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The interaction between human and exoskeletons increasingly relies on the precise

decoding of human motion. One main issue of the current motion decoding algorithms

is that seldom algorithms provide both discrete motion patterns (e.g., gait phases) and

continuous motion parameters (e.g., kinematics). In this paper, we propose a novel

algorithm that uses the surface electromyography (sEMG) signals that are generated prior

to their corresponding motions to perform both gait phase recognition and lower-limb

kinematics prediction. Particularly, we first propose an end-to-end architecture that uses

the gait phase and EMG signals as the priori of the kinematics predictor. In so doing,

the prediction of kinematics can be enhanced by the ahead-of-motion property of sEMG

and quasi-periodicity of gait phases. Second, we propose to select the optimal muscle

set and reduce the number of sensors according to the muscle effects in a gait cycle.

Finally, we experimentally investigate how the assistance of exoskeletons can affect the

motion intent predictor, and we propose a novel paradigm to make the predictor adapt to

the change of data distribution caused by the exoskeleton assistance. The experiments

on 10 subjects demonstrate the effectiveness of our algorithm and reveal the interaction

between assistance and the kinematics predictor. This study would aid the design of

exoskeleton-oriented motion-decoding and human–machine interaction methods.

Keywords: electromyography,motion decoding algorithm, kinematics prediction, gait recognition, long short-term

memory

INTRODUCTION

For the past few decades, with the development of human–machine interaction and human
motion-decoding methods, an advanced technology was developed to bridge the gap between the
human and robots (Bonato, 2010). This robotic technology, known as the wearable robot, directly
interacts with the human body to enhance the mobility of healthy people (exoskeletons), to treat
muscles or skeletal parts which are injured or after the operation (orthosis), or to replace themissing
limbs of disabled people (prostheses) (Viteckova et al., 2013; Chadwell et al., 2020).

As an important branch of wearable robots, the lower-limb exoskeletons run in parallel to the
human lower-limbs, with representative applications to daily assistance, medical rehabilitation,
and other areas (Kazerooni, 2008; Sankai, 2010; Awad et al., 2017). In recent years, with the
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development of human-machine interaction technology and
advanced wearable sensors, the exoskeletons have been able to
decode the human motions based on physiological or kinematic
signals, meanwhile autonomously and promptly assist the user’s
locomotion at the critical timing, which has enhanced the
initiative and intelligence of the system (Yan et al., 2015).

Surface electromyography (sEMG), one of the commonly used
neural signals for motion-decoding, integrates the spatial and
temporal information of the muscles (Joshi et al., 2013). The
amplitude of sEMG is highly related to the level of muscle
activation, owing to which sEMG is widely used in control
strategies of exoskeletons (Yang et al., 2008; Fan and Yin, 2009).
The traditional and practical control strategy for exoskeletons
and prostheses is known as the ‘direct myoelectric control’
approach. The strategy collects the sEMG signals to control the
motors of the mechanical joints (Williams, 1990). Although this
control strategy has achieved considerable reliability, it becomes
non-intuitive when the number of mechanical joints increases.
The user training process also tends to be quite time-consuming
and cumbersome (Resnik et al., 2018).

As a potential solution to the problem, sEMG-based pattern
recognition methods have been developed for motion-decoding
and myoelectric control, which seeks the synergistic relationship
between muscles based on multichannel sEMG signals, and then
matches it with the defined patterns (Scheme and Englehart,
2011). For lower-limb exoskeletons, the motion pattern that is
necessary for achieving the mode switching of the control system
is the gait phase, which may help to provide a more proper
assistant force on human movement (Vu et al., 2018). One of
the commonly used gait phase definitions for exoskeletons is
shown in Figure 1, which segments the gait cycle based on several
significant events, such as the initial contact or the toe off (Taborri
et al., 2016).

As a general rule, the sEMG-based phase classification process
includes extracting the temporal or spatial-temporal features
from window-segmented sEMG signals, followed by a classifier
to align the features to the pre-defined phases (Novak and
Riener, 2015). Compared with the non-stationary raw sEMG
signals, the feature-extraction process maximally separates the
desired output classes, with an impressive performance in
pattern recognition (Hudgins et al., 1993). However, the feature
representation will lead to the increased dimension of data, which
may increase the burden to the limited computing equipment
of the exoskeleton. Dimension-reduction plays an important
role in the related research, with representative methods such
as principal component analysis (PCA) (Englehart et al., 2001),
linear discriminant analysis (LDA) (Chu et al., 2007), and profile
likelihood maximization (Naik et al., 2018). Although various
methods were proposed to deal with the ‘curse of dimension’
problem in the feature space, few studies focused on the source
data space, i.e., the selected muscles in the studies. Dealing with
the muscle redundancy problem, i.e., removing the muscles that
have less effect on phase recognition, will reduce not only the
dimension of the input data but also the number of sensors.

Due to the motion continuity, the kinematics of the lower-
limb joints is time-varying in a gait phase. In addition, the mode

switching of the control system may diminish the continuity and
smoothness of assistance during the transition of different phases
(Kim et al., 2019). Thus, continuous decoding of lower-limb
kinematics is beneficial to provide additional knowledge for more
precise exoskeleton control. So far, extensive work has been done
to estimate the joint kinematics, such as joint angles (Ngeo et al.,
2014) of trajectories (Xia et al., 2018). However, when considering
the limited computing power of the exoskeletons, the application
of these methods may cause a time delay between the estimated
kinematics and the actual occurrence of the motion event, which
may reduce the effectiveness of the exoskeleton and even cause a
potential injury to the subject (Tanghe et al., 2020). In order to
compensate for this time delay, our previous work achieved the
ahead-of-time prediction of kinematics (Yi et al., 2021). However,
the study did not consider the simultaneous classification of the
gait phases, which would be beneficial for kinematics prediction
because of the common quasi-periodicity.

For exoskeletons, there exists another problem in applications
of sEMG-based motion-decoding methods. According to Sylos-
Labini et al. (2014), the assistive forces provided by an
exoskeleton may result in a change of the muscle coordination
manners (i.e., muscle synergies). Similar conclusions were also
given by the related studies that investigated the effect of
robotic gait assistance on the muscle function of the subjects
(Moreno et al., 2013; Li et al., 2019). The altered muscle
functions would cause an unknown distribution change of sEMG,
therefore cause adverse effects on the sEMG-based motion-
decoding methods. However, there is still a lack of investigation
of how the exoskeleton affects the sEMG-based motion decoding
methods, which matters a lot for the applications of the methods
to exoskeletons.

In this study, we propose a novel motion-decoding method
that combines the recognition of gait phases and the prediction
of lower-limb joint angles. The main contributions of this paper
are integrated as follows:

• We propose an sEMG and gait phase-based continuous
lower-limb kinematics predictor, which leverages not only
the ahead-of-motion property of sEMG but also the quasi-
periodicity of gait phases to present the ahead-of-time joint
kinematics prediction.

• We propose a muscle selection scheme in view of the effects of
muscles on the classification of gait phases.

• We experimentally quantify how the assistance of an ankle
exoskeleton affects themotion-decodingmethods and propose
a fine-tuning scheme to adapt to the performance degradation
caused by exoskeleton assistance.

The structure of the paper is as follows. In Related Works
section, the related works are briefly described. Materials
and Methods section details the data acquisition process,
the experimental design, and the structure of the proposed
motion-decoding method. The evaluation metrics validating the
effectiveness of our method are also described in this section.
The experimental results are detailed in Results section and
analyzed in Discussion section. The conclusion underlines the
performance of the proposed method in Conclusion section.
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FIGURE 1 | The gait phase definition in a gait cycle.

RELATED WORKS

Phase Recognition and Dimension
Reduction
The gait phase recognition is a non-trivial problem for
exoskeleton and prosthesis, which is used to permit the control
system to work with more initiative and precision (Ferris
et al., 2007). Joshi et al. presented a method that combined
the Bayesian information criterion and LDA to recognize eight
phases based on four-channel EMG signals (Joshi et al., 2013).
With an average accuracy of 76.12%, the recognized phases were
applied in an exoskeleton orthosis. The study in (Ryu and Kim,
2014) implemented fractal analysis to analyze the change of
vibroathrographic signals. Based on four-channel EMG signals,
the support vector machine (SVM) classifier could recognize four
phases with an average accuracy of 91%.

In recent years, deep learning has revolutionized the fields
correlated with machine learning and pattern recognition
(LeCun et al., 2015). Compared with other machine learning
methods, deep learning is better at searching for the relations
of the source data with the labels. In addition, the change of
the gait phase is quasi-periodic, which means the temporal-
contextual data is beneficial for phase recognition. Because of
the reasons described above, we adopted the Long-Short Term
Memory (LSTM) to design the phase classifier.

For exoskeleton systems, the motion-decoding algorithms
usually run on an onboard microcomputer, which means the
source data need to be carefully selected to avoid the control
system hysteresis caused by high computational complexity.
Moreover, the feature extraction process increases the dimension
of the input data by multiples, which may add another layer
of complexity. Thus, dimension reduction usually plays an
important role in exoskeleton systems. The study in Chu et al.
(2007) compared different feature projection methods, such

as LDA and PCA, and evaluated through Sammon’s stress
and Fisher’s index. A study by Naik et al. (2018) introduced
a screen-plot-based statistical technique for feature reduction.
With the implementation of the Fisher score, themethod reduced
the feature dimension from 28 to 13.

Although various dimension reduction methods have
been proposed to avoid the model overfitting and reduce
computational complexity, few studies have analyzed the
selected muscles. In their works, the muscles were mostly
determined by related works or experiences. In this study, we
propose a muscle selection scheme that analyzes the effects
of muscles on phase classification. Through this scheme, the
redundant muscles will be discarded in order to both reduces the
dimension of the data and the number of the sensors.

Continuous Decoding of Joint Kinematics
Because most of the lower-limb exoskeletons are located at
the joints, such as the knee or the ankle, it is beneficial to
obtain the kinematic parameters of the joints, which provide
more continuous and detailed knowledge for smooth control.
See et al. solved the joint axis using the numerical optimization
method, established the limb coordinate system, and calculated
the lower limb joint angle based on the IMU signals (Seel et al.,
2014). Ameri et al. proposed a real-time upper limb wrist joint
trajectory decoding method based on support vector regression
(SVR). They implemented this method for proportional control
based on EMG signals (Ameri et al., 2014). In the study of Xia
et al. (2018), a deep architecture-based model was proposed to
estimate the limb trajectory, which combined the convolutional
neural network (CNN) and recurrent neural networks (RNN).
The results showed that the accuracy and robustness of the
proposed method are much higher than those of SVR and CNN.

Although the above studies have shown considerable
performance, the time delay in control hinders their application
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to exoskeleton systems. In order to deal with this problem and
enhance the control of exoskeleton, the future joint kinematics
are required. Kevin et al. proposed a probabilistic model to
present the future prediction of the current kinematics and
gait events, which leveraged the quasi-periodicity of lower-limb
motions (Tanghe et al., 2020). The method presented a pioneer
frame for kinematic prediction, and it can be enhanced by
physiological knowledge. According to the previous studies,
there exists a time delay between the onset of the sEMG and the
occurrence of the movement (Hioki and Kawasaki, 2012). This
phenomenon, known as the electromechanical delay (EMD), can
be helpful for the ahead-of-time prediction of kinematics. Thus,
we propose an LSTM-based lower-limb kinematic predictor,
which leverages the quasi-periodicity of phase and EMD to
present the ahead-of-time lower-limb joint angles.

Effects of Exoskeletons on Muscle
Functions
How the exoskeletons affect the muscle functions of the subjects
have been investigated for many years (Steele et al., 2017). Prior
studies have revealed that external forces that were provided by
the exoskeletons would alter the activity-level and recruitment
patterns of the muscle groups (Sylos-Labini et al., 2014; Li
et al., 2019). The study (Sylos-Labini et al., 2014) recorded
the sEMG activity of six healthy individuals during overground
walking with a lower-limb exoskeleton. The result revealed
that the activity of some muscles increased in the exoskeleton-
assisted condition compared with the normal walking condition,
while the other muscles did not change significantly. Pearson
correlation coefficients were implemented as another metric to
compare the sEMG waveforms in these two conditions, and a
significant difference was found. In Steele et al. (2017), muscle
synergy and muscle activity were implemented to evaluate the
changes in muscle recruitment and coordination patterns. The
result revealed that the subjects could selectively modulate the
activity of individual muscles and were not constrained to
synergistic patterns of muscle coordination.

The related studies designed complete experiments to
investigate the effects of exoskeleton on muscle functions, and
concluded that exoskeletons could alter the muscle recruitment
patterns (Li et al., 2019). However, there is still a lack of
research on the investigation of the exoskeleton effect on
sEMG-based motion-decoding methods. Such effect is worthy of
investigation since sEMG has obvious advantages in application
to exoskeletons, such as the EMD and information of kinematics,
dynamics, and personal identity. Thus, we experimentally
quantified the effect of an ankle exoskeleton on the proposed
motion-decoding model. Also, we implemented a fine-tuning
scheme to allow the model to adapt to the change of data
distribution caused by exoskeletons’ assistance.

MATERIALS AND METHODS

Data Acquisition and Experimental
Protocol
This study was conducted under the approval of the Chinese
Ethics Committee of Registering Clinical Trials, and all

the subjects signed the consent form corresponding to the
experiments, who could decide to stop the experiment at any
time. The subjects include 10 healthy males with an average
height of 178 ± 5 cm and an average weight of 77.6 ± 10 kg.
The data collection was performed using the EMG acquisition
equipment (Delsys Trigno, IM type and Avanti type), a designed
foot pressure acquisition device, and an optical motion capture
system (VICON). At the beginning of the data collecting process,
the signals from various acquisition devices were synchronized
by a trigger device.

In this study, we constructed two datasets for the experimental
protocol. In the first dataset, ten subjects were involved to
performed the level-walking on a treadmill with a constant
walking speed of 4.5 km/h. As shown in Figure 2, nine
quadrupolar EMG electrodes were mounted on the lower-limb
muscles, some of which have proved the validity in lower-limb
motion decoding, corresponding to rectus femoris (RF), vastus
lateralis (VL), vastus medialis (VM), tibialis anterior (TA), soleus
(SL), biceps femoris (BF), semitendinosus (ST), gastrocnemius
medial head (GM) and gastrocnemius lateral head (GL), with
a sampling frequency of 1111.11Hz. In order to decode the
lower-limb kinematics of the subjects, 16 reflective markers were
attached to the lower-limb, following the experimental scheme
of the VICON user guide, and the lower-limb joint angles were
collected with a sampling frequency of 100Hz. In addition, two
FSR sensors were attached to the heel and first metatarsal bone of
the subject for phase labeling, foot pressure signals were collected
with a sampling rate of 500 Hz.

In the second dataset, four of the ten subjects were
recruited to participate in the experiments. With an ankle
exoskeleton, the subjects performed the level-walking on a
treadmill with a speed of 4.5 km/h. Based on the proposed
muscle selection scheme described in Ankle Exoskeleton
Frame section, a subset was selected from nine muscles
to collect the EMG signals. The attachment of VICON
markers and FSR sensors are the same as the first dataset.
In both datasets, each subject was instructed to complete
at least two trials of level-walking. Each trial lasted for 8
mins, and 15-min rest followed with each trial to avoid
muscle fatigue.

Ankle Exoskeleton Frame
In this study, an ankle exoskeleton was implemented,
which was shown in Figure 3. The designed ankle
exoskeleton comprised a waist textile belt, two thigh
textile belts, a shank textile belt, and an ankle end-effector
mounted on the boot. The exoskeleton was actuated by a
powerful motor, with the mechanical power transmitted
through a flexible Boden cable tether which terminated at
the heel.

The electronic control strategy of the exoskeleton was
compiled in LabVIEW software and deployed to the Sbrio-9636
controller through a shared local area network, which was a single
task mode control. At the event of heel-off, the motor pulled
up on the end-effector through the Borden cable to provides an
upward force of 100N beneath the subject’s heel, which assisted
in reducing the plantarflexion forces provided by the subjects.

Frontiers in Neurorobotics | www.frontiersin.org 4 August 2021 | Volume 15 | Article 7042268

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Wei et al. Exoskeleton Oriented Ankle Angle Predictor

FIGURE 2 | Sensor attachment of the subjects.

FIGURE 3 | The exoskeleton frame implemented in the second dataset.

Muscle Subset Selection
sEMG signals are generated by nerve signals stimulating muscle
activation, which contain massive human motion information.
The amplitude and pulse duration of sEMG is highly correlated
with the extent and duration of muscle activation, which varies

in different phases. Figure 4 shows the sEMG amplitude of the
tibialis anterior from different subjects, which was magnified
10,000 times. From the figure, a phenomenon can be found that
the tibialis anterior is mainly activated in the fourth phase among
the three subjects, which means that the muscles may not play a
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FIGURE 4 | The EMG amplitude of tibialis anterior among different subjects.

role in walking all the time. Instead, they activate at a certain time
of the gait cycle. Moreover, although the sEMG amplitude and
vibration frequency are different among the subjects, the timings
of sEMG pulses in a gait cycle are roughly the same, which means
different subjects may share a similar pattern of muscle activation
(Chvatal et al., 2011).

Based on the assumption, a muscle-activation-based muscle
selection scheme was proposed, which evaluated the effects
of the muscles on phase recognition. Firstly, a standard
manipulation was implemented to remove the motion artifact
and other interference (Ngeo et al., 2014). Then, the signals
were processed by full-wave rectification and normalized by
dividing by the peak rectified EMG. A low-pass filter was
carried out for the processed signal, as the frequency of
muscle activation was much lower than that of EMG signals
(Ding et al., 2011).

After the above manipulation, the neural activation u(i) of the
ith processed EMG sample e(i) with TE sampling interval was
calculated as follows:

u (i)=α×e

(

i−
d

TE

)

−β1×u (i− 1) − β2×u (i− 1) (1)

where α, β1 and β2 are the recursive coefficients that maintain the
stability of u(i), d is the time delay. Based on the neural activation
derived from sEMG signal, the corresponding muscle activation
a(t) was calculated by a simplified model (Lloyd and Besier,
2003). In equation (2), A is the nonlinear shape factor that varies
between −3 and 0, with −3 represents highly exponential and

0 represents a linear relationship. This factor and the recursive
coefficients can be determined by minimizing a mean-square
error cost function (Ngeo et al., 2014). In this study, A is equal
to−2.

a (t)=
eAu(t)−1

eA−1
(2)

Muscle activation sequence was calculated from EMG signals
of each channel. Then, data of a gait cycle was extracted and
segmented by different phases. After that, the average area Ai of
muscle activation a(t) in phase i was calculated by:

Ai=

∫ Tp

tp

a (t) dt i = 1, 2, 3, 4 (3)

Through the above calculation, Ai corresponding to four
phases was obtained. In order to compare the activations of
muscles in different phase more intuitively, a normalization
operation was implemented to obtain the effect Ei of muscle
to the ith phase. We would then evaluate the muscles based
on the muscle effects, following the rule that at least four
muscles should be selected, which have the highest activation
in the corresponding four phases, and the muscles with similar
activations in at least three phases would be discarded.

Ei=
Ai

max(A)
i = 1, 2, 3, 4 (4)
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FIGURE 5 | The structure of the phase classifier and ankle angle predictor.

Data Processing
After the optimal muscle subset was determined, the multi-
channel EMG and joint angle streams were segmented by
a continuous sliding window scheme, with a window length
of 180ms and a window increment of 40ms (Englehart and
Hudgins, 2003). In order to facilitate the phase classification
and consider the time efficiency, the following time-domain
features were extracted from each EMG segment, which were
mean absolute value (MAV), zero crossing (ZC), slope signal
change (SSC), and waveform length (WL). The effectiveness and
the real-time capability of these features had already been verified
in the related studies (He et al., 2011; Zhang et al., 2020). The
feature vector x of a sliding window with the dimension of 4n
is presented in the form of equation (5), where n represents the
number of muscles and f denotes the extracted features from
each muscle.

x =
[

f1, f2, · · · , f n
]

(5)

Phase Classifier and Angle Predictor
For the classification of gait phases, options abound of machine
learning, such as HMM (Evans and Arvind, 2014), LDA (Joshi
et al., 2013), SVM (Ryu and Kim, 2014), etc. However, despite the
verified effectiveness of these classifiers, they did not utilize the
previous context of the gait phase, which was also an important
element because of the quasi-periodicity of the changing phase
state. Thus, we designed an LSTM-based phase classifier. The
structure of the classifier was shown in Figure 5, consisting of
an input layer with the dimension equal to the input features,
two LSTM hidden layers of 40, a fully connected layer of 20, and
a softmax layer of four corresponding to the gait phases. ReLU
activation function was used to connect the LSTM layer, the fully
connected layer, and the output layer. In order to prevent model
overfitting, dropout regularization was applied after every fully
connected hidden layer with probabilities of 0.5.

For the ahead-of-time prediction of ankle angles, LSTM
was also implemented to leverage the quasi-periodicity of the
changing ankle angles and gait phases. Different from the studies
of phase classification, few feature extraction methods have been
verified to be efficient for angle regression. Thus, as shown in
Figure 5, a deep structure was designed, which combined a four-
layer LSTM-based feature extractor (30-30-30-5) and a three-
layer LSTM-based angle predictor (30-30-60-1). ReLU activation
function was also implemented to connect the LSTM layer and
the fully connected layer.

The models were tested on Nvidia Xavier Module Interface,
with the overall running time for a time window was <30ms. As
the window increment was 40ms, the prediction time of the angle
predictor was set to 40ms to compensate for the time delay and
match the kinematics with the next incoming data stream.

Evaluation Metrics
Several quantitative metrics were used to evaluate the
performance of our method. The motion-decoding method
we proposed is subject-specific. Thus, to improve the reliability
of classification results while avoiding the problem of cross-
subject, a modified leave-one-out cross-validation was carried
out. Each time, one trial from a subject (defined in Data
Acquisition and Experimental Protocol section) was regarded as
the testing data, and the other trial from the same subject with
all trials from other subjects were regarded as the training data.
The procedure continued until each trial from each subject was
tested. For all the evaluation processes, one-way ANOVA was
implemented to validate the significant effect of a single variable
on the results.

In order to verify the performance of the proposed classifier,
the SVM classifier with the radial basis function kernel and the
LDA classifier with the singular value decomposition solver were
compared, which were implemented from the scikit-learn library.
The feasibility of these classifiers have already been proved in the
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related research (He et al., 2011; Naik et al., 2018). In addition,
classification accuracy (ACC) was used for the visualization of
the performance.

SVR has been implemented to estimate the simultaneous
DOFs of the joints in the related study, and outperformed
ANN in myoelectric control tasks (Ameri et al., 2014). Thus, to
verify the effectiveness of the proposed method, SVR was also
implemented for angle prediction tasks in this study. The output
of the predictor was a continuous time series of joint angles. Thus,
the Pearson correlation coefficient (R-value) was implemented
to quantify the linear relationship between the predicted and
reference ankle angles:

R =
cov(θpre, θref )

σpre σref
(6)

where θpre and θref are defined as the predicted knee angles and
reference knee angles, respectively. σ is the standard deviation,
and cov represents the covariance. In addition to the similarity
evaluation of the signals, the deviation and residual variance
between the predicted and reference angles were estimated by
the root mean square error (RMSE) and the normalized RMSE
(NRMSE), where n denotes the total number of sampled data,
and θ of equation (8) represents the predicted knee angles.

RMSE =

√

1

n

∑

(

θpre−θref
)2

(7)

NRMSE =
RMSE

θmax− θmin
(8)

RESULTS

To begin with, the effect of each muscle described in Ankle
Exoskeleton Frame section was calculated, which was shown

in Table 1. In order to avoid the error caused by abnormal
phases, the whole procedure was repeated three times, and the
corresponding Ei were averaged to obtain the result. Based on the
muscle selection scheme, RF, TA, ST, GM, and GL were selected
since they contained the muscles with the highest activation level
in different phases, and each of them also had a discriminative
activation level in another phase (shown in bold values), which
might be beneficial for the phase classification task.

Based on the selected muscles, the phase classification
accuracy is shown in Figure 6, where MA represents the
proposed muscle selection scheme. In order to verify the validity
of the proposed method, the exhaustive method (EX) was
compared. This method searched for optimal muscle subsets
based on the classification accuracy, which was a time-consuming
way. The result of nine muscles (ALL) was also presented to
quantify the loss of information caused by muscle selection.
In the figure, the average accuracy of MA (93.15% of LSTM)
was a little lower than that of nine muscles (93.59% of LSTM),
which meant that the excluded muscles contained some effective

TABLE 1 | Effects of nine muscles on different phase patterns.

Muscle Muscle effects on different gait phases

IC FF HO TO

RF 1 0.49 0.25 0.29

VM 1 0.35 0.27 0.33

VL 1 0.54 0.56 0.53

TA 0.81 0.18 0.21 1

SL 0.21 0.94 1 0.21

ST 0.74 0.24 0.23 1

BF 1 0.88 0.96 0.87

GM 0.16 0.61 1 0.16

GL 0.44 0.78 1 0.18

FIGURE 6 | The classification results of gait phases: (A) The results of the different muscle sets, where MA represents the proposed muscle selection scheme, EX

represents the exhaustive method and ALL represents all the nine muscles; (B) The representative results of the three classifiers.
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FIGURE 7 | The classification results of the optimal muscle subsets based on

different muscle numbers. * indicates a statistically significant difference

(one-way ANOVA, P < 0.05).

information, but no statistically significant difference was found
(P > 0.05). In addition, the accuracy of MA was almost the same
as that of EX (93.29% of LSTM, P > 0.05). When comparing the
muscle subsets obtained by MA and EX, we discovered that the
muscle subsets of six subjects were the same, while those of the
other four were a little different, largely due to the error caused
by muscle palpation and sensor location.

As shown in Figure 6B, the error mostly occurred in the
transition of the phases, largely due to the ambiguity of the phase
boundaries. As shown in the figure, the average classification
accuracy of LSTM (93.15%) was significantly higher than that
of SVM (88.63%) and LDA (85.69%). The same inference was
also given when comparing the phase boundaries deduced by the
classifiers. Thus, LSTM was implemented as the classifier in the
following experiments.

Figure 7 shows the classification results of the optimal
muscle subsets based on different muscle numbers. The result
of five muscles was based on the muscle selection scheme,
while the results of other muscle numbers were based on the
exhaustive method. From the figure, a phenomenon could be
found that the average accuracy of nine muscles (93.59%) was
lower than that of eight muscles (94.02%) and seven muscles
(93.98%), which was largely due to the muscle redundancy.
In addition, the result of five muscles (93.15%) was not
significantly different from that of nine muscles (P > 0.05),
while that of four muscles was the opposite (P < 0.05). It
meant that the selected muscle subset contained the minimum
number of muscles while retaining the classification accuracy as
much as possible.

Figure 8 depicts the representative results of the angle
predictor based on different data inputs. In the figure, Angle Only
represent the inputs of one-channel current angles, while EMG
and Phase-based represents those of five-channel sEMG, one-
channel phases and one-channel current angles. As SVR is not

able to extract features from sEMG, the feature set of Muscle

Subset Selection section was implemented. As shown in the
figure, the proposed LSTM-based predictor outperformed SVR
in both Angle Only and EMG and Phase-based conditions.

In Figure 9, the results of different data inputs were evaluated
by the three metrics, where EMG-based represents the inputs of
five-channel sEMG and one-channel current angles. As shown
in the figure, the predicted angles of LSTM were significantly
better than those of SVR (RMSE, 1.89◦ versus 6.51◦; NRMSE,
20.07 versus 5.83%; R-value, 0.97 versus 0.41). For LSTM, it is
shown that the results of EMG and Phase-based outperformed
those of EMG-based, and a significant difference was found in
the comparison of the results (P < 0.05). Thus, the data stream of
sEMG and phases, and LSTM-based predictor were implemented
in the following experiments.

The effects of exoskeletons on phases have been quantified in
Figure 10, where wo to w Exo represents that the model was
trained in wo Exo (without exoskeleton) condition and tested
in w Exo (with exoskeleton) condition. When the classifier was
trained and tested in a single condition, the accuracy is quite high
and stable, exhibiting that the muscle recruitment pattern of w
Exo is as stationary as that of wo Exo. However, when the training
and testing sets came from different conditions, the accuracy
declined significantly. The most influenced phases were the IC
(92.63–56.61%) and HO (93.91–77.12%), which corresponded
to the difference in phase duration. A possible reason for this
significant decline is that the alteredmuscle function significantly
affects the distribution of sEMG, which have been reported in the
related studies (Sylos-Labini et al., 2014; Li et al., 2019).

As shown in Figure 11, the results of angle prediction also
supported the above view. In order to control the number of
variables, the input phases of the predictor were the labels. Similar
to the phase classifier, the angle predictor performed quite well
in the single condition, but the accuracy declined significantly
when the training and testing set came from different conditions
(RMSE, 1.89◦-5.68◦; NRMSE, 5.83–17.52%; R-value, 0.97–0.84).

In order to investigate the difference in muscle function
in the two conditions and pursue a potential solution to the
decline of accuracy, we adopted the fine-tuning method to
update the classifier. Each time, 1min w Exo data was added
to update the model, which had already been trained by wo
Exo data. The rest of the w Exo data was regarded as the
testing set. As shown in Figure 12, the accuracies of phase
IC and HO significantly increased (IC, 55.61–79.81%; HO,
77.12–87.13%) when the model was updated by 1-min data.
In addition, the accuracy gradually stabilized when 4-min data
was added, and the accuracy was roughly the same as that in
the single w Exo condition (IC, 92.87 versus 92.63%; FF, 93.45
versus 93.91%).

The results of fine-tuning-based angle prediction are shown in
Figure 13. The accuracy was also significantly increased when 1-
min data was added (RMSE, 5.68◦-3.05◦; NRMSE, 17.41–9.33%;
R-value, 0.84–0.90), and gradually stabilized when 2-min data
was added. Although the performance was not as good as that of
only w Exo condition (RMSE, 2.52◦ versus 1.89◦; NRMSE, 7.51
versus 5.83%; R-value, 0.95 versus 0.97), it was accurate enough
to perform the ahead-of-time angle prediction.
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FIGURE 8 | The representative results of different ankle angle predictors.

FIGURE 9 | Comparison of different angle predictors based on two evaluation metrics. * indicates a statistically significant difference (one-way ANOVA, P < 0.05).

FIGURE 10 | The duration and phase classification results involving the exoskeleton.
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FIGURE 11 | The prediction results involving the exoskeleton.

DISCUSSION

As noted in the study, we proposed a novel sEMG and phase-
based angle predictor and compared the contributions akin to
ours. Through the muscle selection scheme, we reduced the
number of muscles from nine to five, and the changes have little
effect on the accuracy. The proposed method, which combined
phase recognition and ankle angle prediction, significantly
outperformed the related methods. In addition, through the fine-
tuning scheme, the feasibility of the method was also verified
in the exoskeleton condition, which effectively counteracted the
signal distribution changes caused by exoskeleton assistance.

For data dimension reduction tasks, related studies either
directly projected the data to the lower-dimensional space
or selected the features that would best discriminate various
movements via source estimates (Chu et al., 2007; Naik et al.,
2018). Based on evaluating the muscle effects in each gait phase,
we both reduced the dimension of data and the number of
sensors. In addition, a surprising result is shown in Figure 7,
exhibiting that the accuracy of nine muscles is slightly lower than
that of eight and seven muscles. It indicated that some muscles
might be not beneficial or even adverse to phase classification.
In general, a viewpoint can be summarized that for phase
classification, it is preferable to construct a muscle set with the
activation of the muscles that are discriminative in different
phases, rather than add as many muscles as possible to allow the
classifiers to search for a complete muscle-phase relationship.

Various studies have been proposed for motion-decoding
tasks, such as the discrete locomotion and gait phase recognition
(Godiyal et al., 2018a,b), or continuous kinematic and dynamic
estimation (Lloyd and Besier, 2003; Yi et al., 2018). However,
the control of an exoskeleton can be enhanced if information
in the future is available. Recently, Tanghe et al. proposed
an IMU-based kinematics predictor, which was oriented to
exoskeletons (Tanghe et al., 2020). Compared with their work,
we leveraged the prior knowledge of the gait phase and EMD for

FIGURE 12 | The change of classification accuracy when more data of w Exo

was added to update the fine-tuning-based classifier.

kinematics prediction. In addition, transfer learning can be easily
applied to the proposed data-driven method, especially when
data distribution changes due to the intervention of exoskeletons.
As shown in Figure 8, the results of sEMG and phase-based
were significantly better than those of angle-based. The possible
reason is twofold. Firstly, the EMD property of sEMG provides
the ahead-of-time information for the prediction of the incoming
ankle angles, which has been extracted by the deep LSTM-
based feature extractor. Secondly, the joint training process both
optimize the feature extractor and angle predictor, and reinforces
the correlation between sEMG signals, phases, and ankle angles.
In addition, the effect of phase priori for angle prediction was
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FIGURE 13 | The change of prediction performance when more data of w Exo was added to update the fine-tuning-based predictor.

also tested. The results shown in Figure 9 suggested that besides
sEMG, the gait phase also provided the prior knowledge for angle
prediction, thus further improved the prediction accuracy.

In this study, we investigated and quantified how the
exoskeleton affected the sEMG-based motion decoding methods.
As shown in Figures 10, 11, the results significantly declined
when the training and testing data came from different
conditions. The interference of the exoskeleton was considered to
be the main reason for this phenomenon. First, the exoskeleton
disturbed the walking patterns, which was shown in Figure 10A

and was also reported in Tanghe et al. (2020). Second, the
exoskeleton altered the muscle recruitment patterns, exhibiting
that the muscles were not restricted to the fixed synergistic
patterns. They will selectively modulate the activity given the
external interference, instead (Steele et al., 2017).

In order to seek a potential solution to this problem, the
fine-tuning scheme was implemented to update the model. As
shown in Figures 12, 13, when adding 1-min w Exo data into
the training set, the performance of the phase classifier and angle
predictor significantly increased. This phenomenon suggested
that a correlation might exist between the altered muscle synergy
and the original one, thus enabling the fine-tuning of the model
with a small size of data. In addition, the performance of the
models that were updated through 4-min data was close to that of
the models based on whole data of the trials with the exoskeleton,
which validated the feasibility of the proposed scheme.

Despite the LSTM-based angle predictor achieved good
performance in ahead-of-time ankle angle prediction,
there is still room to improve the validity of the method.
Since the phases were inputs of the angle predictor, the
error caused by phase misclassification would affect the
performance of angle prediction. Therefore, the proper post-
processing procedure is beneficial to reduce the occurrence
of the accumulated error. In addition, even though the fine-
tuning scheme was validated to be efficient for the accuracy
decline of the model caused by exoskeleton interference,
the need for data of trials with the exoskeleton is still
inconvenient. The adaption of motion-decoding methods
from normal walking to exoskeleton-involved walking
would be an important pointer for future research, which

necessitates a larger dataset with sufficient subjects and
more investigation of the effects of the exoskeleton on
muscle functions.

CONCLUSION

In this study, we proposed a novel ankle angle predictor, which
presented the prediction of kinematics. First of all, a reduced set
of muscles was selected by the proposedmuscle selection scheme,
which was meant to reduce the data dimension in the muscle
level. Secondly, An LSTM-based phase classifier was designed to
assign the sEMG to four phases. Finally, with the aid of sEMG and
phases, the proposed angle predictor presents the ahead-of-time
prediction based on the measured ankle angles.

In order to investigate the perturbance of the exoskeleton
to the proposed method, the method was trained on a dataset
for normal walking and tested on a dataset for walking with
an exoskeleton. From the result, we showed that the method is
effective for both phase classification and angle prediction on
the training set, while the accuracy significantly declined on the
testing set. In order to compensate for the decline of accuracy,
a fine-tuning scheme was implemented. After the model update
manipulation, the accuracy of phase classification and angle
prediction on the testing set had significantly increased and close
to that on the training set.

The method enabled the quantitative compensation for the
time delay of the exoskeletons, which offers opportunities
to achieve a more accurate and smooth control system. In
addition, the study enabled us to comprehend the inherent
limitations for the applications of the motion-decoding method
to the exoskeletons. Being cognizant of these factors, our
future work objective is to explore the physiological mechanism
of human-exoskeleton interaction and seek for a solution to
allow the exoskeletons to adapt to a new subject without the
pretraining procedure.
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Depression is a mental disorder that threatens the health and normal life of people.

Hence, it is essential to provide an effective way to detect depression. However,

research on depression detection mainly focuses on utilizing different parallel features

from audio, video, and text for performance enhancement regardless of making full

usage of the inherent information from speech. To focus on more emotionally salient

regions of depression speech, in this research, we propose a multi-head time-dimension

attention-based long short-term memory (LSTM) model. We first extract frame-level

features to store the original temporal relationship of a speech sequence and then

analyze their difference between speeches of depression and those of health status.

Then, we study the performance of various features and use a modified feature set

as the input of the LSTM layer. Instead of using the output of the traditional LSTM,

multi-head time-dimension attention is employed to obtain more key time information

related to depression detection by projecting the output into different subspaces. The

experimental results show the proposed model leads to improvements of 2.3 and

10.3% over the LSTM model on the Distress Analysis Interview Corpus-Wizard of Oz

(DAIC-WOZ) and the Multi-modal Open Dataset for Mental-disorder Analysis (MODMA)

corpus, respectively.

Keywords: depression, LSTM, multi-head attention, frame-level feature, deep learning

1. INTRODUCTION

Depression is a prevalent mental disorder, affecting millions of human beings all over the world
(Organization, 2017). Depression not only makes patients bear psychological pain, pessimism and,
self-accusation but also leads to a high possibility of disability and death (Hawton et al., 2013). It can
bring a severe burden on individuals and families. Moreover, the particularity of mental disorders
makes them difficult to diagnose. Most people with depression do not seek medical advice or even
ignore it. Its diagnosis mainly relies on the self-report of patient or explicit severe mental disorder
symptoms (Hamilton, 1960; Zung, 1965). There are also other evaluations, such as the 9–item
Patient Health Questionnaire (PHQ–9) (Kroenke and Spitzer, 2002), the PHQ–8 (Kroenke et al.,
2009), and so on. Influenced by subjective factors, such methods have some limitations. Therefore,
providing an effective and objective method, as an auxiliary standard, for detecting depression, is
of vital significance.

In recent years, myriad models have been proposed for automatic depression detection.
Senoussaoui et al. (2014) showed that an i-vector-based representation of short-term acoustic
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features, which contains 20 static Mel Frequency Cepstral
Coefficients (MFCC) and 40 dynamic MFCC coefficients,
is effective for depression classification based on different
regression models. Yang et al. (2017) proposed a Deep
Convolutional Neural Network (DCNN) with the text, video, and
audio descriptors for detecting depression. Rodrigues Makiuchi
et al. (2019) proposed a multimodal fusion of speech and
linguistic representations for depression detection. By parallel
employing the textual, audio, and visual models, the acquired
features compose the input features of the full connection layer.
Jan et al. (2017) proposed a Convolutional Neural Network
(CNN) architecture for automatic depression prediction.
Various frame-level features were extracted to obtain distinctive
expression information. Yin et al. (2019) proposed a Hierarchical
Bidirectional LSTM with text, video, and audio features for
depression prediction. Li et al. (2019a) employed CNN for mild
depression recognition based on electroencephalography. We
observe that most of the proposed models (Senoussaoui et al.,
2014; Jan et al., 2017; Yang et al., 2017; Rodrigues Makiuchi et al.,
2019; Yin et al., 2019) rely on multimodal calculation, instead of
focusing on the internal relation of the speech signal. We believe
that making full use of the emotional information at all times is
the key to provide an effective model for depression classification.

Therefore, to emphasize the key information of speech signals,
an improved attention-based LSTM model is proposed for
automatic depression detection in this research. First, we apply
frame-level features for LSTM. The frame-level features keep
the inherent emotional information of the speech sequences.
Moreover, its variable length is suitable for LSTM. Second, we
apply multi-head time-dimension attention for LSTM output to
utilize the critical inherent information. Besides, the multi-head
attention helps linearly project the LSTM output into different
subspaces for various context vectors with reduced dimensions.
To indicate the model efficiency, we evaluate the proposed model
on the DAIC-WOZ and MODMA corpora.

The rest of the study is organized as follows. Section
2 describes related studies. Section 3 Analysis introduces
the frame-level features and the selection. The proposed
attention-based LSTM model is introduced in section 4. The
databases and experiment results are provided in section 5.
Section 6 discusses the experiment results. Section 7 concludes
this study.

2. RELATED WORK

2.1. Deep Learning Models
For depression detecting, the machine learning algorithms were
initially utilized, such as support vector machine (SVM) (Long
et al., 2017; Jiang et al., 2018) and Gaussian mixture model
(GMM) (Jiang et al., 2018). In recent years, deep neural networks
have been widely used for detecting depression (Jan et al., 2017;
Yang et al., 2017; Li et al., 2019a; Rodrigues Makiuchi et al.,
2019; Yin et al., 2019). Previous studies such as Yang et al.
(2017) and Jan et al. (2017) employed CNN as the classification
model with multiple features for depression prediction. Making
full use of the multimodality features is the key success of
their models. Yin et al. (2019) used a Hierarchical Bidirectional

LSTMnetwork for the processed sequence information to predict
depression. Besides utilizing multimodality features, their work
focused on extracting time sequence information to inform
prediction. Various methods are developed for the classification
of speech emotions (Tiwari et al., 2020; Abbaschian et al.,
2021). In addition, studies by (Li et al., 2019b; Xie et al.,
2019; Zhao et al., 2019) has proved that the LSTM network
is effective for processing sequential signals. Since the existing
studies lack exploring the inherent relationships of the speech
signals, we proposed a multi-head time-dimension attention
LSTMmodel for depression classification. The proposed method
is utilized for emphasizing the information of emotional
salient regions to boost the classification performance for
depression detection.

2.2. Attention Mechanism
Recently, the attention mechanism has achieved great success
in computer vision. Xiao et al. (2015) applied visual attention
to deep neural network for fine-grained classification tasks.
Zhao et al. (2017) proposed a diversified visual attention
network for object classification. The core idea is that the
attention of a person depicts different priorities for various
parts of an image. Inspired by such a strategy, the attention
mechanism is introduced into speech emotion recognition.
Mirsamadi et al. (2017) proposed local attention using recurrent
neural networks for speech emotion recognition. Xie et al.
(2019) used both time and feature dimension attention
mechanism to achieve better performance for speech emotion
recognition. Li et al. (2019b) explored the effectiveness of the
self-attention mechanisms and multitask learning for speech
emotion recognition. Specifically, previous studies by Mirsamadi
et al. (2017) and Xie et al. (2019) have mainly focused on
calculating different attention weightings for different parts of
speech waveforms.

With the widely use of attention mechanism, a multi-head
attention scheme has been proposed Vaswani et al. (2017) and
introduced to many areas. Jiang et al. (2019) used Bidirectional

TABLE 1 | Frame-level speech features.

Acoustic features Description

F0 Pitch frequency

Jitter The average absolute difference between the

consecutive periods

Shimmer The average absolute difference between the

interpolated peak amplitudes of consecutive periods

Loudness The loudness and delta regression of loudness

MFCC MFCC and delta regression of MFCC

Pcm_Mag Mel spectral

Lpc Linear predictive coding coefficients

LspFreq Line spectral pair frequency

voiceProb The voicing probability

harmonicERMS Harmonic component root mean square energy

noiseERMS Noise component root mean square energy

HNR Log harmonics-to-noise ratio

Frontiers in Neurorobotics | www.frontiersin.org 2 August 2021 | Volume 15 | Article 68403720

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhao et al. Attention LSTM for Depression Detection

Encoder Representations from Transformers (BERT) as the
encoder for unsupervised pre training. Lian et al. (2019)
proposed a multi-head attention framework, fusing the context,
the emotional information of speech and speakers, to reach
better performance for speech emotion classification. The earlier
literatures (Mirsamadi et al., 2017; Lian et al., 2019; Li et al.,
2019b; Xie et al., 2019; Abbaschian et al., 2021) indicate that
the attention mechanism is effective for mining the inherent
emotional information from speech. Hence, it is suitable for
the study to apply such an attention mechanism for depression
speech detection.

3. ACOUSTIC FEATURES ANALYSIS

The depression prediction with respect to speech comprises
speech processing and classification methods based on the
extracted features. The performance rate of a classifier largely
relies on the type of extracted features. Many hand–crafted
features have been discovered and used for improving prediction
performances. These include prosodic features (Yang et al.,

2017), spectral features (Senoussaoui et al., 2014; Yang et al.,
2017; Rodrigues Makiuchi et al., 2019; Yin et al., 2019), and
energy related features (Yang et al., 2017), e.g., Previous studies
indicate that speech emotions have an inherent relationship
with depression detection. In this study, we evaluate the widely
used ComParE openSMILE features (Schuller et al., 2016;
Jassim et al., 2017) and adopt some speech features as acoustic
descriptors for depression detection. Table 1 describes the frame-
level speech features.

To evaluate and visualize the impact of features on detection,
samples from DAIC-WOZ and MODMA corpora are taken for
comparison. For each feature, we calculate the mean value of
speech segments and sort them in ascending order. Outliers cause
an excessive gradient. To identify the effectiveness of features
for prediction, we take speech samples from DAIC-WOZ and
MODMA corpora and calculate the mean value of the features
over timeframes. Figures 1, 2 exhibit the mean values of four
features. The x-axis represents the sample numbers and the y-
axis represents the amplitude. They show that the HNR feature
has the largest distinction among the four features. For voiceProb,
it has many overlaps for samples on DAIC-WOZ corpus, which

FIGURE 1 | Feature (voiceProb and harmonticERMS) comparison. (A,B) are features mean values on the Distress Analysis Interview Corpus - Wizard of Oz

(DAIC-WOZ) corpus, while (C,D) are features mean values on the MODMA corpus.
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FIGURE 2 | Feature (noiseERMS and HNR) comparison. (A,B) are feature mean values on the DAIC-WOZ corpus, while (C,D) are feature mean values on the

MODMA corpus.

means that it may not be effective for depression as a single
feature. The same situation is observed on harmonticERMS and
noiseERMS on the DAIC-WOZ database.

Furthermore, we conduct cluster analysis on DAIC-WOZ and
MODMA corpora respectively. The mean values of the features
over timeframes are calculated as before. The distributions of
samples under different feature combinations are shown in
Figure 3. The cluster results reveal the differences between the
depression and normal samples. In Figures 3A,C, most of the
depression samples tend to be lower on harmonicERMS and
higher on MFCC, while the distributions of the two types of
samples are roughly the same in terms of pcm_loudness_sma_de,
which is consistent with the previous results. The second
combination is voiceProb, noiseERMS, and the delta regression
of MFCC. According to the previous analysis, there is significant
overlap on voiceProb and noiseERMS on the DAIC-WOZ
corpus. However, it can be seen from Figures 3B,D that there are
also two distinct cluster centers despite more overlapping parts
compared to Figures 3A,C both on DAIC-WOZ and MODMA
corpora. This phenomenon indicates that a combination of
two or more features can improve the ability to distinguish

depression. It also demonstrates the effectiveness of the frame-
level features in the identification of depression. Finding an
effective model to expand the gap between depression and
normal samples is right way to go.

4. MULTI-HEAD ATTENTION-BASED LSTM

The attention mechanism has been introduced to many areas
successfully (Xiao et al., 2015; Mirsamadi et al., 2017; Vaswani
et al., 2017; Zhao et al., 2017; Jiang et al., 2019; Lian et al., 2019;
Xie et al., 2019). The main idea of the attention mechanism is to
paymore attention to a certain weight distinction. In the previous
study, Xie et al. (2019) studied the effectiveness of frame-level
speech features, which include temporal information as well as
feature-level information. The final representations multiplied by
the attention layer helps model to improve the performance. In
this study, for mining the multiple representations with more
emotional information, we introduce the multi-head attention
mechanism to depression detection and further develop the
attention-based LSTMmodel.
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FIGURE 3 | Cluster comparisons. (A,B) are clustering results on the DAIC-WOZ corpus, while (C,D) are clustering results on the MODMA corpus.

4.1. LSTM Model
Hochreiter and Schmidhuber (1997) first proposed LSTM. Gers
et al. (2000) added the forgetting gate for LSTM and proved its
effectiveness. In an LSTM cell, the forgetting gate is used for
discarding the useless information of the previous moment and
updating the cell state. The previously hidden layer output and
the current moment input are used in the updating algorithm.
Multiple structures have been proposed for improving the LSTM
performance, e.g., the forgetting gate (Gers et al., 2000) and
peepholes (Gers and Schmidhuber, 2000). In the previous work,
Xie et al. (2019) proposed an attention gate for LSTM to reduce
the number of training calculations. The experiments indicate
that the attention gate can help improve the effectiveness of

LSTM model training. Hence, in the study, we use the modified
LSTM (Xie et al., 2019) as the baseline.

4.2. Multi-Head Attention
Vaswani et al. (2017) first proposed the multi-head attention
scheme. By taking an attention layer as a function, which maps a
query and a set of key-value pairs to the output, their study found
that it is beneficial to employmulti-head attention for the queries,
values, and keys. By linearly projecting the context vectors into
different subspaces, the multi-head attention layer computes the
hidden information, which shows better performance than that
of single-head attention. Inspired by Vaswani et al. (2017), we
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calculate the output by weighted values, which are computed by
queries and the corresponding keys.

Xie et al. (2019) has presented the time-dimension calculation
for attention weighting:

st = softmax
(

olast × (oall ×Wt)
H
)

, olast ∈ RB,1,Z (1)

ot = st × oall, oall ∈ RB,T,Z , st ∈ RB,1,T (2)

where st donates the attention score of the time dimension, olast
represents the last time output and oall is the all-time output. B
represents the batch size, and T represents the number of time
steps, while Z represents the feature dimension. The parameter 1
represents the last time step.H represents the transpose operator,
and Wt represents the parameter matrix, while ot donates the
output of the time-dimension attention layer.

Formulas 1 and 2 are the single-head attention calculation.We
only use two types of LSTMoutput for attention. The output of all

time is essential because it contains all LSTM output information.
The reason to choose the last time step output is that it includes
the most redundant information among all time steps. For multi-
head time-dimension attention computing, we also choose the
two types of output to calculate the queries, keys, and values:

Ki = Wi,k × oall + bi,k,Ki ∈ RB,T,
Z
n ,Wi,k ∈ RZ,

Z
n , bi,k ∈ R

Z
n (3)

Vi = Wi,v × oall + bi,v,Vi ∈ RB,T,
Z
n ,Wi,v ∈ RZ,

Z
n , bi,v ∈ R

Z
n (4)

Qi = Wi,q × olast + bi,q,Qi ∈ RB,1
Z
n ,Wi,q ∈ RZ,

Z
n , bi,q ∈ R

Z
n (5)

where K,V ,Q donate the value, key, and query. n is the number of
attention heads and bmeans bias.

The multi-head attention scores and context vectors are
calculated as follows:

si = softmax
(

Qi × KH
i

)

, si ∈ RB,1,T (6)

FIGURE 4 | The structure of the proposed multi-head attention-based long short-term memory (LSTM) model.
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contexti = si × Vi, contexti ∈ RB,1,
Z
n (7)

CV = Concat ([context1, . . . , contextn]) ,CV ∈ RB,1,Z (8)

where si represents the multi-head time-dimension attention
score and contexti represents the reduced-dimension context
vectors from each subspace. The overall structure of multi-head
time-dimension attention is described in Figure 4. Next, the
context vector is put into the full connection layer. The output
is then sent to the softmax layer for final prediction.

5. EXPERIMENT AND RESULTS

5.1. Datasets
In this research, we evaluate the proposed model on DAIC-WOZ
(Gratch et al., 2014) and MODMA (Cai et al., 2020) corpora.
The DAIC data corpus contains clinical interviews designed
to support the diagnosis of psychological distress conditions.
The sampling rate is 16,000 Hz. The numbers of depression
and healthy control samples randomly selected are 42 and 47,
respectively. Then, we divide them into segments, which makes
feature extraction more convenient. We obtain 2,156 depression
segments and 2,245 healthy control segments from the selected
samples. To ensure the effectiveness of the fragments, abnormal
segments, which are <3 s with litter information or larger than
20 s, are discarded in this research. Finally, we utilize 3,401 and
1,000 audio segments, which are randomly sorted by the software,
as the train set and the test set, respectively.

The database contains 52 samples on the MODMA database,
with 23 depression and 29 healthy control samples. We also
divide them into sentences. Compared with samples in the
DAIC-WOZ corpus, samples of MODMA contains much more
information with an average duration of over 10 s. We also
discard the abnormal segments, which aremuch larger than other
segments. At last, we several 1,321 segments. We randomly split
them into two different sets (train set and test set). The train set
includes 971 segments while the test set contains 350 segments.
Both of the corpora are grouped into two categories (depression
and healthy control).

5.2. Multi-Head Time-Dimension LSTM
We utilize the attention mechanism to capture the key
information from the depression speech. In the previous study,
Xie et al. (2019) used single-head attention for emphasizing the
reverent key information related to the task. In this study, we
proposed multi-head time-dimension attention for depression
detection. To prove its validity, we conduct experiments for
comparison with LSTM models. We use three types of LSTM
models and evaluate them on DAIC-WOZ and MODMA
corpora. The models are: (1) LSTM. (2) LSTM+T, which is time-
dimension attention LSTM (Xie et al., 2019). (3) LSTM+nT,
which is the proposed multi-head time-dimension LSTM, and
n represents the head number. The proposed models, including
the LSTM and multi-head time-dimension-based LSTM, are
composed of two LSTM layers. The number of hidden units for
the first LSTM layer is 512 and that of the second LSTM layer
is 256. The size of the fully connected layer is [128, 12]. The

learning rate is set as 0.0001, and the batch size is 64. We extract
the acoustic features mentioned above by openSMILE Eyben
et al. (2010) and use them as the input of the proposed model.
Instead of pretraining on other databases, we train the models
directly on DAIC-WOZ and MODMA corpora. Table 2 shows
the experimental results.

As described in Table 2, the LSTM+T model has better
results than those of the LSTM model, while LSTM+nT models

TABLE 2 | Unweighted average recalls (UARs) of different models on DAIC-WOZ

and MODMA corpora.

Model UAR

DAIC-WOZ(%) MODMA(%)

LSTM 91.2 88.6

LSTM+T 92.1 96.6

LSTM+2T 92.9 98.9

LSTM+4T 93.5 98.3

LSTM+8T 92.5 98.0

Bold values represent the best results in the comparison.

FIGURE 5 | Result tendency of different models on the DAIC-WOZ and

MODMA corpora.
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FIGURE 6 | Stability of models on test sets.

acquire the best performance on both DAIC-WOZ andMODMA
corpora. We choose unweighted average recall (UAR) to evaluate
the effectiveness of the two feature sets for different databases.
UAR is defined as: UAR= 1

N

∑N
i=1

ci
ni
, where ci represents the

correctly classified sample number of i category, ni represents
sample number of i category and N represents categories. The
time-dimension attention shows its reliability for depression
detection, by improving 0.9 and 8.0% on DAIC-WOZ and
MODMA corpora, respectively. The LSTM+nT models achieve
the best UARs (93.5% on DAIC-WOZ and 98.9% on MODMA)
in the experiments. The model UAR is 93.5% on DAIC-WOZ
with 4-head and it is up to 98.9% on MODMA with 2-head.

Figure 5 shows the tendency of the models. Zero-head
means LSTM while 1-head denotes the LSTM+T model. For
experiments on DAIC-WOZ, we observe that the multi-head
time-dimension attention models tend increasing first and
decreasing subsequently. We believe it is normal for multi-head
attention calculation to illustrate such a performance behavior.
The reason is that the increase of head number cannot always
help the model obtain better performance. There must be a
boundary for it. Since the tendency proves the boundary, we
believe the multi-head time-dimension attention LSTM has
achieved the best UAR with 4-head. For the MODMA corpus,
we can see that attention is effective. All models with attention
have a high UAR of over 95%. The phenomenon could be
caused by distinguishing features on the MODMA corpus, which

can be proved on the feature comparison of the frame-level
speech feature section. The 2-head time dimension achieves the
best result of 98.9%. If we put the single-head attention into
consideration, it still tends increasing first and then decreasing.
The experiment results prove the effectiveness of the proposed
multi-head time-dimension attention.

Figure 6 shows the stability of models on the test set. The
y-axis represents accuracy (UAR), and the x-axis represents the
models. We exhibit the results from LSTM to the best model on
theDAIC-WOZ andMODMAcorpora. The blue rectangular box
height indicates the stability of the model, and the lines inside
the box are the stable UAR. On the test set, we could obtain
thousands of results when the model converges. The stability in
this study means most test results are inside the box range. The
stable UARmeans themedian of results. The two lines outside the
boxmean the highest and lowest UARs. Circles represent outliers.
As shown in the figures, the LSTM+nT model achieves higher
stable UAR than those of LSTM and LSTM+T models on both
test corpora. The overall performance indicates the LSTM+nT
models are more reliable than other models.

For a better understanding of the depression patterns in
speech signals, we draw the speech waveform as well as its
corresponding attention score, which is shown in Figure 7. We
experiment on one audio clip, using the 4-head attention LSTM
model, and visualize one of the attention scores. What can be
seen from Figure 7 is that the multi-head attention mechanism
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FIGURE 7 | Visualization of speech waveform and corresponding attention score. (A) Speech waveform. (B) Attention score in the time dimension.

endows diverse weights for the salient regions. For example, the
attention score changes with the fluctuation of the audio clip and
achieves a peak around 2 s. Moreover, with the amplification of
the emotional part, we can pay more attention to the negative
regions, which is beneficial for depression detection from speech.

6. DISCUSSION

In this study, we extract frame-level features to detect depression.
In the previous study, Long et al. (2017) and Jiang et al.

