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Editorial on the Research Topic

Many-Body Green’s Functions and the Bethe-Salpeter Equation in Chemistry: From Single
Molecules to Complex Systems

The utility of many-body Green’s function methods for computing excitation energies and spectra of
correlated systems continues to impress. While applications and implementations of the GW
approach were initially developed in the solid-state physics community, the method and its
combination with the Bethe-Salpeter Equation (BSE) has more recently taken a foothold among
quantum chemists. Across disciplines, the field continues to grow and it currently carries great
momentum: it is therefore timely to collect articles showcasing the latest triumphs and outstanding
shortcomings of this family of methods.

The contributions to this Research Topic range from theory and method development to
applications of Green’s function-based methods. Applications of GW to organic crystals and
FeS2 are motivated by the importance of an atomistic understanding of excited states for
technological applications such as photovoltaics. Contributions that highlight the predictive
power of the GW approach and present low-scaling implementations showcase the potential of
the theory for applications to complex heterogeneous materials. Additionally, method and theory
development for GW, BSE, and non-GW calculations of the single-particle Green’s function form
important parts of this collection of articles.

In The GW/BSE Method in Magnetic Fields, Holzer et al. benchmark their new GW/BSE
implementation in external magnetic fields. External fields pose a challenge to electronic
structure theory because they require complex orbitals to ensure gauge-invariant results,
raising the computational expense. Furthermore, kernels of time-dependent density functional
theory can be unstable in the presence of the perturbing field. GW/BSE presents a solution to the
latter problem, and the authors implement the theory with complex London orbitals to circumvent
gauge dependence.

The fundamental band gaps of two phases of FeS2 remain somewhat undetermined: theoretical
calculations are scattered and experiments only reliably measure the optical band gap. In Accurate
Prediction of Band Structure of FeS2: A Hard Quest of Advanced First-Principles Approaches, Zhang
and Jiang set out to resolve the theoretical discrepancy by performing GW calculations on both
phases with the most complete basis to date: a linearized augmented plane wave basis (LAPW)
supplemented with high-energy local orbitals (HLOs). The authors find that very high momentum
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HLOs are necessary to converge the sum over unoccupied states
in GW and attribute inconsistencies in previous theoretical work
to underconvergence.

Molecular crystals are a modern success of GW. Their high
tunability through packing and choice of substrate render them
an interesting playing field for computational exploration. The
GW approach affords an excellent description of the important
effect of substrate screening. In Exciton Modulation in Perylene-
Based Molecular Crystals Upon Formation of a Metal-Organic
Interface From Many-Body Perturbation Theory, Shunak et al.
explore the change in quasiparticle and excitonic properties of
octyl perylene diimide (C8-PDI) adsorbed on gold. They find that
exciton binding energies are unchanged due to the local character
of screening between electron and hole but that fundamental
band gaps are dependent on layer number, stacking, and
substrate.

Most low-scaling GW algorithms are restricted to diagonal
G0W0. In Low-Order Scaling Quasiparticle Self-Consistent GW for
Molecules, Förster and Visscher present their low-scaling
implementation of quasiparticle self-consistent GW (qsGW)
based on the space-time method. They validate their
implementation against other results and then include a
polarizable continuum model to study DNA oligomers.

The cumulant approximation makes an exponential ansatz to
the Green’s functionGc(t) � G0

c(t)eC(t), and is known to produce
satellite and shake-up features of the spectral function better than
Dyson-equation-based calculations. Equation-of-Motion
Coupled-Cluster Cumulant Green’s Function for Excited States
and X-Ray Spectra by Vila et al. presents a real-time formulation
for computing X-ray spectra that draws on connections between
coupled-cluster and cumulant approaches. Core ionization
energies from the improved EOM-CC method are presented
for CH4, NH3, H2O, HF, and Ne, and a full X-ray absorption
spectrum is presented for NH3.

The Hubbard model remains a valuable test bed for theoretical
physics since it permits both analytic and numerically exact
solutions in certain cases. Scrutinizing GW-Based Methods
Using the Hubbard Dimer by Di Sabatino et al. finds that
different starting points for constructing G0 and W0 lead to
the existence of multiple quasiparticle solutions, loss of
particle number, or discontinuities in physical quantitites as a
function of interaction strength. Fully self-consistent GW
removes these artifacts but does not necessarily improve the
accuracy of the results.

The GW Miracle in Many-Body Perturbation Theory for the
Ionization Potential of Molecules systematically tests ionization
potentials for the GW100 test set computed with G0W0 against a
series of alternative many-body theories. Bruneval et al. find that,
while more accurate theories may exist, they come at much
greater expense; the cost-accuracy balance of G0W0 is

unbeatable. They also note that the most substantial
improvement to G0W0 comes not by incorporating additional
diagrams but from an improved mean-field starting point.

Calculations of optical spectra in solids with the Bethe-
Salpeter equation require an enormously dense k-point grid
due to the extended character of excitons in real space. This
remains a bottleneck in applying the method to solids. Double
k-Grid Method for Solving the Bethe-Salpeter Equation via
Lanczos Approaches by Alliati et al. presents an efficient
interpolation scheme to ameliorate this problem. It computes
the optical absorption on a fine k-grid, on which each diagonal
block of the Hamiltonian is taken from the calculation of the
kernel on a coarse k-grid. The scheme reproduces optical spectra
of Si, GaAs, and MoS2 with good accuracy.

In Photoemission Spectra from the Extended Koopman’s
Theorem, Revisited, Di Sabatino et al. show that their recent
work developing many-body effective energy theory (MEET) is
more closely related to the well-known Extended Koopman’s
Theorem (EKT) than previously appreciated. The lowest level
of approximation to MEET is equivalent to the diagonal
approximation of the EKT. The authors explore the
asymmetric Hubbard dimer and find that the MEET
energies depend on the choice of basis, corroborating
previous work.

The continued development of theory and algorithms,
progression of computational power, and importance of
excited state spectra ensure that many-body Green’s
functions will play a role in fundamental science for the
forseeable future.
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Low-Order Scaling Quasiparticle
Self-Consistent GW for Molecules
Arno Förster* and Lucas Visscher

Theoretical Chemistry, Vrije Universiteit, Amsterdam, Netherlands

Low-order scaling GW implementations for molecules are usually restricted to
approximations with diagonal self-energy. Here, we present an all-electron
implementation of quasiparticle self-consistent GW for molecular systems. We use an
efficient algorithm for the evaluation of the self-energy in imaginary time, fromwhich a static
non-local exchange-correlation potential is calculated via analytical continuation. By using
a direct inversion of iterative subspacemethod, fast and stable convergence is achieved for
almost all molecules in the GW100 database. Exceptions are systems which are
associated with a breakdown of the single quasiparticle picture in the valence region.
The implementation is proven to be starting point independent and good agreement of QP
energies with other codes is observed.We demonstrate the computational efficiency of the
new implementation by calculating the quasiparticle spectrum of a DNA oligomer with
1,220 electrons using a basis of 6,300 atomic orbitals in less than 4 days on a single
compute node with 16 cores. We use then our implementation to study the dependence of
quasiparticle energies of DNA oligomers consisting of adenine-thymine pairs on the
oligomer size. The first ionization potential in vacuum decreases by nearly 1 electron
volt and the electron affinity increases by 0.4 eV going from the smallest to the largest
considered oligomer. This shows that the DNA environment stabilizes the hole/electron
resulting from photoexcitation/photoattachment. Upon inclusion of the aqueous
environment via a polarizable continuum model, the differences between the ionization
potentials reduce to 130 meV, demonstrating that the solvent effectively compensates for
the stabilizing effect of the DNA environment. The electron affinities of the different
oligomers are almost identical in the aqueous environment.

Keywords: GW approximation, convergence acceleration, analytical continuation, quasiparticle, quasiparticle self-
consistent GW, DNA photodamage, theoretical spectroscopy

1 INTRODUCTION

The GW approximation (GWA) to Hedin’s equations (Hedin, 1965) is a popular approach to
calculate charged excitations in molecular systems. Recent applications include the calculation of
band gaps and elucidation of charge-transfer in organic donor-acceptor compounds (Blase and
Attaccalite, 2011; Blase et al., 2011; Caruso et al., 2014), applications to dye-sensitized solar cells
(Marom et al., 2011; Faber et al., 2012; Umari et al., 2013; Marom et al., 2014; Mowbray and Migani,
2015), electronic level alignment in photocatalytic interfaces (Migani et al., 2013, 2014), core-
ionization spectra of medium sized molecules (Van Setten et al., 2018; Golze et al., 2018, 2020) or
photo-electron spectra of transition metal oxides (Berardo et al., 2017; Hung et al., 2017; Shi et al.,
2018; Rezaei and Ögüt, 2021). Combined with the Bethe-Salpeter equation (BSE) formalism (Salpeter
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and Bethe, 1951; Strinati, 1988) the GWA has been used to
calculate optical spectra of Cyanins (Boulanger et al., 2014), the
Bacteriochlorin molecule (Duchemin et al., 2012) or
Bacteriochlorophylls and Chlorophylls (Hashemi and Leppert,
2021). At the same time, the GWA has been implemented into an
increasing number of molecular electronic structure codes (Ke,
2011; Caruso et al., 2012; Caruso et al., 2013; Ren et al., 2012; Van
Setten et al., 2013; Kaplan et al., 2015, 2016; Bruneval et al., 2016;
Wilhelm et al., 2016; Tirimbò et al., 2020b). Traditionally, these
implementations use localized basis functions and the resolution-
of the identity or density fitting approximation (Baerends et al.,
1973; Whitten, 1973; Dunlap et al., 1979) within the global
Coulomb metric (RI-V) (Vahtras et al., 1993), leading to a
scaling of N4 with system size. Systems of around 100 atoms
are within reach on standard hardware (Knight et al., 2016), while
highly parallel implementations enable applications to systems
with more than 300 atoms on modern supercomputers (Wilhelm
et al., 2016; Wilhelm et al., 2018; Wilhelm et al., 2021).

Over the last years, many algorithms with reduced asymptotic
scaling with system size have been proposed. These are usually
based on the space-time approach by Godby and coworkers (H.
N. Rojas et al., 1995; Rieger et al., 1999). The original space-time
method is based on the observation that it is much simpler to
solve the Dyson equations in the GWA in reciprocal space and
imaginary frequency while the kernels of these Dyson equations
are most easily evaluated in real space and imaginary time,
reducing the asymptotic scaling of the GWA to N3. Building
on earlier work by Almlöf (Almlöf et al., 1982), Kresse, Kaltak and
coworkers could significantly reduce the prefactor of these
calculations by using non-uniform spaced grids in imaginary
time and imaginary frequency and an efficient way to switch
between both domains (Kaltak et al., 2014a; Kaltak et al., 2014b;
Kaltak and Kresse, 2020). Over the last years, there has been a
surge of new GW implementations based on the space-time
method for periodic (Kutepov et al., 2012; Chu et al., 2016;
Liu et al., 2016; Kutepov et al., 2017; Grumet et al., 2018;
Kutepov, 2020; Singh and Wang, 2020; Foerster and
Gueddida, 2021) and finite (Wilhelm et al., 2018; Koval et al.,
2019; Förster and Visscher, 2020; Duchemin and Blase, 2021;
Wilhelm et al., 2021) systems. Other recent examples of low-
order scaling implementations include the spectral function
based approach by Foerster et al. (2011), the time-shredded
propagator formalism by Ismail-Beigi and coworkers (Kim
et al., 2020), stochastic GW developed by Neuhauser et al.
(2014), Vlček et al. (2017), Vlček et al. (2018), Weng and
Vlcek (2021), and also a fragment molecular orbital based
implementation (Fujita et al., 2019).

For molecular systems, diagonal approximations to the self-
energy are commonly made. They rely on the assumption that the
wave function of generalized Kohn-Sham (KS) density functional
theory (DFT) is similar to the GW wave function. One then
evaluates corrections to the DFT single orbital energies by
calculating the diagonal elements of the self-energy matrix Σ.
The most economical way to calculate these corrections is the
one-shot G0W0 approach which heavily depends on the mean-
field starting point. Extensive benchmarks (Marom et al., 2012;
Bruneval and Marques, 2013; Caruso et al., 2016; Knight et al.,

2016) have provided substantial evidence that hybrid functionals
with a rather large amount of exact exchange or long-range
corrected hybrids are usually a suitable starting point. In
addition, non-empirical procedures to select an optimal
starting point for a given system have been proposed
(Gallandi and Körzdörfer, 2015; Dauth et al., 2016; Bois and
Körzdörfer, 2017). Finally, in eigenvalue-only self-consistent GW
(evGW) the QP energies are updated until they are stationary,
removing the starting point dependence to a large extent.

QP energies calculated following these strategies are almost
always more accurate than fully self-consistent GW (scGW)
calculations for molecules. As discussed by Kotani, van
Schilfgaarde and Valeev, QP approximations, i.e.
approximations in which satellites are neglected, emphasize
the importance of the Ward identity (Ward, 1950) in the
long-range and low-frequency limit. The Ward identity
demands ’Z-factor cancellation’ (Kotani et al., 2007) between
the three-point Vertex and the renormalized electron propagator.
Z is the QP renormalization factor. In QP approximations,
neither the vertex is included nor is the propagator
renormalized, and the effect of both approximations cancel in
the above-mentioned limit. This limit can be expected to be of
particular importance for weakly correlated molecules to which
the GWA is frequently applied.

As opposed to diagonal approximations, scGW is strictly
starting point independent and also allows to calculate 1-
particle reduced density matrices (1RDM) including electron
correlation effects from first principles. Most importantly, it
does not contain any adjustable parameters. Another method
which also offers these advantages is the QP self-consistent GW
(qsGW) method by Kotani, van Schilfgaarde and Faleev. (Van
Schilfgaarde et al., 2006; Kotani et al., 2007). qsGW can be seen as
a non-empirical procedure to find an optimal starting point for a
G0W0 calculation. This is accomplished by mapping the GW self-
energy self-consistently to a non-local, Hermitian, and static
exchange-correlation potential. This potential has been shown
to be optimal in a variational sense (Ismail-Beigi, 2017).
Diagonalization of the resulting mean-field Hamiltonian yields
eigenvectors and eigenvalues from which a new non-interacting
Green’s function is obtained. This self consistent field (SCF)
procedure is reminiscent of generalized KS theory, with the
notable difference that the exchange-correlation potential is
not a functional of the 1RDM but rather of the non-
interacting single-particle Green’s function. qsGW is starting
point independent and fulfills the Ward identity in the low
frequency and long range limit.

In canonical implementations (Ke, 2011; Bruneval, 2012;
Koval et al., 2014; Kaplan et al., 2015; Kaplan et al., 2016), the
need to calculate the off-diagonal elements of the self-energy
matrix and the fact that it is typically more difficult to converge
make qsGW typically an order of magnitude more expensive than
evGW (Gui et al., 2018) which in turn is typically 5–10 times more
expensive than G0W0 due to the requirement of self-consistency.
Moreover, low-order scaling implementations for molecules are
typically restricted to diagonal approximations only (Wilhelm
et al., 2018; Förster and Visscher, 2020; Duchemin and Blase,
2021; Wilhelm et al., 2021) To fill this gap, we extend the recently
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developed low-order scaling diagonal GW implementation in
ADF (Baerends et al., 2020; Förster and Visscher, 2020, Förster
and Visscher, 2021) to qsGW. We evaluate the qsGW self-energy
as a direct product in imaginary time, in the same way as in the
diagonal approximation. Even though the qsGW self-energy is
static, for larger systems evaluation of the self-energy at an array
of imaginary time points is more efficient than its evaluation at a
single real frequency point. The procedure is similar to the
linearized qsGW method by Kutepov and coworkers (Kutepov
et al., 2017) which is also based on the imaginary time formalism
and in which the self-energy is averaged over all frequencies.
However, in our implementation, we only average over
frequencies for the off-diagonal elements but retain the
optimum exchange-correlation potential on the diagonal. We
achieve stable and rapid convergence of the SCF procedure by a
suitable implementation of the direct inversion in the iterative
subspace (DIIS) Pulay (1980) approach. Most importantly, the
proposed algorithm is easy to implement and only requires to
combine the qsGW approach with the space-time
implementation for the self-energy and an efficient method to
evaluate the exact exchange-contribution to the Fock matrix.

