 1996; Yang et al., 1996;
Krichmar et al., 2002; Van Ooyen et al., 2002; Van Elburg and van
Ooyen, 2010), and inhibition on soma and/or dendrites of the cell
(Lovett-Barron et al., 2012; Royer et al., 2012).

Neuronal firing behavior depends strongly on the distribu-
tion and density of ionic currents. Neurophysiological studies
have shown that RS pyramidal cells can generate bursts if the
extracellular K+ concentration is increased (Jensen et al., 1994;
Andreasen and Lambert, 1995; Jensen and Yaari, 1997; Schwindt
and Crill, 1999). Similarly, a modeling study showed that the
CA3 pyramidal cell’s firing characteristics can be changed from
non-bursting to bursting by modifying the Ca2+-independent K+
conductance 100 µm from the soma (Migliore et al., 1995). Along
the same line, the modeling study of Sidiropoulou and Poirazi
(2012) showed that doubling the Na+ and Ca2+ conductances
turns an RS LV PFC cell into an IB one. Combination of neu-
rophysiology with computational modeling has suggested that
pyramidal cell bursting may be due to the interplay of somatic
and dendritic voltage-gated Na+ and K+ conductances (Krahe
and Gabbiani, 2004). These conductances promote propagation
of action potentials from the soma into the dendrites, causing the
dendrites to be depolarized when, at the end of a somatic spike,
the soma is hyperpolarized, leading to a rebound current from the
dendrites to the soma. This rebound current causes a depolariz-
ing after-potential at the soma, which, if strong enough, may lead
to another somatic spike. This whole process has been described
as a “ping-pong” interaction between the soma and the dendritic
tree (Wang, 1999).

In addition to intrinsic mechanisms, changes in the strength,
timing or connectivity of synaptic input can alter the firing behav-
ior of a neuron. Studies have shown that long-term potentiation
of mossy fibers to CA3 pyramidal cell synapses may cause post-
synaptic pyramidal cells to burst (Williams and Johnston, 1989;
Weisskopf et al., 1994; Nicoll and Malenka, 1995; Maccaferri et al.,
1998; Yeckel and Berger, 1998). Pissadaki et al. (2010) investigated
how timing and spatial variations in synaptic inputs to the dis-
tal and proximal dendritic layers of a CA1 pyramidal cell model
influenced the cell’s firing pattern. Introduction of a temporal
delay in the activation of the two layers acted as a switch between
excitability modes: short delays induced bursting, while long
delays caused low frequency RS. Such activity-induced changes
in neuronal firing patterns suggest a key role of these patterns in
information processing in the brain.

Apart from ionic and synaptic effects, dendritic morphol-
ogy has also been suggested to influence the firing behavior
of neocortical and hippocampal pyramidal neurons (Bilkey and
Schwartzkroin, 1990; Chagnac-Amitai et al., 1990; Mason and
Larkman, 1990; Yang et al., 1996). Previous studies reported
that IB neurons are characterized by large cell bodies, long and
extensive apical dendritic trees, and axons that tend to ramify in
subcortical and brainstem nuclei (Kelly and Wong, 1981; Games
and Winer, 1988; Ojima et al., 1992). RS neurons on the other
hand have smaller cell bodies, smaller dendritic arborizations
with fewer oblique branches that end without terminal tufts, and
their axons project via callosal connections to sensory cortices in

the other hemisphere and to corticostriatal projections (Games
and Winer, 1988; Rüttgers et al., 1990; Ojima et al., 1992; Winer
and Prieto, 2001; Hattox and Nelson, 2007). Such differences in
anatomical features have been associated to the different firing
patterns in previous computational modeling studies (Mainen
and Sejnowski, 1996; Krichmar et al., 2002; Van Ooyen et al.,
2002). However, these earlier studies were qualitative and limited
in the sense that they focused exclusively on the apical trees of
morphologically very distinct cell classes (Mainen and Sejnowski,
1996; Krichmar et al., 2002).

Here, we use a modeling approach to investigate in a quan-
titative manner the effects of neuronal morphology (dendritic
size and dendritic topology) on the firing behavior of 112 three-
dimensional reconstructions of layer V PFC pyramidal cells. By
systematically varying the basal and/or apical dendritic trees of
these neurons as well as the distribution of ionic mechanisms
along their dendritic trees, we predict which of the morpholog-
ical parameters (diameter, total length, volume, branch number)
and/or passive properties (Mean Electrotonic Path length—MEP)
can best discriminate between IB and RS neurons. Considering
that dendritic morphology alterations may lead to many patho-
logical conditions, such as Alzheimer’s disease and epilepsy
(Yamada et al., 1988; Moolman et al., 2004; Teskey et al., 2006),
the results of our modeling study are instrumental in uncover-
ing, in a systematic way, the underlying mechanisms by which
dendritic morphology and its alterations affect neuronal firing
behavior.

MATERIALS AND METHODS
MORPHOLOGICAL DATA
Three-dimensional morphological data of 112 layer V pyra-
midal cells (PC) from the rat PFC were obtained from
the NeuroMorpho database (http://neuromorpho.org) (see
Supplementary Tables S1, S2 for morphological features of basal
and apical dendritic trees of all 112 pyramidal cells). These neu-
rons were previously reconstructed in the Smith lab from the
brains of adult Long-Evans rats at 2–4 months of age (Bergstrom
et al., 2008). No data regarding the size, shape and distribu-
tion of spines in the estimation of the dendritic surface area
were provided. Images of three of these 112 cells are shown in
Figure 1. The images of the remaining cells are available at the
abovementioned web site.

The digitized cell reconstructions were acquired in SWC for-
mat (Ascoli, 1999). All SWC files were checked for any morpho-
logical reconstruction inconsistencies before being converted into
the HOC format and loaded into the NEURON neural simulator
(Hines and Carnevale, 1997).

PYRAMIDAL CELL MODEL
For all model cells, unless mentioned otherwise, we assumed a
uniform membrane resistance of Rm = 30 k� cm2 in the soma
and the axon. In the basal dendrites, the membrane resistance
decreased sigmoidally up to half of the somatic value, according
to the function Rm(x) = 30 − 15

1 + e 10 − x
5

. Similarly, the membrane

resistance in the apical dendrites decreased sigmoidally up to
half of the somatic value according to the formula Rm(x) = 30 −

15
1 + e 300 − x

50
(Stuart and Spruston, 1998). A uniform intracellular
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FIGURE 1 | Morphologies of three model cells and their responses to a

somatic depolarization of 0.35 nA multiplied by the normalization

factor for the input resistance. Upper panel: The somatic compartment is
the same in all model cells but apical and dendritic trees are taken from
three distinct reconstructed morphologies. Lower panel: Cells either display
regular spiking with no adaptation (A), are intrinsic bursting (B), that is an
initial burst (1–2 spikes) followed by a regular spiking or are silent (C).

resistivity Ra = 210 � cm and a specific membrane capacitance
(Cm) of 1.2 µF cm−2 were used in the soma, axon, apical
and basal dendrites. The resting membrane potential was set
at −66 mV.

Active mechanisms included two types of Hodgkin–Huxley-
type Na+ currents (transient: INaf; persistent INap;), three
voltage-dependent K+ currents (IKdr; IA; ID), a fast Ca2+ and
voltage-dependent K+ current, IfAHP; a slow Ca2+-dependent
K+ current, IsAHP; a hyperpolarization-activated non-specific
cation current (Ih); a low-voltage activated calcium current ICaT

and three types of Ca2+- and voltage-dependent calcium cur-
rents (IcaN; IcaR; IcaL). In all cells, the conductance of INaf

was highest in the axon, and increased in the soma and api-
cal dendrites compared to basal dendrites (González-Burgos and
Barrionuevo, 2001). The conductance of all three different K+
currents was decreased in the apical dendrites compared to the
soma (Korngreen and Sakmann, 2000; Schaefer et al., 2007). Both
fast and slow AHP currents were present in the soma and much
less in the apical dendrites (Lorenzon and Foehring, 1992). The
h-current conductance increased sigmoidally, in the apical tree,
reaching a maximum value that was10 times greater than the
somatic value (Day et al., 2005; Kole et al., 2006). This increase
was not implemented in the basal dendrites (Nevian et al., 2007).
The mathematical formalism of the pyramidal neuron model
used in this study was based on the model of Sidiropoulou
and Poirazi (2012) and can be found in the Supporting Online
Material (SOM). The parameter values of all active mechanisms
are reported in Supplementary Table S3 in the SOM.

SIMULATIONS SETUP
Cell “C3_5” (as referred in the NeuroMorpho database) was
selected as the control morphology because it was previously used

and extensively validated with respect to passive and active mem-
brane properties as well as apical and basal dendritic responses
against experimental data by Sidiropoulou and Poirazi (2012)
(see Supplementary Figure S1 in Sidiropoulou and Poirazi, 2012
study). To investigate the effects of dendritic tree variability on
firing behavior, we kept the soma of cell “C3_5” and varied
the apical and basal trees attached to this soma using the 112
PFC layer V PCs previously described in Section “Morphological
Data.” Which apical and/or basal tree(s) were attached depended
on the specific experiment (see “Results” section for details).
The input resistances of all simulated cells were calculated by
measuring the steady-state voltage change in response to a
500 ms hyperpolarizing current pulse (0.1 nA). Previous stud-
ies (Washington et al., 2000; Krichmar et al., 2002) have shown
that dendritic morphology has a strong effect on input resis-
tance. In order to ensure equivalent depolarization in each model
cell and eliminate the influence of the input resistance on the
electrophysiological response to current injections, the current
injections were scaled by the ratio of the cell’s input resistance
to that of the control cell (cell “C3_5”) multiplied by a con-
stant factor of 0.35 (i.e., the current 0.35 nA), where cell “C3_5”
first spiked). Thus, simulations consisted of depolarizing the
PFC pyramidal cell model’s soma with a normalized injection
current, such that the initial instantaneous depolarization was
equivalent for all cells, and recording the membrane potential at
the soma.

MORPHOLOGICAL PARAMETERS
Morphological parameters were obtained directly from the three-
dimensional neuroanatomical description and included the den-
dritic size (median diameter, total length, volume, and branch
number). The MEP for each apical and basal dendritic tree was
also derived. To estimate the median diameter, we first calculated
the diameter of each cylindrical section of the dendritic tree (basal
or apical) of each cell (112 cells in total) and then took the median
value. To estimate the total length we summed the length of all
sections of each tree (basal or apical) for all cells. To estimate the
branch number, we calculated the branch number of each tree
(basal or apical) for all cells.

The volume was estimated using the following equation:

V =
N∑

i = 1

π · Li · (Di/2)2 (1)

where for every cylindrical section i of each tree, Li is the length
and Di is the diameter. We estimated MEP as in Van Elburg
and van Ooyen (2010). More specifically, to obtain the MEP of
a dendritic tree, we first normalized the length li of each termi-
nal, intermediate or root section i with respect to its electrotonic
length constants λi, yielding a dimensionless electrotonic length
�i = li/λi, in which λi was defined as:

λi =
√

bi · rm

2 · ra
(2)

where bi was the radius of dendritic section i, and rm and ra

were constants denoting the specific membrane resistance and the
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intracellular resistivity, respectively. The MEP of a dendritic tree
with N terminal sections was then given by:

MEP = 1

N

N∑

j = 1

Pj (3)

where Pj was the sum of the electrotonic lengths �i of all dendritic
sections in the path from the tip of terminal section j to the soma.

DATA ANALYSIS
We used two types of active mechanism distributions in the basal
dendritic trees of cells: (1) uniform (i.e., the conductance of an
active mechanism does not depend on the distance from the
soma), and (2) non-uniform (distance dependent) (see Table S3).
For each distribution of active mechanisms, the firing behaviors
of the model cells were classified into two categories: (1) RS, and
(2) IB. A model cell was considered as IB if the interspike inter-
val (ISI) of the first two spikes in its spike train was smaller than
20 ms. Otherwise, the cell was considered as RS. For each firing
behavior category (RS or IB), we estimated the median diameter,
volume, MEP, branch number, and the total length of the basal
or apical tree. A non-parametric statistical Mann–Whitney U-test
was performed to test if these features were significantly different
between the two categories.

In addition to detecting statistical differences, features such as
the diameter, total length, MEP, volume, or branch number were
used to classify each model cell as an RS or an IB via the use
of a probabilistic Bayesian classifier. Probability distributions for
the two categories (“training”) were estimated using 80% of the
total number of cells (NRS + NIB) and the classifier’s classification
accuracy was measured on the remaining 20% of cells (“testing”).
This procedure was repeated 10 times, using different randomly
selected training/test sets of the same size. The performance accu-
racy reported here was evaluated solely on the 10 test sets, namely
the 20% of the samples that were not used for training. The per-
formance reported is the average over the 10 different trials. If the
sizes of the RS (NRS) and IB (NIB) samples were unequal (e.g.,
NRS > NIB), then we set the size of the larger sample equal to the
size of the smaller one, and used the 80% of each sample for train-
ing and the remaining 20% for testing. Classification performance
was assessed using the sensitivity, specificity and accuracy metrics.
Given a two class problem with Negative and Positive examples,
sensitivity refers to the percentage of true Positives that are cor-
rectly identified, whereas specificity refers to the percentage of
true Negatives that are correctly identified as such. Accuracy mea-
sures the proportion of true Positives and true Negatives correctly
identified. The larger the sensitivity, specificity, and accuracy
values, the better the classification.

IMPLEMENTATION
The simulations were run in the NEURON simulation environ-
ment (Hines and Carnevale, 1997) and simulations were executed
on a parallel cluster (8 core Intel Xeon processors). Data analy-
sis was performed using MATLAB (The MathWorks Inc., Natick,
Massachusetts) and was adapted from the Cuntz et al. (2010)
work. The source code of the model is available upon request to
the corresponding author at poirazi@imbb.forth.gr. The source

code of the original model by Sidiropoulou and Poirazi (2012)
can be found on ModelDB (accession number: 144089).

RESULTS
The firing behavior of the 112 simulated PFC layer V pyrami-
dal cells in response to simulated somatic depolarization varied
greatly. Model cells were either quiescent, i.e., with no spike
response, displayed RS with no adaptation, or IB, that is an initial
burst followed by RS. Figure 1 shows the responses of the two cell
categories investigated in this simulation study, namely RS and
IB, plus the quiescent state (Q) seen in just a few model cells.
Images of the reconstructed cellular morphologies are superim-
posed (Figure 1, upper panel). Note that spiking activity was
measured in response to a somatic depolarization of 0.35 nA mul-
tiplied by the normalization factor of the input resistance (see
Materials and Methods). Indicative voltage traces before this nor-
malization are shown in Supplementary Figure S1. For small
currents (0.2 nA) IB cells displayed a characteristic fast after-
depolarization (fADP) that generated the burst profile for larger
currents (0.35 nA, Supplementary Figure S1). Since the channel
distribution, Ca2+ concentration, soma volume and depolariza-
tion levels were the same across all cells, the firing behavior
variation can be attributed to differences in the apical and basal
dendritic morphology of the neurons.

To isolate the effect of basal dendritic morphology variations
from those of the apical dendritic tree, on the firing behavior of
layer V PFC pyramidal cells, we created two additional models.
As before, the soma of both of these models corresponded to the
soma of cell “C3_5” and their apical dendritic trees were taken
from cells “30-3a” (hereby termed “complex apical model”) and
“31-3” (hereby termed “simple apical model”) in our neuron pool
(Figure 2A). These two apical trees were selected because they
represented a simple and a complex morphology (Supplementary
Table S1), in an effort to approximate the two extreme cases where
the morphology of the apical tree may influence responses. The
112 different basal trees were subsequently attached to both of
these models and the resulting somatic responses to the nor-
malized somatic current injection were measured (Figure 2). We
observed that in the complex apical model, the distribution of fir-
ing patterns in the 112 cells with different basal trees was 70%
RS, 29% IB, and 1% quiescent (Figure 2C). In the simple apical
model however, these proportions were reversed. We measured
23% RS, 76% IB, and 1% quiescent responses (Figure 2C). These
results are in agreement with previous findings regarding the
significant effect of the apical morphology on neuronal firing
patterns (Chang and Luebke, 2007).

Importantly, while the apical tree morphology introduces a
bias in neuronal output (seen in the different distributions of
RS vs. IB model cells in Figure 2C), given the same apical den-
drite (complex or simple) the different firing patterns observed
are solely due to the different basal morphologies. As shown in
Figure 2B, the total length, the volume and the branch number
of the basal dendritic tree were statistically different (p-value <

0.001) between the RS and IB spiking profiles, irrespectively of
the apical tree used. In fact these features could also be used
to predict the model cell’s firing pattern via a probabilistic clas-
sifier (see Supplementary Figure S2). This suggests that, apart
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FIGURE 2 | (A) Categorization of model cell firing patterns when using two
different apical dendrites (a complex “30-3a” and a simple “31-3”) and 112
different basal dendrites. Ionic mechanisms are distributed uniformly along
the basal tree. (B) Box plots of all morphological features of the basal trees

and the MEP for the RS and IB categories. Differences in the features are
statistically significant between the two categories. (C) Proportions of RS, IB,
and Q cells are significantly different in the “30-3a” and “31-3” model cell
cases.

from the morphology of the apical tree, basal tree morphology
also contributes to the spiking profile of layer V PFC pyramidal
neurons.

Thus, we sought to thoroughly examine how basal dendritic
tree variability may influence the firing behavior of layer V PFC
pyramidal cells, irrespectively of the apical tree morphology.
Toward this goal, we again used the soma of cell “C3_5,” but this
time varied both its basal and apical dendritic trees, thus gen-
erating 112 × 112 morphological combinations (Figure 3A). For
each of the 112 basal trees, 112 different apical trees were attached
and somatic response patterns to normalized current injection
were recorded as detailed previously. As shown in Figure 3A,
utilization of different basal trees (y-axis) greatly influenced the
percentage of RS vs. IB firing patterns produced for each apical
tree attached (x-axis). To somehow average the effect of apical
tree morphology on the firing pattern of a model cell with a given
basal tree we applied the following approach: for each basal den-
dritic morphology (row in Figure 3A), if more than half of the
112 model cells produced a RS response, then this basal dendritic
morphology was considered an RS (that is it has the “tendency”
to produce an RS profile, irrespectively of the apical tree used).
Otherwise, the basal dendritic morphology was considered an IB.

Out of the 112 basal trees used, 54 (48%) were assigned an RS pro-
file and 58 (52%) were assigned an IB profile (Figure 3B). Since in
all these experiments the distribution of ionic mechanisms along
the basal tree was uniform, we investigated the robustness of our
findings in the presence of a non-uniform mechanism distribu-
tion (i.e., distance-dependent, see also Supplementary Table S3).
The results were very similar: 46% of the basal trees were assigned
an RS profile and 54% were considered IB (Figure 3B).

A detailed analysis of the model cells that exhibited an RS or
an IB profile showed that the basal trees of RS cells had a median
diameter of 0.97 µm, a total length of 1739.2 µm, a volume of
4349.1 µm3, a MEP of 0.34 and a branch number of 15. The basal
trees of IB model cells on the other hand, had a median diameter
of 0.837 µm, a total length of 1152.3 µm, a volume of 2924.6 µm3,
a MEP of 0.39 and a branch number of 10. A Mann–Whitney
U-test showed a statistically significant difference (p < 0.01) for
the total length, volume, and branch number between the RS
and IB model cells, for both uniform and non-uniform distribu-
tions of the ionic mechanisms along the basal tree (see Table 1 for
details). Box-plots of RS and IB median diameter, total length,
MEP, volume, and branch number in the uniform and non-
uniform distribution cases are depicted in Figure 4. It is clearly
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FIGURE 3 | (A) Confusion matrix of 12544 (112 × 112) combinations of
dendritic trees (basal and apical) sorted according to the firing pattern of the
model cells. (B) Proportions of the model cells’ firing behavior (RS vs. IB).

Uniform distribution means that the conductance of an active mechanism is
not dependent on the distance from the soma. Non-uniform distribution
means the conductance of an active mechanism is distance-dependent.

Table 1 | Median diameter, total length, MEP, volume, and branch

number values for both RS and IB in the uniform and non-uniform

cases.

Diameter Total length MEP Volume Branch

(µm) (µm) (µm3) number

UNIFORM

RS 0.967 1739.2 0.3391 4349.1 15

IB 0.837 1152.3 0.3921 2924.6 10

p-value 0.0061 3.37E-13 0.7532 1.50E-10 5.65E-09

NON-UNIFORM

RS 0.963 1699.2 0.385 4322.3 14

IB 0.8375 1128.8 0.4528 2722.9 9

p-value 0.012 1.30E-12 0.9117 7.13E-12 3.71E-08

A Mann–Whitney U-test showed a statistically significant difference (p < 0.01,

alpha level = 0.05) for the total length, volume, and branch number between the

RS and IB cells regardless of the distribution of ionic mechanisms.

evident that in both cases the total length, volume and branch
number are the parameters that differ the most between model
cells exhibiting an RS vs. an IB firing behavior.

In light of these statistical differences in anatomical features
of RS vs. IB model cells, we next questioned whether the mor-
phology of the basal tree has a determinant role in shaping
the resulting response patterns, irrespectively of the apical tree.
Toward this goal, we used a probabilistic classifier. Specifically, we
employed a Bayes classifier (see Materials and Methods) and used
the diameter, total length, MEP, volume, or branch number of
basal trees to test whether these features can correctly predict the
firing pattern (RS or IB) of the respective model cell. Prediction
accuracy was evaluated using the sensitivity, specificity, and clas-
sification accuracy metrics. We found that the best discriminatory

parameters (i.e., the parameters with the highest sensitivity, speci-
ficity, and accuracy values) were the total length, volume and
branch number, for both uniform and non-uniform distributions
of ionic mechanism (Figure 5). Given that the accuracy achieved
when using, for example, the total length of the basal tree is very
high (>80%), these results suggest that anatomical features of the
basal tree determine to a very large extent the firing pattern of the
resulting model cell.

Since total length, volume and branch number of the basal
tree were the morphological parameters that determined the elec-
trophysiological profile, we also performed correlation analysis
of these features. As expected, the volume and branch number
correlate strongly with the total length in both uniform and non-
uniform cases (Figure 6). These results explain why these three
features have a high discriminatory power: any of them is suffi-
cient to predict with high confidence the firing pattern of a model
cell with a particular basal tree.

DISCUSSION
GENERAL ISSUES
A biophysically realistic model of a layer V PFC pyramidal cell
was extended to quantitatively investigate the effects of dendritic
morphology and distribution of ionic mechanisms (uniform vs.
non-uniform) along its basal dendrites on its firing behavior.
The model cell was extensively validated in a previous study
(Sidiropoulou and Poirazi, 2012) from our group against a wealth
of experimental data (Haj-Dahmane and Andrade, 1998, 1999;
Fowler et al., 2007; Milojkovic et al., 2007; Nevian et al., 2007;
Wang et al., 2008; Sidiropoulou et al., 2009) casting it as a
faithful representation of a biologically realistic layer V PFC
pyramidal cell. Using this experimentally validated model we sys-
tematically varied its basal and apical dendritic trees as well as
its ionic mechanism distribution along the basal dendritic trees
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FIGURE 4 | Box-plots of total length, volume, branch number, median

diameter, and MEP features for RS and IB model cells, under conditions

of both uniform and non-uniform ionic mechanism distributions. Total

length, volume and branch number are the best discriminatory parameters of
the RS and IB firing behavior for both uniform (A) and non-uniform (B)

distributions.

to parametrically investigate which morphological parameters
(diameter, total length, volume, and basal number) and passive
properties (MEP) discriminated the cell’s firing behavior as an
RS or an IB when it was stimulated with a somatic current injec-
tion. Our simulation study has quantitatively showed that total
length, volume and branch number of the basal dendritic tree are
the best morphological parameters to discriminate the cell as an
RS or an IB regardless of what is the distribution of ionic mech-
anisms along the basal trees and irrespectively of the apical tree.
Varying combinations of the basal and the apical dendritic tree

plexuses and their ionic mechanism distribution produced differ-
ent cell type percentages indicating that the morphology of apical
and basal trees has a strong effect on firing behavior. It should
be noted ionic conductance changes are also likely to have an
effect on firing patterns. However, the goal of this work was to
dissect the effect of morphology from that of biophysics, there-
fore we chose the use of a model whose ionic mechanisms have
been extensively validated against experimental data, to ensure
that our analysis is within realistic bounds for these mechanisms.
Under such realistic conditions, this work shows in a quantitative
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FIGURE 5 | Bayes classifier performance. Sensitivity, specificity, and
accuracy values for the classification when using a single feature: the mean
diameter, the total length, the MEP, the volume, and the branch number of
basal trees. Performance is shown for both uniform and non-uniform ionic
mechanism distributions. The error bars are also depicted (black lines). Total
length, volume, and branch number are the best discriminatory features for
predicting whether a model cell will express an RS or an IB firing behavior.

manner that specific anatomical features of basal trees in layer V
PFC pyramidal neurons are largely determinant of the cells’ firing
pattern.

WHAT HAVE WE LEARNED FROM THIS MODEL?
The major finding of our simulation study was that the morpho-
logical parameters that best discriminated our cells as RS and IB
were the total length, volume, and branch number of the basal
dendritic tree. This finding was independent of the distribution
of ionic mechanisms (uniform vs. non-uniform) along the basal
tree (see Table 1 and Figures 2, 4, 5), and insensitive to the use of
specific apical trees (Figure 2 and Supplementary Figure S2). The
total length of the basal dendritic tree of the RS cells was found to
be significantly larger than the total length of the basal dendritic
tree of the IB cells. That means that the basal dendritic trees of RS
cells are more extensive than the basal trees of IB cells. This result
is in line with recent experimental evidence (Chang and Luebke,
2007) and supported by our finding that the branch number in
RS model cells is significantly larger than that of IB model cells
(Chang and Luebke, 2007). Chang and Luebke (2007) have also
reported that the total length and branch number of RS cells in
layer V of PFC are greater than that of IB cells in the same layer.
On the other hand, another experimental study has shown that
IB cells in layer V of the somatosensory neocortex in rats have
extensive basal dendritic trees, and their axons tend to ramify in
infragranular layers, while RS cells in same layer have smaller den-
dritic arborizations and their axons ramify to supragranular layers
(Chagnac-Amitai and Connors, 1989; Connors and Long, 2004).
Yang et al. (1996) showed in layers V-VI of the PFC that RS’ prox-
imal, but not basal, dendritic trees bifurcated less profusely than
those of IB cells. We think that these variations are region depen-
dent. The basal total length and branch numbers in layer V basal
trees of RS pyramidal cells are greater than those of layer V IB
pyramidal cells only in the PFC (Chang and Luebke, 2007).

In addition, our simulation study showed that the volume of
the basal dendritic trees of RS cells is significantly greater than
the volume of IB cells (Figure 4). A larger volume would mean
a greater attenuation of the current flowing through the basal
tree making the cell less excitable. A larger value of the total
length and branch number of the basal tree would also con-
tribute significantly to the reduced cell excitability. In our study,
the diameter and the MEP of the basal trees were not the best dis-
criminatory parameters of the cell’s firing behavior. This result
is contrary to the one reported by Van Elburg and van Ooyen
(2010), where MEP was the best discriminatory parameter of the
cell’s output. One potential explanation for this discrepancy is
that dendritic tree size and topological structure was altered with-
out changing the total dendritic length to induce RS or IB firing in
that study.

The percentages of RS and IB cells in our simulation study var-
ied greatly, depending on the morphology of the apical tree used
and the distribution of ionic mechanisms. In the complex model
cell case with a uniform mechanism distribution 70% of the cells
were RS, 29% were IB and 1% were quiescent. Use of a simpler
apical tree reversed these percentages, resulting in 23% RS vs. 76%
IB cells (Figure 2). On average however, across all possible api-
cal trees, the percentages of RS and IB cells were 52% and 48%,
respectively, for a uniform mechanism distribution. Changing the
distribution into a non-uniform only slightly affected these num-
bers: 46% IB vs. 54% RS cells. Experimental studies (Yang et al.,
1996) have reported similar percentages of IB cells in the layer V
PFC (64% IB). The percentages of RS cells though were signifi-
cantly smaller than ours (19% RS cells in Yang et al., 1996). We
think this is due to the fact that in our study we only had two
classes of cells (RS and IB), whereas in theirs the cells were classi-
fied into four types [RS, IB, ROB, and IM (intermediate)]. Also,
in the Yang et al. (1996) although the cells studied were from the
prelimbic area of the rat PFC as in ours, nevertheless their sam-
ple was an under-representative one of PFC neurons projecting
to nucleus accumbens (NAc). In fact almost 80% of their PFC →
NAc cells were bursting (IB and ROB) ones.

WHAT IS NEXT?
Several extensions to the basic idea deserve further considera-
tion. One such idea is to thoroughly investigate how dendritic
morphology affects the somatic firing behavior of a layer V PFC
pyramidal cell when the cell’s dendritic trees are driven by excita-
tory synaptic inputs. For example, nonlinear dendritic integration
of spatially segregated inputs or spatially clustered synapses may
have a much larger impact on the firing behavior of our model
cells. Cortical and subcortical excitatory inputs drive PFC pyrami-
dal cell’s apical, proximal and basal dendrites, respectively. Each
input may convey different information to the pyramidal cell.
An experimental study (Schwindt and Crill, 1999) investigated
the mechanisms underlying burst and RS evoked by dendritic
depolarization in layer V pyramidal neurons in the rat somatosen-
sory cortex. They reported that small dendritic depolarizations
evoked spikes consisting of repetitive bursts of action potentials.
Larger dendritic depolarizations evoked regular spikes. Burst fir-
ing was due to the interplay of Na+ and Ca2+ spikes. Somatic
depolarizations evoked only RS in almost all recorded cells. A
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FIGURE 6 | Correlation analysis of the three most predictive features. Scatter plots of volume and branch number as a function of the total length in the
uniform (A) and non-uniform (B) distribution cases show that these features are highly correlated.

recent simulation study investigated the impact of the cell’s den-
dritic morphology on the ping-pong mechanism of burst firing
reported earlier, under either somatic current injection or synap-
tic stimulation of the apical dendritic tree of a layer V pyramidal
cell of a cat visual cortex (Van Elburg and van Ooyen, 2010). They
reported that burst firing is heavily dependent on the branching
structure of the tree. However, none of these studies investigated
explicitly the effects of synaptic stimulation of the basal dendritic
trees of layer V pyramidal cells on their firing behavior.

Another idea is to investigate the role of basal and apical den-
dritic inhibition on the firing behavior of PFC pyramidal cells
with varying dendritic morphologies. Recent optogenetic stud-
ies in the hippocampus have shown that dendritic inhibition can
modulate the pyramidal cell somatic output more efficiently than
somatic inhibition (Lovett-Barron et al., 2012). Silencing of den-
dritic inhibition allows NMDA dendritic spikes to turn the PCs
from regular spikers to bursters (Lovett-Barron et al., 2012). A
recent experimentally based theoretical study (Gidon and Segev,
2012) offered new insights into how dendritic inhibition con-
trols dendritic excitability and affects the firing behavior of a
neuron. They showed that distal “off-path” rather than proximal
“on-path” inhibition effectively dampens proximal excitable den-
dritic hotspots, as it operates as a global threshold mechanism
that powerfully controls the neuron’s output. Varying the mor-
phological parameters (diameter, total length, volume, MEP, etc.)

of the dendritic segments at which inhibition impinges onto may
uncover a different role of inhibition, perhaps that of a local as
opposed to a global threshold setter.

CONCLUDING REMARKS
In summary, our computational work provides quantitative evi-
dence that there is strong correlation between the firing behavior
of pyramidal cells in layer V of the PFC and their dendritic mor-
phology variations. We predict that, under realistic conditions for
ionic mechanisms, irrespectively of their distribution along the
basal tree, the total length, volume and branch number of basal
dendritic trees determine to a large extent whether the firing pat-
tern of the cell will be an RS or an IB. When both basal and apical
dendritic trees varied, then the percentages of cells in the two cat-
egories did not change. These findings are likely to have serious
implications in the information processing capabilities of pyra-
midal cells in layer V of the PFC in both normal and pathological
conditions.
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Spiny neurons of amygdala, striatum, and cerebral cortex share four interesting features:
(1) they are the most abundant cell type within their respective brain area, (2) covered
by thousands of thorny protrusions (dendritic spines), (3) possess high levels of dendritic
NMDA conductances, and (4) experience sustained somatic depolarizations in vivo and
in vitro (UP states). In all spiny neurons of the forebrain, adequate glutamatergic inputs
generate dendritic plateau potentials (“dendritic UP states”) characterized by (i) fast rise,
(ii) plateau phase lasting several hundred milliseconds, and (iii) abrupt decline at the end
of the plateau phase. The dendritic plateau potential propagates toward the cell body
decrementally to induce a long-lasting (longer than 100 ms, most often 200–800 ms)
steady depolarization (∼20 mV amplitude), which resembles a neuronal UP state. Based
on voltage-sensitive dye imaging, the plateau depolarization in the soma is precisely time-
locked to the regenerative plateau potential taking place in the dendrite.The somatic plateau
rises after the onset of the dendritic voltage transient and collapses with the breakdown of
the dendritic plateau depolarization. We hypothesize that neuronal UP states in vivo reflect
the occurrence of dendritic plateau potentials (dendritic UP states). We propose that the
somatic voltage waveform during a neuronal UP state is determined by dendritic plateau
potentials. A mammalian spiny neuron uses dendritic plateau potentials to detect and
transform coherent network activity into a ubiquitous neuronal UP state. The biophysical
properties of dendritic plateau potentials allow neurons to quickly attune to the ongoing
network activity, as well as secure the stable amplitudes of successive UP states.

Keywords: NMDA spike, dendritic plateau potentials, dendritic spike, voltage-sensitive dye imaging, UP states,

amygdala, striatum

INTRODUCTION
NEURONAL UP STATES
The binding theory
The dynamic structure composed of synchronously activated neu-
rons engaged in the same task is termed “neural ensemble” (Hebb,
1949; Eichenbaum, 1993; Engel and Singer, 2001). Individual
members of a “neural ensemble” are widely distributed across dif-
ferent areas of the brain (Figure 1A), each specialized in signaling
a different attribute of the object or different element within the
scene (Perrett et al., 1982; Mountcastle, 1997; Singer, 1999; Yu
and Ferster, 2010). Proper representation of a physical or mental
“object” during sensory perception requires the“binding” together
of many attributes into a single experience. “Binding” is sim-
ply a synchronization of electrical activity of large populations
of neurons on a definite temporal scale (Figure 1B).

Dynamic ensembles
The dynamic feature of information processing in the brain is
reflected in the fact that at one instant of time any given neuron is
a member of one ensemble, while in the next instant of time the
same neuron participates meaningfully in the function of another
neuronal ensemble (Desimone et al., 1984; Eichenbaum, 1993;
Wilson and McNaughton, 1993; Engel and Singer, 2001). This
“time-sharing” feature of the ensemble-organization principle
assures virtually an infinite number of neuronal ensembles in the

mammalian brain that can be assigned to an infinite number of
specific objects, including perceptual and mental objects.

Neural synchronization
Synchronized spiking activity has been found in different species
and different cortical areas (Bair, 1999; Salinas and Sejnowski,
2001; Buzsaki and Silva, 2012). For the same level of firing, a
synchronous input is more effective on postsynaptic neurons than
asynchronous input (Schneidman et al., 1998; London et al., 2002).
Large-scale models predict that synchrony occurs due to the recip-
rocal connectivity and loops between clumps of neurons (Tononi
et al., 1992; Durstewitz et al., 2000; Compte et al., 2003). It is
tempting to state that oscillatory activity and phase alignment
between distant groups of neurons is the preferred mechanism
of the “Binding theory” (Engel and Singer, 2001; Tononi and
Koch, 2008; Ainsworth et al., 2012). Oscillatory activity, even
when subthreshold, could facilitate synchronous interactions by
biasing neurons to discharge within the same time frame (Engel
et al., 2001; Yu and Ferster, 2010; Petersson and Fransen, 2012).
The main effect of the oscillatory modulation of neuronal mem-
brane potential is that it constrains the time interval during which
nerve cells are susceptible to excitatory input and can reliably emit
bursts of action potentials (Figure 1B). In this paper we will argue
that glutamate-mediated dendritic plateau potentials provide such
time intervals.
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FIGURE 1 | Schematic depiction of a neural ensemble (hypothetical).

(A) Coronal section of a rat brain. One hypothetical neural ensemble is
comprised of neurons synchronously experiencing suprathreshold
depolarizations. These neurons are distributed unevenly across several brain
regions, including cortical layers 2–6, neostriatum, hippocampus, and
amygdala. Each black dot denotes 50 neurons. (B) Intracellular recordings

show a plateau depolarization (UP state) crowned by action potentials (APs).
Note that neurons do not fire APs in the DOWN state. Also, the onsets and
offsets of UP states are not perfectly synchronized. However, in one brief
period of time (marked by the gray column – “ensemble period”) all
relevant neurons are in the UP state; they all joined the dynamic neural
ensemble.

Time window 200–500 ms
The majority of brain processes related to the feeling of aware-
ness require that neural activity lasts for 200–500 ms (Libet et al.,
1979). This window of time is perhaps a minimum amount of time
needed to guarantee interactions among multiple brain regions.
The 200–500 ms of sustained firing triggers the awareness of
a stimulus either directly by producing significant glutamater-
gic output in target brain areas, or indirectly by allowing the
feedforward stream from thalamus to interact appropriately with
feedback stream from higher cortical areas (Cauller, 1995; Lamme
and Roelfsema, 2000; Engel et al., 2001; Ro et al., 2003; Larkum,
2012). The 200–500 ms time window of sustained neuronal depo-
larization may be the consequence of reverberant activity closing
the loop between past and present features of a moving object,
or by closing the loop between long-term memory traces and the
current sensory percept (reviewed in Tononi and Koch, 2008).
Interestingly, the duration of synaptically evoked dendritic plateau
potentials is also in the range of 200–500 ms (Milojkovic et al.,
2004; Oikonomou et al., 2012).

Spiny neurons
The distribution of neurons involved in one functional neural
ensemble is not restricted to the cerebral neocortex, but it is
likely to include subcortical gray matter (Figure 1A; Brecht et al.,
1998; Ziaei et al., 2013). In brain regions strongly implicated in
cognition and memory formation (neocortex, thalamus, neostria-
tum, ventral striatum, amygdala, and hippocampus), the principle
and/or most numerous neurons are those that have protoplas-
matic protrusions termed “dendritic spines” (Nimchinsky et al.,

2002). During non-REM slow-wave sleep, spiny neurons experi-
ence 1 Hz fluctuations in membrane potential (UP and DOWN
states), as documented by in vivo intracellular recordings (Volgu-
shev et al., 2006). The spontaneous plateau depolarizations (UP
states) are ∼20 mV in amplitude and several 100 ms in dura-
tion. The UP states may or may not be accompanied by action
potential firing (O’Donnell and Grace, 1995; Branchereau et al.,
1996; Contreras et al., 1996; Wilson, 2008). In vivo intracellular
recordings have documented UP and DOWN transitions in corti-
cal L5 pyramidal neurons, cortical L4 stellate cells, striatal medium
spiny neurons and spiny neurons of the amygdala (Wilson and
Kawaguchi, 1996; Steriade et al., 2001; Brecht and Sakmann, 2002;
Volgushev et al., 2006; Padival et al., 2013). These four neuron
types differ in many respects including their fine morphology,
developmental origin, wiring, and immunohistochemical mark-
ers. However, viewed from a purely biophysical aspect, all four
aforementioned neuron subtypes exhibit identical plan of orga-
nization, except for the addition of one apical dendrite to the
pyramidal neurons (Figure 2). It can be said that the basilar den-
dritic tree is a common feature of all spiny neurons (Figure 2).
Benucci et al. (2004) manipulated the gross morphological struc-
ture of cortical pyramidal and neostriatal MSNs cells in realistic
multicompartmental models. Benucci et al. (2004) kept the mor-
phology of the basal dendritic tree unchanged, but reduced the
apical part of a pyramidal neuron to a single equivalent com-
partment. Despite of this drastic morphological modification, the
qualitative aspects of the bimodal intracellular dynamics (UP and
DOWN states) were preserved (Benucci et al., 2004). Benucci et al.
(2004) concluded that an intact basal dendritic tree is the minimal
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FIGURE 2 | Determinants of dendritic morphology in spiny neurons

of the forebrain. (A) Spiny neuron in the amygdaloid complex. In this
and all the remaining panels, upper image is a camera lucida drawing,
while the lower image is a conceptual representation of the dendritic
tree. Upper image adopted from (Shaikh and Shaikh, 1982). (B) Medium
spiny neuron (MSN) of the neostriatum. Upper image adopted from

(Klapstein et al., 2001). (C) Spiny stellate cell in cortical layer 4. Upper
image adopted from (Andjelic et al., 2009). (D) Cortical layer 5 pyramidal
neuron. Upper image adopted from Gray’s Anatomy, p. 722. Major
morphological distinction of L5 pyramidal neurons is the presence of an
apical dendrite (striped area). Basilar dendrites are the common feature
of all spiny neurons.

condition necessary for the emergence of UP and DOWN states.
In support of this conclusion, in vitro electrophysiological exper-
iments performed in cortical pyramidal cells showed that brief
(5 ms) glutamate pulses delivered on a single basal branch produce
long-lasting somatic plateau depolarizations, which resemble neu-
ronal UP states in vivo (Figure 3; Branchereau et al., 1996; Wilson,
2008).

Spiny CNS neurons (pyramidal and MSN neurons) rarely fire
action potentials from a DOWN state (Figure 3A). A success-
ful synchronization of the firing activity among neurons would
require that members of a neuronal ensemble enter UP state at the
same moment of time (Figure 1B). To become eligible for inclu-
sion into a functional neuronal ensemble, a spiny neuron must
quickly, and reliably switch from a DOWN to an UP state, remain
in the depolarized UP state as long as necessary, and quickly abort
the UP state when a percept is formed or expired. Although the
focus of this manuscript is on glutamatergic transmission, one
should not ignore that the great majority of GABAergic inputs
impinge directly on the dendrites of cortical and sub-cortical
principal neurons and may profoundly influence the dendritic
processing of glutamatergic inputs (Gidon and Segev,2012), which
in turn may impact the onset and offset of neuronal UP states (Shu
et al., 2003; Windels et al., 2010).

Cellular bases of UP states
Several competing theories aim to explain the cellular bases of UP
and DOWN states. The first hypothesis stated that spontaneous
transmitter release occurring during a DOWN state occasionally
depolarizes certain cells to the firing threshold, thus initiating
an active state in the network (Timofeev et al., 2000; Bazhenov
et al., 2002). The “spontaneous release” hypothesis predicts that
cells receiving largest excitatory convergence will have the highest

probability of being activated before other cells in the network
(Chauvette et al., 2010). Note that spiny neurons are cells with
the largest excitatory convergence in any given network. The sec-
ond hypothesis suggests that UP states are mediated by intrinsic
oscillations of layer 5 pyramidal neurons. The “intrinsic oscilla-
tion” hypothesis predicts that once initiated by layer 5 neurons,
activity then propagates to other cortical layers (Sanchez-Vives
and McCormick, 2000). The third hypothesis attributes transi-
tions from silent to active states to the selective synchronization of
neuronal ensembles involving a small number of “pacemaker”cells
grouped in a cluster. The “pacemaker cluster” hypothesis predicts
a very stereotyped spatiotemporal dynamics of UP state trigger-
ing (Cossart et al., 2003). In this paper we propose that dendritic
plateau potentials occur in principal neurons during network UP
states and are responsible for voltage waveforms regularly observed
in the cell body using intracellular in vivo recordings (Timofeev
et al., 2000; Chauvette et al., 2010). The relation between dendritic
plateau potentials and UP states can be both causal and correla-
tive. In the causal relation, a dendritic plateau potential triggers
an UP state in one neuron, which in turn recruits other neurons
to form a local network UP state. In the correlative relation, den-
dritic plateau potentials are caused by network UP states, given
that the network UP states provide sufficient glutamatergic drives
congregated onto one dendritic segment. In either case, causative
or correlative, dendritic plateau potentials produce characteristic
sustained depolarizations of the neuronal cell body during the UP
states (Milojkovic et al., 2007; Augustinaite et al., 2014).

DENDRITIC PLATEAU POTENTIALS
Glutamate-mediated dendritic spike
The voltage waveforms of glutamate-mediated dendritic spikes
(Schiller et al., 2000) were characterized using voltage-sensitive
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FIGURE 3 | Cortical UP and DOWN states. (A) In vivo intracellular
recording from a pyramidal neuron in the rat medial prefrontal cortex.
Adapted from Branchereau et al. (1996). (B) In vitro whole-cell recording
from a pyramidal neuron in the rat medial prefrontal cortex (brain slice).
Glutamate pulses (duration 5 ms) were delivered every second on a basal
dendritic branch, at a distance of 105 μm from the cell body. Dashed line

marks the resting potential (−59 mV). Note that the slow component of
somatic depolarization alternates between depolarized (UP) and
hyperpolarized (DOWN) level. (C) Composite microphotograph of a
rhodamine-filled neuron. Schematic drawing marks the position of the
glutamate stimulation pipette on a basal dendrite. Adapted from Antic et al.
(2007).

dye imaging (Milojkovic et al., 2004, 2005a,b) and dendritic patch
(Nevian et al., 2007; Larkum et al., 2009). Dendritic voltage-
sensitive dye imaging revealed that the somatic plateau rises a few
milliseconds after the onset of the dendritic voltage transient and
collapses with the breakdown of the dendritic plateau depolariza-
tion (Milojkovic et al., 2005a). The slow component of the somatic
depolarization accurately mirrors the glutamate-evoked dendritic
plateau potential (dendritic UP state). This observation is most
apparent in experiments in which a gradually increasing inten-
sity of glutamatergic input was delivered onto a basilar dendritic
branch. At subthreshold glutamate input intensities the dendritic
and somatic depolarizations are both subthreshold. As soon as
the dendritic membrane develops a regenerative dendritic plateau
potential (Milojkovic et al., 2004, 2005a), the somatic compart-
ment of this neuron reports a neuronal UP state (Oikonomou
et al., 2012, their Figure 3). In summary, the relation between den-
dritic plateau potential and somatic UP state is uniquely reliable
and faithful (Milojkovic et al., 2004, 2005a,b, 2007).

Dendritic NMDA spikes versus dendritic plateau potentials –
differences
Glutamate-mediated dendritic plateau potentials can be distin-
guished from classic dendritic NMDA spikes based on:

Duration. The half-widths (durations) of NMDA spikes are in
the range of 15–50 ms. The half-widths of plateau potentials are
greater than 100 ms, often in the range 200–500 ms. Notably,
the dendrite will stay in the plateau phase as long as gluta-
mate is present in the extracellular space (Milojkovic et al., 2005a;

Oikonomou et al., 2012). Glutamate remains bound to the NMDA
receptors because there is a surplus of glutamate in the extracellular
space (Figure 9, glutamate pond).

Amplitude. The somatic amplitude of a dendritic NMDA spike is
not sufficient to trigger AP firing in healthy neurons at rest (Schiller
et al., 2000; Polsky et al., 2004, 2009; Chalifoux and Carter, 2011;
Oikonomou et al., 2012). Whereas the somatic amplitude of the
dendritic plateau potential is a successful trigger of neuronal AP
firing in ∼90% of trials (Milojkovic et al., 2004, 2005a,b; Major
et al., 2008).

Ca2+ Map. During an NMDA spike the dendritic calcium influx is
highly restricted to the excitatory input site (Schiller et al., 2000).
During a glutamate-mediated dendritic-plateau potential the cal-
cium flux engulfs the entire length of the respective dendritic
branch (Milojkovic et al., 2007). While the influx of calcium at glu-
tamate input site is solely due to the opening of NMDA receptor
channels (Schiller et al., 2000), the influx of calcium in dendritic
segments away from the glutamate input site is due to the propa-
gation of plateau potential along dendritic cable, resulting in the
activation (opening) of voltage gated calcium channels (Figure 8;
Milojkovic et al., 2007).

Synaptic Requirement. Synaptic stimulation (synaptic shock) is a
standard procedure in cellular neuroscience used to evoke release
of neurotransmitters from axon terminals by applying a brief
(0.1 ms) current pulse via a stimulation electrode positioned near
the afferent axons (Figures 5A1,B1). The major practical dis-
tinction between NMDA spikes and dendritic UP states (plateau
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potentials) lies primarily in the fact that NMDA spikes can readily
be triggered by two synaptic shocks (Polsky et al., 2004; Chalifoux
and Carter, 2011) and sometimes even one synaptic shock is suf-
ficient (Milojkovic et al., 2004, their Figure 7). Dendritic plateau
potentials, on the other hand, require repetitive synaptic stim-
ulation; more than two synaptic shocks (Milojkovic et al., 2004;
Oikonomou et al., 2012).

In summary, these four parameters (duration, amplitude, spa-
tial distribution of calcium signal, and dependence on more than
two consecutive excitatory inputs) can be used to distinguish
between dendritic NMDA spike and glutamate-mediated plateau
potential (Oikonomou et al., 2012, their Figure 2).

Dendritic NMDA spikes and dendritic plateau potentials –
similarities
Dendritic NMDA spikes and Dendritic Plateau Potentials share
several properties, such as:

Ionic Composition. Both NMDA spikes and dendritic plateau
potentials strongly depend on dendritic NMDA current (Schiller
et al., 2000; Milojkovic et al., 2005a; Major et al., 2013; Augusti-
naite et al., 2014). Dendritic plateau potentials initially start as
NMDA spikes, but their dynamics/waveform change significantly
upon stronger (or repetitive) synaptic stimulation (Milojkovic
et al., 2004, 2005a; Major et al., 2008).

Somatic Depolarization. Both types of dendritic potentials pro-
duce somatic depolarizations significantly greater in amplitude
than the conventional EPSPs. However, upon conversion from
NMDA spike to dendritic plateau potential, the somatic voltage
waveform is no longer like a large, pointy EPSP (Polsky et al.,
2004, 2009; Oikonomou et al., 2012; Brandalise and Gerber, 2014);
it becomes a more sustained depolarization event, reminiscent of
a cortical UP state (Milojkovic et al., 2004, 2005a).

Calcium Influx. Both types of dendritic potentials produce strong
calcium accumulation at the glutamate input site. However, upon
conversion from NMDA spike to dendritic plateau potential, the
dendritic calcium signal switches from a highly localized cal-
cium transient characteristic of NMDA spikes (Schiller et al., 2000;
Holthoff et al., 2004; Chalifoux and Carter, 2011; Katona et al.,
2011) to a robust calcium flux that engulfs the entire dendritic
branch (Milojkovic et al., 2007; Major et al., 2008).

Synaptic Requirement. Generation of NMDA spikes and
glutamate-mediated dendritic plateau potentials can be achieved
by any type of stimulation which brings substantial quantities
of glutamate to synaptic and extrasynaptic NMDA receptors
at the same time. Both NMDA spikes and plateau potentials
can be triggered by repetitive synaptic stimulation (Milojkovic
et al., 2004; Polsky et al., 2004; Oikonomou et al., 2012) or focal
application of exogenous glutamate (Schiller et al., 2000; Milo-
jkovic et al., 2005a; Losonczy et al., 2008; Chalifoux and Carter,
2011).

Neuron types supporting NMDA spikes and glutamate-mediated
dendritic plateau potentials. Both NMDA spikes and plateau
potentials can be triggered in thin spiny dendrites of pyramidal
neurons (basal, tuft, oblique), and not so successfully in aspiny

segments of the thick apical dendrite (Schiller and Schiller, 2001;
Larkum et al., 2009). This is probably due to the fact that the
presence of dendritic spines (Figure 4) effectively increases two
important factors: (a) the number of presynaptic glutamatergic
terminals impinging on the dendritic segment; and (b) the num-
ber of postsynaptic glutamate receptors exposed to synaptic and
extrasynaptic glutamate (Rusakov and Kullmann, 1998; Chalifoux
and Carter, 2011; Oikonomou et al., 2012). Because NMDA spikes
strongly depend on the density of NMDA receptor channels on
spine heads, spine necks and dendritic shafts between dendritic
spines (Figure 4), the ability of a dendrite to support an NMDA
spike is a tell-tale sign of the ability of that dendrite to also gen-
erate dendritic UP states (plateau potentials). We searched for
NMDA spikes in four neuron subtypes including spiny neurons
of the amygdala (n = 24 neurons), striatal medium spiny neurons
(n = 12 neurons), stellate cells in cortical layer 4 (n = 11 neurons),
and pyramidal neurons in cortical layer 5 (n = 30 neurons).

Neurons were filled with calcium sensitive dye Oregon Green
Bapta-1 (OGB-1) and synaptic stimulation electrodes were posi-
tioned in the middle portion of a thin (basilar) dendritic
branch 70–90 μm away from the soma. Synaptic stimulation
consisted of two shocks (pulse duration = 0.1 ms, inter-
val = 20 ms, Figure 5A1, syn.). In each neuron type, we readily
obtained characteristic voltage waveform of an NMDA spike
(Figures 5A2,A3, soma). When synaptic stimulation electrodes
were replaced by glutamate iontophoresis (Figure 5B1, pulse
duration = 5 ms), each neuron type produced characteristic sus-
tained plateau depolarizations crowned by AP firing (Figure 5B2,
soma).

Regenerative properties of glutamate-evoked dendritic plateau
potentials were revealed when a series of gradually increas-
ing glutamatergic stimuli was applied on the same dendrite
(Figure 6A1). The transition from subthreshold to suprathresh-
old response (Figure 6A2, red trace) is attributed to the negative
slope conductance in the current–voltage profile of the dendritic
NMDA conductance (Schiller et al., 2000; Korogod et al., 2002;
Rhodes, 2006; Major et al., 2013; Bressloff and Newby, 2014).
It has been also postulated that cessation or reversal of the glu-
tamate transport from extracellular spaces into glial processes
may contribute to the abrupt transitions from subthreshold to
suprathreshold response (Oikonomou et al., 2012). Regardless of
the exact mechanism, the nonlinear membrane responses (abrupt
transitions) were regularly observed in all four neuron subtypes
during focal glutamate applications (Figure 6B, transition from
green trace to red trace). We concluded that (1) spiny neu-
rons of the amygdala, (2) medium spiny neurons of striatum,
(3) cortical layer 4 stellate cells, and (4) cortical layer 5 pyra-
midal neurons process afferent glutamatergic inputs using one
unified basic principle. Each neuron subtype is equipped with rel-
atively short primary dendrites (basilar), directly attached to the
soma (Figure 2). This morphology allows for an efficient trans-
fer of depolarizing currents from mid dendritic segments to the
soma resulting in ∼20 mV somatic depolarizations (Oakley et al.,
2001; Milojkovic et al., 2004, 2005a). The primary (basilar) den-
drites of spiny neurons carry high density of dendritic spines,
which yields to a high density of AMPA and NMDA receptors
(Figure 4). The density of dendritic glutamatergic receptors in
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FIGURE 4 | Physical aspects of glutamatergic transmission in spiny and

aspiny neurons. (A) Dendritic spines increase the receptive area for
impinging axons, resulting in a greater density of synaptic contacts in spiny
neurons compared to aspiny neurons. For the same reason (increased
receptive area), the total number of NMDA receptors per unit length is also
greater in spiny neurons. Synaptic NMDA receptors are activated during all

modes of synaptic transmission. Extrasynaptic NMDA receptors, on the other
hand, are mostly activated by glutamate spillover during barrages of
(repetitive) synaptic inputs. (B) If glutamate breaches the distance between
synaptic cleft (synaptic) and the surface of the dendritic shaft (extrasynaptic),
then subthreshold potential (EPSP) converts into a suprathreshold potential
(Plateau Potential). Arrow points to an extrasynaptic NMDA receptor.

FIGURE 5 | Glutamate-mediated dendritic spikes and plateaus in spiny

neurons. (A1) Drawing depicts an experimental outline. Syn. – synaptic
stimulation electrode. Red dots depict glutamate in synaptic and
extrasynaptic spaces. (A2) Two consecutive synaptic shocks trigger classic
NMDA spikes in all four types of spiny neurons. (A3) Amygdala NMDA
spike on expanded time scale. (B1) Drawing depicts focal
microiontophoresis of glutamate. Dendritic segment is engulfed in

exogenous glutamate (red). (B2) Individual glutamate pulses (pulse
duration = 5 ms), when delivered on spiny dendrites, produced sustained
somatic depolarizations accompanied by action potential firing. APs are
truncated for display. See also Figure 3B. Infliction points on the somatic
voltage waveforms (arrows) testify to dendritic spike initiation, as
determined by simultaneous dendritic voltage imaging and somatic
whole-cell recordings (Milojkovic et al., 2005b).
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FIGURE 6 | Regenerative property of glutamate-evoked dendritic plateau

potentials in neostriatum. (A) Upper image: Neostriatal medium spiny
neuron filled with OGB-1 and AF-594. Lower image: Two glass electrodes
used for stimulation (glut.) and whole-cell recording (patch). (A2) Gradually

increasing levels of the glutamate iontophoresis current produced a nonlinear
membrane response (sudden jump). (B) Same as in (A2) except different cell
and negative current was injected into the cell body to block action potential
firing. Green indicates subthreshold and red indicates threshold responses.

all spiny neurons is sufficient to support dendritic NMDA spikes
(Figure 5A) and glutamate-mediated dendritic plateau potentials
(Figures 5B and 6).

DENDRITIC UP STATES
Dendritic UP state in one dendrite
We do not know what causes cortical and striatal networks to turn
ON and OFF on a definite temporal scale, resulting in alternat-
ing periods of high glutamatergic supply (UP state) followed by
the absence of glutamatergic input (DOWN state; Wilson and
Groves, 1981; Volgushev et al., 2006; Wilson, 2008). Although
we do not know what causes cortical and striatal UP states
(network UP states), we might be able to explain the neuronal
processes which occur in dendrites of cortical and striatal neu-
rons during such states. Here we propose that somatic voltage
waveforms in spiny neurons (Figure 3A) are determined by den-
dritic UP states. The neuronal cell body shifts from a DOWN
to UP state after the generation of the dendritic plateau poten-
tial (Milojkovic et al., 2004). The cell body stays in the UP
state as long as the dendritic plateau lasts. The voltage wave-
form (sustained somatic depolarization) collapses in the cell
body after the collapse of the dendritic plateau potential (Milo-
jkovic et al., 2005a). In this way, the slow component of the
somatic signal during each UP state is just a mere reflection of
a flamboyant integration process occurring somewhere in the
dendritic tree (Milojkovic et al., 2005a; Antic et al., 2010). This
“flamboyant” integration process (dendritic plateau potential)
needs to take place in only one basal branch to be a successful

driver of the neuronal UP state (Milojkovic et al., 2004, 2005a,
2007).

Dendritic UP states occurring simultaneously in two dendrites
With thousands of synaptic contacts distributed on the basilar
dendritic tree of cortical and striatal spiny neurons (Larkman,
1991; Benavides-Piccione et al., 2006; Elston et al., 2009; Garcia
et al., 2010), it is likely that two or more primary (basilar) dendrites
may experience glutamate-mediated plateau potentials at the same
moment of time. The likelihood of coincident UP states in two
and more dendrites belonging to the same neuron is high during
a vigorous network activity, during elevated levels of attention or
motivation, or in the face of an intense computational task. A very
potent glutamatergic drive is achieved during slow wave sleep, at
each “UP” phase (Figure 3).

Experiments performed with two glutamate iontophoresis
pipettes positioned on two basal dendrites were used to model den-
dritic spikes occurring in two basal branches at the same moment
of time (Oikonomou et al., 2012). Each glutamatergic stimulus
(intensity, duration) was set to trigger a dendritic plateau potential
in its respective branch (Figure 7A). The experimental paradigm
consisted of three successive steps: blue dendrite alone, red den-
drite alone and both dendrites at the same time (Figure 7B). All
traces shown in Figures 7B–D, represent somatic voltage wave-
forms. Based on the amplitude of the slow component of the
somatic voltage waveform, an observer cannot readily distinguish
if dendritic UP state occurred in one branch (blue or red) versus
two branches simultaneously (yellow).
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FIGURE 7 | Summation of dendritic plateau potentials on the soma.

(A) Schematic diagram of a spiny neuron representing membrane
potential transients occurring simultaneously on two basal dendrites and
soma. Each column/panel (B–D) represents one experimental sequence.
Each experimental sequence has three steps. In the first step, only blue
dendrite received glut. stimulus (top trace). In the second step, only red
dendrite received glut. stimulus (middle trace). In the third step, both
dendrites received glut. stimuli (bottom trace). Dashed rectangle marks
the beginning and the end of the somatic plateau potential in the
bottom trace. Red star marks the summand which contributes to the

leading edge or finishing edge of the sum (yellow trace). (B) The red
plateau starts and finishes during the plateau phase of the blue plateau.
“Ghost” potential is a copy of the red trace superimposed on the
bottom trace with preserved timing. The red plateau is completely
“eclipsed” by the longer blue plateau, as indicated by the “ghost”
potential. (C) The red plateau starts before the blue plateau. Duration of
the sum is determined by the onset of red and the collapse of blue
plateau. (D) The blue plateau finishes before the red plateau phase is
over. Duration of the sum is thus determined by the onset of blue and
the collapse of red plateau.

If a shorter dendritic plateau potential (Figure 7B, red) was
set to occur within the plateau phase of a longer plateau potential
(blue), then the shorter event would completely be “eclipsed” by
the longer event upon summation (yellow). Because the amplitude
of the somatic voltage waveform (slow component) was the same
before (blue and red) and after summation (yellow), the only clue
about the occurrence of the shorter dendritic spike (Figure 7B,
ghost) comes from a moderate increase in AP firing (Figure 7B,
red ring). In respect to the somatic depolarization envelope, the
shorter plateau potential (red) is, in a sense, “eclipsed” by a longer
dendritic plateau (blue).

In order to become a “visible” component of the sum (yel-
low), the red dendritic UP state must occur before the onset of the
blue dendritic UP state (Figure 7C), or after the collapse of the
blue dendritic UP state (Figure 7D). As long as two dendritic UP
states partially overlap in time, the resulting waveform (the sum)
appears as one continuous UP state in the soma (Figures 7C,D,
yellow). One important conclusion of experiments performed
with two glutamate releasing electrodes on two basal branches

(Figure 7) is that during a neuronal UP state, the slow component
of the somatic voltage waveform does not reveal the number of
basal dendrites experiencing glutamate-mediated plateau poten-
tials (Oikonomou et al., 2012). Only when these potentials are
separated (shifted) in time, so that their profiles (plateau phases)
no longer overlap, the cell body can “experience” two dendritic
plateau potentials arriving from two basal dendrites as two separate
events (Oikonomou et al., 2012, their Figure 9).

DETECTORS OF STRONG NETWORK ACTIVITY
A successful synchronization of the firing activity among neu-
rons would require that members of a neuronal ensemble enter
UP state at the same moment of time (Figure 1B). To become
eligible for inclusion into a functional neuronal ensemble, a
spiny neuron must quickly, and reliably switch from a DOWN
to an UP state, remain in the depolarized UP state as long
as necessary, and quickly abandon the UP state when a per-
cept is formed or expired. Several lines of evidence listed below
(Sections Efficient Depolarization of the Cell Body, Dependence
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on the Surplus Glutamate, Duration of Sustained Depolariza-
tion, and Dendritic Spines and Glial Processes) suggest that
glutamate-mediated dendritic plateau potentials may serve as
detectors of significant or meaningful network activity, and
may underlie the neuronal voltage waveforms recorded in vivo
(Figure 3A).

Efficient depolarization of the cell body
A glutamate-mediated dendritic plateau potential (dendritic UP
state) produces enough depolarizing current to drive the cell
body into a sustained depolarized state (neuronal UP state; Milo-
jkovic et al., 2004; Augustinaite et al., 2014). The amplitude of the
slow component (plateau phase) at the dendritic initiation site
(Figure 8, input site) located in the middle of a basal dendrite
(100–150 μm away from the cell body) is ∼2/3 of the back-
propagating AP at the same location (Milojkovic et al., 2004).
The amplitude of the backpropagating AP at 100–150 μm away
from the cell body is ∼60 mV (Antic, 2003; Acker and Antic,
2009). Therefore, the amplitude of the dendritic plateau poten-
tial is ∼40 mV. The amplitude of the dendritic plateau potential
decreases gradually as dendritic voltage transient spreads passively

into the cell body (Figure 8A, centripetal direction of propaga-
tion), resulting in a ∼20 mV somatic depolarization (Milojkovic
et al., 2004, 2005a,b, 2007; Major et al., 2008). The amplitude of
the sustained somatic depolarization (neuronal UP state) depends
on the physical location of the input site. It is lessened if its
glutamatergic input is moved more distally, away from the cell
body (Milojkovic et al., 2004, their Figure 1; Major et al., 2008;
Augustinaite et al., 2014; Jadi et al., 2014).

Dependence on the surplus glutamate
Cortical or striatal UP and DOWN states are caused by the
alternating presence and absence of activity in excitatory neu-
ronal network (Wilson and Kawaguchi, 1996; Sanchez-Vives and
McCormick, 2000; Fellin et al., 2004; Poskanzer and Yuste, 2011).
During periods of greater network activity, a significant gluta-
matergic input impinges on individual neurons, causing these
neurons to enter the UP state. Transitions to the UP state are
robust phenomena that accurately reflect the underlying structure
of consistent increases in afferent input over a limited time period.
There are no transitions back to the DOWN state until the excita-
tory glutamatergic input is reduced (Wolf et al., 2005). Similarly to

FIGURE 8 | Asymmetric propagation of dendritic plateau potential.

(A) Schematic drawing of a spiny basal dendrite. Red dots denote
glutamatergic afferents actively releasing glutamate at this moment of time.
(B) Voltage waveform of the glutamate-induced plateau potential
simultaneously viewed at seven different sites along the spiny dendrite
(Milojkovic et al., 2004, 2005a, 2007). (C) The amplitude of the slow
component (plateau phase) attenuates as dendritic potential spreads
passively toward the cell body (centripetal direction, Milojkovic et al., 2004;
their Figures 3 and 4). However, the duration remains the same across the
entire dendritic branch. The grade of attenuation is less in centrifugal

direction (from the initiation site toward the dendritic tip) than in the
centripetal direction. Regardless of direction (centripetal or centrifugal), the
propagating plateau potentials successively open voltage-gated Ca2+
channels in dendritic segments, which explains why the entire dendritic
branch experiences significant calcium influx during a glutamate-evoked
dendritic plateau potential (even though synaptic glutamate receptor
channels are activated at the input site only). This interplay between
dendritic membrane potential and dendritic calcium influx in space and time
was revealed by combining voltage-sensitive and calcium-sensitive multi-site
recordings along the same dendritic branch (Milojkovic et al., 2007).
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UP states, dendritic plateau potentials occur only if dendritic shafts
and associated extrasynaptic NMDA receptors are surrounded by
a surplus of glutamate ions/molecules (Suzuki et al., 2008; Chal-
ifoux and Carter, 2011; Oikonomou et al., 2012). In summary, a
surplus of glutamate (spillover) occurs during network UP states
(Lambe and Aghajanian, 2006; Poskanzer and Yuste, 2011). A
surplus of glutamate in the extrasynaptic space triggers dendritic
plateau potential (Suzuki et al., 2008; Chalifoux and Carter, 2011;
Oikonomou et al., 2012).

Duration of sustained depolarization
There is a strong similarity between UP states and dendritic
plateau potentials regarding the duration of sustained depolariza-
tion. Both network UP states and glutamate-mediated dendritic
plateau potentials last several hundred milliseconds (Figures 3 and
5). We think that a continued presence of glutamate molecules
bound to NMDA receptors in synaptic and more importantly
in extrasynaptic spaces is critical for the maintenance of the UP
state. Unlike a classic sodium spike which is terminated by the
inactivation of Na+ and strong activation of K+ currents, the
glutamate-mediated dendritic plateau potential is terminated by
unbinding of glutamate and weak activation of K+ currents (Cai
et al., 2004). Glutamate unbinding from dendritic NMDA recep-
tor channels is a slower process because it takes place inside
the glutamate pond created by repetitive synaptic stimulation
(Oikonomou et al., 2012), hence explaining the prolonged plateau
phases of these dendritic events (Milojkovic et al., 2004, 2005a,
2007).

Dendritic spines and glial processes
CNS spiny neurons possess an inherent mechanism for generation
of dendritic UP states, which is based on anatomical and functional
relations between dendritic spines and glial processes interposed
between dendritic spines. The growth of dendritic spines endows
spiny neurons with four cardinal features:

High density of impinging glutamate-releasing axon terminals
(Figure 4). Note that an ample supply of glutamate is essential for
dendritic plateau potentials. The amount of glutamate required
to drive a plateau potential can only be obtained by repetitive
synaptic stimulation or glutamate iontophoresis (Milojkovic et al.,
2004; Major et al., 2008; Suzuki et al., 2008; Augustinaite et al.,
2014). However, sequential glutamate uncaging on 10 dendritic
spines cannot supply enough glutamate to create a glutamate pond
(Losonczy et al., 2008; Remy et al., 2009; Branco and Hausser,
2011), and this may be the reason why these experiments did
not yield glutamate-mediated dendritic plateau potentials lasting
hundreds of milliseconds.

High density of NMDA receptor-channels. High density of den-
dritic NMDA conductance is essential for the generation of
glutamate-mediated dendritic regenerative potentials (Schiller
et al., 2000; Rhodes, 2006; Major et al., 2013). Without any doubt,
dendritic spines increase the surface area for the insertion of synap-
tic and extrasynaptic NMDA receptors resulting in a significantly
greater NMDA conductance per dendritic branch (Figure 4), thus
providing the critical requirement for dendritic NMDA spike
initiation (Schiller et al., 2000; Rhodes, 2006; Major et al., 2013).

High density of glial processes surrounding dendritic branch.
Growth of spines creates space for glial processes to grow in
between dendritic spines (Figure 4A, glia). Strategic positioning
of glial processes between the populations of synaptic and extrasy-
naptic NMDA receptors (Figure 4B), provides astrocytes with a
mechanism to gate neuronal transitions from DOWN to UP state
(Lambe and Aghajanian, 2006; Poskanzer and Yuste, 2011).

Spine necks provide for the separation between two princi-
pal modes of synaptic transmission. (a) Subthreshold (dendritic
EPSP) and (b) suprathreshold dendritic response (plateau poten-
tial). Dendritic spines create a physical separation between
synaptic and extrasynaptic NMDA receptor-channels (Figure 4A).
The length of the spine neck represents a physical distance that
spillover glutamate has to travel in order to reach extrasynaptic
NMDA receptors located on the dendritic shaft (Figure 4B). If
glutamate molecules “survive” the trip from the releasing axons
to the surface of the dendritic shaft (Figure 4A), then a sub-
threshold dendritic potential (Figure 4B, EPSP) is converted into
a suprathreshold membrane response termed “dendritic plateau
potential” (Figure 4B).

The presence of glutamate molecules is not simply a permissive
factor for the initiation of a glutamate-mediated dendritic plateau
potential (dendritic UP state). Instead, a nonlinear buildup of
glutamate is probably the primary mechanism of the observed
voltage jump from subthreshold voltage transient to a full-blown
spike (Figure 6B), see also (Schiller et al., 2000; Milojkovic et al.,
2004, 2005a; Oikonomou et al., 2012). It can be said that dendritic
plateau potentials have a “glutamate threshold” (Milojkovic et al.,
2005b; Major et al., 2008; Polsky et al., 2009).

Nonlinear build-up of glutamate in the extracellular space
(“glutamate threshold”). During intense network activity, many
converging glutamatergic preterminals (Figure 4, axon) are acti-
vated repetitively by bursts of action potentials traveling through
axonal lines of communication (Lisman, 1997). Repetitive synap-
tic input is a key requirement for the dendritic UP state (Milojkovic
et al., 2004; Oikonomou et al., 2012). At some point during
repetitive synaptic stimulation, an ensuing glutamatergic drive
overwhelms the ability of glial processes to absorb the spilled
glutamate. The “glutamate threshold” is reached when glia is no
longer able to cope with repetitive glutamatergic inputs arriving
in a confined space at the same moment of time (Figure 9). For a
brief period of time the dendritic segment is surrounded by a sur-
plus of glutamate (Figure 9, “glutamate pond”). During such an
overwhelming glutamatergic stimulus, the dendritic spike cannot
be perturbed by negative voltage pulses (Oikonomou et al., 2012;
their Figure 5).

Repetitive inputs. In the process of dendritic spike initiation, the
primary role of the repetitive glutamatergic input is not a local
depolarization needed to cross the voltage threshold (Polsky et al.,
2009), but instead multiple shocks are necessary to reverse glial
function from glutamate uptake to glutamate release (Parpura
et al., 1994). In glutamate uncaging experiments, the NMDA
spike is initiated only when experimenters select neighboring den-
dritic spines (Losonczy et al., 2008; Remy et al., 2009; Branco and
Hausser, 2011). The reason for this is contained in the spatial
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FIGURE 9 | Dendritic plateau potentials improve the efficacy of the

conversion of excitatory inputs into sustained somatic

depolarizations. Active glutamatergic inputs are spatiotemporally
“clustered” onto a dendritic segment. Glutamate spillover is more
efficient between two neighboring active inputs (space “R”) than
between an active and inactive input (space “Q”). Glutamate spillover

may overwhelm glial processes located between neighboring active
inputs causing a local accumulation of glutamate in the extracellular
space (glutamate pond). Inside the glutamate pond, both synaptic and
extrasynaptic NMDA receptors are fully activated, thus creating
favorable conditions for firing of a glutamate-mediated dendritic plateau
potential.

arrangement of the participating ultrastructures. Glial processes
interposed between two active dendritic spines (Figure 9, space
“R”) are more likely to reverse glial function from glutamate uptake
to glutamate release (Parpura et al., 1994), than the glial processes
interposed in between active and inactive spines (Figure 9, space
“Q”). In summary, the new evidence (Major et al., 2008; Polsky
et al., 2009; Oikonomou et al., 2012) supports the notion that
dendritic spikes in glutamate uncaging experiments do not arise
from summation of voltage alone, but rather from summation of
three glutamate sources: (1) uncaged glutamate; (2) synaptically
released glutamate triggered by the presence of uncaged glutamate;
and (3) glutamate released from glia stimulated by the uncaged
glutamate (Min and Nevian, 2012).

CONCLUDING REMARKS
Although a diffuse glutamatergic input distributed across an entire
dendritic tree may be used by neurons for the detection of strong
network activity and conversion of such activity into a sustained
plateau depolarization (UP state; Shu et al., 2003), a more effective
mechanism is the mechanism based on the convergence of synaptic
inputs onto one dendritic branch (Mel, 1993) and induction of a
long-lasting glutamate-mediated regenerative dendritic potential
(Milojkovic et al., 2004). Excitatory glutamatergic inputs confined
to a single dendrite can profoundly influence the neuronal output
of layer 5 pyramidal neurons in brain slices (Figure 3). “A com-
mon preconception about central nervous system neurons is that
thousands of small postsynaptic potentials sum across the entire
dendritic tree to generate substantial firing rates”(Milojkovic et al.,
2004). Contrary to this common presumption, a brief glutamater-
gic stimulation delivered in a restricted part of the basilar dendritic
tree invariably produces sustained plateau depolarizations of the
cell body, accompanied by bursts of action potentials (Milojkovic
et al., 2004, 2005a). Glutamatergic inputs converging on a nar-
row segment of a single dendritic branch is sufficient input for
generation of a somatic depolarization, which strongly resem-
bles neuronal UP state (Milojkovic et al., 2004, 2005a; Antic et al.,

2007, 2010). Plotkin et al. (2011), arrived at an identical conclusion
studying striatal medium spiny neurons.

All spiny neurons of the mammalian telencephalon, includ-
ing pyramidal layers 2–6 and stellate layer 4 neurons of the
cerebral cortex, medium spiny neurons of the neostriatum,
amygdala, and nucleus accumbens are well positioned to detect
multiple patterns of highly selected inputs, perhaps as few
as 50–100 inputs from each afferent structure. Spiny neurons
integrate inputs over a relatively large time window and are
probably detecting the co-occurrence of signature patterns of
afferent inputs relating context, emotion, and working mem-
ory (Bar-Gad et al., 2003; Wolf et al., 2005). Glutamate-mediated
dendritic plateau potentials are ideally built to provide neurons
with a relatively large integration window lasting several hun-
dred milliseconds (Milojkovic et al., 2004, 2005a). This temporal
window is a critical determinant of the “ensemble period” as
depicted in Figure 1. The size (number of cell-members) and
power (ability to drive the organism toward a distinct behav-
ior) of a neuronal ensemble both depend on the ability of each
cell-member to remain in a sustained depolarized state. The
amount of time each neuron spends in a sustained depolarized
UP state is the product of the duration of a dendritic plateau
potential and the number of dendritic branches experiencing
plateau potentials overlapping in time (Figure 7, duration of the
sum).

Initially, in vivo recordings were unable to provide evidence
that dendritic NMDA spikes or plateau potentials occur in liv-
ing animals (Waters and Helmchen, 2006; Waters, 2007; Varga
et al., 2011). However, recent advancements in technology have
produced experimental evidence in favor of dendritic spikes in
anesthetized and behaving animals (Lavzin et al., 2012; Smith et al.,
2013). What’s more, a recent study has found NMDA-dependent
dendritic calcium signals locked to neuronal UP states (Hill et al.,
2013). All in all, experimental studies reporting the occurrence
on dendritic NMDA spikes in vivo may accumulate with time
(Grienberger et al., 2014; Palmer et al., 2014).
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Whether spiny neurons have evolved a dendritic mechanism
for detecting activity of neuronal ensembles (Figure 1) and join-
ing the active ensemble (transition to UP state) remains to be
further investigated in vivo. Nevertheless, there is little doubt
that in all telencephalic neurons with dendritic spines (spiny
neurons), dendritic NMDA spikes and glutamate-mediated den-
dritic plateau potentials represent the dominant forms of dendritic
integration.
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Within neural networks, synchronization of activity is dependent upon the synaptic
connectivity of embedded microcircuits and the intrinsic membrane properties of
their constituent neurons. Synaptic integration, dendritic Ca2+ signaling, and non-linear
interactions are crucial cellular attributes that dictate single neuron computation, but
their roles promoting synchrony and the generation of network oscillations are not well
understood, especially within the context of a defined behavior. In this regard, the lamprey
spinal central pattern generator (CPG) stands out as a well-characterized, conserved
vertebrate model of a neural network (Smith et al., 2013a), which produces synchronized
oscillations in which neural elements from the systems to cellular level that control
rhythmic locomotion have been determined. We review the current evidence for the
synaptic basis of oscillation generation with a particular emphasis on the linkage between
synaptic communication and its cellular coupling to membrane processes that control
oscillatory behavior of neurons within the locomotor network. We seek to relate dendritic
function found in many vertebrate systems to the accessible lamprey central nervous
system in which the relationship between neural network activity and behavior is well
understood. This enables us to address how Ca2+ signaling in spinal neuron dendrites
orchestrate oscillations that drive network behavior.

Keywords: lamprey, oscillation, SK2, KCa2, NMDA, locomotion, calcium, dendrites

INTRODUCTION
Orchestration of neuronal activity within networks is integral to
correct execution of behavior. Synchronization between groups
of neurons is an organizational feature of many neural net-
works found in the central nervous systems of invertebrates
(Wehr and Laurent, 1996; Riffell et al., 2009) to vertebrates
(Womelsdorf et al., 2014) alike, and between microcircuits. Large-
scale synchrony between neurons is particularly evident in the
spinal (Grillner, 2003; Goulding, 2009) and brainstem networks
(Koshiya and Smith, 1999) controlling rhythmic movement, but
are also common to hippocampal and neocortical networks
(Buzsáki and Draguhn, 2004; Grillner et al., 2005; Yuste et al.,
2005). Synchronously active microcircuits, like the neurons that
comprise the lamprey spinal central pattern generator (CPG),
are driven through the synaptic connectivity of excitatory and
inhibitory neurons combined with intrinsic burst-terminating
electrical properties (Wallén and Grillner, 1987; Buchanan, 1993).
However, little is known about the electrical and integrative
properties of the complex dendritic architecture of lamprey spinal
neurons where synaptic- and voltage-dependent conductances
shape potentials arriving at the soma. In contrast, the integra-
tive properties of cortical pyramidal neuron dendrites and their
synaptic inputs have been extensively characterized (Spruston,
2008), while less is known about how these intrinsic properties
generate rhythmic network activity, and ultimately the behaviors
they are thought to subserve. To understand how neural networks
generate complex patterns of activity underlying behaviors, it will

be necessary to understand both the specific patterns of connec-
tivity between neurons and how individual neurons respond to
the inputs that they receive. Thus, this review seeks to merge
disparate fields of research—dendritic integration and spinal
central pattern generation. In doing so, we hypothesize that
the ionic mechanisms driven through two rhythm-generating
conductances, namely the synaptic interaction between ensem-
bles of NMDA receptors (NMDARs) and Ca2+-dependent K+

channels, may have general implications for the synchronization
of spinal to cortical networks. Thus, to explore the idea that
active dendritic properties are at the core of this behavior, we
examine in detail the lamprey spinal network and draw from
other areas of dendritic research to enhance our understanding
of what occurs at the level of the dendritic synapse to generate
behavior.

SUPRASPINAL NETWORKS IN THE BRAINSTEM INITIATE
AND MAINTAIN LOCOMOTOR DRIVE
Vertebrate locomotion is initiated and maintained by evolu-
tionarily conserved serial pathways originating in the forebrain
(Ericsson et al., 2013; Grillner et al., 2013), projecting to the
mesencephalic locomotor region (MLR; Dubuc et al., 2008)
and then to command neurons of the reticulospinal (RS) sys-
tem, which innervates the entire rostro-caudal extent of the
spinal cord, including cervical and lumbar centers in mam-
mals (Goulding, 2009), and all segmental levels in fish as well
as lamprey (Buchanan et al., 1987). However, following their
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activation by the brainstem, it is the circuits and neurons of
the spinal CPG (Buchanan and Cohen, 1982) that create the
complex synergy that rhythmically activates the locomotor mus-
culature (Grillner et al., 2008). The structure of descending
commands to spinal CPGs and the synaptic connectivity of the
spinal network itself provides an opportunity to understand
how dendritic activation within behaviorally relevant circuits
underlies the astonishing complexity of vertebrate behavioral
patterns. The circuitry of the lamprey CPG is well understood
(Grillner et al., 2000, 2008) including the identities of the key
neurons (Rovainen, 1974; Buchanan and Cohen, 1982), their
neuronal targets, and neuropharmacology (Alford et al., 2003).
However, in common with most neurons, these circuit com-
ponents possess a complex dendritic morphology (Figure 1),
yet we understand little of the spatiotemporal profile of den-
dritic activation within these neurons and the role that such
patterns of activation might play in the physiological activity
of the neurons during behavior. This lack of understanding
is true for simple inputs, but particularly during goal-directed
locomotion. This is partly because tracing the spatial distribu-
tion of physiological targets of neurons is challenging, but also
because most studies of CPGs, whether in simple systems like
the lamprey, or in more complex systems such as mammals,
use isolated spinal cords and activate the networks pharmaco-
logically (Sigvardt et al., 1985; Rossignol et al., 1998; Kyriakatos
et al., 2011). This undoubtedly obscures the precise physiolog-
ically relevant spatiotemporal activation patterns of dendritic
synapses that would otherwise drive these behaviors in vivo. In
studies of spinal motor activity this has been largely overlooked
perhaps due to the strong resemblance of electrophysiological
output (i.e., fictive locomotion), or even actual movement, to
observed locomoting animals. Despite this similarity, it is cru-
cial to understand how physiological patterns of synaptic input
and intrinsic membrane electrodynamics generate rhythmic
behaviors.

THE SYNAPTIC CONNECTIVITY OF THE SPINAL CPG
NETWORK DRIVES RHYTHMIC NETWORK OSCILLATIONS
The very fluid, controlled nature of lamprey locomotion is pro-
duced after RS axons activate the local circuit neurons within
the spinal ventral horn (Figure 2). Among these neurons, col-
lectively referred to as ventral horn neurons (VHNs), the best
characterized neurons responsible for pattern generation are exci-
tatory interneurons (EINs) that provide ipsilateral, glutamatergic
excitation (Buchanan and Grillner, 1987; Buchanan et al., 1989),
while crossed caudally projecting interneurons (CCINs) provide
contralateral, glycinergic inhibition (Grillner and Wallén, 1980;
Alford and Williams, 1989). Motor neurons are the final common
output neuron of each segment, which bundle into ventral roots
(VRs) as they leave the spinal cord, before synapsing directly
onto myotomal cells of the trunk musculature (Buchanan and
Cohen, 1982). The precise, synaptic connectivity of the VHNs
within and between individual segments serves to ipsilaterally
excite (i.e., EINs), while simultaneously delivering contralateral
inhibition (i.e., CCINs; Buchanan and Grillner, 1987). This recip-
rocally inhibited network ensures that within each segment, when
one side of the trunk musculature contracts, the contralateral

FIGURE 1 | Lamprey spinal motoneurons have a complex dendritic
architecture. (A) Schematic representation of an isolated lamprey brain and
spinal cord. Spinal motoneurons and their complete dendritic architecture
can be retrogradely labeled through an intramuscular injection of a
dextran-conjugated fluorescent dye. Labeling (green) is visible on the side
and segment of injection through axons converging into ventral roots (VRs)
and to their respective neurons. Expansion shows a single spinal segment
with multiple motoneurons labeled as in (B). (B) A 3D reconstruction of
motoneurons labeled from one spinal ventral root to emphasize the
complexity of their structure and dendritic trees. Neurons were labeled by
injecting the muscle wall of an animal with 5 µL of 5 mM Oregon Green
488 BAPTA1 Dextran. After 24 h the animal was sacrificed and the spinal
cord fixed and cleared. A confocal stack was imaged to generate the full
extent of the motoneurons in one spinal segment (Viana di Prisco and
Alford, 2004).

side is inhibited. Lateral interneurons, which project ipsilaterally
to inhibit CCINs, facilitate the relief of reciprocal inhibition
(Buchanan, 1982). However, the importance of lateral interneu-
rons in maintaining network rhythmicity has been less empha-
sized because alternating, rhythmic bursting can persist in their
absence as demonstrated by computer simulation (Wallén et al.,
1992).

Work in lamprey (Grillner et al., 1981; Brodin et al., 1985,
1988; Brodin and Grillner, 1985; Buchanan and Grillner, 1987),
Xenopus tadpoles (Dale and Roberts, 1984; Roberts and Alford,
1986), rats (Kudo and Yamada, 1987), and cats (Douglas et al.,
1993) demonstrates that spinal glutamate receptor-mediated
transmission activates and maintains locomotion. These data
are supported by recordings of excitatory postsynaptic poten-
tials (EPSPs) onto motoneurons and premotor interneurons
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FIGURE 2 | Schematic representation of the lamprey spinal central
pattern generator. (A) Spinal CPG neurons receive both ipsilateral
glutamatergic (red) input from excitatory interneurons (EINs, red) and
contralaterally projecting glycinergic inhibition (blue) from reciprocally
inhibiting, crossed glycinergic interneurons (CCINs, blue). Output of the CPG
occurs from motoneurons (green), which directly synapse onto myotomal
cells of the trunk musculature to cause muscle contraction producing

rhythmic locomotion. (B) Output pattern recorded using glass suction
electrodes from paired, contralateral (top vs. bottom traces) VRs showing
alternating bursting of the spinal network during rhythmic locomotion. The
reciprocally connected network described in (A) prevents excitation of the
contralateral spinal cord when the ipsilateral side is bursting for each cycle
(burst-to-burst), leading each side of the spinal cord to be precisely 180◦

out-of-phase from the other (Alford et al., 2003).

(Dale and Roberts, 1985; Brodin et al., 1988; Noga et al., 2003)
and pharmacological manipulation of the resultant behaviors
(Brodin and Grillner, 1985; Dale and Roberts, 1985; Caza-
lets et al., 1992; Chau et al., 2002; Rybak et al., 2006).
This neurotransmission both directly excites neurons of the
CPG, and also activates complex non-linear membrane inter-
actions, or oscillations, in these neurons mediated by NMDAR
voltage-dependency and Ca2+ permeability coupled to the
activation of Ca2+-dependent currents. The cellular processes
underlying such oscillations are believed to be central to the
coordination of locomotor behavior. In lampreys the iden-
tity of the descending glutamatergic RS command neurons is
well-defined (Dubuc et al., 2008) and similarly spinal neu-
rons that release glutamate locally within the spinal ventral
horn (i.e., EINs) have been identified (Buchanan et al., 1989;

Buchanan, 1993) as has their network role (Wallén et al.,
1992).

One prominent feature of the spinal network is that it
transforms unpatterned, exogenous glutamatergic input into a
patterned, rhythmic output. The details of synaptic connectiv-
ity responsible for this phenomenon have been substantially
explored in the lamprey (Wallén and Grillner, 1987; Grillner
et al., 2001; Grillner, 2006) and the Xenopus embryo (Dale and
Roberts, 1984, 1985). More recently, work in higher vertebrates
(Masino et al., 2012) has emphasized how well conserved this
network motif is throughout the vertebrate subphylum includ-
ing lampreys, fishes, amphibians, chelonids and mammals (Dale
and Roberts, 1984; Sigvardt et al., 1985; Kudo and Yamada,
1987; Hernandez et al., 1991; Guertin and Hounsgaard, 1998;
Gabriel et al., 2009; Masino et al., 2012). After complete
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spinal transection (Cohen and Wallén, 1980; Brodin et al., 1985),
the lamprey swimming network can still generate the electro-
physiological correlates of swimming. While recording output
from pairs of contralateral VRs using glass suction electrodes,
excitatory amino acid (EAA) receptor agonists, such as kainate,
D-glutamate, or N-methyl-D-aspartic acid (NMDA; Brodin et al.,
1985; Brodin and Grillner, 1985; Wallén and Grillner, 1987),
bath-applied to an isolated spinal cord (devoid of muscle or any
other surrounding tissue) generates antiphasic bursts of activity
across the spinal midline—the phase relationship across sides
of the spinal cord is enforced by glycinergic inhibition (Cohen
and Wallén, 1980; Alford and Williams, 1989)—and the same
rostro-caudal phase lag as seen in intact behavior (Wallén and
Williams, 1984). This network behavior, termed “fictive locomo-
tion”, refers to the electrical output of the spinal CPG. Thus, the
network acts as a CPG, a term that refers collectively to centrally
located, local circuit spinal neurons that provide precise rhythmic
output from spinal motoneurons. The spinal CPG operates in
the absence of both sensory feedback from the spinal dorsal
roots or descending networks and is found in all vertebrates
(Kahn and Roberts, 1978; Forssberg et al., 1980; Roberts et al.,
1981; Sholomenko and Steeves, 1987; Delvolvé et al., 1997; Field
and Stein, 1997; Masino and Fetcho, 2005). Thus, the ability
to generate rhythmic output via network oscillations is inherent
to the spinal network itself and does not require supraspinal
control.

SINGLE NEURONS ARE INTRINSICALLY RHYTHMIC
The study of spinal neurons offers a unique insight into how prop-
erties of neural networks emerge from membrane activity at the
cellular level and provides a straightforward behavioral context—
locomotion—in which to place this activity. EAA agonists, like
NMDA, cause the membrane potential (Vm) of individual VHNs
in isolated spinal cords to undergo repetitive oscillations that
are in-phase with the ipsilateral VR of the corresponding hemi-
segment (Sigvardt et al., 1985; Wallén and Grillner, 1987). During
the depolarized phase, the cells can fire multiple action potentials
(APs) before the cell is repolarized. This finding demonstrates
how electrical properties of single cells within a network scale to
direct the behavior of the network at large. Most VHNs oscillate
in NMDA driven by phase-appropriate synaptic excitation from
EINs and subsequent hyperpolarization from CCINs (Buchanan
and Cohen, 1982). However, when tetrodotoxin (TTX) is applied,
spiking is abolished, while the underlying Vm oscillation persists
(Wallén and Grillner, 1987). Since TTX pharmacologically iso-
lates the recorded neuron by preventing synaptic communication
within the network, the cell then oscillates with tonic exposure
to NMDA. This phenomenon, termed NMDA-dependent, TTX-
resistant oscillations (NMDA-TTX oscillations), is seen in most
lamprey VHNs. This demonstrates that spinal neurons show
intrinsic membrane properties that are capable of hyperpolarizing
the cell during constant depolarizing challenge from an agonist.
The net effect is to produce Vm oscillations. Removal of Mg2+

from the perfusing Ringer’s solution abolishes the oscillation
and causes the neurons to remain at depolarized potentials
because Mg2+ confers voltage-sensitivity to the NMDAR (Wallén
and Grillner, 1987). Thus, the intrinsic membrane property of

spinal neurons that causes oscillations is subject to the voltage-
dependency of Mg2+ block of the NMDAR.

More generally within the nervous system, NMDARs have
been well characterized as non-specific cation channels permeable
to Na+, K+, and Ca2+ (MacDermott et al., 1986; Ascher and
Nowak, 1988). More recently, NMDAR-dependent Ca2+ entry
has been demonstrated to be integral to dendritic computation
(Branco et al., 2010) through regenerative “NMDA spikes” in
pyramidal neurons (Schiller and Schiller, 2001; Larkum et al.,
2009) with roles spanning from the induction of synaptic plas-
ticity (Alford et al., 1993) to behavior (Smith et al., 2013b). In
lamprey VHNs, removal of Ca2+ from the ringer and replacement
with Ba2+ (an equivalent divalent cation which can also permeate
Ca2+ ionophores) during NMDA-TTX oscillations causes the cell
to become similarly trapped at a depolarized Vm. Thus, Ca2+ is
necessary to hyperpolarize the cell from the depolarized state.
Ca2+ activates myriad Ca2+-dependent proteins. In particular,
VHNs contain Ca2+-dependent K+ channels (El Manira et al.,
1994; Wall and Dale, 1995; Han et al., 2007; Li and Bennett,
2007), which upon binding Ca2+, rapidly open a K+ channel
that hyperpolarizes the cell. This “excitation-inhibition coupling”
is a mechanism that effectively allows the cell to “turn off ”
autonomously following activation.

The Ca2+-dependent K+ channel of the KCa2 subtype (for-
merly SK2 (Wei et al., 2005)) participates in two distinct processes
in lamprey VHNs both of which are integral to the behavioral
locomotor output of the spinal cord. Its most well-described
role follows the AP when depolarization activates N- and P/Q-
type (Wikström and El Manira, 1998) voltage-gated Ca2+ chan-
nels (VGCCs) and the entering Ca2+ activates KCa2 channels
to cause an afterhyperpolarization (AHP; Figure 3; Hill et al.,
1992; Meer and Buchanan, 1992). The AHP can be divided into
fast, medium and slow subcomponents, of which the medium
AHP (mAHP) is mediated by KCa2 channels (Bond et al., 2004).
Due to slow kinetics (decay time constant of ∼200 ms), the
mAHP mediates spike frequency adaptation, the reduction in
spike frequency from repeated spiking, by raising the relative
threshold for subsequent AP generation due to an increase in
K+ conductance. Blockade of KCa2 channels with the selective
antagonist, apamin, increases spike frequency from intracellular
current pulses (Meer and Buchanan, 1992; Díaz-Ríos et al., 2007;
Jones and Stuart, 2013). KCa2 channels are extremely important
for regulating neuronal firing, conserved among different species
and cell types (Meer and Buchanan, 1992; Sah and Bekkers, 1996;
Marrion and Tavalin, 1998; Wikström and El Manira, 1998; Faber
and Sah, 2002; Bloodgood and Sabatini, 2007; Jones and Stuart,
2013).

The second role for KCa2 lies in the plateau termination
and membrane repolarization during NMDA-TTX oscillations
(Figure 3). The ionic mechanism driving Vm oscillations
is well-characterized and is hypothesized to proceed as: (1)
NMDAR activation depolarizes VHNs; (2) increasing NMDAR
conductance by ejecting Mg2+ from the pore; (3) causing further
depolarization and Ca2+ entry via the NMDAR as the Vm

plateaus; (4) which activates KCa2 channels to hyperpolarize
the cell; and (5) ending the depolarized plateau to repolarize
the cell where it can repeat the cycle (Wallén and Grillner,
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FIGURE 3 | Repolarizing KCa2 channels are spatially segregated in
lamprey spinal VHNs according to their function and mechanism of
activation. (A) Top: An isolated lamprey CNS can be used to study the
brain and spinal circuits controlling locomotion. Pressure-ejection of
L-glutamate into the lamprey mesencephalic locomotor region (MLR)
induces short episodes of fictive locomotion, the electrophysiological
correlate of locomotion. Using a dual-pool recording chamber,
pharmacological agents can be selectively applied to the spinal cord,
without interfering with descending commands originating in the brainstem
that initiate and maintain locomotion. Locomotor bursts are recorded
directly from left and right VRs. Bottom: A long locomotor episode with

(Continued )

FIGURE 3 | Continued
regular, alternating bursts (control) follows after a puff of glutamate into the
MLR (arrow, glutamate). Blockade of KCa2 channels with the selective
antagonist, apamin, decreases the burst frequency and disrupts the
alternating locomotor rhythm. This demonstrates the necessity of KCa2
channels for correct alternation and regularity of the locomotor rhythm
(Nanou et al., 2013). (B) The effect of KCa2 channel blockade on locomotion
can be explained by the role the channel plays at the cellular level. Within
VHNs, KCa2 currents may be evoked either at synapses (top left) whereby
synaptic release of glutamate activates NMDAR-mediated Ca2+ entry and
thereby closely located KCa2 channels. It is this KCa2-mediated current that
is critical for the termination of NMDA-TTX oscillations (blue portion of
trace) shown below recorded from somatic microelectrode recordings.
KCa2-mediated currents are also responsible for the mAHP seen following
action potential firing shown at bottom left. However, this current is
activated following Ca2+ entry from VGCCs.

1987). Selective blockade of KCa2 channels with apamin (El
Manira et al., 1994) or UCL 1684 (Alpert and Alford, 2013)
prolongs the oscillation, and can even abolish the oscillation
completely. The cell becomes trapped in a depolarized state,
similar to extracellular Ca2+ removal, the substitution of Ca2+

for Ba2+, or non-specific blockade of K+ channels (Grillner
and Wallén, 1985; Grillner et al., 2001). Thus, KCa2 channels
are necessary for rhythmogenesis (Figure 3) in lamprey VHNs
by supplying a cell-autonomous repolarization, or “off signal”,
without the need of network inhibition (Nanou et al., 2013).

DENDRITIC Ca2+ SIGNALING IS DYNAMIC AND
DETERMINED BY CELLULAR AND MICROCIRCUIT
PROPERTIES
KCa2 channels within a single neuron have more than one distinct
computational role. Two have been identified in lamprey VHNs,
both subject to intracellular Ca2+ dynamics. Such a functional
sub-specialization may be explained both by distinct spatial loca-
tions of channel expression and the adequate spatial and func-
tional coupling to distinct sources of Ca2+ contributing to KCa2
activation (Figure 3). Indeed, N- and P/Q-type (Wikström and
El Manira, 1998) VGCCs are activated during the AP in lamprey,
triggering Ca2+ entry that activates KCa2 channels underlying the
mAHP. However, the mAHP activated by somatic current injec-
tion is unaffected by NMDA application (Hill et al., 1989). This
distinct separation between mAHP activation and NMDA-TTX
oscillation repolarization can be explained by NMDAR-generated
Ca2+ entry occurring in spatially distinct cellular sub-regions
from VGCC-generated Ca2+ entry during the AP. Across different
species and neuron types, the precise subtypes of VGCCs can
differ, but to mediate the mAHP, KCa2 channels must be suffi-
ciently close to VGCCs to be activated by their Ca2+ permeation.
Similarly, KCa2 channels mediating repolarization during NMDA-
TTX oscillations should be coupled to a distinct Ca2+ source, or
a Ca2+ source in a distinct subcellular location. The two likely
candidates for the latter are NMDARs and VGCCs (Wallén and
Grillner, 1987)—located separately from those responsible for
the mAHP (Hill et al., 1989)—while Ca2+ released from internal
stores might also contribute. NMDAR activation is necessary to
initiate oscillations, but as they lead to membrane depolarization,
this may subsequently activate VGCCs. However, release from
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internal stores likely contributes little because their depletion has
no effect on NMDA-induced swimming (Krieger et al., 2000)—
a behavior to which NMDAR-dependent intrinsic oscillations
contribute. The subcellular location of KCa2 channels responsible
for the repolarization may also be critical because physiological
NMDAR activation requires the presynaptic release of glutamate,
which occurs only at synapses. Determining the route of Ca2+

entry for repolarization of the oscillation is important for under-
standing how distinct Ca2+ domains and their coupling to KCa2
channels impacts computation both within individual neurons
and between synaptically connected neurons.

The spatial and temporal patterning over which dendritic
Ca2+ signaling occurs in spinal motor system VHNs during loco-
motion in lamprey (or in other vertebrate systems) is unknown.
Do many dendrites receive synchronous input from their various
synaptic partners? Does input occur in discrete spatial locations?
The location and timing of synaptic input is crucial for the trans-
mission of potentials arriving at the soma, which will greatly influ-
ence neuronal output (Larkum et al., 1999; Stuart and Häusser,
2001; Jarsky et al., 2005). Indeed, dendritic mechanisms that
are location-dependent and rely on clustered NMDAR-dependent
input generate plateau potentials and can change the mode of cell
firing (Major et al., 2008; Augustinaite et al., 2014; Grienberger
et al., 2014). Elucidating this pattern within lamprey spinal neu-
rons will inform how the location and timing of Ca2+ entry leads
to KCa2 channel activation, and furthermore, how synaptic activ-
ity distributed across a dendritic tree is integrated to produce cell
rhythmicity. This, in turn, will facilitate our understanding of how
intrinsic membrane properties combined with synaptic input
causes synchronization between neurons of the CPG. Neuronal
Ca2+ signaling can have distinct spatial components, easily iden-
tifiable using Ca2+ imaging. APs will lead to Ca2+ entry wherever
VGCCs are driven above threshold, and can cause many regions
of a cell (e.g., soma and proximal dendrites) to show synchronized
increases in intracellular Ca2+ (Ca2+

i). In contrast, local Ca2+

signaling domains (i.e., micro- and nano-domains) in dendrites
can occur following neurotransmitter receptor activation (e.g.,
NMDAR), but also from VGCCs following depolarization from
local synaptic potentials (Augustine et al., 2003). Synaptic signals
are remarkably localized, confined to individual dendritic spines
or discrete areas in dendritic shafts. For this reason, Ca2+ imaging
can directly identify active synapses. Each type of Ca2+ signaling
domain may be considered to be a distinct processing unit within
a neuron because Ca2+ signals can regulate local Ca2+-dependent
processes precisely where free Ca2+ levels transiently escape local
buffering. However, Ca2+ signals exceeding this local threshold
are transient—Ca2+ is rapidly buffered by Ca2+-binding proteins,
and then extruded via membrane pumps, or sequestered in intra-
cellular stores (Augustine et al., 2003; Berridge, 2006). This places
temporal and spatial restrictions on diffusion of Ca2+ within
neurons and is an important consideration when assessing the
degree of localization. Dendritic morphology, like the presence of
spines (∼1 µm in length), is a large determinant for the extent
of spread of Ca2+ because diffusion is restricted at the spine
neck (Nimchinsky et al., 2002). Lamprey spinal neuron dendrites
lack spines, but still posses fine compartments along dendritic
shafts (∼10 µm, see Figure 1; Viana di Prisco and Alford, 2004;

Alpert and Alford, 2013) that may theoretically serve a similar
purpose—the local restriction of the flow of ions and intracellular
messengers (Svoboda et al., 1996). Thus, morphology and the
intrinsic properties of the dendritic membrane impacts Ca2+

dynamics and the integration of electrical and chemical signals.
The functional distinction between global and local Ca2+

signals and their associated topography is integral to single neu-
ron computation necessary to generate rhythmic activity. The
synaptic localization of Ca2+ signals may represent the encoding
of distinct presynaptic information. Global, synchronized Ca2+

signals can be generated by back-propagating action potential
(bAP)-driven VGCC activation in dendrites (Schiller et al., 1997;
Stuart et al., 1997; Svoboda et al., 1997). When Ca2+

i is ele-
vated during these events, the number of parallel computations
being performed by the dendritic arbor is effectively reduced.
In contrast, local and spatially distributed NMDAR-dependent
synaptic Ca2+ signals reflect multiple discrete, simultaneous
computations (Chen et al., 2011). Each synapse can thus be
understood to be its own computational unit, capable of being
selectively tuned to support distinct information arriving within
a network.