(2018) studied the speech features using different classifiers. The
developments of Long et al. (2017) and Jiang et al. (2018) prove
the effectiveness of MFCC, loudness, and F0 features. Therefore,
we adopt those widely used features as parts of this study. To
evaluate the effectiveness of features, we conduct a comparison
between depression and normal samples to visualize the impact
of features on detection. The results indicate that enhancing
the emotional region of speech is a fundamental part of better
depression classification.

Table 2 exhibits the results of LSTM and multi-head time-
dimension. We could easily find that LSTM obtains the worst
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TABLE 3 | Comparison between long short-term memory (LSTM) and the proposed model.

DAIC-WOZ MODMA

Model Precision(%) Recall(%) F1 score Precision Recall F1 score

LSTM 89.7 91.6 0.907 94.6 78.7 0.859

LSTM+T 91.6 91.4 0.915 95.5 96.8 0.962

LSTM+2T 91.2 93.8 0.925 99.3 98.1 0.987

LSTM+4T 92.4 93.8 0.931 96.9 99.4 0.981

LSTM+8T 93.0 90.8 0.919 98.1 97.4 0.977

Zhao et al. (2019) 91.2 92.0 0.916 92.9 93.5 0.932

Li et al. (2019b) 82.2 89.1 0.855 93.5 90.1 0.918

Bold values represent the best results in the comparison.

results on both DAIC-WOZ and MODMA corpora. The best
LSTM+nT model improves by 2.3 and 10.3% on DAIC-WOZ
and MODMA, respectively. It indicates that the multi-head
attention mechanism helps the model to emphasize the key time
information of sequence. Besides that, we find that the best results
of the multi-head time-dimension attention-based LSTM model
achieve the 1.4 and 2.3% improvement than those of a single-
head attention-based LSTM model on the DAIC-WOZ and
MODMA corpora, respectively. This phenomenon proves that
linear projections have a significant influence on the attention
mechanism. Linearly projecting the LSTM output into different
subspaces and then computing the reduced-dimension context
vectors of various subspaces provides more key information than
single-head attention.

Table 3 exhibits the results of LSTM and the proposed
model. Besides, we also make comparisons with other models
mentioned above (Li et al., 2019b; Zhao et al., 2019). We
follow the model structure and keep all layer parameters the
same to reimplement the models for depression detection.
Audios are processed into spectrogram as input features. We
use precision, recall, and F1 score as standards for comparison.
TP represents the correctly classified number of samples for
positive cases. FP represents the incorrectly classified number
of samples that are misclassified as positive cases and FN
represents the incorrectly classified number of samples that
are misclassified as negative. The calculation of precision and
recall is defined as: precision=TP/(TP+FP), recall=TP/(TP+FN),
F1=2(precision×recall)/(precision+recall). We use the F1 score
as the harmonic mean of precision and recall. The proposed
models exceed the LSTM model and the deeper models, 2-
D CNN LSTM (Zhao et al., 2019) and CNN LSTM with
self-attention mechanism (Li et al., 2019b), in all standards.
For the DAIC-WOZ, database, the LSTM+4T model achieves
the best F1 score of 0.931 while the LSTM and LSTM+T
only achieve 0.907 and 0.915, respectively. For the MODMA
database, the LSTM+2T model shows the best performance. It
has improvements of 4.7 and 19.4% on precision and recall,
respectively, in comparison with those of the LSTM model. The
F1 score also increases from 0.859 to 0.987, which indicates
the proposed model is effective for depression prediction. Based
on the experimental results on the DAIC-WOZ and MODMA

corpora, the proposed strategy shows a significant impact on
depression detection.

7. CONCLUSION

In this research, an improved attention-based LSTM network
is proposed for depression detection. We first study the
speech features for depression detection on the DAIC-
WOZ and MODMA corpora. By applying the multi-head
time-dimension attention weighting, the proposed model
emphasizes the key temporal information. We evaluate
the proposed model on both DAIC-WOZ and MODMA
corpora. It achieves great superiority over other models for
depression classification.

In further directions, first, we may explore other effective
speech features for depression detection. Moreover, experiments
will be conducted in the future to indicate the efficiency of the
modified LSTMmodel for other time-series predictions.
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Facial expression recognition (FER) in uncontrolled environment is challenging due

to various un-constrained conditions. Although existing deep learning-based FER

approaches have been quite promising in recognizing frontal faces, they still struggle

to accurately identify the facial expressions on the faces that are partly occluded in

unconstrained scenarios. To mitigate this issue, we propose a transformer-based FER

method (TFE) that is capable of adaptatively focusing on the most important and

unoccluded facial regions. TFE is based on the multi-head self-attention mechanism

that can flexibly attend to a sequence of image patches to encode the critical cues

for FER. Compared with traditional transformer, the novelty of TFE is two-fold: (i) To

effectively select the discriminative facial regions, we integrate all the attention weights

in various transformer layers into an attention map to guide the network to perceive the

important facial regions. (ii) Given an input occluded facial image, we use a decoder

to reconstruct the corresponding non-occluded face. Thus, TFE is capable of inferring

the occluded regions to better recognize the facial expressions. We evaluate the

proposed TFE on the two prevalent in-the-wild facial expression datasets (AffectNet

and RAF-DB) and the their modifications with artificial occlusions. Experimental results

show that TFE improves the recognition accuracy on both the non-occluded faces

and occluded faces. Compared with other state-of-the-art FE methods, TFE obtains

consistent improvements. Visualization results show TFE is capable of automatically

focusing on the discriminative and non-occluded facial regions for robust FER.

Keywords: affective computing, facial expression recognition, occlusion, transformer, deep learning

1. INTRODUCTION

Facial expressions are the most natural way for humans to express emotions. Facial expression
recognition (FER) has received significant interest from psychologists and computer scientists
as it facilitates a number of practical applications, such as human-computer interaction, pain
estimation, and affect analysis. Although current FER systems have obtained promising accuracy
when recognizing facial images captured in controlled scenarios, these FER systems usually suffer
from considerable performance degradation when recognizing expressions in the wild conditions.
To fill the gap between the FER accuracy on the controlled faces and in-the-wild faces, researchers
start to collect large-scale facial expression databases in uncontrolled environment (Li et al., 2017;
Mollahosseini et al., 2017). Despite the usage of face images in the uncontrolled scenario, FER is still
challenging due to the existence of facial occlusions. It is non-trivial to solve the occlusion problem
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because facial occlusions are various and abundant. These facial
occlusions may appear in many forms, such as breathing masks,
hands, drinks, fruits, and other objects that might appear in front
of the human faces in our daily life. The facial occlusions may
block any other part of the face, and the variability of occlusions
would inevitably induce the decreased FER performance.

Previous studies usually handled FER under occlusion with
sub-region-based features (Kotsia et al., 2008; Li et al., 2018a,b;
Wang et al., 2020b), e.g., Kotsia et al. (2008) presented a
detailed analysis on occluded FER and conclude that FER will
suffer from more decreased performance with occluded mouth
than the occluded eyes. With the popularity of the data-driven
convolutional neural network (CNN) techniques, a number
of recent efforts on FER have been made on the collection
of large-scale facial expression databases and exploit CNN to
enhance the performance of FER. Li et al. (2018a) proposed to
decompose facial regions in the convolutional feature maps with
the manually defined facial landmarks and fused the local and
global facial representations via attention mechanism. However,
the recent CNN-based FER methods lack the ability to learn
global interactions and relations between distant facial parts.
These methods are not capable of flexibly attending to distinctive
facial regions for precise FER under occlusions.

Inspired by the observation (Naseer et al., 2021) that
transformers are robust to occlusions, perturbations, and domain
shifts, we propose a Transformer Architecture for Facial
Expression Recognition (TFE) under occlusions. Currently,
vision transformers (Dosovitskiy et al., 2020; Li et al., 2021)
have demonstrated impressive performance across numerous
machine vision tasks. These models are based on multi-head
self-attention mechanisms that can flexibly attend to a sequence
of image patches to encode contextual cues. The self-attention
in the transformers has been shown to effectively learn global
interactions and relations between distant object parts. A number
of following studies on downstream tasks such as object detection
(Carion et al., 2020), segmentation (Jin et al., 2021), and video
processing (Girdhar et al., 2019; Fang et al., 2020) have verified
the feasibility of the transformers. Given the content-dependent
long-range interaction modeling capabilities, transformers can
flexibly adjust their receptive field to cope with occlusions in data
and enhance the discriminability of the representations.

Intuitively, human perceives the facial expressions via several
critical facial regions, e.g., eyes, eyebrows, and corners of the
mouth. If some facial patches are occluded, human may judge
the expression according to the other highly informative regions.
To mimic the way that human recognizes the facial expression,
we propose a region selection unit (RS-Unit) that is capable
of focusing on the important facial regions. To be specific,
RS-Unit selects the discriminative facial regions and removes
the redundant or occluded facial parts. We then combine the
global classification token with the selected part tokens as
the facial expression representation. With the proposed RS-
Unit, TFE is able to adaptively perceive the distinctive and
unobstructed regions in facial images. To further enhance the
discriminability of the representation, we exploit an auxiliary
decoder to reconstruct the corresponding non-occluded face.
Thus, TFE is capable of inferring the occluded facial regions via

the unoccluded parts to better recognize the facial expressions.
Figure 1 illustrates the attention map of TFE on some facial
images. It is clear that TFE is capable of focusing on the critical
and unoccluded facial parts for robust FER.More visual examples
and explanations can be seen in section 4.2.1.

The contributions of this study can be summarized
as follows:

1. We propose a transformer architecture to recognize facial
expressions (TFE) from partially occluded faces. TFE consists
of a region selection unit (RS-Unit) that automatically
perceives and selects the critical facial regions for robust
FER. TFE is deployed to focus on the most important and
unoccluded facial regions.

2. To further enhance the discriminability of the facial
expression representation, TFE contains an auxiliary image
decoder to reconstruct the corresponding non-occluded face.
The image decoder is merely exploited during the training
process and incorporates no extra computation burden at
inference time.

3. Qualitative experimental results show the benefits and the
advantages of the proposed TFE over other state-of-the-art
approaches on two prevalent in-the-wild facial expression
databases. Visualization results additionally show that TFE is
superior in perceiving the informative facial regions.

2. RELATED WORK

We discuss the previous literatures that are related to
our proposed TFE, i.e., FER with occlusions and the
vision transformer.

2.1. Methods for FEE Under Occlusion
For FER tasks, occlusion is one of the inevitable challenges in
real-world scenarios. We just classify previous FER methods
into two classes: handcrafted features-based methods and deep
learning-based approaches.

Early FER under occlusion methods typically encode
handcrafted features from face samples, and then learn classifiers
based on the encoded features (Rudovic et al., 2012; Zhang et al.,
2014). Liu et al. (2013) proposed a novel FER method to mitigate
the partial occlusion issue via fusing Gabor multi-orientation
representations and local Gabor binary pattern histogram
sequence. Cotter (2010) introduced to use sparse representation
for FER. Especially, Kotsia et al. (2008) analyzed how partial
occlusions affect FER performance and found that FER suffers
more from mouth occlusion than the equivalent eyes occlusion.

Over the recent years, Convolution Neural Network (CNN)
has shown exemplary performance on many computer vision
tasks (Schroff et al., 2015; Krizhevsky et al., 2017; Li et al.,
2020). The promising learning ability of deep CNN can be
attributed to the use of hierarchical feature extraction stages
that can adaptively learn the features from the data in an end-
to-end fashion. There are many CNN-based FER works (Levi
and Hassner, 2015; Ding et al., 2017; Meng et al., 2017; Zeng
et al., 2018; Zhang et al., 2018; Li et al., 2019; Jiang et al., 2020).
For FER under occlusion, Li et al. (2018a) proposed a CNN
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FIGURE 1 | Attention maps of several facial images with real (A–D in top row) or synthesized (E–H in bottom row) occlusions. Our proposed TFE is capable of

perceiving the important facial regions for robust FER. A deep red means high attention. Better viewed in color and zoom in.

with attention mechanism (ACNN) to perceive facial expressions
from unoccluded or partially occluded faces. ACNN crops facial
patches from the area of important facial features, e.g., mouth,
eyes, nose, and so on. The selected multiple facial patches are
encoded as a weighed representation via a PG-Unit. The PG-
Unit calculates the weight of each facial patch according to its
obstructed-ness via an attention net. Based on this work, Wang
et al. (2020b) proposed to randomly crop relative large facial
patches instead of small fixed facial parts and refine the attention
weights by a region bias loss function and relation-attention
module. Ding et al. (2020) proposed an occlusion-adaptive deep
network with a landmark-assisted attention branch network to
perceive and drop the corrupted local features. Pan et al. (2019)
introduced to train two CNNs from non-occluded facial images
and occluded faces, respectively. Subsequently, they constrain
the distribution of the encoded facial representations from two
CNNs to be close via adversarial learning.

Our proposed TFE differs from previous CNN-basedmethods
in two ways. One, TFE does not rely on facial landmarks for
regional feature extraction. It is because the facial landmarks
may show considerable misalignments under severe occlusions.
Under this condition, the encoded facial parts are not part-
aligned or semanticmeaningful. Two, TFE is a transformer-based
and the self-attention mechanism in the transformer that can
flexibly attend to a sequence of image patches to encode the
contextual cues. TFE consists of a region selection unit (RS-Unit)
that automatically perceives and selects the critical facial regions
for robust FER. TFE is potentially to obtain higher FER accuracy
on both non-occluded and occluded faces. We will verify this in
section 4.

2.2. Vision Transformer
Transformer models have largely facilitated research in machine
translation and natural language processing (NLP) (Waswani
et al., 2017). Transformer models have become the outstanding
standard for NLP tasks. Themain idea of the original transformer
is to calculate the self-attention by comparing a representation to
all other representations in the input sequence. In detail, features
are first encoded to obtain memory [including value (V) and key
(K)] and query (Q) embedding by linear projections. The product

of the query Q with keys K is used as the attention weights for
value V . A position embedding is also exploited and added to
these representations to introduce the positional information in
such a non-convolutional paradigm. Transformers are especially
good at modeling long-range dependencies between elements
of a sequence.

Inspired by the success of the transformer models, many
recent studies try to use transformers in computer vision
applications (Dosovitskiy et al., 2020; Li et al., 2021). Among
them, Dosovitskiy et al. (2020) applied a pure transformer
encoder for image classification. To obtain the input token
representations, they crop the input image into 16 × 16 small
patches and linearly map the patches to the input dimension
of the encoder. Since then, ViTs are gaining rapid interest
in various computer vision tasks because they offer a self-
attention-based noval mechanism that can effectively capture
long-range dependencies. Touvron et al. (2021) showed that
ViT models can achieve competitive accuracy on ImageNet
with stronger data augmentation and more regularization.
Subsequently, transformer models are applied to other popular
tasks such as object detection (Carion et al., 2020), segmentation
(Jin et al., 2021), and video processing (Girdhar et al., 2019; Fang
et al., 2020). In this study, we extend ViT to FER under occlusion
and show its effectiveness.

3. METHOD

Figure 2 illustrates the main idea of the proposed TFE. Given
an input face image, TFE encodes its convolutional feature maps
via a commonly used backbone network such as ResNet-18 (He
et al., 2016). Then, TFE encodes the robust facial expression
representation via the vision transformer and the proposed
RS-Unit. During the training stage, the encoded convolutional
feature maps are decoded to reconstruct the unoccluded facial
image. Below, we present the details of each of them.

3.1. Network Architecture
Following ViT (Dosovitskiy et al., 2020), we first preprocess the
input image into a sequence of flattened image patches. However,
the conventional split approach merely cuts the images into
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FIGURE 2 | Main idea of the proposed Transformer Architecture for facial expression recognition (TFE). TFE perceives the informative facial expression representation

via the vision transformer and the proposed RS-Unit. In the right part, TFE uses an auxiliary decoder to reconstruct the unoccluded faces.

overlapping or non-overlapping patches, which harms the local
neighboring structures and shows substandard optimizability
(Xiao et al., 2021). Inspired by Xiao et al. (2021) that exploits a few
number of stacked 3×3 convolutions for image sequentialization,
we adopt the popular ResNet-based backbone (He et al., 2016) to
encode the input facial image I. A typical ResNet usually has four
stages (Li et al., 2021), and we use the output of the S-th stage as
the encoded feature maps X ∈ R

H×W×C feature maps; thus, we
get a total of N = H × W image tokens, each token Xi with a
feature dimension of C. AsH equalsW, here we use P = H = W
for brevity. In our proposed TFE, the image tokens have the
spatial size 1× 1, the input sequence is obtained by: (i) flattening
the spatial dimensions of the feature map and (ii) projecting the
flattend tokens to the target transformer dimension.

We map the flattend image token Xi into a latent D-
dimensional feature space via a learnable fully connected neural

layer. With the sliced image token Xi ∈ R
P2×D, 1 ≤ i ≤ N, a

trainable position embedding is plused to the token embeddings
to retain positional information as follows:

Z0 = [Xclass;X1E;X2E;XNE]+ Epos, (1)

Zl
′
= MSA(LN(Zl−1))+ Zl−1, l ∈ 1, 2, · · · , L (2)

Zl = MLP(LN(Zl
′))+ Z

′

l , l ∈ 1, 2, · · · , L, (3)

where N means the number of the image tokens, E is the
token embedding projection, and Epos means the position

embedding. Lmeans the number of layers of the multi-head self-
attention (MSA) and the multi-layer perceptron (MLP) blocks.
The transformer encoder includes alternating layers of multi-
head self-attention (MSA) and multilayer perceptron (MLP)
blocks. We also add a layernorm (LN) layer before every block
and residual connections after every block. Besides, the MLP
consists of two fully connected neural layers with a GELU
non-linearity. Xclass is a classification token that consists of an
embedding attached to the sequence of embedded patches. After
L transformer layers, a classification head is attached to Z0

L. We
implemented the classification with a MLP that consists of one
hidden layer at the training and testing phase.

3.2. Vision Transformer With RS-Unit
One of the most important problems in FER under occlusion
is to precisely perceive the discriminative facial regions that
represent subtle facial deformations caused by facial expressions.
To this end, we proposed a RS-Unit to automatically select the
critical facial parts for robust FER under occlusions. Different
with previous methods that use facial landmarks for facial region
decomposition (Li et al., 2018a; Ding et al., 2020; Wang et al.,
2020b), RS-Unit does not need auxiliary annotation and merely
adopts the pre-computed multi-head attention information.

Suppose the model consists of M self-attention heads and the
hidden features, outputs of the last transformer layer are denoted
as ZL = [Z0

L,Z
1
L,Z

2
L, · · · ,Z

N
L ]. To better utilize the attention
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FIGURE 3 | Examples of the synthesized occluded images. The occluders are various in shape, color, and facial positions. (A) Anger, (B) neutral, (C) happy, and (D)

sad.

information, the input to the final classification layer is changed.
In detail, the raw attention weights are obtained via recursive
matrix multiplication in all the layers:

atotal =

L
∑

l=0

al. (4)

As atotal spots how information propagates from the preceding
transformer layer to the features in the later transformer layers,
atotal should be a promising choice to capture the important local
facial regions for FER (He et al., 2021). Thus, we can choose the
positions of the maximum values with regard to the M different
attention heads in atotal. We then choose the indexes of the
maximum values A1,A2, · · · ,AM w.r.t the M different attention
heads in atotal. These indexes are exploited as positions for RS-
Unit to select the corresponding tokens inZL. At last, we combine
the classification token with the selected tokens along as the
final representation:

Zselect = Concat[Z0
L,Z

A1
L ,ZA2

L , · · · ,ZAM
L ]. (5)

By utilizing the entire input sequence with tokens tightly related
to discriminative facial regions and combine the classification
token as input to the classification layer, our proposed TFE is
capable of utilizing the global facial information but also the
local facial regions that contain critical subtle facial deformations
induced by facial expressions. Thus, our proposed TFE is
expected to perceive the discriminative facial regions for robust
FER under occlusions.

3.3. Image Reconstruction
Since the facial expression is a subtle deformation of faces that
can be inferred from multiple facial regions, it is beneficial to
explicitly infer the occluded facial parts from the unoccluded
regions. In the image inpainting process, the model is tasked to
precisely perceive the fine-grained facial action units to infer their
co-occurrence (Li et al., 2018a).

Inspired by this, we propose to reconstruct the facial image
with an auxiliary decoder. To this end, we synthesize the
occluded face images by manually collecting abundant masks
for generating the occluders. We show some randomly selected
occluded images in Figure 3. With the occluded faces Iocc
and the corresponding original images Iori, we are capable of
reconstructing the images as follows,

Lrec = ‖Iori − Dec(Enc(Iocc))‖1, (6)

where Enc means the convolutional feature extraction operation
shown in Figure 2, Dec denotes the image decoding process.

3.4. Overall Objective
Transformer-based FER method is trained in an end-to-end
fashion by minimizing the integration of the FER loss and the
image reconstruction loss in Equation (6). We integrate the two
goals and obtain the full objective function:

Ltotal = Lcls + λLrec, (7)

where hyper-parameter λ controls the importance of the image
reconstruction term.

4. EXPERIMENT

4.1. Implementation Details
We adopted ResNet-18 (He et al., 2016) as the backbone network
for TFE due to its elegant structure and excellent performance in
image classification. We used the output of the third stage as the
convolutional feature maps: X ∈ R

14×14×1024. Thus, the token
size is N = 14 × 14. We set L = 4, D = 768, and M = 12. We
initialized the backbone of TFE with the pre-trained model based
on ImageNet dataset. We mixed all the facial expression datasets
with their modifications with artificial facial occlusions with the
ratio of 1:1. TFE was optimized via a batch-based stochastic
gradient descent manner. We actually set the batch size as 128
and the base learning rate as 0.001. The weight decay was set as
0.0005 and the momentum was set as 0.9. The optimal setting for
the loss weight between the FER and image reconstruction term
was set as 1 : 1 by grid search.

4.1.1. Datasets
We evaluated the methods on two facial expression datasets
[RAF-DB (Li et al., 2017) and AffectNet (Mollahosseini et al.,
2017)]. We additionally evaluate our proposed TFE on FED-
RO dataset (Li et al., 2018a). RAF-DB consists of about 30,000
facial images annotated with compound or basic expressions by
40 trained human. We merely used the images with seven basic
expressions. We obtained totally 12,271 images for training data
and 3,068 images for evaluation.AffectNet is currently the largest
dataset with annotated facial expressions. AffectNet consists of
approximately 400,000 images manually annotated. We merely
utilized the images with six basic and neutral expressions, We
obtained about 280,000 images for training and 3,500 images
for evaluation. FED-RO (Li et al., 2018a) is a facial expression
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TABLE 1 | Test set accuracy on RAF-DB dataset.

Method Neutral Anger Disgust Fear Happy Sad Surprise ACC (Overall/Ave)

AlexNet (Li et al., 2017) 60.15 58.64 21.87 39.19 86.16 60.88 62.31 −/55.60

VGG16 (Li et al., 2017) 59.88 68.52 27.50 35.13 85.32 64.85 66.32 80.96/58.22

DLP-CNN (Li et al., 2017) 80.29 71.60 52.15 62.16 92.83 80.13 81.16 80.89/74.20

gACNN (Li et al., 2018a) 84.30 78.42 53.11 55.39 93.17 82.88 86.27 85.07/76.22

TAE (Li et al., 2020) 62.80 58.01 45.03 58.12 76.03 45.85 64.44 81.68/58.61

TFE (Ours) 86.76 79.01 64.38 66.22 95.61 87.03 90.27 88.49/81.33

TABLE 2 | Validation set accuracy on AffectNet dataset.

Method Neutral Anger Disgust Fear Happy Sad Surprise ACC (Overall/Ave)

AlexNet (Mollahosseini et al., 2017)* − − − − − − − 47.00/47.00

RAN-ResNet18 (Wang et al., 2020b)* − − − − − − − 52.90/52.90

VGG16 (Simonyan and Zisserman, 2014) 89.61 53.42 20.61 32.03 90.03 35.01 37.22 51.13/51.13

FAB-Net (Wiles et al., 2018) 38.64 30.62 48.42 32.14 82.25 35.61 51.42 45.59/45.59

TAE (Li et al., 2020) 44.42 38.63 46.84 40.39 78.01 40.81 54.41 49.07/49.07

gACNN (Li et al., 2018a) 73.42 66.18 32.59 46.22 93.81 55.82 43.43 58.78/58.78

OADN (Ding et al., 2020) − − − − − − − 61.90/61.90

SCN (Wang et al., 2020a) − − − − − − − 60.23/60.23

TFE (Ours) 76.03 68.09 46.83 47.03 94.12 57.32 53.90 63.33/63.33

The bold values denotes the best results. *Means the values are reported in the original papers.

database with real-world occlusions. Each face has real occlusions
in uncontrolled environment. There are totally 400 images in
FED-RO dataset annotated with seven expressions. We train the
proposed TFE on the joint training data of AffectNet and RAF
dataset, following the protocol suggested in Li et al. (2018a).

Following (Li et al., 2018a), we manually collected
approximately 4 k images as masks for generating the occluders.
These occluders were discovered and saved from search engine
via more than 50 keywords, such as hair, hat, book, beer, apple,
cabinet, computer, orange, etc. The height H and widthW of the
occluders S satisfy H ∈ [96, 128] and W ∈ [96, 128]. Figure 3
shows some occluded faces. It is evident that the artificial
occluded facial images are diverse in occlusion patterns.

4.1.2. Evaluation Metric
We report FER performance on both the occluded and non-
occluded images of all the datasets. We used the overall and the
overall and average accuracy on seven facial expression categories
(i.e., six prototypical plus neutral categories) as a performance
metric. Besides, we also report some confusion matrixes on RAF-
DB dataset to show the discrepancies between the expressions.

4.2. FER Experimental Results
We compare the proposed TFE with the state-of-the-art FER
methods, including DLP-CNN (Li et al., 2017), gACNN (Li et al.,
2018a), FAB-Net (Wiles et al., 2018), TAE (Li et al., 2020),
OADN (Ding et al., 2020), and SCN (Wang et al., 2020a). The
comparison results are shown in Tables 1–3.

Table 1 shows the FER results of our method and previous
studies on RAF-DB dataset. Our TFE achieves 81.33% in

TABLE 3 | Test set accuracy on FED-RO dataset.

Method ResNet18 RAN DLP-CNN gACNN OADN TFE

ACC (AVE) 64.25 67.98 60.31 66.50 68.11 70.60

The bold values denotes the best results.

the average accuracy on seven facial expression categories.
Compared with DLP-CNN (Li et al., 2017), TFE obtains 7.13%
improvements in the average accuracy. Compared with the
strongest competing method in the same setting gACNN (Li
et al., 2018a), TFE surpasses it by 5.61%. The benefits of TFE over
other methods can be explained in two-fold. First, TFE explicitly
utilizes transformer layers in the network structure. The self-
attention in the transformers has been shown to effectively learn
local to global interactions and relations between distant facial
parts. Besides, the RS-Unit on top of the transformer layers in
our proposed TFE helps perceive the critical facial regions. Thus,
TFE is capable of spotting the local subtle facial deformations
induced by facial expressions. Second, TFE explicitly reconstructs
the unoccluded facial images with an auxiliary decoder, which
facilitates the backbone CNN in TFE to learn to infer the
occluded facial parts via the important facial regions.

Table 2 shows the comparisons of our TFE and other state-of-
the-art FER methods on AffectNet dataset. TFE achieves 63.33%
in the average accuracy on seven facial expression categories.
Compared with RAN-ResNet-18 (Wang et al., 2020b) that use
multiple crops of facial images as input and learns adaptive
weights for each input image, TFE obtains 10.43% improvements
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TABLE 4 | Ablation study on RAF-DB dataset.

Method Neutral Anger Disgust Fear Happy Sad Surprise ACC (Overall/Ave)

Original test set of RAF-DB dataset

TFE (w/o D, w/o T ) 83.97 79.01 60.63 60.81 94.51 85.56 86.32 85.91 /79.69

TFE (w/ D, w/o T ) 85.15 83.33 65.63 64.86 95.78 87.03 84.80 86.20/80.94

TFE 86.76 79.01 64.38 66.22 95.61 87.03 90.27 88.64/81.33

Synthesized occluded test set of RAF-DB dataset

TFE (w/o D, w/o T ) 79.41 76.54 53.12 54.05 91.90 81.80 80.85 83.68/73.95

TFE (w/ D, w/o T ) 81.47 75.93 55.62 59.46 93.42 84.73 80.55 84.00/75.88

TFE 83.53 72.84 60.00 67.57 93.50 82.85 85.41 85.12/77.96

The bold values denotes the best results.

FIGURE 4 | Confusion matrixes of TFE. (A) Denotes the confusion matrix for the original test set of RAF-DB. (B) Is the confusion matrix for the synthesized occluded

test set of RAF-DB. It is clear that TFE shows decreased performance on most of the facial expression categories with the manually occluders in the facial images.

in the average accuracy. Compared with the self-supervised
methods FAB-Net (Wiles et al., 2018) and TAE (Li et al., 2020),
TFE shows its success in almost each facial expression category.
Among the state-of-the-art FER methods, gACNN (Li et al.,
2018a) and OADN (Ding et al., 2020) both exploit the 24 facial
landmarks for facial region decomposition and learn the path-
specific representation to better capture the local details of the
input facial image. However, their FER performance still lags
behind our proposed TFE, as illustrated in Table 2. This is
because the transformer layers in TFE naturally encode the patch-
specific face representation by tokenizing the input convolutional
feature maps. TFE does not rely on facial landmarks to extract
the local representations and avoids the negative influence
induced by the misalignments of the facial landmarks. We
additionally show the FER performance comparison on FED-RO
dataset in Table 3. FED-RO dataset is the first facial expression
dataset with real occlusions. TFE achieves 70.60% in the average
accuracy and outperforms other compared methods with no
exception. In summary, the experimental results in Tables 1–
3 verify the superiority of the proposed TFE for robust facial
expression recognition.

4.2.1. Ablation Study
Both the transformer layers and auxiliary decoder help TFE
obtain improvements on FER. We performed a quantitative
study of these two parts in order to better understand the benefits
of TFE.

We show the FER performance of TFE without auxiliary
image reconstruction decoder and without the transformer layers
(as well as RS-Unit) [TFE (w/o D, w/o T)], and TFE with the
auxiliary image reconstruction decoder but without transformer
layers and RS-Unit [TFE (w/ D, w/o T)] in Table 4. It is clear
that TFE (w/o D, w/o T) shows decreased FER performance
on both the original and synthesized occluded face images.
With the auxiliary image reconstruction decoder, TFE (w/ D,
w/o T) illustrates improved FER performance in many facial
expression categories. The comparisons between TFE (w/o T, w/o
D) and TFE (w/ T, w/o D) demonstrate the effectiveness of the
auxiliary image reconstruction decoder. With the transformer
layers and the auxiliary image decoder, TFE obtains the best FER
performance. As illustrated in Table 4, TFE shows its benefits
in Neutral, Fear, Surprise and obtains comparable accuracy in
Disgust, Happy, Sad.
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FIGURE 5 | Attention maps of several facial images with occlusions. For each input face image, the first, second, and third column, respectively, show the attention

map of TFE (w/o D, w/o T ), TFE (w/ D, w/o T ), and TFE. Our proposed TFE is capable of perceiving the important facial regions for robust FER. A deep red denotes

low attention. A deep red means high attention. Better viewed in color and zoom in.

We additionally show the confusion matrixes of our
proposed TFE on both the original and synthesized occluded
test set of RAF-DB dataset in Figure 4. It is clear that
TFE shows degraded performance on most of the facial
expression categories when the facial images are occluded
in Figure 4B. Besides, TFE shows the lowest FER accuracy
on Disgust category and highest accuracy on Happpy
category. Easily confused expression categories are disgust
and sad, fear and surprise, and fear and sad. Our above
observations are consistent with the conclusions in Li et al.
(2018a).

We show the attention maps of the TFE and its variants
in Figure 5. For each input face, the first, second, and third
column, respectively, show the attention map of TFE (w/o
D, w/o T), TFE (w/ D, w/o T), and our proposed TFE. It
is evident that TFE is capable of shifting attention from the
occluded facial patches to other unobstructed regions. As a
comparison, TFE (w/o T, w/o D) and TFE (w/ D, w/o T)
are not capable of precisely focusing on the important and
unobstructed facial parts. Taking facial images labeled with
Happy in the fourth row for example, TFE perceives the eyes
and the corner or the mouth precisely, irrespective of the facial

occlusions. The visualization results show the benefits of the
proposed RS-Unit and the auxiliary decoder for robust FER
under occlusions.

5. CONCLUSIONS

In this study, we propose a transformer-based FER method
(TFE) that is capable of adaptatively focusing on the most
important and unoccluded facial regions. Considering that
facial expression is represented by several specific facial
parts, we propose a RS-Unit to automatically perceive the
critical facial parts so as to explicitly perceive the important
facial regions for robust FER. To better perceive the fine-
grained facial deformations and infer the co-occurrence of
different facial action units, TFE consists of an auxiliary
decoder to reconstruct the facial image. Quantitative and
qualitative experiments have verified the feasibility of our
proposed TFE. TFE also outperforms other state-of-the-art
FER approaches. Ablation and visualization analyses show
TFE is capable of shifting attention from the occluded facial
regions to other important ones. Currently, TFE exploits
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the fixed patch size as the input to the transformer layer
while larger facial patch size might be a better choice for
the heavily occluded facial images. We will explore this
in the future work. Besides, we will also explore how to
reduce the computation overhead and make TFE suit for
mobile deployment.
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Automatic speech emotion recognition (SER) is a challenging component of

human-computer interaction (HCI). Existing literaturesmainly focus on evaluating the SER

performance by means of training and testing on a single corpus with a single language

setting. However, in many practical applications, there are great differences between the

training corpus and testing corpus. Due to the diversity of different speech emotional

corpus or languages, most previous SER methods do not perform well when applied in

real-world cross-corpus or cross-language scenarios. Inspired by the powerful feature

learning ability of recently-emerged deep learning techniques, various advanced deep

learning models have increasingly been adopted for cross-corpus SER. This paper aims

to provide an up-to-date and comprehensive survey of cross-corpus SER, especially

for various deep learning techniques associated with supervised, unsupervised and

semi-supervised learning in this area. In addition, this paper also highlights different

challenges and opportunities on cross-corpus SER tasks, and points out its future trends.

Keywords: speech emotion recognition, cross-corpus, deep learning, feature learning, survey

INTRODUCTION

Emotion recognition is an important direction in psychology, biology, and computer science, and
has recently received extensive attention from the engineering research field. One of the starting
points for emotion recognition is to assist in designing more humane human-computer interaction
(HCI) methods, since emotion plays a key role in the fields of HCI, artificial intelligence (Cowie
et al., 2001; Ramakrishnan and El Emary, 2013; Feng and Chaspari, 2020).

Traditional HCI is mainly carried out through keyboard, mouse, screen, etc. It only pursues
convenience and accuracy, and cannot understand and adapt to people’s emotions or mood. And
if the computer lacks the ability to understand and express emotions, it is difficult to expect the
computer to have the same intelligence as human beings. Moreover, it is also difficult to expect HCI
to be truly harmonious and natural. Since the communications and exchanges between humans
are natural and emotional, people naturally expect computers to have emotional capabilities in the
procedure of HCI. The purpose of affective computing (Picard, 2010) is to endow computers the
ability to observe, understand, and generate various emotional features similar to humans, and
ultimately enable computers to interact naturally, cordially, and vividly like humans.

Emotion recognition is one of the most basic and important research subjects in
the field of affective computing. Speech signals convey human emotional information
most naturally. At present, speech emotion recognition (SER), which aims to classify
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human emotions from affective speech signals, has become a
hot research topic in the fields of signal processing, pattern
recognition, artificial intelligence, HCI, etc. Studying on SER has
been going on for more than two decades (Schuller, 2018) and
it has been applied to HCI (Cowie et al., 2001; Fragopanagos
and Taylor, 2005), affective robots (Samani and Saadatian, 2012;
Zhang et al., 2013), call-centers (Morrison et al., 2007), e-learning
system (Li et al., 2007), computer games (Yildirim et al., 2011),
depression severity classification (Harati et al., 2018), detection
of autism spectrum disorder (ASD) (Lin et al., 2020), and so on.

During the past two decades, tremendous efforts have been
made to focus on SER. Several survey related to SER can be
found in El Ayadi et al. (2011), Anagnostopoulos et al. (2015),
and Akçay and Oguz (2020). Note that the majority of existing
SER systems are trained and evaluated on a single corpus and a
single language setting. However, in many practical applications,
there are great differences between training corpus and testing
corpus. For example, the training and testing corpora come from
two (or more) different languages, cultures, distribution modes,
data scales, and so on. These differences across corpora result in
significant idiosyncratic variations impeding the generalization
of current SER techniques, thereby yielding an active research
subject called cross-corpus SER in the field of SER.

Generally, in a basic cross-corpus SER system there are two
crucial steps: emotion classifier and domain-invariant feature
extraction. In the following, we will introduce these two steps of
cross-corpus SER in brief.

As for emotion classifier, various traditional machine learning
methods can be utilized for cross-corpus SER. The representative
emotion classification methods contain linear discriminant
classifier (LDC) (Banse and Scherer, 1996; Dellaert et al., 1996),
K-Nearest Neighbor (Dellaert et al., 1996), artificial neural
network (ANN) (Nicholson et al., 2000), support vectormachines
(SVM) (Kwon et al., 2003), hidden Markov models (HMM)
(Nwe et al., 2003), Gaussian mixture models (GMM) (Ververidis
and Kotropoulos, 2005), sparse representation classification
(SRC) (Zhao and Zhang, 2015) and so on. Nevertheless, each
classifier has its own advantages and disadvantages. The classifier
combination method integrating the advantages of multiple
classifiers (Morrison et al., 2007; Albornoz et al., 2011) began to
draw researchers’ attention.

Domain-invariant feature extraction, which aims to learn
generalized feature representations of affective speech that are
invariant across corpora, is another critical step in a cross-
corpus SER system. So far, a variety of domain-invariant feature
extraction methods have been explored for cross-corpus SER.
According to the fact that the used data label information
is whether included or not, existing domain-invariant feature
extraction techniques for cross-corpus SER can be divided into
three categories: supervised learning, semi-supervised learning,
and unsupervised learning. Supervised learning is defined by its
use of labeled sample data. In terms of labeled inputs and outputs,
the used algorithm could measure its performance over time.
In contrast, unsupervised learning aims to discover the inherent
structure of unlabeled sample data without the demand for
human intervention. Semi-supervised learning characterizes a
type of the learning algorithms which try to learn from unlabeled

and labeled sample data, generally supposing that the samples
come from the same or similar distribution.

In the early cross-corpus SER literatures, to alleviate the
problem of corpus-specific discrepancy for generalization,
a variety of supervised, unsupervised, and semi-supervised
techniques have been already developed on the basis of
several typical hand-crafted low-level descriptors (LLDs), such
as prosodic features, voice quality features and spectral
features (Luengo et al., 2010; Zhang and Zhao, 2013),
the INTERSPEECH-2009 emotion challenge (384 parameters)
(Schuller et al., 2009b), the INTERSPEECH-2010 paralinguistic
challenge (1,582 parameters) (Schuller et al., 2010a), the
INTERSPEECH-2013 computational paralingusitics challengE
(ComParE) set (6,373 parameters) (Schuller et al., 2013), the
Geneva minimalistic acoustic parameter set (GeMAPS) (88
parameters) (Eyben et al., 2016), and so on. In particular, after
extracting hand-crafted LLDs, for simply eliminating differences
of cross-corpus acoustic features, corpus-based normalization in
a supervised (Schuller et al., 2010b) or unsupervised manner
(Zhang et al., 2011) was presented. In addition, several more
sophisticated methods were also developed to learn common
feature representations from the extracted hand-crafted LLDs,
by means of supervised-based (Song et al., 2016b) or semi-
supervised based matrix factorization (Luo and Han, 2019),
supervised-based (Mao et al., 2017), or unsupervised-based
domain adaption (Deng et al., 2017), etc. In recent years, the
current state-of-art technique is to employ an adversarial learning
scheme in an unsupervised (Abdelwahab and Busso, 2018)
or semi-supervised (Latif et al., 2020) manner for learning a
domain-invariant acoustic feature representation on cross corpus
SER tasks.

Although the above-mentioned hand-crafted acoustic features
associated with supervised, unsupervised, and semi-supervised
learning approaches can produce good domain-invariant
features for cross-corpus SER, they are still low-level and not
highly discriminative. It is thus desirous to obtain high-level
domain-invariant feature representations for cross-corpus SER.

To achieve high-level domain-invariant feature
representations for cross-corpus SER, the recently-emerged deep
learning (LeCun et al., 2015) methods may present a possible
solution. The representative deep leaning techniques contain
deep belief networks (DBNs) (Hinton and Salakhutdinov, 2006),
convolutional neural networks (CNNs) (Krizhevsky et al.,
2012), recurrent neural networks (RNNs) (Elman, 1990) and
its variant called long short-term memory (LSTM) (Hochreiter
and Schmidhuber, 1997), autoendcoders (AEs) (Ballard,
1987; Schmidhuber, 2015) and so on. So far, deep learning
methods have shown good performance on object detection
and classification (Wu et al., 2020), natural language processing
(Otter et al., 2020), speech signal processing (Purwins et al.,
2019), multimodal emotion recognition (Zhou et al., 2021), and
so on, due to its strong feature learning ability.

Inspired by the lack of summarizing recent advances in
various deep learning techniques for cross-corpus SER, this paper
aims to present an up-to-date and comprehensive survey of
cross-corpus SER, especially for various deep learning techniques
associated with supervised, unsupervised and semi-supervised

Frontiers in Neurorobotics | www.frontiersin.org 2 November 2021 | Volume 15 | Article 78451441

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhang et al. Cross-Corpus Speech Emotion Recognition

learning in this area. In addition, this paper highlights different
challenges and opportunities on cross-corpus SER tasks, and
point out its future trends. To the best of our knowledge, we
are the first attempt to provide such a review for deep cross-
corpus SER.

The organization of this paper is as follows. A review of
speech emotion databases is presented at first. Then, we simply
review supervised, unsupervised, and semi-supervised learning
in details. Next, we review traditional methods for cross-corpus
SER. We show recent advances of the applications of deep
learning techniques incorporated with supervised, unsupervised
and semi-supervised learning for cross-corpus SER. Next, we
give a summary of open challenge and future directions. Finally,
concluding remarks are provided.

SPEECH EMOTION DATABASES

For cross-corpus SER, a variety of speech emotion databases have
been developed. Table 1 presents a brief summary of existing
speech emotion databases. In this section, we describe briefly
these existing speech emotion databases, as described below.

DES
The Danish Emotional Speech (DES) (Engberg et al., 1997)
dataset contains 5,200 audio utterances, simulated by four
professional actors (2 females, 2 males). The simulated utterances
consist of five emotional states: anger, happiness, neutral, sadness,
and surprise. The audio recordings from each actor are composed
of two isolated words, nine sentences and two passages of fluent
speech materials. The whole audio utterances last about 30min
in duration. For a listening test, 20 listeners were employed.

SUSAS
The Speech Under Simulated and Actual Stress (SUSAS) (Hansen
and Bou-Ghazale, 1997) dataset is a speech under stress corpus
including five kinds of stress and feelings. It contains a highly
confused collection of 35 aircraft communication vocabulary
words. The researchers invited 32 speakers (13 females, 19 males)
to produce more than 16,000 utterances. Simulated speech under
stress is composed of ten stress styles such as speaking style, single
tracking task, and Lombard effect domain.

SmartKom
The SmartKom (Steininger et al., 2002) dataset is a multimodal
corpus consisting of Wizard-Of-Oz dialogues in German and
English from 70 subjects (31 males and 39 females). This
dataset includes several audio tracks and two video tracks
(face, side of body). The main purpose of this dataset is to
conduct empirical researches on human-computer interaction in
a variety of tasks and technological settings. This dataset contains
several sessions, each of which has a one-person recording of
about 4.5min. All the collected 3,823 utterances were annotated
with seven emotional states: neutral, joy, anger, helplessness,
contemplation, surprise.

FAU-AIBO
The FAU-AIBO (Batliner et al., 2004) corpus was collected
from the recordings of children interacting with the Aibo pet
robot. This dataset consists of spontaneous German speech. The
children were made to believe that Aibo was reacting to their
orders, while the robot was effectively controlled by a human
operator. This dataset were obtained from 51 children (21 males,
30 females) ranging from 10 to 13 years old. The audio was
recorded by using a DAT recorder (16-bit, 16 kHz). The audio
recording is automatically segmented into “tums” using a 1 s
pause. Five annotators were asked to listen to the tums in
order and label each word individually as neutral (default) or
the other ten categories. For annotation, the majority voting
(MV) was employed. Finally, the utterance number for MV is
4,525, and contains 10 affective states: happy, surprise, stressed,
helplessness, sensitivity, irritation, anger, mother, boredom,
and condemnation.

EMO-DB
The Berlin emotional speech database (EMO-DB) (Burkhardt
et al., 2005), covers seven emotional states: anger, boredom,
disgust, fear, happiness, neutral, and sadness. Verbal contents
come from 10 German (5 males and 5 females) pre-defined
neutral utterances. Ten professional actors were invited to speak
each utterance in all seven emotional states. EMO-DB consists
of approximately 535 sentences from seven emotions. The audio
files were recorded with a sampling rate of 16 kHz and a 16-bit
resolution and mono channel. The duration for all audio files are
average 3 s.

MASC
The Mandarin affective speech corpus (MASC) (Wu et al.,
2006) consists of 68 native speakers (23 women, 45 man) and
five affective states: neutral, anger, pride, panic and sadness.
Each participant reads 5 phrases and 10 sentences for 3 times
for every emotion, thereby yielding 25,636 utterances. These
sentences involves in all the phonemes in Chinese language. The
purpose of this corpus is to investigate the prosody and linguistic
information of affective expressions in Chinese. Additionally,
prosody feature analysis and speaker identification baseline
experiments were also carried out.

eNTERFACE05
The eNTERFACE05 (Martin et al., 2006) corpus is an audio-
visual video database which includes six elicited emotions: anger,
disgust, fear, joy, sadness, and surprise. It is composed of 1,277
audio-visual video samples from 42 participants (8 females)
with 14 different countries. Every participant was demanded
to listen to six consecutive short tales, which were designed to
invoke a particular feeling. Two experts were asked to determine
whether the induced emotional response clearly characterizes the
expected emotion.

SAL
The Belfast Sensitive Artificial Listener (SAL) (Douglas-Cowie
et al., 2007) corpus is a subset of the developed HUMAINE
database. The used SAL subset (Wöllmer et al., 2008) includes
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TABLE 1 | A brief summary of speech emotion databases.

Corpus/References Language Year Categories Size Speakers Recordings Modalities

DES/

(Engberg et al., 1997)

Danish 1997 Neutral, surprise, anger,

happiness, sadness

5,200 4

(2f)

Acted Audio

SUSAS/

(Hansen and Bou-Ghazale,

1997)

English 1997 Four states of speech under stress:

neutral, angry, loud, Lombard

16,000 32

(13f)

Natural Audio

SmartKom/

(Steininger et al., 2002)

German 2002 Neutral, joy, anger, helplessness,

contemplation, surprise

3,823 70

(39f)

Natural Audio

FAU-AIBO/

(Batliner et al., 2004)

German 2004 Anger, bored, emphatic, helpless,

joyful, motherese, neutral

4,525 51

(30f)

Natural Audio

EMO-DB/

(Burkhardt et al., 2005)

German 2005 Anger, boredom, disgust, fear,

happiness, sadness, neutral

535 10

(5f)

Acted Audio

eNTERFACE05/

(Martin et al., 2006)

English 2006 Anger, disgust, fear, happiness,

sadness, surprise

1,277 42

(8f)

Elicited Audiovisual

MASC/

(Wu et al., 2006)

Mandarin 2006 Neutral, anger, pride, panic, sadness 25,636 68

(23f)

acted Audio

SAL/

(Douglas-Cowie et al., 2007)

English 2007 Anger, sadness, happiness, fear, neutral 1,692 4

(2f)

Natural Audiovisual

ABC/

(Schuller et al., 2007)

German 2007 Aggressive, cheer, intoxicated,

nervous, neutral, tire

431 8

(4f)

Elicited audiovisual

CASIA/

(Zhang and Jia, 2008)

Mandarin 2008 Surprise, happiness,

sadness, anger, fear, neutral

9,600 4

(2f)

Acted Audio

VAM/

(Grimm et al., 2008)

German 2008 Dimension emotions

(valence, arousal, dominance)

946 47

(32f)

Natural audiovisual

IEMOCAP/

(Busso et al., 2008)

English 2008 Happiness, anger, sadness,

frustration, neutral

1,150 10

(5f)

Elicited Audiovisual

AVIC/

(Schuller et al., 2009a)

German 2009 Breathing, consent, garbage,

hesitation, laughter

996 21

(10f)

Natural Audiovisual

Polish/

(Staroniewicz and Majewski,

2009)

Polish 2009 Anger, sadness, happiness,

fear, disgust, surprise, neutral

2,351 13

(7f)

Acted audiovisual

IITKGPSEHSC/

(Koolagudi et al., 2011)

Hindi 2011 Happy, sad, angry, sarcastic,

fear, neutral, disgust, surprise

1,200 10

(5f)

Acted Audio

EMOVO/

(Costantini et al., 2014)

Italian 2014 disgust, fear, anger,

joy, surprise, sadness

588 6

(3f)

Acted Audiovisual

SAVEE/

(Jackson and Haq, 2014)

English 2014 Anger, sadness, fear, disgust neutral, joy, surprise 480 4

(-)

Acted Audiovisual

AFEW/

(Dhall et al., 2015)

English 2015 Anger, disgust, fear, joy, neutral, sadness,

surprise

1,645 330

(-)

Natural Audiovisual

BAUM-1/

(Zhalehpour et al., 2016)

Turkish 2016 Happiness, anger, sadness, disgust, fear, surprise,

boredom

1,222 31

(13f)

Natural Audiovisual

MSP-IMPROV/

(Busso et al., 2017)

English 2017 Happiness, anger, sadness, neutral 8,438 12

(6f)

acted Audiovisual

CHEAVD/

(Li et al., 2017)

Mandarin 2017 Anger, anxious, disgust, happiness, neutral,

sadness, surprise, worried

2,852 238

(125f)

Natural Audiovisual

NNIME/

(Chou et al., 2017)

Mandarin 2017 Discrete emotions

(angry, happy, sad, neutral, frustration, surprise) and

dimension emotions

(valence, arousal, dominance)

102 44

(22f)

Acted Multimodal

URDU/

(Latif et al., 2018a)

Urdu 2018 angry, sad, neutral, happy 400 38

(11f)

Natural Audiovisual

RAVDESS/

(Livingstone and Russo,

2018)

English 2018 Calm, happy, sad, angry,

fearful, surprise, disgust

7,356 24(12f) Acted Audiovisual

MSP-PODCAST/

(Lotfian and Busso, 2019)

English 2019 Discrete emotions

(anger, sadness, happiness, surprise, fear, disgust,

contempt and neutral) and

dimension emotions

(valence, arousal, dominance)

2,317 197

(87f)

Natural Audio
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25 recording sessions from 4 speakers (2 men and 2 women).
The average duration of each session is 20min. These audio-
visual recordings in this dataset were collected from natural
man-machine sessions developed by a SAL interaction. Four
annotators were employed to continually mark the real-time
data based on the Feeltrace tool (Cowie et al., 2000). These 25
recording sessions were divided into turns in terms of energy-
based voice activity detection, yielding a total of 1,692 turns.

ABC
The Airplane Behavioral Corpus (ABC) (Schuller et al., 2007)
is an audio-visual emotional database, which is designed for
particular applications to public transportation. In order to elicit
a certain emotion, a script was utilized to make the subject
enter into the context of the guided storyline. The selected
public transportation contains holiday flights with return flights
related to serving of wrong food, tumultuous currents, falling
asleep, talking to neighbors and so on. Eight gender-balanced
participants between the ages of 25–48 years were invited to take
part in the audio recording with the German language. After pre-
segmentation by three experienced male annotators, a total of
11.5 h of video with 431 clips was collected. The mean duration
of all 431 video clips is 8.4 s.

VAM
The VAM (Vera-Am-Mittag) corpus (Grimm et al., 2008)
contains audio-visual transcripts collected from the German
television talk show, which was recorded in unscripted and
spontaneous discussions. This dataset consists of 946 utterances
collected from 47 guests (15 males and 32 females) of talk
show. The discussion themes were related to private problems,
including friendship crises, fatherhood, or happy events. To
annotate speech data, the audio recordings were segmented into
the utterance-level, making each utterance include at least one
phrase. A certain number of human annotators were employed
for labeling data (17 annotators for half of all the data, 6
annotators for the others).

CASIA
The CASIA corpus (Zhang and Jia, 2008), developed by the
institute of Automation, Chinese Academy of Science, consists
of 9,600 audio files in total. This dataset contains six emotional
states: happiness, sadness, anger, surprise, fear, and neutral. Four
professional actors (two males and two females) were asked to
simulate these emotions.

IEMOCAP
The Interactive Emotive Binary Motion Capture Database
(IEMOCAP) (Busso et al., 2008) was developed by the team of
speech analysis and interpretation laboratory (SAIL) from the
University of Southern California (USC). This dataset contains
five sessions lasting around 12 h, and 1,150 utterances in total.
They were collected from 10 professional actors in dyadic
sessions whose faces, heads, and hands were marked in scripted
and natural verbal interaction scenarios. The actors performed
chosen affective scripts and elicited five emotions (happiness,

anger, sadness, frustration, and neutral states) under the designed
imaginary settings.

AVIC
The Audio-Visual interest corpus (AVIC) (Schuller et al.,
2009a) is an audio-visual emotional dataset designed for
commercial applications. In this commercial scenario, the
product demonstrator leads one of 21 subjects (10 women) by
means of an English business presentation. The level of interest
was annotated for each sub-speaker. In addition, the conversation
content and non-verbal vocalization were also annotated in
the AVIC collection. Finally, only 996 phrases with high inter-
annotator agreement were obtained.

Polish
The Polish (Staroniewicz and Majewski, 2009) corpus is a
spontaneous emotional speech dataset with six affective states:
anger, sadness, happiness, fear, disgust, surprise and neutral. This
dataset was recorded by three groups of speakers: professional
actors, amateur actors and amateurs. A total of 2,351 utterances
were recorded in which 1,168 with female and 1,183 with male
voice. The average duration of all utterances was about 1 s. Then,
202 listeners were invited to attend the listening tests, in which 33
of them were musically educated and 27 foreigners did not know
the Polish language.

IITKGP-SEHSC
The Indian Institute of Technology Kharagpur Simulated
Emotional Hindi Speech Corpus (IITKGP-SEHSC) (Koolagudi
et al., 2011) is an affective song and spoken corpus for the Hindi
language. This dataset comprises of 10 participants (5 males, 5
females), each of which speaks 15 utterances in 10 sessions. It
contains 1,200 audio files from 8 emotions: joy, sadness, anger,
sarcasm, fear, neutral, disgust, surprise.

EMOVO
The EMOVO (Costantini et al., 2014) corpus is the first affective
dataset for the Italian language. This dataset was established by
six professional actors who speak 14 sentences to simulate seven
affective states: disgust, fear, anger, joy, surprise sadness, and
neutral. These utterances were recorded with specialized facilities
in the Ugo Bordoni laboratory. This corpus also presents a
subjective verification test based on the emotion-classification of
two sentences conducted by two different groups of 24 listeners.

SAVEE
The Surrey audio-visual expression of emotion (SAVEE) (Jackson
and Haq, 2014) corpus is a multimodal acted affective dataset
with the British English language. It contains a total of 480
utterances with seven different emotions: neutral, happy, sad,
angry, surprise, fear, and disgust. These utterances produced by
four professional male actors. To keep the good quality of the
affective acting, all the recordings in this dataset were verified
by ten different evaluators under audio, visual and audio-visual
condition. The scripts in these recordings were chosen from the
conventional TIMIT corpus (Garofolo et al., 1993).
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AFEW
The Acted Facial Expressions in the Wild (AFEW) is a natural
audio-visual affective video corpus which is provided for emotion
recognition in the wild (EmotiW) challenge. There have been
various recently-developed versions of AFEW datasets (Kossaifi
et al., 2017). One of the popular AFEW datasets is AFEW5.0
(Dhall et al., 2015) collected from 330 speakers in 2015. AFEW5.0
consists of seven affective states: anger, disgust, fear, joy, neutral,
sadness and surprise, evaluated by 3 annotators. AFEW5.0
contains 1,645 utterances in total and is split into three parts: the
training set (723 samples), the validation set (383 samples), and
the testing set (539 samples).

BAUM-1
The BAUM-1 (Zhalehpour et al., 2016) audio-visual corpus is a
spontaneous emotional dataset containing eight emotions (joy,
anger, sadness, disgust, fear, surprise, boredom, and contempt),
and four mental states (unsure, thinking, concentrating, and
bothered). This dataset consists of 1,222 audio-visual samples
from 31 Turkish participants (17 female, 14 males). The average
duration of the whole samples is about 3 s. Five annotators were
invited to label each sample by means of a majority voting.

MSP-IMPROV
The MSP-IMPROV (Busso et al., 2017) acted database is an
audio-visual affective dataset that records the English interaction
of 12 actors (6 males, 6 females) in binary conversations. Each
conversation is manually split into speech turns. It consists of
8,438 emotion sentences over 9 h from four emotions: happiness,
anger, sadness, and neutral. At least 50,000 evaluators were
recruited by using crowdsourcing to annotate these emotional
contents. The audio recording rate was 48 kHz.

CHEAVD
The CASIA Natural Emotion Audiovisual Data (CHEAVD) (Li
et al., 2017) contains 2,852 natural emotional clips with 140min
extracted from 238 speakers (113 males, 125 females). This
dataset is collected from 34 films, 2 television series, and 4 other
television programs. This dataset is divided into three parts: the
training set (1981), validation set (243) and testing set (628).
The average duration of the whole samples is 3.3 s. It consists of
eight emotional categories, such as angry, happy, sad, worried,
anxious, surprise, disgust, and neutral. The sampling rate of
audio files is 41 kHz.