This work is organized as follows: In section 2 we first
recapitulate the qsGW procedure and describe some aspects of
our implementation. We focus on the implementation of the DIIS
and on the analytical continuation (AC) of the self-energy. In
section 3, we confirm the correctness of our implementation by
comparison to ionization potentials (IP) (Kaplan et al., 2016)
from TURBOMOLE (Balasubramani et al., 2020) and investigate
the convergence of the SCF equations. We also illustrate the
computational performance of our implementation with a proof-
of principle application to large DNA oligomers. In section 4 we
summarize and conclude this work.

2 METHODS

In this section, we review the qsGWmethod and comment on our
implementation, focusing on the AC of the self-energy as well as
our approach to accelerate convergence of the SCF procedure.
Greek lowercase letters μ, ] . . . label atomic orbitals (AO) and run
from 1 to nAO. Latin lowercase letters p, q, r, . . . label general MOs
and run from 1 to nMO. i, j, k (a, b, c) label occupied (virtual) MOs
and run from 1 to Nocc (Nvirt). Latin symbols without labels
denote tensors in some basis which will always be clear from the
context.

2.1 QP Self-Consistent GW
The GWA is an approximation to the self-energy appearing in
Dyson’s equation (Dyson, 1949),∑

r

Σpr(ωp)Urq(ωp) � ωp − ϵp[ ]Upq(ωp). (1)

We mostly work in a basis of molecular orbitals (MO),

ϕ(n)
p (r) � ∑

μ

χμ(r)b(n)μp , (2)

where the χμ are AOs. Dysons’s equation is non-linear and will be
solved via a fixed point iteration. The superscript (n) means that
we are in the nth iteration of a SCF procedure. The self-energy Σ is
non-Hermitian and energy dependent. Thus, U is complex and
energy dependent as well. We will neglect spin in the following.

The εp are obtained from solving the generalized KS problem,∑
]
H(0)

μ] b
(0)
]p � ∑

]
Sμ]b

(0)
]p ϵ(0)p , HKS � T + Vext + VHxc[P], (3)

where VHxc is the sum of exchange-correlation potential Vxc and
Hartree potential VH, being functionals of the 1RDM P and the
electron density, respectively. T and Vext are kinetic energy and
external potential, respectively. S is the overlap matrix of AOs and
b defines a transformation from AO to MO basis,

Mpq � bpμMμ] b†[ ]]q. (4)

In the AO basis, P is given as

Pμ] � 2∑Nocc

i

bμi b
†[ ]i]. (5)

We also define the Hamiltonian of the Hartree approximation,

HH � HKS − Vxc. (6)

The Green’s function G0 corresponding to the non-interacting
Hamiltonian is diagonal in the MO basis with

G0[ ]pp(ω) � iω − ϵp[ ]−1. (7)

We can then expand Σ in terms of G0 as follows (Hedin, 1965;
Martin et al., 2016),

Σ(ω) � (G0∗W0)(ω) + . . . , (8)

and in the GWA the expansion is truncated after first order.W0 is
the screened Coulomb interaction, calculated in the bubble
approximation (Onida et al., 2002) from G0 (Hedin, 1965).
Without further approximations to Σ, one typically avoids
solving (Eq. 1) but instead calculates the interacting Green’s
function G by inversion of

[G(ω)]−1 � G0(ω)[ ]−1 − Σ(ω). (9)

From there one proceeds by building the self-energy (Eq. 8) but
replaces G0 by G, and W0 by W and repeats this procedure until
self-consistency is reached. In more approximate GW schemes,
one avoids solving (Eq. 9). In diagonal approximations to
Dysons’s equation, one assumes Σ to be diagonal. In that case,
U in (Eq. 1) is unity for all ω and (Eq. 1) reduces to a set of
independent non-linear equations for ω. In qsGW on the other
hand, one does not make the diagonal approximation but Σ is
mapped to a Hermitian and frequency-independent exchange-
correlation potential VqsGW

xc . For this mapping, it is convenient to
define

W0(ω) � Vc + ~W0(ω), (10)

with Vc being the bare Coulomb potential. The self-energy can
then be decomposed into a static and dynamic part
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Σ(ω) � Σx + (G0∗ ~W0)(ω) � Σx + Σc(ω). (11)

Σx is the Fock exchange potential, VqsGW
x � Σx , and following

Kotani et al. (2007), the correlation part of Vxc is obtained from Σ
by taking one of the real symmetric definitions

VqsGW
c[ ]pq � 1

2
Re Σc[ ]pq(ϵp) + Re Σc[ ]pq(ϵq)[ ], (12)

or

VqsGW
c[ ]pq � δpqRe Σc[ ]pq(ϵp) + (1 − δpq)Re Σc[ ]pq(ω � 0). (13)

There are formal reasons why (Eq. 12) should be preferred over (Eq.
13). Constructing the qsGW Hamiltonian via (Eq. 12) minimizes
the length of the gradient of the Klein functional (Klein, 1961) with
respect to G0 (Ismail-Beigi, 2017) and can be seen as an optimized
effective non-local potential. The approach bears strong resemblance
to what is usually referred to as the optimized effective potential
(OEP) method (Talman and Shadwick, 1976). Another possibility is
to linearize the self-energy around the chemical potential. This has
been implemented by Kutepov et al. (2017). Physically, it is
equivalent to taking the static limit of the self-energy, or
averaging over frequencies. We will discuss in more detail below
that such an approach has advantages with regards to numerical
stability. However, we think that one should use the optimum
potential at least for the diagonal elements. (Eq. 13) is a hybrid
between (Eq. 12) and Σ (ω � 0) which retains the optimum potential
on the diagonal. Employing (Eq. 13) can be justified if one assumes
that the effect of using the optimum potential as opposed to Σ (ω �
0) will cancel out to a large extent for the off-diagonal elements. We
provide numerical evidence later on that this is indeed true. Also an
approach using Löwdin’s orthogonalization has been proposed to
construct the QP Hamiltonian (Sakuma et al., 2009) but that
construction is not considered here.

With these simplifications, we can now solve (Eq. 1) self-
consistently. In each iteration, we solve

∑
r

HqsGW(n+1)
pr U(n+1)

rq � ω(n+1)
p U(n+1)

pq , (14)

with

HqsGW(n+1) � HH + ΔV(n+1)
H + VqsGW(n+1)

xc (15)

and

VqsGW(n+1)
xc � Vx[P(n)] + VqsGW

c [G(n)
0 ]. (16)

In each iteration, HqsGW is expressed in the basis in which G(n)0 is
diagonal. That is, at the n + 1st iteration, HqsGW is expressed in

terms of the ϕ(n)i{ } and unless self-consistency has been reached,

U(n) will not be unity and defines a rotation of the molecular
orbitals. We now set

b(n+1)μp � ∑
q
b(n)μq U

(n+1)
qp

ϵ(n+1)p � ω(n+1)
p ∀p

(17)

and evaluate G(n+1)0 via (Eq. 7) which in turn is used to evaluate
(Eq. 11) and finally (Eq. 12) or (Eq. 13). P(n+1) is then evaluated

from (Eq. 5) and the change in the Hartree-potential is
calculated as

ΔV(n+1)
H � VH[ΔP(n+1)], (18)

with

ΔP(n+1) � P(n+1) − P(n). (19)

The cycle is repeated until self-consistency is reached.

2.2 Implementation
As already stressed in the introduction, for the qsGW
implementation no modifications of the code described in
Förster and Visscher (2020) for the calculation of the self-
energy are needed. A description of the algorithm can be found
in Förster and Visscher (2020) and in Förster and Visscher (2021)
we reported important modification of our original
implementation, increasing accuracy and robustness. The only
points we discuss hered are related to the convergence and
stability of the self-consistent field (SCF) procedure.

2.2.1 Analytical Continuation
In space-time implementations of the GWA, the self-energy is
evaluated in imaginary time and then Fourier transformed to
the imaginary frequency axis. In ADF, the self-energy is
calculated in the AO basis on a non-uniform grid of
imaginary time points. After transformation to the reference
basis [the MO basis from the generalized KS calculation in the
first iteration and the basis defined by (Eq. 17) later], the self-
energy matrix is Fourier transformed to a non-uniform grid in
imaginary frequency space. For the implementation of this
transformation, we refer to Kaltak et al. (2014b) and to the
appendix of Förster and Visscher (2021). Since the non-
uniform grids depend on the QP energies used to build G0

we also need to recalculate these grids at the beginning of each
qsGW iteration to ensure independence of the results from the
initial guess.

After this transformation, Σ is known on a discrete set of
points W � iωβ{ }

β�1,Nω
on the imaginary frequency axis.

However, to evaluate Eq. 13, we need to know the self-energy

on the real frequency axis at the positions of the QP energies ϵ(n)p .
To this end, we seek to find a function f which is analytic in the
largest possible domain A ⊂ C and coincides with Σ in W. For a
meromorphic function (as the self-energy) which is known on the
whole imaginary axis, it is always possible to find such a function
so that A � C, but since we only know the self-energy on a small
subset of points, only an approximate solution can be found. The
problem here is, that the AC is exceptionally ill-conditioned, i.e.
numerical noise in the input data might significantly affect the
output (Shinaoka et al., 2017).

Among the many developed algorithms [see for instance Levy
et al. (2017) for an overview], the construction of a continued
fraction (Vidberg and Serene, 1977; Beach et al., 2000) via a Padé
approximant is most common in implementations of the GWA.
While in many codes Thiele’s reciprocal difference method is
implemented, (Liu et al., 2016; Grumet et al., 2018; Foerster
and Gueddida, 2021), ADF, implements the variant by Vidberg
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and Serene (Vidberg and Serene, 1977), which for example has also
been implemented by Kutepov (Kutepov, 2020). In the latter variant,
the coefficients of the continued fraction are calculated while the
former method returns the value of the continued fraction (Beach
et al., 2000). While it has been claimed that the former variant is
numerically more stable (Liu et al., 2016), we did not experience any
numerical issues with our implementation for diagonal self-energies.
This procedure typically yields good results for states close to the
HOMO-LUMO gap while it becomes unreliable for core states
(Golze et al., 2018, 2020). Exceptions are cases for which the self-
energy has a pole close to the position of the QP energy (Govoni and
Galli, 2018). Partial self-consistency inG pushes the poles away from
the QP peak (Golze et al., 2019), and consequently, these issues
should not be present in qsGW as well. This is different from
situations in which the independent QP picture breaks down and the
spectral weight of a single excited electrons is distributed between
multiple peaks. The former is a purely numerical issue while the
latter is caused by strong correlation and can not be overcome by
partial self-consistency. It has also been shown in Wilhelm et al.,
2021 that AC yields accurate results for semi-core and inner valence
states in case the real part of the self-energy does not have poles in the
vicinity of the QP solutions.

If one is only interested in accurate valence states, AC via Padé
approximants is not problematic for G0W0 where (Eq. 1) reduces
to a set of N independent non-linear equations where N is the
number of MOs. In evGW, the situation is only slightly different.
The N equations are still independent, but information from all
QP energies enters the polarizability so that there is an implicit
dependence of the QP energies on each other. In practice, this is
also not an issue since the numerical errors are typically orders of
magnitude smaller than the absolute values of the QP energies.

The situation is different for qsGW. The Off-diagonal elements
of Σc are often equal to or very close to zero (Kaplan et al., 2015)
and generally small compared to the diagonal elements. For these
off-diagonal elements, numerical errors from AC can be orders of
magnitudes larger than the values of the off-diagonal elements.
Since there are many of them, this might significantly alter the
solutions of Eq. 14. Due to the non-linear nature of the QP
equations, this can complicate convergence of the SCF procedure
or even lead to erroneous results. The development of more
reliable methods for AC is a very active field of research (Bergeron
and Tremblay, 2016; Levy et al., 2017; Otsuki et al., 2017; Gull
et al., 2018; Fournier et al., 2020; Fei et al., 2021) and it would
certainly be interesting to investigate whether other techniques
are more suitable for qsGW. For now, we restrict ourselves to the
techniques of Padé-approximants. To ensure numerical stability,
two aspects need to be considered:

First, it seems reasonable to assume that AC close to the Fermi
energy is also more reliable for the off-diagonal elements of Σ. To
this end, using (Eq. 13) to construct the exchange-correlation
potential seems to be more suitable for our implementation than
(Eq. 12). As we will see later on, both constructions of the
exchange-correlation potential lead to similar results, but using
(Eq. 13), the SCF procedure is significantly easier to converge. In
fact, applying the same reasoning one could justify to use Σ (ω �
0) (Kutepov et al., 2017) instead. However, as we will show below,
using (Eq. 13) is sufficiently numerically stable.

Second, after evaluating Eq. 13 or (Eq. 12), numerical noise
needs to be removed rigorously from VqsGW

c . At self-consistency,
the off-diagonal elements of VqsGW

c need to be zero: In the n + 1
the iteration, VqsGW

c is expressed in the basis which diagonalizes
the operator defined in (Eq. 15) in the nth iteration. At self-
consistency b(n+1) � b(n), which will not be the case when the off-
diagonal elements of VqsGW

c will be different from zero. In our
present implementation, we set all values with magnitude smaller
than 1e−6 to zero. This cut-off is of the order of the numerical
noise introduced by the AC. As we will show later on, despite this
drastic cut-off the HOMO and LUMO energies can be converged
to a degree that the QP energies are converged within a few meV.

2.2.2 Convergence Acceleration
As outlined so far, in each iteration of the self-consistency cycle
the previous qsGW Hamiltonian is replaced by the new one,
similar to the Roothaan algorithm for the Hartree-Fock (HF)
equations. For Hartree-Fock, it is well known, that such a
procedure can be numerically unstable (Cances and Le Bris,
2000) and convergence difficulties are encountered already for
the simplest molecules (Koutecký and Bonačić, 1971; Bonačić-
Koutecký and Koutecký, 1975). Also in many GW
implementations, convergence has been shown to be much
slower than with a simple linear mixing scheme (Caruso et al.,
2013; Kaplan et al., 2016). While the latter seems to work
reasonably well for evGW (Gui et al., 2018), it seems that
there is room for improvement for qsGW (Gui et al., 2018).
An iterative fixed point procedure of the general form

G(m)
0{ }

0≤m≤n+1 → ~H
qsGWn+1

→ ϵ(n+1) , b(n+1) (20)

is clearly a better option. A practical way to implement this is to
replace (Eq. 14) by

∑
r

~H
qsGW(n+1)
pr U(n+1)

rq � ω(n+1)
p U(n+1)

pq , (21)

with

~H
qsGW(n+1) � ∑n+1

m�n−n0
αmH

qsGW(m)
, (22)

where

∑n
m�n−n0

αm � 1, (23)

needs to be fulfilled and n0 is the maximum number of previous
iterations taken into account. We determine the expansion
coefficients αm using Pulay’s DIIS method (Pulay, 1980). In
the DIIS method, we seek to minimise the residual error

r(n+1) � ∑n
m�n−n0

αmr
(m), (24)

subject to the constraint Eq. 23. One might additionally require
the αm to be positive (what is usually called EDIIS) (Kudin et al.,
2002) but we did not find any improvement over the simple DIIS.
Different implementations of DIIS differ in the definition of the
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residual error. Since G0 uniquely determines HqsGW, we would
ideally define

r(n+1) � G(n+1)
0 − G(n)

0 , (25)

however, storage (or recalculation) of this quantity for n0
iterations is inefficient. Therefore, one can use

r(n+1) � P(n+1) − P(n), (26)

which is related to the time-ordered Green’s function by taking
the limit τ → 0− (τ is the difference between both time
arguments). In this work, we have used a different definition
for the residual which is, however, identical to (Eq. 26).1

Technically, in the nth iteration we solve (Eq. 14) and
evaluate the corresponding b(n) from which we calculate P(n)

and Q(n). We check for convergence by evaluating the
Frobenius norm of the residual (Eq. 26),

NF � 1
N2

MO

���������∑
μ]

r(n+1)μ][ ]2√
, (27)

and terminate the SCF as soon as NF < εSCF for two subsequent
iterations. As we will show later on, εSCF � 1e−7 leads to QP
energies which are converged within a few meV for all systems in
the GW100 database (Van Setten et al., 2015). Subsequently, we

store r(n+1) and HqsGW(n+1) and determine the expansion
coefficients αm using the DIIS method, setting n0 � 10. Finally,
we solve (Eq. 21) and use the resulting U to evaluate (Eq. 17).