Multiple, distinct routes can lead to Ca2+ entry. In behav-
ing neurons within some networks, these mechanisms may
work in concert, leading to nonlinear interactions between ion
channels and Ca2+ sources when occurring simultaneously. For
instance, following presynaptic release of glutamate, AMPA recep-
tors (AMPARs), NMDARs and metabotropic glutamate receptors
(mGluRs) may be activated in the postsynaptic compartment.
AMPARs are responsible for fast depolarization, and can locally
activate nearby VGCCs to cause Ca2+ entry. Local depolariza-
tion, or depolarization induced from bAPs can alleviate Mg2+

block of the NMDAR, facilitating Ca2+ influx during concurrent
and subsequent release of glutamate at that synapse (Yuste and
Denk, 1995; Nevian and Sakmann, 2004; Bloodgood and Sabatini,
2007). During bAPs, layer 5 pyramidal neurons have been shown
to require tight spatial coupling between Ca2+ entry through
R-type channels and KCa2 channels in proximal dendrites and
spines (Jones and Stuart, 2013). Group I mGluR activation can
lead to the release of Ca2+ from internal stores (Frenguelli et al.,
1993; Kettunen et al., 2002; Larkum et al., 2003; Topolnik et al.,
2009; Plotkin et al., 2013). Release from internal stores has been
shown to activate Ca2+-dependent K+ channels in many neurons
and species (Kawai and Watanabe, 1989; Akita and Kuba, 2000;
Yamada et al., 2004; Faber, 2010; Nakamura and Yokotani, 2010).
It is unknown if such combinatory mechanisms are present in
lamprey spinal neurons, but lamprey neurons do possess all the
necessary components. Indeed, specific agonists and antagonists
acting on discrete components have well-described cellular and
network effects (Alford et al., 2003). Any modulation of Ca2+

entry, either increasing or decreasing, within close proximity to
KCa2 channels, could impact subsequent channel activation and
particular effects on the locomotor behavior. For example, an
enhancement of Ca2+ could lead to early burst termination—
an effect that, if it were to occur within many neurons simulta-
neously, would scale to the behavioral level to terminate muscle
contraction earlier within the locomotor cycle. Upon repeated
enhancements in Ca2+, during rhythmic activity, this could
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facilitate a fast swimming rhythm. Defining their roles while
acting in concert is necessary to delineate how Ca2+ entry and
KCa2 activations drives oscillation generation.

The location of Ca2+ entry and the distance to its secondary
effectors determines the efficacy with which Ca2+ will reach its
target (Marrion and Tavalin, 1998). If the site of Ca2+ entry is
located far from KCa2 channels, then the probability of Ca2+

binding to a KCa2 channel is diminished compared to its binding
to other endogenous buffers that are located more proximally
or are cytosolic and diffusible. Thus, a larger Ca2+ signal will
be necessary to outcompete endogenous buffers. Conversely, if
KCa2 channels are located close to the site of Ca2+ entry, then
depolarization will be quickly and locally counteracted by K+

activation. For KCa2 channels to generate the mAHP, they must be
sufficiently close to the site of Ca2+ entry generated by AP-driven
VGCC activation. This functional coupling has been demon-
strated in numerous species and cell types (Sah and Bekkers,
1996; Marrion and Tavalin, 1998; Wikström and El Manira,
1998; Faber and Sah, 2002; Bloodgood and Sabatini, 2007; Jones
and Stuart, 2013). At present, the distance between the site of
Ca2+ entry and KCa2 channels can only be estimated based on
differences between BAPTA and EGTA-mediated occlusion of
KCa2 activation in lamprey spinal VHNs. The range has been
estimated to be between 20 and >200 nm in multiple CNS
neuron types depending on the target’s affinity for Ca2+ (Fakler
and Adelman, 2008). A recent measurement has suggested that
KCa2 channels activated following APs exhibit weak coupling to
VGCCs, as they are occluded by EGTA, the slow Ca2+ buffer
(Kforward = 1.5 × 106 M−1s−1) (Roberts, 1993), placing the
separation at greater than ∼100 nm in neocortical pyramidal
neurons (Jones and Stuart, 2013). Occlusion of KCa2 channel
activation from NMDAR-dependent Ca2+ entry using BAPTA,
the fast Ca2+ buffer (Kforward = 6 × 108 M−1s−1) (Roberts,
1993), demonstrates a narrow range of 20–50 nm (Ngo-Anh
et al., 2005), with experiments in lamprey suggesting similar
degree of coupling (Alpert and Alford, 2013; Nanou et al.,
2013).

For KCa2 channels to repolarize NMDA-TTX Vm oscillations,
they must be activated by NMDAR-dependent Ca2+ entry. The
subcellular expression of ion channels, including KCa2 chan-
nels, is unknown in lamprey, while some spatial information
has been detailed for mammalian hippocampal neurons. KCa2
channel immunoreactivity demonstrates channel expression on
dendritic spines in CA1 pyramidal neurons (Sailer et al., 2004;
Ballesteros-Merino et al., 2012) in addition to shafts and soma
in cultured mice hippocampal neurons (Ngo-Anh et al., 2005).
Recently, however, using single-molecule atomic force microscopy
with unprecedented spatial resolution (<10 nm (Müller et al.,
2009)), KCa2 channels were shown to be in high concentration
in the dendrites relative to the soma of live, cultured hippocampal
neurons (Maciaszek et al., 2012). Functional evidence for com-
plexes of NMDARs and KCa2 channels has been demonstrated
in many species and cell types. NMDAR-mediated field poten-
tials are potentiated by apamin in CA1 hippocampal pyramidal
neurons (Gu et al., 2008). Direct NMDA application leads to
an inward current followed by an apamin-dependent outward
current (Shah and Haylett, 2002; Nanou et al., 2013). Apamin

potentiates both synaptically evoked NMDAR EPSPs on CA1
dendrites, while also potentiating apical spine Ca2+ transients
(Ngo-Anh et al., 2005). However, it was later demonstrated
using 2-photon glutamate uncaging that Ca2+ entry via R-
type VGCCs is necessary and directly coupled to KCa2 channels
at these spine synapses, whereas NMDAR-dependent Ca2+ is
insufficient to activate KCa2 channels (Bloodgood and Sabatini,
2007). This discrepancy was recently reconciled with experiments
demonstrating that Kv4.2-containing channels and NMDARs are
differentially coupled to R-type VGCCs and NMDARs, respec-
tively (Wang et al., 2014b). Furthermore, KCa2 channel activa-
tion by NMDAR-induced spine Ca2+ transients is also occluded
by BAPTA, but not by EGTA, indicating a very close physical
coupling of the route of Ca2+ entry and the KCa2 channel
(Ngo-Anh et al., 2005)—a similar role for NMDARs and KCa2
channel is also demonstrated in the lateral amygdala (Faber
et al., 2005) and in layer 5 neocortical pyramidal neurons
(Faber, 2010). Furthermore, overexpression of KCa2 channels
depresses synaptically evoked glutamatergic EPSPs (Hammond
et al., 2006). Due to the role of NMDAR-dependent Ca2+ entry
in synaptic plasticity, blockade of KCa2 channels facilitates the
induction of LTP (Stackman et al., 2002) because this, in turn,
facilitates Ca2+ entry through NMDARs, presumably by aug-
menting depolarization. Similarly, downregulation of KCa2 chan-
nels is necessary for amplification of dendritic responses in a
compartment- (Ohtsuki et al., 2012) or synapse-specific (Lin
et al., 2008) manner, partially explaining the subsequent poten-
tiation of current.

Thus, the very precise subcellular targeting of KCa2 channels
to ion channels responsible for Ca2+ transients (demonstrated
by sensitivity to rapid Ca2+ binding by BAPTA) will profoundly
impact cell firing rates, dendritic integration, and processing
both in real-time during individual cycles of locomotor activity,
but also in the long-term. The molecular complexing of Ca2+

sources to secondary effector proteins, like KCa2 in lamprey,
will consequently impact spike-timing through activation of the
mAHP (Buchanan and Grillner, 1987; Wallén and Grillner, 1987;
Alford and Williams, 1989; Wallén et al., 1989; Hill et al., 1992;
Hochman et al., 1994; Wall and Dale, 1995; Buchanan, 2001;
Harris-Warrick, 2002; Wang, 2010) in addition to burst termi-
nation (El Manira et al., 1994; Alpert and Alford, 2013; Nanou
et al., 2013) during NMDAR-dependent rhythmic activity. These
intrinsic membrane properties have direct consequences on spinal
neuron output, and hence the locomotor pattern generation of
the spinal network.

EVIDENCE FOR A DENDRITIC MECHANISM OF INTRINSIC
OSCILLATIONS IN THE CNS
In lamprey VHNs filled with a Ca2+-sensitive dye, Ca2+

i oscil-
lates in-phase with VR bursts and Vm oscillations, varying with
different NMDA-induced swimming speeds (Bacskai et al., 1995;
Viana di Prisco and Alford, 2004). In contrast, during activ-
ity that was subthreshold to action potential firing, the soma
showed no Ca2+ fluctuations, while the dendritic fluorescence
oscillated in-phase with the Vm, with the largest oscillations in
Ca2+

i found in the distal dendrites. When spiking, the somatic
Ca2+ then showed spike-dependent activity, which is in-phase
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with Vm, oscillations because spiking occurs at the depolarized
phase of activity. However, despite spikes also elevating dendritic
Ca2+ signals, the largest increases in fluorescence occurred in
the soma, likely reflecting somatically localized VGCC activation
(Viana di Prisco and Alford, 2004). The elevated dendritic signals
could be due to dendritic VGCC activation, enhanced NMDAR
conductance due to local depolarization from bAPs, or both. The
phase relationships of the Ca2+ oscillations in dendrites relative
to Vm oscillations suggest that these Ca2+ signals are responsible
for KCa2 activation, and hence repolarization of the membrane.
This result along with experiments discussed earlier (Grillner
and Wallén, 1985; Wallén and Grillner, 1987) provide substan-
tial evidence that NMDAR-dependent Ca2+ entry underlies the
repolarization of Vm oscillations.

Results from experiments in which the spinal CPG is activated
by application of exogenous NMDA also imply that rhythmic
Vm oscillations are driven by phasic Ca2+ oscillations that are
synchronized across large regions, if not all, of the dendritic tree
(Figure 4). However, during bath-application of NMDA, both
synaptic and extrasynaptic NMDARs are activated and thus the
dendritic Ca2+ signals are likely to be much less spatially and
temporally constrained than signals driven during physiologi-
cally evoked locomotion. This forces the concerted activation
of all NMDARs when the dendritic membrane is depolarized,
which would consequently synchronize all parts of the neu-
ron. Thus, it is unclear if during NMDA-evoked locomotion
whether network synchrony is driven by synchronized presy-
naptic activity caused directly by bath-applied NMDA, or if
rhythmicity emerges from more physiologically derived synap-
tic integration of distributed input and is then transformed
into well-defined Vm oscillations. Similarly, the spatiotempo-
ral profile of dendritic activation and Ca2+ signaling underly-
ing membrane potential oscillations during locomotion remains
unknown. This profile will, however, be particularly important for
understanding how membrane properties drive the activity of the
network.

Synchronized oscillations are widespread in the CNS. While
critical for the generation of motor rhythms, they are key compo-
nents of many neural systems. In the neocortex and hippocampus,
oscillations at the cellular level are correlated with synchrony
at the network level (Contreras and Steriade, 1995) and are
thought to underlie cognitive processes such as working memory
(Llinás, 1988), spatial navigation, and memory encoding (Buzsáki
and Moser, 2013). Both theoretical approaches and experimental
evidence suggest that the cellular basis for working memory
relies upon persistent firing of networks generated by recurrent
synaptic excitation of NMDARs due to its slow kinetics and
voltage-dependency (Lisman et al., 1998; Wang, 2001) conferring
bistability (Durstewitz et al., 2000). NMDA-TTX oscillations are
also found in midbrain dopamine neurons (Johnson et al., 1992;
Deister et al., 2009) cat neocortical pyramidal neurons (Flatman
et al., 1986), rat inferior olivary neurons (Placantonakis and
Welsh, 2001), Xenopus RS neurons (Li et al., 2010), guineau pig
and rat trigeminal motor neurons (Kim and Chandler, 1995;
Hsiao et al., 2002), and rat and cat thalamocortical neurons
(Leresche et al., 1991), demonstrating a similar intrinsic oscilla-
tory mechanism to lamprey spinal neurons.

FIGURE 4 | NMDA-evoked, TTX-resistant oscillations in lamprey VHNs
show simultaneous oscillations in Ca2+ throughout the dendritic tree.
(A) VHN neurons were labeled with the Ca2+-sensitive dye, Oregon Green
488 BAPTA1, by pressure injection from a recording microelectrode and
recorded during oscillations evoked by application of NMDA (100 µM) in
TTX (1 µM). Pseudocolored, raw images are shown from the trough of the
hyperpolarization (left, denoted by # in (C)) and the peak of depolarization
(right, denoted by * in (C)). Colored numbers and arrows point to discrete
regions of interest whose fluorescence measurements are shown in (C).
Fluorescence intensity scale shown to the right. (B) Current clamp
recording of the membrane potential oscillations. (C) Simultaneous to the
membrane potential oscillations in (B), Ca2+ recorded using the fluorescent
dye Oregon Green 488 BAPTA1 shows transient increases in concentration
in the dendrites. In the proximal dendrites, the oscillations are above a
higher baseline Ca2+ evoked by NMDA application than that recorded in the
distal dendrites, however, all recorded regions of the dendrites exhibit
these Ca2+ oscillations. All Ca2+ fluorescence is normalized to the
fluorescence at rest prior to the application of NMDA. The regions recorded
are indicated by colored numbers in (A) and (C) (Alford et al., 2003).

Although arrangements involving NMDARs and KCa2 chan-
nels have been shown in many other systems and synapses, their
functions have not been expressly linked to specific behaviors or
to rhythm generation, but rather have been proposed to serve a
more generalized mechanism for tempering synaptic potentials
and synaptic plasticity (Shah and Haylett, 2002; Stackman et al.,
2002; Maher and Westbrook, 2005; Ngo-Anh et al., 2005; Gu
et al., 2008; Lin et al., 2008; Faber, 2010; Harvey-Girard and
Maler, 2013). Apamin or intracellular dialysis with BAPTA pro-
longs glutamate-induced plateau potentials and Ca2+ transients
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in CA1 pyramidal neuron distal apical dendrites (Wei et al.,
2001; Cai et al., 2004), but these plateau potentials are pro-
duced through a combination of R-type VGCCs, NMDARs and
bAPs (Takahashi and Magee, 2009), and thus does not explic-
itly link Ca2+ entry via NMDARs to KCa2 activation. NMDAR-
dependent activation of KCa2 channels at layer 5 pyramidal
neuron synapses (Faber, 2010) indicates the necessary compo-
nents are present, but the mechanism of dendritic oscillation
generation has yet to be explored. Recently, a dendritic mech-
anism for synchronizing spatially disparate synaptic input has
been described in CA1 pyramidal neurons, which has implica-
tions in the synchronization of hippocampal networks (Vaidya
and Johnston, 2013). In lamprey spinal neurons, the nonlinear
dynamics of the NMDAR combined with its spatial coupling
to KCa2 channels confers Vm bistability, enabling these neurons
to be oscillators to synchronize spinal networks for rhythmic
locomotion.

EVIDENCE FOR CLOSE COUPLING OF NMDARs AND KCa2
CHANNELS
If NMDARs are the primary route of Ca2+ entry necessary for
repolarization, then synaptically activated NMDARs will evoke
highly localized Ca2+ entry within spinal neuron dendrites,
and this Ca2+ must be located sufficiently close to KCa2 chan-
nels to activate an outward current. EIN stimulation causes
localized, NMDAR-dependent Ca2+ entry in VHN dendrites
(Alpert and Alford, 2013). NMDAR EPSCs are sufficient to
activate K+ currents, which are blocked by the KCa2 blockers,
apamin and UCL 1684, or following whole cell dialysis with
BAPTA. In contrast, EGTA dialysis is ineffective at preventing
KCa2 activation (Nanou et al., 2013). Furthermore, BAPTA also
prevents repolarization from depolarized plateaus in oscillating
neurons induced by NMDA in TTX, whereas those dialyzed
with EGTA are able to repeatedly repolarize (Alpert and Alford,
2013). Since BAPTA, but not EGTA, occludes the binding of
Ca2+ to secondary effectors, presumably KCa2, the channel must
be located physically close to the site of Ca2+ entry (Marrion
and Tavalin, 1998; Ngo-Anh et al., 2005; Fakler and Adelman,
2008).

Any possible role for VGCCs in directly providing Ca2+

to drive the repolarization is somewhat limited by the volt-
age threshold of activation relative to the Vm oscillation range.
Lamprey VHNs contain multiple subtypes of VGCCs includ-
ing N-, P/Q-, and L-type channels with varying contributions
to depolarization-evoked whole-cell currents1 (El Manira and
Bussières, 1997) and presumably distinct cellular localizations
(Llinás and Yarom, 1981; Llinás, 1988; Westenbroek et al., 1990,
1992; Mills et al., 1994; Isope et al., 2012). In cultured lamprey
spinal neurons, N- and P/Q-type channels account for ∼75%
of the total whole cell VGCC current, while L-type current
contributes ∼15% with the residual Ca2+ current uncharac-
terized, but sensitive to Cd2+, the non-specific VGCC blocker
(El Manira and Bussières, 1997). However, these values are likely
impacted by reduced dendritic arbors in culture and space clamp
issues common to somatic recordings. Cd2+ abolishes whole-cell
current in situ, yet NMDA-TTX oscillations persist in Cd2+

(Alpert and Alford, 2013), while simultaneous Ca2+
i oscillations

are insensitive to selective blockade of N- and P/Q-type VGCCs.
L-type channels couple to KCa2 channels in hippocampal pyra-
midal neurons (Marrion and Tavalin, 1998), while Ca2+ imaging
suggests that this coupling may exist in a subset of dendritic loci
in lamprey (Wang et al., 2013) because modulation of L-type
channels impacts Ca2+ oscillations and the Vm oscillation wave-
form (Wang et al., 2014a). The current-voltage (I-V) relationship
of VGCCs in VHNs shows minimal activation at −60 mV, with
significant activation occurring between −40 mV and −30 mV,
peaking between −10 and 0 mV (El Manira and Bussières,
1997; Alpert and Alford, 2013). Interestingly, the same Vm where
VGCCs become activated,−40 mV, is also the peak plateau poten-
tial reached during membrane potential oscillations in NMDA
(Alpert and Alford, 2013). Thus, for the majority of VHNs, the
neurons oscillate subthreshold to the VGCC activation thresholds
except for the initial transient peak of the oscillation amplitude.
Indeed, NMDA application reveals a depolarizing step-evoked
inward current that occurs within the Vm oscillation range at
substantially more hyperpolarized Vms than currents mediated by
VGCCs in these neurons. Similarly, Ca2+-imaging indicates that
Ca2+ entry within the oscillation range is robustly potentiated
and dominated by NMDAR-dependent Ca2+ entry (Alpert and
Alford, 2013). During voltage steps in NMDA, biphasic currents
are generated. This NMDA-induced inward current followed by
an outward current is present within the oscillation range (i.e.,
below −40 mV) and blocked by BAPTA, but not EGTA, again
reflecting a close functional coupling between NMDAR current
and presumably KCa2 channel activation leading to the outward
current. Therefore, both Vm and Ca2+

i oscillations are driven
through a dendritic mechanism requiring closely apposed ensem-
bles of NMDARs and KCa2 channels and little contribution of
Ca2+ from VGCCs.

DENDRITIC STRUCTURE AND SYNAPTIC INTEGRATION OF
PRESYNAPTIC MICROCIRCUITRY OF VENTRAL HORN
NEURONS
In general, the origin of presynaptic input, synapse location
within the dendritic tree, and electrotonic distance to soma
informs the computation performed by the postsynaptic neuron.
Spatially and anatomically compartmentalized dendritic targeting
by presynaptic axons is found in many vertebrate neural circuits
including the tectum (Bollmann and Engert, 2009), hippocam-
pus (Pouille and Scanziani, 2004; Jarsky et al., 2005), neocortex
(Weiler et al., 2008; Anderson et al., 2010), and cerebellum (Ito,
2006; Gao et al., 2012). Variability in presynaptic activity can lead
to variation of the topology of Ca2+ signaling postsynaptically
where it may be encoded predictably onto distinct dendritic
compartments (Bollmann and Engert, 2009; Xu et al., 2012).
In other instances, Ca2+ signaling is unpredictably encoded and
may demonstrate extremely heterogeneous expression of activ-
ity, even at neighboring synapses (Chen et al., 2011). Global
Ca2+ signals generated by AP-induced VGCC activation may
appear qualitatively similar to those generated from convergent
presynaptic activation leading to a global rise in Ca2+. However,
the computation performed by a neuron is distinct, depend-
ing on the modality of Ca2+ signaling. Somatic signals pro-
vide intrinsic information about cell firing, while local, synaptic
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signals inform about the spatial and functional connectivity of
the network and its activation state. Indeed, the computational
ability of a neuron’s dendrites is intimately tied to and ultimately
informed by presynaptic inputs, whose activity leads to discern-
able behavioral functions postsynaptically (Jia et al., 2010). In
hippocampal and neocortical pyramidal neurons, neighboring
dendritic synapses are more likely to be activated synchronously
than synapses spaced further apart (Kleindienst et al., 2011;
Takahashi et al., 2012). This functional clustering is NMDAR-
dependent and likely due to synchronized and convergent tar-
geting of multiple presynaptic axons projecting to the recorded
neurons, rather than a single presynaptic axon making multiple
contacts. Such functional clustering may be important for circuit
orchestration during development (Kleindienst et al., 2011) and
experience-dependent synaptic plasticity (Makino and Malinow,
2011). Furthermore, NMDAR activation is essential for nonlinear
boosting of temporally and spatially integrated synaptic potentials
(Polsky et al., 2004). Synaptic potentials arriving at the soma
from discrete synaptic events can vary according to degree of
clustering (Losonczy and Magee, 2006) and the direction and
velocity of synaptic input along single dendritic branches (Branco
et al., 2010). The patterning of synaptic input has profound
consequences on Ca2+

i and this “within dendritic branch” form
of computation is NMDAR-dependent. Furthermore, synaptic
plasticity—the Ca2+-dependent change in strength of a synapse—
can occur selectively at a single synapse (Matsuzaki et al., 2004;
Enoki et al., 2009; Makino and Malinow, 2011). Thus, postsy-
naptic responses to Ca2+, and hence dendritic computational
capacity (Poirazi and Mel, 2001), are highly dynamic and depend
on presynaptic input and subsequent post-synaptic Ca2+ signals
as well as the function of the circuit in which the neuron is
embedded.

Discrete targeting provides neurons with more processing
power (Häusser and Mel, 2003; Polsky et al., 2004) by integrating
origin-specific, segregated streams of presynaptic information.
This is further enhanced as the location and expression of var-
ious voltage-gated ion channels and synaptic receptors varies
between different types of neurons but also subcellularly, between
different regions of a single neuron (Migliore and Shepherd,
2002; Williams and Stuart, 2003; Jones et al., 2014). Such circuit
and dendrite dynamics may also be present in spinal networks
controlling movement. A well-defined topographic map of spinal
motoneuron recruitment in larval zebrafish proceeds from the
ventral to dorsal spinal cord as swimming frequency increases
(McLean et al., 2007) and neurons are recruited functionally
according to intrinsic rhythm-generating capabilities and require-
ment for presynaptic oscillatory synaptic drive (Menelaou and
McLean, 2012). However, the interneurons that drive motoneu-
ron recruitment demonstrate more complex activation patterns
(McLean et al., 2008). The spatial targeting of motoneuron or
interneuron dendrites and the integration of synaptic inputs con-
ferring rhythmicity have yet to be defined, but dendritic filopodial
activity follows a topographic pattern that maps (Kishore and
Fetcho, 2013) onto their recruitment order (McLean et al., 2007)
and subsequent electrical activity level, delineating behavioral
function to dendrites located in discrete regions along the dorso-
ventral axis. Thus, the location and targeting of specific dendritic

subregions by spatially defined presynaptic neurons may suggest
a functional role for individual dendritic branches (Wei et al.,
2001; Poirazi et al., 2003; Branco and Häusser, 2010), or perhaps
even synapses (Jia et al., 2010), in the output of a given motor
neuron.

Dendrite distribution has been shown to differ for motoneu-
rons innervating distinct muscles in the chick spinal cord (Okado
et al., 1990). Mice motoneuron dendrites are genetically oriented
to particular spinal territories, which influence the connectivity
patterns of their proprioceptive afferent inputs (Vrieseling and
Arber, 2006). The targeting of dendrites into specific lamina
provides distinct opportunities for different classes of presynaptic
excitatory and inhibitory interneurons to also target different
dendritic regions (Kosugi et al., 2013). Drosophila motoneu-
ron dendrites are topographically organized whereby individual
neurons genetically target their dendrites to precise anatomi-
cal territories centrally, representing their muscle distribution
peripherally (Landgraf et al., 2003; Brierley et al., 2009). Within
a single dendritic tree there can be a heterogeneous patterning of
excitatory synapses (Mauss et al., 2009) and, furthermore, distinct
dendritic subtrees can target discrete regions of the neuropil
(Vonhoff and Duch, 2010). Therefore, organizational principles
orchestrating spinal circuits controlling locomotion are subject
to genetic, developmental, and activity-dependent specificity, but
determining the function of distinct subcellular targeting requires
further investigation.

SYNAPSE-SPECIFICITY OF KCa2 CHANNELS IS
BEHAVIORALLY RELEVANT
The precise coupling of synaptically activated receptors and sec-
ondarily activated ion channels may complement anatomical
specificity of excitatory connections. The behavioral importance
of this coupling becomes evident when considering how descend-
ing brainstem RS neuron drive interacts with the spinal cord CPG.
In vertebrates, RS neurons receive feedback modulation from the
spinal CPG that causes them to fire in-phase with the rostral
spinal segments (Kasicki et al., 1989; Sirota et al., 2000; Dubuc
et al., 2008). This phenomenon creates a paradox with respect
to RS innervation of the spinal CPG. In lamprey, each VHN
receives input from both local circuit interneurons (glutamater-
gic and glycinergic) (Buchanan, 1982; Buchanan and Grillner,
1987) and descending RS axons (glutamatergic) (Buchanan et al.,
1987; Brodin et al., 1988). Thus, a single VHN may receive two
distinct types of glutamatergic contacts. Since the animal creates
a rostro-caudal phase lag of 360◦ from head to tail (Wallén
and Williams, 1984), substantial regions of the spinal cord are
necessarily out-of-phase with RS neuron firing. Furthermore,
as the fish swims, RS axon APs are initiated in the brainstem
and project throughout the length of the spinal cord where
they excite local CPGs. The AP propagation rate is faster than
the speed of the mechanical wave driven by the propagation of
neural excitation by segmental CPGs (∼10 Hz traveling wave).
Thus, there are two traveling waves, RS axon-generated AP prop-
agation and CPG neural waves, which are out-of-phase across
substantial rostro-caudal regions of the spinal cord and whose
phase mismatch varies with locomotor frequency (Figure 5). This
phase mismatch precludes RS axons from being phase-locked
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FIGURE 5 | Phase-matched and phase-mismatched excitatory
synapses in the spinal cord of lamprey. (A) As the lamprey swims it
generates a traveling wave from head to tail. The sinusoidal body curvature
illustrated here represents a single moment in body movement during a
bout of swimming. During swimming, command excitation is continually
provided by RS axons whose somata in the brainstem (encircled in black)
fire (blue) in phase with the rostral spinal CPG neurons. This is illustrated by
the rostro-caudal overlap of red and blue. It is the output of spinal segments
that causes ipsilateral muscle contraction (red). Due to the speed at which
the action potential (AP) propagates along RS axons, the AP invades more
caudal areas of the spinal cord whose associated muscles do not undergo
contraction because the CPG wave (responsible for contraction) travels at a
delay relative to the AP. This leads to regions along the spinal cord where AP
firing overlaps with inhibited musculature (illustrated by overlap of blue and
white regions in the middle). This would predictably lead VHN excitation at
inappropriate times during the swim cycle. This phase mismatch between
RS axons and CPG neurons may be avoided by synapse-specific KCa2
channel activation. (B) Circuit model in which excitation from EINs (red
outlined cell) projects to other VHNs (black outlined cell) locally within the
spinal cord. NMDAR currents from these neurons (black trace, NMDAR
EPSC) are enhanced by the addition of apamin, the specific KCa2 channel
antagonist, to block KCa2 currents (blue trace). (C) RS synapses from large
descending axons (black shaded bar) which project throughout the spinal
cord, show NMDAR currents (black trace, NMDAR EPSC) that are
unaffected by apamin (blue trace) (Alpert and Alford, 2013).

with VHNs, thus removing the need for pre- and postsynaptic
synchronization conferred by coupling of NMDARs and KCa2
channel activation.

Accordingly, it may be considered problematic for RS
synapses expressing NMDARs to be coupled to KCa2 chan-
nels, which would instill a strict phase-relationship between
the pre- and post-synaptic neuron via excitation-inhibition
coupling. In contrast, spinal EINs are appropriately phase-locked
to their targets because the extent of their spinal projections are

limited (Buchanan et al., 1989). This hypothesis is supported
by experiments utilizing paired recordings between RS axons
and VHNs, demonstrating that postsynaptic NMDAR-mediated
responses are insensitive to apamin (Cangiano et al., 2002; Alpert
and Alford, 2013). In contrast, glutamatergic synapses between
EINs and other VHNs within the spinal cord exhibit strong
NMDAR coupling to KCa2 channels (Alpert and Alford, 2013;
Nanou et al., 2013), conferring excitation-inhibition coupling and
phase-locking as the CPG waves propagate between segments.
Such synapse-specificity emphasizes the highly localized nature of
dendritic Ca2+ signals and the profound importance for restrict-
ing Ca2+ entry within local domains (Figure 5). Within this
framework, the synapse-specificity of KCa2 channel activation is
crucial for creating synchrony between neurons of the spinal net-
work. Thus, the synaptic localization of the KCa2 channel coupled
to NMDARs is not just important for opposing depolarization,
but together with the precise function of the presynaptic neuron,
establish the foundation for generating network rhythmicity.

NEUROMODULATION OF KCa2 CHANNELS MEDIATING
LOCOMOTION
Locomotion is also activated and modulated by monoaminergic
systems. Bath-applied serotonin (5-HT), alone or within a cock-
tail of monoamines, can activate locomotion and fictive locomo-
tion in many preparations (Cazalets et al., 1992; Rossignol et al.,
2002). Like glutamate, spinal release of 5-HT originates from both
intraspinal (Schotland et al., 1995, 1996; Zhang and Grillner,
2000) and brainstem neurons (Zhang et al., 1996; Abalo et al.,
2007; Antri et al., 2008; Barreiro-Iglesias et al., 2008). In lam-
preys, bath-applied 5-HT has a well-defined modulatory effect
on the CPG—it slows ventral root bursting during both spinal
exogenous agonist-evoked (Wikström et al., 1995) and brainstem-
evoked locomotion (Gerachshenko et al., 2009). 5-HT mediates
its effects both pre- and post-synaptically through mechanisti-
cally distinct but behaviorally convergent effects. Postsynaptically,
5-HT modifies the activation of KCa2 channels. This postsy-
naptic effect is mediated at two distinct subcellular sites. 5-HT
suppresses burst termination during fictive locomotion induced
by NMDA (Harris-Warrick and Cohen, 1985), an effect present
during NMDA-TTX driven intrinsic oscillations (Wallén et al.,
1989) and which is analogous to blockade of KCa2 channels with
apamin (El Manira et al., 1994) or UCL 1684 (Alpert and Alford,
2013). This prolongation of the oscillation may be mediated
by direct interaction of 5-HT receptors on KCa2 channels, or
alternatively, via an indirect inhibition of NMDARs (Schotland
and Grillner, 1993) or VGCCs (Wang et al., 2014a) supplying
Ca2+ for KCa2 channels responsible for the repolarization. Inter-
estingly, the effects of 5-HT are absent when the network is
activated by kainate, which will not activate NMDARs directly.
This suggests that NMDAR-dependent Ca2+ entry contributing
to burst termination (Alpert and Alford, 2013; Nanou et al., 2013)
is necessary for 5-HT to modulate the oscillation and that 5-HT
receptors inhibit KCa2 channels activated directly by NMDAR-
mediated Ca2+ permeation.

In addition to effects of 5-HT directly on NMDAR-mediated
oscillations, 5-HT1A receptors (Wikström et al., 1995) inhibit
N-type VGCCs (Hill et al., 2003), reducing Ca2+ necessary for
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KCa2 channel activation involved in mAHP (Wikström and El
Manira, 1998). This effect is accordingly limited to individual
neurons that spike repetitively during locomotion (or fictive
locomotion). Thus, 5-HT interactions with KCa2 channels are
important in controlling firing rates in lamprey (Wallén et al.,
1989; Hill et al., 1992; Meer and Buchanan, 1992) as well as other
systems, but are also integral to the ionic mechanism contribut-
ing to NMDAR-dependent oscillatory properties (Harris-Warrick
and Cohen, 1985; El Manira et al., 1994; Alpert and Alford, 2013;
Nanou et al., 2013).

Presynaptically, 5-HT modulates glutamate release from
intraspinal connections (e.g., EIN-VHN synapses) as well as from
RS command neurons (Buchanan and Grillner, 1991; Blackmer
et al., 2001, 2005). This effect mediated by 5-HT1B receptors acts
synergistically with the effects on KCa2 channels. It also lengthens
the locomotor burst duration during agonist- and (Schwartz
et al., 2005) brainstem-evoked locomotion (Gerachshenko et al.,
2009) by blocking synaptotagmin/SNARE complex interactions
(Blackmer et al., 2005). This reduces cleft glutamate concentra-
tion, which leads to a selective reduction of AMPAR activation
because NMDARs respond to low glutamate cleft concentrations
more readily than do AMPARs (Patneau and Mayer, 1990; Choi
et al., 2000; Schwartz et al., 2007). Sustained NMDAR activa-
tion combined with reduced AMPAR activation slows bursting
recorded during fictive locomotion. This is similar to pharma-
cologically induced locomotion, which shows slower burst rates
in NMDA compared to AMPA or kainate (Brodin et al., 1985;
Alford and Grillner, 1990). It may in part be attributed to the
slow and fast kinetics of NMDARs and AMPARs, respectively
(Alford and Grillner, 1990), but is also a function of the spinal
network in which repetitive activation that causes augmenting
synaptic responses as seen in 5-HT favors slower rates of fictive
locomotion (Kozlov et al., 2001; Svensson et al., 2001). Therefore,
the complement of excitation of different glutamate receptors on
VHN dendrites and the subsequent integration of those inputs, in
conjunction with KCa2 channels, is subject to serotonergic mod-
ulation of both synaptic transmission and intrinsic membrane
properties. These very different effects of modulators impacting
synaptic function and KCa2 converge to influence the output of
single neurons that scale to alter motor output.

Thus, the serotonergic system in the spinal cord plays a crucial
role in modulating the output of the spinal network. While
these results, whether mediated by pre- (Schwartz et al., 2005;
Gerachshenko et al., 2009) or postsynaptic (Harris-Warrick and
Cohen, 1985; Wallén et al., 1989; Wikström et al., 1995) 5-HT
receptors explain effects of exogenous 5-HT, pharmacological
application obscures crucial information regarding the spatiotem-
poral pattern of 5-HT release during swimming. Nevertheless, it
is clear that 5-HT has profound effects on neural patterns and
phase relationships within the spinal cord during locomotion and
that this effect is substantially mediated through effects on KCa2
channel activation.

IMPORTANCE OF STUDYING DENDRITIC PROPERTIES
WITHIN A BEHAVING NETWORK
In all vertebrates, 5-HT and glutamate applied exogenously
can initiate and influence locomotor-like activity. While it is

remarkable that systemic drug application can reliably produce
ethologically relevant locomotor patterns in lamprey (Sigvardt
et al., 1985) and in other model systems (Rossignol et al.,
1998; Kyriakatos et al., 2011), NMDARs in vivo are not phys-
iologically activated by a tonic and diffuse release of gluta-
mate. Instead, the release of neurotransmitter and subsequent
receptor binding is exquisitely targeted to discrete postsynap-
tic loci with temporal precision. The physiological activation
of NMDARs in any circuit is almost entirely mediated by the
synaptic release of glutamate. This will only occur at synapses,
and only following presynaptic release of glutamate at those
synapses. This constrains the activation of NMDARs spatially and
temporally, as well as the KCa2 channels that are subsequently
activated.

While pharmacological activation of the spinal network
is presumably far from physiological, it has remained to be
demonstrated just how distinct this artificial induction is from
supraspinal control of descending command neurons and subse-
quent spinal CPG activation. It is important to note that gener-
ating rhythmic activity and appropriate phase coupling has many
theoretical solutions (Wallén et al., 1992; Williams, 1992). In the
spinal network that generates swimming, there can be multiple
pathways which achieve a similar behavioral mode (Menelaou
and McLean, 2012), an idea that emerged from the study of
invertebrate CPGs (Marder and Bucher, 2007). In Xenopus larval
tadpoles, there may be little specificity in anatomical connections
early in development (Li et al., 2007) suggesting that precise
dendritic targeting is not necessary for functional circuit forma-
tion. Instead, a very basic scaffolding of neuronal connections
is sufficient to construct early behaviors (Roberts et al., 2014).
However, the specificity of microcircuit connectivity is subject
to change. Synapses are plastic as is the dendritic architecture
(Kishore and Fetcho, 2013). Nevertheless, synaptic connectiv-
ity and subsequent location-dependent dendritic integration is
paramount to neural computation within microcircuits control-
ling behavior.

Furthermore, our understanding of how monoamines in
general and 5-HT in particular act in vivo is even less cer-
tain than glutamate because exogenous application of these
modulators over an artificially and pharmacologically activated
network merely compounds errors and cannot match physi-
ological release. Indeed, monoamine cocktails with glutamate
agonists evoke spinal network activity (Rossignol et al., 1998;
Masino et al., 2012) and when applied individually to active
networks, monoamines modulate network activity (Barbeau and
Rossignol, 1990; Rossignol et al., 1998). To develop a compre-
hensive understanding of the true pattern of synaptic drive to
spinal neurons and microcircuits requires a more physiological
method of activation of these spinal circuits than has previously
been employed (Issberner and Sillar, 2007; Dubuc et al., 2008;
McLean et al., 2008; Kyriakatos et al., 2011), while retaining the
capacity to study them directly from the subcellular to systems
level.

Bath-applied NMDA leads to a large increase in baseline
Ca2+

i while Ca2+ oscillations are synchronized throughout
the dendrites of a single neuron (Bacskai et al., 1995; Viana
di Prisco and Alford, 2004). In this context, all NMDARs will
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become active and are independent of presynaptic release of
glutamate. Under these conditions, the precise relationship
between activated routes of Ca2+ entry, whether NMDARs or
VGCCs, may become obscured. This may allow KCa2 channels
to couple to Ca2+ microdomains as opposed to nanodomains
implied by their physiological BAPTA sensitivity. Indeed, in
VHNs dialyzed with EGTA, oscillation plateau progressively
lengthen immediately following whole-cell access, on a time
course equivalent to the diffusion of dyes to the most distal
dendrites (Alpert and Alford, 2013). This may be interpreted
as a progressive increase in EGTA-mediated Ca2+ buffering
into the distal dendrites where Ca2+ oscillations are largest
(Viana di Prisco and Alford, 2004), preventing some Ca2+ from
binding KCa2 channels to cause the repolarization (Alpert and
Alford, 2013). This effect suggests that Ca2+ diffusing greater
distances from its site of entry can, under certain circumstances,
activate KCa2 channels, which then contribute to the
repolarization. Nevertheless, even under these non-physiological
conditions of bath applied NMDA, cells dialyzed with
BAPTA displayed immediate, severely impaired repolarization
(Alpert and Alford, 2013).

The ability of NMDAR-induced Ca2+ entry to bind KCa2
channels in Ca2+ microdomains may be an artifact of bath-
applied NMDA and the robust increase in intracellular Ca2+,
which may also cause Ca2+-induced Ca2+ release from internal
stores. However, it was recently demonstrated that this KCa2
channel conductance is physiologically activated by synaptically
driven NMDAR-mediated Ca2+ entry (Alpert and Alford, 2013)
and is vital for the proper functioning of the network during
brain-evoked locomotion (Nanou et al., 2013). If the spatially
and temporally precise synaptic activation of glutamate receptors
during locomotion is sensitive to blockade of KCa2 channels,
then it should follow that there is complementary patterning
dendritic Ca2+ entry which drives the activation of KCa2 channels
important for rhythm generation. However, we know very little
about the spatiotemporal pattern of dendrite activation during
behavior and how synaptic input is integrated in real time to
impact cell output.

Several recent advances have made it possible to begin to
assess how dendrites integrate incoming synaptic information
within an active, behaving network. Dendritic spatiotemporal
Ca2+ dynamics in active networks are crucial to understanding
how physiological patterns of synaptic input are integrated in
real time to shape the cellular output and have only recently
been investigated. With new advances in genetically encoded Ca2+

indicators (Muto et al., 2011) and in vivo 2-photon microscopy,
it is now becoming possible to “watch dendrites in action”
and correlate their activity to sensory input and behavioral
output (Dombeck et al., 2010; Xu et al., 2012; Smith et al.,
2013b; Grienberger et al., 2014). However, particularly in the
lamprey model system, but presumably in other systems like
zebrafish, there is a distinct advantage in imaging dendritic
behavior-the activity of spinal motoneuron and interneuronal
dendrites and the subsequent electrical output of individual cells
can be precisely correlated to the real time network output,
whose role in generating behavior is well characterized and
directly measureable. Such multilevel analyses will undoubtedly

enhance our understanding of how nervous systems generate
behavior from subcellular to systems level with unprecedented
detail.
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Nonlinear dendritic integration is thought to increase the computational ability of neurons.
Most studies focus on how supralinear summation of excitatory synaptic responses
arising from clustered inputs within single dendrites result in the enhancement of neuronal
firing, enabling simple computations such as feature detection. Recent reports have
shown that sublinear summation is also a prominent dendritic operation, extending
the range of subthreshold input-output (sI/O) transformations conferred by dendrites.
Like supralinear operations, sublinear dendritic operations also increase the repertoire
of neuronal computations, but feature extraction requires different synaptic connectivity
strategies for each of these operations. In this article we will review the experimental
and theoretical findings describing the biophysical determinants of the three primary
classes of dendritic operations: linear, sublinear, and supralinear. We then review a
Boolean algebra-based analysis of simplified neuron models, which provides insight
into how dendritic operations influence neuronal computations. We highlight how
neuronal computations are critically dependent on the interplay of dendritic properties
(morphology and voltage-gated channel expression), spiking threshold and distribution
of synaptic inputs carrying particular sensory features. Finally, we describe how global
(scattered) and local (clustered) integration strategies permit the implementation of similar
classes of computations, one example being the object feature binding problem.

Keywords: dendrites, neural computation, nonlinear transformations, Boolean analysis, binary neruons, uncaging,
input-output transformation, votlage activated channels

Introduction

In order to control behavior, the brain relies on the ability of its neuronal networks to process
information arising from external and internal sources. How single neurons decode combinations
of sensory features and transform them into a spiking output is still unknown, and represents a
subject of intense study. The complexity of the single neuronal coding problem can be illustrated
by the paradoxical finding that neurons exhibiting narrowly tuned receptive fields often appear
to be driven by synaptic inputs that themselves are broadly tuned (Chadderton et al., 2014). One
hypothesis is that nonlinear dendritic transformations are critical for such neuronal computations.
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Decades of experimental and modeling studies on dendrites
have led to the consensus that active properties of dendrites
are primarily responsible for nonlinear integration, in particular
supralinear operations (Mel, 1994; Spruston and Kath, 2004;
Johnston and Narayanan, 2008). Nonetheless other findings
indicate that sublinear integration of synaptic inputs is possible
in multiple neuron types, and results from either active (Cash
and Yuste, 1998; Hu et al., 2010) or passive dendritic properties
(Abrahamsson et al., 2012; Vervaeke et al., 2012).

What is the evidence that nonlinear dendritic properties
contribute to neuronal computations? Numerical simulations
suggest that supralinear dendritic operations are essential
for translation-invariant orientation tuning (Mel et al., 1998)
and binocular disparity tuning (Archie and Mel, 2000),
while sublinear dendritic operations contribute to coincidence
detection of auditory stimuli (Agmon-Snir et al., 1998). Recently,
state-of-the-art in vivo recordings have shown that dendritic
supralinearities are associated with various other neuronal
computations: formation of hippocampal place fields (Lee et al.,
2012), detection of multi-modal sensory stimuli (Xu et al., 2012),
angular tuning of barrel cortex pyramidal neurons (Lavzin et al.,
2012), and enhancement of orientation tuning (Smith et al.,
2013). Sublinear operations have also been shown to underlie
orientation selectivity of binocular neurons in visual cortex in
vivo (Longordo et al., 2013).

Nevertheless, a direct link between the dendritic
transformations and the associated neuronal computations
is still lacking. Analytical methods implementing mathematical
approximations of measured dendritic operations can be used
to make estimates of the possible number and type of neuronal
computations. For example, binary neuron models were used
to quantify what was previously shown with biophysical
models (Mel, 1994), namely that nonlinear dendrites support
a larger number of neuronal computations (Poirazi and Mel,
2001; Cazé et al., 2013). Such simplifications can provide
analytical insight and make testable predictions as to which
computations are made possible by dendritic operations.
Moreover, analytical methods show under which conditions the
expanded computational capacities are generic, i.e., not tied to
the specific example parameters of the biophysical model.

Here we review the biophysical determinants of different
classes of dendritic operations (linear, sublinear and supralinear),
how they are measured experimentally, and finally, using a
recently published Boolean-based analysis of equivalent dendritic
trees (Cazé et al., 2012, 2013, 2014), we review how these
operations combine with other cellular properties to determine
neuronal computations.

Dendritic Integration

Neurons integrate synaptic inputs arriving primarily on dendritic
trees carrying information from presynaptic neurons, by
transforming them into synaptic potentials using a variety
of cell-specific synaptic and cellular mechanisms. During
synaptic transmission, the activation of neurotransmitter-gated
conductances results in either a transient depolarization or
hyperpolarization of the postsynaptic membrane potential.

When the net depolarization resulting from synaptic integration
of multiple synaptic inputs is greater than the spike threshold
potential, the neuron generates an action potential (AP), or
spike. Synaptic integration is a critical determinant of neuronal
computations, the process by which a postsynaptic neuron
transforms presynaptic information (coded in input activation
patterns) into an output signal (encoded in a firing pattern)
(Häusser and Mel, 2003; London and Häusser, 2005; Silver,
2010; Larkum, 2013; Chadderton et al., 2014). This review will
focus primarily on the integration of excitatory post-synaptic
potentials (EPSPs) mediated by ionotropic glutamate receptors.

Dendritic integration can be quantified by comparing
the observed depolarization resulting from the simultaneous
activation of the same synaptic inputs (Figure 1B), also called
a compound EPSP, and the arithmetic sum of individual EPSPs
(expected membrane depolarization) (Figure 1C). The dendritic
subthreshold input-output (sI/O) relationship is easily described
by plotting observed vs. expected depolarizations for different
numbers of co-activated synapses (Figure 1). Mathematical
functions can be used to describe the operation performed.
The sI/O relationships fall into three categories of dendritic
operations: (1) linear, where the observed depolarization
equals the expected depolarization; (2) supralinear, where the
observed depolarization exceeds the expected depolarization
(above the linear line; Figure 1D, left); and (3) sublinear,
where the observed depolarization is less than the expected
depolarization (below the linear line; Figure 1D, right). Much
of the experimental evidence of nonlinear integration suggests
dendrites perform supralinear operations, resulting from the
contribution of active dendritic conductances (Mel, 1994;
Johnston and Narayanan, 2008; Spruston, 2008). Recent studies
suggest that sublinear operations could be mediated solely
by passive properties (Abrahamsson et al., 2012; Vervaeke
et al., 2012), while other studies have shown that activation of
potassium channels can produce sublinear summation (Cash
and Yuste, 1999; Hu et al., 2010). The detailed biophysical
mechanisms determining specific dendritic operations are
discussed in depth below.

The type of dendritic operation strongly contributes to the
nature of the resultant neuronal computation. For example, co-
activation of synapses within a single electrical compartment that
exhibits supralinear integration will produce dendritic voltage
signals that are larger than expected due to amplification by
activation of voltage-sensitive channels. This large depolarization
is thereby more likely to drive the neuron to spike threshold. The
resulting sI/O will reflect a neuronal computation that is cluster
sensitive (Figures 1E,F, left, θ1). For a neuron with sublinear
dendrites, clustered synaptic activity will be less efficient at
triggering a spike than if the same inputs were distributed in
different compartments, thus promoting computations that are
scatter sensitive (Figures 1E,F, right, θ1; Cazé et al., 2013). Such
neuronal computations enable the discrimination of patterns of
synaptic activation with different levels of spatial and temporal
correlations, which could not be otherwise performed by linear
dendrites (Mel, 1992). Nevertheless, it should be noted that the
dendritic operation is insufficient to define the computation,
synaptic placement and spike threshold also influence the final
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FIGURE 1 | Dendritic operations and their influence on neuronal firing.
(A) Schematic diagram of a subthreshold synaptic input-output experiment in a
neuron with supralinear dendritic compartments (left, supralinear compartments
in green, linear compartments in black) or in a neuron with sublinear dendritic
compartments (right, sublinear compartments in blue). The red spots are sites
of synaptic activation or sites of glutamate uncaging. (B) Somatic voltage
responses evoked by simultaneous synaptic activation or uncaging. Green
curves are responses evoked with increasing number of synapses activated
within a supralinear dendrites. Blue traces are similarly obtained within a
sublinear dendrite. (C) Arithmetic sum of individual responses to synaptic
activation or uncaging. (D) Subthreshold input/output relationships (sI/O) used
to quantify dendritic operations. The dashed line represents a linear

releationship. Two horizontal dotted lines indicate two example somatic spike
thresholds (θ1 and θ2). (E,F) Example of synaptic integration of three synaptic
inputs distributed across the dendritic tree (E) or clustered on a single dendritic
branch (F) of a neuron with supralinear dendritic compartments (left) or
sublinear compartments (right). The output spike train, and hence neuronal
computation, differs depending on the threshold. The more depolarized
threshold value (θ1) allows the neuron with supralinear dendrites to exhibit a
cluster-sensitive neuronal computation (fires only when three inputs are
activated in the same compartment). The θ1 threshold also allows a neuron with
sublinear dendrites to exhibit scatter-sensitive neuronal computations. The
lower threshold (θ2) imparts a different neuronal computation based on simple
linear summation and is not sensitive to activated synapse location.
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neuronal computation. In Figures 1D–F we show that lowering
the spike threshold (θ2) would restrict the access to only the linear
regime of the subthreshold dendritic operation. Finally, ongoing
synaptic activity can occur in the presence of AP firing, and thus
constitutes supra-threshold synaptic integration (Silver, 2010),
which we will not address in this review.

Biophysical Mechanisms Influencing
Synaptic Integration

Effect of Passive Membrane Properties on
EPSPs Summation
Because neurons communicate with each other using electrical
signals, the analysis of their signaling properties is generally
performed using principles of electrical circuits. A single
compartment equivalent circuit describes well the electrical
behavior of a cell without any dendrite or active properties.
Four parameters determine the amplitude and time course
of the EPSP: a transient synaptic conductance (Gsyn), the
electromotive force of its ion flux (driving force), the membrane
resistance (specific membrane resistance; Rm), and the specific
membrane capacitance (Cm). The difference between the
membrane potential and the reversal potential for Gsyn sets the
driving force (Vm − Erev; Figure 2A), thus as Gsyn increases,
Isyn increases, and Vm becomes more depolarized. For large
conductances, Vm approaches Erev and the driving force is
reduced, resulting in decreased current flow for the same Gsyn
(Figure 2A). This results in a sublinear relationship between
Gsyn and EPSP size. Since quantal synaptic conductances are
generally small, it is when multiple synapses are activated
simultaneously that the driving force decreases sufficiently
to produce sublinear integration (Figure 2C). Therefore, for
passive single compartment model cells, synaptic summation is
already essentially sublinear, which was first demonstrated at the
neuromuscular junction (Martin, 1955).

More complex, but also more realistic, equivalent circuit
models take into account neuronal morphology, such as
dendritic arborizations. Wilfrid Rall pioneered the use of such
multi-compartmental equivalent circuit models in order to
study synaptic integration in neurons with passive dendrites.
His primary advance was to consider dendrites as electrical
cables (Rall, 1967) that contained an additional parameter,
the axial resistance (ra), which electrically couples multiple
elementary single compartment models (Figure 2B). Because
each elementary compartment will allow current to leak across
the membrane, the current injected in the next compartment
(across ra) decreases progressively as it travels along the cable
or dendrite, which results in an attenuation of the local EPSP
amplitude and a slowing of its time course. Such dendritic
filtering accounts for why local EPSPs in dendrites tend to be
larger and faster than those recorded in the soma. It therefore
follows that more distal synaptic inputs (for a given Gsyn) would
result in a progressively smaller somatic depolarization and thus
a smaller influence on the firing output of a neuron (Rinzel
and Rall, 1974; Magee and Cook, 2000; Spruston, 2008). Also
in dendrites the local input resistance (RD) or impedance (ZD;
to account for the effect of capacitance on fast time-varying

inputs) increases with increasing distance from the soma due to
a diminished shunt effect of the soma and the high resistance
of the sealed cable (Rinzel and Rall, 1974). We will henceforth
refer to ZD, since it is the more general form that accounts for
the capacitive current dependance on synaptic conductance time
course. It should be noted that at steady state ZD = RD. This
distance-dependent increase in ZD results progressively larger
local EPSPs, which in some morphologies, can combine with
an efficient passive propagation of EPSPs to the soma (transfer
impedance), thereby counteracting the distance-dependance
reduction in the somatic EPSP amplitude due to cable filtering
(Jaffe and Carnevale, 1999; Nevian et al., 2007; Schmidt-Hieber
et al., 2007). This location independence of EPSP amplitude is
also referred to as passive normalization (Jaffe and Carnevale,
1999). Distance-dependent increases in ZD are also thought to be
important to increase the probability of evoking a local dendritic
spike at distal inputs of basal dendrites of pyramidal neurons,
which can then propagate to the soma (Rudolph and Destexhe,
2003).

Rall provided a simple parameter that describes cable filtering:
the space constant (λ), derived from the steady state (λDC)
or frequency-dependent (λAC) solution to the cable equations.
It represents the distance along a cable where the membrane
potential is 63% of the maximal at the site of current injection.
Therefore if the dendrite length is longer than λ, significant cable
filtering can be expected; similarly, if the dendritic length is much
shorter than λ then EPSPs propagating to the soma are filtered
very little. A critical morphological parameter determining λ is
the dendritic diameter, to which λ is proportional (Figure 2B);
meaning a larger diameter produces a longer λ (Figure 3A,
left). For fast synaptic conductances (rise and decay <2 ms), the
capacitive current acts as a frequency-dependent shunt and can
dramatically alter λ. In cerebellar molecular layer interneurons,
for example, the frequency-dependent length constant (λAC) can
be over a factor of 5 shorter than λDC. Their thin (∼0.4 µm
diameter), 100 µm long dendrites are electrically compact for
steady-state depolarizations (with total length 3 times shorter
than λDC, 300 µm). But for rapid synaptic conductances λAC
is 50 µm (half the dendritic length), resulting in significant
dendritic filtering of EPSPs for distances greater than 20 µm
(Abrahamsson et al., 2012). Dendritic branching tends to
shorten the space constant, since it effectively decreases the
membrane resistance (acting like a shunt for current flow
(Figure 3A; right; Abrahamsson et al., 2012). It is also worth
noting that λ also serves as a rough indicator of the size of
effective dendritic compartments. Synapses located within a
distance of λ are more likely to interact than non-neighboring
synapses (Figure 2C; Abrahamsson et al., 2012).

The Influence of Passive Dendrites on sI/Os
As described above, sublinear summation of simultaneously
occurring EPSPs within an electrical compartment is a natural
consequence of the loss of driving force for synaptic currents.
Dendritic compartments with narrow diameters are particularly
sensitive to this due to a high ZD. Therefore when multiple
dendritic synapses are activated simultaneously within a close
proximity (<λ), the local depolarization resulting from the
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activation of a given synaptic input will be large, thus decreasing
the local driving force, resulting in a sublinear sI/O (Figures 1D,
2B). As the diameter of the passive dendrite decreases, ZD will
increase and the local EPSPs will be even larger (Abrahamsson
et al., 2012). One can use the equation for input resistance
of an infinite cable to appreciate the influence of dendritic
diameter (Figure 2B, equation 3). The larger ZD causes a larger
depolarization, thus the sublinear summation of synaptic inputs
will be more prominent with fewer active inputs (Figure 3A, left;
see also Rinzel and Rall, 1974). If the distance of the synapse
from the soma increases, the current sink of the soma, the end
effect of the dendrite and/or dendritic tapering will contribute
to a distance-dependent increase in ZD, together resulting in
more pronounced sublinear sI/O curves particularly for more

distal dendritic compartments (Figure 3A, middle). Finally, the
number of dendritic branch points, despite increasing dendritic
filtering, tends to decrease the local ZD by adding a current
sink, thus favoring a more linear sI/O (Figure 3A, right). Gap
junctions have also been shown to reduce sublinear summation
by providing a current sink (Vervaeke et al., 2012).

Although passive membrane properties are sufficient to
produce sublinear dendritic operations, experimental evidence
of such a mechanism has only recently been described
(Abrahamsson et al., 2012; Vervaeke et al., 2012). The
authors concluded that the combination of thin dendrites
and low levels of expression of voltage-gated channels favors
sublinear dendritic operations. In these neurons, sublinear
summation is apparent even for as few as two active synapses

FIGURE 2 | Theoretical basis for sublinear summation within passive
dendrites. (A) Equation (1) describes the different current components
underlying an EPSP in a single electrical compartment. Integration of this
equation describes the variation of the membrane voltage over time. The
transient change in driving force (∆V = Vm − Esyn) is determined by the
amplitude and time course of the local dendritic EPSP (black trace). At the peak
of the EPSP (solid blue arrow) the driving force is maximally reduced, and then
recovers back to that at resting membrane potentials during the EPSP decay
(dotted blue arrow). The reduced driving force decreases the synaptic current,
and hence the net depolarization, creating a sublinear relationship between
EPSP and its underlying conductance. (B) Equivalent circuit for dendritic cables,
where gm and cm are the membrane conductance and capacitance,
respectively, and ra is the axial resistance of a unit of cable. A synapse is
represented in the circuit (by the synaptic conductance Gsyn and the synaptic
reversal potential Esyn). For an infinite cable, the spatio-temporal distribution of
voltage is described by the relation (2), where τm is the membrane time

constant, and λ is the length constant. The length constant relationships are
derived from solving the cable equation (2) for step changes in membrane
voltage (λDC) or for a sinusoidal membrane potential change (λAC). The latter is
helpful to understand the dendritic filtering of transient EPSPs. Equation (3) is
the relation for the input resistance RD for an infinite cable. (C) Top,
ball-and-stick model of a neuron with colored arrows indicating the location of
three synapses (Syn 1--3). The graph above the diagram represents the peak
amplitude of a dendritic EPSP as a function of distance. Bottom, the two
graphs describe respectively the dendritic and somatic depolarizations in
response to individual (colored lines) or combined synaptic inputs (black lines).
Concomitant activation of two neighboring synaptic inputs (within ∼ λAC) will
therefore mutually reduce their driving force and sum sublinearly (for example
synapses 1 and 2, solid black trace for the EPSP observed in response to their
simultaneous activation, dashed black trace for the arithmetic sum of the
individual EPSPs). More separated synapses will, however, sum more linearly
(synapses 1 and 3, gray trace).

Frontiers in Cellular Neuroscience | www.frontiersin.org March 2015 | Volume 9 | Article 67

105

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Tran-Van-Minh et al. Dendritic operations and neuronal computations

FIGURE 3 | Contribution of dendritic and synaptic properties to EPSP
summation. (A) Influence of morphological parameters dendritic: diameter
(left), increasing distance to soma (middle) and increasing dendritic branching
(right) on the dendritic sI/O. The inserts illustrate the effect of morphology on
somatic EPSPs under the different conditions. Synapse location and traces
are color coded. Dashed line shows a linear I/O for reference. (B) The role of
ion channels on the shape of the sI/O, for a given morphology. Either K+

channels, (orange), Na+ channels (green), VGCC (pink), or NMDA receptors
(sky blue) are added to a passive dendrite (blue). (C) Example of sI/O in three
realistic combinations: thick (>2 µm) dendrites with active conductances (blue
curve, as in Branco and Häusser, 2011), thinner dendrites with active
conductances (brown curve, <1 µm, Losonczy and Magee, 2006), or thin
dendrites with only passive properties (blue curve, Abrahamsson et al., 2012).
(D) Influence of synaptic properties on the sI/O for a given morphology and ion
channel combination. An increase in synaptic strength makes the sI/O diverge
from linearity both in the sublinear and the supralinear regime, whereas
increasing the interval or the distance between synaptic inputs tends to
linearize the curve (right).

(Abrahamsson et al., 2012). Synapses activated on separate
dendrites summed linearly, supporting a scatter sensitive
neuronal computation (Abrahamsson et al., 2012), that was
confirmed in a realistic active model (Cazé et al., 2013).

The Influence of Active Dendrites on sI/Os
The large local synaptic depolarizations produced in dendrites
can also recruit the activation of voltage-dependent channels
(NMDARs, Na+, Ca2+, K+ and HCN channels, see Johnston and
Narayanan, 2008; Figure 3B). The number of activated synaptic
inputs needed to engage active conductances is determined, in
part, by the passive properties of the dendrite, the amplitude
and kinetics of the synaptic conductance, the voltage-dependance

of channel gating, and the channel density and distribution
along the somato-dendritic axis. Active conductances can either
enhance (Williams and Stuart, 2000; Migliore and Shepherd,
2002) or dampen (Cash and Yuste, 1999; Hu et al., 2010) local
dendritic depolarizations, depending on whether the channels
mediate inward (depolarizing) or outward (hyperpolarizing)
currents, respectively. Distance-dependent increases in Ih
currents have been shown to compensate for the temporal
slowing caused by dendritic filtering (Magee and Cook, 2000;
Williams and Stuart, 2002). Differential expression of HCN
channels across mitral cells has also been shown to increase the
membrane noise and lower the rheobase, thus facilitating AP
generation (Angelo and Margrie, 2011). Because of the presence
of NMDARs at many glutamatergic synapses, most studies
find that NMDARs activate other voltage-dependent channels
by boosting local synaptic depolarization (Schiller et al., 2000;
Losonczy and Magee, 2006; Nevian et al., 2007; Makara et al.,
2009; Branco and Häusser, 2011; Katona et al., 2011; Krueppel
et al., 2011). The resulting dendritic operation is determined by
the concurrence of a passively determined sublinear (Losonczy
and Magee, 2006; Krueppel et al., 2011; Chiovini et al., 2014) or
linear operation (Branco and Häusser, 2011), and a supralinear
operation.

In some cases, the voltage activation of conductances results
not only in EPSP boosting, but in a threshold-dependent, all-or-
none regenerative response, often called a dendritic spike. This
regenerative behavior is characterized by a steep change in the
sI/O followed by a plateau (Figures 1D, 3B; Polsky et al., 2004;
Losonczy and Magee, 2006; Larkum, 2013). Locally-generated
dendritic spikes can be mediated by either Na+ channels,
Ca2+ channels or NMDA receptors (NMDARs). Na+-spikes are
triggered by high-amplitude local depolarization, are relatively
brief, and can be accompanied by entry of Ca2+ through VGCC
or NMDARs. In pyramidal cells, these dendritic Na+ spikes can
be generated in most regions of the dendritic tree, propagate
throughout the dendritic tree, albeit with some attenuation,
but can still trigger somatic spiking (Golding and Spruston,
1998; Rudolph and Destexhe, 2003; Nevian et al., 2007). Recent
findings have also shown Na+-channel dependent spikes in
dendrites of dentate gyrus granule cells (Chiovini et al., 2014). On
the other hand, Ca2+ and NMDA spikes are longer, plateau-like
events, that are thought to be generated in particular regions
of the dendritic tree, and require the synchronous activation
of many clustered synapses. The biophysical mechanisms of
the NMDA spikes and their functional consequences have been
described in detail in a recent review (Major et al., 2013). In
cortical pyramidal neurons, the Ca2+ spike is likely to propagate
actively from the primary apical dendrite to the soma, thereby
representing a more global dendritic operation, whereas NMDA
spikes are locally restricted to dendritic compartments such as
tufts or basal dendrites (Larkum, 2013). In contrast, simulations
of in vivo spontaneous synaptic activity allow glutamate-bound
NMDARs to act as global nonlinearities providing an entirely
different computation than those initiated in single dendrites
(Farinella et al., 2014). Nevertheless, several recent in vivo
studies have reported the involvement of local NMDA spikes
during sensory processing, across all layers of the cortex (Lavzin
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et al., 2012; Xu et al., 2012; Smith et al., 2013; Gambino
et al., 2014; Palmer et al., 2014). It should also be noted that
Polsky et al. (Polsky et al., 2004) pointed out that a Ca2+-
spike exhibits saturation of the voltage response and thus
can also be considered sublinear for very high stimulation
strengths.

In summary, the modus operandi of supralinear dendritic
compartments is comprised of a continuum of voltage-
dependent operations from simple boosting of synaptic
depolarization to regenerative spikes. Considering the
biophysical underpinnings of this range of operations, it follows
that the interplay of the active and passive properties of dendrites
ultimately determines the shape of the sI/O (Figure 3C). For
example, sI/Os of thick dendrites, which have a low ZD, do
not suffer from driving force losses, thus sum linearly for low
numbers of activated synapses, then transition into supralinear
summation (Makara and Magee, 2013). Thin dendrites on the
other hand may exhibit sublinear sI/O relationships for only a
few inputs, but then easily engage NMDAR and Ca2+ channels
(Losonczy and Magee, 2006; Chiovini et al., 2014) with fewer
synaptic inputs than in larger dendrites (Figure 3C). Due to
tapering of dendritic width, which increases the ZD along the
dendrite with increasing distance to the soma, the dendritic
operations can be altered as a function of distance from the soma
(Branco and Häusser, 2010, 2011).

The Influence of the Size, Time Course and
Location of the Synaptic Conductance on sI/Os
The strength of synaptic conductance varies from synapse to
synapse across neuron types, but also within neurons. The
synaptic strength not only serves to bias the output of a
neuron to particular inputs (Ko et al., 2011), but it can
also be tuned to compensate for dendritic attenuation by
passive dendritic properties (Magee, 2000). Synaptic strength
influences dendritic operations by modulating the gain (slope)
and shape of the sI/O, which is achieved by engaging sub- and
supralinear transformations with different numbers of synaptic
inputs (Figure 3D). Larger synaptic conductances will lead to
larger dendritic depolarizations, and in turn either a larger
reduction in driving force or increased activation of voltage-
gated conductances. Depending on the intrinsic membrane
properties and synaptic conductance amplitude the ‘‘linear
regime’’ may be more or less prominent in the sI/O relationship.

The temporal window for synaptic interactions depends
ultimately on the time course of local EPSPs, which is itself
shaped by the local passive dendritic properties and the time
course of the synaptic conductance (Jonas, 2000). Although
the local dendritic EPSPs are larger than those at the soma,
it is important to note that their time course is generally
much faster, due to charge redistribution down the dendrite
(Schmidt-Hieber et al., 2007). The degree to which nonlinear
mechanisms are engaged during EPSP summation also depends
on the temporal summation of local EPSPs (Losonczy andMagee,
2006; Abrahamsson et al., 2012; Makara and Magee, 2013).
Simultaneous synaptic activation enables the largest degree of
nonlinear summation, which will progressively decrease as the
time difference between synaptic events increases (Figures 2A,

3D). Thus, combined with the synaptic strength, the temporal
coincidence between co-activated synapses within a single
dendritic compartment will determine gain of the dendritic
operations (Gómez González et al., 2011; Abrahamsson et al.,
2012; Makara and Magee, 2013).

The location of synapses carrying similar information (e.g., a
single sensory feature) determines which dendritic mechanism
is recruited. For example, if features of an object are always
clustered on a single dendritic compartment, then nonlinear
summation will be the prominent operation influencing
integration. Below we will use a mathematical formalism to
provide insight into how synaptic placement and dendritic
operations influence neuronal computations.

Experimental Strategies for Studying
Dendritic Integration

How do researchers study the biophysical properties of
dendrites and their influence on excitatory synaptic integration?
Classical electrophysiology methods such as sharp electrode- or
patch-clamp-based recordings of somatic membrane potential
provided insight into the intrinsic passive electrical properties
of neurons by measuring the input resistance and the
membrane time constant (τ = Rm

∗Cm) (Spruston and Johnston,
1992). When combined with multi-compartmental dendritic
models, with either simplified morphologies (equivalent cylinder
approximation) or full anatomical reconstructions (Clements
and Redman, 1989; Major et al., 1994), the passive electrotonic
properties of dendrites can be estimated from model parameters
that predict the membrane potential decay from somatic current
injections (Rall et al., 1992). These constrained models are then
used to examine dendritic transformations of EPSPs as they
propagate to the soma.

Unfortunately, single electrode recordings at the soma do
not provide sufficient information about dendritic properties
to constrain complex morphological models. With the advent
of dendritic patch recordings (Stuart et al., 1993), at least for
large diameter dendrites (≥1µm), cable model predictions could
be directly verified. This powerful recording method allows
estimations of the critical parameters influencing dendritic
filtering, such as internal resistivity (Ri; Stuart et al., 1993;
Stuart and Spruston, 1998; Roth and Häusser, 2001; Nevian et al.,
2007; Schmidt-Hieber et al., 2007; Hu et al., 2010), Rm and
voltage-gated channel properties and density along the somato-
dendritic axis (Magee and Johnston, 1995; Stuart and Spruston,
1998; Hu et al., 2010). Dendritic recordings also enabled the
measurement of local EPSPs and EPSCs, which allowed the
authors to conclude that dendritic filtering can be compensated
by a distance-dependent increase in synaptic conductance in
certain neuron types (Magee and Cook, 2000).

More recently, fluorescence imaging techniques have
greatly increased the toolkit for studying dendritic integration,
particularly in those dendrites with narrow diameters
(<1 µm). Ca2+ indicators are one of the most popular class of
fluorescence probes, which are used to indirectly study dendritic
nonlinearities resulting from activation of voltage-dependent
ion channels, provided at least one type of Ca2+ conductance
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was activated (Markram et al., 1995; Schiller et al., 1995, 1997,
2000). Ca2+ indicators have also been used to monitor synaptic
activity because of the prevalence of NMDAR activation in
single spines and Ca2+-permeable AMPARs at synapses in
interneurons (Soler-Llavina and Sabatini, 2006). In vivo two-
photon Ca2+ imaging experiments provided the first insights
into the spatial and temporal distribution of sensory-evoked
synaptic signaling within dendrites (Varga et al., 2011; Lavzin
et al., 2012; Smith et al., 2013; Jia et al., 2014; Palmer et al.,
2014). The contribution of in vivo Ca2+ imaging studies to
understanding dendritic function has been recently reviewed
by Grienberger et al (Grienberger et al., 2015). However, a
limitation of using Ca2+ imaging to study synaptic integration
is that it does not report the true dendritic voltage, a parameter
critically influencing dendritic operations. Also, the slow
nature of the whole-cell averaged [Ca2+] and the use of high
affinity Ca2+ indicators limits the temporal resolution of this
method (Farinella et al., 2014; Fernández-Alfonso et al., 2014).
Voltage-sensitive dyes are, in principle, an ideal alternative
for direct measurement of dendritic integration. Whereas
voltage-sensitive dye recordings have provided unprecedented
optical reports of the spatial and temporal distribution of
APs in axons (Foust et al., 2010; Popovic et al., 2011) and
dendrites (Acker and Antic, 2009; Casale and McCormick,
2011), their use to monitor EPSPs in dendrites has been less
successful due to poor signal-to-noise ratio, typically requiring
hundreds of trials of averaging (Palmer and Stuart, 2009).
However, inhibitory post-synaptic potentials (IPSPs) have been
detected (Canepari et al., 2008) and a recent study reports
good signal-to-noise ratios sufficient to detect spine EPSPs
(Popovic et al., 2014). The advances in genetically-encoded
voltage indicators are also rapidly maturing (Hochbaum et al.,
2014; St-Pierre et al., 2014; Zou et al., 2014), and could eventually
provide a powerful tool for studying dendritic integration in
vivo.

Another widely-used in vitro technique to characterize
the integration properties of dendrites is to directly
activate postsynaptic receptors using photolysis of caged-
neurotransmitter (i.e., caged-glutamate) within the diffraction-
limited focal volume of the microscope (Gasparini and Magee,
2006; Losonczy and Magee, 2006). Using galvanometer-driven
mirrors, the type regularly used in scanning confocal microscopy,
the focal illumination volume can be rapidly moved (within
0.1--1 ms) and positioned at multiple locations. The uncaging
light pulse is then rapidly gated at each location to focally release
glutamate. This allows for the near simultaneous activation of
many postsynaptic sites. The somatic depolarization is then
recorded using standard whole-cell patch-clamp methods. The
observed response to uncaging at multiple synaptic locations
(typically within 1 ms) is compared to the arithmetic sum of the
uncaging-evoked responses at individual sites. The resulting plot
is identical to the sI/O plots described in Figures 1, 3, provided
that the uncaging responses are similar to synaptic activation.
Using light, rather than presynaptic vesicular release, to activate
neurotransmitter receptors provides a more flexible strategy to
systematically vary the number, pattern, and timing of synapse
activation. Electrical stimulation does not permit a precise

identification of the synapses being activated, nor precise control
of the number of synapses activated. Holographic illumination
provides an alternative strategy for true simultaneous glutamate
uncaging at multiple sites within the dendrites and is more
amenable to multibranch activation (Lutz et al., 2008; Yang
et al., 2014, 2011). The only potential drawback of uncaging
is the difficulty in some preparations to accurately reproduce
very fast synaptic conductances due to the large volume of
diffraction-limited focal spots relative to the point source nature
of neurotransmitter release from synaptic vesicles (DiGregorio
et al., 2007), as well as a tendency to partially block GABARs
(Fino et al., 2009). Nevertheless, neurotransmitter uncaging
is an essential tool for quantifying the biophysical properties
underlying dendritic operations.

Linking Dendritic Operations to Neuronal
Computations Using Mathematical Models

Because experimental evidence of a direct link between the
dendritic operations and the associated neuronal computations
is still lacking, a parallel strategy is to use analytical models to
make testable predictions (Poirazi andMel, 2001; Legenstein and
Maass, 2011; Cazé et al., 2013). These methods take advantage of
mathematical approximations of measured dendritic operations
to make estimates of the possible number and type of neuronal
computations. Biophysical models, in contrast, although explicit,
do not easily provide insight into the classes of possible
computations because of the large parameter space. There
is no doubt that such models have provided deep insights
into neuronal computations that involve nonlinear dendritic
operations. They have been used to show that neurons with
supralinear dendrites are cluster-sensitive (Mel, 1993) and
neurons with sublinear dendrites are scatter-sensitive (Koch
et al., 1983; Cazé et al., 2013). Yet it was not clear whether either
type of nonlinearity provides similar computational advantages.
To examine the difference between supralinear and sublinear
operations of binary neuron models Cazé et al. (2013) used
a Boolean-based analysis. Here we review how this Boolean
framework can be used to argue that either supralinear or
sublinear summation is sufficient to endow neurons with a new
class of computations.

Within this analytical framework, neurons are modeled as
having binary inputs (xi), which can be weighted and integrated,
resulting in binary outputs (y). In this context the input-output
relation is described by a unique truth table, corresponding to a
Boolean function. In Figure 4A, the truth table describes three
simple Boolean functions: OR, AND and XOR. This well-known
mathematical framework (Wegener, 1987; Crama and Hammer,
2011), which deals with binary classifications of binary words,
allows us to analytically determine what type of classifications
are possible with nonlinear dendrites and which are otherwise
impossible.

The simplest binary neuron model is called the threshold
linear unit, also known as the point neuron model as described
first by McCulloch and Pitts (Figure 4B; McCulloch and Pitts,
1943). Synapses are assigned a binary value of 0 or 1, for inactive
or active states, which is then multiplied by a positive synaptic

Frontiers in Cellular Neuroscience | www.frontiersin.org March 2015 | Volume 9 | Article 67

108

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Tran-Van-Minh et al. Dendritic operations and neuronal computations

FIGURE 4 | Using Boolean algebra to analyze binary neuron models
with dendritic nonlinearities. (A) Truth tables for the Boolean functions
AND, OR and XOR for two synaptic inputs (x1 and x2). The two colored
horizontal lines illustrate how the AND and OR functions are linearly separable,

(Continued)

FIGURE 4 | Continued
i.e., a single line divides all inputs between two groups, one group having an
output of 0 and the other group having an output of 1. Neuron output binary
value is denoted as y. (B) Threshold linear unit model neuron with two inputs.
The weight of each input is represented by the area of the black disc drawn
between the input and the model neuron. Here all weights are equal to 1. A
spiking threshold (θ) of 2 allows the model neuron to compute the AND
function (left), whereas if θ =1 the neuron computes the OR function (right).
(C) Top, Simplified representations of a supralinear sI/O (left) and its
mathematical approximation by a Heaviside function (right) with a height h and
a threshold θ. Bottom, simplified representation of a sublinear sI/O and its
mathematical approximation by a piecewise linear, then saturating function.
(D) Generalized diagram representing a two-layer integration model neuron
with several compartments and n inputs. Each branch represents a dendritic
compartment, and the integration operation performed by this compartment is
represented by the box on the branch. The threshold θ and the output value h
of the nonlinearity are indicated within the box. The result from the integration
from each branch is then linearly summed and compared to the somatic spike
threshold Θ. (E) Implementation of the (partial) feature binding problem (pFBP)
by binary neurons with two dendritic compartments D1 and D2, either
supralinear or sublinear. Top, truth table describing various input feature
combinations, the response of each dendritic compartment, D
(0:inactive/1:active), and the final neuronal output, y. Columns with green
shading are the outputs of dendrites exhibiting supralinear operations, while
columns shaded in blue contain outputs of dendrites that exhibit sublinear
operations. Bottom, Model neuron with equivalent dendrite representation that
can implement the pFBP using supralinear (left) or sublinear dendritic
compartments (right), with θ and h values indicated in the box. If dendritic
integration is supralinear, two groups of inputs are needed to activate a
compartment, and a single compartment can trigger a spike. If dendritic
integration is sublinear, a single input can activate the dendritic compartment
and the two compartments must be active to trigger a spike.

weight for excitatory synapses. The sum of the active weighted
inputs is then compared to a somatic spike threshold Θ. If
this weighted sum is greater than the threshold, the output is
assigned a value of 1, and otherwise zero. If one considers a
neuron with linearly summing excitatory inputs, adjustment of
the threshold allows it to either perform a Boolean AND or
OR (Figure 4B). However, it is not possible to find a threshold
value and positive synaptic weight that allows the computation
of the XOR, the function corresponding to a binary neuron that
would fire only when one synapse is active, but not otherwise.
This illustrates well the fact that the threshold linear unit can
only perform functions that are linearly separable, i.e., there
is a set of weights and a spike threshold that categorizes the
inputs into two distinct groups, which differ by their output
values (Figure 4A). The XOR does not meet this criterion and
is therefore a part of the class of functions that are linearly
non-separable. To solve this problem we must either invoke
a non-monotone function to combine synaptic values (Zador
et al., 1992) or consider synaptic inhibition by using negative
weights (Mel, 1994; Cazé et al., 2014). Because the former
has not been described experimentally, and the latter requires
specific wiring within the network, we will focus here on linearly
non-separable functions that can be implemented with only
excitatory synapses and monotone dendritic operations. These
functions are known as positive Boolean functions (Cazé et al.,
2013).

Linearly--separable functions represent only a small fraction
of all the possible computations (Cazé et al., 2013). However, a
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neuron with nonlinear dendritic compartments can implement
the set of linearly non-separable functions, which encompasses a
much larger fraction of all computations (Cazé et al., 2013). Thus
both supralinear and sublinear compartments unlock the access
to all the possible computations (Mel and Koch, 1990;Mel, 1991).
This formal result is true for an infinite number of dendritic
compartments (Poirazi and Mel, 2001). This is clearly impossible
in practice. So what can a neuron compute with a finite number
of dendritic compartments?

To address this question we can construct a two-layer
binary model with nonlinear dendritic compartments. We first
approximated the dendritic sI/O with functions each having
a characteristic dendritic threshold θ, which represents the
threshold of the dendritic nonlinearity, and h, which represents
the maximal value of the dendritic nonlinearity. To approximate
supralinear compartments we used a Heaviside function, and
for sublinear functions we used a piecewise linear saturating
function (Figure 4C). The output of the dendritic compartments
is then linearly summed and compared with spike threshold
(Figure 4D). If we vary synaptic weights, the thresholds, and
the nonlinear dendritic operations, we can use Boolean analysis
to examine the different functions this model can implement. A
functionally salient neuronal computation that requires dendritic
nonlinearities is the association (or binding) of two features
of an object (for example, their shape and color). This is
known as the feature binding problem (FBP). If we suppose
that that different features of objects are encoded by different
groups of pre synaptic neurons impinging on the same post
synaptic neuron, then it is obvious that by allowing the features
of an object to target the same supralinear dendrite, the
coincidence of those features can be easily detected when co-
active (i.e., ‘‘red’’ + ‘‘apple shape’’; Figure 4E). It can also
be shown that a sublinear operation can bind features if the
inputs that encode object features are distributed onto different
dendritic subunits (and the spiking threshold increased). From
these simple binary models it is again clear that supralinear
operations favor cluster sensitivity and sublinear operations
favor scatter sensitivity. However, a keen eye may notice that
the sublinear model will also produce a spike if the apple
shape and banana shape are both activated. This therefore
constitutes a partial FBP. Below we will describe a neuron model
with equivalent dendrites that can implement the complete
FBP.

Because neurons are known to have both linear and nonlinear
compartments, we considered how more realistic dendritic trees
could be represented using our simple binary model, by creating
a neuron model with equivalent dendrites (Figures 5A,B). All
linear regions of the dendritic tree (typically, the perisomatic
compartment or the large diameter primary dendrites) were
collapsed to a single equivalent ‘‘linear’’ compartment (black
regions of schematic neuron and left branch of the model
neuron). The nonlinear dendritic compartments receiving more
than one synaptic input were represented as a second equivalent
dendritic branch. This then generalizes to an equivalent dendritic
branch for each nonlinear electrical compartment (Figure 4D).
The presence of a linear compartment is important, since
inputs contacting two separate nonlinear dendrites will sum

linearly (Figure 5A). Also, even inputs contacting the same
nonlinear dendrite, provided they are not in the same electrical
compartment, will sum linearly.

Legenstein et al. demonstrated that a model neuron with
supralinear dendritic integration is capable of learning and
computing the FBP (Legenstein and Maass, 2011). This function
detects any correct combination of features for an object, but not
incorrect combinations. In the Boolean framework this would
be the truth table corresponding to (‘‘red’’ + ‘‘apple shape’’)
or (‘‘yellow’’ + ‘‘banana shape’’). In Figure 4 we showed that
two supralinear dendrites are sufficient to solve the FBP for
two objects made of two features each. In Figure 5, a neuron
displaying at least one supralinear compartment and a linear
compartment can also solve the FBP for four inputs. In this
case, inputs encoding the features of one object are assigned to
the supralinear compartment, and the features corresponding
to the other object are assigned to the linear compartment
(Figure 5C). Because the features of the object must ‘‘cluster’’
on the same compartment we refer to this model as using a
local strategy of computation. Interestingly, it is also possible
to implement the same computation using a global strategy,
meaning that the features corresponding to one object need to be
‘‘scattered’’ onto both the nonlinear and the linear compartment
(Figure 5D), provided that appropriate changes in the synaptic
weights and threshold values are also implemented. As shown
by Cazé et al. (2013), a model with a linear and sublinear
compartment requires the global strategy to perform the FBP
(Figure 5E). The synaptic weights and threshold will also be
different than in the case of a model neuron with a supralinear
compartment. The fact that the FBP can be implemented using
a global strategy contrasts with the notion that recognition
of an object required the clustering of the inputs carrying
its features onto a same dendritic branch (Legenstein and
Maass, 2011), and the assumption that two-layer integration
models require independent branch-specific operations
(Behabadi and Mel, 2014). Using a biophysical model with
a model stellate cell morphology, Cazé et al. showed the
predictions are robust, since only passive thin dendrites
were necessary to convey a scatter sensitivity of output
firing, even in the presence of synaptic noise (Cazé et al.,
2013).

How might simplified Boolean models be modified for
more features and/or more objects? For objects represented
by more than two features, clustered strategies would simply
require more synaptic inputs, such that the number of the
number of inputs per subunit (dendritic compartment) equals
the number features. A change in threshold would also be
required. The requirements for neuronal computations using
sublinear dendrites, however, depend on the type of computation
and are less straightforward to determine explicitly. The
necessary number of nonlinear subunits also varies given the
implementation strategy, the number of objects, the type of
nonlinear subunits and the number of features. To solve the
FBP with more objects using supralinear operations, each
object will require at least one subunit (Cazé et al., 2012). For
computations with sublinear operations, Cazé et al. showed
that using binary weights, the FBP requires a maximum of 2n
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FIGURE 5 | Computing a linearly non-separable function (full FBP)
with supralinear and sublinear dendrites and using local vs. global
synaptic wiring strategies. (A) Left, model neuron with equivalent
dendrite representation of two compartments, linear (black) and
supralinear (green), and a clustered distribution of object features (object
1 : ×1, ×2 and object 2 : ×3, x4) (local strategy). Right, schematic
representations of synaptic placements equivalent to the model on the
left. (B) Left, model neuron with equivalent dendrite representation of
two compartments, linear (black) and sublinear (blue), and a distributed
placement of inputs carrying object features. (C–E) Implementation of the

full FBP (y = 1; “apple shape and red” or “banana shape and yellow”).
(C), implementation of the full FBP using a model with a supralinear
compartment and a local wiring strategy. Inactive inputs are represented
in light gray and the corresponding feature in lighter color. (D)
Implementation of the full FBP using a model with a supralinear
compartment and a global wiring strategy. The area of the disc adjacent
to a compartment next to each object feature represents the relative
weight of this feature. Here the relative weights used are of 1 and 2.
(E) Implementation of the full FBP using a model with sublinear
compartment and a global wiring strategy.

subunits (Cazé et al., 2012). Considering non-binary weights
then reduces the number of subunits needed, but this number
is still higher than the number of necessary supralinear subunits
(nsubunits = nobjects).

In summary, neurons with sublinear dendrites are capable
of solving linearly non-separable functions, but require using a
distributed strategy of synaptic placement (Figure 5E). These
neurons will be scatter sensitive. On the other hand, neurons
with supralinear dendrites can also access the same class
of computations either by using this strategy (Figure 5C)
or by clustering functionally relevant inputs onto the same

compartment (Figure 5C). Hence they can be either scatter or
cluster sensitive. Thus, the final neuronal computations depend
not only on the type of dendritic operation and the dendritic
and axosomatic thresholds, but also the global mapping of input
features throughout the dendritic tree.

Open Questions

To understand how a neuron integrates its synaptic inputs
we need precise knowledge of the morphology, ion channel
distribution along the tree, strength and time course of
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synaptic conductances carrying particular information features,
the output spike threshold, and the spatio-temporal pattern of
activation of the synapses carrying these features. Although we
can determine most of these parameters, as we reviewed above,
the most challenging experiments are those designed to estimate
the spatio-temporal distribution of all synapses carrying relevant
sensory features (i.e., a functional connectivity map). Strategies
using injection of viral-based retrograde tracers (Marshel
et al., 2010) are powerful for the identification of connected
presynaptic cells, but these methods lack information about
features conveyed by the inputs. Using in vivo Ca2+ imaging,
researchers have begun the herculean task of estimating how
sensory features are mapped onto dendritic trees by examining
how single synapses and dendrites respond to behavioral stimuli.
It is not clear whether such feature mapping can be performed
on the entire dendritic tree, but initial results provide hints as
to whether there may be general mapping rules. Some studies
argue that features are clustered in single dendrites within the
somato-sensory cortex (Takahashi et al., 2012), consistent with
a local computation strategy, while other studies have shown
that neighboring synapses onto layer 2/3 pyramidal neurons of
the visual and auditory cortex respond maximally for activation
of inputs carrying different sensory features (Jia et al., 2010;
Chen et al., 2011), consistent with a global strategy. In light of
the conclusions described here, both computation strategies are
capable of performing linearly non-separable functions.

Why might neurons use different dendritic operations and
wiring strategies? It is conceivable that differences in timing
of sensory development or optimal local circuit wiring may
constrain wiring strategies for particular neurons. Thus to
perform the same computation, different wiring and dendritic
strategies are needed. Global wiring strategies are more amenable
to ‘‘random wiring,’’ in contrast to the specific connectivity
required for engaging local strategies. We speculate that different
dendritic operations may be implemented by neurons given
certain biological constraints, such as limitations in the number
and location of synapses carrying a particular feature, or
spike threshold. For example when both principal neurons and
interneurons receive a common set of input features along
relatively fixed axonal projections, but are required to perform
different computations, they may engage different dendritic
operations. In the cerebellum interneurons have been shown
to exhibit sublinear dendritic operations (Abrahamsson et al.,
2012; Vervaeke et al., 2012) on their parallel fiber inputs,
while Purkinje cells are thought to receive the same or similar
features from the same set of input fibers, yet display supralinear
dendritic operations (Rancz and Häusser, 2006). One could
speculate that the different nonlinearities and synaptic placement
strategies of Purkinje neurons and interneuronsmay enable them
to implement complementary computations, which ultimately
could result in a microcircuit that is highly selective for specific
input patterns.

What are the wiring rules? Three possible wiring strategies
are (1) predetermined connectivity (genetically encoded); (2)
random connectivity; and (3) activity-dependent pruning and
stabilization of connections. Although the exact contribution of
each mechanism is yet to be determined, synaptic plasticity has

been shown to modify and ultimately determine the functional
connectivity. For example computational modeling showed that
a local wiring strategy, in which synapses carrying features of
objects are clustered, can be learned using simple plasticity rules
(Legenstein and Maass, 2011). Experimental evidence supports
this theoretical work, suggesting that activity-dependent, branch-
specific plasticity strengthens clustered synaptic inputs and
their compartmentalization (Makara et al., 2009; Makino and
Malinow, 2011; Takahashi et al., 2012). On the other hand,
synaptic plasticity could also reinforce global computational
strategies. In cerebellar stellate cells, high-frequency firing
of clustered inputs has been described to induce profound
presynaptic short- and long-term synaptic depression (Beierlein
and Regehr, 2006; Soler-Llavina and Sabatini, 2006). Such
plasticity mechanisms would reinforce the neuron’s scatter
sensitivity, and thus tend to optimize the output firing for
specific spatially and temporally sparse synaptic activity patterns
(Abrahamsson et al., 2012; Cazé et al., 2013).

Synchronized neuronal activity is known to cause oscillations
of the dendritic voltage, which would inevitably reinforce
electrical interactions between dendrites and thus alter the
effective number of isolated dendritic subunits that contribute
to the neuronal computation. For example, Remme et al. (2009)
showed theoretically that input-dependent synchronization of
intrinsic dendritic voltage oscillations can facilitate global voltage
propagation, even throughout highly distributed dendritic trees.
It will be important to examine how local and global dendritic
integration strategies might be influenced by brain oscillations,
thus ultimately altering neuronal and even circuit computations.

Since many types of interneurons are known to contact
specific locations within the dendritic tree, inhibition will
undoubtedly influence integration properties and information
processing by neuronal circuits (as reviewed by Palmer et al.,
2012). Nevertheless, the experimental challenge is to determine
not only the timing and location of inhibition within the
dendrite, in order to determine their alteration of dendritic
operations, but also whether particular features are conveyed
similarly or differently by excitatory and inhibitory inputs.
Although complex, the problem is critical to understanding
brain function as the balance of excitation and inhibition
is well known to be tightly regulated, with alterations being
implicated in disease (Yizhar et al., 2011). Using the Boolean
analysis of equivalent dendrites, one can deduce that negative
weight associated with inhibition is capable of performing
the Boolean NOT function. Such a function would enable
a simple implementation of XOR computations, further
expanding the number of computable linearly non-separable
functions.

Summary

In this review we described categories of biophysical and
cellular mechanisms that influence dendritic operations: passive
and active membrane properties of the dendritic tree, the
time course and amplitude of synaptic activation, the output
spike threshold, and finally the location and pattern of the
activation of synaptic inputs. We discussed how each of these
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parameters shapes and tunes the sI/O. We briefly discussed
techniques for the characterization of dendritic operations,
including electrode-based methods to stimulate and/or record
from dendrites, optical techniques to image dendritic activity
or uncage neurotransmitter, and biophysical modeling. In
order to understand how the major classes of dendritic
operations (linear, sublinear and supralinear) link to neuronal
computations, we reviewed the use of binary models associated
with Boolean analysis. This analysis provides insight into the
types of computable neuronal functions, such as the object
feature binding problem. We also reviewed how such functions
can be implemented with either supralinear or sublinear
dendrites depending on the spatial mapping of those features
within the dendritic tree. Because the synaptic activity pattern
ultimately determines the neuronal computations, we propose
that the elemental computational unit is the neuron rather
than the dendrite (Cazé et al., 2014). Although there are cases
(local strategies) where dendritic operations can dictate the

neuronal computation, dendritic operations must be studied and
understood in the context of the knowledge of the wiring of
specific features onto the dendritic tree.
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A gradient in the density of hyperpolarization-activated cyclic-nucleotide gated (HCN)
channels is necessary for the emergence of several functional maps within hippocampal
pyramidal neurons. Here, we systematically analyzed the impact of dendritic atrophy
on nine such functional maps, related to input resistance and local/transfer impedance
properties, using conductance-based models of hippocampal pyramidal neurons. We
introduced progressive dendritic atrophy in a CA1 pyramidal neuron reconstruction
through a pruning algorithm, measured all functional maps in each pruned reconstruction,
and arrived at functional forms for the dependence of underlying measurements on
dendritic length. We found that, across frequencies, atrophied neurons responded
with higher efficiency to incoming inputs, and the transfer of signals across the
dendritic tree was more effective in an atrophied reconstruction. Importantly, despite the
presence of identical HCN-channel density gradients, spatial gradients in input resistance,
local/transfer resonance frequencies and impedance profiles were significantly constricted
in reconstructions with dendritic atrophy, where these physiological measurements
across dendritic locations converged to similar values. These results revealed that, in
atrophied dendritic structures, the presence of an ion channel density gradient alone
was insufficient to sustain homologous functional maps along the same neuronal
topograph. We assessed the biophysical basis for these conclusions and found that this
atrophy-induced constriction of functional maps was mediated by an enhanced spatial
spread of the influence of an HCN-channel cluster in atrophied trees. These results
demonstrated that the influence fields of ion channel conductances need to be localized
for channel gradients to express themselves as homologous functional maps, suggesting
that ion channel gradients are necessary but not sufficient for the emergence of functional
maps within single neurons.

Keywords: dendritic morphology, functional maps, HCN channel, impedance, resonance

INTRODUCTION
Hippocampal pyramidal neurons exhibit tremendous morpho-
logical variability. These variations in morphology could be sim-
ple baseline variability (Bannister and Larkman, 1995; Ishizuka
et al., 1995; Dougherty et al., 2012), or be a consequence of
structural plasticity that is associated with several physiological
and pathophysiological conditions (Leuner and Gould, 2010).
Specifically, structural plasticity in the CA1 subregion has shown
to be associated with development (Pokorny and Yamamoto,
1981), aging (Lolova, 1989; Kadar et al., 1994; Markham et al.,
2005; Mora et al., 2007), reproductive experience (Pawluski
and Galea, 2006), enriched environment (Faherty et al., 2003;
Leggio et al., 2005) and with pathological conditions that include
Alzheimer’s disease (Hanks and Flood, 1991; De Leon et al.,
1997; Elgh et al., 2006; Kerchner et al., 2012), various forms of
chronic stress (Lambert et al., 1998; McEwen, 1999; Bartesaghi
et al., 2003; Isgor et al., 2004; Brunson et al., 2005; Pinto
et al., 2014) and depression (Sheline et al., 1996; Campbell and
Macqueen, 2004). What are the functional consequences of such

innate and remodeling-dependent changes in pyramidal neuron
morphology? Primarily, it has been shown that changes in den-
dritic arborization could alter synaptic and neuronal excitability,
somatodendritic coupling, firing properties and firing patterns
(Mainen and Sejnowski, 1996; Krichmar et al., 2002; Van Ooyen
et al., 2002; Sjöström et al., 2008; Narayanan and Chattarji, 2010;
Torben-Nielsen and Stiefel, 2010; Van Elburg and Van Ooyen,
2010; Ferrante et al., 2013; Platschek et al., 2013), and mod-
ulate forward/back-propagation of electrical potentials (Vetter
et al., 2001; Sjöström et al., 2008; Narayanan and Chattarji, 2010;
Ferrante et al., 2013) and coincidence detection (Schaefer et al.,
2003). Although the modulation of these physiological measure-
ments emphasize an important role for neuronal morphology in
action potential firing and in the response of a neuron to a single
or an array of synaptic inputs, these studies do not address the role
of neuronal morphology on frequency-dependent response prop-
erties of neurons. Such analyses are critical because hippocampal
neurons reside in an oscillating network where inputs arrive
at specific frequency bands (Buzsaki, 2002, 2006; Wang, 2010),
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and their responses are tuned to optimally respond to these fre-
quency bands (Gimbarzevsky et al., 1984; Hutcheon and Yarom,
2000; Pike et al., 2000; Hu et al., 2002; Narayanan and Johnston,
2007). In an effort to fill this lacuna, in this study, we quanti-
tatively assessed the role of neuronal morphology on location-
and frequency-dependent response properties of hippocampal
pyramidal neurons and their dendrites.

Hippocampal pyramidal neurons typically respond to affer-
ent oscillatory inputs with spikes at specific oscillatory phases of
these inputs (O’keefe and Recce, 1993; Buzsaki, 2002, 2006; Wang,
2010). In doing so, they recruit several voltage-gated ion channels
(VGIC) in tuning their frequency-dependent response proper-
ties in a stratified manner enabling location-dependent input
processing. A classic and extremely useful measure of frequency-
dependent neuronal responses is electrical impedance, which is
simply defined as the ratio of voltage response to the current input
at various input frequencies (Cole, 1932, 1968; Cole and Baker,
1941). Impedance measurements from hippocampal pyramidal
neurons have shown that they exhibit a maximal response at a
particular frequency (known as the resonance frequency) in the
theta-frequency range (4–10 Hz), and that the impedance phase is
positive (inductive) in this theta-frequency range (Gimbarzevsky
et al., 1984; Pike et al., 2000; Hu et al., 2002, 2009; Narayanan and
Johnston, 2007, 2008; Vaidya and Johnston, 2013). Several ion
channels with specific constraints on their kinetics and voltage-
dependent properties could elicit such resonance, and these reso-
nance properties could be dependent on dendritic location based
on several mechanisms (Gimbarzevsky et al., 1984; Hutcheon and
Yarom, 2000; Pike et al., 2000; Hu et al., 2002, 2009; Narayanan
and Johnston, 2007, 2008; Vaidya and Johnston, 2013; Zhuchkova
et al., 2013; Laudanski et al., 2014).

In hippocampal pyramidal neurons, impedance-dependent
properties have been shown to be location-dependent, with
both resonance frequency and inductive phase varying with
distance from the cell body. Specifically, two forms of reso-
nance have been reported to express in hippocampal pyramidal
neurons, with complementary location-dependent profiles. The
hyperpolarization-activated cyclic-nucleotide gated (HCN) chan-
nels mediate resonance at more hyperpolarized voltages, and the
M-type K+ channels mediate resonance at relatively depolarized
voltages. Furthermore, resonance frequency measured at hyper-
polarized voltages increases with distance from the cell body
whereas that at depolarized voltage ranges decreases with dis-
tance from the cell body, thereby complementing each other both
as functions of voltage range as well as somatodendritic location
(Pike et al., 2000; Hu et al., 2002, 2009; Narayanan and Johnston,
2007, 2008, 2012).

What mediates these resonance frequency maps in hippocam-
pal pyramidal neurons? Several lines of experimental and mod-
eling evidence suggest that these topographic functional maps
are actively mediated by ion channel localization profiles. First,
HCN channels express at higher densities in the distal den-
drites of hippocampal pyramidal neurons (Magee, 1998; Lorincz
et al., 2002), M-type K+ channels are largely perisomatic (Hu
et al., 2007). In conjunction with the monotonic relationship
between resonating conductance density and resonance fre-
quency (Hutcheon et al., 1996; Narayanan and Johnston, 2007),

this suggests that the resonance frequency maps reflect the respec-
tive conductance gradient. Second, pharmacological blockade
of these channels in hippocampal pyramidal neurons clearly
demonstrates that the associated resonance frequency maps are
exclusively dependent on the specific ion channels. Specifically,
at hyperpolarized voltages, blockade of HCN channels rendered
the somatodendritic structure to be simple low-pass structures
with the abolishment of resonance and phase lead in the voltage
response, across dendritic locations (Narayanan and Johnston,
2007, 2008; Hu et al., 2009; Vaidya and Johnston, 2013). On
the other hand, at depolarized voltages, blocking M-type K+
channels eliminated band-pass characteristics of somatodendritic
response properties (Hu et al., 2002, 2007). Third, if reso-
nance were merely reflective of passive gradients in the neu-
ronal topograph, maintaining two spatial gradients with opposing
signs would be infeasible. However, in a hippocampal pyra-
midal neuron, two distinct complementary location-dependent
gradients of resonance and impedance profiles express on the
same neuronal topograph and reflect the corresponding chan-
nel localization profiles. Fourth, and importantly, input resis-
tance and impedance properties are rendered largely location-
independent when HCN channels are blocked (Narayanan and
Johnston, 2007, 2008), implying that resistance and impedance
gradients at hyperpolarized voltages express only in the pres-
ence of HCN channels. Therefore, it is imperative that the
presence of a gradient in HCN channels is essential in medi-
ating these coexisting functional maps of input resistance and
local/transfer impedance properties (Narayanan and Johnston,
2007, 2008, 2012; Vaidya and Johnston, 2013). Finally, modeling
studies performed in the presence of these important experi-
mental constraints have clearly demonstrated that a constant
density of HCN channels or a shallow gradient in their den-
sity is insufficient to elicit these coexistent maps of input resis-
tance and local/transfer resonance properties (Hu et al., 2002,
2009; Narayanan and Johnston, 2007, 2008; Vaidya and Johnston,
2013).

Together, these experimental and modeling studies on hip-
pocampal pyramidal neurons demonstrate that a somatoden-
dritic gradient in the density of a resonating conductance is
necessary for the expression of the functional maps in input
resistance, resonance frequency and other impedance properties
(Narayanan and Johnston, 2007, 2008, 2012). In other words,
in a hippocampal pyramidal neuron, in the absence of the gra-
dient in the density of the resonating conductance, the specific
functional map ceases to exist. Is a gradient in the density of
a resonating conductance sufficient to impose these functional
maps on a neuronal topograph? What is the impact of dendritic
structure on how neurons respond to time-varying inputs under
conditions where the neuron is passive? How does such impact
change when the same neurons express gradients in ion channel
properties/densities? Do functional maps of impedance-related
and resonance measurements depend on dendritic arborization?
To answer these questions, and motivated to assess the role of
dendritic morphology on neuronal intrinsic response dynamics,
we analyzed several well-established functional maps mediated
by HCN channels in conductance-based neuronal models with
different morphological complexities.
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We found that, in the passive structure or in a neuronal
model endowed with a HCN-channel gradient, dendritic atrophy
induced a frequency-nonspecific increase in neuronal excitability
across dendritic locations and significantly enhanced somatoden-
dritic coupling. Further, assessing local and transfer resonance
frequencies in a model endowed with an HCN-channel gradient,
we found that the presence of this gradient was not sufficient to
impose a map in resonance frequencies in an atrophied neuron.
This conclusion was consistent across several other measure-
ments, suggesting that ion channel gradients along a dendritic
topograph alone are insufficient to introduce gradients in phys-
iological measurements along the same topograph. Finally, we
explored the biophysical basis for these conclusions, and found
that our results were a direct consequence of an atrophy-induced
increase in the spatial influence of a local channel cluster on
several physiological measurements. Our results have important
implications for structure-function relationships, especially with
reference to neuronal excitability, induction of synaptic plastic-
ity, rate and temporal coding of place fields, channelostasis and
targeting of specific ion channels, propagation of electrical and
biochemical signals along the dendritic arbor and neuronal spike
initiation dynamics, both from physiological and pathophysiolog-
ical standpoints.