NNIME
The NTHU-NTUA Chinese Interactive Emotion Corpus
(NNIME) (Chou et al., 2017) is a multimodal spontaneous
emotional database, collected from 44 speakers (22 females, 22
males), involved in spontaneous dyadic spoken interactions.
This dataset contains 102 dyadic interaction sessions with
∼11 h of audio-video data. These participants come from the
Department of Drama at National Taiwan University of Arts.
Another 49 annotators were invited to implement a rich set of
emotion annotations on discrete and dimensional annotation
(valence, arousal, dominance). For discrete emotions, there are

six categories: angry, happy, sad, neutral, frustration, surprise.
The sample rate of audio recordings is 44.1 kHz.

URDU
The URDU corpus (Latif et al., 2018a) is an unscripted and
natural emotional spoken dataset with the first URDU language.
It consists of 400 audio samples in four affective states (angry,
happy, sad and neutral). In this dataset, the audio recordings were
collected from the conversations of 38 participants (27 males and
11 females) on the Urdu television talk shows. Four different
annotators were requested to make annotations for all the audio
recordings based on the audio-visual condition.

RAVDESS
The RAVDESS dataset (Livingstone and Russo, 2018) is a
multimodal corpus of affective speech and songs. This dataset
is gender-balanced and comprises 24 specialized actors (12
males, 12 females) who produce speech and song samples in
a neutral North American pronunciation. For affective speech,
it consists of calm, joy, sadness, anger, fear, surprise, and
disgust. For affective songs, it consists of calm, joy, sadness,
anger, fear, surprise, and disgust and fear. Every expression is
generated at two levels of affective intensity with an additional
neutral expression. The final collection of 7,356 recordings was
individually rated for 10 times on these aspects of affective
validity, intensity, and genuineness. For these ratings, 247
untrained research subjects from North America were employed.

MSP-PODCAST
The MSP-PODCAST (Lotfian and Busso, 2019) natural
corpus contains 2,317 utterances collected from 403 podcasts.
These utterances come from 197 speakers’ (110 males, 87
females) spontaneous English speech in the Creative Commons
authorized recording downloaded from the audio sharing
websites. These podcasts are evaluated by using crowdsourcing
to be dimensional emotions (valence, arousal, dominance)
and discrete emotions including anger, sadness, happiness,
surprise, fear, disgust, contempt, and neutral. In total, 278
different workers are invited to evaluate these utterances. Audio
recordings have a sampling rate of 8 kHz.

REVIEW OF SUPERVISED,
UNSUPERVISED, AND SEMI-SUPERVISED
LEARNING

In this section, we will simply review the concept and
typical supervised, unsupervised, and semi-supervised learning
techniques, as described below.

Supervised Learning
Supervised learning usually requires a large number of labeled
samples to carefully train the model for achieving better model
generalization ability (Cunningham et al., 2008). At the same
time, due to the problem of dimension disaster, when processing
high-dimensional data, the number of labeled samples required
to train a good supervisedmodel will further show an exponential
explosion trend. This makes it difficult for traditional supervised
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learning to be applied to some tasks that lack training samples.
Nevertheless, supervised learning methods are usually simpler
than unsupervised learning methods. Therefore, when training a
supervised model, how to reduce the demand for labeled samples
and improve the performance of model learning has become an
important research problem (Alloghani et al., 2020).

Supervised learning can be further grouped into classification
and regression. A classification problem is to deal with categorical
outputs, whereas a regression problem is to process continuous
outputs. The typical supervised learning methods contains ANN,
SVM, HMM, GMM, random forest, Bayesian networks, decision
tree, linear regression, logistic regression, and so on (Kotsiantis
et al., 2007; Sen et al., 2020).

Unsupervised Learning
Unlike supervised learning with labeled data, unsupervised
learning aims to extract inherent feature representations from
unlabeled sample data. Therefore, unsupervised learning mainly
relies on previously learned knowledge to distinguish likely
classes within unlabeled sample data. As a result, unsupervised
learning is very appropriate for feature learning tasks (Alloghani
et al., 2020).

In general, unsupervised learning methods can be divided
into three categories (Usama et al., 2019): hierarchical learning,
data clustering, and dimensionality reduction. Hierarchical
learning aims to learn complicated feature representations from a
hierarchy of multiple linear and non-linear activation operations.
Autoencoders (AEs) (Ballard, 1987; Schmidhuber, 2015) are one
of the earliest unsupervised hierarchical learning algorithms.
Data clustering is a well-known unsupervised learning task that
concentrates on seeking hidden patterns from input unlabeled
sample data in the form of clusters. Data clustering methods can
be grouped into three categories (Saxena et al., 2017): hierarchical
clustering, Bayesian clustering, and partitional clustering. One of
the widely-used data clustering approaches is k-means clustering
(Likas et al., 2003) which belongs to partitional clustering.
Dimensionality reduction (also called subspace learning) aims
to seek the hidden pattern of the underlying data by means of
extracting intrinsic low-dimensional structure. Dimensionality
reduction can be categorized into two types: linear and non-
linear methods (Van Der Maaten et al., 2009). Principal
component analysis (PCA) (Wold et al., 1987) and non-negative
matrix factorization (NMF) (Lee and Seung, 1999) are two
popular linear dimensionality reduction methods.

Semi-supervised Learning
In order to make full use of the advantages of unsupervised
learning and supervised learning, semi-supervised learning aims
to combine a small number of labeled data and a large number
of unlabeled data for performing certain learning tasks. The
main goal of semi-supervised learning is to harness unlabeled
data for constructing better learning procedures. For example,
for a classification problem, additional sample data without label
information can be utilized to aid in the classification process for
performance improvement.

Semi-supervised learning can be divided into two main
types (van Engelen and Hoos, 2020): inductive and transductive

methods. Inductive methods aim to construct a classification
model that can be utilized to predict the label of previously
unseen sample data. In this case, unlabelled data may
be employed when training this classification model. The
representative inductive methods (Ligthart et al., 2021) contain
self-training, co-training, multi-view learning, generative
models, and so on. Different from inductive methods,
transductive methods do not need to build a classifier for
the whole input space. The typical transductive methods are
graph-based semi-supervised learning algorithms (Chong et al.,
2020) in which they attempt to transfer the label information
of a small set of labeled data to the remaining large unlabeled
data with the aid of a graph. The popular graph-based semi-
supervised learning algorithms include the graph Laplacian
(Fergus et al., 2009), graph-based semi-supervised neural
network models (Alam et al., 2018) like graph convolutional
networks (Chen et al., 2020).

TRADITIONAL METHODS FOR
CROSS-CORPUS SER

From the view of point of supervised, unsupervised, and semi-
supervised learning, in this section we will introduce traditional
methods for cross-corpus SER, as described below.

Supervised Learning for Traditional
Methods
On supervised cross-corpus SER tasks, researchers usually
combine one or more databases as training sets and testify
the performance on each labeled database as a testing set
in a cross-validation scheme. In early supervised cross-corpus
SER, the typical hand-crafted acoustic features and conventional
classifiers were employed in a supervised learning manner. For
instance, in Schuller et al. (2010b), they extracted 93 LLD
features such as prosody, voice quality and articulatory features
and performed speaker-corpus normalization so as to deal
with the differences among corpora. Then, the linear SVM
was used to conduct cross-corpus evaluation experiments. They
adopted different combinations of training and testing sets
on all used labeled databases for cross-corpus experiments. In
Feraru et al. (2015), 1,941 LLD acoustic features like prosody,
voice quality and spectral features were derived, then the linear
SVM was employed for cross-corpus SER. A post-processing
of the trained SVM models was performed by rule-based
model inversion to cope with the difference among corpora.
For cross-corpus experiments, they trained and tested each
used labeled database against each. Based on the extracted
INTERSPEECH-2010 Paralinguistic Challenge feature set with
1,582 LLDs, a new method of transfer non-negative matrix
factorization (TNMF) (Song et al., 2016b), in which the non-
negative matrix factorization (NMF) and the maximum mean
discrepancy (MMD) algorithms were combined, was developed
for cross-corpus SER. They also trained and tested each other for
all used labeled database. They showed that the performance of
the proposed TNMF was much better than the baseline method
with the linear SVM. A domain adaptation based approach,
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named emotion-discriminative and domain-invariant feature
learning method (EDFLM) (Mao et al., 2017), was presented
for cross-corpus SER. Training and testing each other for all
used labeled database was implemented. In this method, domain
discrepancy was minimized, whereas emotion-discrimination
was employed to produce emotion-discriminative and domain-
invariant features, followed by the linear SVM for SER. They
extracted the INTERSPEECH-2009 Emotion Challenge feature
set as inputs of EDFLM. In Kaya and Karpov (2018), they
provided a cascaded normalization method, integrating linear
speaker level, non-linear value level and feature vector level
normalization, and then employed an extreme learning machine
(ELM) classifier for cross-corpus SER. Here, they extracted the
ComParE feature set with 6,373 LLDs. They conducted cross-
corpus experiments in two settings: single corpus training (one-
vs.-one), and multiple corpus training via leave-one-corpus-
out (LOCO) setting. A non-negative matrix factorization based
transfer subspace learning method (NMFTSL) (Luo and Han,
2020), in which the knowledge of the source data could be
transferred to the target data, was developed to seek a shared
feature subspace for the source and target corpus on cross-
corpus SER tasks. They extracted the INTERSPEECH-2010
Paralinguistic Challenge feature set and then adopted the linear
SVM for cross-corpus SER. Based on all the used databases,
they constructed 30 cross-corpus SER schemes by using multiple
combinations for source and target corpus on cross-corpus
SER task.

Unsupervised Learning for Traditional
Methods
For unsupervised cross-corpus SER tasks, researchers tried to
investigate how agglomeration of unlabeled data. For instance,
in Zhang et al. (2011) they extracted 39 functionals of 56
acoustic LLDs, yielding 6,552 features in total, and then employed
the linear SVM to conduct a cross-corpus LOCO strategy for
experiments. To evaluate the effectiveness of normalization
techniques before data agglomeration, they investigated the
performance of centering, normalization and standardization
for per corpus normalization. Experiment results on multiple
databases showed that adding unlabelled emotional samples to
agglomerated multi-corpus training sets could improve SER
recognition performance. To mitigate the different feature
distributions between the source and target speech signals, a
domain-adaptive subspace learning (DoSL) approach (Liu et al.,
2018) was presented to learn a project matrix for yielding similar
feature distributions. They utilized the INTERSPEECH-2009
feature set with 384 features and adopted the linear SVM for
cross-corpus LOCO SER experiments. Likewise, to reduce the
disparity of source and target feature distributions, a transfer
subspace learning (TRaSL) (Liu et al., 2021) was also proposed
for cross-corpus SER. The proposed TRaSL aimed to find a
projection matrix which transformed the source and target
speech signals into a common feature subspace. Finally, they
adopted the INTERSPEECH-2009 feature set and the linear SVM
for cross-corpus LOCO SER experiments.

Semi-supervised Learning for Traditional
Methods
For semi-supervised cross-corpus SER, some recent literatures
have focused on the combination of unlabeled and labeled
sample data for performance improvement. In particular, a new
transfer learning technique, namely transfer semi-supervised
linear discriminant analysis (TSDA) (Song et al., 2016a), was
provided to produce corpus-invariant discriminative feature
representations on cross-corpus SER tasks. They obtained the
INTERSPEECH-2010 Paralinguistic Challenge feature set, and
then performed cross-corpus SER with the linear SVM. They
conducted cross-corpus experiments with a LOCO scheme,
and showed that TSDA outperformed other methods. A semi-
supervised adaptation regularized transfer non-negative matrix
factorization (SATNMF) (Luo and Han, 2019) was presented to
extract common features for cross-corpus SER. The proposed
SATNMF method aimed to integrate the label information of
training data with NMF, and found a latent low-rank feature
space to minimize simultaneously the marginal and conditional
distribution differences among several language datasets. They
employed the ComParE feature set and the linear SVM for LOCO
SER experiments.

In summary, Table 2 presents a summary of the above-
mentioned supervised, unsupervised, and semi-supervised
learning literatures for traditional methods on cross-corpus
SER tasks.

DEEP LEARNING METHODS FOR
CROSS-CORPUS SER

From the view of point of supervised, unsupervised, and semi-
supervised learning, in this section we will introduce deep
learning methods for cross-corpus SER, as described below.

Supervised Learning for Deep Learning
Methods
For supervised cross-corpus SER with labeled databases, the
typical CNN, LSTM, DBN, and its combinations in a hybrid way,
associated with the transfer learning strategy, have been recently
adopted. Specially, in Marczewski et al. (2017), to alleviate the
different distributions of features and labels across domains, they
proposed a deep learning network architecture composed of two
uni-dimensional convolutional layers, one LSTM layer, and two
FC layers for cross-corpus SER. The used CNN layers aimed
to derive spatial features of varying abstract levels, whereas the
LSTM layer was used to learn temporal information related to
emotion evolution over time. In this case, they jointly exploited
CNNs to extract domain-shared features and LSTMs to identify
emotions with domain specific features. All the samples data
from all databases were used for training and testing by using
a 5-fold cross validation scheme. Experiments showed that they
could learn transferable features to enable model adaptation from
multiple source domains. In Latif et al. (2018b), considering
the fact that DBNs have a strong generalization power, this
study presented a transfer learning technique based on DBNs
to improve the performance of SER in cross-language and
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TABLE 2 | A brief summary of traditional cross-corpus SER literatures.

References Category Input features Methods for cross-corpus Datasets

Schuller et al. (2010b) Supervised 93 LLDs speaker-corpus normalization DES/, EMO-DB, SUSAS, AVIC, SmartKom, eNTERFACE05

Feraru et al. (2015) Supervised 1,941 LLDs rule-based model inversion EMO-DB, DES, eNTERFACE05

Song et al. (2016b) Supervised INTERSPEECH-2010 TNMF FAU-AIBO, eNTERFACE05, EMO-DB

Mao et al. (2017) Supervised INTERSPEECH-2009 EDFLM ABC, EMO-DB, FAU-AIBO

Kaya and Karpov (2018) Supervised ComParE cascaded normalization EMO-DB, DES, eNTERFACE05

Luo and Han (2020) Supervised INTERSPEECH-2010 NMFTSL CASIA, SAVEE, EMO-DB, IEMOCAP, eNTERFACE05

Zhang et al. (2011) Unsupervised 6,552 LLDs corpus normalization ABC, AVIC, DES, VAM, SAL,

eNTERFACE05

Liu et al. (2018) Unsupervised INTERSPEECH-2009 DoSL EMO-DB, eNTERFACE05

Liu et al. (2021) Unsupervised INTERSPEECH-2009 TRaSL EMO-DB,eNTERFACE05, IEMOCAP

Song et al. (2016a) Semi-supervised INTERSPEECH-2010 TSDA EMO-DB, eNTERFACE05

Luo and Han (2019) Semi-supervised ComParE SATNMF CASIA, EMO-DB,

eNTERFACE05

cross-corpus scenarios. The used DBNs consisted of three RBM
layers, in which the first two RBMs contained 1,000 hidden
neurons, and the third RBM included 2,000 hidden neurons.
The simple variant (eGeMAPS) of typical GeMAPS feature set,
including 88 LLDs like pitch, energy, spectral, and so on, was
employed as inputs of DBNs. For all used databases, a LOCO
scheme was used for cross-corpus SER experiments. Experiment
result demonstrated that DBNs provided better performance
on cross-corpus SER tasks, compared with a SAE and the
linear SVM. In Parry et al. (2019), after extracting 40 Mel
filterbank coefficients, they presented a comparative analysis of
the generalization capability of deep learning models like CNNs,
LSTMs, and CNN-LSTM. The used CNNs were composed of
one-dimension convolutional layer, and one max-pooling layer.
The used LSTMs were two-layer bi-directional LSTMs. The
used CNN-LSTM contained three CNNs and two LSTMs above-
mentioned. This study indicated that the CNN and CNN-LSTM
models gave very close performance, but better than LSTM. For
cross-corpus experiments, all corpora were combined together,
thereby producing 11 h 45min for training, 1 h 30min each for
validation and testing. In Rehman et al. (2020), to develop a more
adaptable SER in adversarial conditions, they presented a hybrid
neural network framework for cross-corpus SER. The hybrid
neural network consisted of two-layer LSTMs and a ramification
layer. LSTMs aimed to learn temporal sequence data in the
one-hot input matrices, yielded by the latter ramification layer.
The ramification layer comprised of multiple embedding units
and split the input MFCCs into subsequent one-hot output.
They validated the performance of different methods by means
of training deep models on two of the used databases and
then testing it on the third database. Experiments showed the
effectiveness of the proposed method on cross-corpus SER tasks.

Unsupervised Learning for Deep Learning
Methods
For unsupervised cross-corpus SER tasks by leveraging unlabeled
data, the popular unsupervised autoendcoder (Ballard, 1987;
Schmidhuber, 2015) and its variants have been widely employed.

For instance, to address the discrepancy between training
and testing data, an adaptive denoising autoencoder (A-
DAE) based an unsupervised domain adaptation approach
(Deng et al., 2014b) was developed for cross-corpus SER.
In this method, the prior knowledge learned from a target
set was utilized to regularize the training on a source set.
When obtaining the INTERSPEECH-2009 Emotion Challenge
feature set, A-DAE was employed to learn a common
representation across training and test samples, followed by
the linear SVM for cross-corpus SER. They conducted cross-
corpus SER experiments by using a LOCO corpus scheme.
In Deng et al. (2017), an end-to-end domain adaptation
method, named universum autoencoder (U-AE), which retained
feature representation ability to discover the intrinsic structure
in input data, was presented for cross-corpus SER. The
proposed U-AE aimed to enable the unsupervised learning
autoencoder to have supervised learning ability, thereby
improving the performance of cross-corpus LOCO SER. The
standard INTERSPEECH-2009 Emotion Challenge feature set
was employed as inputs of the proposed U-AE. This study
indicated that the proposed U-AE outperformed other domain
adaptation methods such as kernel mean matching (Gretton
et al., 2009), and shared-hidden-layer autoencoders (Deng et al.,
2014a). In Neumann and Vu (2019), they investigated how
unsupervised representation learning on additional unlabeled
data could be used to promote SER performance. More specially,
they integrated feature representations learnt by using an
unsupervised autoencoder into an attentive CNN-based emotion
classifier so as to improve recognition performance on cross-
corpus LOCO SER tasks. In detail, they firstly trained a
recurrent sequence-to-sequence autoencoder on unlabeled data
and then adopted it to produce feature representations for
labeled target data. These produced feature representations
were then incorporated as additional source information for
emotion identification during the training process of the used
attentive CNN.

In recent years, several advanced unsupervised learning
methods such as adversarial learning (Goodfellow et al.,
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2014) and attentive learning have also been used for cross-
corpus SER. Specially, in Abdelwahab and Busso (2018), a
domain adversarial neural network (DANN), consisting of
three parts: a feature representation layer, a task classification
layer, and a domain classification layer, was employed to
learn a common feature representation between training and
testing data. DANN was trained by using labeled sample
data in the source domain and unlabeled sample data in
the target domain. The extracted acoustic features were the
ComParE feature set as inputs of DANN. They conducted
cross-corpus experiments by using single corpus training (one-
vs.-one), and multiple corpus training via a LOCO scheme.
This study demonstrated that adversarial training on the basis
of unlabeled training data yielded an obvious performance
improvement compared with training with the source data. In
Ocquaye et al. (2021), a deep learning framework including
three attentive asymmetric CNNs was presented to emotion
identification for cross-lingual and cross-corpus speech signals in
an unsupervised manner. They implemented cross-corpus SER

experiments by using a LOCO corpus scheme. The proposed

approach employed jointly supervised learning incorporated
with softmax loss and center loss in order to learn high-level
discriminative feature representations for target domain data
with the aid of pseudo-labeled data. Evaluation results indicated
that the proposed method outperformed a SAE and DBNs with
three RBMs.

Semi-supervised Learning for Deep
Learning Methods
For semi-supervised cross-corpus SER by leveraging unlabeled
and labeled data, adversarial learning (Goodfellow et al., 2014)
was usually taken as a generative model for. For instance, in
Chang and Scherer (2017), they explored a semi-supervised
learning approach, called a multitask deep convolutional
generative adversarial network (DCGAN), to improve cross-
corpus performance. DCGAN was utilized to learn strong
feature representation from the computed spectrograms on
unlabeled data. For multitask learning, the proposed multitask
model took emotional valence as a primary target and
emotional activation as a secondary target. For evaluation,
they combined unlabeled data from all used databases and
testified the performance on one labeled database. Experiment
results found that unsupervised learning presented significant
improvements for cross-corpus SER. In Deng et al. (2018),
to take advantage of the available unlabeled speech data,
they proposed a semi-supervised autoencoder to improve
the performance of cross-corpus SER. The proposed method
extended a typical unsupervised autoencoder by means of
adjoining the supervised learning objective of a deep feed
forward network. The extracted acoustic features were the
INTERSPEECH-2009 Emotion Challenge feature set. Cross-
corpus experiments were implemented by using multiple corpus
training via a LOCO scheme. Experimental results showed that

TABLE 3 | A brief summary of existing deep cross-corpus SER literatures.

References Category Input features Methods for

cross-corpus

Datasets

Marczewski et al. (2017) Supervised 54,000 dimensional data

points

CNN, LSTM AFEW, EMO-DB, EMOVO,

eNTERFACE05, IEMOCAP

Latif et al. (2018b) Supervised eGeMAPS DBNs FAU-AIBO, IEMOCAP, EMO-DB, SAVEE,

EMOVO

Parry et al. (2019) Supervised Mel filterbank

coefficients

CNN, LSTM,

CNN-LSTM

IEMOCAP, EMOVO, EMO-DB, RAVDESS,

SAVEE

Rehman et al. (2020) Supervised 13 MFCCs LSTMs, a ramification layer IEMOCAP, RAVDESS, EMO-DB

Deng et al. (2014b) Unsupervised INTERSPEECH-2009 A-DAE FAU-AIBO, ABC, SUSAS

Deng et al. (2017) Unsupervised INTERSPEECH-2009 U-AE ABC, EMO-DB, SUSAS

Abdelwahab and Busso

(2018)

Unsupervised INTERSPEECH-2013 DANN IEMOCAP,

MSP-IMPROV,

MSP-PODCAST

Neumann and Vu (2019) Unsupervised 128 Mel frequency bands unsupervised autoencoder

and ACNN

IEMOCAP,

MSP-IMPROV

Ocquaye et al. (2021) Unsupervised spectrogram three attentive asymmetric

CNNs

SAVEE, IEMOCAP, EMO-DB,FAU-AIBO,

EMOVO

Chang and Scherer (2017) Semi-supervised spectrogram DCGAN AMI, IEMOCAP

Deng et al. (2018) Semi-supervised INTERSPEECH-2009 Unsupervised

autoencoder

FAU-AIBO, ABC,

EMO-DB, SUSAS

Gideon et al. (2019) Semi-supervised 40 dimensional Mel-filter

banks

ADDoG IEMOCAP,

MSP-IMPROV

Latif et al. (2020) Semi-supervised spectrogram AAE IEMOCAP,

MSP-IMPROV

Parthasarathy and Busso

(2020)

Semi-supervised INTERSPEECH-2013 ladder network MSP-PODCAST, IEMOCAP,

MSP-IMPROV
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the proposed approach obtained promising performance with
a very small number of labeled data. In Gideon et al. (2019),
the extracted 40 dimensional Mel-filter banks were passed into
an adversarial discriminative domain generalization (ADDoG)
algorithm to learn more generalized feature representations for
cross-corpus SER. Based on the idea of GANs (Goodfellow
et al., 2014), ADDoG could make full use of the unlabeled test
data to generalize the intermediate feature representation across
different datasets. They combined multiple corpora for training
and testified the performance of different methods on other
corpora via a LOCO scheme. Experiment results showed that
ADDoG performed better than CNNs. In Latif et al. (2020),
a multi-task semi-supervised adversarial autoencoding (AAE)
method was provided for cross-corpus SER. The proposed
AAE was a two-step approach. First, semi-supervised learning
was implemented in an adversarial autoencoder to generate
latent representation. Then, a multi-task learning framework,
which considered emotion, speaker and gender identification as
auxiliary tasks incorporating with semi-supervised adversarial
autoencoding, was built to improve the performance of primary
SER task. The spectrograms achieved by a short time Fourier
transform (STFT) were employed as inputs of the proposed AAE.
They performed cross-corpus experiments with a LOCO scheme
on all the used databases. Experiment results demonstrated that
the proposed AAE outperformed CNN, CNN+LSTM, as well
as DBN.

In recent years, researchers explored ladder network (Valpola,
2015) based semi-supervised methods (Huang et al., 2018; Tao
et al., 2019; Parthasarathy and Busso, 2020) for cross-corpus
SER and had shown superior results to supervised methods.
Here, a ladder network is regarded as an unsupervised DAE
trained along with a supervised classification or regression
problem. For instance, in Parthasarathy and Busso (2020), a
ladder network based semi-supervised method, incorporating
with an unsupervised auxiliary task, was presented to reduce
the diversity between the source and target domains on cross-
corpus SER tasks. The primary task aimed to predict dimensional
emotional attributes. The auxiliary task aimed to produce the
reconstruction of intermediate feature representations with a
DAE. This auxiliary task was trained on a large amount unlabeled
data from the target domain in a semi-supervised manner. The
ComParE feature set was fed into the ladder network. They
conducted cross-corpus experiments with a LOCO scheme. This
study indicated that the proposed method achieved superior
performance to fully supervised single-task learning (STL) and
multi-task learning (MTL) baselines.

In summary, Table 3 presents a summary of the above-
mentioned supervised, unsupervised and semi-supervised
learning literatures for deep learning methods on cross-corpus
SER tasks.

OPEN CHALLENGES

Although deep learning based cross-corpus SER has made great
progress in recent years as mentioned above, there exist still

several open challenges that should be addressed in future. In
the following, we will discuss these open challenges, and show
its potential trends.

One of the most important problems for cross-corpus
SER is the generation of natural emotional speech data (Cao
et al., 2015). As shown in Table 1, we can see that the
majority of emotional databases for cross-corpus SER are
acted and recorded in specific silent labs. However, in the
real-world sceneries, the collected emotional speech data is
usually noisy. In addition, there are also legal and ethical
issues when recording the true natural speech emotions. Most
existing utterances from natural datasets are collected from talk-
shows, call-center recordings, and similar conditions in which
the involved participants are informed of the recording. In
this case, these natural datasets do not include all emotion
categories and may not reflect the true emotions that are felt.
Moreover, there is a scarcity for speech emotional datasets in
numbers. Considering that deep cross-corpus SER is a data-
driven task based on deep learning models with high hyper-
parameters, a great number of training data is needed for
training sufficiently deep models. Hence, another main challenge
for deep cross-corpus SER is the scarcity of enough large
emotional datasets.

The second challenge is to integrate more modalities
characterized by human emotion expression for cross-
corpus emotion recognition (Tzirakis et al., 2021). It is
well-known that the typical bimodalities (audio, visual)
(Zhang et al., 2017; Zhou et al., 2021), triple modalities (audio,
visual, text) (Shoumy et al., 2020), user’s physiological responses
like electroencephalogram (EEG) and electrocardiogram
(ECG) signals (Katsigiannis and Ramzan, 2017; Li et al.,
2021), and so on, are highly correlated with human emotion
expression. To further improve emotion recognition, it
is thus interesting to combine speech clues with other
modalities such as visual, text, and physiological clues for
multimodal cross-corpus.

Another challenge is the inherent limitation of deep learning
techniques. First, although various deep leaning techniques
have been successfully employed to capture high-level feature
representations for cross-corpus SER, most of deep learning
techniques have a large number of network parameters.
This makes deep learning techniques usually have very large
computation complexity, resulting in its training which demands
for large data. To alleviate this problem, it is a promising
direction to investigate the application of deep compression and
acceleration (Han et al., 2016; Choudhary et al., 2020) techniques
such as pruning, trained quantization, and so on, for real-world
cross-corpus SER. Additionally, deep learning is a the black-box
technique. In particular, due to the used multilayer non-linear
architecture, deep learning algorithms are frequently criticized
to be non-transparent, and non-explainable. Therefore, it is also
a promising research subject to investigate how to understand
the explainability and interpretability of deep learning techniques
(Fellous et al., 2019; Langer et al., 2021) for cross-corpus SER. In
addition, it is also interesting to investigate the performance of
recently-developed transformer (Vaswani et al., 2017; Lian et al.,
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2021) method incorporating with deep learning techniques for
cross-corpus SER in our future work.

CONCLUSIONS

This paper has presented an up-to-date and comprehensive
review of cross-corpus SER techniques, exhibiting recent
advances and perspectives in this area. It has summarized the
related speech emotional databases and the applications of deep
leaning techniques associated with supervised, unsupervised,
semi-supervised learning for cross-corpus SER in recent years.
In addition, it highlights several challenging research directions
to further improve the performance of cross-corpus SER
in future.
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Facial micro-expression(ME) recognition has great significance for the progress of

human society and could find a person’s true feelings. Meanwhile, ME recognition

faces a huge challenge, since it is difficult to detect and easy to be disturbed by

the environment. In this article, we propose two novel preprocessing methods based

on Pixel Residual Sum. These methods can preprocess video clips according to the

unit pixel displacement of images, resist environmental interference, and be easy to

extract subtle facial features. Furthermore, we propose a Cropped Gaussian Pyramid

with Overlapping(CGPO) module, which divides images of different resolutions through

Gaussian pyramids and crops different resolutions images into multiple overlapping

subplots. Then, we use a convolutional neural networks of progressively increasing

channels based on the depthwise convolution to extract preliminary features. Finally, we

fuse preliminary features and make position embedding to get the last features. Our

experiments show that the proposed methods and model have better performance than

the well-known methods.

Keywords: micro-expression recognition, deep learning, Gaussian pyramid, pixel residual sum, position

embedding

1. INTRODUCTION

Facial expression is a crucial channel for interpersonal socializing and can be used to convey
inner emotions in daily life. Facial expression is divided into micro-expression(ME) and
macro-expression. In past decades, macro-expression had a wide range of applications, and scholars
have done a lot of research on macro-expression and facial recognition (Boucenna et al., 2014;
Liu et al., 2018; Kim et al., 2019; Xie et al., 2019), but macro-expression is deceptive and can be
easily hidden by human control. In contrast, ME will be unintentionally exposed as long as people
intend to hide their true feeling. Hence, ME recognition has attracted much attention and has an
extensive application prospect, such as clinical diagnosis, judiciary authorities, political elections,
and national security.

ME has the following characteristics:

• ME is a very short facial expression and lasts between 1/25 and 1/3 (Yan et al., 2013). As a result,
untrained individuals have a weaker ability to recognize ME (Lies, 1992).

• ME is an unconscious and involuntary facial expression appearing when people disguise one’s
emotions and can be triggered in high-risk environments and show real or hidden emotions.

• ME usually only appears in specific locations (Ekman and Friesen, 1971; Ekman, 2009b).
• ME usually needs to be analyzed in the video clip, and macro-expression can be analyzed in

the image.
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Due to these characteristics, it is difficult to recognize the ME
artificially. Therefore, Ekman and Paul tried a lot of efforts to
improve the ability of individuals to recognize the ME, and they
developed a tool for ME recognition in 2002 Micro Expression
Training Tool (METT) (Ekman, 2009a), which can effectively
improve the individual’s ability to recognize ME. However, the
accuracy of relying on human recognition of ME is not high.
According to reports, the accuracy of human-identified ME
is only 47% (Frank et al., 2009). Therefore, it is particularly
important to recognize the ME through computer vision. With
the development of technology, the rise of high-speed cameras
and deep learning hasmade it possible to accurately recognize the
ME. However, the current ME recognition is mainly faced with
the following problems.

• How to extract the subtle feature of the human face?
• How to overcome frame redundancy in the ME video?
• How to have stronger universality and overcome

environmental changes?

The structure of the study is as follows: In Section II, the pieces
of literature related to ME recognition are reviewed in detail;
In Section III, a preprocessing method and network framework
for ME recognition are proposed; In Section IV, we describe
the experimental settings and analyze the experimental results;
Finally, Section V summarizes this study with remarks. The
contributions of this study are as follows.

• We propose two more effective methods of preprocessing,
which combine spatio-temporal dimensionality and can
extract more robust features.

• We design a module of Cropped Gaussian Pyramid
with Overlapping(CGPO), which can use different
scales information.

• We design a network with feature fusion, and the network
structure adopts a gradual way of increasing channels.

2. RELATED WORK

2.1. Handcrafted Features
Several years before, ME recognition was mainly based on
traditionally handcrafted feature descriptors. These descriptors
can be divided into geometric features and appearance features.

2.1.1. Appearance-Based Features
For instance, Local Binary Pattern histograms from Three
Orthogonal Planes (LBP-TOP) (Zhao and Pietikainen, 2007),
Spatiotemporal Completed Local Quantization Patterns
(STCLQP) (Huang et al., 2016), and LBP with Six Intersection
Points (LBP-SIP) (Wang et al., 2014) can be considered as
methods based on appearance features. These methods led
that the features, dimensions are relatively high with more
redundant information.

The LBP-TOP, a development of the LBP in a three-
dimensional space, is a typical LBP descriptor with spatial-
temporal characteristics. The LBP-TOP operator extracts LBP
features on the three orthogonal planes. Next, obtained results
are stitched as the final LBP-TOP feature, since the video can be

regarded as a cube in the three dimensions of x, y, and t. The LBP-
TOP not only considers the spatial information but also considers
the information in the video sequence. After obtaining the LBP-
TOP features, Zhao et al. use Support Vector Machine(SVM) for
spotting and classification. Zhao et al. made good use of LBP-
TOP features, and used many tricks of conventional expression
analysis. As an early work, the work has achieved good results
and has established the basis for the subsequent ME recognition.

The LBP-TOP has great limitations for only considering the
local appearance and movement characteristics. So, Huang et al.
(2016) proposed STCLQP for the ME recognition. First, three
significant information, including magnitude, orientation, and
sign components, are extracted by STCLQP. Second, for each
component in temporal and appearance domains, Huang et al.
(2016) made dense and characteristic codebooks by developing
productive codebook selection and vector quantization. Finally,
in terms of this codebook, Huang et al. (2016) extracted and fused
spatio-temporal features, included orientation components,
magnitude, and sign. Compared with LBP-TOP, the STCLQP
method considers more information. Although the recognition
accuracy is improved, it will inevitably lead to higher dimensions.

Furthermore, Wang et al. (2014) proposed LBP-SIP
volumetric descriptor, which is based on three intersecting
lines passing through a central point. The superabundance of
LBP-TOP patterns is diminished by LBP-SIP. Furthermore,
LBP-SIP provides a more dense and weightless characterization
and reduces computational complexity. It further promotes the
improvement of the accuracy of the ME recognition and has
become the baseline for many subsequent works.

2.1.2. Geometric-Based Features
Optical flow, a geometric-based feature, calculates the
displacement of facial feature points or the optical flow of
the action area. It can extract representative motion features that
are robust for the diversity of facial textures. Furthermore, the
data except for RGB channels can be enhanced by optical flow
(Liu et al., 2019).

Many works treat optical flow as a data preprocessing step.
Liu et al. (2015) proposed an uncomplicated yet productive
Main Directional Mean Optical-flow (MDMO) feature. On the
ME video clips, an effective optical flow method is adopted.
Meanwhile, Liu utilizes partial action units to divide the face
into regions of interest (ROIs). MDMO is a normalized feature
based on ROIs. It combines both spatial location and local
statistic motion characteristics. MDMO has the advantage of
small feature dimensions.

Some works (Liong et al., 2019; Liu et al., 2019; Zhou et al.,
2019) utilized optical flow information for ME recognition and
have achieved good results. For instance, Liu et al. (2019) utilized
two domain adaptation methods, which include expression
magnification and reduction and adversarial training. Then, he
preprocessed the raw images to capture the spatio-temporal
optical flow from facial movements from onset frame (the first
frame in the ME video) to apex frame (the most intense frame
of action in the ME video), won the championship of 2019-the
second facial Micro-expressions Grand Challenge (MEGC2019)
(See et al., 2019). Zhou et al. (2019) captured the TV-L1 optical
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flow (Zach et al., 2007) of the onset frame and the mid-
position frame, and then performs ME recognition through
the Dual-Inception network. Instead of using apex frames, they
use mid-position frames to cut down computation complexity.
Furthermore, Liong et al. (2019) designed a STSTNet, which can
be used to learn three features of optical flow, namely vertical
optical flow, optical strain, and horizontal optical flow. These
features are calculated by the onset frame and apex frame of
ME video.

Optical flow has the advantage of small feature dimensions
and the ability to capture subtle muscle movements. However,
the optical flow has higher requirements on light and is easily
affected by the external environment. In addition, these works
only use the optical flow information of the apex frame and onset
frame and lose the motion information of other frames.

2.2. Deep Neural Networks
Deep learning (LeCun et al., 2015) is universally used in various
industries. Especially during the immediate past, the works on
deep learning in theME recognition field has gradually increased.
In the field of deep learning, the features preprocessed by the
optical flow method and LBP can be used as the input of
convolution neural network (CNN). Then, CNN is usually used
for feature extractors. For instance, Xia et al. (2019) proposed
spatio-temporal recurrent convolutional networks based on
optical flow, which extracts the optical flow information from
the onset frame until the apex frame and inputs it into recurrent
convolutional networks.

Furthermore, some works also use Long Short-term Memory
(LSTM) to directly input ME video clips. One early work
(Khor et al., 2018) proposed an Enriched Long-term Recurrent
Convolutional Network (ELRCN). First, every ME frame is
encoded into a feature vector by CNN modules. Then, ELRCN
uses an LSTM module to pass the feature vector and predicts
ME at last. ELRCN uses the feature that the information can
be retained for a long time in the gating unit to detect ME
in the video, and achieve good performance. Therefore, the
combination of LSTM and CNN have greater advantages in
recognizing ME in videos. However, due to the small changes in
the ME video clips, there is frame redundancy, leading to greater
computational complexity.

In conclusion, compared with traditional manual features
for ME recognition, deep learning technology can extract
features from ME videos and classify them with higher accuracy.
However, due to frame redundancy in ME videos, the speed of
the deep learning trainingmodel is greatly affected. Therefore, we
propose two new ME video preprocessing methods to overcome
frame redundancy in ME video and improve the recognition of
ME classes.

3. METHOD

3.1. Preprocessing
As we discussed above, it is an inevitable stage to extract
a discriminative and efficient feature. Therefore, this study
proposes two methods based on the residual sum of image pixels
to extract salient features: (1) Absolute Residual Sum (ARS) and
(2) Relative Residual Sum (RRS). These methods take the frames

in the ME clip at fixed intervals and consider the regional pixel
displacement between frames. It not only avoids the redundancy
of the ME clip but also makes full use of the ME information. The
pixel-level displacement difference sum, named RS, can explain
the tiny movement of the object. ARS and RRS preprocessing
procedure are shown in Figure 1.

3.1.1. Absolute Residual Sum
Preprocessing is divided into five stages.

3.1.1.1. Select Video Clip
He et al. proposed MDMD, which used a reciprocal change from
the onset frame to the offset frame to spotting ME (He et al.,
2020). Therefore, we only recognize theME from the onset frame
to the apex frame. First, we select a video clip from the ME video
and calculate its start and end. We select the partial video clips
from the ME video clip. The onset frame is taken as the start by
Equation (1), and select the end by Equation (2).

start = T(onset) (1)

Where T(x) represents the frame sequence of x in the video.

end =











min(T(onset)+ 10,T(offset)) if T(apex)− T(onset)

< 10

min(T(apex),T(offset)) else

(2)
Wheremin(x, y) represents the smaller values of x and y.

3.1.1.2. Detect Feature Point
The dlib library is utilized to spotting facial feature points.

3.1.1.3. Cropping
Cropping the face through the face feature points.

3.1.1.4. Select Five Frames
Notice that, ME data is very redundant. Useful information must
be mined from the data. A few other works (Li et al., 2013; Le Ngo
et al., 2015, 2016) have proposed many methods to reduce frame
redundancy in ME videos by using partial frames. Therefore, we
require mining crucial frames from ME video clip. We define
crucial frames as key-frames and define frames except for the
key-frames as transition frames. Furthermore, we make two
assumptions for getting rid of transition frames: (1) Transition
frames are highly similar to the key-frames, and deletion does
not affect the recognition accuracy. (2) Transition frames are
continuously distributed, centered on key-frames.

Hence, we choose appropriate intervals by Equation (3) and
select five key-frames as elements in F according to Equation (4).

gap = ⌈
end − start

Nkey + 1
⌉ (3)

F = {min(start+gap, end),min(start+gap∗2, end), ..., end} (4)

Where ⌈x⌉ is taking the smallest integer not less than x for some
scalar, and Nkey represents the number of key frames. Nkey is set
to five in the paper.
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FIGURE 1 | Preprocessing Flow chart (©Xiaolan Fu).

FIGURE 2 | Image augment module.

3.1.1.5. Generate Redisual Sum Image
Liu et al. (2019) took the motion difference between the onset
frame and each frame to calibrate the apex frame, because the
intensity relationship of ME can be indicated by the motion
difference. Therefore, we cumulate the motion difference for
calculating the variation trend of a single pixel. For the key frame
in F, Equation (5) is used to calculate the ARS.

ares(x, y, z) = (
∑

f∈F

(|Qf (x, y, z)− Qstart(x, y, z)|)) % 256 (5)

Where Qf (x, y, z) represents the pixel value of the three-channel
image (x, y, z) of the fth frame and ares(x, y, z) represents the pixel
value of the generated ARS image.

3.1.2. Relative Residual Sum
As shown in Figure 1, the steps before the fifth step are the same
as ARS. In the fifth step, we use Equation (6) to calculate the
sum of residuals between frames. Then, we use Equation (7) to
transform the range of sum to between gmin and gmax. In this
experiment, gmin = 0 and gmax = 255.

diff (x, y, z) = (
∑

f∈F

(|Qf (x, y, z)− Qstart(x, y, z)|)) (6)

rres(x, y, z) =
(diff (x, y, z)−min(diff ))

max(diff )−min(diff )
∗ (gmax− gmin)+ gmin (7)

Where max(x, y), diff (x, y, z), and rres(x, y, z) represent the
greater values of x and y, the sum of the displacement of the video
frame at the three-channel image (x, y, z), and the pixel value of
the generated RRS image, respectively.

3.2. Framework
CropNet, based on the depthwise convolution (Sandler et al.,
2018), is used as a classification model. CropNet takes
advantage of CGPO. The architecture of the CropNet is
shown in Figure 3. Conv, BN, and FC in the figure represent
Convolutional Layer, Batch Normalization Layer, and Fully
Connected Layer, respectively.

3.2.1. Image Augmentation
The number of network parameters is approximately 7.6M.
Image augment is essential as the network framework is slightly
large. According to the characteristics of the human face, we
performed the following four data augmentation in turn. (1)
The image brightness, contrast, and saturation are randomly
changed to [20%, 180%] of the original image brightness, and
the hue offset of the image is changed to [−0.5, 0.5] of the
original image. (2) The picture is converted to grayscale with
a probability of 20%. (3) Flipping the image horizontally with
a 50% probability. (4) Rotating the image randomly clockwise
[−15,15] degrees. The image augment module is shown
in Figure 2.
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FIGURE 3 | The architecture of the network model. The numbers on convolution and MB6 block represent the number of output channels. MB6 refers to

MobileNetV2 (Sandler et al., 2018)’s inverted bottlenecks with an expansion ratio of 6.
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3.2.2. Cropped Gaussian Pyramid With Overlapping
Different facial areas have different importance in the production
of ME. Therefore, we propose a CGPO module, which divides
ME video frames with different resolutions of the image into
10 overlapping subplots. It can separate the mouth, the eyes,
the nose, etc. The introduction of overlapping mechanisms can
reduce the risk of separating important parts of the face. The
CGPO module is shown in Figure 3 CGPO, and its processing
flow is as follows.

• First, we require 320 × 320 resolution of the image input and
down-sample it to get an image with a resolution of 160× 160.

• Second, for each image with different scale resolution, we
divide them into several 160 × 160 images and introduce the
overlap factor α. α is used to control the size of the overlap
when crop images with different precision. In this study, α

is 0.3.
• Finally, after going through the above process, images are fed

CNN based with the depthwise convolution.

3.2.3. Feature Extraction
Han et al. (2020) designed ReXNet, which has achieved very
good results in the ImageNet Challenge. Therefore, we use the
ReXNet feature extraction module as the extractor. A network of
progressively increasing channels are leveraged on the extracting
feature, as shown in Figure 3 feature extractor.

Due to the difficulties in data collection and identification
of ME, there are few ME datasets. It is difficult to apply deep
learning in ME recognition. Therefore, we train this module on
the ImageNet datasets (Deng et al., 2009) and then apply it to the
ME recognition through the transfer learning method (Pan and
Yang, 2009).

3.2.4. Feature Fusion and Classifier
Feature Fusion and Classifier are shown in Figure 3 Classifier.
The features extracted in the previous module go through
the Convolutional Layer, Batch Normalization Layer, Adaptive
Pooling Layer, and Fully Connected Layer, in turn, and become a
feature vector zi ∈ R

24, where i represents the order of segmented
images. Since the CGOP module segmented a total of 10 images,
we could obtain 10 feature vectors {z0, z1 · · · · · · · · · z9}.

However, because the position information after image
cropping becomes blurred, the model has a hard time learning
about correlations between images. We combine the location
information with the feature to make the features more
explanatory. Therefore, for feature vectors {z1, z2 · · · · · · · · · z9} of
segmented images, we introduce trainable position embedding
vectors {p1, p2 · · · · · · · · · p9} to learn the position information of
the image, where pi has the same dimension as zi. The position
embedding vectors are initialized to random values that follow a
normal distribution. The mean of the random values is 0 and the
variance is 0.2. As shown in Equation (8), we calculate the new
feature vectors {z1

′, z2
′
· · · · · · · · · z9

′
}.

zi
′
= zi ⊕ pi 0 < i < 10 (8)

Finally, we mix {z0, z1
′, z2

′
· · · · · · · · · z9

′
} by splicing and

classifying ME.

4. EXPERIMENT

4.1. Datasets
Due to the characteristics of ME and its difficulty in triggering
and collecting, the dataset is very scarce. As far as we know,
there are three spontaneous datasets generally utilized for ME
recognition: SMIC-HS (Li et al., 2013), SAMM (Davison et al.,
2016), and CASME II (Yan et al., 2014a). The details of these three
spontaneous datasets are shown in Table 1.

4.2. Experiment Settings
All experiments for this study were all carried out on Ubuntu
16.04 and Python 3.6.2 with Pytorch 1.6 on NVIDIA GTX
Titan RTX GPU (24 GB). The label smoothing loss function
(Lukasik et al., 2020) is leveraged as the loss function. It can
better generalize the network and ultimately produce, more
accurate predictions on invisible data. AdamP (Heo et al.,
2021) is used as an optimizer. We use UF1 (commonly
referred to as the macro average F1 score), UAR (commonly
referred to as balanced accuracy), and Accuracy as our
evaluation standard.

TABLE 1 | Micro-expression (ME) datasets.

Datasets CASME II SMIC-HS SAMM

Particpants 26 16 29

Samples 255 157 159

Resolution 640*480 640*480 960*650

Frame

rate(fps)

200 100 200

FACS coded X x X

APEX index X x X

Emotion Other(99)

Disgust(63)

Surprise(28)

Repression(27)

Sadness(4)

Happiness(32)

Fear(2)

Negative(66)

Positive(51)

Surprise(40)

Other(26)

Happiness(26)

Disgust(9)

Surprise(15)

Sadness(6)

Anger(57)

Fear(8)

Contempt(12)

TABLE 2 | Comparison of ME recognition performance in CASME II (5 classes).

Method Accuracy

LBP-Top+AdaBoost (Le Ngo et al., 2014) 0.437

STCLQP (Huang and Zhao, 2017) 0.583

ELRCN (Khor et al., 2018) 0.524

DSSN (Khor et al., 2019) 0.707

TSCNN-I (Song et al., 2019) 0.740

SSSN (Khor et al., 2019) 0.711

TSCNN-II (Song et al., 2019) 0.810

Bi-WOOF (apex and onset) (Liong et al., 2018) 0.578

Su et al. (Su et al., 2021) 0.727

RRS+CropNet(ours) 0.790

ARS+CropNet(ours) 0.862
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• UF1 score can equally emphasize in a rare class. So, it is a
suitable indicator in a multi-class evaluation. The calculation
formula for UF1 is as follows:

UF1 =
1

C

C
∑

i=1

(
2 ∗ TPi

2 ∗ TPi + FPi + FNi
) (9)

Where C represents the number of classes and FPi, TPi, and
FNi represent the false positive, the true positive, and the false
negative for the ith class, respectively.

• UAR is a more appropriate indicator instead of the standard
accuracy indicator that may be partial to larger classes. The
calculation formula for UAR is as follows:

UAR =
1

C

C
∑

i=1

(
TPi

Ni
) (10)

Where Ni represents the number of ith class.
• Accuracy is commonly used as a CASME II experiment in five

classes. The calculation formula for Accuracy is as follows:

Accuracy =
TP

N
(11)

4.3. Experiment With Five Classes of ME in
the CASME II
We choose the CASME II as the evaluation dataset. Only five
classes (Others, Disgust, Happiness, Repression, and Surprise)
are considered, since the fear and sadness samples are very
scarce. In this experiment, Leave-One-Subject-Out (LOSO)
cross validation is utilized for evaluation protocol. LOSO cross

FIGURE 4 | (A) is the confusion matrix of composite datasets (SMIC-HS, CASME II, and SAMM) in the absolute residual sum (ARS) and the CropNet. (B) is the

confusion matrix of CASME II in the ARS and the CropNet.

TABLE 3 | Comparison of ME recognition performance composite datasets.

Method
Composite SMIC-HS CASME II SAMM

UF1 UAR UF1 UAR UF1 UAR UF1 UAR

LBP-TOP (Zhao and Pietikainen, 2007) 0.588 0.578 0.200 0.528 0.702 0.742 0.395 0.410

Bi-WOOF (Liong et al., 2018) 0.629 0.622 0.572 0.582 0.780 0.802 0.521 0.512

CapsuleNet (Van Quang et al., 2019) 0.652 0.650 0.582 0.587 0.706 0.701 0.620 0.598

OFF-ApexNet (Gan et al., 2019) 0.719 0.709 0.681 0.669 0.876 0.868 0.540 0.539

Dual-Inception (Zhou et al., 2019) 0.732 0.727 0.664 0.672 0.862 0.856 0.586 0.566

STSTNet (Liong et al., 2019) 0.735 0.760 0.680 0.701 0.838 0.868 0.658 0.681

ELTRCN (Khor et al., 2018) 0.788 0.782 0.746 0.753 0.829 0.820 0.775 0.715

RCN-S (Xia et al., 2020) 0.746 0.710 0.651 0.657 0.836 0.791 0.764 0.656

STSTNet+GA (Liu et al., 2021) 0.836 0.836 0.814 0.812 0.882 0.891 0.800 0.790

RRS+CropNet(ours) 0.875 0.877 0.813 0.819 0.972 0.969 0.842 0.827

ARS+CropNet(ours) 0.911 0.904 0.855 0.851 0.974 0.979 0.912 0.893
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validation refers to using the samples of one subject as the test
set, and the rest as the training set in each fold. It can prevent the
test set and the training set from having the same sample, thereby
avoiding data leakage. Recognition Accuracy can be calculated
by the LOSO cross validation evaluation protocol. In the same
evaluation standard, we compare with a variety of methods. The
result is shown in Table 2.

The confusion matrix obtained by applying the ARS and the
CropNet is shown in Figure 4B. Through the confusion matrix,
the overall recognition rate is very high. The proposed method
has great performance for all classes.

4.4. Composite Datasets Evaluation (CDE)
Composite datasets evaluation is a very effective evaluation
method in cross-database ME recognition. In this experiment,
we use the MEGC2019 standard. According to MEGC2019
standards, we combined all samples of the datasets (SAMM,

TABLE 4 | Ablation experiments in CASME II (5 classes).

Ablation module Ablation method UF1 Accuracy

paper method CropNet+ARS 0.863 0.862

Preprocessing Method

CropNet+RRS 0.803 0.790

CropNet+Optical FLow(Farneback) 0.661 0.625

CropNet+Optical FLow(TV-L1) 0.697 0.669

Model architect CropNet without GCOP +ARS 0.841 0.813

CASME II, and SMIC-HS) into a composite dataset by
unifying the number of ME class. ME are divided into three
classes: negative, surprised, and positive. Disgust, contempt, fear,
sadness, and anger is regarded as the negative class. Surprise
is still regarded as surprise class. Happiness is regarded as the
positive class. LOSO cross validation is utilized to split the
training set and test set. Table 3 compares the performance
of proposed methods against a number of recent study. The
methods in Table 3 were all compared in the same datasets and
at the same evaluation standard. The confusion matrix obtained
by applying the ARS and the CropNet is shown in Figure 4A.
It shows that three classes have similar performance, and the
proposed method also has a good fit for unbalanced data.

Note that, the apex frame spotting is indispensable for ME
recognition since the apex frame of the SMIC-HS dataset is not
labeled. In recent years, there are a lot of apex frames spotting
works (Yan et al., 2014b; Li et al., 2018; Peng et al., 2019; Zhou
et al., 2019). In fact, apex frame spotting is a very difficult
work. Therefore, this experiment considers a trade-off between
efficiency and effectiveness. The middle frame of the video in the
SMIC-HS dataset is used as the apex frame.

4.5. Ablation Experiments
We performed two ablation experiments on the CASME II
dataset to verify the effectiveness of the module.

• We performed ablation experiments on preprocessing
methods for comparing the effectiveness of the four
preprocessing methods ARS, RRS, Farneback optical flow
(Farnebäck, 2003), and TV-L1 optical flow.

FIGURE 5 | Nkey hyperparameter’s ablation experiments.
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• We performed ablation experiments on model architect for
verifying the effect of the GCOP module.

As shown in Table 4, ARS stands out among the four
preprocessing methods. It can extract more reliable spatio-
temporal features and improve the UF1 value of ME recognition.
RRS also achieves very good results. There are significant
differences between these two methods. RRS pays more attention
to areas with greater displacement by relative displacement
change between unit pixels, while is not too sensitive to
small displacement areas. ARS considers the trade-off between
displacement regions of different scales, which can focus on
both small displacement areas and large displacement areas.
Therefore, subtle displacement can be captured. At the same
time, for areas with frequent displacement, ARS ignores the
displacement of unit pixels and pays attention to regional
displacement. But in our experimental environment, Farneback
optical flow and TV-L1 optical flow are far less effective than the
proposed methods in this study.

The Cropped Gaussian Pyramid with Overlapping module
focuses on different areas of the face, extracts features for each
area, and then stitches the obtained features to classify them.
Through the ablation experiment in Table 4, it is easy to find the
efficiency of the CGPO module and the ARS method.

Furthermore, we conducted hyperparameter’s ablation
experiments in MEGC2019 composite datasets for verifying the
effectiveness of the hyperparameters Nkey. The experimental
results are shown in Figure 5, which can be concluded that there
is greater universality when Nkey is set to five. Therefore, in all
experiments, we only select five key-frames at equal intervals in
the ME video clip.

4.6. Visualization Experiments
We use T-SNE (Van der Maaten and Hinton, 2008) to visualize
the preprocessed image for better comparing the effects of the
proposed preprocessing methods. Figure 6 shows the feature
distribution of images preprocessed by various methods. In

FIGURE 6 | (A–D) represent preprocessing images by ARS, relative residual sum (RRS), farneback optical flow and TV-L1 optical flow, respectively.

Frontiers in Neurorobotics | www.frontiersin.org 9 December 2021 | Volume 15 | Article 74698563

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhao et al. Micro-Expression Recognition Based on ARS

this experiment, we use three classes (negative, positive, and
surprised) of CASME II.

The features extracted using Farneback optical flow and TV-
L1 optical flow are disorganized, but the image extracted by
residual sum methods can already distinguish many features.
For example, surprise ME is easy to distinguish from other
expressions. After preprocessing by the residual summethod, the
features become initially orderly, but some of the ME are still
mixed together. Therefore, further extraction of features through
CNN can enhance the validity of features.

5. CONCLUSION

In this study, we propose two novel preprocessing methods
to solve ME recognition tasks with spatial-temporal feature
extraction. These methods use the displacement residual sum of
the unit pixels of the ME clip to extract a subtle motion feature.
Through our experiment, it responds well to environmental
change and subtle displacement. In addition, we propose a
CGPO module, which divides the image into partial overlapping
pictures of different precision and extracts features from different
pictures. Hence, the model can focus on each facial local area,
and then recognize the subtle movements of specific locations.
Furthermore, we design CropNet which have a gradual way
of increasing channels, features fusion module, and position
embedding function.

In the experiment, we test the proposed two preprocessing
methods and the designed network on the mixed dataset of
MEGC2019 and five classes of ME on CASME II. The traditional
manual method based on optical flow is labor-expensive and
time-consuming, while the RRS and ARS preprocessing methods
greatly improve the situation of frame redundancy and improve
the recognition accuracy of each ME. In addition, the CGPO
module can separate key parts of a person’s face for more subtle

feature extraction. In general, the method proposed in the study
has better performance than the well-known method.