2.3 Computational Details
All calculations have been performed with a locally modified
development version of ADF2020 using the implementation as
described Förster and Visscher (2020) and using the updated
imaginary frequency grids as described in Förster and Visscher
(2021).

2.3.1 GW100
We use the same structures as in for our previous benchmarks
(Förster and Visscher, 2020; Förster and Visscher, 2021). We use
the non-augmented TZ3P and QZ6P basis sets described in
Förster and Visscher (2021). Complete basis set (CBS) limit

extrapolated results are obtained as described in Förster and
Visscher (2021). In all calculations, we set the
numericalQuality key to Good. Exceptions are a few
systems for which we observed inconsistencies with the Good
fit set: For Pentasilane, Na2, Na4, and Na6, we used the
Excellent fit set, and for the nucleobases we used the
VeryGood fitset. We used 32 imaginary time and 32
imaginary frequency points each [We refer to the explanations
in the appendix of Förster and Visscher (2021)]. For all TZ3P
calculations, we set Dependency Bas � 1e−3 and for QZ6P we
set Dependency Bas � 5e−3 in the AMS input as described in
Förster and Visscher (2020). All calculations using augmented
basis sets (aug-TZ3P and aug-QZ6P) have been performed in the
same way, but using the Excellent auxiliary fit set and
numericalQuality VeryGood. No relativistic effects
have been taken into account.

2.3.2 DNA Fragments
The structures of the DNA fragments have been taken from
Doser et al. (2009). We performed qsGW calculations using the
TZ2P (Van Lenthe and Baerends, 2003), TZ3P and QZ6P basis
sets, starting from a PBE0 (Adamo and Barone, 1999;
Ernzerhof and Scuseria, 1999) initial guess. We set the
numerical quality to VeryGood, but used the Good fitset,
with the exception of the QZ6P calculations were we also used
the VeryGood fitset. We also set MBPT.
ThresholdQuality � Normal. In Förster and Visscher
(2020) we have shown that these thresholds are sufficient to
converge quasi-particle energies within a few 10 meV. 16 grid
points in imaginary time and imaginary frequency have been
used. Solvent effects have been accounted for exclusively on
the KS level using the conductor like screening model
(COSMO) (Klamt and Schüürmann, 1993; Klamt, 1995;
Klamt and Jonas, 1996) as implemented in ADF (Pye and
Ziegler, 1999) using the BLYP (Becke, 1988; Lee et al., 1988;

FIGURE 1 | Convergence of the qsGW SCF for Methane for different
initial guesses and constructions of the correlation potential. log 10r, r defined
in Eq. 26, is plotted against the number of iterations.

1We experimented with different residuals: In the implementation used in this
work, we have used

r(n+1) � P(n+1) + Q(n+1)[ ] − P(n) + Q(n)[ ].
Here, Q is defined like P, but with the summation spanning the virtual orbital

space,

Qμ] � ∑Nvirt

a

bμa b†[ ]a].
This was based on the intuitive assumption that convergence could be improved by

including information about the virtual orbitals in the residual. However, note that

S−1 � 1
2P + Q, so that we obtain P + Q � 1

2P + S−1. Apart from the factor of 1/2

(Eq. 26) is therefore completely equivalent to this expression. We thank one of the

reviewers for pointing this out
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Miehlich et al., 1989) functional with D3 dispersion correction
(Grimme et al., 2010) with Becke-Johnson damping (Grimme
et al., 2011) and the TZ2P basis set. Numericalquality
Good has been used. The solvent correction ΔEs is then
obtained as ΔEs � E(+)s − E(0)s , i.e. as the difference between
the solvent contributions to the bonding energies of the
oxidized species and the neutral species both at the
equilibrium geometry of the neutral species.

3 RESULTS

3.1 Benchmarks
3.1.1 Comparison of Exchange-Correlation Potentials
in qsGW
We already noticed in section 2 that the correlated part of the
exchange-correlation potential of qsGW can be defined in
different ways. Here we compare the two most common ways
to construct this quantity (Kotani et al., 2007; Shishkin et al.,
2007; Shishkin and Kresse, 2007; Kaplan et al., 2016) (Eq. 12 and
Eq. 13) for a subset of molecules from the GW100 database. The
data is shown in the supporting information and shows that the
exchange-correlation potential obtained from (Eq. 12) is
significantly harder to converge than the one from (Eq. 13).
An example of the convergence behaviour of both variants is
shown in Figure 1. Figure 1 plots log 10r with r defined in Eq. 26
against the number of iterations with two different initial guesses
for Methane. We see, that using (Eq. 13), the SCF rapidly
converges towards a fixed point, while log 10r always remains
much larger than −6 for (Eq. 12). On the other hand, for the 10
converged calculations differences in the final QP energies are
small; for both, IPs and EAs, both variants differ by only 20 meV
on average, i. e the error introduced by averaging over the off-
diagonal elements of the self-energy are small. For this reason, we
decided to use the correlation potential as defined in (Eq. 13) in
all subsequent calculations.

3.1.2 Self Consistent Field Convergence
Next, we comment on the convergence of the qsGW SCF
procedure. To this end, we compare IPs and electron
affinities (EA) for the molecules in the GW100 database for 3
different starting points, PBE (Perdew et al., 1996a; Perdew
et al., 1996b), PBE0, and HF. At self-consistency, the QP
energies should be independent from the initial guess and
their differences will thus provide information about the
obtained convergence of the QP energies for a given εSCF. In
all calculations we set εSCF � 1e−7 and restrict all calculations to a
maximum of 30 iterations.

Independent of the starting point, we could not reach
convergence for Mgo, BeO, BN, Cu2, and CuCN with our
DIIS implementation. Employing a linear mixing procedure as
implemented in Wilhelm et al. (2021) with α � 0.35 we could
reach convergence for these systems, albeit with a large number of
iterations. These systems are problematic for GW approaches
since the single the spectral weight of the single excited electron is
distributed between multiple peaks (Govoni and Galli, 2018).
qsGW relies on the validity of the single QP picture. In situations,

in which the quasi-particle equations might have multiple
solutions (Govoni and Galli, 2018; Golze et al., 2019)
corresponding to the same non-interacting state, different
solutions may be found in different iterations of the qsGW
SCF procedure. qsGW should select the solution with largest
QP weight (Ismail-Beigi, 2017) but in situations where there are
at least two solutions with (almost) equal QP weight, the
“physical” solution might change in each iteration. In such
cases, the DIIS algorithm tries to minimize the residual SCF
error by interpolating between different solutions and no fixed
point of the map (Eq. 20) is found. On the other hand, linear
mixing results in a smooth but slow convergence pattern, if only α
is chosen small enough to make sure that in all iterations the same
solution is found. We do not know, how to best solve this issue
but we do not consider it to be a major concern as such
convergence problems are only encountered for systems in
which the single QP picture is not valid. This then merely
signals that qsGW is not an appropriate level of theory.

Figure 2 shows mean absolute deviations (MAD) as well as
maximum absolute deviations of the IPs and EAa obtained from
different starting points. WithMAD of 6 and 2 meV, respectively,
EAs are better converged than IPs. Also the maximum error is
about twice as small for EAs than for IPs. These differences are
related to the AC procedure which gives smaller errors for
unoccupied states with usually featureless self-energy matrix
elements. The maximum error never exceeds 50 meV and is of
the same order of magnitude than the experimental resolution of
photoionization experiments (Knight et al., 2016) of the typical
basis set errors of GW calculations after extrapolation. (Knight
et al., 2016; Maggio et al., 2017; Govoni and Galli, 2018; Bruneval
et al., 2020; Förster and Visscher, 2021). The distribution of
iterations required for convergence is displayed in Figure 3. This
includes the 5 problematic cases discussed above. The
calculations on average converge in around 10 iteration, with
little dependence on the initial guess.

3.1.3 Comparison of Ionization Potentials for the
GW100 Database
We now compare the IPs from our algorithm to the ones obtained
with the TURBOMOLE code for GW100. The TURBOMOLE
results have been obtained with the GTO-type def2-TZVPP basis
sets. For some systems, TURBOMOLE results are not available
and we exclude these from our discussion. We use the TZ3P basis
sets which we have shown to give comparable results to def2-
TZVP for GW100 (Förster and Visscher, 2021). However,
quantitative accuracy can not be expected.

The deviations to TURBOMOLE are shown in Figure 4. The
average deviation between both codes is close to zero, and with
one exception, for all IPs deviations are considerably smaller
than 300 meV, with the deviations for the majority of systems
being smaller than 100 meV. Thus, our results are qualitatively
similar and deviations can be attributed to different basis set
errors and different constructions of the qsGW exchange-
correlation potential. The IP of Cyclooctatetrane is the only
exception. Here, TURBOMOLE gives an IP of 9.30 eV, while the
ADF IP is with 8.38 eV nearly 1 eV smaller. For different starting
points, we obtained the same result within an accuracy of only a
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few meV, indicating that our IP is well converged. The
TURBOMOLE qsGW IPs on average overestimate the
CCSD(T) reference values for GW100 by Klopper and
coworkers (Krause and Klopper, 2017) in the same basis set
by only a little more than 100 meV, while the deviation for
Cycloocatetrane is nearly 1 eV. The CCSD (T) IP for this system,
is 8.35 eV, which is in very good agreement with our value.
These numbers indicate that our IP is reasonable, despite the
large deviation to TURBOMOLE.

Ideally, we would also like to compare our EAs against
literature data, however, with only one exception (were
optimized structures do not seem to be available) (Ke, 2011),
we are not aware of any published EAs for molecular systems.

3.1.4 Basis Set Limit Extrapolated Ionization Potentials
and Electron Affinities for the GW100 Database
In the supporting information, we report CBS limit extrapolated
EAs and IPs for the GW100 database. The qsGW QP energies
seem to converge faster to the CBS limit than their G0 W0

counterparts. Going from TZ3P to QZ6P, the basis set

FIGURE 2 |Mean absolute deviations (A) and maximum absolute deviations (B) of qsGW IPs (upper triangle) and EAs (lower triangle) obtained with different initial
guesses for the GW100 database. All values are in meV.

FIGURE 3 | Number of iterations needed to attain convergence of the SCF for different initial guesses.

FIGURE 4 | Distribution of deviations (in eV) of the IPs from
TURBOMOLE and with our implementation.
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incompleteness error reduces by 80 meV on average, while for
G0W0@PBE, we found an average reduction of 130 meV (Förster
and Visscher, 2021). Self-consistent approaches might converge
faster than G0W0 - Caruso et al. have already observed that scGW
converges faster to the CBS limit than G0W0 (Caruso et al., 2013).
For the EAs, the average differences are much larger which is also
due to the many systems with negative EA in the GW100
database. For these systems CBS limit extrapolation is not
reliable without adding diffuse functions. Repeating these
calculations with augmented basis sets (Förster and Visscher,
2021) yields smaller differences between the aug-TZ3P and aug-
QZ6P basis sets. (Förster and Visscher, 2021). In Table 1, these
differences are shown for the series of linear alkanes from
Methane to Butane (for more numbers we refer to the
supporting information). On both the TZ and QZ level the
augmented basis sets give a much higher EA. Also, the
differences between aug-TZ3P and aug-QZ6P are with in
between 150 and 200 meV modest, while they are huge for the
non-augmented basis sets. Also the extrapolated values are much
smaller using the augmented basis sets. The effect of
augmentation is also profound for other systems. For example,
using the non-augmented basis sets, the EA of
carbontetrachloride is negative (−0.27 eV). Using the
augmented basis sets, it becomes positive (0.17 eV) which is in
much better agreement with experiment (0.80 ± 0.34 eV)
(Staneke et al., 1995).

3.2 Application to DNA Fragments
Oxidation of DNA is related to genetic damage and to investigate
the mechanisms behind these processes quantum chemically,
electron addition and removal energies need to be computed

with high accuracy. A necessary first step for such studies is the
selection of appropriate model system which should represent
DNA under physiological conditions as accurately as possible
while still being computationally feasible. As an illustrative
example how the new qsGW implementation can be used
effectively in practice, we investigate the dependence of IP and
EA of oligomers of Adenine-Thymine (AT) base pairs on the
oligomer size.

The calculated charged excitations are shown in Table 2 for
different basis sets and fragment sizes between 1 and 4 AT pairs
(We refer to these systems as ATx, were x denotes the number of
AT base pairs). These systems are shown in Figure 5. For all
fragments, we calculated the IPs with the TZ2P and TZ3P basis
set with 1d1f, and 2d1f shells of polarization functions for second
and third row atoms (and analogously for other atoms). We see,
that going from TZ2P to TZ3P only has a small effect on the IPs
and EAs, reducing the basis set incompleteness error by only a
few 10 meV. These calculations with two rather similar basis sets
are necessary to rule out the possibility that a result is simply an
artefact of a chosen basis set. Going from TZ3P to QZ6P, the IP of
the AT1+B increases by modest 60 meV, while the EA reduces by
180 meV. Based on the TZ3P and QZ6P calculations, we can
estimate the QP energies at the CBS limit by extrapolation.
Comparing the TZ3P results to the extrapolated ones, we find
a basis set limit incompleteness error of 140 meV for the IP and of
420 meV for the EA of AT1. For AT1, we find a similar basis set
limit incompleteness error of 80 meV for the IP and of 340 meV
for the EA.

On standard hardware, calculations on the QZ level are not
feasible for AT4 and already for AT2, the QZ calculation is
cumbersome. This is not only due to the large number of diffuse
AOs which make makes it difficult to exploit distance-based cut-
offs (Förster and Visscher, 2020) but also due to the large
auxiliary basis sets which are required to make the calculations
numerically stable. However, we can estimate the CBS limit based
on the differences between the QP energies at the CBS limit and
the largest affordable basis set for the larger systems for the
smaller fragments. This is justified with the observations made in
Förster and Visscher (2020) for G0W0 were we found the basis set
incompleteness error on average to decrease with increasing
system size but only to a certain extent since basis functions
are localised. Based on this assumption, we correct the IPs and

TABLE 1 | Comparison of electron affinities for linear alkanes from Methane to
Butane using augmented, and non-augmented basis sets.

Non-augmented Augmented

Name TZ3P QZ6P Extrap Aug-TZ3P Aug-QZ6P Extrap

Methane −2.30 −−1.62 −0.78 −0.79 −0.58 −0.26
Ethane −2.27 −1.56 −0.65 −0.72 −0.57 −0.35
Propane −2.23 −1.51 −0.56 −0.72 −0.55 −0.30
Butane −2.24 −1.50 −0.52 −0.71 −0.55 −0.30

TABLE 2 | Ionization potentials (IPs) and electron affinities (EAS) of DNA fragments consisting of different numbers of adenine-thymine base pairs calculated with different
basis sets and contributions of solvent from ΔBLYP calculations. Extra denotes extrapolation to the CBS limit based on TZ3P and QZ6P calculations and numbers in
parentheses are obtained by adding the difference between ϵCBSi − ϵTZ3Pi to the result obtained at the TZ3P level. Δsol. has been calculated using COSMO. All values are
in eV.