MATERIALS AND METHODS
In this study, we employed conductance-based multicompart-
mental models built upon a three-dimensional reconstruction
of a hippocampal CA1 pyramidal neuron for understanding the
impact of dendritic remodeling on neuronal impedance prop-
erties. Progressive dendritic atrophy of this reconstruction was
achieved through a pruning algorithm designed to elicit uniform
pruning across all dendritic strata (Narayanan et al., 2005). The
pruning algorithm was employed to create 16 different pruned
morphologies, with the difference between successive morpholo-
gies set at around 1 mm atrophy of total dendritic length (see
Figure 1A for representative examples of pruned morphologies).
In what follows, the unpruned morphology will be referred to
as the base model, and the other models will be referred by
their total dendritic length in mm (Figure 1A). We employed
this approach of systematically altering a single base dendritic
morphological structure for our study owing to its advantages
in comparison to a correlative approach of using different mor-
phological structures and obtaining physiological measurements
from them (Narayanan et al., 2005; Narayanan and Chattarji,
2010):

(1) The algorithm allows us to induce specific structural changes
in a given neuron and examine its functional consequences
in the same neuron, thereby enabling us to establish a causal
link between dendritic remodeling and its biophysical effects.

(2) The use of multiple neurons to arrive at the relationship
between structure and function of neurons has the poten-
tial pitfall that biologically observed statistical variability
across neurons might cause a non-atrophied neuron to
elicit functional responses similar to an atrophied neuron.
Our algorithm uses a single neuron to causally construct
the structure–function relationship, thereby precluding the

effects of intrinsic variability across morphologies from spe-
cific dendritic remodeling.

(3) The algorithm provides us with trees with varying percent-
ages of atrophy of the original dendritic tree. This enables us
to analyze the functional form of the relationship between
various biophysical parameters and the total dendritic length.

(4) Comparison of the neuronal responses to stimulation with
multiple frequencies at the same dendritic point in different
trees is made possible because atrophied trees are subtrees
of the base reconstruction. This implies that the branching
structure remains the same, thereby ensuring that the analysis
is not confounded by the impact of branching patterns on the
propagation of information along the dendritic tree (Vetter
et al., 2001; Ferrante et al., 2013). This is especially necessary
in our analysis of local and transfer impedance properties
with varying gradients in passive and active properties, where
maintaining the same location across trees becomes crucial.

MULTICOMPARTMENTAL MODEL: PASSIVE PROPERTIES
A three-dimensional reconstruction of a hippocampal CA1 pyra-
midal neuron (n123), obtained from NeuroMorpho.Org (Ascoli
et al., 2007), originally reconstructed by Pyapali et al. (1998) was
used as the base morphology for all multicompartmental simula-
tions. Passive electrical parameters were tuned in a manner such
that the local input resistance (Rin) remained constant (∼120
M�) throughout the trunk (Narayanan and Johnston, 2007).
The specific membrane capacitance was set as 1 μF/cm2. Specific
membrane resistivity Rm and intracellular resistivity Ra, for com-
partments along the somatodendritic compartments as functions
of radial distance from the soma, x, were set as:

Rm(x) = Rsom
m +

(
Rend

m − Rsom
m

)

1 + exp
( 250−x

50

)k�.cm2 (1)

Ra(x) = Rsom
a +

(
Rend

a − Rsom
a

)

1 + exp
( 250−x

50

)�.cm (2)

where Rsom
m = 55 k�.cm2 and Rsom

a = 70 �.cm were the values at
soma, Rend

m = 20 k�.cm2 and Rend
a = 30 �.cm were values at dis-

tal end of the apical trunk (which was ∼450 μm distance from the
soma for the reconstruction). The basal dendrites have similar Rm

and Ra as somatic compartments. This model was compartmen-
talized using the dλ rule (Carnevale and Hines, 2006), ensuring
that each compartment was smaller than 0.1λ100, where λ100

constitutes the space constant computed at 100 Hz.

CHANNEL KINETICS AND DISTRIBUTION
The kinetics and voltage-dependent properties of the hyperpo-
larization activated cyclic nucleotide gated (HCN or simply h)
channel was derived from Magee (1998) and Poolos et al. (2002).
In simulations where an h-channel gradient was included, the
maximal conductance value for the h conductance for compart-
ments all over somato-apical arbor, as a function of radial distance
from soma, x was set as:

ḡh(x) = 50

(
1 + 25

1 + exp (−(x − 350)/15)

)
μS/cm2 (3)
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FIGURE 1 | Traces and measurements related to neuronal intrinsic

response dynamics revealed significant somatodendritic changes with

dendritic atrophy in a passive neuronal model. (A) Baseline and a subset of
pruned morphologies employed in this study. Base: two-dimensional
projection of a CA1 pyramidal neuron reconstruction. The total dendritic length
of the neuron was 17.5, 13, 9, 5, and 1 mm are the labels provided for atrophied
dendritic reconstruction, and correspond to the total dendritic length of these
pruned morphologies. The three colored dots along the trunk marked at the
soma (black), and at ∼150 μm (red) and ∼300 μm (green) away from soma
depict the color-coded locations corresponding to the traces and plots shown
across all figures of the manuscript. The markings are shown only on dendritic
trees where traces/analyses are elaborated in (B–F). (B) Local voltage traces
(top) and steady-state V –I plots (bottom) fitted with straight lines obtained in

response of depolarizing and hyperpolarizing current pulses injected at three
identical locations on three different morphological reconstructions. (C) Local
voltage traces obtained in response to a chirp stimulus (a sinusoidal current
wave of constant amplitude with frequency linearly increasing from 0 to 25 Hz
in 25 s) injected at three identical locations on three different morphological
reconstructions. (D) Local impedance amplitude (top) and phase (bottom)
profiles obtained from traces shown in (C) and plotted as functions of
frequency for various somatodendritic locations and levels of atrophy. (E)

Somatic voltage traces obtained in response of a chirp stimulus injected at
three identical locations on three different morphological reconstructions. (F)

Transfer impedance amplitude (top) and phase (bottom) profiles obtained from
traces shown in (E) and plotted as functions of frequency for various
somatodendritic locations and levels of atrophy.

The basal dendrites had the same ḡh as the somatic compart-
ments. The values in Equation (3) were tuned in a manner such
that the Rin reduced from ∼75 to 40 M� along the somatoapi-
cal trunk of the base model, with a corresponding increase in
resonance frequency (fR) from 3 to 11 Hz, measured at −65 mV
(Narayanan and Johnston, 2007).

MEASUREMENTS
All physiological relevant measurements were computed employ-
ing procedures listed in previous studies (Narayanan and

Johnston, 2007, 2008; Rathour and Narayanan, 2012a, 2014; Das
and Narayanan, 2014). Specifially, Rin was measured as the slope
of the V–I plot, with V representing the local steady-state volt-
age response to depolarizing and hyperpolarizing current pulses
of amplitude I, ranging from −50 pA to 50 pA, in steps of 10 pA,
for 300 ms, at specific locations along the somatodendritic arbor.
In certain cases, to minimize the overall voltage deflections, the
current range was reduced to −25 pA to 25 pA in steps of 5 pA.

The stimulus used for computing the impedance was a chirp
stimulus, a sinusoidal current wave with constant amplitude
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(50 pA), with frequency linearly increasing from 0 to 25 Hz in
25 s. For models endowed with HCN channels, the amplitude
of the chirp stimulus waveform was normalized with respect to
input resistance of somatic compartment such that peak-to-peak
amplitude of voltage response was similar across various pruned
morphologies. Two types of impedance measurements were per-
formed: local and transfer. For local measurements, the voltage
response was recorded at the same location where the chirp
stimulus was injected. For transfer impedance measurements,
on the other hand, the chirp stimulus was injected at different
somatodendritic locations, but the voltage response was always
recorded at the soma. Zloc(f ) and ZTR(f ) were used to repre-
sent local and transfer impedance, respectively. When impedance
properties were represented as functions of distance, the distance
corresponded to the location of chirp injection.

The magnitude of the ratio of the Fourier transform of voltage
response to the Fourier transform of the chirp stimulus formed
the impedance amplitude profile (ZAP). The impedance magni-
tude for a given impedance Z(f ) was calculated using following
equation:

∣∣Z(f )
∣∣ =

√(
Re(Z(f ))

)2 + (
Im(Z(f ))

)2
(4)

where Im
(
Z(f )

)
and Re

(
Z(f )

)
were the imaginary and real parts

of the impedance Z(f ), respectively.
The frequency at which the Zloc(f ) and ZTR(f ) reached their

maximum was considered as the local (fR) and transfer (fTR) res-
onance frequency, respectively (Hutcheon and Yarom, 2000; Hu
et al., 2002, 2009; Narayanan and Johnston, 2007; Vaidya and
Johnston, 2013). |Zloc|max and |ZTR|max represented the maxi-
mum values of the local and transfer ZAP, which as per defini-
tion equal |Zloc(fR)| and |ZTR(fTR)|, respectively. Local resonance
strength (Q) was measured as the ratio of |Zloc(fR)| to |Zloc(0.5)|
and transfer resonance strength (QTR) was measured as the ratio
of |ZTR(fTR)| to |ZTR(0.5)|(Hu et al., 2002; Das and Narayanan,
2014).

Impedance phase profile (ZPP) for a given impedance Z(f ) was
calculated as:

φ(f ) = tan−1 Im
(
Z(f )

)

Re
(
Z(f )

) (5)

where φloc(f ) and φTR(f ), computed respectively from Zloc(f )
and ZTR(f ) using Equation (5), represented local and transfer
ZPPs, respectively. The total inductive phase was computed as
the area under the inductive part of the corresponding ZPP
(Narayanan and Johnston, 2008; Rathour and Narayanan, 2014):

�L(f ) =
∫

φ(f ) > 0
φ(f )df (6)

�L(f ) and �TR
L (f ), computed respectively from φloc (f ) and

φTR(f ) using Equation (6), represented the total inductive phase
for local and transfer ZPPs, respectively.

INFLUENCE FIELD QUANTIFICATION
The influence field for an ion channel cluster inserted at location
xi, for measurement M, was calculated through the normalized
influence factor, �M (x; xi) as follows (Rathour and Narayanan,
2012b):

�M (x; xi) = IFM(x; xi)

max IFM(x; xi)
(7)

where x stands for location along trunk length and IFM (x; xi) is
the unnormalized influence factor, calculated as:

IFM(x; xi) =
∣∣Morg(x) − Mnew(x; xi)

∣∣
Morg(x)

(8)

where Morg represented the measurement obtained in absence
of the ion channel cluster at location xi and Mnew was obtained
after inserting channel cluster at location xi. For example, for
measuring the influence field of an HCN-channel cluster on Rin,
Rorg (x) and Rnew (x; xi) were calculated in the absence and in the
presence of the channel cluster located at xi, respectively. Unless
otherwise stated, the HCN-channel cluster was located at a den-
dritic path distance of xi = ∼450 μm away from soma (around
the center of the apical trunk).

For quantitative analyses of the influence field, we employed
the area under the influence field plot as a measure of the extent
of influence of a single ion channel cluster located at xi:

AUC of �M =
∫ Ld

0
�M(x; xi)dx (9)

where Ld is the total path length of the apical trunk. Whereas
�M (x; xi) was employed for computing the area under the curve
(AUC) of the normalized influence field, for computing the AUC
of the unnormalized influence field, we employed IFM (x; xi)

(Equation 8).

COMPUTATIONAL DETAILS
All simulations were performed using the NEURON simula-
tion environment (Carnevale and Hines, 2006). Simulations were
performed with the membrane potential set at −65 mV. The tem-
perature was set at 34◦C, and ion channel kinetics were adjusted
appropriately to account for their experimentally determined Q10

factors. The default integration time step for the simulations
was set at 25 μs. Computation of physiologically-relevant mea-
surements from simulation traces and quantification of influence
fields were performed with custom-built software written within
the IGOR Pro (Wavemetrics) programming environment.

RESULTS
How does dendritic morphology alter intrinsic response dynam-
ics in a passive neuronal model? To address this question, we
employed a 3D reconstructed CA1 pyramidal neuron as our base
morphology and adjusted its passive properties to match with
experimental measurements (Narayanan and Johnston, 2007).
We then applied an iterative pruning algorithm (Narayanan et al.,
2005) on this base morphology to obtain 17 different morpholo-
gies, each successively pruned by ∼1 mm (from the ∼17.5 mm of
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total dendritic length of the base morphology to ∼1 mm of total
dendritic length of the most pruned morphology; Figure 1A).
We employed these pruned reconstructions, imposed identical
passive properties on each of them and analyzed the impact
of dendritic atrophy on somatodendritic excitability in passive
neuronal models.

DENDRITIC ATROPHY INCREASED LOCAL AND TRANSFER IMPEDANCE
AMPLITUDES ACROSS LOCATIONS
We computed Rin at different locations along the dendritic arbor
(Figure 1B), and found that Rin increased across the dendritic
arbor with atrophy (Figures 2A,B). This should be expected
because a reduction in total surface area and branching directly
translates into an increase in the input resistance of the com-
partment (Rall, 1977; Mainen and Sejnowski, 1996; Krichmar
et al., 2002; Van Ooyen et al., 2002; Narayanan and Chattarji,
2010; Van Elburg and Van Ooyen, 2010). Whereas this steady-
state neuronal response property showed an expected outcome,
how does the frequency-dependent response of a neuron vary
with dendritic remodeling? To address this question, we com-
puted the local impedance amplitude and phase using the chirp

stimulus (Figures 1C,D). As our model contained only passive
components, the voltage response to a chirp stimulus behaved
like a low pass filter, with higher responses at lower frequencies
and lower responses at higher frequencies (Figure 1D). Dendritic
atrophy did not significantly alter the shape of this low-pass fil-
ter (Figure 1D), but changed only the actual response amplitude
(Figure 1D). The impedance phase profile always stayed nega-
tive across all frequencies (Figure 1D), suggesting that the voltage
response lagged the current input at all measured frequencies.
This should be expected in a passive system, which behaves simi-
lar to an RC circuit, thereby eliciting only negative phases (Cole,
1932, 1968; Cole and Baker, 1941; Narayanan and Johnston,
2008). The shape of the phase response also did not show any sig-
nificant change with dendritic atrophy across the three measured
locations (Figure 1D).

Do conclusions on atrophy-induced increases in the maxi-
mal local impedance amplitude at these three locations extend to
other locations of the dendritic tree? To address this, we measured
|Zloc|max associated with the local impedance of various locations
along the somatoapical trunk, and plotted it for various levels of
dendritic atrophy. We found that the maximal local impedance

FIGURE 2 | Steady-state and frequency-dependent measures of

excitability increased with dendritic atrophy across

somatodendritic locations of a passive neuronal model. (A,B)

Input resistance (Rin) plotted as functions of somatodendritic location
(A; for 5 different pruned morphologies, Figure 1A) and total
dendritic length (B; for 3 distinct somatodendritic locations,

Figure 1A). (C,D) Maximal local impedance amplitude (|Zloc|max)
plotted as functions of somatodendritic location (C) and dendritic
length (D). (E,F) Maximal transfer impedance amplitude (|ZTR|max)
plotted as functions of somatodendritic location (E) and total
dendritic length (F). The legends for all graphs on the left and
right are given in (A,B), respectively.
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amplitude, measured at several locations along the somatoapical
trunk, increased with atrophy (Figures 2C,D).

Information arriving at a dendritic location undergoes a two-
step filtering process before integration occurs at the soma. The
first is governed by the local frequency response of the dendritic
branch, and the second depends on the propagation of this signal
along the dendritic tree. A quantitative manner to study the latter
is through transfer impedance properties, which may be evaluated
by recording the voltage response to a chirp current injected at
a somatodendritic location (Ulrich, 2002; Hu et al., 2009; Vaidya
and Johnston, 2013). For passive neurons, this transfer impedance
profile is expected to be low-pass in nature given the resistor-
capacitor electrical structure of a passive neuron (Figures 1E,F).
Although the passive nature of the transfer impedance amplitude
and phase profiles did not change with dendritic atrophy, atrophy
introduced quantitative differences in these profiles (Figure 1F).

To quantify this, we computed the transfer impedance ampli-
tude, |ZTR|max, at various locations along the somatoapical trunk,
and found that |ZTR|max shifted to higher values with dendritic
atrophy across the entire somatoapical trunk (Figures 2E,F). The
pattern of evolution of the transfer impedance amplitude was
very similar to the evolution of local impedance amplitude, with
a monotonic increase with dendritic atrophy (Figures 2C–F).
These, together, implied that atrophied neurons responded with
higher efficiency to incoming inputs, and that the transfer of sig-
nals across the dendritic tree was more effective in an atrophied
tree across frequencies.

DENDRITIC ATROPHY CONSTRICTED HCN-CHANNEL MEDIATED
SPATIAL MAPS OF LOCAL AND TRANSFER IMPEDANCES
Although the input resistance values are flat with low-pass fre-
quency response profiles in the absence of HCN channels, native

FIGURE 3 | Dendritic atrophy in the presence of a physiologically

constrained HCN-channel gradient introduced significant

somatodendritic changes in neuronal intrinsic response dynamics. (A,B)

Local voltage traces (A) and steady-state V –I plots (B) fitted with straight
lines obtained in response of depolarizing and hyperpolarizing current pulses
injected at three identical locations on three different morphological
reconstructions. (C) Local voltage traces obtained in response of a chirp
stimulus injected at three identical locations on three different morphological
reconstructions. (D) Local impedance amplitude (top) and phase (bottom)

profiles obtained from traces shown in (C) and plotted as functions of
frequency for various somatodendritic locations and levels of atrophy. (E)

Somatic voltage traces obtained in response of a chirp stimulus injected at
three identical locations on three different morphological reconstructions. (F)

Transfer impedance amplitude (top) and phase (bottom) profiles obtained
from traces shown in (E) and plotted as functions of frequency for various
somatodendritic locations and levels of atrophy. Arrows in (C,E) refer to the
location of maximal response on those specific traces. See Figure 1A for the
morphologies and locations referred here.
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hippocampal dendrites are endowed with a HCN-channel gra-
dient that mediates a functional gradient of input resistance,
and bestows band-pass characteristics on the location-dependent
impedance profiles (Magee, 1998; Lorincz et al., 2002; Narayanan
and Johnston, 2007; Hu et al., 2009; Vaidya and Johnston,
2013). In hippocampal pyramidal neurons, whereas Rin stays
at almost ∼120 M� throughout the somatoapical trunk in the
absence of the HCN channels, in their presence, Rin reduces from
around 70 M� at the soma to around 20–30 M� at the distal
dendritic locations (Narayanan and Johnston, 2007). To under-
stand the impact of dendritic remodeling on Rin in the presence
of HCN channels, we introduced a density gradient of HCN
channels into our morphologies. We imposed the same HCN
gradient and passive properties on all the 17 morphologies, and
asked if this input resistance map altered with dendritic atro-
phy. Consistent with our results with passive models (Figures 1,
2), we found that Rin increased with atrophy (Figures 3A,B).
Importantly, we also found that the Rin map became more uni-
form in an atrophied neuron, compared to the base morphol-
ogy (Figures 4A,B). Specifially, whereas there was a reduction
in Rin with distance in the base morphology, with atrophy, the

ratio between somatic and dendritic Rin values was lesser in
the pruned dendritic tree compared to its control counterpart
(Figures 4A,B). Therefore, in atrophied dendritic trees, the gra-
dient in HCN channels was insufficient to maintain a gradient
in Rin.

Next, we turned our attention to intrinsic response dynamics
associated with time-varying inputs and assessed the impact of
dendritic atrophy on impedance profiles in the presence of a HCN
channel gradient. In the absence of an inductive element, the local
and the transfer impedance profiles are low pass in nature and
reflect an RC circuit. However, in the presence of HCN chan-
nels, which act as inductive elements, the local (Figures 3C,D)
and the transfer (Figures 3E,F) filters resemble band-pass struc-
tures with the resonance frequency in the theta frequency range
(Hutcheon and Yarom, 2000; Hu et al., 2002, 2009; Ulrich, 2002;
Narayanan and Johnston, 2007; Rathour and Narayanan, 2012a;
Vaidya and Johnston, 2013). Consistent with the inductive role
for HCN channels and their higher densities at distal locations,
we also noted that the local impedance phase profile showed sig-
nificant positive phases for distal dendritic locations, especially in
the theta frequency ranges (Figure 3D).

FIGURE 4 | In the presence of a somatodendritic HCN-channel

gradient, steady-state and frequency-dependent measures of

excitability increased with dendritic atrophy across somatodendritic

locations. (A,B) Input resistance (Rin) plotted as functions of
somatodendritic location (A; for 5 different pruned morphologies,
Figure 1A) and total dendritic length (B; for 3 distinct somatodendritic

locations, Figure 1A). (C,D) Maximal local impedance amplitude
(|Zloc|max) plotted as functions of somatodendritic location (C) and total
dendritic length (D). (E,F) Maximal transfer impedance amplitude
(|ZTR|max) plotted as functions of somatodendritic location (E) and
dendritic length (F). The legends for all graphs on the left and right
are given in (A,B), respectively.
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Upon dendritic atrophy, although the band-pass structures
of the local and transfer impedance profiles were retained,
there were signficant quantitative differences in the amplitude
of the responses and their gradients along the somatodendritic
axis. Specifically, dendritic atrophy translated into a mono-
tonic increase in local as well as transfer impedance amplitudes
(Figures 3C–F, 4C–F). Whereas the atrophy-induced increase in
local impedance amplitude could be attributed to a reduction in
overall surface area of the neuron, the corresponding increase
in transfer impedance amplitude is a direct consequence of the
improved somatodendritic coupling in trees with lesser den-
dritic length and dendritic branch points. Specifically, in the base
tree, owing to distance-dependent dendritic filtering, distal inputs
were attenuated more compared to proximal inputs, resulting in
a progressively lower values for the transfer impedance ampli-
tude with increase in distance (Figures 3E,F, 4E). However,
with dendritic atrophy, the somatodendritic coupling was higher
owing to the loss of dendritic branches through which informa-
tion flow could otherwise have been channeled and resulted in
an increase in transfer impedance amplitude (Figures 3E,F, 4E).
Furthermore, and similar to our observations with Rin, the ZAP
profiles across locations were very similar to each other in the
atrophied tree (Figures 3D,F), resulting in an atrophy-induced
constriction of the somatoapical maps in both local and trans-
fer impedance amplitudes (Figures 4C–F). We also noted that the
location-dependent differences in impedance phase plots were
significantly reduced with increasing levels of dendritic atrophy
(Figures 3D,F).

Together, consistent with our earlier conclusions with passive
trees, these results in the presence of a HCN-channel gradient
suggested that atrophied neurons responded with higher effi-
ciency to incoming inputs, and that the transfer of signals across
the dendritic tree was more effective in an atrophied arborization
across frequencies. Importantly, despite the presence of identi-
cal HCN-channel density gradients, spatial gradients in input
resistance and in local/transfer impedance amplitudes were sig-
nificantly diminished in neuronal models with dendritic atrophy.

THE SOMATODENDRITIC LOCAL AND TRANSFER RESONANCE
FREQUENCY MAPS WERE CONSTRICTED BY DENDRITIC ATROPHY
How do local and transfer resonance properties and their spatial
maps depend on dendritic atrophy? To address this, we first com-
puted the local resonance frequency at several locations along the
somatoapical trunk of all pruned reconstructions and plotted it
as functions of distance from the soma (Figure 5A) and of den-
dritic length (Figure 5B). With the insertion of the HCN-channel
gradient in the base model, the resonance frequency along the
somatodendritic trunk compartments increased ∼3-fold with
distance from the soma (Figure 5A; Base model), in a manner
that was consistent with experimental observations (Narayanan
and Johnston, 2007). With atrophy, however, this topographic
map of resonance frequency was severely constricted, whereby
the distal and proximal resonance frequency values became pro-
gressively similar with increasing levels of atrophy (Figures 5A,B).
These results suggest that the mere presence of a gradient in
HCN channels is insufficient to sustain the resonance frequency
map in neurons with lower dendritic length and lesser branches.

Apart from the local resonance frequency map, we also computed
the maps for total inductive phase (Figures 5C,D) and reso-
nance strength (Figures 5E,F) and found that these conclusions
extended to these measurements as well. In conjunction with our
conclusions on the input resistance and local impedance ampli-
tude maps (Figure 4), these results suggested that a gradient in
HCN-channel density was insufficient to sustain a gradient in sev-
eral HCN-channel dependent local physiological measurements
in an atrophied tree.

What was the impact of dendritic atrophy on spectral selectiv-
ity in the transfer impedance amplitude profile? To address this,
we quantified resonance frequency (Figures 6A,B), total induc-
tive phase (Figures 6C,D), and resonance strength (Figures 6E,F)
on transfer impedance profiles computed at different locations on
different morphologies. We found that in an atrophied tree, the
transfer impedance-related measurements were nearly identical
across the somatodendritic axis despite the presence of an under-
lying HCN-channel gradient. Together these results suggested
that the presence of identical HCN-channel density gradient was
insufficient to sustain functional maps in input resistance and in
local/transfer impedance properties in neuronal models with den-
dritic atrophy. Specifically, in an atrophied dendritic tree endowed
with identical somatodendritic channel gradients as an unatro-
phied one, several functional maps fail to express and the entire
length of the dendrite converges to similar intrinsic response
dynamics (Figures 3–6).

ATROPHY-INDUCED CONSTRICTION OF FUNCTIONAL MAPS WAS
MEDIATED BY ENHANCED SPATIAL SPREAD OF THE INFLUENCE OF A
HCN-CHANNEL CLUSTER IN ATROPHIED TREES
Thus far, employing models with a somatodendritic HCN-
channel gradient, we had demonstrated that the presence of a
somatodendritic gradient in an ion channel density alone was
insufficient to establish a functional gradient in a given phys-
iological measurement. What is the biophysical basis for such
constricted functional gradients? Why was an identical channel
gradient inadequate in sustaining functional maps on atrophied
trees? In answering these questions, we reasoned that, in a den-
dritic tree with heavy arborization, the influence of a point
conductance located at any given compartment would be spa-
tially localized owing to the branching and the higher surface area
(Williams, 2004; Rathour and Narayanan, 2012b). However, in
a dendritic tree with lesser arborization and lower surface area,
as a consequence of higher coupling across the compartments
(Figures 4E,F), the spread of influence of an ion channel clus-
ter would be enhanced. Together, we hypothesized that this large
increase in the influence field of any point conductance would
ensure that the impact of this gradient on functional properties is
minimized, even in the presence of an ion channel density gra-
dient. In other words, the impact of a dendritically expressed
channel is not confined only to the dendritic location, but spreads
to a larger extent, thereby altering even somatic properties. This
loss of compartmentalization of dendritic conductances, in con-
junction with a reciprocally widespread influence of somatic
ion channels on dendritic measurements, would ensure that ion
channel gradients do not necessarily translate to functional map
gradients.
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FIGURE 5 | Functional maps of several HCN-channel-dependent local

impedance measurements were critically regulated by dendritic

atrophy. (A,B) Local resonance frequency (fR ) plotted as functions of
distance from the soma (A; for 5 different pruned morphologies,
Figure 1A) and total dendritic length (B; for 3 distinct somatodendritic

locations, Figure 1A). (C,D) Total inductive phase of the local
impedance phase profile (�L) plotted as functions of distance from the
soma (C) and total dendritic length (D). (E,F) Local resonance strength
(Q) plotted as functions of distance from the soma (E) and total
dendritic length (F).

To test this hypothesis, we employed the recently developed
quantification on “influence fields” to assess the spread of influ-
ence of a single ion channel cluster on any given measurement
(Rathour and Narayanan, 2012b). We picked the two promi-
nent measurements that are sensitive to HCN channels,—input
resistance (Figure 4) and resonance frequency (Figure 5)—and
asked if the spread of influence of a single HCN-conductance
cluster was altered in an atrophied dendritic tree. Specifically,
we placed a HCN-conductance cluster (normalized by the spe-
cific surface area of the compartment under consideration) at
around the center of the somatoapical trunk and quantified
the influence field of that cluster (Rathour and Narayanan,
2012b) on input resistance (Figures 7, 8) and resonance fre-
quency (Figure 9). We performed this analysis on either the
passive model (Figures 7, 9; where the only active component
was this added HCN-conductance cluster) or on the active model
(Figures 8, 9; where the baseline HCN-channel gradient was
already present, and an additional HCN conductance cluster
was appended to it at one location). We employed two differ-
ent measures to quantify the influence field of the ion channel
cluster on the measurements: the area under the curve of the

normalized and unnormalized influence fields under these para-
metric variations.

Employing these two measurements for assessing the influence
field of HCN-channel clusters on Rin and fR on the 17 different
morphologies, each with two different background conductance
profiles (passive vs. HCN-channel gradient), we found that the
influence field of an ion-channel cluster increased with dendritic
atrophy (Figures 7–9). This increase in influence field was not just
restricted to the somatoapical trunk (Figures 7–9), but extended
to even the obliques (Figures 7E, 8E), and was common for both
measurements (Figures 7, 8 for Rin; Figure 9 for fR) and for
both cases of background conductances (Figures 7, 9 for pas-
sive and Figures 8, 9 for models with the baseline HCN-channel
gradient). These results indicated that the influence fields of ion
channel conductances need to be localized for channel gradients
to express themselves as functional maps. In the absence of such
compartmentalization, such as the case observed in atrophied
dendrites, gradients in ion channel properties do not translate
into maps in functional properties along the specified neuronal
topograph. In other words, HCN-channel gradients are necessary
but not sufficient for the emergence of functional maps of input
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FIGURE 6 | Functional maps of several HCN-channel-dependent

transfer impedance measurements were critically regulated by

dendritic atrophy. (A,B) Transfer resonance frequency (fTR ) plotted as
functions of distance from the soma (A; for 5 different pruned
morphologies, Figure 1A) and total dendritic length (B; for 3 distinct

somatodendritic locations, Figure 1A). (C,D) Total inductive phase of
the transfer impedance phase profile (�TR

L ) plotted as functions of
distance from the soma (C) and total dendritic length (D). (E,F)

Transfer resonance strength (QTR ) plotted as functions of distance
from the soma (E) and total dendritic length (F).

resistance, resonance frequency and impedance properties within
single hippocampal pyramidal neurons.

DISCUSSION
The principal finding of this study is that dendritic morphol-
ogy critically regulates impedance-related functional maps, with
the primary implication that the presence of ion channel gradi-
ent alone is not sufficient to impose a continuous gradient of
an associated physiological measurement along a neuronal topo-
graph. We arrived at this conclusion using systematically pruned
dendritic morphologies, and assessing five local (input resistance,
resonance frequency, maximal impedance amplitude, total induc-
tive phase, resonance strength) and four transfer (resonance fre-
quency, maximal impedance amplitude, total inductive phase and
resonance strength) measurements on these morphologies. Given
that our approach was to prune a specific tree and assess these
measurements, we were able to arrive at functional forms for the
dependence of each of these measurements on dendritic length.
These results clearly show that despite the presence of a gradi-
ent in HCN-conductance density along a neuronal topograph,
the corresponding physiological measurements do not form a

topographic map in atrophied trees. We assessed the biophysi-
cal mechanisms behind these observations using the “influence
field” framework, and found that these were consequent to an
atrophy-induced increase in the spread of influence of an ion
channel cluster on these physiological measurements. Apart from
these, our study also provides further evidence for a direct rela-
tionship between increased excitability and dendritic atrophy,
even in frequency-dependent measures of excitability. Further,
our results point to an increase in coupling across compartments
in an atrophied dendritic tree, ensuring an effective transfer of
signals across the somatodendritic axis of an atrophied dendritic
tree. These conclusions about morphology-dependent changes in
excitability and in functional gradients have direct implications
for physiological variability in dendritic length and branching of
neurons across different brain regions and for pathophysiological
changes in dendritic trees and their branching patterns.

IMPLICATIONS FOR ATROPHY-INDUCED ENHANCEMENT IN
NEURONAL EXCITABILITY AND SOMATODENDRITIC COUPLING
The dependence of synaptic and intrinsic neuronal excitability
as well as somatodendritic coupling on dendritic arborization
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FIGURE 7 | Dendritic atrophy enhanced the influence of an

HCN-conductance cluster on input resistance in a passive model. (A)

Input resistance (Rin) measured along the somato-apical trunk for different
morphologies. (B) Rin, in different morphologies, measured in the presence
of a single HCN-channel cluster, incorporated at ∼450 μm (path distance)
location away from soma. (C) �R, the normalized influence field for Rin, along

the somato-apical trunk for different morphologies. (D) Area under curve
(AUC) for unnormalized (black) and normalized (red) influence field, plotted as
functions of dendritic length of the neuronal morphology under consideration.
(E) Color-coded influence field across the entire dendritic arbor showing the
effect of a single HCN-channel cluster located (black arrow) at ∼450 μm from
the soma on Rin for various morphologies.

is clearly established (Mainen and Sejnowski, 1996; Vetter et al.,
2001; Krichmar et al., 2002; Van Ooyen et al., 2002; Schaefer
et al., 2003; Kole et al., 2007; Sjöström et al., 2008; Narayanan
and Chattarji, 2010; Van Elburg and Van Ooyen, 2010; Ferrante
et al., 2013; Platschek et al., 2013). By analyzing local and trans-
fer impedances as functions of input frequency, our results add
additional lines of evidence to these conclusions by extending the
analyses beyond pulse-current- and firing rate-based measure-
ments of neuronal excitability (Narayanan and Johnston, 2008).
Specifically, we show that dendritic atrophy increased both the
local and transfer impedance amplitudes across all analyzed fre-
quencies and across all locations along the dendritic arbor. These
conclusions also extended to the case where an HCN-channel gra-
dient was present across the somatodendritic gradient, where the
local and transfer impedance amplitude profiles were band-pass

in structure. These conclusions are especially important in the
context of the hippocampus residing in an oscillatory environ-
ment where oscillations of different frequencies impinge on the
somatodendritic arbor, and mediate various forms of rate, tem-
poral and phase coding (O’keefe and Dostrovsky, 1971; O’keefe
and Recce, 1993; Buzsaki, 2002, 2006; Wang, 2010; Lisman
and Jensen, 2013). Such widespread increases in frequency-
independent excitability, and the tighter somatodendritic cou-
pling inferred from higher transfer impedance amplitudes would
together imply that atrophied neurons generate higher number
of spikes even for smaller inputs. Further, spike generation in
an atrophied dendritic tree would also be expected to be earlier
within the theta frequency oscillations. Given this, future stud-
ies should focus on the impact of dendritic atrophy on various
forms of rate, temporal and phase coding in the hippocampus,
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FIGURE 8 | Dendritic atrophy enhanced the influence of an

HCN-conductance cluster on input resistance in a model

endowed with a somatodendritic HCN-conductance gradient. (A)

Input resistance measured along the somato-apical trunk for different
morphologies. (B) Rin, in different morphologies, measured in the
presence of an HCN-channel cluster, incorporated at ∼450 μm (path
distance) location away from soma. (C) �R, the normalized influence

field for Rin, along the somato-apical trunk for different morphologies.
(D) Area under curve (AUC) for unnormalized (black) and normalized
(red) influence field, plotted as functions of dendritic length of the
neuronal morphology under consideration. (E) Color-coded influence
field across the entire dendritic arbor showing the effect of a single
HCN-channel cluster located (black arrow) at ∼450 μm from soma on
Rin for various morphologies.

including possible expansion in place-cell firing fields and poten-
tial saturation in phase precession that is observed in CA1 place
cells.

The critical importance of dendritic morphology and surface-
area-to-volume ratio in reaction-diffusion systems that reg-
ulate biochemical signal transduction (Sabatini et al., 2002;
Frick et al., 2003; Neves et al., 2008; Neves and Iyengar,
2009; Kotaleski and Blackwell, 2010; Ross, 2012; Ashhad and
Narayanan, 2013) and the vital role that excitability plays in
regulating calcium propagation and plasticity rules (Johnston
et al., 2003; Schaefer et al., 2003; Sjöström et al., 2008;
Narayanan and Johnston, 2010; Ashhad and Narayanan, 2013;
Sehgal et al., 2013) are well established. Given these, we
postulate that dendritic atrophy and consequent increase in
neuron-wide excitability would regulate the amplitudes and

propagation of calcium transients, thereby significantly alter-
ing the rules for plasticity induction and the spread of sig-
naling components (Narayanan and Chattarji, 2010). If these
atrophy-induced changes in excitability were to be nullified
for the maintenance of homeostasis in activity, signal propa-
gation and plasticity, then concurrent homeostatic mechanisms
should be activated through changes in synaptic and/or intrin-
sic properties of the neuron (Kole et al., 2004; Turrigiano and
Nelson, 2004; Narayanan and Chattarji, 2010; Turrigiano, 2011;
Honnuraiah and Narayanan, 2013). Therefore, future studies
should recognize morphology as an important additional variable
for neurons to adjust local and global neuronal excitability and
coupling strengths across compartments, and assess its roles in
either maintaining or hampering homeostasis of several neuronal
functions.
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FIGURE 9 | Dendritic atrophy broadened the influence of a HCN

conductance cluster on resonance frequency. The analyses presented in
panels (A–C) correspond to passive neuronal models, and those presented in
(D–F) correspond to models endowed with a physiologically relevant
somatodendritic HCN-channel gradient. (A) Resonance frequency (fR ), in
different morphologies, measured in the presence of an HCN-channel cluster,
incorporated at ∼450 μm (path distance) location away from soma. (B) �f,
the normalized influence field for fR , along the somato-apical trunk for
different morphologies. (C) Area under curve (AUC) for unnormalized (black)
and normalized (red) influence field, plotted as functions of dendritic length of

the neuronal morphology under consideration. (D) fR , in different
morphologies, measured in the presence of an additional HCN-channel
cluster, incorporated at ∼450 μm location away from soma. The baseline
values of fR , in the absence of this additional HCN-channel cluster, were the
same as the plots shown in Figure 5A. (E) �f, the normalized influence field
of the additional HCN-channel cluster for fR , along the somato-apical trunk for
different morphologies. (F) Area under curve (AUC) for unnormalized (black)
and normalized (red) influence field of the additional HCN-channel cluster,
plotted as functions of dendritic length of the neuronal morphology under
consideration.

IMPLICATIONS FOR THE REGULATION OF FUNCTIONAL MAPS BY
DENDRITIC ATROPHY
Our study clearly elucidates the critical role of neuronal mor-
phology in the emergence of several functional maps in input
resistance and in local/transfer impedance properties. From the
perspective of intraneuronal maps (Narayanan and Johnston,
2012), it should be noted that the maps of local EPSP ampli-
tude and backpropagating action potentials (bAP) have already
been shown to be dependent on dendritic remodeling (Vetter
et al., 2001; Narayanan and Chattarji, 2010). Together with
this, our study establishes that dendritic atrophy plays a sig-
nificant role in the emergence of functional maps, especially
constricting several of these maps despite the presence of ion
channel gradients. Physiologically, this implies that the distance-
dependent processing capabilities that are enabled by the presence
of ion channel gradients would cease to exist under dendritic
atrophy or in neurons with severely limited branching pro-
files. Specifically, the presence of channel gradients introduce
location-dependent processing capabilities that regulate the loca-
tion dependence of spike initiation dynamics, bAP amplitude
coincidence detection and frequency-dependent input process-
ing, apart from normalizing temporal summation and input
phase of the transfer impedance profiles (Magee, 1998, 1999,
2000; Hausser et al., 2000; Vetter et al., 2001; Schaefer et al.,
2003; Narayanan and Johnston, 2007, 2008; Vaidya and Johnston,
2013; Das and Narayanan, 2014). Under pathologically induced

or developmentally observed reduction in dendritic arborization,
neurons lose their ability to process their inputs differentially
based on their inputs, translating to errors in rate or temporal
coding that are dependent on the presence of these functional
maps (Magee, 2000; London and Hausser, 2005; Spruston, 2008;
Wang, 2010; Narayanan and Johnston, 2012), unless concur-
rent homeostatic mechanisms are invoked to maintain functional
map homeostasis in these neuronal structures (O’leary et al.,
2014; Rathour and Narayanan, 2014). Therefore, future studies
could focus on the role of dendritic atrophy in altering stratified
input processing, and their implications for neural coding and
homeostasis in hippocampal and cortical neuronal structures.

In addition to these, our results also outline the importance
of dendritic morphology in the regulation of channelostasis in
particular, and proteostasis in general. Specifically, it is well estab-
lished that the localization, targeting and turnover of individual
channel and protein molecules at specific dendritic locations in
neurons with complex arborization is an extremely complex puz-
zle (Lai and Jan, 2006; Vacher et al., 2008; Nusser, 2012; Hanus
and Schuman, 2013; Rathour and Narayanan, 2014). If dendritic
morphology plays a critical role in the emergence of functional
maps, it stands to reason that maintenance of homeostasis in these
functional maps in the face of changes in dendritic arborization
(baseline or pathologically or developmentally regulated changes)
would have to follow different regimes of channelostasis for
channels that mediate these functional maps. Thus, baseline or
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remodeling-induced variability in pyramidal neuron morphology
needs to be systematically analyzed for their specific contribu-
tions to the proteostatic mechanisms behind functional map
homeostasis. Additionally, the differences in pyramidal neuron
morphology across the dorsal and ventral CA1 subregions are well
established. Given this, it is important to address questions on the
specific contributions of branching patterns in the observed dif-
ferences in somatodendritic physiology and functional maps of
dorsal vs. ventral CA1 pyramidal neurons (Dougherty et al., 2012,
2013; Marcelin et al., 2012a,b).

Finally, our results also pose the question on whether ion
channel gradients are necessary and therefore express only in
neurons with large dendritic arborizations. Specifically, let us
consider that the premise for the presence of gradients in chan-
nel densities of active dendrites is to provide for somatoden-
dritic normalization of certain physiological properties or to
bestow location-dependent processing with reference to strati-
fied incoming stimulus (Magee, 2000; Johnston and Narayanan,
2008; Sjöström et al., 2008; Spruston, 2008; Narayanan and
Johnston, 2012; Nusser, 2012). Such normalization is necessary
and stratified processing is feasible only in neurons that have
large dendritic arborization, that translate to higher electrotonic
lengths and compartmentalized influence fields of ion channels.
However, if neurons possess minimal arborization and are elec-
trotonically compact (Rall, 1977), the aforementioned purpose
for the expression of channel gradients would be defeated. This
is because several physiological properties would already be nor-
malized owing to the compact structure, and gradients in ion
channels would not translate to stratified processing of input
stimulus as a result of constricted functional maps. Therefore,
the analyses of proteostasis in complex dendrites (Lai and Jan,
2006; Vacher et al., 2008; Nusser, 2012; Hanus and Schuman,
2013; Rathour and Narayanan, 2014) should account for the
morophological complexity and the electrotonic compactness
of the neuronal structure (Vetter et al., 2001; Sjöström et al.,
2008; Zhuchkova et al., 2013) in assessing the necessity for spe-
cific targeting of ion channels in achieving certain functional
goals.
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We studied the rapid changes in electrical properties of lumbar motoneurons between
postnatal days 3 and 9 just before mice weight-bear and walk. The input conductance
and rheobase significantly increased up to P8. A negative correlation exists between the
input resistance (Rin) and rheobase. Both parameters are significantly correlated with
the total dendritic surface area of motoneurons, the largest motoneurons having the
lowest Rin and the highest rheobase. We classified the motoneurons into three groups
according to their discharge firing patterns during current pulse injection (transient,
delayed onset, sustained). The delayed onset firing type has the highest rheobase
and the fastest action potential (AP) whereas the transient firing group has the lowest
rheobase and the less mature AP. We found 32 and 10% of motoneurons with a transient
firing at P3–P5 and P8, respectively. About 20% of motoneurons with delayed onset
firing were detected at P8. At P9, all motoneurons exhibit a sustained firing. We defined
five groups of motoneurons according to their discharge firing patterns in response
to ascending and descending current ramps. In addition to the four classical types,
we defined a fifth type called transient for the quasi-absence of discharge during the
descending phase of the ramp. This transient type represents about 40% between
P3–P5 and tends to disappear with age. Types 1 and 2 (linear and clockwise hysteresis)
are the most preponderant at P6–P7. Types 3 and 4 (prolonged sustained and counter
clockwise hysteresis) emerge at P8–P9. The emergence of types 3 and 4 probably
depends on the maturation of L type calcium channels in the dendrites of motoneurons.
No correlation was found between groups defined by step or triangular ramp of currents
with the exception of transient firing patterns. Our data support the idea that a switch
in the electrical properties of lumbar motoneurons might exist in the second postnatal
week of life in mice.

Keywords: spinal, discharge firing pattern, dendritic arborization, calcium

Introduction

Electrical properties of developing spinal motoneurons have been studied in several species
and at different embryonic and postnatal stages (Ziskind-Conhaim, 1988; Navarrette and
Vrbová, 1993; Perrier and Hounsgaard, 2000; Vinay et al., 2000a,b, 2002; Carrascal et al.,
2005; Kanning et al., 2010). Only a few studies deal with developing mouse spinal motoneurons
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(Mynlieff and Beam, 1992a,b; Nakanishi and Whelan, 2010;
Quinlan et al., 2011). A new interest to study the development
of electrical properties in mouse motoneurons came with the
discovery that spinal motoneuron pathology starts during the
postnatal period in superoxide dismutase 1 (SOD1) transgenic
mice, a standard model of amyotrophic lateral sclerosis (ALS;
Amendola et al., 2004, 2007; Durand et al., 2006; Bories et al.,
2007; Amendola and Durand, 2008; Pambo-Pambo et al., 2009;
Quinlan et al., 2011; Filipchuk and Durand, 2012; Saxena et al.,
2013).

The functional differentiation into fast and slow-twitch
muscle fibers takes place late in embryonic and early in postnatal
life and depends on the properties of the motoneuron (Buchthal
and Schmalbruch, 1980; Navarrette and Vrbová, 1993; Kanning
et al., 2010). Poly-innervation and gap junctions are present
at that time period when motoneurons are still competing at
the periphery (Navarrette and Vrbová, 1993; Kopp et al., 2000;
Vinay et al., 2000b; Pun et al., 2002) precluding a functional
identification of motor units in situ. For example, 64% of
neuromuscular junctions mouse soleus muscle are multiply
innervated by P7 whereas about 43% of the junctions are still
innervated by two ormore axons at P9 (Kopp et al., 2000). At that
time, the firing patterns of soleus motor units are ‘‘quite phasic’’
(Navarrette and Vrbová, 1993; Kopp et al., 2000; Personius and
Balice-Gordon, 2002).

During the early postnatal period, three patterns of discharge
firing (single, transient and sustained) following current
pulse stimulation have been well documented in rat spinal
motoneurons (Vinay et al., 2000a,b, 2002; Mentis et al.,
2007). In addition, a delayed onset firing type was recently
described in mouse spinal motoneurons (Pambo-Pambo et al.,
2009; Leroy et al., 2014). This delayed onset firing is due
to transient outward potassium currents (Takahashi, 1990;
Russier et al., 2003; Pambo-Pambo et al., 2009). It was
observed in postnatal abducens motoneurons during a precise
postnatal period between P4 and P9 (Russier et al., 2003).
In this study we investigated whether the different patterns
are present in mouse lumbar motoneurons at the same
age and we focused on the postnatal period P3–P9 when
pathological signs have been observed in the spinal cord of
SOD1 mice (Bories et al., 2007; Amendola and Durand, 2008;
Filipchuk and Durand, 2012; Saxena et al., 2013). We also
analysed the development of the delayed onset firing type
in spinal motoneurons to determine whether it disappears
in the second postnatal week as in the case of abducens
motoneurons.

Correlation between rheobase and input resistance (Rin) of
motoneurons has been found in the neonate rat (Seebach and
Mendell, 1996). Indeed, we investigated the correlations between
the size of motoneurons and both parameters (rheobase and
Rin) using our database on mouse lumbar motoneurons that
have been intracellularly recorded and stained with Neurobiotin
at both ages P3–P4 and P8–P9. We also compared several
parameters at two different postnatal ranges (P3–P5 and P8–P9)
to detect rapid changes during this period and to supplement
previous studies on mouse lumbar motoneurons (Nakanishi and
Whelan, 2010; Quinlan et al., 2011). Finally, we investigated the

development of repetitive firing and the electrical properties of
mouse lumbar motoneurons in the different groups sorted by
their firing patterns. We found three types of discharge firing
patterns using current step stimulation. Surprisingly in a recent
study, only two patterns of discharge firing were described in
mouse lumbar motoneurons in postnatal mouse (Leroy et al.,
2014). Four firing patterns were previously found with ascending
and descending current ramp stimulation (Amendola et al., 2007;
Pambo-Pambo et al., 2009). In this study we defined a fifth type
(transient firing) and we determined the ratio of motoneurons in
the different types.

Part of this work has been published in abstract form (Durand
et al., 2013).

Materials and Methods

Experiments were carried out on C57BL/6J mice aged from
postnatal day 3 (P3) to 9 (P9), P0 being the first postnatal
day. All surgical and experimental procedures are conformed
to the European Communities council directive (86/609/EEC)
and approved by our ethics committee (Comité National de
Réflexion Ethique sur l’Expérimentation Animale n◦ 71). Most
of the experimental procedures were described previously (Bories
et al., 2007; Amendola and Durand, 2008).

Electrophysiological Experiments
P3–9 pups were anesthetized by hypothermia, decapitated,
eviscerated and pinned down onto a Petri dish and immersed
in cold (4◦C) artificial cerebrospinal fluid (ACSF). Then, a
laminectomy was performed and the spinal cord and brainstem
were removed, taking care to preserve sufficient length of L5
ventral root, placed in a recording chamber and superfused with
ACSF containing (in mM): NaCl, 130; KCl, 4; MgCl2, 1.2; CaCl2,
2; NaH2PO4, 1; NaHCO3, 25; D-glucose, 30; bubbled with a 95%
O2/5% CO2 mixture, adjusted to pH 7.4 at 24–25◦C. Monopolar
stainless steel electrodes were placed in contact with the L5
ventral root and insulated with petroleum jelly for recordings and
simulations.

To allow for microelectrode penetration in the spinal cord,
the pia was carefully removed medially to L5 ventral root
entry, using very fine forceps under binocular control. Fine
tip micropipettes for intracellular recordings were made from
1.2 mm filamented glass tubes (Clark Instruments) using a
pipette puller (model P-97; Sutter Instruments). Electrodes
were filled with 2 M potassium acetate, and their resistances
ranged between 60 and 110 M�. The microelectrode was
positioned to penetrate the L5 spinal segment with an angle
of 30–45◦ above the horizontal and advanced in the tissue
using a NarishigeTM three-dimensional hydraulic microdrive.
Motoneurons were impaled at a depth of 150–450 µm from
the spinal cord surface corresponding to the fifth lumbar
segment. Motoneurons were identified by their antidromic
action potential (anti AP) evoked following electrical stimulation
of the ventral root L5. Intracellular recordings were made either
in bridge mode with an output bandwidth of 3.0 kHz or in
Discontinuous Current Clamp (DCC) mode, using an Axoclamp
2B amplifier (Axon instruments). Electrode resistance and
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capacitance were compensated before intracellular recordings.
Signals were digitized at 10 kHz by an A/D converter (Digidata
1322 Axon Instruments) and saved on a computer using
Clampex 9.2 (Axon instruments).

Data Analysis
Rin was measured by computing the voltage deflections derived
from series of hyperpolarizing and depolarizing constant current
pulses (350 ms; −0.4 nA to +0.4 nA) injected into the
motoneurons. Measurements were made from the averaged
voltage over 50 ms taken from the steady state membrane
potential at the end of the pulses. Retained values were the
averages of three sets of measurements.

Spike potentials were analyzed using the Event
Detection/Threshold Search module of Clampfit 9.2. Firing
behavior was studied as described previously (Bories et al.,
2007). Briefly, we used intracellular injection of series of
depolarizing constant current pulses of increasing amplitude,
800 ms to 1 s in duration. Frequency/current relationship was
determined as the slope of the regression line fitted to the F-I
curve in the steady state (last 500 ms). A second protocol using
triangular current injection was performed to study the firing
pattern, instantaneous frequency and F-I relationship following
ascending and descending ramps of current (Amendola et al.,
2007). The triangular current stimulation consisted in an
ascending followed by a descending current command. Both
ramps were symmetric and series of ramps were performed
every 30 s each with a speed between 0.25 nA/s to 0.95 nA/s. The
different types of F-I patterns depend upon comparing the F-I
curve when current is increasing to that obtained when current
is decreasing (Hounsgaard et al., 1988).

Statistical significance was assessed with the non-parametric
Permutation with General Score Exact Test for independent
or paired samples or the Fisher exact test (StatXact7. Cytel
software). The correlation between two sets of data was evaluated
by using Pearson’s correlation test or Spearman’s correlation test
(Graphpad Prism 6 or StatXact 7). Two groups of data were
considered statistically different (∗) if p < 0.05, the difference
being highly significant (∗∗) if p < 0.01 or (∗∗∗) if p < 0.005.
Results were expressed as means ± SEM or medians with
interquartile range when indicated. Graphical representations
were obtained using Origin 7.5 (Origin Lab Corporation), Graph
pad Prism 6.0 and Corel Draw 12 (Vector Capital, San Francisco,
CA, USA).

Labeling of Motoneurons
All the procedures for morphological studies were described
previously (Amendola and Durand, 2008; Filipchuk and
Durand, 2012). Labeling of recorded motoneurons was done by
intracellular injection of 2% Neurobiotin following recording
sessions. The motoneurons were stained using depolarizing
current pulses (duration 150 ms, 1–4 nA) applied at 3.3
Hz for 10–20 min. After Neurobiotin injection, the spinal
cord was maintained in the recording chamber for 1–2 h
to allow for diffusion of marker into distal dendrites. The
spinal cord was then immersed in 4% Paraformaldehyde
fixative at 4◦C overnight, rinsed in PBS (pH 7.4), blocked

and cut transversally at 75 µm on a vibratome (Microm HM
650V). Neurobiotin was revealed using the standard avidin-
HRP-diaminobenzidin staining procedure. Serial sections were
mounted on gelatin covered glass slides, air dried overnight and
coversliped.

Quantitative Morphometric Analysis
The labeledmotoneurons were reconstructed from serial sections
(75 µm thick) on Nikon microscope equipped with a computer
interfaced motorized stage and z-axis optical encoder using
NeurolucidaTM software. The Nikon microscope was equipped
with ×20 dry objective and a numerical zoom ×3 (final
magnification ×60).

A single motoneuron was described by up to 18.000
data points, which were stored in a database together with
fiducial marks (boundaries of transverse spinal cord sections
and central canal) in ASCII format files. Reconstructed
cells were visualized and three-dimensionally analyzed using
NeurolucidaTM. Our own database of intracellularly recorded
and stained motoneurons with Neurobiotin comprises more
than 50 postnatal mouse lumbar motoneurons at different ages
between P3 and P10. Among them, 32 motoneurons were fully
reconstructed in 3D with NeurolucidaTM. In the present work
we used 14 motoneurons at both ages (P3–P4, n = 3 and P8–P9,
n = 11).

Results

The data base for the electrophysiological study comprises
103 motoneurons from mice aged between P3 and P9. Only
neurons displaying a stable membrane potential more negative
than −50 mV with overshooting APs during the whole test
procedure were kept for analysis. All the motoneurons were
identified by recording either the anti AP evoked by the ventral
root stimulation (Figure 1A, two superposed traces) or the
orthodromic AP in the ventral root (Figure 1B, VR lower trace)
evoked by direct intracellular stimulation (Figure 1B, upper
trace). Among them, 12 motoneurons intracellularly recorded
and stained were taken from our library of 3D reconstructed
lumbar mouse motoneurons to link the electrical parameters
(rheobase, Rin) and the morphology of individual lumbar
motoneurons (see below and graphs; Figures 2E,F).

Morphological Changes Between P3 and P9
Most of the results on morphological data were published
elsewhere for 9 out of 12 motoneurons (Amendola et al.,
2007; Amendola and Durand, 2008; Elbasiouny et al., 2010a;
Filipchuk and Durand, 2012). The dendritic arborizations
elongated between P3 and P9 without increasing their number
of branches (Filipchuk and Durand, 2012). The soma size
significantly increases with age (P3–4: 1864 ± 120 µm2,
n = 3; P8–9: 3212 ± 314 µm2, n = 9; p = 0.04) as well
as the mean diameter of primary dendrites (P3–4: 3.56 ±

0.32 µm2, n = 3; P8–9: 5.07 ± 0.31 µm2, n = 9; p =
0.03). The total dendritic length increases from P3 to P9
by 22% (P3–4: 13622 ± 2468 µm; P8–9: 16658 ± 1625
µm; non-significant difference, ns) and the total dendritic
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surface area by 20% (Filipchuk and Durand, 2012). Depending
on the soma location in the ventro-lateral part of the
spinal cord, distal dendrites reached different distal zones.
When the soma was located centrally and dorsally in the
ventro-lateral region, the dendrites projecting medially reach
a region close to the central canal known to contain
premotor interneurons (Figure 1C). On the contrary the
dendritic extension of motoneurons was restricted when
the soma was situated in close proximity to the ventral
horn boundaries (Figure 1D). The full 3D reconstructions
of the whole dendritic arborizations include the rostro-
caudal extensions (between 450 and 750 µm) and illustrate
the relative complexity of the single trees at both ages
P3 and P8 (see also Figure 3 in Amendola and Durand,
2008).

Electrical Properties of Mouse Lumbar
Motoneurons: Correlations with Size
In this series of experiments, a number of parameters of
electrical properties was analyzed in two populations of lumbar

FIGURE 1 | Electrophysiological identification and intracellular staining
of lumbar motoneurons in the developing mouse spinal cord. (A)
Electrical stimulation of the fifth lumbar (L5) ventral root evoked an anti AP.
Asterisk indicates the stimulus artifact. (B) Direct intracellular stimulation of L5
motoneuron giving rise to a train of action potentials (APs; sustained
discharge) recorded intracellularly (upper trace) and the propagated spikes in
the ventral root (lower trace); rectangular injected current: 1.2 nA (middle
trace). (C,D), two fully reconstructed lumbar motoneurons recorded from
P8–P9 mice. Depending on the location of the soma in the ventro-lateral part
of the spinal cord, dendritic arborisations extended either in all rostro-caudal
directions and medially near the central canal (C) or confined in a restricted
area into the latero-ventral part of the spinal cord (D). (E,F) Digitized full
reconstructions of two motoneurons at postnatal days 3 and 8 (P3 and P8) in
the transverse plane. During this period, the total dendritic length increases by
22%, only. Each dendrite is represented by a specific color.

motoneurons of different ages (P3–P5, n = 19) and P8–P9
(n = 34). The anti AP has comparable amplitude in the
two populations (77.9 ± 1.71 mV vs. 82.98 ± 2 mV; ns)
as well as the resting membrane potential (Em; Table 1).
The latency of the anti AP was significantly reduced in older
motoneurons (2.40 ± 0.29 ms vs. 1.18 ± 0.13 ms; p = 0.0008)
due to ongoing motor axon myelination during this postnatal
period.

As expected, the mean Rin was lower in the oldest
motoneurons (16.2 ± 0.82 M�, n = 34, P8–P9) compared to
the mean Rin in the P3–P5 population (19.36 ± 1.42 M�;
n = 19, p = 0.023). However, the Rin stabilizes between P8
and P9 (Figure 2A). At the same time, the rheobase (minimum
current to elicit an AP) increases two times in motoneurons
from 0.87 ± 0.11 nA (n = 19) to 1.76 ± 0.2 nA (n= 31)
between P3 and P8 (Table 1; Figure 1B, p = 0.009). The mean
rheobase is significantly higher at P6/P7 (1.53 ± 0.19 nA, n = 20;
p = 0.0036) compared to that in P3–P5. Indeed, a significant
and negative correlation exists between the rheobase and the
Rin (Figure 2C; r = 0.16, p = 0.023, Pearson’s correlation
test) but no significant correlation was found between the gain
and the Rin (Figure 2D; R2 = 0.09, p > 0.05). The mean
rheobase was significantly lower at P9 (1.19 ± 0.2, n = 12)
compared to that at P8 (2.12 ± 0.25, n = 19). Thus the
progression of the rheobase stopped between P8 and P9 in
lumbar motoneurons.

In twelve motoneurons intracellularly stained and fully
reconstructed, significant correlations were found between the
Rin and the total dendritic surface area (Figure 2E, r =
−0.67; p = 0.016; Pearson’s correlation test) and between
the rheobase and the total dendritic surface area (Figure 2F,
r = 0.63; p = 0.028; Pearson’s correlation test) confirming
that the largest motoneurons in the lumbar cord have the
lowest Rin and the highest rheobase also during postnatal
development. However, we noticed that some motoneurons
with similar total dendritic surface area (40,000 µm2) may
have different Rin ranging from 10 to almost 30 M�

(Figure 2E). Others motoneurons with an Rin around 10–15
M� also display different dendritic surface areas (30,000–60,000
µm2).

Changes in AP Shape
As summarized on Table 1, significant differences on the
AP shape were found between the two groups of ages.
Peak amplitude of the AP was increased from 62.08 ± 1.68
mV to 68.11 ± 1.76 mV (p = 0.028) together with the
maximum depolarizing speed which was accelerated from
123 ± 8.69 mV.ms−1 to 149 ± 7.38 mV.ms−1 with age
(p < 0.01). Thus younger motoneurons have spikes with
lower amplitude and slower time course. No changes with
age were seen in AHP amplitude and total AHP duration
between P3 and P9. However, AHP half-duration was
shorter and half decay time faster in the P8–P9 group
(Table 1). Others parameters did not change during this
short period of time such as spike threshold and the gain of
motoneurons measured in the steady state of the discharge
frequency.
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FIGURE 2 | Input resistance (Rin) and rheobase of mouse lumbar motoneurons (n = 53) at different postnatal ages (P3 to P9) and correlations with
total dendritic surface area in 12 motoneurons stained with neurobiotin. (A) Mean Rin significantly decreases between the groups P3–5 and P8 (p = 0.028,
n = 19 in each group) and then stabilizes at P9 (n = 15). (B) the mean rheobase (minimum current injected into a neuron to elicit an AP in 50% of cases) increases in
the same period of time (p = 0.0033, n = 19 for P3–5 and n = 31 for P8–9). (C) significant negative correlation exists between rheobase and Rin in the whole
population (n = 32); (D) no significant correlation was found between the Rin and the gain of the motoneurons (n = 32). The gain is the slope of the F-I curves
measured in the steady state of the discharge firing elicited during rectangular pulses of currents. (E,F) significant correlations between Rin (E) rheobase (F) and the
total dendritic surface area measured using 3D reconstructed motoneurons with neurolucida. Each motoneuron is numbered so that it can be identified from
previous publications Amendola and Durand (2008) for Mn n◦ 1–7 and Filipchuk and Durand (2012) for Mn n◦ 15, 16, 17. The morphologies of motoneurons n◦ 22,
23 and 24 were not previously published. The largest motoneurons tend to have the lowest Rin and the highest rheobase. Horizontal bars indicated mean ± sem in
the scatter plots of A and B. For statistical significance nonparametric permutation or mann-whitney exact tests and Pearson’s correlation test were used. *p < 0.05;
**p < 0.01; ***p < 0.005. Non-significant (ns) p > 0.05.

Discharge Properties
During the development of spinal motoneurons, different
patterns of discharge have been previously described (Vinay
et al., 2000a; Mentis et al., 2007; Pambo-Pambo et al., 2009;
Leroy et al., 2014). Only recently a delayed onset firing pattern
was detected in lumbar motoneurons in slice preparation

(Pambo-Pambo et al., 2009; Leroy et al., 2014). We then used
intracellular injection of depolarizing constant current pulses
(pulse protocols, see methods) to analyze in details the discharge
firing pattern of the motoneurons in the whole brainstem-
spinal cord preparation. Three different firing patterns were
clearly identified during this period of maturation (P3–P9)
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TABLE 1 | Changes of electrical properties of lumbar motoneurons with
age in postnatal mice.

P3–P5 P8–P9

Em (mV) −68.89 ± 1.02 (19) −70.03 ± 1.23 (34) ns
Rin (M�) 19.36 ± 1.42 (19) 16.2 ± 0.82 (34) ∗

Anti AP latency (ms) 2.40 ± 0.29 (13) 1.18 ± 0.13 (24) ∗∗∗

Anti AP amplitude (mV) 77.9 ± 1.71 (13) 82.98 ± 2 (24) ns
Anti AP time to Peak (ms) 1.39 ± 0.13 1.25 ± 0.06 (24) ns
Anti AP half-width (ms) 1.37 ± 0.08 1.08 ± 0.04 (24) ∗∗

Rheobase (nA) 0.87 ± 0.11 (19) 1.76 ± 0.2 (31) ∗∗

AP threshold (mV) −50.2 ± 1.73 (9) −47.88 ± 1.24 (26) ns
AP amplitude (mV) 62.08 ± 1.68 (12) 68.11 ± 1.76 (11) ∗

Time to peak (ms) 1.19 ± 0.07 (12) 0.99 ± 0.05 (11) ns
Half-width (ms) 1.28 ± 0.11 (12) 0.97 ± 0.03 (11) ∗∗

AP Max depol 123 ± 8.69 (12) 149 ± 7.38 (11) ∗

slope (mV/ms)
AP Max repol −54.81 ± 5.34 (12) −72.12 ± 2.90 (11) ∗∗

slope (mV/ms)
Gain (Hz/nA) 23.80 ± 2.05 (13) 25.63 ± 1.60 (11) ns
AHP duration (ms) 93.27 ± 7.40 (8) 96.63 ± 6.61 (11) ns
AHP amplitude (mV) 5.01 ± 0.72 (8) 5.26 ± 0.50 (11) ns
AHP time max 13.90 ± 1.94 (8) 10.00 ± 1.37 (11) ns
amplitude (ms)
AHP 1/2 duration (ms) 47.10 ± 4.33 (8) 36.78 ± 3.01 (11) ∗

AHP decay time (ms) 79.61 ± 8.27 (8) 82.74 ± 5.40 (11) ns
AHP 1/2 decay time (ms) 34.16 ± 3.50 (8) 27.78 ± 2.01 (11) ∗

P3–P5, postnatal days 3–5; P8–P9, postnatal days 8 and 9; Em, resting membrane

potential; Rin, Input resistance, anti AP, antidromic action potential, latency, latency

of AP elicited by electrical stimulation of the L5 ventral root; Time to peak, time

needed for potential to rise from spike threshold to maximum value. Half width,

time spent by the potential >50% of the maximum amplitude of action potential;

Rheobase, lowest intensity of current injected through the electrode to elicit an

action potential; AP threshold, voltage threshold measured at the foot of the action

potential evoked by intracellular current injection; AP amplitude, amplitude of action

potential measured between the foot and the peak; time to peak, measured as the

time needed for the potential to reach the peak; Max depol slope, maximum slope

of the depolarizing phase of action potential; Max repol slope, maximum slope of

the repolarizing phase of action potential; Gain, slope of the steady state frequency-

intensity curves measured during injection of long-duration pulse currents (800 ms

to 1 s. AHP, Afterhyperpolarization, half duration of AHP is significantly shortened

with age as well as half decay time. All values are means ± sem. The number of

motoneurons is indicated between brackets after each mean value and sem. ns,

non-significant difference; ∗p < 0.05, ∗∗p < 0.01; ∗∗∗p < 0.005. Nonparametric

permutation exact test.

according to the mode of discharge firing which was transient
(Figure 3A), sustained (Figure 3B) or delayed (Figure 3C) in the
different motoneurons. Figure 3A illustrates the typical pattern
of discharge of transient firing cells. The motoneuron fired a
single spike or a burst of spikes and the discharge firing did not
last during the entire pulse but a few hundreds of ms, only. This
transient firing was recorded in 32% of motoneurons at P3–P5
(pie chart in Figure 3). This ratio is in agreement with previous
report on extensor motoneurons in the neonate rat (Vinay
et al., 2000a). The transient firing pattern was not observed in
motoneurons from animals older than P8 (see pie chart). The
second group called sustained firing also displayed an early AP at
rheobase and then several APs appeared with increasing current
intensities (Figure 3B). The instantaneous discharge frequency
progressively increased and the motoneuron was able to fire

FIGURE 3 | Discharge firing patterns and distributions with age. Three
different types of discharge firing patterns were found in lumbar motoneurons
(n = 70) at different postnatal ages in response to rectangular current injection.
The transient discharge (A) is characterized by a short burst of spike. The
sustained pattern (B) starts by an early spiking followed by a burst and
discharge firing maintained during the whole pulse. The third pattern is called
delayed onset discharge firing (C) the arrow indicating a late depolarization. At
P3–P5, one third of motoneurons still present a transient discharge and the
motoneuron is not able to fire APs up to the end of the pulse as illustrated in
(A) (see pie chart). In older animals the number of motoneurons presenting
this pattern decreases up to P9. At that age, there is no more transient firing
but all motoneurons exhibit a sustained discharge firing pattern (B). Between
P3 and P8 a fraction of motoneurons has a delayed onset firing pattern which
disappears at P9.

continuously up to the end of the pulse (Figure 3B; 1.2 nA). A
third group is composed of motoneurons that display a delayed
onset firing. The delayed onset firing (Figure 3C) corresponds
to the late bursting motoneurons previously described in spinal
motoneurons (Pambo-Pambo et al., 2009). As illustrated on
Figure 3C, they were characterized by a delayed trigger of the
AP. At potentials below spike threshold, an initial transient small
overshoot in voltage response to the current pulse was observed
(arrow on Figure 3C, upper traces). It was followed by a slow
rising, late depolarization. This delayed onset firing was seen in
20% of motoneurons in our sample at P8 but was not detected
at P9 (n = 12). The distribution of the different firing patterns is
illustrated in pie charts in Figure 3. Most motoneurons exhibit
an early and sustained discharge (as in 3B) at all postnatal ages.

We then analysed the electrical properties of the subgroups.
We focused on the three patterns of discharge firing in
motoneurons from P6–P9 animals. We analyzed 14 passive
and active electrical properties (Figure 4). The motoneurons
with delayed onset firing pattern have the highest rheobase,
input conductance and time constant (Figures 4A–C) suggesting
that they are the largest motoneurons. Others parameters
show significant differences between the three groups such as
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FIGURE 4 | Passive and active electrical properties of postnatal mouse lumbar motoneurons (n = 33) in three subgroups defined by their discharge
firing pattern. Fourteen electrical properties were compared (12 illustrated). Among them, several electrical properties show significant differences in the medians
as indicated on each graph (Kruskal–Wallis test). The delayed subgroup has the highest conductance (A) rheobase (B) and time constant (C) suggesting they
represent the largest motoneurons. The resting membrane potential (Em) (D) was hyperpolarized in this subgroup (delayed) but the spike voltage threshold was the
lowest (F). The spike voltage threshold and the depolarization to threshold were the highest in the sustained subgroup (E,F). The AP was the shortest in the
delayed population (half width in G) and the fastest (H,I) compared to the two others groups. The AP amplitude was similar in sustained and delayed subgroups but
lower in the transient group (J). The AHP amplitude was smaller in the transient subgroup and larger in the delayed subgroup (K) whereas the medians of AHP half
durations were comparable in the three subgroups (L). Bars indicate median and quartile. Statistical significance for three populations: Kruskal–Wallis exact test.

the spike threshold (p = 0.0044, Kruskall–Wallis test), spike
half width (p = 0.038, Kruskall–Wallis test), max rise slope
(p = 0.032, Kruskall–Wallis test) and time to peak (p = 0.028,
Kruskall–Wallis test) of the AP. The maximum decay slope also

shows statistically significant difference between the three groups
(not illustrated). All spike parameters (time to peak, max rise
slope) indicate that the delayed firing type do have the fastest
AP. The AHP parameters did not show significant differences
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although there is a tendency in the AHP amplitude to be larger in
the delayed group (Figures 4K,L). The gain of the motoneurons
measured at the steady state firing frequency (in the last 500
ms of the current pulse) was also higher in the delayed onset
firing group compared with the gain in the sustained firing group
(delayed : 37.2 ± 2.5 Hz/nA, n = 9; sustained : 27.7 ± 3.4 Hz/nA,
n = 15; p = 0.024; non parametric permutation exact test).

Firing Behavior on Slow Triangular Current
Ramps
Firing pattern was further characterized using increasing
and decreasing (triangular) slow current ramps as described
previously (Hounsgaard et al., 1988; Amendola et al., 2007;
Pambo-Pambo et al., 2009). The F-I plots revealed differences
in discharge patterns which could be classified in five types
according to the frequency response on up and down going
ramps. The four classical types already described inmotoneurons
from adult (Bennett et al., 2001) or neonate (Amendola et al.,
2007) rodents are illustrated as followed: linear (Figure 5A),
clockwise hysteresis (Figure 5B), prolonged sustained
(Figure 5C) and counterclockwise hysteresis (Figure 5D).
A fifth type was defined by the lack or the quasi-absence of
discharge firing during the descending phase of the ramp at
early postnatal ages (Figure 5E). This fifth type was present
in 40% of motoneurons at P3–P5, in 25% of motoneurons
at P6–P7 and in less than 10% at P8–P9 (Figure 5F). At an
early postnatal age, type 1 (linear) and type 2 (clockwise) were
predominant whereas the number of motoneurons exhibiting
type 3 and type 4 markedly increases at P8–P9. Type 3 and type 4
discharge patterns, displaying a sustained firing during the down
going ramp and a counter-clockwise hysteresis, respectively,
was observed in 50% of motoneurons in older animals whereas
the number of motoneurons exhibiting a non-linear electrical
behavior during ramp current injection was <20% before P8.
The emergence of types 3 and 4 discharge patterns correspond
with the period of maturation of L-type calcium channels in
mouse motoneurons (Carlin et al., 2000).

We found no correlation between the different groups of
motoneurons defined by step of current and those defined by
triangular ramp of currents with the exception of the transient
firing patterns. In other words, the delayed onset firing group and
the sustained firing group both contain motoneurons of different
types 1–4 in the Bennett’s classification following ascending
descending ramps of current (Bennett et al., 2001).

Discussion

In this work, we show rapid changes in electrical properties
of postnatal mouse lumbar motoneurons. We defined three
different groups of lumbar motoneurons according to their
discharge firing patterns and differences in several electrical
properties. The delayed onset firing type has the characteristics
of the largest motoneurons whereas the transient type is
the less mature group of motoneurons and contains mainly
small motoneurons with low rheobase and slow APs. We
found that 32% of motoneurons still discharged transiently
at an early age (P3–P5) whereas some motoneurons exhibit

a delayed onset firing pattern up to the second postnatal
week. A majority of motoneurons have a sustained firing at
all ages between P3 and P9. The sustained firing is present in
all motoneurons at P9. The results also show that a counter
clockwise hysteresis and/or a prolonged sustained firing in
response to current ramp (types 3 and 4) emerge at P8–P9
corresponding to the maturation of L type calcium channels
in dendrites of mouse motoneurons. Dendrites of postnatal
motoneurons mainly elongated during this short period of time.
Although most morphological parameters were not significantly
different between P3 and P9 (Filipchuk and Durand, 2012), a
significant correlation exists between the size of the dendritic
arborizations and the Rin or the rheobase of motoneurons
(Figures 2E,F).

Postnatal Changes in Electrical Properties of
Lumbar Motoneurons
The electrical properties of spinal motoneurons have been well
documented in the neonate rat (Seebach and Mendell, 1996;
Vinay et al., 2000a, 2002) but only two studies concern neonate
mouse spinal motoneurons and the evolution of several passive
and active properties (Nakanishi and Whelan, 2010; Quinlan
et al., 2011). We show that rheobase, Rin, spike half-width and
spike depolarization speed changed significantly in mouse spinal
motoneurons between postnatal days 3 and 9. The AP and
half decay AHP are found to shorten significantly in duration
(Table 1). The shape of AP is modified with a higher speed of
depolarization in older animals probably linked with the density
of sodium channels (García et al., 1998; Carlin et al., 2008) and
a faster repolarization indicating potassium channels maturation
(McLarnon, 1995; Gao and Ziskind-Conhaim, 1998; Nakanishi
and Whelan, 2010). During the same time, some parameters
of electrical properties remain constant such as the membrane
potential, AP threshold and amplitude, gain at steady state and
after hyperpolarization duration and amplitude (Table 1).

Our results are comparable to those obtained previously in
rodents (Fulton and Walton, 1986; Seebach and Mendell, 1996;
Vinay et al., 2000a,b; Mentis et al., 2007; Nakanishi and Whelan,
2010; Quinlan et al., 2011).

A few exceptions concerns some parameters such as
membrane potentials and Rin (Nakanishi and Whelan, 2010;
Quinlan et al., 2011). In the study by Quinlan et al. (2011)
membrane potentials were significantly different probably
because the younger population of motoneurons started from P0
where motoneurons have more depolarized potentials whereas
in our study the younger group was aged between P3 and
P5. Surprisingly the mean Rin were not different between the
younger and older groups of motoneurons in the study by
Nakanishi and Whelan (2010). The slicing procedure and the
visual selection of neurons cannot fully explain this result since
those by Quinlan et al. (2011) have been also obtained in slice.
All other developmental changes in electrical parameters have
been described in many other species (Kellerth et al., 1971;
Hammarberg and Kellerth, 1975; Navarrette and Vrbová, 1993;
Perrier and Hounsgaard, 2000; Vinay et al., 2000b) including
human spinal motoneurons derived from embryonic stem cells
(Takazawa et al., 2012).
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FIGURE 5 | Five patterns of discharge recorded in response to current ramp stimulation in postnatal lumbar motoneurons (n = 38). The four classical
types (A–D) as described in adult motoneurons (Bennett et al., 2001) are present and a fifth type called transient, since no discharge firing, or only a few spikes
(<5), could be evoked during the descending phase (E). (A) type 1: linear F-I relationship where the firing frequency curves overlapped on the ascending and
descending phases. (B) type 2: clockwise hysteresis pattern where the instantaneous frequency is lower in the descending phase for the same current intensity.
(C) type 3: Linear F-I relationship with sustained firing in the descending phase. (D) type 4: Counter clockwise hysteresis where the frequency is higher during the
descending phase; (E) type 5: transient discharge during the ascending phase with usually no discharge or only a few spikes in the descending phase. In this case
which is frequent before P5 (40%), it was not possible to plot an F-I curve during the descending ramp. (F) distribution of the five discharge patterns according to
the postnatal ages. Note that types 1 and 2 are the predominant types before P8 (n = 15/26) whereas the types 3 and 4 are most frequent at P8–P9 (n = 6/12)
but rare before P8 (n = 3/26).

The rheobase current significantly increased during this short
time period between P3 and P8 and stabilized between P8
and P9 precisely when the Rin stops decreasing. As already
described in neonate rats (Seebach and Mendell, 1996), a
significant correlation exists between Rin and rheobase in
our sample of developing mouse motoneurons (see Figure 2).

We also found a positive correlation between the size of
the dendritic arborizations and the rheobase of developing
motoneurons (Figure 2). The size of motoneurons (both soma
and dendritic arborizations) increases with age although the
dendritic arborizations did not increase in complexity during this
postnatal period in mice (Li et al., 2005; Filipchuk and Durand,

Frontiers in Cellular Neuroscience | www.frontiersin.org September 2015 | Volume 9 | Article 349

141

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Durand et al. Developing mouse spinal motoneurons

2012). In fact this is a time for rapid changes in active electrical
properties whereas the morphology of motoneurons with their
dendritic arborizations growth in a slow and progressive manner.

Different Patterns of Discharge Firing
In this study, we found 20% of motoneurons with a delayed
onset firing pattern. In another set of motoneurons, a maximal
proportion of 27% of such delayed firing was reached at an
age between P6 and P8 (not shown). This proportion is rather
low compared to that (65%) observed in lumbar motoneurons
recorded in slice (Pambo-Pambo et al., 2009; Leroy et al., 2014).
The delayed onset firing pattern is due to transient outward
potassium currents as shown by blockade with apamin and
TEA (Takahashi, 1990; Russier et al., 2003; Pambo-Pambo et al.,
2009). Thus the major difference between both ratios obtained
in the different spinal cord preparations might be linked to
modulation by supraspinal descending pathways controlling
potassium conductances and the absence of such control in slice
preparations (McLarnon, 1995; Perrier and Hounsgaard, 2000).
The number of motoneurons with such firing pattern might not
have been under evaluated due to short current pulse (which
are used in most studies) as suggested in recent work (Leroy
et al., 2014) since comparable current pulses (1 s) were applied
in our study in slice preparation (Pambo-Pambo et al., 2009)
and in the present study. The delayed onset firing was not seen
in spinal motoneurons from neonate rat probably due to the
level of the brainstem section and/or the age of the animals.
We found a transient expression of the delayed onset firing type
between P3 and P8 (Figure 3) which is rather close to results
obtained in rat abducens motoneurons (Russier et al., 2003) and
neonate oculomotor (Nieto-Gonzalez et al., 2007). Although we
did not investigate younger animals than P3, it is noteworthy
that the delayed onset firing type was never seen in large studies
performed at P0–P2 in neonate rat (Vinay et al., 2000a,b, 2002).
In most work performed on older animals (>P8), the delayed
onset firing pattern was not described in spinal motoneurons
(Miles et al., 2005; Delestrée et al., 2014) but see Zhu et al. (2012).
The delayed onset firing pattern is also present in adult rat facial
motoneurons (Nishimura et al., 1989) but not in adult abducens
and oculomotor motoneurons (Durand, 1989a,b).

The differences of several parameters in the electrical
properties of the three groups of motoneurons likely reflect
differences in maturation as suggested by APs parameters
(Figure 4). Indeed our results show that the motoneurons with
transient firing pattern are populations of immature cells whose
properties will change after P8. The transient firing pattern was
present in most brainstem and spinal motoneurons in neonate
animals (Vinay et al., 2000b; Nieto-Gonzalez et al., 2007) but
see Leroy et al. (2014). The transient firing type was seen in
more than half of extensor motoneurons at P0–P2 and in 30%
at P3–P5, whereas the sustained firing type represents 70% in
extensor and 100% in flexor motoneurons at P3–P5 (Vinay et al.,
2000a). The reason why the transient firing was not found in
some studies might be due to recording of a majority of flexor
motoneurons.

We can notice that a transient firing type is still present
in adult brainstem motoneurons (Durand, 1989a; Nishimura

et al., 1989; Nieto-Gonzalez et al., 2007) and in adult
zebrafish (Ampatzis et al., 2013) but not in mammalian spinal
motoneurons (Delestrée et al., 2014).

It is difficult to speculate on the presence of these discharge
patterns in the different types of motoneurons and species. Our
study shows that both delayed and transient firing patterns
disappear at P9 in mouse lumbar motoneurons. At that age
there is still gap junctions between motoneurons as shown by
multiple staining after a single intracellular injection (Amendola
and Durand, 2008). Gap junctions between motoneurons and
polyinnervation of muscular fibers disappear between the second
and the third postnatal week (Navarrette and Vrbová, 1993;
Kopp et al., 2000; Mentis et al., 2002; Vinay et al., 2002). The
complementarity of the delayed and transient discharges might
insure an asynchronous firing in the same pool promoting
synapse elimination (Buffelli et al., 2002, 2004). The transient and
the delayed onset types might represent the last motoneurons
innervating common muscle fibers. We speculate that the large
motoneurons with delayed onset type will prefer fast twitch
fibers whereas the motoneurons with transient type will win the
innervation of slow muscle fibers. If motoneurons are recruited
together, it may also represent a protection for the muscular
fibers against strong activation by two motoneurons. On the
other hand, the different discharge pattern might contribute to
enhance the phenotypic differences among fast and slow muscle
fiber types by differentially regulating transcription in a use
dependent manner (Rana et al., 2009).

Persistent Inward Current and Ramp in
Motoneurons
Using ramp of current we found an increase with age in the
number of motoneurons with non-linear behaviors (types 3 and
4). They represent up to 50% of motoneurons at P8–P9 but only
10% at P3–P5 (Figure 5). We found no correlation between the
different types of motoneurons based on their firing properties
defined by pulse steps or triangular current stimulations except
for transient types. Mouse spinal motoneurons are endowed with
functionally mature calcium channels in the second postnatal
week (Carlin et al., 2000).

The non-linear behavior may originate from sodium and/or
calcium persistent inward currents (Schwindt and Crill, 1980;
Perrier and Hounsgaard, 2000; Heckman et al., 2008). Recently,
it was found that bistable behaviors are unmasked 1 week after
birth in 80% of motoneurons when the temperature was raised
>30◦C (Bouhadfane et al., 2013). However all our experiments
have been performed at a lower temperature (24–25◦C). Our
results are compatible with those describing the development
of L type calcium channels in the mouse (Jiang et al., 1999b).
This also parallels the maturation of functional behaviors in
rodents (Vinay et al., 2005), mice begin to weight-bear and walk
at P9–P10 (Fox, 1965; Jiang et al., 1999a; Amendola et al., 2004).

Importance of Our Findings for Future Studies
on ALS
Our results show that the rheobase, input conductance and
gain of motoneurons are the highest in the delayed firing
group. These results are in agreement with those suggesting
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that motoneurons with delayed onset firing pattern correspond
to the fast motoneurons (Leroy et al., 2014). Indeed it is
tempting to speculate that these motoneurons will be part of
the future population of fast motoneurons in older animals
since a proportion of 30% motoneurons expressing Dlk1, a
biophysical marker for fast motoneurons, was recently found
(Muller et al., 2014). In addition the delayed onset firing
type motoneurons present the more hyperpolarized membrane
potential (Figure 4D). Recently, Hadzipasic et al. (2014)
identified four types of spinal motoneurons in the adult mice
and showed that the fastest firing motoneuron type was lost in a
SOD1G85R transgenic mouse model of ALS at 3–4 months of age.
Furthermore they found that this population of motoneurons
that disappears in SOD1 adult mice was greatly hyperpolarized,
which would favour hypoexcitability. We previously showed that
lumbar motoneurons from SOD1G85R mice were hypoexcitable
very early during the postnatal period having a higher rheobase
and lower gain (Bories et al., 2007). It would be important
to determine whether the population of motoneurons which
degenerate first in adult SOD1 mice corresponds to the
hypoexcitable cells detected in the postnatal period. Therefore, it
remains to be determined whether the delayed onset firing type
is affected in SOD1 postnatal mice. It seems not to be the case in
the study by Leroy et al. (2014). However this latter study used the
high expressor strain of SOD1G93A mice in which an accelerated
maturation of lumbarmotoneuronsmight lead to a different time
course in the ALS pathology (Quinlan et al., 2011, 2015). Further
longitudinal studies from low expressor strains of SOD1G85R or
SOD1G93A mice are needed to elucidate this question.

Conclusions

We found rapid changes in the progression of electrical
properties of mouse lumbar motoneurons between P3 and
P9 whereas the morphology of dendritic arborization evolves
slowly. A change of rheobase and Rin progressions occurs, with
the disappearance of transient and delayed onset firing types
following direct current pulse stimulation, and the emergence
of types 3 and 4 discharge patterns following direct ramp
current stimulation. We conclude that a switch might exist in
the electrical properties of mouse lumbar motoneurons around
P8–P9 during the maturation of motor behaviors.
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Spinal motoneurons may display a variety of firing patterns including bistability between
repetitive firing and quiescence and, more rarely, bistability between two firing states
of different frequencies. It was suggested in the past that firing bistability required that
the persistent L-type calcium current be segregated in distal dendrites, far away from
the spike generating currents. However, this is not supported by more recent data.
Using a two compartment model of motoneuron, we show that the different firing
patterns may also result from the competition between the more proximal dendritic
component of the dendritic L-type conductance and the calcium sensitive potassium
conductance responsible for afterhypolarization (AHP). Further emphasizing this point,
firing bistability may be also achieved when the L-type current is put in the somatic
compartment. However, this requires that the calcium-sensitive potassium conductance
be triggered solely by the high threshold calcium currents activated during spikes and
not by calcium influx through the L-type current. This prediction was validated by dynamic
clamp experiments in vivo in lumbar motoneurons of deeply anesthetized cats in which
an artificial L-type current was added at the soma. Altogether, our results suggest that
the dynamical interaction between the L-type and afterhyperpolarization currents is as
fundamental as the segregation of the calcium L-type current in dendrites for controlling
the discharge of motoneurons.

Keywords: bistability, persistent calcium current, afterhyperpolarization, modeling, dynamic clamp

INTRODUCTION
The discovery of a L-type calcium current in the dendrites of
motoneurons (Schwindt and Crill, 1984; Hounsgaard and Kiehn,
1985) greatly changed our vision of their excitability properties.
The steep secondary range of the current-frequency curve was
ascribed to its activation (Li et al., 2004), and this persistent cal-
cium current may also trigger dendritic plateau potentials and
induce bistability (Hounsgaard and Mintz, 1988; Hounsgaard
and Kiehn, 1989), which is defined as the existence of two sta-
ble output states for the same input. When bistability occurs
between quiescence and firing, motoneurons keep on firing after
a depolarizing current pulse instead of going back to rest. Firing
bistability, where two stable firing states coexist, was first demon-
strated in decerebrate cats in which descending monoaminergic
pathways were tonically active (Hounsgaard et al., 1988). When
a depolarizing pulse was superimposed on a bias current, the
motoneurons fired at higher frequency after the pulse than before.

Plateau potentials and bistability were initially thought to arise
from a L-type calcium current located rather distally in den-
drites. The presence of a hysteresis in the current-voltage curve in
voltage-clamp experiments and the voltage threshold for initiat-
ing plateau potentials suggested that the inward current resided in
the unclamped portions of the dendritic tree (Lee and Heckman,
1998b). Accordingly, Booth et al. (1997) introduced a model
(BRK model hereafter) with two weakly coupled compartments, a

spike initiation region and a distal dendritic compartment where
the calcium L-type current could initiate a plateau potential, to
account for firing bistability. Passive voltage attenuation from
soma to dendrites reaches 70% in this model, which would corre-
spond to a distance from the soma of 1.2 times the space constant
λ in an equivalent cable. This does not fit with later immunocy-
tochemical and modeling studies (Simon et al., 2003; Elbasiouny
et al., 2005, 2006; Ballou et al., 2006; Bui et al., 2006; Zhang et al.,
2006; Grande et al., 2007; Zhang et al., 2008), which suggest that
the L-type current is closer to the soma (0.6 ± 0.2 λ) and also dis-
plays a smaller somatic component. This more proximal location
allows the somatic afterhyperpolarization (AHP) following spikes
to deactivate the L-type current. Elbasiouny et al. (2006) pointed
out that the AHP could enable graded activation of that current
in response to synaptic excitation of the dendrites.

This raises the question of the mechanisms underlying
motoneuron bistability, and notably firing bistability. Are the
same mechanisms at work for the proximal and distal compo-
nents of the L-type current? Under what conditions is firing
bistability achieved? Is some spatial segregation of currents neces-
sary, or can it occur even when the two currents are colocalized?
Does the interaction between the L-type and AHP currents play
a major role in controlling the firing pattern? We address these
issues using a BRK-like model with a stronger coupling between
compartments that better matches the location of the bulk of
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the L-type current in dendrites and allows it to interact with the
somatic AHP current. We demonstrate that the dynamical inter-
action between these currents conditions the firing pattern. To
emphasize this point, we show that a somatic L-type current may
also lead to firing bistability. However, this requires that the AHP
conductance be solely activated by the high-voltage-activated cal-
cium conductances turned on during action potentials. Using
dynamic clamp, we mimicked experimentally that condition in
motoneurons of anesthetized cats and validated our theoreti-
cal prediction. Altogether, our study indicates that, in addition
to the spatial segregation of most of the calcium L-type cur-
rent in the dendrites, the competition between the somatic AHP
current and the L-type current largely determines the firing pat-
tern. In particular, firing bistability is achieved when a large AHP
current counterbalances a strong L-type calcium current. The
spatial segregation acts by increasing the hysteresis of the current-
frequency (F-I) curve and the firing bistability that are created by
the dynamical interaction between the somatic AHP current and
the L-type current.

MATERIALS AND METHODS
MODEL
Our model has the same bi-compartmental structure as the BRK
model and the same complement of currents (see Figure 1).
Briefly, the membrane areas of the somatic and dendritic com-
partments represent p = 10% and 1 − p = 90% of the total
membrane surface S, respectively. They are electrically coupled
via the passive conductance GcS. We set the coupling conductance
Gc to 1.0 mS/cm2, one order of magnitude larger than in the BRK
model. We adopted a symmetrical coupling, i.e., the same cou-
pling conductance Gc from soma to dendrites and from dendrites
to soma, and assumed that soma and dendrites had the same
specific leak conductance Gleak, as in the BRK model.

The somatic compartment of our model is endowed with
transient sodium and delayed rectifier potassium currents,
responsible for the generation of action potentials. A fast
activating and slowly inactivating N-type current allows cal-
cium to enter the soma during action potentials as in
the BRK model. A non-inactivating L-type calcium current
ICa − L = GCa − LmCa − L(VCa − VS) is added to the soma in
the second part of our study. Here, VS is the somatic cur-
rent, VCa the reversal potential of the calcium currents, GCa−L

the maximal conductance of the L-type current and mCa − Ł

its activation variable of the current. Elevation of the calcium
concentration in the soma triggers the calcium-sensitive potas-
sium current IAHP = GAHP[Ca2+]/([Ca2+] + KCa)(VK − VS),
of maximum conductance GAHP, reversal potential VK and
half-activation calcium concentration KCa. This current is
responsible for the AHP following spikes (hence the “AHP”
subscript that allows to distinguish this current from the
dendritic calcium-activated potassium current). We steepened
the activation curve of the somatic N-type calcium cur-
rent compared to the BRK model (1 mV width vs. 5 mV)
so that this AHP conductance is not activated before firing
onset.

In the first part of our study, dendrites, whose voltage is
denoted by VD, are endowed with a L-type calcium current, the

FIGURE 1 | The strong coupling model. The two compartments have
similar passive properties, and they are coupled via a symmetrical
conductance ten times larger than in the BRK model. The soma is endowed
with spike generating currents and an AHP current. A L-type calcium
current is present in the soma (somatic variant of the model) or in the
dendrites (dendritic variant). The dendritic component of the N-type calcium
current was eliminated from the BRK model, and the activation curve of the
somatic component is steeper (see text). Dendrites are endowed with a
calcium sensitive potassium conductance. Input consists in either a current
injected in the soma or synaptic excitation of the dendrites.

activation of which can trigger plateau potentials, and a calcium
sensitive potassium current IK(Ca) = GK(Ca)[Ca2+]/([Ca2+] +
KCa)(VK − VD). We removed the dendritic N-type calcium cur-
rent of the BRK model as it was not activated enough to affect
significantly the behavior of the model. Finally, we hyperpolarized
the reversal potential of the leak current from −60 to −70 mV in
both soma and dendrites. The value of −60 mV was required in
the original BRK model to allow the current injected in the soma
to depolarize substantially the dendrites in spite of the weak cou-
pling. In contrast, they are too easily depolarized in our strongly
coupled model if Vleak is set at −60 mV. That is why we adopted
a more hyperpolarized value. All differences with the BRK model
are summarized in Table 1. All other parameters are the same as
in Booth et al. (1997).

Except for these differences, the gating variables of
the voltage-dependent currents follow the same first
order kinetic equations as in Booth et al. (1997). The
evolution of the calcium concentration in a compart-
ment is modeled by the phenomenological equation
τCad[Ca2+]/dt = αN ICa − N + αLICa − L − [Ca2+] where calcium
ions influx through the L- and N-type conductances, quantified
by αL and αN respectively, is counterbalanced by buffering
(Booth et al., 1997). The differential equations describing the
model are solved using a standard fourth order Runge-Kutta
algorithm.

Our model does not incoporate all the ionic currents
known to exist in motoneurons. As in the BRK model, no
hyperpolarization-activated Ih current was added, because this
current would contribute little to the repetitive discharge.
Similarly, we did not introduce a persistent sodium current (Kuo
et al., 2006) since robust repetitive firing was elicited in the
model without it. Finally, we decided to not incorporate voltage-
dependent potassium conductances in dendrites after checking
that they counterbalanced the calcium L-type in the same way
as calcium-sensitive potassium channels. These deviations from
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Table 1 | Differences between the BRK model and our model.

BRK model Our model

Coupling
conductance

0.1 mS/cm2 1.0 mS/cm2

Leak reversal
potential

−60 mV −70 mV

Dendritic N-type
conductance

0.3 mS/cm2 None

Activation of
somatic N-type
current

1/(1 + exp(−(V + 30)/5)),
V in mV

1/(1 + exp(−(V + 30)))

Dendritic
potassium
conductance

Always 0.7 mS/cm2 Set to 0 or 0.7 mS/cm2

We set the dendritic potassium conductance GK (Ca)to 0 in most of our study and

accordingly decreased GCa−L.

realism are of limited significance as our emphasis is on the inter-
play between calcium and calcium-sensitive potassium currents.
We also note that the Cav1 channels underlying the L-type current
may display facilitation properties, as demonstrated by Moritz
et al. (2007) in rat hypoglossal motoneurons, which might have
some impact on hysteretical properties of motoneurons. They are
not incorporated in the present model.

We investigated the response of the model (current-frequency
curve, conductance-frequency curve, activation of the L-type cur-
rent) to triangular ramps of current injected in the soma and
ramps of tonic synaptic excitation of the dendrites. Tonic synap-
tic excitation of dendrites was modeled by a current ID(t) =
Gsyn(t)(Vsyn − VD(t)) with slowly varying conductance Gsyn(t)
and reversal potential Vsyn = 0 mV. The model behavior was
strongly affected by the ramp velocity. We had to use very
slow ramps (velocity of 0.01–0.1 nA/cm2.s) to be sure that
the hysteresis of the F-I curve did not arise from memory
effects.

Finally, we note that Kim et al. (2009) showed, using two-ports
circuit theory (Jaffe and Carnevale, 1999), that a two compart-
ments model could account for the bi-directional voltage atten-
uation between the soma and some given location in dendrites,
if the coupling between compartments was assymetrical or if the
two compartments had different specific conductance. However,
these two compartments do not map to the soma and the den-
ditic tree. Therefore, such models are unsuitable for our purpose
that is to study how active currents located in the soma and in the
dendrites interact.

DYNAMIC CLAMP EXPERIMENTS
Experiments were carried out on four adult cats (3.9–4.4 kg)
deeply anesthetized with sodium pentobarbitone (Pentobarbital,
Sanofi). In accordance with French legislation, the investigators
had a valid license to perform experiments on live vertebrates
delivered by the Direction des Services Vétérinaires (Préfecture
de Police, Paris). The animal house and the experimental room
had received the agreement of the same authority. Anesthesia
was induced with an intraperitoneal injection (45 mg·kg−1),

supplemented whenever necessary (usually every 2 h) by intra-
venous injections (3–6 mg·kg−1). Animals were paralyzed with
Pancuronium Bromide (Pavulon, Organon SA) at a rate of
0.4 mg·h−1 and artificially ventilated (end tidal pCO2 maintained
around 4%). A bilateral pneumothorax prevented movements of
the rib cage. The adequacy of anesthesia was assessed on myotic
pupils and on the stability of blood pressure (measured in the
carotid) and of heart rate. At the onset of experiment, amox-
icillin (500 mg; Clamoxyl, Merieux) and methylprenidsolone
(5 mg; Solu-Medrol, Pharmacia) were given subcutaneously to
prevent the risk of infection and edema, respectively. The cen-
tral temperature was kept at 38◦C. Blood pressure was main-
tained above 90 mmHg by perfusion of a 4% glucose solution
containing NaHCO3 (1%) and gelatin (14%; Plasmagel, Roger
Bellon) at a rate of 3–12 ml·h−1. A catheter allowed evacuation
of urine from the bladder. At the end of the experiments, animals
were killed with a lethal intravenous injection of pentobarbitone
(250 mg).

The following nerves were cut, dissected and mounted on a
pair of stimulating electrodes to identify recorded motoneurons:
anterior biceps and semi-membranosus taken together (ABSm),
the gastrocnemius medialis together with gastrocnemius lateralis
and soleus nerves (Triceps surae, TS), the remaining part of the
tibialis nerve (Tib), the common peroneal nerve (CP), and the
posterior biceps and semitendinosus taken together (PBSt). The
lumbosacral spinal segments were exposed by laminectomy, and
the tissues in hind limb and spinal cord were covered with pools
of mineral oil kept at 38◦C.

Intracellular recordings of motoneurons were made using
micropipettes (tip diameter 2.0–2.5 μm) filled with KCl 3 M
(resistance 2–4 M�) and an Axoclamp 2B amplifier (Molecular
Devices, Sunnyvale, USA) connected to a Power1401 interface
using the Spike2 software (CED, Cambridge, UK). After impale-
ment, identification of motoneurons rested on the observation of
antidromic action potentials in response to the electrical stimula-
tion of their axon in a peripheral nerve. All motoneurons retained
for analysis had a resting membrane potential more hyperpo-
larized than 50 mV, which varied by less than 5 mV over the
recording session. The axonal conduction velocity was computed
from the latency of the antidromic action potentials.

Dynamic clamp recordings were done using the Discontinuous
Current Clamp mode (7–9 kHz) of the amplifier because it
allows for reliable measurements of the membrane potential,
even when large currents are injected (Brizzi et al., 2004 see also
Prinz et al., 2004). A dynamic clamp current IDC = GDCmDC

(VDC − VS) of maximum conductance GDC, activation variable
mDC and reversal potential VDC , mimicking a L-type calcium
current, was injected into the motoneuron soma through the
recording micropipette. The activation variable evolved accord-
ing to τDCdmDC/dt = m∞(VS) − mDC where the steady-state
activation function is m∞(VS) = 1/(1 + exp((V − θDC)/kDC)),
τDC is the activation time constant, θDC is the half activa-
tion voltage and kDC determines the slope of the activation
curve. This artificial L-type current was computed at a speed of
10 kHz by a PC running the real time RTLinux kernel and the
dynamic clamp software MRCI (software MRCI, Raikov et al.,
2004).
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RESULTS
INCREASING THE COUPLING SUPPRESSES THE FIRING BISTABILITY
OF THE BRK MODEL
The (somatic) input conductance Gin = (GS/p)(GC + p
(1 − p)Gleak)/(GC + (1 − p)Gleak) of our model is 7.8 times the
conductance GS = GleakpS of the soma itself, thrice more than
in the BRK model (2.6). This is more in keeping with the ratio
of dendritic dominance of motoneurons, i.e., the ratio of the
input conductance at the soma to the soma conductance, which
is typically of the order of 10 (Fleshman et al., 1988). Passive
steady-state voltage attenuation from the soma to the dendrites
Gleak/(Gleak + GC/(1 − p)) is 35%, which corresponds to a
distance of 0.43 λ from the soma on an equivalent cable and fits
better with the location of the L-type current in dendrites than in
the BRK model. This is because the dendritic compartment rep-
resents only the distal part of dendrites in the BRK model, all the
proximal part being modeled by the low coupling conductance
between the two compartments.

The firing bistability observed in the BRK model for stan-
dard parameters (dendritic GGa − L = 0.33 mS/cm2, dendritic
GK(Ca) = 0.7 mS/cm2, GAHP = 3.14 mS/cm2) disappears when
the coupling conductance Gc is increased to 1 mS/cm2. A slow
triangular ramp of current injected in the soma (from 0 to

70 μA/cm2 and back with a velocity of 10−4 μA/cm2.s) elicits a
symmetrical discharge, as shown in Figure 2A. The F-I curve is
graded, the firing rate linearly increasing from 5 Hz at recruitment
to 100 Hz for an injected current of 75 μA/cm2 (see Figure 2C)
and then progressively saturates.

When the L-type current is increased to compensate for the
larger input conductance, quiescence/firing bistability is achieved,
but firing bistability cannot be recovered. This is illustrated in
Figure 2B for GCa − L = 0.45 mS/cm2. The discharge becomes
asymmetrical and exhibits a large domain of bistability between
quiescence and firing, as shown by the F-I curve (Figure 2C, right
trace). On the ascending ramp, firing starts at high frequency
(175 Hz). On the descending ramp, the discharge persists well
below the recruitment current.

Only these two firing regimes are observed. No firing bistabil-
ity occurs for intermediate values of GCa − L. We also note that
decreasing the potassium conductance in dendrites has the same
effect as increasing the L-type current, as illustrated in Figure 2C
(dashed line). GK(Ca) can even be set to 0 provided that the L-type
current is appropriately decreased.