However, the proposed model does not belong to an end-
to-end model, because it must go through the preprocessing
method, which takes a certain amount of time to detect key
points, align faces, crop, and calculate RRS and ARS. Therefore,
in the future improvement, we will improve the method and
model in this study into an end-to-end model.
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Singular Learning of Deep Multilayer
Perceptrons for EEG-Based Emotion
Recognition
Weili Guo1,2, Guangyu Li1,2*, Jianfeng Lu2 and Jian Yang1,2*

1PCA Lab, Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, Jiangsu Key
Lab of Image and Video Understanding for Social Security, Nanjing University of Science and Technology, Nanjing, China, 2School
of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China

Human emotion recognition is an important issue in human–computer interactions, and
electroencephalograph (EEG) has been widely applied to emotion recognition due to its
high reliability. In recent years, methods based on deep learning technology have reached
the state-of-the-art performance in EEG-based emotion recognition. However, there exist
singularities in the parameter space of deep neural networks, which may dramatically slow
down the training process. It is very worthy to investigate the specific influence of
singularities when applying deep neural networks to EEG-based emotion recognition.
In this paper, we mainly focus on this problem, and analyze the singular learning dynamics
of deep multilayer perceptrons theoretically and numerically. The results can help us to
design better algorithms to overcome the serious influence of singularities in deep neural
networks for EEG-based emotion recognition.

Keywords: emotion recognition, EEG, deep multilayer perceptrons, singular learning, theoretical and numerical
analysis

1 INTRODUCTION

Emotion recognition is a fundamental task in affective computing and has attracted many
researchers’ attention in recent years (Mauss and Robinson, 2009). Human emotion can be
expressed through external signals and internal signals, where external signals usually include
facial expressions, body actions, and speeches, and electroencephalograph (EEG) and galvanic skin
response (GSR) are typical internal signals. EEG is the method to measure electrical activities of the
brain by using electrodes along the scalp skin and it is rather reliable; therefore, EEG has played a
more significant role in investigating human emotion recognition problem in recent years (Yin et al.,
2021).

For the emotion recognition problem based on EEG signals, researchers mainly investigate this
issue from two aspects: how to extract better features from EEG signals and how to construct a model
with better performance. For aspect 1, researchers have investigated the feature extraction methods
of EEG signals from a time domain, frequency domain, and time–frequency domain, respectively,
and a series of results have been given previously (Fang et al., 2020; Nawa et al., 2020). In this paper,
we mainly focus on aspect 2, i.e., the computational model problem, and researchers have proposed
manymodels to recognize emotions through EEG signals (Zong et al., 2016; Yang et al., 2018a; Zhang
et al., 2019; Cui et al., 2020). In recent years, deep learning technology has achieved great success in
many fields (Yang et al., 2018b; Yang et al., 2019; Basodi et al., 2020; Zhu and Zhang, 2021), andmany
works are devoted to addressing the EEG emotion recognition issue by applying deep neural
networks (DNNs) (Cao et al., 2020; Natarajan et al., 2021), where the performances based on deep
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learning also show significant superiority of conventional
methods (Ng et al., 2015; Tzirakis et al., 2017; Hassan et al.,
2019). However, the learning dynamics of DNNs, including deep
multilayer perceptrons (MLPs), deep belief networks and deep
convolution neural networks, are often affected by singularities,
which exist in the parameter space of DNNs (Nitta, 2016).

Due to the influence of singularities, the training of DNNs
often becomes very slow and the plateau phenomenon can often
be observed. When the DNNs are applied to EEG-based emotion
recognition, the severe negative effect of singularities on the
learning process of DNNs is also inevitable, where the
efficiency and performance of networks can also not be
guaranteed. However, up to now, there are rarely literatures
investigating this problem. In this paper, we mainly concern
this problem. The main contribution of this paper is to take the
theoretical and numerical analysis of singular learning in DNNs
for EEG-based emotion recognition.We choose deepMLPs as the
learning machine, where deep MLPs are of typical DNNs and the
results are also representative for other DNNs. The types of
singularities in parameter space are analyzed and the specific
influence of the singularities is clearly shown. Based on the
obtained results in this paper, we can further design the
related algorithms to overcome this issue.

The rest of this paper is organized as follows. A brief review of
related work is presented in Section 2. In Section 3, theoretical
analysis of singularities in deep MLPs for EEG-based emotion
recognition is taken and then the learning dynamics near
singularities are numerically analyzed in Section 4. Section 5
states conclusion and discussion.

2 RELATED WORK

In this section, we provide a brief overview of previous work on
EEG-based emotion recognition and singular learning of DNNs.

In recent years, due to the high accuracy and stabilization of
EEG signals, EEG-based algorithms have attracted ever-
increasing attention in emotion recognition field. To extract
better features of EEG signals, researchers have proposed
various feature extraction models (Zheng et al., 2014; Zheng,
2017; Tao et al., 2020; Zhao et al., 2021), such as power spectral
density (PSD), differential entropy (DE), and differential
asymmetry (DASM). By using PSD and DE to extract
dimension reduced features of EEG signals, Fang et al. (2020)
chose the original features and dimension reduced features as the
multi-feature input and verified the validity of the proposed
method in the experiment part. Li et al. (2020) integrated
psychoacoustic knowledge and raw waveform embedding
within an augmented feature space. Song et al. (2020)
employed an additional branch to characterize the intrinsic
dynamic relationships between different EEG channels and a
type of sparse graphic representation was presented to extract
more discriminative features. Besides the feature extraction
methods, more attention is paid to study the emotion
classification. Given that the deep learning technology has
excellent capabilities, various types of DNNs have been widely
used in emotion classification (Li et al., 2018; Li et al., 2019; Ma

et al., 2019; Atmaja and Akagi, 2020; Cui et al., 2020; Zhong et al.,
2020), including deep convolution neural networks, deep MLPs,
long short term memory (LSTM)-based recurrent neural
networks, and graph neural networks. The obtained results
show that these DNN models can provide superior
performance compared to previous models (Yang et al., 2021a;
Yang et al., 2021b).

As mentioned above, various DNNs have been widely used in
EEG-based emotion recognition; however, the training
processes of DNNs often encounter many difficulties. Even if
numerous research studies have been developed to conduct
explanatory research, it is still very far to revealing the
mechanism. As there are singularities in the parameter space
of DNNs where the Fisher information matrix is singular, the
singular learning dynamics of DNNs have been studied and
have attracted more and more attention. As the basis of DNNs,
traditional neural networks often suffer from the serious
influence of various singularities (Amari et al., 2006; Guo
et al., 2018; Guo et al., 2019), and the learning dynamics of
DNNs are also easy to be influenced by the singularities. Nitta
(2016, 2018) analyzed the types of singularity in DNNs and deep
complex-value neural networks. Ainsworth and Shin (2020)
investigated the plateau phenomenon in Relu-based neural
networks. By using the spectral information of Fisher
information matrix, Liao et al. (2020) proposed an algorithm
to accelerate the training process of DNNs.

In view of the serious influence of singularities to DNNs, the
training processes of DNNs will also encounter difficulties when
applying DNNs to EEG-based emotion recognition. Thus, it is
necessary to take the theoretical and numerical analysis to reveal
the mechanism and propose related algorithms to overcome the
influence of singularities.

3 THEORETICAL ANALYSIS OF SINGULAR
LEARNING DYNAMICS OF DEEP
MULTILAYER PERCEPTRONS
In this section, we theoretically analyze the learning dynamics
near singularities of deep MLPs for the EEG-based emotion
recognition.

FIGURE 1 | Architecture of deep MLPs.
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3.1 Learning Paradigm of Deep Multilayer
Perceptrons
Firstly, we introduce a typical learning paradigm of deep MLPs.
For a typical deep multilayer perceptrons with L hidden layers
(the architecture of the networks is shown in Figure 1), assuming
Mi is the neuron number of hidden layer i,M0 is the dimension of
the input layer andML+1 is the dimension of the output layer, we
denote that: W(i)

jk represents the weight connecting from the jth
node of the previous layer to the kth node of hidden layer i, and
W(L+1)

pq represents the weight connecting from the pth node of
hidden layer L to the qth node of output layer for 1 ≤ i ≤ L, 1 ≤ j ≤
Mi−1, 1 ≤ k ≤ Mi, 1 ≤ p ≤ ML, and 1 ≤ q ≤ ML+1. Then θ � {W(1),
W(2), . . ., W(L+1)} represents all the parameters of the networks,
where W(i) � [W(i)

1 ,W(i)
2 , . . . ,W(i)

Mi
] and W(i)

j �
[W(i)

1j ,W
(i)
2j , . . . ,W

(i)
M(i−1)j]T for 1 ≤ i ≤ L + 1 and 1 ≤ j ≤ Mi.

In this paper, the widely used log-sigmoid function ϕ(x) � 1
1+e−x is

adopted as the activation of hidden layers and the purelin
function ψ(x) � x is adopted as the activation function of
output layer, then for the input x ∈ RM0 , by denoting the
input to hidden layer k as X(k−1) for 1 ≤ k ≤ L and the input
to output layer as X(L), the mathematical model of the networks
can be described as follows:

f(x, θ) � ψ((W(L+1))TX(L)) � (W(L+1))TX(L). (1)

For 1 ≤ k ≤ L, X(k) can be computed as X(k) �
ϕ(X(k−1),W(k)) � ϕ((W(k))TX(k−1)) and X(0) is the input x.

We choose the square loss function to measure the error:

l(y, x, θ) � 1
2
(y − f(x, θ))2, (2)

and use the gradient descent method to minimize the loss:

θt+1 � θt − η
zl(y, x, θt)

zθt
, (3)

where η is the learning rate.

3.2 Singularities of Deep Multilayer
Perceptrons in
Electroencephalograph-Based Emotion
Recognition
In this paper, we mainly focus on the mechanism of singular
learning dynamics of deep MLPs applied to EEG-based emotion
recognition domain, not seeking the best performance; therefore,
the size of the networks need not to be very large, and an
appropriate size that can capture the essence of singular
learning dynamics can satisfy the requirement. Without loss of
generality, we choose the deepMLPs with two hidden layers and a
single output neuron, i.e., L � 2 and M3 � 1,
i.e., W(3) � W(3)

1 � [W(3)
11 ,W

(3)
21 , . . . ,W

(3)
M21]T, we simply

denoted as W(3) � [W(3)
1 ,W(3)

2 , . . . ,W(3)
M2

]. Then, the deep
MLPs can be rewritten as:

f(x, θ) � (W(3))Tϕ(ϕ(x,W(1)),W2)
�∑

M2

j�1
W(3)

j ϕ(ϕ(x,W(1)),W(2)
j ). (4)

Next, we analyze the types of singularities. From Eq. 4, we can
see that if one output weight equals zero, e.g.,W(3)

j � 0, whatever
the values ofW(1) andW(2)

j be, the output of unit jwill be always 0

FIGURE 2 | Case 1 (Fast Convergence). (A) Trajectory of training error.
(B) Trajectory of W(3). (C) Trajectory of classification accuracy.
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and the unit seems to be vanished. As the values ofW(1) andW(2)
j

have no effect on the output of the deep MLPs, the training
process will encounter difficulties on the subspace
R1 � {θ|W(3)

j � 0}. Besides the above singularity, if there are
two elements of weight W(2) overlap, e.g., W(2)

i � W(2)
j , then

W(3)
i ϕ(ϕ(x,W(1)),W(2)

i )
+W(3)

j ϕ(ϕ(x,W(1)),W(2)
j )

� (W(3)
i +W(3)

j )ϕ(ϕ(x,W(1)),W(2)
i )

remains the same value when W(3)
i +W(3)

j takes a fixed value,
regardless of particular values of W(3)

i and W(3)
j . Therefore, we

can identify their sum W � W(3)
i +W(3)

j ; nevertheless, each of
W(3)

i andW(3)
j remains unidentifiable. Thus, the training will also

suffer difficulties on the subspace R2 � {θ|W(2)
i � W(2)

j }.
To sum up the above analysis, it can be seen that there are at

least two types of singularities:

(1) Zero weight singularity: R1 � {θ|W(3)
j � 0},

(2) Overlap singularity: R2 � {θ|W(2)
i � W(2)

j }.

Till now, we have theoretically analyzed the types of
singularity that existed in the parameter space of deep MLPs;
in the next section, we will numerically analyze the influence of
singularities to solve EEG-based emotion recognition problem.

4 NUMERICAL ANALYSIS OF LEARNING
DYNAMICS NEAR SINGULARITIES

In this section, we take the numerical analysis of singularities by
taking experiments on the dataset of EEG signals. For the EEG
datasets, the SEED dataset is a typical benchmark dataset that is
developed by SJTU and has been widely used to evaluate the
proposed methods on EEG-based emotion recognition. In this
paper, the training process will be carried out using the SEED
dataset.

4.1 Data Preprocessing
The SEED dataset (Zheng and Lu, 2015) is collected from 62-
channel EEG device and contains EEG signals of three emotions
(positive, neutral, and negative) from 15 subjects. Due to the low
signal-to-noise ratio of raw EEG signals, it is rather necessary to
take the preprocessing step to extract meaningful features. As is
known, there are five frequency bands for each EEG channel:
delta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta (14–30 Hz),
and gamma (31–50 Hz). That means, for one subject, the data are
the form 5 × 62, the dimension of raw EEG signal is very large,
and then we use principal component analysis (PCA) (Abdi and
Williams, 2010) to extract the features of the EEG signal. After the
PCA step, the form of EEG signals becomes 5 × 5, and then by
putting every element of the data to a vector, the dimension of the
input can be finally reduced to be 25.

4.2 Learning Trajectories Near Singularities
Now, we take experiments on the SEED dataset, and the learning
dynamics near singularities will be numerically analyzed. We

choose the neuron numbers of two hidden layers as L1 � 8 and L2
� 8; thus, the architecture of the deepMLPs is 25−8−8−1. As there
are three emotions in the SEED dataset, we set values 1, 2, and 3
corresponding to labels positive, neutral, and negative,
respectively. We choose the training sample number and

FIGURE 3 | Case 2 (Zero weight singularity). (A) Trajectory of training
error. (B) Trajectory of W(3). (C) Trajectory of classification accuracy.
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testing sample number to be 1,000 and 500, respectively. Then, by
setting the learning rate to η � 0.002, the target error to 0.05, and
the maximum epochs to 8,000, we use Eq. 3 to accomplish the
experiment. By analyzing the experiment results, two cases of

learning dynamics will be shown. Besides training error,
classification accuracy is also used to measure the
performance. In the following figures of experiment results,
“◦” and “×” represent the initial state and final state,

FIGURE 4 | Case 3 (Extending training time ofCase 2). (A) Trajectory of
training error. (B) Trajectory of W(3). (C) Trajectory of classification accuracy.

FIGURE 5 | Case 4 (Changing initial value of Case 2). (A) Trajectory of
training error. (B) Trajectory of W(3). (C) Trajectory of classification accuracy.
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respectively. The experiments were run by using Matlab 2013a on
a PC with an Intel Core i7-9700K CPU @3.60 GHz, 32 GB RAM
and NVIDIA GeForce RTX 2070 GPU.

Case 1. Fast convergence: The learning process fast converges to
the global minimum.

For this case, the learning dynamics does not suffer from any
influence of singularity and the parameters fast converge to the
optimal value. The initial value of W(3) is W(3)(0) � [0.8874,
0.6993, 0.5367, −0.9415, −0.8464, −0.9280, 0.3335, −0.7339]T and
the final value of W(3) is W(3) � [3.1443, 2.5868, 2.3291, −1.1544,
−1.2281, −2.9704, 2.9650, −1.8221]T. The experiment results are
shown in Figure 2, which represent the trajectories of training
error, output weights W(3), and classification accuracy,
respectively.

As can be seen from Figure 2A, the learning dynamics quickly
converge to the global minimum and have not been affected by
any singularity.

Case 2. Zero weight singularity: the learning process is affected by
the elimination singularity.

For this case, one output weight crosses 0 during the learning
process and a plateau phenomenon can be obviously observed.
The initial value of W(3) is W(3)(0) � [0.4825, 0.9885, −0.9522,
−0.3505, −0.5004, 0.9749, −0.9111, −0.5056]T, and the final
student parameters are W(3) � [3.0297, 3.1006, −1.7413,
0.1717, −1.9567, 3.5131, −1.9037, −0.9143]T. The experiment
results are shown in Figure 3, which represent the trajectories
of training error, output weightsW(3) and classification accuracy,
respectively.

From Figure 3B, we can see thatW(3)
4 crosses 0 in the learning

process and the learning process is affected by elimination
singularity. During the stage W(3)

4 crosses 0, the plateau
phenomenon can be obviously observed (Figure 3A). Then,
the student parameters escape the influence of elimination
singularity. After the training process, we can see that the
training error is bigger than that in Case 1 and the
classification accuracy is also lower than that in Case 1, which
means that the parameters do not reach the optimum.

Case 3. Extending training time of Case 2.
In this experiment, we only increase the training epochs to

15,000, and the rest of the experiment setup remains the same
with that in Case 2. The experiment results are shown in Figure 4.
Compared to Figure 3, it can be seen that the learning process
that is affected by the zero weight singularity can arrive at the
optimum, but it costs much more time. This means that the zero

weight singularities will greatly reduce the efficiency of
deep MLPs.

Case 4. Changing initial value of Case 2.
In order to confirm that the plateau phenomenon corresponds

to the zero weight singularity, a supplementary experiment is
carried out here where only the initial value of W(3)(0) has been
changed and the rest of the experiment setup remains the same.
The initial value of W(3) is W(3)(0) � [−0.5056, −0.9111, 1.7749,
−0.5004, 1.6495, −0.9522, 0.9885, 1.2825]T, and the final student
parameters areW(3) � [−1.3660, −1.8232, 3.2529, −1.9425, 3.2450,
−1.6325, 1.9452, 3.4158]T. The experiment results are shown in
Figure 5, which represent the trajectories of training error, output
weights W(3), and classification accuracy, respectively. As can be
seen in Figure 5, there is not any weight of W(3) that becomes
zero. Also, no plateau phenomenon can be observed, and the
classification accuracy has reached a comparatively high value. By
comparing the experiment results shown in Figures 3, 5, we can
conclude that the plateau phenomenon is indeed caused by zero
weight singularity.

Remark 1. From the results shown in Figures 2–5 and Table 1,
we can see that the training and testing accuracy in Case 2 is the
lowest. This means that when the training process is affected by
the zero weight singularity, the parameters cannot achieve the
optimum after the same training time with that in fast
convergence case. When we extend the training time in
Case 2, the parameters can escape the influence of zero weight
singularity and finally arrive at the optimum, which is shown in
Case 3. Thus, the points in zero weight singularity are saddle
points, not local minimum. To sum up, the zero weight
singularity will seriously delay the training process, and it is
worthy to investigate algorithms to overcome the influence of
zero weight singularities.

Remark 2. When taking the experiments, we do not observe the
learning dynamics of deep MLPs that are affected by overlap
singularities. The results are in accordance with the conclusion
where we analyze the learning dynamics of shallow neural
networks (Guo et al., 2018); i.e., the overlap singularities
mainly influence the neural networks with low dimension and
the large-scale networks predominantly suffer from zero weight
singularities. Thus, we should pay more attention to how to
overcome the influence of zero weight singularities.

In this section, we have numerically analyzed the learning
dynamics near singularities of deepMLPs for EEG-based emotion
recognition and showed the singular case. We can obtain that the

TABLE 1 | Training and testing classification accuracy.

Iteration number Training
classification accuracy

Testing
classification accuracy

Case 1 8,000 0.948 0.941
Case 2 8,000 0.901 0.894
Case 3 15,000 0.944 0.938
Case 4 8,000 0.924 0.920
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learning dynamics of deep MLPs are mainly influenced by zero
weight singularities and rarely affected by overlap singularities.

5 CONCLUSION AND DISCUSSION

Deep learning technology has been widely used in EEG-based
emotion recognition and has shown superior performance
compared to traditional methods. However, for various DNNs,
there exist singularities in the parameter space, which cause singular
behaviors in the training process. In this paper, we investigate the
singular learning dynamics of DNNs when applied to EEG-based
emotion recognition. By choosing deep MLPs as the learning
machine, we firstly take the theoretical analysis of singularities
of deep MLPs, and obtained that there are at least two types of
singularities: overlap singularity and zero weight singularity. Then,
by doing several experiments, the numerical analysis is taken. The
experiment results show that the learning dynamics of deep MLPs
are seriously influenced by zero weight singularities and rarely
affected by overlap singularities. Furthermore, the plateau
phenomenon is caused by zero weight singularity. Thus, we
should pay more attention to how to overcome the serious
influence of zero weight singularity to improve the efficiency of
DNNs in EEG-based emotion recognition in the future.
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Facial expressions are a vital way for humans to show their perceived emotions.

It is convenient for detecting and recognizing expressions or micro-expressions by

annotating a lot of data in deep learning. However, the study of video-based expressions

or micro-expressions requires that coders have professional knowledge and be familiar

with action unit (AU) coding, leading to considerable difficulties. This paper aims to

alleviate this situation. We deconstruct facial muscle movements from the motor cortex

and systematically sort out the relationship among facial muscles, AU, and emotion to

make more people understand coding from the basic principles:

1. We derived the relationship between AU and emotion based on a data-driven analysis

of 5,000 images from the RAF-AU database, along with the experience of professional

coders.

2. We discussed the complex facial motor cortical network system that generates facial

movement properties, detailing the facial nucleus and the motor system associated

with facial expressions.

3. The supporting physiological theory for AU labeling of emotions is obtained by adding

facial muscle movements patterns.

4. We present the detailed process of emotion labeling and the detection and recognition

of AU.

Based on the above research, the video’s coding of spontaneous expressions and

micro-expressions is concluded and prospected.

Keywords: expressions, micro-expressions, action unit, coding, cerebral cortex, facial muscle

1. INTRODUCTION

Emotions are the experience of a person’s attitude toward the satisfaction of objective things and are
critical to an individual’s mental health and social behavior. Emotions consist of three components:
subjective experience, external performance, and physiological arousal. The external performance
of emotions is often reflected by facial expression, which is an important tool for expressing and
recognizing emotions (Ekman, 1993). Expressing and recognizing facial expressions are crucial
skills for human social interaction. It has been demonstrated by much research that inferences of
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emotion fromfacial expressions are based on facial movement
cues, i.e., muscle movements of the face (Wehrle et al., 2000).

Based on the knowledge of facial muscle movements,
researchers usually described facial muscle movement
objectively by creating facial coding systems, including
Facial Action Coding System (FACS) (Friesen and Ekman,
1978), Face Animation Parameters (Pandzic and Forchheimer,
2003), Maximally Discriminative Facial Movement Coding
System (Izard and Weiss, 1979), Monadic Phases Coding
System (Izard et al., 1980), and The Facial Expression
Coding System (Kring and Sloan, 1991). Depending upon
the instantaneous changes in facial appearance produced
by muscle activity, majority of these facial coding systems
divide facial expressions into different action units (AUs),
which can be used to perform quantitative analysis on
facial expressions.

In addition to facial expression research based on psychology
and physiology, artificial intelligence plays a vital role in affective
computing. Notably, in recent years, with the rapid development
of computer science and technology, the deep learning
methods begin to be widely adopted to detect and recognize
automatically by facial action units and makes automatic
expression recognition possible in practical applications,
including the field of security (Ji et al., 2006), clinical (Lucey
et al., 2010), etc. The boom in expression recognition is attributed
to many labeled expression datasets. For example, EmotioNet
has a sample size of 950,000 (Fabian Benitez-Quiroz et al.,
2016), which is large enough to fit the tens of millions of learned
parameters in deep learning networks. The AU and emotion
labels are the foundation for training the supervised deep
learning networks and evaluating the algorithm performances.
In addition, many algorithms are developed based on AU
because of its importance (Niu et al., 2019; Wang et al.,
2020).

However, the researchers found that ordinary facial
expressions, i.e., macro-expressions, can not reflect a person’s
true emotions all the time. By contrast, the emergence of micro-
expression has been considered as a significant clue to reveal
the real emotion of humans. Studies have demonstrated that
people would show micro-expressions in high-risk situations
when they try to hide or suppress their genuine subjective
feelings (Ekman and Rosenberg, 1997). Micro-expressions
are brief, subtle, and involuntary facial expressions. Unlike
macro-expression, micro-expression lasts only 1/25–1/5 s (Yan
et al., 2013).

Micro-expression spotting and recognition have played
a vital role in defense, suicide intervention, and criminal
investigation. The AU-based study has also contributed to micro-
expressions analysis. For instance, Davison et al. (2018) created
an objective micro-expression classification system based on
AU combinations; Xie et al. (2020) proposed an AU-assisted
graph attention convolutional network for micro-expression
recognition. Micro-expression has the characteristics of short
duration and subtle movement amplitude, which causes that the
manual annotation of ME videos requires the data processing
personnel to view the video sample frame by frame slowly
and attentively. Accordingly, long working hours increase the

risk of errors. Furthermore, the current sample size of micro-
expressions is still relatively small due to the difficulty of
elicitation and annotation.

The prevailing annotation method is to annotate the AU
according to the FACS proposed by Ekman et al. (Friesen
and Ekman, 1978). FACS is the most widely used face coding
system, and the manual is over 500 pages long. The manual
covers Ekman’s detailed explanation of each AU and its
meaning, providing schematics and possible combinations of
AUs. However, when AU is regarded as one of the criteria
for classifying facial expressions (macro-expressions and micro-
expressions), a FACS-certified expert is generally required to
perform the annotation. The lengthymanual and the certification
process have raised the barrier for AU coders.

Therefore, this paper focuses on macro-expression or micro-
expression that responds to genuine emotions and analyzes
the relationship between the cerebral cortex, which controls
facial muscle movements, facial muscles, action units, and
expressions. We theoretically deconstruct AU coding based on
these analyses, systematically highlight the specific regions for
each emotion. Finally, we provide an annotation framework for
the annotator to facilitate the AU coding, expression labeling, and
emotion classification.

This paper is an extended version of our ACM International
Conference on Multimedia(ACM MM) paper (Zizhao et al.,
2021), in which we make a brief guide to coding for spontaneous
expressions and micro-expressions in video, and make the
beginner to code get started as quickly as possible. In this paper,
We discuss in further detail the principles of facial muscle
movement from the brain to the face. Specifically, we show the
cortical network system of facial muscle movement, introduce
the neural pathways of the facial nucleus that control facial
muscles, and the influence of other motor systems on the motor
properties of the face. Secondly, we explain the relationship
between AU and the six basic emotions with a physiological
explanation. Finally, the coding of spontaneous expressions and
micro-expressions is summarized in emotion label and AU
detection and recognition research.

The following of this article is organized as follows:
section 2 introduces the relationship between AU and emotions
through the analysis of 5,000 images in RAF-AU database;
section 3 demonstrates the nervous system of facial muscle
movement; section 4 describes the muscles groups targeting
the facial expression; section 5 exhibits the process of emotion
labeling; section 6 shows detection and recognition research
of AU; section 7 presents our conclusion and perspective
on coding for spontaneous expressions and micro-expressions
in videos.

2. ACTION UNITS AND EMOTIONS

Human muscle movements are innervated by nerves, and the
majority of facial muscle movements are controlled by the
seventh nerve in the brain, the facial nerve (Cranial Nerve VII,
CN VII). The CN VII is divided into five branches, including
the temporal branch, zygomatic branch, buccal branch, marginal
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FIGURE 1 | An overview of relationships of facial muscle, AU and emotion based on facial nerve (Zizhao et al., 2021).

mandibular branch and cervical branch (Drake et al., 2009).
These branches are illustrated in the upper part of Figure 1.

The temporal branch of the CN VII is located in the upper
and anterior part of the auricle and innervates the frontalis,
corrugator supercilii, depressor supercilii, orbicularis oculi. The
zygomatic branch of the CN VII begins at the zygomatic bone
and ends at the lateral orbital angle, innervates the orbicularis
oculi and zygomaticus. The buccal branch of the CNVII is located
in the inferior box area and around the mouth and innervates
the Buccinator, orbicularis oris and other orbicularis muscles.
The marginal mandibular branch of the CN VII is distributed
along the lower edge of the mandible and ends in the descending
depressor anguli oris, which innervates the lower lip and chin
muscles. The cervical branch of the CN VII is distributed in the
cervical region and innervates the platysma.

All facial muscles are controlled by one or two terminal
motor branches of the CN VII, as shown in Figure 1. One
or more muscle movements can constitute AUs, and different
combinations of AUs show a variety of expressions, which
ultimately reflect human emotions. Therefore, it is a complex
process from muscle movements to emotions. We conclude the
relationship between AU and emotion based on the images in
the RAF-AU database (Yan et al., 2020) and the experience of
professional coders.

2.1. The Data-Driven Relationship Between
AU and Emotion
All the data, nearly 5,000 images used to analyze, are from
RAF-AU (Yan et al., 2020). The database consists of face images
collected from social networks with varying covering, brightness,
resolution, and annotated through human crowdsourcing. Six
basic emotions and one neutral emotion were used in the
samples. Crowdsourced annotation is a method, which may help
sag facial expressions in a natural setting by allowing many
observers to tag a target heuristically. Finally, the probability
score that the picture belongs to a specific emotion is calculated.
The database contains about 200,000 facial expressions labeling
because that about 40 independent observers tagged each image.
It should be noted that although the source image materials are
diverse, the judging group of raters is relatively narrow because
the taggers are all students.

The corresponding annotation contains both the expert’s AU
labels and the emotion score obtained from the crowdsourcer’s
label statistics for each image. We analyzed only the contribution
of AUs to the six basic emotions with two methods. One method
is to take the highest score as the emotion of the image and
then combine it with the labeled AU. In this method, repeated
combinations must be removed to avoid the effect on the
results due to the predominance of one sample type, i.e., to

Frontiers in Psychology | www.frontiersin.org 3 January 2022 | Volume 12 | Article 78483476

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Dong et al. Spontaneous Facial Expression Coding

mitigate the effect of sample imbalance. Another is to count the
weighted sum of the contributions of all AUs to the six emotions
without removing repetitions. The pseudocode details of these
twomethods are shown in Algorithms 1 and 2. Tables 1, 2 list the
Top 10 AUs contributing to the six basic emotions, respectively.
From Table 1, it can be seen that the contribution of AU25 is very
high in the six basic emotions, which makes no sense because
the movement of opening the corners of the mouth in AU25 is
caused by the relaxation of the lower lip muscles, the relaxation
of the genital muscles, and the orbicularis oris muscle. According
to our subjective perception, AU25 rarely appears when we have
three emotions: happiness, sadness, and anger. The abnormal top
statistical data in Table 1 may be caused by the shortcomings
of crowdsourced annotations, i.e., the subjective tendency or
random labeling of some individuals.

Algorithm 1

1: Initialization: AU’s contribution array to emotions
C[6][M] = {0}

2: M: Max AU number, N: Number of samples, i = 0.
3: repeat

4: i← i+ 1
5: Split the AU combination into a single AU set
6: Take the maximum score of the six emotions as the

emotion of the sample, defined as E
7: if the combination of AU and emotion E first appears then
8: Add the emotion score of the sample to the emotion AU
9: end if

10: until i > N
11: Calculate the proportion of AU in each emotion
12: Sort C in descending order
Output: Contribution array C

Algorithm 2

1: Initialization: AU’s contribution array to emotions
C[6][M] = {0}

2: M: Max AU number, N: Number of samples, i = 0.
3: repeat

4: i← i+ 1
5: Split the AU combination into a single AU set
6: Add the score of each emotion in the sample to C
7: until i > N
8: Sort C in descending order

Output: Contribution array C

However, there is room for improvement in the results
obtained through the above data-driven approaches. The data-
driven results can be affected by many aspects. Primarily,
by the data source, such as the possible homogeneity of
the RAF-AU database (number of subjects, gender, race,
age, etc.), the uneven distribution of the samples, and the
subjective labels based on human perception resulting from
crowdsourcing annotation. Furthermore, the analysis method we T
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7 TABLE 3 | The relationship between AU and emotion.

Emotion AU

Happiness 1, 6, 12, 14, 26, 27, 28

Surprise 1, 2, 5, 25, 26, 27

Anger 4, 5, 9, 10, 16, 22, 23

Fear 1, 4, 5, 20, 25

Disgust 1, 4, 7, 9, 10, 14, 15, 17, 24, 25

Sadness 1, 4, 14, 15, 17, 43

The bolded AU in the table indicates that the AU is only associated with the corresponding

specific emotion, and not with other emotions.

used is based on a maximum value and probability weighting.
Although straightforward, such analytical approaches represent
the contribution of AU to the six basic emotions, are less
comprehensive. More analysing methods are also needed in
dealing with unbalanced data. In response to the challenges posed
by data and analytical methods to data-driven methods, we could
combine data-driven and experience-driven research methods.
In this way, we could draw on the objectivity of data-driven and
the robustness of experience-driven to realize the construction of
the AU coding system for macro-expressions/micro-expressions.

2.2. The Experience-Driven Relationship
Between AU and Emotion
There usually exists difficulties for the data-driven methods to
analyze with theoretic basis. For example, the typical “black
box” characteristic brings the problem of poor interpretability.
Meanwhile, the results by data-driven are highly dependent on
the quality (noiseless) and quantity (wide and massive) of the
database. By comparison, the experience-driven method, based
on the knowledge of coding and the common sense, is a way
to label emotion. Three advantages are listed below: (1) The
experience-driven method can help reduce the noise by using
coding and common sense knowledge. (2) Experience-driven
method has a reliable theory as a support, making the results
convincing. (3) Experience-driven can often solve most universal
laws with just a few simple formulas. Therefore, we combine
experience-driven and data-driven methods to get the final AU
and emotional relationship summary table, as shown in Table 3,
by using their respective advantages.

Specifically, firstly, based on the analysis results listed in
Tables 1, 2 (data-driven), the preliminary selection is made by
comparing the description and legend of each AU in FACS,
and combining with the meaning of emotion. We obtained a
preliminary AU system for emotion. Then, with large amounts
of facial expression images on search engines such as Google and
Baidu, the preliminary AU system for emotion was screened by
eliminating non-compliant AU in these images. In this way, the
ultimate relationship is shown in Figure 1 and Table 3.

Based on Table 3, we assume that the sets of six basic
emotions containing AU are S1, S2, S3, S4, S5, and S6. Let S =
{S1, S2, S3, S4, S5, S6}, then

Qi = Si\
⋂

j Sj (1)
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FIGURE 2 | Motor neurons from the brain to the muscle.

where i = 1, ..., 6, and j = {1, ..., i − 1, i + 1, ..., 6}.
⋂

is the
intersection operation of the set. \ represents the set of symmetric
difference, for example, we assume that A = {3, 9, 14}, B =
{1, 2, 3}, then A\B = {9, 14}. Qi denotes the AU set that is
exclusive to the Si emotion.

According to Table 3, we can infer that the bloded AU is only
associated with the corresponding specific emotion, and not with
other emotions. See Table 3 in bold for details. Therefore, we can
conclude that the appearance of certain AU represents related
emotion. For instance, if AU20 appears, we assume that fearful
emotion emerges.

3. COMPLEX CORTICAL NETWORKS OF
FACIAL MOVEMENT

The facial motor system is a complex network of specialized
cortical areas dependent on multiple parallel systems,
voluntary/involuntary motor systems, emotional systems, visual
systems, etc., all of which are anatomically and functionally
distinct and all of which ultimately reach the facial nucleus
to govern facial movements (Cattaneo and Pavesi, 2014). The
nerve that emanates from the facial nucleus is the facial nerve.
The facial nerve originates in the brainstem, and its pathway is
commonly divided into three parts: intra-cranial, intra-temporal,
and extra-cranial (see Figure 2).

3.1. Facial Nucleus Controls Facial
Movements
The human facial motor nucleus is the largest of all motor nuclei
in the brainstem. It is divided into two parts: upper and lower.
The upper part is innervated by the motor areas of the cerebral
cortex bilaterally and sends motor fibers to innervate the muscles
of the ipsilateral upper face; the lower part of the nucleus is
innervated by the contralateral cerebral cortex only and sends
motor fibers to innervate the muscles of the ipsilateral lower face.
It contains around 10,000 neurons and consists mainly of the cell
bodies of motor neurons (Sherwood, 2005).

A large number of neurons in the facial nucleus provides
the anatomical basis for the various reflex responses of the
facial muscles to different sensory modalities. For example, in
the classic study by Penfield and Boldrey, it was found that
the sensation of facial movement and the urge/desire to move
the face was elicited by electrical stimulation of the cerebral
cortex, causing movement of different parts of the face, as
well as occurring in the absence of movement. Movements
of the eyebrows and forehead were less frequent than those
of the eyelids, and movements of the lips were the most
frequent (Penfield and Boldrey, 1937).

Another way to assess the mechanism of inhibition within
the cerebral cortex is to study the cortical resting period of
transcranial magnetic stimulation. The cortical resting period is
a period of inactivity called the silent period, when spontaneous
muscle contraction is followed by a pause in myoelectric activity
after the generation of motor evoked potentials by transcranial
magnetic stimulation in the corresponding functional areas of the
cerebral cortex. Studies on facial muscle movements have found
that the silent period occurs after motor-evoked potentials in the
pre-activated lower facial muscles (Curra et al., 2000), (Paradiso
et al., 2005).

3.2. Cortical Systems Controls Facial
Movement
The earliest studies on facial expressions date back to the
nineteenth century. For example, the French neurophysiologist
Duchenne de Boulogne (1806–1875) used electrical stimulation
to study facial muscle activity (Duchenne, 1876). He used this
experimental method to define for the first time expressions
in different emotional states, including attention, relaxation,
aggression, pain, happiness, sadness, cry, surprise, and fear,
showing that each emotional state is expressed with specific
facial muscle activity. Also, Duensing observed that there might
be different neural structures involved between involuntary and
emotional facial movements. Duensing’s theory also influenced
Charles Darwin’s book The expression of the emotions in man and
animals (1872) (Darwin, 1872).

Meanwhile, facial movements depend on multiple parallel
systems that ultimately all reach the facial nucleus to govern facial
movements. We focus on facial movements of expressions or
micro-expressions, and two systems related to them have been
discussed here: the voluntary/involuntary motor system and the
emotional system.
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FIGURE 3 | The somatic motor system. Voluntary and involuntary expressions

are controlled by the pyramidal tract (orange trajectory) and extrapyramidal

tract (green trajectory), respectively.

3.2.1. The Somatic Motor System
According to the form of movement of skeletal muscles,
body movements are divided into voluntary and involuntary
movements. Voluntary movements are emitted from the cortical
centers of the brain and are movements executed according
to one’s consciousness, characterized by sensation followed by
movement; involuntary movements are spontaneous movements
that are not controlled by consciousness, such as chills.
Meanwhile, the neuroanatomical distinction between voluntary
and involuntary expressions has been established in clinical
neurology (Matsumoto and Lee, 1993). Voluntary expressions
are thought to emanate from the cortical motor tract and
enter the facial nucleus through the pyramidal tract; involuntary
expressions originate from innervation along the external
pyramidal tract. See Figure 3.

Most facial muscles are overlapping, rarely contracting
individually, and usually being brought together in synergy.
In particular, these synergistic movements always occur during
voluntary movements. For example, the orbicularis oculi and
zygomaticus have a synergistic effect during the voluntary
closure of the eyelid. In contrast, asymmetric movements
of the face are usually thought to be the result of facial
nerve palsy or involuntary movements (Devoize, 2011), for
example, simultaneous contraction of the ipsilateral frontalis and
orbicularis oculi, i.e., raising the eyebrows and closing the eyes
at the same time. Babinski, a professor of neurology, considers
that combined movements such as these cannot be activated
by central mechanisms and cannot be replicated by volition.
Therefore, facial asymmetry is always considered to be one of the
characteristics of micro-expressions.

3.2.2. The Emotional Motor Systems
Facial expressions are stereotyped physiological responses to
specific emotional states, controlled by the voluntary and somatic
systems controlled by the emotion-motor system (Holstege,
2002). Expression is only one of the somatic motor components

of emotion, which also includes body posture and voice
changes. However, in humans, facial expressions are external
manifestations of emotions and are an essential part of human
non-verbal communication (Müri, 2016), and a significant factor
in the cognitive process of emotion. The emotion-motor pathway
originates in the gray matter around the amygdaloid nucleus,
lateral hypothalamus, and striatum. Most of these gray matter
projects, in turn to the reticular formation to control facial
premotor neurons, and a few project to facial motor neurons to
control facial muscles directly.

In the study of traumatic facial palsy, a separation between
the emotional motor system and the voluntary motor system at
the brainstem level was found between facial movements (Bouras
et al., 2007). It indicates that these two systems are entirely
independent before the facial nucleus. This could be the reason
why it is not possible to generate true emotional expression
through volition. Therefore, emotion elicitation is required
to produce behavioral (expression/micro-expression) responses
through stimuli that induce emotion of the subject. It is relatively
such expressions that have emotional significance. Moreover,
there is also a strong correlation between the different activity
patterns among facial muscles and the emotional valence of
external stimuli (Dimberg, 1982). Similarly, the emotional motor
system and the voluntary motor system interact and confront
each other, and the results of this interaction are usually non-
motor (e.g., motor dissonance) (Bentsianov and Blitzer, 2004).

Similar to the involuntary motor system, there is a small
degree of asymmetry in the facial movements produced by
the emotional motor system. However, the conclusions of this
asymmetry are controversial. Many studies in brain-injured,
emotionally disturbed, or normal subjects have shown that
the majority of emotion expression, recognition, and related
behavioral control is in the right hemisphere; that the right
hemisphere dominates in the production of basic emotions, i.e.,
happiness and sadness, and the left hemisphere dominates in
the production of socially conforming emotions, i.e., jealousy
and complacency; and that the right hemisphere specializes
in negative emotions while the left hemisphere specializes in
positive emotions (Silberman and Weingartner, 1986).

4. THE SPECIFICITY OF THE
RELATIONSHIP BETWEEN FACIAL
MUSCLE AND EMOTIONS

According to Figure 1 and Table 3, we make further analysis of
facial muscle and emotions to guarantee that each emotion can
be targeted at a specific AU.

4.1. The Muscle That Classifies Positive
and Negative Emotions
The basic dimensions for emotions are the two main categories,
positive and negative emotions. Positive emotions are associated
with the satisfaction of demand and are usually accompanied by a
pleasurable subjective experience, which can enhance motivation
and activity. By comparison, negative emotions represent a
negative or aversive emotion such as sadness, disgust, etc., by an
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individual. The zygomaticus is controlled by the zygomatic branch
of the CN VII. The zygomatic branch of the CN VII begins at the
zygomatic bone and ends at the lateral orbital angle, innervates the
orbicularis oculi and zygomaticus. The zygomaticus includes the
zygomaticus major and the zygomaticus minor. The zygomaticus
major begins in the zygomatic bone, and ends at the angulus oris.
The responsibility of zygomaticus is to pull the corners of the
mouth back or up to smile. The zygomaticus minor begins in the
lateral profile of zygomatic bone, and ends at the angulus oris. The
function is to raise the upper lip, such as grinning.

The corrugator supercilii begins in the medial end of the
arch of the eyebrow and ends at the skin of the eyebrow,
which is located at the frontalis and orbicularis oculi muscles
back. It is innervated by the temporal branch of the CN VII.
The contraction of corrugator supercilii depresses the brow and
generates a vertical frown.

It has been found that the corrugator supercilii induced
by unpleasant stimuli is more intense than that induced by
pleasant stimuli, and the zygomaticus is more intense by pleasant
stimuli (Brown and Schwartz, 1980). In a word, pleasant stimuli
usually lead to greater electromyography(EMG) activity in the
zygomaticus, whereas unpleasant stimuli lead to greater EMG
activity in the frowning muscle (Larsen et al., 2003).

In the AU encoding process, zygomaticus activity and
corrugator supercilii activity can reliably recognize positive
emotion and negative emotion respectively. This conclusion also
supports the discrete emotion theory (Cacioppo et al., 2000).
For example, oblique lip-corner contraction (AU12), together
with cheek raising (AU6) can reliably signals enjoyment (Ekman
et al., 1990), while brow furrowing (AU4) tends to signal
negative emotion (Brown and Schwartz, 1980). The correlation
between emotion and facial muscle activity can be summarized
as follows: (1) The main muscle area of the zygomatic is
a reliable discriminating area for positive emotion; (2) The
corrugator muscle area is a reliable identification area for
negative emotion.

As shown in Figure 1, AU4, which is controlled by contraction
of the depressor supercilii and corrugator supercilii, is present in
all negative emotions. Most of the AU associated with happiness
is controlled by the zygomatic branch, which mainly innervates
the zygomatic muscle. Therefore, the coder should focus more on
the cheekbones, i.e., the middle of the face and the mouth if they
want to catch the expressions or micro-expressions elicited by
positive stimuli. For those elicited by negative stimuli, the coder
should focus more on the forehead, i.e., the eyebrows and the
upper part of the face.

4.2. Further Specific Classification of the
Muscles of Negative Emotions
In the six basic emotions, the negative emotions usually
manifested as sadness, disgust, anger and fear, which are all
highly associated with the corrugator supercilii, the brow and
upper region. Therefore, in combination with the lower face,
launching a further distinguishing of these four emotions from
facial muscles is crucial for emotional classification.

4.2.1. Muscle Group Specific for Sadness
The depressor anguli oris begins at the genital tubercle and
the oblique line of the mandible, ends at the angulus oris. It
is innervated by the buccal branch of the CN VII and the
marginal mandibular branch. It serves to depress the angulus
oris. The study found that when the participants produced happy
or sad emotions by recalling, the facial EMG of the frowning
muscle in the sadness was significantly higher than that in
the happiness (Schwartz et al., 1976). This suggests that the
combination of corrugator supercilii and textitdepressor anguli
oris may be effective in classifying sad emotions.

4.2.2. Muscle Group Specific for Fear
The frontalis begins in the epicranial aponeurosis, and extends
to terminates in the skin of the brow and nasal root, and into
the orbicularis oculi and corrugator supercilii. It is innervated
by the auricular posterior nerve and the temporal branch of
the CN VII. The frontalis is a vertical movement that serves to
raise the eyebrows and increase the wrinkles at the level of the
forehead, often seen in expressions of surprise. In expression
coding, the action of raising the inner brow is coded as AU1.
The orbicularis oculi begin in the pars nasalis ossis frontalis, the
frontal eminence of the upper skeleton and the medial palpebral
ligament, surrounds the orbit and ends at the adjacent muscles.
Anatomically it is divided into the orbital and palpebral portions.
It is innervated by the temporal and zygomatic branches of
the CN VII. The function is to close the eyelid. In the study
of the positive intersection of facial expressions and emotional
stimuli, the researchers asked the subjects to maintain the fear
feature of facial muscles, involving corrugator supercilii, frontalis,
orbicularis oculi, and depressor anguli oris (Tourangeau and
Ellsworth, 1979).

4.3. Distinguish the Special Muscle of
Surprise
Surprise is an emotion that is independent of positive and
negative emotions. For example, pleasant surprise, shock, etc.,
fall within the category of surprise. The study of people’s surprise
emotion has been started since Darwin (Darwin, 1872), and it is
ubiquitous in social life and belongs to one of the basic emotions.
Moreover, surprise can be easily induced in the laboratory.

Landis conducted the earliest study of surprising
expressions (Landis, 1924). About 30% of people raised
their eyebrows, and about 20% of people’s eyes widened when a
firecracker landed on the back of the subject’s chair. Moreover,
in discussing the evidence for a strong dissociation between
emotion and facial expression, the research measured facial
movements associated with surprise twice (see experiments
7 and 8). When subjects experienced surprise, the facial
movements were described as frowning, eye-widening, and
eyebrow raising (Reisenzein et al., 2006). Also, in exploring
the distinction in dynamics between genuine and deliberate
expressions of surprise, it was found that all expressions
of surprise consisted mainly of raised eyebrows and eyelid
movements (Namba et al., 2021). The facial muscles involved in
these movements were: corrugator supercilii, orbicularis oculi,
and frontalis. Details are described in section 4.2. The AUs
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associated with these facial muscles and movements include
AU2, AU4, and AU5. As shown in Figure 1 and Table 3.

5. EMOTION LABEL

Expressions are generally divided into six basic emotions,
happiness, disgust, sadness, fear, anger and surprise. Micro-
expressions are usually useful when there is a small negative
micro-expression in a positive expression, such as “nasty-
nice.” For micro-expressions, therefore, they are usually divided
into four types, positive, negative, surprise and other. To be
specific, positive expression includes happy expressions, which
is relatively easy to be induced because of some obvious
characteristics. Negative expressions like disgust, sadness, fear,
anger, etc., are relatively difficult to distinguish, but they are
significantly different from positive expressions. Meanwhile,
surprise, which expresses unexpected emotions that can only be
interpreted according to the context, has no direct relationship
with positive or negative expressions. The additional category,
“Others,” indicates expressions or micro-expressions that have
ambiguous emotional meanings can be classified into the six
basic emotions.

Emotion labeling requires the consideration of the
components of emotions. Generally speaking, we need to
take three conditions into account for the emotional facial
action: AU label, elicitation material, and the subject’s self-
report of this video. Meanwhile, the influence of some habitual
behaviors should be eliminated, such as frown when blinking
or sniffing.

5.1. AU Label
For AU annotation, the annotator needs to be skilled in the
facial coding system and watches the videos containing facial
expression frame by frame. The three crucial frames for AU are
the start frame (onset), peak frame (apex), and end frame (offset).
Then we can get the expression time period for labeling AU.
The start frame represents the time where the face changes from
neutral expression. The peak frame is the time with the greatest
extent of that facial expression. The end frame is the time where
the expression ends and returns to neutral expression.

5.2. Elicitation Material
Spontaneous expressions have high ecological validity compared
to posed expressions and are usually elicited with elicitation
material. In psychology, researchers usually use different
emotional stimuli to induce emotions with different properties
and intensities. A stimulus is an important tool for inducing
experimental emotions. We use stimuli materials, usually from
existing emotional materials databases, to elicit different types of
emotions of the subject.

5.3. Subject’s Self-Report of This Video
After watching the video, the subjects need to evaluate the
video according to their subjective feelings. This self-report
is an effective means of testing whether emotions have been
successfully elicited.

5.4. Reliability of Label
In order to ensure the validity or reliability of data annotation,
the process of emotion labeling usually requires the participation
of two coders and the calculation of inter-coders confidence must
exist in a proper range. The formula is as follows 2:

R =
N ×

∣

∣

∣

⋂N
i=1 Ci

∣

∣

∣

∣

∣

∣

⋃N
i=1 Ci

∣

∣

∣

(2)

where Ci represents the set of labeled emotions in the facial
expression images by coder i(2≤i≤N), respectively, and | · |
represents the number of labeled emotion in the set after the
intersection or merge operations.

The reason is that in the process of annotation, the coders
must make subjective judgments based on their expertise. In
order to make these subjective judgments as similar as possible
to the perceptions of the majority of people, inter-rater reliability
is of paramount importance. Inter-rater reliability is a necessary
step for the validity of content analysis (emotion labeling)
research. The conclusions of data annotation are questionable or
even meaningless without this step.

It is mentioned above show that emotion labeling is a complex
process, which needs coders to have the expertise with both
psychology and statistics, increasing the threshold for being a
coder. So we tried to find a direct relationship between emotions
and facial movements to identify specific regions of emotions, as
shown in Figure 1.

6. DETECTION AND RECOGNITION OF AU

Facial muscles possess complex muscle patterns. Researchers
have developed facial motion coding systems, video recordings,
electromyography, and other methods to study and analyze facial
muscle contractions.

The FACS coding system developed by Friesen and Ekman
(1978) is based on the anatomical structure of facial muscles and
is composed of all visible facial motion units AU under different
intensities. So far, more than 7,000 AU combinations have been
found in a large number of expressions. However, even for FACS
coders, such labeling is time-consuming and labor-intensive.

Since then, the researchers have made some automatic
coding attempts. For example, by analyzing the images in the
video, it can automatically detect, track and classify the AU
or AU combination that causes facial expressions (Lien et al.,
2000). Nevertheless, unfortunately, image quality is especially
susceptible to illumination, which, to some extent, limits such
visible spectrum imaging technology.

To surmount such problem, researchers used facial
electromyography, which is widely used in clinical research, to
record AUmuscle electrical activity (even visually imperceptible).
This technique is susceptible to measuring the dynamics and
strength of muscle contractions (Delplanque et al., 2009).
However, there still exist some shortcomings: objective factors
such as electrode size and position, epidermal cleanliness,
and muscle movement methods, may interfere with the
accuracy of the final experimental results and cause deviations
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in experimental conclusions. What’s more, the number of
muscles related to AU should theoretically be as much as that
of electrodes, which also makes EMG a severe limitation as a
non-invasive method.

Additionally, thermal imaging technology has also been
applied to the study of facial muscle contraction and AU.
Research has demonstrated that muscle contraction can cause
skin temperature to increase (González-Alonso et al., 2000).
For this reason, Jarlier et al. took thermal imaging as a tool
to investigate specific facial heat patterns associated with the
production of facial AUs (Jarlier et al., 2011). Therefore, thermal
images can be used to detect and evaluate specific facial
muscle thermal patterns (the speed and intensity of muscle
contraction). Furthermore, this method avoids the lighting
problems encountered when using traditional cameras and the
influence of electrodes when using EMG.

7. CONCLUSION

In this article, with the help of statistical analysis, a data-driven
approach is used to obtain a quantifiable system between AU and
emotion. And then, we further obtain a robust correspondence
system between AU and emotion by combining with an
empirically driven comparison to actual data (from the web). In
the next part, we introduce the cortical system that controls facial
movements. Moreover, the physiological theoretical support for
AU labeling of emotions was obtained by adding facial muscle
movements. Finally, we sort out the process of emotion label
and the research of AU recognition and detection. The main
manifestations are listed below:

Based on the Figure 1 and Table 3, the theories of sections 3
and 4, we sum up the main points of coding in the article:

1. When corners of lips pulled up (AU12) appears, it can be
coded as a positive emotion, i.e., happy; In addition, cheek rise
(AU6), lip suck (AU28) are both happy specific action units
and can also be coded as positive emotions;

2. When brow rise (AU2) is present, it can be coded as surprise;
3. When frown (AU4) is present, it can be coded as a negative

emotion;
4. It can be coded as anger when gnashing (AU16, AU22 or

AU23), which only occur in the specific action units, appear;

5. When movements of the eyebrows (AU1 and AU4), eyes
(AU5) and mouth (AU25) are present simultaneously, they
can be coded as fear;

6. It can be coded as disgusted when the specific action unit of
disgust, lower eyelid rise (AU7), mouth tightly closed (AU24),
is present;

7. It can be coded as sad when frown (AU4) and eyes wide open
(AU5) are present at the same time; eyes closed (AU43) is
the specific action unit for sadness and can also be coded as
sadness.
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Facial action unit (AU) detection is an important task in affective computing and

has attracted extensive attention in the field of computer vision and artificial

intelligence. Previous studies for AU detection usually encode complex regional

feature representations with manually defined facial landmarks and learn to model the

relationships among AUs via graph neural network. Albeit some progress has been

achieved, it is still tedious for existing methods to capture the exclusive and concurrent

relationships among different combinations of the facial AUs. To circumvent this issue,

we proposed a new progressive multi-scale vision transformer (PMVT) to capture the

complex relationships among different AUs for the wide range of expressions in a

data-driven fashion. PMVT is based on the multi-scale self-attention mechanism that

can flexibly attend to a sequence of image patches to encode the critical cues for

AUs. Compared with previous AU detection methods, the benefits of PMVT are 2-fold:

(i) PMVT does not rely on manually defined facial landmarks to extract the regional

representations, and (ii) PMVT is capable of encoding facial regions with adaptive

receptive fields, thus facilitating representation of different AU flexibly. Experimental results

show that PMVT improves the AU detection accuracy on the popular BP4D and DISFA

datasets. Compared with other state-of-the-art AU detection methods, PMVT obtains

consistent improvements. Visualization results show PMVT automatically perceives the

discriminative facial regions for robust AU detection.

Keywords: affective computing, facial action unit recognition, multi-scale transformer, self-attention, cross-

attention

1. INTRODUCTION

Facial expression is a natural way for non-verbal communication in our daily life and can be
considered as an intuitive illustration of human emotions and mental states. There are some
popular facial expression topics categorized as discrete facial expression categories, facial micro-
expression, and the Facial Action Coding System (FACS) (Ekman and Friesen, 1978). Among
them, FACS is the most comprehensive, anatomical system for encoding expression. FACS defines
a detailed set of about 30 atomic non-overlapping facial muscle actions, i.e., action units (AUs).
Almost any anatomical facial muscle activity can be introduced via a combination of facial AUs.
Automatic AU detection has drawn significant interest from computer scientists and psychologists
over recent decades, as it holds promise to several practical applications (Bartlett et al., 2003; Zafar
and Khan, 2014), such as human affect analysis, human-computer interaction, and pain estimation.
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Thus, a reliable AU detection system is of great importance for
the analysis of fine-grained facial expressions.

In FACS, different AUs are tightly associated with different
facial muscles. It actually means we can observe the active AUs
from specific facial regions. For example, the raising of the
inner corners of the eyebrows means activated AU1 (inner brow
raiser). Lowering the inner corners of the brows corresponds to
AU4 (brow lowerer). AU annotators are ofter unable to describe
the precise location and the facial scope of the AUs due to
the ambiguities of the AUs and individual differences. Actually,
the manually defined local AU regions are ambiguous. Existing
methods (Li et al., 2017a,b, 2018a,b; Corneanu et al., 2018; Shao
et al., 2018; Jacob and Stenger, 2021) usually use artificially
define rectangle local regions, or use adaptive attention masks
to focus on the expected local facial representations. However,
the rectangle local regions violate the actual appearance of the
AUs. Moreover, several AUs are simultaneously correlated with
multiple and fine-grained facial regions. The learned adaptive
attention masks fail to perceive the correlations among different
AUs. Therefore, it is critical to automatically learn the AU-
adaptive local representations and perceive the dependencies of
the facial AUs.