IP EA

Calculation AT1 AT1+B AT2 AT4 AT1 AT1+B AT2 AT4

TZ2P — 7.84 7.34 6.94 — −0.84 −0.65 −0.45
TZ3P 8.47 7.90 7.35 6.97 −0.41 −0.80 −0.63 −0.40
QZ6P 8.50 7.96 — — −0.26 −0.62 — —

Extra 8.55 8.04 (7.49) (7.11) 0.07 -0.38 (−0.21) (0.02)
Δsol −1.82 -0.99 −0.52 −0.01 1.55 — 1.87 1.62
ϵ + Δsol 6.73 7.05 6.97 7.10 1.62 — 1.66 1.64
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EAs of AT2 and AT4 on the TZ3P level by the basis set limit
incompleteness error found for AT1+B. (140 and 420 meV,
respectively). There is of course a small uncertainty due to the
different basis set errors for AT1 and AT1+B. For the
extrapolation itself, we assume the error to be rather small for
the IP, since the difference between TZ3P and QZ6P are rather
small. For the EAs, the error might be larger. Still, we can safely
assume, that the basis set errors for AT2 and AT4 are below
100 meV.

The energy required to remove or add an electron from a DNA
oligomer in vacuum is strongly size dependent: The vertical IP in
vacuum decreases rapidly with increasing oligomer size, with a
difference of almost 1 eV between AT1 and AT4. For the EA, a
difference of 0.4 eV is found. The IPs of the solvated DNA
oligomers, on the other hand, are almost independent of the
number of base pairs. When an electron is removed from the
oligomer, the surrounding cloud of electrons stabilizes the
resulting hole. Increasing the oligomer size thus reduces the IP
potential since the hole becomes more and more stabilized. In the
aqueous environment, the solvent plays the same role and
consequently, the inclusion of water via the COSMO
effectively compensates for the effect of the DNA
environment. Of course, the comparison is slightly skewed
since the DNA environment and the solvent are not treated at
the same level of theory. However, there is some evidence that
COSMO and other polarizable continuum models are fairly
accurate in describing the dielectric screening properties of
water (Deglmann and Schenk, 2012).

The IP of AT1+B, AT2, and AT4, all agree within 130 meV. In
light of possible basis set errors and errors of the qsGW method
itself, the difference is well within the error margin of our method.
Only for AT1 we obtain a significantly lower IP, which indicates
that the DNA backbone apparently plays an important role in
stabilizing ionized DNA oligomers. For the EAs, we arrive at the
same conclusion. The differences between the considered systems
are even smaller, the aqueous EAs of AT1, AT2 and AT4 being
with 1.62, 1.66, and 1.64 eV in excellent agreement. Recently,
Pluhařová et al. (2011), Pluhařová et al. (2013), Pluhařová et al.
(2015) also concluded that the effect of the DNA environment on
the IPs of individual aqueous nucleobases seems to be modest. On

the BMK (Boese and Martin, 2004)/6–31G* level of theory, they
obtained an IP of 7.24 eV for a fragment of 2 solvated AT base
pairs including backbone from the Dickerson dodecamer, but for
the isoltaed AT base pair, they obtained and IP of 7.58 eV. The
first number is in good agreement with ours, while the second one
differs from our result for AT1 by almost 1 eV. However, the
difference of only 340 meV between both fragments is of the same
order as our difference between the IPs of AT1 and AT2 of
260 meV. Thus, our conclusions regarding the role of the explicit
inclusion of the DNA environment on the calculated IPs are very
similar.

Finally, we shortly discuss the compute times of the qsGW
calculations for the DNA fragments. A detailed timing analysis
for the evaluation of the self-energy in ADF has already been
performed in Förster and Visscher (2020). The asymptotic
scaling of qsGW will be the same as for G0W0: The only
additional cubic step is the diagonalization of the
Hamiltonian in each iteration. The LU factorization of each
of the Nω Nfit × Nfit matrices in each iteration to calculate the
screened interaction (Förster and Visscher, 2020) requires
roughly 2

3N
3
fit FLOPS, while the dominant step in the single

diagonalization of the Nbas × Nbas matrix in each iteration
requires 4

3N
3
bas FLOPS. Since we have Nbas ≈ 5 × Nfit in a

typical calculation, the compute time for diagonalization is
negligible. Of course, a qsGW calculation requires multiple
iterations and is consequently slower than a G0W0

calculation. For the DNA fragments, all calculations required
between 6 and 8 iterations to converge. This is considerably
faster than the average number of iterations found for GW100,
where we have already observed that convergence is typically
faster for organic systems. We have set the converge threshold
for all calculations in this section to log10 (εSCF) � −8, as opposed
to −7 for GW100. However, the increasing sparsity of G0 (τ →
0+) and G0 (τ → 0−) with increasing system size is also
responsible for this fast convergence.

The largest calculation here is the one for AT4 using the
TZ3P basis set. The system has 260 atoms and 1,220 electrons.
We used 6,374 MOs and 33,678 auxiliary fit functions. The
calculation took 6 iterations to converge and has been
performed on 16 cores of a single Dual AMD EPYC 7302@
3.0GHz, 2x RTX2070 machine with 256 GB of memory. On
average, a single iteration took a little more than 15 h, or 243
core hours.

4 CONCLUSION

As opposed to GW calculations with diagonal self-energy, qsGW
is a general, parameter-free, and starting point independent
method for the calculation of QP energies. While qsGW is
known to severely overestimate band gaps and IPs in three-
dimensional (3D) materials (Shishkin et al., 2007; Tal et al., 2021)
there is evidence that qsGW is more accurate for molecules
(Caruso et al., 2016; Kaplan et al., 2016). In canonical
implementations, qsGW is usually a magnitude slower than
evGW (Gui et al., 2018) and so far, low-order scaling
implementations for molecular systems have focused on

FIGURE 5 | DNA model systems used in this work.
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diagonal approximations to GW (Wilhelm et al., 2018, Wilhelm
et al., 2021; Förster and Visscher, 2020; Duchemin and Blase,
2021). To fill this gap, we have presented a low-order scaling
implementation of qsGW for molecular systems and
demonstrated its accuracy and robustness. In a proof-of-
principle application to DNA fragments we have showcased
the capabilities of the new implementation for systems of
practical interest (Pluhařová et al., 2015; Balanikas et al.,
2020). We have shown, that IPs and EAs of the considered
DNA fragments in vacuum are strongly size-dependent. Upon
taking into account the effect of the aqueous environment, the QP
energies become almost independent of the system size. This
confirms the results of previous DFT studies. (Pluhařová et al.,
2015, Pluhařová et al., 2013). For the largest of the considered
fragments with 1,220 electrons, the respective qsGW calculation
with more than 6,300 spherical AOs converged within 6 iterations
in less than 4 days on a single compute node with 16 cores.

All in all, the herein presented implementation is a necessary
stepping stone towards accurate ab initio studies of the spectroscopic
properties of large molecules in realistic environments, relevant to
organic optoelectronics or biochemistry. To be able to also study
optical properties of large systems, it needs to be combined with an
implementation of the BSE formalism. Our implementation does
not allow to take into account solvent effects directly. In the present
work, we have done that via a ΔDFT calculation and obtained
consistent results. However, it would be desirable to take into
account environmental effects more directly by combining qsGW
with COSMO (or a PCM) (Duchemin et al., 2016; Li et al., 2018)
and/or molecular mechanics calculations (Tirimbò et al., 2020a;
Tirimbò et al., 2020b).

Another issue in practice is the slow convergence of the QP
energies to the CBS limit. This is especially true for algorithms like
the present one which exploit sparsity in the AO basis. It is
encouraging that this convergence is seemingly faster than for

qsGW than G0W0. This doesn’t eliminate the need for basis set
limit extrapolation, but the extrapolation schemes become more
reliable with decreasing basis set error. Basis set errors for large
systems can also be accurately estimated based on results for
smaller, chemically similar systems, as exemplified in this work.
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Exciton Modulation in Perylene-Based
Molecular Crystals Upon Formation of
a Metal-Organic Interface From
Many-Body Perturbation Theory
Liran Shunak1, Olugbenga Adeniran2, Guy Voscoboynik1, Zhen-Fei Liu2 and
Sivan Refaely-Abramson1*

1Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel, 2Department of
Chemistry, Wayne State University, Detroit, MI, United States

Excited-state processes at organic-inorganic interfaces consisting of molecular crystals
are essential in energy conversion applications. While advances in experimental methods
allow direct observation and detection of exciton transfer across such junctions, a detailed
understanding of the underlying excitonic properties due to crystal packing and interface
structure is still largely lacking. In this work, we usemany-body perturbation theory to study
structure-property relations of excitons in molecular crystals upon adsorption on a gold
surface. We explore the case of the experimentally-studied octyl perylene diimide (C8-PDI)
as a prototypical system, and use the GW and Bethe-Salpeter equation (BSE) approach to
quantify the change in quasiparticle and exciton properties due to intermolecular and
substrate screening. Our findings provide a close inspection of both local and
environmental structural effects dominating the excitation energies and the exciton
binding and nature, as well as their modulation upon the metal-organic interface
composition.

Keywords: GW-BSE, Bethe–Salpeter equation, many-body perturbation theory (MBPT), exciton properties, metal-
organic interface, molecular crystals, perylene diimide (PDI)

Organic-inorganic interfaces play a key role in energy conversion and transfer processes
(Wasielewski, 1992; Grätzel, 2001). Photoexcitations in the organic component typically generate
bound electron and hole pairs, i.e., excitons, which serve as the main energy carriers and can
effectively transfer energy across the interface (Ginley and Cahen, 2011). In particular, organic
molecular crystals, composed of aromatic organic molecules bound together by van der Waals
interactions (Klauk, 2006; Kronik and Neaton, 2016), are widely studied due to their easily adjustable
characteristics and tunable excitonic properties (Sato et al., 1981; Smith and Michl, 2013; Luo et al.,
2020), with relatively long diffusion lengths (Wan et al., 2015; Penwell et al., 2017; Schnedermann
et al., 2019; Delor et al., 2020) stemming from their crystal structure, for example through singlet
fission processes and the formation of long-lived triplet states (Wilson et al., 2013; Rao and Friend,
2017; Gish et al., 2019). The coupling between excitonic properties in molecular crystals and their
underlying crystal packing and symmetry offers desirable tunability of their exciton relaxation
processes and can lead to extended energy-transfer efficiency through material and interface
design (Refaely-Abramson et al., 2017; Troisi and Orlandi, 2005; Cocchi et al., 2018; Arias et al.,
2016; Cudazzo et al., 2012; Rangel et al., 2016). Of particular interest are the family of perylene
diimide (PDI) molecular crystals, composed of a perylene body and an imide group and
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assembled by π-π interaction (Würthner et al., 2016; Schierl et
al., 2018; Krieg et al., 2019; Santosh et al., 2010). Crystal
packing and symmetry in PDI crystals vary strongly
depending on their residues, allowing structural control of
the exciton nature and diffusion length (Würthner et al., 2016;
Schierl et al., 2018; Eaton et al., 2013; Zhang et al., 2018; Piland
and Bardeen, 2015; Hestand and Spano, 2018; Oleson et al.,
2019; Carter and Grossman, 2020; Wei et al., 2020), for
example via a change in the imide substitution (Le et al.,
2018; Felter et al., 2019). A commonly studied PDI crystal
in organic optoelectronics is octyl-PDI (C8-PDI) (Felter et al.,
2019; O’Brien et al., 2011; Krauss et al., 2009), shown in
Figure 1A. The intermolecular interaction nature in this
crystal gives rise to strongly bound excitons on one hand,
and significant exciton dispersion on the other, making it a
natural candidate for efficient exciton transfer upon formation
of an organic-inorganic interface (Le et al., 2018; Cotton et al.,
2020). In particular, C8-PDI single crystals and monolayers
serve as a gate dielectric interface in working metal-organic
devices, and the subtle details of interface design and structural
inhomogeneity on charge and energy transfer efficiency within
such junctions have been widely explored (Youn et al., 2012;
Liscio et al., 2013; Ciccullo et al., 2015).

These control capabilities at the atomistic level call for a
computational examination of the change in excitonic
properties stemming from the underlying structure, and in
particular upon experimentally-accessible structural
modifications. Such excitonic properties can be reliably
computed using many-body perturbation theory (MBPT)
within the GW and Bethe-Salpeter equation framework (GW-
BSE) (Hybertsen and Louie, 1986; Rohlfing and Louie, 2000;
Deslippe et al., 2012), a Green’s function based ab initio approach.
GW-BSE computations have the predictive power required to
relate the change in crystal packing to electronic and excitonic
interaction nature. As such, this method has been applied in
recent years to study quasiparticle and excitonic properties in
bulk organic molecular crystals (Cudazzo et al., 2012; Sharifzadeh
et al., 2012; Cudazzo et al., 2013; Sharifzadeh et al., 2013; Refaely-
Abramson et al., 2015; Cudazzo et al., 2015; Kronik and Neaton,
2016; Rangel et al., 2016; Refaely-Abramson et al., 2017; Cocchi
et al., 2018; Rangel et al., 2018). However, its explicit application
on a metal-organic PDI interface is far from trivial, as it is highly
computationally demanding. Nevertheless, such investigation can
supply a comprehensive ab initio understanding of the relation
between the structural changes at the various steps of interface
construction - from the freestanding phase to an adsorbate on a
metal surface - and the changes in quasiparticle and excitation
properties dominating the energy transfer mechanisms.

In this study, we explore the change in excitonic properties in
the C8-PDI organic molecular crystal upon structural
modifications associated with metal-organic interface
formation. For this, we investigate a series of systems, from
the bulk molecular crystal with modified unit cells, through a
monolayer structure, and finally an organic-inorganic interface
formed by the adsorption of the C8-PDI monolayer on Au (111)
surface. We use GW-BSE to study the quasiparticle and optical
excitation energies in each system, and analyze the involved
electron-hole binding as a function of intermolecular packing
and layering. We demonstrate a close relationship between
exciton localization and molecular arrangement in the crystal,
manifesting the importance of intermolecular interactions
beyond the Frenkel excitonic picture. We further investigate
the effect of interlayer screening on the fundamental and
optical gaps, and the resulting exciton binding energy. We
show that while the quasiparticle energies are strongly affected
by intermolecular and interlayer interactions, the optical
excitation energies are far less sensitive to these structural
modifications, demonstrating that the long-range nature of the
interaction dominates the former and the short-range nature of
the interaction dominates the latter. As a result, the computed
exciton binding energy strongly depends on the crystal
modifications. Our study presents an ab initio structure-
sensitive understanding of excitonic properties in the C8-
PDI@Au organic-inorganic interface, as a prototypical example
which sheds light on the excited-state phenomena associated with
the exciton transfer processes across such interfaces.

The paper is organized as follows: We first present the GW-
BSE computational approaches used. Then we discuss the bulk
C8-PDI quasiparticle and excitonic properties, emphasizing the
exciton dispersion and the singlet and triplet state localization,

FIGURE 1 | (A) The examined C8-PDI@Au metal-organic interface
composed of an organic monolayer, commensurate with a four-layer Au (111)
surface. The charge distribution computed for the lowest bound singlet
exciton is also shown. (B) The different structural modifications of the
interface compositions as examined in this work: C8-PDI intermolecular
packing, layering, and adsorption on Au surface. The four main structures
discussed in the text are termed as “bulk”, for the experimental triclinic crystal
structure (Briseno et al., 2007); “com. bulk”, for an artificial construction of a
commensurate phase; “com. layer”, for a monolayer structure of the
commensurate phase; and “interface”, for an interface formed between the
commensurate monolayer and four layers of Au (111).
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and explore the effect of intermolecular packing upon unit cell
modification to a commensurate structure. Finally, we examine
variations in the excitonic picture in a freestanding layer, as
opposed to the bulk structure, and upon adsorption on an Au
substrate. The main steps in the structural modification explored
are demonstrated in Figure 1B.