Increasing GCa − L has the same effect on firing when
the drive is provided by synaptic excitation of dendrites,
as shown in Figure 2D. For GCa − L = 0.1 mS/cm2 and no

FIGURE 2 | Response of the strong coupling model (Gc = 1 mS/cm2) to

excitatory input. (A) Voltage response to a triangular current ramp. Dendritic
GCa−L is 0.33 mS/cm2 as in the BRK model. From bottom to top: current
injected in the soma, soma voltage and dendritic voltage. The discharge is
symmetrical, the recruitment current on the ascending ramp and the
derecruitment current on the descending ramp differing by less than 1.5%
(50.2 and 49.4 mV, respectively). (B) Same as A but GCa−L increased to
0.45 mS/cm2. The discharge is clearly asymmetrical. A dendritic plateau
potential of 16 mV sets in at firing onset (IS = 38 μA/cm2). On the
descending ramp, firing persists down to 20 μA/cm2. (C) F-I curves. Current
ramp from 0 to 120 μA/cm2 and back. F-I curves (solid lines) are displayed for
GCa−L = 0.33 (right), and 0.45 mS/cm2 (left). For this latter value,firing stops
when the injected current reaches 70 μA/cm2 because of spike blockade.

Decreasing the dendritic GK (Ca) from 0.7 to 0.25 mS/cm2 (with GCa−L kept at
0.33 mS/cm2, dashed line) has the same effect as increasing GCa−L from 0.33
to 0.45 mS/cm2 [with GK (Ca) kept at 0.7 mS/cm2]. (D) Synaptic excitation of
dendrites. F-Gsyn curves are shown for GCa−L = 0.1 (right) and 0.3 mS/cm2

(left). No dendritic potassium conductance GK (Ca). Triangular conductance
ramp from 0 to 0.5 mS/cm2 (i.e., equal to the leak conductance of dendrites)
and back, velocity of 0.01 mS/cm2/s. Note that frequency plateaus are
present near firing onset for GCa−L = 0.1 mS/cm2 as in the subprimary firing
range of mouse motoneurons (Manuel et al., 2009). We showed that they are
due to mixed mode oscillations in a previous paper (Iglesias et al., 2011). The
ascending (upward pointing arrows) and descending branches (downward
pointing arrows) of the hysteresis loops are indicated on panels (C,D) and on
the following figures.
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potassium conductance in dendrites, firing starts at 5 Hz and
the conductance-frequency curve is graded. In contrast, for
GCa − L = 0.3 mS/cm2, firing starts at 165 Hz and the F-Gsyn curve
displays a large range of bistability between quiescence (on the
ascending ramp) and firing (on the descending ramp). No firing
bistability is observed at any intermediate value of GCa − L.

FIRING BISTABILITY REQUIRES LARGE DENDRITIC GCA − L AND
SOMATIC GK (CA)

Because the two compartments are strongly coupled, the AHP
triggered by spikes at the soma may produce a sufficient hyperpo-
larization of dendrites to hinder activation of the L-type current,
in line with the results of Elbasiouny et al. (2006). As a con-
sequence, increasing the AHP prevents high frequency firing at
discharge onset and suppresses quiescence/firing bistability, as
shown in Figure 3A for GCa − L = 0.2 mS/cm2.

Increasing the somatic AHP conductance is not equivalent to
increasing the dendritic GK(Ca) (or decreasing the L-type cur-
rent). Because the AHP conductance is recruited only during
spikes, following the activation of the N-type calcium current,
the recruitment threshold is insensitive to GAHP (see Figure 3A),
whereas it considerably increases with GK(Ca). For the same rea-
son, the AHP current has no impact on the current-voltage
(I–V) curve in the subthreshold voltage range, as illustrated in
Figure 3B. For GCa − L = 0.2 mS/cm2 the somatic I–V curve is
slightly N-shaped in the absence of AHP. Adding an AHP con-
ductance of 10 mS/cm2 alters the curve only in the suprathreshold
voltage range, so that it remains N-shaped. In contrast, adding a
dendritic potassium conductance of 0.7 mS/cm2 also modifies the
I–V curve in the subthreshold range, and it becomes monotonic.

Although the I–V curve displays a negative slope region for
GAHP = 10 mS/cm2, the membrane voltage exhibits no plateau
potential (not shown). Moreover, the synaptic conductance-
frequency (F-Gsyn) curve is graded and exhibits no hysteresis
when the synaptic conductance is decreased back (see Figure 3A).
This demonstrates that the disappearance of quiescence/firing
bistability is not due a change of the I–V curve from N shaped
to monotonic. It results from the dynamical interaction between
the L-type current and the AHP current during firing.

Importantly, the interaction between the L-type and AHP con-
ductances can elicit firing bistability when GCa − L is increased
beyond 0.27 mS/cm2. This is illustrated in Figure 3C for
GCa − L = 0.35 mS/cm2. Quiescence/firing bistability is observed
for GAHP below 12 mS/cm2 (upper curve, GAHP = 10 mS/cm2).
For GAHP above 30 mS/cm2 (bottom curve, GAHP = 40 mS/cm2)
the F-Gsyn curve smoothly increases from a very low value
(1.2 Hz). In between, for GAHP ranging from 12 to 30 mS/cm2, fir-
ing bistability is achieved. This is almost one order of magnitude
larger than for the transition from quiescence/firing bistability to
graded firing for GCa − L = 0.2 mS/cm2 (see Figure 3A).

Similar results are obtained for current injection in the soma,
but the domain of firing bistability is wider than for synaptic
excitation of dendrites. For instance, firing bistability is achieved
for GAHP between 5 and 40 mS/cm2 when GCa − L is set at
0.35 mS/cm2 (see Figure 3D), nearly twice more than for synaptic
input. The counterclockwise hysteresis of the F-I reflects a gen-
uine bistability between two different firing states. Indeed, we

also checked that excitatory and inhibitory current pulses could
switch the model from the low frequency firing state to the high
frequency state and back (not illustrated).

Altogether our results demonstrate that bistability is controlled
by the competition between the dendritic calcium L-type current
and the somatic AHP current when the two compartments of the
model are strongly coupled. This competition did not occur in the
weakly coupled BRK model where the AHP was too attenuated
in dendrites to deactivate the L-type current. This shows that the
strong spatial segregation between the L-type current and the cur-
rents underlying the discharge (transient sodium, delayed rectifier
and AHP currents) present in the BRK model is not necessary for
achieving firing bistability.

A SOMATIC L-TYPE CALCIUM CURRENT MAY ELICIT FIRING
BISTABILITY BY ITSELF
Our model suggests that the firing pattern of motoneurons is
largely determined by the interaction between the AHP and
L-type currents. To further test this hypothesis, we examined
whether the competition between the AHP conductance and a
somatic L-type current could also lead to bistability. Accordingly,
we suppressed the dendritic component of the L-type current
and incorporated instead a somatic L-type current in the model.
As before, no potassium current was present in the dendrites.
Dendrites were thus passive, all active conductances being con-
fined to the axo-somatic compartment.

Firing bistability can be achieved in this somatic model (see
Figure 4A) but this requires that three conditions be satisfied.
Firstly, the L-type current must activate during the voltage
ramp preceding spikes and deactivate substantially during the
AHP. Accordingly, we decreased the half-activation voltage of the
L-type current from −40 to −55 mV to make it lower than the
spike voltage threshold (−47 mV at the onset of the discharge),
and we steepened its steady-state activation curve by decreas-
ing the mid-activation voltage from 7 to 2 mV. For GAHP =
20 mS/cm2, the activation of the L-type current then reached
75% after the first spike for GCa − L = 0.4 mS/cm2 and decayed
to 7% at the end of the first interspike interval. This deactiva-
tion of the L-type current is crucial to ensure a strong dynamical
competition with the AHP current.

Secondly, and importantly, the AHP conductance must be very
little activated by calcium ions influx through L-type calcium
channels, i.e., αL must be much smaller than αN in the evolu-
tion equation of the calcium concentration (see Materials and
Methods). Otherwise, the AHP conductance is tonically activated
and the discharge pattern dramatically altered, as illustrated in
Figure 4B.

Thirdly, the L-type current must be sufficiently large, here
again, as illustrated in Figure 4C for GCa − L = 0.5 mS/cm2. In
the example shown, no firing bistability is achieved whereas
firing bistability was observed for GCa − L = 1.0 mS/cm2 (see
Figure 4A). Firing bistability actually requires that GCa − L be
larger than 0.7 mS/cm2. For smaller GCa − L, a direct transition
from graded response to quiescence/firing bistability occurs.

Our results demonstrate that firing bistability may still occur
when the L-type current is located at the soma. It then results
from the dynamical competition between the L-type and AHP
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FIGURE 3 | Control of the firing pattern by the AHP conductance.

(A) F-Gsyn curves for GCa − L = 0.2 mS/cm2. Somatic AHP conductance
GAHP = 0.0, 3.14, and 10 mS/cm2 (see labels) but no potassium
conductance in dendrites. For GAHP = 3.14 mS/cm2 (the same value as in
the BRK model), the F-Gsyn curve is graded and displays only a tiny range of
bistability below recruitment (thin arrow). When the AHP is suppressed,
firing starts at 137 Hz, and the size of the bistability range considerably
increases. In contrast, bistability disappears when GAHP is increased to
10 mS/cm2. (B) Somatic I–V curves. Same conditions as in (A). The curves
obtained without AHP and for GAHP = 10 mS/cm2 (solid lines, see labels)
differ only above −33 mV. In contrast, increasing the dendritic GK (Ca) to
0.7 mS/cm2 (in the absence of somatic AHP) suppresses the negative
slope region of the I–V curve in the subthreshold voltage range [dashed line
labeled GK (Ca)]. The curves are not hysteretic because a dendritic
compartment strongly coupled to the soma cannot account for the distal
dendritic component of the L-type current. This departure from realism is of
little significance as we focus here on the interaction between the proximal
component of the L-type current and the somatic AHP. (C) F-Gsyn curves for
GCa − L = 0.35 mS/cm2. GAHP = 10, 20, 30, and 40 mS/cm2 (see labels). At
variance with panel A, the F-Gsyn curves display a primary range of firing
when GAHP is large enough to counterbalance the L-type current and has
then a strong regulatory effect on the discharge. (D) F-I curves for
GCa − L = 0.35 mS/cm2. Same as in D but current is injected in the soma.
Note that the large AHPs at play create a wide primary firing range, in
keeping with the traditional role of the AHP in firing rate control.

currents. This shows that segregation of the L-type current in the
dendrites is not required for firing bistability. However, the den-
dritic location of the L-type current in motoneurons enhances
firing bistability. In the somatic variant of our model, a large, and
likely unrealistic, type-L conductance is needed to achieve firing
bistability, and the hysteresis loop is distinctively smaller than in
the dendritic variant studied in the preceding sections (compare
Figures 3, 4).

The L-type and AHP currents respectively produce positive
and negative feedbacks on the discharge. Figure 4D shows how
the balance between these currents changes with the injected cur-
rent in our somatic model. On the ascending branch of the ramp,
the depolarizing L-type current (top) and the hyperpolarizing

FIGURE 4 | Model with somatic L-type current and passive dendrites.

(A) F-I curves for GCa − L = 1.0 mS/cm2. Triangular ramp of current injected
in the soma from 0 to 100 μA/cm2and back (velocity: 10−4 μA/cm2.s).
Increasing values of GAHP from top to bottom, see labels).
αN = 0.0045 mol/nA.cm as before, but αL is set to 0. When
GAHP = 10 mS/cm2 (top curve), firing starts at 54 Hz at the recruitment
threshold (32 μA/cm2), and the F-I curve shows a large domain of
quiescence/firing bistability, derecruitment occuring only for a negative
current of −15 μA/cm2 on the descending ramp. Firing bistability is
observed for between 15 and 25 (middle curve, GAHP = 20 mS/cm2). When
GAHP is increased beyond 25 mS/cm2, bistability disappears and the F-I
curve becomes graded (bottom curve, GAHP = 30 mS/cm2). Note that the
recruitment threshold remains unchanged. (B) Effect of αL on firing. F-I
curves for GCa − L = 1 mS/cm2 and GAHP = 20 mS/cm2 and
αN = 0.0045 mol/nA.cm. Increasing values of αL from top to bottom (see
labels). The firing bistability displayed in A (top, αL set to 0) persists when
αL is increased to 2% of αN , but the firing frequency is strongly reduced.
When αL is doubled, to 4% of αN , the abrupt transition to the low
frequency state on the down ramp is replaced by a series of frequency
plateaus reflecting mixed mode oscillations. (C) F-I curve for
GCa − L = 0.5 mS/cm2. αL set to 0 and αN = 0.0045 mol/nA.cm as in A.
Increasing values of GAHP (see labels). Quiescence/firing bistability occurs
for GAHP smaller than 10 mS/cm2 (top), and the F-I curve is graded for larger
GAHP. No firing bistability takes place. (D) Membrane currents.
GCa − L = 1 mS/cm2and GAHP = 20 mS/cm2 (regime of firing bistability, see
A). Top: L-type current (positive); bottom: sum of the leak and AHP currents
(negative); dashed line: sum of the three currents. All currents are time
averaged over the interspike interval and plotted as a function of the current
injected in the soma. The zero current line is displayed in gray. The
ascending current ramp is indicated by rightward pointing arrows and the
descending branch by leftward pointing arrows.

current (bottom), obtained by summing the AHP and leak cur-
rents, both increase with the injected current. Below 40 μA/cm2,
the AHP current displays little saturation as the firing frequency
increases and may successfully contain the activation of the L-type
current. The L-type and hyperpolarizing currents remain approx-
imately balanced, their sum never exceeding 3 μA/cm2 (dashed),
and the firing rate increases at a low rate with the injected
current. This is no longer possible when the injected current
exceeds 40 μA/cm2. Then, the L-type current augments more
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than the hyperpolarizing current, their sum abruptly increases by
13 μA/cm2, and the model is pushed to the higher frequency state.
On the descending branch of the ramp, the opposite scenario
takes place. As long as the L-type current remains strongly acti-
vated, it maintains the discharge at an elevated frequency despite
the negative feedback due to the AHP current. This happens until
the injected current is decreased below 34 μA/cm2. The sum of
currents then drops from 13 to −2 μA/cm2, and the model is
pushed back to the low frequency state.

We performed a complete bifurcation analysis of this model
but did not include it here to avoid technicalities. The mathe-
matically oriented reader is invited to contact the corresponding
author for full details (including bifurcation diagrams) about the
bifurcation structure that underlies quiescence/firing bistability
and firing bistability.

Altogether, our results suggest that firing bistability may occur
whether the L-type current is located in the soma or in the den-
drites and that it stems from the dynamical competition between
L-type and AHP currents. Firing bistability occurs when both cur-
rents are large and is enhanced when the L-type current is located
in dendrites.

EXPERIMENTAL VALIDATION
We verified experimentally that bistability may indeed arise from
the dynamical interaction between a somatic L-type current and
the AHP current. Using dynamic clamp, an artificial L-type cur-
rent was imposed through the recording microelectrode, which
was, most likely, located at the soma. At variance with genuine L-
type calcium currents, this artificial current provoked no calcium
influx as the microelectrode was filled with KCl (see Methods).
Therefore, it did not turn on the small conductance calcium-
activated potassium channels (SK channels) responsible for the
medium duration AHP. The AHP conductance was triggered only
by calcium influx through high threshold calcium conductances
during spikes, just like in our model. Thus, we turned limita-
tions of the dynamic clamp methods (restriction to the soma, no
calcium influx) to advantages.

We first checked whether the artificial L-type current could
induce a hysteresis of the F-I curve in a sample of 14 motoneu-
rons, mostly CP motoneurons. No hysteresis occurred in control
condition in these cells as illustrated in Figure 5A, probably
because the barbiturate used for anesthesia cats strongly depresses
the natural calcium L-type current (Guertin and Hounsgaard,
1999). We recall that bistability has never been observed in anes-
thetized cats (Schwindt and Crill, 1982) but was shown to occur
in decerebrate preparations where motoneurons were submit-
ted to an intense monoaminergic neuromodulation (Hounsgaard
et al., 1988; Lee and Heckman, 1998a,b, 1999). In contrast, when
we added the artificial L-type current to the motoneuron of
Figure 5A, we observed a clear counterclockwise hysteresis in the
F-I relationship as shown in Figure 5B.

Altogether, the dynamic clamp current elicited a clear coun-
terclockwise hysteresis in the F-I relationship of 8 motoneurons
of our sample (7 CP, 1 Tib, 1 AbSm) but not in 6 others (5 CP
and 1 Tib), at least in the range of parameters of the artificial
current that we explored. The presence or absence of hysteresis
is not a matter of motor pool. Indeed, most neurons recorded

FIGURE 5 | An artificial L-type current injected in the soma can elicit a

counterclockwise hysteresis in a spinal motoneuron. CP motoneuron
(axonal conduction velocity: 80 m/s, input conductance: 0.5 μS). (A) No
dynamic clamp current (control case). (A1) Ramp of current applied to the
soma (bottom) and intracellular recording of soma voltage (top). (A2) F-I
curve. The ascending branch (increasing current) is indicated by diamonds
(upward arrow) and the descending branch (decreasing current) by crosses
(downward arrow). (B) Same as A but a dynamic clamp current mimicking
the L-type current was injected in the soma. Parameters of this current
were the following. Conductance: 100 nS, half activation voltage: −35 mV,
steepness of the activation curve: 2 mV, activation time constant: 50 ms,
reversal potential: 80 mV.

(86%) were CP motoneurons, 58% of which exhibited a hys-
teresis and 42% did not. In addition, hysteretic behavior was
achieved only if the L-type current was large enough (conduc-
tance between 100 and 500 nS) and activated in the subthreshold
voltage range traversed during the AHP after the first spike. This
required that the half activation voltage of the L-type current be a
few millivolts below the threshold for action potential generation
(−4.5 ± 3 mV [−1 − −10 mV]), the most stringent condition to
meet, and also that the steady-state activation curve was steep
enough (kDC between 0.5 and 4.0 mV). Under these conditions,
similar to those of our somatic model, the artificial L-type cur-
rent was strongly modulated during the AHP, and a hysteresis
was obtained over a wide range of activation time constant of the
artificial L-type current, from 5 to 500 ms.

The observation of a hysteresis of the F-I curve in our
experimental conditions is not sufficient to conclude that the
recorded motoneurons exhibit genuine bistability. Indeed, the
finite velocity (here, 2–5 nA /s depending on the motoneuron) of
the current ramps enlarges the hysteresis loops and transforms
the abrupt transitions from one firing state to the other into steep
secondary ranges. Moreover, we cannot distinguish between
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long lasting up states (partial bistability over several seconds, see
Lee and Heckman, 1998a,b) and genuinely stable up states (full
bistability).

Therefore, we investigated whether current pulses elicited
transitions between states in 5 of the 14 recorded motoneurons
(4 CP and 1 ABSm). We used an artificial L-type current slower
than the AHP by one order of magnitude, which induced bistabil-
ity more easily. We provoked transitions between quiescence and
firing in the ABSm motoneuron and in 2 CP motoneurons tested,
as illustrated in Figure 6A, and we successfully triggered transi-
tions between two different firing states in one of those two CP
motoneurons, as illustrated in Figure 6B.

DISCUSSION
SUMMARY OF RESULTS
We studied a model of motoneuron where the somatic and the
dendritic compartments are 10 times more strongly coupled than
in the BRK model. This is more in keeping with the location of the
bulk of the L-type current in the dendrites of motoneurons. We
demonstrated that the dynamical competition between the den-
dritic calcium L-type current and the somatic AHP current may
lead to graded firing, quiescence/firing bistability below recruit-
ment, or firing bistability, depending on the balance between
these two currents. Firing bistability is achieved only for large
intensities of the L-type current and when the AHP current also
is sufficiently large to oppose the L-type current. In contrast, den-
dritic potassium currents play no other role than to decrease or
suppress the negative slope region of the dendritic I–V curve.

Similar results were obtained when the L-type current was
localized at the soma. In particular, firing bistability could still
be achieved for large L-type current. However, this required that
the AHP conductance be decoupled from the calcium L-type
current, i.e., that it be triggered only by calcium ions influx
through High Voltage Activated (HVA) conductances. This con-
dition was naturally fulfilled in the dynamic clamp experiments
in anesthetized cats that we performed to verify our theoreti-
cal predictions. Altogether, our results show that the dynamical
interaction between the L-type current and AHP can create the
couterclockwise hysteresis of the F-I curve. However, the spatial
segregation that results from the different locations of the two
currents in motoneurons (the L-type current mostly in dendrites
and the AHP current in the soma) enhances that hysteresis.

SOMATIC AND DENDRITIC COMPONENTS OF THE L-TYPE CURRENTS
Most of the L-type current is found in the dendrites of motoneu-
rons. Initially, the L-type current was thought to be located in
distal dendrites, which explained the counterclockwise hysteresis
of the I–V curve of motoneurons in response to a triangular volt-
age ramp in voltage clamp experiments. However, more recent
studies suggest that the bulk of the L-type current is closer to
the soma (0.6 ± 0.2 λ and spreads over a region where most
synapses impinge (Elbasiouny et al., 2005, 2006; Bui et al., 2006;
Grande et al., 2007). Booth et al. (1997) focused on the distal
dendritic component of the L-type current and showed that fir-
ing bistability could emerge from the weak coupling between the
distal dendrites and the axo-somatic region where spikes are ini-
tiated. In contrast, we focused in our two compartment model

FIGURE 6 | Transitions between states elicited by current pulses. (A)

Quiescence/firing bistability. CP motoneuron (axonal conduction velocity:
90 m/s, input conductance: 1.0 μS). The current pulse (24 nA , 1 s) elicited
an accelerating discharge that started with a frequency of 14 Hz and
reached 50 Hz at the end of the pulse. After the pulse, the motoneuron kept
firing at a lower frequency (5 Hz) instead of going back to rest. A
hyperpolarizing current pulse (−24 nA ) terminated firing. Artificial L-type
current conductance: 350 nS, half-activation voltage: −50 mV, steepness of
the activation curve: 2 mV, activation time constant: 400 ms. (B) Firing
bistability. CP motoneuron (axonal conduction velocity: 90 m/s, input
conductance: 1.1 μS). A 31 nA bias current was applied, which made the
neuron steadily discharge at the mean frequency of 19 Hz. A pulse of 10 nA
lasting 1.5 s was then superimposed to shift the motoneuron toward its up
state (57 Hz, three times more than before the pulse). After the pulse, the
motoneuron kept firing at a mean frequency of 30 Hz, about half more than
the before the pulse. Two different firing states were thus obtained for the
same injected current. The discharge in the up state (during and after the
pulse) was more irregular than in the down state (before the pulse). L-type
conductance: 820 nS, half-activation: −58 mV, steepness: 1 mV, activation
time constant: 400 ms, reversal potential: 20 mV.

on the more proximal component of the L-type current, and we
showed that firing bistability may result from the dynamical com-
petition between the L-type current and the AHP current. In real
motoneurons, there is of course no clear-cut separation between
proximal and distal dendrites. Both scenarios likely contribute
to bistability: the more proximal the L-type conductance is, the
more it is coupled to the soma and the more its activation is
controlled by the AHP.

Ballou et al. (2006) also showed that the calcium L-type
current, although mostly dendritic, also displays a somatic com-
ponent. We demonstrate that a somatic L-type current may also
elicit quiescence/firing bistability and firing bistability in our
model, provided it is large enough. This is not directly relevant for
motoneurons, in which most of the L-type current is dendritic,
but it indicates that the dynamical interaction of the L-type and
AHP-currents per se is sufficient to produce firing bistability. This
theoretical result was validated by dynamic clamp experiments.

Importantly, the control of the firing pattern by the inter-
action of the L-type and AHP currents requires in our model
that somatic SK channels be mostly opened following the acti-
vation of the N-type calcium conductance. In contrast, dendritic
potassium channels are essentially activated by calcium influx
through L-type channels, HVA calcium channels being barely
sensitive to the attenuated spikes that propagate back to the
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dendritic compartment. Our model thus suggests that motoneu-
rons present two complements of SK channels, in the soma and
in the dendrites, respectively activated by HVA and L-type cal-
cium currents. Li and Bennett (2007) provided experimental
evidence for that distinction. These authors indeed showed that
the medium AHP was suppressed by the HVA calcium chan-
nel blocker ω-conotoxin but not by the L-type channel blocker
nimodipine. In contrast, the dendritic calcium-sensitive potas-
sium current that opposed the L-type current was eliminated by
nimodipine.

CONDITIONS FOR FIRING BISTABILITY
Bistability between two firing states has been more rarely observed
in motoneurons than between quiescence and firing. We suggest
an explanation for that. In our model, firing bistability occurs
when the following conditions are satisfied (i) the L-type cur-
rent is large enough to elicit high frequency firing in the absence
of AHP, (ii) the AHP current is also large and would create
a wide primary firing range in the absence of L-type current,
(iii) these two opposing currents are approximately balanced.
Monaminergic neuromodulation of motoneurons increases the
intensity of the L-type current (Hultborn and Kiehn, 1992).
However, it also increases the overall excitability of motoneurons
by reducing the AHP current. This is unfavorable to the bal-
anced competition between the two currents required for firing
bistability.

Firing bistability has been experimentally observed in
motoneurons stimulated by a current injected in the soma.
Elbasiouny et al. (2006) argued that firing bistability occurred
only in that condition, whereas synaptic excitation of the den-
drites led to secondary range firing at discharge onset. In our
model, both current injection and synaptic excitation may elicit
firing bistability when GCa − L is large enough, but the appropri-
ate GAHP range is narrower than for somatic current injection.
Altogether, we may conclude that synaptic input to dendrites is
indeed less favorable to firing bistability than somatic current
injection.

DIFFERENCES WITH THE BRK MODEL
In the BRK model, spikes are attenuated by 96% in the den-
drites because of the filtering by the small coupling conductance
(0.1 mS/cm2) and the AHP is too small in dendrites (0.5 mV typ-
ically) to have a substantial impact on the activation of the L-type
current. Increasing GAHP extends the primary firing range (lower
branch of the F-I curve), in keeping with the known role of the
AHP (Kernell, 1968; Ermentrout, 1998; Manuel et al., 2006), but
does not suppress firing bistability. As the current flowing from
the soma is little modulated in time, the discharge properties
can be deduced from the dendritic I–V curve. When the I–V
curve is monotonic, the F-I curve is graded. In contrast, plateau
potentials and bistability are observed when the I–V curve is N-
shaped. When the I–V curve intersects only once the zero current
axis, a high frequency discharge occurs right from firing onset,
and quiescence/firing bistability is achieved below recruitment.
When there are three intersections, firing bistability is observed
in response to a triangular current ramp, alone or together with
quiescence/firing bistability.

In our model, where the two compartments are more strongly
coupled (1 mS/cm2), the AHP is barely reduced in the dendrites
and may deactivate the L-type current. Increasing sufficiently
the AHP leads to graded firing. This cannot be explained by
a change in the I–V curve. Indeed, increasing GAHP does alter
the I–V curve in the suprathreshold voltage range but does
not eliminate the negative slope region created by the L-type
current below threshold. The interaction between the L-type
and AHP currents is a dynamical effect that occurs during fir-
ing and controls the firing pattern. It could not be grasped
by the BRK model, in which the L-type current was located
distally in dendrites in a region unaffected by the AHP and
bistability emerged from the plateau properties of the dendritic
compartment.

At variance with the BRK model, our model does not incorpo-
rate a distal L-type current, which is why the somatic I–V curve
displays no counterclockwise hysteresis. As a result, the L-type
current is larger in our model than was estimated in motoneurons
of decerebrate cats (see, for instance, Lee and Heckman, 1998a,b).
This is particularly true of the somatic component. It is likely
that the introduction of a distal component of the L-type current,
in addition to the proximal component considered in our study,
would allow bistable behavior for weaker L-type current.

THE INTERACTION BETWEEN THE L-TYPE AND AHP CURRENTS IS
CRUCIAL FOR THE CONTROL OF MOTONEURON DISCHARGE
Motoneurons exhibit a large AHP that plays a fundamental role
in controlling their firing pattern. It is well established that the
AHP limits the frequency and the variability of their discharge
(Kernell, 1999; Powers and Binder, 2000; Manuel et al., 2006).
The AHP also affects excitability by interacting with inward cur-
rents. For instance, we recently showed that the AHP suppressed
the mixed mode oscillations associated with subprimary range fir-
ing in mouse motoneurons (Iglesias et al., 2011) by deinactivating
the sodium current, thus increasing membrane excitability. In the
present study, the AHP decreases the excitability by deactivating
the L-type current, which is in line with the modeling study of
Elbasiouny et al. (2006). This did not occur in the BRK model
because the coupling was too weak to allow the AHP to inter-
act with the distal dendritic L-type current. Altogether, the firing
properties of motoneurons appear to be largely regulated by the
interaction between the AHP and L-type currents.
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The process by which synaptic inputs separated in time and space are integrated by the
dendritic arbor to produce a sequence of action potentials is among the most fundamental
signal transformations that takes place within the central nervous system. Some aspects
of this complex process, such as integration at the level of individual dendritic branches,
have been extensively studied. But other aspects, such as how inputs from multiple
branches are combined, and the kinetics of that integration have not been systematically
examined. Using a 3D digital holographic photolysis technique to overcome the challenges
posed by the complexities of the 3D anatomy of the dendritic arbor of CA1 pyramidal
neurons for conventional photolysis, we show that integration on a single dendrite is
fundamentally different from that on multiple dendrites. Multibranch integration occurring
at oblique and basal dendrites allows somatic action potential firing of the cell to faithfully
follow the driving stimuli over a significantly wider frequency range than what is possible
with single branch integration. However, multibranch integration requires greater input
strength to drive the somatic action potentials. This tradeoff between sensitivity and
temporal precision may explain the puzzling report of the predominance of multibranch,
rather than single branch, integration from in vivo recordings during presentation of visual
stimuli.

Keywords: multibranch integration, 3D digital holography

INTRODUCTION
Individual thin dendritic branches are fundamental functional
units in the nervous system (Branco and Hausser, 2011). Exper-
imental data support the concept that they can operate as quasi-
independent processing and signaling units capable of non-linear
behavior (Mel, 1993; Wei et al., 2001). In combination with their
parent dendritic branches, these thin distal dendrites can function
in two distinct modes (Gasparini and Magee, 2006; Katz et al.,
2009). If distributed synaptic inputs arrive on multiple distal
branches, the depolarization on each branch may be below the
threshold for recruiting local active conductances in a regenerative
manner and yet be sufficient to trigger a somatic sodium spike.
This is sometimes referred to as the traditional “integrate and fire”
model (Abbott, 1999), the “synaptic democracy” model (Yuste,
2011), and the “global” model of integration. Alternatively, if
synaptic inputs arrive in a clustered pattern on a single or a
few distal dendrites, the focused inputs could initiate a non-
linear response on the distal dendrite which is then relayed
to and summed linearly in the more proximal compartment.
This is referred to as either the “two-layer” or the “compart-
mentalization” model of integration (Mel, 1993; Golding and
Spruston, 1998; Häusser and Mel, 2003; Poirazi et al., 2003a,b;
Polsky et al., 2004; Larkum and Nevian, 2008; Winnubst and
Lohmann, 2012). The advantages of the two-layer model of

integration are well understood. It is more efficient in evoking
somatic action potentials and can do so at the lowest synaptic
strengths. By placing amplification close to the input optimal
signal-to-noise performance can be achieved. This is analogous
to the mechanism in a two-stage electronic amplification system,
such as the preamplifier-power amplifier system typically used in
electrophysiology; the amplification is entirely carried out in the
preamplifier. Two-stage integration can also greatly increase the
computational power of the neuron over that of global integration
because it increases the number of non-linear operations that a
single neuron can possess (Mel, 1993; Häusser and Mel, 2003).
In the two-stage mode of integration it is the dendritic branch,
rather than the synapse, that is the elementary unit of signaling.
The tradeoffs associated with these two modes of integration have
not been adequately examined, and doing so may lend insights
into the controversy regarding the functional impacts of global
and two-layer integration.

Whether integration on pyramidal neuron follows a global or
a two-stage model is difficult to address because it depends on
the spatial-temporal pattern of the inputs which is an in vivo
phenomenon that may change with different physiological stim-
uli. Investigators from Konnerth’s group addressed this challenge
using calcium imaging in an in vivo study of pyramidal neurons
in the visual cortex in response to directionally selective visual
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inputs (Jia et al., 2010). They found that orientation-selective
synaptic inputs were widely distributed throughout the dendritic
field rather than being clustered on individual dendrites. This
finding is more consistent with the global model of integration.
The extent to which this conclusion can be applied to other
pyramidal neurons in response to different physiological stimuli
is not known. For example, Takahashi et al. (2012) reported
that in layer 2/3 pyramidal neurons of the barrel cortex, related
inputs frequently arrived synchronously on neighboring synapses,
creating the possibility of local non-linear integration, which is
more consistent with the two-stage model (Takahashi et al., 2012).
In this study we take another approach towards addressing the
global vs. two-stage controversy. We compared the property of
single- and multibranch integration in response to photolysis as
a surrogate for two-stage and global integration, respectively. The
critical parameters differentiating the global and two-stage mode
of integration are the precise location of non-linear integration
within the dendritic arbor and the active conductances expressed
at that location. Precise photolytic stimulation with complex 3D
digital holographic-generated patterns allowed us to systemat-
ically examine this issue. Single- and multibranch integration
was used to simulate clustered and distributed synaptic inputs
that have different thresholds for non-linear integration. We
found that the dendritic arbor of CA1 pyramidal neurons can
support both the global and the two-stage modes of integration.
The global mode of integration is less sensitive to low strength
stimuli, but allows for accurate response following over a greater
frequency range, while the two-stage mode of integration has high
sensitivity but allows for accurate response following only at low
frequencies.

MATERIALS AND METHODS
BRAIN SLICE PREPARATION
All procedures were approved by the Institutional Animal Care
and Use Committee at the University of Maryland School of
Medicine. Sprague-Dawley rats (postnatal age: 3–6 weeks) were
deeply anesthetized with halothane. The brains were quickly
removed and placed into chilled (4◦C), oxygenated (5% CO2

and 95% O2) slicing medium containing (in mM): 4 KCl, 1.23
NaH2PO4, 10 MgSO4, 0.5 CaCl2, 26 NaHCO3, 10 glucose, and
212.7 sucrose. Hippocampal slices (300 mm thickness) were cut
using a vibrating tissue slicer and transferred to a holding cham-
ber containing oxygenated physiological saline that contained (in
mM): 124 NaCl, 4 KCl, 1.23 NaH2PO4, 1.5 MgCl2, 2.5 CaCl2, 26
NaHCO3, and 10 glucose. Individual slices were then transferred
to a recording chamber and oxygenated physiological saline was
continuously superfused at a rate of 0.7 ml/min. Certain experi-
ments were carried out at 32◦C (those illustrated in Figures 1, 2, 3,
4, 7, and 8) and the remaining experiments at room temperature.

BRAIN SLICE RECORDING
Whole-cell patch recordings were obtained using an Axon
instruments Axoclamp 700B Amplifier (Molecular Devices), and
pClamp Version 10.2 software was used for data acquisition.
Recording pipettes had tip resistances of 3–7 MΩ when filled
with a solution containing (in mM): 135 K-gluconate, 5 KCl, 1
MgCl2, 0.02 CaCl2, 0.2 EGTA, 10 HEPES, 4 Na2-ATP, and 0.3

Na-GTP. The pH and osmolarity of intracellular solution were
adjusted to 7.3 and 290 mOsm, respectively. Alexa 594 (50 µM)
was included in the internal solution for visualization of den-
drites. Recordings were done in “current-clamp” configuration
and cells were held at −65 mV. For electrical stimulation exper-
iment, synaptic responses were evoked with 15–60 µA, 0.4 ms
current pulses delivered through a concentric bipolar stimulating
electrode (FHC, 100 µm o.d.).

3D DIGITAL HOLOGRAPHY
The procedures for digital holographic photolysis were explained
in detail in an earlier methods paper (Lutz et al., 2008; Yang
et al., 2011). Briefly, the holographic beam was brought into
the optical axis of an upright fluorescence microscope (Olympus
BX51) below the epi-fluorescence unit, with a longpass dichroic
mirror (Figure 1). The output beam of a 150 mW, 405 nm diode
laser (CNI Laser) is expanded by a beam expander (BE) (3X) to fill
the short axis of a reflective spatial light modulator (SLM) (LCOS
Hamamatsu, model X10468-05). The SLM plane is projected onto
the back aperture of the microscope objective through a telescope
(L1, f 1 = 500 mm; L2, f 2 = 200 mm). The magnification of the
telescope is chosen in order to match the SLM short axis with
the diameter of the objective’s back aperture (Olympus, 60x, W
0.9NA). The undiffracted component of the hologram (zero order
spot) is removed by placing a small (<0.5 mm) anodized metal
plate on antireflective coated glass plate at the focal plane of L1
(spatial filter (SF)). This plane is conjugate to the image plane of
the microscope. In order to change the total number of spots of
excitation without changing the intensity of the remaining spots,
spots that were not needed for excitation were steered onto the
same small SF for blocking the zero order beam. The algorithm for
the phase hologram calculation and calibration of the temporal
spatial resolution were previously described (Yang et al., 2011).

PHARMACOLOGICAL AGENTS
Concentrated stock solutions of various pharmacological agents
were initially prepared and diluted in physiological saline
to a final concentration before use. For uncaging experi-
ments, MNI-caged-L-glutamate (Tocris, Ellisville, MO) or and
MNI-L-glutamate trifluoro acetate (Femtonics, Hungary) were
prepared each day at final concentration in physiological
solution. All agonists and antagonists were purchased from
Sigma (St. Louis, MO) or Tocris (Ellisville, MO). The pres-
ence or absence of tetrodotoxin (TTX) is provided for each
experiment.

RESULTS
3D DIGITAL HOLOGRAPHIC PHOTOLYSIS
This study was made possible by 3D digital holographic photolysis
(Anselmi et al., 2011; Yang et al., 2011; Go et al., 2012), therefore
it is useful to describe its strengths and potential weaknesses.
A schematic of the optical system is illustrated in Figure 1A.
3D digital holography has three characteristics important to
experimental investigation of dendritic integration: (1) the abil-
ity to efficiently deliver light to diffraction limited spots and
photorelease glutamate in a way that mimics normal synaptic
transmission (Nikolenko et al., 2008; Yang et al., 2011); (2) the
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FIGURE 1 | 3D digital holographic photolysis of oblique spines. (A)
Schematic of the 3D digital holographic setup. The locations of the sites to
be stimulated are first identified and their 3D coordinates determined from
fluorescence imaging of the dendrite. An in-house algorithm is then used
to generate a digital holographic pattern of those coordinates which is
project by a phase modulating spatial light modulator (SLM). The output of
a 150 mW, 405 nm diode laser is expanded by a beam expander (BE) to fill
the aperture of the SLM. The beam is then telescoped by two lenses (L1
and L2) to fill the back aperture of the microscope objective. A spatial filter
(SF) is used to block the zero-order beam of the hologram from reaching
the specimen. (B) Simultaneous photostimulation at multiple spines. The

distal oblique of CA1 neuron was photostimulated. The yellow spot
indicate sites of simultaneous uncaging on multiple spines (upper panel).
Spot size is similar to that of spine (compare with lower panel). The
spatially summed response (lower left) demonstrate non linear integration
on single oblique dendrite. (C) Simultaneous photostimulation in two
planes. Dendritic spines located at two imaging planes (#1 and #2) along a
single dendrite are targeted. The yellow spots represent spines that are
stimulated and the black spots represent those that are not stimulated. 2D
stimulation of #1 and #2* (x, y -coordinates of #2 but with the z-coordinate
set at -10) produces a lower amplitude (black trace) compared to
simultaneous 3D activation (#1 + #2) (red trace).

ability to stimulate simultaneously; at a large number of locations
in arbitrary, user defined, temporal-spatial patterns, (Figure 1B);
and (3) the ability to stimulate in 3D space such as is tra-
versed by multiple dendrites oriented in different directions
(Figure 1C).

The holographic system used in this study utilizes single pho-
ton excitation, whereas other studies have utilized two-photon
excitation. It is reasonable to question whether the novel obser-
vations of this study could be accounted for by differences in
the ability of single- and two-photon photolytic methods to
focus the light. This issue was addressed by three independent
methods: direct visualization of the illumination pattern and spot
size on the target dendrite in the hippocampal slice, comparison
of the kinetics of the photolytic responses produced by single-
and two-photon holographic photolysis at individual target sites,
and comparison of responses to branch wide stimulation with
single- and two-photon photolysis. If no significant differences
could be observed under these three conditions, there would be
little reason to expect greater light scattering of single photon
excitation to account for unexpected findings associated with
multibranch integration. Figure 1B shows the area of illumination
when the holographic pattern was directed on a dendrite that had

been dialyzed with an intracellular fluorescent dye. The spatial
resolution under experimental conditions is consistent with the
previously measured optical resolution for this system of 0.4 and
2 µm in the transverse and axial directions, respectively (Yang
et al., 2011). This degree of spatial resolution is not unexpected
when studying those structures <60 µm from the slice surface.
We had previously shown that the kinetics of the voltage clamped
holographically induced response are comparable to a fast EPSC
(Yang et al., 2011). Most importantly, the single branch response
to single-photon holographic stimulation (Figures 1B, 2A, 3C,
3D, 4C, 4D) is indistinguishable from what has been reported
for two-photon stimulation (Branco and Hausser, 2011). Since
multibranch integration is the sum of single branch integration,
anomalous behavior of multibranch integration should not be
dismissed as artifacts of single photon excitation.

DIFFERENCES BETWEEN SINGLE- AND MULTIBRANCH INTEGRATION
Whole cell patch recordings were made on CA1 neurons in
transverse hippocampal slices. Alexa594 was placed in the patch
electrode and was allowed to dialyze into the dendritic arbor.
Once the fluorescence signal of the oblique dendrites became
visible, the 3D coordinates of the photolysis sites on the spines
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FIGURE 2 | Integration on spines. (A) The photostimulation is distributed
over 15 spines along a single dendrite without TTX. The somatic voltage
responses to stimulation of individual spines (lower panels) and the
responses to increasing number of simultaneous spines (upper panels) are
shown in black. In presence of TTX, the responses are shown in red. The
responses to increased laser stimulation are shown in green. The cell
responses are plotted to examine the linearity of summation (expected vs.
measured voltage response). Group data is obtained without TTX (n = 7),

with TTX (n = 5) and with increased stimulation in TTX (n = 5). Supralinear
summation is observed with single branch integration. (B) Photostimulation
for the 15 spines along multiple branches. Two or four spines are
stimulated per dendrite. The responses of the cell are plotted to examine
the linearity of summation (expected vs. measured voltage response).
Sublinear summation is observed with multibranch integration. Group data
is obtained without TTX (n = 7), with TTX (n = 7) and with increased
stimulation in TTX (n = 7). Error bars represent SE. ** p < 0.05.

were identified. Individual spots first stimulated individual spines
(lower panels Figure 2A) and were then sequentially combined
(upper panels). In the presence of TTX the supralinearity of single
branch integration was decreased (red vs. black exponentially
fitted lines in Figure 2A). The average depolarization immediately
before the onset of the sodium spike occurred was about 7.8 mV
at an expected response of 5.3 mV (group data in Figure 2Aii).
The non-linearity for this group data was 1.47 in the absence of
TTX (n = 7) and 1.27 with TTX (n = 5; p > 0.05, t-test). The
responses of single oblique dendrites to holographic photolysis
are nearly identical to that previously reported for synaptic stimu-
lation (Polsky et al., 2004) and 2P photostimulation (Branco and
Hausser, 2011). After validating the reliability of the stimulating
technique at the level of individual spines, the same holographic
technique was then employed to stimulate five separate oblique
dendrites. The responses in this case were significantly sublinear
(Figure 2B). The slope of multibranch sublinearity was 0.74 ±
0.02 (n = 7) without TTX (black traces) and was 0.69 ± 0.03
(n = 7) with TTX (red traces). Voltage-gated sodium channels
have a relatively small but statistically significant influences on the
sublinearity of multibranch integration (p > 0.05, paired t-test).
Such contrasting tendencies of single vs. multibranch integration

were not altered by increasing stimulating power to activate spine
and shaft together (Figure 2 green).

Next, photolysis was directed at 5 to 7 spots distributed over
∼100 µm length of the mid portion of a single oblique dendrite
and TTX (1 µM) was added to permit observation of synaptic
responses over a wider range of intensity (Figures 3A and left
panel, 3B). Integration was linear at low stimulus intensities
(<3–5 mV), supralinear at moderate intensities (3–10 mV),
and trending towards saturation at high intensities (>5–10 mV)
(Figures 3C and D). The supralinear integration is NMDAR-
mediated (Figure 3E).

The same procedures were then repeated for multibranch
stimulation in the same cells. Stimuli delivered to each of the
five dendrites were distributed between at least two separate
spots of photolysis in the mid-dendritic region (right panel,
Figure 3B). The average degree of linearity observed here from
14 cells is 0.68 (Figures 3C and D), was substantially more sub-
linear than previously revealed from summation of two branches
(Cash and Yuste, 1999; Polsky et al., 2004). The group data
also show that multibranch integration is also more sublinear
than single branch integration over the same stimulus intensity
range (Figure 3D). The nearly identical behavior illustrated in
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FIGURE 3 | Integration on a single dendrite is fundamentally different
from that on multiple dendrites. (A) Wide field image of a CA1
pyramidal neuron filled with Alexa 594. (B) Locations of focal photolysis of
caged glutamate directed on a single oblique dendrite are labeled in blue.
The stimulation is distributed over 5–7 spots spread out over an 80–100
micron length of an individual dendrite. Locations of photolysis for the
multibranch stimulation are directed on five separate oblique dendrites in
the same cell (labeled in red). Two sites located in the mid dendritic region
are stimulated per dendrite. The somatic voltage responses to stimulation
of individual spots or dendrites are shown in the lower panels. The
responses to an increasing number of simultaneous spots or dendrites are
shown in the upper panels. For example the trace labeled 1–5 in the one
dendrite panel represents the response to simultaneous stimulation of all
five blue spots. (C) The responses of the cell shown in panel (B) are

plotted to examine the linearity of summation (expected vs. measured
voltage response). Sublinear summation is observed with multibranch
integration, whereas an abrupt transition to supralinear summation is
observed when the expected voltage reached ∼5 mV with single dendrite
summation. (D) The finding shown in C was obtained from 13 recordings
of single dendrites and 14 recordings from multiple dendrites. The average
slope of the multibranch summation is 0.68. (E) NMDAR-mediated
dendritic spikes. The supralinear dendritic spike (n = 5, 6.5 ± 0.6) is
blocked by APV (100 µM; n = 5; 3.7 ± 0.17, p < 0.05, paired t-test). Error
bars represent SE. ** p < 0.05. (F) Magnitude of sublinear multi-branch
integration increases with the number of branches. The linearity of
summation between two branches and five branches is compared within
the same cell (left). The measured EPSP for an expected EPSP of 10 mV is
plotted for 7 cells (right). Error bars represent SE. ** p < 0.05.

Figures 2 and 3 also suggests that spine stimulation does not
influence the fundamental nature of single- and multibranch
integration.

We examined the effect of varying the number of branches
involved in integration between two and five in the same cell.
The degree of sublinearity lessened with a decrease in numbers
of branches that were involved (Figure 3F). The measured EPSP
for an expected EPSP of 10 mV is 7.65 ± 0.52 mV for two

branches and 6.84 ± 0.45 mV for five branches (n = 7, p < 0.05,
paired-t test). These findings suggest that multibranch integra-
tion may recruit additional conductances in addition to those
involved in single branch integration, and that these are expressed
near the locus where the branches converge. With increasing
numbers of stimulated branches, these conductances are recruited
at a rate that exceeds the more linearly summated depolarizing
signal.
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FIGURE 4 | A-type potassium conductance contributes to sublinear
integration. (A) Blockade of the A-type potassium conductance by the
addition of 4AP removes the sublinear multi-branch summation at the oblique
dendrites. It also uncovers the latent NMDA conductance and lowers the
threshold for calcium spikes. Group data (n = 5) for the observed EPSP to a
stimulus with an expected EPSP of 20 mV is shown to the lower right. Error

bars represent SE. ** p < 0.05. (B) Sublinear multi-branch integration is
abolished during burst stimulation (50 Hz). Instantaneous multibranch
summation (black traces) is compared with summation to a burst of inputs
(red traces). Summation is less sublinear with the burst stimulus. Group data
(n = 5) for the observed EPSP to a stimulus with an expected EPSP of 25 mV
is to the lower right. Error bars represent SE. ** p < 0.05.

Cash and Yuste (1999) had suggested that the A-type potas-
sium conductance (IA) could act as a counterbalancing force
to the recruitment of NMDA conductance during branch point
summation and linearize integration. We investigated whether
IA serves a more prominent role in multibranch integration.
Indeed, applying the A-type potassium channel antagonist, 4AP
(3 mM), reversed the sublinearity (Figure 4A; Control: 14.04
± 1.23 mV, 4AP: 18.43 ± 2.09 mV, n = 5, p < 0.05, paired
t-test). To circumvent the poor target selectivity of 4AP, we
examined whether sublinear summation could be attenuated
during a burst stimulus, a condition that promotes inactiva-
tion of IA. Indeed, sublinear summation is eliminated during
burst stimulation (Figure 4B; Control: 16.25 ± 1.03 mV, burst:
20.12 ± 1.82 mV, n = 5, p < 0.05, paired t-test). Taken
together, these findings suggest that the difference between single-
and multibranch integration of the oblique dendrites could be
accounted for by the recruitment of additional A-type potas-
sium conductance at the locus where distal oblique branches
converge.

We next examined single- and multibranch summation on
the basal dendrites. Qualitatively, single- and multibranch sum-
mation of the basal dendrites was similar to that of the oblique
dendrites (Figure 5). The opposing tendencies of single- and
multibranch summation of basal dendrites suggest that basal
dendrites are functionally similar to oblique dendrites.

DOMAIN SPECIFIC MULTIBRANCH INTEGRATION
We next compared single- and multibranch integration in the
distal apical tuft dendrites to test the idea that the mode of integra-
tion can vary in different domains of the dendritic arbor. Because
the tuft receive inputs that are distinct from those of oblique and
basal dendrites, it would not be surprising to find domain-specific
differences. Integration on individual tuft dendrites, as was in the
case of oblique dendrites, is linear at weak intensities, followed by
supralinear summation at moderate intensities, and finally trend-
ing to sublinear summation at high intensities (Blue Figures 6A,
B and C). But in contrast to the case at the oblique dendrites,
multibranch integration of the tuft is not sublinear at low or
moderate stimulation intensities (red Figures 6A, B and C). The
base of the apical tuft where signals from distal tuft dendrites con-
verge and pass through to reach the soma, is thought to express
high levels of voltage gated calcium conductances (Larkum et al.,
1999, 2009). In support of this proposed mechanism, we found
the application of nickel (50–100 µM) which preferentially blocks
the T/R-type calcium channels, partially attenuated the multi-
branch supralinear summation at the apical tuft (Figure 6D;
Control: 17.50 ± 1.43 mV, Ni2+: 13.68 ± 1.19 mV, n = 5,
p < 0.05, paired t-test). The remainder of the supralinear
component could be eliminated with application of AP5
(100 µM; Ni2+ + AP5: 11.28 ± 0.87 mV, n = 6, p < 0.05, paired
t-test with Ni2+ group). In contrast, the supralinear summation
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FIGURE 5 | Basal dendrites integration is qualitatively similar to
integration on oblique dendrites. (A) Response of a single basal dendrite to
progressive increasing strength of stimulation distributed over 7 sites.

(B) Response of the same cell to stimulation on five separate branches.
(C) Responses shown in A and B are plotted and compared for linearity.
(D) Group data from 8 cells.

of single branches in the tuft was not blocked by Ni2+ (Figure 6E;
Control: 12.59 ± 0.61 mV, Ni2+: 12.28 ± 0.56 mV, n = 5, p <

0.05, paired t-test) but it was blocked by AP5 (100 µM; Ni2+ +
AP5: 7.66 ± 0.35 mV, n = 5, p < 0.05, paired t-test with Ni2+

group).
The focus of most studies on dendritic integration has been on

the linearity of integration and the efficiency with which inputs
can generate a somatic action potential. Efficiency is defined in
terms of the amount of synaptic excitation required to produce
a somatic action potential. The two-layer model of integration
achieves greater efficiency by allowing supralinear summation
to occur on the distal dendritic compartment. We confirm this
prediction of the two-layer model of integration by demonstrating
that there is a lower threshold for evoking a somatic action
potential when excitation is directed on a single dendrite than
when it is directed towards multiple dendrites (Figure 7A; AP
threshold for Oblique: multiple = 5.4 ± 0.09 µJ, single = 3.84
± 0.08 µJ, n = 8, P < 0.05, paired t-test). Interestingly, there is
little difference in terms of the action potential threshold at the
tuft (Figure 7B; AP threshold for Tuft: single = 8.04 ± 0.18 µJ,
multiple = 8.82± 0.09 µJ, n = 5, P > 0.1, paired t-test).

We next examined and compared the kinetics of the responses
to single- and multibranch excitation at each of the three domains
of the pyramidal neuron (Figure 8A). Studies were first carried
out on individual branches from the three dendritic domains
of the same cell (left, Figure 8A). For photolytically induced
depolarizations at the tuft that were >5–10 mV the durations of
the responses at half maximum were largely >100 ms for both
single- and multi-branch excitation (Figures 6–8). In contrast
to the results at the tuft, the duration of depolarizations at the
oblique and basal dendrites to strong stimuli were typically longer
for single branch excitation (right, Figure 8A; Figures 2 and
5). Thus, at stimulus evoked depolarizations above the expected
threshold for evoking a somatic action potential, the onset
and duration of the multibranch oblique and basal responses
remained fast and brief. Because of variable activation of repolar-
izing conductances a more reliable measure of response kinetics
is the time to peak depolarization (Figure 8A, right panel; One
oblique: 50.81 ± 3.37 ms, n = 20; One basal: 54.69 +/− 4.9 ms, n
= 9; One tuft: 66.24 ± 4.24 ms, n = 13; Multiple oblique: 23.69 ±
1.27 ms, n = 15; Multiple basal: 25.96 ± 3.36 ms, n = 5; Multiple
tuft: 50.09± 3.30 ms, n = 10).
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FIGURE 6 | Little difference is apparent between single and multibranch
summation in the distal apical tuft. (A) Response of a single distal apical
dendrite to progressively increasing number of stimulation spots.
(B) Response of the same cell to stimulation on multiple dendritic branches.
(C) Group data from 8 cells. Responses to very strong stimulation levels are
not displayed. (D) Conductances that contribute to non-linear multibranch
integration of tuft. Nickel sensitive calcium conductances contribute partially

to the supralinear summation at the multiple tuft dendrites. The remaining
component is eliminated with application of AP5. Error bars represent SE.
** p < 0.05. (E) Conductances that contribute to non-linear single branch
integration of tuft. Blockade of the T/R-type calcium channel by the addition of
nickel does not affect the supralinear summation at the single tuft dendrites.
However, NMDA receptor blocker, AP5 (100 µM) completely eliminate the
supralinearity. Error bars represent SE. ** p < 0.05.

FUNCTIONAL ADVANTAGE OF MULTIBRANCH INTEGRATION
The tradeoff between response efficiency and kinetics for oblique
dendrites predicts that multibranch integration of the oblique
dendrites could enable precise entrainment at higher frequencies.
In addition, the absence of fast multibranch integration at the tuft
suggests that the tuft would not be able to support entrainment
at similar high frequencies. We first tested these predictions in
the absence of TTX by directing trains of five stimuli at differ-
ent frequencies at tufts (Figure 8B). The stimulus intensity was
set at a level that reliably elicits an action potential. The five
stimuli were then given at progressively faster frequencies. The
highest frequency at which the somatic action potential could still
precisely follow the dendritic input (entrainment) was recorded
(low trace of each pair of traces in Figure 8B). For multiple
oblique inputs the entrainment frequency was significantly higher
than for tuft inputs (16.7 ± 3.8 vs. 5.7 ± 1.3 Hz, respectively;
paired t-test, p < 0.05). Precise entrainment by multibranch
oblique integration was also significantly faster than for single
branch integration (16.7 ± 3.8 vs. 2.8 ± 0.4 Hz, p < 0.05). We
next tested these predictions using electrical stimulation of their
respective excitatory pathways in the presence of GABAA and
GABAB receptor antagonists (10 µM SR 95531 and 10 µM CGP
35348 respectively). Electrical stimulation at intensities strong
enough to reliably evoke action potentials it is likely to activate
multiple dendritic branches. Consistent with the photostimula-
tion responses, multibranch electrical stimulation of the oblique
dendrites led to precise entrainment over a wider frequency range

than tuft entrainment. (Figure 8C; SC stimulation: 4.9 ± 0.7 Hz;
PP stimulation: 2.6± 0.5 Hz; paired t-test, n = 6, p < 0.05).

DISCUSSION
This study compared the properties of single- and multibranch
integration to complex patterns of photostimulation as a means
to probe and compare the global and the two-stage model of
dendritic integration. This strategy provided the means to imple-
ment non-linear and linear integration at precise locations using
clustered and distributed inputs. Non-linear integration is an
integral part of both modes of integration. The critical difference
lies in their loci of non-linear integration and the active conduc-
tances that are recruited at those loci. The results suggest that
both global and two-stage integration can drive somatic outputs.
Novel findings reported here include the significant differences
in the kinetics of dendritic integration response between single-
and multibranch integration at the oblique and basal dendrites.
Single branch integration possesses a low threshold for evoking
a fast sodium- and slow NMDAR-mediated local dendritic spike
compared to multibranch integration. But this increased sensi-
tivity is achieved at a cost of response kinetics. This tradeoff
between sensitivity and integration kinetics is further confirmed
by the finding of significant differences in spike entrainment.
Indeed, multibranch integration can precisely entrain somatic
action potentials 6-fold faster than single branch integration.
It is important to note that the maximal entrainment fre-
quency described here is not the same as the maximal frequency.
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FIGURE 7 | Contrasting modes of integration translates into different
thresholds for eliciting action potentials. (A) The threshold for evoking
somatic action potential is compared for five oblique dendrites when they
are stimulated individually (black hollow circles) and simultaneously (solid
red circles). Individual responses for each stimulus intensity are shown on

the right. The threshold for single-branch stimulation is about half of that
for multi-branch stimulation. The latency between stimulation and the spike
is brief. (B) The same procedure is repeated for apical tuft dendrites. The
threshold for single- and multi-branch stimulation is not significantly
different at the tuft. The latency between stimulation and spike is slower.

In fact, the low entrainment frequency to single branch integra-
tion is due to the production of additional spikes. It is as if single
branch integration is better suited for eliciting bursting responses.
This would not be surprising since the degree of recruitment of
voltage gated calcium conductances responsible for burst firing
increases with the duration of depolarization (Kay and Wong,
1987). Why is this finding significant? It is relevant for an ongoing
controversy on a fundamental issue in neuroscience, what is the
format of the information that is transmitted in the brain. Is the
information being transmitted through “spike timing” or “spike
rate” (or the number of spikes)? The findings here suggest that
multibranch integration would better preserve the information
in spike timing transmission, whereas single branch integration
would best optimize information being transmitted via spike
rate. Single branch integration provides the input-output transfer
function with high dynamic range. The latter would also be well
suited for initiating burst firing modes. Our findings do not weigh
in on the spike timing vs. spike rate controversy. But they suggest
that dendrites of pyramidal neurons have the capacity to support
both mode of signal transmission.

A second consistent observation from this study is that the
behavior of multibranch integration is domain-specific. Multi-
branch integration of oblique dendrites is sublinear, whereas
multibranch integration of tuft dendrites is supralinear at moder-
ate stimulation intensities. This dichotomy exists even though the
response of individual tuft and oblique dendrites are qualitatively
indistinguishable. Furthermore, this dichotomy extends to their
ability for precise spike entrainment. These observations are not
simply a phenomena related to the photolysis technique, since the
differences in entrainment were also apparent to synaptic stimu-
lation. The mechanistic basis for the domain specific integration
is likely to lie in the expression of different voltage-dependent
conductances at the differing loci where distal dendrites con-
verge. At the base of the tuft where the distal tuft branches
converge, voltage gated calcium channels are expressed in high
densities (Larkum et al., 1999, 2009). The sublinear summation
observed for multibranch oblique integration suggests that the
recruitment of the A-type potassium conductance at the proximal
apical trunk outweighs the recruitment of voltage-gated calcium
and NMDA conductances. The preferential recruitment of the
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FIGURE 8 | Domain specific response kinetics. (A) Differential
response kinetics between single- and multi-branch integration and
between different dendritic domains. In the presence of TTX time to
peak is significantly slower for single branch integration compared to that
for multibranch integration of oblique and basal dendrites (right panel).
Error bars represent SE. ** p < 0.05. Time to peak is also significantly
slow for multibranch integration of the tuft compared to that of oblique
and basal dendrites. (B) Entrainment properties of tuft vs. oblique
dendrites and single vs. multiple dendrites. The five stimuli were given at
different frequencies. The highest frequency at which the somatic action
potential can still precisely follow the dendritic input (entrainment) is
recorded. Multibranch oblique integration had faster entrainment ability
than either single branch oblique or multibranch tuft integration. Error
bars represent SE. ** p < 0.05. (C) The differential frequency response
between PP (blue) and SC (red) pathway. The highest frequency at which
the somatic action potential can still precisely follow the dendritic input
(entrainment) is recorded. SC pathway had better entrainment ability
than PP pathway. Error bars represent SE. ** p < 0.05.

potassium conductance with multibranch oblique integration can
be explained simply by the fact that NMDA receptors in the region
of dendritic convergence on the apical trunk are not exposed
to glutamate, yet the A-type potassium conductances can be
activated by distant excitation. This study does not compare the
relative expression the A-type conductance on the main apical

trunk and on the thin oblique dendrites. On the distal dendrites
NMDA and the A-type potassium conductances may be well
counter-balanced (Cash and Yuste, 1999; Gasparini and Magee,
2006; Losonczy and Magee, 2006; Losonczy et al., 2008). The
differential expression of conductances at the base of the tuft and
the proximal apical trunk suggests that the tuft and the oblique
dendrites may employ different temporal coding strategies. How-
ever, predicting in vivo behavior from in vitro observations must
always be done with caution since it is difficult to account for
the many presynaptic factors such as feedforward and feedback
inhibition that contribute to in vivo behavior.

This study provides an experimental demonstration of a
widely held belief that the dendritic arbor can support non-
linear integration at multiple locations (Mel, 1993; Schiller et al.,
2000; Wei et al., 2001; Polsky et al., 2004; Gasparini and Magee,
2006; Losonczy and Magee, 2006; Johnston and Narayanan, 2008;
Major et al., 2008; Larkum et al., 2009; Branco and Hausser,
2011). However, this is the first study to systematically examine
the kinetic consequences of supralinear integration at different
locations on the dendritic arbor and to demonstrate the tradeoffs
between temporal precision and signal amplification. There is no
single mode of integration with optimal performance. But the
ability to switch between different loci of non-linear integration
would provide the flexibility to optimize response to a specific
condition. The findings here may be relevant to the controversy
on whether information is transmitted in the form of spike
timing or spike rate and the contributory role of dendritic
integration.
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Neuromodulatory inputs from brainstem systems modulate the normal function of spinal
motoneurons by altering the activation properties of persistent inward currents (PICs)
in their dendrites. However, the effect of the PIC on firing outputs also depends on its
location in the dendritic tree. To investigate the interaction between PIC neuromodulation
and PIC location dependence, we used a two-compartment model that was biologically
realistic in that it retains directional and frequency-dependent electrical coupling between
the soma and the dendrites, as seen in multi-compartment models based on full
anatomical reconstructions of motoneurons. Our two-compartment approach allowed
us to systematically vary the coupling parameters between the soma and the dendrite
to accurately reproduce the effect of location of the dendritic PIC on the generation
of nonlinear (hysteretic) motoneuron firing patterns. Our results show that as a single
parameter value for PIC activation was either increased or decreased by 20% from its
default value, the solution space of the coupling parameter values for nonlinear firing
outputs was drastically reduced by approximately 80%. As a result, the model tended
to fire only in a linear mode at the majority of dendritic PIC sites. The same results
were obtained when all parameters for the PIC activation simultaneously changed only by
approximately ±10%. Our results suggest the democratization effect of neuromodulation:
the neuromodulation by the brainstem systems may play a role in switching the
motoneurons with PICs at different dendritic locations to a similar mode of firing by
reducing the effect of the dendritic location of PICs on the firing behavior.

Keywords: neuromodulation, motoneurons, nonlinear firing, persistent inward current, reduced modeling,

computer simulation

INTRODUCTION
Spinal motoneurons have large, highly branched dendrites and
voltage-gated ion channels that generate strong persistent inward
currents (PICs) (Schwindt and Crill, 1980). Over the past 30
years, the impact of PICs on the firing output of the motoneurons
has been extensively investigated in various species, including tur-
tles (Hounsgaard and Kiehn, 1985, 1989), rats (Bennett et al.,
2001; Li and Bennett, 2003), mice (Carlin et al., 2000; Meehan
et al., 2010) and cats (Lee and Heckman, 1998, 1999). There
has been a consensus in the motoneuron physiology commu-
nity that in the presence of monoamines (i.e., norepinephrine
and serotonin), the activation of the L-type Ca2+ PIC channels
is facilitated, producing a long-lasting membrane depolariza-
tion (i.e., plateau potential) (reviewed in Powers and Binder,
2001; Heckman et al., 2008). The spatiotemporal interaction
between the spike-generating channels at the soma and the
plateau-generating PIC channels at the dendrites, may be the
mechanism underlying the nonlinear (e.g., bistable) firing of the
motoneurons.

The firing patterns of the motoneurons have been
characterized experimentally using slowly rising and falling

current stimulation to the soma. Four types of firing have been
identified during this triangular current clamp, characterized by
the relationship between their frequency and current intensity
(F-I) (Bennett et al., 2001; Button et al., 2006; Cotel et al., 2009):
Type I, a linearly overlapped F-I curve; Type II, lower firing
rates during the falling phase than during the rising phase of
the stimulation, showing clockwise hysteresis for the F-I curve;
Type III, a linearly overlapped F-I curve with sustained firing
on the descending phase of the stimulation below the threshold
for spike initiation; and Type IV, higher firing rates during the
falling phase than during the rising phase of the stimulation,
showing counterclockwise hysteresis for the F-I curve, with
sustained firing behavior. Type IV firing has also been referred
to as “fully bistable” firing, whereas when the plateau potential
is deactivated at a higher current level during the descending
stimulation phase than the threshold for spike initiation, Type
IV firing has been called “partially bistable” (Lee and Heckman,
1998). In particular, the Type III and IV firing patterns have been
associated with the activation of plateau potentials mediated
by the PIC channels in the dendrites. In the present study, the
terms “fully hysteretic” and “partially hysteretic” were used for
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Type IV firing instead of “fully bistable” and “partially bistable”
due to their compound meaning from a dynamic systems
perspective.

The location of the PIC channels is a crucial factor for
generating nonlinear (i.e., fully hysteretic Type IV) firing in
motoneurons. Many experimental and computational studies
have suggested that the PIC channels must not be uniformly dis-
tributed but rather clustered near the middle (i.e., 300–600 μm
from the soma) of the dendrites for fully hysteretic, Type IV fir-
ing patterns (Hounsgaard and Kiehn, 1993; Carlin et al., 2000,
2009; Elbasiouny et al., 2005; Ballou et al., 2006; Bui et al.,
2006). In our recent computational studies (Kim and Jones,
2011, 2012; we have further demonstrated 1) that the types
of firing patterns (I–IV) can be generated by simply chang-
ing the dendritic location of a constant amplitude PIC and 2)
that these location-dependent effects of firing depend on the
attenuation of voltage along the dendrites and that both the
dendrite-to-soma and soma-to-dendrite attenuation behaviors
are important.

Another factor that may play a critical role in determining
the firing output is the neuromodulatory inputs (in particu-
lar monoamines) from the brainstem to the motoneurons. The
primary effect of neuromodulation is a profound facilitation
of PIC activation, presumably via G-protein-mediated signal-
ing pathways (Hille, 2001), which leads to an increase in the
intrinsic excitability of the motoneuron dendrites. However, it
remains unclear how the interplay between the neuromodula-
tion effect and the PIC location influences the firing dynamics
of the motoneurons. In this study, we used our recently devel-
oped reduced modeling approach, which allowed us to explic-
itly manipulate these two key factors determining the nonlinear
dynamics of the motoneurons: location and neuromodulation
effect on the PIC.

MATERIALS AND METHODS
THE CONDUCTANCE-BASED, REDUCED NEURON MODEL
The structure of the neuron model used in this study is simi-
lar to the conventional two-compartment model, which consists
of the somatic and dendritic compartments, coupled by electro-
tonic coupling. Each compartment can be characterized sepa-
rately by its specific membrane conductance (Gm,S and Gm,D)
and capacitance (Cm,S and Cm,D), and connected together via
a coupling conductance (GC). The major difference from the
conventional reduced modeling approach is that five passive
parameters (Gm,S, Gm,D, Cm,S, Cm,D, and GC) of our reduced
model can be analytically determined to retain five system prop-
erties obtained from the anatomically reconstructed motoneu-
ron: input resistance (RN ), membrane time constant (τm) and
three voltage attenuation (VA) factors between the soma and the
dendrites:

• VADC
SD is the ratio (Vdendrite/Vsoma) of voltage at the dendrites to

voltage at the soma for DC input at the soma.
• VAAC

SD is the ratio (Vdendrite/Vsoma) of voltage at the dendrites to
voltage at the soma for AC input at the soma.

• VADC
DS is the ratio (Vsoma/Vdendrite) of voltage at the dendrites to

voltage at the soma for DC input at the dendrites.

The five system properties are related analytically to
the five cable parameters of the reduced model as
follows,

Gm,S = 1 − VADC
DS

rN (1 − VADC
SD VADC

DS )

Gm,D = pVADC
DS (1 − VADC

SD )

(1 − p)rN VADC
SD (1 − VADC

SD VADC
DS )

GC = pVADC
DS

rN (1 − VADC
SD VADC

DS )

Cm,D = 1

ω(1 − p)

√√√√ G2
C(

VAAC
SD

)2
− {

GC + Gm,D(1 − p)
}2

Cm,S =
τm
{

p
(
1 − p

)
τmGm,SGm,D + pGm,S

(
τmGC − Cm,D

)

+p2Gm,SCm,D + (
1 − p

) (
τmGCGm,D − GCCm,D

)}

p
{(

1 − p
) (

τmGm,D − Cm,D
)+ τmGC

}

where rN is the input resistance (RN ) normalized with the
surface area of the somatic compartment; ω is the maximum
frequency component in an action potential; p is the ratio of
somatic to total surface area of the reduced model. In the
present study, the values of rN (0.198), τm (10.4), p (0.168).
and ω (2π × 250) were calculated based on the experimental
data and set to be constant for simulations (Kim and Jones,
2012).

The calculation of the system properties from the anatomi-
cal model and the derivation of inverse equations for the cable
parameters of the reduced model were fully presented in our
previous studies (Kim et al., 2009; Kim and Jones, 2012). The
Morris-Lecar type of membrane excitability was added to the
soma to generate the spikes mediated by lumped inward current
(represents fast Na+) and outward current (represents delayed
rectified K+) and to the dendrite to produce the plateau potentials
mediated by the L-type Ca2+ and K+ currents.

The somatic (VS) and dendritic (VD) membrane potential
responses to the somatically injected current (IS) were gov-
erned by the following current-balance equation at the somatic
compartment,

Cm,S

•
VS = −Gm,S(VS − ELeak) − GC

p
(VS − VD) − GNa

mS∞(VS − ENa) − GK,SnS(VS − EK ) + IS (1)

mS∞(VS) = 0.5

(
1 + tanh

VS + 0.01

0.15

)
(2)

•
nS = 0.2

(
nS∞(VS) − nS

τS(VS)

)
where

nS∞(VS) = 0.5

(
1 + tanh

VS + 0.04

0.1

)
,

τS(VS) =
(

cosh
VS + 0.04

0.1

)−1

(3)
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and the dendritic compartment,

Cm,D

•
VD = −Gm,D(VD − ELeak) − GC

1 − p
(VD − VS)

− GCamD(VD − ECa) − GK,DnD(VD − EK ) (4)

•
mD = 0.2

(
mD∞(VD) − mD

τmD(VD)

)
where

mD∞(VD) = 0.5

(
1 + tanh

VD − V1D

V2D

)
,

τmD(VD) =
(

cosh
VD − 0.07

0.1

)−1

(5)

•
nD = 0.2

(
nD∞(VD) − nD

τnD(VD)

)
where

nD∞(VD) = 0.5

(
1 + tanh

VD

0.1

)
,

τnD(VD) =
(

cosh
VD

0.1

)−1

(6)

where the subscripts S and D indicate the soma and dendrite;
The initial values for maximum conductances of active currents
were GNa = 11.0, GK,S = 14.0, GCa = 0.89, and GK,D = 0.44; m
and n are activation functions for inward and outward active cur-
rents; The reversal potentials for individual ions were ENa = 1.0,
EK = −0.7, ECa = 1.0, and ELeak = −0.5; The initial values for
the half-activation voltage and one over the slope of the activation
curve for the voltage-gated Ca2+ current at the dendrite were cur-
rent at the dendrite were V1D = 0.07 and V2D = 0.1. All parameter
values were adopted from our previous model that produced fully
hysteretic, Type IV firing. The numbers are dimensionless, unless
otherwise stated (see the dimensionless analysis in Rinzel and
Ermentrout, 1998).

SIMULATIONS
The firing behavior of the reduced model was simulated by
applying the triangular current stimulation (peak of 2.5 with
a duration of 3000) to the soma. The simulation was per-
formed while varying individual VA factors independently over
a full range (0∼1). To facilitate the process of identifying the
firing types (i.e., Type I–IV) during simulations, three charac-
teristic indices (CIs) were defined based on spike trains and
firing frequency (see the bottom panel in Figure 1A for graphical
explanation):

• Time To onset of Plateau potential (TTP): this index measures
the latency between the first somatic action potential and the
onset of the dendritic plateau potential. If this value is positive,
the onset of the plateau potential follows the first somatic spike.
If the value is negative, the plateau potential precedes somatic
spiking.

• Time to End of somatic Spiking (TES): this index measures
the duration of spiking during the downward phase of current
stimulation relative to the current threshold from the upward
phase. If this value is positive, somatic spiking persists past the

spiking threshold on the upward phase. If the value is negative,
spiking stops before reaching the threshold determined on the
upward phase of stimulation.

• Difference in Spiking Frequency (DSF): this index measures
the difference in instantaneous spiking frequency at the cur-
rent threshold determined on the upward phase of stimula-
tion. If this value is positive, the firing frequency is greater
on the downward phase and indicates counter-clockwise fre-
quency hysteresis. If this value is negative, spiking frequency
on the downward phase is less or repetitive spiking has
ceased.

The signs of individual CIs were operationally evaluated to
determine the firing type while varying individual VA factors.
For instance, the Type I–III firing behavior could be detected
when [TTP = 0, DSF = 0, TES = 0], [TTP = 0, DSF < 0,
TES = 0] and [TTP = 0, DSF = 0, TES > 0], respectively.
Notably, the Type IV firing of particular interest displayed all
positive CIs.

All of the sets of VA factor values that produced the same
firing type with the reduced model were plotted as points in
the three-dimensional (3D) VA space defined as x = VADC

DS ,
y = VADS

SD, and z = VAAC
SD . To map the VA space on the physical

locations of the dendritic trees, five type-identified motoneu-
rons were fully reconstructed in the NEURON environment. The
physiological data for each VA factor were measured as a func-
tion of the distance (Dpath) from the soma of the anatomical
motoneuron models and fitted to a single exponential function
[i.e., exp(−Dpath/η)] to represent the spatial profile of the volt-
age attenuation with the single parameter (η). Using the fitting
functions (η = {2680.6, 3059.5, 2758, 1941, 2145.8} for VADC

SD ,
{224.2, 144.7, 119.5, 143.9, 190.8} for VADC

DS , and {420.1, 437.1,
402.3, 373.1, 464.7} for VAAC

SD ), the mean for individual VA fac-
tors (VADC

SD , VADC
DS , VAAC

SD ) was investigated as a function of Dpath

for the VA data. The physiological VA data were represented by
plotting their mean values in the 3D VA space with assumption
of normal distribution of physiological VA values at a specific
distance from the soma (see thick solid lines, Figures 2, 4). All
details about the anatomical model reconstruction and VA analy-
sis were fully addressed in our previous studies (Kim et al., 2009;
Kim and Jones, 2012). The dendritic locations of PIC channels for
generating the Type IV (fully hysteretic) firing were estimated by
superimposing the physiological VA data associated with the dis-
tance on the solution VA space for the Type IV firing in the 3D VA
space.

The facilitating effect of monoaminergic neuromodulation on
the activation of the PIC in the dendrites was simulated by vary-
ing either individual or all three activation parameters [i.e., GCa

V1D, V2D, and in Equations (4) and (5)] of CaPIC channels in the
dendrite from −100 to 100% of their standard values. Given the
activation parameter values for the CaPIC channel, all sets of VA
factor values that produced positive values for the three CIs were
plotted in the VA space. The variation in the dendritic locations of
the PIC channels for the Type IV firing under neuromodulatory
effects was evaluated recognizing the intersection area between
the theoretical VA solution and the physiological VA data in the
VA space.
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FIGURE 1 | Physiological firing patterns of a reduced motoneuron model.

Firing patterns were simulated while systematically varying three VA factors
over a whole range of values (0–1). (A) Four examples of physiological firing
types (Types I–IV): time courses of voltage responses (Vm) of the soma (black
solid lines) and the dendrite (gray solid lines) to the triangular current
stimulation (IS ) to the soma (left column) and the corresponding
frequency-current (F–IS ) curves (blue and black dots for ascending and
descending phase of the current stimulation, right column). To automatically
process the detection of firing types during simulations, the three
characteristic indexes (TTP, TES, DSF) were defined based on both Vm–IS and
F–IS responses; TTP, TES, and DSF indicate time to onset of plateau potential,
time to end of somatic spiking, and difference in spiking frequency,
respectively. For instance, Type I firing was detected when all characteristic

indexes were zero, whereas Type IV firing (fully hysteretic) was detected
when all characteristic indexes were positive. Note that Vm, IS , T, and F are
dimensionless. The values of VA factors (VADC

SD , VADC
DS , VAAC

SD ) and cable
parameters (Gm,S , Gm,D , GC , Cm,S , Cm,D ) for the reduced models are (0.97,
0.63, 0.84) and (4.805, 0.051, 1.375, 49.499, 0.626) for Type I firing, (0.65,
0.003, 0.08) and (5.045, 0.002, 0.003, 52.425, 0.024) for Type III firing, (0.96,
0.57, 0.81) and (4.796, 0.054, 1.068, 49.952, 0.542) for Type IV (partially
hysteretic) firing, and (0.94, 0.38, 0.69) and (4.871, 0.039, 0.502, 50.772,
0.378) for Type IV (fully hysteretic) firing. (B) Pie chart: the size of the
individual pieces corresponds to the number of points in the VA space at
which the model produces the specific firing types. Nonphysiological case
indicates when there is no real solution for the model parameter values or no
spiking at all (see Kim and Jones, 2012, for the full description).
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RESULTS
PIC LOCATION DEPENDENCY OF PHYSIOLOGICAL FIRING PATTERNS IN
THE REDUCED MODEL
Firing patterns of the reduced model were simulated with
triangular current stimulation to the soma while varying
individual voltage attenuation (VA) factors (i.e., VADC

SD , VADC
DS , and

VAAC
SD ). We first evaluated the capability of the reduced model

to produce physiological firing patterns that have been observed
experimentally from spinal motoneurons. Based on the results
from the VA analysis, the locations of the persistent inward cur-
rent (PIC) for individual firing patterns were then estimated as
a function of the path length from the soma by comparing the
VA factor values with those measured from the anatomically
reconstructed motoneuron models.

Model capability for generating physiological firing patterns
Four types of five physiologically observed firing patterns [i.e.,
Type I–III and IV (fully and partially hysteretic) except Type II]
could be explicitly reproduced by the reduced model during the
computer simulations (Figure 1A). When the PIC in the dendrite
was not activated during the stimulation, the reduced model pro-
duced Type I firing with a linearly overlapped F-I relation and
without sustained firing in the descending phase of the current
stimulation below the rheobase for spike initiation. When the
dendritic PIC was activated near the current threshold for spike
initiation in the ascending stimulation phase, the reduced model
displayed Type III firing, giving a linearly overlapped F-I relation
with sustained firing in the descending phase. The Type IV (fully
hysteretic) firing, with a counter-clockwise F-I relation with sus-
tained firing, was detected when the onset and offset of the PIC
was delayed relative to the spike initiation during the ascending
and descending stimulation phase. At a limited range of the volt-
age attenuation factors near their default values, the PIC during
the ascending stimulation phase was deactivated in the descend-
ing phase prior to reaching the current threshold for the initiation
of action potentials, showing a partially hysteretic Type IV fir-
ing pattern. The reduced model rarely produced Type II firing
(characterized with the strong clockwise frequency-current rela-
tionship without sustained firing) while varying only the voltage
attenuation properties between the soma and the dendrite. This
result suggests that the location of the PIC channels in the den-
drites may not be a main factor of generating Type II firing,
supporting the idea that a slow adaptation of firing rate, medi-
ated by active currents at the soma, could be the main mechanism
underlying Type II firing (Iglesias et al., 2011).

Overall, the firing patterns produced by the reduced model
during the variation of the VA factors were categorized as 40.3%
Type I, 2.4% Type III, 4.1% fully hysteretic Type IV, 0.23%
partially hysteretic Type IV firing, and 53% nonphysiological
(Figure 1B). The distribution of the VA factor values associated
with individual firing types in the 3D VA space was graphically
presented along with the physiological VA data in the next sec-
tion. Briefly, Type I firing tended to be generated as the VADC

SD
decreased, the VADC

DS increased, and the VAAC
SD decreased from their

default values. Type III firing was found where the VADC
SD and

VAAC
SD were much greater than the VADC

DS . Type IV firing, charac-
terized at the default values of three voltage attenuation factors,

was much more sensitive to variation of the VADC
SD than the other

voltage attenuation factors.

Spatial relationship of the firing types
In physiological conditions, the three VA factors characterized
between the soma and all individual points of the dendrites are
not free parameters to be independently varied but are tightly
constrained by the path length from the soma of the cell (Hausser
et al., 2000; Bui et al., 2003; Kim and Jones, 2012). For instance,
all three VA factors of motoneurons have the same value of 1 at
the soma and exponentially decay with increasing distance toward
the dendritic terminals depending on the propagation direction
and frequency of the signal. To infer the physical locations of the
CaPIC channels at which the reduced model generated one of the
four firing types, we superimposed the VA factors measured from
five anatomically reconstructed motoneurons on the 3D VA space
in which each point represented a set of the three VA factor values
(Figure 2).

Figure 2 shows that the reduced motoneuron model is capable
of producing all four firing types shown in Figure 1 within the
physiological range of the VA factors, depending on the location
of the PIC. The physiological VA data obtained from the anatomi-
cally reconstructed motoneuron models were superimposed over
the VA space where the reduced model produces fully hysteretic
Type IV firing (Figure 2A). Based on the spatial relationship of
the physiological VA factors with the distance from the soma, the
fully hysteretic Type IV (i.e., counterclockwise F-I curve with sus-
tained firing) was found to be generated in the intermediate range
between 88 μm and 685 μm as reported previously (Elbasiouny
et al., 2005; Ballou et al., 2006; Bui et al., 2006). Similarly, the
overlap of the physiological VA data on the VA spaces for Type I,
III, and IV (partially hysteretic) firing indicated the spatial rela-
tionship between the individual firing types and the location of
PIC channels in the dendrites (Figure 2B). The partially hysteretic
Type IV was evoked at the very limited range of the distance,
which was just around the lower bound of the distance range for
the fully hysteretic Type IV firing. The Type I (i.e., linearly over-
lapped F-I curve) firing tended to occur when the PIC channels
were placed at proximal sites (<88 μm) to the soma, whereas the
Type III (i.e., linearly overlapped F-I curve with sustained firing)
was produced at distal sites (>685 μm) to the soma.

In addition, the tendency of the Type I firing (without PIC acti-
vation) at the region proximal to the soma and the Type III firing
(with PIC activation) at the distal area of the dendrites indicates
that the excitability of the dendrites increases as the PIC channel
moves toward dendritic terminals from the soma. The increas-
ing excitability of the dendrites with increasing distance may be
attributed to the increasing input resistance of the dendrites with
the distance (Kim et al., 2009).

The shape of the nonlinear firing pattern was potentially
adjustable depending on the PIC location in the dendrites. For
instance, the extent of the counterclockwise hysteresis of the Type
IV firing was maximized at the proximal distance of 88 μm,
whereas it was minimized at the distal distance of 685 μm to the
soma (see Figure 6 in Kim and Jones, 2012). All these results
emphasize the importance of PIC channel location over the den-
dritic trees in determining the firing patterns of the motoneurons.
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FIGURE 2 | Location dependent firing patterns of a reduced

motoneuron model. The gray volumes in the 3D VA space indicate the
values of the VA factors with which the reduced model generated: fully
hysteretic Type IV firing (A) showing all positive characteristic indexes, Type
III firing in the upper-left corner (B), partially hysteretic Type IV firing in the
upper-middle region (B), and nonphysiological case in the lower-right corner
(B) where cable parameters are negative or somatic capacitance to
produce system time constant does not exist. The rest space outside the
gray volumes represents the VA values for Type I firing. In both (A,B), the
physiological VA factors obtained at all distances (Dpath) from the soma of
the anatomical motoneuron models were mapped on the same VA space
by statistically plotting their mean values (thick solid lines). The open arrows
indicate the physical locations (Dpath) of the CaPIC channel in the 3D VA
space, whereas the close arrows indicate the firing types that the reduced
model can produce with the physiological values of the VA factors. The four
closed circles (blue, black, green, red) on the line for the mean of
physiological VA data indicate the points where the reduced model
produces Type I, IV (partially hysteretic), IV (fully hysteretic) and III firing
shown in Figure 1A. The blue, green and red sold line show the region of
physiological VA factors for Type I, IV (fully hysteretic) and III firing,
respectively. Note that in the physiological case, all three VA factors are 1 at
the soma (Dpath = 0) and decrease approaching the dendritic terminals
(Dpath = 2000 μm).

NEUROMODULATION EFFECTS ON PIC LOCATION DEPENDENCE OF THE
FIRING PATTERNS
Because the molecular mechanisms underlying the
neuromodulatory facilitation of PIC activation are still unclear,
we first evaluated how individual activation properties of the
CaPIC channel in the dendrite influence the PIC characteristics
that have been experimentally measured at the soma. Then, the

spatial relation of the firing behavior (i.e., Type I–IV) to the PIC
locations was reevaluated while varying the activation properties
of the CaPIC channel.

Dependence of PIC characteristics on CaPIC activation properties
The effects of monoaminergic neuromodulation on the PIC
(IPIC) characterized at the soma were simulated by modulating
three activation parameters (i.e., GCa, V1D, and V2D) that gov-
ern the dynamics of the L-type Ca2+ channel in the dendrite of
the reduced model (Figure 3). The activation parameters were
varied by ±20% from their initial values when they were con-
sidered individually or by ±10% when all of the parameter values
were changed at the same time. The percentage of variation in
the activation parameter values was determined to match the
physiological variation of the IPIC peak that has been observed
experimentally (approximately 31% increased at an enhanced
level of neuromodulation and 41% decreased at a reduced level,
compared with a moderate level of neuromodulation) (Lee and
Heckman, 2000). As expected, an increase in GCa (maximum
conductance of the L-type Ca2+ channel) and V2D (one over
the slope of the activation curve for the L-type Ca2+ channel)
produced excitatory effects lowering the voltage threshold for
the PIC activation and increasing the PIC amplitude (bottom
panel of Figures 3A,C), whereas an increase in V1D (half activa-
tion voltage of the activation curve for the L-type Ca2+ channel)
caused inhibitory effects increasing the voltage threshold for the
activation of the dendritic PIC and lowering the PIC amplitude
(Figure 3B). Similar results were obtained when these three acti-
vation parameters were varied simultaneously to produce the
same effect on the activation of the PIC (Figure 3D). Prior to
its activation at the reduced level of neuromodulation, a posi-
tive IPIC was found in all four cases (Figures 3A–D), indicating
an increase in the net outward current due to the decrease in PIC
by downgraded neuromodulation. At each level of neuromodula-
tion, no significant difference was found in the onset timing and
amplitude of the IPIC during the rising phase of the stimulation
between the four manipulations (i.e., change in GCa, V1D, V2D

or all). This result indicates that varying the individual activation
parameters of the CaPIC channel in the same inhibitory or exci-
tatory direction has similar effects on the activation of the PIC,
when measured at the soma.

Influence of neuromodulation on the spatial relationship of the
firing types
Figure 4 demonstrates how varying the PIC activation parame-
ters influences the range of PIC locations over which the reduced
motoneuron model can produce distinctive firing types. Overall,
the VA space (i.e., gray area in Figure 2), where the reduced model
produced the nonlinear firing (i.e., fully hysteretic Type IV) at
a moderate level of neuromodulation, dramatically shrank and
shifted along the VADC

SD axis in the 3D VA domain, depending
on the inhibitory or excitatory effect of the CaPIC parameter
variation on the IPIC.

When neuromodulation was decreased by decreasing the PIC’s
V1D (Figure 4A2) or increasing its V2D (Figure 4B1) by 20%, the
solution space for Type IV firing on the 3D VA plot was sig-
nificantly reduced and moved downward along the VADC

SD axis.
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FIGURE 3 | PIC characteristics depending on PIC activation property.

Three activation parameters (GCa, V1D , and V2D ) underlying the CaPIC
activation were varied individually (A–C) or all together (D) at three different
levels (reduced, standard, enhanced) of neuromodulation. (A) A triangular
voltage clamp (Vs, middle) was applied at the soma and measured the total
current (IS , top) injected to follow up the voltage command (Vs). PIC (IPIC,
bottom) was calculated by subtracting IS (solid line, top) from the leak
current (Ileak, dotted line, top). The gray dotted, black solid, and gray solid
lines indicate PICs with GCa reduced by 20%, default value and increased
by 20%, respectively. (B–D) The same simulation protocol for A was
applied for other parameters: V1D (B), V2D (C), and all three parameters (D).
Note that at the third case, the individual parameters were varied by 10% in
the same direction (inhibiting or facilitating the PIC activation).

Consequently, the reduced model was only capable of generating
Type III firing patterns at most dendritic locations of PIC chan-
nels. In contrast, an increase in neuromodulation by increasing
V1D (Figure 4A1) or by decreasing V2D (Figure 4B2) by 20%
caused the solution space for the Type IV firing to move upward
along the VADC

SD axis, leading to a significant reduction in the
range of the PIC location for Type IV firing of 66 or 74%, rela-
tive to the default values. In this case, the reduced model could
produce Type I firing only at the distances from the soma outside
the reduced range of the PIC location for Type IV firing.

Varying GCa showed a larger impact on the size and location
of the VA region for the Type IV firing of the reduced model.
The CaPIC channel locations for Type IV firing almost disap-
peared when the value of GCa was either increased (Figure 4C1)
or decreased (Figure 4C2) by 20%. Consequently, the reduced
model could display only two firing modes, Type I or Type
III, depending on the modulation level (reduced or enhanced)
regardless of PIC channel positions in the dendrites.

Furthermore, when all PIC activation parameters were simul-
taneously modulated by 10% to either increase (Figure 4D1) or
decrease (Figure 4D2) the excitability of the PIC in the dendrites,
the location and the size of the Type IV firing space was shifted
further away from the physiological voltage attenuation data and
decreased more severely than for the case where individual PIC
activation parameters were changed independently.

All simulation results suggest that any variation of neuro-
modulation, either enhancement or reduction, may lead to a

significant reduction in the dendritic sites of the CaPIC for Type
IV firing, indicating an alleviation of the PIC location effect on
the firing behavior.

THE ROBUSTNESS OF THE REDUCED MODEL FOR THE NONLINEAR
FIRING UNDER NEUROMODULATORY CONTROL
Having shown the effects of neuromodulation on the nonlinear
firing behavior of the reduced model, within the physiological
range of the variation in the IPIC, we further extended the VA anal-
ysis to a broader range of activation parameter values (±100%
from default values) to evaluate how robustly the reduced model
can produce the nonlinear firing behavior. The robustness of the
reduced model for the nonlinear firing was indirectly evaluated by
counting the number of points in the VA space where the reduced
model produced Type IV firing patterns.

Figure 5 shows that the robustness of the reduced model for
the Type IV firing is sharply reduced when the excitability of
the dendrites is increased or decreased. In general, the reduced
robustness of the model was more severe when the activation
parameters varied in the inhibitory direction. Whether individ-
ual parameter values decreased or increased by 20%, the model
robustness for Type IV firing decreased minimally by 70% in the
case of V1D and maximally by 97% in the case of GCa. When
the activation parameter values were simultaneously changed by
10% in the same direction (such that all three parameters simi-
larly increased or decreased dendritic excitability), the robustness
was decreased by 97% in the inhibitory direction and 85% in the
excitatory direction.

The dramatic reduction in the model’s robustness for Type IV
firing, in response to a relatively small change in the neuromodu-
lation level, supports the idea that neuromodulation may control
the firing mode of the motoneurons by modulating the influence
of the PIC locations on the firing behavior.

DISCUSSION
Using a realistic two-compartment model, we theoretically inves-
tigated the neuromodulatory control of the firing behavior in
motoneurons. The physiological firing patterns of the reduced
model strongly related to the location of PIC channels in the den-
drites. However, when the level of neuromodulation was either
reduced or enhanced, the PIC locations estimated for the nonlin-
ear (i.e., Type IV) firing behavior were almost abolished, and the
whole solution space for Type IV firing in the 3D VA domain dra-
matically shrank. Consequently, neuromodulation could switch
the reduced model between distinct firing modes (i.e., Type I
and III), regardless of the PIC locations over the majority of the
dendritic area. This result suggests that neuromodulation might
play a role in controlling the firing mode of motoneurons by
modulating the location dependency of PIC activation in the
dendrites.

DEMOCRATIZATION OF PIC IMPACT ON FIRING BEHAVIOR THROUGH
NEUROMODULATION
The concept of democracy in the dendrites has been suggested
both theoretically (Rumsey and Abbott, 2006) and experimentally
(Magee and Cook, 2000; Hausser, 2001). That is, the contribu-
tion of individual synaptic inputs at different dendritic sites to
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FIGURE 4 | The interaction of the location and activation properties of

PIC channels on the firing patterns. The same simulation performed in
Figure 2 was conducted while varying the individual activation properties
(V1D , V2D , and GCa) of the CaPIC channel. (A1,B1,C1) show the simulation
results with 20% increments of V1D , V2D , and GCa, whereas (A2,B2,C2)

show the results for 20% decreases from their standard values. (D1,D2)

show the simulation results from a simultaneous change in all of the
activation parameter values at the same time, where (D1) shows a 10%
increase in V2D and GCa, and 10% decrease in V1D whereas (D2) shows the
opposite.

the postsynaptic potentials at the soma could be normalized (or
equalized), not only by the structure of the dendrites but also
by passive and active membrane properties. A similar democratic
phenomenon was found during the current study regarding PIC
activation at different dendritic sites. In this study, the synap-
tic input and active current (i.e., PIC) in the dendrites were

considered as extrinsic and intrinsic signals that may control
the firing output at the soma. Similar to the synaptic input
case, the firing output was investigated under neuromodulation
while varying the location of PIC along the path of the den-
drites from the soma. For this investigation, we used our recently
developed reduced modeling approach for two reasons: (1) our
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FIGURE 5 | Robustness of the reduced model for nonlinear firing under

neuromodulation. The same simulation for Figure 4 was performed for a
broader range (from −100 to 100%) of change in the values of the individual
and all activation parameters (V1D , V2D , and GCa) of the CaPIC channel. The

y-axis indicates the normalized number of the points in the 3D VA space
where the reduced model produced the fully hysteretic Type IV firing (see the
gray VA space in Figure 2 as an example with default values of the VA
factors).

reduced modeling approach provides the framework where the
dendritic compartment can retain the dendritic excitability (i.e.,
input resistance) of the anatomically reconstructed models as
a function of the distance by reflecting the voltage attenuation
properties between the soma and the dendrites, and (2) the val-
ues for the cable parameters of the reduced model are analytically
determined from the system properties (input resistance, time
constant and three voltage attenuation factors) which is well
suited for the generality of the simulation covering a full range
of the voltage attenuation properties of the dendrites. Our simu-
lation results showed that the effects of PIC channels’ location on
firing behavior could be normalized in a “democratic” manner
under neuromodulatory control (Figure 4). For instance, when
neuromodulation was reduced, the reduced model displayed only
Type I firing without PIC activation, independent of the PIC
location in the dendrites. However, when neuromodulation was
enhanced, Type III firing with PIC activation at the initiation of
firing was produced for PIC channels over most of the dendritic
sites. This result suggests that neuromodulatory control might act
as an extrinsic mechanism for democratizing the activation of the
active channels over the dendritic trees.

ROBUSTNESS OF TYPE IV FIRING DURING NORMAL BEHAVIOR
Typically, when neuromodulation levels are fixed, the Type IV
(fully hysteretic) firing pattern showing strong counter-clockwise
hysteresis has been characterized to demonstrate the influence
of PIC activation at the dendrites on firing behavior in spinal
motoneurons. In the present study, the capability of the reduced
motoneuron model to produce the Type IV firing was found
to be highly sensitive to variations in the level of neuromodu-
lation (Figure 5). That is, as neuromodulation increased, Type
III firing became predominant for the PIC located over the
majority of the dendritic area. This result might explain recent
experimental observations both in animals and humans dur-
ing normal behavior, which have demonstrated that the PICs

tend to be activated almost simultaneously at the initiation of
firing by synaptic inputs to the motoneurons, leading to a lin-
ear F-I relationship with sustained firing (i.e., Type III firing)
(Gorassini et al., 2002a,b; Li et al., 2004). Taken together, these
theoretical and experimental results suggest that the fully hys-
teretic, Type IV firing behavior might not be functionally impor-
tant for normal movements, during which the neuromodulation
level continuously varies in response to physical and emotional
states.

LIMITATIONS OF THE CURRENT MODELING
The only firing type that was difficult to produce with this reduced
model while varying the VA factors was Type II firing: a clock-
wise F-I relationship without sustained firing behavior (Figure 1).
This result indicates that Type II firing does not seem to be
related to the locations of the PIC in the dendrites. The under-
lying mechanisms for the firing adaptation during the falling
phase of the triangular stimulation may be related to both passive
and active membrane properties. A recent study of anesthetized
hindlimb rat motoneurons has shown that the motoneurons with
less input resistance tend to display the Type II pattern (Hamm
et al., 2010; Turkin et al., 2010). Indeed, decreased input resis-
tance in the reduced model led to the characteristics of Type II
firing while blocking plateau-generating channels in the dendrite
(not shown). For the active mechanisms, the slow kinetics of the
voltage-gated Na+ and K+ (M-like) currents involved in shap-
ing action potentials may be a factor contributing to the Type II
firing pattern in mouse preparations (Iglesias et al., 2011). The
K+ currents responsible for after hyperpolarization (AHP) may
also affect the degree of the adaptation in the Type II firing of the
reduced model. Both the input resistance and AHP property have
been associated with motoneuron types (Zengel et al., 1985) and
influenced by neuromodulation (Powers and Binder, 2001). Thus,
further work will be needed to clarify if Type II firing is controlled
by the neuromodulation in a type-specific manner in a pool of
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motoneurons. Other limitations to the modeling approach used
in this study were addressed in detail in our previous studies
(Kim and Jones, 2011, 2012). Briefly, the details of active currents
involved in generating action potentials at the soma and plateau
potentials at the dendrites have been collapsed into an inward
and outward current at each compartment of the reduced model
for the theoretical purpose of the present study. In addition, the
current modeling approach may not be appropriate for the case
where the PIC channels are located at multiple branches of the
dendrites.

Detailed cellular mechanisms for the monoaminergic neuro-
modulation that facilitates PICs in spinal motoneurons are not
yet clear (Heckman et al., 2009). The effects of monoamines on
motoneuron excitability have been simulated by varying the peak
conductance of K+ currents in the dendrites (Booth et al., 1997).
In the current study, we varied three parameters (i.e., peak con-
ductance, half activation voltage and slope of activation curve)
that govern the activation of L-type Ca2+ channels in the den-
drite of the reduced model to simulate neuromodulatory effects
(Figure 3). We have found that both simulation approaches are
comparable in that the excitability of the dendrite increases.
However, what we found interesting in the current study was
that changes in individual activation parameters had almost same
effect on the PIC facilitation at different levels of monoamines.
This result suggests that the monoamines might have compound
effects on PIC activation in the dendrites, not only increasing
the PIC amplitude but also varying the kinetic properties of
the PIC. Furthermore, the activation properties of other voltage-
gated inward and outward currents might also be varied under
neuromodulation. Further systematic works would be needed to
investigate whether or not and how the activation properties of
non-PIC channels interact on the PIC location-dependent firing
patterns under neuromodulation.

In the present study, individual firing types (i.e., Type I–IV)
were identified based on temporal characteristics of the model
response to a triangular current stimulation to the soma. Thus,
one might concern that the firing types might depend on the
kinetics of the triangular stimulation. With regard to this issue,
we have shown in our previous studies (Kim and Jones, 2011,
2012) that Type I, III, and IV (fully hysteretic) firing could be
defined mechanistically via steady-state bifurcation analysis. In
addition, we could not find any significant difference in the firing
types [Type I, III, and IV (fully hysteretic)] during simulations
with a very slow (e.g., 10 time less steep) ramp stimulation (not
shown).

Our intention of introducing the fully and partially hys-
teretic Type IV firing was to show the ability of the model
to generate the two types of Type IV firing that have been
experimentally observed in motoneurons. The main difference
in the partially compared to fully hysteretic Type IV firings is
the phenomenon of gradually deactivating plateau potential after
the dendritic PICs are activated. In contrast to the fully hys-
teretic Type IV firing, the partially hysteretic Type IV firing was
found to be sensitive to the kinetics of the ramp stimulation.
Due to this reason, we have focused on Type I, III, and IV
(fully hysteretic) firing for the theoretical purpose of the present
study.

FUNCTIONAL ROLE OF NEUROMODULATORY CONTROL
Functional implications of the Type IV firing mediated by
dendritic PICs have been suggested, not only for normal (i.e.,
gain and postural control) but also for pathological (i.e., spastic-
ity) movement control (Kiehn and Eken, 1997; Lee and Heckman,
2000; Li and Bennett, 2003). Furthermore, it has also been
reported that neuromodulatory control is likely to be predom-
inant during physiological responses to external stimuli such
as fight-or-flight-or-freeze behavior (Marder and Bucher, 2007;
Inagaki et al., 2012; Suver et al., 2012). In all above cases, many
motoneurons might need to fire together in a similar mode to
ensure the strength and speed of muscle contraction required
to generate those abrupt movements. This idea might be sup-
ported by our simulation results that the reduced models could
be switched between distinct firing modes in a collective man-
ner by varying the neuromodulation level, overriding the influ-
ence of PIC location on firing patterns (Figures 4, 5). Overall,
neuromodulation might play a pivotal role in controlling the
firing mode of motoneurons at the population level, instead of
individually.

In conclusion, the monoaminergic inputs descending from
brainstem nuclei to the motoneurons may differ depending on
motor demands during normal behaviors. Variation of the neu-
romodulatory drive could adjust the influence of PIC location on
the firing behavior in the reduced motoneuron models. Our sim-
ulation results suggest the hypothesis that neuromodulation may
have a role in encoding the demanding motor states by switch-
ing the heterogeneous input-output properties of a population of
motoneurons to a uniform operation mode.
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This work consists of a computational study of the electrical responses of three
classes of granule cells of the olfactory bulb to synaptic activation in different
dendritic locations. The constructed models were based on morphologically detailed
compartmental reconstructions of three granule cell classes of the olfactory bulb with
active dendrites described by Bhalla and Bower (1993, pp. 1948–1965) and dendritic
spine distributions described by Woolf et al. (1991, pp. 1837–1854). The computational
studies with the model neurons showed that different quantities of spines have to
be activated in each dendritic region to induce an action potential, which always was
originated in the active terminal dendrites, independently of the location of the stimuli,
and the morphology of the dendritic tree. These model predictions might have important
computational implications in the context of olfactory bulb circuits.

Keywords: granule cells, olfactory bulb, active dendrites, spikes, dendrodendritic synapses

INTRODUCTION
Computational models of the olfactory system have produced
several important contributions about the functioning of this
system, which has been considered a model system for compu-
tational neuroscience (Davis and Eichenbaum, 1991; Cleland and
Linster, 2005; Simões-de-Souza and Antunes, 2007). But, despite
the large number of computational models of olfactory bulb net-
works using neurons with simplified dendritic trees of granule
cells (Davison et al., 2003; Simões de Souza and Roque, 2004;
Yu et al., 2013; Kaplan and Lansner, 2014; Migliore et al., 2014),
little has been done to investigate the outcome of the complex
morphology of the different classes of granule cells of the olfac-
tory bulb with active dendrites in the integration of their synaptic
inputs.