To mitigate this issue, we introduce a new progressive
multi-scale vision transformer (PMVT) to capture the complex
relationships among different AUs for the wide range of facial
expressions in a data-driven fashion. PMVT is based on the
multi-scale self-attention mechanism that can flexibly attend
to a sequence of image patches to encode the critical cues
for AU detection. Currently, vision transformers (Dosovitskiy
et al., 2020; Li et al., 2021) have shown promising performance
across several vision tasks. The vision transformer models
contain MSA mechanisms that can flexibly attend to a sequence
of image patches to encode the dependencies of the image
patches. The self-attention in the transformers has been shown
to effectively learn global interactions and relations between
distant object parts. A series of works on various tasks such as
image segmentation (Jin et al., 2021), object detection (Carion
et al., 2020), video representation learning (Girdhar et al., 2019;
Fang et al., 2020) have verified the superiority of the vision
transformermodels. Inspired by CrossViT (Chen et al., 2021) that
processes the input image tokens with two separate transformer
branches, our proposed PMVT firstly uses the convolutional
neural network (CNN) to encode the convolutional AU feature
maps. Then PMVT obtains the multi-scale AU tokens with
the small-patch and large-patch branches. The two branches
receive different scale AU tokens and exchange semantic AU
information via a cross attention mechanism. The self-/cross-
attention mechanisms facilitate PMVT the content-dependent
long-range interaction perceiving capabilities. Thus, PMVT can
flexibly focus on the region-specific AU representations and
encode the correlations among different AUs to enhance the
discriminability of the AU representations. Figure 1 shows the
attention maps of several faces. It is clear that PMVT is capable of
focusing on the critical and AU-related facial regions for a wide
range of identities and races. More facial examples and detailed
explanations can be seen in section 4.2.1.

In summary, the contributions of this study are as follows:

1. We introduce a PMVT for facial AU detection. PMVT does
not rely on manually defined facial landmarks to extract the
regional AU representations.

2. To further enhance the discriminability of the facial
expression representation, PMVT consists of separate
transformer branches that receive the multi-scale AU tokens
as input. PMVT is capable of encoding multi-scale facial
AU representations and perceiving the correlations among
different AUs to facilitate representing different AU flexibly.

3. Experimental results demonstrate the advantages of the
proposed PMVT over other state-of-the-art AU detection
methods on two popular AU datasets. Visualization results
show that PMVT is superior in perceiving and capturing the
AU-specific facial regions.

2. RELATED WORK

We focus on the previous studies considering two aspects that are
tightly related to the proposed PMVT, i.e., the facial AU detection
and vision transformer.

2.1. Methods for Facial AU Detection
Action units detection is a multi-label classification problem and
has been studied for decades. Several AU detection methods
have been proposed (Zhao et al., 2016; Li et al., 2017a,b; Shao
et al., 2018; Li and Shan, 2021). To achieve higher AU detection
accuracy, different hand-crafted features have been used to
encode the characteristics of AUs, such as Histogram of Oriented
Gradient (HOG), local binary pattern (LBP), Gabor (Benitez-
Quiroz et al., 2016) etc. Recently, AU detection has achieved
considerable improvements due to deep learning. Since AU
corresponds to the movement of facial muscles, many methods
detect the occurrence of AU based on location (Zhao et al.,
2016; Li et al., 2017a,b; Shao et al., 2018). For example, Zhao
et al. (2016) used a regionally connected convolutional layer
and learned the region-specific convolutional filters from the
sub-areas of the face. EAC-Net (Li et al., 2017b) and ROI (Li
et al., 2017a) extracted AU features around the manually defined
facial landmarks that are robust with respect to non-rigid shape
changes. SEV-Net (Yang et al., 2021) utilized the AU semantic
description as auxiliary information for AU detection. Jacob and
Stenger (2021) used a transformer-based encoder to capture the
relationships between AUs. However, these supervised methods
rely on precisely annotated images and often overfit on a specific
dataset as a result of insufficient training images.

Recently, weakly-supervised (Peng and Wang, 2018; Zhao
et al., 2018) and self-supervised (Wiles et al., 2018; Li et al., 2019b,
2020; Lu et al., 2020) methods have attracted a lot of attention to
mitigate the AU data scarcity issue. Weakly supervised methods
typically use the incomplete AU annotations and learn AU
classifiers from the prior knowledge between facial expression
and facial AU (Peng and Wang, 2018). The self-supervised
learning approaches usually adopt pseudo supervisory signals to
learn facial AU representation without manual AU annotations
(Li et al., 2019b, 2020; Lu et al., 2020). Among them, Lu et al.
(2020) proposed a triplet ranking loss to learn AU representations
via capturing the temporal AU consistency. Fab-Net (Wiles et al.,
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FIGURE 1 | Attention maps of some faces. Our proposed PMVT is capable of capturing the AU-specific facial regions for different identities with diverse

facial expressions.

2018) was optimized to map a source facial frame to a target facial
frame via estimating an optical flow field between the source
and target frames. TCAE (Li et al., 2019b) was introduced to
encode the pose-invariant facial AU representation via predicting
separate displacements for pose and AU and using the cycle
consistency in the feature and image domains simultaneously.

Our proposed PMVT differs from previous CNN-based
or transformer-based (Jacob and Stenger, 2021) AU detection
methods in two ways. One, PMVT does not rely on facial
landmarks to crop the regional AU features. It is because the facial
landmarks may suffer from considerable misalignments under
severe facial poses. Under this condition, the encoded facial
parts are not part-aligned and will lead to incorrect results. Two,
PMVT is themulti-scale transformer-based and the self-attention
and cross-attention mechanisms in PMVT can flexibly focus on a
sequence of image fragments to encode the correlations among
AUs. PMVT is potentially to obtain better facial AU detection
performance than previous approaches. We will verify this in
section 4.

2.2. Vision Transformer
Self-attention is capable of improving computer vision models
due to its content-dependent interactions and parameter-
independent scaling of the receptive fields, in contrast to
previous parameter-dependent scaling and content-independent
interactions of convolutions. Recently, self-attention-based
transformer models have greatly facilitated research in machine
translation and natural language processing tasks (Waswani
et al., 2017). Transformer architecture has become the de-
facto standard for a wide range of applications. The core
intuition of the original transformer is to obtain self-attention by
comparing a feature to all other features in the input sequence.

In detail, features are first encoded to obtain a query (Query)
andmemory [(including key (Key) and value (Value)] embedding
via linear projections. The product of Query with Key is used
as the attention weight for Value. A position embedding is also
introduced for each input token to remember the positional
information which will be lost in the transformer, which is
especially good at capturing long-range dependencies between
tokens within an input sequence.

Inspired by this, many recent studies use transformers in
various computer vision tasks (Dosovitskiy et al., 2020; Li
et al., 2021). Among them, ViT (Dosovitskiy et al., 2020)
introduces to view an image as a sequence of tokens and
conduct image classification with a transformer encoder. To
obtain the input patch features, ViT partition the input image
into non-overlapping tokens with 16 × 16 spatial dimension
and linearly project the tokens to match the encoder’s input
dimension. DeiT (Touvron et al., 2021) further proposes
the data-efficient training and distillation for transformer-
based image classification models. DETR (Carion et al., 2020)
introduces an excellent object detection model based on the
transformer, which considerably simplifies the traditional object
detection pipeline and obtains comparable performances with
prior CNN-based detectors. CrossViT (Chen et al., 2021) encodes
small-patch and large-patch image tokens with two exclusive
branches and these image tokens are then fused purely by a
cross-attention mechanism. Subsequently, transformer models
are further extended to other popular computer vision tasks
such as segmentation (Jin et al., 2021), face recognition (Li
et al., 2021), and 3D reconstruction (Lin et al., 2021). In
this study, we extend CrossViT to facial AU detection and
show its feasibility and superiority on two publicly available
AU datasets.
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FIGURE 2 | The main idea of the proposed progressive multi-scale vision transformer (PMVT). With the encoded convolutional feature map Xcon, PMVT uses L and S

branch transformer encoders that each receives tokens with different resolutions as input. The two branches will be fused adaptively via cross-attention mechanism.

3. METHOD

Figure 2 illustrates the main idea of the proposed PMVT. Given
an input face, PMVT first extracts its convolutional feature
maps via a commonly-used backbone network. Second, PMVT
encodes the discriminative facial AU feature by the multi-scale
transformer blocks. We will first review the traditional vision
transformer and present our proposed PMVT afterward.

3.1. Revisiting Vision Transformer
We first revisit the critical components in ViT (Dosovitskiy et al.,
2020) that mainly consist of image tokenization and several layers
of the token encoder. Each encoder consists of two layers, i.e.,

multi-head self-attention (MSA) layer and feed-forward network
(FFN) layer.

Traditional vision transformer typically receives a sequence
of image patch embeddings as input. To obtain the token
embeddings, ViT encodes the input image X ∈ R

H×W×C

into a set of flattened two-dimensional image patches: Xp ∈

R
N×P2×C. Among the mathematic symbols, H W, C denote the

height, width, channel of the input image X. P means the spatial
resolution of each image patch Xp. After the image tokenization,

we can obtain N =
H×W
P2

patches that will be treated as the
sequential input for the transformer. These image patches are
then flattened and projected to embeddings with a size of S.
Typically, ViT adds an extra class token that will be concatenated
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with the image embeddings, resulting in the input sequence
with a size of Xt ∈ R

(N+1)×S. Finally, the class token will
serve as the image representation that will be used for image
classification. ViT uses a residual connection for each encoder.
The computation in each encoder can be formulated as:

Xt
′
= LN(Xt +MSA(Xt)), (1)

Y = LN(Xt
′
+ FFN(Xt

′)), (2)

whereXt andY denote the input and output of the encoder.Xt
′ is

the output of theMSA layer. LNmeans layer normalization.MSA
means multi-head self-attention which will be described next.

For the self-attention module in ViT, the sequential input
tokens Xt ∈ R

(N+1)×S are linearly transformed into Query, Key,
Value spaces. Typically, Query ∈ R

(N+1)×S, Key ∈ R
(N+1)×S,

Value ∈ R
(N+1)×S. Afterward, a weighted sum over all values in

the sequential tokens is computed as,

Attention(Quey,Key,Value) = softmax(
Query× KeyT

√
S

)Value.

(3)

Then a linear projection is conducted to the weighted values
Attention(Quey,Key,Value). MSA is a natural extension of the
single-head self-attention described above. MSA splits Query,
Key,Value for h times and performs the self-attentionmechanism
in parallel, then maps their concatenated outputs via linear
transformation. In addition to the MSA module, ViT exploits
the FFN module to conduct dimension adjustment and non-
linear transformation on each image token to enhance the
representation ability of the transformed tokens.

3.2. Progressive Multi-Scale Transformer
The direct tokenization of input images into large patches in
ViT has been found to show its limitations (Yuan et al., 2021).
On the one hand, it is difficult to perceive the important low-
level characteristics (e.g., edges, colors, corners) in images; On the
other hand, large CNNkernels for the image tokenization contain
too many trainable parameters and are often difficult to optimize,
and thus, ViT requires much more training samples. This is
particularly impartial for facial AU detection. As AU annotation
is time-consuming, cumbersome, and error-prone. Currently,
the publicly available AU datasets merely contain limited facial
images. To cope with this issue, we exploit the popular ResNet-
based backbone to encode the input facial image X to obtain
the convolutional feature map Xcon = F(X), where F means the
neural operation in the backbone network.

To obtain multi-scale tokens from Xcon, we use two separate
branch transformer encoder that each receives tokens with
different resolution as input. We illustrate the main idea of our
proposed PMVT in Figure 2. Mathematically speaking, let us
denote the two branches as L and S , respectively. In PMVT,
the L branch uses coarse-grained token as input while the S

branch directly operates at a much more fine-grained token.
Both branches are adaptively fused K times via a cross-attention
mechanism. Finally, PMVT exploits the CLS token of the L

and S branches for facial AU detection. For each token within

each branch, PMVT introduces a trainable position embedding.
Note that we can use multiple multi-scale transformer encoders
(MST) or perform cross-attention times within each MST. We
will analyze the performance variations in section 4.2.1.

Figure 3 illustrates the cross-attention mechanism in PMVT.
To effectively fuse the multi-scale AU features, PMVT utilizes
the CLS token at each branch (e.g., L branch) as an agent to
exchange semantic AU information among the patch tokens from
the other branch (e.g., S branch) and then project the CLS
token back to its own branch (e.g., L branch). Such operation
is reasonable because the CLS token in L or S branch already
learns semantic features among all patch tokens in its own
branch. Thus, interacting with the patch tokens at the other
branch can absorb more semantic AU information at a different
scale. We hypothesize such cross-attention mechanism will help
learn discriminative AU features as different AU usually have
different appearance scopes and there exist correlations among
the facial AUs. The multi-scale features will help encode AUs
more precisely and PMVT will encode the AU correlations with
the self-/cross-attention mechanism.

Take L for example to show the cross-attention mechanism
in PMVT. Specially, PMVT uses the CLS token Xl

cls
from the L

branch and patch tokens the Xs
i from S branch for feature fusing.

PMVT usesXl
cls
to obtain a query and useXs

i to obtain the key and
value. The query, key, value will be transformed into a weighted
sum overall values in the sequential tokens as that in Equation
(3). Notably, such a cross-attention mechanism is similar to self-
attention except that the query is obtained from the CLS token in
another transformer branch. In Figure 3, f (.) and g(.) mean linear
projections that aim the alignment of the feature dimension.
We will evaluate the effectiveness of the proposed PMVT in the
next section.

3.3. Training Objective
We utilize the multi-label sigmoid cross-entropy loss for
training the facial AU detection model in PMVT, which can be
formulated as:

L
AU

= −

J
∑

j

zj log ẑj + (1− zj) log(1− ẑj), (4)

where J denotes the number of facial AUs. zj denotes the j-th
ground truth AU annotation of the input AU sample. ẑj means
the predicted AU score. zi ∈ {0, 1} denotes the annotation with
respect to the ith AU. 1 means the AU is active, 0 means inactive.

4. EXPERIMENT

4.1. Implementation Details
We adopted ResNet-34 (He et al., 2016) as the backbone network
for PMVT due to its elegant network structure and excellent
performance in image classification. We chose the output of
the third stage as the convolutional feature maps: Xcon ∈

R
14×14×512. For the L branch, the token size is set as N =

5 × 5 via adaptative pooling operation. For the S branch, the
token size is set as N = 14 × 14. The pre-trained model
based on the ImageNet dataset was used for initializing the
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FIGURE 3 | The main idea of the cross-attention in PMVT. In this study, we show that PMVT utilizes the classification (CLS) token at the L branch as an agent to

exchange semantic AU information among the patch tokens from the S branch. PMVT can also use the CLS token at S to absorb information among the tokens from

the L branch.
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backbone network. For the transformer part, we use one layer
of transformer encoder that consists of two-layer cross-attention.
We exploited a batch-based stochastic gradient descent method
to optimize the proposed PMVT. During the training process,
we set the batch size as 64 and the initial learning rate as 0.002.
The momentum was set as 0.9 and the weight decay was set
as 0.0005.

4.1.1. Datasets
For AU detection, we adopted BP4D (Zhang et al., 2013) and
DISFA (Mavadati et al., 2013) datasets. Among them, BP4D
is a spontaneous FACS dataset that consists of 328 videos for
41 subjects (18 men and 23 women). Eight different tasks are
evaluated on a total of 41 participants, and their spontaneous
facial expression variations were recorded in several videos.
Each participant subject is involved in eight sessions, and their
spontaneous facial expressions were captured in both 2D and
3D videos. A total of 12 AUs were annotated for the 328
videos, and there are approximately 1,40,000 frames with AU
annotations. DISFA contains 27 participants that consists of 12
women and 15 men. Each subject is asked to watch a 4-min
video to elicit their facial AUs. The facial AUs are annotated
with intensities from 0 to 5. In our experiments, we obtained
nearly 1,30,000 AU-annotated images in the DISFA dataset by
considering the images with intensities greater than 1 as active.
For BP4D and DISFA datasets, the images are split into 3-
fold in a subject-independent manner. Based on the datasets,
we conducted 3-fold cross-validation. We adopted 12 AUs in
BP4D and 8 AUs in DISFA dataset for evaluation. For the DISFA
dataset, we leveraged the model trained on BP4D to initialize the
backbone network, following the same experimental setting of
Li et al. (2017b).

4.1.2. Evaluation Metric
We adopted F1-score (F1 =

2RP
R+P ) to evaluate the performance of

the proposed AU detection method, where R and P, respectively,
denote recall and precision. We additionally calculated the
average F1-score over all AUs (AVE) to quantitatively evaluate
the overall facial AU detection performance. We show the AU
detection results as F1× 100.

4.2. Experimental Results
We compare the proposed with the state-of-the-art facial AU
detection approaches, including DRML (Zhao et al., 2016), EAC-
Net (Li et al., 2017b), ROI (Li et al., 2017a), JAA-Net (Shao
et al., 2018), OFS-CNN (Han et al., 2018), DSIN (Corneanu et al.,
2018), TCAE (Li et al., 2019b), TAE (Li et al., 2020), SRERL
(Li et al., 2019a), ARL (Shao et al., 2019), SEV-Net (Yang et al.,
2021), and FAUT (Jacob and Stenger, 2021). Among them, most
of the AU methods (Li et al., 2017a, 2019a; Corneanu et al., 2018;
Shao et al., 2018) manually crop the local facial regions to learn
the AU-specific representations with exclusive CNN branches.
TAE (Li et al., 2020) utilize unlabeled videos that consist of
approximately 7,000 subjects to encode the AU-discriminative
representation without AU annotations. SEV-Net (Yang et al.,
2021) introduce the auxiliary semantic word embedding and
visual feature for AU detection. FAUT (Jacob and Stenger, 2021)

introduce an AU correlation network based on a transformer
architecture to perceive the relationships between different AU
in an end-to-end manner.

Table 1 shows the AU detection results of our method
and studies works on the BP4D dataset. Our PMVT achieves
comparable AU detection accuracy with the best state-of-the-
art AU detection methods in the average F1 score. Compared
with other methods, PMVT obtains consistent improvements
in the average accuracy (+14.6% over DRML, +7.0% over
EAC-Net, +6.5% over ROI, +2.9% over JAA-Net, +4.0% over
DSIN, +6.8% over TCAE, +2.6% over TAE). The benefits of
our proposed PMVT over other methods can be explained in
2-fold. First, PMVT explicitly introduces transformer modules
in the network structure. The self-attention mechanism in
the transformer modules is capable of perceiving the local to
global interactions between different facial AUs. Second, we
use multi-scale features to better encode the regional features
of the facial AUs, as different AUs have different appearance
scopes. The cross-attention mechanism between the multi-
scale features is beneficial for learning discriminative facial
AU representations. Table 2 shows the quantitative facial AU
detection results of our PMVT and other methods on the
DISFA dataset. PMVT achieves the second-best AU detection
accuracy compared with all the state-of-the-art AU detection
methods in the average F1 score. In detail, PMVT outperforms
EAC-Net, JAA-Net, OFS-CNN, TCAE, TAE, SRERL, ARL,
and SEV-Net with +12.4%, +4.9%, +9.5%, +7.3%, +15.9%,
+9.4%, +5.0%, +2.2%, and +2.1% improvements in the
average F1 scores. The consistent improvements over other
methods on the two popular datasets verify the feasibility and
superiority of our proposed PVMT. We will carry out an
ablation study to investigate the contribution of the self-/cross-
attention in PVMT and illustrate visualization results in the
next section.

4.2.1. Ablation Study
We illustrate the ablation study experimental results in Table 3.
In Table 3, we show the AU detection performance variations
with different cross-attention layers (CL = 1, 2, 3) in the multi-
scale transformer encoder and with different layers of multi-scale
transformer encoders (MS = 1, 2, 3).

As shown in Table 3, PMVT shows its best AU detection
performance with CL = 2 and MS = 1. It means PMVT
merely contains one layer of the multi-scale transformer encoder,
and the encoder contains two layers of cross-attention. With
more MST encoders, PMVT will contain too many trainable
parameters and will suffer from insufficient training images.
With CL = 1 or CL = 3, PMVT shows degraded
AU detection performance, and it suggests that information
fusion should be performed twice to achieve the discriminative
AU representations.

We additionally show the attention maps of PMVT on some
randomly sampled faces in Figure 4. The visualization results
show the benefits of the proposed PMVT for robust facial AU
detection. It is obvious that PVMT shows consistent activation
maps for each face under different races, expressions, lightings,
and identities. For example, the third face in the second row
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TABLE 1 | Action unit (AU) detection performance of our proposed progressive multi-scale vision transformer (PMVT) and state-of-the-art methods on the BP4D dataset.

Methods AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 AVE

LSVM (Fan et al., 2008) 23.2 22.8 23.1 27.2 47.1 77.2 63.7 64.3 18.4 33.0 19.4 20.7 35.3

DRML (Zhao et al., 2016) 36.4 41.8 43.0 55.0 67.0 66.3 65.8 54.1 33.2 48.0 31.7 30.0 48.3

EAC-Net (Li et al., 2017b) 39.0 35.2 48.6 76.1 72.9 81.9 86.2 58.8 37.5 59.1 35.9 35.8 55.9

ROI (Li et al., 2017a) 36.2 31.6 43.4 77.1 73.7 85.0 87.0 62.6 45.7 58.0 38.3 37.4 56.4

JAA-Net (Shao et al., 2018) 47.2 44.0 54.9 77.5 74.6 84.0 86.9 61.9 43.6 60.3 42.7 41.9 60.0

DSIN (Corneanu et al., 2018) 51.7 40.4 56.0 76.1 73.5 79.9 85.4 62.7 37.3 62.9 38.8 41.6 58.9

TCAE (Li et al., 2019b) 43.1 32.2 44.4 75.1 70.5 80.8 85.5 61.8 34.7 58.5 37.2 48.7 56.1

TAE (Li et al., 2020) 47.0 45.9 50.9 74.7 72.0 82.4 85.6 62.3 48.1 62.3 45.9 46.3 60.3

SRERL (Li et al., 2019a) 46.9 45.3 55.6 77.1 78.4 83.5 87.6 63.9 52.2 63.9 47.1 53.3 62.9

ARL (Shao et al., 2019) 45.8 39.8 55.1 75.7 77.2 82.3 86.6 58.8 47.6 62.1 47.4 55.4 61.1

FAUT (Jacob and Stenger, 2021) 51.7 49.3 61.0 77.8 79.5 82.9 86.3 67.6 51.9 63.0 43.7 56.3 64.2

SEV-Net (Yang et al., 2021) 58.2 50.4 58.3 81.9 73.9 87.8 87.5 61.6 52.6 62.2 44.6 47.6 63.9

PMVT (Ours) 59.3 43.0 59.3 82.3 73.6 82.6 86.1 57.6 53.0 60.2 47.9 50.6 62.9

The highest values are illustrated in Bold format.

TABLE 2 | Action unit detection performance of our proposed PMVT and state-of-the-art methods on the DISFA dataset.

Methods AU1 AU2 AU4 AU6 AU9 AU12 AU25 AU26 ave

DRML (Zhao et al., 2016) 17.3 17.7 37.4 29.0 10.7 37.7 38.5 20.1 26.7

EAC-Net (Li et al., 2017b) 41.5 26.4 66.4 50.7 80.5 89.3 88.9 15.6 48.5

JAA-Net (Shao et al., 2018) 43.7 46.2 56.0 41.4 44.7 69.6 88.3 58.4 56.0

OFS-CNN (Han et al., 2018) 43.7 40.0 67.2 59.0 49.7 75.8 72.4 54.8 51.4

DSIN (Corneanu et al., 2018) 42.4 39.0 68.4 28.6 46.8 70.8 90.4 42.2 53.6

TCAE (Li et al., 2019b) 15.1 15.2 50.5 48.7 23.3 72.1 82.1 52.9 45.0

TAE (Li et al., 2020) 21.4 19.6 64.5 46.8 44.0 73.2 85.1 55.3 51.5

SRERL (Li et al., 2019a) 45.7 47.8 59.6 47.1 45.6 73.5 84.3 43.6 55.9

FAUT (Jacob and Stenger, 2021) 46.1 48.6 72.8 56.7 50.0 72.1 90.8 55.4 61.5

ARL (Shao et al., 2019) 43.9 42.1 63.6 41.8 40.0 76.2 95.2 66.8 58.7

SEV-Net (Yang et al., 2021) 55.3 53.1 61.5 53.6 38.2 71.6 95.7 41.5 58.8

PMVT (Ours) 50.0 54.3 63.2 55.6 40.0 72.2 95.9 56.3 60.9

The highest values are illustrated in Bold format.

TABLE 3 | Ablation studies on the BP4D and DISFA datasets.

Methods BP4D DISFA

CL=1 60.7 56.3

CL=2 62.9 60.9

CL=3 59.5 55.8

MS=1 62.9 60.9

MS=2 59.8 58.1

MS=3 55.0 51.1

is annotated with active AU1 (inner brow raiser), AU2 (outer
brow raiser), AU6 (cheek raiser), AU7 (inner brow raiser), AU10
(inner brow raiser), and AU12 (inner brow raiser). The second
face in the third row is annotated with active AU1 (inner brow

raiser), AU10 (inner brow raiser), AU12 (inner brow raiser),
and AU15 (lip corner depressor). The first face in the fourth
row is annotated with active AU7 (inner brow raiser) and AU14
(dimpler). The attention maps of these faces are in line and
consistent with the annotated AUs. The visualization maps in
Figure 4 show the generalization ability and feasibility of our
proposed PVMT.

5. CONCLUSIONS

In this study, we propose a PMVT to perceive the complex
relationships among different AUs in an end-to-end data-driven
manner. PMVT is based on the multi-scale self-/cross-attention
mechanism that can flexibly focus on sequential image patches
to effectively encode the discriminative AU representation and
perceive the correlations among different facial AUs. Compared
with previous facial AU detection methods, PMVT obtains
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FIGURE 4 | Attention maps of some representative faces. We illustrate a subject with different facial expressions in each row. It is obvious that the proposed PMVT is

capable of focusing on the most silent parts for facial AU detection. Deep red denotes high activation, better viewed in color and zoom in.

comparable AU detection performance. Visualization results
show the superiority and feasibility of our proposed PMVT.
For future study, we will explore utilizing PMVT for more
affective computing tasks, such as facial expression recognition,
AU density estimation.
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Individuals with autism are known to face challenges with emotion regulation, and

express their affective states in a variety of ways. With this in mind, an increasing

amount of research on automatic affect recognition from speech and other modalities

has recently been presented to assist and provide support, as well as to improve

understanding of autistic individuals’ behaviours. As well as the emotion expressed from

the voice, for autistic children the dynamics of verbal speech can be inconsistent and vary

greatly amongst individuals. The current contribution outlines a voice activity detection

(VAD) system specifically adapted to autistic children’s vocalisations. The presented VAD

system is a recurrent neural network (RNN) with long short-term memory (LSTM) cells. It

is trained on 130 acoustic Low-Level Descriptors (LLDs) extracted frommore than 17 h of

audio recordings, which were richly annotated by experts in terms of perceived emotion

as well as occurrence and type of vocalisations. The data consist of 25 English-speaking

autistic children undertaking a structured, partly robot-assisted emotion-training activity

and was collected as part of the DE-ENIGMA project. The VAD system is further

utilised as a preprocessing step for a continuous speech emotion recognition (SER)

task aiming to minimise the effects of potential confounding information, such as noise,

silence, or non-child vocalisation. Its impact on the SER performance is compared

to the impact of other VAD systems, including a general VAD system trained from

the same data set, an out-of-the-box Web Real-Time Communication (WebRTC) VAD

system, as well as the expert annotations. Our experiments show that the child VAD

system achieves a lower performance than our general VAD system, trained under

identical conditions, as we obtain receiver operating characteristic area under the

curve (ROC-AUC) metrics of 0.662 and 0.850, respectively. The SER results show

varying performances across valence and arousal depending on the utilised VAD system

with a maximum concordance correlation coefficient (CCC) of 0.263 and a minimum

95
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root mean square error (RMSE) of 0.107. Although the performance of the SER models

is generally low, the child VAD system can lead to slightly improved results compared to

other VAD systems and in particular the VAD-less baseline, supporting the hypothesised

importance of child VAD systems in the discussed context.

Keywords: affective computing, voice activity detection, deep learning, speech emotion recognition, children with

autism, robot human interaction

1. INTRODUCTION

Speech emotion recognition (SER) is a prominent subfield of
Affective Computing as the complexity of the human speech
apparatus together with the communicative importance of
emotions in speech make a good understanding of the problem
both difficult and desirable, which becomes apparent from the
long history of emotion recognition challenges (Valstar et al.,
2013; Ringeval et al., 2019; Stappen et al., 2021). The subjective
nature of emotions leads to a variety of emotion recognition
tasks, which make the possibility for a one-fits-all solution
not the optimal approach to capture the subtle variation in
emotion expression. As most models are only focused on a single
corpus, which can range from acted emotions (Busso et al.,
2008) via emotions induced by a trigger (Koelstra et al., 2012)
to spontaneous emotions (Stappen et al., 2020), and is often
recorded for adult individuals, the application of SER models
needs to be chosen with care and in general adapted to the specific
scenario.

Continuous SER tasks, especially in interactive scenarios,
such as robot-assisted child-robot interactions, can be prone
to auditory artefacts, and limited instances of speech, creating
the need to discriminate between background noise and
information-rich instances. Voice activity detection (VAD)
systems are therefore commonly used in SER tasks to remove
unvoiced segments of the audio signal, for instance displayed
in Harár et al. (2017), Alghifari et al. (2019) and Akçay and
Oğuz (2020). In a scenario with more than one speaker however,
VAD alone might not be enough to filter out all non-relevant
information about a specific speaker’s affective state.

Autism is a neurodevelopmental condition that is associated
with difficulties in social communication and restricted,
repetitive patterns of behaviour, interests, or activities (American
Psychiatric Association, 2013). The clinical picture of autism is
heterogeneous, including diversity in autistic characteristics and
spoken language skills, and frequently occurring comorbidities,
such as anxiety disorder, attention-deficit hyperactivity disorder,
developmental coordination disorder, or depressive disorders
(Kopp et al., 2010; Lord et al., 2018; Zaboski and Storch, 2018;
Hudson et al., 2019). Difficulties in socio-communicative
skills and recognition and expression of emotion in autistic
children can make interactions with their family, peers, and
professionals challenging.

However, only few research projects have investigated how
recent technology including Artificial Intelligence can help to
better understand the needs and improve the conditions of
children with autism: the ASC-inclusion project developed a

platform aiming to playfully support children in understanding
and expressing emotions through a comprehensive virtual world
(Schuller, 2013), for instance through serious games (Marchi
et al., 2018). The DE-ENIGMA project1 focused on a better
understanding of behaviour and needs of autistic children
in a researcher-led robot-human-interaction (RCI) scenario,
contributing to insights about robot predictability in RCI
scenarios with children with autism (Schadenberg et al., 2021), as
well as prediction of the severity of traits related to autism (Baird
et al., 2017) and detection of echolalic vocalisations (Amiriparian
et al., 2018), i.e., word or phrase repetitions of autistic children
based on spoken utterances of their conversational partners.
Schuller et al. introduced a task for the speech-based diagnosis
of children with autism and other pervasive developmental
disorders (Schuller et al., 2013). Particularly in the field of SER
for individuals with autism, data appears quite sparse (Schuller,
2018), presumably caused in part due to the considerable time-
expense needed to gather such data from autistic children.
Rudovic et al. developed a personalised multi-modal approach
based on deep learning for affect and engagement recognition
in autistic children, achieving up to 60% agreement with
human annotators, aiming to enable affect-sensitive child-robot
interaction in therapeutic scenarios (Rudovic et al., 2018). From
this overview of related works, there have been limited works,
which model emotions of autistic children with continuous
labelling strategies. To the best of our knowledge, no research as
of yet has explored how VAD can improve such modelling.

In this manuscript, we investigate a subset of data collected in
the DE-ENIGMA project (Shen et al., 2018). The presented data
consist of about 17 h of audio recordings and rich annotations
including continuously perceived affective state, and manually
performed speaker diarisation. The data poses numerous
challenges commonly associated with in-the-wild data including
noise (for instance from robot or furniture movements) or
varying distances to microphones. Additionally, a particular
challenge in the current dataset results from the sparsity of
child vocalisations in the interaction between child, robot, and
researcher, as several children who took part in the study had
limited-to-no spoken communication. In contrast to common
continuous emotion recognition tasks, we hypothesised that a
model focusing on the child vocalisations alone would be able
to outperform other models, as we expect the child vocalisations
to contain the most information about the children’s affective
states. For this reason, in the current work, we implement
a VAD system specifically trained for vocalisations of autistic

1https://de-enigma.eu/
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children on the dataset and evaluate its performance against a
trained general VAD system - trained on all vocalisations of our
dataset - as well as an implementation of the Web Real-Time
Communication (WebRTC) VAD (Google, 2021) and themanual
speaker diarisation annotations, for the SER task at hand. The
WebRTC VAD is based on Gaussian mixture models (GMMs)
and log energies of six frequency bands.

The remainder of this manuscript is organised as follows. In
section 2, we provide a detailed overview of the investigated
dataset. Furthermore, we introduce the deep learning-based
methodology for both the VAD and the SER task in section 3.
Subsequently, we present experimental results for the isolated
VAD experiments, as well as the SER task with a combined VAD-
SER system in section 4. Finally, we discuss the results and the
limitations of our approaches in section 5 before we conclude our
work in section 6.

2. DATASET

The Experiments in this manuscript are based on a subset of
data gathered in the DE-ENIGMA Horizon 2020 project, which
were collected in a school-based setting in the United Kingdom
and Serbia. In this work, we solely focus on audio data from
the British study arm of the project, for which all relevant data
streams and annotations are available. Here, autistic children
undertook emotion-recognition training activities based on the
Teaching Children with Autism to Mind-Read programme
(Howlin et al., 1999), under guidance of a researcher. Ethical
approval was granted for this study by the Research Ethics
Committee at the UCL Institute of Education and the University
College London (REC 796). Children were randomly assigned to
researcher-only sessions, or to sessions, which were supported
by the humanoid robot Zeno-R2. Zeno is capable of performing
different emotion-related facial expressions, and which was
controlled by the researcher via an external interface. The
sessions were recorded with multiple cameras and microphones
covering different angles of the room.

Each child attended between one and five daily sessions (3.4 on
average), yielding a total of 84 sessions with an average length of
12.4min from 25 children (19 males, 6 females), 13 participating
in researcher-only sessions and 12 participating in robot-assisted
sessions, with an average age of 8.2 yrs (standard deviation:
2.5 yrs), led by three different researchers (only one researcher
per child). We divided the data in a speaker-independent
manner with respect to the children. As there were overall three
researchers in the data set, each child only interacting with one
researcher, we group our data splits based on the researchers.
We do so to avoid overfitting of our machine learning models
on person-specific speech characteristics of the researchers, who
largely contribute to the vocalisations. An overview of the
partitions is given in Table 1; the partitioning is being used for
both types of experiments.

The sessions were richly annotated in terms of both audio
and video data, following a pre-defined annotation protocol,
including instructions for speaker diarisation, vocalisation type,
occurrences of echolalia, type of non-verbal vocalisations, as well

as emotion in terms of valence and arousal. For our study, we
exploit the speaker diarisation annotations, the origin of the
labels for voice activity detection, as well as valence and arousal
annotations as labels for the SER system.

2.1. Speaker Diarisation Annotation
The Speaker Diarisation (in the British study arm) was performed
by fluent English speakers utilising the ELAN annotation tool2.
The task was to highlight any vocalisation of any speaker
present within the session, i.e., the child, the researcher, any
additionally present person (generally a teacher), or the robot
Zeno. The annotators were able to base their decisions on a
combination of the available video streams together with one
of the video cameras’ native audio recordings, as well as the
according depiction of the raw audio wave form. The annotation
tool further allowed annotators to skip to arbitrary points of the
recording. Overall, each session was assessed by one annotator.

2.2. Emotion Annotation
The emotion annotations in the database aim to capture the
emotional dimensions valence and arousal, i.e., continuous
representations of how positive or negative (valence) and how
sleepy or aroused (arousal) an emotional state seems. Emotional
dimensions are a commonly used alternative to categorical
emotions, like happy, angry, etc., when assessing people’s
emotional states. Five expert raters, all either native or near native
English speakers, annotated their perception of the valence and
arousal values expressed by the children in each session under
consideration of the same video and audio data as in the speaker
diarisation task. For the annotation process, raters were given a
joystick (model Logitech Extreme 3D Pro) in order to annotate
valence and arousal separately. While annotators were watching
the recordings of the sessions, they changed the position of
the joystick, which was continuously sampled with a sampling
rate of 50Hz and indicated degree and sign of the estimated
valence or arousal values (positive in an up position, negative in
a down position). The annotations of the different annotators for
each session are summarised in a single gold standard sequence
utilising the evaluator weighted estimator (EWE) (Schuller, 2013)
gold standard. The EWE gold standard is commonly used in
emotion recognition tasks (Ringeval et al., 2017, 2019) and
considers annotator-specific weights depending on the pairwise
correlation of the annotations. For our experiments, we use
only one emotion label per second by calculating a second-wise
average over the gold standard annotations.

3. METHODOLOGY

To explore the task of VAD-based SER, we employ two
separate models based on feature extraction and recurrent neural
networks (RNNs) with long short-term memory (LSTM) cells.
The first component is a VAD component and the second is
a SER component. The VAD model is presented with 1 s long
audio chunks, and aims to label segments of the audio signal
with a vocalisation present. The SER model is then trained on

2https://archive.mpi.nl/tla/elan
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TABLE 1 | Overview of the three partitions of the data set: train, development (dev.), and test.

Partition # children # sessions # researchers child vocalisations total vocalisations total duration

Train 12 41 1 1:26:39 6:42:15 9:43:34

Dev. 4 15 1 0:18:27 1:24:37 3:14:35

Test 9 28 1 0:32:42 2:35:21 4:22:03

Overall 25 84 3 2:17:49 10:42:14 17:20:13

FIGURE 1 | Sequential employment of the (child) voice activity detection (VAD)

and the speech emotion recognition (SER) system. The VAD system removes

1 s chunks of the audio signal, where no voice is detected. Any remaining 1 s

chunks are fed into the SER system to predict continuous values for valence

and arousal.

audio segments presumably containing speech, with the aim
of predicting the affective dimensions valence and arousal in a
continuous manner. An illustration of the combined system is
depicted in Figure 1.

3.1. Voice Activity Detection
As the target of the VAD system is to remove as much
information-shallow data from the audio data as possible, we
compare several approaches here: at a first level, we try to filter
for all vocalisations with general VAD systems, one specifically
trained on our data set, the other one being an implementation
of the WebRTC VAD system3 (Google, 2021), commonly used
as a comparison for other VAD systems, e.g., (Salishev et al.,
2016; Nahar and Kai, 2020). The aggressiveness score of the
WebRTC VAD is set equal to one. Additionally, we use the
ground truth annotations for all vocalisations as a gold standard
for a general VAD system. At a second level, we try to filter
out only child vocalisations, which presumably contain the most
information about the children’s affective state. For this, we train
a child VAD system on the data set mentioned above and use

3https://github.com/wiseman/py-webrtcvad

the ground truth annotations for child vocalisations for further
comparison. Evaluations of the different impacts of general VADs
and the child VAD are of further interest, as some information
about the children’s affective state could be retrieved from the
interaction between the child and the researcher. Besides, a worse
performance of the child VAD system compared to more robust
general VAD systems could lead to detections of ambient noise
and therefore potentially have a negative impact on the SER task.

Given the potentially short duration of vocalisations, we
extract 130 ComParE2016 LLDs with a frame size of 10ms and
a hop size of 10ms from the raw audio signal utilising the
openSMILE toolkit (Eyben et al., 2010). The audio features are
then fed into a two-layer bi-directional RNN with LSTM cells
and a hidden layer size of 128 units, followed by a dense layer
with a single output neuron indicating the confidence in the
voice detection. The neural network architecture is similar to
Hagerer et al. (2017), but has been adjusted based on preliminary
experiments. We utilise a fixed sequence length of 100 samples
during training time, i.e., the audio stream is cut into samples of
1 s length. During training of this regression problem, each frame
is assigned the label 1 if speech is present or the label 0 if it is not.

The VAD models are trained for 8 epochs with a batch size
of 256 utilising the Adam optimiser with a learning rate of 0.01
and mean square error (MSE) loss. We choose the rather small
number of epochs based on the large amount of samples. Given
that each second provides 100 sequence elements to the LSTM,
the training includes around 2 000 optimisation steps. For the
evaluation of the VAD system, we compute a receiver operating
characteristic (ROC) curve, i.e., we vary the confidence threshold
of the system, for which a frame is recognised as a detection in
order to depict the relationship between true positive rate (TPR)
and false positive rate (FPR).

For inference, we choose a confidence threshold, which
corresponds to the equal-error-rate (EER), i.e., equal values of
FPR and 1 − TPR, visualised by the intersection of the ROC
curve and the bisectional line TPR+ FPR = 1. The VAD system
is then used as a preprocessing step for the SER task, such that
each second of audio is classified as containing voice activity if
at least 25% of the frames contained in 1 s are above the EER
confidence threshold.

3.2. Speech Emotion Recognition
For the SER task we use 1 s chunks of audio extracted with
the VAD system in order to predict a single continuous-valued
valence (and arousal, respectively) value per audio chunk. The
applied VAD system therefore impacts the SER task by the
selection of audio chunks guided by the hypothesis that audio
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with child vocalisations contains the most information about the
perceived affective states of the children and therefore leads to
higher performance in the SER task.

Subsequently, we extract 88 functional features for each 1 s
audio chunk according to the extended Geneva Minimalistic
Acoustic Parameter Set (eGeMAPS), a comprehensive expert-
based audio feature selection (Eyben et al., 2015). The resulting
sequence of features from one session is then used as an input
to our deep learning model consisting of two RNN layers with
LSTM cells and a hidden layer size of 128 units, followed by
a dense layer with 128 neurons, a rectified linear unit (ReLU)
activation and a dropout rate of 0.3. A final dense layer with a
single neuron outputs the valence or arousal prediction for our
task. The identical network architecture is trained independently
for valence and arousal, respectively. With our methodology, we
follow (Stappen et al., 2021), with an adjusted model architecture
based on preliminary experiments.

The SER models are trained for 180 epochs with full batch
optimisation – each session producing one sequence – utilising
the Adam optimiser with a learning rate of 0.0001 and MSE
loss. The much larger number of epochs compared to the VAD
experiments is chosen based on the full batch optimisation, i.e.,
only one optimisation step is performed each epoch.

4. EXPERIMENTS

All experiments are implemented in Python 3 (Van Rossum and
Drake, 2009), as well as TensorFlow 2 (Abadi et al., 2015) for
deep learning models and training. The code is publicly available
under4.

4.1. Voice Activity Detection
For our VAD experiments, we train the architecture as described
in section 3.1 with two different targets: (i) to recognise only
child vocalisations, including overlap with others vocalisations
and (ii) to recognise any vocalisation, including overlapping
vocalisations. The two approaches are evaluated on the respective
tasks. We thereby aim to evaluate the feasibility of training
a general VAD system for the specifics and limitations of
our dataset and to further investigate the presumably more
challenging task of training a specialised VAD system for children
with autism. Besides the evaluation of the VAD systems based on
their raw performance, we further assess their impact on the SER
task in the following section.

We report ROC-curves for both the child VAD system and the
general VAD system on the respective tasks in Figure 2, as well as
the EER and area-under-the-curve (AUC) in Table 2.

4.2. Speech Emotion Recognition
As described in section 3, we utilise our child VAD system
and the general VAD system trained in the previous section
in order to extract 1 s chunks from the session recordings if
25 out of the 100 frames within one second have a prediction
confidence above the EER threshold. In a similar way 1 s
chunks are extracted if the WebRTC VAD predicts a voice

4https://github.com/EIHW/VAD_SER_pipeline_ASC

FIGURE 2 | Receiver operating characteristic (ROC)-curve of voice activity

detection trained for child vocalisations specifically and for all vocalisations.

TABLE 2 | Equal-error-rates (EERs) and area-under-the-curve (AUC) for the child

voice activity detection system and the general voice activity detection system

evaluated on the respective task.

VAD System EER AUC

Child VAD 0.381 0.662

General VAD 0.215 0.850

activity for at least 0.25 s of the audio. In the same manner,
we use the ground truth annotations of child vocalisations, as
well as ground truth annotations of all speakers to mimic a
perfect child VAD and a perfect general VAD system. As a
baseline, we use the audio without any VAD-based preprocessing
(All Audio). Figure 3 shows the distribution of valence and
arousal values across partitions, as well as the test partition’s
adjusted distribution after filtering via the VAD systems and
vocalisation annotations.

For evaluation, we use the rootmean squared error (RMSE), as
well as the concordance correlation coefficient (CCC) according
to Lin (1989), which is defined between two distributions x

and y as

CCC(x, y) =
ρ(x, y)σxσy

σ 2
x + σ 2

y + (µx − µy)2
, (1)

with the correlation coefficient ρ, as well as the mean µ

and the standard deviation σ of the respective distribution.
As the CCC is designed as a metric for sequences and has
an inherent weakness for short sequences and sequences with
little variation, we combine all predictions and labels from one
data partition to two respective sequences when calculating
the CCC. The results for valence and arousal are summarised
in Table 3.
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FIGURE 3 | Distributions of valence labels (left) and arousal labels (across) considering all audio data without VAD preprocessing across different partitions (top), as

well the adjusted distributions of the test partition after preprocessing via the different VAD systems and vocalisation annotations (bottom).

TABLE 3 | Results of the speech emotion recognition (SER) task.

VAD System # samples detected Valence (CCC/RMSE) Arousal (CCC/RMSE)

Dev Test Dev Test

Child VAD 17,944 0.200/0.201 0.021/0.245 0.201/0.121 0.168/0.138

General VAD 40,013 0.012/0.160 0.117/0.260 0.100/0.120 0.154/0.142

WebRTC VAD 29,918 0.140/0.183 0.063/0.224 0.263/0.107 0.098/0.152

GT child vocalisations 10,961 0.153/0.169 0.085/0.277 0.182/0.115 0.145/0.143

GT all vocalisations 47,184 -0.032/0.160 0.120/0.231 0.166/0.114 0.105/ 0.156

All Audio 62,370 0.133/0.162 0.024/0.231 0.093/0.122 0.049/0.152

We report concordance correlation coefficient (CCC) and root mean squared error (RMSE) for valence and arousal with respect to the voice activity detection (VAD) system and

ground truth (GT) annotations utilised for preprocessing of the data, as well as the baseline without a VAD preprocessing step (All Audio). Bold values indicate the best performance in

each column.

5. DISCUSSION

Figure 2 and Table 2 show that both a general voice activity
system, as well as a child-specific voice activity system with a

performance above-chance level can be trained from the data at
hand. However, the general VAD system shows a clearly superior
performance compared to the child-specific one. One apparent
reason for this results from the dataset itself. Table 1 highlights
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that the dataset offers more than four times as many annotations
for the general VAD compared to child VAD system, leading
to a more unbalanced child VAD task. Moreover, the task of
training a VAD system specialised and focused solely on autistic
children appears to be generally more challenging, as the model
not only needs to detect speech-typical characteristics, but also
has to differentiate between speech characteristics of the speakers,
i.e., the model has to find common patterns in vocalisations of
children with different language levels and distinguish those from
patterns in the researchers’ voices. The different language levels
of the children involved in the study, as well their unique ways
of expression most likely made it difficult to uncover common
characteristics.

Table 3 further shows that all considered VAD systems have a
largely varying sensitivity. By the term sensitivity we mean in this
context the total number of voice detection events independent of
the correctness of the detections. The sensitivity of the child VAD
system, aiming to detect the ground truth child vocalisations,
can be considered too high with almost twice as many detected
events compared to the number of human target annotations.
The two remaining VAD systems naturally seem to bemuchmore
sensitive than the child VAD, as they do not aim at filtering out
the child vocalisations only. However, both the out-of-the-box
WebRTC VAD, as well as our trained general VAD both seem to
show a lower sensitivity than the ground truth annotations of all
speaker vocalisations with the WebRTC’s deviation of detection
events being considerably higher.

The top part of Figure 3 shows that there are no large
difference between the label distributions in the train and test
partition for the SER task. The development partition however
deviates substantially. The bottom part of Figure 3 indicates the
difference in emotion label distributions in the test set caused
by the preprocessing via the different VAD approaches. Even
though the choice of the VAD system has only little impact on the
label distribution and therefore should not give any considerable,
label-related advantage to any of the resulting SER experiments,
it still affects the comparability of the results as it alters the test
data.

According to Table 3, the best test results for arousal
in our SER experiments are obtained with the child VAD
preprocessing, even outperforming the preprocessing based
on ground truth annotations. These results seem in-line
with the hypothesis that considering only child vocalisations
could improve the performance of SER systems for autistic
children and they further suggest a reasonable system
performance of the child VAD. However, this analysis only
holds to a certain amount for the arousal development set
and even less for the valence experiments, which tend to
achieve lower performance in acoustic SER tasks compared to
arousal experiments. Nevertheless, the VAD-based systems
outperform the VAD-less system in most experiments,
suggesting a clear advantage of VAD-based systems for
the task at hand. Limitations to the expressiveness of the
results discussed here have to be taken into account, as small
improvements together with a low overall performance of the
SER models are not always consistent across the investigated
evaluation metrics.

Future work shall further investigate the impact of a child-
specific VAD system in a multi-modal emotion recognition
approach. Given the complex scenarios resulting from sessions
with autistic children, it is inevitable that not all modalities are
available at all times, as children for instance move out of the
focus of the cameras or are silent for an extended period of time.
The detection and consideration of those missing modalities, for
instance in form of a VAD system contributing to a weighted
feature fusion, might therefore have a substantial influence on
model behaviour and even help with explaining the decisions of
applied approaches.

6. CONCLUSION

With this contribution, we discussed the feasibility and utility of
a VAD system, specifically trained on autistic child vocalisations,
for SER tasks in robot-assisted intervention sessions for autistic
children in order to improve programme success for children
with autism. Given the size as well as the noise-heavy quality of
the dataset, we showed that the voice activity component could
be trained with reasonable performance, while being inferior to
an identically trained general VAD system. Our results further
suggest that the use of VAD systems, and in particular child VAD
systems, could lead to slight improvements of continuous SER for
autistic children, even though an overall low performance across
SER models, most likely caused by the challenges of the task at
hand, weaken the expressiveness of the results. Further research
based on this work will examine the use of child VAD systems as
a basis for missing data strategies in multi-modal SER tasks.
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Electroencephalography (EEG)-based emotion computing has become one of the

research hotspots of human-computer interaction (HCI). However, it is difficult to

effectively learn the interactions between brain regions in emotional states by using

traditional convolutional neural networks because there is information transmission

between neurons, which constitutes the brain network structure. In this paper, we

proposed a novel model combining graph convolutional network and convolutional neural

network, namely MDGCN-SRCNN, aiming to fully extract features of channel connectivity

in different receptive fields and deep layer abstract features to distinguish different

emotions. Particularly, we add style-based recalibration module to CNN to extract deep

layer features, which can better select features that are highly related to emotion.

We conducted two individual experiments on SEED data set and SEED-IV data set,

respectively, and the experiments proved the effectiveness of MDGCN-SRCNN model.

The recognition accuracy on SEED and SEED-IV is 95.08 and 85.52%, respectively. Our

model has better performance than other state-of-art methods. In addition, by visualizing

the distribution of different layers features, we prove that the combination of shallow layer

and deep layer features can effectively improve the recognition performance. Finally, we

verified the important brain regions and the connection relationships between channels

for emotion generation by analyzing the connection weights between channels after

model learning.

Keywords: electroencephalography (EEG), emotion recognition, graph convolutional neural networks (GCNN),

convolutional neural networks (CNN), style-based recalibration module (SRM)

INTRODUCTION

Human emotion is a state that reflects the complex mental activities of human beings. In recent
years, new modes of human-computer interaction, such as voice, gesture, and force feedback,
have sprung up. Although significant progress has been made in the field of human-computer
interaction, it still lacks one of the indispensable functions of human-computer interaction,
emotional interaction (Sebe et al., 2005). However, the prerequisite for realizing human-computer
emotional interaction is to recognize human emotional state in real time. Human emotions
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come in many forms, which can be recognized by human facial
expressions (Harit et al., 2018), body movements (Ajili et al.,
2019), and physiological signals (Goshvarpour and Goshvarpour,
2019; Valderas et al., 2019). But humans can control their facial
expressions, body movements to hide or disguise their emotions,
and physiological signals such as electroencephalogram,
electrocardiogram, and electromyography have the advantage of
being difficult to hide or disguise. With the rapid development
of non-invasive, portable, and inexpensive EEG acquisition
equipment, EEG-based emotion recognition has attracted the
attention of researchers.

EEG signals are collected through electrodes distributed
in various brain regions on the cerebral cortex, which has
the advantages of non-invasiveness, convenience, and fast. In
addition, EEG have the advantages of high time resolution,
and are considered to be one of the most reliable signals.
However, EEG also has some shortcomings, such as low spatial
resolution and low signal-to-noise ratio. Moreover, the EEG is
non-stationary, and there are great differences among subjects.
Studies have shown that some cortical and subcortical brain
systems may play a key role in the evaluation or reaction
phase of emotion generation (Clore and Ortony, 2008; Kober
et al., 2008). However, it is difficult to use EEG to model brain
activity and interpret the activity state of brain regions. Therefore,
high-precision recognition of emotions based on EEG is still
a challenge.

In these decades of development, researchers have proposed
many machine learning and signal processing methods for
EEG emotion recognition. Traditional EEG emotion recognition
methods usually include two aspects: EEG feature extraction and
emotion classification used to distinguish emotion categories.
The EEG features used for emotion recognition are mainly
divided into three parts: time-domain features, frequency-
domain features, and time-frequency features. Time domain
features mainly include statistics (Jenke et al., 2017), Hjorth
features (Hjorth, 1970), non-stationary index (NSI) (Kroupi
et al., 2011), fractal dimension (Sourina and Liu, 2011; Liu and
Sourina, 2013), sample entropy (Jie et al., 2014), and higher order
crossings (HOC) (Petrantonakis and Hadjileontiadis, 2011).
These features mainly describe the temporal characteristics and
complexity of EEG signals. Frequency domain feature refers
to the use of Fourier Transform (TF) and other information
analysis methods to transform EEG signals from time domain to
frequency domain, and then extract emotion related information
from frequency domain as features. At present, one of the
most commonly used frequency domain feature extraction
methods is to divide EEG signals into five bands: Delta
(1–4Hz), Theta (4–8Hz), Alpha (8–12Hz), Beta (12–30Hz),
Gamma (30–64Hz). Emotion Feature Extraction in frequency
domain mainly includes power spectral density (PSD) (Alsolamy
and Fattouh, 2016), differential entropy (DE) (Duan et al.,
2013), differential asymmetry (DASM) (Liu and Sourina, 2013),
rational asymmetry (RASM) (Lin et al., 2010), and differential
causality (DCAU) (Zheng and Lu, 2015). Time frequency feature
refers to the use of time-frequency analysis methods, such
as short-time Fourier transform (STFT) (Lin et al., 2010),
wavelet transform (WT) (Jatupaiboon et al., 2013) and Hilbert

Huang transform (HHT) (Hadjidimitriou and Hadjileontiadis,
2012). Due to the typical non-stationary signal of EEG, the
traditional frequency domain analysis method such as Fourier
transform is not suitable for analyzing the signal whose frequency
changes with time, while the time-frequency analysis method
provides the joint distribution information of time domain and
frequency domain.

The classifiers based on EEG emotion recognition are mainly
divided into traditional machine learning method and deep
network method. Among the traditional machine learning
methods, support vector machine (SVM) (Koelstra et al., 2010;
Hatamikia et al., 2014), k-nearest neighbor (KNN) (Mehmood
and Lee, 2015), linear discriminant analysis (LDA) (Zong et al.,
2016) and other methods are used for emotion classification
based on EEG. Among them, SVM has better performance
and is usually used as baseline classifier. However, due to
the complexity of EEG-based emotion features, the current
method is to extract the artificial features, and then use machine
learning method to classify the extracted features, which leads
to the traditional machine learning method cannot get better
classification performance. Therefore, researchers turn their
attention to deep learning methods. Zhang X. et al. (2019)
summarized the work of using deep learning technology to
study brain signals in recent years. In EEG-based emotion
recognition based on neural network, the input is usually artificial
features, and then the neural network is used to learn deeper
features to improve the performance of emotion recognition.
Zheng et al. (2014) used deep belief networks (DBNs) to
learn and classify the frequency bands and channels of EEG-
based emotion, which is a great improvement compared to
SVM. In recent years, many deep networks have emerged
in this field to extract spatiotemporal features of EEG-based
emotions. Jia et al. (2020) proposed a spatial-spectral-temporal
based Attention 3D Dense Network (SST-EmotionNet) for
EEG emotion recognition. Li Y. et al. (2018) and Li et al.
(2020) proposed BiDANN and BiHDM networks for EEG
emotion recognition, considering the asymmetry of emotion
response between left and right hemispheres of human brain.
Li et al. (2021) proposed a Transferable Attention Neural
Network (TANN), which considers local and global attention
mechanism information for emotion recognition. In addition,
some researchers considered the spatial information of EEG
features, and arrange and distribute the features of each channel
through the physical location before inputting them into the
neural network. Li J. et al. (2018) arranged the DE features of
different leads into a two-dimensisonal feature matrix according
to their physical locations before entering the network. Bao et al.
(2021) mapped the DE feature to a two-dimensional feature
matrix through an interpolation algorithm according to the
physical location.

Although researchers currently use neural network to consider
the temporal and spatial information, the EEG signals of
each channel are distributed in different regions of the brain,
which can be regarded as a non-Euclidean data. However,
convolution neural network processing EEG will ignore the
spatial distribution information. In order to solve this problem,
graph convolution neural network (GCNN) (Defferrard et al.,
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2016) is introduced to process non-Euclidean data. Zhao
et al. (2022) proposed a new dynamic graph convolutional
network (dGCN) to learn the potentially important topological
information. Song et al. (2020) used dynamic graph convolution
network (DGCNN) for the first time in the EEG-based emotion
recognition task. The network constructed graph data more in
line with the brain activity state by learning the connections
between different channels, and achieved better performance.
Zhong et al. (2020) proposed a regularized graph neural network
(RGNN), which considers the global and local relationships
of different EEG channels. Zhang T. et al. (2019) proposed
GCB-Net, which combines GCN and CNN to extract deep-level
features and introduces a generalized learning system (BLS) to
further improve performance.