1 COMPUTATIONAL METHODS

We perform structural relaxation and compute initial electronic
wavefunctions and energies, using density functional theory
(DFT) (Kohn and Sham, 1965) and the Perdew-Burke-
Ernzerhof (PBE) (Perdew et al., 1996) exchange-correlation
functional, as implemented in the Quantum Espresso package
(Giannozzi et al., 2017) (see full computational details in the SI).
The DFT Kohn-Sham eigenvalues and eigenfunctions are then
taken as the first guess for theMBPT calculations.We use the GW
approximation to compute the quasiparticle energies and
bandstructure (Hybertsen and Louie, 1986; Deslippe et al.,
2012; Hedin, 1965), where we calculate self-energy corrections
via Σ � iGW, for G the single-particle Green’s function andW the
screened Coulomb interaction, WGG′ (q; 0) � ε−1GG′(q; 0)v(q + G′),
where G, G′ are reciprocal lattice vectors, v is the bare Coulomb
interaction, and εGG′(q; 0) is the dielectric function of the system
for interaction wavevector q and zero frequency, evaluated via
(Hybertsen and Louie, 1986; Deslippe et al., 2012):

εGG′(q; 0) � δGG′ − v(q + G)χ0GG′(q; 0), (1)

with χ0GG′ (q; 0) the non-interacting electronic polarizability
calculated using the random-phase approximation.

Optical excitations and excitonic properties are computed
through the BSE formalism (Rohlfing and Louie, 1998;
Rohlfing and Louie, 2000)

Eck+Q − Evk( )AS
vckQ + ∑

v′c′k′

〈vk; ck + Q|Keh|v′k′; c′k′ + Q〉AS
v′c′k′Q

� ΩS
QA

S
vckQ

(2)

for a hole state |vk〉 and an electron state |ck + Q〉, where k is the
crystal momentum and Q is the exciton center-of-mass
momentum. S indexes the exciton state at momentum Q.
AS
vckQ is the amplitude of the free electron-hole pair. Eck+Q

and Evk are the quasiparticle energies calculated within the
GW approximation; ΩS

Q is the excitation energy; and Keh is
the electron-hole interaction kernel. Exciton dispersion is
obtained by solving the BSE at different exciton momenta Q
following the methodology developed in Refs. (Gatti and Sottile,
2013; Qiu et al., 2015). The GW-BSE exciton wavefunction can be
represented as |ΨS,Q〉 � ∑vckA

S
vckQ|ck + Q〉|vk〉.

We compute the dielectric screening at the C8-PDI@Au
interface using two approaches. The first is a direct calculation
using G0W0 for the interface, which is highly computationally
challenging and is made possible due to recent advances both in
large-scale computing capabilities and associated code
development (Del Ben et al., 2019). As a comparison, we also

compute the dielectric function of the interface using a recently
developed substrate screening GW approach (Liu et al., 2019). In
this approach, the non-interacting polarizability of the interface is
approximated by the summation of the separately calculated
polarizabilies of the substrate (Au) and adsorbate (C8-PDI), i.e.,

χ0tot,GG′(q; 0) ≈ χ0mol,GG′(q; 0) + χ0sub,GG′(q; 0), (3)

where χ0mol and χ0sub are the polarizabilities associated with the
standalone molecular layer and metal substrates, respectively.
This approximation holds for systems with weak hybridization
between the adsorbate and the substrate (Liu et al., 2019; Xuan
et al., 2019; Adeniran et al., 2020). The goal is to assess the validity
of Eq. 3 against a direct GW calculation of the interface, to
determine the nature of the surface effect on quasiparticle and
exciton properties of the C8-PDI.

As shown in Figure 1B, we mainly study four different
structures: (i) “bulk”, a bulk crystal in its experimentally
resolved triclinic unit cell and relaxed atomic coordinates; (ii)
“com. bulk”, a modified bulk structure in an orthorhombic lattice,
so that it is commensurate with the lattice of the Au substrate; (iii)
“com. layer”, a layered orthorhombic structure with large
vacuum, taken as one molecular layer along the c axis from
(ii); and (iv) “interface”, the C8-PDI monolayer from (iii)
adsorbed on four layers of Au (111) surface, with each layer
consisting of 2 × 3 Au atoms and an adsorption height of 3.18 Å.
Such thickness of the simulated Au surface was previously found
to sufficiently capture wavefunction hybridization and dielectric
screening effects (Liu et al., 2017; Refaely-Abramson et al., 2019).
We apply periodic boundary conditions to all structures, and fully
relax the internal coordinates for each one of the structures. For
(i) and (ii), the calculations were carried out using the converged
parameters of a (8 × 4 × 4) k-point grid and 600 bands in the
summation to compute the dielectric matrix, as well as a kinetic
energy cutoff of 80 Ry and a dielectric cutoff of 10 Ry. The
calculation of the absorption spectrum was carried out via an
interpolation to a finer (12 × 6 × 6) k-point grid. For (iii) and (iv),
the calculations used a k-point grid of (8 × 4 × 1) and 1,000 bands
in the summation to compute the dielectric matrix, as well as the
same cutoffs as (i) and (ii). (i)-(iii) used a semiconductor
screening treatment of the q → 0 limit and (iv) used a
metallic screening, as implemented in the BerkeleyGW
package (Deslippe et al., 2012). Furthermore, (iii) and (iv)
used a slab truncation for the Coulomb interaction.

2 CRYSTAL PACKING EFFECT ON
EXCITON NATURE

We begin with investigating the electronic and excitonic
properties of the bulk C8-PDI system, using the
experimentally-resolved crystal structure (Briseno et al., 2007),
shown in Figure 2A (see full structural details in the SI).
Figure 2B shows the computed GW quasiparticle
bandstructure for this system (solid, red line). The three
frontier electronic bands shown, valence (v1), conduction (c1),
and second conduction (c2), dominate the low-lying excitonic
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spectra we discuss in this work. The computed GW quasiparticle
gap is 2.6 eV, with an expected large self-energy correction on top
of the DFT (PBE) gap of 1.1 eV. The quasiparticle bands are well
isolated, as typical in molecular crystals due to the molecular-like
nature of the material (Refaely-Abramson et al., 2013; Kronik and
Neaton, 2016); still, we note a significant band dispersion of
∼0.7 eV for the valence band between k-points X and Γ and 0.3 eV
for the conduction bands between C and X, reflecting non-
negligible intermolecular electronic coupling.

To explore the effect of intermolecular orientation, we
computed different bulk structures through variation of
relative intermolecular distance and the crystallographic
parameters of the unit cell (see SI for full details). Our
motivation to vary these parameters is twofold: first, to
explore the effect of molecular packing on the quasiparticles
and excitons; second, to look into the effect of changes in unit cell
vectors, which are needed to achieve proper commensurateness
between the unit cell of the C8-PDI crystal and that of the Au
surface. In order to maintain minimal strain within the Au
surface, we only vary the PDI cell parameters. For the case of
a single C8-PDI molecule per cell, this results in a modified cell
(“com. bulk” in Figure 1B), in which the intermolecular distance
grows compared to the original structure. Here we explore the
limiting case of an orthorhombic molecular crystal unit cell,
although a monoclinic cell leads to very similar results (see
SI). By allowing more molecules per cell, commensurate layers
can be achieved with smaller atomic modifications, however,
performing GW-BSE calculations on these large supercells in an
accurate manner is highly computationally challenging. The
associated structures and the computed GW bandstructures

for each of these cells in its bulk form are given in
Supplementary Table S1; Supplementary Figure S1.

Since the electronic and excitonic states stem from the
molecular building blocks, the effect of such unit-cell
modification is not trivial and depends on the level of the
electronic and excitonic wavefunction localization. Upon
structural reorganization from the “bulk” structure to the
“com. bulk” cell that is commensurate with the Au surface,
the intermolecular distance increases from 3.4 Å to 3.6 Å, and
the cell angle c (Figure 2A) changes from 82◦ to 90◦. As a result,
the computed GW quasiparticle gap increases by 0.4 eV and the
band dispersion decreases by 0.35 eV, as shown in Figure 2B.
Two other bulk structures with intermediate variations reveal a
gradual modification between these values (see SI).

The strong structural dependence of the quasiparticle band
dispersion reveals a somewhat surprisingly large effect of the
molecular packing and orientation on the quasiparticle and
exciton picture. It stems from intermolecular interactions and
screening, which vary significantly with intermolecular distances
and relative orientation. Figure 2C shows the computed BSE
absorption spectra of the “bulk” structure, with a low-energy
singlet peak at 2.05 eV, in good agreement with the experimental
value of ∼2.2 eV (Le et al., 2018; Felter et al., 2019). The
absorption spectra along the three main polarization directions
are shown in different colors, with the main optically-active
dipole transitions along the â axis, namely through the π − π
stacking direction, and the least active direction along the c axis.
The low-lying triplet exciton is found at 1.4 eV, shown with a
black line. As a comparison, the absorption computed for the
commensurate bulk structure is shown as well (dashed black

FIGURE 2 | Structural and excitation properties of the bulk C8-PDI molecular crystal: (A) The unit cell showing the crystallographic parameters, which are modified
among the various bulk structures examined. Δ denotes the intermolecular distance. (B) Computed GW quasiparticle bandstrcuture for the bulk (solid red) and the
commensurate bulk (dashed black) structures. (C) Computed GW-BSE absorption spectra with the polarization of the light aligned along different cell directions. The
low-lying triplet state is also shown (black line). Solid lines are for the bulk structure, and dashed black line is for the commensurate bulk structure. (D) Exciton
bandstructure of the four lowest singlet states (solid red) and the two lowest triplet states (dashed black) of the bulk structure. (E) Exciton coefficients as a function of
electron momentum in the (Kx, Ky) crystal plane for the lowest singlet and triplet states, of both the bulk and the commensurate bulk structures.
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line). As shown in Table 1, comparing the “com. bulk” structure
with the “bulk” structure, the lowest singlet excitation energy
increases by 0.19 eV; however, the lowest triplet excitation energy
increases by only 0.06 eV.

We further examine the effect of intermolecular coupling on
the exciton nature by investigating the exciton dispersion, where
the center-of-mass momentum Q represents the momentum
difference between the hole and the excited electron, which is
taken into account in the BSE, Eq. 2; (Qiu et al., 2015). Figure 2D
shows the computed exciton bandstructure along the optically-
active â direction (other crystal directions are shown in the SI).
The exciton band shape varies along the reciprocal space due to
indirect transitions occurring between the Γ and X points. At
small exciton momentum Q, the lowest singlet exciton, S1, shows
a parabolic behavior, with effective mass of 0.35me (for me the
electron mass). Higher singlet excitons are also shown, revealing
varying levels of localization. As expected, the low-lying triplet
state has a larger effective mass of 2.7me, supporting its higher
degree of real-space localization, as typical in organic molecular
crystals (Rangel et al., 2016; Refaely-Abramson et al., 2017).

Figure 2E shows the exciton coefficients (AS
vck in Eq. 2) for the

Q � 0 transition as a function of quasiparticle momentum in the
(Kx , Ky) crystal plane. The lowest singlet state shows high
localization in momentum space at the C point ([0.5,0.5,0] in
reciprocal space), suggesting spatial delocalization. On the
contrary, for the lowest triplet state, the exciton coefficients are
nearly uniform within the Brillouin zone, pointing to spatial
localization. In the commensurate bulk structure, the same singlet
excitons are more spread in reciprocal space, reflecting increased
real-space localization. The triplet state is localized in both structures
and experiences a smaller change due to the structural modification,
compared to the singlet state. The sizable differences between
singlet and triplet localization is coupled to the short-range
exchange in C8-PDI, dominating intermolecular electron-hole
coupling (Rohlfing and Louie, 2000; Rangel et al., 2016). Upon
changes in intermolecular packing, induced exciton localization
leads to enhanced exchange interactions. Our results thus reveal
strong state- and structure-dependence of the exciton nature in
bulk C8-PDI, as an outcome of the intermolecular interactions
dominating the electron-hole coupling.

3 DIMENSIONALITY AND INTERFACE
EFFECTS ON EXCITON BINDING

Next, we study the effect of crystal layering and surface
adsorption on the excitation energies. As shown in Table 1,

for the commensurate structure, the quasiparticle gap of a
freestanding C8-PDI layer increases by ∼0.4 eV, while both the
singlet and triplet exciton energies decrease by ∼0.1 eV, compared
to the commensurate bulk structure. This results in a significant
increase of the exciton binding energy, an expected result due to
the strong dimensionality effect on the dielectric screening, as we
further elaborate in the discussion section below. From a
computational point of view, constructing a monolayer is
motivated by its subsequent adsorption on Au substrate within
a computationally tractable periodic cell. In the following we
directly compare the charged and neutral excitations of the
freestanding layer with the adsorbed one, to gain direct insight
into the Au screening effect on exciton binding.

To capture the dielectric screening at the C8-PDI@Au
interface, we compare two approaches: an explicit GW
calculation of the entire interface, with the simulation cell
presented in Figure 1; and a substrate screening GW
approach (Liu et al., 2019), in which the polarizabilities of
the two parts of the interface are computed separately and
then combined in the interface cell, as we discuss in the
methods section. Our motivation is to verify the validity of
the substrate screening approximation for the C8-PDI@Au
interface. If this is true, we can conclude that the effect of
the Au substrate merely provides a dielectric media that
renormalizes the quasiparticle and excitation energies within
the C8-PDI molecular layer, rather than altering the nature of
the quasiparticle orbitals and excitons of the C8-PDI via orbital
hybridization.

Figure 3A shows the computed GW quasiparticle projected
density of states (pDOS) of the full interface at high symmetry
k-points onto C8-PDI (purple) and Au (orange) atomic orbitals.
Dashed black lines represent the pDOS associated with the
freestanding C8-PDI layer, which we align with the pDOS onto
C8-PDI at the resonance corresponding to the highest occupied
molecular orbital (at about −0.8 eV in Figure 3A). The
quasiparticle gap associated with the molecular levels is reduced
by 0.46 eV compared to the monolayer, due to the Au surface. The
associated valence and conduction electronic charge distributions
for the PDI-localized interface wavefunctions are well separated
from the Au states, demonstrating the negligible interface
hybridization in this system. The change in quasiparticle
energies is a direct outcome of interface screening. Figure 3B
compares the computed dielectric function ε00 (Eq. 1) of the
commensurate bulk, layered, and interface systems for the head
elements, namely G � G′ � 0. At large interaction distance q,
corresponding to short-range interactions in real space, the
dielectric function reaches the expected limit of ε � 1. At small
q, however, the dielectric function increases significantly due to the
Au screening, while remaining close to unity for the freestanding
layer due to its reduced dimensionality.

The computed GW quasiparticle gap resulting from the
substrate screening approach is 2.95 eV, which is in very good
agreement with the direct calculation (2.94 eV). Additionally, in
Supplementary Figure S5, we compare the diagonal elements of
the non-interacting polarizability of the interface (χ0tot) computed
using the two approaches, and find that they agree very well. We
can infer from these results that there is negligible orbital

TABLE 1 | Quasiparticle and optical excitation energies from GW-BSE for the
various structures examined. All energies are in eV.

System Crystal Com. bulk Com. layer Interface

Quasiparticle gap 2.57 2.97 3.40 2.94
Lowest singlet excitation 2.05 2.24 2.13 2.24
Lowest triplet excitation 1.37 1.43 1.33 1.52
Singlet binding energy 0.52 0.73 1.27 0.70
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hybridization at the C8-PDI@Au interface, and that the Au
substrate simply provides a dielectric environment that
effectively screens the molecular crystal. We expect that the
substrate screening approach, based on the additivity of the
non-interacting polarizability of the interface (Liu et al., 2019;
Xuan et al., 2019), is applicable to other systems without
significant orbital hybridization or covalent bonding.

We believe this conclusion could help us understand the physical
interface where a C8-PDI monolayer in its pristine bulk lattice
(rather than the artificial commensurate lattice as we did in this
work) is adsorbed on Au (111). From a computational perspective,
such a physical interface is incommensurate and is prohibitively
expensive to calculate. However, based on the conclusion achieved
in this section, we can infer what would happen if we were
modelling the incommensurate physical interface: all the
properties associated to the exciton wavefunctions of the C8-PDI
bulk crystal as reported in Figure 2 will be qualitatively unchanged
in the interface, thanks to the negligible orbital hybridization. The
exciton binding energies will be renormalized due to the dielectric
screening of the Au substrate.