Granule cells are the most numerous inhibitory interneurons
present in the olfactory bulb, which has a proportion of 100–200
granule cells to each mitral and tufted cell (Saghatelyan et al.,
2003; Shepherd et al., 2007). New granule cells develop constantly
in the olfactory bulb through a process of neurogenesis and cell
migration that is implied with synaptic plasticity and memory
(Nissant et al., 2009; Sakamoto et al., 2014). In the olfactory bulb,
granule cells play a key role in the information processing of the
olfactory system (Shepherd et al., 2007; Labarrera et al., 2013).

The terminal dendrites of the granule cells have active mem-
brane properties that can boost the excitability of the neurons
to excitatory synaptic inputs impinging in different dendritic

locations (Pinato and Midtgaard, 2005; Balu et al., 2007). These
terminal dendrites make dendrodendritic synapses with the lat-
eral dendrites of the mitral and tufted cells, which are the prin-
cipal neurons of the olfactory bulb. Glutamate is released from
the dendrites of the mitral/tufted cells that excite glutamatergic
receptors in the spines of the granule cells. Presumably, the stimu-
lation of AMPA, and NMDA type synapses lead to calcium inflow
mainly through NMDA receptor channels in the spines of the
granule cells (Schoppa et al., 1998), which induces the release
of GABA in the synaptic cleft promoting the inhibition of the
secondary dendrites of the mitral/tufted cells (Rall et al., 1966;
Rall and Shepherd, 1968). Thus, the spines of the granule cells
produce dendrodendritic recurrent inhibition of the mitral/tufted
cells and lateral inhibition between mitral/tufted cells (Rall et al.,
1966; Yokoi et al., 1995). Moreover, the dendritic trunk and deep
dendrites of the granule cells can receive centrifugal fiber (CF)
inputs from several brain regions that modulate the activity of
the olfactory bulb (Laaris et al., 2007; Whitman and Greer, 2007;
O’Connor and Jacob, 2008; Doucette et al., 2011).

Accordingly with morphological criteria there are three classes
of granule cells in the olfactory bulb termed type I, II, and III
(Mori et al., 1983; Woolf et al., 1991; Shepherd et al., 2007). The
type I granule cell has terminal dendrites that branches and has
spines present throughout the external plexiform layer. The type
II granule neuron has branching patterns that are confined to
the lower one-half to one-third of the external plexiform layer.
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The type III granule cell arbors extensively only in the upper
one-half to one-third of the external plexiform layer. Despite the
morphological differences among different classes of granule cells
that have been long recognized, it remains unclear whether the
presence of active dendrites in each one of them induce differ-
ent electrical responses to the same pattern of synaptic inputs. To
investigate this aspect, we developed a computational model of
three classes of granule cells with distinct distributions of den-
dritic spines along the active dendrites to investigate how each
class integrate their its synaptic inputs.

MATERIALS AND METHODS
The computational models used to simulate the granule neu-
rons were based on Bhalla and Bower detailed compartmental
reconstructions of the three granule neuron classes of the olfac-
tory bulb with active properties (Bhalla and Bower, 1993). Bhalla
and Bower models are the most detailed reconstructed compart-
mental models with conductance based active dendrites available
in the literature, and the reader is referred to the original paper
to obtain more information about their development (Bhalla
and Bower, 1993). The original model neurons were modified
to include distinct distributions of dendritic spines (Woolf et al.,
1991) that receive glutamatergic excitatory synapses on their
dendritic spines containing NMDA and AMPA receptors.

The source code of the computational model is avail-
able at: https://senselab.med.yale.edu/modeldb/ShowModel.asp?
model=156828, password=1416.

GRANULE CELLS
To investigate the effect of active dendrites on the integration of
synaptic inputs in the three classes of granule cells, we kept the
original compartmental composition and number of active chan-
nels of the type I, II, and II granule cells unchanged (Bhalla and
Bower, 1993), which include the rat brain sodium, potassium,
anomalous rectifier potassium and non-inactivating muscarinic
potassium currents (Bhalla and Bower, 1993). Then, we modified
the distributions of the spines in the terminal dendrites, den-
dritic trunk, and deep dendrites of the model cells to reproduce
the detailed location, number and type of spines of a representa-
tive granule neuron of each class reconstructed in camera lucida
(Woolf et al., 1991).

There are 194 pedunculated spines in the type I experimentally
reconstruct granule neuron, 118 pedunculated spines in the type
II granule neuron, and 114 spines in the type III granule neu-
ron. The type I and II have more pedunculated spines near the
soma than the type III (Woolf et al., 1991). Each spine was simu-
lated as two compartments representing the neck and the head.
We included one spine per granule cell compartment. Because
the number of compartments was smaller than the number of
peduculated spines observed experimentally, the membrane area
of these missing spines was taken in consideration by increas-
ing the membrane area of the cell with the area of the missing
spines, considered as 3.37 µm2 per missing spine. According to
morphological data, the type III granule cell was simulated with
no spines in the proximal trunk and deep dendrite (Woolf et al.,
1991). The final constructed model for the type I granule neu-
ron has 112 compartments and 112 simulated spines, the type II

granule cell has 114 compartments and 114 simulated spines, the
type III granule cell has 89 compartments and 61 simulated spines
(Figure 1A, Supplementary Table 1).

The curves of spike frequency per injected current in the soma
of the three simulated granule cells are shown in Figure 1B, which
is a standard procedure to characterize computational model of
single cells. The curves were very similar in the three model cells,
in particular the firing threshold of the type I and II model cells is
0.04 nA, and the threshold of the type II is 0.03 nA.

A resting membrane potential of −65 mV was adopted for
all granule cells, which is inside a range of values obtained with
in vivo whole-cell recording in the rat olfactory bulb (Cang and
Isaacson, 2003).

DENDRITIC SPINES
Each simulated spine has two cylindrical compartments, one rep-
resenting the spine neck with a diameter of 0.23 µm and length
1.9 µm and another representing the spine head with a diameter
of 0.8 µm and a length of 0.8 µm (Woolf et al., 1991). The spines
were simulated containning both AMPA and NMDA receptor
channels and a thin shell model immediatelly beneath the mem-
brane that receive the calcium that flows through the activated
NMDAR channels. The parameters used to simulate of these
channels were based mainly in the Davison’s model (Davison
et al., 2003), which were obtained from the experimental works
of Schoppa et al. (1998).

The AMPAR channel was simulated according to Equation (1):

GAMPAR(V, t) =
gAMPAR

(
e

(−t/τ1

)

− e

(−t/τ2

))

τ1 − τ2
(1)

where GAMPAR is the calculated AMPA conductance, gAMPAR = 1
nS is the maximal conductance of the channel, and τ1 = 2 ms,
and τ2 = 5.5 ms are the rising and decaying time constants,
respectively (Davison et al., 2003).

The NMDA receptor model was based on Equation (2) (Zador
et al., 1990):

GNMDAR(V, t) = gNMDAR

⎛

⎝ e
−t/τ1 − e

−t/τ2

1 + η[Mg2+]e−γ V

⎞

⎠ (2)

which considers the voltage-dependent blocking of the channel
by the ion magnesium. GNMDAR is the calculated NMDAR con-
ductance, gNMDAR = 0.593 nS is the maximal conductance of the
channel, τ1 = 52 ms and τ2 = 343 ms are the rising and decay-
ing time constants, respectively (Davison et al., 2003), [Mg2+] =
1.2 mM is the ion magnesium concentration, η = 0.2801 and
γ = 62.

The current through the channels was calculated by
Equation (3),

I(t) = G(t) (EK − Vm) (3)

where I is the calculated current, G is the calculated channel con-
ductance (GNMDAR or GAMPAR), Vm is the compartmental mem-
brane potential and EK is the reversal potential of the channel,
considered zero for the AMPA receptor channels.

Frontiers in Computational Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 128

179

https://senselab.med.yale.edu/modeldb/ShowModel.asp?model=156828
https://senselab.med.yale.edu/modeldb/ShowModel.asp?model=156828
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Simões-de-Souza et al. Synaptic activation in different dendritic locations

FIGURE 1 | Granule neuron model. (A) Morphology of the final model
neurons with the dendritic spines. At left is the type I granule neuron model
with 112 compartments and 112 spines, in the middle is the type II granule
neuron with 114 compartments and 114 spines, and at right is the type III
granule neuron with 89 compartments and 61 spines. Each model neuron
has a soma, a trunk, the deep dendrites and the terminal dendrites. (B)

Curves of injected current in the soma vs. spike frequency of the three

simulated granule neurons. The markers are the simulated points. There are
more points to the weak currents to determine the spike threshold of the
neurons. The red line shows the firing rate of the type I granule neuron, the
green line shows the firing rate of the type II granule neuron, and the blue
line shows the firing rate of the type III granule neuron. (C) Activation of the
model AMPA (blue line) and NMDA (red line) receptor channel conductances
by glutamate. The concentration of ion magnesium was 1.2 mM.

An example of the time variations of the AMPA and NMDA
receptor channel conductances of the model in response to glu-
tamate activation is shown in Figure 1C. The maximum AMPAR
conductance is 1 nS. There is a fast rising and fast decaying time in
the variation of the AMPAR conductance (Figure 1C, blue) when
compared with the NMDAR conductance that has very slow ris-
ing and decaying time constants (Figure 1C, red). Because of the
blocking of the NMDAR by 1.2 mM of ion magnesium the max-
imum conductance of this channel, which is 0.593 nS, was not
reached. The shell used to simulate the calcium dynamics was
based on Equation (4) (Traub et al., 1991; Bower and Beeman,
2007):

d[Ca2+]
dt

= BICa − rCa2+ (4)

where the parameters were calculated for the spine dimensions
considered here. B = 5.2 · 10−6/(a · L) is the ion calcium diffu-
sion rate constant of the shell, where the spine head area is a =
2 µm2 and the shell thickness is L = 0.1 µm. Because of buffer-
ing factors B = B/10, then B = 26 · 1011. [Ca2+] is the calculated
ion calcium concentration on the shell, ICa is the inward ion cal-
cium current coming from NMDAR channel, r = 870 s−1 is the
extrusion rate of ion calcium (Egger and Stroh, 2009). The resting
intracellular ion calcium is 0.05 µM (Egger and Stroh, 2009).
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The fractional calcium concentration (Pf ) through NMDAR
channels followed the Equation (5) (Schneggenburger, 1996):

Pf = [Ca2+]o

[Ca2+]o +
(

PM
PCa2+

)−1 [M]
4

(
1 − e

(
2V F

RT

)) (5)

where [Ca2+]o is the extracellular free Ca2+ concentration
(2 mM), V is the membrane potential in the spine head, F is the
Faraday constant (96,485 C·mol−1), R is the gas constant (8.314 J·
K−1·mol−1), T is the temperature in degree Kelvin (298.15 K), M
is the monovalent ion concentration (155 mM), and PCa2+/PM
is the permeability ratio of Ca2+ over monovalent ions (3.6).
Pf = 15% at the membrane resting potential.

The reversal potential (Vr = 2.18 mV) for the NMDAR chan-
nel was obtained from the extended Goldman-Hodgkin-Katz
(GHK) Equation (6) (Jan and Jan, 1976; Schneggenburger, 1996):

Vr = RT

F
ln

(
4[M]

(
[M] + 4 PCa2+

PM [Ca2+]o

))1/2

2[M] (6)

SIMULATIONS
The simulations were performed on the GENESIS simulator
(Bower and Beeman, 2007). We utilized the Crank–Nicolson
implicit numerical method to solve the differential equations and
all the simulated data were saved in files and processed using the
MATLAB package (Mathworks Inc.)

Three series of simulations were performed with the granule
cell models. The first series of simulations was used to test the
model of dendritic spines implemented with its synaptic chan-
nels and calcium shell. The second series of simulations was used
to investigate the effect of synaptic activation in different loca-
tions of the dendritic tree of each simulated cell on the generation
of excitatory post synaptic potentials (EPSPs) and action poten-
tials in the soma. The third series of simulations was performed
to determine the origin of the generation of action potentials
by simultaneous measurements in the terminal location of the
dendritic trunk and in the soma during synaptic stimulation in
different positions of the dendritic tree.

RESULTS
DENDRITIC SPINE MODEL
The electrical response of the type I granule neuron to a glu-
tamatergic activation of only one spine at the tip of a terminal
dendrite to different values of [Mg2+] was simulated to test the
dendritic spine model (Figure 2A). The results obtained demon-
strate that the conductance of the channels increase gradually
with the reduction of the [Mg2+]. The somatic EPSP during
different [Mg2+] is shown in Figure 2B. The head of the spine
was voltage clamped at different levels to verify the intracellu-
lar concentration of calcium ions resulting from the NMDAR
currents (Figures 2C,D), This is a typical curve for the voltage
dependence of the NMDAR current (Figure 2D) and the volt-
age dependence of the Ca2+ flux through NMDAR channels
(Figure 2C) (Garaschuk et al., 1996).

FIGURE 2 | Dendritic spine model. (A) NMDA conductance on the
dendritic spine with varying concentrations of ion magnesium during a
synaptic activation. Note that the reference level of ion magnesium is
1.2 mM (B) Somatic EPSP to the same situation described in (A). (C)

Concentration of ion calcium in the spine shell voltage-clamped at different
potentials during synaptic activation. (D) Voltage dependence of the
NMDAR current to the same situation described in (C).

The simulation of the dendritic spine model showed that both
the NMDAR and AMPAR conductances and the influx of ion
calcium into the spine head shell is working as expected after
synaptic activation (Supplementary Figure 1). In particular, the
model simulated the crucial role of the ion magnesium block-
ing on the NMDA receptors. Since the ion calcium influx in the
spines mediates the GABA release of the reciprocal synapses of the
olfactory bulb (Chen et al., 2000), the present model can be used
to simulate the dendrodendritic interactions between the granule
neurons and mitral/tufted cells.

EFFECTS OF THE SYNAPTIC INPUTS IN DIFFERENT LOCATIONS OF THE
DENDRITIC TREE
The results of the study of the impact of the synaptic activation
in different locations of the dendritic tree in the generation of
EPSPs and action potentials for three classes of granule cells are
presented in Figure 3. The stimuli consist in the synaptic activa-
tion of NMDA and AMPA receptors in the spines located at the
tip of the terminal dendrites, in the dendritic trunk or in the tip of
the deep dendrites. We varied the number of activated spines for
each of these three locations. We stimulated spines from different
dendritic branches but located in the same horizontal plane of the
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FIGURE 3 | Synaptic inputs in different dendritic locations. (A–H) Somatic
EPSP or action potential responses of the three classes of granule neuron
models to synaptic activation in different locations of the dendritic tree. In the
left column (A,D,G) are the panels showing the responses of the type I granule
neuron model, in the middle (B,E,H) are the responses of the type II granule
neuron model, and in the right (C,F) are the responses of the type III granule
neuron model. The top row (A–C) shows the responses to stimulations of the
spines located in the terminal dendrite. The middle row (D–F) shows the
responses to stimulations of the spines located in the trunk. The bottom row
(G,H) shows the responses to stimulations of the dendrites located in the deep

dendrite. Only the type III granule neuron models have no spines in the deep
dendrites. Note that several spines were stimulated in each location, where
red, green, blue, and black traces are respectively, the responses of the granule
neuron models to stimulation of one, two, three, and four dendritic spines. The
stimulus consists of the synaptic activation of NMDA and AMPA receptors by
glutamate in the dendritic spines. The black line is absent in some panels
because the stimulation of up to three spines in the dendritic trunk was
sufficient to generate an action potential. In addition, type II granule cells have
only three deep dendrites and therefore only three spines were stimulated in
the deep dendrites of these cells.

terminal and deep dendrites. In the trunk, we increased the num-
ber of activated spines from the nearest spine to the soma to the
next.

The responses of the three classes of granule cells to the stimu-
lation of the spines located in the terminal dendrites were very
similar (Figures 3A–C). The stimulation of only one spine in
this location produced a slight depolarization of the postsynap-
tic membrane (red trace), however, the stimulation of more than
one spine induced action potentials in all three cells (green, blue
and black traces). The higher the number of activated spines, the
lower was the latency for the occurrence of the spikes.

The electrical responses of the three classes of granule cells
to stimulation of the spines on the dendritic trunk were again
very similar (Figures 3D–F). The stimulation of only one or two
spines produced a small depolarization of the membrane poten-
tial (red and green traces), however, the stimulation of three
spines induced action potentials in all three cells (blue traces).
The amplitude of the EPSP increased with the number of acti-
vated spines (read and green traces). Although the type III granule
cell has no spines on proximal dendritic trunk, the stimulation
of the spines located in the distal dendritic trunk produced sim-
ilar responses to the ones obtained by stimulating the proximal
spines of the type I and II granule cells (Figures 3D–F, blue
traces).

The types I and II granule cells show equivalent electrical
responses to stimulation of the spines in the deep dendrites
(Figures 3G,H). Since the type III granule cell model has no
spines in the deep dendrites, it was not stimulated. The stimula-
tion of one to three spines in this location produced only an EPSP
in the types I and II granule cells. The EPSP response increases
with the number of activated spines (red, green, and blue traces).
The stimulation of four spines in the type I granule cell induced
an action potential (black trace). Note that the type I granule cell
had four branches of deep dendrites and the type II granule cell
had only three branches of deep dendrites (Figure 1A).

The study of the effect of the synaptic activation in different
positions of the dendritic arbor of the three classes of granule
cells did not find strong differences between the cells. However,
it showed significant differences in the response of each type of
granule cell to the activation of the spines in different locations
of the dendritic tree. In particular, the minimum number of acti-
vated spines required to generate an action potential in these cells
was at least two spines in the terminal dendrite, three in the trunk
and four in the deep dendrites.

DETERMINATION OF THE ORIGIN OF THE ACTION POTENTIALS
We performed simulations to determine whether the action
potentials initiate first in the soma or in the active dendrites in
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response to synaptic inputs (Figure 4). The stimuli consist of the
synaptic activation of NMDA and AMPA receptors on all the
spines located in the tip of the terminal dendrites, on the three
spines located in the trunk or on all spines located in the tip of
the deep dendrites. In each of these three locations the number
of activated spines followed the number of dendritic branches
of each type of granule cell. The action potentials were recorded
simultaneously in soma and in the terminal region of the trunk
to determine whether it was generated first in the soma or in the
terminal dendrites.

Similar responses were obtained to the stimulation of all the
spines in the tip of the terminal dendrites for all classes of granule
cells (Figures 4A–C) (Supplementary Figures 2–4). EPSP begins
first in the terminal dendrite that reaches the threshold and gen-
erates an action potential in the trunk (blue traces) followed by
an action potential in the soma (red traces). Equivalent responses
occurred to the stimulation of the spines located in the dendritic
trunk of all three granule cell types (Figures 4D–F). The action
potential was generated first in the trunk (blue trace) followed by
an action potential in the soma (red trace).

The stimulation of the spines on the deep dendrites of the
type I granule cell (Figure 4G) generated an EPSP that reached
a higher value first in the soma (red trace), but the trunk reached
the threshold earlier and the action potential was generated first
in the dendrite (blue trace) followed by an action potential in the
soma (red trace). The type II granule cell did not generate action
potentials (Figure 4H), and the EPSP reached a higher value first

in the soma (red trace) followed by a higher amplitude in the den-
drite (blue trace). Because the type III granule cell model has no
spines in the deep dendrites, it was not stimulated in this region.

The secondary dendrites of the mitral and tufted cells are
tangentially oriented in the external plexiform layer, where the
granule cell dendrites are located. The radial orientation of the
granule cell processes imply that a given mitral/tufted cell may
make synapses only to a small number of spines on any given
granule cell (Woolf et al., 1991), depending of the location of the
contact of the mitral/tufted secondary dendrites on the terminal
dendrites of the granule cells. All spines aligned along a transver-
sal line passing through the terminal dendrites of the granule
cells were activated to simulate this tangential orientation of the
mitral/tufted secondary dendrites on the terminal dendrites of the
type I granule cell. Thus, one line crossed the tip of the terminal
dendrites, other line crossed the middle of the terminal dendrites,
and another the beginning of the terminal dendrites. Because of
the dendritic branching, the tip has four branches, the middle has
three branches and the beginning has two branches. Therefore,
the dendritic tip had four stimulated spines, the middle had three
and the beginning had two stimulated spines. The responses of
the type I granule cell to these patterns of stimulation are shown
in Figure 5.

The action potentials occurred only when at least three spines
were activated (Figures 5A,C). Note that both the EPSPs and
action potentials were generated first in the trunk (blue trace) and
after in the soma (red trace). The latency of the action potential

FIGURE 4 | Origin of the action potentials. (A–H) Generation of action
potentials in the dendritic trunk (blue line) and soma (red line) of the three
classes of granule neuron models in response to synaptic activation in
different locations of the dendritic tree. The left column (A,D,G) shows the
responses of the type I granule neuron model, the middle column (B,E,H)

shows the responses of the type II granule neuron model, and the right
column shows the responses of the type III granule neuron model (C,F). The

top row shows the responses to stimulations of the spines located in the
terminal dendrite (A–C). The middle row (D–F) shows the responses to
stimulations of the spines located in the dendritic trunk. The bottom row
shows the responses to stimulations of the spines located in the deep
dendrite. Note that the type III granule neuron model has no spines in the
dendrite. The stimulus consists in the synaptic activation of NMDA and
AMPA receptors by glutamate in the dendritic spines.
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FIGURE 5 | Electrical responses in the active dendrite and soma. (A–F)

EPSP and action potential generation in the dendritic trunk (blue line) and
soma (red line) of the type I granule neuron model in response to
synaptic activation of the terminal dendrite. The first row shows the
responses of the type I granule neuron model to stimulation of four
spines at the tip of the terminal dendrite (A,B). The second row shows
the responses of the same cell model to stimulation of three spines
(C,D), and the third row shows the responses to stimulation of two

spines at the tip of the terminal dendrite (E,F). Note that the left column
(A,C,E) shows the simulation results for the regular resting membrane
potential of −65 mV, and the right column (B,D,F) shows the results for
the same stimulus pattern, but during the injection of a hyperpolarizing
current of −0.1 nA in the soma leading to a resting membrane potential
of −80 mV to avoid the generation of action potentials. The stimulus
consists in the synaptic activation of NMDA and AMPA receptors by
glutamate in the dendritic spines.

in response to the activation of four spines (Figure 5A) was lower
than the latency in response to the activation of three spines
(Figure 5C). The activation of two spines (Figure 5E) generated
an EPSP stronger in the dendrite (blue trace) in comparison to
the soma (red trace).

The same conditions described above were simulated with
a hyperpolarizing current injected in soma to avoid the gener-
ation of action potentials (Figures 5B,D,F). These simulations
confirmed that always the EPSPs had a higher amplitude in the
dendrite (blue trace) and lower amplitudes in the soma (red
trace). Also, the higher is the number of acivated spines the higher
is the amplitude of the depolarization (Figures 5B,D,F).

DISCUSSION
This computational study characterized the synaptic inputs in the
dendritic spines of three classes of granule cells, and verified the
impact of the synaptic activation in different regions of these cells
in the generation of EPSPs and action potentials. The type I gran-
ule cell model was used to study the impact of the mitral/tufted
contacts in three different locations of the terminal dendrites of
this cell.

The model results predicted that different numbers of spines
should be activated in each different dendritic region to induce
action potentials in the granule cells. Woolf and colleagues sug-
gested that mitral/tufted cells can connect only to few spines in the
granule cell terminal dendrites with an average number estimated
near one (Woolf et al., 1991). If this estimate is correct, the present
results predict that probably more than one mitral/tufted cell
should connect simultaneously to the same granule cell to induce
an action potential in this cell. Moreover, because the recurrent
axon connections of the mitral/tufted cells in the granule cell
occur mainly in the trunk and deep dendrites, the model results
predict that the minimum number of recurrent synapses to pro-
duce an action should be of at least three in the trunk and four in
the deep dendrites. Although the deep dendrites are shorter than
the dendritic trunk, deep dendrites are passive compartments,
and more spines are required to elicit an action potential. This
higher threshold to fire action potentials in response to synap-
tic inputs in the deep dendrites of the granule cells suggests that
they are less sensitive to modulatory inputs of the CFs coming
from different brain regions than to synaptic inputs coming from
lateral dendrites of the mitral/tufted cells.
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All the spikes occurred first in the terminal dendrites rather
than in the soma of the three classes of granule cells, even when
the stimulation was delivered in the deep dendrites. If this predic-
tion is correct, the recurrent mitral/tufted cell axon connections
in the granule cells should induce action potentials first in the ter-
minal dendrites, which could produce more effective reciprocal
inhibition in the mitral/tufted cells.

The study of the activation of the spines in different loca-
tions of the terminal dendrites suggested that as far from the
soma are the mitral/tufted secondary dendrites connections in
the granule cell terminal dendrites as stronger are the induced
depolarizations in these cells. It probably should occur because
the secondary dendrites of the mitral and tufted cells are tan-
gentially oriented in the external plexiform layer, which imply
that depending of the location of the contacts of the mitral/tufted
secondary dendrites on the granule terminal dendritic branches,
different numbers of spines will be activated. The tip of the
terminal dendrites has four branches, the middle has three
branches, and the beginning has two branches, which imply
that mitral/tufted secondary dendrites passing through these
regions can connect to four spines, three spines or two spines,
respectively.

The small differences in the responses of the three classes of
granule neurons could be justified because the type II and type
III granule cell models were adaptations of the type I granule cell
model (Bhalla and Bower, 1993). The differential distributions
of the spines on the dendrites of the three model cells did not
induce strong differences in the electrical responses of these cells,
and the three model neurons have a very strong tendency to pro-
duce spikes first in the active terminal dendrites rather than in the
soma.

There are several canonic computational studies and exper-
imental works in literature showing the origin of the gener-
ated action potentials in the different regions of the mitral
cells (Bischofberger and Jonas, 1997; Chen et al., 1997, 2002;
Shen et al., 1999; O’Connor et al., 2012; Migliore et al., 2014).
These computational models and experimental evidence have
shown that different intensities of the current or synaptic acti-
vation of the dendritic tufts of the mitral cells can shift the
origin of the action potentials from the terminal dendrites to
the soma. However, computational studies utilizing detailed com-
partmental models of granule cells with spines were performed
only in passive models until now (Woolf et al., 1991). The
present work is the first to consider the responses of compart-
mental granule cell models with active properties to synaptic
activation in different dendritic locations. Although the mod-
els did not present shifts in the origin of the generated action
potentials, they predicted that different quantities of spines
should be activated in each region of the dendritic tree to
induce action potential in the cells, which have important com-
putational implications in the context of the olfactory bulb
circuitry.

Electrophysiological evidence demonstrate that mitral and
middle tufted cells differ in the decoding manner of odors in
the rat olfactory bulb (Nagayama et al., 2004) and have distinct
patterns of axonal projection to the olfactory cortex (Haberly
and Price, 1977; Scott et al., 1980; Schoenfeld and Macrides,

1984; Nagayama et al., 2010). Because different types of gran-
ule cells connect with distinct classes of mitral and tufted cells
(Mori et al., 1983), the diverse odor decoding strategies could
be at least in part a property of the different types of gran-
ule cells that are renewed constantly in the olfactory bulb by
the process of adult neurogenesis (Gheusi et al., 2013; Sakamoto
et al., 2014). However, because of the similar responses of
the three types of granule cell models to several patterns of
synaptic activation, the present study favors the hypothesis that
the different coding strategies could be both intrinsic prop-
erties of the mitral and tufted cells or emergent properties
of the olfactory bulb circuitry. More experimental studies and
computational models should be developed to test all these
possibilities.

Furthermore, recent evidence have shown the expression of
transient receptor potential (TRP) channels in mitral and gran-
ule cells of the olfactory bulb (Dong et al., 2012; Stroh et al.,
2012). The activation of cationic TRP channels in the granule
cells is dependent of NMDARs and affects the calcium dynam-
ics required for release of neurotransmitters from the granule cell
spines (Egger, 2008; Stroh et al., 2012). In this way, TRP channels
that are absent in the present model may play an important role
in the reciprocal synapses between mitral and granule cell with
active dendrites, and deserve to be investigated in future modeling
studies.
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Feedforward inhibition (FFI) enables pyramidal cells in area CA1 of the hippocampus
(CA1PCs) to remain easily excitable while faithfully representing a broad range of
excitatory inputs without quickly saturating. Despite the cortical ubiquity of FFI,
its specific function is not completely understood. FFI in CA1PCs is mediated by
two physiologically and morphologically distinct GABAergic interneurons: fast-spiking,
perisomatic-targeting basket cells and regular-spiking, dendritic-targeting bistratified
cells. These two FFI pathways might create layer-specific computational sub-domains
within the same CA1PC, but teasing apart their specific contributions remains
experimentally challenging. We implemented a biophysically realistic model of CA1PCs
using 40 digitally reconstructed morphologies and constraining synaptic numbers,
locations, amplitude, and kinetics with available experimental data. First, we validated
the model by reproducing the known combined basket and bistratified FFI of CA1PCs
at the population level. We then analyzed how the two interneuron types independently
affected the CA1PC spike probability and timing as a function of inhibitory strength.
Separate FFI by basket and bistratified respectively modulated CA1PC threshold and
gain. Concomitant FFI by both interneuron types synergistically extended the dynamic
range of CA1PCs by buffering their spiking response to excitatory stimulation. These
results suggest testable hypotheses on the precise effects of GABAergic diversity on
cortical computation.

Keywords: feedforward inhibiton, bistratified, basket, interneurons, CA1 pyramidal cells, neuronal connectivity,
hippocampus, input-output transformation

INTRODUCTION

CA1 Pyramidal Cells (CA1PCs) constitute the output of the hippocampal tri-synaptic circuit,
relaying the information processed by area CA3 onto the subiculum and the deep layers of
the entorhinal cortex. CA1PCs activity encodes spatial (O’Keefe and Dostrovsky, 1971) and
temporal (MacDonald et al., 2011) features of episodic memories. This representation is mediated
by the integration of excitatory and inhibitory inputs from ∼30,000 glutamatergic and ∼1700
GABAergic synapses, respectively (Megías et al., 2001). CA1PCs receive widely divergent and

Abbreviations: FFI, Feedforward inhibition; CA1PCs, Pyramidal cells in area CA1 of the hippocampus; EPSP,
Excitatory post-synaptic potential; IPSP, Inhibitory post-synaptic potential; sp, stratum pyramidale; sl-m, stratum
lacunosum-moleculare; so, stratum oriens; sr, stratum radiatum.
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convergent stimulations from the ipsilateral and contralateral
Schaffer collaterals. Without inhibitory control, even minimal
alterations in the number of activated pre-synaptic neurons
could result in all-or-none recruitment of the whole CA1PC
population (Shadlen and Newsome, 1998). To counteract the
substantial activity fluctuations of CA3 pyramidal cells (Wilson
and McNaughton, 1993; Csicsvari et al., 2000), CA1PCs use
feedforward inhibition (FFI) to expand the dynamic range
of stimulus strengths over which they faithfully respond
(Pouille et al., 2009). FFI is a ubiquitous connectivity motif
in hippocampus and neocortex in which an axonal pathway
(e.g., Schaffer collateral fromCA3) excites both the principal cells
in an area (CA1PCs) and a group of GABAergic interneurons
that contact the same target (Buzsáki, 1984). FFI also allows
CA1PC dendrites to sum incoming activity over broader
time windows while enforcing precise coincidence detection
in the soma (Pouille and Scanziani, 2001). This mechanism
increases the temporal fidelity of the circuit by reducing spike
onset jitter.

Synaptic contacts in CA1PCs are organized in orderly spatial
sub-domains along complex dendritic trees enriched with diverse
sets of active properties. In particular, two physiologically,
biochemically, and morphologically distinct interneuron classes
can inhibit CA1PCs in a feedforward manner (Buhl et al., 1996;
Halasy et al., 1996; Klausberger, 2009; Tricoire et al., 2011):
basket cells are fast-spiking, express parvalbumin, and target
CA1PCs perisomatically in stratum pyramidale; bistratified cells
are regular-spiking, express 5HT3R, NPY, SOM, and Coup-TFII
(all of which are absent in basket cells), and target CA1PCs on
the basal dendrites in stratum oriens and on the apical dendrites
in stratum radiatum1 (Wheeler et al., 2015). Therefore, these
two FFI pathways can in principle form distinct layer-specific
computational sub-domains within the same CA1PC. Basket
and bistratified cells in the CA1 area are activated by the same
(CA3 Schaffer collateral) axons in a feedforward manner, but the
EPSP dynamics and kinetics in these two cell types are different
(Buhl et al., 1996).Moreover, basket and bistratified interneurons
exhibit clearly distinct intrinsic and computational properties.
For instance, compared to basket cells, bistratified interneurons
have a more hyperpolarized resting membrane potential
(−64.5 vs. −69.2 mV) and a nearly double input resistance
(31.3 vs. 60.2 MΩ).

Due to their differences in intrinsic excitability and network
connectivity, basket and bistratified cells might differentially
affect CA1PCs activity. Moreover, their combined action might
produce non-trivial synergistic effects on the computational
properties of CA1PCs. Despite ongoing efforts to quantitatively
characterize the CA1 circuit (Bezaire and Soltesz, 2013), the
distinct functional contributions of different interneuron types
on CA1PCs remain technically challenging to tease apart in the
wet lab. The present study investigates the specific effects of
basket and bistratified FFI on CA1PC using biophysically and
morphologically detailed computational simulations constrained
by and validated against experimental data. Specifically, we
analyzed the CA1PC population activity as well as the single

1Hippocampome.Org

neuron spike probability and onset in four conditions: FFI by
both basket and bistratified cells; FFI by basket cells alone; FFI
by bistratified cells alone; and pure excitation. Furthermore, we
investigated how modulating the synaptic strength of the two
interneuron populations may regulate CA1PC firing.

MATERIALS AND METHODS

A biophysically realistic model of FFI in CA1PCs (Figure 1A)
was designed based on previous work (Li and Ascoli, 2006;
Ferrante et al., 2009). Model and simulations were implemented
in NEURON (Hines and Carnevale, 1997) v7.3 using variable
time step on a 32-bit Pentium quad-core Dell precision T3500
running Windows 7. The model is publicly available under the
ModelDB section of SenseLab2.

Neuronal Morphologies and Membrane
Properties
The model included 40 digitally reconstructed CA1PC
morphologies downloaded from the Korte (Michaelsen et al.,
2010), Claiborne (Carnevale et al., 1997), Amaral (Ishizuka et al.,
1995), Turner (Pyapali et al., 1998), Larkman (Bannister and
Larkman, 1995), Gulyás (Megías et al., 2001), and Spruston
(Golding et al., 2005) archives of NeuroMorpho.Org (Ascoli
et al., 2007). CVAPP (Cannon et al., 1998) was used to
differentially tag oblique dendrites (in stratum radiatum)
from the main apical trunk and distal branches (in stratum
lacunosum-moleculare). Basal dendrites (in stratum oriens)
were already pre-tagged in NeuroMorpho.Org.

Active (INa, IKdr, IKA, Ih) and passive properties
(τm = 28 ms, Rm = 28 kΩ · cm2, Ra = 50 Ω · cm)
were the same for each neuronal morphology and have
been previously described and experimentally validated
for CA1PCs (Migliore et al., 2004, 2005; Ferrante et al.,
2013). Briefly, INa and IKdr were uniformly distributed
throughout the neuronal membrane (gNa = 0.25 nS/µm2;
gKdr = 0.1 nS/µm2), while IKA and Ih increased linearly
with the distance from the soma as in previously reported
experiments (Hoffman et al., 1997; Magee, 1998), namely
gKA = 0.3 · (1 + dist/100) and gh = 0.0005 · (1 + 3·dist/100).

As it can be appreciated from publicly available
morphological tracings in NeuroMorpho.Org (Ascoli
et al., 2007), the axons of the bistratified interneurons
(NMO_ID: 02343, 02344, 02346, 02349 from Cossart
et al., 2006) tend to selectively target stratum oriens
and stratum radiatum, avoiding stratum pyramidale.
In contrast, axons from basket cells (NMO_ID: 07323,
07326, 07338, 07339 from Glickfeld and Scanziani, 2006)
tend to preferentially target the perisomatic region of
CA1PCs (i.e., stratum pyramidale). This is consistent with
seminal summaries clearly describing the morphologies
and synaptic connectivity from bistratified (Somogyi and
Klausberger, 2005) and basket (Buhl et al., 1994) cells to
CA1PCs.

2senselab.med.yale.edu
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FIGURE 1 | Model design and experimental validation. (A) Left: Schematic of the feedforward inhibition (FFI) model in a CA1 pyramidal cell (CA1PC) illustrated
with one of the 40 3D morphologies used. Basket cells synapse on the CA1PC perisomatic region (green) while bistratified cells synapse on the apical and basal
dendrites (purple). Right: Temporal activation of the two interneuron populations and number of excitatory and inhibitory synapses with their respective spatial
distributions. Stratum lacunosum-moleculare (sl-m), stratum radiatum (sr), stratum pyramidale (sp), and stratum oriens (so). (B) Left: Synaptic current increase
(synaptic scaling) along the proximal-to-distal axis in the 40 neuronal morphologies. Solid black line shows the average synaptic strength for all synapses, with
standard deviation in gray. Black dotted line is the exponential fit (equation on the chart). Right: Synaptic normalization at the soma compared to available

(Continued)
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FIGURE 1 | Continued
experimental measurements (in red). (C) The model (dotted lines) replicates
the experimental (solid traces) rise (τ1), and decay (τ2) time constants for
mEPSCs (top panel) and mIPSCs (bottom panel) at different distances from
the soma (color coded). (D) Fitting used in the model for the activation curves
of the two interneuron populations (data from Pouille et al., 2009).
Experimental activation curves for CA1PCs with (gray) and without (black)
inhibition are provided for reference (respectively “control” and “gabazine”
conditions from Pouille et al., 2009).

Synaptic Properties
A realistic number (Megías et al., 2001) of excitatory (n = 28,876)
and inhibitory (n = 1379) synapses were randomly redistributed
in each simulation within spatial boundaries (Figure 1) defined
to emulate available experimental data (Megías et al., 2001). The
model assumes that all excitatory synapses from CA3 Schaffer
collaterals are located in strata oriens and radiatum, while
inhibitory synapses from basket and bistratified interneurons
are spatially non-overlapping: basket cells synapse on the soma,
proximal basal dendrites (<50µm from the soma), and proximal
apical dendrites (<100 µm from the soma). Bistratified cells
target the dendrites more distally on both the basal (>50 µm
from the soma) and apical arbors (>100 µm and up to 550 µm
from the soma). The numbers and dendritic distributions of
excitatory and inhibitory synapses allocated in each simulation
are reported in Figure 1A.

In agreement with experimental results (Magee and Cook,
2000), the weight of each excitatory synapse was adjusted so as to
yield an average somatic depolarization of 0.2 mV in all CA1PCs
(Figure 1B). To achieve this, we placed an excitatory synapse
in each compartment of the main trunk of every neuron (up to
320 µm from the soma, as in the experiments). The synaptic
weights varied with the distance from the soma according to the
same formula for all neurons: Syn weight = (A∗dist2) + B.We then
adjusted the parameters (A and B) so that the average somatic
depolarization was 0.2 mV and did not depend on the synaptic
distance from the soma (Li and Ascoli, 2006). Experimental
data suggest that each CA1PC receives on average 11 synaptic
contacts from both basket and bistratified cells (Bezaire and
Soltesz, 2013) and their compound effect ranges between 5 and
25 pA (Andrásfalvy and Mody, 2006). The conductance of all
inhibitory synapses was accordingly set to 0.6 pA.

The kinetics and reversal potentials for both excitatory and
inhibitory synaptic currents (Figure 1C) were modeled by fitting
double-exponential functions (Exp2Syn) to experimental voltage
data (Andrásfalvy and Mody, 2006). For the excitatory synapses,
rise and decay times were 0.5 and 5.5 ms, respectively, and
the reversal potential was 0 mV. Local mIPSCs recordings
(Andrásfalvy and Mody, 2006) reveal no variation of kinetics
with distance from the soma. Thus, the fitted synaptic properties
were identical for basket and bistratified cells: rise time 0.73 ms,
decay 6.5 ms, and reversal potential -80 mV.

Synapses were activated asynchronously and each synapse
was only activated once per simulation. The activation time for
excitatory synapses was sampled from a Gaussian distribution
with mean equal 5 ms and standard deviation equal to 2.34 ms.
The model assumes that, due to the local nature of basket

and bistratified inhibition, the spike transmission through the
short axons adds a negligible temporal delay to synaptic onset
relative the somatic firing of the presynaptic interneurons.
Accordingly, in agreement with experimental evidence (Pouille
et al., 2009), basket cell synapses were activated on average
2.5 ms after stimulation (standard deviation 0.92 ms) and
bistratified synapses 4.2 ms after excitation (standard deviation
1.32 ms).

Stimulation Protocol
To simulate varying stimulus strength, we increased the number
of activated excitatory synapses one at the time, starting from 1.
The outcome of every simulation for a given CA1PC was either
a spike or not. For each given number of synapses, we run
50 simulations with every CA1PC. A CA1PC is considered to
be ‘‘recruited’’ if it spikes in at least half of the simulations
(≥25/50). In order to most meaningfully compare simulation
with experimental data, we define a unitary input strength
(following Pouille et al., 2009) as the number of activated
excitatory synapses sufficient to recruit 95% of the CA1PCs
(38 out of 40) in the presence of basket and bistratified FFI
(‘‘control’’ condition in Pouille et al., 2009). The activity of the
two populations of interneurons in response to stimulation (that
is, the proportion of activated inhibitory synapses) was simulated
by using mathematical fitting (Figure 1D) that closely replicated
(R2 > 0.94) the experimental data (Pouille et al., 2009). For each
neuron, we stopped increasing the stimulus strength and ended
the simulations when a spike was observed in all 50 stimulations
(100% spike probability) for the last three numbers of activated
synapses.

RESULTS

Model Validation and CA1PC Population
Despite identical distributions of active and passive properties,
the natural diversity of CA1PC morphologies results in clear
differences in excitability as evidenced by the input/output curves
of two representative neurons (Figure 2A), and reflecting a
similar variability in the experimental data (Pouille et al., 2009).
The number of synapses necessary to recruit a CA1PC (that is, to
make it spike in at least half of 50 simulations) in the absence
of inhibition varied from less than 20 to more than 100. At
the population level, the activation curves of our simulations
closely matched experimental data both with inhibition (control
condition in Pouille et al., 2009) and without (GABA blocked
or ‘‘gabazine’’ conditions in Pouille et al., 2009), reproducing
the experimentally observed extension of the CA1PC dynamic
range through FFI (Figure 2B). The Schaffer collateral input
strength that recruited 95% of CA1PC with no inhibition was
0.27 relative to the same with ‘‘control’’ FFI, well matching the
experimental value of 0.26 in the presence of gabazine (Pouille
et al., 2009).

What are the distinct contributions of basket and bistratified
cells to the CA1PC dynamic range extension? When only
activating bistratified synapses while selectively blocking basket
synapses in the simulation, FFI mostly affects the recruitment of
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FIGURE 2 | CA1PC input/output curves: distinct FFI by basket and
bistratified interneurons. (A) CA1PC input/output curves for two
representative neurons in the absence of inhibition. Each dot represents the
spiking probability over 50 simulations each with random redistribution of the
synaptic spatial location. The dotted lines indicate the number of synapses
necessary to “recruit” the cell (i.e., passing the 50% spiking probability).
(B) Activation curve of the CA1PC population (n = 40 cells). Simulations (solid
lines with error bars) closely match experiments (dotted lines, from Pouille
et al., 2009) for the control (black) and gabazine conditions (gray). Red and
blue dots represent the cells shown in (A). (C) Distinct contribution of basket
(solid green line) and bistratified (solid purple line) interneurons to the CA1PC
activation curve, and predicted effect if all the existent inhibitory synapses
belonged to basket (dotted green line) or bistratified (dotted purple line) cells.

relatively less excitable CA1PCs, i.e., those requiring activation
of more excitatory synapses to fire (Figure 2C). In this context
we define as ‘‘easily excitable’’ any CA1PC recruited by 30
excitatory synapses or less in absence of any inhibitory inputs.

Correspondingly, CA1PCs requiring more than 30 synapses to
be recruited are considered ‘‘less excitable’’. The activation curve
in the Gabazine condition (Figure 2C) suggests a continuum
of CA1PCs excitability without sharp separation between two
groups. In general, less excitable cells tended to possess lower
input resistance, but other factors may also play a role, such as
the total number of branches or the specific branching patterns
in each neuronal morphology.

In contrast, FFI by basket synapses without bistratified
synapses affected the whole CA1PC population, more closely
resembling the effect of the control condition (i.e., combined
basket and bistratified). Hence, taken as individual neuronal
populations, basket cells play a larger role in regulating the
CA1PC dynamic range by FFI compared to bistratified cells.
What features of basket cells enable them to regulate the CA1PC
dynamic range more efficiently? Aside from their spike timing
and activation curves, basket and bistratified cells also differ
in the number and spatial distribution of their synapses onto
CA1PCs. Although in our model the synaptic domains of basket
and bistratified synapses are completely segregated on CA1
PC somato-dendritic domains, some degree of spatial overlap
between these interneurons may indeed exist in real biological
systems. To ascertain the effects of partial overlaps, we ran
simulations corresponding to the extreme case in which all
synapses (disregarding their spatial location on the dendritic
tree) were set with basket-like (or bistratified-like) activation
(Figure 2C). Specifically, to differentiate the effects of spike
timing and of the activation curves in basket and bistratified
cells from the number and spatial location of their synapses, we
left the number and spatial distribution of all synapses intact,
but we adopted for all synapses the spike timing and activation
curve of one of the two interneuron types (Figure 2C dotted
lines). In these conditions, the ability of bistratified cells to extend
the dynamic range of CA1PCs increased dramatically, becoming
more pronounced than that of basket cells or of the control
condition (basket and bistratified combined). This result suggests
that the differential FFI regulation of CA1PC activity by distinct
GABAergic interneurons results from a combination of their
specific biophysical and morphological properties. However,
when the microcircuit details are computationally equalized, the
spike timing and activation characteristics of bistratified cells are
more conducive to extending the CA1PC dynamic range than
those of basket cells.

These results shed light on the possible properties of the
basket and bistratified interneurons responsible for the changes
in the CA1pc I/O curve. Specifically, the activation curves
of the two interneurons play a major role (empty blue and
green symbols in Figure 2C). At the same time, the spatial
distribution of the synapses also seems to significantly contribute
to this effect: when the synapses of bistratified cells are moved
perisomatically their effect changes from rather small (purple
symbols) to highly prominent.

Single CA1PCs Input/Output Curves
Next we examined the effects of different levels of FFI on
individual CA1PCs. Although pharmacological treatments allow
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FIGURE 3 | Modulating the synaptic strength of basket and bistratified interneurons onto relatively less or more excitable CA1PCs. (A) Increasing the
strength of FFI by bistratified interneurons on a single CA1PC recruited by a high number of excitatory synapses progressively reduces the response gain. When
compared to the no inhibition condition (in green), the computational operation performed by bistratified cells can be reduced to a division of the CA1PC I/O curve.
Inset shows the same effect when basket cell synapses are activated. (B) Modulating the synaptic strength of basket interneurons on the same CA1PC increases the
response threshold. When compared to the no inhibition condition (in green), the computational operation performed by basket cells can be reduced to a subtraction
of the CA1PC I/O curve. Inset shows the same effect when bistratified cell synapses are activated. (C) Simultaneously increasing the strength of basket and
bistratified FFI changes both the gain and threshold of CA1PC response to stimulation. (D–F) Same as (A–C) but on a CA1PC recruited by a low number of
excitatory synapses. Note the emergence of a buffering effect with baseline inhibitory strength of combined basket and bistratified FFI (orange curve of F).

to increase or decrease the overall post-synaptic consequences of
GABAergic transmission (Ferrante et al., 2008), computational
simulations enable the selective manipulation of individual
interneuron types. Thus, we modeled the progressive increase
(150% and 200%) and decrease (50% and 0%) of FFI by
bistratified cells alone, basket cell alone, and basket and
bistratified combined (Figure 3), illustrating the results on
CA1PC input/output curves using the same neurons singled out
in Figure 2A.

Modulating the synaptic strength of bistratified interneurons
alone onto a relatively less excitable CA1PC (one requiring
more excitatory synapses to spike) changed the slope of
its input/output curve (Figure 3A). This corresponds to a
reduction of response gain with increasing FFI. In other
words, bistratified cells enable CA1PCs to perform a divisive
operation on their I/O curve. In contrast, altering the

synaptic strength of basket cells regulated the intercept of
the CA1PC input/output. This corresponds to a rise of
the response threshold with increasing FFI (Figure 3B).
Functionally, this translates in basket cells enabling CA1PCs
to perform a subtractive operation on their I/O relationship.
These complementary effects of bistratified and basket cells
on CA1PCs remained present when the other interneuron
class was also activated at its baseline strength (insets in
Figures 3A,B). The two effects could be combined by varying
at the same time the synaptic strength of both basket and
bistratified cells (Figure 3C), controlling simultaneously slope
and intercept.

When instead considering a relatively more excitable
CA1PC, bistratified interneurons alone displayed no effect
whatsoever on the input/output curve (Figure 3D). This
result is explained by the stronger input required to activate
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bistratified cells (Figure 1D). The modulation of basket cell
synaptic strength onto easily excitable CA1PCs led to the
emergence of a plateau in the input/output curve, corresponding
to a signal processing buffer (Ferrante et al., 2009). When
basket and bistratified cells acted together, their combined
effect synergistically enhanced the buffering effect, occasionally
producing a ‘‘reversal’’ input/output zone (Figure 3F), even
though bistratified interneurons alone did not alter CA1PC
activity (Figure 3D).

FFI Buffering of the CA1PC Input-Output
Relation
To quantify the distinct contributions of different FFI pathways
to the input/output buffering of CA1PCs, we measured the
buffering range (BR) of activated excitatory synapses within
which the response remains constant or decreases (Ferrante
et al., 2009). This is achieved by fitting the computed spiking
probability with three lines (the second of which of zero
slope) by minimizing the squared distance from all data points
in the 50 simulations (Figure 4A; simulation noise is due
to the spatial redistribution of activated synapses along the
dendritic tree). In the gabazine (Figure 4B; no inhibition)
condition most (56%) CA1PCs do not exhibit input/output
buffering, and the few exceptions (due to synaptic redistribution
noise) are confined to limited buffering ranges (<8 synapses).
Basket and bistratified FFI, each taken in isolation, produced
modest to moderate buffering effect, with e.g., ∼10–20% of
CA1PC buffered for more than eight activated excitatory
synapses. In contrast, the combined FFI by both basket and
bistratified interneurons produced substantial buffering, with
the vast majority of CA1PCs showing a buffering range
of 10–100 activated excitatory synapses. This result suggests
that FFI buffering of CA1PCs synergistically produces the
greatest computational impact through the interaction of diverse
interneuron populations.

Distinct and Synergistic Effects of FFI on
CA1PC Spike Timing
How does the modulation of FFI in basket and bistratified
interneurons, alone or combined, affect the spike onset of
CA1PCs? In the absence of inhibition (gabazine condition),
activation of larger numbers of excitatory synapses generally
reduces the CA1PC spike onset. Progressively increasing the
synaptic strength of bistratified interneurons alone (Figure 5A),
while requiring a correspondingly growing number of activated
excitatory synapses to elicit a spike, also reduced the spread
in the spike onset of CA1PCs across the entire stimulation
range. Specifically, bistratified FFI nearly halved the spike onset
differential from 13 ms with no inhibition (26.3 ms at 76
EPSPs minus 13.3 ms at 109 EPSPs), to 7.1 ms at 200%
inhibitory strength (18.7 ms at 116 EPSPs minus 11.6 ms
at 182 EPSPs). Modulating the synaptic strength of basket
cells produced a slightly greater reduction of the spike onset
differential relative to bistratified interneurons, down to 5.2 ms
(17.2 ms at 156 EPSPs minus 12 ms at 226 EPSPs), but also
created a sharper separation in the number of activated excitatory

FIGURE 4 | Buffering effect of FFI on the CA1PC input/output
relationship. (A) Computation of the buffering range (BR) following the
definition of Ferrante et al., 2009. (B) Frequency of BR values over the 40
CA1PC morphologies with no inhibition, basket alone, bistratified alone, and
combined basket and bistratified FFI (all at baseline range). The synergistic FFI
effect of basket and bistratified interneurons generates BR values between 15
and 30 synapses in approximately half of the neurons.

synapses required to spike (Figure 5B). The combination of
basket and bistratified interneurons reduced the CA1PC spike
onset differential similarly to the basket cells alone (5.7 ms),
but synergistically produced the largest increase in the number
of activated excitatory synapses necessary to fire a spike
(Figure 5C). Overall, the effect of FFI on CA1PC firing is
to reduce sensitivity (increase the number of required inputs)
while reducing temporal delay and jitter. As a consequence,
potentiating FFI synapses may allow CA1PCs to respond to
heightened excitation with improved temporal fidelity.

DISCUSSION

Seminal experiments have demonstrated a fundamental role
of FFI on CA1PCs in enforcing temporal fidelity (Pouille
and Scanziani, 2001) and in expanding the dynamic range,
in terms of both spiking probability of single neurons and
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FIGURE 5 | Effect of FFI on CA1PC spike onset. (A) Modulation of CA1PC spike onset by increasing synaptic strength of bistratified interneurons alone. (B) Same
as (A), but altering the synaptic strength of basket interneurons alone. (C) Same as (A,B), except simultaneously modifying the synaptic strengths of both basket
and bistratified interneurons. The gabazine data (green dots and line: no inhibition) are the same for all conditions and are repeated across panels for reference.

fraction of recruited cells at the population level (Pouille
et al., 2009). However, it has so far remained challenging to
distinguish experimentally the specific contributions of distinct
FFI pathways across the diversity of GABAergic interneurons. In
addition to providing insights on possible circuit mechanisms,
quantifying the separate effect of multiple FFI pathways is
important in light of the state-dependent rhythmic change
in CA1PCs excitability due to the temporal redistribution of
inhibition over perisomatic and dendritic domains (Somogyi
et al., 2013).

Furthermore, previous experimental studies only compared
CA1PC activity with and without inhibition, and could
not investigate the consequence of gradually modulating or
potentiating FFI. This effect could be important because
inhibitory synaptic plasticity regulates CA1PCs spiking (Saraga
et al., 2008) and feedforward disinhibitionmediates hippocampal
long-term potentiation in CA1PCs (Ormond and Woodin,
2009). In order to bypass existing experimental limitations, we
pursued a computational modeling strategy to explore a broader
range of possible mechanisms regarding the interaction between
fast-spiking basket cells, regular-spiking bistratified cells, and
CA1PCs.

Our simulation analyses suggest that basket cells are overall
more effective than bistratified cells in expanding the dynamic
range of CA1PCs (Figure 2C). This differential influence is
likely due to the number and distributions of the respective
synapses, since adopting the timing and activation response of
bistratified cells for all synapses augmented the effect of FFI.
Furthermore, when activated alone, bistratified interneurons
mostly affect less excitable CA1PCs, i.e., those recruited by a high
number of excitatory synapses. However, when basket cells are
also activated, the bistratified FFI exercises a clear effect on more
excitable CA1PCs as well.

The ability to gradually and independently alter the synaptic
strength of basket and bistratified cells while keeping the
other interneuron type constant or silent also revealed a

double-dissociation of the effects of these two FFI pathways
on the response properties of CA1PCs. Specifically, regulating
basket cell synapses affected the input/output intercept or
spiking threshold of CA1PCs, while altering bistratified
cell synapses modulated the CA1PC input/output slope or
spiking probability gain. This result is important because
it suggests that basket and bistratified cells perform two
functionally distinct operations into the I/O of CA1PCs:
basket cells subtract, while bistratified divide the sigmoidal
I/O of CA1PCs. The ability of simulations to isolate the
independent effects of the interneuron activation curves, axonal
distributions, and synaptic properties may in future work help
determine the biophysical determinants of these complementary
transformations.

We previously showed that FFI in the dentate gyrus
buffered the input/output curve of principal (granule) cells,
with the buffering range and buffered firing rate modulated
by the number and weight of incoming excitatory synapses
on the inhibitory interneuron (Ferrante et al., 2009). Recent
experimental evidence lends support to this mechanism (cf.
red curve of Figure 9D in Sun et al., 2014), and direct
experimental testing in the same neuronal circuit now appears
feasible (Li et al., 2013). Similarly, in this study, FFI buffering
was observed when the CA1PC activation curve overlapped
substantially with those of the inhibitory interneurons, most
notably when both basket and bistratified cells were activated
at their baseline level. Why, in these same conditions, was
CA1PC input/output buffering not observed by Pouille et al.,
2009? The most likely reason is that the input strength was
not finely controlled at the single cell level in that study: for
each set of recordings in every CA1PC, only one or two data
points were acquired in the range of input strengths across
which the spike probability went from 0 and 1 (i.e., where
the plateaus or response reversal would be found), preventing
the detection of any possible buffering effect. Synaptic input
strength (Perez-Rosello et al., 2011) and its temporal summation
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(Migliore et al., 2004) can be highly regulated/shaped by intrinsic
neuronal properties. It would be interesting to test how intrinsic
cellular differences affect the dividing, subtracting, and buffering
I/O operations performed by the different types of FFIs in
CA1PCs.

Our spike onset results suggest that, notwithstanding
specific differences between basket and bistratified interneurons,
potentiating FFI synapses could maintain CA1PC spike timing
constant for larger input strength. This might be considered
as an additional and complementary aspect of the broad
phenomena related to homeostatic plasticity (Turrigiano, 1999).
These interactions are also likely to influence network dynamics
over time through multiple parallel mechanisms. For example,
GABAA-mediated FFI modulates hippocampal spike timing-
dependent plasticity (Jang and Kwag, 2012). FFI also underlies
the propagation into CA1 of cholinergically induced gamma
oscillations intrinsically generated in CA3 (Zemankovics et al.,
2013), but not the intrinsic generation of faster gamma
oscillations in CA1 (Craig and McBain, 2015). Interestingly,
recent in vitro and in vivo results (Shay et al., 2015; Tsuno
et al., 2015) suggest that in neurons with strong Ih conductances,
inhibitory synaptic inputs may enable post-inhibitory APs in
restricted phases of theta oscillations. This alternative role of FFI
could provide a possible mechanism to encode spatial navigation
(Hasselmo, 2013). Such Ih-dependent post-inhibitory rebound
spiking could be dynamically unmasked by plastic regulation of
IKA (Ascoli et al., 2010).

Despite the electrophysiological and morphological realism
of our computational model, it is impractical if not impossible
to capture the full range of variability observed in nature.
For instance, experiments tend to be noisier (i.e., displaying
larger variability) when compared to simulations (Figure 1B),
probably due to cellular differences in biophysical properties
not implemented in our model. It would be interesting to
investigate how intrinsic differences in ionic channels and
other membrane characteristics affect the FFI modulation of
CA1PC input/output properties. Our model accounts for all
excitatory synapses (Megías et al., 2001), thus including recurrent
local feed-forward excitation by CA1 pyramidal cells. Possible

biophysical differences between these recurrent CA1 synapses
and the main input from CA3, including the ∼2 ms delay due to
di-synaptic activation, were not simulated. However, only ∼10%
of the excitatory synapses are from CA1 recurrent axons, thus
these differential effects can be assume to be minimal.

In addition, this study focused on a specific sub-circuit
of the CA1 network, namely, the FFI interaction of basket
and bistratified cells onto CA1PCs. Nonetheless, the same
interneurons also provide inhibitory feedback to CA1PCs (Ali
et al., 1998), possibly enhancing FFI buffering during sustained
CA1PC activity. More generally, a number of other GABAergic
interneurons may also participate in the complex regulation of
CA1PC response to CA3 pyramidal neuron input (Somogyi,
2010), including ivy cells, axo-axonic cells, trilaminar cells,
quadrilaminar cells, Schaffer collateral-associated cells, apical-
targeting cells, and oriens-alveus cells among others (see also
Hippocampome.org). Furthermore, the parallel, converging, and
diverging interaction of these pathways can be coordinated by a
diverse family of interneuron-specific interneurons (Francavilla
et al., 2015). Given such complex circuitry, neurobiologically
plausible models and detailed compartmental simulations can
play an essential role in the elucidation of the computational
mechanisms at play.
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The ability for cortical neurons to adapt their input/output characteristics and information

processing capabilities ultimately relies on the interplay between synaptic plasticity,

synapse location, and the nonlinear properties of the dendrite. Collectively, they

shape both the strengths and spatial arrangements of convergent afferent inputs to

neuronal dendrites. Recent experimental and theoretical studies support a clustered

plasticity model, a view that synaptic plasticity promotes the formation of clusters or

hotspots of synapses sharing similar properties. We have previously shown that spike

timing-dependent plasticity (STDP) can lead to synaptic efficacies being arranged into

spatially segregated clusters. This effectively partitions the dendritic tree into a tessellated

imprint which we have called a dendritic mosaic. Here, using a biophysically detailed

neuron model of a reconstructed layer 2/3 pyramidal cell and STDP learning, we

investigated the impact of altered STDP balance on forming such a spatial organization.

We show that cluster formation and extend depend on several factors, including the

balance between potentiation and depression, the afferents’ mean firing rate and crucially

on the dendritic morphology. We find that STDP balance has an important role to play

for this emergent mode of spatial organization since any imbalances lead to severe

degradation- and in some case even destruction- of the mosaic. Our model suggests

that, over a broad range of of STDP parameters, synaptic plasticity shapes the spatial

arrangement of synapses, favoring the formation of clustered efficacy engrams.

Keywords: STDP balance, dendritic efficacy mosaic, functional compartments, dendritic spike generation, mutual

information index

INTRODUCTION

Activity-dependent changes in the firing properties of cortical neurons can arise from modifying
the spatial arrangement of afferent fibers converging onto dendrites and their corresponding
synaptic strengths (Poirazi et al., 2003a; De Roo et al., 2008; McBride et al., 2008). The pattern of
activity conveyed by such afferents can either strengthen (Bliss and Gardner-Medwin, 1973; Bliss
and Lomo, 1973) or weaken (Kirkwood and Bear, 1994) stimulated synapses. Such physiological
changes are believed to represent a substrate for learning and memory; however the mechanisms
responsible for the spatial arrangement have yet to be fully elucidated.

Experiments show that synaptic plasticity exhibits both associativity (McNaughton et al., 1978;
Levy and Steward, 1979) and cooperativity (McNaughton et al., 1978) between synapses; where
groups of stimulated synapses can collectively induce either LTP or LTD but are each individually
incapable of inducing change. Experiments have also identified two additional properties. The first
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is heterogeneity (nonuniformity) in the form, induction and
location of expression of different types LTP and LTD. The
second is temporal specificity where the temporal order and
separation of pre-synaptic and post-synaptic firing determines
whether a synapse is potentiated or depressed. The magnitude
of change is characterized by a temporally asymmetric function
of spike timing that describes a “critical window” for such
alterations (Markram et al., 1997b; Bi and Poo, 1998; Debanne
et al., 1994, 1998; Zhang et al., 1998).

This latter form of plasticity is typically called spike timing-
dependent plasticity (STDP). The discovery of STDP has
stimulated many experimental and theoretical studies on the role
of action potential timing with respect to the development of
cortical circuits. In particular, previous theoretical studies have
typically used formulations of STDP that allows it to behave as
a competitive learning rule (even though the weakly competitive
version of multiplicative STDP has also been used), illustrating
that the temporal asymmetric window allows the neuron to
learn some temporal structure of its input, even under noisy
conditions (Song et al., 2000; Song and Abbott, 2001; Gutig et al.,
2003).

Historically, competitive learning rules have been important
in explaining not just learning the temporal structure embedded
in the afferent inputs to target neurons, but also the formation of
the various types of cortical maps, most notably the development
of orientation and ocular dominance columns (Kohonen, 1982;
Tanaka, 1990; Miyashita and Tanaka, 1992; Miller, 1994; Erwin
et al., 1995; Swindale, 1996; Young et al., 2007). This suggests
potential link between competitive learning, functional map
formation, and the segregation of independent input streams
onto dendrites. This link has been recently discussed in
Narayanan and Johnston (2012) where the authors have argued
that various functional maps can be imprinted onto dendrites,
each serving different roles.

There is growing interest in the nonlinear synergy between
dendritic excitability and synaptic plasticity in spatially extended
neuron models (Mel, 1992a; Zador et al., 1992; Poirazi et al.,
2001) or STDP (Rumsey and Abbott, 2004, 2006; Iannella and
Tanaka, 2006; Rabinowitch and Segev, 2006a,b; Gidon and Segev,
2009; Iannella et al., 2010). Notably, our previous studies have
demonstrated that the synaptic strengths of axons from different
functional streams of inputs organize themselves into spatially
segregated clusters. This emergent property relies on an STDP
rule admitting strong competition between synapses (Iannella
and Tanaka, 2006; Iannella et al., 2010).

Here, we investigate these effects using spike timing-
dependent plasticity (STDP) in a biophysically detailed model
of a reconstructed layer 2/3 pyramidal cell. In this model, the
neuron receives inputs independently from multiple yet equally
sized groups of correlated fibers. We focus on the role of STDP
(im)balance in altering the spatial representation of synapses in
dendrites and especially in the emergence of spatially segregated
clusters of synapse with similar properties and representing
the different input streams. We conclude that dendritic mosaic
robustly emerge over a wide range of dendrite morphology, mean
input frequencies and degree of balance, in a nonlinear and
unpredictable manner.

MATERIALS AND METHODS

Assessing Differences in Spatial Patterns
There are measures that can quantify the spatial differences
or dissimilarity between the resulting spatial organization of
synaptic efficacy from two respective groups for various levels of
competition. One such measure is called the spatial dissimilarity
index (SDI) (Duncan and Duncan, 1955; Traulsen and Claussen,
2004). This indexmeasures of the dissimilarity or equivalently the
overlap between two spatial patterns, where segregated or similar
patterns give a value close to unity or zero, respectively. The SDI
is formulated as:

SDI =
1

2

∑

j

∣∣∣∣∣
WA

j

WA
tot

−
WB

j

WB
tot

∣∣∣∣∣ , (1)

where WA,B
j are the total synaptic efficacies at dendritic position

j contributed by groups A and B, respectively, and WA,B
tot are the

total synaptic efficacies summed over all dendritic sites for each
of these two groups.

To assess the spatial differences between multiple (more than
two) spatial patterns, the above described index is replaced by one
based upon mutual information. We have previously used the
multigroup mutual information index (mMHI) (Iannella et al.,
2010), defined as

mMHI =
∑

j

W·j

Wtot

∑

m

πjm ln

(
πjm

πm

)
, (2)

where subscripts j denotes dendritic location and m indexes the
particular afferent group where:

W·j =
∑

m

Wmj total synaptic efficacy at dendritic location j.

Wm· =
∑

j

Wmj total of groupm’s synaptic efficacies.

Wtot =
∑

m,j

Wmj total synaptic efficacy contributed by all
groups.

πm =
Wm·

Wtot
proportion of groupm synaptic weights.

πjm =
Wmj

W·j
proportion of groupm synaptic weights at j.

To quantify the degree of spatial segregation between multiple
spatial patterns.

The Layer 2/3 Pyramidal Cell Model
A biophysically detailed compartmental model of a reconstructed
layer 2/3 pyramidal neuron receiving randomly timed excitatory
and inhibitory synaptic inputs across the dendrite, was simulated
using the NEURON simulation package (Hines and Carnevale,
2001). The model consisted of 119 sections with 263 segments,
including a simplified myelinated axon, similar to those used
in previous studies (Mainen et al., 1995; Iannella and Tanaka,
2006), consisting of a hillock, initial segment, five nodes and
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five myelin internodes, respectively. The parameters and channel
types used in the simplified axon were the same as those used
in Iannella and Tanaka (2006). A variety of synaptic receptors,
voltage and calcium dependent ion channels known to exist in
real layer 2/3 pyramidal cells were incorporated into the model.
These receptors included the α-Amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptor, the calcium permeable
N-methyl-D-aspartate (NMDA) receptor, the ionotropic and G-
protein coupled gamma-aminobutyric acid receptors (GABAA

and GABAB), respectively. The included ion channel currents
were a passive leak Ileak, the fast sodium INa, the delayed rectifier
potassium IKdr, the hyperpolarization activated potassium Ih, the
transient A-type potassium IA, a muscarinic potassium IM, the
T-type calcium IT, (high voltage activated) L-type calcium IHVA,
the calcium dependent potassium C-type IC, the medium after
hyperpolarization (AHP) ImAHP; and the slow AHP IsAHP. These
channels were distributed throughout the dendrites, soma, and
axon with densities according to published experimental data
from the rat. In case when data was absent, both distributions
and parameter values similar to those used in previous studies
were used. Finally, passive properties used in our Layer 2/3 model
neuron, were similar or adopted from previous investigations
(Mainen et al., 1995; Iannella et al., 2004, 2010): the dendritic
membrane capacitance was Cm = 0.9 µF/cm2, the resting
potential was−80mV, and the internal resistivity Ra was 200�m.

A full description of the ion channels, their corresponding
currents and distributions used in the simulations were similar or
identical to those used in previous modeling studies (Rhodes and
Gray, 1994; Mainen et al., 1995; Rhodes and Llinás, 2001; Traub
et al., 2003; Iannella et al., 2004, 2010; Iannella and Tanaka, 2006).
These descriptions are detailed in the Supplementary Materials.

Stimulation to the Layer 2/3 pyramidal cell was provided by a
single inhibitory group consisting of 250 afferent fibers and either
two of four groups of equally sized groups of correlated excitatory
fibers. Here, when two groups were used there were 500 afferent
fibers per excitatory group, while for stimulation originating from
four groups there were 250 afferents per group. Furthermore,
there were no or little correlation between the activity carried
by any single afferent fiber from one group and those from any
other group. Put simply, the activity within any single group was
correlated, but the activity of afferents between different groups
were not correlated with each other. Finally, the activity carried
by excitatory and inhibitory fibers are also uncorrelated. These
excitatory groups will be labeled alphabetically, i.e. for two groups
they will be referred to as groups A and B, while for four, they
will referred to as groups A, B, C, and D. Whether inhibitory
or excitatory, each afferent fiber forms five synaptic contacts at
randomly chosen locations throughout the dendrite of themodel,
as suggested by current anatomical data (Thomson et al., 1994,
2002; Markram et al., 1997a; Feldmeyer et al., 2002).

Each simulation began by allowing each excitatory afferent
fiber to connect to five randomly selected positions across
the dendrite. Similarly, each inhibitory afferent also made five
synapses at locations randomly selected throughout the initial
segment, hillock, soma, and dendrite. All synapses were activated
at random times. Inhibitory fiber activity was modeled via
a temporally homogeneous Poisson processes with a mean

frequency of 10 Hz. Excitatory afferent activity was modeled as
correlated Poisson processes where the activity of a particular
group contains higher order statistics (correlations) (Kuhn et al.,
2003). These correlations are mediated by coincident activity
involving distinct subsets of fibers that only belong to a single
group of afferents, while there is no correlation between the
activity of any pair of input fibers that belong to different
groups, i.e., the cross-correlation between these fibers is zero. The
adopted within group correlation coefficient was set to C = 0.05,
with a mean firing rate for all excitatory fibers of 40 Hz, accepted
where otherwise stated.

STDP Learning Rule
The synaptic weights of AMPA conductances wj(t) ∈ [0, 1] were
altered by STDP, (NMDA, GABAA and GABAB conductances
remained fixed). Learning was implemented using a nonlinear
STDP rule (Gutig et al., 2003). For clarity, this rule is described
below.

Gutig Rule: Pair Based Nonlinear STDP

1wj =

{
A+(1− wj)

µ exp (−|1t|/τ+) if1t > 0
−A−w

µ
j exp (−|1t|/τ−) if1t ≤ 0

(3)

where 1t = tpost − tpre denotes the timing difference between
pre-synaptic and post-synaptic events. A+ and A− are positive
constants scaling the magnitude of individual weight changes,
and τ+ and τ− are time constants determining the size of the
temporal learning window in which potentiation and depression
occurs. The pre-synaptic event tpre denotes the arrival time of
pre-synaptic input to some specific dendritic location, while the
post-synaptic event tpost typically denotes the time when a local
dendritic spike was generated. When 1t is positive, synaptic
efficacy is potentiated, and depressed otherwise; where individual
changes in synaptic efficacy wj are also weight dependent.
This weight dependence has the form of a power law where
the exponent µ is a positive constant. This STDP rule has a
nonlinear weight dependence when changing the weights of
AMPA receptors. One can’t help to notice that the additive STDP
rule is recovered when µ = 0 and corresponds to changes in
synaptic efficacy that are independent of the weight wj; while
the multiplicative rule is recovered when µ = 1, corresponding
to linearly dependent weight changes. The parameters used for
potentiation and depression components of this learning rule
were A+ = 0.0025, A− = 0.001125, τ+ = 13.5 ms and τ− =

34.5 ms, in agreement with previous experimental observations
(Froemke and Dan, 2002; Froemke et al., 2005). Detection of
post-synaptic events were recorded when the local membrane
potential surpasses a pre-specified threshold of θ = −20 mV.

RESULTS

Competition Dependent Emergence of

Clustered Synaptic Efficacy Engrams
The formation of spatial patterns displaying a clustered
organization typically emerge by balancing the requirements of
co-operation and competition of some limited resource. In the
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case of Gütig’s nonlinear STDP (see Materials and Methods—
STDP learning rules), synapses compete both spatially and
temporally to control the timing of somatic and/or dendritic
spike generation. This competition is believed to take the form
of a spatio-temporal winner-take-all process that ultimately leads
to the formation of synaptic efficacy clusters. A key feature of
Gütig’s nonlinear STDP rule is the presence of the exponent µ.
This parameter controls the weight dependence of the rule and
can be interpreted as a parameter that controls the degree of
competition, since µ = 0 corresponds to the additive STDP and
exhibits strong competition (Song et al., 2000; Song and Abbott,
2001); while µ = 1 recovers the multiplicative STDP rule, a
rule known to display stable yet weak competition dynamics (van
Rossum et al., 2000). For intermediate values of µ the weight
dependence is nonlinear and can be interpreted as introducing
some intermediate degree of strong and weak competition.

To assess spatial segregation and complementarity in the
case of two independent stream of inputs, we used the spatial
dissimilarity index (SDI) (Duncan and Duncan, 1955; Traulsen
and Claussen, 2004) (see Section Materials and Methods). Note
that two spatial patterns are considered to be complementary
when they possess a reciprocal relationship in space so that one
pattern can be considered the negative image of the other. This
index provides a quantitative measure of the difference between
two spatial patterns. Two patterns are similar if the SDI is close
to zero, while values close to unity indicates that two patterns are
spatially segregated.

The SDI varies over time, in a manner that depends on
the exponent µ (Figure 1). Note that for each trial, a different
random seed was used to initialize the simulation, assuring
that both the pattern of afferent connectivity and the activity
seen at any location in the dendrite are different between
trials. There is an optimum value for µ maximizing the SDI;
for which synaptic competition produced the largest degree of
spatial complementarity. Above the optimum, high value of µ

weakens synaptic competition, leading to an increase in the
average size of the efficacy engram contributed by each respective

group of excitatory fibers. Such increases in size increases the
overlap between the clusters contributed by each respective
group of excitatory afferent fibers, to the point where there
is little difference between them. More surprisingly, too high
competition also leads to cluster fragmentation and SDI decrease.

STDP Balance Modulates Spatial

Segregation and Complementarity
Another important facet is to determine how altering the balance
between potentiation and depression (A−τ−/A+τ+ ratio),
impacts the formation of clustered synaptic efficacy engrams.
Previous theoretical studies, using the simple integrate-and-fire
model neuron, have shown that in order to avoid unphysiological
increase of synaptic weights, this ratio is important for stable
yet competitive learning (Song et al., 2000; Song and Abbott,
2001). However, for a spatial model neuron, the impact of such
alterations was unknown. This issue was directly addressed here
by increasing the maximal amplitude of the STDP learning
window’s depression component A−. Again SDI was averaged
from ten trials, each initialized using a different random seed.

The imbalance between depression and potentiation in STDP
was increased from 1 to 6, for which synaptic depression is
overwhelmingly dominant and results essentially in silencing
the neuron. Furthermore, this avoided the situation where,
irrespective of the afferent group, the total synaptic efficacy
contributed by a single group at any location was zero, i.e.,
WA

tot = 0 and/orWB
tot = 0 . Beyond these conditions (ratios> 6),

numerical singularities prevented SDI calculation.
Figure 2 indicates that increasing the imbalance from 1.05 to

6 resulted in a strong non-monotonous effect on the emergence
of synaptic clusters across the dendrite. Firstly, there is a clear
maximum SDI value indicating that for that particular value
of the ratio, the degree of spatial complementarity between the
two patterns is greatest. Secondly, increasing the ratio to a value
of 2.25 eventually leads to a minimum SDI value of ≈ 0.45,
with no clear segregation of synaptic clusters. Finally, further
increases in the balance ratio A−τ−/A+τ+ to 3.3 (Figure 2B)

FIGURE 1 | Synaptic efficacy clusters and spatial complementarity depends upon synaptic competition. The mean SDI calculated over 10 randomly initialized trials,

as a function of both µ and time. We jointly observe the temporal evolution and the effect of altering competition on the resulting SDI.
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FIGURE 2 | STDP balance controls efficacy cluster formation. Each data point of the mean SDI was calculated using 10 randomly initialized trials, as a function of

STDP balance ratio A−τ−/A+τ+. The balance was changed by systematically incrementing A− by 0.0001 until a balance value of 3.3 then by 0.005 , up to a ratio of

6. Increasing the imbalance between depression and potentiation leads to initial degradation in the SDI, and further increases leads to a recovery of clustering. The

spatial distribution of clusters is illustrated for the three balance ratio values of 2.25, 3.3 and 6 (column denoted by A–C, respectively), for each specific afferent group.

The color coding indicate the synaptic strength for the two afferent group, for each compartment. For a ratio of 2.25 (lowest SDI) each branch receive essentially

similar input strength from the two afferent groups while (B,C) show increasing segregation.

and to 6 (Figure 2C) leads to increased spatial segregation
of synaptic efficacies across the dendrite, contributed by each
afferent group (appearing in Figures 2B,C), and gives rise to
a surprising recovery in the value of the SDI, where spatially
segregated efficacy clusters (appearing to the right of the central
plot) are still present in the dendrite. Intuitively, our expectation
was that increasing the imbalance by favoring LTD, would
lead to degradation of the clustering; surprisingly, the synaptic

efficacy clusters were still present but at the cost of decreased
spatial complementarity of the original tiling pattern. Here,
complementarity is referred as the amount of spatial segregation
and overlap between two patterns where one pattern can viewed
as the “negative” of the other, and example is provided in Figure 3
for an imbalance ratio of 1.5 where one group dominates regions
in dendritic space where the second group does not. Interestingly,
a very steep transition separates the SDI maxima and minima,
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FIGURE 3 | Example of complementarity. Spatial distribution of synaptic efficacy after STDP learning for µ = 0.03 and a balance ratio of 1.5 (the maximum of the SDI

plot in Figure 2). The color coding represents the normalized weights for a each afferent group. Note that the patterns complement each other, with one afferent being

strong where the other is weak, thus giving rise to a large SDI.

with an inflection point at 2. While the exact position of the
inflection point is irrelevant (as it is probablymulti-factorial), this
reveals a high sensitivity of the model to LTP/LTD balance that
may be detected experimentally.

STDP Balance Impacts the Formation of

the Dendritic Mosaic
We have observed the formation of synaptic efficacy clusters
when there are only two different groups of afferent axons. When
more than two streams of inputs are simulated, altering the
balance ratio A−τ−/A+τ+ admitted by the STDP rule also leads
to changes in the formation of dendritic mosaic. To quantify
clustering in these multi stream conditions, we have previously
identified the multi-group Mutual Information Index (mMHI)
to be a suitable metric (Iannella et al., 2010; see Materials and
Methods section for details).

mMHI =
∑

j

W·j

Wtot

∑

m

πjm ln

(
πjm

πm

)
, (4)

Figure 4 shows how STDP imbalance impacts the mMHI for
three values of µ = 0.03, 0.08, 0.15, when the neuron
is being stimulated by four groups of afferent fibers. Note
that the same incremental changes to A− used in Figure 2

was adopted. The general shape of the relationship between
mMHI and balance ratio is comparable to the one quantified
by SDI for two groups of axons and is similar for all values
of mu. This dependency is thus robust to change of clustering
metric and to increase in the number of inputs, suggesting that
this emergent properties could be characterized experimentally
(see Section Discussion) .

Mean Input Frequencies and STDP Balance

Jointly Influences the Dendritic Mosaic
We have shown above that both the degree of synaptic
competition and LTP/LTD balance ultimately determines the
emergence of the dendritic mosaic. Previously, we have shown

that the mean firing frequency of afferent inputs also play an role
in this emergence (Iannella et al., 2010).

We thus examined the interplay between firing frequency and
STDP balance. Figure 5, illustrates how increasing the degree of
imbalance affects the mMHI, for a mean input frequency of 10
Hz. Note that in contrast to Figure 4, themMHI reaches a plateau
(≤ 0.25) at high ratio rather than showing monotonous increase.
Equally surprising is the apparent lack of correlation between the
low mMHI and the pattern of synaptic efficacy clusters. For a
balance ratio of 1.8 (Figure 6, Row B) corresponding to maximal
mMHI, we observed intense clustering, with most dendritic
compartments being dominated by a single input stream (bright
color). Clearly, these inputs have been potentiated through STDP
while the inputs from other streams have been depressed.

For lower (A) and higher (C) balance ratio, this pattern
is degraded, with a decrease of the contrast between clusters
and appearance of overlaps (regions where two or more stream
remain strong, thus shown in black). For a balance ratio of 6
(Figure 6C) we even observed subsections of the dendritic tree
where efficacy clusters were absent. These dendritic subsections
had essentially become regions that do not respond to any group
of afferent inputs.

Increasing both the mean input frequencies and the degree of
imbalance induce non-trivial changes for the mMHI (Figure 7).
Above 20 Hz, a local mMHI minimum replaces the steady decay
seen at lower frequency. The value of the mMHI minimum
is approximately independent of frequency but frequency
determines the balance ratio at which the minimum occurs. The
mMHImaximum remains at 1.8A−τ−/A+τ+ for all frequencies.
Note that already at 40Hz, the upward slope of the mMHI
tend toward an asymptotic limit. Indeed no further change were
observed at frequencies >40Hz. Thus, the mMHI in the 0 ∼ 2.5
A−τ−/A+τ+ range is similar for all input frequencies and below
and in the 2.5 ∼ 6 range for input frequencies above 30 Hz. This
suggests that the conditions required for the optimal tiling of
synaptic clustering are robust for a wide range of parameters.
The unexpected appearance of a local minimum at ∼2.5 may
be linked to the degree of local excitability, the number of post-
synaptic events generated by incoming inputs and where they
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FIGURE 4 | STDP imbalance impacts the dendritic mosaic. Increasing the A−τ−/A+τ+ ratio leads to changes in the mMHI for three different values of the exponent

µ appearing in the Gütig STDP model of synaptic competition. Note that we used here the same incremental increases in the value of A− as in Figure 2, for the three

different values of µ = 0.03, 0.08, 0.15.

FIGURE 5 | Mean Input Frequency and STDP balance jointly affect the dendritic mosaic. At a given mean input frequency of 10 Hz and µ = 0.03, stepwise increase

of A−τ−/A+τ+ produces changes in the mMHI, with a maximum for a ratio of 1.8. Note that (A), (B), and (C) appearing in Figure correspond to balance ratio values

of 1.1, 1.8, and 6, respectively.

occur in dendrites. The number of generated action potentials
clearly follows a nonlinear relationship with the mean frequency
of the inputs locally targeting the dendrite.

STDP Balance and Mean Input Frequencies

Jointly Influence Local Spiking
In the previous section, we saw how the mean input frequencies
and the degree of STDP balance affects the emergence of the
dendritic mosaic. Here, we analyze the corresponding alterations
to local neuronal response at the soma and several representative
dendritic locations, as shown in Figures 8A,B. Firing rate at the
soma (when subjected to inputs from all four afferent groups)

dramatically decreases from 86 Hz to 0.2 Hz as the degree of
imbalance (balance ratio) increases from 1.05 through to 1.8
(Figure 8A).

For larger degrees of imbalance (from 1.8 to 6) the neuronal
firing rate remains relatively constant around 0.03 Hz. In
contrast, the firing rate for the dendritic locations display
maximal spikes rates at different values of the balance ratio
(Figure 8B) and different level of activity, even when LTD is
favored (high STDP imbalance ratio).

Influence of Morphology
In the realistic model presented above, we have measured
how STDP balance and mean input frequency influence the
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FIGURE 6 | Mean Input Frequency and STDP balance jointly affect the dendritic mosaic. Spatial organization pattern of synaptic efficacies associated with Figure 5

for a balance ratio A−τ−/A+τ+, of 1.1 (A), 1.8, (B), and 6 (C), for each of the four afferent groups. Increasing the balance ratio changes the patterning of synaptic

efficacies. Note that while (C) corresponds to a low mMHI (Figure 4), the inputs are still clustered, albeit with lower complementarity (i.e., some dendrite segments still

show similar synapse strength for different inputs streams after STDP plasticity).

emergence of efficacy clusters. Since clustering emerge from
local interactions of synaptic inputs, we wondered to what
extend dendritic morphology plays in the appearance and
stability of the mosaic. Historically, Rall (1964) was the first

to show how neural morphology can influence the firing

properties of neurons, using simple compartmentalized ball-

and-stick models (Rall, 1964). To directly investigate whether

the morphology of the dendrites impacts the emergence of the

dendritic mosaic, we chose to compare a realistic (reconstructed
from tracing) neuron morphology to an extremely simplified

simple cable equivalent. This extreme approach allowed us to

preserve the active properties of the original cell with only

simple transformations while reducing the morphology to an
unbranched dendrite. We thus generated the simplified models

using two published reduction methods that map complex

dendritic morphologies to an unbranched cable structure while

maintaining axial resistance and without altering the active

properties used in the original model. An alternative approach

could be to systematically change the lengths and diameters of

dendritic branches, or to gradually merge branches together until
significant mosaic alterations are detected. This approach has
the double handicap of being both computationally intensive

and not amenable to experimental testing. Instead, in a future
study, we intend to compare mosaic formation in realistic but
different morphologies such as CA1 pyramidal cell, Purkinje cell
and spinal cord motoneurons and compare simulation data to
physiological data.

The first of these methods relies upon a very simple
construction yielding a simplified equivalent cable morphology
of the original dendritic tree, consisting of only three identified
regions but conserving the electrical properties, length and total
surface area of the original cell (Iannella et al., 2004), as shown in
Figure 9. The second method is based upon combining branches
into an equivalent cylinder where the axial resistance of the
original branches are not altered (Destexhe et al., 1998). This
requires summing the cross sectional area of each contributing
branch and results in an equivalent cylinder with a radius given
by the square root of sum of all contributing radii squared,

r =

√∑
i r

2
i . The length of the cable is taken to be the average

length of contributing branches weighted by their respective
radii ri, in order to take different contributing branch lengths
into account, l =

∑
i liri/

∑
i ri. The resulting total surface

area of the simplified model differs from the original, requiring
correction of all conductances and the membrane capacitance
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FIGURE 7 | Mean Input Frequency and STDP balance leads to nonlinear

effects on mMHI. Increasing both the balance ratio A−τ−/A+τ+ (stepwise as

in Figure 2) and the mean input frequency leads to nontrivial changes in the

mMHI, with appearance of a local mMHI minimum for higher firing frequencies.

Note that the balance ratio at which this minimum is observed seem to

depend on the firing frequency.

by a multiplicative factor to maintain input resistance (see
Destexhe et al., 1998 for more details). The Destexhe simplified
morphology is presented in Figure 9.

Figure 10 presents the mMHI index as a function of STDP
imbalance for both of these simplified models. Altering the
morphology while keeping the same active properties alters the
mMHI (Compare to Figure 2). Notably, for the first method,
there is an initial sharp drop followed by a slower monotonic
rise in the mMHI index while for the second method, mMHI is
a monotonic function of balance. Both mMHI profiles are less
complex than profile obtained for the complex model (Figure 2),
showing that dendritic morphology plays an important role in
the emergence of the dendritc mosaic and its constituent synaptic
efficacy clusters.

Increasing the degree of imbalance (by increasing the balance
ratio) leads to different quantitative effects on the resulting spatial
patterning of synaptic efficacy for each simplified model. For
the Iannella reduced model one clearly sees that for an initial
balance ratio value of 1.15 there is a preference to form large
spatial clusters that occupy distinct portions of the unbranched
dendrite, thus indicating that for this balance ratio, STDP
implements an underlying spatial winner-take-all process that
allow large spatial clusters to emerge. The formation of large
spatial clusters, however, is a transient occurrence since a small
increase in the balance ratio from 1.15 to 1.33 leads to the
emergence of smaller clusters spread throughout the dendrite
that can overlap in space with other clusters contributed by other
groups.

This is in stark contrast to the formation of large distinct
clusters. The appearance of large spatial clusters usually indicates
synergy between synapses however the transformation from

large to small clusters signifies a sudden loss of spatial extent
of co-operativity between synapses. Increasing the balance
ratio further leads to small synaptic efficacy clusters that
are sparsely distributed but can overlap with other efficacy
clusters contributed by other afferent groups. In comparison,
the Destexhe simplified model results in only small clusters that
are spread out throughout the entire extent of the unbranched
dendrite, but as the balance ratio is increased, this gives rise
to small efficacy clusters that can spatially overlap with other
clusters (contributed by other afferent groups) but are also freely
distributed along the extent of the dendrite.

Inspecting the spatial organization of clusters that have
emerged in both simplified models reveals some interesting
common traits. For both simplified models, increasing the degree
of imbalance leads to the formation of small localized synaptic
efficacy clusters that are sparsely distributed in dendritic space.
Notably, when balance ratio is large, there are spatial regions in
the dendrite that are devoid of any input (see Figure 11 these
are indicated by black arrowheads), while in other regions there
can be two or more localized clusters that overlap, potentially
mutually augmenting their inputs (see Figure 11 indicated by red
arrows).

Since there is a drastic change of synaptic efficacy, we
wondered about the concurrent alterations the neuron’s input-
output relationship in both the space and time domains.
Samples of the membrane potential recorded from three different
locations, the soma and two different dendritic locations
respectively labeled as “S,” “Pos 3,” and “Pos 5” as indicated in
Figure 12 before and after STDP learning for both simplified
models. Figure 12 illustrates these membrane potential traces
for each model at two different values of the balance ratio
A−τ−
A+τ+

= 1.15 and A−τ−
A+τ+

= 6.0 denoted by A1 and A4,

respectively. Here, when a balance ratio of 1.15 is used, one can
observe small qualitative changes to the membrane potential at
the above described locations after STDP. Conversely, a large
balance ratio value leads tomarked qualitative alterations to these
membrane potential traces after STDP (A4). Specifically, the
membrane potential tends to the resting state, with the occasional
occurrence of spikes or burst of spikes, at the three specified
locations.

DISCUSSION

In this study, we investigated how synaptic competition
and STDP jointly determines the formation and stability of
clustered synaptic efficacy engrams in a realistic biophysical
model. Similar to our previous study (Iannella and Tanaka,
2006), when the model received inputs from two groups of
correlated afferent fibers (with no inter-group correlation), STDP
learning results in the formation of interdigitated regions of
synaptic efficacy clusters, forming a spatially complementary
pattern of synaptic strength for each respective group of
afferents. With four groups of afferent fibers (again with
intra-group correlation), we still observe the emergence of
the dendritic mosaic as a result of STDP learning. Here we
examined the relative contribution and influence of mean
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FIGURE 8 | STDP balance affects local spiking. (A) Layer 2/3 cell used in simulations indicating the locations of the soma and four distinct dendritic locations denoted

by pos 1 through to pos 4, respectively. (B) Increasing the A−τ−/A+τ+ balance causes a rapid monotonous decrease of somatic firing rate (B) while dendrites show

complex responses, measured at 4 different locations (pos 1–4) (C), using a mean input stimulus frequency of 10 Hz. All four dendritic locations show a spiking

maxima for the balance ratio resulting in maximal mMHI (1.8) but only approximately and with marked differences. Notably, for larger values of the balance ratio, the

dendritic firing rates reduce to zero for positions 3 and 4, while the other two locations show sustained nonzero rate.

FIGURE 9 | Unbranched cable morphology. Application of the reduction schemes proposed by us (Iannella et al., 2004) and by Destexhe et al. (1998) to transform

the original dendritic tree into an unbranched cable composed of three sections, each with different radii. Pos 1, 2, and 4 are at the middle of each section while Pos 3

and 5 are at 0.2 and 0.8 of the most distal section.
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FIGURE 10 | The mMHI in reduced models. mMHI is computed for the balance ratio A−τ−/A+τ+ ranging from 1.15 to 6.0, using a mean input stimulus frequency of

40 Hz. Note that mMHI was more densely sampled for balance ratio between 1.15 to 3.3, as in Figure 2.

input frequency, the degree of synaptic competition, and
the balance between potentiation and depression, in this
phenomenon.

Considering the non-linear dynamic of the system under
study (a spatially extended model with full complement of ion
channels) and the stochasticity introduced through the random
arrival times of the afferent inputs, analysis of parameters
contributions to spatial pattern formation is not possible
analytically. Here we addressed the issue by an exhaustive
exploration of the parameter space through simulation, both in
a complex model and in a model with simplified morphology but
similar electrophysiological properties.

One of the key features used of the model is that it detects
local dendritic spikes to convey post-synaptic timing information
locally, as opposed to the global nature of the back propagating
action potential (BPAP). Whether BPAPs can fulfill the role of
telling every synapse in the dendrite when the neuron fired an
action potential has come into question. Experiments have shown
that the BPAP does not fully invade the dendrite due to voltage
attenuation (Larkum et al., 2001; Stuart and Häusser, 2001) and
that synaptic activity either reduce or block BPAP invasion into
the dendrite completely (Paré et al., 1998; Mickus et al., 1999;
Larkum et al., 2001). In addition, changes in synaptic efficacy
can occur without the need of a BPAP (Schiller et al., 2000;
Golding et al., 2002; Holthoff et al., 2004) and constant synaptic
bombardment across the dendrite can cause spike generation
in dendrites, which may also limit BPAP propagation (Paré
et al., 1998; Larkum et al., 2001). Therefore, it seems unlikely
that the BPAP could provide every synapse located within the
dendritic tree with the necessary timing information of when
postsynaptic firing occurred. Post-synaptic timing information
carried by locally triggered dendritic spikes may provide a more
robust signal. From a theoretical standpoint, the use of dendritic
spikes may play an important computational role in permitting
the neuron to develop functional compartments, allowing the
neuron to perform complex computations or increase itsmemory
storage capacity (Poirazi et al., 2001, 2003b; Polsky et al.,
2004).

A defining feature of our model is the emergence under
STDP of synaptic clusters forming a dendritic mosaic
(tessellation). This was observed over a restricted region of
the multidimensional parameter space defined by (1) the degree
of synaptic competition, (2) mean input frequency, and (3)
the amount of synaptic balance. In addition, we found that
when STDP learning is dominated by depression, learning
still gives rise to synaptic clusters despite the imbalance
introduced between depression and potentiation components
of the temporal learning window. Note however that the
spatial organization of these clusters fail to form a continuous
tiling pattern in some regions of the dendrites. This result in
degraded dendritic mosaic, with areas essentially devoid of
synaptic inputs. Functionally, this may correspond to regions
of silent synapses or the synaptic cold-spot previously described
experimentally (Zador et al., 1992). Finally, comparison with
simple model derived from the realistic one shows degraded
ability to form a mosaic, confirming the role of local non-
linearities. Specifically, our model layer 2/3 pyramidal cell was
compared to two equivalent cable models (whose reduction
has been detailed elsewhere, Destexhe et al., 1998; Iannella
et al., 2004) that conserve input resistance of the original
neuron. Both full and reduced models used identical sets of
ion channels. After STDP learning, analysis of the mutual
information index and of the corresponding synaptic clusters
shows an altered mosaic formation, for a wide range of STDP
balance. These differences arise since altering the morphology
of the dendrites ultimately changes how synaptic inputs interact
with each other and with local channels in dendrites. This
leads to non-linear inputs summation and local alteration
of input resistance, thus altering the local conditions of
STDP.

Our study provide new insight on the interplay between
synapse location, active dendritic properties, morphology
and synaptic plasticity in shaping the strengths and spatial
arrangements of synapses. One strong prediction arising from
this study is that “inputs clustering” may be the favored and
natural outcome of synaptic plasticity when neurons receive
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FIGURE 11 | Synaptic efficacy clusters in simplified model. Spatial

organization pattern of synaptic efficacies associated with Figure 10 for

balance ratios A−τ−/A+τ+, of 1.15 (A1) and 6.0 (A4), for each of the four

afferent groups. Increasing the balance ratio has qualitatively different effect on

the two simplified models (compare A1), but high ratio yields clear local

clustering for both models (A4). Note that at high ratio, some regions are

essentially devoid of dominant input (black arrowheads) while some regions

show mixed dominance by two or more inputs (red arrowheads).

different streams of correlated inputs, as often seen in sensory and
associative brain areas. Indeed, in the visual and auditory systems
(and probably other sensory systems), clustering functionally
related inputs on different dendritic domains seem to play
a role in tuning the neuron for contrasting stimuli in time
and/or spac (McBride et al., 2008; Jia et al., 2010; Kleindienst
et al., 2011; Podgorski et al., 2012). Our results indicate that
maximum clustering -and thus the ability to discriminate stimuli-
emerge and is only produced and maintained for a narrow
band of input frequency. This implies that there is conflict
between building the ability to discriminate between stimuli
(through STDP) and the ability to encode stimuli intensity as
spike rate. Indeed, our results predict that a neuron exhibiting

mosaic clustering should exhibit approximately constant EPSP
frequency when stimulus intensity varies widely. This limitation
only exists however if STDP is maintained throughout life. If
the mosaic is formed during a developmental critical period,
before “crystallization” in the adult then the same neuron
would exhibit both synaptic mosaic (input discrimination) and
ability to integrate rat-coded signals. We predict that genetic or
pharmacological manipulation of plasticity balance in the young,
typically by changing the level of GABA inhibition (Hensch
et al., 1998; Morales et al., 2002; Takesian and Hensch, 2013),
homeostatic mechanisms (Turrigiano and Nelson, 2004), the
activity of NMDA receptors (Medina et al., 1999; Quinlan et al.,
1999; Krapivinsky et al., 2003; Bender et al., 2006; Nevian
and Sakmann, 2006), should permanently impair formation of
cluster, with the correlate that this would diminish the ability to
detect contrast stimuli in the adult.

Comparing the profiles of somatic and dendritic firing rates
(Figure 8) with the mMHI (Figure 8), it appears that the non-
monotonic variations of mMHI with increased imbalance may
result from the interplay between membrane excitability and
the exposure to STDP. This results in a large reduction of the
neuron’s (somatic) firing rate after STDP learning, from 86 Hz
to 0.2 Hz to 0.03 Hz. The reason is that STDP net effect is
to reduce synaptic weights. Interestingly, an emergent feature
in this context is the presence of dendritic regions that seem
to resist being silenced (enduring the suppressive nature of
STDP due to increasing balance ratios), and responding with
higher rates of spike generation than those observed at the
soma. This suggests that these particular regions of the dendrite
essentially behave as functional subunits, providing the neuron
with additional levels of processing (similar to what one expects
from a neural network) before global integration and spike
firing takes place in the soma (albeit at a diminished rate). Put
simply, one observes the emergence (via STDP) of neuron that
functionally behaves more as a two-layer (or more) distributed
network rather than as a globally weighted summation device.
This view is in agreement with the view that dendritic
branches can potentially behave as independent functional units
(computational subunits) and secondly, that they may promote
functional compartmentalization of inputs in dendrites (Poirazi
et al., 2003b; Losonczy and Magee, 2006; Harvey and Svoboda,
2007; De Roo et al., 2008; Larkum et al., 2009; Govindarajan
et al., 2011; Kleindienst et al., 2011; Legenstein and Maass,
2011; Makino and Malinow, 2011; Harnett et al., 2012; Major
et al., 2013; Sajikumar et al., 2014). It is important to note,
however, that dendritic branches behaving as computational
subunits tend to be dynamic in nature where the spatial and
temporal patterning of inputs and the nonlinear nature of the
dendritic membrane drives the functional properties of dendritic
integration.

Furthermore, the firing profiles at different dendritic locations
(Figure 8) are the result of generating dendritic spikes at different
rates and depend on the nonlinear nature of the dendritic
channels and local branching morphology. The clustering
results in tuning various portions of the dendritic tree in
an unsupervised manner. This self-organization process causes
specific portion of the dendritic tree to become maximally
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FIGURE 12 | Electrical activity before and after STDP. Traces of the membrane potential recorded from the soma and dendritic locations Pos 3 and Pos 5 before and

after the of STDP, for two different values of STDP balance denoted by A1 = 1.15 and A4 = 6. After STDP, the membrane potential tends to the resting potential

value, with spikes or spike bursts occurring irregularly. Note that the two simplified models converge to remarkably similar pattern of activity, despite the markedly

different synaptic mosaic (see Supplementary Materials for other locations).

responsive to specific inputs. This is akin to the branch specific
plasticity recently described by Losonczy et al. (2008), Kleindienst
et al. (2011), Legenstein and Maass (2011), Makino and Malinow
(2011), and Sajikumar et al. (2014). These results thus point
to previously not fully unrecognized properties of dendrites,
allowing different sections of the dendritic tree to be “selectively
tuned” through synaptic plasticity processes that take into

account the nonlinear nature of dendritic voltage depolarization
and the statistical structure of the inputs. Such selective tuning
may allow the dendrites to process inputs independently and
to compartmentally store input features in a robust manner.
This added complexity yield a more dynamic and nontrivial
computational model of neuronal processing and input/output
responses.
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Relation to Other Models
There is renewed interest in investigating how synaptic
plasticity applied to passive or active dendritic trees shapes
the storage of input features via the formation of dendritic
compartmentalization (Rabinowitch and Segev, 2006a,b). For
example, Tamosiunaite et al. (2007) have reported a type of
winner-take-all competition between dendritic branches. In
contrast to our study and that of Legenstein and Maass (2011),
they only considered the case where individual input groups were
initially spatially segregated and would target single branches
(Tamosiunaite et al., 2007). More realistically, Legenstein and
Maass (2011) have directly implemented neuronal mechanisms
where both functional compartmentalization of input features
takes place and dendritic branches compete and behave as
individual computational subunits. These authors have shown
that when explicitly incorporating two levels of competition, one
between dendritic branches and the other at the winning branch
between locally situated synapses, correlated synaptic activity is
strengthened while the efficacy of other synapses decays with
time. This permits the features of single input pattern to be stored
locally even in one single branch. This type of self-organization
thus allows the storage of multiple input features by a single
neuron in different non-overlapping regions of the dendrite.

Mechanisms Underlying Inhomogeneous

Spatial Patterns of Clusters
The functional benefits of spatially organized synaptic inputs
are well documented (Rall, 1964; Mel, 1992b). The precise
biophysical mechanisms leading to this organization, allowing
memory engram to be represented in “synaptic clusters” are
thus of prime interest, both from biological and theoretical
perspectives. Previous studies of neural networks self-
organization into functional maps have shown that non-linear

interaction of short-range excitation and longer-range inhibition
are fundamental in the emergence of any type of clustered
organization (Haken, 1977; Kohonen, 1982; Haken, 1983).
This interaction is important since it sets up a winner-take-all
mechanism which, under the appropriate conditions, ultimately
leads to the development of the functional clusters thus forming
the map. The interaction function is spatial in nature and usually
balanced in the sense that positive and negative areas of the
function are (nearly) equal and thus balance each other out. This
type of interaction is also envisioned to occur in dendritic trees.

Limitations of the Study
Our study describes the conditions under which synaptic efficacy
clusters may emerge to form a dendritic mosaic. We found that
it is jointly determined by multiple factors, including mean input
frequency, the degree of synaptic competition, synaptic balance
and dendrite morphology. The region in this multidimensional
parameter space where both synaptic efficacy clusters and the
dendritic mosaic emerge as a result of STDP learning correspond
to a physiological range (frequency) or range used by others.
Future work may consider investigating the role of synaptic
balance when both excitatory and inhibitory synapses undergo
plastic change, to elucidate how balance and plastic inhibitory

synapses jointly impact the spatial organization of both excitatory
and inhibitory synaptic efficacies.