However, the brain activity in emotional state is more
complex, and multiple brain regions participate in interaction.
The traditional convolutional neural network cannot effectively
learn the interaction between brain regions.

However, the networks proposed in the above studies
all use one layer of GCN, and (Kipf and Welling, 2017)
concluded that using 2-3 layers is the best. In addition, the
receptive field of single-layer GCN is limited and cannot extract
spatial information well. The brain activity in emotional state
is more complex, and multiple brain regions participate in
interaction. Therefore, the characteristics of single network
learning are relatively single, and cannot well reflect the complex
emotional state. For this reason, in this paper, we proposed
a multi-layer dynamic graph convolutional network-style-
based recalibration convolutional neural network (MDGCN-
SRCNN) to extract shallow layer and deep layer features. The
shallow layer features include the features of different levels
of GCN learning, which contain different levels of spatial
information. Deep layer features are mainly learned by SRCNN,
because CNN has a strong ability to learn abstract features.
In addition, by adding the style-based recalibration module,
when CNN extracts features, it emphasizes the information
related to emotion and ignores other information, which greatly
enhances the representation ability of CNN. The shallow layer
and deep layer features are connected to form a multi-level
rich feature, and finally the fully connected layer search is
used to classify the features that are distinguishable from
various emotions.

The main contributions of this paper are as follows:

1) MDGCN-SRCNN framework composed of multi-layer GCN
and multi-layer style-based recalibration CNN is used to learn
features at different levels. In the shallow layer network, GCN
learns different levels of spatial features. In the deep layer
network, CNN learns abstract features, using a fully connected
layer to fuse the shallow layer spatial features with deep layer
abstract features and search for highly distinguishable features
for emotion classification.

2) SEED and SEED-IV data sets are used to verify the
performance of the emotion recognition frameworkMDGCN-
SRCNN proposed in this paper. Compared with the existing
models, the framework proposed in this paper obtains the best
results, which proves that the network proposed in this paper
has a strong classification ability in EEG emotion recognition.

METHODS

In this section, we introduce in detail the framework MDGCN-
SRCNN proposed in this paper.

Model Framework
As shown in Figure 1, we propose the MDGCN-SRCNN
framework for EEG-based emotion recognition tasks. The
MDGCN-SRCNN model consists of four blocks: graph
construction block, graph convolutional block, SRM-based
convolutional block and classification block. We will give the
specific model architecture below.

Graph Construction Block
We considered that EEG is non-Euclidean data. EEG data is
collected by many electrodes, which are distributed in different
parts of the brain. The construction of a graph requires three
parts: nodes, features, and edge sets. For EEG signals, the nodes
of the graph are the EEG signal channels. Different acquisition
devices have different channel numbers. Currently, 16 channels,
32 channels, 64 channels, and 128 channels are commonly used.

The feature is the data collected by each channel, which can be
the original collected data or manually extracted features. Most
of the current researches use artificial features for EEG-based
emotion recognition. Therefore, in this paper, the DE features of
five bands are extracted as the features of the graph. Short Time
Fourier Transform (STFT) is used to transform each segment of
data. The formula of DE features is as follows:

h(X) = −

∫

∞

∞

1
√

2πσ 2
e
−

(x−µ)2

2σ2 log

(

1
√

2πσ 2
e
−

(x−µ)2

2σ2

)

dx

=
1

2
log

(

2πeσ 2
)

(1)

where X ∼ N(µ, σ 2) is the input raw signal, x is a variable, and e
and π are constants.

The edge set of the graph describes the connected relationship
between nodes. Currently, Pearson correlation coefficient
(PCC) (Faskowitz et al., 2020), coherence value (Wagh and
Varatharajah, 2020), phase locked value (PLV) (Wang et al.,
2019), and physical distance (Song et al., 2020) are mainly used
to describe the connection between channels. In this paper, PCC
is used as the weighted adjacency matrix of each channel, and its
calculation formula is as follows:

A(i, j) = abs(PCC(xi, xj)) = abs(
cov(xi, xj)

σxiσxj
) (2)

where i, j = 1, 2, ......, n, n are the number of channels of EEG
signals. xi/j represents the EEG signal of the i/j-th channel. cov(·)
refers to covariance.

Graph Convolutional Block
In the graph convolutional block, we use graph convolution
network as a shallow layer network to learn the spatial
information of EEG signals.
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FIGURE 1 | The overall architecture of the MDGCN-SRCNN model consists of four blocks: graph construction block, graph convolutional block, SRM-based

convolutional block, and classification block. The output of the model is a predicted label with probability.

The graph convolutional neural network is the network using
convolution operations on the graph. Given a graph G = (V , E),
where V refers to the vertex set with |V| = n nodes, and E is a
set of edges between nodes. Data on vertex V can be represented
by a set of feature matrix X ∈ R

n×f , where n represents the
number of nodes and f represents the feature dimension. The
edge set E can be represented by a set of weighted adjacency
matrices A ∈ R

n×n describing the connections between nodes.
Kipf andWelling (2017) proposed the propagation rules of Graph
Convolutional Networks (GCN):

H(l+1)
= σ (D̃−

1
2 ÃD̃−

1
2H(l)W(l)) (3)

where Ã = A + I is the adjacency matrix of the undirected
graph G with additional self-connections, and I is the identity
matrix. D̃ is the diagonal matrix of Ã, that is, D̃ii =

∑

j Ãij,

W(l) is the training parameter matrix of the l-th layer. H(l)

is the transformation matrix of the l-th layer. σ refers to the
activation function.

Next, GCN is analyzed by spectral convolution. The Laplacian
operator matrix of the graph G is defined as L = D −

A, the normalized Laplacian operator can be expressed as

L̂ = I − D−
1
2AD−

1
2 , and the characteristic decomposition

of L̂ is L̂ = UλUτ , where U is the orthonormal eigenvector
matrix, and 3 = diag(λ1, ..., λn) is the diagonal matrix of the
corresponding characteristic.

For the input signal X, the graph Fourier Transform is:

X̂ = UTX (4)

The inverse Fourier transform is as follows:

X = UX̂ (5)

The generalized convolution on the graph can be defined as the
product of signal X and filter gθ in Fourier domain:

gθ ∗ X = U((UTgθ )⊙ (UTX)) = Ugθ (3)UTX (6)

where ⊙ refers to the element-wise multiplication, and gθ (3) =
diag(gθ 1

, ..., gθ n)represents the diagonal matrix withnspectral
filtering coefficients.

If formula 6 is calculated directly, the amount of calculation
is very large. For a large graph, it costs a lot to calculate all the
features of Laplacian matrix, and it needsO(n2)times to multiply
with Fourier basisU. Therefore, Defferrard et al. (2016) proposed
that the diagonal matrix gθ (3) of spectral filtering coefficients
can be approximated to Kth by the truncated expansion of
Chebyshev polynomials:

gθ (3) ≈

K
∑

k=0

θkTk(3̃) (7)
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FIGURE 2 | SRM module. This module is mainly composed of two parts: style pooling and style integration. AvgPool refers to global average pooling, StdPool refers

to global standard deviation pooling; CFC refers to the channel fully connected layer; BN refers to batch standardization.

where, 3̃ =
2

λmax
3 − I, λmax refer to the largest eigenvalues of L.

θ is a vector of Chebyshev coefficients. Chebyshev polynomials
Tk(·) can be recursively computed as Tk(x) = 2xTk−1(x) −
Tk−2(x), where T0(x) = 1 and T1(x) = x. Then the graph filtering
operation can be written as:

gθ ∗ X ≈

K
∑

k=0

θkTk(L̃)X (8)

where L̃ =
2

λmax
L̃− I is the normalized Laplacian. Then equation

8 is the Laplacian polynomial. In this case, the computational
complexity is reduced toO(|E|).

The GCN proposed by Thomas et al., based on Equation
8, sets K = 1, λmax = 2, θ0 = −θ1, then Equation 8
becomes Equation 3.

The EEG signal is converted into graph structure data by
graph construction block and input into graph convolution
network. Assuming that the initial data of the input graph
rolled into the network is H(0), the output of the l-th graph
convolutional layer is shown in formula 3.

SRM-Based Convolutional Block
In the SRM-based convolutional block, we use a convolutional
neural network combined with a style-based recalibration
module as a deep layer network to learn abstract features
related to emotions. The style-based recalibration module can
be regarded as an attention module. But different from the
traditional attention mechanism, the style-based recalibration
module dynamically learns the recalibration weight of each
channel based on the importance of the task style, and
then merges these styles into the feature map, which can
effectively enhance the representation ability of convolutional
neural network.

Given an input X ∈ R
N×C×H×W , SMR generates a

channel-based recalibration weight G ∈ R
N×C through the

style of X, whereNrefers to the number of samples in the
minimum batch training, C represents the number of channels,
H and W represent the spatial dimensions. This module is
mainly composed of style pooling and style integration, as
shown in Figure 2.

In the style pooling module, using the mean and standard
deviation of the channel as style features, the extracted style

features are T ∈ R
N×C×2. Compared with other types

of style features, using the mean and standard deviation of
the channel can better describe the overall style information
of each sample and channel (Lee et al., 2019). In the
style integration module, the style features are converted
into channel-related style weights through the channel fully
connected layer, batch standard layer, and sigmoid activation
function, which can simulate the importance of styles related
to a single channel, thereby emphasizing, or suppressing
them accordingly.

The output H(l) of the convolutional network from the l-
th graph is globally superposed and pooled as the input of
the convolutional neural network, and then SRM is used in
the middle of the convolutional layer to extract information
related to the task style. Then each convolutional layer can be
written as:

Ck = SRM(conv(Ck−1, h)) (9)

where h = 1, 2, 3 represents the size of convolution kernel
dimension, which is related to the input data type. In this paper,
h = 2, C0 = Pool(H(l)). conv(·, h) refers to h-dimensional
convolution operation. k is the number of convolution layers.
SRM(·) refers to SRM operation.

Classification Block
In the classification block, the learned features are input to the
multi-layer fully connected layer for feature aggregation, and
then the softmax layer is used for classification. After the shallow
layer features and deep layer features are extracted, the multi-
level features are spliced together, then the connected features can
be written as:

F = [Pool(H(1)), Pool(H(2)), ..., Pool(H(l)), Pool(Ck)] (10)

where Pool(·) refers to the global pooling operation, in which the
global sum pooling operation is used in the graph convolutional
network. Compared with the maximum pooling and the average
pooling, the sum pooling shows a stronger expressive ability
(Xu et al., 2019). In convolutional neural networks, maximum
pooling is used.
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The classification prediction of the input EEG signal is:

ŷ = softmax(FC(F)) (11)

where FC(·) refers to the fully connected layer operation, and
ŷ ∈ R

C is the predicted label of class C.
We use DGCNN to learn the adjacency matrix of the graph by

optimizing the loss function. Then use the optimizer to optimize
the cross entropy loss:

L = cross_entropy(y, ŷ)+ α‖2‖2 (12)

where y refers to the true label of the sample. θ is the matrix
of all the parameters learned in the MDGCN-SRCNN model,
α is the regularization coefficient, cross_entropy(·) refers to the
calculation of cross entropy, and ‖·‖2 refers to the calculation of
the second norm.

We use the Adam optimizer to learn the adjacency matrixA:

A∗
= A− lr

m̂∗

√

v̂∗ + ε
(13)

m̂∗
=

m∗

1− β1
=

β1m+ (1− β1)∇θθ

1− β1
(14)

v̂∗ =
v∗

1− β2
=

β2v+ (1− β2)(∇θθ)
2

1− β2
(15)

where A∗ is the adjacency matrix after learning and A is
initialization value. lr is learning rate. m = 0, v = 0, β1 = 0.9,
β2 = 0.999, ε = 10−8. θ is all parameters of the network.

Algorithm 1 summarizes the specific implementation steps of
the MDGCN-SRCNNmodel.

Details of the MDGCN-SRCNN Model
We consider that the amount of EEG data is too small,
so the network cannot be designed too deep to prevent
overfitting. In addition, the graph convolutional network cannot
be superimposed too much, which will affect the performance,
generally within 5 layers. After a small amount of trial and error
experiments, we have observed that MDGCN-SRCNN achieves
a higher accuracy rate under the two-layer graph convolutional
layer and the two-layer convolutional layer plus the three-layer
fully connected layer. The detailed description of the MDGCN-
SRCNNmodel is shown in Table 1.

EXPERIMENTAL SETTINGS

In this section, we introduce the data sets andmodel settings used
in the experiment.

Datasets
We used two datasets SEED (Zheng and Lu, 2015) and SEED-IV
(Zheng et al., 2018) to evaluate our proposed model.

Algorithm 1: The training process of MDGCN-SRCNN.

Input : A labeled training data set{X,Y} = {xi, yi}
N
i=1, the

maximum number of training epochs T; the
initialize adjacency
matrixA,regularization coefficientα.

Output: The learned adjacency matrixÂ, the model
parameter2 for MDGCN-SRCNN and the
predicted labelŷ.

Step 1 : Initialize the model parameters2 in
MDGCN-SRCNNmodel. Set iteration unit iter= 1;

Step 2 : whileiter < Tdo
Step 3 : fork = 1, ..., ldo
Step 4 : Calculate the k-th graph convolutional layerH(k)via

Eq. (1) and calculate the k-th sum
pooling layerPool(H(k));

Step 5 : fork = 1, ..., ldo
Step 6 : Calculate the k-th SMR-based convolution

layerCkvia Eq. (9);
Step 7 : Concatenate the different layers of featuresFvia

Eq. (10);
Step 8 : Calculate the prediction labelŷ via Eq. (11);
Step 9 : Update the adjacency matrixAand the model

parameters2 via optimizer according to the
cross-entropy loss.

Step 10: iter=iter+1;
Step 11: end while

SEED
The SEED data set contains EEG data of 15 subjects (7 males
and 8 females), which were collected through 62 channels
of ESI neuroscan system when they watched movie clips.
All participants watched 15 movie clips, which contained five
positive emotions, five neutral emotions, and five negative
emotions. Each movie clip lasted about 4min. There were three
periods of data collection, and each subject collected a total of
45 experiments. The original EEG data were de sampled and the
artifacts such as EOG and EMG were removed. The EEG data
of each channel is divided into 1s segments without overlapping,
and then the differential entropy characteristics of the five bands
(Delta, Theta, Alpha, Beta, and Gamma) of the linear dynamic
system smoothing (LDS) (Duan et al., 2013) are calculated for
the segmented data segments.

SEED-IV
The EEG data of 15 healthy subjects (7 males and 8 females)
were collected in the SEED-IV dataset using the same equipment
as the SEED dataset. The data set selected 72 video clips to
induce four different emotions (happy, neutral, sad, and fear).
Each video clip lasted about 2min. Each experiment conducted
24 experiments (6 experiments for each emotion). Each subject

participated in three experiments at different times, and a total of
72 experiments were collected. Each experiment was divided into

non-overlapping data segments of 4 s, each segment of data as a
sample. Same as SEED, the differential entropy characteristics of
five frequency bands are calculated.
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TABLE 1 | MDGCN-SRCNN architecture.

Block Layer Kernel size Stride Input Output Activation

Graph convolution Input (n, f )

GCN1 (n, f ) (n, 16) Leaky_ReLU

Global_add_pool (n, 16) 16

GCN2 (n, 16) (n, 64) Leaky_ReLU

Global_add_pool (n, 64) 64

SMR-based convolution Reshape 64 (8,8,1)

Conv1 (2,2) 2 (8,8,1) (7,7,16) Leaky_ReLU

SMR1 (7,7,16) (7,7,16) Sigmoid

Conv2 (2,2) 2 (7,7,16) (6,6,32) Leaky_ReLU

SMR1 (6,6,32) (6,6,32) Sigmoid

Max_pool (2,2) (6,6,32) (3,3,32)

Classifier Reshape (3,3,32) 3*3*32

FC1 16+64+3*3*32 256 Leaky_ReLU

FC2 256 128 Leaky_ReLU

FC3 128 C Softmax

TABLE 2 | Compare the accuracy rate (mean/std) with different existing methods on the SEED data set.

Model Delta band Theta band Alpha band Beta band Gamma band All bands

SVM (Zheng and Lu, 2015) 60.50/14.14 60.95/10.20 66.64/14.41 80.76/115.6 79.56/11.38 83.99/9.72

GSCCA (Zheng, 2017) 63.92/11.16 64.64/10.33 70.10/14.76 76.93/11.00 77.98/10.72 82.96/9.95

DBN (Zheng and Lu, 2015) 64.32/12.45 60.77/10.42 64.01/15.97 78.92/12.48 79.19/14.58 86.08/8.34

STRNN (Zhang et al., 2017) 80.90/12.27 83.35/9.15 82.69/12.99 83.41/10.16 69.61/15.65 89.50/7.63

GCNN (Song et al., 2020) 72.75/10.85 74.40/8.23 73.46/12.17 83.24/9.93 83.36/9.43 87.40/9.20

DGCNN (Song et al., 2020) 74.25/11.42 71.52/5.99 74.43/12.16 83.65/10.17 85.73/10.64 90.40/8.49

BiDANN (Li Y. et al., 2018) 76.97/10.95 75.56/7.88 81.03/11.74 89.65/9.59 88.64/9.46 92.38/7.04

GCB-net (Zhang T. et al., 2019) 80.38/10.04 76.09/7.54 81.36/11.44 88.05/9.84 88.45/9.67 92.30/7.40

GCB-net+BLS (Zhang T. et al., 2019) 79.98/8.93 76.51/9.56 81.97/11.05 89.06/8.69 89.10/9.55 94.24/6.70

RGNN (Zhong et al., 2020) 76.17/7.91 72.26/7.25 75.33/8.85 84.25/12.54 89.23/8.9 94.24/5.95

MDGCN-SRCNN 77.73/10.23 77.27/9.38 80.47/13.22 87.59/12.13 89.02/9.13 95.08/6.12

Bold represents the best result.

Model Settings
The parameter selection of the MDGCN-SRCNN model is based

on previous experience and a small number of experiments. The
Adam optimizer is used to optimize the loss function, and the

learning rate is selected in the range of [0.001, 0.01]. L2 regular
term coefficient α = 0.01. The fully connected layer in the
SMR-based convolution block uses a dropout rate of 0.7. In the
SEED data set, the batch size used is 16, and in SEED-IV, the batch
size used is 9.

RESULTS AND ANALYSIS

In this section, we will evaluate the effectiveness and
advancement of the propos ed model on the two data sets
described in section Experimental Settings.

Overall Performance
Performance on SEED
In the SEED data set, we refer to the settings of Zheng and Lu
(2015), Song et al. (2020), and Li Y. et al. (2018). Each subject

contains 15 trials per experiment. Therefore, the first 9 trials are
used as the training set and the remaining 6 trials are used as the
test set. The final accuracy and variance are the average results of
15 subjects.

The MDGCN-SRCNN model proposed in this paper is
compared with the latest methods such as Support Vector
Machine (SVM), Deep Belief Network (DBN), DGCNN, RGNN,
GCB-net, STRNN, and BiHDM. In addition, we evaluated the
performance of the related model on the 5 frequency bands
of the DE feature. The comparison results of these models are
shown in Table 2.

It can be seen in Table 2 that the model MDGCN-SRCNN
proposed in this paper has achieved the best performance in
the full-band features, with an average recognition accuracy rate
of 95.08% (standard deviation of 6.12%). The performance in
each frequency band is also very good. Compared with the
low-frequency band (Delta band, Theta band and Alpha band)
features, the high-frequency band (Beta band and Gamma band)
features are more related to human brain activity. Compared
with DGCNN and CGB-net, the accuracy rate of the whole
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frequency band is improved by 4.68 and 2.78%, respectively, and
the stability of our proposed model is better.

Performance on SEED-IV
On the SEED-IV data set, in order to better compare other
methods, we have the same settings as Zheng et al. (2018) and
Li et al. (2020). Each subject has a total of 24 trials in an
experiment. The first 16 trials are selected as the training set, and
the remaining 8 trials are used as the test set. The 8 trials in the
test set include 2 trials of happy, neutral, sad, and fear.

In order to evaluate the performance of the MDGCN-SRCNN
model proposed in this paper on the SEED-IV dataset, we
compared the baseline methods SVM, DBN, DGCNN, etc., and
also compared the current latest methods RGNN, BiHDM, SST-
EmotionNet, etc. We conduct experiments and comparisons on
theDE features of the whole frequency band (Delta, Theta, Alpha,
Beta, and Gamma). The results are shown in Table 3.

In Table 3, it can be seen that the MDGCN-SRCNN model
proposed in this paper achieves the most advanced performance
at present, with an average accuracy of 85.2%, which is 15.64
and 6.15% higher than the similar graph networks DGCNN and

TABLE 3 | The accuracy of the proposed method is compared with the existing

methods on the SEED-IV dataset.

Model ACC (%) STD (%)

SVM (Zhong et al., 2020) 56.61 20.05

DBN (Zhong et al., 2020) 66.77 7.38

GSCCA (Zheng, 2017) 69.08 16.66

DGCNN(Zhong et al., 2020) 69.88 16.29

BiDANN (Li Y. et al., 2018) 70.29 12.63

EmotionMeter (Zheng et al., 2018) 70.58 17.01

BiHDM (Li et al., 2020) 74.35 14.09

RGNN (Zhong et al., 2020) 79.37 10.54

SST-EmotionNet (Jia et al., 2020) 84.92 6.66

MDGCN-SRCNN 85.52 11.58

Bold represents the best result.

RGNN, respectively. It shows that MDGCN-SRCNN model has
a good advantage in emotion recognition task.

Visualization of Results
In order to intuitively distinguish between different emotions,
we draw the confusion matrix of SEED data set and SEED-
IV data set. As shown in Figure 3, the positive and neutral
emotions of SEED dataset are better distinguished than negative
emotions, and the neutral emotions will have certain negative
emotions. Fear emotions in the SEED-IV data set are relatively
difficult to distinguish. On the contrary, sad emotions are the
best to distinguish among the four types of emotions, followed
by neutral and happy emotions.

In addition, we performed a visual analysis of feature
distribution to evaluate the influence of the corresponding
modules in theMDGCN-SRCNNmodel.We use t-SNE to reduce
the dimensionality of the features output in different layers,
and draw a two-dimensional feature distribution map. Figure 4
shows the original artificial feature distribution of the SEED data
set and the SEED-IV data set and the output feature distribution
of different layers. It can be seen from Figure 4 that the output
features of a single layer will be confused with some samples to
varying degrees, resulting in a decrease in classification accuracy.
In addition, the features learned by two-layer GCN are more
representative than those learned by single-layer GCN.Moreover,
the deep features learned by SRCNN can better express each type
of emotion. Therefore, by combining the shallow GCN features
and the deep SRCNN features, the features that express various
emotions can be fully learned, and the robustness of the model
is improved.

Study of Brain Connection
We analyzed the connections between the brain regions in
human emotion. We standardize the initial adjacency matrix
and the adjacency matrix learned by network, and the range
of their values is [0, 1]. We select the top 10 strongest
connection weights in the SEED dataset and the SEED-IV
dataset, respectively, and draw their connection diagram, as
shown in Figure 5. Figures 5A,B show the initial connection

FIGURE 3 | Confusion matrix of different data sets. (A) is the confusion matrix of the SEED data set; (B) is the confusion matrix of the SEED-IV data set.
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FIGURE 4 | Visualization of t-SNE output from different layers. (A,F) are the original data; (B,G) are the feature distributions output by the first layer of GCN; (C,H) are

the feature distributions output by the second layer of GCN; (D,I) is the feature distribution of the output of the convolutional neural network; (E,J) are the feature

distributions after connecting the two layers of GCN and SRCNN. Different colors represent different emotions.

FIGURE 5 | The connection weights between the first 10 channels are selected from the initial adjacency matrix and the learned adjacency matrix. (A) is the initial

adjacency matrix of the SEED data set, (B) is the adjacency matrix learned from SEED dataset. (C) is the initial adjacency matrix of the SEED-IV data set, (D) is the

adjacency matrix learned from SEED-IV dataset.
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TABLE 4 | The SEED data set and SEED-IV data set are compared by using

different adjacency matrix A initialization methods.

Method SEED SEED-IV

ACC(%) STD(%) ACC(%) STD(%)

PCC 95.08 6.12 85.52 11.58

RGNN 91.98 7.21 84.16 10.93

PLV 92.04 7.56 80.92 13.48

Random 91.83 8.47 82.39 11.74

Bold represents the best result.

TABLE 5 | The results of ablation experiments on SEED and SEED-IV (mean/std),

“∼” represents the module is removed.

Model SEED SEED-IV

MDGCN-SRCNN 95.08/6.12 85.52/11.58

∼SRM 93.36/6.49 83.63/10.20

∼SRCNN 91.38/7.74 81.15/10.89

One-layer GCN 89.72/6.52 79.73/9.61

Bold represents the best result.

and the learned connection selected on the SEED data set,
respectively. Figures 5C,D show the initial connection and
the learned connection selected on the SEED -IV data set,
respectively. It can be seen from Figures 5A,C that the initial
connection between the left and right hemispheres of the brain
is symmetrical and concentrated in the occipital lobe, while
the subjects’ movie clips are mainly visual stimulation, and the
visual information is mainly processed in the occipital lobe,
which is in line with the common sense. After learning, the
connection between the left and right hemispheres of the brain
becomes asymmetric, as shown in Figures 5B,C, especially in
the temporal lobe, frontal lobe, and parietal lobe, where the
asymmetry is the strongest, indicating that these regions are
crucial to emotional activity. Among the local connections, (FT7-
T7), (FP2-FPZ), (FP2-AF4), and (T7-TP7) are the strongest
connections, and in the global connection (FP1-FP2), is the
strongest connection. It shows that emotional activities in the
brain are mainly local connections, and global connections are
complementary connections. In addition, the more complex
emotions are, the more brain areas need to be used. The more
complex the connections between brain areas, the greater the
strength of local connections.

In order to explore the impact of the initial method of
the adjacency matrixAon the performance of the model, we
chose the common initial methods, such as phase locking
(PLV), Pearson correlation coefficient (PCC), local, and global
connections used in RGNN and in [0,1] and random values. We
extracted DE features in the SEED data set and SEED-IV data
set for comparison. Table 4 shows the effect of using different
initial methods of adjacency matrix on the performance of the
MDGCN-SRCNN model on the SEED dataset and the SEED-
IV dataset. The results show that using PCC as the initialization
method of the adjacency matrix achieves the best performance.

In RGNN, a global connection is added on the basis of relative
physical distance, and a great improvement has beenmade on the
SEED-IV data set. The performance of PLV as an initialization
method of the adjacency matrix is equivalent to that of random
value selection.

Ablation Results
In order to verify the contribution of each module of our
proposed model, we conducted a series of ablation experiments.
The results are shown in Table 5. After removing the SRCNN
module, the performance is significantly reduced. The accuracy
on SEED and SEED-IV decreased by 3.7 and 4.37%, respectively,
indicating the importance of CNN in extracting deep abstract
features related to emotion. In addition, the accuracy on SEED
and SEED-IV decreased by 1.72 and 1.89% respectively after
removing the SRM module, which proved that the attention
mechanism such as SRM module can effectively emphasize
emotion related features and abandon useless features, so as to
improve the recognition performance of the model. Compared
with the one-layer GCN, the recognition performance of two-
layer GCN on SEED and SEED-IV is improved by 1.66 and1.42%,
respectively, indicating that there is a certain complementarity
between global features and local features.

CONCLUSIONS

In this paper, we propose a multi-layer dynamic graph
convolutional network-style-based recalibration convolutional
neural network (MDGCN-SRCNN) model for EEG-based
emotion recognition. In our model, EEG data is considered to
be non-Euclidean structure, and dynamic graph neural network
is used to learn the connection relationship between each channel
of EEG signal as a shallow layer feature. Because analyzing
emotions through EEG signals is very complicated. We use a
style-based recalibration convolutional neural network to further
extract abstract deep layer features. Finally, the fully connected
layer is used to search for the features most relevant to emotions
in the shallow layer and deep layer features for recognition.
We conducted systematic experimental verification on the SEED
data set and the SEED-IV data set. MDGCN-SRCNN model
has achieved better performance on the two public data sets,
surpassing the state-of-the-art RGNN. The recognition accuracy
on the SEED data set and SEED-IV data set is 95.08 and 85.52%,
respectively, and the standard deviation is 6.12 and 11.58%,
respectively. Based on using PCC as the initialization method
of the adjacency matrix, the MDGCN-SRCNN model is used
to learn the local connections and global connections that are
most relevant to emotions, such as (FT7-T7), (FP2-FPZ), (FP2-
AF4), (T7-TP7), and (FP1-FP2), these connections are mainly
distributed in the temporal lobe, frontal lobe, and parietal lobe,
proving that these brain regions play a vital role in inducing
emotions. In addition, we also found that the more complex
emotions are processed, the more brain regions are involved, the
more complex the connections, and the greater the strength of
local connections.

It is worth noting that using different initial methods of
adjacency matrix has a great influence on the connection
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relationship between graph neural network learning and task.
Therefore, it is very important to build the initial connection
relationship related to the task. In the future, our main work
direction is to build more complex network based on GCN to
solve the differences between subjects. And further explore the
differences of adjacency matrix under different emotional states,
and then analyze the differences of brain activity under different
emotional states.
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Due to the cumbersome and expensive data collection process, facial action unit (AU)

datasets are generally much smaller in scale than those in other computer vision fields,

resulting in overfitting AU detection models trained on insufficient AU images. Despite

the recent progress in AU detection, deployment of these models has been impeded

due to their limited generalization to unseen subjects and facial poses. In this paper, we

propose to learn the discriminative facial AU representation in a self-supervised manner.

Considering that facial AUs show temporal consistency and evolution in consecutive

facial frames, we develop a self-supervised pseudo signal based on temporally predictive

coding (TPC) to capture the temporal characteristics. To further learn the per-frame

discriminativeness between the sibling facial frames, we incorporate the frame-wisely

temporal contrastive learning into the self-supervised paradigm naturally. The proposed

TPC can be trained without AU annotations, which facilitates us using a large number

of unlabeled facial videos to learn the AU representations that are robust to undesired

nuisances such as facial identities, poses. Contrary to previous AU detection works,

our method does not require manually selecting key facial regions or explicitly modeling

the AU relations manually. Experimental results show that TPC improves the AU

detection precision on several popular AU benchmark datasets compared with other

self-supervised AU detection methods.

Keywords: facial action unit recognition, self-supervised learning, contrastive learning, temporal predictive

coding, representation learning

1. INTRODUCTION

Facial expression recognition technology offers the opportunity to seamlessly capture the expressed
emotional experience of humans and facilitates unique human-computer interaction experiences.
Over the past decades, facial expression recognition and analysis have been a hot research topic
in the field of computer vision and human-computer interaction. To precisely characterize facial
expressions, Ekman et al. developed the facial action coding system (FACS) (Ekman and Friesen,
1978). FACS has been widely used for describing and measuring facial behavior and has been the
most comprehensive, anatomical system for describing facial expressions. FACS defines a detailed
set of about 30 atomic non-overlapping facial muscle actions, i.e., action units (AUs). Almost any
anatomical facial muscle activity can be characterized via a combination of facial AUs. Automatic
AU detection has been a vital task for facial expression analysis, with a variety of applications in
psychological and behavioral research, mental health assessment, and human-computer interaction
(Bartlett et al., 2003; Zafar and Khan, 2014). Therefore, a reliable AU detection system is of vital
importance for precise human emotion analysis.
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Benefiting from the promising advancement in deep learning
research, the performance and accuracy of AU detection has
been improved by virtue of the convolutional neural network
(CNN) based approaches in recent years (Li et al., 2017a,b,
2018a,b, 2020a; Corneanu et al., 2018; Jacob and Stenger, 2021).
However, the CNN-model-based AU detection approaches are
quite data starved. What is worse is that AU annotation is
time-consuming, labor-intensive, cumbersome, and error-prone.
Thus, many existing works propose to exploit the auxiliary
information for precise AU detection, e.g., Yang et al. (2021)
proposed to use the semantic embedding and visual feature
(SEV-Net) for AU detection. SEV-Net obtains AU semantic
embeddings through both intra-AU and inter-AU attention
components to capture the relationships among words within
each sentence that describes individual AU. Li and Shan (2021)
use the categorical facial expression images as auxiliary training
data to boost the AU detection performance in a meta-learning
manner. These pioneering works have inspired us to use a large
amount of unlabeled facial videos to learn the AU representation
unsupervised, as the unlabeled facial videos are easy to obtain
and they consist of a large amount of subjects with diverse
facial expressions.

Recently, self-supervised learning (SSL) has shown promising
potential in learning discriminative features from the unlabeled
data via various different manually defined pretext tasks (Wang
et al., 2020; Cai et al., 2021; Hu et al., 2021; Kotar et al., 2021;
Luo et al., 2021; Sun et al., 2021). For the task of AU detection,
Li et al. (2019b) proposed to predict the optical flow caused by
AUs and poses between two randomly sampled facial frames in a
video sequence. The optical flow of the AUs and poses are then
linearly combined to obtain the overall displacements between
the two sampled faces. Lu et al. (2020) leveraged the temporal
consistency to learn the AU feature via a self-supervised temporal
ranking constraint. To capture the AU correlations in an input
facial image, Yan et al. (2021) disentangled the global feature
into multiple AU-specific features via a contrastive loss and then
compute the feature for each AU by aggregating the features from
the other AU-specific features with a transformer component. To
bridge the performance gap between the fully supervised and self-
supervised AU detection methods, we propose a self-supervised
pseudo signal based on the temporally predictive coding (TPC)
to capture the temporal characteristics of the AUs. Specially,
we construct a model that combines an AU feature extraction
network with a convolutional gated recurrent unit (GRU) unit
(Zonoozi et al., 2018), and a prediction head on top of the GRU
that can make temporal predictions. We train the constructed
model via TPC loss, which will be detailed in Section 3.1.

To further learn the per-frame discriminativeness between
the sibling facial frames within a video clip, we propose a
frame-wisely temporal contrastive learning mechanism. The AU
detection model is tasked to perceive the temporal consistency
and frame-wisely discriminativeness self-supervised. The AU
detection backbone is trained end-to-end with the linear
combination of the two contrastive losses on the unlabeled
facial videos. Afterward, we additionally train a linear classifier
with the pre-trained AU detection backbone with the scarce
AU annotations.

In summary, the core contributions of this work can be
summarized as follows:

1. We introduce self-supervised TPC for facial AU
representation learning. TPC does not rely on AU annotations
to learn the discriminative AU representations.

2. To further enhance the discriminability of the AU
representation, TPC consists of a frame-wisely temporal
contrastive learning constraint. TPC is capable of perceiving
the temporal consistency and frame-wisely discriminativeness
self-supervised.

3. Experimental results demonstrate the advantages of the
proposed TPC over other state-of-the-art self-supervised
AU detection methods on two popular AU datasets. Image
retrieval results show that the learned AU representation in
TPC is superior in spotting and capturing the AU similarities
between different faces.

2. RELATED WORK

A number of AU detection approaches have been proposed
recently (Zhao et al., 2016; Li et al., 2017a,b; Li and Shan,
2021). AU detection approaches are deep learning-based mostly.
Since AU actually means the movement of the facial muscles,
many approaches detect the active/inactive states of AUs locally
(Zhao et al., 2016; Li et al., 2017a,b). Among them, Zhao
et al. (2016) used a locally connected convolutional layer to
learn the AU-specific convolutional filters. SEV-Net (Yang et al.,
2021) exploited the AU semantic word embedding as the
auxiliary labels. FAUT was (Jacob and Stenger, 2021) proposed to
capture the relationships between AUs via a transformer. These
supervised AU detectionmethods needmanually labeled training
facial data. As training images are scarce, these methods often
overfit on a specific dataset and cannot generalize well.

Recently, self-supervised (Wiles et al., 2018; Li et al., 2019b,
2020b; Lu et al., 2020) and weakly-supervised (Peng and Wang,
2018; Zhao et al., 2018) methods have been proposed to learn the
deep learning-based models from unlabeled or partially labeled
images. The former usually adopts the manually defined pseudo
supervisory signals to learn the facial AU representation (Li
et al., 2019b, 2020b; Lu et al., 2020). Among them, Fab-Net
(Wiles et al., 2018) was trained to map a source facial frame
to a target facial frame via estimating an optical flow field
between the source and the target faces. Twin-cycle autoencoder
(TCAE and TAE) (Li et al., 2019b, 2020b) were proposed to
learn the pose-invariant facial action features by estimating the
respective optical flows for the poses and AUs via the cycle-
consistency in the image and representations. Lu et al. (2020)
proposed a temporally sensitive triplet-based metric learning to
learn the facial AU representations via capturing the temporal
AU consistency. It actually learns to rank the neighboring faces
from the sequential frames in the correct order. Our proposed
TPC differs from previous methods in three aspects. First, TPC
is self-supervised in the pre-training stage. Second, TPC does
not crop the regional AU features to learn the region-specific
AU feature. Instead, it uses an abundant number of unlabeled
videos to enhance the AU detection performance. Finally, TPC
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FIGURE 1 | Main idea of the proposed self-supervised temporally predictive coding (TPC) for facial AU representation learning. Given a facial sequence with T faces,

we use the preceding T1 faces as input and exploit the left faces for temporal prediction. Besides, we randomly sampled some triplets in each facial sequence to

perceive the temporal consistency and frame-wisely discriminativeness self-supervised. ψ takes the context representation ct as input and estimates the features for

the future frame recursively. Better viewed in color and zoom in.

is proposed to encode the temporal dynamics and consistencies
to encode the characteristics of the facial AUs.

3. METHOD

Figure 1 illustrates the main framework of the proposed TPC
for AU representation learning. Given an input facial sequence
sampled from an unlabeled facial video, TPC first extracts the
convolutional feature maps of each face via a commonly-used
backbone network such as ResNet-50. Second, TPC learns the
discriminativeness between different facial frames via temporal
contrastive learning. We will introduce the proposed TPC and
present the temporal contrastive learning paradigm in our
proposed TPC as below.

3.1. Temporal Predictive Coding
Videos are very appealing as a data source for self-supervision
as there are many forms of pseudo signal. In detail, the self-
supervision in the video sequence generally originates from
three types: spatial, spatio-temporal, and sequential. Among
the three kinds of self-supervised signal, spatial supervision
can be derived from the structures in the static frame, spatio-
temporal supervision naturally reflects the correlation across
the different frames, and sequential supervision signifies the
temporal coherence. Therefore, we exploit the sequential self-
supervision to learn a robust model for facial AU detection that is
capable of capturing the temporal dynamics as well as temporal
consistency of the facial AUs.

Let X = {xt}
T
t=1 denotes a consecutive sequence of T

facial frames within an unlabeled video, where xt ∈ R
H×W×C

means the input t-th facial image of size H × W × C. Our
goal here is to learn a model that predicts a slowly varying

semantic representation based on the recent past. As illustrated
in Figure 1, we partition a facial video clip into two parts: input
part I and output part O:

I = {xt}
T1
t=1, (1)

O = {xt}
T
t=T1+1, (2)

where T1 is the length of the input facial sequence. First, a
backbone network f (.) maps each facial frame xt to its latent

convolutional map representation et ∈ R
H′

×W′
×C′

, organized
as height × width × channels. Then, we use a convolutional
GRU to aggregate the sequential latent representations into a
context representation ct . Mathematically, GRU uses the same
gated principal of LSTM but with a simpler architecture. The
below equations describe the mathematical model for the GRU:

zt = σ (Whzht−1 +Wxzet + bz), (3)

rt = σ (Whrht−1 +Wxret + br), (4)

ĥt = 8(Wh(rt ⊙ ht−1)+Wxet + b), (5)

ct = ht = (1− zt)⊙ ht−1 + z ⊙ ĥt , (6)

where ht is the hidden state, rt and zt are the reset gate value and
update gate value at frame t. The functions σ (.) and 8(.) denote
the sigmoid and tangent activation functions, respectively. The
reset gate rt can decide whether or not to forget the previous
activation. ⊙ means the element-wise multiplication. Figure 2
shows the main idea of the convolutional GRU.

With the encoded context representation ct , we exploit
a prediction head ψ to predict the convolutional latent
representation of the feature. In detail, ψ takes the context
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FIGURE 2 | Illustration of the convolutional gated recurrent unit (GRU).

representation ct as input and estimates the features for the future
frame recursively:

et+1 = ψ(ct), (7)

et+2 = ψ(ct+1), (8)

where ct means the context feature from time step 1 to t, and
et+1 means the estimated latent convolutional feature of the time
step t + 1. Similarly, we can predict the latent convolutional
feature maps for the t + 2 facial frame, in a recursive manner.
Such a recursive TPC manner enforces the prediction to be
conditioned on all previous predictions and observations. The
intuition behind the TPC is that the model is tasked to infer
future AU semantics from the context representations ct and
thus ct has to encode temporal consistency and dynamics of the
facial AUs.

The learning of the TPC is accomplished via a noise
contrastive estimation, where our goal is the classify the real
from the noisy samples. We denote the feature vector in each
spatial location of the encoded and the predicted convolutional
feature maps as ei,k and êi,k, where i denotes the temporal index
and k means the spatial index in the convolutional features,
k ∈ {(1, 1), (1, 2), · · · , (H′,W′)}. Finally, we can formulate the
learning objective as follows:

Lpred = −

∑

i,k

log
exp(êi,k · ei,k)

∑

j,m exp(êi,k · ei,m)
. (9)

The goal of Lpred is to classify the positive pair (êi,k, ei,k) among a
set of constructed pairs. A positive pair consists of two elements
that are located in the same spatial location and at the same time
step. All the other pairs (êi,k, ej,m) that satisfy (i, k) 6= (j,m) are
negative pairs. Lpred is optimized such that the similarities of the
positive pairs are higher than the similarities of the negative pairs.
While the proposed TPC can spot the temporal consistency and
dynamics of the input facial sequences, the discriminativeness

of the nearby facial frames can be further enhanced so that the
encoded AU representation can be more discriminative. We will
explain how we use the temporal contrastive learning paradigm
to achieve this goal in the next section.

3.2. Temporal Contrastive Learning
To learn the frame wisely discriminativeness of the input
facial images, we introduce a temporal contrastive learning goal
by adding multiple triplet losses (Schroff et al., 2015), each
measuring the pairwise distance between the adjacent frames
to the anchor frame. Learning to rank through triplet loss
actually trains an AU detection backbone that learns to make the
distance between the anchor and the positive face smaller than
the distance between the anchor and the negative face.

Let us denote a triplet that consists of three facial frames as
(xa, xp, xn), where xa, xp, and xn mean the anchor face, positive
sample, negative sample, respectively. Note that xa, xp, and xn are
consecutive facial frames randomly sampled from the input facial
sequence X = {xt}

T
t=1. Intuitively, (xa, xp) should have more

similar facial expressions than (xa, xn) because the time interval
is smaller between xa and xp. Inspired by intuition, we randomly
sampled M triplets from the input facial sequence X and expect
that the sum of M triplet losses would enable the AU detection
backbone to learn to perceive the facial expression difference in
the nearby facial frames. The learning target of the proposed
temporal contrastive learning paradigm can be formulated as:

Ltcl =

[

D(f (xi,1a ), f (x
i,j
p ))− D(f (xi,1a ), f (x

i,j+1
n ))+m

]

+

, (10)

where D is the cosine similarity of the input frame pairs. i is the
sequence index, j is the frame index within the i-th input facial
sequence. m is the margin that ensures Ltcl will not be zero until
the difference between the distances of the negative and positive
frame from the anchor is greater than m. For each training facial
sequence with T faces, we randomly sampled P triplets.

3.3. Overall Training Objective of TPC
For pre-train, we use the linear combination of Lpred and Ltcl

as below:

Ltotal = Lpred + λLtcl, (11)

where λmeans the importance of the temporal triplet loss, which
will be discussed in the experimental section.

For AU detection, we finetune the pre-trained model with the
annotated AU labels. Mathematically, we exploit the multi-label
sigmoid cross-entropy loss for optimizing the AU classification
head and the pre-trained backbone model, which can be
formulated as:

L
AU

= −

M
∑

m

zm log ẑm + (1− zm) log(1− ẑm), (12)

whereM denotes the number of facial AUs. zm denotes the m-th
ground truth AU annotation of the input AU sample. ẑm means
the predicted AU score. zi ∈ {0, 1} means the labels w.r.t the ith
AU. 0 means the AU is inactive, and 1 means the AU is active.
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4. EXPERIMENT

4.1. Implementation Details
We adopted ResNet-18 (He et al., 2016) as the backbone network
for pretrain. We optimized the proposed backbone model via a
batch-based stochastic gradient descentmethod. During training,
we set the batch size as 64 on 4 GPU units and the initial learning
rate as 0.001. For each video, we randomly sampled T = 10
consecutive faces for training, we used the first 8 eight faces as
the input and the left 2 faces for prediction. Additionally, we
randomly sampled P = 4 triplets from each facial sequence for
temporal contrastive learning. During finetuning, we dropped
the convolutional GRU and added a linear classifier layer for
AU prediction. We set the momentum as 0.9 and the weight
decay as 0.0005. We use the popular Voxceleb dataset (Nagrani
et al., 2020) for pre-training. The dataset consists of about 6,000
subjects and hundreds of thousands of videos. All the videos only
contain a subject with varying expressions and no AU or facial
expression annotations.

4.1.1. Datasets and Evaluation Metric
For AU detection, we adopted the denver intensity of
spontaneous facial action (DISFA) (Mavadati et al., 2013)
and binghamton-pittsburgh 3D dynamic spontaneous facial
expression database (BP4D) (Zhang et al., 2013) datasets. BP4D
consists of a total of 328 videos recorded for 41 subjects (18
men and 23 women). A total of 8 different experimental tasks
are evaluated on the 41 subjects, and their spontaneous facial
AUs variations were recorded in the videos. There are nearly
14,0000 frames with 12 facial AUs labeled. DISFA contains 27
participants. Each participant is asked to watch a video to elicit
his/her facial expressions. The facial AUs are annotated with
intensities ranging from 0 to 5. There are about 130,000 AU-
annotated images in the DISFA dataset by setting the images with
intensities greater than 1 as active. For the two datasets, the facial
images are split into 3-fold in a subject-independent manner. We
used the 3-fold cross-validation and adopted 12 AUs in BP4D and
8 AUs in DISFA dataset for evaluation.

We adopted F1-score to evaluate the performance of the
proposed AU detection method. The F1-score can be calculated
as F1 =

2RP
R+P , where R and P, respectively, denote the recall and

precision. We also use the average F1-score over all the evolved
AUs (Ave) to evaluate the overall facial AU detection precision.

4.2. Experimental Results
For the supervised methods, we compare the proposed TPC
with deep region and multi-label (DRML) (Zhao et al., 2016),
enhancing and cropping net (EAC-Net) (Li et al., 2017b), deep
structure inference network (DSIN) (Corneanu et al., 2018), local
relationship learning with person-specific shape regularization
(LP-Net) (Niu et al., 2019), semantic relationship embedded
representation learning (SRERL) (Li et al., 2019a), uncertain
graph neural networks (UGN) (Song et al., 2021), semantic
embedding and visual feature net (SEV-Net) (Yang et al., 2021)
and facial action unit detection with transformers (FAUT) (Jacob
and Stenger, 2021), meta auxiliary learning (MAL) (Li and
Shan, 2021). It is worth noting that some of the AU detection

approaches (Li et al., 2017b, 2019a; Corneanu et al., 2018;
Jacob and Stenger, 2021) learn the AU-specific representations
with exclusive CNN branches via cropping the local facial
regions. SEV-Net (Yang et al., 2021) proposes to learn robust
visual features for AU detection via introducing the auxiliary
AU descriptions. UGN (Song et al., 2021) learn to model the
uncertainty of the AU annotations.

For the self-supervised methods, we compare the proposed
TPC with TCAE (Li et al., 2019b), TAE (Li et al., 2020b), triplet
ranking loss (TRL) (Lu et al., 2020). Among the compared
methods, in TRL (Lu et al., 2020) proposed an aggregate ranking
loss by taking the sum of multiple triplet losses to allow pairwise
comparisons between the adjacent facial frames. In TRL, they
learn to rank the faces through triplet loss involves training an
encoder that learns to force the distance between the anchor
face and the positive face smaller than the distance between the
anchor face and the negative face.

Table 1 shows the AU detection accuracy comparison of our
TPC and previous methods on BP4D dataset. TPC obtains
comparable AU detection accuracy in the average accuracy. In
detail, TPC shows its superiority over DRML, EAC-Net, DSIN,
LP-Net, with +12.8%, +5.2%, +2.2%, +0.1% improvements,
respectively. Notably, TPC does not rely on facial landmarks
to extract specified local facial regions, which will bring out a
heavy computation burden in the training and inference phase.
Besides, TPC does not need to use auxiliary AU description word
embeddings or a large amount of annotated facial expression
data for auxiliary learning. As different AUs are associated with
specific facial muscles and corresponds to fine-grained local facial
regions, learning region-specific AU representations is beneficial.
The success of the region-based AU detection approaches (Li
et al., 2017b, 2019a, 2020b; Corneanu et al., 2018; Jacob and
Stenger, 2021) have verified the benefits of the region-based AU
detection approaches. We will explore this in future work.

Table 2 shows the AU detection accuracy comparison of our
TPC and previous methods on the DISFA dataset. TPC achieves
slightly superior AU detection accuracy with the best state-of-
the-art self-supervised AU detection methods in the average F1
score, with 0.8% improvements over TAE, 7.3% improvements
over TCAE, and 12.9% improvements over TRL. Notably, TPC
shows its superiority in AU1 (Inner Brow Raiser), AU2 (Outer
Brow Raiser), AU6 (Cheek Raiser), AU12 (Lip Corner Puller),
and obtains comparable AU detection performance in AU9 (Nose
Wrinkler) and AU25 (Lips part). In summary, the benefits of the
proposed TPC over other self-supervised AU detection methods
can be summarized in 2-fold. First, TPC explicitly learns to
encode the temporal evolution and consistency of the facial
Aus in the temporal sequences. The self-attention mechanism
in the transformer modules is capable of perceiving the local to
global interactions between different facial AUs. Second, TPC
incorporates the frame-wisely temporal contrastive learning into
the self-supervised paradigm to further learn the per-frame
discriminative-ness between the nearby facial frames. Thus,
TPC is capable of perceiving the temporal consistency and the
frame-wisely discriminativeness of the facial AUs self-supervised.
The consistent improvements over other self-supervised AU
detection methods have verified the feasibility of TPC. We will
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TABLE 1 | Action unit (AU) detection accuracy of the proposed temporally predictive coding (TPC) and state-of-the-art approaches on BP4D dataset.

Methods AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Ave

DRML Zhao et al. (2016) 36.4 41.8 43.0 55.0 67.0 66.3 65.8 54.1 33.2 48.0 31.7 30.0 48.3

EAC-Net Li et al. (2017b) 39.0 35.2 48.6 76.1 72.9 81.9 86.2 58.8 37.5 59.1 35.9 35.8 55.9

DSIN Corneanu et al. (2018) 51.7 40.4 56.0 76.1 73.5 79.9 85.4 62.7 37.3 62.9 38.8 41.6 58.9

LP-Net Niu et al. (2019) 43.4 38.0 54.2 77.1 76.7 83.8 87.2 63.3 45.3 60.5 48.1 54.2 61.0

UGN Song et al. (2021) 54.2 46.4 56.8 76.2 76.7 82.4 86.1 64.7 51.2 63.1 48.5 53.6 63.3

SRERL Li et al. (2019a) 46.9 45.3 55.6 77.1 78.4 83.5 87.6 63.9 52.2 63.9 47.1 53.3 62.9

FAUT Jacob and Stenger (2021) 51.7 49.3 61.0 77.8 79.5 82.9 86.3 67.6 51.9 63.0 43.7 56.3 64.2

SEV-Net Yang et al. (2021) 58.2 50.4 58.3 81.9 73.9 87.8 87.5 61.6 52.6 62.2 44.6 47.6 63.9

MAL Li and Shan (2021) 47.9 49.5 52.1 77.6 77.8 82.8 88.3 66.4 49.7 59.7 45.2 48.5 62.2

TCAE Li et al. (2019b) 43.1 32.2 44.4 75.1 70.5 80.8 85.5 61.8 34.7 58.5 37.2 48.7 56.1

TAE Li et al. (2020b) 47.0 45.9 50.9 74.7 72.0 82.4 85.6 62.3 48.1 62.3 45.9 46.3 60.3

TRL Lu et al. (2020) 42.3 24.3 44.1 71.8 67.8 77.6 83.3 61.2 31.6 51.6 29.8 38.6 52.0

TPC (Ours) 43.2 44.6 52.8 72.6 71.9 84.9 86.9 64.8 50.3 61.5 55.6 43.7 61.1

The best results in the supervised and self-supervised methods are illustrated in Bold.

TABLE 2 | Action unit detection accuracy of the proposed TPC and state-of-the-art approaches on the DISFA dataset.

Methods AU1 AU2 AU4 AU6 AU9 AU12 AU25 AU26 Ave

DRML Zhao et al. (2016) 17.3 17.7 37.4 29.0 10.7 37.7 38.5 20.1 26.7

EAC-Net Li et al. (2017b) 41.5 26.4 66.4 50.7 80.5 89.3 88.9 15.6 48.5

OFS-CNN Han et al. (2018) 43.7 40.0 67.2 59.0 49.7 75.8 72.4 54.8 51.4

DSIN Corneanu et al. (2018) 42.4 39.0 68.4 28.6 46.8 70.8 90.4 42.2 53.6

SRERL Li et al. (2019a) 45.7 47.8 59.6 47.1 45.6 73.5 84.3 43.6 55.9

LP-Net Niu et al. (2019) 29.9 24.7 72.7 46.8 49.6 72.9 93.8 65.0 56.9

FAUT Jacob and Stenger (2021) 46.1 48.6 72.8 56.7 50.0 72.1 90.8 55.4 61.5

SEV-Net Yang et al. (2021) 55.3 53.1 61.5 53.6 38.2 71.6 95.7 41.5 58.8

UGN Song et al. (2021) 43.3 48.1 63.4 49.5 48.2 72.9 90.8 59.0 60.0

MAL Li and Shan (2021) 43.8 39.3 68.9 47.4 48.6 72.7 90.6 52.6 58.0

TCAE Li et al. (2019b) 15.1 15.2 50.5 48.7 23.3 72.1 82.1 52.9 45.0

TAE Li et al. (2020b) 21.4 19.6 64.5 46.8 44.0 73.2 85.1 55.3 51.5

TRL Lu et al. (2020) 18.7 27.4 35.1 33.6 20.7 67.5 68.0 43.8 39.4

TPC (Ours) 22.8 30.8 59.6 53.9 42.7 75.3 82.1 51.6 52.3

The best results in the supervised and self-supervised methods are illustrated in Bold.

TABLE 3 | Ablation studies on the BP4D and DISFA datasets.

Methods BP4D DISFA

Lpred 58.7 49.8

Ltcl 57.9 50.8

λ = 10.0 55.2 47.1

λ = 1.0 59.3 48.6

λ = 0.1 61.1 52.3

carry out an ablation study to investigate the contribution of the
two components in TPC in the next section.

4.2.1. Ablation Study
Table 3 shows the ablation experimental results. In Table 3, we
show the accuracy variations with a different self-supervised
components, and show the influence with different λ. As shown
in Table 3, TPC shows the best AU detection performance
with the linear combination of Lpred and Ltcl with λ = 0.1.
It means both components in TPC contribute to its success
in learing discriminative AU representations. Without
either of the two self-supervised targets, TPC will show
degraded AU detection accuracies. Besides, TPC also suffers
from low accuracy with λ = 1.0 and λ = 10.0, which
suggests the two self-supervised learning targets should
be appropriately balanced to achieve the discriminative
AU representations.
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5. CONCLUSION

Within this paper, we aim to propose a self-supervised pseudo
signal based on TPC to capture the temporal characteristics
of the facial AUs in the sequential facial frames. To further
learn the per-frame discriminativeness between the nearby faces,
TPC incorporates the frame-wisely temporal contrastive learning
into the self-supervised paradigm. The proposed TPC can be
pre-trained without AU annotations, which facilitates making
use of a large amount of unlabeled facial videos to learn
the AU features that are robust to other undesired nuisances.
Compared with supervised facial AU detection methods, TPC
obtains comparable AU detection performance. Besides, TPC
is superior to other self-supervised AU detection approaches.
For future work, we will explore learning to perceive the
regional and structural AU features in the temporal contrastive
learning paradigm.
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Portraying emotion and trustworthiness is known to increase the appeal of video content.

However, the causal relationship between these signals and online user engagement is

not well understood. This limited understanding is partly due to a scarcity in emotionally

annotated data and the varied modalities which express user engagement online. In

this contribution, we utilize a large dataset of YouTube review videos which includes ca.