4 DISCUSSION AND CONCLUSION

Our results demonstrate the effect of intermolecular and surface
screening on both quasiparticle and exciton properties via a

step-by-step structural variation. Specifically, we look closely at
the exciton nature as a function of molecular crystal packing and
dielectric environment, as summarized in Figure 4. For the case
of Frenkel-like molecular excitons, the exciton nature should
stay roughly unchanged upon changes in crystal packing, as the
environmental effect will be mainly manifested through an
effective dielectric constant (Sharifzadeh et al., 2012; Cudazzo
et al., 2013). Nonetheless, we find that the bulk C8-PDI excitons
do have dispersion and are crystal-momentum dependent,
reflecting non-negligible excitonic coupling beyond the
Frenkel picture. The dispersion is more enhanced in singlet
states compared to triplet states due to the exchange interaction,
as observed before in related organic molecular crystals (Rangel
et al., 2016; Refaely-Abramson et al., 2017; Rangel et al., 2018).
On top of this effect, the dielectric screening induces further
variations: upon crystal layering, the quasiparticle gap increases,
and upon surface adsorption it renormalizes, while the exciton
energies remain largely unchanged. This is a direct outcome of
the non-local screening that dominates the quasiparticle
energies, compared to local screening that dominates the
electron-hole binding in the low-lying excitons. These
dielectric effects are captured in the GW calculation through
an explicit evaluation of the dielectric function (Hybertsen and
Louie, 1986; Deslippe et al., 2012). As shown in Figure 3B, the
dielectric functions of the various structures are similar at the
short-range interaction regime and differ greatly at the long-
range interaction regime.

Table 1 indicate the strong sensitivity of the charged
quasiparticle excitation energies (as reflected in gaps) to the
dielectric environment and the weak sensitivity of the neutral
excitation energy (as reflected in optical transitions in the case of
strong electron-hole coupling) to the environment (Kronik et al.,
2012; Refaely-Abramson et al., 2015). The change in the optical
gaps and the exciton binding energies between the C8-PDI
monolayer and the C8-PDI@Au interface points to a
significant decrease in the exciton binding energy upon
formation of the interface with Au. This effect is expected, as
the enhanced screening has a significant influence on the
quasiparticle gap (Neaton et al., 2006; Egger et al., 2015; Liu
et al., 2017). On the other hand, simple metal surfaces tend to
have a much weaker influence on the optical excitations localized
within the adsorbate (Spataru, 2013; Deilmann and Thygesen,
2019).

Importantly, the computational approach we employed
here is not limited to cases of weak hybridization at the
interface, and can be hence further used to investigate other
types of PDI interfaces where the exciton separation
mechanisms are expected to involve significant charge-
transfer components. For example, triplet exciton transfer
across C8-PDI and SiO2 interfaces was recently suggested to
be strongly coupled to changes in intermolecular
interactions due to surface hybridization (Cotton et al.,
2020). In addition, few recent studies explored the role of
surface passivation in modifying and controlling the
efficiency of exciton transfer from acene molecular
crystals adsorbed on silicon substrates (Einzinger et al.,
2019; Daiber et al., 2020). The relation between interface

FIGURE 3 | Quasiparticle and dielectric properties of the C8-PDI@Au
interface: (A) GW pDOS on C8-PDI (purple) and Au (orange) atomic orbitals,
compared to the freestanding molecular layer (dashed black). The right panel
shows the electronic distributions of the PDI-localized valence and
conduction states. (B) Computed GW dielectric function, ε(q), for the
commensurate bulk (purple), commensurate layer (black), and the interface
structure (orange).
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bonding, charge and exciton localization far from and at the
junction, and the resulting energy-transfer efficiency at PDI-
based junctions is intriguing, and the results we present here
for the case of weak metal-organic coupling can be thought
of as a computational test case at the weakly interacting
regime. Our results thus demonstrate that the GW-BSE
approach offers a reliable tool to explore interface effects
on excitonic properties at organic-inorganic interfaces with
various levels of interface hybridization.

To conclude, we studied the effect of structural modifications
on quasiparticle and exciton nature in the C8-PDI molecular
crystal and its interface with Au. We explored the excitonic
properties of the bulk system in detail, and investigated the
effect of crystal packing and interface dielectric screening,
building a structural modification route from the bulk
structure to a heterogeneous interface. Our results
demonstrate that while the quasiparticle band gap undergoes
significant variations upon the structural modification and
surface adsorption, the optical gap is much less affected by
them, leading to strong structural sensitivity of the exciton
binding energies. Our methods allow us to quantify this
effect, and relate it to the specifics of local and non-local
structural modifications.
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Equation-of-Motion Coupled-Cluster
Cumulant Green’s Function for Excited
States and X-Ray Spectra
F. D. Vila1, J. J. Kas1, J. J. Rehr1*, K. Kowalski 2 and B. Peng2

1Department of Physics, University of Washington, Seattle, WA, United States, 2Physical and Computational Science Directorate,
Pacific Northwest National Laboratory, Richland, WA, United States

Green’s function methods provide a robust, general framework within many-body theory
for treating electron correlation in both excited states and x-ray spectra. Conventional
methods using the Dyson equation or the cumulant expansion are typically based on the
GW self-energy approximation. In order to extend this approximation in molecular
systems, a non-perturbative real-time coupled-cluster cumulant Green’s function
approach has been introduced, where the cumulant is obtained as the solution to a
system of coupled first order, non-linear differential equations. This approach naturally
includes non-linear corrections to conventional cumulant Green’s function techniques
where the cumulant is linear in theGW self-energy. The method yields the spectral function
for the core Green’s function, which is directly related to the x-ray photoemission spectra
(XPS) of molecular systems. The approach also yields very good results for binding
energies and satellite excitations. The x-ray absorption spectrum (XAS) is then calculated
using a convolution of the core spectral function and an effective, one-body XAS. Here this
approach is extended to include the full coupled-cluster-singles (CCS) core Green’s
function by including the complete form of the non-linear contributions to the cumulant
as well as all single, double, and triple cluster excitations in the CC amplitude equations.
This approach naturally builds in orthogonality and shake-up effects analogous to those in
the Mahan-Noizeres-de Dominicis edge singularity corrections that enhance the XAS near
the edge. The method is illustrated for the XPS and XAS of NH3.

Keywords: coupled cluster, cumulant, green’s function, excited states, x-ray

1 INTRODUCTION

The core-level x-ray absorption spectra (XAS) μ(ω) is typically described formally by Fermi’s golden
rule. However, this formulation requires calculations of and summations over eigenstates of the
many-body Hamiltonian H and is computationally intractable. Simplifications such as the
determinantal ΔSCF approach, in terms of Slater determinants (Liang et al., 2017; Liang and
Prendergast, 2019; Nozieres and Combescot, 1971) have similar limitations. Although still
computationally demanding, Green’s function methods provide an attractive alternative since
summation over final states is implicit (Lee et al., 2012; Bertsch and Lee, 2014; Rehr et al.,
2009). Real-time approaches can also be advantageous as they avoid explicit calculations of
eigenstates. Our treatment here exploits real-time approaches, following several recent
developments: 1) Equation of motion coupled-cluster (EOM-CC) approaches for molecular
systems have been formulated for the Green’s function in energy-space (Peng and Kowalski,
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2016; Peng and Kowalski, 2018a), 2) An approach has also been
developed (Rehr et al., 2020) for calculations of many-body XAS
μ(ω) in terms of the convolution of a one-body XAS μ1(ω) and the
spectral function of the core-hole Ac(ω)

μ(ω) � ∫ dte−iωtμ(t) � ∫ dω′μ1(ω′)Ac(ω − ω′). (1)

This result originates from the time-correlation approach
(Nozieres and de Dominicis, 1969) that was used to solve the
x-ray edge-singularity problem. In this approach the time-
domain XAS transition amplitude μ(t) is given by the
factorization

μ(t) � 〈Ψ|D(0)D(t)|Ψ〉 � L(t)Gc(t). (2)

Here L(t) is an effective one-body transition amplitude and
Ac(ω) � −(1/π)Im Gc(t). 3) A real-time EOM-CC approach
for the cumulant core Green’s function Gc has been developed
including excitations up to CC-singles (CCS). Intrinsic losses
induced by the sudden creation of the core hole lead to shake-
up effects, characterized by satellites in Ac(ω), as observed in
x-ray photoemission spectra (XPS). The effective one-body
XAS μ1(ω) also builds in orthogonality corrections leading to
edge enhancements, as predicted by Mahan, Nozieres and de
Dominicis (Mahan, 1967). Our goal here is to review these
developments and to combine the one-particle absorption
spectrum with a more accurate treatment of the core
Green’s function, including the complete form of the CCS
cumulant, as well as the full single, doubles and triple cluster
excitations in the cluster amplitude equations.

In the rest of this review, Section 2 describes the theoretical
approaches used, in particular a brief introduction to the
cumulant approach (Section 2.1), the real-time equation of
motion, coupled cluster (RT-EOM-CC) approach (Section
2.2), the frequency space implementation of the Green’s
Function coupled clusters (GFCC) approach (Section 2.3), and
the application to XAS (Section 2.4). Section 3 presents results
for the core binding energies of small molecules, and a
comparison of the theory to XPS and XAS experimental
results for NH3. Finally, Section 4 presents a summary and
discusses future developments.

2 THEORY

2.1 Cumulant Approach
Within the cumulant approximation, the core-level Green’s
function is defined by an exponential expression

Gc(t) � G0
c(t)eC(t), (3)

where G0
c(t) � −iθ(t)e−iϵct is the independent particle Green’s

function (Hartree-Fock in this paper), with single particle
energy εc, and denotes the core-level in question. C(t) is
the cumulant function, which builds the correlation into
the Green’s function. This cumulant can be expressed in
Landau form (Landau, 1944), in terms of an excitation
spectrum β(ω),

C(t) � ∫ dω
β(ω)
ω2

e−iωt + iωt − 1[ ]. (4)

As a consequence, the cumulant Green’s function is naturally
normalized, with an occupation Gc(t � 0) � 1. One can also
analyze A(ω) � −(1/π)Im Gc(ω), which is the natural quantity to
compare to experimental x-ray photoemission spectra, and to
assess the quality of many-body correlation approximations since
satellites appearing in spectral quantities such as XPS are directly
related to those seen in the spectral function. The above form of
the cumulant also permits a natural separation into quasiparticle
and satellite contributions. Separating the terms in the expression
for the cumulant above, we have

C(t) � −a + iΔt + ~C(t), (5)

where a � ∫dωβ(ω)/ω2 is the net satellite strength, Δ � ∫dωβ(ω)/ω
is the quasiparticle shift, or core-level “relaxation energy”, and
~C(t) is the remainder of the cumulant, which contains the
information about the satellites. By expanding about small ~C,
the spectral function can be obtained analytically in terms of
β(ω), i.e.,

Ac(ω) � Zcδ(ω − Ec) p 1 + Asat(ω) + 1
2
Asat(ω) pAsat(ω) +/[ ],

(6)

where Zc � e−a is the quasiparticle renormalization, Ec � ϵc −Δ is
the quasiparticle energy, and Asat(ω) � β(ω)/ω2 is the satellite
spectral function (Aryasetiawan et al., 1996).

The cumulant kernel or excitation spectrum β(ω) can be
approximated in a variety of ways. The most common
approximation is to expand the Green’s function to low order
either in the bare Coulomb interaction, giving β(ω) in terms of the
second order self-energy (Vila et al., 2020), or by expanding in
terms of the screened Coulomb interaction, which produces an
approximation in terms of the GW self-energy (Hedin, 1999;
Guzzo et al., 2011; Zhou et al., 2015). Approximate non-linear
corrections can be included using real-time TDDFT (Tzavala
et al., 2020). Here, as described in the next section, we calculate
the cumulant including non-linear corrections within a non-
perturbative approach, by expressing the Green’s function in
terms of the time-dependent EOM-CC states.

2.2 RT-EOM-CC Theory
Our treatment of the core-hole Green’s function Gc(t) is based on
the CC-ansatz for the time-evolved initial state of the system with
a core-hole created at t � 0+: |Ψc (0)〉 ≡|Ψc〉 � cc|Ψ〉where cc is the
core annihilation operator and |Ψ〉 is the ground state Hartree-
Fock Slater determinant:

|Ψc(t)〉 ≡ Nc(t)eT(t)|Ψc〉. (7)

Then Gc(t) � −i〈Ψc|ei(H−E0)t|Ψc〉θ(t) simply becomes

Gc(t) � −iNc(t)e−iE0tθ(t). (8)

Calculations of Gc(t) are based on the real-time equation of
motion coupled cluster (RT-EOM-CC) ansatz of
Schönhammer and Gunnarsson (SG) (Schönhammer and
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Gunnarsson, 1978), in which the time-evolution of |Ψc(t)〉 is
carried out using an initial value problem and propagation via the
Schrödinger equation of motion i z|Ψc(t)〉/zt � H|Ψc(t)〉. The
time-evolved wave-function |Ψc(t)〉 can then be expressed using
the CC ansatz in Eq. 7. The use of a single-excitations CC ansatz is
justified for a single-determinant reference state approximation
due to Thouless’ theorem (Thouless, 1961). In Eq. 7 Nc(t) is a
normalization factor, while the CC operator T(t) is defined in
terms of single, double, etc., excitation creation operators a†n, i.e.,

T(t) � ∑
n

tn(t)a†n. (9)

For example, for single excitations n � (i, a) and a†n � c†aci; for
double excitations n � i, j, a, b and a†n � c†ac

†
bcjci; etc. As is

conventional in CC, the indices i, j. . . refer to occupied single-
particle states, a, b, . . . to unoccupied, and p, q, . . . to either
occupied or unoccupied ones. Projecting the EOMwith either the
ground state, or with singly-excited versions of it, the equations
decouple naturally, i.e.,

i z lnNc(t)/zt � 〈Ψc| �H(t)|Ψc〉, (10)

i z tn(t)/zt � 〈n| �H(t)|Ψc〉, (11)

where |n〉 � a†n|Ψc〉 and �H � e−THeT is the similarity-
transformed Hamiltonian. The first of these results shows that
the normalization factor Nc(t) is a pure exponential, so that the
core Green’s functionGc(t) has a natural cumulant representation
Gc(t) � G0

c(t)eC(t) with a cumulant defined as

C(t) � −i∫t

0
dt′ 〈Ψc|( �H(t′) − E0′ )|Ψc〉, (12)

where E0′ � E0 − ϵc, and E0 is the ground state energy. As noted
above, the EOM-CC cumulant can have a Landau form (Eq. 4)
(Landau, 1944) that simplifies analysis of its spectrum. The
cumulant kernel or excitation spectrum β(ω) from the EOM-
CC approach is given by

β(ω) � 1
π
Re∫∞

0
dt e−iωt

d

dt
〈Ψc| �H(t)|Ψc〉 (13)

This amplitude accounts for the transfer of oscillator strength
from the main peak in XPS to the satellite excitations at
frequencies ω. The cumulant initial conditions C (0) � C′(0) �

0 guarantee the normalization of the spectral function. In
addition, they ensure that its centroid remains invariant at the
Koopmans’ energy −ϵc. After some straightforward diagrammatic
analysis to compute the matrix elements in Eqs. 10, 12, we obtain
a compact expression for the time-derivative of the cumulant

−i dC(t)
dt

� ∑
ia

fiat
a
i +

1
2
∑
ijab

vabij t
b
jt

a
i , (14)

where tai � tn(t) when n � (i, a), and the fia and vabij coefficients
correspond, respectively, to the one- and two-particle elements
that define the second-quantized Hamiltonian in a core-hole
reference (Vila et al., 2020). The terms on the rhs of Eq. 14
correspond to the linear- (L) and non-linear (NL) CC diagrams
(Crawford and Schaefer, 2000; Brandow, 1967) shown in
Figure 1. The linear term arises from the coupling of the
core-hole to the i → a excitation, while the second term
[which is quadratic in the amplitudes t (NL)] represents
valence polarization effects that screen the core-hole.