A novel extension may be to investigate other forms of
morphological influences. Recent studies have pointed out
additional influence of neuronal morphology on synaptic
plasticity and on formation of cortical circuits. For example,
important differences in the shape and distribution of dendritic
spines along neuronal dendrites between pyramidal cells
from different cortical areas, layers, and species have been
observed (Murayama et al., 1997; Elston, 2003; Bianchi et al.,
2013; Elston and Manger, 2014). In primates, for example, both
the numbers, density, and distribution of dendritic spines differ
for pyramidal neurons in different cortical areas, while in the
mouse the spine density seems to be constant (Murayama et al.,
1997; Elston, 2003; Ballesteros-Yáñez et al., 2006; Benavides-
Piccione et al., 2006; Bianchi et al., 2013; Elston and Manger,
2014). Another aspect are dendritic spines, as these are the loci
where the formation and refinement of cortical circuitry through
processes of synaptic plasticity and (consequently) synaptic
transmission takes place. In basal dendrites, it has been reported
that the size of the spine head is proportional to the number of
post-synaptic receptors and pre-synaptic docked vesicle, while
the length of the spine neck seems to be associated with the
calcium compartmentalization (Ballesteros-Yáñez et al., 2006).
Taken together, all these point to the need to re-examine the role
played by neuronal morphology in brain development, especially
the impact of developmental morphological changes, synaptic
plasticity, and synaptogenesis has on the formation of cortical
circuits including the patterning of convergent afferent inputs
to neurons. Although such a study would be highly valuable,
care needs to be taken to incorporate biophysically meaningful
processes that correctly capture the biochemical processes of
activity-dependent synaptic plasticity, neuronal growth, and
spine creation and elimination. The results of such a study will
be presented in a future publication and is thus beyond the scope
of this paper.

Another extension would be to base the STDP plasticity
on an explicit biophysical model of calcium dynamics and
biochemical signaling cascades involved in learning andmemory.
One candidate is the plasticity rule first introduced by Graupner
and Brunel (2007). Using such a rule would allow to correlate the
emergence of synaptic efficacy clusters with the underlying states
of the biochemical signaling cascade, generating experimentally
testable predictions. Other potential improvements are an
explicit modeling of dendritic spines and of the underlying
reaction-diffusion processes, along with Graupner’s calcium-
based plasticity rule (Graupner and Brunel, 2007).We expect that
the spatially restricted calcium signals may allow the emergence
of synaptic mosaic for more streams of correlated inputs, beyond
the two and four groups tested in the current model.

CONCLUSIONS

This current study illustrates how the level of synaptic balance,
admitted by STDP, impacts the formation of synaptic efficacy
clusters in dendrites. We believe that the current study
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provides useful insights for the interplay between synapse
location, synaptic plasticity, and the active properties of
the membrane not only shapes the strengths and spatial
arrangements of synapses but highlights the emergence of a
functional compartmentalization from STDP. Furthermore, we
also illustrated that cellular morphology can play a significant
role in the emergence of efficacy clusters. In particular our results
hint that dendritic branches, under the right conditions, can act
as (near) independent functional units, in agreement with other
authors (Losonczy et al., 2008; Kleindienst et al., 2011; Legenstein
and Maass, 2011; Makino and Malinow, 2011). This permits a
novel subdivision of dendritic space and paves the way for the
formation of selectively responsive regions of the dendrite and
further suggests that the distributed storage of information is the
natural mode of information storage in neural circuits. Finally,
we are considering further extensions to the current research,
such as the inclusion of more detailed biochemistry, dendritic
spines, and reaction diffusion processes. These extensions would
permit a deeper understanding, at the subcellular level, into
how the interplay between synapse location, calcium based
biochemistry, and synaptic plasticity in neuronal dendrites
shapes dendritic information storage within neural circuits.
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Dendritic integration and neuronal firing patterns strongly depend on biophysical properties
of synaptic ligand-gated channels. However, precise estimation of biophysical parameters
of these channels in their intrinsic environment is complicated and still unresolved
problem. Here we describe a novel method based on a maximum likelihood approach
that allows to estimate not only the unitary current of synaptic receptor channels but also
their multiple conductance levels, kinetic constants, the number of receptors bound with
a neurotransmitter, and the peak open probability from experimentally feasible number
of postsynaptic currents. The new method also improves the accuracy of evaluation of
unitary current as compared to the peak-scaled non-stationary fluctuation analysis, leading
to a possibility to precisely estimate this important parameter from a few postsynaptic
currents recorded in steady-state conditions. Estimation of unitary current with this
method is robust even if postsynaptic currents are generated by receptors having different
kinetic parameters, the case when peak-scaled non-stationary fluctuation analysis is not
applicable. Thus, with the new method, routinely recorded postsynaptic currents could be
used to study the properties of synaptic receptors in their native biochemical environment.

Keywords: unitary current, synaptic currents, peak-scaled non-stationary fluctuation analysis, maximum

likelihood, semiseparable matrix, kinetic model, Markov chain Monte Carlo

INTRODUCTION
Intrinsic biophysical properties of synaptic receptor channels are
important for determining of both efficacy of synaptic transmis-
sion and activation of dendritic voltage-gated channels underly-
ing active properties of dendrites. For example, synaptic NMDA
receptors directly contribute to non-linear depolarizing drive in
dendrites and control dendritic firing patterns and local den-
dritic Ca2+ concentration transients (Major et al., 2013). Changes
in the postsynaptic receptor number, unitary conductance, and
kinetics may affect dendritic integration (Magee, 2000) and lead
to alteration in synaptic strength and memory function (Li and
Tsien, 2009) in normal (Benke et al., 1998) and pathological states
(Kittler et al., 2004). Thus, precise estimation of these parameters
is important for a better understanding of synaptic transmission
and dendritic excitability.

However, postsynaptic receptors in their native environment
are hardly accessible experimentally, and this limitation has ren-
dered their biophysical properties notoriously difficult to study.
In order to cope with this problem, postsynaptic receptors are
heterologously expressed and studied using single channel record-
ing in small membrane patches by means of fast application
of respective neurotransmitters. At the same time it has been
claimed using proteomic approaches that postsynaptic recep-
tors can interact with dozens of intracellular proteins (Husi
et al., 2000) that results in modulation of their functioning.
Besides, many extracellular factors such as, e.g., ions, certainly
affect synaptic receptor function (Paoletti et al., 1997; Low et al.,
2000). Altogether it makes it almost impossible to directly apply

receptor biophysical parameters obtained in a heterologous sys-
tem to the analysis of postsynaptic receptors under physiological
conditions.

The peak-scaled non-stationary fluctuation analysis (PS
NSFA) (Traynelis et al., 1993) is a most commonly used indi-
rect method by which unitary current of synaptic receptors can be
extracted from the macroscopic synaptic currents. This continua-
tion of the conventional non-stationary noise analysis (Sigworth,
1980) overcomes impact of the quantal variability of postsynaptic
currents on the accuracy of unitary current estimation by scaling
the mean postsynaptic current waveform to the peak amplitude
of each individual postsynaptic current. The two waveforms are
then subtracted to isolate fluctuations arising from the synaptic
channel gating. However, by using PS NSFA information about
the total number of synaptic receptors bound or exposed to a
neurotransmitter is lost and only the average number of recep-
tors open at the peak of the postsynaptic current can be estimated
(Traynelis et al., 1993; Silver et al., 1996). Activation, inactivation,
and desensitization, key features of synaptic receptor behavior,
which are determined by receptor kinetic parameters, also could
not be evaluated by PS NSFA. Although many attempts have
been performed to estimate the kinetic constants of ion channels
from fluctuations of postsynaptic macroscopic currents (Neher
and Stevens, 1977; Traynelis and Jaramillo, 1998; Milescu et al.,
2005; Moffatt, 2007) all of them do not get over the quantal vari-
ability of postsynaptic currents or could not be easily applied to
the analysis of these currents because of restricted accuracy and
efficiency.
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By overcoming computational complexity that emerges due to
quantal variability of postsynaptic currents, a maximum likeli-
hood non-stationary fluctuation analysis (ML NSFA) suggested in
this work makes it possible to estimate unitary currents, number
of channels bound with a neurotransmitter, peak open proba-
bility, and some kinetic constants for synaptic channels in their
native biochemical environment from the experimentally feasible
number of macroscopic postsynaptic currents.

MATERIALS AND METHODS
KINETIC MODEL
In this work we consider simulated macroscopic synaptic currents
generated by a varying number of synaptic receptor channels. The
channels are assumed to be independent and identical. We assume
that the synaptic channel gating is a Markov process and pij is
the probability of channel transition from state j to state i at time

�t. The rate matrix is an Ns × Ns matrix Q : qij = lim
�t→0

pij

�t , Ns

is the number of states of the synaptic channel model. Each ele-
ment of the matrix Q gives the rate constant of transition j → i if
the transition is allowed by the model and otherwise qij = 0. The
diagonal elements, qii, are set to −∑

j
qij, so the sum over each col-

umn is zero. Synaptic release of neurotransmitter is modeled as a
step pulse of its concentration in the synaptic cleft, which leads
to instantaneous change of concentration-dependent transition
probabilities, pij.

We assume that the kinetic matrix topology (i.e., a set of
allowed transitions) and the number of conducting states are
known. The required model parameters were arranged into the
parameter vector θ = [

q, ich, Nch
]

and they were: rate constants,

qij = lim
�t→0

pij

�t , i �= j, unitary currents, ich, and the number of

postsynaptic receptors bound with a neurotransmitter right after
the concentration transient, Nch.

THE LOG-LIKELIHOOD FUNCTION
The likelihood function, Lθ , that is to be maximized by ML NSFA
in order to find the most likely set of parameters is defined as the
conditional probability to observe N macroscopic current traces
ci, i = 1 : N, sampled at time points t = [1 . . . NT] given the
model parameters θ (Colquhoun and Hawkes, 1977; Celentano
and Hawkes, 2004; Milescu et al., 2005; Stepanyuk et al., 2011):

Lθ ≡ P(c|θ) −→
Nch−→∞

1

(2π)NNT/2
N∏

i=1
|cm1Nchi|1/2

exp

{
−1

2

N∑

i = 1

(ci − μNchi)
T c−1

m1

Nchi
(ci − μNchi)

}
(1)

Here N is the number of synaptic macroscopic current traces
ci (sample size) and NT is the number of points in each trace;
Nchi is a number of channels exposed to neurotransmitter in each
current ci; μ, an NT × 1 vector and cm1, an NT × NT matrix
with elements {cm1}t,t′ , and denote mean and covariance of single
channel current, respectively, and they both are the functions of
θ . cm1 is related to the covariance matrix, cm, of a macroscopic
synaptic current ci by the following expression: cm = cm1Nchi.

Mean and covariance follow equations (Colquhoun and Hawkes,
1977)

μ = iTeQtp (0)

{cm1}t,t′ =
(

iTeQtp (0) eQ(t′−t)i−
(

iTeQt′ p(0)
)(

iTeQtp (0)
))

(2)
Here Q is a rate matrix (Colquhoun and Hawkes, 1977; Celentano
and Hawkes, 2004) and p (0) is an initial state vector. The ele-
ments of p (0) can be calculated as the equilibrium probabilities
determined by the initial experimental conditions, which are
assumed to last for sufficiently long time T to allow the channels
reach equilibrium

p (0) =
∏

j

eQj�tj p(−T) (3)

It is generally accepted to maximize the logarithm of the like-
lihood function logLθ instead of the likelihood function Lθ

itself. Therefore, our objective was to find the most likely model
parameter set, θML, i.e., the parameter set that maximized the
log-likelihood

θML = argmax
θ

(
logLθ

)
(4)

The log-likelihood function logLθ can be efficiently estimated
using the fact that cm1 has a specific structure of semiseparable
matrix (DeWilde and van der Veen, 1998; Stepanyuk et al., 2011).

EFFICIENT ESTIMATION OF THE LOG-LIKELIHOOD FUNCTION FOR
SYNAPTIC CURRENTS WITH NOISE
Efficient log-likelihood estimation used in this article is based on
our previously described method (Stepanyuk et al., 2011). Briefly,
the method was based on the fact that the covariance matrix cm1,
has a specific structure of semiseparable matrix, namely cm1 can
be represented as Stepanyuk et al. (2011).

{cm1}ij =
NS + 1∑
k = 1

AikBkj, i ≥ j

{cm1}ji = {cm1}ij , i ≥ j

(5)

where

Aik = eλkti
NO∑
o=1

ioU (o, k) ,1 ≤ k ≤ NS

Aik = μti ,k = NS + 1

(6)

and

Bkj = eλk(Ts(j)−tj)

(
NO∑

o′=1
U−1

(
k, o′) po′

(
tj
)
io′

)
,1 ≤ k ≤ NS

Bkj = −μtj ,k = NS + 1
(7)

where U: eQt = UeDtU−1 is Ns × Ns matrix of the eigenvec-
tors of Q, and D is a diagonal form of Q provided all the
eigenvalues of Q, λ, are different; No is a number of open states
in the channel model. Efficient linear algebra algorithms for
semiseparable matrices (Vandebril et al., 2007; Eidelman and
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Gohberg, 2008) allowed us to compute the log-likelihood and
provided almost linear scaling of its computational cost with the
number of states in a kinetic model for the case of sufficiently
large number of currents, ensuring fast, and accurate estimation
of model parameters. The number of synaptic channels exposed
to neurotransmitter was assumed to be the same for all currents.
However, in the case of synaptic currents this number could vary
between trials due to quantal variability. As a result, logLθ must be
estimated separately for each current, and then summed up, thus
increasing the number of operations in N times at least. However,
calculations could be substantially simplified if the majority of
receptors, which will participate in the current, are found in one
particular state immediately after the neurotransmitter concen-
tration transient, as it is expected for the synaptic receptors. To
compute logLθ in this case, let denote noisy macroscopic synaptic
current with an NT × 1 vector ci and let denote by ni an NT × 1
vector of noise imposed on the i-th current. Then −logLθ of the
set of parameters θ given macroscopic synaptic currents with-
out noise imposed on them is (we omit here the constant term
NNT log (2π)/2)

− log Lθ (c − n) = 1

2

N∑

i = 1

(
ci − ni − μNchi

)T c−1
m1

Nchi

(ci − ni − μNchi) + 1

2

N∑

i = 1

(
log |cm1Nchi|

)
(8)

where μ is an expectation of synaptic current without noise and
logLθ (c − n) denotes the required log-likelihood given the set of
macroscopic synaptic currents without noise. Equation (8) can be
rewritten as

− log Lθ (c − n) = − log Lθ (c) − 1

2

N∑

i = 1

nT
i c−1

m1ni
1

Nchi

−
N∑

i = 1

nT
i

c−1
m1

Nchi

(
ci − ni − μNchi

)
(9)

Since the background noise and the macroscopic current are
uncorrelated the last term in Equation (9) can be neglected with-
out loss in accuracy given the number of currents, N, is large
enough. Therefore, we have

− log Lθ (c − n) = − log Lθ (c) − 1

2

N∑

i = 1

nT
i c−1

m1ni
1

Nchi

(10)

To quickly evaluate the last term in Equation (10), let us approxi-

mate
N∑

i=1

(
ni

T
)

k(ni)j

Nchi
by
{

cnoise

}
kjN

〈
1

Nch

〉
. Hence,

N∑

i = 1

nT
i c−1

m1ni
1

Nchi

=
NT∑

k = 1

NT∑

j = 1

{
c−1

m1

}

kj

N∑

i = 1

(
nT

i

)

k
(ni)j

1

Nchi

=
NT∑

k = 1

NT∑

j = 1

{
c−1

m1

}

kj
{cnoise}kj N

〈
1

Nch

〉
(11)

Finally, from Equation (11) we obtain

N∑

i=1

nT
i c−1

m1ni
1

Nchi

=
∑∑(

c−1
m1 ◦ cnoise

)
N

〈
1

Nch

〉
(12)

where ◦ denote Hadamard multiplication.

Keeping in mind that
∑∑

c−1
m1 ◦ cnoise = tr

(
c−1

m1cnoise

)
, we

rewrite Equation (10) for logLθ (c − n) as

− log Lθ (c − n) = − log Lθ (c) − 1

2
tr
(

c−1
m1cnoise

)
N

〈
1

Nch

〉
,

(13)
where

log Lθ (c) = −1

2

N∑

i = 1

{
(
ci − μNchi

)T c−1
m1

Nchi

(
ci − μNchi

)

+ NT log Nchi

}
− N

2
log |cm1| (14)

is the log-likelihood function of macroscopic synaptic currents
with noise.

To quickly evaluate tr
(

c−1
m1cnoise

)
we note that matrices c−1

m1

and cnoise are quasiseparable (as an inverse of semiseparable
matrix, Vandebril et al., 2007) and semiseparable matrice, respec-
tively. Semiseparability of noise covariance matrix, cnoise, follows
from the fact that experimental background noise can be well
approximated by a stationary Gaussian process, and the covari-
ance matrix of such process is semiseparable (DeWilde and van
der Veen, 1998). Then, the computation of trace of the product of
such matrices can be accelerated by representing it as tr (F · C) =
2tr(H · B) +

NT∑
k = 1

Fkkdk, where H is (NT − 1) × NS matrix, F is

symmetric NT × NT semiseparable or quasiseparable matrix and
B is defined by Equation (7) (see also Equations A1.26–A1.35
from Text S1 in Appendix in Stepanyuk et al., 2011).

ESTIMATION OF THE NUMBER OF CHANNELS AND PEAK OPEN
PROBABILITY
To estimate the number of channels Nchi (see Results for fur-
ther definition), we re-write Equation (8) for a single macroscopic
synaptic current:

− log Lθ (ci − ni) = 1

2

(
cT

i c−1
m1ci

Nchi
+ μTc−1

m1μNchi

− 2
(ci − ni − μNchi)

T c−1
m1ni

Nchi
− nT

i c−1
m1ni

Nchi

−2μTc−1
m1ci

)
+ NT

2
log Nchi + 1

2
log |cm1| (15)

In the last expression we neglect the 3-d term, as it was done in
Equation (9), and the 5-th and the last terms does not depend
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on Nchi at all. Leaving terms that depend on Nchi only we obtain
log-likelihood as a function of the number of channels:

− log Lθ (ci − ni) = 1

2

(
cT

i c−1
m1ci − nT

i c−1
m1ni

Nchi
+ μTc−1

m1μNchi

)

+NT

2
log Nchi (16)

The number of channels, Nchi, can be approximated for each
macroscopic synaptic current ci as a number that gives maximum
of the likelihood function when being substituted into Equation
(16). Therefore, after differentiation of Equation (16) with respect
to Nch

∂ log Lθ (ci − ni)

∂Nchi
= 0 = 1

2N2
chi

(ci − ni)
T c−1

m1 (ci − ni) − NT

2Nchi

−1

2
μTc−1

m1μ ⇒ N2
chiμ

Tc−1
m1μ + NchiNT

− (ci − ni)
T c−1

m1 (ci − ni) = 0 (17)

we find an approximation for the number of channels, Nchi, for
each macroscopic synaptic current

Nchi =
−NT +

√
N2

T + 4cT
i c−1

m1ci · μTc−1
m1μ

2μTc−1
m1μ

(18)

Here ci is not the whole decaying phase of each current but only
those part where signal-to-noise ratio is high and therefore noise
term can be neglected (usually from peak of the current to 0.1–
0.5 of the peak). Therefore, before calculating the log-likelihood,
we first estimate Nchi for each macroscopic synaptic current, ci,
then substitute Nchi into Equations (13) and (14) and calcu-
late the log-likelihood of the set of parameters θ given the set
of simulated macroscopic synaptic currents. Accordingly, Nch is
estimated automatically when the maximization is finished.

The peak open probability, P
(
o, peak

)
, was defined as a prob-

ability that a channel is opened at the peak of the macroscopic
current given that this channel was bound with a neurotransmit-
ter immediately after the end of concentration transient, which
was assumed to be sufficiently short (0.1–0.2 ms) with respect to
the time interval (1–4 ms) from the moment of stimulation to the
starting point of the analyzed fragment of current. P

(
o, peak

)

can be expressed as a function of rate constants: P
(
o, peak

) =
max

(
eQtp(0)

)
, where p(0) is an initial state probability vector

assumed to be zero for all states except for the RG2 state in the
case when currents were simulated with 7-state GABAAR scheme
or RL state in the case when currents were simulated with simple
3-state kinetic scheme (see descriptions of both schemes below).

Summing up, ML NSFA can be used for the fast estima-
tion of rate constants, unitary current of synaptic ion channel,
the number of synaptic channels bound with a neurotransmitter
right after the concentration transient for each synaptic current
and peak open probability from the set of macroscopic synaptic
currents under Gaussian colored background noise.

THE LOG-LIKELIHOOD MAXIMIZATION PROCEDURE
We search for the log-likelihood global maximum to obtain the
required model parameters from a set of macroscopic synap-
tic currents. In order to do this, we minimize the negative
log-likelihood with a variant of graduated optimization tech-
nique using SQP algorithm embedded in fmincon function in
MATLAB Optimization toolbox. Initial estimates of each param-
eter were chosen randomly and uniformly from the logarith-
mic scale interval, [θ0/10, θ0 · 10], where θ0 is a vector com-
posed of the true values of each parameter (rate constants
and unitary current), i.e., of values utilized by the macro-
scopic current generator (see below). During the search of a
minimum, all parameters were bounded within the interval
[θ0/50, θ0 · 50].

In our version of graduated optimization technique, the whole
minimization procedure was divided into sequential minimiza-
tion steps. On the first step the negative log-likelihood was
minimized given the first 2 or 3 currents regularly sampled at 50
points each. On each consequent minimization step the number
of points and the number of currents was increased. The param-
eter estimates, θML, obtained on each previous step were taken
as initial parameters θ0 for each next minimization step. For all
calculations in this work each minimization was rerun 5 (3-state
scheme) or 10 (7-state scheme) times, each time starting from the
different initial parameter set.

SIMULATION OF MACROSCOPIC SYNAPTIC CURRENTS
First series of simulations of macroscopic synaptic currents
were based on experimentally derived 7-state kinetic scheme
for GABAA receptor that had one unliganded state, R, two
liganded closed states (RG, singly-liganded and RG2, doubly-
liganded) and the respective open (O1 and O2) and desen-
sitized (D1 and D2) states (Mozrzymas et al., 2003). The
following rate constants were adapted from Mozrzymas et al.
(2003): koff = 0.13 ms−1, d1 = 0.14 ms−1, d2 = 1.5 ms−1, r1 =
0.02 ms−1, r2 = 0.12 ms−1, a1 = 1.5 ms−1, a2 = 1 ms−1, b1 =
0.15 ms−1, b2 = 8 ms−1; kon1 = 4 ms−1 mM−1, kon2 = 8 ms−1

mM−1; Unitary current was the same for singly- and doubly-
liganded states and was set to 1 pA. Variability in the amplitude
of macroscopic postsynaptic responses was achieved by trail-
to-trial Gaussian variation of the number of available synap-
tic channels (mean = 250; SD = 50). Simulation time step
was �t = 0.2 ms. Synaptic vesicle release was modeled as a
square pulse of saturating agonist concentration with a dura-
tion equal to the single simulation time-step (�t = 0.2 ms),
which caused transition of all available channels from R to
RG2 state. A total of 1000 macroscopic synaptic currents were
simulated and colored noise that resembled baseline noise of
experimentally recorded IPSCs was added to each current.
Colored noise (SD = 3 pA) was modeled as a sum of 4 AR(1)
processes (Qin et al., 2000; Venkataramanan and Sigworth,
2002):

noiset =
Nnoise∑

k = 1

noiset,k, noiset,k = ϕknoise(τ − 1),k

+ σkwt,k, wt,k ∼ N(0, 1) (19)
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with parameters ϕ = [0.0067, 0.61, 0.96, 0.999] and
σ = [0.32, 1.0, 1.42, 0.72], pA that were obtained from
the approximation of autocorrelation function of experi-
mentally recorded (whole-cell patch clamp) background
noise by the sum of 4 exponentials (see Equations 23,
24 in Stepanyuk et al., 2011). The decaying phases of
the responses (starting in 1 ms after the end of stimula-
tion pulse) were taken for the consequent log-likelihood
maximization.

In a second series of simulations we have used simple 3-
state kinetic scheme of an abstract synaptic receptor. The scheme
consisted of unliganded state, R, singly-liganded state, RL, and
open state, O and had the following rate constants: binding
rate, kon = 6 mM−1ms−1, unbinding rate, koff = 0.025 ms−1,
opening rate, b = 0.25 ms−1. The closing rate constant, a, was
2.5 ms−1 for Model R and Model N and 1.25 ms−1 for Model
A (see Section ML NSFA Distinguishes Between Changes in the
Channel Gating and Changes in the Number of Receptors Bound
with a Neurotransmitter in Results). Unitary current was set to
1 pA. Variability in the amplitude of macroscopic postsynaptic
responses was achieved by trail-to-trial Gaussian variation of the
number of available synaptic channels (mean = 400; SD = 50 for
Models R and A; mean = 800; SD = 71 for Model N). Simulation
time step was �t = 0.1 ms. Synaptic vesicle release was modeled
as a square pulse of saturating agonist concentration with a dura-
tion equal to two simulation time-steps (0.2 ms), which caused
transition of all channels from R to RL state.

ACCURACY OF THE ESTIMATES
Accuracy of kinetic rates, unitary current, number of lig-
anded channels, and peak open probability estimates was esti-
mated using bootstrap. To this end, N = 5, 10, 20, 30, 40,
or 100 currents were randomly sampled with replacement
from the initially generated set of 1000 macroscopic current
traces. This procedure was repeated until that 30–40 boot-
strap samples were generated. For each bootstrap sample we
rerun likelihood maximization m = 5 or 10 times (for cur-
rents generated with 3- or 7-state scheme, respectively), starting
m-1 times from different randomly generated initial parameter
sets (see Section The Log-Likelihood Maximization Procedure
above) and mth start was done from θ0. The estimated model
parameters, θML, were obtained from a maximization trial that
resulted in the best log-likelihood, which was considered to be
a global maximum. The accuracy of estimated model parame-
ters was assessed as a deviation of these parameters (θML) from

those (θ0) used for the generation of the currents,
√

(θML−θ0)
2

θ0
(hereinafter relative error). The algorithm was implemented in
MATLAB.

PEAK-SCALED NON-STATIONARY FLUCTUATION ANALYSIS
Accuracy of single-channel current estimates obtained with ML
NSFA method presented here was compared to those obtained
by PS NSFA. In PS NSFA, variance in currents arising from
the stochastic gating of the ion channel is isolated from vari-
ance arising from sources such as quantal variability by scaling
the mean simulated current waveform to the peak amplitude of
each individual simulated current and then subtracting the two

waveforms (Traynelis et al., 1993).

I
peak−scaled
i = Ii − 〈I〉 max (Ii)

max 〈I〉 (20)

To estimate the accuracy of unitary current estimates with PS
NSFA, it was applied to n = 1000 bootstrap samples each of
which contained either N = 5, 10, 20, 30, 40, or 100 currents
simulated with a 7-state GABAA receptor scheme (see Section
Simulation of Macroscopic Synaptic Currents above). For each
bootstrap sample the ensemble variance, σ 2, was plotted against
the ensemble mean, 〈I〉, and then fitted with parabola:

σ2
(

Ipeak−scaled
)

= ich 〈I〉 − 〈I〉2

〈Nch〉 + σ 2
0 (21)

where σ 2
0 is the variance of the background noise. Accuracy of

unitary current estimates was calculated as described above, and
was then compared with the accuracy of estimates obtained with
ML NSFA. To ensure the best accuracy possible with PS NSFA,
the ensemble mean current 〈I〉 and variance, σ 2, were calcu-
lated for each data point and the rising phase of variance vs.
mean curve was fitted with parabola using weighted (with weights
ωi = 1/var

(
σ2

i

)
) least squares method.

ESTIMATION OF UNITARY CURRENT FROM A SINGLE MACROSCOPIC
CURRENT
Sampling from a likelihood distribution of model parameters that
were estimated from a single macroscopic synaptic current was
done by the slice sampling Markov chain Monte Carlo algorithm
(Neal, 2003), implemented in “MCMC Methods for MLP and GP
and Stuff” toolbox by Toni Auranen and Aki Vehtari (available at
http://www.lce.hut.fi/research/compinf/mcmcstuff/).

RESULTS
ML NSFA APPLICABILITY TO ESTIMATION OF UNITARY CURRENT AND
KINETIC CONSTANTS OF POSTSYNAPTIC RECEPTOR CHANNELS
Postsynaptic architecture restricts direct electrophysiological
access to individual receptors in native synaptic environments,
with only occasional exceptions when channel openings and clos-
ings can be resolved on the very tail of postsynaptic currents
(Silver et al., 1992). Both these exceptions and application of PS
NSFA (Traynelis et al., 1993) do not allow estimating any param-
eters of synaptic receptors except their unitary conductance and
the number of receptors open at the peak of synaptic current
(Hartveit and Veruki, 2006).

In this part of the work we tested how ML NSFA estimates the
unitary current and kinetic constants of GABAA receptors from
stochastically simulated macroscopic currents having a trial-
to-trial Gaussian variation in the number of available receptors
(Nch = 250 ± 50). Currents were simulated with a 7-state model
of this receptor (Mozrzymas et al., 2003, see Methods) having one
unbound, two liganded closed, two open and two desensitized
states (Figure 1A). Synaptic release of GABA was modeled as a
brief (0.2 ms) step of saturating GABA concentration resembling
GABA release in real synaptic connections (Perrais and Ropert,
1999, 2000; Hájos et al., 2000; Nusser et al., 2001; Biró et al.,

Frontiers in Cellular Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 303

220

http://www.lce.hut.fi/research/compinf/mcmcstuff/
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Stepanyuk et al. Statistical estimation of synaptic receptor parameters

FIGURE 1 | Estimation of unitary current and kinetic constants from

simulated GABAergic synaptic currents. (A) 7-state kinetic scheme of
GABAA receptor that was used to simulate macroscopic synaptic currents
(Mozrzymas et al., 2003, see Section Simulation of Macroscopic Synaptic
Currents in Methods). The scheme has one unbound state, R, two liganded
states (single-liganded, RG, and double-liganded, RG2,) and related open (O1
and O2) and desensitized (D1 and D2) states. Rate constants were adapted
from Mozrzymas et al. (2003) and were as follows: koff = 0.13 ms−1,
d1 = 0.14 ms−1, d2 = 1.5 ms−1, r1 = 0.02 ms−1, r2 = 0.12 ms−1,
a1 = 1.5 ms−1, a2 = 1 ms−1, b1 = 0.15 ms−1, b2 = 8 ms−1; kon1 = 4 mM−1

ms−1, kon2 = 8 mM−1 ms−1. Unitary currents for the states O1 and O2 were
equal and were set to i1 = i2 = 1 pA. The number of channels exposed to
GABA varied from trial to trail (Nch = 250, SD = 50; Gaussian variation).

Colored noise (SD = 3 pA) was added to the simulated currents (see Section
Simulation of Macroscopic Synaptic Currents in Methods). (B) Synaptic
currents simulated using the kinetic scheme shown in (A). The currents
demostrate high trial-to-trial variability resembling one observed in
experimental electrophysiological recordings (inset). (C) Statistical plots
demonstrating accuracy of unitary current estimates obtained by ML NSFA.
On each plot, the central mark (red) is the median, the edges of the box are
the 25th and 75th percentiles, the whiskers extend to the most extreme data
points not considered outliers, and outliers are plotted individually by red
crosses. Green line indicates true value of unitary current (1 pA). Note high
accuracy of unitary current estimates obtained by ML NSFA even if a few
(5–20) currents were used. (D–F) Statistical plots of estimates of some
kinetic constants obtained by ML NSFA. Colors are the same as in (C).

2006; Scimemi and Beato, 2009). 1000 macroscopic currents
generated in response to this stimulation had the mean amplitude
of 184 ± 35 pA and decay kinetics of 43.4 ± 3.6 ms (Figure 1B)
and resembled postsynaptic currents routinely recorded in
cortical GABAergic synapses (Nadkarni et al., 2010). Background
colored noise (SD = 3 pA, see Section Simulation of Macroscopic
Synaptic Currents in Methods) was added to the simulated
currents.

Samples consisting of N = 5, 10, 20, 30, or 40 macroscopic
currents were randomly chosen from initially generated set of
1000 currents and analyzed using ML NSFA. In order to assess
the accuracy of estimates for the unitary current and kinetic rates,
parameter search was performed for 60 samples obtained in such
a way and log-likelihood maximization was run 10 times for each
sample in order to achieve the global maximum (see Section
Accuracy of the Estimates in Methods). For each run, the ini-
tial parameter values were chosen randomly and uniformly in
the logarithmic scale from the range [θ0/10, θ0 · 10], where θ0

denotes true parameter values, i.e., those used for simulation of
currents.

The unitary current was estimated with good accuracy even
from samples consisting of only 10 simulated postsynaptic cur-
rents (Figure 1C, 8.1% relative error) whereas it was estimated
with almost 2-fold better accuracy when the number of currents
in the sample was increased from 10 to 40 (4.3% relative error).
Three rate constants: unbinding rate (koff), desensitization (d2)

and resensitization (r2) rate from double-liganded state could
also be estimated (Figures 1D–F). For samples consisting of 10
and 40 currents the relative errors of estimates were: koff —49.0%
and 19.1%; d2—28.3 and 14.6%; r2—8.9 and 4.7%, respectively.
Some of rate constants associated with single-liganded states were
estimated in order of magnitude (a1) or bounded from below
(b1, d1).

Thus, we demonstrate that ML NSFA could reliably estimate
the unitary current of synaptic receptor channel and several
kinetic constants of synaptic receptor model from the very limited
number of postsynaptic currents (5–40). These results indicate
that ML NSFA may allow analysis of kinetic models of synaptic
receptors in their native biochemical environment using routinely
recorded macroscopic postsynaptic currents.

ML NSFA ACCURACY IN ESTIMATION OF UNITARY CURRENT
COMPARED TO PS NSFA
The number of currents necessary for a particular algorithm
to secure a given accuracy of unitary current estimate is an
important practical issue. With many hundreds or even thou-
sands of simulated macroscopic currents accuracy of PS NSFA
in estimating the unitary current is fairly good (Markova et al.,
2005; Hartveit and Veruki, 2006). At the same time it is
hard to collect more than about 100 of evoked postsynaptic
currents in steady-state conditions in routine electrophysiological
experiments.
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Thus, to see whether ML NSFA gives any advantage with
respect to the number of required traces we calculated a relative
error of unitary current estimates obtained with ML NSFA from
the above described samples of different sizes (5, 10, 20, 30, 40,
and 100 currents; 60 samples were analyzed in each case to esti-
mate the error) and compared this error with one estimated with
PS NSFA applied to 1000 samples of similar sizes.

Figure 2A demonstrates that the error of unitary current esti-
mates obtained with both methods decreases with the number
of currents taken for the analysis. However, the unitary current
can be estimated with as low as 10.8, 8.1, and 4.9% relative error
from only 5, 10, and 20 simulated synaptic currents, respectively,
whereas PS NSFA resulted in about 2-fold lower accuracy (23.0,
14.7, and 10.4 relative error, respectively). The estimates obtained
with ML NSFA from the analysis of samples of 30 and 40 cur-
rents had relative error of 4.6 and 4.3%, whereas PS NSFA gave 8.6
and 7.2% error for these cases. At last, accuracies of unitary cur-
rent estimates obtained from 100 simulated currents were high for
both methods and were comparable (Errors: 2.9% for ML NSFA
vs. 4.5% for PS-NSFA; Figure 2A).

Thus, for some complex models ML NSFA allows evaluation
of the unitary current with good accuracy using experimentally
realistic number of macroscopic currents and substantially out-
performs PS NSFA in terms of accuracy when only a few (5–30)
postsynaptic currents are available for estimating the unitary
current.

ML NSFA ESTIMATES THE NUMBER OF SYNAPTIC RECEPTORS BOUND
WITH NEUROTRANSMITTER AND PEAK OPEN PROBABILITY
PS NSFA was specifically designed to be independent of variations
in the number of postsynaptic receptors exposed to neurotrans-
mitter and peak open probability for the sake of more accurate
estimation of a unitary current (Silver et al., 1996) from postsy-
naptic current fluctuations. Unfortunately, this method could not
be used for the estimation of the total number of receptors in the
synapse. To the contrary, ML NSFA presented here allows esti-
mation of the number of receptors bound with neurotransmitter
by the end of neurotransmitter concentration transient in each
macroscopic current (liganded channels, Nch). It is assumed that
this transient time course is known or sufficiently brief, meaning
that it could be approximated by delta function in the latter case.
Indeed, GABA concentration in the synaptic cleft decreases by a
factor of 10 during less than 0.1 ms after synaptic vesicle release
(Scimemi and Beato, 2009) resulting in almost instantaneous
concentration transient. For such a brief concentration transient
and for a given GABA receptor model (Figure 1A) ML NSFA
would estimate the number of receptors bound with two GABA
molecules by the end of concentration transient in all synapses of
particular synaptic connection independently upon receptor sat-
uration in the case when most of the current is mediated by the
receptors in double-liganded states.

The open probability P(o) at any given time is determined as
a mean current divided by a product ichNch, and it is a func-
tion of rate constants: P(o) = eQtp(0) (see Section Estimation
of the Number of Channels and Peak Open Probability in
Methods). Thus, P(o) as a function of time is automatically
estimated at the end of log-likelihood maximization procedure.

FIGURE 2 | ML NSFA is more accurate than PS NSFA in estimating of

unitary current. Estimation of the number of receptors bound with a
neurotransmitter and peak open probability with ML NSFA. (A) Statistical
plots demonstrating accuracy of unitary current estimates obtained with ML
NSFA (blue boxes) and PS NSFA (black boxes) from simulated macroscopic
synaptic currents with trial-to-trial Gaussian variation in the number of
receptors (Nch = 250, SD = 50; see kinetic scheme in Figure 1A). On each
plot, the central mark (red) is the median, the edges of the box are the 25th
and 75th percentiles, the whiskers extend to the most extreme data points
not considered outliers, and outliers are plotted individually by red crosses.
Green line indicates a true value of unitary current. ML NSFA and PS NSFA
were performed using n = 60 and n = 1000 samples consisting of N = 5, 10,
20, 30, 40 or 100 simulated currents, respectively. Note that the accuracy of
estimates obtained with ML NSFA using a few (5–20) currents was 2-times
better than one obtained with PS NSFA. (B) An example of variance vs. mean
plot (gray dots) obtained with PS NSFA for N = 30 simulated macroscopic
currents having trial-to-trial Gaussian variation in the number of receptors
(Nch = 250, SD = 50) and a parabolic fit of its rising phase (red). Note that
variance-mean relationship (gray dots) is skewed rather than parabolic and
therefore the number of receptors could not be estimated with PS NSFA.
(C,D) Statistical plots for the estimates of the number of channels bound with
a neurotransmitter right after the concentration transient, Nch, and peak open
probability, P

(
o, peak

)
obtained with ML NSFA. Green line in C indicated the

true value of the number of channels estimated as mean peak current
amplitude (averaged over N = 1000 currents) divided by the true value of P(o,
Peak) and by the true value of unitary current (1 pA) and in D green line
indicates the true value of P(o, Peak) estimated as P(o) = eQtp0. Other colors
and notations are the same as in Figure 1C.

The peak open probability is simply a maximum of this function,
P
(
o, peak

) = max
(
eQtp(0)

)
. Peak open probability estimated by

ML NSFA is, thus far, a ratio of the number of receptors open
at the peak of postsynaptic current to the number of double-
liganded receptors by the end of neurotransmitter concentration
transient.
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Figures 2C,D demonstrate that the error of Nch and
P
(
o, peak

)
estimates obtained with ML NSFA decreases with the

number of currents taken for the analysis. The number of lig-
anded receptor channels, Nch, was calculated as an average over
all currents in the sample and was estimated with 24.5 and 12.4%
relative error from samples consisting of only 5 and 10 simu-
lated macroscopic synaptic currents, respectively. The respective
estimates of accuracy for the peak open probability, P

(
o, peak

)
,

had 14.4 and 9.8% relative error, respectively. Both Nch and
P
(
o, peak

)
were estimated with even better accuracy from sam-

ples consisting of 100 simulated currents (10.0 and 4.3% relative
error, respectively).

At the same time PS NSFA applied to the same samples
resulted in a variance vs. mean curve that was profoundly skewed
(Figure 2B, gray dots) and, therefore, could not give an estimate
of the number of liganded channels, Nch.

ESTIMATION OF UNITARY CURRENT AND KINETIC CONSTANTS OF
RECEPTORS HAVING MULTIPLE CONDUCTANCE LEVELS
Most ligand-gated channels are described by kinetic schemes with
multiple, non-identical open states often having different conduc-
tance levels (Jin et al., 2003; Mozrzymas et al., 2003; Robert and
Howe, 2003; Wyllie et al., 2006; Keramidas and Harrison, 2010;

Mortensen et al., 2010). In practice some open states should be
considered rare and excluded from the fitting of experimental
results in order to estimate at least some parameters of receptor
kinetic schemes (Mortensen et al., 2010). Unfortunately, PS NSFA
is also not applicable to examination of receptors having multiple
conductance levels giving values of unitary current and chan-
nel number having no obvious physical interpretation (Hartveit
and Veruki, 2006). Thus, at the present moment single-channel
recordings are virtually the only approach that allows identify-
ing multiple conductance levels of ligand-gated receptors and this
approach is also not applicable for studying of synaptic receptors.

We next wanted to investigate if ML NSFA suggested in this
work is applicable to analysis of ion channels and ligand-gated
receptors with multiple conductance levels, described by kinetic
schemes with non-identical open states. 7-state kinetic model of
GABAA receptor (Mozrzymas et al., 2003) having two open states
O1 and O2 with identical unitary current (i1 = i2, see Figure 1A)
was modified to have the unitary current i1 = 2 pA and i2 = 1 pA
for the states O1 and O2, respectively (Figure 3). Rate constants
of the model were modified in such a way that the contribution of
single- and double-liganded open states to the total macroscopic
current became comparable. Modified constants were (in ms−1):
b2 = 4, b1 = 1.2, d1 = 1, r1 = 1, d2 = 0.15, r2 = 1. Colored

FIGURE 3 | Estimation of unitary currents and kinetic constants of

receptors having two open states with different conductance levels. (A)

Upper panel. Example of 50 synaptic currents simulated with a 7-state kinetic
scheme of GABAA receptor having two open states (Figure 1A, some rate
constants were modified: b2 = 4, b1 = 1.2, d1 = 1, r1 = 1, d2 = 0.15,
r2 = 1 ms−1). Unitary currents were set to i1 = 2 pA and i2 = 1 pA for open
states O1 and O2, respectively. The number of channels varied from trial to trail
(Nch = 500 ± 50; Gaussian variation). Lower panel. Representative example of
single simulated macroscopic current components mediated by single-liganded
open state O1 (blue trace) and double-liganded open state O2 (green trace)
demonstrating comparable contribution of O1 and O2 to the total macroscopic
current. (B) Statistical plots for the estimates of unitary currents obtained with
PS NSFA (leftmost bar, i = 1.86 ± 0.03 pA) and ML NSFA (two bars on the right,
i1 = 2.0 ± 0.11 pA and i2 = 0.89 ± 0.08 pA, i1 and i2 are unitary currents
associated with open states O1 and O2, respectively. Both PS NSFA and ML

NSFA were applied to samples of 50 macroscopic currents (n = 15 and n = 250
bootstrap samples for MS NSFA and PS NSFA, respectively) simulated as
described in (A) and having true values of i1(0) = 2 pA and i2(0) = 1 pA,
respectively (indicated by green lines). On each plot, the central mark (red) is
the median, the edges of the box are the 25th and 75th percentiles, the
whiskers extend to the most extreme data points not considered outliers, and
outliers are plotted individually by red crosses. Note that ML NSFA accurately
distinguishes both unitary current levels, whereas PS NSFA gave some value of
the unitary current that was close to i1(0). (C) Statistical plot for the estimates of
kinetic rates of transitions from and to a single-liganded state obtained by ML
NSFA (in ms−1: unbinding rate, koff = 0.13 ± 0.01, desensitization rate,
d1 = 0.89 ± 0.34, resensitization rate r1 = 1.02 ± 0.08, closing rate,
a1 = 1.55 ± 0.05, opening rate, b1 = 1.17 ± 0.24; N = 50 currents simulated
as described in (A). The estimates were in good agreement with their true
values (green lines). See a legend to panel (B) for further description.
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background noise with SD = 3 pA was added to the simulated
currents (Figure 3A, upper panel).

Representative examples of the simulated current compo-
nents associated with either state O1 or state O2 are shown
in Figure 3A, lower panel, by blue and green lines, respec-
tively. When 250 samples consisting of N = 50 simulated cur-
rents (Figure 3A, upper panel) were analyzed by PS NSFA the
unitary current estimates were close to the unitary current of
single-liganded open state O1 (1.86 ± 0.03 pA vs i1 = 2 pA
for the state O1). At the same time, ML NSFA gave reason-
able estimates for both conductance levels (Mean ± SE i1 =
2.00 ± 0.11 pA and i2 = 0.89 ± 0.08 pA; n = 15 samples of N =
50 simulated currents; Figure 3B). ML NSFA also reliably esti-
mated kinetic rates for single-liganded state transitions (koff =
0.13 ± 0.01, d1 = 0.89 ± 0.34, r1 = 1.02 ± 0.08, a1 = 1.55 ±
0.05, b1 = 1.17 ± 0.24 ms−1, Figure 3C) and the mean num-
ber of liganded channels (Nch = 557 ± 53 vs. 500 ± 50 used in
simulation).

Thus, contrary to PS NSFA, ML NSFA can reliably estimate
kinetic schemes with several open states having different conduc-
tance levels and gives precise values of unitary currents, some
kinetic rates, and the mean number of liganded receptors in a
given synaptic connection.

ML NSFA DISTINGUISHES BETWEEN CHANGES IN THE CHANNEL
GATING AND CHANGES IN THE NUMBER OF RECEPTORS BOUND WITH
A NEUROTRANSMITTER
We next attempted to explore ML NSFA capability to identify
which postsynaptic parameters were changed in the case when
mean amplitude of simulated currents was increased without
changes in macroscopic current waveform and unitary current.

To this end three distinct groups of 1000 macroscopic currents
were generated using a simple 3-state scheme of synaptic chan-
nel (Figure 4A, see Section Simulation of Macroscopic Synaptic
Currents in Methods). A similar increase in mean current ampli-
tude was achieved by changes in either receptor gating or receptor
number. A reference kinetic scheme (Model R; Figure 4A, red)
had the closing rate, a = 2.5 ms−1 and the total number of
channels Nch = 400 ± 50 and was used to generate a group
of macroscopic currents before putative remodeling of synaptic
connection (Figure 4B). In the second kinetic scheme (Model
A; Figure 4A, blue) mimicking remodeling of receptor gating
the closing rate, a, was changed from 2.5 ms−1 to 1.25 ms−1

resulting in almost 2-fold increase of average current amplitude
(Figure 4C, blue) without substantial changes in current wave-
form (Figure 4D, blue vs. red). Conversely, in the third model
(Model N; Figure 4A, black) the number of available channels,
Nch, was increased from 400 ± 50 to 800 ± 71 without any
changes in the kinetic constants, which led to similar changes
in current amplitude (Figure 4C, black) as for Model A with-
out any changes in current waveform (Figure 4D, black vs. red).
Therefore, currents generated with Models A and N had sim-
ilar amplitudes and when normalized, appeared to have the
same waveforms as reference currents generated by Model R
(Figures 4B–D).

ML NSFA was run with n = 20 bootstrap samples consist-
ing of N = 100 currents (see Section Accuracy of the Estimates

in Methods) for each of the 3 groups of simulated currents in
order to evaluate the receptor model parameters and the respec-
tive errors. Log-likelihood maximization was run 5 times for each
bootstrap sample in order to achieve the global maximum. When
the parameter estimates obtained from currents generated with
Model R were compared to those obtained from currents gener-
ated with Model A (Figure 4E, red vs. blue boxes) the difference,
�RA, between mean values of each parameter estimates except
the closing rate, a, and peak open probability, P(o, peak), was
small and was within the standard error (SE) range of the respec-
tive estimates: koff: �RA = 1.7% (SE = 2.2%), b: 8.5% (13.0%),
ich: 0.6%(2.4%), Nch: 8.8% (14.0%). At the same time, �RA was
49.7% for the closing rate, a and 70.1% for the peak open proba-
bility, P(o, peak) and did not fall within the narrow ranges of the
respective SE’s (2.4% and 14.1%, respectively). The mean values
of the respective estimates were a = 2.51 ± 0.04 for Model R and
1.26 ± 0.03 for Model A, P(o, peak) = 0.08 ± 0.01 for Model R
and 0.14 ± 0.02 for Model A. Therefore, we could infer that these
were the parameters that altered. These results directly indicate
that ML NSFA may reliably determine changes in receptor gating,
which leads to an increase in peak open probability.

When estimates obtained from currents generated with Model
R and Model N were compared, we observed insufficient dif-
ferences, �RN, between mean values of all parameter estimates
except the number of receptors, Nch, which was changed from
419 ± 62 for Model R to 942 ± 228 for Model N (Figure 4E,
compare red vs black boxes). �RN for Nch was 124.9% and did
not fall within the range of its SE (24.2%). At the same time, �RN

for other parameters fell within the respective standard error (SE)
range: koff: �RN = 0.3% (SE = 1.7%), a: 1.3% (1.7%), b: 7.1%
(18.0%), ich: 0.8%(1.6%), P(o, peak): 8.3% (18.9%) and it was
possible to conclude that the number of receptors was the only
altered parameter in this case.

Thus, with ML NSFA it becomes possible to distinguish
between alteration in receptor channel gating and receptor num-
ber, which nonetheless resulted in visually indistinguishable post-
synaptic currents.

ESTIMATION OF UNITARY CURRENT FROM MACROSCOPIC CURRENTS
GENERATED BY RECEPTORS HAVING DIFFERENT KINETIC SCHEMES
The key assumption of the PS NSFA is that all receptors in a
particular synaptic connection under study have identical kinetic
properties (Silver et al., 1996). As a result, all variance in the cur-
rents could be attributed to the stochastic nature of the channel
gating rather than to the variability in their kinetics. In fact, this
assumption could be violated since receptors in the synaptic con-
nection could have different subunit composition or could be
differentially modulated (Popescu and Auerbach, 2003) and a set
of receptors contributing to each postsynaptic current could vary
from trial to trial. In this case PS NSFA overestimates the unitary
current and this overestimation could be quite significant even
if the difference between receptor kinetic rates is so small that it
could be hardly noticed from the observation of synaptic currents
(see Figure 5A and below).

Using likelihood approximation it is possible in principle to
estimate unitary current and other parameters independently
for each individual synaptic current. To test this possibility we
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have conducted a series of computational experiments. A group
of 1000 synaptic currents was simulated using 7-state kinetic
scheme of GABAA receptor channel (Mozrzymas et al., 2003, see
scheme in Figure 1A) and the other 1000 currents were simu-
lated using similar scheme in which several parameters (closing
rate, koff, desensitization rate, d2 and resensitization rate, r2) var-
ied between trials randomly and uniformly in the range of ±20%
of parameter values that were used to generate the first group of
currents. In both cases the unitary current was set at 1 pA and
colored background noise (SD = 3 pA) was added to the simu-
lated currents (see Section Simulation of Macroscopic Synaptic
Currents in Methods for details). Figure 5A demonstrates that

both groups of currents had similar waveforms and their decay
times were almost identical although variability of decay times in
the second group was slightly higher (Mean ± SD: 43.6 ± 3.7 ms
vs. 43.9 ± 6.1 ms, N = 1000 currents). Nevertheless, variance vs.
mean curves for these two groups of currents differed significantly
(Figure 5B) and for the second group unitary current appeared
to be 1.9-fold overestimated by PS NSFA (Mean ± SE was 1.01 ±
0.03 pA for the group of currents without variation of parameters
vs 1.92 ± 0.05 pA for the group of currents with variation of koff,
d2, and r2; N = 250 currents; true value was 1 pA).

To the contrary, when ML NSFA was applied to the group of
currents with varying rate constants and log-likelihood of each

FIGURE 4 | ML NSFA distinguishes between changes in the receptor

gating and the number of receptors in case when both unitary current

and macroscopic current waveform are not changed. (A) Simple 3-state
kinetic scheme of synaptic receptor channel. The scheme consists of one
unbound state, R, one single-liganded state, RL, and one open state, O.
Rate constants are shown below the respective transitions and were as
follows: kon = 6 mM−1 ms−1, koff = 0.025 ms−1, b = 0.25 ms−1. Three
different models were constructed based on this scheme and were used
to simulate 3 sets of macroscopic currents. A closing rate constant, a,
was set to 2.5 ms−1 for Model R (red) and Model N (black) and 1.25 ms−1

for Model A (blue). (B) An example of 3 macroscopic currents simulated
using Model R (red), Model A (blue), and Model N (black) shown in (A).
The number of channels used for simulations is indicated in a respective
color in the top-right corner (400 ± 50 for Models R and A and 800 ± 71
for Model N). (C) Mean simulated currents for each Model (N = 1000).
Note that amplitudes of mean currents obtained with Model A and Model
N (blue and black) are almost equal and almost twice larger than the mean
current amplitude obtained with a reference Model R (red). (D) The same

mean currents as in (C) but normalized. Note that all 3 waveforms almost
coincide. (E) Statistical plots for the estimates of kinetic rates, unitary
current, number of channels bound with a neurotransmitter, Nch, and peak
open probability, P(o, peak), obtained with ML NSFA (N = 100 currents;
n = 20 bootstrap samples). On each plot, the central mark (red) is the
median, the edges of the box are the 25th and 75th percentiles, the
whiskers extend to the most extreme data points not considered outliers
and outliers are plotted individually by red crosses. Green line indicates
true value of parameter. Blue, red, and black boxes correspond to results
of ML NSFA applied to macroscopic currents generated with Model A, R,
and N, respectively. Note that estimates for the closing rate, a, and peak
open probability, P(o, peak), obtained from currents generated with Model
A (blue boxes) are close to their true values and do not coincide within
SE’s with the respective estimates obtained for reference Model R (red
boxes). At the same time, estimate for the number of channels, Nch,
obtained from currents generated with Model N is close to its true value
and differs from the respective value obtained from currents generated
with reference Model R.
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FIGURE 5 | Estimation of unitary current from macroscopic currents

generated by receptors having different kinetic parameters. (A) Upper
panel. An example of 20 currents generated with a 7-state kinetic scheme of
GABAA receptor (see Figure 1A). Lower panel. Second group of 20 currents
generated with similar model in which several parameters (koff, d2, r2) were
varied randomly from current to current (uniformly in ± 20% neighborhood of
their standard values, see Methods and Figure 1A). The unitary current in
both groups of currents was the same, ich = 1 pA. Mean ± SD of decay time
calculated over 1000 currents was 43.6 ± 3.7 ms and 43.9 ± 6.1 ms for the
first and second group of currents, respectively and is shown above the
traces. (B) Variance vs mean dependencies for 250 peak-scaled currents
generated with (right) and without (left) variation of the channel kinetic model
parameters (gray dots), and their approximation by the quadratic function (red

line). (C) Upper panel. Sampling distribution of unitary current estimates
obtained by MCMC sampling from the likelihood distribution of single
synaptic current. Lower panel. Sampling distribution aggregated over 50
single current likelihood distributions. Mean of the sampling distributions and
true value of unitary current are shown by red and green line, respectively.
(D) Box plots show the statistics of the mean unitary current estimates
obtained with MCMC sampling from the likelihood distributions for the group
of 50 currents with varying rate constants (left) in comparison with the
statistics of PS NSFA estimates obtained from the group of 250 currents with
varying rate constants (right). On each box plot, the central mark is the
median, the edges of the box are the 25th and 75th percentiles, the whiskers
extend to the most extreme data points not considered outliers, and outliers
are plotted individually by red crosses.

current in the group was optimized independently, a reason-
ably accurate estimate of unitary current was obtained (Mean ±
SD = 0.89 ± 0.23 pA, N = 50 currents). Standard error of mean
unitary current estimate was very low (SE = 0.033 pA), but bias
from the true value (1 pA) was significant. We have noticed that
the cause of this bias is the skewed shape of the likelihood distri-
bution of a single simulated synaptic current, which means that
for the case of single current the maximum likelihood value of
unitary current is not the most common value. An example of the
typical distribution of unitary current obtained by sampling from
the likelihood distribution for a single simulated macroscopic
current using the slice sampling Markov chain Monte Carlo
method (MCMC, 2000 samples) is shown in Figure 5C (upper
panel). It can be seen that the distribution maximum significantly
differs from the distribution mean (red vertical line). Therefore,
in order to obtain “typical” values of unitary current, mean val-
ues of unitary current were also estimated by slice sampling from
the likelihood distributions obtained for individual synaptic cur-
rents (1000 MCMC samples for each current) from the same
group of 50 currents. The resulting distribution of unitary cur-
rent estimates obtained by accumulation of all 50 distributions for

individual currents is represented in Figure 5C (lower panel). The
final estimate of unitary current was obtained by averaging over
N = 50 mean unitary currents and was in perfect agreement with
its true value (Mean ± SD = 0.97 ± 0.39 pA, red vertical line in
Figure 5C, lower panel; SE = 0.056 pA). Figure 5D shows statis-
tics of the mean unitary current estimates obtained with MCMC
applied to likelihood distributions of individual currents (left
box, N = 50) in comparison with the same statistics obtained
with PS NSFA applied to individual currents as described above
(right box, N = 250, n = 50 bootstraps). It is clearly seen that,
contrary to MCMC, PS NSFA significantly overestimates unitary
current (green line indicates true value, 1 pA). Among the other
model parameters only the number of liganded channels, Nch,
and the resensitization rate, r2, were estimated with MCMC with
relatively high accuracy. The desensitization rate, d2, and GABA
unbinding rate, koff, were estimated in order of magnitude. The
median of the absolute difference between estimates of model
parameters and their true values for koff, d2, r2, ich, and Nch was
191, 188, 22, 31, and 35% of their true values, respectively.

We conclude that the mean values for several parameters of the
synaptic receptor model, such as the unitary current, the number
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of channels and the peak open probability, can be estimated with
a reasonable accuracy using ML NSFA or MCMC sampling from
the likelihood distribution of each individual current in the group
of currents even if these currents were mediated by receptors
having different kinetic models.

DISCUSSION
In this study we have further developed a new maximum likeli-
hood method that we suggested earlier (Stepanyuk et al., 2011)
and applied it to analysis of simulated macroscopic currents, in
which the number of receptors exposed to a neurotransmitter var-
ied from trial to trial. In the newly developed method, ML NSFA,
the number of liganded receptors was first optimized for each
macroscopic current and then these estimates were used to max-
imize the log-likelihood in order to obtain a set of kinetic model
parameters as it was described earlier (Stepanyuk et al., 2011).

We explored the performance of ML NSFA with several dif-
ferent kinetic schemes of varying complexity and varying con-
ditions relevant for real synaptic transmission. It was shown
that contrary to PS NSFA (Traynelis et al., 1993) ML NSFA
could estimate not only the unitary current of synaptic recep-
tor channel but also multiple conductance levels, the number
of liganded receptors, peak open probability and some kinetic
constants from the experimentally realistic number of simu-
lated postsynaptic currents. We have also evaluated the accuracy
of ML NSFA compared to PS NSFA with respect to estimat-
ing the unitary current and found it 2-fold more accurate for
a few (5–30) macroscopic currents. ML NSFA estimation of the
unitary current was robust even when currents were generated
by receptors having different kinetic parameters, the case when
PS NSFA is not applicable. Thus, our results demonstrate that
ML NSFA that takes into account correlations between differ-
ent time points of a macroscopic currents and computationally
scales linearly with the number of channel states (Stepanyuk
et al., 2011) quantitatively and qualitatively outperforms cur-
rently available approaches for analysis of kinetic schemes of
synaptic receptors.

ML NSFA APPLICABILITY TO ANALYSIS OF SYNAPTIC
RECEPTOR PROPERTIES
Noise analysis of macroscopic currents remains a useful tool
for determining the properties of different ligand- and voltage-
operated channels (Traynelis and Jaramillo, 1998). Moreover, PS
NSFA, the most frequently used noise analysis approach, is the
only approach that can be applied to analysis of channels with
an unusually low unitary conductance (Swanson et al., 1997) and
receptor channels localized at synapses (Traynelis and Jaramillo,
1998). At the same time the unitary current is virtually the only
parameter that can be reliably obtained from this type of anal-
ysis (Traynelis et al., 1993; Silver et al., 1996). To the best of our
knowledge, kinetic rates have never been estimated for any synap-
tic receptors in their intrinsic environment. Peak open probability
of receptors and the number of receptors bound with a neuro-
transmitter could not be also directly analyzed by any current
approach. Possibility to estimate the unitary current and some
kinetic rates using a few simulated postsynaptic currents demon-
strated in this study allows for the first time to follow a time course

of receptor remodeling in one and the same synaptic connection.
Having in mind that estimation of some receptor parameters with
accuracy of 10% can be obtained from 10 macroscopic currents
(Figures 1, 2), which can be collected in routine electrophysiolog-
ical experiments for about 30 s, dynamics of receptor remodeling
can be followed with a time course of several measurements per
minute. It can be, for example, used for studying of modal gating,
which refers to low probability rearrangements in receptor struc-
ture producing a substantial change in the overall pattern of chan-
nel opening (Popescu, 2012). Modal switches can be observed in
single channel recordings of most ionotropic ligand-gated chan-
nels (Popescu, 2012) but it has never been directly demonstrated
for synaptic receptors located in their intrinsic environment in
a response to synaptic release of neurotransmitter. Modal gating
may result not only in the different unitary conductance of recep-
tors but also in changes in their gating and peak open probability
(Popescu, 2005; Lema and Auerbach, 2006; Zhang et al., 2008;
Poon et al., 2010; Prieto and Wollmuth, 2010). Moreover, in many
cases, especially for the instance of NMDA receptors, substantial
changes in gating, and peak open probability is observed with-
out changes in the unitary conductance (Popescu, 2005; Zhang
et al., 2008). Thus, such remodeling of synaptic receptors cannot
be, in general, revealed by PS NSFA, while ML NSFA should cer-
tainly uncover it due to intrinsic ability to estimate some kinetic
constants and peak open probability (Figures 1, 2). The modal
gating is slow (Popescu, 2005; Zhang et al., 2008; >5 min) and
agonist- and stimulus-sensitive (Armstrong and Gouaux, 2000;
Poon et al., 2010). Thus, it looks potentially plausible to syn-
chronize synaptic receptor switching between different modes for
a set of synaptic receptors in a given synaptic connection and
to study the modal gating of synaptic receptors in their intrin-
sic environment by means of ML NSFA. For example, multiple
conductance levels observed in modal gating of GluA2 AMPA
receptors (Prieto and Wollmuth, 2010) or different open channel
probabilities found for the type 2A isoform of NMDA receptors
(Popescu and Auerbach, 2003) can be resolved from the respective
postsynaptic currents (Figures 2–4).

Moreover, different types of AMPA receptor regulation that
occur during LTP or LTD expression, such as changes in recep-
tor trafficking (Huganir and Nicoll, 2013), in interaction of
AMPARs with auxiliary subunits (Khodosevich et al., 2014) or
adapter proteins that could lead to changes in receptor kinetics
(Studniarczyk et al., 2013), phosphorylation-evoked changes in
unitary current and peak open probability (Traynelis and Wahl,
1997; Derkach, 2003) could be potentially resolved with ML
NSFA applied to the respective postsynaptic currents. Studies of
developmental, pathological, plastic, and tissue specific modifica-
tions of synaptic receptors (Kittler et al., 2004; Lüthi et al., 2004;
Palmer, 2006; Stubblefield and Benke, 2010) including changes
in receptor subunit composition and trafficking (Ruiz et al.,
2005; Patten and Ali, 2007) that have been earlier analyzed by
PS NSFA may now also obtain a second wind due to a pos-
sibility to evaluate many parameters of the respective synaptic
receptors.

Conclusions about mechanisms of synaptic receptors modu-
lation that are based solely on the analysis of the amplitude of
postsynaptic currents or unitary current might be misleading.
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Indeed, stable unitary conductance might be accompanied by
changes in receptor gating that may lead to an increase in the
total charge transferred via a single synaptic receptor (Figure 4).
At the level of macroscopic current it would result in an increase
of current amplitude without substantial changes of its wave-
form (Figure 4). Together with absence of changes in the unitary
conductance reported by PS NSFA it would be interpreted as
presynaptic modification or an increase in the number of post-
synaptic receptors. At the same time ML NSFA would certainly
reveal changes in postsynaptic receptor gating.

The new approach also allows separate estimation of kinetic
parameters of synaptic and extrasynaptic receptors expressed in
the same neuron. For that, a set of postsynaptic currents neces-
sary for evaluation of synaptic receptor model parameters must
be initially recorded. Then strong presynaptic stimulation that
can activate the whole set of synaptic terminals innervating the
neuron under study should be performed in the presence of an
irreversible use-dependent inhibitor of the respective synaptic
receptors (e.g., picrotoxin for GABAA (Olsen, 2006) or MK-801
for NMDA (McAllister and Stevens, 2000) receptors, respec-
tively). Next, several different agonist concentrations should be
sequentially applied to the preparation in order to activate the
extrasynaptic receptors and to record the respective transmem-
brane currents. Analysis of these macroscopic currents by ML
NSFA or some of previously developed approaches (Milescu et al.,
2005; Moffatt, 2007; Stepanyuk et al., 2011) would give kinetic
parameters of extrasynaptic receptors.

ML NSFA APPLICABILITY TO ANALYSIS OF SYNAPTIC
RECEPTOR NUMBER AND PEAK OPEN PROBABILITY
PS NSFA provides only an estimate of unitary current (Traynelis
et al., 1993). In spite of this, estimation of Nch and P(o, peak) was
performed for single mossy fiber synapses of hippocampal gran-
ule cells having saturating glutamate concentration induced by
synaptic vesicles release (Silver et al., 1996). In this case variance
due to quantal variability is negligible and conventional NSFA can
estimate these parameters. Although saturation of postsynaptic
receptors is not rare in central synapses (Auger and Marty, 1997;
Perrais and Ropert, 1999, 2000; Hájos et al., 2000; Nusser et al.,
2001; Biró et al., 2006) estimation of Nch and P(o, peak) could not
be performed for the synaptic connections with multiple release
sites by conventional NSFA due to trial-to-trial variability in the
number of released vesicles and, as a result, in the number of
receptors exposed to neurotransmitter. Moreover, in most of the
central synapses neurotransmitter does not saturate postsynap-
tic receptors making all current methods void in determining
Nch and P(o, peak). On the other hand ML NSFA suggested in
this study can directly evaluate the number of receptors, Nch,
bound with neurotransmitter by the end of fast transient of neu-
rotransmitter concentration in a synaptic cleft and P(o, peak)
defined as a fraction of liganded receptors Nch, opened at the
peak of macroscopic current (Figure 2). Moreover, Nch could
be separately evaluated for each postsynaptic current (Equation
18) and open probability as a function of time, which, in par-
ticular, includes P(o, peak) (Figure 2) could be obtained from
estimated kinetic rate constants (Figures 1, 3, 5). Assumptions
underlying ML NSFA suggest that estimations of kinetic rates as

well as Nch and P(o, peak) are correct if all synaptic receptors
are subjected to the same and fast neurotransmitter profile or if
the receptors are saturated. For some kinetic schemes (Figure 1A)
saturation or the same concentration profile for all receptors are
not obligatory and fast (compared to some kinetic rates) neuro-
transmitter profile is the only necessary assumption for ML NSFA
applicability.

ML NSFA might be generally applicable to studies of synap-
tic and extrasynaptic NMDA receptors, glutamate receptors that
directly contribute to active properties of dendrites. In the case
of synaptic AMPA and NMDA receptors the ability of ML NSFA
to analyze currents with variable kinetics could be important
due to significant variability of glutamate transients in the exci-
tatory synapses, low saturation levels of both receptor types
(McAllister and Stevens, 2000) and complexity of their kinetic
schemes (Popescu and Auerbach, 2004).

In conclusion we would like to note that more accurate esti-
mation of unitary current compared to PS NSFA together with
possibilities to distinguish multiple conductance levels and eval-
uate the number of liganded receptors, peak open probability
and some kinetic constants position ML NSFA as a powerful
tool to study synaptic receptor properties in their native environ-
ment using experimentally recorded postsynaptic macroscopic
currents.

ACKNOWLEDGMENTS
This work was supported by NASU Biotechnology and Functional
Genomics and Metabolomics Grants and DFFD F46.2/001 and
F47/066 Grants.

REFERENCES
Armstrong, N., and Gouaux, E. (2000). Mechanisms for activation and antagonism

of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand
binding core. Neuron 28, 165–181. doi: 10.1016/S0896-6273(00)00094-5

Auger, C., and Marty, A. (1997). Heterogeneity of functional synaptic param-
eters among single release sites. Neuron 19, 139–150. doi: 10.1016/S0896-
6273(00)80354-2

Benke, T. A., Lüthi, A., Isaac, J. T., and Collingridge, G. L. (1998). Modulation of
AMPA receptor unitary conductance by synaptic activity. Nature 393, 793–797.
doi: 10.1038/31709

Biró, A. A., Holderith, N. B., and Nusser, Z. (2006). Release probability-dependent
scaling of the postsynaptic responses at single hippocampal GABAergic
synapses. J. Neurosci. 26, 12487–12496. doi: 10.1523/JNEUROSCI.3106-
06.2006

Celentano, J. J., and Hawkes, A. G. (2004). Use of the covariance matrix in directly
fitting kinetic parameters: application to GABAA receptors. Biophys. J. 87,
276–294. doi: 10.1529/biophysj.103.036632

Colquhoun, D., and Hawkes, A. G. (1977). Relaxation and fluctuations of mem-
brane currents that flow through drug-operated channels. Proc. R. Soc. Lond. B.
Biol. Sci. 199, 231–262. doi: 10.1098/rspb.1977.0137

Derkach, V. A. (2003). Silence analysis of AMPA receptor mutated at the CaM-
kinase II phosphorylation site. Biophys. J. 84, 1701–1708. doi: 10.1016/S0006-
3495(03)74978-9

DeWilde, P., and van der Veen, A.-J. (1998). Time-Varying Systems and
Computations. (Boston, MA: Kluwer Academic Publishers).

Eidelman, Y., and Gohberg, I. (2008). Out-of-band quasiseparable matrices. Linear
Algebra Appl. 429, 266–289. doi: 10.1016/j.laa.2008.02.026

Hájos, N., Nusser, Z., Rancz, E. A., Freund, T. F., and Mody, I. (2000). Cell type-
and synapse-specific variability in synaptic GABAA receptor occupancy. Eur. J.
Neurosci. 12, 810–818. doi: 10.1046/j.1460-9568.2000.00964.x

Hartveit, E., and Veruki, M. L. (2006). Studying properties of neurotransmitter
receptors by non-stationary noise analysis of spontaneous synaptic currents.
J. Physiol. 574, 751–785. doi: 10.1113/jphysiol.2006.111856

Frontiers in Cellular Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 303

228

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Stepanyuk et al. Statistical estimation of synaptic receptor parameters

Huganir, R. L., and Nicoll, R. A. (2013). AMPARs and synaptic plasticity: the last
25 years. Neuron 80, 704–717. doi: 10.1016/j.neuron.2013.10.025

Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P., and Grant, S. G. (2000).
Proteomic analysis of NMDA receptor-adhesion protein signaling complexes.
Nat. Neurosci. 3, 661–669. doi: 10.1038/76615

Jin, R., Banke, T. G., Mayer, M. L., Traynelis, S. F., and Gouaux, E. (2003). Structural
basis for partial agonist action at ionotropic glutamate receptors. Nat. Neurosci.
6, 803–810. doi: 10.1038/nn1091

Keramidas, A., and Harrison, N. L. (2010). The activation mechanism of
alpha1beta2gamma2S and alpha3beta3gamma2S GABAA receptors. J. Gen.
Physiol. 135, 59–75. doi: 10.1085/jgp.200910317

Khodosevich, K., Jacobi, E., Farrow, P., Schulmann, A., Rusu, A., Zhang,
L., et al. (2014). Coexpressed auxiliary subunits exhibit distinct
modulatory profiles on AMPA receptor function. Neuron 83, 601–615.
doi: 10.1016/j.neuron.2014.07.004.

Kittler, J. T., Thomas, P., Tretter, V., Bogdanov, Y. D., Haucke, V., Smart, T.
G., et al. (2004). Huntingtin-associated protein 1 regulates inhibitory synap-
tic transmission by modulating gamma-aminobutyric acid type A receptor
membrane trafficking. Proc. Natl. Acad. Sci. U.S.A. 101, 12736–12741. doi:
10.1073/pnas.0401860101

Lema, G. M. C., and Auerbach, A. (2006). Modes and models of GABA(A) receptor
gating. J. Physiol. 572, 183–200. doi: 10.1113/jphysiol.2005.099093

Li, F., and Tsien, J. Z. (2009). Memory and the NMDA receptors. N. Engl. J. Med.
361, 302–303. doi: 10.1056/NEJMcibr0902052

Low, C. M., Zheng, F., Lyuboslavsky, P., and Traynelis, S. F. (2000). Molecular deter-
minants of coordinated proton and zinc inhibition of N-methyl-D-aspartate
NR1/NR2A receptors. Proc. Natl. Acad. Sci. U.S.A. 97, 11062–11067. doi:
10.1073/pnas.180307497

Lüthi, A., Wikström, M. A., Palmer, M. J., Matthews, P., Benke, T. A., Isaac, J. T. R.,
et al. (2004). Bi-directional modulation of AMPA receptor unitary conductance
by synaptic activity. BMC Neurosci. 5:44. doi: 10.1186/1471-2202-5-44

Magee, J. C. (2000). Dendritic integration of excitatory synaptic input. Nat. Rev.
Neurosci. 1, 181–190. doi: 10.1038/35044552

Major, G., Larkum, M. E., and Schiller, J. (2013). Active properties of neo-
cortical pyramidal neuron dendrites. Annu. Rev. Neurosci. 36, 1–24. doi:
10.1146/annurev-neuro-062111-150343

Markova, O., Stepanyuk, A., Tsugorka, T., Drebot, Y., Cherkas, V., and
Belan, P. (2005). Applicability of peak-scaled nonstationary fluctuation
analysis to the study of inhibitory synaptic transmission in hippocam-
pal cultures. Neurophysiology 37, 333–343. doi: 10.1007/s11062-006-
0008-z

McAllister, A. K., and Stevens, C. F. (2000). Nonsaturation of AMPA and NMDA
receptors at hippocampal synapses. Proc. Natl. Acad. Sci. U.S.A. 97, 6173–6178.
doi: 10.1073/pnas.100126497

Milescu, L. S., Akk, G., and Sachs, F. (2005). Maximum likelihood estimation of
ion channel kinetics from macroscopic currents. Biophys. J. 88, 2494–2515. doi:
10.1529/biophysj.104.053256

Moffatt, L. (2007). Estimation of ion channel kinetics from fluctuations of macro-
scopic currents. Biophys. J. 93, 74–91. doi: 10.1529/biophysj.106.101212

Mortensen, M., Ebert, B., Wafford, K., and Smart, T. G. (2010). Distinct activities of
GABA agonists at synaptic- and extrasynaptic-type GABAA receptors. J. Physiol.
588, 1251–1268. doi: 10.1113/jphysiol.2009.182444

Mozrzymas, J. W., Barberis, A., Mercik, K., and Zarnowska, E. D. (2003). Binding
sites, singly bound states, and conformation coupling shape GABA-evoked
currents. J. Neurophysiol. 89, 871–883. doi: 10.1152/jn.00951.2002

Nadkarni, S., Bartol, T. M., Sejnowski, T. J., and Levine, H. (2010). Modelling
vesicular release at hippocampal synapses. PLoS Comput. Biol. 6:e1000983. doi:
10.1371/journal.pcbi.1000983

Neal, R. M. (2003). Slice sampling. Ann. Stat. 31, 705–767. doi:
10.1214/aos/1056562461

Neher, E., and Stevens, C. F. (1977). Conductance fluctuations and ionic
pores in membranes. Annu. Rev. Biophys. Bioeng. 6, 345–381. doi:
10.1146/annurev.bb.06.060177.002021

Nusser, Z., Naylor, D., and Mody, I. (2001). Synapse-specific contribution of
the variation of transmitter concentration to the decay of inhibitory post-
synaptic currents. Biophys. J. 80, 1251–1261. doi: 10.1016/S0006-3495(01)
76101-2

Olsen, R. W. (2006). Picrotoxin-like channel blockers of GABAA receptors. Proc.
Natl. Acad. Sci. U.S.A. 103, 6081–6082. doi: 10.1073/pnas.0601121103

Palmer, M. J. (2006). Functional segregation of synaptic GABAA and GABAC
receptors in goldfish bipolar cell terminals. J. Physiol. 577, 45–53. doi:
10.1113/jphysiol.2006.119560

Paoletti, P., Ascher, P., and Neyton, J. (1997). High-affinity zinc inhibition of
NMDA NR1-NR2A receptors. J. Neurosci. 17, 5711–5725.

Patten, S. A., and Ali, D. W. (2007). AMPA receptors associated with zebrafish
Mauthner cells switch subunits during development. J. Physiol. 581(Pt 3),
1043–1056. doi: 10.1113/jphysiol.2007.129999

Perrais, D., and Ropert, N. (1999). Effect of zolpidem on miniature IPSCs and
occupancy of postsynaptic GABAA receptors in central synapses. J. Neurosci.
19, 578–588.

Perrais, D., and Ropert, N. (2000). Altering the concentration of GABA in the
synaptic cleft potentiates miniature IPSCs in rat occipital cortex. Eur. J. Neurosci.
12, 400–404. doi: 10.1046/j.1460-9568.2000.00957.x

Poon, K., Nowak, L. M., and Oswald, R. E. (2010). Characterizing single-
channel behavior of GluA3 receptors. Biophys. J. 99, 1437–1446. doi:
10.1016/j.bpj.2010.06.058

Popescu, G. (2005). Mechanism-based targeting of NMDA receptor functions. Cell.
Mol. Life Sci. 62, 2100–2111. doi: 10.1007/s00018-005-5227-8

Popescu, G., and Auerbach, A. (2003). Modal gating of NMDA receptors and the
shape of their synaptic response. Nat. Neurosci. 6, 476–483. doi: 10.1038/nn1044

Popescu, G., and Auerbach, A. (2004). The NMDA receptor gating
machine: lessons from single channels. Neuroscientist 10, 192–198. doi:
10.1177/1073858404263483

Popescu, G. K. (2012). Modes of glutamate receptor gating. J. Physiol. 590, 73–91.
doi: 10.1113/jphysiol.2011.223750

Prieto, M. L., and Wollmuth, L. P. (2010). Gating modes in AMPA
receptors. J. Neurosci. 30, 4449–4459. doi: 10.1523/JNEUROSCI.5613-
09.2010

Qin, F., Auerbach, A., and Sachs, F. (2000). Hidden Markov modeling for single
channel kinetics with filtering and correlated noise. Biophys. J. 79, 1928–1944.
doi: 10.1016/S0006-3495(00)76442-3

Robert, A., and Howe, J. R. (2003). How AMPA receptor desensitization depends
on receptor occupancy. J. Neurosci. 23, 847–858.

Ruiz, A., Sachidhanandam, S., Utvik, J. K., Coussen, F., and Mulle, C. (2005).
Distinct subunits in heteromeric kainate receptors mediate ionotropic and
metabotropic function at hippocampal mossy fiber synapses. J. Neurosci. 25,
11710–11718. doi: 10.1523/JNEUROSCI.4041-05.2005

Scimemi, A., and Beato, M. (2009). Determining the neurotransmitter concentra-
tion profile at active synapses. Mol. Neurobiol. 40, 289–306. doi: 10.1007/s12035-
009-8087-7

Sigworth, F. J. (1980). The variance of sodium current fluctuations at the node of
Ranvier. J. Physiol. 307, 97–129.

Silver, R. A., Cull-Candy, S. G., and Takahashi, T. (1996). Non-NMDA glutamate
receptor occupancy and open probability at a rat cerebellar synapse with single
and multiple release sites. J. Physiol. 494(Pt 1), 231–250.

Silver, R. A., Traynelis, S. F., and Cull-Candy, S. G. (1992). Rapid-time-course
miniature and evoked excitatory currents at cerebellar synapses in situ. Nature
355, 163–166. doi: 10.1038/355163a0

Stepanyuk, A. R., Borisyuk, A. L., and Belan, P., V (2011). Efficient maximum likeli-
hood estimation of kinetic rate constants from macroscopic currents. PLoS ONE
6:e29731. doi: 10.1371/journal.pone.0029731

Stubblefield, E. A., and Benke, T. A. (2010). Distinct AMPA-type glutamatergic
synapses in developing rat CA1 hippocampus. J. Neurophysiol. 104, 1899–1912.
doi: 10.1152/jn.00099.2010

Studniarczyk, D., Coombs, I., Cull-Candy, S. G., and Farrant, M. (2013). TARP γ-7
selectively enhances synaptic expression of calcium-permeable AMPARs. Nat.
Neurosci. 16, 1266–1274. doi: 10.1038/nn.3473

Swanson, G. T., Kamboj, S. K., and Cull-Candy, S. G. (1997). Single-channel
properties of recombinant AMPA receptors depend on RNA editing, splice vari-
ation, and subunit composition. J. Neurosci. 17, 58–69. Available online at:
http://www.jneurosci.org/content/17/1/58.long

Traynelis, S. F., and Jaramillo, F. (1998). Getting the most out of noise in the
central nervous system. Trends Neurosci. 21, 137–145. doi: 10.1016/S0166-
2236(98)01238-7

Traynelis, S. F., Silver, R. A., and Cull-Candy, S. G. (1993). Estimated conduc-
tance of glutamate receptor channels activated during EPSCs at the cerebellar
mossy fiber-granule cell synapse. Neuron 11, 279–289. doi: 10.1016/0896-
6273(93)90184-S

Frontiers in Cellular Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 303

229

http://www.jneurosci.org/content/17/1/58.long
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Stepanyuk et al. Statistical estimation of synaptic receptor parameters

Traynelis, S. F., and Wahl, P. (1997). Control of rat GluR6 glutamate receptor
open probability by protein kinase A and calcineurin. J. Physiol. 503(Pt 3),
513–531.

Vandebril, R., Van Barel, M., and Mastronardi, N. (2007). Matrix Computations and
Semiseparable Matrices: Linear Systems. (Baltimore, MD: JHU Press).

Venkataramanan, L., and Sigworth, F. J. (2002). Applying hidden Markov mod-
els to the analysis of single ion channel activity. Biophys. J. 82, 1930–1942. doi:
10.1016/S0006-3495(02)75542-2

Wyllie, D. J. A., Johnston, A. R., Lipscombe, D., and Chen, P. E. (2006).
Single-channel analysis of a point mutation of a conserved ser-
ine residue in the S2 ligand-binding domain of the NR2A NMDA
receptor subunit. J. Physiol. 574, 477–489. doi: 10.1113/jphysiol.2006.
112193

Zhang, W., Howe, J. R., and Popescu, G. K. (2008). Distinct gating modes deter-
mine the biphasic relaxation of NMDA receptor currents. Nat. Neurosci. 11,
1373–1375. doi: 10.1038/nn.2214

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 30 June 2014; paper pending published: 10 August 2014; accepted: 09
September 2014; published online: 02 October 2014.
Citation: Stepanyuk A, Borisyuk A and Belan P (2014) Maximum likelihood estima-
tion of biophysical parameters of synaptic receptors from macroscopic currents. Front.
Cell. Neurosci. 8:303. doi: 10.3389/fncel.2014.00303
This article was submitted to the journal Frontiers in Cellular Neuroscience.
Copyright © 2014 Stepanyuk, Borisyuk and Belan. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Cellular Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 303

230

http://dx.doi.org/10.3389/fncel.2014.00303
http://dx.doi.org/10.3389/fncel.2014.00303
http://dx.doi.org/10.3389/fncel.2014.00303
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


ORIGINAL RESEARCH ARTICLE
published: 16 December 2014

doi: 10.3389/fncom.2014.00164

Model reduction of strong-weak neurons
Bosen Du , Danny Sorensen and Steven J. Cox*

Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA

Edited by:

Sergey M. Korogod, National
Academy of Sciences of Ukraine,
Ukraine

Reviewed by:

Bartlett W. Mel, University of
Southern California, USA
Kresimir Josic, University of
Houston, USA

*Correspondence:

Steven J. Cox, Department of
Computational and Applied
Mathematics, Rice University, 6100
Main Street MS 134, Houston,
TX 77005, USA
e-mail: cox@rice.edu

We consider neurons with large dendritic trees that are weakly excitable in the sense
that back propagating action potentials are severly attenuated as they travel from the
small, strongly excitable, spike initiation zone. In previous work we have shown that the
computational size of weakly excitable cell models may be reduced by two or more orders
of magnitude, and that the size of strongly excitable models may be reduced by at least
one order of magnitude, without sacrificing the spatio–temporal nature of its inputs (in the
sense we reproduce the cell’s precise mapping of inputs to outputs). We combine the
best of these two strategies via a predictor-corrector decomposition scheme and achieve
a drastically reduced highly accurate model of a caricature of the neuron responsible for
collision detection in the locust.

Keywords: LGMD, predictor-corrector, quasi-active, proper orthogonal decomposition, discrete empirical

interpolation

1. INTRODUCTION
Since Hodgkin and Huxley the neuroscience community has
built mathematical models of cells, junctions and circuits as
means to both synthesize existing knowledge and to drive fur-
ther experiments. The complexity of both individual neurons
and the networks in which they function has posed serious chal-
lenges to those in search of minimal models. The goal of neuronal
model reduction is to arrive at a compact description of the
cell’s “function” and an efficient means of computing its response
to physiological stimuli. This is typically accomplished by dis-
covering a smaller equivalent dynamical system and discerning
from this a smaller equivalent electrical circuit. See Brunel et al.
(2014), Jadi et al. (2014) and Hedrick and Cox (2014) for recent
surveys.

We continue our focus, on reduced single cell models that
preserve the spatio-temporal structure of their inputs, by pro-
viding a detailed synthesis of the active reduction strategy of
Kellems et al. (2010) with the quasi-active reduction strategy
of Hedrick and Cox (2013). The synthesis is achieved via an
elegant method of Rempe and Chopp (2006) for decoupling
portions of complex cells and is applied to a caricature of the
Lobula Giant Movement Detector (LGMD), the neuron, Peron
et al. (2009), responsible for collision detection in the locust.
The LGMD has a large, non-spiking dendritic tree that inte-
grates visual input in a retinotopic fashion and funnels this
signal to a well defined Spike Initiation Zone (SIZ). Although
the structural morphology of the LGMD, and its inputs, has
been carefully mapped it is not yet understood what distribu-
tion of active and passive conductances permits the cell to discern
threatening from, seemingly similar, innocuous visual stimuli. It
is hoped that a reduced model will constrain the large param-
eter space and accelerate the search through this space, and
that it will lead to a compact description of the complex task
of collision detection as implemented by the full LGMD. For
a thorough investigation of the notion of weak excitability in

the context of hippocampal pryamidal cells see Golding et al.
(2001).

We build and test a detailed (879 compartments) model of the
LGMD in §2.1, decouple its branches in §2.2, reduce its active
branch in §2.3 and then its quasi-active branches in §2.4. We
recouple these two small (3 dimensional) systems in §2.5 and in
§3 demonstrate that the drastically reduced system retains the full
integrative qualities of the original 879-dimensional model while
running 20 times faster.

2. MATERIALS AND METHODS
The caricature of the LGMD neuron raised by Peron et al. (2009)
is the rake depicted in Figure 1A. We have numbered its 22
branches and marked its SIZ, in black, near the center of the han-
dle (branch 21) and the joint, in red, where the deck (branch
22) meets the handle. We have chosen a compartment (spatial
step) size of dxj = 10 μm and so arrive at a base system with 879
compartments. These are illustrated in Figure 1A and their spa-
tial dimensions are best seen in Figure 1B. We distribute standard
sodium, potassium and chloride channels throughout the rake in
such a fashion that the tines, branches 1 through 20, weakly inte-
grate synaptic input, funnel it to the deck which then delivers it
via the joint to a strongly excitable handle.

After specifying the full model we decompose it via a
predictor-corrector scheme and then apply distinct reduction
strategies to the strong and weak parts. Throughout we have used
a time step of dt = 0.005 ms.

2.1. THE FULL MODEL
With regard to the rake depicted in Figure 1A, we suppose that
the radius of the jth branch is aj = aj(x), where x denotes distance
along the branch, and that its associated transmembrane poten-
tial is vj = vj(x, t). If the branch contains sodium, potassium and
chloride ion channels and is subject to direct current stimulation
then Kirchhoff ’s current law reads
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Cm∂tvj = 1

2ajRa
∂x(a2

j ∂xvj) + Istim,j/(2πaj)

− gNa,jm
3
j hj(vj − ENa) − gK,jn

4
j (vj − EK )

− gCl,j(vj − ECl)

∂tmj = (m∞(vj) − mj)/τm(vj), (1)

where similar gating equations hold for hj and nj. In addi-
tion, we solve Equation 1 subject to sealed ends, current bal-
ance at branch points and initial conditions vj(x, 0) = vj(x) and
wj(x, 0) = w∞(vj(x)) where vj(x) is the associated rest potential,
obtained by solving

(a2
j (x)v′

j(x))′ = 2ajRa

{
gNa,j (x)m3∞(vj(x))h∞(vj(x))(vj(x) − ENa)

+ gK,j(x)n4∞(vj(x))(vj(x) − EK )

+ gCl,j(x)(vj(x) − ECl)

}
, (2)

again subject to sealed ends and current balance at branch points.
We concentrate throughout on a single set of parameters. The
choice

Cm = 1.5 μF/cm2, Ra = 0.05 k� cm, aj = 5 μm

ENa = 56, EK = −77, ECl = −68 mV

gNa,j = 2 gK,j = 3.6, gCl,j = 0.9 mS/cm2 (3)

will render the tines, branches 1–20, and the deck, branch 22,
weakly excitable, while setting

gNa,21(x) =
{

216 mS/cm2, 200 ≤ x < 260 μm

12 mS/cm2, otherwise.

and gCl,21 = 0.3 mS/cm2 (4)

will make the handle, branch 21, strongly excitable. We have illus-
trated the resulting rest potential, v, in Figure 1B. We see that the
non-uniformity in Equation 4 leads to a depolarized handle and a
non-uniform rest potential throughout the remainder of the rake.

We will solve this full system, Equation 1, for two classes of
inputs. For the first class, deemed coherent, we simulataneously
inject 4 nano-Amperes of current at the midpoint of each tine for
nine tenths of a millisecond. In symbols

Istim,j(x, t) = 0.004δ(x − 200)χ[0.1,1](t), 1 ≤ j ≤ 20, (5)

where χ[a,b](t) equals one if a ≤ t ≤ b and equals zero otherwise.
For the second class, deemed random, we inject 4 nano-Amperes
of current at a random location, and at a random time, on each
tine for nine tenths of a millisecond. In symbols

Istim,j(x, t) = 0.004δ(x − xj)χ[tj,tj + 0.9](t), 1 ≤ j ≤ 20, (6)

where the mean of xj is 200 μm and the mean of tj is 5 ms.
In response to coherent stimulus, Equation 5, we see in

Figure 1C steady and significant (20 mV) depolarization at the
joint (red trace) that is sufficient to drive the handle to spike (blue

FIGURE 1 | A strong-weak neuron. (A) The layout of the rake with its 22
numbered branches, divided into compartments of length dxj = 10 μm. (B)

The rest potential, v , obtained by solving Equation 2 subject to the
parameters specified in Equations 3 and 4. (C) The response of the full

model, Equation 1, at the SIZ (left end of black region in A) and joint (red
square in A) to the coherent synaptic input of Equation 5. (D) The response
of the full model, Equation 1, at the SIZ (left end of black region in A) and joint
(red square in A) to the random synaptic input of Equation 6.
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trace at SIZ). This spike travels down the handle and leads to the
second, smaller, depolarization at the joint. The random stimulus,
Equation 6, delivers the same amount of current to the rake but
spread over space and time. The response at the joint, red trace in
Figure 1D, indicate ≈3 mV depolarizations to individual current
steps. These are not coherent enough to accumulate in a fashion
sufficient to drive the handle to spike. Instead the response at the
SIZ, blue trace in Figure 1D, is a filtered attenuated version of the
joint trace.

2.2. BRANCH DECOMPOSITION
Rempe and Chopp (2006) introduced a rational scheme for
decomposing large cells into smaller (typically single branch)
regions. They were motivated by the fact that as an action
potential travels through a cell, branches on either side of the
action potential are relatively quiet and so need not be simu-
lated/computed. As such they devised branch-wise activity mea-
sures, in both Rempe and Chopp (2006) and Rempe et al. (2008),
that allowed them to build a spatially adaptive numerical scheme
that focused resources solely on active branches. One significant
advantage of their decomposition is that it permits simultane-
ous/parallel updating of the active branches. This feature has been
successfully exploited by Kozloski and Wagner (2011). Our use
of Rempe and Chopp (2006) is however, quite different. For we
use their scheme to partition the cell into strong and weak zones
that may then be reduced by strategies specific to the dynamics
consistent with such zones.

Rempe and Chopp (2006) decompose the cell by giving spe-
cial attention to those compartments, deemed nodes, at which
branches meet. We have illustrated this decomposition on our
rake in Figure 2. This spatial decomposition is only useful when
coupled with a scheme for properly updating the components in
time. Rempe and Chopp (2006) sketch a method that

(1) uses the present branch and node potentials to predict the
future node potentials,

(2) updates the branch potentials based on the predicted node
potentials,

(3) corrects the node potentials based on the updated branch
potentials.

As the success of our method hinges on this predictor-corrector
scheme we present it here in some detail.

We distinguish between branches 1 through 21, which are adja-
cent to a single node, and branch 22, which is adjacent to many.
Given the branch, vj(k, t), and node, wj(t), potentials and gating
variables at time t we advance the gating variables via the explicit
in v implicit in m step

mj(k, t + dt) = mj(k, t)τm(vj(k, t)) + m∞(vj(k, t))dt

dt + τm(vj(k, t))
,

1 ≤ k ≤ 39

mj(40, t + dt) = mj(40, t)τm(wj(t)) + m∞(wj(t))dt

dt + τm(wj(t))
,

1 ≤ j ≤ 21,

(7)

FIGURE 2 | Branch compartment and node labeling to facilitate

decoupling via a predictor-corrector scheme. The nodes are colored blue
and their potentials are w1 through w21. They occur at the ends of 21
respective branches. The potential in compartment k of branch j is denoted
vj (k).

and collect these into

�j(k, t + dt) = gNa,j(k)m3
j (k, t + dt)hj(k, t + dt)

+gK,j(k)n4
j (k, t + dt) + gCl,j(k)

γj(k, t + dt) = gNa,j(k)m3
j (k, t + dt)hj(k, t + dt)ENa

+gK,j(k)n4
j (k, t + dt)EK + gCl,j(k)ECl.

We next use these to take a backward Euler step of the associated
voltage equation, Equation 1,

Gj(k − )vj(k − 1, t + dt) − (Gj(k − ) + Gj(k + ))

vj(k, t + dt) + Gj(k + )vj(k + 1, t + dt) =
μ(vj(k, t + dt) − vj(k, t)) + �j(k, t + dt)vj(k, t + dt)

− γj(k, t + dt) + Istim,j(k, t + dt)/Aj(k)

where

Gj(k ± ) = aj(k)

Radx2
j

a2
j (k ± 1)

a2
j (k) + a2

j (k ± 1)
, μ = Cm/dt

and Aj(k) = 2πaj(k)dxj.

While at the ends, Gj(1 − ) = 0 and

Gj(40 − ) ≡ G∗
j− = aj(40)

Radx2
j

a2
j (39)

a2
j (40) + a2

j (39)

Gj(40 + ) ≡ G∗
j+ = aj(40)

2Radxj

dx2
22

2a2
j (40)dxj + dx2

22a22(pj)

where pj =
{

2j − 1, 1 ≤ j ≤ 20

20, j = 21.
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With these we may now make sense of the node equation

G∗
j−vj(39, t + dt)−(G∗

j− + G∗
j+)

wj(t + dt) + G∗
j+v22(pj, t + dt) =

μ(wj(t + dt) − wj(t)) + �j(40, t + dt)

wj(t + dt) − γj(40, t + dt) (8)

Following Rempe and Chopp (2006) we decouple the node and
branch equations in time by making a crude prediction of the
nodal potentials by replacing the backward Euler step Equation 8
with the forward Euler step

G∗
j−vj(39, t)−(G∗

j− + G∗
j+)wj(t) + G∗

j+v22(pj, t) =
μ(w∗

j (t)−wj(t)) + �j(40, t + dt)w∗
j (t) − γj(40, t + dt) (9)

where w∗
j (t) denotes our crude prediction of wj(t + dt). We note

that Equation 9 may be solved explicitly for

w∗
j (t) =

μwj(t) + γ ∗
j (t + dt) + G∗

j−vj(39, t)

−(G∗
j− + G∗

j+)wj(t) + G∗
j+v22(pj, t)

μ + �∗
j (t + dt)

,
(10)

where �∗
j (t + dt) = �j(40, t + dt) and γ ∗

j (t + dt) =
γj(40, t + dt). We then use these predicted nodal potentials
to drive the branch updates via

(μI + diag(�j(1 : 39, t + dt)) − Bj)vj( :, t + dt) =
μvj( :, t) + γj(1 : 39, t + dt) + Istim,j(:, t + dt) + cj(:, t),

(11)

where cj is the node branch coupling vector and Bj is the branch
tridiagonal matrix. For the branches adjacent to a single node,
j < 22, we find that cj is zero at each compartment except for

cj(39, t) = G∗
j−w∗

j (t), (12)

while Bj is the tridiagonal matrix

Bj(1, 1 : 2) = [−Gj(1 +) Gj(1 +)]
Bj(k, k − 1 : k + 1) = [Gj(k −) − (Gj(k −) + Gj(k +))

Gj(k +)], 1 < k < 39,

Bj(39, 38 : 39) = [Gj(39 −) − (Gj(39 −)

+Gj(39 + ))].

Turning to the deck, B22 is the tridiagonal matrix

B22(1, 1 : 2) = [−(G22(1 +) + G∗
1+) Gj(1 +)]

B22(k, k − 1 : k + 1) = [G22(k −) − (G22(k −)

+G22(k +)) G22(k +)],

1 < k < 39, k �= pj

B22(k, k − 1 : k + 1) = [G22(k −) − (G22(k −)

+G22(k +) + G∗
j+) G22(k +)],

1 < k < 39, k = pj

B22(39, 38 : 39) = [G22(39 −) − (G22(39 −) + G∗
20+)].

This differs from the previous Bj in the sense that it has no free
ends (hence 2 terms on the end diagonals) and meets the 20
tines (and hence three terms on those diagonals). The associated
coupling term is then zero except at

c22(pj, t) = G∗
j+w∗

j (t), j = 1, . . . , 21. (13)

Upon updating all branches we may then return to correcting the
nodal potentials, now via

G∗
j−vj(39, t + dt)−(G∗

j− + G∗
j+)

wj(t + dt) + G∗
j+vp(pj, t + dt) =

μ(wj(t + dt) − w∗
j (t)) + �∗

j (t + dt)

wj(t + dt) − γ ∗
j (t + dt) (14)

which we solve explicitly for

wj(t + dt) =

μwj(t) + γ ∗
j (t + dt) + G∗

j−vj(39, t + dt)

+G∗
j+vp(pj, t + dt)

μ + �∗
j (t + dt) + G∗

j− + G∗
j+

.
(15)

With this we may now offer a precise specification of the
Predictor-Corrector Algorithm

[1] Given the branch potentials, node potentials and gating
variables at time t update the gating variables per Equation 7.

[2] Predict the new values of the node potentials via Equation 10.
[3] Update the branch potentials via Equation 11.
[4] Correct the node potentials via Equation 15. Return to

step [1].

2.3. REDUCTION OF THE STRONG PART
Following Kellems et al. (2010) we reduce the dynamics in
the strong zone, (v21, m21, h21, n21) by the method of Proper
Orthogonal Decomposition by collecting snapshots of the mem-
brane potential and associated active current

Iact(t) ≡ gNa,21.m
3
21(t).h21(t).(v21(t) − ENa)

+gK,21.n
4
21(t).(v21(t) − EK )

in

V = [v21(0) v21(dt) · · · v21(Tfin)] and
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F = [Iact(0) Iact(dt) · · · Iact(Tfin)]
under a stimulus regime that generates a spike on branch 21.
The major features of spike generation and propagation are
purportedly captured in the first few singular vectors of V
and F. Accordingly we compute the respective singular value
decompositions

V = U
AT and F = W�CT, (16)

where the matrices of singular vectors, U, A, W and C, are
orthonormal and the matrices of singular values, 
 and �, are
diagonal – and ordered in a decreasing manner.

Our first stab at reduction is to suppose that v21 is well
approximated by the first κ columns of U , i.e.,

v21(t) ≈ Uκ v̂21(t)

where Uκ denotes the first κ columns of U (from Equation 16)
and so the reduced state v̂21(t) ∈ R

κ . On placing this guess in
the (spatially discretized version) of Equation 1 we find that the
reduced state, v̂21, must obey

Cmv̂′
21 = UT

κ B21Uκ v̂21 − UT
κ {gNa,21.m

3
21.h21.(Uκ v̂21 − ENa)

+ gK,21.n
4
21.(Uκ v̂21 − EK ) + gCl,21(Uκ v̂21 − ECl) − c21}

m′
21 = (m∞(Uκ v̂21) − m21)./τm(Uκ v̂21). (17)

This provides a clean reduction of the linear spatial coupling
between compartments, in the sense that

B̃21 ≡ UT
κ B21Uκ

is merely κ-by-κ . The non-linearities however are still computed
on the full dimensional vector Uκ v̂21. To address this we distil
from Wκ , the first κ columns of W (from Equation 16), κ places
along the handle at which it suffices to evaluate the non-linear
gating functionals. These places are selected by Discrete Empirical
Interpolation as those places at which the singular vectors of F
have the greatest content. In particular,

z1 =argmax|Wκ ( :, 1)|
P = ez1

for i = 2 : κ

s = (PTWκ ( :, 1 : i − 1))\PTWκ ( :, i)

r = Wκ ( :, i) − Wκ ( :, 1 : i − 1)s

zi = argmax|r|
P = [P ezi ]

end

where ek denotes the kth column of the identity matrix on
R

39. With these κ places, z = [z1, . . . , zκ ] and their associated
permutation matrix P we reduce the gating variables via

m21(t) ≈ Pm̂21(t). h21(t) ≈ Pĥ21(t) and n21(t) ≈ Pn̂21(t)

and so bring Equation 17 to

Cmv̂′
21 = B̃21v̂21 − R{gNa(z).m̂3

21.ĥ21.(Zv̂21 − ENa)

+ gK (z).n̂4
21.(Zv̂21 − EK )} − UT

κ gCl,21(Uκ v̂21 − ECl)

+ UT
κ c21

m̂′
21 = (m∞(Zv̂21) − m̂21)./τm(Zv̂21) (18)

where gNa(z) denotes the evaluation of gNa,21 at the compart-
ments indexed by z. As both

R = UT
κ Wκ (PTWκ )−1 and Z = PTUκ

are κ-by-κ we have arrived at a κ-dimesional reduction of the
original 39-dimensional active handle. We solve Equation 18,
subject to the initial conditions v̂21( :, 0) = UT

κ v and m̂21( :, 0) =
m∞(Zv̂21( :, 0)), via the standard explicit-implicit Euler method

m̂21(i, t + dt) =
m∞((Zv̂21( :, t))i)dt

+ τm((Zv̂21( :, t))i)m̂21(i, t)

dt + τm((Zv̂21( :, t))i)
(μI − B̃21 + �21)

v̂21( :, t + dt) = μv̂21( :, t) + γ21 + UT
κ c21(t)

(19)

where

�21 = R diag(gNa(z).m̂3
21( :, t + dt).ĥ21( :, t + dt)

+ gK (z).n̂4
21( :, t + dt))Z + UT

κ diag(gCl,21)Uκ

γ21 = R (gNa(z).m̂3
21( :, t + dt).ĥ21( :, t + dt)ENa

+ gK (z).n̂4
21( :, t + dt)EK ) + EClU

T
κ gCl,21

The c21 term in Equation 19 remains the contribution from the
nodal potential, w21. Before specifying this we discuss how to
reduce the remainder of the branches.