600 h of dimensional arousal, valence and trustworthiness annotations. We investigate

features extracted from these signals against various user engagement indicators

including views, like/dislike ratio, as well as the sentiment of comments. In doing so,

we identify the positive and negative influences which single features have, as well as

interpretable patterns in each dimension which relate to user engagement. Our results

demonstrate that smaller boundary ranges and fluctuations for arousal lead to an increase

in user engagement. Furthermore, the extracted time-series features reveal significant

(p < 0.05) correlations for each dimension, such as, count below signal mean (arousal),

number of peaks (valence), and absolute energy (trustworthiness). From this, an effective

combination of features is outlined for approaches aiming to automatically predict several

user engagement indicators. In a user engagement prediction paradigm we compare

all features against semi-automatic (cross-task), and automatic (task-specific) feature

selection methods. These selected feature sets appear to outperform the usage of all

features, e.g., using all features achieves 1.55 likes per day (Lp/d) mean absolute error

from valence; this improves through semi-automatic and automatic selection to 1.33 and

1.23 Lp/d, respectively (data mean 9.72 Lp/d with a std. 28.75 Lp/d).

Keywords: user engagement, explainable machine learning, popularity of videos, affective computing, YouTube,

continuous emotion annotation

1. INTRODUCTION

Online video content hosted by platforms such as YouTube is now gaining more daily views than
traditional television networks (Battaglio, 2016). There are more than 2 billion registered users on
YouTube, and a single visitor will remain on the site for at least 10 min (Cooper, 2019). Viewers
rate of retention for a single video is between 70–80%, and such retention times may be due
to (cross-) social network effects (Roy et al., 2013; Yan et al., 2015; Tan and Zhang, 2019) and
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the overall improvement in content and connection quality in
recent years (Dobrian et al., 2011; Lebreton and Yamagishi, 2020),
but arguably caused by intelligent mechanisms (Cheng et al.,
2013), e.g., 70% of videos watched on YouTube are recommended
from the previous video (Cooper, 2019). To this end, gaining a
better understanding of what aspects of a video a user engages
with has numerous real-life applications (Dobrian et al., 2011).
For example, videos such as misinformation, fake messages, and
hate speech are strongly emotionally charged (Knuutila et al.,
2020) and detection using conventional methods such as natural
language processing is to date a tremendous challenge (Stappen
et al., 2020b). Another application is the use by creators who
adapt their content to have a greater prospect of the video
becoming viral (Trzciński and Rokita, 2017) and thus improve
advertising opportunities.

Positive emotion (Berger and Milkman, 2012) and trust of the
individuals in videos (Nikolinakou and King, 2018) have shown
to affect user (i.e., content) engagement (Shehu et al., 2016; Kujur
and Singh, 2018). In traditional forms of entertainment (i.e., film)
portraying emotion captivates the audiences improving their
ability to remember details (Subramanian et al., 2014) and similar
persuasion appeals are applied within shorter-form YouTube
videos (English et al., 2011). When emotion is recognized
computationally, research has shown that the emotion (arousal
and valence) of a video can be an indicator of popularity,
particularly prominent when observing audio features (Sagha
et al., 2017).

The frequency of comments by users is also a strong indicator
of how engaged or not users are with a video (Yang et al.,
2016). Furthermore, understanding the sentiment of comments
(i.e., positive, neutral, or negative) can offer further insights
on the type of view engagement, e.g., more positive sentiment
correlates to longer audience retention (Yang et al., 2016). In a
similar way to the use of emotions, developing trust between the
viewer (trustor) and the presenter (trustee) has also shown to
improve user engagement. It is a common strategy by content
creators to facilitate what is known as a parasocial relationship.
A parasocial relationship develops when the viewer begins to
consider the presenter as a friend without having ever met
them (Chapple and Cownie, 2017).

With this in mind, we unite multiple emotional signals
for an explicit engagement analysis and prediction in this
current contribution. Thereby, we focus on the utilization of
the emotional dimensions of arousal and valence and extend
the typical Russel circumplex model for emotion, by adding
trustworthiness as a continuous signal. Hereby, we follow a two-
step approach: First, we aim to understand better continuous
factors which improve metadata-related (i.e., views, likes, etc.)
and comment-related (i.e., sentiment of comments, positive-
negative ratios, likes of comments etc.) user engagement across
modes (i.e., emotional signals to text-based indicators). To do
this, we collect the metadata as well as more than 75 k comments
from the videos. We annotate a portion of these comments
to be used in combination with other data sets for training
a YouTube comment sentiment predictor for the automatic
assessment of the unlabeled comments. Furthermore, we utilize
a richly annotated data set of ca. 600 h of continuous annotations

(Stappen et al., 2021), and derive cross-task features from this
initial correlation analysis. Second, we compare these engineered,
lean features, to a computationally intensive feature selection
approach and to all features when predicting selected engagement
indicators (i.e., views, likes, number of comments, likes of the
comments). We predict these indicators as a regression task,
and train interpretable (linear kernel) Support Vector Regressors
(SVR). The main contributions to the research community are
two-fold:

1. To the best of the authors’ knowledge, there has been no
research which analyses YouTube video user engagement
against trustability time-series features.

2. Furthermore, we are the first to predict cross-modal user
popularity indicators as a regression task—purely based on
emotional signal features without using typical text, audio, or
images/video features as input.

This article is organized as follows; firstly, in Section 2, we provide
a brief background on the core concepts which relate to emotions
and user-generated content. We then introduce the data that is
used within the experiments in cf. Section 3. This is followed by
the experimental methodology, in Section 4, including feature
extraction from signals and sentiment extraction from text,
and the machine learning pipeline overall. The results are then
extensively analyzed and discussed in Section 5, with a mention
of study limitations in Section 6. Finally, we offer concluding
remarks and future outlook in Section 7. The newly designed
and extended datasets, code, and the best models will be made
publicly available on in our project repository.

2. BACKGROUND

Within our contribution, the concept of emotions for user-
generated content is extended from the conventional Russel
concept of emotion dimensions, valence, and arousal (Russell,
1980), to include a continuous measure for trustworthiness.
In the following, we introduce these core concepts and
related studies.

2.1. Concepts of Emotion and
Trustworthiness
There are two predominant views in the field of affective science:
the first assumes that emotions are discrete constructs, each
acting as an independent emotional system of the human brain,
and hence, can be expressed by discrete categories (Ekman, 1992).
The second assumes an underlying interconnected dimensional
signal system represented by continuous affective states.

For emotion recognition using continuous audio-video
signals, the circumplex model of emotion developed by Russel
is the most prominent (Russell, 1980) and applied (Busso et al.,
2008; Kossaifi et al., 2019; Stappen et al., 2021) approach of
the latter idea. This representation of affect typically consists of
continuous valence (the positiveness/ negativity of the emotion)
and arousal dimensions (the strength of the activation of the
emotion), as well as an optional third focus dimension (Posner
et al., 2005).

Frontiers in Computer Science | www.frontiersin.org 2 March 2022 | Volume 4 | Article 773154125

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Stappen et al. User Engagement Estimation From Emotions

In the past, both approaches to classify emotions in user-
generated content (Chen et al., 2017) rely on Ekmann’s
model to predict six emotional classes in YouTube videos.
Similarly, Zadeh et al. (2018) annotated YouTube videos with
labels for subjectivity and sentiment intensity (Wöllmer et al.,
2013) was the first to transfer the dimensional concept to
YouTube videos. Recently, Kollias et al. (2019) annotated 300
videos (ca. 15 h) of “in-the-wild” data, predominantly YouTube
videos under the creative commons license.

However, none of the mentioned datasets allows the
bridging of annotated or predicted emotional signals with
user engagement data from videos. We fill this research gap
utilizing continuous emotional signals and corresponding data,
as well as providing insights into the novel dimension of
trustworthiness, entirely without relying on word-based, audio,
or video feature extraction.

Although general literature lacks in providing a consistent
concept of trustworthiness (Horsburgh, 1961; Moturu and Liu,
2011; Cox et al., 2016), in this work, we define trust as the ability,
benevolence, and integrity of a trustee analogous to Colquitt
et al. (2007). In the context of user-generated reviews, the
viewers assess from their perspective if and to what extent the
reviewer communicates unbiased information. In other words,
how truthful and knowledgeable does the viewer feel a review is
at every moment? As we mentioned, building this trust is part
of developing a parasocial relationship with the audience, and in
doing so, likely increases repeated viewing (Lim et al., 2020).

2.2. Sentiment Analysis of YouTube
Comments
Sentiment Analysis studies the extraction of opinions,
sentiments, and emotions (e.g., “positive,” “negative,” or
“neutral”) of user-generated content. The analyzed content
usually consists of text (Boiy et al., 2007; Gilbert and Hutto,
2014), such as in movie and product reviews, as well as
comments (Singh et al., 2013; Siersdorfer et al., 2014). In
recent years, the methods for text classification have developed
rapidly. Earlier work using rule-based and classical word
embedding approaches is now being replaced by what is
known as transformer networks, predicting context-based word
embeddings (Devlin et al., 2019). State-of-the-art accuracy results
on sentiment benchmark datasets using these methods (Cui
et al., 2019) range from 77.3 for the 3-classes twitter (Nakov
et al., 2013) and between 72.4 and 75.0 on a 2-classes YouTube
comment data sets (Uryupina et al., 2014).

In contrast to the literature, our approach utilizes the
predicted sentiment of a fine-tuned Word Embedding
Transformer ALBERT (Lan et al., 2020) to automatically
classify comments on a large scale to investigate the
cross-modal relationship to the continuous emotion and
trustworthiness signals.

2.3. Analysis of YouTube Engagement Data
and Cross-Modal Studies
YouTube meta and engagement data are well researched (Yan
et al., 2015) with contributions exploring across domains (Roy

et al., 2013; Tan and Zhang, 2019), and focusing on both long
(Biel and Gatica-Perez, 2013) and short form video sharing
(Cheng et al., 2013; Garroppo et al., 2018).

Most previous work analyse view patterns, users’ opinions
(comments) and users’ perceptions (likes/dislikes), and their
mutual influence (Bhuiyan et al., 2017). Khan and Vong (2014)
correlated these reaction data, while (Rangaswamy et al., 2016)
connects them to the popularity of a video.

An extended comment analysis has been conducted
by Severyn et al. (2016) predicting the type and popularity
toward the product and video. The comment ratings, thus the
community acceptance, was predicted by Siersdorfer et al. (2010)
using the comment language and discrete emotions. Moreover,
in Wu and Ito (2014) the authors correlated popularity measures
and the sentiment of the comments. Data of other social
networking platforms combine sentiment analysis and social
media reactions (Ceron et al., 2014; Gilbert and Hutto, 2014),
and (Preoţiuc-Pietro et al., 2016) attempted to map Facebook
posts to the circumplex model to predict the sentiment of
new messages.

To the best of our knowledge, no work has so far attempt
to investigate the relationship to sophisticated continuous
emotional and trustworthiness signals and based on these, predict
user engagement as regression tasks.

3. DATA

The base for our experimental work is the MUSE-CARdata
set1(Stappen et al., 2021). MUSE-CAR is a multi-media dataset
originally crafted to improve machine understanding of multi-
modal sentiment analysis in real-life media. For the first time,
it was used for the MUSE 2020 Challenge, which aimed to
improve emotion recognition systems, focusing on the prediction
of arousal and valence emotion signals (Stappen et al., 2020c).
For a detailed description of typical audio-visual feature sets and
baseline systems that are not directly related to this work, we
point the reader to Stappen et al. (2020a).

3.1. Video, Meta- and Engagement Data
The dataset contains over 300 user-generated vehicle review
videos, equal to almost 40 h of material that cover a broad
spectrum of topics within the domain. The videos were collected
from YouTube2 and have an average duration of 8 min. The
reviews are primarily produced by semi—(“influencers”) or
professional reviewers with an estimated age range of the mid-
20 s until the late-50 s. The speech of the videos is English.
We refer the reader to Stappen et al. (2021) for further in-
depth explanation about the collection, the annotator training,
and the context of the experiments. Utilizing the YouTube ID,
we extend the data set by user engagement data. The explicit
user engagement indicators are calculated on a per-day basis
(p/d) as the videos were uploaded on different days resulting in

1The raw videos and YouTube IDs are available for download: https://zenodo.org/

record/4651164.
2All owners of the data collected for use within the MUSE-CARdata set were

contacted in advance for the consent of use for research purposes.
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FIGURE 1 | Example video (video ID 5): Four annotation signals for arousal and valence in addition to the fused EWE “gold-standard” signal (bold purple). The

annotator 1 (green) has a negative correlation to the others on valence. The weight (r1) is set to 0, not considered for the fused gold-standard by EWE.

views (Vp/d), likes (Lp/d), dislikes (Dp/d), comments (Cp/d),
and likes of comments (LCp/d). Per video the user engagement
criteria is distributed (µmean, σ standard deviation) as; Vp/d:
µ = 863.88, σ = 2048.43; Lp/d: µ = 9.73, σ = 28.75, Dp/d:
µ = 0.4125, σ = 1.11; Cp/d: µ = 0.91, σ = 3.00; and LCp/d:
µ = 5.28, σ = 16.84.

3.2. Emotion and Trustworthiness Signals
As with emotions in general, a certain level of disagreement
due to subjectivity can be expected (Russell, 1980). For
this reason, nine annotators were trained (Stappen et al.,
2021) to have a common understanding of the arousal,
valence, and trustworthiness concepts as discussed in Section
2.1. As well established (Busso et al., 2008; Kossaifi et al.,
2019), the annotator moves the hand up and down using a
Logitech Extreme 3D Pro Joystick to annotate one of three
dimensions, while watching the videos. The movements are
recorded over the entire duration of the video sequence and
sampled with a bin size of 0.25Hz on an axis magnitude
between -1 000 and 1 000. Every annotation was checked by
an auditor using quantitative and qualitative measures to
ensure a high quality (Baird and Schuller, 2020). The time
required for annotation alone stands for more than 600
working hours (40 h video * 3 dimensions * 5 annotators
per dimension).

The annotation of five independent annotators for each video
and signal type are fused to obtain a more objective gold-
standard signal as depicted in Figure 1. For the fusion of the
individual continuous signals, the widely established Evaluator
Weighted Estimator (EWE) was computed (Schuller, 2013;
Ringeval et al., 2017). It is an estimator of inter-rater agreement,
hence, the personal reliability, in which the weighted mean
corresponds to the calculated weights for each rater based on
the cross-dependency of all other annotators. The EWE can be
formulated as

yEWE
n =

1
∑A

a=1 ra

A
∑

a=1

rayn,a, (1)

where y is a discrete point of the signal n and ra is the reliability
of the ath rater, consequently, A represents the whole population
of raters. To use the data for later stages, we z-standardize them.

3.3. Video Comments
Based on the video IDs of the corpus, we collected more than 79 k
YouTube comments and comment-related like counts excluding
any other user information, such as the username. We focus
exclusively on the parent comments, ignoring reaction from
the child comments. The count of comment likes reflect the
number of people sharing the same opinion and those who
“liked” the comment. We randomly select 1 100 comments for
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FIGURE 2 | A comprehensive overview of the approach, as explained in Section 4. Statistics derived from continuous emotion and trustworthiness (purple), automatic

sentiment labeling of YouTube comments (blue), and user engagement data (orange) are preprocessed to investigate correlations and predict engagement from

features. The development of our signal feature extraction as a cornerstone of our analysis is described in detail in Section 4.1. With its help, we aim to uncover

relationships to engagement data (cf. Section 4.3) and the sentiment of the comments predicted by our trained network (cf. Section 4.2). They also serve as input to

our regression experiments to predict user engagement (cf. Section 4.5).

labeling, which is used as a quantitative estimator of how accurate
our prediction of the other unlabeled comments are. Three
annotators labeled each of them as positive, neutral, negative,
and not applicable. The average inter-rater joint probability is
0.47. We use a majority fusion to create a single ground truth,
excluding texts where no majority is reached.

4. EXPERIMENTAL METHODOLOGY

Figure 2 gives an overview of our approach. As a cornerstone of
our analysis (cf. Section 4.1), annotation of arousal, valence, and
trustworthiness are annotated by five independent annotators.
These signals are then fused (cf. Section 3.2) to a gold standard
label, and meaningful features are extracted (purple). In
addition, YouTube user engagement-related data (yellow) and
the comments are scraped (blue) from each video. Several
sentiment data sets are collected and merged in order to
train a robust sentiment classifier using a Transformer network
ALBERT to predict unlabeled YouTube comments after fine-
tuning on several datasets and our labeled comments. Then,
we first investigate correlations between the predicted sentiment
of the YouTube comments, the YouTube metadata, and the
statistics derived from the continuous signals (arousal, valence,
and trustworthiness). Additionally, we use derived features to
predict user engagement (Vp/d, Lp/d, Cp/d, and CLp/d) directly.

4.1. Feature Extraction From Signals
A signal is usually sampled to fine-grained, discrete points of
regular intervals, which can be interpreted as a sequential set
of successive data points over time (Adhikari and Agrawal,

TABLE 1 | List of simple statistics and more complex time-series statistic features

extracted by our framework.

Distribution statistics

Standard deviation (std)

5%-, 25%-, 50%-, 75%-, and 95%-quantiles

(q5,q25,q50,q75,q95)

Time-series statistics

Asymmetry
Dynamic sample skewness (skew)

Kurtosis (kurt)

Energy-related Absolute energy (absE)

Sample entropy (SaEn)

Change-related Absolute sum of changes (ASOC)

Mean absolute change (MACh)

Mean change (MCh)

Mean value of a central approximation of the second

derivatives (MSDC)

Strike above the mean (LSAMe)

Strike below the mean (LSBMe)

Relative points Normalized percentage of reoccurring datapoints (PreDa)

First and last location of the minimum

and maximum (FLMi, LLMi, FLMa, and FLMa)

Number of crossings of a point m (CrM)

Peaks of the least support (peaks)

2013). Audio, video, and psychological signals are widely used
for computational analysis (Schuller, 2013; Schuller et al., 2020).
Simple statistics and advanced feature extraction can be applied
in order to condense these signals to meaningful summary
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representations and make them more workable (Christ et al.,
2018). In this work, we use common statistical measures such
as the standard deviation (std), and 5-, 25-, 50-, 75-, and 95%-
quantiles (q5, q25, q50, q75, andq95) as they are less complex to
interpret, and have been applied in related works (Sagha et al.,
2017). Furthermore, to make better use of the changes over time,
we manually select and calculate a wide range of time-series
statistics following previous work in similar fields (Geurts, 2001;
Schuller et al., 2002). For example, in computational audition
(e.g., speech emotion recognition), energy-related features of the
audio signals are used to predict emotions (Schuller et al., 2002).

We calculate the dynamic sample skewness (skew) of a
signal using the adjusted Fisher-Pearson standardized moment
coefficient, to have a descriptor for the asymmetry of the
series (Ekman, 1992; Doane and Seward, 2011). Similarly, the
kurtosis (kurt) measures the “flatness” of the distribution by
utilizing the fourth moment (Westfall, 2014). Of the energy-
related ones, the absolute energy (absE) of a signal can be
determined by the sum over the squared values (Christ et al.,
2018).

absE =

∑

i=1,...,n

x2i , (2)

where x is the signal at point i. Also well known for physiological
time-series signals is the sample entropy (SaEn), a variation of the
approximate entropy, to measure the complexity independently
of the series length (Richman and Moorman, 2000; Yentes et al.,
2013). Several change-related features might be valuable to reflect
the compressed signal (Christ et al., 2018): First, the sum over the
absolute value of consecutive changes expresses the absolute sum
of changes (ASOC):

ASOC =

∑

i=1,...,n−1

|xi+1 − xi|. (3)

Second, the mean absolute change (MACh) over the absolute
difference between subsequent data points is defined as:

MACh =
1

n

∑

i=1,...,n−1

|xi+1 − xi|, (4)

where n is the number of time-series points. Third, the general
difference between consecutive points over time is called the
mean change (MCh):

MCh =
1

n− 1

∑

i=1,...,n−1

xi+1 − xi. (5)

Fourth, the mean value of a central approximation of the second
derivatives (MSDC) is defined as:

MSDC =
1

2 ∗ (n− 1)

∑

i=1,...,n−1

0.5 · (xi+2 − 2 · i+ 1+ xi). (6)

Finally, the length of the normalized consecutive sub-sequence
is named strike above (LSAMe) and below (LSBMe) the mean. To

summarize the distribution similarity, the normalized percentage
of reoccurring datapoints (PreDa) of non-unique single points
can be calculated by taking the number of data points occurring
more than once divided by the number of total points. Also early
or late high and low points of the signal are of descriptive value.
Four single points describe these: the first and last location of
the minimum and maximum (FLMi, LLMi, FLMa, and FLMa)
relatively to the length of the series. The last two count a) the
number of crossings of a point m (here: m=0) (CrM), where for
two successive time series steps are first lower (or higher) thanm
followed by two higher (or lower) ones (Christ et al., 2018) and b)
the peaks of the least support n. A peak of support n is described
as a subsequence of a series where a value occurs, bigger than
its n neighbors to the left and the right (Palshikar, 2009; Christ
et al., 2018). In total, we extract 24 features from one signal (cf.
Table 1).

4.2. Sentiment Extraction From Comments
Given the vast amount of comments, we decided to carry out
the labeling of the sentiment automatically and label only a
small share of them by hand to quantify the prediction quality
(cf. Section 3.3). For this reason, we built a robust classifier
for automatic YouTube sentiment prediction using PyTorch.
We opted to use ALBERT as our competitive Transformer
architecture (Lan et al., 2020). Compared to other architectures,
ALBERT introduces two novel parameter reduction methods:
First, the embedding matrix is separated into two more compact
matrices, and second, layers are grouped and used repeatedly.
Furthermore, it applies a new self-supervised loss function
that improves training for downstream fine-tuning tasks. These
changes have several advantages, such as reducing the memory
footprint, accelerating the converge of the network, and leading
to state-of-the-art results in several benchmarks (Devlin et al.,
2019).

Before training, we remove all words starting with a “#,” “@,” or
“http” from all text sources and replace emotions’ unicode by the
name. We train ALBERT in a two-step procedure. First, we fine-
tune the model for the down-stream task of general sentiment
analysis. No extensive YouTube comment data set is available,
which would span the wide range of writing styles and expressed
opinions. Therefore, we aggregate several datasets which aim to
classify whether a text is positive, negative, or neutral as our
initial training data: all data sets from SemEval (the Semantic
Evaluation challenge), a series of challenges for computer-based
text classification systems with changing domains (Nakov et al.,
2013) e.g., Twitter, SMS, sarcasm, from 2013 to 2017 consisting
of more than 76 k data points; the popular US Airline Sentiment
data set (Air, 2015) (14.5 k tweets), and finally, 35 k positive and
35 k negative text snippets are selected from Sentiment140 (Go
et al., 2009). The 60 k positive, 32 k neutral, and 56 k negative
text snippets are equally stratified and partitioned into 80-10-10
splits for training.We provide this selection for reproducibility in
our code.

Following the authors’ recommendation, ALBERT is trained
using a learning rate of 1e-5, a warmup ratio of 0.06, ǫ set to 1e-8,
and gradient clipping set at 1.0. In addition, we use half-precision
training and a batch size of 12 to fit the GPUmemory restrictions
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TABLE 2 | Example comments and sentiment distribution within the YouTube

comments predicted by our developed sentiment model.

Sentiment # Comments Predicted [%] Example

Positive 26 032 33 “The metaphors are just flying like the

raindrops in this video.” #47620

Neutral 28 518 36 “Are engines for F30 made in

Germany?” #4

Negative 24 494 31 “Poor review unfortunately, the

microphone quality was very

muffled...” #31

(32GBs). Counteracting adverse effects of class imbalance, we
further inject the class weight to each data point. The model
converges after three epochs. Next, we use our own YouTube
comment data set to validate the results and further fine-tune
the model. This version is then further trained in a second fine-
tuning step using the 60% of the YouTube comments and a
reduced learning rate of 1e-6 for one epoch.

The relative distribution of the classified sentiment of the
YouTube comments is given in Table 2. The model achieves an
f1 score on the development of 81.13 and 78.09% on the test
partitions, as well as 75.41% on the sample of our crawled and
manually labeled YouTube test set.

4.3. Correlation Measure and Significance
The Pearson correlation (r) explores the relationship between
two continuous variables (Ahlgren et al., 2003). Thereby, the
relationship has to be linear, meaning that when one variable
changes, the other also changes proportionally. r is defined by

rx,z =
cov(x, z)

σx · σz
=

∑n
i=1(xi − x̄) · (zi − z̄)

√

∑n
i=1(xi − x̄)2 ·

∑n
i=1(zi − z̄)2

, (7)

where cov(x, z) is the co-variance, a measure of the joint
variability, of the variables X, Z, and σx, σz – the standard
deviations of both variables (Surhone et al., 2010). The resulting
correlation coefficient lies between −1 and +1. If the value is
positive, the two variables are positively correlated. A value of±1
signifies a perfect positive or negative correlation. A coefficient
equal to zero implies that there is no linear dependency between
the variables.

For significance testing, we first compute the t-statistic,
and then twice the survival function for the resulting t-value
to receive a two-tailed p-value, in which the null hypothesis
(two variables are uncorrelated) is rejected at levels of α =

{0.01, 0.05, 0.1} (Sham and Purcell, 2014). Since, we intend to give
the reader as much transparency as possible with regard to the
robustness of the results obtained given the size of the data set,
we report the results on three common significance levels (see
Appendix). Therefore, results significant at an alpha level of 0.01
are also significant at 0.05 and 0.1.

4.4. Feature Selection
To the best of our knowledge, we are the first extracting
advanced features directly from emotional signals. Usually, not

all engineered features are equally relevant. Since no previous
research can guide us to a reliable selection, we propose two
ways for feature selection for our task of predicting user
engagement. The first is a correlation-based, cross-task semi-
automatic selection that uses the correlation between the feature
and the target variables. Only those features whose mean value
over all prediction tasks is between −0.2 > rmean > +0.2
(minimum low positive/negative correlation) are selected.

The other concept is a regression-based, task-specific
automatic selection with three steps. First, univariate linear
regression (f ) tests act as a scoring function and run successively
to measure the individual effect of many regressors:

score(f , y) =
Xki − X̄ki · (y− ȳ)

σXki
· σy

, (8)

where ki is the feature index. The score is converted to an F-test
estimate and then to a p-value. Second, the highest k number of
features are selected based on the p-value. Finally, this procedure
runs brute-force for all number of feature combinations, where
5 < k < kmax−1. Brute-force implies an exhaustive search, which
systematically checks all possible combinations until the best one
is found based on the provided estimate.

4.5. SVR Training Procedure
For our regression experiments, we use a Support Vector
Regression (SVR) with a linear kernel as implemented by the
open-source machine learning toolkit Scikit-Learn (Pedregosa
et al., 2011). The linear kernel allows us to interpret the weights
from our various feature selections and has, among other
applications, found wide acceptance in the selection of relevant
genes from micro-array data (Guyon et al., 2002). Since the
coefficients are orthogonal to the hyper-plane, a feature is useful
to separate the data when the hyper-plane is orthogonal to the
feature axis. The absolute size of the coefficient concerning the
other features indicates the importance.

The training is executed on the 60-20-20
training/development/test partition split partitions, pre-defined
in the MUSE-CAR emotion recognition sub-task (Stappen et al.,
2020c) (cf. Section 3.1). During the training phase, we train a
series of models on the training set with different parameters C
∈ {10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1 } up to 10 000
iterations and validate the performance on the development set.
The best performing C value is then used to re-train the model
on an enlarged, concatenated training and development set, to
estimate the generalization performance on the hold-out test set.
This method is repeated for each input signal (combination) on
each target (%). Due to the various scales of the input features,
we apply standardization to the data but leave the targets, as they
allow interpretability of the results. The prediction results are
evaluated using the Mean Absolute Error (MAE).

5. RESULTS AND DISCUSSION

Figure 3 depicts the Pearson correlations for the user
engagement indicators, and we see that the number of
Vp/d, Lp/d, Dp/d, and Cp/d are highly correlated. The
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FIGURE 3 | Pearson correlation matrix of metadata. All results are considered to be significant at a 0.01 level. Com, comment; pos, positive; neg, negative; pd, per

day.

correlations are based on both, absolute values and ratios.
When a correlation to one of the variables occurs, it is likely
to be accompanied by correlations to others. We would like
to note that all absolute values correlate positively with each
other, as all metrics have a positive correlation to the absolute
popularity of the video. Therefore, a stronger distribution
of the video also increases the absolute number of likes,
dislikes, comments, etc., albeit to different magnitudes. For
example, the average relationship between likes and dislikes
in our crawled videos is not as antagonistic as one might
expect, which means that as the number of Lp/d increases;
so too does the Dp/d. Another example are the number of
likes of the comments which increases with the number of
dislikes of the video since the number of comments and of
dislikes are interdependent. This may relate to the topic of
the dataset, being that it is review videos, and the like or
dislike may be more objective than other video themes. The
correlation in terms of ratios gives a more definite picture in
this context.

5.1. Relationship Between Features and
User Engagement
Within this section, we discuss the correlation results for each
emotional dimension separately. We report Pearson correlation
coefficients, as depicted in Figure 4. Detailed results (r and
significance level) can be found in Figure 4.

Arousal: The statistics extracted from the arousal signal
indicate several correlations to the engagement data. When
the standard deviation or the level of the quantile0.95 increases,
the number of Vp/d, Lp/d, Cp/d, and CLp/d slightly decreases
(e.g., r(views,std) = −0.293, r(views,q95) = −0.212) with direct
effect on the comment-like ratio (clr), e.g., rstd = −0.271.
In contrast, the level of the quantile.05 has the opposite effect
on all these metrics (e.g., r(views,q0.05) = 0.231, r(clr,q0.05) =

−0.248. Of the more complex time-series statistics, the peaks
as well as the CBM have the strongest correlations across
most indicators. These indicates a moderate positive linear
relationship, for instance, to Vp/d and Lp/d r(views,peaks) =

0.440, r(likes,CBMe) = 0.456as well as Cp/d rpeaks = 0.409. Further,
when these features increase, the share of neutral comments
increases much less than the share of positive and negative
comments. The next strongest correlated features, CrM, aSoc,
abE, and PreDa, also represent upward correlation slopes to
the user-engagement criteria. Although these features reflect the
general change in engagement, no conclusions can be drawn
regarding sentiment of the engagement, as there is no significant
correlation of any feature to the ratios (e.g., like-dislike, and
positive-negative comments).

Valence: Most statistics of the signal distribution are
below r = 0.2, suggesting that there are only very weak
linear dependencies with the engagement indicators. The only
exceptions is the positive-negative ratio for the comments (r =

−0.276) – a lower standard deviation leads to an increase in the
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FIGURE 4 | Pearson correlation matrix of user engagement indicators and the statistics/ features extracted from each dimension. The latter are standard deviation

(std), quantile (qx ), absolute energy (absE), mean absolute change (MACh), mean change (MCh), mean central approximation of the second derivatives (MSDC),

crossings of a point m (CrM), peaks, skewness, kurtosis, strike above the mean (LSAMe), strike below the mean (LSBMe), count below mean (CBMe), absolute sum

of changes (ASOC), first and last location of the minimum and maximum (FLMi, LLMi, FLMa, FLMa), perc. of reoccurring datapoints (PreDa), and sample entropy

(SaEn). Features in blue are utilized as cross-task, semi-automatic features for user engagement prediction.

proportion of positive comments. Furthermore, higher values
around the centre of the distribution (kurtosis – r = −0.313)
to more likes per comment. The strongest positively correlated
feature is absE e.g., rviews = 0.467, rlikes = 0.422, rdislikes =

0.355, rcomments = 0.350, followed by the peaks, CBME and
LSBMe, which suggest the greater the value of these features, the
greater the user engagement In contrast, theMaCh and the SaEn
have significant slight negative correlations, which implies that
when the valence signal of a video has a high complexity, the
video has a higher tendency to receive fewer user engagement.

Trustworthiness: The higher the level of quantile0.05,
quantile0.25, median, and quantile0.75 (all slightly positively
correlated, with decreasing relevance e.g., r(views,q0.05) =

0.356, r(likes,q0.75) = 0.175), the higher the Vp/d, Lp/d, Dp/d,
Cp/d, and CLp/d. Similar to the valence dimension, we see
that there is a negative effect on these engagement indicators
when the standard deviation in the trustworthiness signal is
higher e.g., r(views,std) = −0.304, r(likes,std) = −0.287. As for
the other features, the absE and the number of peaks have a
moderate positive correlation. The skewness shows a significant
negative correlation above r < −0.3 for most indicators. In
other words, a negative skew of the trustworthiness signal, when
the mass of the distribution is concentrated to the right (left-
skewed), has a positive influence on user engagement. Regarding
the positiveness/negativeness sentiment ratios (like-dislike,
comments positive-negative ratio), none of the features show
significant associations.

Result Discussion: When observing the results from the
above sections, we see several patterns between the emotion
(including trust) signal statistics and user engagement. While
the standard statistics of arousal show that bounded arousal
(higher lower quantiles and lower high quantiles) and higher
trustworthiness scores (all quantiles are positively correlated,
with lower quantiles at a higher level) leads to more user
engagement, the sentiment of a video seems less influential
contrary to the findings of (Sagha et al., 2017). Regarding the
time-series features, the number of peaks with support n = 10

seems a stable indicator across all signals. The energy-related
features of valence and trustworthiness (valence = r(views,absE) =
0.467, trustworthiness = r(views,absE) = 0.497) seem to
have a medium-strong relationship and most likely a valuable
predictive feature.

Regarding the comments, independently of the type of signal
and statistic, the negative comments seem to be higher correlated
consistently, followed by the number of likes and positive
comments. Overall, mostly slight to modest correlations are
found. However, significant correlations, especially to the more
complex time-series features, between valence, arousal, and
trustworthiness levels in a video to the user engagement (number
of users who watch it, like it, dislike it, or leave a comment)
is evident.

5.2. Predicting User Engagement From
Features of Emotion and Trustworthiness
Signals
Table 3 shows the results of the prediction tasks Vp/d, Lp/d,
Cp/d, and CLp/D. It is worth noting that the scores vary
according to the underlying scale of the target variables
(cf. Section 3).

The features utilized from the cross-task semi-automatic
feature selection method are highlighted (in blue) in Figure 4 for
each feature type. Across the seven experiments the automatic
selection process selected on average the following number of
features per each criteria; 7.6 Vp/d, 23.3 Cp/d, 29.3 Lp/d, and
20.1 LCp/d. For each dimension, an average of 9.3 for arousal,
9.5 for valence, and 6.0 for trustworthiness was selected. Figure 5
illustrates an example of both selection methods for predicting
CLp/d from a fusion of all three feature types. The p-values of the
automatic (univariate) selection and the corresponding weights
of all resulting SVMs are shown, indicating the relevance of each
feature for the prediction. The interested reader is pointed to
Chang and Lin (2008) for an in-depth methodical explanation.
The most informative features (largest p-values) also receive
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most weight from the corresponding SVM, indicating that the
automatic selection is sensible. In this particular case, the hand
selected features have almost identical weights as the automatic
ones, whereby themissing features are enough tomake the results
worse than in the case of the other two (cf.Table 3), indicating a
high sensitivity if certain features are left out.

Views Per day: When observing the Vp/d prediction from
all features, we obtain the best result when performing an
early fusion of the valence and trustworthiness signals, and
with the addition of arousal, there is a minor decrease (205.8
and 205.8 MAE respectively); this demonstrates the predictive
potential of all signals. However, when applying our semi-
automatic cross-task feature selection, there is a more substantial
improvement particularly for arousal and valence as mono
signals, obtaining 198.5, and 184.8 MAE, respectively. This
improvement is increased further for valence through automatic
feature selection, with our best results for Vp/d of 169.5 MAE.
Feature selection appears in all cases to not be beneficial for
fused features, with arousal and valence improving slightly but no
more than if the signal was alone. Without any feature selection
trustworthiness is our strongest signal, for further investigation
exploring why trustworthiness does not improve at all with either
of the feature selection methods (218.7 and 228.0, for sel. and
auto., respectively) would be of interest.

Likes per day: As with Vp/d, we see that arousal and valence
are strong as singular signals when utilizing all summary features;
however, in this case, there is no improvement found through
the fusion of multiple feature types. Further to this, the cross-
task selection method appears to improve results across all types,
aside from the fusion of arousal, valence, and trustworthiness.
As with Vp/d, valence again obtains our best result, improved
even further by the automatic selection, up to 1.23 MAE Vp/d.
Although the automatic selection appears valid for valence,
this was not consistent across all the feature type variations.
Trustworthiness appears much weaker than all other features
types in this case, although when observing scores on the
development set; we see that trustworthiness is our strongest
singular signal (2.21), even showing promise when fused with the
other feature types and from the automatic feature selection.

Comments per day: Results obtained from Cp/d continue
to show the trend of valence being a meaningful signal.
Again for all features, as singular signal both arousal and
valence show the best score (0.154 MAE for both). Valence
improves by the auto-selection process, and performs
better with the cross-task method. Fusion in this case
generally does not show much benefit assigned from the
combination of arousal and valence, in which our best
Cp/d score is obtained from cross-task selection of 0.145
MAE. As previously, trustworthiness is again not the
strongest signal on test, however, we see a similar strength
on development set.

Likes of comments per day: Arousal achieves the strongest
result from all features for CLp/d. Unlike the other user
engagement criteria, we see a large decrease across most
results from the both selection methods. The best improvement
comes from the fusion of arousal and valence with the
task specific selection method. However, from automatic
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FIGURE 5 | SVM weights of arousal, valence, and trustworthiness features predicting the likes of comments comparing the use of all features, manually selected (24),

and automatically selected k = 22 features. To receive a real output and fit the p-values of the automatic selection in scale, we apply a base 10 logarithm and divide

the result by 10 (−Log(pvalue)/10).

selection, there is a large decrease. As in other criteria,
trustworthiness again performs better than other signals on
development, and poorly on test, although the cross-task
selection does show improvement for trustworthiness on test,
but the absolute value still does not beat that of the arousal
and valence.

Result Discussion: When evaluating all results across each
user-engagement criteria, it appears that our cross-task feature
selection approach obtains the best results more consistently
than either automatic selection or all features indicating that a
more general selection stabilizes generalization. Through these
feature selection approaches valence appears to be a more
meaningful signal for most criteria, which can be expected
given the positive:negative relationship that is inherent to all the
criteria. Furthermore, without any selection, arousal is clearly a
strong signal for prediction: with fusion of arousal and valence
for Vp/d there is also an improvement. To this end, fusion in
general does in no case obtain sustainable better results. With
this in mind, further fusion strategies incorporating multiple
modes at various stages in the network may be beneficial for
further study.

Trustworthiness is consistently behind arousal and valence for
all criteria. A somewhat unexpected result, although this may
be caused by generalizability issues on the testing set, further
shown by the strong results during development. Interestingly,
as a single signal trustworthiness performs better than arousal
and valence without feature selection for Vp/d. This result is
promising, as it shows a tendency that trust is generally valuable
for viewership, a finding which is supported by the literature
in regard to building a parasocial relationship (Lim et al.,
2020).

5.3. General Discussion
When observing the literature concerning user engagement and
the potential advantage of performing this automatically—we see
that one essential aspect is the ability for a content creator to
develop the parasocial relationship with their viewers (Chapple
and Cownie, 2017). In this regard, we see that the features from
each emotional dimension (arousal, valence and trustworthiness)
can predict core user engagement criteria. Most notably, as we
mention previously short-term fluctuations in arousal appear to
increase user engagement, and therefore it could be assumed such
emotional understanding of video content will lead to higher
user-engagement (i.e., an improved parasocial relationship).

Furthermore, the YouTube algorithm itself is known to
bias content which has higher user engagement criterion,
e.g., comments and likes per day. With this in mind, integration
of the emotional features identified herein (which could
be utilized for predicting forthcoming user engagement,
cf. Section 6) may result in higher user engagement in other
areas, e.g., views per days, resulting in better financial outcomes
for the creator. The correlations between these aspects, i.e., the
increase of comments per day, vs views per day should be further
researched concerning these emotional dimensions.

We had expected trustworthiness to be useful for predicting
user-engagement, given the aforementioned parasocial
relationship theory. The results are promising for the prediction
of trustworthiness. However, this does not appear to be as
successful as the more conventional arousal valence emotional
dimensions. The current study implements an arguably
conventional method for prediction task and is limited by the
data domain. Applying the trustworthiness dimension to other
datasets of different domains (perhaps more popular topics, such
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as comedy or infotainment) where similar metadata is available
may show to be more fruitful for exploring the link of trust and
improved user engagement.

6. LIMITATIONS AND FUTURE WORK

In this section, we would like to point out some aspects of our
work that need further exploration, given the novelty of the
proposed idea to use continuous emotion signals for modeling
explicit user engagement.

As with MUSE-CAR , some previously collected datasets
harvested YouTube as their primary source (Wöllmer et al.,
2013; Zadeh et al., 2018). However, they either do not provide
continuous emotion signals or the video metadata (e.g., unique
video identifiers) of these datasets. Therefore, MUSE-CAR is
currently the only dataset that allows studies similar to this,
limits extensive exploration in other domains. We want to
encourage future dataset creators using social media to provide
such identifiers.

When choosing the prediction method, we had to make
the difficult choice between interpretability and accuracy. For
this study, we opted to use SVMs because we believe that
initially, conceivable interactions matter more than a highly
optimized outcome. This way, we can reason about relationships
between influencing variables and the output predictions and
compare them to ones, extracted from potential other datasets
in the future. We are fully aware that state-of-the-art black-box
methods, e.g., deep learning, may achieve better results but lack
in clarity around inner workings and may rely on spurious and
non-causal correlations that are less generalisable. However, this
does not mean there are no other high non-linearity interactions
between inputs, which we want to explore in future work.

Another point for future exploration is the emotional

spectrum. Although MUSE-CARprovides arousal and valence,
which are the most consistently used dimensions in previous
research, also other third focus dimensions, for example,
dominance (Grimm et al., 2008) and likeability (Kossaifi et al.,
2019) have previously been annotated. Another interesting
aspect might be categorical ratings which summarize an entire
video. However, we expect much lower predictive value because
of the highly compressed representation of such categories
summarizing the emotional content (one value instead of several
dynamically extracted features based on a video-length signal).

So far, no link existed between the use of emotional signals
and user engagement. That is why, the aim of our paper was
to provide a proof of concept that it is valuable to leverage
such signals. However, utilizing human annotations can only
be the first step since they are very limited in scalability. The
annotations are usually the prediction target for developing
robust emotion recognition models. Our final process is intended
to be twofold: (i) using audio-visual features to learn to predict
the human emotional signals (ii) using the predicted emotional
signals on unseen, unlabeled videos to extract our feature set and
predict user-engagement. (i) is very well researched in the field
achieving CCCs of more than 0.7 (high correlation between
predicted and human emotional annotations) on similar data
sets (Huang et al., 2020). Recent advances aim at understanding

contextual factors affecting multi-modal emotion recognition,
such as the gender of the speaker and the duration of the
emotional episode (Bhattacharya et al., 2021) and the use
of non-intrusive on-body electromyography (EMG) sensors as
additional input signals (Tamulis et al., 2021). For a broad
overview of various (mutlimodal) emotion recognition research,
we refer the interested reader to the surveys by Soleymani et al.
(2017) and Tian et al. (2022). By using human annotations, we
aimed to demonstrate the relationship in a vanilla way (using
the targets) to avoid wrong conclusions based on any introduced
prediction error bias. We also plan to explore (ii) in-depth
in the near future. Another exciting research direction is to
incorporate the uncertainty of multi-modal emotion recognition
systems (Han et al., 2017), hence, how sure is the system in its
prediction based on the availability of (or missing) audio, video,
and text data, into the prediction of popularity. Thus, in parallel
to the emotion, a measure of uncertainty could be given, which is
then factored in the popularity prediction.

Through a bridge of emotion recognition and user
engagement, we see novel applications. The link between
emotional and user engagement provides information about
what and when (e.g., a part of a video with many arousal
peaks) exactly causes a user to feel e.g., aversion, interest
or frustration (Picard, 1999). Two parties may particularly
benefit from these findings: (a) Social media network providers:
the relationships discovered are directly related to the user
retention (e.g., user churn rate) (Lebreton and Yamagishi,
2020) and activity (e.g., recommender systems) (Zhou et al.,
2016). These are the most common and important tasks of
these platforms and are still extremely difficult to model to
this day (Lin et al., 2018; Yang et al., 2018; Liu et al., 2019).
Maybe more importantly, critical, emotionally charged videos
(e.g., misinformation, fake messages, hate speech) can be
recognized and recommendation systems adapted accordingly.
(b) Content creators (marketing, advertising): companies act
as (video) creators to interact with customers. In our work, we
focused to show a connection between generalizable emotional
characteristics and user engagement. However, we believe that
there are various weaker/stronger influenced subgroups. A
company can identify and target such groups or even explicitly
fine-tune their content.

7. CONCLUSION

For the first time, we have empirically (and on a large-scale)
presented in this contribution that there are both, intuitive
and complex relationships between user engagement indicators
and continuously annotated emotion, as well as trustworthiness
signals in user-generated data. Of prominence, our contribution
finds that emotion increases engagement when arousal is
consistently bounded. In other words, the more consistent
the portrayed arousal throughout a video, the better the
engagement with it. This finding contradicted previous emotion
literature (Sagha et al., 2017). Arousal shows consistently more
robust prediction results, although valence innately (given the
link of positive and negative) appears to be more valuable for
prediction of video likes.
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Further to this, we introduce trustworthiness as a continuous
“emotion” dimension for engagement, and find when utilizing
this for prediction, there is an overall value for monitoring
user-engagement in social-media content. However, when
fusing the signals, their appears to be little benefit from the
current recognition paradigm. Furthermore, we assume that too
strict feature selection causes generalization issues since often
promising results on the development set seem non-transferable
to the test set.

From the strong correlation of the results for trustworthiness,
we consider that the addition of this dimension is of use for user
engagement; however, further investigation in other domains
would be valuable. When applying these metrics in a cross-modal
sentiment paradigm, there may also be benefits for the prediction
of audio-visual hate speech likelihood, as well as fake news.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and

accession number(s) can be found at: https://doi.org/10.5281/
zenodo.4651164.

AUTHOR CONTRIBUTIONS

LS: literature analysis, data acquisition, data preparation,
experimental design, computational analysis, and manuscript
drafting and preparation. ABa: data acquisition, experimental
design, and manuscript drafting and preparation. ML and
ABä: data acquisition, data preparation, and computational
analysis. BS: technical guidance and manuscript editing.
All authors revised, developed, read, and approved the
final manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fcomp.
2022.773154/full#supplementary-material

REFERENCES

(2015). Twitter Us Airline Sentiment. Available online at: https://www.kaggle.com/

crowdflower/twitter-airline-sentiment

Adhikari, R., and Agrawal, R. K. (2013). An Introductory Study on Time Series

Modeling and Forecasting. LAP LAMBERT Academic Publishing.

Ahlgren, P., Jarneving, B., and Rousseau, R. (2003). Requirements for a cocitation

similarity measure, with special reference to pearson’s correlation coefficient. J.

Am. Soc. Inf. Sci. Technol. 54, 550–560. doi: 10.1002/asi.10242

Baird, A., and Schuller, B. (2020). Considerations for a more ethical approach to

data in ai: on data representation and infrastructure. Front. Big Data 3, 25.

doi: 10.3389/fdata.2020.00025

Battaglio, S. (2016). Youtube Now Bigger Than TV Among Advertisers’ Target

Audience.Available online at: https://www.latimes.com/entertainment/envelop

e/cotown/la-et-ct-you-tube-ad-spending-20160506-snap-story.html (October

15, 2020).

Berger, J., and Milkman, K. L. (2012). What makes online content viral? J. Market.

Res. 49, 192–205. doi: 10.1509/jmr.10.0353

Bhattacharya, P., Gupta, R. K., and Yang, Y. (2021). Exploring the contextual

factors affecting multimodal emotion recognition in videos. IEEE Trans. Affect.

Comput..

Bhuiyan, H., Ara, J., Bardhan, R., and Islam, M. R. (2017). “Retrieving youtube

video by sentiment analysis on user comment,” in 2017 IEEE International

Conference on Signal and Image Processing Applications (Kuching: IEEE), 474–

478.

Biel, J., and Gatica-Perez, D. (2013). The youtube lens: Crowdsourced personality

impressions and audiovisual analysis of vlogs. IEEE Trans. Multimedia 15,

41–55. doi: 10.1109/TMM.2012.2225032

Boiy, E., Hens, P., Deschacht, K., and Moens, M.-F. (2007). “Automatic sentiment

analysis in on-line text,” in Proceedings of the 11th International Conference on

Electronic Publishing (Vienna), 349–360.

Busso, C., Bulut, M., Lee, C.-C., Kazemzadeh, A., Mower, E., Kim, S., et al. (2008).

Iemocap: interactive emotional dyadic motion capture database. Lang. Resour.

Eval. 42, 335. doi: 10.1007/s10579-008-9076-6

Ceron, A., Curini, L., Iacus, S. M., and Porro, G. (2014). Every tweet counts?

how sentiment analysis of social media can improve our knowledge of citizens’

political preferences with an application to italy and france. NewMedia Soc. 16,

340–358.

Chang, Y.-W., and Lin, C.-J. (2008). “Feature ranking using linear svm,” in

Causation and Prediction Challenge (PMLR), 53–64.

Chapple, C., and Cownie, F. (2017). An investigation into viewers’ trust in

and response towards disclosed paid-for-endorsements by youtube lifestyle

vloggers. J. Promotional Commun. 5, 19–28.

Chen, Y.-L., Chang, C.-L., and Yeh, C.-S. (2017). Emotion classification of youtube

videos. Decis. Support Syst. 101, 40–50. doi: 10.1016/j.dss.2017.05.014

Cheng, X., Liu, J., and Dale, C. (2013). Understanding the characteristics of

internet short video sharing: a youtube-based measurement study. IEEE Trans.

Multimedia 15, 1184–1194. doi: 10.1109/TMM.2013.2265531

Christ, M., Braun, N., Neuffer, J., and Kempa-Liehr, A. W. (2018). Time series

feature extraction on basis of scalable hypothesis tests (tsfresh–a python

package). Neurocomputing 307, 72–77. doi: 10.1016/j.neucom.2018.03.067

Colquitt, J. A., Scott, B. A., and LePine, J. A. (2007). Trust, trustworthiness,

and trust propensity: a meta-analytic test of their unique relationships

with risk taking and job performance. J. Appl. Psychol. 92, 909.

doi: 10.1037/0021-9010.92.4.909

Cooper, P. (2019). 23 YouTube Statistics That Matter To Marketers in 2020.

Cox, J. C., Kerschbamer, R., and Neururer, D. (2016). What is trustworthiness and

what drives it? Games Econ. Behav. 98, 197–218. doi: 10.1016/j.geb.2016.05.008

Cui, B., Li, Y., Chen, M., and Zhang, Z. (2019). “Fine-tune BERT with

sparse self-attention mechanism,” in Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing and the 9th International

Joint Conference on Natural Language Processing (Hong Kong: ACL),

3548–3553.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). “BERT: pre-training

of deep bidirectional transformers for language understanding,” in Proceedings

of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics (ACL), 4171–4186.

Doane, D. P., and Seward, L. E. (2011). Measuring skewness: a forgotten statistic?

J. Stat. Educ. 19, 1–18 doi: 10.1080/10691898.2011.11889611

Dobrian, F., Sekar, V., Awan, A., Stoica, I., Joseph, D., Ganjam, A.,

et al. (2011). Understanding the impact of video quality on user

engagement. ACM SIGCOMM Comput. Commun. Rev. 41, 362–373.

doi: 10.1145/2043164.2018478

Ekman, P. (1992). An argument for basic emotions. Cogn. Emotion 6, 169–200.

English, K., Sweetser, K. D., and Ancu, M. (2011). Youtube-ification of political

talk: an examination of persuasion appeals in viral video. Am. Behav. Sci. 55,

733–748. doi: 10.1177/0002764211398090

Garroppo, R. G., Ahmed, M., Niccolini, S., and Dusi, M. (2018). A vocabulary

for growth: topic modeling of content popularity evolution. IEEE Trans.

Multimedia 20, 2683–2692. doi: 10.1109/TMM.2018.2811625

Geurts, P. (2001). “Pattern extraction for time series classification,” in European

Conference on Principles of Data Mining and Knowledge Discovery (Freiburg im

Breisgau: Springer), 115–127.

Gilbert, C., and Hutto, E. (2014). “Vader: a parsimonious rule-based model for

sentiment analysis of social media text,” in Eighth International Conference on

Weblogs and Social Media, vol. 81 (Ann Arbor, MI), 82.

Frontiers in Computer Science | www.frontiersin.org 13 March 2022 | Volume 4 | Article 773154136

https://doi.org/10.5281/zenodo.4651164
https://doi.org/10.5281/zenodo.4651164
https://www.frontiersin.org/articles/10.3389/fcomp.2022.773154/full#supplementary-material
https://www.kaggle.com/crowdflower/twitter-airline-sentiment
https://www.kaggle.com/crowdflower/twitter-airline-sentiment
https://doi.org/10.1002/asi.10242
https://doi.org/10.3389/fdata.2020.00025
https://www.latimes.com/entertainment/envelope/cotown/la-et-ct-you-tube-ad-spending-20160506-snap-story.html
https://doi.org/10.1509/jmr.10.0353
https://doi.org/10.1109/TMM.2012.2225032
https://doi.org/10.1007/s10579-008-9076-6
https://doi.org/10.1016/j.dss.2017.05.014
https://doi.org/10.1109/TMM.2013.2265531
https://doi.org/10.1016/j.neucom.2018.03.067
https://doi.org/10.1037/0021-9010.92.4.909
https://doi.org/10.1016/j.geb.2016.05.008
https://doi.org/10.1080/10691898.2011.11889611
https://doi.org/10.1145/2043164.2018478
https://doi.org/10.1177/0002764211398090
https://doi.org/10.1109/TMM.2018.2811625
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Stappen et al. User Engagement Estimation From Emotions

Go, A., Bhayani, R., and Huang, L. (2009). Twitter sentiment classification using

distant supervision. CS224N Project Rep. Stanford 1, 2009.

Grimm, M., Kroschel, K., and Narayanan, S. (2008). “The vera am mittag german

audio-visual emotional speech database,” in 2008 IEEE International Conference

on Multimedia & Expo (ICME) (Hannover: IEEE), 865–868.

Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer

classification using support vector machines. J. Mach. Learn. 46, 389–422.

doi: 10.1023/A:1012487302797

Han, J., Zhang, Z., Schmitt, M., Pantic, M., and Schuller, B. (2017). “From

hard to soft: Towards more human-like emotion recognition by modelling

the perception uncertainty,” in Proceedings of the 25th ACM International

Conference on Multimedia (New York, NY), 890–897.

Horsburgh, H. (1961). Trust and social objectives. Ethics 72, 28–40.

Huang, J., Tao, J., Liu, B., Lian, Z., and Niu, M. (2020). “Multimodal transformer

fusion for continuous emotion recognition,” in IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP) (Barcelona: IEEE), 3507–

3511.

Khan, G. F., and Vong, S. (2014). Virality over youtube: an empirical analysis.

Internet Res. 24, 19. doi: 10.1108/INTR-05-2013-0085

Knuutila, A., Herasimenka, A., Au, H., Bright, J., and Howard, P. N. (2020).

Covid-related misinformation on youtube. Oxford Memos: The Spread of

Misinformation Videos on Social Media and the Effectiveness of Platform Policies.

(Oxford).

Kollias, D., Tzirakis, P., Nicolaou, M. A., Papaioannou, A., Zhao, G., Schuller,

B., et al. (2019). Deep affect prediction in-the-wild: aff-wild database and

challenge, deep architectures, and beyond. Int. J. Comput. Vis. 127, 1–23.

doi: 10.1007/s11263-019-01158-4

Kossaifi, J., Walecki, R., Panagakis, Y., Shen, J., Schmitt, M., Ringeval, F., Han, J.,

Pandit, V., Toisoul, A., Schuller, B.W., et al. (2019). Sewa db: a rich database for

audio-visual emotion and sentiment research in the wild. IEEE Trans. Pattern

Anal. Mach. Intell. 43, 1022–1040. doi: 10.1109/TPAMI.2019.2944808

Kujur, F., and Singh, S. (2018). Emotions as predictor for consumer

engagement in youtube advertisement. J. Adv. Manag. Res. 15, 184–197.

doi: 10.1108/JAMR-05-2017-0065

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2020).

“Albert: a lite bert for self-supervised learning of language representations,” in

2020 International Conference on Learning Representations (Addis Ababa).

Lebreton, P., and Yamagishi, K. (2020). Predicting user quitting ratio in

adaptive bitrate video streaming. IEEE Trans. Multimedia 23, 4526–4540.

doi: 10.1109/TMM.2020.3044452

Lim, J. S., Choe, M.-J., Zhang, J., and Noh, G.-Y. (2020). The role of wishful

identification, emotional engagement, and parasocial relationships in repeated

viewing of live-streaming games: a social cognitive theory perspective. Comput.

Hum. Behav. 108, 106327. doi: 10.1016/j.chb.2020.106327

Lin, Z., Althoff, T., and Leskovec, J. (2018). “I’ll be back: on the multiple lives of

users of a mobile activity tracking application,” in Proceedings of the 2018World

Wide Web Conference (WWW) (Geneva), 1501–1511.

Liu, Y., Shi, X., Pierce, L., and Ren, X. (2019). “Characterizing and forecasting user

engagement with in-app action graph: a case study of snapchat,” in Proceedings

of the 25th ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining (KDD) (Anchorage, AK), 2023–2031.

Moturu, S. T., and Liu, H. (2011). Quantifying the trustworthiness

of social media content. Distrib. Parallel Databases 29, 239–260.

doi: 10.1007/s10619-010-7077-0

Nakov, P., Rosenthal, S., Kozareva, Z., Stoyanov, V., Ritter, A., and Wilson, T.

(2013). “SemEval-2013 task 2: sentiment analysis in Twitter,” in Second Joint

Conference on Lexical and Computational Semantics, Proceedings of the Seventh

International Workshop on Semantic Evaluation (Atlanta, GA, ACL), 312–320.

Nikolinakou, A., and King, K. W. (2018). Viral video ads: emotional triggers and

social media virality. Psychol. Market. 35, 715–726. doi: 10.1002/mar.21129

Palshikar, G. (2009). “Simple algorithms for peak detection in time-series,” in

Proceedings of the 1st International Conference on Advanced Data Analysis,

Business Analytics and Intelligence. (Ahmedabad), vol. 122.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

et al. (2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12,

2825–2830.