Remarkably, these diagrams are completely analogous to the
time-independent diagrams for the CCSD energy if only single
excitations (T1) are included. It is interesting to note that only one
more diagram is needed to obtain the complete CC cumulant for
the core-hole Green's function, namely that from double
excitations similar to the NL diagram in Figure 1, but with a
cluster line joining the base vertices representing the T2 operator.

The EOM for the matrix elements of the CC amplitudes in Eq.
11 can be calculated using similar diagrammatic analysis which
yield a set of coupled first-order differential equations.

−i _tai � −vicac + ϵa − ϵi( )tai (15a)

+∑
j
vicjct

a
j −∑

b

vbcact
b
i +∑

jb

vbijat
b
j +∑

jb

vbcjct
b
i t

a
j (15b)

+ ∑
jbd

vbdaj t
b
i t

d
j −∑

jkb

vibjkt
a
j t

b
k (15c)

− ∑
jkbd

vbdjk t
b
i t

a
j t

d
k, (15d)

where ϵp are the bare single-particle energies. The low order terms
are identical to those in our original paper (Rehr et al., 2020).
However, now the complete CCS T1 approximation is used,
including terms up to third order in tai . The similarity in the
form of Eq. 14 and Eq. 15 to the time-independent matrix
elements used in standard CC theory implies that the overall
scaling of the RT-EOM-CC approach per time step is equivalent
to that of the standard CC equations of the same order per
solution iteration (i.e. N4 for CCS, N6 for CCSD, etc.). The main
difference arises in that while for the latter only a few tens of
iterations are needed for convergences, RT-EOM-CC requires
hundreds to thousands of steps to described the core dynamics.
One final difference arises from the complex nature of the time-
dependent CC amplitudes, which doubles the computational
demands. Thus, approximations are highly desirable and here
we review four possible levels of approximation:

1) Lowest order approximation, with only the leading terms,
i.e., Eq. 15a: At this level the EOM is exactly solvable giving

FIGURE 1 | Linear (L) and non-linear (NL) CC diagrams (Crawford and
Schaefer, 2000; Brandow, 1967) for the time-derivative of the cumulant in Eq.
14. Unlike in traditional EOM-CC diagrams, the base vertices (t) are time-
dependent.
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tai (t) � −vicac[exp(iωiat) − 1], with ωia � ϵa−ϵi. Moreover, the
second-order self-energy cumulant (Vila et al., 2020) is
obtained if only the linear part in Eq. 14 is kept. However
this low level of approximation produced mean absolute
errors for the core binding energies an order of magnitude
larger than those with the next higher levels of approximation
to Eq. 15 (2–4, as summarized below) which we have used for
the results presented in Section 3.

2) Core-valence approximation: Eq. 15a together with the
dominant, first four sums in Eq. 15b. This approximation
includes the linear core- and valence-valence contributions
and a non-linear term corresponding to excitations linked to
the core-hole.

3) Full second order approximation: Keeping all terms of level 2,
and the non-linear valence-valence excitations from the two
sums in Eq. 15c. This gives corrections that close the gap
between the QP peak and the satellites.

4) Full third order T1 level: This approximation retains all the
terms in the T1 EOM in Eq. 15, including the cubic term in
Eq. 15d.

Each of the approximation levels to Eq. 15 can be combined
with either the linear (L), or both the linear and non-linear (NL)
components of C(t) defined in Eq. 14. As we have demonstrated
previously (Vila et al., 2020), the NL component is key for
obtaining accurate core binding energies. Consequently it is
useful to focus on the 2NL, 3NL and 4NL results only. For
comparison results are also shown for the solution of the
Dyson equation (DSE2) (Linderberg and Öhrn, 2004; Szabo
and Ostlund, 1996)

Gc(ω) � [1 − G0
c(ω)Σ(2)(ω)]−1G0

c(ω) (16)

where Σ(2)(ω) is the second order self-energy (Szabo and Ostlund,
1996); and for the frequency space Green’s function GFCCSD
and GFCC-i (2, 3) methods (Peng and Kowalski, 2018a; Peng and
Kowalski, 2018b).

2.3 GFCC Theory
In this section we briefly review the GFCC formalism introduced
by Nooijen et al. (Nooijen and Snijders, 1992; Nooijen and
Snijders, 1993; Nooijen and Snijders, 1995, see also Meissner
and Bartlett, 1993; Kowalski et al., 2014; Bhaskaran-Nair et al.,
2016; Peng and Kowalski, 2016; Peng and Kowalski, 2018a),
which draws heavily on the bi-variational CC formalism
(Arponen, 1983; Stanton and Bartlett, 1993) where the
ground-state bra- ket (〈Ψg|) and (|Ψg〉) states are parametrized
in a different way.

〈Ψg| � 〈Φ|(1 + Λ)e−T (17)

|Ψg〉 � eT|Φ〉, (18)

where the reference function |Φ〉 is typically chosen as a Hartree-
Fock Slater determinant (for the original papers on the CC ansatz
see Coester, 1958; Coester and Kümmel, 1960; Čížek, 1966;
Paldus et al., 1972; Purvis and Bartlett, 1982; Paldus and Li,
1999; Bartlett andMusiał, 2007). In the above equations the T and
Λ operators refer to the so-called cluster and de-excitation

operators, respectively, which can be obtained by solving
canonical CC equations for the N-electron system. For
simplicity, in this review we will discuss the algebraic form of
the retarded part of the frequency dependent CCGreen’s function
defined by matrix elements GR

pq(ω):

GR
pq(ω) � 〈Ψg|c†q(ω + (H − E0) − iη)−1cp|Ψg〉. (19)

Here H is the electronic Hamiltonian for the N-electron system,
E0 the corresponding ground-state energy, η is a broadening
factor, and cp (c†q) operator is an annihilation (creation) operator
for an electron in the q-th spin-orbital. The bi-variational CC
formalism then leads to a formula for the general matrix element
GR
pq(ω) given by:

GR
pq(ω) � 〈Φ|(1 + Λ)c†q(ω + �HN − iη)−1�cp|Φ〉, (20)

The similarity transformed operators here �A (A � H, cp, c†q) are
defined as �A � e−TA eT. By defining ω-dependent auxiliary
operators Xp(ω)

Xp(ω) � Xp,1(ω) +Xp,2(ω) + . . .

� ∑
i
xi(ω)pci + ∑

i<j,a
xij
a (ω)pc†acjci + . . . , ∀p (21)

that satisfy equations

(ω + �HN − iη)Xp(ω)|Φ〉 � �cp|Φ〉, (22)

Equation 20 can then be re-expressed compactly as

GR
pq(ω) � 〈Φ|(1 + Λ)c†qXp(ω)|Φ〉. (23)

The Xp(ω) operators can be effectively solved using a parallel
implementation of the GFCC formalism based on the
approximate forms of T, Λ, and Xp(ω) (Peng et al., 2021).

The RT-EOM-CC Green’s function differs from the
frequency-space GFCC approaches (Peng and Kowalski, 2016;
Peng and Kowalski, 2018b) in several respects. In particular RT-
EOM-CC is based on a transformation to an initial value problem
with the propagation of theN − 1 particle system carried out after
the creation of the core-hole; in contrast the GFCC methods are
implemented in frequency-space. In addition, RT-EOM-CC
assumes an uncorrelated N-particle single-determinant ground
state, while the GFCC approaches calculate this ground state
using the CC ansatz (Eq. 17 and Eq. 18). Finally, the RT-EOM-
CC cumulant treats the N − 1 particle excited states at the CCS
level, while the GFCCSD approximation solves for the excitations
of the N − 1 particle system at the approximate CCSD level,
keeping only single and double excitations, as discussed near Eq.
14 of Peng and Kowalski, 2018a. Thus high order diagrams are
implicitly built in the RT-EOM-CC GF from the exponential
form of the cumulant (Gunnarsson et al., 1994; Lange and
Berkelbach, 2018). While the RT-EOM-CC utilizes a unique
approximation for the time-dependent T(t) operator, the
GFCC formalisms permit the use of several levels of
approximation for the T, Λ and Xp(ω) operators (for assuring
size-extensivity of diagrams defining the GR

pq(ω) matrix elements,
the “n+1” rule of Peng and Kowalski, 2018b has to be followed).
The numerical complexities of the RT-EOM-CC and GFCC
methods, aside from complicated tensor contractions, originate
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in the time propagation algorithms, and the need for solving a
large number of linear equations for frequency domain,
respectively. Efficient algorithms have already been tested to
alleviate possible numerical problems and instabilities (Peng
et al., 2019; Peng et al., 2021).

2.4 X-Ray Spectra
Our treatment here is adapted from that in our original EOM-CC
paper (Rehr et al., 2020), but updated here with a more detailed
treatment of the EOM discussed above. As outlined in the
introduction, the contribution from a deep core level |c〉 to
the XAS is given by the time-correlation function μ(t) � L(t)
Gc(t) in Eq. 2, as in Nozieres and de Dominicis, 1969 and Rehr
et al., 2020. The core-hole Green’s function Gc can be obtained
from the RT-EOM-CC Eq. 8. Calculations of L(t), the one-body
time-dependent transition amplitude, can be carried out using
coupled equation of motion or equivalent integral equations
(Langreth, 1969; Grebennikov et al., 1977; Privalov et al.,
2001). Alternatively, propagation based on the overlap
integrals uij(t) can also be used, as done by Nozieres and
Combescot (NC) (Nozieres and Combescot, 1971). However, it
is more convenient to replace the sums over k with the complete
set of eigenstates κ of the final state one-particle Hamiltonian
h′ � ∑κϵκc†κcκ. Then, defining the core transition operator D in
terms of the transition matrix elements Mcκ � 〈c|d|κ〉,
D � ΣκMcκc†κcc, the single-particle XAS amplitude L(t) becomes.

L(t) � ∑
κ,κ′

M*
cκMcκ′Lκ,κ′(t), (24)

Lκ,κ′(t) � eiϵκt uκ,κ′(t) −∑occ
ij

uκi(t)u−1
ij (t)ujκ′(t)⎡⎢⎢⎣ ⎤⎥⎥⎦. (25)

The leading term on the rhs of Eq. 25 can be interpreted as a
contribution to Lκ,κ′(t) from the independent particle transition
amplitude for the final state when the core-hole is present L0(t) �
Σκ|Mcκ|

2 exp(iϵκt), consistent with the final-state rule of von
Barth and Grossman (von Barth and Grossmann, 1982). The
diagonal terms κ � κ′ in Eq. 25 suppress transitions to the
occupied states κ < kF by yielding the theta function θ(kF − k).
The off-diagonal terms in Lκ,κ′(t) are controlled by states with
either κ (or κ′) > kF or κ′ (or κ) < kF. Interestingly the net result
can be approximated accurately by the expression

L(t) ≈ ∑
κ

| ~Mcκ|2eiϵκt, (26)

equivalent to the one derived by Friedel (Friedel, 1969), where
~Mcκ � 〈c|d�P|κ〉, and �P � 1 − ΣN

i�1|i〉〈i| projects out the occupied
valence states in the ground state. Note that the sum-rule ∫dω
μ(ω) � πL(0) for the XAS is also preserved by this formula. The
additional terms −Σi〈c|d|i〉〈i|κ〉 from �P are termed replacement
transitions (Friedel, 1969). Physically, these terms are necessary to
remove transitions into the initial occupied levels. First order
perturbation theory shows that, for an attractive core-hole
potential and κ > i, the integral for the overlap〈i|κ〉 ≈ −vik/ωik

< 0. Thus these terms imply an intrinsic edge enhancement factor
L/L0 � (1 + χκ) for each photoelectron level κ in the XAS where
χκ ≈ − 2ΣN

i�1(Mci/Mcκ)〈i|κ〉. Though this edge-enhancement

effect is non-singular in molecular systems, it is consistent
with the power-law singularity μ1 ∼ |(ϵ − ϵF)/ϵF|−2δl/π predicted
by Mahan for metallic systems (Mahan, 1967). The XAS in Eq. 1
is finally given by a convolution of μ1(ω) with the spectral
function Ac(ω). It is convenient to shift μ1(ω) and Ac(ω) by ϵc,
the energy of the core level, with ω � ϵ−ϵc, so that for the non-
interacting system, μ1(ω) reduces to the independent particle
XAS. The shifted Ac(ω) then accounts for the shake-up excitation
spectrum

Ac(ω) � ∑
n

|Sn|2δ(ω − ϵn). (27)

Here Sn � 〈Ψc|Ψn′〉 is the N − 1, many-body overlap integral,
and ϵn � En′ − E0 is the shake-up energy. The net effect of the
spectral function Ac(ω) is to broaden the XAS and significantly
reduce its magnitude near the edge, transferring the weight to
the satellite peaks. For metallic systems this yields an Anderson
power-law singularity [(ϵ − ϵF)/ϵF]α (Nozieres and de
Dominicis, 1969). This reduction effect has opposite sign to
and competes with the Mahan enhancement L/L0 in μ1(ω).
However, the above formulation neglects extrinsic losses and
interference effects, which will likely lessen these effects. The net
result, however, is a many-body amplitude correction to the
independent particle XAS visible in experimental XPS. This
spectrum is proportional to the spectral function Jk(ω) ∼ Ac (ω −
ϵk), and usually measured vs photoelectron energy ϵk at fixed
photon energy ω. Thus the peaks in the XPS correspond to a
quasiparticle peak as well as satellite excitations at higher
binding energies, as discussed in more detail below.

3 RESULTS AND DISCUSSION

As an example of the accuracy of the RT-EOM-CCS method for
core ionization energies we show results for CH4, NH3, H2O, HF
and Ne, i.e. the ten-electron series, using the experimental
geometries (NIST, 2019) for all systems (rCH � 1.087 Å, rNH

� 1.012 Å, aHNH � 106.67 degree, rOH � 0.958 Å, aHOH � 104.48
degree, rFH � 0.917 Å), and the aug-cc-pVDZ basis set (Kendall
et al., 1992). We also show spectral function and XAS results for
NH3 for which experimental values are available in the
literature. The ground state single-particle states and
molecular orbitals integrals for the RT-EOM-CCS approach
and the ΔSCF method were calculated from a Hartree-Fock
(HF) reference, while those for the core-excited ΔSCF were
derived from a spin-symmetric and occupation-constrained HF
reference. The final spectra were broadened to compare with
experiment as in Rehr et al., 2020 and Vila et al., 2020 with
varying (1–6 eV) broadening to account for the limited basis set
for the continuum; similarly XAS used constant broadening
consistent with experimental broadening below and 3.5 eV
above the binding energy.

Figure 2 shows a comparison of errors vs experiment for
the core binding energies of the ten-electron series molecules. The
RT-EOM-CCS method shows small errors even at the simplest
non-linear level of approximation (2NL), with a mean-absolute
error (MAE) across systems of only 0.5 eV, significantly smaller
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than for the other methods tested. Although better core-
optimized basis sets need to be tested to ensure full
convergence with basis set size, we find (Vila et al., 2020)
similar errors even for smaller basis sets (e.g. DZVP and cc-
pVDZ). We emphasize that these accurate results arise from the
non-linear terms in vabij in the expression of the cumulant (Eq.
14), which reduce the error typically by an order of magnitude. Of
the ten-electron systems, the Ne atom has the smallest MAE
across the methods (0.3 eV), while for the molecules the MAE
increases systematically from CH4 (0.4 eV) to HF (0.8 eV). It
should be noted that these results do not include contributions
from changes in the vibrational zero point energy (which are
expected to be an order of magnitude smaller) or from relativistic
effects. The latter can be significant even for these light elements
(Keller et al., 2020). For instance, the inclusion of relativistic
effects in the calculation of the C, N, O and F atoms increases the
1s core binding energies by 0.1, 0.3, 0.5 and 0.8 eV, respectively
(Pueyo Bellafont et al., 2016). If these corrections are applied to
our results the MAE are reduced by 50%.