2.4. REDUCTION OF THE WEAK PART
In order to perform a single reduction on the remaining branches
it is most convenient to gather the variables in the 800 tine com-
partments and 39 deck compartments into four long vectors
v, m, h and n. The first step is then to linearize the full sys-
tem, Equation 1, about its rest state. More precisely, assuming the
stimulus to be order ε we develop the voltage and gating variables

v(x, t) = v(x) + εṽ(x, t) + O(ε2)

and m(x, t) = m∞(v(x)) + εm̃(x, t) + O(ε2). (20)

On substituting Equation 20 into Equation 1 and identifying
terms of order ε, we find that the so-called quasi-active variables,
ṽ, m̃, h̃ and ñ must solve

Cm∂t ṽ = 1

2Raa
∂x(a2∂xṽ) − (

gNa,jm
3∞(v)h∞(v) + gK,jn

4∞(v)

+ gCl,j )ṽ − 3gNa,jm
2∞(v)h∞(v)(v − ENa)m̃
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− gNa,jm
3∞(v)(v − ENa)h̃ − 4gK,jn

3∞(v)(v − EK )ñ

+ Istim/(2πa)

∂t m̃ = (m′∞(v) − m̃)/τm(v) (21)

subject to current balance where the tines meet the deck and to the
initial conditions ṽ(x, 0) = m̃(x, 0) = 0. On stacking the quasi-
active variables in

y = [m̃; h̃; ñ; ṽ]

and the stimuli and coupling vector in

u = [Istim,1; Istim,2; · · · ; Istim,20; c22] (22)

we may write Equation 21 as an (839 · 4)–dimensional system
for y,

y′(t) = Qy(t) + Bu(t), y(0) = 0 (23)

where the non-zero blocks of Q and B are

Q =

⎛

⎜⎜⎝

Dm,1 Dm,2

Dh,1 Dh,2

Dn,1 Dn,2

Dv,1 Dv,2 Dv,3 H

⎞

⎟⎟⎠ and B =

⎛

⎜⎜⎝
I/Cm

⎞

⎟⎟⎠ .

See §9.4 of Gabbiani and Cox (2010) for the diagonal D matrices
and the Hines matrix, H. Given the geometry of the rake we are
really only interested in the potential at the joint (recall the red
square in Figure 1A). As this is compartment number 820 in the
natural ordering, out of the large system Equation 23 we ask only
for a good approximation to the joint potential

J(t) = eT
839·3+820y,

where en is the unit vector with a one in element n. Following
Hedrick and Cox (2013) we suppose y ≈ X ŷ and choose an X ,
with only 4κ columns, that returns an accurate approximation
of J. This is done by matching the first κ moments of the full
and reduced transfer functions, or, equivalently, via the Arnoldi
scheme

x = H\e820

X = x/‖x‖
for i = 1 : κ − 1

x = H\X( :, i)

for j = 1 : i

x = x − (X( :, j)Tx)X( :, j)

end

X = [X x/‖x‖]
end (24)

where, for simplicity, we have chosen our reduced dimension, κ ,
to agree with that used to reduce the cell’s strong zone. We then
arrive at the full reducer by tiling this X, i.e.,

X =

⎛

⎜⎜⎝

X
X

X
X

⎞

⎟⎟⎠ . (25)

On inserting y = X ŷ into Equation 23 and using X TX = I we
find that ŷ must obeys

ŷ′(t) = X TQX ŷ(t) + X TBu(t), ŷ(0) = 0.

This we solve by backward Euler

(I − dtX TQX )ŷ(t + dt) = ŷ(t) + dtX TBu(t) (26)

and then read off the approximate joint potential via Ĵ(t) =
eT

839·3+820X ŷ(t).

2.5. THE REDUCED STRONG-WEAK NEURON
It remains only to specify the predictor and corrector updates of
the single nodal potential, w21, and to clarify their roles in the
coupling vector c21 appearing in the strong reduction, Equation
19, and the coupling vector c22 in the weak reduction, Equation
26, via its presence in the u of Equation 22.

Regarding the expressions for w∗
21 and w21 in Equation 10

and 15 we note that the required adjacent potentials are readily
derived from our independent reductions,

v21(39, t) ≈ Uκ (39, : )v̂(t) and v22(20, t) ≈ v22(20) + Ĵ(t).

The coupling vector c21 is all zero except c21(39, t) = G∗
21−w∗

21(t),
while the coupling vector c22 is all zero except c22(20, t) =
G∗

21+(w∗
21(t) − v22(20)).

3. RESULTS
We present in Figure 3 structural components of the strong (A)
and weak (B) reductions and in panels (C) and (D) contrast the
responses of the full and reduced models, at SIZ and Joint, to the
respective coherent and random stimuli used in Figure 1.

These results were robust to changes in the stimuli that gen-
erated the snapshots and to changes in the random stimuli,
Equation 6. The reduced system consistently ran in less than
1/20th of the time required by the original system. With κ =
3 the Discrete Empirical Interpolation method identified z =
[1, 21, 26] as the compartments along the handle at which to
evaluate the gating variables. On comparison to the sodium
channel distribution in Equation 4 we note that compartments
21 and 26 are the extent of the SIZ. Regarding Figure 3B we
interpret the columns of X as the dendritic filter, seen at the
joint, of the true inputs. For columns of X and biophysical
interpretations of the elements of X TQX see Hedrick and Cox
(2013). The errors reported in Figures 3C,D are quite small
relative to the original signals in Figures 1C,D and, regarding
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FIGURE 3 | The strong-weak reduction of the rake. (A) The singular
values of the voltage (V) and active current (F) snapshots. We see that
both have decreased by two orders of magnitude by their third index. (B)

An illustration of the three columns of the reducer, X , computed in
Equation 24, indicating how the reduced system processes the true

inputs. (C) Contrasting the response of the full (solid) and reduced
(κ = 3) models at the SIZ (black) and at the Joint (red) to identical
coherent stimuli. (D) Contrasting the response of the full (solid) and
reduced (κ = 3) models at the SIZ (black) and at the Joint (red) to
identical random stimuli.

FIGURE 4 | A shematic of the reduced rake. The true inputs, ui , into the
800 tine compartments are weighted by the columns of X and then
summed as they enter the 3 linear nodes, Li , of the reduced weak zone.
The linear nodes are fully coupled and a linear combination of their
responses contributes to the joint potential, vJ . The 3 fully coupled
non-linear nodes, Ni , of the reduced strong zone contribute to both vJ and
the SIZ potential vS .

the timing of critical SIZ events, produce negligible (< 0.1 ms)
errors. This then permits us to replace the complex 879 com-
partment model of Figure 1A with the 8 compartment model of
Figure 4.

4. DISCUSSION
We have developed and demonstrated a strategy for the system-
atic reduction of models of strong-weak neurons. In particular,
we have replaced a sensory neuron of dimension 879 with a
3-dimensional strong system coupled, via a single node, to a 3-
dimensional weak system, Figure 4, and found negligible absolute
differences in their voltage responses to complex spatio-temporal
inputs while running 20 times faster than the original. We have
achieved the strong-weak distinction through significant non-
uniformity in the density of sodium channels. This was merely
a matter of convenience. The effect can be achieved, see Golding
et al. (2001) and Migliore and Shepherd (2002), by a large class of
non-uniformities.

The critical assumption permitting our significant reduction
is that the bulk of the neuron is weakly excitable - and this means
that its response is well approximated by a quasi-active model.
The delineation of such systems is of course wrapped up in the
equally vexing questions of spike initiation and propagation. For
neurons whose dendrites are not sufficiently weak to meet our
definition we may apply our strong reduction to each branch and
then invoke the activity measures of Rempe and Chopp (2006)
and Rempe et al. (2008) to update these branches only when
necessary. Regarding scope, our methods are equally suited to
synaptic inputs modeled as conductance changes onto trees with
arbitrary branching patterns and arbitrary non-uniform chan-
nel distributions, see Kellems et al. (2010) and Hedrick and Cox
(2013), as well as to inputs via gap junctions, see Hedrick and
Cox (2014). These methods can also be readily adapted to incor-
porate non-uniform distributions of spines and NMDA receptors
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as well as interaction with the cell’s calcium handling machinery
of channels, buffers, receptors and pumps.
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Relatively recent advances in patch clamp recordings and iontophoresis have enabled

unprecedented study of neuronal post-synaptic integration (“dendritic integration”).

Findings support a separate layer of integration in the dendritic branches before

potentials reach the cell’s soma. While integration between branches obeys previous

linear assumptions, proximal inputs within a branch produce threshold nonlinearity, which

some authors have likened to the sigmoid function. Here we show the implausibility of

a sigmoidal relation and present a more realistic transfer function in both an elegant

artificial form and a biophysically derived form that further considers input locations along

the dendritic arbor. As the distance between input locations determines their ability to

produce nonlinear interactions, models incorporating dendritic topology are essential to

understanding the computational power afforded by these early stages of integration.

We use the biophysical transfer function to emulate empirical data using biophysical

parameters and describe the conditions under which the artificial and biophysically

derived forms are equivalent.

Keywords: dendrite, transfer function, neural network, NMDA spike, pyramidal cell

Introduction

Over the past decade, increasing evidence indicates that dendritic architecture plays an active role
in shaping somatic responses to synaptic input. Particularly in pyramidal neurons (e.g., Schiller
et al., 2000; van Elburg and van Ooyen, 2010; Branco and Häusser, 2011), conceptualizations of
the dendritic arbors have shifted from organizational topologies to primary units of computation
with unique integration properties that challenge most network abstractions of biological neurons
(Häusser and Mel, 2003; Spruston and Kath, 2004; Branco and Häusser, 2010, 2011). From the
beginning of computational modeling, network neurons (or “nodes”) have been described as
non-linear integrators (often sigmoidal) of linear input. Most commonly, this translates into a
nonlinear transform of the global sum of synaptically weighted input (inner-product of an input
and weight vector). However, an increasing body of evidence suggests non-linear summation
between relatively close inputs within a dendritic branch. For pyramidal neurons, these appear
linear for weak inputs, highly super-linear for intermediate inputs and slightly sub-linear for strong
inputs (Polsky et al., 2004; Branco and Häusser, 2011). Suggested bio-mechanisms focus upon
regenerative branch spikes involving Na+, Ca+, and/or NMDA spikes (Schiller et al., 2000; Polsky
et al., 2004; Antic et al., 2010). Fortunately, this effect becomes increasingly linear as the distance
between inputs increases and when summation occurs between branches, suggesting a first layer
of non-linear within-branch integration followed by a global integrator of their summed output
(Polsky et al., 2004; Spruston and Kath, 2004). This framework has sometimes likened a single
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neuron to a two or three-layer neural network with the outer
(dendritic) layers all converging upon a single (somatic) node
(Häusser and Mel, 2003; Polsky et al., 2004; Spruston and
Kath, 2004). However, within this metaphor, the literature has
consistently referred to sigmoidal dendritic integrators that do
not fully match data. In fact, a sigmoidal function quickly
generates implausible scenarios such as extremely limited ranges
of inhibitory post-synaptic potentials (IPSP’s). This is due to
the fact that the sigmoid is anti-symmetric about its mid-point
near a peak excitatory post-synaptic potential (EPSP) amplitude
of 4mV measured at the soma (Polsky et al., 2004). Moreover,
the sigmoid’s anti-symmetry implies both sides of the midpoint
must be equally linear, which does not allow the observed
sub-threshold linearity with extreme nonlinearity post-threshold
(see Figure 1A). Rather, the data most resemble a monotonic
“hook,” which some have more accurately described as linear-
nonlinear with the nonlinear segment concave (Jadi et al., 2014).
Based upon current data of subthreshold linearity, it appears the
sigmoid’s resemblance is only due to oversampling the function’s
nonlinear upper half (specifically only positive inputs).

In contrast to the oft described “sigmoid,” Poirazi et al. (2003)
produced a two-layer model with a binomial-logistic hybrid
function of synaptic activation count that resembles a “linear
hook” within certain boundaries. This study provided some of
the first evidence that a two-layer network (with a non-sigmoidal
input layer) can approximate the firing frequency of a detailed
model pyramidal cell (see Figure 6B). Importantly, Poirazi et al.’s
(2003) model used the same linear-hook type function for each
dendrite-to-soma transfer prior to a global sigmoidal transform.
Results firmly established that simple linear-concave functions
of binary input form an adequate input layer to describe
firing rates (after a sigmoidal global transform). However, many
applications involve continuous metrics of synaptic input or
dynamic somatic compartments as in bursting behavior. These
situations require information about membrane potentials rather
than converting the number of glutamatergic synapses activated
into firing rates. Here we use the separation principle of fast-
slow dynamics (Genet and Delord, 2002; Wainrib et al., 2012)
to derive simple, artificial and biophysical dendritic transfer
functions for changes in somatic membrane potential. The
biophysical transfer function is then compared to experimental
data. Both versions of the transfer function are linear-sigmoid
hybrids and hence computationally simple. This is notable
because most current models use a single dendritic compartment
(or none) for computational simplicity as individual branch
models drastically increase processing time. However, the use
of time-independent transfer functions removes this barrier as
a single nodal compartment may then integrate the non-linear
dendritic components. Rather than simulating each branch with
a dynamical system of membrane potential, a suitable transfer
function may directly convert dendritic input to the induced
somatic potential.

Methods

General Transfer Function
We begin by characterizing the dendritic transfer function
TD(V):

1. As the distance between input sites increases, T should
become the linear sum.

2. At close distances, T is linear for weak inputs, super-linear for
intermediate inputs, and slightly sub-linear for strong inputs.

3. Three currents must be accounted for: fast ionic currents
(Ifast), leak current (Ileak), and a slow NMDAR-mediated
current (INMDA).

Biophysical models have made use of the fast-slow dynamics
of dendritic membrane to neglect relaxation times of fast
channels, instead keeping them constant at equilibrium
conductance (Genet and Delord, 2002). To remain time-
independent (necessary for a transfer function), we model the
net hyper/depolarization for a set of proximal inputs [TD(x1,
x2, x3,. . . )] using the distances between input sites as a proxy
for time in determining an expectation for leak and NMDAR-
mediated currents. The change in potential (relative to base) is
then expressed as a bounded sum of linear inputs and nonlinear
NMDAR-mediated currents.

As previously mentioned, the sigmoid function does not
converge to the linear summation observed for inter-branch
dendritic currents. Instead we make use of a juxtaposition of
sigmoid integrals of the total polarization to form a locally linear
function G(V) with upper and lower bounds bu, bl.

0 < αL,U , bL < bU,G (V)

=

∫
1

1+ e−αL(V −bL)
−

1

1+ e−αU( V−bU)
dV

G(V) = ln





(
1+ eαL(V −bL)

) 1
αL

(
1+ eαU(V −bU)

) 1
αU



+ bL (1)

Here αL and αU are the curvature of lower and upper boundaries
respectively, while bL and bU are the lower and upper boundaries
with the constant bL added to center the function (Figure 1B).
Throughout, all potentials are translated so that ELeak = 0
for the leak potential. Using the multivariate logistic-sigmoid:
σ(XD):R

n → R = [1 + exp(−6{Xi})]
−1 for input vector XD we

first describe a simple transfer function which, as can be seen in
Figure 1A, qualitatively provides a superior fit relative to a simple
sigmoid:

TArtificial (X) = G
(
cdσ

(
ad

[
X̂D − bd

])
+
∑

Xi

)
(2)

This naïve form simply takes the boundary of the sum of linear
and sigmoidally-nonlinear components from the dendritic input
vector X with cd the nonlinear maximum, ad the curvature,
and bd the mid-point (related to threshold) of the nonlinear
component (Figure 1A). Although not biophysical, this form
bears substantial resemblance to empirical dendritic integration
(e.g., Polsky et al., 2004) in its linear-hook appearance and is at
least an improvement on linear-integration when few parameters
are known. It must be noted that, the artificial transfer function
does not consider the locations of input. However, we will
now derive a biophysically-reasonable description of dendritic
integration for which the naïve form becomes a specific case.
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FIGURE 1 | Comparison of transfer function components. (A)

Comparison of sigmoidal (Blue) and Linear Hook functions (Red). The

linear hook is a bounded sum of linear and sigmoidal functions

[Bound(x + σ(x))]. Note that the sigmoid function fails to capture the

subthreshold linearity. (B) The linear-boundary function with limits

at ±6. The linear boundary function applies soft edges to a linear

component and is formed by taking the area under the difference of

sigmoids.

Biophysical Transfer Function
To approximate peak EPSP amplitude as a function of input
only, we make use of hierarchical dendritic time scales with
the separation principle. In this approach, systems with slow
and fast components are separated into a fast subsystem, in
which the slow variables are held constant, and a slow subsystem
contained in the fast nullcline. In the current case, the “linear”
fast ionic currents stem from channels with substantially shorter
opening times than NMDAR’s, while the opening of NMDAR’s
and Mg2+ unblocking is many orders quicker than channel
closing (Jahr and Stevens, 1990a,b). As such, we consider
the peak EPSP a sum of passively propagating fast ionic
currents and dynamically generated NMDA spikes, mirroring the
experimental separation of “linear” (fast ionic) and “nonlinear”
(spike) components (Figure 2). To remain time-independent,
inputs are viewed in terms of the induced local depolarization (vi)
as in neurotransmission and brief current pulses. Throughout,
vectors are ordered from the least to most distal dendritic
segments and all potentials are translated for a resting potential
of zero.

Spatial Decay
Because the fast ionic current is propagated passively, we
consider it subject to spatial decay only. Decay is characterized
by the functional length constant (λ), which is an empirical
parameter derived by fitting attenuation data to a negative
exponential of distance. Hence the attenuation from spatial
decay, denoted ϕ(xj→i) is a negative exponential of the
intervening distance:

ϕ
(
xj→i

)
= e−

|xj−xi|
λ (3)

The functional length constant should not be confused with Rall’s
(1969) length constant for an infinite cable at steady state. In
all simulations we used a length constant for arrival in spike
generation half that of the length constant for reaching the soma.
This method ensures that stimulus separation has more influence
over dendritic spike threshold than passive somatic transients.
Similarly, experimental findings demonstrate that increasing
inter-electrode distance by a few tens of microns has enormous
influence on the spike generation threshold (e.g., Polsky et al.,
2004), while the changes in attenuation over that distance should
be marginal.

Local Potential
For simplicity, we divide the NMDAR system into binary open
and closed phases and take expectations based on open/close
time distributions to transition between phases (Figure 2).
While the duration prior to initial opening is considered
based on single channel kinetics, the system’s open period is
defined by the resulting macroscopic current. This dissociation
is based upon findings that single NMDAR activations may
elicit cluster activation (Gibb and Colquhoun, 1991). Because
NMDAR-mediated bursts and clustering determine the resulting
macroscopic current dynamics, rather than isolated channels,
we consider the NMDAR system’s activation duration on the
order of burst/cluster lengths as opposed to the brief openings
of individual channels (Wyllie et al., 1998). Thus, the duration
prior to NMDAR system activation is based on short single
channel kinetics, while the period of activation is based on long
macroscopic dynamics. Prior to NMDAR opening we consider
two sources of depolarization: local and nonlocal input, both
of which are subject to decay. Local inputs are subject only to
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FIGURE 2 | Graphical representation of time-course separation

used to derive the transfer function. (A) Fast ionic (linear)

components exit the compartment near instantly and propagate

bidirectionally. (B) Prior to NMDAR opening, local potentials (within a

compartment) are subject to temporal decay (leak current). Starting

potentials at channel opening are then formed by spatially decayed fast

ionic currents from other compartments and temporally decayed

potentials from the relevant compartment. The length of duration prior

to opening is on the order of single channel kinetics, as a single

channel is sufficient to trigger bursting/clustering behavior. (C) While the

NMDAR system is active, only two currents are considered: leak current

(red) and NMDAR current (green). The length of NMDAR system

activation is on the much larger order of burst/cluster length to

represent macroscopic currents, rather than the far shorter individual

channel open durations. (D) After the NMDAR system inactivates,

NMDAR currents propagate toward the soma under spatial decay.

temporal (leak) decay, while we only consider spatial decay for
nonlocal inputs prior to channel opening. Letting the closed
times (prior to opening) bemulti-exponentially distributed (Gibb
and Colquhoun, 1991, 1992;Wyllie et al., 1998), the expected leak
constant at channel opening is then:

ϕi :

k∑

i= 1

θi
RmC

τi + RmC
(4)

Here C denotes membrane capacitance, τi are the time constants
of each exponential, θi the associated amplitudes, and the product
RmC gives the time constant of temporal decay. Repolarization
due to leak current is represented in its usual linear differential
equation, producing a solution proportional to the initial
condition (as with spatial decay). Because Equations (3) and
(4) represent constants of spatial and temporal decay each case
requires only a single computation. Ordering segments from
least to most distal, potentials at channel opening: v(tON), may
then be represented with a computationally efficient linearmatrix
equation of the input vector v(0):

v (tON) ∼ 8v(0) (5.1)

8i, j: =

{
ϕ(xj→i) i 6= j

ϕi i = j
(5.2)

This matrix is symmetric with diagonals corresponding to the
constants of temporal decay while nondiagonals correspond
to the constants of spatial decay when currents propagate
from more distal locations(i<j) and backpropagate (i>j). As
backpropagation is generally considered more efficient we
consider the possibility of differential length constants in Section
Varying Distance, although both cases are exponential form of
Equation (3). In computing NMDA spikes we use the following
alternative notation for brevity in which temporal dynamics start
at channel opening:

V (xi, 0) : = V0 (xi) : = vi(tON) (6)

NMDA Spikes
As stated previously, the NMDAR system may be separated
into slow (closing/current flow) and fast (opening/Mg2+ gating)
subcomponents. Because the fast subsystem rapidly converges to
the steady state, the gate’s nullcline is stable while the channel is
open with nullcline:

B (V) =
1

1+ e
−

(
V−Vs
ks

) (7)

Due to the strong time separation, we follow the tradition
of considering the gating function to be instantaneous, hence
defined by the nullcline (Jahr and Stevens, 1990a,b). In
contrast, the slow subsystem inherits the channel’s long closing
time scale and describes current flow for leak and NMDAR
components. For simplicity we only consider the leak and
NMDAR components:

C
∂V

∂t
= −

V

Rm
+ gB (V) (E− V) (8)

Here g denotes the max NMDAR conductance of the dendritic
segment while E denotes the NMDAR reversal potential. As
before, all potentials are translated for a resting potential of
zero. In considering only NMDAR and leak current, it is
necessary to increase the gating component’s slope (decrease
ks), less this reduction lead to global stability while the
channel is open. Global stability would compromise the voltage
dependence of spike production as glutamate binding would
always result in an NMDA spike. Depending on parametrization,
Equation (9) may have up to three equilibria, enabling
bistability. Equilibria correspond to solutions of the implicit
equation:
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Veq(x) =
gE

g + Rm
−1B(Veq(x))

−1

=

(
gE

g+Rm
−1

)

1+ Exp
[
−

(Veq(x)−Vmid+k ln[gRm + 1] )
k

] (9)

In the case of three equilibria, solutions possess locally stable
lower (resting potential) and upper (saturation) equilibria. The
middle equilibrium in this case is unstable leading to the
“all or none” bifurcation in spikes. The single equilibrium
case, in contrast, produces global stability, usually near the
NMDAR reversal potential. As such, the single equilibrium
case is pathological in the absence of other modulating voltage
gated cation channels (VGC’s) as glutamate binding would
almost always produce an NMDA spike. However, in biological
conditions, NMDA spikes still approach the NMDAR reversal
potential, so the locally stable equilibria are roughly preserved.
As long as three equilibria aremaintained in the reduction to only
leak and NMDAR dynamics, the locally stable equilibria remain
accurate. To produce three equilibria, we simply modify the slope
of Mg2+ blockade to compensate for the nonlinearity lost in
removing other VGC’s. However, it is important to note that full
high-dimensional models include other equilibria due to Na+-
spikelet’s and, in the apical dendrite, Ca2+ spikes (see Antic et al.,
2010). Also, although the stable equilibria are unmodified in the
bistable case, the point of bifurcation (unstable equilibrium) may
be. Biological evidence suggests other VGC’s mediate both the
threshold and amplitude of NMDA spikes such as Na+ (VGSC’s)
and Ca+ channels (VGCC’s) as revealed with application of
Na+ blocker TTX and Ca2+ blocker cadmium (Schiller et al.,
2000). While the reduced dynamics still produce the correct
amplitude for NMDA spikes, they may not produce the correct
threshold in the absence of VGSC’s/VGCC’s. Hence, it may be
necessary to additionally modify the midpoint of Mg2+ blockade.
In the results section we describe when modification is and
is not necessary due to the non-uniform distribution of spike
thresholds (Major et al., 2008).

We make further reductions through the bifurcation of
solutions. In assessing temporal dynamics after the initial channel
opening, we consider the long time course of NMDAR bursts
and clustering which give rise to macroscopic currents rather
than the brief individual open durations Both decay and spiking
occur on far shorter time scales than bursts, so states just prior to
closing are almost binary and represent the nonlinear component
of peak EPSP. As with the opening of individual channels,
the population burst duration is considered multi-exponentially
distributed (Gibb and Colquhoun, 1991, 1992;Wyllie et al., 1998)
producing the expected value (VNMDA):

VNMDA (x) =

n∑

i= 1

ωi

ai

∫
e
− t

ai V (x, t) dt

=

n∑

i= 1

ωi

(
RmC

RmC + ai

)[
g

C

∫
e
− t

ai B
(
V(x, t)

)

(
E− V(x, t)

)
dt + V0

]
(10)

with ωi the amplitude of the exponential component with
slope ai. In present form, however, both the local dynamics
(Equation 8) and expected NMDA component (Equation 10)
lack explicit solutions in terms of ordinary functions. Using the
bifurcation, we approximate Equations (8) and (10) by making
Mg2+ blockade constant, following channel opening. In a fully
dynamic regime, this method would not be justified. However,
because we are only interested in which equilibria solutions
approach, rather than how they get there, this method has fair
accuracy, provided the earlier condition that Equation (9) has
three solutions. As the slope of Mg2+ blockade increases (as
was done to ensure bistability), the bifurcation point approaches
the midpoint of B(V) (Equation 8). At the same time B(V)
approaches a step function. The result is that the Mg2+ blockade
approaches invariance except for an increasingly small region
about Vmid. Provided a sufficiently small k to ensure bistability,
the Mg2+ blockade may then be approximated as invariant
for initial points at channel opening sufficiently far from Vmid.
Changing the dynamic B(V) to a constant function of potential
at channel opening B(V0) produces the following solution to
Equation (8):

VNMDA (x, t) ∼ V0(x)+

(
gE

g + Rm
−1B(V0(x))

−1
− V0(x)

)

(
1− Exp

[
−

(
gB
(
V0(x)

)
+ Rm

−1

C

)
t

])
(11)

Hence with Mg2+ blockade constant while the channels are
open Equation (10) becomes linear, so all solutions exponentially
approach an equilibrium determined by the Mg2+ blockade at
channel opening. We stress that this approach is only valid in
approximating the path toward an equilibrium for Equation (8),
with bistability induced by increasing the Mg2+ blockade slope.
Because the transfer function only considers peak EPSP, this
approach is sufficient for the current purposes but is not a valid
approximation for the time course of fully dynamic dendrites.
As an exponential, this equation is readily combined with burst
length distributions. For a given starting potential, the ending
potential with an n-exponential burst length distribution is itself
n-exponentially distributed following translation. The expected
value used in computing peak EPSP is:

VNMDA(x) ∼ V0(x)+

(
gE

g + Rm
−1B(V0(x))

−1
− V0(x)

)



1−
n∑

i= 1

ωi

1+ ai

(
gB(V0(x))+Rm

−1

C

)



 (12)

While we only present the case for multi-exponential closing
distributions, the expected value is relatively insensitive to
the type of distribution chosen as spiking and decay occur
on much shorter time scales than the fall of NMDAR-
mediated currents. When the NMDAR burst/cluster durations
are considered sufficiently long, Equations (11) and (12) simplify
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to a simple sigmoid as in the artificial transfer function’s non-
linear component in Equation (2):

VNMDA (x) ∼
gE

g + Rm
−1B(V0(x))

−1
(13.1)

=

(
gE

g + Rm
−1

)
1

1+ Exp
[
−

(V0(x)−Vmid+k ln[gRm+1] )
k

] (13.2)

The second Equation (13.2) results from substituting the Mg2+

blockade Equation (7) and is the same as the equilibria Equation
(9) when the Mg2+ blockade is assumed invariant between
initial depolarization and its limiting equilibrium (spike or rest).
As discussed previously, the number of starting points (initial
depolarizations) for which this assumption is justified increases
with the slope of Equation (7) (inversely proportional to ks).
Hence, as Mg2+ blockade becomes increasingly binary, Equation
(12) becomes an increasingly accurate description of NMDAR
bistability. When the burst/cluster lengths are further assumed
sufficiently long to approach limiting states (spike or rest),
Equation (12) reduces to Equations (13). This reduction is greatly
desirable as Equations (13) do not require explicit knowledge of
burst length distributions.

Dendritic Integration
In generating a (time-independent) transfer function, we sacrifice
some information concerning the interaction of nonlinear
components (NMDAR currents) in separate dendritic segments.
Regardless of the number of incoming spikes, for instance, the
induced somatic voltage would not be expected to significantly
exceed the NMDAR reversal potential. Due to the continuous
distribution of NMDAR’s along the path of propagation, surplus
depolarization would leak back through NMDAR channels
before ever reaching the soma. However, the time independence
of a transfer function prohibits fully dynamical propagation.
While no individual spike crosses the NMDAR reversal potential
using the method described above, summation of multiple spikes
may, necessitating a boundary function as in Equation (1) to
mimic dendritic saturation. Although the functionG(V) provides
a soft boundary, all other components of the function are
unchanged. Hence the final transfer function for a given dendrite
is the bounded sum of linear (fast ionic currents) and nonlinear
(NMDAR-mediated) components. The final dendritic transfer
function, TBio(v), may then be described explicitly in terms of the
input vector v and decay vector δ:

δi : = e
(
−

xi→soma
λ

)
(14.1)

TBio (v) = G
(∑

δi
[
vi + VNMDA(xi)

])
(14.2)

Here λ is the functional length constant as in Equation (3),
VNMDA(xi) is the nonlinear component for each input location,
described by Equations (12) and (13) and G(V) is the linear-
boundary function described in Equation (1). If desired, Equation
(14.2) may be easily modified to allow differential spatial decay
of spikes and subthreshold EPSP’s. It is important to note that

the boundary function to should be set to approach saturation
with a single spike from the most proximal synapse, preventing
the linear-summation of subthreshold EPSP’s from applying
to NMDA spikes in Equation (14.2). EPSP’s between branches
are allowed to sum linearly (Polsky et al., 2004) so the global
transfer function is then the sum of individual dendritic transfer
functions. For a single synapse with single-pulse stimulation, the
use of an artificial boundary function is unnecessary as Equation
(13.2) may be easily modified to the relative spike amplitude.

VRel.Spike =

(
gE

g + Rm
−1

− v(0)

)

1

1+ Exp
[
−

(V0(x)−Vmid+k ln[gRm+1] )
k

] (15.1)

TSingle = v0 + VRel.Spike (15.2)

Here v(0) is the initial local depolarization. For a single synapse
the sum of fast ionic currents and the relative spike approximates
the (bounded) maximal EPSP amplitude. However, the sum of
spikes, each bounded near the NMDAR reversal potential, does
not necessarily share that boundary so the artificial boundary
function is necessary for all nontrivial applications to compensate
for the sublinear summation of spikes (Polsky et al., 2004).

Parameterization
Throughout, parametrizations were generally that of Behabadi
and Mel (2014): Rm = 10 K�cm2, ELeak = −70mV (translated
to 0mV), ENMDA = 0mV (translated to 70mV), g(NMDA) =

3.9 nS. However, we used the conventional C = 1µF/cm2 as
opposed to Behabadi and Mel’s unusually large capacitance of
twice that much. The mid potential for NMDAR’s was Vs = −

23.7mV (translated to 46.3mV, Jadi et al., 2012). However, we
only used 1/5 the typical value of ks (2.5 vs. 12.5mV, Major
et al., 2008; Jadi et al., 2012), in order to compensate for the
nonlinearity lost in computing expectations. This value was
selected based upon the slope of target data (see Figure 4). To
replicate double pulse data, the method of González et al. (2011)
was utilized without modification. Durations prior to channel
opening and burst/cluster lengths were based upon the multi-
exponentials reported by Wyllie et al. (1998) for recombinant
NR1a/NR2A after removing opening components less than
0.5ms and burst/cluster length components less than 2ms and
reweighting. The filter on inter-opening times was to allow time
for nonlocal inputs to reach the spike generation sites, while burst
length distributions were filtered to place emphasis on the slower
components which carry the vast majority of charge (Wyllie et al.,
1998). NR1a/NR2A subunit was chosen due to its dominant
role in spike generation (Polsky et al., 2009). Compartments for
each input site had lengths of 10µm and diameter 1µm. To
generate the observed small spike generation zone, the functional
length constant for inter-compartmental contributions to spike
generation was always half that of transients reaching the soma.
Without this modification, the increasing threshold for spike
generation with inter-electrode spacing would have to be on the
same order as typical spatial decay which does not agree with the
far greater effects observed empirically (see Figure 4).
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Simulations
To test the biophysical transfer function, we performed two
sets of simulations custom-coded in MatLab2015a (Mathworks
Inc., Natick, MA). In the first set of simulations we used
a 5-state kinetic model of NMDAR’s (Destexhe et al., 1998)
to test appropriateness of the earlier separation assumptions.
This choice was based upon the 5-state model’s high temporal
accuracy in describing NMDAR conformation changes which
serves as a suitable contrast to a temporally agnostic transfer
function. Membrane potential wasmodeled similarly to Equation
(8) with NMDAR current multiplied by the probability
of the channel having an open conformation. Membrane
potential parameterizations during the kinetic simulations were
identical to those used in the transfer functions, except for
NMDAR maximal conductance which was set to the original
0.6 nS for the kinetic model (Destexhe et al., 1998) and
inversely weighted for peak opening (∼1/3) in the transfer
function. Because input was concentrated on a single site,
we used the full inter-opening distribution described by
Wyllie et al. (1998). The initial Glutamate concentration was
1mMol in the synaptic cleft for a single input instance with
stimulation length 10ms during which membrane potential
was held constant. We compared peak membrane potentials
to those predicted by Equations (12) and (13). The upper
bound was set equal to the transfer function’s “spike” peak
amplitude.

In the second set of simulations, we simulated conditions
of the seminal paper by Polsky et al. (2004) which was among
the first to examine the location dependence of NMDA spike
generation. Using whole-cell patch clamp recordings, the authors
focally stimulated basal dendrites of cortical pyramidal cells
using a pair of electrodes with spacings ranging from 20
to 200µm. EPSP’s from separate dendritic branches seemed
to sum linearly at the somatic recording site, while separate
EPSP’s generated within a dendritic branch produced threshold-
nonlinear interactions (NMDA spikes). The relevant analyses
focused on the relation between stimulating sites within a
branch individually and simultaneously. The “arithmetic sum”
or “expected” peak EPSP was defined as the sum of individually
evoked EPSP peaks and was compared to the “actual” peak
EPSP elicited with simultaneous stimuli (Figure 4). Stimulation
of dendrites can occur both in isolation (single pulse) or in
combination, such as paired-pulse stimulations which produce
more robust EPSPs than responses to single pulses. When
varying inter-electrode spacing, we largely relied on paired-
pulse stimulation (20ms ISI), while a separate analyses was
performed to compare paired and single-pulse stimulation
with a fixed inter-electrode spacing (30µm; Figure 5). All
code is available online or by emailing the corresponding
author.

Results

Kinetic Model
Simulations with the 5-state kinetic NMDAR model generally
supported the appropriateness of transfer function assumptions,
provided a sufficiently large slope for Mg2+ blockade. As stated

previously, NMDAR bistability relies on additional currents
such as inward-rectifying K+ (Shoemaker, 2011) in biological
settings. Using the standard slope for Mg2+ blockade, a
system composed solely of leak and NMDAR currents will
possess a single equilibrium (Figure 3D) corresponding to a
spike save in cases of extremely low NMDAR conductance
(in the current case <150 pS; Figure 3D). As such, 5-state
simulations used the same parametrization as the transfer
functions (five times standardMg2+ blockade slope). Simulations
over a 50ms period produced maximum peak EPSP’s with the
empirically observed “linear-hook” form described previously
(Figure 3A). Three different transfer functions were simulated
with all parameterizations identical except end time. The
“Distribution Model” used the modified version of Wyllie et al.
(1998) super-cluster lengths described previously. The “Long
Distribution Model” used a single exponentially distributed
(50ms) burst/cluster length, while the “Simple Model” was as
described in Equation (13) and only considers the limiting states
(infinite burst/cluster duration). As should be expected, short
burst/cluster lengths consistently over-predicted peak EPSP’s as
the local nonlinear currents did not have sufficient time to
decay. The Simple Model, in contrast, only began to over-predict
once approaching the Mg2+ midpoint near spike threshold. A
simple and more accurate solution for the distributed closing
time models would be use of a piecewise function making
peak EPSP the maximum of linear (fast ionic) and nonlinear
(NMDAR-mediated) components, rather than a bounded sum.
Unfortunately, this approach is mathematically undesirable as it
does not admit continuous derivatives of all orders. However,
burst length distributions add little additional information
due to the extremely short spike rise time (Figure 3C). As
such, the Simple Model may also be more accurate in
describing spike amplitude, particularly in subthreshold cases
(Figure 3B). Overall, the rapid spike rise times (Figure 3C)
and NMDAR bistability (Figure 3B) strongly support the time
scale separations used in binary NMDAR open/shut states and
bifurcations in Mg2+ blockade. In fact, results indicate that
these factors may be exploited to an even greater extent, by
further increasing the slope of Mg2+ blockade to approach
the all-or-none spike threshold near Mg2+ blockade’s midpoint
(Figure 3B).

Varying Distance
To test the transfer function’s accuracy, simulations were
performed under the conditions of Polsky et al. (2004), described
earlier. In all cases, we used a distance of 200µm from the
proximal input site to the soma, based upon the reported 80–
250µm range. While the proximal input site was fixed, distal
input sites were varied to generate the 20, 60, and 200µm
inter-electrode spacings (Polsky et al., 2004). The boundary
function was parameterized to match the observed boundaries
(bU = 12mV, bL = −12mV, αL,U = 0.5).The simulation
design included two cases of model type (Simple Model and
Distribution-based) and both symmetric and asymmetric spatial
decay. A functional length constant of 77µm has been reported
for spikes/plateaus in basal dendrites propagating toward the
soma (Major et al., 2008) and asymmetric length constants
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FIGURE 3 | Comparison of transfer functions with a 5-state kinetic

model of NMDAR activation. In the kinetic-model simulations

parameterization of the membrane potential was identical to that of the

transfer functions, which included the increased slope of Mg2+ blockade

necessary for bistability. Like the transfer function only leak and NMDAR

currents were considered. (A) Peak local EPSP’s predicted for each model

(single-pulse) are plotted as a function of depolarization at time of

glutamate release. The 5-state model, simulated over a 50ms interval for

each case, largely demonstrates binary behavior, with a linear subthreshold

portion, and a constant (spike) peak EPSP post-threshold. The “Distribution

Model” corresponds to the transfer function with empirical cluster length

distributions, while the “Long Distribution Model” uses a 50ms

mono-exponential distribution. The “Simple Model” only considers limit

states and so is equivalent to an infinite burst/cluster length. The greater

semblance of “Long Distribution” and “Simple” models to the 5-state model

is due to the decreased dependence on fast-components which do not

allow sufficient time for temporal decay to dominate nonlinear components.

(B) Spike amplitude is plotted against depolarization at the end of

Glutamate release for the same models as (A). In all cases, the “Simple

Model” of limit states bears greatest semblance to the 5-state model,

particularly subthreshold, in which shorter burst-length distributions do not

allow adequate temporal decay. (C) A representative NMDA spike/plateau

time course simulated by the 5-state model with −20mV membrane

potential just following Glutamate release. Note that despite the proximity to

the spike generation threshold in (B), the 5-state model still predicts a rapid

approach to spiking behavior. (D) Net current is plotted as a function of

membrane potential for various combinations of NMDAR conductance and

Mg2+ blockade slope. To achieve bistability (crossing 0 pA three times) it is

necessary to have sufficiently large NMDAR conductance, and Mg2+

slope. With increased slope, modest levels of macroscopic conductance

permit bistability, while for the standard slope, bistability is not attained for

any conductance value.

were tested using the spatial decay of back propagating action
potentials (BAP; 138µm; Nevian et al., 2007); (Figures 4C,D).
Length constants for back-propagation were chosen based upon
the BAP as the much larger length constants for unitary EPSP’s
could not allow the observed dependence on input spacing
without additional spatial components (such as intracellular
Ca2+ flow). As the distal ends of dendrites are “capped,” there
is substantially less attenuation for potentials spreading distally.
In both cases, the length constant for contributing to spike
generation was half that of the respective functional length
constant. Simulated results for the Simple Model (Figures 4A,C)
well matched empirical data for both symmetric and asymmetric

(separate backpropagation) length constants, indicating that a
transfer function which only considers limiting states is sufficient
to reproduce location dependence of peak EPSP’s. However,
the increased length constant for backpropagation decreased
input spacing dependence, as should be expected as additional
factors such as intracellular Ca2+ likely mediate the relationship.
The model based on the distribution for burst/cluster lengths
was slightly better with asymmetric length constants, but still
mediocre in both cases (Figures 4B,D). As with comparison
to the 5-state model (Figure 3), results demonstrate the
addition of burst/cluster length is not only unnecessary, but
detrimental.
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FIGURE 4 | Peak EPSP amplitudes for combined (“actual”) input are

plotted against the sum of their independent contributions

(“expected”) for varying distances between stimulation sites. Data is

redrawn from Figure 5C in Polsky et al. (2004). (A) Model of limit states

(infinite burst length) with identical length constants for forward and

back-propagation. (B) Model using empirical burst length distributions. (C)

Model of limit states with increased length constant for backpropagation. (D)

Model with burst length distributions with increased length constant for

backpropagation. Direction-independent spatial decay appears to produce

slightly better fits, while the limit-state model produces far better fits than the

distribution-based model. The superior fit of the limit-based model is

expected as the majority of charge in NMDAR bursting is carried by the

slower components, while expectations based solely on the distribution

over-weight the fast components.

Paired Vs. Single-pulse
For a second analysis of transfer function accuracy, we compared
simulated results for paired-pulse and single-pulse stimulation
as by Polsky et al. (2004). Single-pulse protocols involve a
single interval during which focal stimulation is delivered via
an adjacent electrode, while paired-pulse protocols involve
two stimulation intervals from the same electrode with very
short ISI (in this case 20ms). Paired-pulse stimulation is
consistently superior in eliciting NMDAR-mediated currents,
an effect known as paired-pulse facilitation (PPF) or NMDA
priming. In accordance with the changed upper bound of data,
boundary parameters were set as bU = 16.5mV, bL =

−16.5mV. To further contrast PPF, synapses primed by the
initial pulse are allowed, the previously removed fast components
of the inter-opening distribution (the full distribution of
Wyllie et al., 1998) which we term “non-uniform openings.”
Based upon the previous results (Figure 4) only the simple
model was used and the modifications employed in modeling
PPF were applied to the previous simulations to determine

generality. From these modifications paired-pulse stimulation
results in decreased spike threshold relative to the individual
components for both symmetric (Figure 5A) and asymmetric
spatial decay (Figure 5B). While these additions successfully
replicate the paired-pulse/single-pulse relationship, they do
not greatly affect the transfer functions ability to account
for input spacing with symmetric spatial decay (Figure 5C)
and thus the simpler simulations on inter-electrode spacing
remain valid (Figure 4). In contrast, the previous effects of
asymmetric spatial decay are accentuated resulting in a poor
fit of the relation with input spacing (Figure 5D). In summary,
results demonstrate that the transfer function is accurate
when either spatial decay or opening times are symmetric
(or both). However, the contrast with single-pulse stimulation
requires non-uniform opening times to mimic priming of
NMDAR’s by pre-bound glutamate After these adjustments
the transfer function appears accurate for both paired and
single-pulse stimulation for a wide range of input/spacing
combinations.
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FIGURE 5 | Peak EPSP amplitudes for combined (“actual”) input

are plotted against the sum of their independent contributions

(“expected”) for paired-pulse and single-pulse stimulation

methods at 30 µm inter-electrode distance. Data are redrawn from

Figure 4C in Polsky et al. (2004). (A) Model permitting fast (empirical)

opening components upon the second pulse for primed synapses,

symmetric spatial decay. (B) Modifications of (A) applied to the

conditions of Figure 4A. (C) Same as (A) but with increased length

constant for backpropagation. (D) Same as (B) but with increased

length constant for backpropagation. Note that the inclusion of faster

opening components for primed synapses and differential spatial decay

for general and spiking transients well replicates the relation between

paired-pulse and single-pulse stimulation without greatly compromising

the relation with input separation for symmetric spatial decay. In

contrast, these modifications are significantly deleterious when combined

with asymmetric spatial decay, indicative that the spacing dependence

of nonlinear dendritic integration displays less directional dependence

than does voltage attenuation.

Discussion

We have defined an artificial and a biophysical transfer function
to model dendritic integration. Both functions are based upon
sigmoidal opening dynamics of NMDA channels, however
the biophysical function supports complex combinations of
input, whereas the artificial function is agnostic to input
location and simply considers a single nonlinear-component
with each input equally weighted. Both transfer functions
apply a bounded linear transform to the sum of linear and
non-linear components to simulate saturation of the dendritic
branch. Unlike many previous two-layer abstractions which
describe sigmoidal components (Figure 6A) we implement a
“linear hook” function to incorporate the observed subthreshold
linearity (Figure 6B). In the current instantiation, the “linear
hook” form results from two transformations akin to a “2-
and-a-half layer” network (Figure 6C). In the first step, signals

are split into a direct (passive) and indirect (active/spiking)
pathway along the dendrite forming the “half layer.” In
the second step, dendritic saturation allows signals within
a band to pass unmodified, while those outside are greatly
attenuated corresponding to the function G(x). The result is
a “linear hook” function as in Figure 6B with subthreshold
linearity, extreme concavity post threshold and fairly hard
boundaries.

Due to the spatial decay of post-synaptic signals within a
branch, the distance between sites of stimulation is critical for
determining the nonlinear threshold. As in Figure 4, increasing
the site distance by 20–40µmunder the current parameterization
drastically changes the current reaching the site of integration.
However, the location dependence is reduced with high synaptic
conductances (Cook and Johnston, 1999; Williams, 2005).
Empirical results support this condition for apical dendrites
of pyramidal cells (Williams, 2005). Hence, with high synaptic
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FIGURE 6 | Dendritic abstractions as neural networks. Dashed lines

indicate input, while solid lines indicate connections between layers. Blue

functions are sigmoids, red are the previously described “linear hook” and

green functions are boundary functions for saturation. (A) Standard two-layer

model consisting solely of sigmoids. Contrary to data, the sigmoidal two-layer

model does not include subthreshold linearity. (B) Two-layer with a “linear

hook” type function which does contain subthreshold linearity. (C)

“Two-and-a-half” layer decomposition of (B). “Linear hook” type functions are

decomposed into a linear (passive) and nonlinear (spiking) signal. These

signals are then fed through a boundary function for dendritic saturation.

and low membrane conductances, the artificial transfer function
increases in similarity to its biophysical counterpart. However,
the biophysical function also uses the reversal potential of NMDA
channels and hence contains its own dampening mechanism
once local potentials pass this threshold. Due to the relatively
high reversal potential of NMDA channels, the influence of
this additional factor should be minimized when the evoked
changes in potential are small, but near the dynamic range
of the NMDA channel. The biophysical form also has a more
complicated nonlinear component which includes products
of differing sigmoidal function. When membrane capacitance
is low or channel closing time is long, allowing the slow
currents to quickly approach their equilibria, the biophysical
nonlinear component again resembles the artificial sigmoid. As
both the artificial and biophysical transfer functions saturate,
they are trivially equivalent with extreme stimulation. From
the view of computational complexity (hence processing time),
the biophysical model requires significantly more computations
than the artificial with many input locations within a branch.
As each site is considered as a function of all other inputs
as well as its own, the number of integration sites increases
linearly with the number of inputs, and the number of
computations per site similarly increases. Thus the biophysical
transfer function offers the greatest advantage over its artificial

counterpart when only a few inputs are considered. However,
as stated before, both functions are computationally simple
compared to time-dynamic models, so the difference in
artificial and biophysical computation times is unsubstantial.
It should be noted that that other reductions for dendrite-
soma transfer exist for active dendrites with known conductance
evolution (Wybo et al., 2013) as well as passive dendritic trees
with specific geometries (e.g., van Pelt, 1992). In particular,
the approach of Wybo et al. (2013) yields relatively low
computation times compared with other models of dynamical
dendrites with complexity characterized by a Fourier transform
of a hyperbolic-trigonometric quotient. As with the current
approach, use of transfer functions allow arbitrary dendritic
morphology to be captured in the reduction of somatic voltage,
in contrast to equivalent cable approaches (e.g., Ohme and
Schierwagen, 1998). However, the current further reduction
of approximating peak EPSP amplitude in terms of input,
rather than the somatic-response kernel is orders of magnitude
quicker (being explicit) which presents an alternative to point-
node neurons without any increases in dimensionality or the
presence of implicit relations which constrain mathematical
analysis of the entire network (e.g. using methods of topological
dynamics). As such, endowing a point-neuron with the
current transfer function admits the same mathematical
properties as the host somatic function, such as Poincaré-
Bendixson properties for phase-plane analysis. Thus the current
approach is particularly advantageous in adding dendritic
morphologies to spiking neural networks which previously
employed point-nodes. Problems in pattern recognition, for
instance, admit a natural spatial hierarchy which may benefit
from the addition of plausible dendritic morphology and input
spacing to spiking nodes, without attempting full anatomical
reconstruction.

Despite its simplicity, the biophysical transfer function is
capable of replicating the sorts of non-linear interactions seen in
pyramidal dendrites, which are typically expressed as systems of
non-linear differential equations. Although some properties are
lost in the use of a time-invariant function, such as capacitive
membrane interactions, our replication of Polsky et al.’s findings
(2004) greatly exceeds both the historical linear integration and
the more recent model of sigmoidally integrative dendrites,
particularly in the basal dendrites of pyramidal cells (Häusser
and Mel, 2003; Polsky et al., 2004; Spruston and Kath, 2004). The
focus upon fast components, naturally ignores dynamic changes
in diffusion gradients, such as intracellular Ca2+ concentration,
which lead to complex interactions in driving force between
NMDA spikes and occur over variable time scales due to factors
such as release from intracellular stores and pumping back
into the extracellular fluid. However, based upon simulation
results, the function appears well suited for its intended use in
estimating peak somatic EPSP. Accurate modeling of dendritic
integration takes on increasing importance as a growing body
of evidence points to dendritic roles in areas of joint interest
to biophysical and artificial neural network modelers, such as
place fields and feature detection (Ujfalussy et al., 2009). Artificial
networksmay also benefit from replacing a layer of point neurons
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converging upon a single node with an artificial dendritic tree
(Jadi et al., 2014) to greatly reduce dimensionality. As such,
we hope this function will ease the computational demands of

biologically-plausible dendritic integration while bridging gaps
between artificial and biophysical models by allowing a smooth
transition between forms.
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The axon initial segment (AIS) is an essential neuronal compartment. It is usually where
action potentials are initiated. Recent studies demonstrated that the AIS is a plastic
structure that can be regulated by neuronal activity and by the activation of metabotropic
receptors. Studying the AIS in live tissue can be difficult because its identification is
not always reliable. Here we provide a new technique allowing a fast and reliable
identification of the AIS in live brain slice preparations. By simultaneous recording of
extracellular local field potentials and whole-cell patch-clamp recording of neurons,
we can detect sinks caused by inward currents flowing across the membrane. We
determine the location of the AIS by comparing the timing of these events with the
action potential. We demonstrate that this method allows the unequivocal identification
of the AIS of different types of neurons from the brain.

Keywords: axon initial segment, dendrite, modulation, spike triggered averaging, axon, plasticity

INTRODUCTION

The axon initial segment (AIS) is the gatekeeper of neurons. It is there that nerve impulses are
initiated before propagating toward the terminal regions of the axon and back to the somato-
dendritic compartments (Eccles, 1964; Stuart and Sakmann, 1994). During the past years, it has
become evident that the AIS is not a rigid structure that only generates action potentials each time
the membrane potential reaches a threshold value. The modulation of ion channels permeable for
Na+, K+, or Ca2+ ions expressed in this compartment provide a high degree of plasticity. For
example KV7.2 and KV7.3 ion channels produce a slowly activating persistent outward current at
the AIS (Pan et al., 2006; Rasmussen et al., 2007). The activation of muscarinic receptors inhibits the
current and thereby increases the firing frequency of neurons (Brown and Adams, 1980; Brown and
Passmore, 2009). In cartwheel neurons in the dorsal cochlear nucleus, the activation of dopamine
D3 receptors at the AIS specifically inhibits T-type calcium channels and thereby spike initiation
(Bender et al., 2010). In spinal motoneurons, the activation of serotonergic 5-HT1A receptors at
the AIS inhibits the Na+ current responsible for the genesis of action potentials. This mechanism
is responsible for the central component of motor fatigue occurring during prolonged efforts (Cotel
et al., 2013; Perrier and Cotel, 2015).

Identifying the AIS during an experiment is therefore highly relevant for physiological studies.
However, this problem is far from being trivial because most neurons have several dendrites
with diameters comparable to the ones of axons. For that reason, the visual identification of
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the axon during electrophysiological recordings can be equivocal
(Figure 1). In addition, the axon sometimes derives from a
first order dendrite rather from the soma (Ruigrok et al., 1984;
Hounsgaard et al., 1988; Hausser et al., 1995; Thome et al.,
2014). So far, the most reliable method for identifying axons
requires multiple recordings with the patch-clamp technique.
This has been successfully done for few types of neurons such
as pyramidal cells from the neocortex (Stuart and Sakmann,
1994; Stuart et al., 1997). However, this procedure is difficult
and only allows the recording of relatively thick or cut axons
presenting a bleb (Kole et al., 2007). In cell cultures, it is possible
to label the AIS of all neurons by means of GFP-tagged proteins
specific for the AIS (Zhang and Bennett, 1998) or by means of a
mouse monoclonal antibody recognizing an extracellular epitope
of neurofascin (Schafer et al., 2009). However, this method has
not been used in slices, probably due to the poor visibility of
the tags. Another approach is to stain the axon by means of
antibodies directed against specific markers such as ankyrin G
(Hedstrom et al., 2008), tau protein (Binder et al., 1986), or
sodium channels (Duflocq et al., 2008; Grubb and Burrone, 2010;
Cotel et al., 2013). This method, being performed on fixed tissue
after the end of the experiment, only allows testing if a given
neurite was an axon or not, which is not optimal for studying the
modulation of the AIS.

Here we provide a simple method based on extracellular field
potential of neuronal processes combined with spike patch clamp
recording of soma allowing fast and reliable identification of AIS
in in vitro preparations.

MATERIALS AND METHODS

Slice Preparation
After decapitation, the brain of C57BL/6 mice (Taconic)
from P12 to P14 was removed and placed in cold artificial
cerebrospinal fluid containing N-Methyl-D-glucamine 125 mM,
KCl 2.5 mM, NaHCO3 26 mM, CaCl2 2 mM, MgCl2 1 mM,
NaH2PO4 1.25 mM, glucose 25 mM. Three hundred micrometer
parasagittal slices from the brain were cut with a vibratome
(VT1200; Leica Microsystems A/S, Germany). Slices were then
incubated for and hour in a chamber containing oxygenated
Ringer’s solution: NaCl 125 mM, KCl 2.5 mM, NaHCO3 26 mM,
CaCl2 2 mM, MgCl2 1 mM, NaH2PO4 1.25 mM, glucose
25 mM. Slices were then positioned in a recording chamber and
continuously perfused with Ringer’s solution carbogenated by
gassing with 95% O2 plus 5% CO2. Experiments were performed
at room temperature. The surgical procedures complied with
Danish legislation. This study was carried out in accordance with
the recommendations of Department of Experimental Medicine
of the University of Copenhagen. The protocol was approved by
the Department of Experimental Medicine of the University of
Copenhagen.

Patch Clamp Recording
Visual guided patch clamp recording was performed with a
Multiclamp 700B amplifier (Molecular Devices, USA). Neurons
were visualized by means of a BW51WI microscope (Olympus,

Japan) equipped with differential interference contrast. Patch-
clamp electrodes were made of borosilicate glass pulled with a
P-87 micropipette puller (Sutter Instruments; USA). They were
filled with the following solution (in mM): 122 K-gluconate,
2.5 MgCl2, 0.0003 CaCl2, 5.6 Mg-gluconate, 5 K-HEPES, 5
H-HEPES, 5 Na2ATP, 1 EGTA, 2.5 biocytin, 0.01 Alexa 488
hydrazide, sodium salt (Life Technologies, USA), and KOH to
adjust the pH to 7.4. Electrodes had a resistance ranging from 4 to
8 M�. Recordings were sampled at 100 kHz with a 16-bit analog-
to-digital converter (DIGIDATA 1440; Molecular Devices, USA)
and displayed by means of Clampex 10.2 software (Molecular
Devices, USA). Neurons were isolated from their surrounding
synaptic environment by blocking AMPA receptors with CNQX
(20µM, Tocris), NMDA receptors with AP5 (50 µM, Tocris) and
GABAA receptors with Gabazine (10 µM, Tocris).

Local Field Potential Recording
Local field potential (LFP) electrodes were made with borosilicate
capillaries pulled with a P-87 micropipette puller (Sutter
Instruments; USA). They were filled with artificial cerebrospinal
fluid of the same composition as detailed above. The LFP
electrodes had a diameter of 1 µm and an input resistance of
4–7 M�. They were mounted on a 3-axis micromanipulator
(Luigs and Neumann, Germany). The signal was recorded with
a Multiclamp 700B amplifier (Molecular Devices, USA) and
sampled at 100 KHz.

Spike Triggered Average
The LFP electrode was positioned near the membrane of
the recorded neuron. The acquisition of the signal was
synchronized on the ascending phase of action potentials
recorded with the patch-clamp technique. When the neuron was
not firing spontaneously, positive bias currents were injected
intracellularly. Between 200 and 2000 action potentials were
acquired. Both signals were then averaged.

The spike threshold was determined as the first positive peak
present on the third derivative of the voltage trace (Henze and
Buzsaki, 2001). Extracellular events were considered only if their
amplitude was more than five times the standard deviation of the
baseline.

Data Analysis
Data were analyzed by means of a custom program written in
Matlab (Mathworks, Natick, USA) used to determine the time
position of the spike threshold and to average extracellular
recordings. The program is available at the following permalink:
http://www.mathworks.com/matlabcentral/fileexchange/
53161-axon-initial-segment-identifier.

RESULTS

We recorded twelve neurons from different brain regions
including principal cells and interneurons from neocortex,
midbrain and hippocampus. For some neurons, one neurite was
an obvious candidate for being the axon. The neuron illustrated
in Figure 1A is a pyramidal cell from the neocortex recorded
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FIGURE 1 | Epifluorescence images of neurons obtained during their
recordings. (A) Pyramidal neuron from the neocortex. In the example one
neurite is very likely to be the axon (arrow). (B) Neuron from the hippocampus.
At least two neurites could correspond to the axon (arrows). (C) Interneuron
located in the stratum radiatum of the CA1 region of the hippocampus. At
least two neurites could correspond to the axon (arrows).

in whole-cell configuration observed by means of fluorescence
microscopy. In this example, the single neurite located between
the basal dendrites is probably the axon (arrowhead). However,
for other neurons, it was virtually impossible to determine which
of the processes was the axon. In the example of Figure 1B,
a pyramidal cell from the hippocampus has several processes
leaving the soma in the basal region. One of them is probably
an axon. However the similitude between diameters does not
allow a clear distinction between the basal dendrites and the axon
(arrowheads). Another example shows the morphology of an
interneuron located in the stratum radiatum of the CA1 region of
the hippocampus (Figure 1C). Here as well, it is difficult to know
which of the processes corresponds to the axon. These examples
demonstrate that the online identification of the AIS is far from
being trivial. For that reason, we developed a method allowing a
fast and reliable online identification of the AIS.

Theoretical Basis for the Identification of
the Axon Initial Segment
Any current being absorbed from the extracellular medium into
a neuronal element appears as a sink (Nicholson and Freeman,
1975). The resulting lack of positive charges on the extracellular
side generates a local negative electrical field potential. This
occurs outside the AIS when action potentials are initiated and
in the vicinity of other neuronal compartments that carry active
propagation of electric signals. By comparing the timing of such
field potentials with the action potential of a neuron, it should be
possible to distinguish the AIS from other compartments.

The first event that occurs during an action potential
is the activation of Na+ channels at the AIS (Figure 2A).
This generates a negative field potential outside the AIS. The
inward current then spreads passively in the cell, inducing a
depolarization of the neighboring compartments. Because of
the impedance mismatch, the resulting depolarization occurring
in the soma is small (Figure 2A). Thus, the first component
of an action potential recorded in the soma corresponds
to the AIS spike (Eccles, 1964; Bean, 2007). This small
depolarization, usually termed IS, is nevertheless sufficient to
activate somatic Na+ channels, ensuring a regeneration of
the inward current and the back propagation of the action
potential in the soma and then in dendrites (SD component;
Figure 2B). An inflection point is sometimes visible on the
depolarizing phase of an action potential. For that reason, one
can distinguish the IS from the SD component by plotting
the first derivative of the voltage trace (Eccles, 1964; Bean,
2007), (Figure 2). After reaching the soma, the current spreads
out passively into the dendrites and outside the cell through
leak conductances (Figure 2B). A local field potential electrode
located near a dendrite can therefore detect an excess of
positive charges, characterized by a positive deflection occurring
during the late phase of the action potential (Figure 2C).
In case of active dendrites, the subsequent activation of
voltage gated ion channels produces a sink following the
positive deflection (Figure 2C). Thus, by comparing the timing
of local field potentials with the one of action potentials
recorded intracellularly, it is theoretically possible to determine
if a given neurite is an axon or a dendrite. In addition,
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FIGURE 2 | Schematic representation of the currents responsible for an action potential. For all panels: upper row, current flowing across the membrane of
a neuron; lower rows: black traces, membrane potential of a neuron recorded by an intracellular electrode positioned in the soma and first derivative of the
membrane potential; green trace: local field potential recorded by an extracellular electrode positioned near the AIS (LFP1); purple traces: local field potential
recorded by an extracellular electrode positioned near an active and a passive dendrite (LFP2). (A) An action potential is generated at time 0 (t0). The inward current
triggered by the activation of Na+ channels at the AIS spreads actively in the axon (red arrows) and leaks out passively through the membrane (blue arrows). The
intracellular electrode measures a depolarization of the soma at time 1 (t1). The LFP electrode at the AIS detects a sink starting before the somatic depolarization.
The dendritic LFP electrode does not record any change. (B) At time 2 (t2), the active current has invaded the whole soma. The membrane potential reaches the
peak of the action potential. The LFP recorded at the AIS terminates while the LFP recorded in dendrites starts. (C) At time 3 (t3), the active current has reached the
dendrite. The action potential recorded in the soma is finished. The dendritic LFP occurs as a positive deflection corresponding to the passive leakage of the current
through the membrane. In case of an active dendrite, the positive event is immediately followed by a negative one caused by the presence of a sink.

it allows figuring out if a dendrite is active or purely
passive.

Online Identification of the AIS
We recorded the electrical activity of principal cells and
interneurons from the hippocampus, neocortex, and midbrain.
We visualized the somatodendritic arborisation of neurons
by means of epifluorescence microscopy. We observed local
field potential electrodes with bright field illumination and
positioned it in the vicinity of different neuronal compartments
by alternating fluorescence and bright field (Figure 3A). This
procedure allows sub-µm precision. The distance between the
LFP electrode and the membrane of the neuron tested was
typically 1–3 µm and always less than 5 µm. We evoked action
potentials by injecting intracellular positive bias currents. We
found that single action potentials were usually not sufficient to
induce events detectable from the background electrical noise.
For that reason, we used the spike-triggered average technique.
It consists in triggering the recording of the local field potential
electrode on the ascending phase of the action potential. Each
time the voltage trace crosses a given value (e.g., 0 mV), the
recording starts. In order to analyze what happens just before
the spike, we used a pre-trigger of 40 ms. After averaging 200–
2000 spikes, the signal of the LFP electrode displayed clear
events (Figure 3C). To determine if the extracellular electrode
was positioned near the AIS, we compared the timing of
the LFP events relative to the spike threshold calculated as
the first positive peak present on the third derivative of the
voltage trace, which provides a reliable estimation (Henze and

Buzsaki, 2001; lower trace of Figure 3B; vertical dashed line).
A negative event starting before the threshold measured at
the soma indicated that the electrode was positioned near the
AIS. In the example of Figure 3C obtained from a pyramidal
neuron from the hippocampus, the LFP trace at position 1
(green trace in Figure 3C) displayed a negative event starting
400 µs before the spike threshold, suggesting that this position
corresponded to the AIS. In contrast, the events detected at other
positions started after the beginning of the spike. At positions
2 and 3 (purple traces in Figure 3C), the recording displayed
a positive event followed by a negative event occurring 360–
400 µs after the spike threshold. Because the negative event
started after the start of the spike we concluded that the electrode
was positioned near a dendrite. In addition, the presence of
a negative peak indicated that the passive propagation of the
signal was followed by an active one. This suggests that the
backpropagation of the action potential was amplified by voltage-
gated conductances. We tested the method for other types of
neurons. Figures 3D–F illustrates the results obtained with a
midbrain neuron for which the axon could not be visually
identified with certainty. Here again, the LFP electrode detected
a sink starting before the action potential at one position
identified as the AIS (LFP1 in Figure 3F), and sources followed
by delayed sinks at other positions (LFP2/3 in Figure 3F).
Figures 4A–C illustrates all the average LFP recordings obtained
at various positions near the membrane of eleven neurons. For
9/11 neurons, we could unambiguously distinguish the AIS from
dendrites, demonstrating that the technique provided reliable
results.
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FIGURE 3 | LFP recordings allow the distinction of axon from dendrites. (A) Epifluorescent pictures of a pyramidal cell from the hippocampus. The black lines
indicate the positions of the LFP electrodes (B) Upper trace: membrane potential recorded by a patch electrode located at the soma. Lower trace: third derivative of
the membrane potential. The maximum of the first positive peak corresponds to the beginning of the action potential (vertical dashed line). (C) Green trace: average
of the LFP obtained at position 1 (2095 sweeps). A negative event (arrowhead) started before the action potential, indicating that the electrode was positioned near
the AIS. Upper purple trace: Average of the LFP obtained at position 2 (1002 sweeps). Lower purple trace: average of the LFP obtained at position 3 (1063 sweeps).
In both cases the LFP consisted of a positive and then a negative deflection (arrowhead) occurring after the beginning of the spike, demonstrating that the electrode
was located near an active dendrite. (D–F) Neuron from the midbrain. (D) Epifluorescent pictures of the neuron. (E) Membrane potential and third derivative of the
membrane potential. (F) Green trace: Average of the LFP obtained at position 1 (1101 sweeps). A negative event started before the action potential (arrowhead),
indicating that the electrode was positioned near the AIS. Upper purple trace: average of the LFP obtained at position 2 (1003 sweeps). Lower purple trace: average
of the LFP obtained at position 3 (1188 sweeps). Here again, a negative deflection (arrowhead) occurring after the beginning of the spike shows that the electrode
was located near an active dendrite.

We then tested if the initial segment could be localized more
accurately along the axon by moving the electrode away from the
soma. The LFP recording at the AIS should start earlier and have
a bigger amplitude due to the higher density of voltage gated Na+
channels in this compartment (Kole et al., 2008), (Figure 5A). By
contrast, recordings obtained more distally along the axon should
appear as a positive deflection caused to the passive current
preceding the spike and followed by a delayed negative deflection
reflecting the inward current carried by Na+ ions (LFP3 in
Figure 5A). In agreement, the LFP recorded along the axon of

a cortical neuron was characterized by a negative event starting
50 µs before the spike threshold when positioned 15 µm from
the soma of a cortical neuron (LFP2 in Figure 5B). When the
LFP electrode was moved 5 µm closer to the soma, the negative
event was detected 80 µs later (LFP1 in Figure 5B). When the
extracellular electrode was moved 45 µm from the soma, along
the axon, the LFP consisted of a positive event followed by a
negative event starting 4 ms after the spike threshold (arrow in
LFP3 in Figure 5B). It should be noticed that the amplitude
of the recordings obtained at this position was one order of
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FIGURE 4 | LFP recordings from different neurons. Left: LFP recordings obtained near AIS. Right: dendritic LFP recordings. (A) Cortical neurons. A passive
dendrite belonging to cell 2 was recorded (dashed green line). (B) Midbrain neurons. (C) Hippocampal neurons.

magnitude lower than the one obtained more proximally. These
observations suggest that the spike was generated near position 2
(i.e., 15µm from the soma). In agreement, position 2 was the only
one identified as the AIS by our Matlab script (see Materials and
Methods). Thus our technique does not only allow distinguishing
dendrites from axon, but also permit determining the position of
the AIS along an axon.

DISCUSSION

We have demonstrated a novel procedure allowing the online
identification of the AIS during electrophysiological recording
of neurons. Our method offers several advantages compared to
others. First, it can be done in live tissue, while a neuron is
recorded by means of the patch clamp technique. This facilitates
the investigation of the physiological mechanisms involved in
the modulation of the AIS. For example, one could focally
apply agonists or antagonists by puffing or iontophoresing them
from the LFP electrode, and determine if some receptors or ion
channels are expressed at the AIS and if their activation has any

impact on the excitability of the studied neuron (Perrier and
Hounsgaard, 2003; Bender et al., 2010; Cotel et al., 2013). Second,
the method is fast. The number of action potentials necessary for
getting an acceptable signal to noise ratio with the LFP signal is
about 200–1000. It is usually obtained within few minutes. By
contrast, identifying the AIS by immunohistochemical staining
with antibodies directed against proteins specific for the AIS
requires several hours or days. Third, the technique is cheap.
It only requires one extracellular recording electrode connected
to an amplifier and does not necessitate any further investment.
Fourth, the method is reliable provided that the patch recording
is stable. It was possible to identify the axon for 10 of the 12 cells
recorded in this study (i.e., more than 80%). Fifth, the method
does not need any chemical that could potentially interfere with
the physiological properties of the cell. Sixth, it is possible to
determine the site of action potential initiation by mapping
the LFP along the axon. Seventh, the size of the axon is not
a limiting factor for the technique. Our approach allows the
identification of the AIS of all neurons, independently of the
diameter of the axon or of the presence of blebs caused by the
slicing procedure.
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FIGURE 5 | Identification of the initial segment. (A) Upper trace (black): action potential recorded intracellularly. Green traces: theoretical LFPs recorded along
an axon. The first LFP occurring is a negative potential caused by the sink occurring at the AIS where the spike is generated (LFP2). An LFP recorded more proximal
to the soma should be characterized by sink starting slightly later (LFP1), while an LFP more distal on the axon should start with a source followed by a sink (LFP3).
(B) Example of LFPs recorded along the axon of a cortical neuron. Black upper trace: action potential recorded intracellularly. Green traces: LFPs. LFP1: LFP
recorded 10 µm from the soma (515 sweeps). LFP2: LFP recorded 15 µm from the soma (287 sweeps). The latency for the negative event was the shortest at this
position (arrowhead), suggesting that the action potential was initiated in this area. LFP3: LFP recorded 45 µm from the soma (1149 sweeps). A positive event
suggesting the presence of a source was followed by a negative event (arrowhead) starting 4 ms after the beginning of the somatic action potential. Note the small
amplitude of the signal when compared to LFPs recorded at positions 1 and 2.
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The method we developed also has limitations. The
identification of the AIS requires a good visibility of the cell,
which is usually not the case for cells deeper than 80 µm from
the surface of the slice. The method is invasive and the AIS has to
be accessible with the LFP electrode. If the axon leaves the soma
from below, or if it is positioned under the patch electrode, the
method cannot be used. This is probably why we failed to identify
two of the 12 AIS from the neurons of our sample. In addition, if
the LFP is positioned near two close processes, it can be difficult
to ascribe the signal to a particular one. In case of myelination,
the signal recorded near axons may be difficult to record if the
LFP electrode is not located near a node of Ranvier. Finally and
importantly, the identification of the AIS relies on the fact that
the spike is initiated in this compartment. This is not always the
case. In mitral cells from the olfactory bulb and in some instances
in pyramidal cells from the neocortex, the action potential can
have a dendritic origin (Stuart and Sakmann, 1994; Chen et al.,
1997; Schiller et al., 2000).

Perspective
We believe that this new technique will prove useful for
investigating the plasticity of the AIS. We tested our method in
a slice preparation. It could also in principle be used in vivo,
provided that one can visualize the whole somatodendritic

arborisation of the investigated neuron, which would probably
require multi-photon microscopy imaging techniques.
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The double discharges are observed at the onset of contractions of mammalian motor
units (MUs), especially during their recruitment to strong or fast movements. Doublets
lead to MU force increase and improve ability of muscles to maintain high force during
prolonged contractions. In this review we discuss an ability to produce doublets by
fast and slow motoneurons (MNs), their influence on the course of action potential
afterhyperpolarization (AHP) as well as its role in modulation of the initial stage of the
firing pattern of MNs. In conclusion, a generation of doublets is an important strategy of
motor control, responsible for fitting the motoneuronal firing rate to the optimal for MUs
at the start of their contraction, necessary for increment of muscle force.

Keywords: doublet, motoneuron, interspike interval, motor unit, force development

Introduction

A pair of action potentials at short interspike intervals (ISIs, below 10 ms) called ‘‘doublet’’
(Simpson, 1969) has been frequently observed at the beginning of discharge pattern of motoneurons
(MNs). Such initial doublets in trains of action potentials of motor units (MUs) have been recorded
from numerous human muscles during different types of voluntary activity (Person and Kudina,
1972; Kudina, 1974; Bawa and Calancie, 1983; Kudina and Alexeeva, 1992; Garland and Griffin,
1999) or from animal muscles during locomotion (Zajac and Young, 1980b; Hennig and Lømo,
1985; Hoffer et al., 1987; Gorassini et al., 2000). Existence of doublets has also been confirmed
in electrophysiological studies performed on MNs innervating inspiratory (Kirkwood and
Munson, 1996) and locomotor muscles (Spielmann et al., 1993) of cat or hind limb muscles of rat
(Mrówczyński et al., 2010; Bączyk et al., 2013) during their activation with intracellular current
injection.

Many experiments on human muscles (Bawa and Calancie, 1983; Kirkwood and Munson, 1996;
Van Cutsem et al., 1998; Garland and Griffin, 1999; Christie and Kamen, 2006) and MUs of various
animal species (Zajac and Young, 1980a; Hennig and Lømo, 1987; Sandercock and Heckman,
1997) have suggested that doublets are responsible for considerable enhancement of muscle output
force. From this reason, doublets are considered as a special strategy of the central nervous system,
which improves efficiency of a motor task requiring large force especially at early stage of muscle
contraction (Garland and Griffin, 1999; Kudina and Andreeva, 2013).

The occurrence of doublets is also an important mechanism of adaptation to increasing
level of muscle activity. Binder-Macleod and Barker (1991) have demonstrated that effects of
doublet in force enhancement are greater in fatigued than in unfatigued muscles. Furthermore,
a substantial increase of a number of doublets in muscles of trained athletes during dynamic
voluntary contractions have suggested their contribution to an increase in the speed of
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contraction after the dynamic training (Griffin et al., 1998; Van
Cutsem et al., 1998).

The paper aims to describe physiological consequences of
the doublet occurrence for the afterhyperpolarization (AHP)
parameters following the action potentials and consequently for
initial ISIs in a pattern of motoneuronal discharges, which have
not been described in previous reviews concerning the doublets
(Garland and Griffin, 1999; Kudina and Andreeva, 2013). The
consequences of the doublet discharges are discussed in relation
to the MU force development.

The Incidence of Doublets in
Motoneurones

Experimental data obtained in animal studies suggest that the
ability to produce doublets is attributed rather to fast than to
slow MNs (Gorassini et al., 2000). However, electrophysiological
studies with the intracellular injection of depolarizing current
into spinal MNs of cat (Spielmann et al., 1993) and rat
(Mrówczyński et al., 2010; Bączyk et al., 2013) have shown
that doublets were produced by both slow and fast MNs.
Therefore, it is likely that specific organization of supraspinal
pathways descending rather to fast than slow MNs is responsible
for doublet discharges during strong contractions in natural
conditions.

Some studies indicate that the occurrence of doublets in the
pattern of motoneuronal discharges depends on motoneuronal
excitability (Christie and Kamen, 2006) and on power of synaptic
inputs to MNs (Gorassini et al., 2000). Experiments with
intracellular injection of a depolarizing current to rat MNs have
demonstrated that doublet discharges are generated at current
intensity 2.1--2.4 and 2.1--3.24 times higher than the rheobase
of fast and slow MNs, respectively (Mrówczyński et al., 2010;
Bączyk et al., 2013). In electrophysiological experiments, the
depolarizing current is considered as a physical equivalent of the
total synaptic input (Baldissera et al., 1987; Binder and Powers,
1999). From this point of view, a rapid increase of postsynaptic
activity evoked through descending drive in MNs seems to be
a major factor enabling generation of doublets during strong
movements.

Changes in the Firing Pattern and the After
Hyperpolarization After the Doublet
Discharge

The neuronal firing rate is regulated by several mechanisms.
The spike frequency adaptation (SFA) is one of fundamental
neuronal properties influencing their repetitive firing. It indicates
a decrease in action potentials discharge rate over time (Miles
et al., 2005). A period including the first few spikes of a
motoneuronal firing has been determined as an ‘‘initial’’ phase
of SFA and it is followed by an ‘‘early’’ (up to 250 ms) and
‘‘late’’ (from seconds to even minutes) adaptations (Granit et al.,
1963; Kernell and Monster, 1982; Sawczuk et al., 1995; Powers
et al., 1999). The initial high rate of motoneuronal firing is
responsible for the increase of speed of force development at
the onset of a MU contraction, and despite a decreased firing

rate observed during the early and late adaptation phases MUs
are still able maintain relatively steady level of force (Burke
et al., 1976; Stein and Parmiggiani, 1979; Bigland-Ritchie et al.,
1983).

The firing rate depends also on the excitation intensity.
Studies with the intracellular injection of depolarization current
into cat (Spielmann et al., 1993) or rat motoneurones
(Mrówczyński et al., 2010) have demonstrated an increase of
the overall firing frequency of a MN with increasing intensity
of applied current (Figure 1A). However, after doublet, a
prolongation of the following ISI is observed, causing a transient
decrease of firing rate (compare a2 vs. a1 in Figure 1A). This
reduction of the firing rate of MNs appears despite higher
intensity of depolarization current applied. After all, direct
comparison of discharge patterns without doublets (evoked at a
lower intensity of intracellular depolarizing current or a weaker
synaptic input to MNs) to those with doublets (evoked at a higher
intensity of depolarizing current or a stronger synaptic input to
MNs) seems insufficient to explain functional consequences of
initial doublets.

A considerable variability of ISIs in motoneuronal firing
evoked by stretching of a muscle and activation of proprioceptors
has been observed (Kostyukov et al., 2009, 2011). According
to these reports, this is related to non-linear processes of
summation of consecutive AHPs, described earlier by Baldissera
and Gustafsson (1974).

Studies on rat MNs stimulated antidromically by one pulse
and by doublet of pulses at intervals from 5 to 10 ms have shown
that doublet modulates the AHP duration and amplitude in both
types of MNs (Figure 1B; Mrówczyński et al., 2007). In MNs
antidromically stimulated with trains of stimuli, from one to five,
applied at 5 ms ISIs, an evident increase of the AHP amplitude
and a significant prolongation of the AHP duration have been
demonstrated after a doublet or sometimes also after a triplet of
stimuli (Mrówczyński et al., 2011; Krutki et al., 2014). The AHP
duration has not been considerably modified by the following
(4th and 5th) pulses in the train. The results indicate that at high
stimulation frequency the second activation has the strongest
effect on the AHP course.

Duration of the AHP is an important factor influencing a
rate of neuronal discharges (Eccles et al., 1958). A considerable
decrease of motoneuronal excitability during the AHP reduces
the probability of occurrence of subsequent action potential
(Kernell, 1965). From this reason the AHP duration is extremely
important property of MNs, which controls their firing rate
(Piotrkiewicz et al., 2007) and in addition can be used to
differentiate fast (with short AHP) and slow MNs (with long
AHP) (Gardiner, 1993).

The AHP is an effect of increased potassium conductance
in a neuron following the action potential (Barrett et al., 1980).
Therefore, it is supposed that the post-doublet prolongation
of the AHP duration is an effect of increase in the potassium
conductance. However, many studies on spinal MNs and
ascending neurons (Kuno et al., 1970; Baldissera and Gustafsson,
1974; Baldissera et al., 1978; Gustafsson, 1984; Mrówczyński
et al., 2008) have demonstrated a non-linear summation of
the AHPs after the doublet activation. These results have

Frontiers in Cellular Neuroscience | www.frontiersin.org March 2015 | Volume 9 | Article 81

261

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Mrówczynski et al. Consequences of doublet discharges

FIGURE 1 | (A) Comparison of discharge rates of a single hind-limb MN of
rat under pentobarbital anesthesia, after intracellular injection of depolarizing
current of 8 nA (left record, without a doublet) and 10 nA (right record, with
a doublet at about 5 ms ISI). Note the increased firing frequency of the MN
with increased depolarizing current (the mean of a1 + b1 + c1 is longer than
the mean of a2 + b2 + c2), however, the ISI immediately following the
doublet (a2) is longer than the ISI after a single pulse below the doublet
threshold (a1), and is longer than mean ISI calculated for later discharges (b2
+ c2). (B) Comparison of the afterhyperpolarization (AHP) amplitude and
duration after a single pulse (left record) or a doublet of action potentials
(right record), showing a prolongation of the AHP and an increase of the
AHP amplitude following a doublet at 5 ms ISI. (C) Models of twitch-shape

contractions mathematically subtracted from the contraction obtained by two
consecutive pulses at 5 ms ISI, for a fast-type MU. On the left, the twitch
record in response to a single stimulus, on the right the response to the
second stimulus calculated as a difference between the two superimposed
recordings in (D). Note higher force and longer duration of twitch-shape
response to the second stimulus. The beginning of each record corresponds
to the appearance of a stimulus delivered to the axon. (D) Superimposed
MU force records (the same MU as in C) obtained by application of one
pulse (horizontal hatching) or by two consecutive pulses delivered at 5 ms ISI
(vertical hatching). Note evidently increased MU force after the doublet. The
time position of two stimuli at 5 ms ISI is indicated by dots below the
record.

implied that additional ionic mechanisms are involved in
prolongation of the AHP duration after the doublet than those
responsible for the AHP following a single action potential.
It is likely that activation of special types of potassium
channels responding to increased intracellular concentration of
sodium ions (KNa+ channels) may contribute to the increase
of potassium conductance. Such channels have low sensitivity
to normal cytoplasmatic concentration of sodium ions and
are not involved in production of a single action potential.
According to Safronov and Vogel (1996), a short train of
stimuli delivered to the neuron can evoke an intracellular
accumulation of sodium ions that is necessary to activate the
KNa+ channels.

The increase of the AHP duration following the
doublet seems to be responsible for a temporary reduction
of motoneuronal firing rate, and therefore may be
considered as important physiological mechanism fitting
the motoneuronal firing rate to that optimal for MUs. Thus,
this is an additional internal mechanism of motoneuronal
firing rate reduction to previously described mechanisms
related to the neuronal network activity, as reciprocal
inhibition from the Renshaw cells, inhibition by Ib
interneurons (from Golgi tendon organs) or inhibition from
interneurons receiving information from descending pathways
(Jankowska and Roberts, 1972; Hultborn et al., 1988; Jami,
1992).
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The Influence of a Doublet on MU Force
Development

The doublet of stimuli at the beginning of a train of pulses
leads to an increase of the force output of contracting MU.
Such effects have been frequently observed in experiments
with doublets of pulses (in a range of 5--10 ms) on isolated
fast or slow MUs of hind limb muscles of cat (Burke et al.,
1976; Stein and Parmiggiani, 1979; Zajac and Young, 1980a)
and rat (Hennig and Lømo, 1987; Celichowski and Grottel,
1998). A potentiation of MUs force in response to doublet
has resulted from non-linear summation of twitch forces
(Duchateau and Hainaut, 1986a) and could be twice to three
times higher than the force of a twitch evoked by a single
pulse (Parmiggiani and Stein, 1981; Kamavuako and Farina,
2010).

Simultaneous recording of the action potential from a
single MN and the twitch of muscle fibers innervated by
that neuron has revealed a positive correlation between the
AHP duration and the twitch duration, and this correlation
has been documented in several species, as cat (Zengel
et al., 1985; Cope et al., 1986), rat (Gardiner and Kernell,
1990) or mouse (Meehan et al., 2010). All these studies
have revealed that the activation with a single stimulus
results in longer AHP and longer twitch of slow MUs
in relation to fast ones. However, the amplitude and
duration of both the AHP (Gustafsson, 1984; Mrówczyński
et al., 2011) and twitch-shape responses (obtained by a
mathematical decomposition of the recorded tetanus) to
successive activations (Celichowski et al., 2008) are not
constant. Recently, Krutki et al. (2014) have demonstrated
in rat a parallelism in modification of the AHP as well as
the contraction time and amplitude of the twitch-shape
responses to individual stimuli. Parameters collected in
one series of experiments with intracellular recordings of
MNs (AHP amplitude and duration) (Figure 1B) have been
compared to data from another series of experiments with
the MU force recordings (Figure 1D) and to results of their
mathematical decomposition (amplitude and duration of
twitch-like responses to individual stimuli) (Figure 1C).
In both series of experiments MNs as well as MUs were
activated by trains of stimuli with the increasing numbers
of pulses, from one to five, delivered at 5 ms ISIs. The most
noticeable changes (the increase in the amplitude and the
duration) have been observed in both the AHP and twitch-shape
response parameters as an effect of activation with two stimuli
(Figures 1B,C).

According to Krutki et al. (2014) an increase of twitch
force in MUs after the doublet results rather from intracellular
processes within muscle fibers than from electromechanical-
coupling mechanisms. Duchateau and Hainaut (1986b) have
suggested that an intensification of membrane processes in
muscle fibers, leading to an increase of calcium concentration in
the cell cytosol, is a cause of post-doublet twitch potentiation.
Recently, Cheng et al. (2013) have pointed out that doublets
evoked an increase of the Ca2+ release from sarcoplasmic

reticulum, which is accompanied by greater force production
in unfatigued muscle fibers of mouse. Thus, the increase of
Ca2+ release enabling the phosphorylation of myosin light
chain is responsible for facilitated formation of additional
force-bearing cross bridges in the vicinity of already attached
cross bridges leading to increase of MUs twitch force
following the doublet (Sweeney et al., 1993; Abbate et al.,
2002).

Functional Implications of Doublet

The initial doublet is a specific pattern of MN discharges
described by Binder-Macleod (1995) as ‘‘high to low’’ strategy,
with a transition from high to low discharge rate. Such patterns
contain a strong initial dynamic component followed by the
steady state activity. According to the hypothesis by Kostyukov
and Korchak (1998), dynamic components in the efferent
commands play a decisive role in coding the final position of
limbs in real movements.

However, it should be stressed that during voluntary
activity, a strong descending drive to MNs causes recruitment
of many additional MUs (Aagaard, 2003). Some studies
concerning human training have demonstrated that strong
MUs may be included into the muscle contraction at an
early stage of force development (Van Cutsem et al., 1998;
Kamen and Knight, 2004; Vila-Chã et al., 2010). Therefore,
although the recruitment is the main mechanism of force
regulation, doublets add an extra force to the muscle
contraction. However, Sandercock and Heckman (1997)
have reported that muscle movement completely abolishes
muscle potentiation evoked by doublet after about 0.4 s of
eccentric or concentric contractions of cat soleus muscle.
Such result suggests that the doublet can evoke an initial force
increment, but this effect does not remain high throughout the
movement (Garland and Griffin, 1999). Thus, the physiological
meaning of doublets in the force increase could be less
significant during voluntary activity than it appears from the
traditional scheme based on comparison of linear summation
of two isolated isometric twitches. Moreover, doublets are
not unique components responsible for adding force at
the beginning of MUs contraction. Gorassini et al. (2000)
have noticed a variety of high-frequency firing patterns
started with triplets in fast MUs during locomotion of rats.
Thus, during natural activity different initial high-frequency
trains of action potentials may lead to faster and stronger
contractions.

In conclusion, the doublet at the beginning of motoneuronal
activity can be observed in various mammals, and should
be considered as a universal mechanism that enables
rapid enhancement of force developed by muscles at
the beginning of their activity, which lasts despite the
passing after-doublet decrease of motoneuronal discharge
frequency. Apart from this observation, the influence of
doublets on further discharges in motoneuronal firing
pattern, especially during voluntary movements, remains
unclear.
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Bączyk, M., Hałuszka, A., Mrówczyński, W., Celichowski, J., and Krutki, P.
(2013). The influence of a 5-wk whole body vibration on electrophysiological
properties of rat hindlimb spinal motoneurons. J. Neurophysiol. 109,
2705--2711. doi: 10.1152/jn.00108.2013

Baldissera, F., Campadelli, P., and Piccinelli, L. (1987). The dynamic response of
cat gastrocnemius motor units investigated by ramp-current injection into their
motoneurones. J. Physiol. 387, 317--330. doi: 10.1113/jphysiol.1987.sp016575

Baldissera, F., and Gustafsson, B. (1974). Firing behaviour of a neurone model
based on the afterhyperpolarization conductance time course and algebraical
summation. Adaptation and steady state firing. Acta Physiol. Scand. 92, 27--47.
doi: 10.1111/j.1748-1716.1974.tb05720.x

Baldissera, F., Gustafsson, B., and Parmiggiani, F. (1978). Saturating summation of
the afterhyperpolarization conductance in spinal motoneurones: a mechanism
for secondary range repetitive firing. Brain Res. 146, 69--82. doi: 10.1016/0006-
8993(78)90218-4

Barrett, E. F., Barett, N. J., and Crill, W. E. (1980). Voltage-sensitive outward
currents in cat motoneurones. J. Physiol. 304, 251--276. doi: 10.1113/jphysiol.
1980.sp013323

Bawa, P., and Calancie, B. (1983). Repetitive doublets in human flexor carpi
radialis muscle. J. Physiol. 339, 123--132. doi: 10.1113/jphysiol.1983.sp014707

Bigland-Ritchie, B., Johansson, R., Lippold, O. C., Smith, S., and Woods, J. J.
(1983). Changes in motoneurone firing rates during sustained maximal
voluntary contractions. J. Physiol. 340, 335--346. doi: 10.1113/jphysiol.1983.
sp014765

Binder, M. D., and Powers, R. K. (1999). Synaptic integration in spinal
motoneurones. J. Physiol. Paris 93, 71--79. doi: 10.1016/s0928-4257(99)80137-5

Binder-Macleod, S. A. (1995). Variable-frequency stimulation patterns for the
optimization of force during muscle fatigue. Muscle wisdom and the catch-like
property. Adv. Exp. Med. Biol. 384, 227--240. doi: 10.1007/978-1-4899-1016-
5_18

Binder-Macleod, S. A., and Barker, C. B. (1991). Use of a catchlike property of
human skeletal muscle to reduce fatigue. Muscle Nerve 14, 850--857. doi: 10.
1002/mus.880140909

Burke, R. E., Rudomin, P., and Zajac, F. E. (1976). The effect of activation history
on tension production by individual muscle units. Brain Res. 109, 515--529.
doi: 10.1016/0006-8993(76)90031-7

Celichowski, J., and Grottel, K. (1998). The influence of a doublet of stimuli at the
beginning of the tetanus on its time course. Acta Neurobiol. Exp. (Wars) 58,
47--53.

Celichowski, J., Raikova, R., Drzymała-Celichowska, H., Ciechanowicz-
Kowalczyk, I., Krutki, P., and Rusev, R. (2008). Model-generated
decomposition of unfused tetani of motor units evoked by random stimulation.
J. Biomech. 41, 3448--3454. doi: 10.1016/j.jbiomech.2008.09.013

Cheng, A. J., Place, N., Bruton, J. D., Holmberg, H. C., and Westerblad, H.
(2013). Doublet discharge stimulation increases sarcoplasmic reticulum
Ca2+ release and improves performance during fatiguing contractions in
mouse muscle fibres. J. Physiol. 591, 3739--3748. doi: 10.1113/jphysiol.2013.
257188

Christie, A., and Kamen, G. (2006). Doublet discharges in motoneurons of
young and older adults. J. Neurophysiol. 95, 2787--2795. doi: 10.1152/jn.00685.
2005

Cope, T. C., Bodine, S. C., Fournier, M., and Edgerton, V. R. (1986). Soleus
motor units in chronic spinal transected cats: physiological and morphological
alterations. J. Neurophysiol. 55, 1202--1220.

Duchateau, J., and Hainaut, K. (1986a). Nonlinear summation of contractions in
striated muscle. I. Twitch potentiation in human muscle. J. Muscle Res. Cell
Motil. 7, 11--17. doi: 10.1007/bf01756197

Duchateau, J., and Hainaut, K. (1986b). Nonlinear summation of contractions
in striated muscle. II. Potentiation of intracellular Ca2+ movements in
single barnacle muscle fibres. J. Muscle Res. Cell Motil. 7, 18--24. doi: 10.
1007/bf01756198

Eccles, J. C., Eccles, R. M., and Lundberg, A. (1958). The action potentials of the
alpha motoneurones supplying fast and slow motor muscles. J. Physiol. 142,
275--291. doi: 10.1113/jphysiol.1958.sp006015

Gardiner, P. F. (1993). Physiological properties of motoneurons innervating
different muscle unit types in rat gastrocnemius. J. Neurophysiol. 69,
1160--1170.

Gardiner, P. F., and Kernell, D. (1990). The ‘‘fastness’’ of rat motoneurones:
time-course of afterhyperpolarization in relation to axonal conduction velocity
and muscle unit contractile speed. Pflugers Arch. 415, 762--766. doi: 10.
1007/bf02584018

Garland, S. J., and Griffin, L. (1999). Motor unit double discharges: statistical
anomaly or functional entity? Can. J. Appl. Physiol. 24, 113--130. doi: 10.
1139/h99-010

Gorassini, M., Eken, T., Bennett, D. J., Kiehn, O., and Hultborn, H. (2000).
Activity of hindlimb motor units during locomotion in the conscious rat.
J. Neurophysiol. 83, 2002--2011.

Granit, R., Kernell, D., and Shortess, G. K. (1963). Quantitative aspects of repetitive
firing of mammalian motoneurones, caused by injected currents. J. Physiol. 168,
911--931. doi: 10.1113/jphysiol.1963.sp007230

Griffin, L., Garland, S. J., and Ivanova, T. (1998). Discharge patterns in human
motor units during fatiguing arm movements. J. Appl. Physiol. (1985) 85,
1684--1692.

Gustafsson, B. (1984). Afterpotentials and transduction properties in different
types of central neurones. Arch. Ital. Biol. 122, 17--30.

Hennig, R., and Lømo, T. (1985). Firing patterns of motor units in normal rats.
Nature 314, 164--166. doi: 10.1038/314164a0

Hennig, R., and Lømo, T. (1987). Gradation of force output in normal fast and
slow muscles of the rat. Acta Physiol. Scand. 130, 133--142. doi: 10.1111/j.1748-
-1716.1987.tb08119.x

Hoffer, J. A., Sugano, N., Loeb, G. E., Marks, W. B., O’Donovan, M. J., and
Pratt, C. A. (1987). Cat hindlimb motoneurons during locomotion. II. Normal
activity patterns. J. Neurophysiol. 57, 530--553.

Hultborn, H., Katz, R., and Mackel, R. (1988). Distribution of recurrent inhibition
within a motor nucleus. II. Amount of recurrent inhibition in motoneurones
to fast and slow units. Acta Physiol. Scand. 134, 363--374. doi: 10.1111/j.
1748--1716.1988.tb08503.x

Jami, L. (1992). Golgi tendon organs in mammalian skeletal muscle: functional
properties and central actions. Physiol. Rev. 73, 623--666.

Jankowska, E., and Roberts, W. J. (1972). Synaptic actions of single interneurones
mediating reciprocal Ia inhibition of motoneurones. J. Physiol. 222, 623--642.
doi: 10.1113/jphysiol.1972.sp009818

Kamavuako, E. N., and Farina, D. (2010). Time-dependent effects of pre-
conditioning activation on muscle fiber conduction velocity and twitch torque.
Muscle Nerve 42, 547--555. doi: 10.1002/mus.21726

Kamen, G., and Knight, C. A. (2004). Training-related adaptations in motor unit
discharge rate in young and older adults. J. Gerontol. A Biol. Sci. Med. Sci. 59,
1334--1338. doi: 10.1093/gerona/59.12.1334

Kernell, D. (1965). The limits of firing frequency in cat lumbosacral motoneurones
possessing different time course of afterhyperpolarization. Acta Physiol. Scand.
65, 87--100. doi: 10.1111/j.1748-1716.1965.tb04252.x

Kernell, D., and Monster, A. W. (1982). Time course and properties of late
adaptation in spinal motoneurones of the cat. Exp. Brain Res. 46, 191--196.
doi: 10.1007/bf00237176

Kirkwood, P. A., and Munson, J. B. (1996). The incidence of initial doublets in
the discharges of motoneurones of two different inspiratory muscles in the cat.
J. Physiol. 493, 577--587. doi: 10.1113/jphysiol.1996.sp021405

Kostyukov, A. I., and Korchak, O. E. (1998). Length changes of the cat soleus
muscle under frequency-modulated distributed stimulation of efferents in
isotony. Neuroscience 82, 943--955. doi: 10.1016/s0306-4522(97)00105-x

Kostyukov, A. I., Lytvynenko, S. V., Bulgakova, N. V., and Gorkovenko,
A. V. (2009). Subthreshold activation of spinal motoneurones in the stretch
reflex: experimental data and modeling. Biol. Cybern. 100, 307--318. doi: 10.
1007/s00422-009-0303-z

Kostyukov, A. I., Lytvynenko, S. V., Bulgakova, N. V., and Gorkovenko, A. V.
(2011). Changes in the threshold of generation of action potentials by spinal
motoneurons under conditions of their natural activation. Neurophysiology 43,
182--191. doi: 10.1007/s11062-011-9201-9
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Mrówczyński, W., Krutki, P., Chakarov, V., and Celichowski, J. (2010). Doublet of
action potentials evoked by intracellular injection of rectangular depolarization
current into rat motoneurones. Exp. Brain Res. 205, 95--102. doi: 10.
1007/s00221-010-2339-7
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Tonic spiking of serotonergic neurons establishes serotonin levels in the brain. Since
the first observations, slow regular spiking has been considered as a defining feature
of serotonergic neurons. Recent studies, however, have revealed the heterogeneity of
serotonergic neurons at multiple levels, comprising their electrophysiological properties,
suggesting the existence of functionally distinct cellular subpopulations. In order to
examine in an unbiased manner whether serotonergic neurons of the dorsal raphe
nucleus (DRN) are heterogeneous, we used a non-invasive loose-seal cell-attached
method to record α1 adrenergic receptor-stimulated spiking of a large sample of
neurons in brain slices obtained from transgenic mice lines that express fluorescent
marker proteins under the control of serotonergic system-specific Tph2 and Pet-1
promoters. We found wide homogeneous distribution of firing rates, well fitted by a
single Gaussian function (r2

= 0.93) and independent of anatomical location (P = 0.45),
suggesting that in terms of intrinsic firing properties, serotonergic neurons in the DRN
represent a single cellular population. Characterization of the population in terms of
spiking regularity was hindered by its dependence on the firing rate. For instance,
the coefficient of variation of the interspike intervals (ISI), a common measure of
spiking irregularity, is of limited usefulness since it correlates negatively with the
firing rate (r = −0.33, P < 0.0001). Nevertheless, the majority of neurons exhibited
regular, pacemaker-like activity, with coefficient of variance of the ISI lower than 0.5
in ∼97% of cases. Unexpectedly, a small percentage of neurons (∼1%) exhibited a
particular spiking pattern, characterized by low frequency (∼0.02–0.1 Hz) oscillations
in the firing rate. Transitions between regular and oscillatory firing were observed,
suggesting that the oscillatory firing is an alternative firing pattern of serotonergic
neurons.

Keywords: serotonergic neurons, neuronal population, pacemaker neurons, firing regularity, oscillatory firing

INTRODUCTION

In mammals, the dorsal raphe nucleus (DRN) contains the largest population of serotonergic
neurons, estimated to be ∼9000 in the mouse (Daszuta and Portalier, 1985; Ishimura
et al., 1988), 11,500–15,000 in the rat (Descarries et al., 1982; Vertes and Crane, 1997)
and ∼165,000 in humans (Baker et al., 1991). Early electrophysiological experiments carried

Frontiers in Cellular Neuroscience | www.frontiersin.org August 2016 | Volume 10 | Article 195

266

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fncel.2016.00195
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2016.00195&domain=pdf&date_stamp=2016-08-03
http://journal.frontiersin.org/article/10.3389/fncel.2016.00195/abstract
http://journal.frontiersin.org/article/10.3389/fncel.2016.00195/abstract
http://journal.frontiersin.org/article/10.3389/fncel.2016.00195/abstract
http://loop.frontiersin.org/people/98296/overview
http://loop.frontiersin.org/people/110587/overview
http://loop.frontiersin.org/people/195730/overview
http://loop.frontiersin.org/people/4930/overview
http://loop.frontiersin.org/people/66852/overview
https://creativecommons.org/licenses/by/4.0/
mailto:bmlinar@unifi.it
http://dx.doi.org/10.3389/fncel.2016.00195
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Mlinar et al. Firing Properties of Serotonergic Neurons

out in brain slices and in anesthetized animals have revealed
that serotonergic neurons in DRN discharge with a slow
(1–2 Hz), regular (clock-like) pattern, suggesting a homogeneous
population of pacemaker neurons (Aghajanian et al., 1968;
Mosko and Jacobs, 1974, 1976; Aghajanian and Vandermaelen,
1982). Studies in behaving animals further revealed that the firing
rate of putative DRN serotonergic neurons is strongly linked
to the sleep-wake cycle, showing strong positive correlation
with the level of behavioral arousal (McGinty and Harper,
1976; Trulson and Jacobs, 1979; Jacobs and Fornal, 1991).
In spite of uncertainty about neuron type identification, data
drawn from a larger sample of putative DRN serotonergic
neurons in awake animals revealed their heterogeneity with
respect to the sleep-wake cycle and suggested the existence
of atypical serotonergic neurons, exhibiting spiking activity
different from the canonic clock-like pattern (Sakai and Crochet,
2001; Urbain et al., 2006; Sakai, 2011). In recordings from
anesthetized animals, a subset of serotonergic neurons was
found to discharge with a particular burst-like repetitive
mode, characterized by doublets, or occasionally triplets, of
closely separated spikes per cycle (Hajós et al., 1995, 1996;
Hajós and Sharp, 1996).

By using a juxtacellular labeling method (Pinault, 1996),
which greatly improved neuron type identification, it was
confirmed that most DRN serotonergic neurons exhibit slow
and regular spiking (Allers and Sharp, 2003) and that a subset
discharges in burst-like repetitive mode (Hajós et al., 2007).
Further studies using juxtacellular labeling revealed both a subset
of fast-firing (>8 Hz) serotonergic neurons (Kocsis et al., 2006)
and functional differences between single spike and burst firing
serotonergic neurons (Schweimer and Ungless, 2010; Schweimer
et al., 2011). Recent studies using optogenetic identification of
serotonergic neurons have further strengthened the case for
the heterogeneity of serotonergic neurons, as atypical, non-
clock-like firing neurons have been observed (Cohen et al.,
2015). Furthermore, different basal firing rates and reward-
related tonic and phasic firing patterns have been reported
(Liu et al., 2014; Li et al., 2016). The heterogeneity of DRN
serotonergic neurons in behaving animal is at least in part
consequential to differences in afferent connections (Warden
et al., 2012; Weissbourd et al., 2014), but it could also be due
to differences in intrinsic properties of serotonergic neurons.
The results of some whole-cell patch clamp studies support
this possibility, suggesting diverse subtypes of serotonergic
neurons in the DRN (Lowry et al., 2000; Crawford et al.,
2010; Calizo et al., 2011; Fernandez et al., 2016). However,
evidence of intrinsically heterogeneous classes of serotonergic
neurons is far from clear and the possibility that the diversity
of serotonergic neurons represents only normal population
variability of serotonergic neurons has been raised (Andrade and
Haj-Dahmane, 2013).

In order to examine in an unbiased manner whether DRN
serotonergic neurons are intrinsically heterogeneous we recorded
the spiking activity in a large number of genetically identified
serotonergic neurons by using a non-invasive loose-seal cell-
attached method. Our data suggest that in terms of their intrinsic
spiking properties, serotonergic neurons in the DRN can be

considered as a single cellular population, characterized by a wide
homogeneous distribution of firing rates and the regularity of
spiking proportional to the rate.