Picard, R. W. (1999). “Affective computing for hci,” in Human Computer

Interaction (Citeseer), 829–833.

Posner, J., Russell, J. A., and Peterson, B. S. (2005). The circumplex model

of affect: an integrative approach to affective neuroscience, cognitive

development, and psychopathology. Develop. Psychopathol. 17, 715.

doi: 10.1017/S0954579405050340

Preoţiuc-Pietro, D., Schwartz, H. A., Park, G., Eichstaedt, J., Kern, M., Ungar, L.,

et al. (2016). “Modelling valence and arousal in facebook posts,” in Proceedings

of the 7th Workshop on Computational Approaches to Subjectivity, Sentiment

and SocialMedia Analysis co-located to Association for Computer Lingustics (San

Diego, CA: ACM), 9–15.

Rangaswamy, S., Ghosh, S., Jha, S., and Ramalingam, S. (2016). “Metadata

extraction and classification of youtube videos using sentiment analysis,”

in 2016 IEEE International Carnahan Conference on Security Technology

(Orlando, FL: IEEE), 1–2.

Richman, J. S., and Moorman, J. R. (2000). Physiological time-series analysis using

approximate entropy and sample entropy. Am. J. Physiol. Heart Circul. Physiol.

278, 2039–2049. doi: 10.1152/ajpheart.2000.278.6.H2039

Ringeval, F., Schuller, B., Valstar, M., Gratch, J., Cowie, R., Scherer, S., et al.

(2017). “Avec 2017: real-life depression, and affect recognition workshop and

challenge,” in Proceedings of the 7th AnnualWorkshop on Audio/Visual Emotion

Challenge (Mountain View, CA), 3–9.

Roy, S. D., Mei, T., Zeng, W., and Li, S. (2013). Towards cross-domain learning

for social video popularity prediction. IEEE Trans. Multimedia 15, 1255–1267.

doi: 10.1109/TMM.2013.2265079

Russell, J. A. (1980). A circumplex model of affect. J. Pers. Soc. Psychol. 39,

1161–1178.

Sagha, H., Schmitt, M., Povolny, F., Giefer, A., and Schuller, B. (2017). “Predicting

the popularity of a talk-show based on its emotional speech content before

publication,” in Proceedings 3rd International Workshop on Affective Social

Multimedia Computing, Conference of the International Speech Communication

Association (INTERSPEECH) Satellite Workshop (Stockholm, ISCA).

Schuller, B., Lang, M., and Rigoll, G. (2002). “Automatic emotion recognition by

the speech signal,” in Proccedings of SCI 2002, 6th World Multiconference on

Systemics, Cybernetics and Informatics. (Orlando).

Schuller, B. W. (2013). Intelligent Audio Analysis. (Lyon, Springer).

Schuller, B.W., Batliner, A., Bergler, C.,Messner, E.-M., Hamilton, A., Amiriparian,

S., et al. (2020). “The interspeech 2020 computational paralinguistics challenge:

elderly emotion, breathing & masks,” in Proceedings Conference of the

International Speech Communication Association (INTERSPEECH) (Shanghai).

Severyn, A., Moschitti, A., Uryupina, O., Plank, B., and Filippova, K. (2016).

Multi-lingual opinion mining on youtube. Inf. Process. Manag. 52, 46–60.

doi: 10.1016/j.ipm.2015.03.002

Sham, P. C., and Purcell, S. M. (2014). Statistical power and significance testing

in large-scale genetic studies. Nat. Rev. Genet. 15, 335–346. doi: 10.1038/

nrg3706

Shehu, E., Bijmolt, T. H., and Clement,M. (2016). Effects of likeability dynamics on

consumers’ intention to share online video advertisements. J. Interact. Market.

35, 27–43. doi: 10.1016/j.intmar.2016.01.001

Siersdorfer, S., Chelaru, S., Nejdl, W., and San Pedro, J. (2010). “How useful are

your comments? analyzing and predicting youtube comments and comment

ratings,” in Proceedings of the 19th International Conference onWorldWideWeb

(WWW) (Raleigh, NC), 891–900.

Siersdorfer, S., Chelaru, S., Pedro, J. S., Altingovde, I. S., and Nejdl, W. (2014).

Analyzing andmining comments and comment ratings on the social web.ACM

Trans. Web 8, 1–39. doi: 10.1145/2628441

Singh, V. K., Piryani, R., Uddin, A., and Waila, P. (2013). “Sentiment

analysis of movie reviews: a new feature-based heuristic for aspect-

level sentiment classification,” in 2013 International Mutli-Conference on

Automation, Computing, Communication, Control and Compressed Sensing

(Kottayam: IEEE), 712–717.

Soleymani, M., Garcia, D., Jou, B., Schuller, B., Chang, S.-F., and Pantic, M. (2017).

A survey of multimodal sentiment analysis. Image Vis. Comput. 65, 3–14.

doi: 10.1016/j.imavis.2017.08.003

Stappen, L., Baird, A., Rizos, G., Tzirakis, P., Du, X., Hafner, F., et al.

(2020a). “Muse 2020 challenge and workshop: Multimodal sentiment analysis,

emotion-target engagement and trustworthiness detection in real-life media,”

in 1st International Multimodal Sentiment Analysis in Real-life Media Challenge

and Workshop, co-located to ACM International Conference on Multimedia.

(Seattle, WA: ACM).

Frontiers in Computer Science | www.frontiersin.org 14 March 2022 | Volume 4 | Article 773154137

https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1108/INTR-05-2013-0085
https://doi.org/10.1007/s11263-019-01158-4
https://doi.org/10.1109/TPAMI.2019.2944808
https://doi.org/10.1108/JAMR-05-2017-0065
https://doi.org/10.1109/TMM.2020.3044452
https://doi.org/10.1016/j.chb.2020.106327
https://doi.org/10.1007/s10619-010-7077-0
https://doi.org/10.1002/mar.21129
https://doi.org/10.1017/S0954579405050340
https://doi.org/10.1152/ajpheart.2000.278.6.H2039
https://doi.org/10.1109/TMM.2013.2265079
https://doi.org/10.1016/j.ipm.2015.03.002
https://doi.org/10.1038/nrg3706
https://doi.org/10.1016/j.intmar.2016.01.001
https://doi.org/10.1145/2628441
https://doi.org/10.1016/j.imavis.2017.08.003
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Stappen et al. User Engagement Estimation From Emotions

Stappen, L., Baird, A., Schumann, L., and Schuller, B. (2021). The multimodal

sentiment analysis in car reviews (muse-car) dataset: collection, insights and

improvements. arXiv preprint arXiv:2101.06053.

Stappen, L., Brunn, F., and Schuller, B. (2020b). Cross-lingual zero-and few-shot

hate speech detection utilizing frozen transformer language models and axel.

arXiv preprint arXiv:2004.13850.

Stappen, L., Schuller, B. W., Lefter, I., Cambria, E., and Kompatsiaris,

I. (2020c). “Summary of muse 2020: Multimodal sentiment analysis,

emotion-target engagement and trustworthiness detection in real-life

media,” in 28th ACM International Conference on Multimedia. (Seattle,

WA: ACM).

Subramanian, R., Shankar, D., Sebe, N., and Melcher, D. (2014). Emotion

modulates eye movement patterns and subsequent memory for the

gist and details of movie scenes. J. Vis. 14, 31–31. doi: 10.1167/14.

3.31

Surhone, L., Timpledon,M., andMarseken, S. (2010). Spearman’s Rank Correlation

Coefficient: Statistics, Non-Parametric Statistics, Raw Score, Null Hypothesis,

Fisher Transformation, Statistical Hypothesis Testing, Confidence Interval,

Correspondence Analysis. Betascript Publishing.

Tamulis, Ž., Vasiljevas, M., Damaševicius, R., Maskeliunas, R., and Misra, S.

(2021). “Affective computing for ehealth using low-cost remote internet of

things-based emg platform,” in Intelligent Internet of Things for Healthcare and

Industry, vol. 67. (Springer).

Tan, Z., and Zhang, Y. (2019). Predicting the top-n popular videos via

a cross-domain hybrid model. IEEE Trans. Multimedia 21, 147–156.

doi: 10.1109/TMM.2018.2845688

Tian, L., Oviatt, S., Muszynski, M., Chamberlain, B., Healey, J., and Sano, A. (2022).

Applied Affective Computing. (Morgan & Claypool).
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Electroencephalogram (EEG) has been widely utilized in emotion recognition.

Psychologists have found that emotions can be divided into conscious emotion

and unconscious emotion. In this article, we explore to classify subliminal emotions

(happiness and anger) with EEG signals elicited by subliminal face stimulation, that is

to select appropriate features to classify subliminal emotions. First, multi-scale sample

entropy (MSpEn), wavelet packet energy (Ei), and wavelet packet entropy (WpEn) of

EEG signals are extracted. Then, these features are fed into the decision tree and

improved random forest, respectively. The classification accuracy with Ei and WpEn is

higher than MSpEn, which shows that Ei and WpEn can be used as effective features to

classify subliminal emotions. We compared the classification results of different features

combined with the decision tree algorithm and the improved random forest algorithm.

The experimental results indicate that the improved random forest algorithm attains the

best classification accuracy for subliminal emotions. Finally, subliminal emotions and

physiological proof of subliminal affective priming effect are discussed.

Keywords: EEG, subliminal emotion, feature extraction, subliminal emotion classification, improved random forest

1. INTRODUCTION

Affective computing is a multidisciplinary field involving computer science, psychology,
and cognitive science and its potential applications include disease diagnosis, human-
computer interaction (HCI), entertainment, autonomous driving assistance, marketing, teaching,
etc., (Bota et al., 2019). The intelligent brain-computer interface (BCI) systems based on
electroencephalogram (EEG) can promote the continuous monitoring of fluctuations in the human
brain area under the emotional stimulation, which is of great significance for the development of
brain emotional mechanisms and artificial intelligence for medical diagnosis (Gu et al., 2021).

Emotion research also has important findings for neurological-marketing that local neuronal
complexity is mostly sensitive to the affective valance rating, while regional neuro-cortical
connectivity levels are mostly sensitive to the affective arousal ratings (Aydın, 2019). There is an
attention bias processing mechanism for emotions. Some studies have shown that angry faces can
automatically stimulate attention, that is, there is an anger dominance effect. On the contrary,
some studies have shown the existence of a happiness dominance effect (Xu et al., 2019). Most
psychologists regard subjective experiences as the central component of emotion, emphasizing the
role of consciousness in emotional production and emotional state. However, the discussion of
emotional issues from the perspective of unconscious emotion also has a profound tradition in
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psychological research. Unconscious emotion, also named
subliminal emotion, refers to the change of thoughts and
emotions caused by certain emotional states (Li and Lv, 2014).
This emotional state is independent of his conscious awareness,
and the induction of this emotional state is unconscious (Jiang
and Zhou, 2004; Wataru et al., 2014; Zheng et al., 2021a). The
presentation of stimuli subliminally is an important research
topic in the field of unconscious perception.

Researchers use subliminal stimulus to trigger unconscious
states to analyze changes in mood, cognition, social information
processing, and physiological signals. Emotional faces are
an important and unique visual stimulus and humans are
very sensitive to emotional faces and have complex and
efficient recognition ability of them. Subliminal emotional
face experiments use emotional faces as stimulus materials
for subliminal presentation, and they will trigger unconscious
emotion (Yin et al., 2021).

We have con’ducted a study on multi-scale sample entropy
(MSpEn) (Shi et al., 2018) and in this article, we study new
features which are also suitable for the subliminal emotion
classification based on EEG signals. These features including
MSpEn, WpEn, and Ei extracted from EEG signals have been
employed as input feature vectors for classification of subliminal
emotions. We combine them with decision tree algorithm and
improved random forest to classify subliminal emotions.

This article is structured as follows: Section 2 introduces
related work. Section 3 presents the experimental process,
subjects, the feature extraction method, and classification
algorithms. Section 4 describes the experiments and results.
Finally, section 5 concludes this article.

2. RELATED WORK

The methods based on physiological signals are more effective
and reliable because humans can not control them intentionally,
such as electroencephalogram, electromyogram (EMG),
electrocardiogram (ECG), skin resistance (SC) (Kim et al., 2004;
Kim and Andr, 2008), pulse rate, and respiration signals. Among
these methods, EEG-based emotion recognition has become
quite common in recent years. There are many research projects
focusing on EEG-based emotion recognition (Hosseini and
Naghibi-Sistani, 2011; Colic et al., 2015; Bhatti et al., 2016).
Jatupaiboon et al. (2013) indicated that the power spectrum
from each frequency band is used as features and the accuracy
rate of the SVM classifier is about 85.41%. Bajaj and Pachori
(2014) proposed new features based on multiwavelet transform
for the classification of human emotions from EEG signals.
Duan et al. (2013) proposed a new effective EEG feature named
differential entropy to represent the characteristics associated
with emotional states.

Extracting effective features is the key to the subliminal
emotion recognition of EEG signals. Four different features
(time domain, frequency domain, time-frequency based, and
non-linear) are commonly identified in the feature extraction
phase. Compared to traditional time domain and frequency
domain analysis, time-frequency based, and non-linear are more

widely used (Vijith et al., 2017). Wavelet packet transform is a
typical linear time-frequency analysis method. Wavelet packet
decomposition is a wavelet transform that provides a time-
frequency decomposition of multi-level signals. Murugappan
et al. (2008) used video stimuli to trigger emotional responses
and extract wavelet coefficients to obtain the energy of the
frequency band as input features. Verma and Tiwary (2014) used
discrete wavelet transform for feature extraction and classified
emotions with support vector machine (SVM), multilayer
perceptron (MLP), K nearest neighbor, and metamulticlass
(MMC). In recent years, many scholars have tried to analyze
EEG signals by non-linear dynamics methods. Commonly
used methods are correlation dimension, Lyapunov exponent,
Hurst exponent, and other entropy-based analysis methods (Sen
et al., 2014). Hosseini and Naghibi-Sistani (2011) proposed
an emotion recognition system using EEG signals, and a new
approach to emotion state analysis by approximate entropy
(ApEn) and wavelet entropy (WE) is integrated. Xin et al.
(2015) proposed an improved multi-scale entropy algorithm for
emotion EEG features extraction. Michalopoulos and Bourbakis
(2017) applied multi-scale entropy (MSE) to EEG recordings
of subjects who were watching musical videos selected to elicit
specific emotions and found that MSE is able to discover
significant differences in the temporal organization of the
EEG during events that elicit emotions with low/high valence
and arousal.

The upsurge in the study of emotion research attracts scholars
to explore and discover subliminal emotions. The analysis and
processing of EEG signals have become an indispensable research
focus in emotion recognition.

3. EEG DATA ACQUISITION AND ANALYSIS
METHODS

The process of subliminal emotion classification consists of
several steps as shown in Figure 1. First, a stimulus such as
picture, audio, or movie is needed. During the experiments, the
participant is exposed to the stimuli to elicit emotion, and EEG
signals are recorded accordingly. In order to trigger subliminal
emotion, we set the presentation time as 33 ms. Then, artifacts
that contaminate EEG signals are removed. EEG signals are
analyzed and relevant features are extracted. Some data are used
to train the classification model, and the remainder is used
for the test which is classified using this model to compute
accuracy (Zheng et al., 2021b). Age and gender specifications of
the subjects would be given in the Supplementary Material.

3.1. Method
3.1.1. Feature Extraction
This article mainly adopts three features, including MSpEn,
wavelet packet energy (Ei) and wavelet packet entropy (WpEn).
MSpEn is a combination of sample entropy and multi-scale
analysis (Klauer and Musch, 2003; Bai et al., 2007). The
calculation steps of MSpEn are described in detail in Shi et al.
(2018).
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FIGURE 1 | The process of subliminal emotion classification.

3.1.1.1. Wavelet Packet Energy
Wavelet packet decomposition is a generalization of the wavelet
transform, which is with multi-resolution characteristics. It can
finely analyze signals more than wavelet analysis, so it is very
suitable for processing non-stationary signals such as EEG signals
and has been widely used in the field of EEG signal processing.
Wavelet transform is a multi-scale signal analysis method. It can
characterize local features of signals in both time and scale (Deng
et al., 2011). The continuous wavelet transform of the signal f (t)
is defined as

Wx(a, b) =
1
√
a

∫

f (t)ψ(
t − b

a
)dt (1)

where a is the scaling parameter, b is the translation parameter,
ψ(t) is the wavelet function, and t is the time.

The discrete wavelet transform is defined as

Cj,k =

∫

+∞

−∞

f (t)ψj,k(t)dt (2)

where ψj,k(t) = 2−
J
2ψ(2−jt − k).

Wavelet analysis has been widely used in various fields as
the main tool for time-frequency analysis. Compared to Fourier
transform and short-time Fourier transform, wavelet analysis has
the advantage of multi-resolution analysis, which can reflect the
local details of signals onmultiple scales. However, the traditional
wavelet transform only further decomposes the low-frequency
components of each decomposed signal. The high frequency
components are ignored and the signal details are not adequately
reflected.Wavelet packet decomposition is a generalization of the
wavelet transform, which is with multi-resolution characteristics.
In order to extract the EEG features, the original signal is
decomposed by the Mallat algorithm, and the wavelet coefficients
of the corresponding nodes are reconstructed to obtain the
final coefficients.

To reduce noise and other factors, high frequency components
are filtered out, leaving a frequency range below 256 Hz. After
four layers wavelet decomposition, the original signal can be
decomposed into 16 bands.

The wavelet packet energy of band i (Ei) is defined as

Ei =
∑N

i=1
|

∣

∣nj
∣

∣|
2 (3)

where N is the number of corresponding band coefficients, ni is
the wavelet packet coefficient. The total wavelet packet energy is
defined as

Etotal =
∑2i

i=1
Ei (4)

FIGURE 2 | Energy ratio of 4-layer wavelet packet decomposition.

The wavelet packet energy distribution is expressed as

Pi =
Ei

Etotal
(5)

The energy ratio of each wavelet packet node is calculated after
the wavelet packet decomposition of the original EEG signals.
The result is shown in Figure 2. The energy is concentrated
in the frequency band corresponding to the first four wavelet
packet nodes after the wavelet packet is decomposed. The energy
ratio and corresponding frequency range of the first four wavelet
packet nodes are shown in Table 1. More than 98% of the energy
is concentrated in the wavelet packet nodes (4,0) ∼ (4,3), this is
because the human EEG sub-band intervals are as follows: delta,
0.5–4 Hz; theta, 4.5–8 Hz; alpha, 8.5–16 Hz; beta, 16.5–32 Hz;
gamma, 32.5–60 Hz. According to the EEG rhythm theory, it
means that we only need to extract some features that can cover
the human brain frequency range.

According to the above analysis, EEG activities are mainly
concentrated in the (4,0) ∼ (4,3). Therefore, it is not necessary
to use all frequency bands in actual analysis. In order to cover the
EEG rhythm as much as possible and avoid the effects of noise
and artifacts in EEG records, this article only deals with wavelet
packet nodes. The wavelet packet energy of the packet node (4,0)
∼ (4,3) is extracted and analyzed whether it is a contribution to
subliminal emotion face recognition.
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TABLE 1 | The 4-layer wavelet packet decomposition frequency intervals and

energy ratio.

Wavelet

packet node

Wavelet packet

energy distribution

Frequency interval

(Hz)

(4,0) 87.3802% 0 ∼ 16

(4,1) 5.9086% 16 ∼ 32

(4,2) 3.1553% 32 ∼ 48

(4,3) 2.004% 48 ∼ 64

3.1.1.2. Wavelet Packet Entropy
Information entropy can provide a quantitative measure of
information contained in various probability distributions. It is a
measure of the degree of uncertainty and can be used to estimate
the complexity of random signals. The energy distribution
of wavelet packet decomposition coefficient and information
entropy are combined to define WpEn as:

WpEn = −

∑

Pi ln Pi (6)

3.1.2. Classification Algorithm
This study employed and evaluated two classifiers, the decision
tree algorithm (Yang and XU, 2017) and the improved random
forest algorithm (Paul et al., 2018), for subliminal emotion
classification. This study systematically compared the effects of
all the feature types (MSpEn, WpEn, and Ei) on the classification
performance.

3.1.2.1. Decision Tree Algorithm
Classification is one of the most widely studied and applied
methods in the field of data mining. The decision tree algorithm
is widely used because of its fast classification, high precision, and
easy-to-understand classification rules. The popular algorithms
in the decision tree algorithm are ID3, C4.5, CART, and
CHAID. ID3 algorithm based on information entropy is a classic
algorithm of decision tree algorithm. The possibility of attribute
splitting will increase as the information gain increases. However,
ID3 can only deal with discrete properties, while the C4.5
algorithm can handle both discrete and continuous properties.
C4.5 algorithm is one of the most widely studied algorithms in
decision tree algorithms and is also one of the representative
algorithms of decision trees.

The C4.5 algorithm is an improved algorithm of the ID3
algorithm. It uses the information gain rate to select attributes
and prunes during tree construction. It can process both discrete
and continuous attributes, as well as default data.

The core idea of the C4.5 decision tree algorithm is to use
the principle of information entropy to select the attribute with
the largest information gain rate as the classification attribute,
recursively construct the branches of the decision tree, and
complete the construction of the decision tree.

C4.5 algorithm can be described in the following steps:

Step 1: The training data set is preprocessed. If there are
continuous attributes in the data set, it needs to be discretized
first.

Step 2: The data is classified according to the respective
attributes of the data set, and the information gain rate is
calculated for each classification result.

Set the training set as D and |D| indicates the number of records
of D. The label set of class D is C, C = {C1,C2, ...,Cm}, where
|Ci| represents the number of records of C. The training set
can be divided into m different subsets Di, (1 ≤ i ≤ m)
according to labels. Set the attributes set of D as An, where An =

{A1,A2, ...,An}, the ith attribute of Ai with w different values is
defined as {a1i, a2i, ..., awi}. The data set is divided into w different
subsets DA

i , (1 ≤ i ≤ w) according to the attribute, where
|DA

i | represents the number of samples in the subset DA
i , |C

A
i |

represents the number of Ci in the subsetD
A
i . So, the information

entropy is defined as

Entropy(D) = −

∑m

i=1
pilb(pi) (7)

where pi = |Ci|/|D|. The information entropy of subset divided
according to attribute Ai is defined as

EntropyA(D) = −

∑w

i=1

|DA
i |

|D|
Entropy(DA

i ) (8)

where Entropy(DA
i ) is the information entropy of subset DA

i . The
formula Gain(Ai) represents the information gain of the training
set divided by the attribute Ai, which is defined as

Gain(Ai) = Entropy(D)− EntropyA(D) (9)

The split information SplitInfoA(D) is defined as

SplitInfoA(D) = −

∑w

i=1

DA
i

D
lb
DA
i

D
(10)

The information gain ratio of the dataset divided by the attribute
Ai is defined as

GainRatio(Ai) =
Gain(Ai)

SplitInfoA(D)
(11)

Step 3: According to the attribute which is corresponding to
the maximum information gain ratio, the current data set is
divided into different subsets, the decision tree branches are
established, and the new child nodes are formed.
Step 4: Steps 2 and 3 are recursively called for the new node
until the class labels are the same in all nodes.

3.1.2.2. Improved Random Forest Algorithm
Random forest algorithm is a typical multi-classifier algorithm.
The basic classifier that constitutes the random forest algorithm
is the decision tree. The basic principle of the random forest
algorithm is to use the resampling technique to form a new
training set by randomly extracting samples. Then, decision
tree is modeled and composed of random forests, and the
classification results are used for voting decisions (Bo, 2017).
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The random forest algorithm is similar to the Bagging
algorithm in that it is resampled based on the bootstrap method
to generate multiple training sets. The difference is that the
random forest algorithm uses the method of randomly selecting
the split attribute set when constructing a decision tree.

Random forest algorithm can be divided into the following
steps:

Step 1: Use the bootstrap method to resample and randomly
generate T training sets, S1, S2, , ST .
Step 2: Generate a corresponding decision tree using each
training set; before selecting attributes on each internal node,
m attributes are randomly extracted from M attributes as the
split attribute set of the current node, and the node is split by
the best classification among them attributes.
Step 3: Every tree grows intact without pruning.
Step 4: For the test set sample X, use each decision tree to test
and get the corresponding category.
Step 5: Using the voting method, the category with the most
output in the T decision trees is taken as the category to which
the test set sample X belongs.

However, the random forest algorithm also has deficiencies.
This article uses a random forest algorithm based on the C4.5
tree algorithm. The attribute division strategy is based on
the level of information gain rate to select the characteristics
of the division. The principle of attribute division has the
disadvantage of biasing features with many values. The voting on
the classification result of the decision tree adopts the “majority
voting principle,” which means the number of votes is the final
classification result, and the strength of the decision tree classifier
cannot be distinguished. This article will improve the random
forest algorithm and apply it to the classification of subliminal
emotional faces.

Random forest algorithm is improved from the following
mechanisms:

(1) In the choice of test attributes, attribute division by
information gain rate will have the characteristic of biasing the
features with more values, the Pearson coefficient is introduced
to compensate.

The C4.5 decision tree algorithm uses the information gain
ratio to select the test attribute. The larger the information gain
ratio, the stronger the correlation between the attribute and the
class attribute, the possibility of the attribute being selected as the
test attribute the larger.

The C4.5 decision tree algorithm takes into account
the influence of attributes on class, but it does not involve
the influence between attributes. If an attribute has a
strong correlation with other attributes, there will exist
redundancy between them. Therefore, the Pearson coefficient
is used to express the temporal correlation of attributes
in this article, and the influence of attributes with high
correlation is eliminated. The quotient of the covariance
and the standard deviation is defined as the Pearson
correlation coefficient, which can reflect the degree of
correlation between two variables. The Pearson coefficient
is defined as

r =

∑

XY −

∑

X
∑

Y
N

√

(
∑

X2 −
(
∑

X)2

N )(
∑

Y2 −
(
∑

Y)2

N )

(12)

When the Pearson coefficient is 0, it means there is no
correlation between two variables. When the Pearson
coefficient is positive, it indicates that there is a positive
correlation between the two variables. The larger the
value, the greater the positive correlation between the two
variables. When the Pearson coefficient is negative, it means
that there is a negative correlation between two variables.
The greater the value, the greater the negative correlation
between two variables. The range of Pearson’s coefficient is
(−1, 1).

The improved attribute division algorithm is defined as

GainRatio(Ai) =
Gain(Ai)

SplitInfoA(D)+ ar
(13)

According to the improved attribute selection method, the
attribute which has the high information gain ratio and low
correlation with other attributes, has the greater probability of
being selected as the test attribute.

(2) The voting decision process is an important mechanism
of the random forest algorithm. Random forest algorithm
adopts the principle of majority voting, assigning each decision
tree the same weight, and ignoring the difference between
the strong classifier and the weak classifier, which affects
the overall classification performance of random forest.
This article uses the weighted voting principle to improve
random forest algorithm. During the formation of the random
forest, according to the classification performance of each
decision tree, each decision tree is assigned a corresponding
weight. Then, the final classification effect is obtained by
weighted voting.

In the process of generating a decision tree, the bagging
method is used to extract samples from original training set
with replacement to form a sample set, and the decision tree
classification accuracy rate Actree corresponding to the sample
set can be obtained. The larger Actree, the better the classification
effect of the decision tree, which belongs to the strong classifier.
Actree of each decision tree is used as the weight of the
corresponding decision tree and add the weights corresponding
to decision trees with the same output class target. Finally,
classification result with higher weight is the final category.
Figure 3 shows the schematic diagram of the improved random
forest algorithm.

4. RESULTS

First, low pass filtering is applied to each EEG signal segment.
According to the sampling theorem, the maximum frequency of
the signal is about 500 Hz. To reduce noise and other factors,
high frequency components are filtered out, leaving a frequency
range below 256 Hz. The sample entropy has a strong ability
to characterize nonlinear sequences on a macroscopic scale and
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FIGURE 3 | The principle of improved random forest algorithm.

cannot describe the details. The wavelet packet decomposition
has excellent description ability in detail. Therefore, MSpEn,
WpEn, and Eiare extracted as feature vectors for the classifier, and
the classification results of different features are compared. Bai
et al. (2007) pointed out that when the sample entropy parameter
m = 2 and r = 0.2STD are selected through experiments,
the classification effect is better. In addition, Duan et al. (2013)
pointed out that the scale factor t = 2 is preferentially chosen.
The wavelet basis function selects the db-4 wavelet. We can get
16 bands after the four-layer wavelet packet decomposition of
the signals and we calculate the energy ratio of each node after
wavelet packet decomposition according to the formula (5).

In our experiment, there were 80 sets of sample data for
each subject, 40 groups were selected as training samples for
training the proposed model, and the remaining 40 groups were
used as test samples for verifying the performance of the model.
WpEn and Ei extracted by wavelet packet transform and MspEn
calculated by multi-scale sample analysis is put into decision tree
algorithm, respectively. The averaged classification performance
of the decision tree algorithm with MSpEn, WpEn, and Ei on 10
subjects is shown in Table 2.

Table 2 shows classification accuracy when MSpEn, Ei, and
WpEn are input to the decision tree classifier. The experimental
results show that decision tree algorithm can effectively classify
subliminal emotional faces combined with the three feature
vectors, and different feature vectors have different classification
capabilities for subliminal emotional faces. The classification
accuracy with Ei as a feature vector is significantly higher than
other features, and its average classification accuracy is up to
94.33%. The classification accuracy using WpEn as the feature
vector is slightly lower, and its average classification accuracy is
93.32%. The classification accuracy with MSpEn as the feature
vector is the lowest, and its average classification accuracy is
75.52%.

In order to compare the classification performance of different
features more intuitively, Figure 4 shows the comparison of the
classification accuracy of different features input to the decision
tree. It can be seen from Figure 4 that the classification accuracy
using MSpEn as the feature vector is the lowest and the accuracy

obtained by MSpEn fluctuates greatly in different subjects. When
Ei and WpEn are adopted as the input feature vector of the
decision tree classifier, the average classification accuracy is
significantly higher than MSpEn and the classification accuracy
is more stable.

In summary, a decision tree classifier can effectively classify
subliminal emotional faces. In the perspective of feature vectors,
classification effect of Ei and WpEn is better compared with
MSpEn, which shows that wavelet packet decomposition features
are more powerful for subliminal emotional face recognition.

This article further studies the classification effect of
improved random forest algorithm on subliminal emotional
faces. WpEn and Ei extracted by wavelet packet transform and
MspEn calculated by multi-scale sample analysis are input into
improved random forest, respectively. The averaged classification
performance of the improved random forest algorithm with
MSpEn, WpEn, and Ei on 10 subjects is shown in Table 3.

As we can see from Table 3, three feature extraction
algorithms can identify unconscious emotions triggered by
subliminal faces stimulus. The classification performance with
Ei was evidently better than those based on other feature types
under the same conditions, while the accuracy can reach up
96.75%. While WpEn and MSpEn are used as input feature
vectors, the unconscious emotions can be classified combined
with improved random forest. The highest classification accuracy
can be achieved at 93.38 and 88.89%. For the classification results
with Ei and the decision tree algorithms and the improved
random forest algorithms, it was noted that the random forest
algorithms outperformed the decision tree algorithm by 1 ∼ 6%
for most subjects.

The comparison of classification accuracy of improved
random forest classifier with different inputs feature vectors
is shown in Figure 5. It can be seen from the figure that
the average classification accuracy of a single subject and all
subjects are significantly higher when using Ei and WpEn
as the input feature vectors of the classifier compared to
MSpEn. Due to the individual differences of the subjects,
the classification accuracy of different subjects shows a small
range of fluctuations, and the overall performance shows that
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TABLE 2 | Average results of decision tree algorithm with multi-scale sample entropy (MSpEn), wavelet packet entropy (WpEn), and wavelet packet energy (Ei ).

Method Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

MSpEn 80.25% 73.57% 72.15% 53.65% 83.52% 79.80%

Ei 97.75% 85.02% 96.77% 96.05% 96.75% 91.87%

WpEn 96.97% 83.27% 97.60% 95.30% 91.40% 88.68%

Method Subject 6 Subject 7 Subject 8 Subject 9 Subject 10 Average

MSpEn 79.80% 75.80% 78.60% 84.50% 73.40% 75.52%

Ei 91.87% 89.07% 94.82% 97.62% 97.57% 94.33%

WpEn 88.68% 91% 94.08% 97.55% 97.39% 93.32%

TABLE 3 | Average results of random forest algorithm with MSpEn, WpEn, and Ei .

Method Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

MSpEn 87.65% 85% 86.25% 85% 91.25% 96.25%

Ei 98.75% 95% 97.5% 93.75% 98.75% 97.5%

WpEn 96.25% 86.25% 93.75% 90% 95% 95%

Method Subject 6 Subject 7 Subject 8 Subject 9 Subject 10 Mean

MSpEn 96.25% 88.75% 86.25% 93.75% 88.75% 88.89%

Ei 97.5% 96.25% 95% 97.5% 97.5% 96.75%

sWpEn 95% 91% 91.25% 93.75% 96.25% 93.38%

FIGURE 4 | Comparison of classification accuracy with three features and decision tree classifier.

Ei and WpEn have a stronger classification ability than the
MSpEn.

This article further analyzes and compares the classification
accuracy of the two classifiers under the same feature extraction
method. The classification results are shown in Figures 6–8.
Figure 6 shows the classification results when using MSpEn
as an input feature vector. The experimental results show
that the improved random forest algorithm shows a stronger
classification ability of 10 subjects, and the classification
accuracy is significantly higher compared to the decision
tree algorithm. Figure 7 shows the classification results when
using Ei as input feature vectors. It can be seen that the

classification accuracy of the decision tree algorithm of only
one subject is higher than that of the improved random
forest algorithm. The classification accuracy of the improved
random forest algorithm of the remaining 9 subjects is
higher than that of the decision tree algorithm. Overall, the
classification accuracy of the improved random forest algorithm
is higher than that of the decision tree algorithm, and the
average classification accuracy is improved by 2.42%. Figure 8
shows the classification results when using WpEn as input
feature vectors. When the WpEn is used as the classification
feature, the classification accuracy fluctuation between different
subjects is more obvious, and the two classification algorithms
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FIGURE 5 | Comparison of classification accuracy with three features and improved fandom forest.

FIGURE 6 | Comparison of classification accuracy of two classifiers based on MSpEn.

FIGURE 7 | Comparison of classification accuracy of two classifiers based on Ei .
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FIGURE 8 | Comparison of classification accuracy of two classifiers based on WpEn.

FIGURE 9 | Comparison of the average classification results with other classifiers.

show different advantages in different subjects. However,
from the perspective of average classification accuracy, the
classification accuracy of the improved random forest algorithm
is slightly higher.

At present, there are few studies and references on
subliminal unconscious emotions. In order to confirm
the effectiveness of the proposed method, this article
compares the classification results of several different
classifier algorithms. The experimental results are shown
in Figure 9.

In summary, combining three features with decision tree
classifier and an improved random forest classifier can realize
the classification of subliminal emotional faces. From the
perspective of feature extraction, Ei and WpEn obtained by
wavelet packet decomposition have obvious advantages for
subliminal emotion face classification, and their ability to classify
emotional faces is significantly stronger than MSpEn. From the

perspective of the classifier, improved random forest is superior
to decision tree.

5. CONCLUSION

This article studies features and classification of subliminal
unconscious emotions based on EEG signals. We use the
subliminal emotional faces as a starting stimulus, in fact, the
subjects cannot recognize the emotional content of the face
pictures. In the absence of clear emotional information, the
human brain can still perform rapid, unconscious processing.
We select three effective features first, and then they are
combined with a decision tree algorithm and improved random
forest algorithms to classify the unconscious emotions triggered
by a subliminal stimulus. The experimental results show that
classification accuracy of wavelet packet decomposition features
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(Ei and WpEn) with two classifiers is significantly higher than
MSpEn, which shows that wavelet packet decomposition can
better characterize the EEG signals triggered by subliminal
emotional face stimuli.From the perspective of psychology, we
explore the neural mechanisms of brain activity under subliminal
face stimulation (Zheng et al., 2021c). Psychological researches
show that the presentation of face stimuli at a subliminal time
can trigger an emotional priming effect, that is, the initiation
of unconscious emotions. Researchers have conducted a lot
of experimental investigations on this issue and explored the
physiological proof of subliminal emotional priming effects.
Some works have shown that the thalamus, hippocampus,
amygdala, and their functional connections play an important
role in the processing of subliminal emotional faces (Eickhoff
et al., 2009). In unconscious situation, humans may have a
faster way for processing of emotional faces (especially fearful
faces). This way bypasses the primary visual cortex involved in
conscious processing, along with the uppermound, the thalamus,
and conveys to the amygdala, and then projects to other advanced
cortical areas associated with emotional processing (Zhu et al.,
2013). Dolan (2002) found that human emotional processing
can occur when the subject is unconscious of the process. Smith
(2011) work shows that multiple types of emotional faces as
fearful faces can be processed at an unconscious level in an
early stage.

DATA AVAILABILITY STATEMENT

The data analyzed in this study is subject to the following
licenses/restrictions: The data were collected from college
students in our university, while they are not be standardized
and opened at present. Requests to access these datasets should
be directed to Xiaomei Yu, yxm0708@126.com.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Shandong Normal University Ethics Committee.
The participants provided written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

XZ designed the project. YS wrote the code. MZ drafted this
article. XYa analyzed the data. TL helped analyze the data. XYu
revised this article. All authors read and approved this article.

FUNDING

This work was supported by the Shandong Provincial Project of
Graduate Education Quality Improvement (Nos. SDYJG21104,
SDYJG19171, and SDYY18058), the OMO Course Group
Advanced Computer Networks of Shandong Normal University,
the Teaching Team Project of Shandong Normal University,
Teaching Research Project of Shandong Normal University
(2018Z29), Provincial Research Project of Education and
Teaching (No. 2020JXY012), and the Natural Science Foundation
of Shandong Province (Nos. ZR2020LZH008, ZR2021MF118,
and ZR2019MF071). The content of this manuscript has been
presented in part at the 2018 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM) (Shi et al., 2018).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpsyg.
2022.781448/full#supplementary-material

REFERENCES

Aydın, S. (2019). Deep learning classification of neuro-emotional phase domain

complexity levels induced by affective video film clips. IEEE J. Biomed. Health

Inf. 24, 1695–1702. doi: 10.1109/JBHI.2019.2959843

Bai, D., Qiu, T., and Li, X. (2007). The sample entropy and its application

in eeg based epilepsy detection. J. Biomed. Eng. 24, 200–205.

doi: 10.3321/j.issn:1001-5515.2007.01.043

Bajaj, V., and Pachori, R. B. (2014). “Human emotion classification from eeg

signals using multiwavelet transform,” in International Conference on Medical

Biometrics (Shenzhen).

Bhatti, A. M., Majid, M., Anwar, S. M., and Khan, B. (2016). Human

emotion recognition and analysis in response to audio music using

brain signals. Comput. Hum. Behav. 65, 267–275. doi: 10.1016/j.chb.2016.

08.029

Bo, S. (2017). “Research on the classification of high dimensional imbalanced data

based on the optimizational random forest algorithm,” in International

Conference on Measuring Technology & Mechatronics Automation

(New York, NY).

Bota, P. J., Wang, C., Fred, A., and Silva, H. P. (2019). A review,

current challenges, and future possibilities on emotion recognition using

machine learning and physiological signals. IEEE Access 7, 140990–141020.

doi: 10.1109/ACCESS.2019.2944001

Colic, S., Wither, R. G., Lang, M., Liang, Z., and Bardakjian, B. L. (2015). “Support

vector machines using eeg features of cross-frequency coupling can predict

treatment outcome in mecp2-deficient mice,” in Engineering in Medicine &

Biology Society (Milan).

Deng, W., Miao, D., and Xie, C. (2011). Best basis-based wavelet packet entropy

feature extraction and hierarchical eeg classification for epileptic detection. Exp.

Syst. Appl. 38, 14314–14320. doi: 10.1016/j.eswa.2011.05.096

Dolan, R. J. (2002). Emotion, cognition, and behavior. Science 298, 1191–1194.

doi: 10.1126/science.1076358

Duan, R. N., Zhu, J. Y., and Lu, B. L. (2013). “Differential entropy feature

for eeg-based emotion classification,” in Neural Engineering (NER), 2013 6th

International IEEE/EMBS Conference on (San Diego, CA).

Eickhoff, S. B., Laird, A. R., Grefkes, C.,Wang, L. E., Zilles, K., and Fox, P. T. (2009).

Coordinate-based ale meta-analysis of neuroimaging data: a random-effects

approach based on empirical estimates of spatial uncertainty.Hum. Brain Map.

30, 2907–2926. doi: 10.1002/hbm.20718

Gu, X., Cao, Z., Jolfaei, A., Xu, P., Wu, D., Jung, T.-P., et al.

(2021). Eeg-based brain-computer interfaces (bcis): a survey of

recent studies on signal sensing technologies and computational

intelligence approaches and their applications. IEEE/ACM Trans.

Comput. Biol. Bioinformat. 18, 1645–1666. doi: 10.1109/TCBB.2021.305

2811

Hosseini, S. A., and Naghibi-Sistani, M. B. (2011). Emotion recognition method

using entropy analysis of eeg signals. Int. J. Image Graph. Signal Process. 3,

30–36. doi: 10.5815/ijigsp.2011.05.05

Jatupaiboon, N., Panngum, S., and Israsena, P. (2013). “Emotion classification

using minimal EEG channels and frequency bands,” in The 2013 10th

Frontiers in Psychology | www.frontiersin.org 10 March 2022 | Volume 13 | Article 781448148

mailto:yxm0708@126.com
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.781448/full#supplementary-material
https://doi.org/10.1109/JBHI.2019.2959843
https://doi.org/10.3321/j.issn:1001-5515.2007.01.043
https://doi.org/10.1016/j.chb.2016.08.029
https://doi.org/10.1109/ACCESS.2019.2944001
https://doi.org/10.1016/j.eswa.2011.05.096
https://doi.org/10.1126/science.1076358
https://doi.org/10.1002/hbm.20718
https://doi.org/10.1109/TCBB.2021.3052811
https://doi.org/10.5815/ijigsp.2011.05.05
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Shi et al. Subliminal Emotion Classification

International Joint Conference on Computer Science and Software Engineering

(JCSSE) (Khon Kaen).

Jiang, C., and Zhou, X. (2004). Emotional automatic processing

and control processing. Adv. Psychol. Sci. 12, 688–692.

doi: 10.3969/j.issn.1671-3710.2004.05.007

Kim, J., and Andr, E. (2008). Emotion recognition based on physiological changes

in music listening. IEEE Trans. Pattern Anal. Mach. Intell. 30, 2067–2083.

doi: 10.1109/TPAMI.2008.26

Kim, K. H., Bang, S. W., and Kim, S. R. (2004). Emotion recognition system using

short-term monitoring of physiological signals. Med. Biol. Eng. Comput. 42,

419–427. doi: 10.1007/BF02344719

Klauer, K. C., and Musch, J. (2003). “Affective priming: Findings and theories,”

in The Psychology of Evaluation: Affective Processes in Cognition and Emotion

(New Jersey, NJ: Lawrence Erlbaum), 7–50.

Li, T., and Lv, Y. (2014). The subliminal affective priming effects of faces

displaying various levels of arousal: an erp study. Neurosci. Lett. 583, 148–153.

doi: 10.1016/j.neulet.2014.09.027

Michalopoulos, K., and Bourbakis, N. (2017). “Application of multiscale entropy

on eeg signals for emotion detection,” in IEEE Embs International Conference

on Biomedical & Health Informatics (Orlando, FL), 341–344.

Murugappan, M., Rizon, M., Nagarajan, R., Yaacob, S., and Zunaidi, I. (2008).

“Time-frequency analysis of EEG signals for human emotion detection,” in

4th Kuala Lumpur International Conference on Biomedical Engineering (Kuala

Lumpur).

Paul, A., Mukherjee, D. P., Das, P., Gangopadhyay, A., Chintha, A. R., and Kundu,

S. (2018). “Improved random forest for classification,” in IEEE Transactions on

Image Processing (IEEE), 4012–4024.

Sen, B., Peker, M., Cavusoglu, A., and Celebi, F. V. (2014). A comparative study

on classification of sleep stage based on eeg signals using feature selection and

classification algorithms. J. Med. Syst. 38, 18. doi: 10.1007/s10916-014-0018-0

Shi, Y., Zheng, X., and Li, T. (2018). “Unconscious emotion recognition based

on multi-scale sample entropy,” in 2018 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM) (Madrid: IEEE), 1221–1226.

Smith, M. L. (2011). Rapid processing of emotional expressions without conscious

awareness. Cereb. Cortex 22, 1748–1760. doi: 10.1093/cercor/bhr250

Verma, G. K., and Tiwary, U. S. (2014). Multimodal fusion

framework: a multiresolution approach for emotion classification and

recognition from physiological signals. Neuroimage 102, 162–172.

doi: 10.1016/j.neuroimage.2013.11.007

Vijith, V. S., Jacob, J. E., Iype, T., Gopakumar, K., and Yohannan, D. G. (2017).

“Epileptic seizure detection using non linear analysis of eeg,” in International

Conference on Inventive Computation Technologies (Coimbatore).

Wataru, S., Yasutaka, K., and Motomi, T. (2014). Enhanced subliminal

emotional responses to dynamic facial expressions. Front. Psychol. 5, 994.

doi: 10.3389/fpsyg.2014.00994

Xin, L., Xie, J., Hou, Y., and Wang, J. (2015). An improved multiscale

entropy algorithm and its performance analysis in extraction of emotion

eeg features. Chin. High Technol. Lett. 7, 436–439. doi: 10.1166/jmihi.2017.

2031

Xu, Q., He, W., Ye, C., and Luo, W. (2019). Attentional bias processing

mechanism of emotional faces: anger and happiness superiority

effects. Acta Physiologica Sinica 71, 86–94. doi: 10.13294/j.aps.2018.

0098

Yang, H., and XU, J. (2017). Android malware detection based on improved

random forest. J. Commun. 38, 8–16. doi: 10.11959/j.issn.1000-436x.

2017073

Yin, Y., Zheng, X., Hu, B., Zhang, Y., and Cui, X. (2021). Eeg emotion recognition

using fusion model of graph convolutional neural networks and lstm.Appl. Soft

Comput. 100, 106954. doi: 10.1016/j.asoc.2020.106954

Zheng, X., Liu, X., Zhang, Y., Cui, L., and Yu, X. (2021a). A portable hci system-

oriented eeg feature extraction and channel selection for emotion recognition.

Int. J. Intell. Syst. 36, 152176. doi: 10.1002/int.22295

Zheng, X., Yu, X., Yin, Y., Li, T., and Yan, X. (2021b). Three-dimensional feature

maps and convolutional neural network-basedemotion recognition. Int. J.

Intell. Syst. 36, 6312–6336. doi: 10.1002/int.22551

Zheng, X., Zhang, M., Li, T., Ji, C., and Hu, B. (2021c). A novel consciousness

emotion recognition method using erp components and mmse. J. Neural Eng.

18, 046001. doi: 10.1088/1741-2552/abea62

Zhu, X. L., Xiao, L., and Wen, P. (2013). Subliminal emotional face

and its brain mechanism. Nat. Defense Sci. Technol. 34, 16–20.

doi: 10.3969/j.issn.1671-4547.2013.04.004

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Shi, Zheng, Zhang, Yan, Li and Yu. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Psychology | www.frontiersin.org 11 March 2022 | Volume 13 | Article 781448149

https://doi.org/10.3969/j.issn.1671-3710.2004.05.007
https://doi.org/10.1109/TPAMI.2008.26
https://doi.org/10.1007/BF02344719
https://doi.org/10.1016/j.neulet.2014.09.027
https://doi.org/10.1007/s10916-014-0018-0
https://doi.org/10.1093/cercor/bhr250
https://doi.org/10.1016/j.neuroimage.2013.11.007
https://doi.org/10.3389/fpsyg.2014.00994
https://doi.org/10.1166/jmihi.2017.2031
https://doi.org/10.13294/j.aps.2018.0098
https://doi.org/10.11959/j.issn.1000-436x.2017073
https://doi.org/10.1016/j.asoc.2020.106954
https://doi.org/10.1002/int.22295
https://doi.org/10.1002/int.22551
https://doi.org/10.1088/1741-2552/abea62
https://doi.org/10.3969/j.issn.1671-4547.2013.04.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Investigates embodied autonomous neural 

systems and their impact on our livesPart of 

the most cited neuroscience series, this journal 

advances understanding of neurorobotics - from 

prosthetic devices to brain machine interfaces, 

and wearable systems to home appliances.

Discover the latest 
Research Topics

See more 

Frontiers in
Neurorobotics

https://www.frontiersin.org/journals/Neurorobotics/research-topics
https://www.frontiersin.org/journals/Neurorobotics/research-topics

	Cover
	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Bridging the Gap between Machine Learning and Affective Computing
	Table of contents
	A Novel sEMG-Based Gait Phase-Kinematics-Coupled Predictor and Its Interaction With Exoskeletons
	Introduction
	Related Works
	Phase Recognition and Dimension Reduction
	Continuous Decoding of Joint Kinematics
	Effects of Exoskeletons on Muscle Functions

	Materials and Methods
	Data Acquisition and Experimental Protocol
	Ankle Exoskeleton Frame 
	Muscle Subset Selection
	Data Processing
	Phase Classifier and Angle Predictor
	Evaluation Metrics

	Results
	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Multi-Head Attention-Based Long Short-Term Memory for Depression Detection From Speech
	1. Introduction
	2. Related Work
	2.1. Deep Learning Models
	2.2. Attention Mechanism

	3. Acoustic Features Analysis
	4. Multi-Head Attention-Based LSTM
	4.1. LSTM Model
	4.2. Multi-Head Attention

	5. Experiment and Results
	5.1. Datasets
	5.2. Multi-Head Time-Dimension LSTM

	6. Discussion
	7. conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	TFE: A Transformer Architecture for Occlusion Aware Facial Expression Recognition
	1. Introduction
	2. Related Work
	2.1. Methods for FEE Under Occlusion
	2.2. Vision Transformer

	3. Method
	3.1. Network Architecture
	3.2. Vision Transformer With RS-Unit
	3.3. Image Reconstruction
	3.4. Overall Objective

	4. Experiment
	4.1. Implementation Details
	4.1.1. Datasets
	4.1.2. Evaluation Metric

	4.2. FER Experimental Results
	4.2.1. Ablation Study


	5. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References

	Deep Cross-Corpus Speech Emotion Recognition: Recent Advances and Perspectives
	Introduction
	Speech Emotion Databases
	DES
	SUSAS
	SmartKom
	FAU-AIBO
	EMO-DB
	MASC
	eNTERFACE05
	SAL
	ABC
	VAM
	CASIA
	IEMOCAP
	AVIC
	Polish
	IITKGP-SEHSC
	EMOVO
	SAVEE
	AFEW
	BAUM-1
	MSP-IMPROV
	CHEAVD
	NNIME
	URDU
	RAVDESS
	MSP-PODCAST

	review of Supervised, Unsupervised, and Semi-Supervised Learning
	Supervised Learning
	Unsupervised Learning
	Semi-supervised Learning

	Traditional Methods for Cross-Corpus Ser
	Supervised Learning for Traditional Methods
	Unsupervised Learning for Traditional Methods
	Semi-supervised Learning for Traditional Methods

	Deep Learning Methods for Cross-Corpus Ser
	Supervised Learning for Deep Learning Methods
	Unsupervised Learning for Deep Learning Methods
	Semi-supervised Learning for Deep Learning Methods

	Open Challenges
	Conclusions
	Author Contributions
	Funding
	References

	Micro-Expression Recognition Based on Pixel Residual Sum and Cropped Gaussian Pyramid
	1. Introduction
	2. Related Work
	2.1. Handcrafted Features
	2.1.1. Appearance-Based Features
	2.1.2. Geometric-Based Features

	2.2. Deep Neural Networks

	3. Method
	3.1. Preprocessing
	3.1.1. Absolute Residual Sum
	3.1.1.1. Select Video Clip
	3.1.1.2. Detect Feature Point
	3.1.1.3. Cropping
	3.1.1.4. Select Five Frames
	3.1.1.5. Generate Redisual Sum Image

	3.1.2. Relative Residual Sum

	3.2. Framework
	3.2.1. Image Augmentation
	3.2.2. Cropped Gaussian Pyramid With Overlapping
	3.2.3. Feature Extraction
	3.2.4. Feature Fusion and Classifier


	4. Experiment
	4.1. Datasets
	4.2. Experiment Settings
	4.3. Experiment With Five Classes of ME in the CASME ii
	4.4. Composite Datasets Evaluation (CDE)
	4.5. Ablation Experiments
	4.6. Visualization Experiments

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Singular Learning of Deep Multilayer Perceptrons for EEG-Based Emotion Recognition
	1 Introduction
	2 Related Work
	3 Theoretical Analysis of Singular Learning Dynamics of Deep Multilayer Perceptrons
	3.1 Learning Paradigm of Deep Multilayer Perceptrons
	3.2 Singularities of Deep Multilayer Perceptrons in Electroencephalograph-Based Emotion Recognition

	4 Numerical Analysis of Learning Dynamics Near Singularities
	4.1 Data Preprocessing
	4.2 Learning Trajectories Near Singularities

	5 Conclusion and Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References

	Spontaneous Facial Expressions and Micro-expressions Coding: From Brain to Face
	1. Introduction
	2. Action Units and Emotions
	2.1. The Data-Driven Relationship Between AU and Emotion
	2.2. The Experience-Driven Relationship Between AU and Emotion

	3. Complex Cortical Networks of Facial Movement
	3.1. Facial Nucleus Controls Facial Movements
	3.2. Cortical Systems Controls Facial Movement
	3.2.1. The Somatic Motor System
	3.2.2. The Emotional Motor Systems


	4. The Specificity of the Relationship Between Facial Muscle and Emotions
	4.1. The Muscle That Classifies Positive and Negative Emotions
	4.2. Further Specific Classification of the Muscles of Negative Emotions
	4.2.1. Muscle Group Specific for Sadness
	4.2.2. Muscle Group Specific for Fear

	4.3. Distinguish the Special Muscle of Surprise

	5. Emotion Label
	5.1. AU Label
	5.2. Elicitation Material
	5.3. Subject's Self-Report of This Video
	5.4. Reliability of Label

	6. Detection and Recognition of AU
	7. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Progressive Multi-Scale Vision Transformer for Facial Action Unit Detection
	1. Introduction
	2. Related Work
	2.1. Methods for Facial AU Detection
	2.2. Vision Transformer

	3. Method
	3.1. Revisiting Vision Transformer
	3.2. Progressive Multi-Scale Transformer
	3.3. Training Objective

	4. Experiment
	4.1. Implementation Details
	4.1.1. Datasets
	4.1.2. Evaluation Metric

	4.2. Experimental Results
	4.2.1. Ablation Study


	5. Conclusions
	Data Availability Statement
	Author Contributions
	References

	Evaluating the Impact of Voice Activity Detection on Speech Emotion Recognition for Autistic Children
	1. Introduction
	2. Dataset
	2.1. Speaker Diarisation Annotation
	2.2. Emotion Annotation

	3. Methodology
	3.1. Voice Activity Detection
	3.2. Speech Emotion Recognition

	4. Experiments
	4.1. Voice Activity Detection
	4.2. Speech Emotion Recognition

	5. Discussion
	6. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References

	Linking Multi-Layer Dynamical GCN With Style-Based Recalibration CNN for EEG-Based Emotion Recognition
	Introduction
	Methods
	Model Framework
	Graph Construction Block
	Graph Convolutional Block
	SRM-Based Convolutional Block
	Classification Block

	Details of the MDGCN-SRCNN Model

	Experimental Settings
	Datasets
	SEED
	SEED-IV

	Model Settings

	Results and Analysis
	Overall Performance
	Performance on SEED
	Performance on SEED-IV

	Visualization of Results
	Study of Brain Connection
	Ablation Results

	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

	Unsupervised Facial Action Representation Learning by Temporal Prediction
	1. Introduction
	2. Related Work
	3. Method
	3.1. Temporal Predictive Coding
	3.2. Temporal Contrastive Learning
	3.3. Overall Training Objective of TPC

	4. Experiment
	4.1. Implementation Details
	4.1.1. Datasets and Evaluation Metric

	4.2. Experimental Results
	4.2.1. Ablation Study


	5. Conclusion
	Data Availability Statement
	Author Contributions
	References

	An Estimation of Online Video User Engagement From Features of Time- and Value-Continuous, Dimensional Emotions
	1. Introduction
	2. Background
	2.1. Concepts of Emotion and Trustworthiness
	2.2. Sentiment Analysis of YouTube Comments
	2.3. Analysis of YouTube Engagement Data and Cross-Modal Studies

	3. Data
	3.1. Video, Meta- and Engagement Data
	3.2. Emotion and Trustworthiness Signals
	3.3. Video Comments

	4. Experimental Methodology
	4.1. Feature Extraction From Signals
	4.2. Sentiment Extraction From Comments
	4.3. Correlation Measure and Significance
	4.4. Feature Selection
	4.5. SVR Training Procedure

	5. Results and Discussion
	5.1. Relationship Between Features and User Engagement
	5.2. Predicting User Engagement From Features of Emotion and Trustworthiness Signals
	5.3. General Discussion

	6. Limitations and Future Work
	7. Conclusion
	Data Availability Statement
	Author Contributions
	Supplementary Material
	References

	A Study of Subliminal Emotion Classification Based on Entropy Features
	1. Introduction
	2. Related Work
	3. EEG Data Acquisition and Analysis Methods
	3.1. Method
	3.1.1. Feature Extraction
	3.1.1.1. Wavelet Packet Energy
	3.1.1.2. Wavelet Packet Entropy

	3.1.2. Classification Algorithm
	3.1.2.1. Decision Tree Algorithm
	3.1.2.2. Improved Random Forest Algorithm



	4. Results
	5. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Back cover