Figure 3 shows results for the spectral function Ac(ω) and the
cumulant kernel β(ω). These are shown vs. binding energy to
compare more readily to the experimental XPS. β(ω) is
dominated by shake-up excitation peaks about 20–30 eV
above the quasiparticle peak that correspond precisely with
the inelastic losses in Ac(ω). The satellites structure is in
reasonable agreement with that observed in XPS (Sankari
et al., 2006) once scissors corrections are included, despite
the fact that our HF-based Hamiltonian overestimates the
excitation energies. From the Landau form in Eq. 4, the
strength of the quasi-particle peak is defined by the
renormalization constant Z, where for the 4NL approximation

to the EOM-CC cumulant Z � exp (−a) � 0.70. The satellite
strength is a � ∫dω β(ω)/ω2 � 0.35. This matches the numerical
integration over the QP peak that yields Z � 0.70, in good
agreement with the ΔSCF value Z � 0.76. The renormalization
constant Z is also partly responsible for the amplitude reduction
factor S20 for the XAS fine structure (Rehr et al., 1978). We also
find that the RT-EOM-CCS values for Z agree with those
obtained using the frequency-space CC Green’s function
methods (Peng and Kowalski, 2016; Peng and Kowalski,
2018a). Moreover, the energy shift Δ from the middle term
in Eq. 5 is the “relaxation energy,” that introduces electron-
electron correlations corrections to the Koopmans’ theorem
approximation of the core binding energy. Here we find that Δ �∫dω β(ω)/ω � 17.1 eV, with a core binding energy Eb � |ϵc|−Δ �
406.1 eV, in good agreement with the experimental value of
405.52 eV, and the position of the quasiparticle peak in Ac(ω) at
404.9 eV.

Results for the XAS, including experiment (Wight and Brion,
1974), are shown in Figure 4. The overall agreement between
theory and experiment is quite good for the positions and relative
intensities of the first two peaks. The third peak, at 403.5 eV, is
almost in the continuum and is more difficult to describe with our
limited basis set. For this molecule, the corrections to the
independent particle XAS (L0(ϵ)) are clearly visible: First, the
edge enhancement factor 1 + χ increases the intensity to L(ϵ).
Second, the amplitude reduction factor from the spectral function
Ac(ϵ), which has opposite sign and is approximately twice as
strong, reduces the intensity to the final μ(ϵ). Since the leading
satellites peaks in Ac(ϵ) are 20–30 eV above the QP peak, the

FIGURE 2 | Comparison of the theory errors vs experiment (Karlsen
et al., 2002; Buttersack et al., 2019; Viñes et al., 2018; Jolly et al., 1984;
Williams, 2009) for the core binding energies. The theoretical calculations were
performed with the 2-4NL RT-EOM-CCS approximations with the aug-
cc-pVDZ basis set. Also shown are results from the second order Dyson
equation (DSE2) and the standard GFCCSD and GFCC-i (2, 3) coupled-
cluster Green’s function methods (Peng and Kowalski, 2016; Peng and
Kowalski, 2018a).

FIGURE 3 | Comparison of the 4NL RT-EOM-CCS and ΔSCF core
spectral functions Ac(ω) (full lines) and cumulant kernel β(ω) (dashed lines,
shown only for the RT-EOM-CC method) for the NH3 molecule, to the
experimental XPS (dots) (Sankari et al., 2006). Energies are shows in
either absolute binding energy E or versus excitation energy ω � E−Eb with
respect to the experimental core binding energy Eb � 405.52 eV (Sankari et al.,
2006). All the theoretical results were obtained with the aug-cc-pVDZ basis
set. The theoretical Ac(ω) were broadened and include a scissors shift of
3.9 eV.
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corresponding XAS satellite features fall in the continuum and are
thus not visible.

4 CONCLUSIONS

This review describes a combined equation of motion coupled
cluster approach in real-time to calculate excitations
corresponding to intrinsic losses in XAS and XPS. The
approach is based on the cumulant form of the Green’s
function representation for the core-hole spectral function
that arises naturally from the coupled cluster ansatz. This
theoretical connection between the cumulant approach, a
powerful tool for computing satellites in solid state physics, to
the coupled cluster approach which is the gold standard for
accuracy in quantum chemistry brings together two previously
mostly unrelated fields, thus opening new areas of research.
Unlike our previous treatment of the XAS, where an
approximate, effective single-particle Hamiltonian was used,
here we use the full two-particle one, yet for simplicity we
still limit the representation of the reference wavefunctions
functions to single-determinants. We show that the cumulant
form aids in both the physical interpretation of many-body
effects observed in the spectra as well as the numerical
simulations. We find that, for the XAS, a convolution form in
terms of an effective single-particle spectrum and the core-hole
spectral function is key to accounting for two types of many-
body effects: First, inelastic losses caused by shake up excitations,
accounted for the spectral function. Second the edge
enhancement due to orthogonality. Both effects modulate the
XAS amplitude in opposite direction near threshold, despite

being non-singular for molecular systems. Interference terms
and extrinsic losses from the coupling between the core-hole and
the photoelectron are ignored. Nevertheless, these effects tend to
cancel due to their opposite signs. The formal behavior of the
RT-EOM-CC cumulant Green’s function is similar to that in
other approaches, e.g., field-theoretic methods such as the
linked-cluster theorem, or the quasi-boson approximation
(Nozieres and de Dominicis, 1969; Langreth, 1970; Hedin,
1999). For condensed matter systems, the cumulant kernel
function β(ω) is directly connected to the loss function or the
screened Coulomb interaction, and represents collective
excitations such as density fluctuations arising from the
sudden creation of the core-hole (Langreth, 1970; Kas and
Rehr, 2017). Other extensions to the approach reviewed here
are feasible. For instance, an analogous treatment is possible to
study x-ray emission spectra instead of XAS (Nozieres and
Combescot, 1971) by changing the unoccupied single-particle
states for the occupied ones. Finally, bigger systems computed
with a more user-friendly and efficient implementation,
including higher excitations, will be presented elsewhere.
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FIGURE 4 | Comparison of the experimental XAS μ(E) for NH3 (Wight
and Brion, 1974) vs photon energy E to those calculated from the convolution
in Eq. 2, the effective one-body XAS L(E) � μ1(E) and the independent particle
XAS L0(E) � μ0(E) from Eq. 25. The N x-ray K edge lies just under ELUMO

while Eb is the ionization threshold. In order to account for the sparsity of the
Gaussian-type orbital basis set in the continuum region above Eb, the
comparison to experiment includes variable broadening (see text) that
increases to a maximum of 3.5 eV above Eb.
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Accurate Prediction of Band Structure
of FeS2: A Hard Quest of Advanced
First-Principles Approaches
Min-Ye Zhang and Hong Jiang*

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing,
China

The pyrite and marcasite polymorphs of FeS2 have attracted considerable interests for
their potential applications in optoelectronic devices because of their appropriate
electronic and optical properties. Controversies regarding their fundamental band gaps
remain in both experimental and theoretical materials research of FeS2. In this work, we
present a systematic theoretical investigation into the electronic band structures of the two
polymorphs by using many-body perturbation theory with the GW approximation
implemented in the full-potential linearized augmented plane waves (FP-LAPW)
framework. By comparing the quasi-particle (QP) band structures computed with the
conventional LAPW basis and the one extended by high-energy local orbitals (HLOs),
denoted as LAPW+HLOs, we find that one-shot or partially self-consistentGW (G0W0 and
GW0, respectively) on top of the Perdew-Burke-Ernzerhof (PBE) generalized gradient
approximation with a converged LAPW + HLOs basis is able to remedy the artifact
reported in the previous GW calculations, and leads to overall good agreement with
experiment for the fundamental band gaps of the two polymorphs. Density of states
calculated from G0W0@PBE with the converged LAPW + HLOs basis agrees well with the
energy distribution curves from photo-electron spectroscopy for pyrite. We have also
investigated the performances of several hybrid functionals, which were previously shown
to be able to predict band gaps of many insulating systems with accuracy close or
comparable toGW. It is shown that the hybrid functionals considered in general fail badly to
describe the band structures of FeS2 polymorphs. This work indicates that accurate
prediction of electronic band structure of FeS2 poses a stringent test on state-of-the-art
first-principles approaches, and the G0W0 method based on semi-local approximation
performs well for this difficult system if it is practiced with well-converged numerical
accuracy.

Keywords: iron disulfide, band structure, GW approximation, self-energy, linearized augmented plane waves, hybrid
functionals

1 INTRODUCTION

Iron disulfide FeS2 was studied extensively in the last century in the desire of understanding the
structural and electronic properties of transition metal dichalcogenides (TMDC) featuring localized
or band-like d electrons (Hulliger and Mooser, 1965a; Hulliger and Mooser, 1965b; Goodenough,
1972; Wilson, 1972; Li et al., 1974; Schlegel and Wachter, 1976; Folkerts et al., 1987). Since 1980s
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(Chatzitheodorou et al., 1986; Ennaoui et al., 1986), increasing
practical interest has been drawn to pyrite FeS2 for its potential as
a cheap and competitive candidate material for efficient solar
energy conversion (Wadia et al., 2009) because of its natural
abundance, non-toxicity, suitable optical gap and extraordinarily
large absorption coefficient (Ferrer et al., 1990; Ennaoui et al.,
1993). This has led to new solutions under various optoelectronic
scenarios, including photovoltaics (Khalid et al., 2018), photo-
catalysis (Tian et al., 2015; Barawi et al., 2016), solid-state photo-
capacitors (Gong et al., 2013a) and photo-detectors (Wang et al.,
2012; Gong et al., 2013b). However, practical application of FeS2-
based optoelectronic devices is seriously hampered by its
unexpected low efficiency due to a loss of open-circuit voltage
VOC (Cabán-Acevedo et al., 2014). A number of factors possibly
responsible for the low VOC have been suggested and examined,
including the intrinsic and defect surface states (Bronold et al.,
1994; Sun et al., 2011; Herbert et al., 2013; Lazić et al., 2013;
Cabán-Acevedo et al., 2014; Limpinsel et al., 2014; Walter et al.,
2017), bulk sulfur deficiency (Birkholz et al., 1991; Cabán-
Acevedo et al., 2014; Shukla et al., 2016) and presence of the
metastable marcasite phase as a small-gap impurity (Spagnoli
et al., 2010; Sun et al., 2011; Schena et al., 2013).

Despite progress towards understanding the origin of the low
VOC in pyrite FeS2 (Rahman et al., 2020), consensus is still not
reached on the fundamental band gaps of the two FeS2 phases.
Experimentally, values varying from 0.6 to 2.6 eV have been
reported for pyrite, primarily due to differences in sample
preparation, measuring technique, and analytical model of
spectra used in experimental studies (Ferrer et al., 1990;
Ennaoui et al., 1993). Measurements of the pyrite band gap
are generally carried out through optical absorption
spectroscopy (Schlegel and Wachter, 1976; Kou and Seehra,
1978; Ennaoui et al., 1993), which features the neutral
excitation (exciton) instead of the charged one as in the
photo-electron spectroscopy (PES). Therefore, the measured
excitation energies are in fact coupled to the electron-hole
binding. Careful investigation by absorption spectroscopy for
the marcasite phase is done only recently and gives an optical gap
similar to pyrite, which essentially precludes the possibility of
marcasite being the culprit for the low VOC of FeS2 photovoltaics
(Sánchez et al., 2016; Wu et al., 2016). Furthermore, even though
PES measurements of pyrite FeS2 have been conducted (Ohsawa
et al., 1974; van der Heide et al., 1980; Folkerts et al., 1987;
Mamiya et al., 1997; Ollonqvist et al., 1997; Nesbitt et al., 2003),
combined studies of direct and inverse PES (IPS) for regions near
the Fermi level are rare. Reported relevant works (Folkerts et al.,
1987; Mamiya et al., 1997) were done more than 20 years ago and
the spectra were not resolved enough to identify a well-defined
fundamental band gap.

Difficulties in characterizing band structures of FeS2
polymorphs are also encountered from the perspective of first-
principles calculations.Within the framework of density functional
theory (DFT) (Hohenberg and Kohn, 1964), calculations with
Perdew-Burke-Ernzerhof (PBE) generalized gradient
approximation (GGA) (Perdew et al., 1996a) predict pyrite to
have a band gap of about 0.3 eV smaller than the experimental
value of 0.95 eV as generally accepted (Ennaoui et al., 1993;

Schena et al., 2013; Kolb and Kolpak, 2013; Li et al., 2015).
Considering the well-known band gap problem of local density
approximation (LDA) or GGA (Perdew et al., 1982), orbital-
dependent functionals in spirit of generalized Kohn-Sham
(GKS) DFT (Seidl et al., 1996; Perdew et al., 2017; Zhang et al.,
2020) are also employed to tackle the problem, e.g. PBE plus the
Hubbard-U correction (DFT + U) and hybrid functionals (Becke,
1993a; Becke, 1993b; Perdew et al., 1996b). Using an ad hoc U of
2 eV, the PBE + U method is able to reproduce the experimental
band gap (Sun et al., 2011; Hu et al., 2012; Li et al., 2018) but
meanwhile deteriorates the simulated optical spectra compared to
PBE (Choi et al., 2012; Schena et al., 2013). Furthermore, despite
the good performance in predicting band gaps for typical
semiconducting materials (Heyd et al., 2005; Paier et al.,
2006b,a; Marsman et al., 2008), hybrid functionals such as
Heyd-Scuseria-Ernzerhof (HSE) method (Heyd et al., 2003,
2006) have been shown to give large band gaps for pyrite of
over 2 eV (Muscat et al., 2002; Sun et al., 2011; Choi et al., 2012; Hu
et al., 2012; Schena et al., 2013; Liu et al., 2019). There are also
works using beyond-DFT methods, particularly, the GW method
based on many-body perturbation theory (MBPT) (Hedin, 1965).
However, the GW results for the pyrite phase are rather scattered,
ranging from 0.3 to 1.1 eV (Choi et al., 2012; Lehner et al., 2012;
Kolb and Kolpak, 2013; Schena et al., 2013). It is worth noting that
Schena and coworkers conducted the state-of-the-art all-electron
G0W0 calculations with the linearized augmented plane-wave
(LAPW) basis for both pyrite and marcasite, and report a
pyrite band gap only about 0.3 eV (Schena et al., 2013). The
GW gap value is smaller than that from PBE, which is rarely
observed in GW practices and hence deserves closer investigation.

For GW implementations involving explicit summation of
states, it is established recently by a number of works (Friedrich
et al., 2006; Friedrich et al., 2011a; Friedrich et al., 2011b; Klimes
et al., 2014; Jiang and Blaha, 2016; Nabok et al., 2016; Jiang, 2018;
Zhang and Jiang, 2019; Ren et al., 2021) that an accurate
description of high-lying empty states is essential to give
accurate correlation self-energy operator and consequent QP
band structure. In the pseudo-potential framework, one can
improve the accuracy by using a norm-conserving potential
with specifically tailored projectors at high energies (Klimes
et al., 2014; van Setten et al., 2018). In all-electron calculations
with the LAPW basis set, local orbitals with large energy
parameters (usually 101∼2 Ry higher than the Fermi level) are
introduced as additional basis functions to remove the
linearization error in unoccupied states up high in the
conduction band regime (Friedrich et al., 2006, 2011a,b; Jiang
and Blaha, 2016; Nabok et al., 2016). The LAPW basis extended
by these high-energy local orbitals (HLOs), termed as LAPW +
HLOs, has succeeded in helping produce accurate QP band
structures in good agreement with experiment for a variety of
semiconductors (Jiang and Blaha, 2016) including the
conventionally challenging systems such as ZnO (Friedrich
et al., 2011a; Friedrich et al., 2011b; Stankovski et al., 2011;
Jiang and Blaha, 2016; Nabok et al., 2016), d/f-electron oxides
(