MATERIALS AND METHODS

Transgenic Mice
All animal manipulations were performed according to the
European Community guidelines for animal care (DL 116/92,
application of the European Communities Council Directive
86/609/EEC) and were approved by the Committee for Animal
Care and Experimental Use of the University of Florence.
Animals were housed in groups of 3–5 per cage and maintained
under standard laboratory conditions (food andwater ad libitum,
12–12 h light-dark cycle with lights on from 08:00 to 20:00 h,
ambient temperature 22 ± 1◦C, relative humidity 40–50%).
Three transgenic mouse lines with serotonergic system-specific
fluorescent protein expression were used. The Tph2::SCFP
(TSC) transgenic mouse line was produced by pronuclear
injection in FVBxFVB embryos of a circular mouse BAC
(RP23-112F24, Chori-BACPAC Resources, Oakland, CA, USA)
containing 220 kb of the Tph2 gene in which the Renilla
luciferase (Rluc; psiCHECKTM, Promega, Fitchburg, WI, USA),
in-frame, with the T2A sequence (Holst et al., 2006), followed
by super cyan fluorescent protein 3A (SCFP3A) coding
sequence (from pSCFP3A-C1; Kremers et al., 2006), bovine
growth hormone polyadenylation sequence and an FRT-flanked
kanamycin resistance marker (FLP deleted in bacteria before
DNA injection) had been inserted at the start codon of the
Tph2 gene (Figure 1A). Founders carrying the transgene were
identified and genotyped by PCR. The TSC line had stable,
high-level transgene expression as measured by Rluc expression
(data not shown). Nearly all serotonergic neurons in the DRN
were found to express SCFP (Figure 1B). Pet1-Cre::CAG.eGFP
(PCG) line (Montalbano et al., 2015) was obtained by crossing
Pet1-Cre mice, expressing Cre recombinase in 5-HT neurons
by the Pet1 promoter and enhancer (Dai et al., 2008) with
CAG.eGFP reporter mice, carrying an inducible eGFP cassette
(Nakamura et al., 2006). Pet1-Cre::Rosa26.YFP (PRY) was
obtained by crossing Pet1-Cre mice with ROSA26-stop-YFP
reporter mice (Srinivas et al., 2001). All lines were maintained
in a pure C57BL/6 strain. Pet1-Cre and CAG.eGFP mice were
kindly provided by Prof. K.P. Lesch (University of Würzburg,
Würzburg, Germany). ROSA26-stop-YFP reporter mice were
purchased from the Jackson Laboratory (Bar Harbor, ME,
USA).

Immunofluorescence
Mice were anesthetized intraperitoneally with Avertin (Sigma-
Aldrich, Milan, Italy) and perfused transcardially with 4%
paraformaldehyde. Brains were post-fixed overnight at 4◦C and
sectioned into 70 µm thick slices with a vibratome (Leica
Microsystems, Wetzlar, Germany). Free floating sections were
stained with primary antibodies overnight at 4◦C (1:400 mouse
α-TPH, Sigma-Aldrich; 1:800 chicken α-GFP/CFP, Aves Labs,
Tigard, OR, USA) and incubated with secondary antibodies for
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FIGURE 1 | Generation and characterization of Tph2::SCFP (TSC)
transgenic mice. (A) Scheme of BAC construct used for generation of the
TSC transgenic mouse line. The Rluc-T2A-SCFP cassette was inserted at the
ATG site of the Tph2 gene in an RP23-112F24 mouse BAC. The modified
construct was used for creation of a transgenic mouse line, allowing super
cyan fluorescent protein (SCFP) and Renilla luciferase expression under Tph2
promoter. (B) Confocal images of SCFP and TPH2 immunoreactivity in 70 µm
coronal sections of the dorsal raphe nucleus (DRN) in wild type littermates
(upper panel) and TSC transgenic mice (lower panel). SCFP expression was
detected in the DRN of TSC mice with an anti-GFP/CFP antibody (shown in
green; left). No signal was seen in wild type littermates. TPH2 expression was
detected with an anti-TPH2 antibody (red; middle). In TSC mice, the SCFP
signal co-localizes with virtually all TPH2-positive neurons in the DRN (yellow in
the sum of both channels; right). IR, immunoreactivity. Scale bar: 100 µm.

2 h at room temperature (IgG A488 or IgG A594, Molecular
Probes/Thermo Fisher Scientific, Waltham,MA, USA). Confocal
microscopy was performed with a TCS-SP5 Laser Scanning
System (Leica Microsystems). The images were processed and
analyzed using the ImageJ software (ImageJ, National Institutes
of Health, Bethesda, MD, USA1).

Loose-Seal Cell-Attached Recordings
Mice (4–28 weeks of age) were anesthetized with isofluorane
and decapitated. The brains were rapidly removed and
dissected in ice-cold gassed (95% O2 and 5% CO2) ACSF
composed of: 124 mM NaCl, 2.75 mM KCl, 1.25 mM
NaH2PO4, 1.3 mM MgCl2, 2 mM CaCl2, 26 mM NaHCO3,
11 mM D-glucose. The brainstem was sliced coronally into
200 µm thick slices with a vibratome (DSK, T1000, Dosaka,
Japan). Slices were allowed to recover for at least 1 h at
room temperature and then were individually transferred
to a submersion type recording chamber and continuously

1https://imagej.nih.gov/ij/

superfused at a flow rate of 2 ml min−1 with oxygenated
ACSF warmed to 37◦C by a feedback-controlled in-line heater
(TC-324B/SF-28, Warner Instruments, Hamden, CT, USA).
Slices were allowed to equilibrate for 10–20 min before the
beginning of the recording. To reproduce noradrenergic drive
that facilitates serotonergic neuron firing during wakefulness
(Baraban and Aghajanian, 1980; Levine and Jacobs, 1992),
ACSF was supplemented with the natural agonist noradrenaline
(NA; 30 µM) or with the α1 adrenergic receptor agonist
phenylephrine (PE; 10 µM; Vandermaelen and Aghajanian,
1983). NA and PE were used at minimal concentrations
sufficient to produce a full effect on firing (approximately
10 times higher than the respective EC50 values; Figure 2).
An antioxidant, disodium metabisulfite (Na2S2O5, 30 µM) was
added to NA-supplemented ACSF to prevent NA oxidation.
Recordings were done without the addition of synaptic blockers
as we had previously established that under identical recording
conditions, spiking of serotonergic neurons is not influenced by
the antagonist application (Mlinar et al., 2015). Similarly, no

FIGURE 2 | Dose-response curves for the activation of the DRN
serotonergic neurons by noradrenaline (NA) and phenylephrine (PE).
(A) Integrated firing rate histogram (10 s bins) showing the effect of bath
application of NA on the firing rate of a DRN serotonergic neuron. Increasing
concentrations of NA (15 min each) were applied during the times indicated by
solid lines. The firing rate during the last 3 min at each concentration was used
for construction of the dose-response curve. (B) Average dose-response
curve for NA. Symbols represent the mean of eight experiments. Error bars
represent SD. Curve (red) represents the best least squares fit to
four-parameter logistic equation. (C) Average dose-response curve for
α1-adrenergic receptor agonist PE constructed in the same way as that of NA.
Symbols represent the mean of nine experiments. Error bars represent SD.
Curve (red) represents the best least squares fit to four-parameter logistic
equation.
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5-HT1A receptor antagonist was applied since autoinhibition
by endogenous 5-HT is insignificant under the conditions used
(i.e., without supplementing ACSF with the 5-HT precursor
Trp; Mlinar et al., 2005). Typically, recordings were done on
four slices per animal, and 5–27 neurons were recorded per
slice.

Neurons within DRN were visualized by infrared Dodt
gradient contrast video microscopy, using a 40× water-
immersion objective (N-Achroplan, numerical aperture 0.75,
Zeiss, Göttingen, Germany) and a digital CCD camera (ORCA-
ER C4742-80-12AG; Hamamatsu, Hamamatsu City, Japan)
mounted on an upright microscope (Axio Examiner Z1;
Zeiss) controlled by Axiovision software (Zeiss). Loose-seal
cell-attached recordings were made from fluorescent protein-
expressing neurons, visually identified by using Zeiss FilterSet
46 (eGFP and YFP, excitation BP 500/20, emission BP 535/30)
or Zeiss FilterSet 47 (CFP, excitation BP 436/20, emission
BP 480/40). Fluorescence was excited using a metal halide
lamp (Zeiss HXP 120). Patch electrodes (3–6 M�) were
pulled from thick-walled borosilicate capillaries (1.50 mm
outer diameter, 0.86 mm inner diameter; Corning) on a P-
97 Brown-Flaming puller (Sutter Instruments, Novato, CA,
USA) and filled with solution containing (in mM): 125 NaCl,
10 HEPES, 2.75 KCl, 2 CaCl2 and 1.3 MgCl2, pH 7.4 with
NaOH. Each pipette was used for several recordings (typically
5–10) and was replaced if tissue debris attached to the tip.
When a new patch electrode was used, before touching the
cell membrane, the positive pressure was released for several
seconds to expose the pipette tip to slice tissue and thus prevent
the development of giga-seal. After positioning the pipette in
gentle contact with the cell membrane, development of loose
seal was monitored by using a voltage-clamp protocol with
holding potential of 0 mV and test pulse of 1 mV/100 ms,
repeated every second. Weak positive pressure was released
and gentle suction was slowly applied until detected spikes
increased to 50–100 pA peak-to-peak amplitude. Corresponding
seal resistance was in the 10–20 M� range. Following the
sealing procedure, which lasted 10–30 s, the amplifier was
switched to the track (slow voltage clamp) mode and spiking
activity was continuously recorded for 2–3 min. Exceptionally,
if the firing rate was very low or the spiking pattern appeared
anomalous, recordings were prolonged for several minutes
and/or the recorded neuron was repatched to confirm the
observation. In a minority or recordings the loose seal was
established at the beginning of the continuous recording in track
mode and the seal resistance was verified at the end of the
recording.

Recordings were made using an Axopatch 200B amplifier
(Molecular Devices, Sunnyvale, CA, USA) controlled by
Clampex 9.2 software (Molecular Devices). Signals were low-pass
filtered with a cut-off frequency of 5 kHz (Bessel) and digitized
with a sampling rate of 40 kHz (Digidata 1322A, Molecular
Devices). After the recording, images of recorded neuron were
acquired to document the expression of the fluorescent marker
in the recorded neuron, as well as its anatomical location, size
and shape.

Measures for Improving the Reliability of
Loose-Seal Cell-Attached Recordings
Although loose-seal cell-attached recording under visual
guidance is a conceptually simple procedure, reliable
measurements of spiking activity rely on two critical factors:
(I) the absence of interference of the patch pipette with the
recorded neuron; and (II) the reliability that recordings are done
on healthy cells. The interference of the pipette with the cell
membrane, in particular mechanical stress, may compromise
estimation of the neuronal firing rate by using cell-attached
recordings (see Alcami et al., 2012 for a critical analysis). As
we wanted to obtain reliable, artifact-free recordings from a
large number of neurons, additional precautions were made
in addition to the above described careful sealing procedure.
Thus, the segment of the recording obtained during, and in
some cases for up to 1 min following, the sealing procedure
was not considered for analysis, because, in spite of our careful
approach, spiking activity was transiently influenced by sealing
in ∼30% of cases. In case of doubt that the mechanical stretch
(exerted by the pipette pressing the plasma membrane and/or
the applied suction stretching it) may have interfered with
spiking activity, measurement reliability was verified at the
end of the recording by application of an additional pulse of
suction to the pipette (Figures 3A–D). In addition, recordings
were interrupted and data discarded if the baseline current
(i.e., segments between spikes), monitored online, showed
any sign of instability, such as variable amplitude, irregular
shape, inward current events, likely to be caused by opening of
stretch-activated channels (Suchyna et al., 2009; Alcami et al.,
2012).

Viability of preparation is the second crucial factor which
may influence results obtained in brain slice recordings. We
have previously observed that in unhealthy or aging slices
serotonergic neurons fire at a lower rate and ultimately become
silent. Under the experimental conditions used in this study,
slices were typically viable for 8–10 h. Because our principal
objective was to define firing characteristics of a population
of neurons, we used several online and post hoc criteria to
ensure that recordings were done from healthy neurons. First,
the neurons selected for recordings were 30–60 µm distant from
the slice surface, had an overall healthy appearance and clearly
visible intact primary neurites. Second, no further recordings
were done in slices in which fluctuations in baseline current
or the presence of afterspike (tail) currents were detected more
than once. We found that the appearance of afterspike current
represents a particularly reliable symptom of decreased viability
of brain slices, as it is absent in technically valid recordings from
healthy neurons, but often gradually develops during recordings
in aging slices. In extreme cases, spike shape can change from
its normal form corresponding to the time derivative of action
potential to an action potential-like shape, characterized by
wider spike and the afterspike current with the time course
corresponding to the after-hyperpolarization. We believe that
such a deformation of spike shape reflects a decreased resistance
of the membrane patch caused by compromised integrity of
cell membrane in aging or unhealthy neurons. Third, the
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FIGURE 3 | Validity of firing rate measurement by use of loose-seal
cell-attached recordings. (A–D) The procedure used to verify the lack of the
pipette interference with the measurement. (A) Time-course of a recording
illustrating the procedure. During the first 30 s, gentle suction was applied to
the pipette to establish loose-seal cell-attached recording configuration. The
pressure was then released and after 30 s, left to allow relaxation of the
patched cell membrane, a 3-min-long segment (denoted a, from 1 to 4 min)
was acquired for the measurement. Afterward, additional suction was slowly
applied until the spike amplitude approximately doubled (lower panel) and the
recording was prolonged for an additional 1.5 min (denoted b). Since the firing
rate remained essentially the same after the test (second suction), the
recording was considered reliable, i.e., free of pipette interference.
(B) Superimposed average spikes of the same experiment. Spike duration,
measured as the interval from the upstroke peak (U) to the second
downstroke peak (D2), was unchanged by the additional suction. (C) Box plot
of the same experiments shows no changes in distribution of interspike
intervals (ISI). Boxes represent median and the interquartile range (IQR).
Whiskers denote 1.5 IQR. (D) Trace shows a segment (4:10–4:30 min) of the
original recording during which additional (test) suction was applied. Scale
bars: 50 pA, 1 s. (E) Post hoc analysis performed to verify that firing rate of
recorded neurons was not influenced by the time passed between slicing and
recording. Symbols represent individual neurons. Pearson correlation revealed
no correlation between the time after slicing and the firing rate (r = −0.037,
95% CI −0.096 to 0.023, r2

= 0.0014, P = 0.23). Lines represent linear
regression (Slope −0.017 Hz h−1).

reliability of recordings was additionally verified during analysis
and several experiments in which there was an increase in
spike width and/or the appearance of interspike current were
excluded from further analysis. Finally, as a precaution, the
order of recordings was scrambled on different days, both
regarding slices in respect to their rostrocaudal position as
well as regarding location of neurons in a given slice. The

validity of these criteria were confirmed post hoc by lack of
correlation between the firing rate of neurons accepted for
analysis and the time interval between slicing and recording for
each experimental day (not shown) as well as for the pooled data
(Figure 3E).

Anatomical Location of Recorded Neurons
Location of recorded neurons in the slices were documented
immediately after recording. In addition, for each slice,
brightfield images (5× objective) and fluorescence images or
stacks (10× objectives) were acquired and then stitched offline
using ImageJ software to obtain composite images of an entire
slice. For each animal, the rostrocaudal level of slices (distance
from bregma) was first assigned based on comparisons with
a mouse stereotaxic atlas (Paxinos and Franklin, 2001) and
then used to reconstruct the stereotaxic coordinates of recorded
neurons. The expected precision of the coordinates is ≤10 µm
for the lateral axis and≤50µm for rostrocaudal and dorsoventral
axes. Subdivisions of DRN are based on the observed distribution
pattern of serotonergic neurons and the atlas (Paxinos and
Franklin, 2001). Rostrocaudal divisions follow suggestions by
Abrams et al. (2004).

Analysis
Spike detection was performed using the event detection routine
of Clampfit 9.2 software. Spikes were inspected by eye to assure
that there are no false or missed events. Spike duration (width)
was determined from the shape of averaged spikes by measuring
the interval between the spike upstroke and the second
downstroke (see Figure 3B). It was determined only for spikes
that had a well-defined second downstroke peak (D2; ∼90% of
neurons). The somatic surface area of recorded neurons was
measured using the ImageJ freehand tracing tool. To characterize
spiking characteristics, the following parameters were calculated
for each recorded neuron: firing rate (number of spikes over time
interval); SD of instantaneous frequency; COV of instantaneous
frequency (SD of instantaneous frequency/mean instantaneous
frequency); SD of interspike intervals (ISI); and COV of ISI
(SD of ISI/mean ISI). Parametric tests were used for statistical
analysis, i.e., ANOVA test with Tukey’s multiple comparison
post hoc test and unpaired t-test. Pearson’s test and multivariate
multiple regression were used to assess for correlation between
variables. When appropriate, results of non-parametric tests
were reported in addition to those of parametric tests. Data
are reported as mean ± SD and median ± interquartile range
(IQR). Statistical analysis was performed using Prism 6 software
(GraphPad Software, San Diego, CA, USA) with the exception of
multivariate multiple regression, which was done using STATA
version 14 software (StataCorp LP, College Station, TX, USA).

RESULTS

Firing Rate
The α1 adrenergic receptor-driven spiking activity of fluorescent
protein-marked DRN serotonergic neurons was examined in
three transgenic mouse lines to reduce the likelihood of
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peculiarities potentially caused by genetic modifications. In the
PRY and PCG lines, serotonergic system-specific expression of
YFP and eGFP, was achieved by Pet-1 promoter (Hendricks
et al., 1999; Pfaar et al., 2002), while in the TSC line serotonergic
system-specific expression of SCFP was achieved by Tph2
promoter. A comparison of data obtained by using all three lines
showed that there were no significant differences across the lines
in firing rate (F(2,1084) = 0.29, P = 0.75, ANOVA; range: mean,
2.21–2.27 Hz; median, 2.03–2.18 Hz; Figure 4A), regularity of
firing (SD of instantaneous frequency: F(2,1084) = 0.62, P = 0.54,
ANOVA; P = 0.22, Kruskal-Wallis; Figure 4B) and firing
pattern (see below). Therefore, data obtained from all three
lines will be considered as a uniform group. The activity of
serotonergic neurons was examined in two conditions designed
to fully facilitate their firing, i.e., in the presence of 30 µM
NA (NA) and in the presence of 10 µM of the α1 receptor
agonist PE (PE). As shown in Figure 4C, similar findings were
found under both conditions. Serotonergic neurons exhibited
an average firing rate of 2.17 ± 1.13 Hz in NA (mean ± SD,
range 0.19–6.29 Hz, median = 2.01 Hz, n = 358) and
2.29 ± 1.02 Hz in PE (mean ± SD, range 0.18–7.74 Hz,
median = 2.20 Hz, n = 729). Although the firing rate of
serotonergic neurons was on average slightly lower in NA than
in PE, the difference was non-significant (P = 0.086, t test with
Welch’s correction) and all subsequent analysis was done on
pooled data.

The great majority of serotonergic neurons exhibited steady
spiking, with the firing rate ranging from 0.30 to 5.81 Hz in
99% of recorded neurons (e.g., Figures 4D,E). In pooled data
from all recordings, serotonergic neurons exhibited an average
rate of 2.25 ± 1.06 Hz (mean ± SD, range 0.18–7.74 Hz,
COV = 46.9%, median = 2.13 Hz, n = 1087). The frequency
distribution of firing rates was well fit by a single Gaussian
function (mean = 2.07 Hz, 95% CI 2.00–2.14 Hz; SD = 0.99 Hz,
95% CI 0.92–1.06 Hz; r2 = 0.93, Figure 4F), whereas fitting
with a sum of two Gaussians was ambiguous, suggesting that
in terms of firing rate DRN serotonergic neurons represent a
homogeneous population with a wide distribution of firing rates.
Variability in firing rate of serotonergic neurons was evident
in recordings from individual mice. For experimental days in
which recordings were done from at least thirty serotonergic
neurons from a single animal, the mean firing rate ranged from
1.75 to 2.73 Hz, with SD in 0.70–1.30 Hz range and COV in
29.2–63.3% range (Figure 4G). Similar findings were observed in
individual slices and in sequences of recording from neighboring
neurons (not shown). Additional post hoc analysis showed no
significant difference in firing rate of serotonergic neurons with
respect to animal age (range 27–195 days; r = 0.040, P = 0.18,
Pearson) or sex (P = 0.26, t test; males, 2.24 ± 1.06 Hz,
mean ± SD, n = 843; females, 2.32 ± 1.04 Hz, mean ± SD,
n= 244).

Some recent studies have suggested different
electrophysiological properties of DRN serotonergic neurons
with respect to their anatomical location. To examine such
differences, we reconstructed stereotaxic coordinates of almost
all recorded neurons (1052 out of 1087; see ‘‘Materials and
Methods’’ Section) and tested whether the firing rate depended

on spatial location, as well as compared firing rates of neurons
belonging to different subnuclei (Figure 5). Pearson’s correlation
revealed no significant difference along the rostrocaudal axis
(r = 0.012, 95% CI −0.048 to 0.073, P = 0.69; Figure 5B)
and dorsoventral axis (r = 0.009, 95% CI −0.052 to 0.069,
P = 0.78; Figure 5C), while borderline significance was
reached with respect to the lateral position from the midline
(r = −0.061, 95% CI −0.122 to −0.0001, P = 0.046; Figure 5D).
In addition, multivariate multiple regression revealed no
significant correlation with respect to spatial location (r = 0.05,
P = 0.45). Finally, no differences in firing rate were found
among serotonergic neurons belonging to different dorsal raphe
subnuclei (F(5,1046) = 0.56, P = 0.73, ANOVA; Figure 5E).
Together, these findings suggest a spatially homogeneous
population of serotonergic neurons throughout the DRN.

Next, we examined the dependence of the firing rate on
the size of neuron and spike duration. Analysis revealed no
correlation between the somatic surface area and the firing rate
(Pearson r = 0.006, P = 0.84; Figure 6A) and moderate negative
correlation between the spike duration and firing rate (Pearson
r = −0.403, 95% CI −0.455 to −0.348, r2 = 0.162, P < 0.0001;
Figure 6B). These findings indicate that pacemaker properties of
serotonergic neurons do not significantly depend on neuron size
and based on r2 value, that only ∼16% of the variability in the
firing rate can be explained by variation of spike duration. This
suggests that variability in the expression and activity of voltage-
gated ion channels determining spike duration, contributes only
a small part to pacemaker properties of serotonergic neurons.
Finally, the probability density function of spike duration of
recorded neurons was found to follow a normal distribution
(r2 = 0.94; Figure 6C), further supporting the hypothesis that
DRN serotonergic neurons constitute an electrophysiologically
homogenous cell population.

Spiking Pattern
Clock-like regular spiking is considered one of the defining
electrophysiological properties of serotonergic neurons.
Consistently, the majority of recorded neurons exhibited a
regular spiking pattern irrespective of firing rate (e.g., see
Figure 4D). In order to define quantitatively the spiking
regularity of serotonergic neurons, we first wanted to find a
measure of regularity which is independent of the firing rate.
For that, we run a correlation analysis of potential regularity
measures, SD and COV of instantaneous frequency and ISI,
vs. the firing rate (Figure 7). We found a weak positive
correlation between the SD of instantaneous frequency and
the firing rate (r = 0.20, P < 0.0001, Pearson; Figure 7A) and
depending on the test used, a weak (r = −0.35, P < 0.0001,
Pearson) or very strong (rs = −0.853, P < 0.0001, Spearman)
negative correlation between the SD of ISI and the firing rate
(not shown). There was also a moderate negative correlation
between COV of instantaneous frequency and the firing rate
(r = −0.49, P < 0.0001, Pearson; Figure 7B) and between
COV of ISI and the firing rate (r = −0.33, P < 0.0001,
Pearson; Figure 7C). Similar values were obtained when
correlations were run following exclusion of 1% of neurons
with lowest and 1% with highest firing rate and/or neurons
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FIGURE 4 | Firing rate of serotonergic neuron population. (A) Comparison of firing rates in transgenic mice lines used in this study. Boxes represent medians
and the IQR. Whiskers denote 1.5 IQR. PET1-CRE::ROSA26.YFP (PRY), PET1-CRE::CAG.EGFP (PCG) and TSC stay for PRY, PCG and Tph2-SCFP mouse line,
respectively. The number of recorded neurons is indicated in parenthesis. (B) Comparison of SD of instantaneous firing (IF) in three mouse lines. (C) Comparison of
firing rates obtained in the presence of 30 µM NA and 10 µM PE. Boxes represent medians and the IQR. Whiskers denote 1.5 IQR. (D) Superimposed time-course
of four representative recordings covering firing rate range typical for DRN serotonergic neurons. In the examples shown, firing rates were 5.69, 3.59, 2.02 and
0.62 Hz, while SD of instantaneous frequency were 0.29, 0.22, 0.19 and 0.22 Hz, respectively. (E) ISI histogram of 2.02 Hz-firing neuron shown in (C). COV denotes
variation coefficients of ISI. (F) Firing rate histogram of DRN serotonergic neuron population. Curve represents best fit by single Gaussian function. (G) Box plot
illustrating variability in firing rate of serotonergic neurons in individual animals. Boxes represent medians and the IQR. Whiskers denote 1.5 IQR.
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FIGURE 5 | Firing rate of serotonergic neuron is constant across the DRN. (A) Coronal sections showing the anatomical location of recorded serotonergic
neurons; adaptations from Paxinos and Franklin (2001). Numbers indicate distance of the section from bregma. Symbols represent individual neurons. Colors
indicate dorsal raphe subnuclei: red, rostral; green, dorsal; violet, ventral; orange, interfascicular; gray, caudal; blue, lateral wings. (B–D) Correlation between the firing
rate and neuron location along the rostrocaudal axis (B), the dorsoventral axis (C), and the lateral distance from the midline (D). In (C), numbers on abscissa
correspond to numbers on the right margin of coronal plates in mouse brain atlas (Paxinos and Franklin, 2001) and represent dorsoventral distance from the
horizontal plane passing through bregma and lambda on the surface of the skull. Symbols represent individual neurons. Lines represent linear regression and 95%
CI. r denotes Pearson’s correlation coefficient. (E) Comparison of firing rates of neurons belonging to different dorsal raphe subnuclei. R, rostral; D, dorsal; V, ventral;
I, interfascicular; C, caudal subnucleus; L, lateral wings. Median firing rates and number of recorded neurons per each subnucleus are: R, 2.16 Hz (n = 165); D,
2.18 Hz (n = 440); V, 2.17 Hz (n = 290); I, 1.90 Hz (n = 11); C, 2.11 Hz (n = 27), L, 2.13 Hz (n = 119).

showing slow oscillations in firing frequency (see below).
These findings indicate an increased regularity of spiking in
neurons firing at higher rates. As a consequence, there is no
simple measure providing an adequate, rate-independent
definition for firing regularity of serotonergic neurons.
Importantly, ISI COV, the most commonly used measure
of spike train irregularity, is of limited usefulness and
although assumed to be rate-independent, shows a stronger
correlation with the firing rate than SD of instantaneous
frequency.

Regardless of the measure used to assess regularity, it was
evident that not all neurons exhibited canonic clock-like spiking.
For instance, if the ISI COV of less than 30% and more than
50% are used as a cutoff to classify highly regular and irregular
neurons, respectively, then ∼7% of recorded neurons could
be considered as moderately regular and ∼3% as irregular
(Figure 7D). Not considering very slow-firing neurons (<0.6 Hz;
28 excluded), most of which would result as irregular according

to ISI COV, but not according to instantaneous frequency
SD, 1.4% of serotonergic neurons could still be considered
as irregular. Most of moderately regular and irregular spiking
neurons discharged at a relatively stable rate, but with higher
variability in instantaneous frequency andwide positively skewed
distribution of ISI. Representative examples of such neurons
with firing rates in a range typical for serotonergic neurons
(1.5–2.5 Hz) are shown in Figure 8. Irregular as well as
moderately regular spiking neurons were located throughout
the DRN, and were observed in slices obtained from all three
transgenic lines and in both NA- and PE-containing ACSF.
Irregular spiking persisted after re-patching the same neuron
with a new pipette making it unlikely that it was caused by
an interference of the pipette with the recorded neuron. Not
different from typical serotonergic neurons, irregular spiking
neurons stopped firing in response to a 5-HT1A receptor
agonist (30 nM R(+)-8-hydroxy-2-(di-n-propylamino)tetralin,
n = 3, not shown) and continued to discharge irregularly

Frontiers in Cellular Neuroscience | www.frontiersin.org August 2016 | Volume 10 | Article 195

273

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Mlinar et al. Firing Properties of Serotonergic Neurons

FIGURE 6 | Correlation of firing rate with neuron size and spike duration. (A) Correlation between the firing rate and somatic surface area. Symbols represent
individual neurons. Lines represent linear regression and 95% CI. r denotes Pearson’s correlation coefficient. (B) Correlation between the firing rate and spike
duration. Symbols represent individual neurons. Lines represent linear regression and 95% CI. r denotes Pearson’s correlation coefficient. (C) Spike duration
histogram of DRN serotonergic neuron population. Curve represents best fit by single Gaussian function.

upon washout. Finally, moderately irregular-type firing was
also observed in whole cell recordings in which firing was
induced by constant current injection or by PE application
(not shown). All together, moderately regular and irregular
spiking neurons, apart from higher variability in instantaneous
frequency, had properties indistinguishable from those of
canonic firing serotonergic neurons.

In approximately one percent of cases (n = 12), serotonergic
neurons exhibited a particular spiking pattern, characterized by
low frequency oscillations (LFO) in firing rate with variable
amplitude and the period of oscillation ranging from 10 s to
almost a minute. Representative recordings covering the range
of observed slow oscillatory behavior are shown in Figure 9.
Compared with typical regular spiking serotonergic neurons,
those exhibiting LFO had a similar firing rate (∼0.5–3 Hz),
while their firing regularity was several-fold higher when assessed
by SD of instantaneous frequency (∼0.7–1.5 Hz) and ∼10-fold
higher when assessed by COV of ISI (∼80–300%). In extreme
cases spiking was intermittent, with silent periods lasting up
to 40 s (n = 3; e.g., Figures 9K–O). LFO-type neurons were
observed in slices obtained from all three mouse lines and in
both NA- and PE-containing ACSF. There were no obvious
differences between regular spiking and LFO-type neurons with
respect to size and shape of neurons, spike duration and
anatomical location. LFO was also observed following repatching
the same neuron (e.g., Figure 9Q), suggesting that it was
not caused by pipette interference. In most cases in which
LFO was detected, neurons continuously fired with an LFO
pattern from the beginning of recording. As we often failed
to recognize LFO during the recording, data were acquired for
only 2–5 min, a period too short to examine the periodicity
of LFO in greater detail. Nevertheless, spontaneous changes in
firing pattern were occasionally detected in short recordings
(n = 2). One such example, where spiking switched from
regular to LFO mode is shown in Figures 10A–E. Finally, in
one case where LFO was detected online, prolonged recording

revealed multiple transitions between oscillatory and regular
firing (Figures 10F–H) suggesting that neurons exhibiting LFO
are not a separate subpopulation and that LFO is an alternative
firing mode of serotonergic neurons.

DISCUSSION

The loose-seal cell-attached method, which allows recording
of intact non-dialyzed neurons, was used to examine spiking
activity in a large number of genetically identified DRN
serotonergic neurons. This non-invasive recording method and
a large sample size permitted us to characterize the spiking
properties, which would have likely remained undetected by
typical analysis of a lower sample size. The main conclusions of
our study can be summarized as follows: (i) in terms of their
spiking properties, serotonergic neurons in the DRN represent a
homogeneous cellular population; (ii) their regularity of spiking
is proportional to the rate of spiking; and (iii) in addition to
regular spiking, serotonergic neurons in the DRN can exhibit
LFO in firing rate.

In awake state, noradrenergic input exerts a maximal effect
on serotonergic neuron firing (Levine and Jacobs, 1992) via
activation of α1 receptors (Baraban and Aghajanian, 1980). In
brain slice preparations, the noradrenergic input is severed off,
but noradrenergic drive may be reinstated by pharmacological
activation of α1 receptors (Vandermaelen and Aghajanian,
1983), such as that used in this study. Although α1 agonist-
stimulated firing of serotonergic neurons in brain slices
mimics an in vivo situation only to some extent and may be
considered as pharmacologically induced rather than intrinsic, it
is nevertheless well suited for assessment of electrophysiological
properties of individual neurons because it reflects their intrinsic
electrophysiological properties relevant for tonic firing in awake
state. In this regard, it is noteworthy that firing rate of the DRN
serotonergic neurons observed in this study (99% of neurons
fired in 0.30–5.81 Hz range) corresponds fairly well with those
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FIGURE 7 | Regularity of firing in serotonergic neuron population correlates with the firing rate. (A–C) Graphs show the correlation between various
measures of firing regularity and the firing rate. Symbols represent individual neurons. r and rs denote Pearson’s and Spearman’s correlation coefficients, respectively.
(A) Correlation between SD of instantaneous frequency and the firing rate. (B) Correlation between COV of instantaneous frequency (SD of instantaneous
frequency/mean instantaneous frequency) and the firing rate. (C) Correlation between COV of ISI (SD of ISI/mean ISI) and the firing rate. (D) Cumulative frequency
distribution of COV of ISI for all recorded neurons. The curve reaches only ∼99% because eleven neurons (∼1%) having COV of ISI in the range between 116 and
304% are out of scale (for clarity).

reported in studies on awake mice. The mean and SD values
of serotonergic neuron firing rate found here (2.25 ± 1.06 Hz)
are similar to the basal firing rate of optogenetically-identified
serotonergic neurons in freely moving mice (1.62 ± 1.70 Hz,
n = 80; values provided by Li et al., 2016) and are somewhat
lower than that of presumed serotonergic neurons during quiet
waking (3.21± 1.47 Hz, n= 194) in head-restrained mice (Sakai,
2011). Furthermore, similar firing rate of the DRN serotonergic
neurons (mean= 2.82 Hz) were observed during quiet waking in

freely moving cats (Trulson and Jacobs, 1979; Jacobs and Fornal,
1991).

Approximately two thirds of neurons in the DRN are non-
serotonergic (Descarries et al., 1982; Jacobs and Azmitia, 1992).
Because serotonergic and non-serotonergic neurons are not
easily distinguishable based on spike shape and firing properties
(Allers and Sharp, 2003; Cohen et al., 2015; and references
cited therein), characterization of serotonergic neurons, in
particular of those exhibiting atypical spiking patterns, is
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FIGURE 8 | Subset of serotonergic neurons exhibits somewhat irregular spiking. (A) 3-min-long spike train of an irregularly spiking serotonergic neuron. TSC
mouse, PE-induced firing. (B) Time-course of instantaneous frequency of spike train shown in (A). FR stands for the firing rate. SD stands for standard deviation of
instantaneous frequency. (C) ISI histogram of the train shown in (A). COV denotes variation coefficient of ISI. (D) Average spike of the same recording. Scale bars:
8 pA, 1 ms. Inset shows anatomical location of the neuron. Number indicates distance from bregma. (E) Fluorescence image of the recorded neuron. Scale bar:
10 µm. (F–J) Irregularly spiking serotonergic neuron in PRY mouse. NA-induced firing. (F) 3-min-long spike train. (I) Scale bars: 15 pA, 1 ms. Inset shows the
anatomical location of the neuron. The number indicates distance from bregma. (J) Fluorescence image of the recorded neuron. Scale bar: 10 µm. (K–O) Irregularly
spiking serotonergic neuron in PRY mouse. PE-induced firing. (K) 3-min-long spike train. (N) Scale bars: 15 pA, 1 ms. Inset shows anatomical location of the neuron.
(O) Fluorescence image of the recorded neuron. Scale bar: 10 µm. (P–T) Moderately regularly spiking serotonergic neuron in PRY mouse. PE-induced firing.
(P) 3-min-long spike train. (S) Scale bars: 15 pA, 1 ms. Inset shows the anatomical location of the neuron. The number indicates distance from bregma.
(T) Fluorescence image of the recorded neuron. Scale bar: 10 µm.
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FIGURE 9 | Subset of serotonergic neurons exhibits low frequency oscillation in the firing rate. (A) 1-min-long segment of representative recording of
serotonergic neuron exhibiting oscillations in firing rate. PCG mouse, PE-induced firing. (B) Time-course of instantaneous frequency of the recording shown in (A).
SD stands for standard deviation of instantaneous frequency. (C) Box plot shows distribution of ISI of the same recording. Log scale. Boxes represent medians and
the IQR. Whiskers denote 1.5 IQR. COV denotes coefficient of variation of ISI. (D) Average spike of the same recording. Scale bars: 15 pA, 1 ms. Inset shows the
anatomical location of the neuron. The number indicates distance from bregma. (E) Fluorescence image of the recorded neuron. Scale bar: 10 µm.
(F–J) Representative recording of low-frequency oscillation in a serotonergic neuron of PRY mouse. NA-induced firing. (F) Spike train. Duration, 164 s.
(G) Time-course of instantaneous frequency. (H) Distribution of ISI. Log scale. (I) Average spike. Scale bars: 20 pA and 1 ms. Inset shows the anatomical location of
the neuron. The number indicates distance from bregma. (J) Fluorescence image of the recorded neuron. Scale bar: 10 µm. (K–O) Representative recording of

(Continued)
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FIGURE 9 | Continued
serotonergic recording exhibiting intermittent firing with silent periods of up to
40 s. PRY mouse, NA-induced firing. (K) Spike train. The bottom part is a
continuation of the upper one. Overall duration is 250 s. (L) Time-course of
instantaneous frequency. (M) Distribution of ISI. Log scale. (N) Average spike.
Scale bars: 15 pA and 1 ms. Inset shows the anatomical location of the
neuron. The number indicates distance from bregma. (O) Fluorescence image
of the recorded neuron. Scale bar: 10 µm. (P–T) Low-frequency oscillations
persist following repatching of a neuron. PRY mouse, PE-induced firing.
(P) Spike train of initial 117 s. (Q) Time-course of instantaneous frequency.
(R) Distribution of ISI. Log scale. (S) Average spike. Scale bars: 12 pA, 1 ms.
Inset shows the anatomical location of the neuron. The number indicates
distance from bregma. (T) Fluorescence image of the recorded neuron. Scale
bar: 10 µm.

crucially dependent on the precise identification of recorded
neurons as serotonergic. For that, we relied on transgenic mice
lines that express fluorescent marker proteins under the control
of serotonergic system-specific Tph2 and Pet-1 promoters.
TPH2 is necessary for serotonin synthesis in the brain and
is specifically expressed in the serotonergic neurons of raphe
nuclei (Gutknecht et al., 2009). Serotonergic neurons in the
raphe can thus be precisely defined on the basis of TPH2
expression and Tph2 promoter-driven expression of fluorescent
reporter genes, such as that of SCFP in the TSC line, which
is expected to unmistakably label serotonergic neurons. Pet-1
is an ETS-domain transcription factor whose expression in the
brain is restricted to serotonergic neurons (Hendricks et al.,
1999; Pfaar et al., 2002). Transgenic mouse lines in which the
Cre recombinase expression is driven by the Pet-1 promoter
are well characterized and have been widely used to specifically
label serotonergic neurons. There is a possibility, however, that
the Pet1-Cre based method does not label all the serotonergic
neurons in the DRN (Gaspar and Lillesaar, 2012; Hainer et al.,
2015) and it has been shown that Pet1-driven Cre lines have
lower specificity and recombination efficiency than Sert-driven
Cre lines (Narboux-Nême et al., 2013). In addition, there is
evidence suggesting that non-serotonergic neurons could be
labeled in Pet1-driven Cre lines. In one Pet1-Cre mouse line it
has been shown that Pet1 is expressed also in non-serotonergic
neurons in raphe nuclei, with about 1% of Pet-1 expressing
neurons being Tph2 negative (non-serotonergic) in the DRN and
about 20% in the MRN (Pelosi et al., 2014). Therefore, it cannot
be fully ruled out that in Pet1-Cre-based transgenic lines, such as
in the PRY and PCG lines used here, some of the fluorescently
labeled neurons are non-serotonergic. This possibility seems
unlikely, however, because there was a close correspondence
between findings obtained using Pet1-Cre based lines and Tph2
promoter-based TSC line.

Perhaps the main conclusion of this study is that serotonergic
neurons in the DRN can be considered as a homogeneous
cellular population with respect to their spiking properties. This
conclusion is supported by several findings: the probability
density function of firing rates follows a normal distribution;
multivariate multiple regression shows no correlation between
the firing rate and spatial location; there is no difference in
firing rate among serotonergic neurons belonging to different
dorsal raphe subnuclei; the probability density function of

spike durations also follows a normal distribution; and the
vast majority of neurons exhibit regular spiking. These findings
may seem surprising since there is convincing evidence of
functionally distinct serotonergic neuron subtypes in raphe
nuclei (Wylie et al., 2010; Calizo et al., 2011; Gaspar and
Lillesaar, 2012; Brust et al., 2014; Okaty et al., 2015). Serotonergic
neuron diversity is at least in part due to the differences
in their developmental history, as different subgroups of
serotonergic neurons in raphe nuclei derive from distinct
rhombomeric sublineages (Jensen et al., 2008; Wylie et al.,
2010; Okaty et al., 2015). Although the heterogeneity of
DRN serotonergic neurons cannot be easily explained by
diverse cellular origin, as the DRN derives in toto from
rhombomere 1 (Jensen et al., 2008), recent evidence suggests
the existence of distinct serotonergic neuron subtypes also
in the DRN (Fernandez et al., 2016). In addition, it has
been shown that afferent innervations of the DRN varies
along the rostrocaudal axis (Commons, 2009; Soiza-Reilly and
Commons, 2011) and that the caudal third of the DRN
has afferent innervation more similar to the median raphe
nucleus than to the rostral two-thirds of the DRN (Commons,
2015). Furthermore, it was found that a subset of serotonergic
neurons do not express 5-HT1A autoreceptors (Kiyasova
et al., 2013). Differences were found between serotonergic
neurons in the ventromedian subnucleus and lateral wings
with respect to electrophysiological properties (Crawford et al.,
2010), connectivity and morphology (Crawford et al., 2011),
and the expression of G-protein coupled receptors (Spaethling
et al., 2014). In contrast to these studies which showed
the heterogeneity of DRN serotonergic neurons at multiple
levels, but consistent with their common developmental origin,
our findings suggest that serotonergic neurons in the DRN
represent a homogeneous cellular population with respect
to their intrinsic spiking properties. In particular, the α1
receptor-driven firing activity of the DRN serotonergic neurons,
which is physiologically important since it is one of the key
parameters in determining the brain serotonergic tone, is
considerably uniform in spite of the heterogeneity of individual
neurons.

Consistent with previous studies, the majority of serotonergic
neurons in the DRN exhibited moderately to highly regular
spiking. Despite the fact that a quantitative description of
spiking regularity was hindered by correlation of regularity
measures with the firing rate, it can be concluded that the
regularity of spiking of serotonergic neurons is to some extent
proportional to their firing rate. This finding is not surprising
as, in general, random fluctuations in membrane conductances
are expected to introduce more irregularity during a longer-
lasting depolarization phase of pacemaking cycle in slower
spiking neurons. An additional finding, which was not the
main objective of the study design, is that a small fraction
of serotonergic neurons exhibit non-canonic firing patterns.
Two different modes of atypical firing were observed: ∼1%
of neurons discharged spikes with relatively high variability in
instantaneous frequency (and ISI) while maintaining a fairly
stable firing rate; and (an additional) ∼1% of neurons exhibited
LFO in firing rate. Both atypical firing modes were observed in
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FIGURE 10 | Serotonergic neurons can spontaneously change spiking pattern. (A–E) Spontaneous transition from regular to oscillatory firing of a
serotonergic neuron in TSC mouse. NA-induced firing. (A) Spike train. The bottom part is a continuation of the upper one. Overall duration is 278 s. Firing pattern
changed from regular to oscillatory at 115 s (indicated by red arrowhead). (B) Time-course of instantaneous frequency of the train shown in (A). Firing rate (FR) was
similar during regular firing (0–115 s) and over the course of three full cycles of low-frequency oscillations (115–273 s), while standard deviation of instantaneous
frequency (SD) notably increased. (C) Box plot shows distribution of ISI during regular firing segment (REG, 0–115 s) and during the segment of three cycles of
low-frequency oscillations (LFO, 115–273 s). Log scale. Boxes represent median and the IQR. Whiskers denote 1.5 IQR. COV denotes coefficient of variation of ISI.
(D) Superimposed average traces of spikes recorded during regular (black line) and oscillatory firing (red line). Scale bars: 15 pA, 1 ms. Inset shows the anatomical
location of the neuron. The number indicates distance from bregma. (E) Fluorescence image of the recorded neuron. Scale bar: 10 µm. (F–H) Prolonged recording
from a serotonergic neuron exhibiting LFO. PRY mouse, PE-induced firing. (F) Time-course of instantaneous frequency shows multiple transitions in firing pattern.
(G) Average spike. Scale bars: 15 pA, 1 ms. Inset shows the anatomical location of the neuron. The number indicates distance from bregma. (H) Fluorescence
image of the recorded neuron. Scale bar: 10 µm.

neurons which were otherwise indistinguishable from canonic-
firing neurons and were observed in all three transgenic mouse
lines, thusmaking it highly unlikely that these were ‘‘false positive
fluorescently labeled’’ non-serotonergic neurons. In addition, as

‘‘high variability’’ firing can be considered just as an extreme
of normal regular firing and since transitions between LFO
mode and regular firing were observed, it seems reasonable to
conclude that neurons which exhibited atypical firing modes

Frontiers in Cellular Neuroscience | www.frontiersin.org August 2016 | Volume 10 | Article 195

279

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Mlinar et al. Firing Properties of Serotonergic Neurons

do not represent a separate subpopulation of serotonergic
neurons.

Because LFO in firing rate was observed in quite a small
percentage of DRN serotonergic neurons, we were surprised
to find out that the same phenomenon had been previously
observed. In a very first electrophysiological study of rat
DRN neurons in brain slice preparations, Mosko and Jacobs
(1976) reported that a subset of putative serotonergic neurons
exhibits slow oscillation in firing rate. Moreover, the same
authors observed the same firing pattern in recordings from
chloral hydrate-anesthetized rats (Mosko and Jacobs, 1974).
Interestingly, they found neurons exhibiting LFO specifically in
the DRN, and not in the median raphe nucleus, and observed
this type of spiking persisting for over 1 h. Although the identity
of recorded neurons was unknown in these studies, on the basis
of their morphology and anatomical location, as well as on the
close resemblance of their spiking properties to our findings, at
least some seem to be serotonergic. To the best of our knowledge,
except for the pioneering studies by Mosko and Jacobs (1974,
1976), there seem to be no other studies reporting LFO-type
serotonergic neurons in the DRN. The reason for this may
lie in the fact that serotonergic neurons have been commonly
identified on the basis of firing regularity and LFO-type neurons
were considered irregular, especially if ISI COV was used as a
regularity measure. Therefore, it seems likely that over the last
40 years the DRN serotonergic neurons exhibiting LFO spiking
mode have been misidentified as non-serotonergic.

LFO is observed in a very small percentage of neurons. The
proportion of neurons exhibiting LFO may result higher in
recordings of longer duration. Although our recordings are too
short for periodicity analysis, it seems that at least some of the
moderately regular and irregular spiking neurons exhibited LFO-
like spiking pattern. The fact that LFO-type neurons have been
rarely observed does not preclude the possibility that in vivo a

higher fraction, or even all serotonergic neurons in the DRN can
discharge in LFO mode. In that respect an analogy can be drawn
with spike doublets firing mode, which has not been observed
in vitro, but has been observed in recordings from serotonergic
neurons in anesthetized rats and mice (Hajós et al., 1995, 2007;
Montalbano et al., 2015). The functional implications of LFO
spiking mode are currently unclear. Further in vivo studies are
needed to elucidate the relationship between LFO spiking mode
and sleep/wake/arousal states as well as particular behaviors.
At present, it can only be concluded that in terms of their
intrinsic spiking properties, serotonergic neurons in the DRN are
homogeneous and that, at least a subset of them, can discharge in
LFO mode.
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The generation of pain signals from primary afferent neurons is explained by a labeled-line

code. However, this notion cannot apply in a simple way to cutaneous C-fibers, which

carry signals from a variety of receptors that respond to various stimuli including agonist

chemicals. To represent the discharge patterns of C-fibers according to different agonist

chemicals, we have developed a quantitative approach using three consecutive spikes.

By using this method, the generation of pain in response to chemical stimuli is shown to

be dependent on the temporal aspect of the spike trains. Furthermore, under pathological

conditions, gamma-aminobutyric acid resulted in pain behavior without change of spike

number but with an altered discharge pattern. Our results suggest that information about

the agonist chemicalsmay be encoded in specific temporal patterns of signals in C-fibers,

and nociceptive sensation may be influenced by the extent of temporal summation

originating from the temporal patterns.

Keywords: temporal decoding, temporal encoding, spike train analysis, discharge pattern, nociception

INTRODUCTION

It is generally accepted that the activation of primary afferent C-fibers by noxious stimuli leads to
a sensation of pain. However, some studies have reported the lack of a pain response to activation
of C-fibers, whereas others have reported an increased pain response even without an increase in
the discharge rate of the C-fibers (Van Hees and Gybels, 1981; Prescott et al., 2014). Taken together,
these reports suggest that a more complex neural process may exist in C-fibers, rather than the
simple one-to-one relationship between sensation and receptor type according to a labeled-line
code, the key coding mechanism for stimuli (Johanek et al., 2008; Pereira and Alves, 2011; Wooten
et al., 2014).

Nociceptive C-fibers typically express multiple types of ion channels that respond to each
agonist chemicals (Bessou and Perl, 1969; Hanack et al., 2015). For example, certain chemical
nociceptors express the transient receptor potential (TRP) cation channel subfamily A1 (TRPA1),
which responds to cold and mustard oil, and the subfamily V1 (TRPV1) channel responding
to heat and capsaicin (Bautista et al., 2005), and their activation evokes action potentials
(APs) in a single C-fiber (Han et al., 2013). However, the difference in the discharge patterns
generated by the different stimuli in the C-fibers (Wooten et al., 2014) cannot be explained
by the labeled-line code alone. It is assumed, therefore, that the different types of stimuli may
be encoded in the discharge patterns of the C-fibers. Today, almost all workers would agree
that some degree of multiple function exists in the primary afferent fibers innervating the skin,
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as many subpopulations have broad dynamic ranges (Kumazawa
et al., 1996). Recent studies suggest that both specific function of
each type of fiber, but also fiber’s temporal encoding enable the
generation of sensations (here, especially nociception) (Weber
et al., 2013; Wooten et al., 2014). Accordingly we hypothesized
that temporal encoding of spike trains from individual C-fibers
may deliver key information together with combinational coding
across multiple C-fibers. In a previous study, Sandkühler (1996)
suggested that different responses before and after a nerve injury
might be associated with the temporal patterns of spontaneous
spikes, which vary according to inflammatory status. Here,
we propose that activation of primary afferent C-fibers evokes
nociceptive behaviors depending on temporal aspects of the
spike trains, which are determined by the different chemical
stimuli. Specific patterns of discharges are identified for different
chemical stimuli that receptors are expressed commonly. We
have analyzed these patterns by developing an analytic method
that can characterize the distribution of inter-spike intervals
(ISIs).

RESULTS

Activation of C-Fibers Does Not Always
Result in Nociceptive Behavior
First, we investigated whether single C-fibers could be activated
by three different chemicals: Potassium chloride (KCl), gamma-
aminobutyric acid (GABA), and capsaicin; due to the high
intracellular chloride concentration of peripheral neurons an
excitatory effect of GABA is expected. Immunohistochemistry
revealed the co-expression of TRPV1 and GABAA receptors
in the some dorsal root ganglion (DRG) neurons (Figure 1A).
Patch-clamp recording showed that GABA and capsaicin evoked
inward currents in the same DRG neuron (Figure 1B) but that
not all DRG neurons were responsive to both chemicals (7 of
28 total neurons responded for both GABA and capsaicin). In
ex vivo recordings, 27 C-fibers were stimulated with the three
chemicals in succession, with wash-out periods in between. Three
fibers responded to all stimulants with identical AP shapes and
sizes (Figure 1C, Supplementary Tables 1, 2).

It is known that C-fiber activation by KCl or capsaicin results
in nociception. However, the sensation evoked by GABA is not
reported despite the activation of C-fibers (Feltz and Rasminsky,
1974; Deschenes et al., 1976; Carlton et al., 1999). To test whether
the application of GABA evoked a nociception, we performed
behavioral tests for each chemical. Mouse hindpaw movements
indicating pain, i.e., lifting/guarding, flinching/shaking, licking,
and walking (Kawasaki-Yatsugi et al., 2012), significantly
increased after subcutaneous injection of capsaicin or KCl (Ps
< 0.001 vs. vehicle). On the other hand, GABA induced no
significant increase (P = 0.693; Figure 1D), indicating that
GABA could not induce nociception.

The Temporal Discharge Patterns of Single
C-Fibers Characterize Different Chemicals
To further explore nociceptive information encoded in the
activation of primary afferent C-fibers, ex vivo single-fiber

recordings were conducted with each of the three chemicals
separately (Figure 2). Analysis of the spike counts in ex vivo
single-fiber recordings from the saphenous nerve showed that all
three chemicals caused significant increases in the number of APs
compared with control periods (Ps < 0.001; Figures 2D–F). In
addition, there was no significant difference in the number of APs
evoked by the three stimulants (P = 0.925; Figure 2G). Another
measure of discharge rate is the instantaneous frequency (Lánský
et al., 2004) and it is claimed that a discharge rate exceeding some
threshold is associated with nociceptive behavior (Adriaensen
et al., 1980). As shown in Figures 2A–C, the distribution of the
instantaneous frequencies of GABA responses (mean: 1.72 Hz)
did not differ from that of the KCl responses (mean: 1.25 Hz)
while that of capsaicin responses (mean: 17.49 Hz) was much
higher (Figures 3A–D).

As neither the number of APs nor the instantaneous
frequencies could differentiate GABA responses from the other
two responses, we considered the possibility that the differences
might be temporally encoded in the spike trains. Visual
inspection indicated that the most pronounced difference of
GABA responses from the other responses lay in the repeated
short bursts present in the GABA responses, we posited a
fundamental unit of temporal discharge pattern to be three
consecutive spikes (referred to as a spikelet hereafter), as this
unit contained the minimum ISI pattern that could include
both short ISIs within bursts and longer ISIs between bursts.
In contrast to the results of spike counts or instantaneous
frequency, GABA responses had a longer mean spikelet length
(time elapsed from the first to the last spike in a spikelet) than
those to the other chemicals (Figures 3E–H). The longer GABA
spikelet lengths were primarily caused by a high frequency of
relatively long spikelets (Figure 3G), which indicated that long
and short ISIs were repeated in succession across bursts during
a GABA response. To also measure asymmetry of two ISIs in
a spikelet due to the intersection of long and short ISIs, we
evaluated the distribution of absolute spikelet regularity (the ratio
of difference between two consecutive ISIs to spikelet length)
of each group and found that the regularity of GABA spikelets
was significantly lower than those of KCl or capsaicin spikelets
(Figures 3I–L). Both the length and the regularity of spikelets
clearly distinguished the temporal pattern of GABA responses
from the others, and this might be associated with the lack of
nociceptive behavior from GABA.

We also analyzed the joint distribution of the two temporal
features, the length and the regularity of spikelets and created a
two-dimensional (2D) joint distributionmap of spikelets for each
group (Figure 4). The maps of each group could be distinguished
from the others. KCl frequently generated temporal patterns with
regular spikelets of a moderate length, whereas GABA tended to
generate more irregular and longer spikelets. Capsaicin tended to
generate short and regular spikelets (Figures 4B–D).

The three distribution patterns were clearly different, as the
k-nearest neighbor classification scheme correctly discriminated
between them with classification accuracy of 79.7% (55 of 69
C-fiber responses classified correctly), which was significantly
higher than chance (binomial test, P < 0.001; Devroye et al.,
1996). In addition, nine individual maps of the three C-fiber
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FIGURE 1 | Single fibers respond to all three chemical stimuli. (A) Immunohistochemistry showing co-expression of GABAA and TRPV1 in the same DRG

neurons. Scale bar represents 20µm. Arrow indicates GABAA- and TRPV1-positive neurons. (B) Inward currents evoked by GABA (100µM) and capsaicin (1µM) in

small DRG neurons. (C) Time stamp with instantaneous frequency of the response from a representative single C-fiber under application of KCl, GABA, and capsaicin

in succession. It consisted of identically shaped action potentials. (D) Hindpaw movements after subcutaneous injection of saline (n = 10), vehicle (n = 8), KCl (n =

10), GABA (n = 10), and capsaicin (n = 8). (Mann–Whitney or t-test based on normality, ***P < 0.001. Error bars represent s.e.m.).

responses obtained from the successive chemical tests in the
above section were also perfectly classified into KCl, GABA, and
capsaicin using a classifier based on the set of three separate
spike train datasets generated by the individual chemical stimuli
(Supplementary Figure 1). This indicates that C-fibers may
encode information concerning the specific receptors that have
been stimulated by means of unique temporal patterns.

In an attempt to estimate the effect of the temporal summation
of discharge patterns on the nociceptive level, a computational

model was designed using the information of spikelet length
and regularity. The model was applied to the C-fiber responses
with over 20 spikes during the stimulation period to estimate
the nociceptive level through the temporal summation of spikelet
information. As a result, the detection rate of nociception by
the model was 66.7% (14 of 21) for KCl, 17.4% (4 of 23) for
GABA, and 88.9% (16 of 18) for capsaicin, respectively. This
result indicated that the model could properly translate C-fiber
spiking patterns, represented by spikelet length and regularity,
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FIGURE 2 | Application of KCl, GABA, or capsaicin clearly activates primary afferents. (A–C) Time stamp of 20 randomly selected single fibers from each

group of chemical responses i.e., KCl (n = 25) in (A), GABA (n = 23) in (B), capsaicin (n = 21) in (C). (D–F) Spike counts from each single fiber during the control

period of synthetic interstitial fluid (SIF) and the corresponding responsive period to a stimulant. (Wilcoxon signed rank test, ***P < 0.001) (G) Mean of the spike

counts in the evoked responses for KCl, GABA, and capsaicin are compared. (Kruskal-Wallis one-way ANOVA, n.s., not significant. Error bars represent s.e.m.).

into the nociception level in response to different chemical
stimuli.

Pathological Conditions Inducing
Nociception Alter the Temporal Discharge
Pattern in Response to GABA
We examined whether changes in pathological conditions
could influence discharge patterns in C-fibers and subsequent
nociceptive behavior (Figure 5). We conducted behavioral tests
for GABA and capsaicin inmice subjected to chronic constriction
injury (CCI; sciatic nerve cuffing). Compared with the controls,
the number of hind paw movements were increased by both
GABA and capsaicin (P < 0.01; Figure 5A), indicating that
GABA induced a nociceptive behavior when exposed to a CCI.

The GABA and capsaicin discharge patterns were investigated
using ex vivo single-fiber recordings from the sural nerves of
CCI mice. First we found that the number of APs increased in
response to GABA or capsaicin compared with control periods
(Figures 5D,E) but there were no significant differences in the
number of GABA- or capsaicin-induced APs in the CCI mice
compared with the naïve mice (Supplementary Figure 2). The 2D
joint distribution map for capsaicin in the CCI mice (Figure 6B)
was closely akin to that in the naïve mice (Figure 4D). However,
the GABA map in the CCI mice (Figure 6A) appeared to be
dissimilar from that in naïve mice (Figure 4C). This suggested
that the discharge pattern for a specific receptor in C-fibers
could be influenced by the pathological conditions. Specifically,
the short and regular spikelets, which were abundant in the
capsaicin spike trains, became more frequent in the GABA

spike trains of the CCI mice (Figure 6C). The abundance of the
short and regular spikelets characterizing the capsaicin and CCI-
induced GABA discharge patterns implied that the generation
of pain might be related to the presence of high frequency
continuous spikes in the afferent C-fibers. K-nearest neighbor
classification analysis revealed that the binary classifier that had
been trained using the GABA and capsaicin data from naïve
mice had little difficulty in discriminating the novel GABA data
from naïve mice but made many more errors (nearly 50% of
the time) in discriminating the GABA data from the CCI mice,
indicating that the GABA discharge patterns in the CCI mice
were less distinguishable from the capsaicin discharge patterns
(Figure 6D). Similarity analysis based on Kullback–Leibler (KL)
divergence also revealed that the GABA pattern in the CCI mice
was more similar to the capsaicin pattern (Figure 6E).

DISCUSSION

How are noxious stimuli encoded and processed to produce
pain? Although the activation of C-fibers is related to nociceptive
behaviors, the information may be encoded in the intervals
between discharges as well as in discharge rates. Koltzenburg
and Handwerker (1994) suggested that the magnitude of pain
sensation is encoded by temporal summation of the nociceptive
primary afferent discharge, compensating the concept of
encoding by the number of APs. This study reported that the
magnitude of pain increased when the repeated mechanical
stimulus was more frequent, whereas the number of APs
decreased. They concluded that a certain number of APs with
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FIGURE 3 | Temporal characteristics of the different stimuli revealed in spikelet distributions. (A) Comparison of instantaneous frequencies for KCl, GABA,

and capsaicin responses. (Kruskal-Wallis one-way ANOVA followed by Dunn’s test for multiple comparisons, ***P < 0.001, n.s., not significant.) (B–D) Instantaneous

frequency histograms for each chemical (KCl in B, GABA in C and capsaicin in D). (E) Comparison of spikelet lengths for KCl, GABA, and capsaicin responses.

(Kruskal-Wallis one-way ANOVA followed by Dunn’s test for multiple comparisons, ***P < 0.001) (F–H) Spikelet length histograms for each chemical (KCl in F, GABA

in G and capsaicin in H). (I) Comparison of spikelet regularity for KCl, GABA, and capsaicin responses. (Kruskal-Wallis one-way ANOVA followed by Dunn’s test for

multiple comparisons, ***P < 0.001.) (J–L) Spikelet regularity histogram for each chemical (KCl in J, GABA in K, and capsaicin in L). All the error bars represent s.e.m.

discharge rates over the threshold is required for pain sensation.
In our ex vivo data in naïve mice, however, spike numbers
and instantaneous frequencies of spikes did not differ between
the KCl and GABA groups (whereas instantaneous frequencies
were significantly higher in the capsaicin group) (Figures 2G,
3A–D), indicating that additional characteristics of the temporal
discharge patterns had to be explored.

To explore the neural code for nociceptive information, we
applied the idea of spikelets to the ISI data acquired from
the chemical-induced discharge of C-fibers. As a large value
for temporal summation is achieved only if consecutive spikes
have short ISIs, we supposed that temporal summation could
be described well by an analysis of consecutive ISIs such as
spikelets as defined in our study. Sandkühler (1996) suggested

a multidimensional analysis of ISI data that represented the
temporal encoding (temporal aspect of ISIs) of spontaneous
discharges in spinal neurons. In principle one could take
advantage of this method to visualize temporal patterns of ISIs
(Debus and Sandkühler, 1996). However, this is effective only
for neural activity containing at least 2000 spikes. Because of
the adaptation of neural afferent activity in C-fibers, there were
not sufficient numbers of spikes in our data to use Sandkuhler’s
method directly. Taking consecutive spikes into account, we
developed spikelet analysis (based on three consecutive spikes)
to characterize the temporal characteristics of spiking responses
evoked by different stimuli.

Our ex vivo data acquired from naïve mice could be
categorized into specific discharge patterns for each chemical
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FIGURE 4 | Joint distribution maps of the length and the regularity of spikelet for each chemical. (A) Simple 3 × 3 bin-2D map of spikelets based on

spikelet length and regularity. (B) 2D map of KCl responses based on spikelet length (vertical axis) and regularity (horizontal axis), including histograms for each. (C,D)

Responses of GABA in (C), and capsaicin in (D).

(KCl: continuous firing; GABA: repeated short bursts or
chattering; capsaicin: single or multiple bursts) using spikelet
analysis. The spikelet analysis characterized the temporal patterns
of the three groups by means of two parameters, namely spikelet
length and regularity. Long and irregular spikelets in the GABA
response developed from the start or the end of short bursts.
The characteristic repeating short bursts in the GABA response
that resulted in the repetition of long and short intervals might
result in short temporal summation without evoking nociceptive
behavior. On the other hand, short and regular spikelets were
dominant in the capsaicin response and might generate longer
temporal summation with pain. KCl had a greater proportion of
longer spikelets than capsaicin but with little irregular ones (and
long intervals), suggesting that a continuous and regular spiking
patternmight be also associated with longer temporal summation
resulting in nociceptive behavior (Figure 3).

GABA was not noxious in the naïve condition. However,
the increase of hindpaw movement in CCI mice showed that
nociceptive behavior was generated. Unlike the number of APs,
the distribution of instantaneous frequencies of GABA responses
was higher in CCI mice indicating an increase in the discharge
rate (Supplementary Figure 3). As the spikelet length is the
sum of two consecutive ISIs, the increased discharge rate is
incorporated in the shorter spikelet length in Figure 6C. We
measured the change of temporal components of the pattern
in the CCI condition, i.e., spikelet length and regularity, and
found differences in the temporal encoding of the transmitted

information. According to the 2D joint distribution maps, the
GABA responses in CCI mice were closer to those of capsaicin.
The shift in GABA-induced temporal pattern reflected longer
temporal summation, corresponding to the occurrence of pain
behavior in the CCI mice.

Capsaicin-evoked responses consisted of several types of
adaptation as described before (St Pierre et al., 2009). The
underlying mechanism of adaptation was not considered in this
study. Instead, we combined all the capsaicin responses and used
them as a dataset for our analysis.

As the spikelet length and regularity revealed shorter temporal
summation in GABA responses in naïve mice, the identity of a
chemical stimulant can also be encoded by spikelets. Moreover,
the 2D joint distribution maps of the spikelet parameters
had clearly different characteristics in each condition of the
fibers, indicating the possibility that a single C-fiber might
encode specific biological conditions into temporal patterns.
We demonstrated that nociceptive behavior was related to the
temporal encoding of spike trains in primary afferent C-fibers, in
which specific temporal patterns were generated according to the
type of activated receptors. We also demonstrated the limitation
of comparison using instantaneous frequency, and showed that
nociceptive information was encoded in the temporal pattern
evaluated by means of the minimum temporal unit, the spikelet.
This suggests that there is a specific temporal pattern of encoding
in C-fibers and the degree of temporal summation originating
from the temporal patterns determines the behavioral differences.
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FIGURE 5 | GABA induced nociceptive behavior in pathological condition. (A) Hindpaw movements in CCI mice after injection of vehicle (n = 8), GABA (n = 9),

and capsaicin (n = 9). Note, that GABA induced an increase in movement. (B,C) Paw withdrawal test to measure pain and hypersensitivity to heat and mechanical

stimuli (Wilcoxon signed rank test). Error bars represent s.e.m. (D,E) Spike counts in each single fiber during the control period of SIF and the corresponding

responsive period to a stimulant in CCI mice. **P < 0.01, ***P < 0.001 (F,G) Time stamp of 20 randomly selected single fibers in each group of chemical responses in

CCI mice i.e., GABA in (F) and capsaicin in (G).

The computational model developed in the study also showed
that the occurrence of nociception is estimated by discharge
pattern based on spikelet. This finding corresponds to the
previous studies reporting that the clustered spike trains (bursts)
from the presynaptic neurons mediate the release of large dense-
cored vesicles (containing neuropeptides) onto the postsynaptic
membrane (Iverfeldt et al., 1989), consequently, the higher
order neuron reaches the activation threshold potential. Even
though the computational model does not represent an actual
nociception level, it quantitatively evaluates temporal summation
of spike trains that could be translated to a nociception level
sensed by higher order neurons. The result of the model suggests

that the nociception level might be estimated based on our
spikelet analysis of discharge patterns.

In conclusion, we have expanded the concept of temporal
encoding in evoked responses to sustained chemical stimuli.
Our results may provide insight into the dependence of pain
sensation on pathological conditions, in terms of changes in
spiking patterns and receptor specificity based on a labeled-line
code. The activity of multiple primary afferent C-fibers is the
input for higher-order neurons (e.g., those in spinal cord); thus,
the neural representation of a pain sensationmay be encoded and
mapped as a combination of temporal information and network
processes of multiple C-fibers in a higher-order neural axis.
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FIGURE 6 | Temporal discharge patterns in pathological condition. (A,B) 2D map of responses in CCI mice to GABA and capsaicin, respectively. (C) Spikelets of

GABA responses are shorter and more regular in CCI mice than naïve mice. (Mann–Whitney or t-test based on normality, ***P < 0.001) (D) Classification performance

using KL divergence of the GABA and capsaicin patterns. (E) Mean differences from individual 2D maps to GABA and capsaicin 2D maps (Figures 4C,D).

MATERIALS AND METHODS

Overview of Animal Experiments
All experiments were conducted according to the guidelines of
the Animal and Plant Quarantine Agency of Korea for the care
and use of laboratory animals, and the study was approved by
the Institutional Animal Care and Use Committee of Hanyang
University (HY-IACUC-13-037A). Male C57BL/6 mice (8 weeks
old) were used throughout the study.

First, the effect of the studied chemicals on nociceptive
behavior was investigated. Behavioral changes were observed in
46 mice after subcutaneous injection of one or other of the
chemical stimulants, KCl (n = 10), GABA (n = 10), or capsaicin
(n= 8), or a control, saline (n= 10) or vehicle (n= 8).

Next, to examine the sensitivity of single C-fibers to multiple
chemicals, ex vivo recordings were made with 14 fibers from
another group of mice. Each fiber was tested by application of all
three chemicals in succession, with a wash-out period between
each application. The average conduction velocity of the fibers in
the sensitivity test was 0.65 ± 0.17 m/s. In addition, the effects
of the three chemicals (KCl, n = 25; GABA, n = 23; capsaicin,
n = 21) on the neural response were tested separately, with each
fiber exposed to only one of the chemical stimulants. To exclude
extraneous effects, the mice used for the behavioral tests were not
used for ex vivo recording. For a pathological model, 42 mice
were subjected to CCI by sciatic nerve cuffing. Hypersensitivity
to mechanical and heat stimuli was verified 12–15 days after
surgery. Of the 42 CCI mice 26 were used for the behavioral

test (response to vehicle, n = 8; GABA, n = 9; capsaicin, n =

9). Fibers for ex vivo recording (response to GABA, n = 36 or
capsaicin, n = 46) were obtained from the remaining 16 mice
(Figure 7).

Sciatic Nerve Cuffing Model
The CCI model was used for behavioral tests based on
hindpaw movement (response to stimulus to the plantar surface
of the foot) as well as ex vivo recording from the hairy
skin under pathological conditions. Surgery was performed
under brief isoflurane anesthesia. The main branch of the left
sciatic nerve was exposed and a cuff of PE-20 polyethylene
tubing (0.38mm internal diameter, 1.09mm external diameter;
Harvard Apparatus) of standardized length (2mm) was applied
(Benbouzid et al., 2008). The shaved skin layer was closed
using sutures. Compared with baseline, the mechanical and heat
thresholds were significantly reduced following sciatic nerve
cuffing on postoperative days 12–15 (Wilcoxon signed rank
test, Ps < 0.001), indicating neuropathic pain. The left sural
nerve, which was affected by the CCI, was used for ex vivo
recording.

Behavioral Studies
Mice were acclimated to testing cages containing either a stainless
steel mesh (for mechanical withdrawal responses) or a heat-
tempered glass floor (for spontaneous pain behavior and heat
withdrawal latency) for 2 h per day for at least 5 days before
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FIGURE 7 | Block diagram of the experiments. First, we showed single C-fibers could be activated by three chemicals. Behavioral tests were followed to measure

the evoked nociception after subcutaneous injection. Then, the discharge patterns in the spike trains from ex vivo recording were analyzed.

testing. All behavioral tests were performed after at least 1 h
acclimation on the day of the experiment.

Spontaneous Pain Behavior
Drugs were injected using gentle restraint without anesthesia.
Fifty millimolars KCl, 3 mM GABA, 10µM capsaicin,
saline, or vehicle (98% synthetic interstitial fluid, SIF,
mixed with 1% dimethyl sulfoxide and 1% saline) solution
in a 20µL volume was injected subcutaneously into the
plantar surface of the hindpaw using an insulin syringe and
a 30-gauge needle. Immediately after injection, mice were
returned to the glass floor cage and 5min video recordings
were made. The number of movements of the injected
limb, including lifting/guarding, flinching/shaking, licking,
and walking, was determined by visual observation and

considered as an indication of pain (Kawasaki-Yatsugi et al.,
2012).

Heat Withdrawal Latency
The heat stimulus was a light from a projector lamp applied
from underneath the glass floor onto the lateral part of the
plantar surface (sural nerve territory). Before data collection, the
intensity of the stimulus was adjusted so that mice withdrew after
∼6 s. The latency in seconds before withdrawal was determined
with a cutoff value of 12 s. The baseline values were obtained
immediately before sciatic nerve injury.

Mechanical Withdrawal Responses
Von Frey filaments were applied to the lateral part of the plantar
surface to estimate the 50% withdrawal threshold using the
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SUDO up-down method (Bonin et al., 2014). The baseline values
were obtained immediately before sciatic nerve injury.

Ex Vivo Single Fiber Recordings
Mice were killed using CO2 inhalation and the hairy skin of
the hindpaw innervated by the saphenous or sural nerve was
dissected after the hair on the leg was clipped. For recording
from the CCI model mice, only the left sural nerve, which
was impacted by the cuffing of the left sciatic nerve, was
used. Attached connective tissue, muscle, and tendon were
removed. The organ bath consisted of two chambers separated
by an acrylic-based wall. The larger perfusion chamber was
continuously superfused with a SIF (107.8mM NaCl, 3.5 mM
KCl, 0.69 mM MgSO4·7H2O, 26.2 mM NaHCO3, 1.67 mM
NaH2PO4·2H2O, 9.64 mM C6H11NaO7, 5.55 mM glucose, 7.6
mM sucrose, 1.53 mM CaCl2·2H2O) saturated with a mixture
of 95% O2 and 5% CO2 (Bretag, 1969). The temperature of the
bath solution was maintained at 31 ± 1◦C. After dissection,
the preparation was placed with the epidermal side down. The
nerves attached to the skin were drawn through one small hole
to the smaller second chamber, which was filled with paraffin
oil. The nerve was placed on a fixed mirror, the sheath was
removed, and nerve filaments repeatedly teased apart to allow
single-fiber recordings to be made using gold electrodes, one for
recording and the other for reference. The reference electrode
was grounded to the perfusion chamber. Signals from single
nociceptive afferent fibers were recorded extracellularly with a
differential amplifier (DP 311; Warner instruments). Amplified
signals were sent to an oscilloscope and an audio monitor and
sampled at 33 kHz, then transferred to a computer by a data
acquisition system (DAP5200a; Microstar Laboratories, Inc.).
APs collected on the computer were analyzed off-line using the
window discrimination feature of the software (Dapsys 8; Bethel
University, http://dapsys.net/). Copper blocks were connected to
common ground as a reservoir of current to prevent excessive
noise. The entire setup was based on a study by Zimmermann
et al. (2009). The conduction velocity of the axon was determined
by monopolar electrical stimulation through a low impedance
electrode (CBJPL75; FHC Inc.). The supramaximal square-
wave pulses (0.2–2ms duration, 0.5Hz) were delivered at the
mechanosensitive site of a receptive field using an electrical
stimulator (SD9; Grass Technologies). The distance between the
receptive field and the recording electrode (conduction distance)
was divided by the latency of the AP. A single C-fiber was selected
on the basis of the conduction velocity (slower than 1.2m/s); fast
conducting A-fibers were excluded. The primary search strategy
was mechanical stimulation by a fire-polished glass rod targeting
mechanosensitive fibers.

Temporal Pattern Analysis of Spike Trains
A histogram of instantaneous frequencies was constructed to
show the empirical distribution of instantaneous frequencies for
each chemical stimulus. For each chemical, all the instantaneous
frequency values were divided into 10 equal-length (0.8 Hz) bins
from 0–0.8 to 7.2–8 Hz. Frequency values >8 Hz were included
in the last bin.

Given a spike train of N spikes, a spikelet s was defined as a set
of three consecutive spikes,

s = (tn, tn+1, tn+2), (1)

where n = 1, ..., N−2. We characterized spikelets in terms of
two simple and basic parameters: length and regularity. Spikelet
length L was defined as the time elapsed from the first to the last
spike,

L = (tn+2 − tn). (2)

Spikelet regularity was defined as the ratio of increment of two
consecutive ISIs to spikelet length,

Ψ = 2(tn+2 − tn+1)/(tn+2 − tn). (3)

Note, that spikelet regularity ranges from 0 to 2. Finally, we
identified every spikelet in the spike train, allowing overlapping
of two spikes between successive spikelets and calculated the
length and regularity of each (i.e., there are N–2 spikelets in a
train of N spikes where N > 2).

Havingmeasured spikelet length and regularity from the spike
train generated in response to a particular chemical, we built
histograms of each parameter. The values of spikelet length were
divided into 10 bins in a logarithmic scale with base 2 from 0 to
8 s: 0–0.157 s, 0.157–0.250 s, 0.250–0.397 s, 0.397–0.630 s, 0.630–
1.000 s, 1.000–1.587 s, 1.587–2.520 s, 2.520–4.000 s, 4.000–6.350
s, and 6.350 s to the maximum. The maximum length was set as
8 s in our analysis, and longer lengths were included in the last
bin. The absolute values of spikelet regularity, |Ψ |, were divided
into 10 equal-length bins from 0–0.1, 0.1–0.2, ..., 0.9–1.

A Modeling for the Estimation of Nociception Level
A computational model was developed to estimate a putative
nociception level from the temporal integration of spikelets of an
input spike train. Specifically, the model integrated the features
of successive spikelets over time to estimate a nociception level
and determined nociception when the estimated level exceeded
a threshold. Given the n-th spikelet of an input spike train, our
model first calculated the Gaussian radial basis function (RBF)
kernels on the vector of spikelet length [L(n)] and regularity
[R(n)] of the input spikelet and each of pre-determined template
vectors. The template vectors included the mean vectors of
spikelet length and regularity for KCl and capsaicin as well
as two different vectors of spikelet length and regularity for
GABA (Figures 3E,I). The two template vectors for GABA
were made as either regular (Ψ = 0), and irregular (Ψ = 1)
reflecting the characteristic of spikelet regularity histogram of
GABA (Figure 3K). The RBF kernel width parameter, σ 2, was
empirically set to 0.1. The RBF kernel outputs, Z1(n), Z2(n),
Z3(n), and Z4(n), indicated the difference of the tested spikelet
from the template vectors for KCl, capsaicin, regular (Ψ = 0),
and irregular (Ψ = 1) GABA responses, respectively. These four
outputs were then linearly combined and fed to a hyperbolic
tangent sigmoid transfer function as:

z(n) = 2/(1+ e−2(Z1+Z2−Z3−Z4))− 1. (4)
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Note, that our model imposed positive weights (i.e., +1)
on the RBF kernels for the nociceptive KCl and capsaicin
[Z1(n) and Z2(n)], while imposing negative weights (i.e., −1)
on those for non-nociceptive GABA [Z3(n) and Z4(n)], to
estimate a nociception level. Finally, the model estimated a
current nociception level, y(n), by integrating the current
transfer function output [z(n)] with the previous (n−1)-th
estimate as:

y(n) = z(n)+ λL(n)y(n− 1). (5)

A memory factor, λ, was set to a value in a range of (0,
1), describing the effect of temporal summation that would
be diminished on the following spikelet. The power of λ was
modeled as L(n) to implement a condition that the previous
estimate would affect less with a longer spikelet. Finally, the
model deemed that nociception was evoked when y(n) > θ ,
where θ was a threshold for the detection of nociceptive
stimulations (Supplementary Figure 4).

Classification of Discharge Patterns
A joint distribution of spikelet length and regularity was
created by building a 2D histogram (allocation of the spikelet
to a bin on the 2D histogram map). We took into account
both positive and negative values of spikelet regularity in
building the 2D histogram by dividing the regularity values
into 10 equal-length bins from −1 to 1 with a step of 0.2
in an ascending fashion. The counts in all the bins were
divided by (N−2) to represent a probability distribution.
We quantitatively assessed the similarity of the 2D joint
distributions between different chemicals using the symmetrized
KL divergence (Jeffreys, 1946). Given two probability
distributions, P and Q, the KL divergence of Q from P was
calculated as,

D(P||Q) = 6i,jP(i, j) ln(P(i, j)/Q(i, j)) (6)

with the sum over all the (i,j)-th bins, where i= 1st–10th bins for
regularity and j = 1st–10th bins for length. The difference was

then computed from the absolute value of the symmetrized KL
divergence:

∆(P||Q) = (|D(P||Q)| + |D(Q||P)|)/2. (7)

A larger value of Equation (7) indicated greater dissimilarity
of the spikelet parameter distribution maps between chemicals.
Spike trains were classified as a response to a particular
chemical on the basis of the KL divergence. We first obtained
a representative template of the 2D joint distribution map for
each class from the training data (three classes each for KCl,
GABA, and capsaicin, respectively). The representative template
map was calculated by summing all bin counts per class over
the 2D map followed by normalization. Next, when classifying a
new spike train, we built the 2D map of the spikelet patterns and
calculated the difference of it to each class template map. Lastly,
the chemical of the class with the smallest difference was deemed
to generate the spike train.

AUTHOR CONTRIBUTIONS

Performed the experiments and analyzed data: KC and
JJ. Provided the analysis model and the classification: SK.
Conducted patch clamp recording and immunohistochemistry:
SL. Conceived the project and designed the study: SC and IK.
Supervised the study and edited the manuscript: DJ and SJ.

ACKNOWLEDGMENTS

This work was supported by grants from the National
Research Foundation of Korea (NRF) funded by the Korean
government (MSIP) (2012M3A7B4035199, 2011-0027921, and
2016R1A2B4013332).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fncom.
2016.00118/full#supplementary-material

REFERENCES

Adriaensen, H., Gybels, J., Handwerker, H. O., and Van Hees, J. (1980). Latencies

of chemically evoked discharges in human cutaneous nociceptors and of the

concurrent subjective sensations. Neurosci. Lett. 20, 55–59. doi: 10.1016/0304-

3940(80)90233-5

Bautista, D. M., Movahed, P., Hinman, A., Axelsson, H. E., Sterner, O., Högestätt,

E. D., et al. (2005). Pungent products from garlic activate the sensory

ion channel TRPA1. Proc. Natl. Acad. Sci. U.S.A. 102, 12248–12252. doi:

10.1073/pnas.0505356102

Benbouzid, M., Pallage, V., Rajalu, M., Waltisperger, E., Doridot, S., Poisbeau,

P., et al. (2008). Sciatic nerve cuffing in mice: a model of sustained

neuropathic pain. Eur. J. Pain 12, 591–599. doi: 10.1016/j.ejpain.2007.

10.002

Bessou, P., and Perl, E. R. (1969). Response of cutaneous sensory units with

unmyelinated fibers to noxious stimuli. J. Neurophysiol. 32, 1025–1043.

Bonin, R. P., Bories, C., and De Koninck, Y. (2014). A simplified up-down method

(SUDO) for measuring mechanical nociception in rodents using von Frey

filaments.Mol. Pain. 10:26. doi: 10.1186/1744-8069-10-26

Bretag, A. H. (1969). Synthetic interstial fluid for isolated mammalian tissue. Life

Sci. 8(Pt 1), 319–329. doi: 10.1016/0024-3205(69)90283-5

Carlton, S.M., Zhou, S., and Coggeshall, R. E. (1999). Peripheral GABAA receptors:

evidence for peripheral primary afferent depolarization. Neuroscience 93,

713–722. doi: 10.1016/S0306-4522(99)00101-3

Debus, S., and Sandkühler, J. (1996). Low dimensional attractors in discharges

of sensory neurons of the rat spinal dorsal horn are maintained by

supraspinal descending systems. Neuroscience 70, 191–200. doi: 10.1016/0306-

4522(95)00344-I

Deschenes, M., Feltz, P., and Lamour, Y. (1976). A model for an estimate in vivo of

the ionic basis of presynaptic inhibition: an intracellular analysis of the GABA-

induced depolarization in rat dorsal root ganglia. Brain Res. 118, 486–493. doi:

10.1016/0006-8993(76)90318-8

Devroye, L., Gyorfi, L., and Lugosi, G. (1996). “Probabilistic theory of pattern

recognition,” in Applications of Mathematics: Stochastic Modelling and Applied

Probability, eds I. Karatzas and M. A. Yor (New York, NY; Berlin; Heidelberg:

Springer-Verlag), 27–28.

Feltz, P., and Rasminsky, M. (1974). A model for the mode of action

of GABA on primary afferent terminals: depolarizing effects of GABA

Frontiers in Computational Neuroscience | www.frontiersin.org November 2016 | Volume 10 | Article 118

293

http://journal.frontiersin.org/article/10.3389/fncom.2016.00118/full#supplementary-material
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Cho et al. Analysis of Nociception Encoded in Discharge Patterns

applied iontophoretically to neurones of mammalian dorsal root ganglia.

Neuropharmacology 13, 553–563. doi: 10.1016/0028-3908(74)90145-2

Han, L.,Ma, C., Liu, Q.,Weng, H. J., Cui, Y., Tang, Z., et al. (2013). A subpopulation

of nociceptors specifically linked to itch. Nat. Neurosci. 16, 174–182. doi:

10.1038/nn.3289

Hanack, C., Moroni, M., Lima,W. C.,Wende, H., Kirchner, M., Adelfinger, L., et al.

(2015). GABA blocks pathological but not acute TRPV1 pain signals. Cell 160,

759–770. doi: 10.1016/j.cell.2015.01.022

Iverfeldt, K., Serfözö, P., Diaz-Arnesto, L., and Bartfai, T. (1989). Differential

release of coexisting neurotransmitters; frequency dependence of the efflux

of substance P, thyrotropin releasing hormone and [3H] serotonin from

tissue slices of rat ventral spinal cord. Acta Physiol. Scand. 137, 63–71. doi:

10.1111/j.1748-1716.1989.tb08721.x

Jeffreys, H. (1946). An invariant form for the prior probability in estimation

problems. Proc. R. Soc. Lond. 186, 453–461. doi: 10.1098/rspa.1946.0056

Johanek, L. M., Meyer, R. A., Friedman, R. M., Greenquist, K.W., Shim, B., Borzan,

J., et al. (2008). A role for polymodal C-fiber afferents in nonhistaminergic itch.

J. Neurosci. 28, 7659–7669. doi: 10.1523/JNEUROSCI.1760-08.2008

Kawasaki-Yatsugi, S., Nagakura, Y., Ogino, S., Sekizawa, T., Kiso, T., Takahashi,

M., et al. (2012). Automatedmeasurement of spontaneous pain-associated limb

movement and drug efficacy evaluation in a rat model of neuropathic pain. Eur.

J. Pain 16, 1426–1436. doi: 10.1002/j.1532-2149.2012.00142.x

Koltzenburg, M., and Handwerker, H. (1994). Differential ability of human

cutaneous nociceptors to signal mechanical pain and to produce vasodilatation.

J. Neurosci. 14, 1756–1765.

Kumazawa, T., Kruger, L., and Mizumura, K. (1996). The Polymodal Receptor-A

Gateway to Pathological Pain, Vol. 113. Amsterdam; Lausanne; New York, NY;

Oxford; Shannon; Tokyo: Elsevier.

Lánský, P., Rodriguez, R., and Sacerdote, L. (2004). Mean instantaneous firing

frequency is always higher than the firing rate. Neural Comput. 16, 477–489.

doi: 10.1162/089976604772744875

Pereira, J. C. Jr., and Alves, R. C. (2011). The labelled-lines principle of the

somatosensory physiologymight explain the phantom limb phenomenon.Med.

Hypotheses 77, 853–856. doi: 10.1016/j.mehy.2011.07.054

Prescott, S. A., Ma, Q., and De Koninck, Y. (2014). Normal and abnormal

coding of somatosensory stimuli causing pain. Nat. Neurosci. 17, 183–191. doi:

10.1038/nn.3629

Sandkühler, J. (1996). “Neurobiology of spinal nociception: new concepts,” in

Progress in Brain Research, Vol. 110, eds G. Carli, and M. Zimmermann

(Amsterdam: Elsevier), 207–224.

St Pierre, M., Reeh, P. W., and Zimmermann, K. (2009). Differential effects of

TRPV channel block on polymodal activation of rat cutaneous nociceptors

in vitro. Exp. Brain Res. 196, 31–44. doi: 10.1007/s00221-009-1808-3

Van Hees, J., and Gybels, J. (1981). C nociceptor activity in human nerve during

painful and non painful skin stimulation. J. Neurol. Neurosurg. Psychiatr. 44,

600–607. doi: 10.1136/jnnp.44.7.600

Weber, A. I., Saal, H. P., Lieber, J. D., Cheng, J. W., Manfredi, L. R., Dammann, J.

F. III., et al. (2013). Spatial and temporal codes mediate the tactile perception

of natural textures. Proc. Natl. Acad. Sci. U.S.A. 110, 17107–11012. doi:

10.1073/pnas.1305509110

Wooten, M., Weng, H. J., Hartke, T. V., Borzan, J., Klein, A. H., Turnquist, B., et al.

(2014). Three functionally distinct classes of C-fibre nociceptors in primates.

Nat. Commun. 5:4122. doi: 10.1038/ncomms5122

Zimmermann, K., Hein, A., Hager, U., Kaczmarek, J. S., Turnquist, B. P., Clapham,

D. E., et al. (2009). Phenotyping sensory nerve endings in vitro in the mouse.

Nat. Protoc. 4, 174–196. doi: 10.1038/nprot.2008.223

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Cho, Jang, Kim, Lee, Chung, Kim, Jang and Jung. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org November 2016 | Volume 10 | Article 118

294

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: info@frontiersin.org  |  +41 21 510 17 00 

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org/

	Cover 
	Frontiers Copyright Statement
	Structure-Related Intrinsic Electrical States and Firing Patterns of Neurons With Active Dendrites
	Table of Contents
	Editorial: Structure-Related Intrinsic Electrical States and Firing Patterns of Neurons With Active Dendrites
	Historical perspectives of studies of structure-related intrinsic neuronal activity
	Dendritic origins of firing patterns in neurons
	Firing patterns in normally developing and degenerating neurons
	Functional compartmentalization of dendrites and somato-dendritic coupling
	Tools for studies of dendritic and axonal processes
	Fine temporal structure of firing patterns
	Author Contributions

	Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective
	Introduction
	Intrinsic Electrical Properties of Specific Cell Types
	Cerebellar Purkinje Cells
	Inferior Olivary Cells and Rebound Calcium Spikes
	Thalamic Cells

	Thalamic 40Hz Oscillations
	Cortical Neurons
	References

	The 40-year history of modeling active dendrites in cerebellar Purkinje cells: emergence of the first single cell ``community model''
	INTRODUCTION
	DEDUCING FUNCTION FROM STRUCTURE
	EMERGENCE OF A COMMUNITY PURKINJE CELL MODEL
	UNDERSTANDING PURKINJE CELL RESPONSES TO DIFFERENT TYPES OF INPUT
	Antidromic Spike Activation of the Purkinje Cell Dendrite
	Responses to Somatic Current Injection
	Purkinje Cell Responses to Climbing Fiber Activation
	Replication of the Simple Spike Firing of Purkinje Cells
	The Natural Function of the Purkinje Cell Dendrite Depends on the Presence of Background Synaptic Inputs
	``Dendritic Democracy'' and the Influence of Distal Synaptic Inputs
	Purkinje Cells are Tuned to Operate in Context of Activity in the Overall Cerebellar Cortical Network


	IMPLICATIONS AND THE IMPORTANCE OF COMMUNITY MODELS
	REFERENCES

	Nonlinear properties of medial entorhinal cortex neurons reveal frequency selectivity during multi-sinusoidal stimulation
	Introduction
	Materials and Methods
	Tissue Preparation
	Electrophysiology
	Theoretical Simulations
	QSA Theory

	Results
	Effect of Membrane Potential
	Linear Distortions
	Low Pass Stimulation Filtering
	Band Pass Stimulation Filtering
	Dendritic Stimulation
	Spike Frequency Modulation

	Discussion
	Author Contributions
	Acknowledgments
	References

	A simulation study on the effects of dendritic morphology on layer V prefrontal pyramidal cell firing behavior
	Introduction
	Materials and Methods
	Morphological Data
	Pyramidal Cell Model
	Simulations Setup
	Morphological Parameters
	Data Analysis
	Implementation

	Results
	Discussion
	General Issues
	What Have we Learned from this Model?
	What is Next?

	Concluding Remarks
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Spiny neurons of amygdala, striatum, and cortex use dendritic plateau potentials to detect network up states
	Introduction
	Neuronal up states
	The binding theory
	Dynamic ensembles
	Neural synchronization
	Time window 200–500 ms
	Spiny neurons
	Cellular bases of up states

	Dendritic plateau potentials
	Glutamate-mediated dendritic spike
	Dendritic nmda spikes versus dendritic plateau potentials – differences
	Dendritic nmda spikes and dendritic plateau potentials – similarities

	Dendritic up states
	Dendritic up state in one dendrite
	Dendritic up states occurring simultaneously in two dendrites

	Detectors of strong network activity
	Efficient depolarization of the cell body
	Dependence on the surplus glutamate
	Duration of sustained depolarization
	Dendritic spines and glial processes


	Concluding remarks
	References

	A synaptic mechanism for network synchrony
	Introduction
	Supraspinal networks in the brainstem initiate and maintain locomotor drive
	The synaptic connectivity of the spinal CPG network drives rhythmic network oscillations
	Single neurons are intrinsically rhythmic
	Dendritic Ca2+ signaling is dynamic and determined by cellular and microcircuit properties
	Evidence for a dendritic mechanism of intrinsic oscillations in the CNS
	Evidence for close coupling of NMDARs and KCa2 channels
	Dendritic structure and synaptic integration of presynaptic microcircuitry of ventral horn neurons
	Synapse-specificity of KCa2 channels is behaviorally relevant
	Neuromodulation of KCa2 channels mediating locomotion
	Importance of studying dendritic properties within a behaving network
	References

	Contribution of sublinear and supralinear dendritic integration to neuronal computations
	Introduction
	Dendritic Integration
	Biophysical Mechanisms Influencing Synaptic Integration
	Effect of Passive Membrane Properties on EPSPs Summation
	The Influence of Passive Dendrites on sI/Os
	The Influence of Active Dendrites on sI/Os
	The Influence of the Size, Time Course and Location of the Synaptic Conductance on sI/Os

	Experimental Strategies for Studying Dendritic Integration
	Linking Dendritic Operations to Neuronal Computations Using Mathematical Models
	Open Questions
	Summary
	Acknowledgments
	References

	Dendritic atrophy constricts functional maps in resonance and impedance properties of hippocampal model neurons
	Introduction
	Materials and Methods
	Multicompartmental Model: Passive Properties
	Channel Kinetics and Distribution
	Measurements
	Influence Field Quantification
	Computational Details

	Results
	Dendritic Atrophy Increased Local and Transfer Impedance Amplitudes Across Locations
	Dendritic Atrophy Constricted HCN-channel Mediated Spatial Maps of Local and Transfer Impedances
	The Somatodendritic Local and Transfer Resonance Frequency Maps were Constricted by Dendritic Atrophy
	Atrophy-induced Constriction of Functional Maps was Mediated by Enhanced Spatial Spread of the Influence of a HCN-channel Cluster in Atrophied Trees

	Discussion
	Implications for Atrophy-induced Enhancement in Neuronal Excitability and Somatodendritic Coupling
	Implications for the Regulation of Functional Maps by Dendritic Atrophy

	Acknowledgments
	References

	Developing electrical properties of postnatal mouse lumbar motoneurons
	Introduction
	Materials and Methods
	Electrophysiological Experiments
	Data Analysis
	Labeling of Motoneurons
	Quantitative Morphometric Analysis

	Results
	Morphological Changes Between P3 and P9
	Electrical Properties of Mouse Lumbar Motoneurons: Correlations with Size
	Changes in AP Shape
	Discharge Properties
	Firing Behavior on Slow Triangular Current Ramps

	Discussion
	Postnatal Changes in Electrical Properties of Lumbar Motoneurons
	Different Patterns of Discharge Firing
	Persistent Inward Current and Ramp in Motoneurons
	Importance of Our Findings for Future Studies on ALS

	Conclusions
	Acknowledgments
	References

	The dendritic location of the L-type current and its deactivation by the somatic AHP current both contribute to firing bistability in motoneurons
	Introduction
	Materials and Methods
	Model
	Dynamic Clamp Experiments

	Results
	Increasing the Coupling Suppresses the Firing Bistability of the BRK Model
	Firing bistability requires large dendritic GCa-L and somatic GK(Ca)
	A Somatic L-type Calcium Current may Elicit Firing Bistability by Itself
	Experimental validation

	Discussion
	Summary of Results
	Somatic and Dendritic Components of the L-type Currents
	Conditions for Firing Bistability
	Differences with the BRK Model
	The Interaction Between the L-type and AHP Currents is Crucial for the Control of Motoneuron Discharge

	Acknowledgments
	References

	The kinetics of multibranch integration on the dendritic arbor of CA1 pyramidal neurons
	Introduction
	Materials and methods
	Brain slice preparation
	Brain slice recording
	3D digital holography
	Pharmacological agents

	Results
	3D digital holographic photolysis
	Differences between single- and multibranch integration
	Domain specific multibranch integration
	Functional advantage of multibranch integration

	Discussion
	References

	Neuromodulation impact on nonlinear firing behavior of a reduced model motoneuron with the active dendrite
	Introduction
	Materials and Methods
	The Conductance-Based, Reduced Neuron Model
	Simulations

	Results
	PIC Location Dependency of Physiological Firing Patterns in the Reduced Model
	Model capability for generating physiological firing patterns
	Spatial relationship of the firing types

	Neuromodulation Effects on PIC Location Dependence of the Firing Patterns
	Dependence of PIC characteristics on CaPIC activation properties
	Influence of neuromodulation on the spatial relationship of the firing types

	The Robustness of the Reduced Model for the Nonlinear Firing Under Neuromodulatory control

	Discussion
	Democratization of PIC Impact on Firing Behavior Through Neuromodulation
	Robustness of Type IV Firing During Normal Behavior
	Limitations of the Current Modeling
	Functional Role of Neuromodulatory Control

	Author Contributions
	Acknowledgments
	References

	Electrical responses of three classes of granule cells of the olfactory bulb to synaptic inputs in different dendritic locations
	Introduction
	Materials and Methods
	Granule Cells
	Dendritic Spines
	Simulations

	Results
	Dendritic Spine Model
	Effects of the Synaptic Inputs in Different Locations of the Dendritic Tree
	Determination of the Origin of the Action Potentials

	Discussion
	Acknowledgments
	Supplementary Material
	References

	Distinct and synergistic feedforward inhibition of pyramidal cells by basket and bistratified interneurons
	INTRODUCTION
	MATERIALS AND METHODS
	Neuronal Morphologies and Membrane Properties
	Synaptic Properties
	Stimulation Protocol

	RESULTS
	Model Validation and CA1PC Population
	Single CA1PCs Input/Output Curves
	FFI Buffering of the CA1PC Input-Output Relation
	Distinct and Synergistic Effects of FFI on CA1PC Spike Timing

	DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	REFERENCES

	Modulating STDP Balance Impacts the Dendritic Mosaic
	Introduction
	Materials and Methods
	Assessing Differences in Spatial Patterns
	The Layer 2/3 Pyramidal Cell Model
	STDP Learning Rule
	Gutig Rule: Pair Based Nonlinear STDP


	Results
	Competition Dependent Emergence of Clustered Synaptic Efficacy Engrams
	STDP Balance Modulates Spatial Segregation and Complementarity
	STDP Balance Impacts the Formation of the Dendritic Mosaic
	Mean Input Frequencies and STDP Balance Jointly Influences the Dendritic Mosaic
	STDP Balance and Mean Input Frequencies Jointly Influence Local Spiking
	Influence of Morphology

	Discussion
	Relation to Other Models
	Mechanisms Underlying Inhomogeneous Spatial Patterns of Clusters
	Limitations of the Study

	Conclusions
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Maximum likelihood estimation of biophysical parameters of synaptic receptors from macroscopic currents
	Introduction
	Materials and Methods
	Kinetic Model
	The Log-Likelihood Function
	Efficient Estimation of the Log-Likelihood Function for Synaptic Currents with Noise
	Estimation of the Number of Channels and Peak Open Probability
	The Log-Likelihood Maximization Procedure
	Simulation of Macroscopic Synaptic Currents
	Accuracy of the Estimates
	Peak-Scaled Non-Stationary Fluctuation Analysis
	Estimation of Unitary Current from a Single Macroscopic Current

	Results
	ML NSFA Applicability to Estimation of Unitary Current and Kinetic Constants of Postsynaptic Receptor Channels
	ML NSFA Accuracy in Estimation of Unitary Current Compared to PS NSFA
	ML NSFA Estimates the Number of Synaptic Receptors Bound with Neurotransmitter and Peak Open Probability
	Estimation of Unitary Current and Kinetic Constants of Receptors Having Multiple Conductance Levels
	ML NSFA Distinguishes Between Changes in the Channel Gating and Changes in the Number of Receptors Bound with a Neurotransmitter
	Estimation of Unitary Current from Macroscopic Currents Generated by Receptors Having Different Kinetic Schemes

	Discussion
	ML NSFA Applicability to Analysis of Synaptic Receptor Properties
	ML NSFA Applicability to Analysis of Synaptic Receptor Number and Peak Open Probability
	Acknowledgments
	References

	Model reduction of strong-weak neurons
	Introduction
	Materials and Methods
	The Full Model
	Branch Decomposition
	Reduction of the Strong Part
	Reduction of the Weak Part
	The Reduced Strong-Weak Neuron

	Results
	Discussion
	Acknowledgments
	References

	A simple transfer function for nonlinear dendritic integration
	Introduction
	Methods
	General Transfer Function
	Biophysical Transfer Function
	Spatial Decay
	Local Potential
	NMDA Spikes
	Dendritic Integration

	Parameterization
	Simulations

	Results
	Kinetic Model
	Varying Distance
	Paired Vs. Single-pulse

	Discussion
	References

	Fast and reliable identification of axons, axon initial segments and dendrites with local field potential recording
	Introduction
	Materials And Methods
	Slice Preparation
	Patch Clamp Recording
	Local Field Potential Recording
	Spike Triggered Average
	Data Analysis

	Results
	Theoretical Basis for the Identification of the Axon Initial Segment
	Online Identification of the AIS

	Discussion
	Perspective

	Author Contributions
	Funding
	Acknowledgment
	References

	Physiological consequences of doublet discharges on motoneuronal firing and motor unit force
	Introduction
	The Incidence of Doublets in Motoneurones
	Changes in the Firing Pattern and the After Hyperpolarization After the Doublet Discharge
	The Influence of a Doublet on MU Force Development
	Functional Implications of Doublet
	References

	Firing Properties of Genetically Identified Dorsal Raphe Serotonergic Neurons in Brain Slices
	INTRODUCTION
	MATERIALS AND METHODS
	Transgenic Mice
	Immunofluorescence
	Loose-Seal Cell-Attached Recordings
	Measures for Improving the Reliability of Loose-Seal Cell-Attached Recordings
	Anatomical Location of Recorded Neurons
	Analysis

	RESULTS
	Firing Rate
	Spiking Pattern

	DISCUSSION
	AUTHOR CONTRIBUTIONS
	FUNDING
	ACKNOWLEDGMENTS
	REFERENCES

	Analysis of Nociceptive Information Encoded in the Temporal Discharge Patterns of Cutaneous C-Fibers
	Introduction
	Results
	Activation of C-Fibers Does Not Always Result in Nociceptive Behavior
	The Temporal Discharge Patterns of Single C-Fibers Characterize Different Chemicals
	Pathological Conditions Inducing Nociception Alter the Temporal Discharge Pattern in Response to GABA

	Discussion
	Materials and Methods
	Overview of Animal Experiments
	Sciatic Nerve Cuffing Model
	Behavioral Studies
	Spontaneous Pain Behavior
	Heat Withdrawal Latency
	Mechanical Withdrawal Responses

	Ex Vivo Single Fiber Recordings
	Temporal Pattern Analysis of Spike Trains
	A Modeling for the Estimation of Nociception Level
	Classification of Discharge Patterns


	Author Contributions
	Acknowledgments
	Supplementary Material
	References

	Back Cover



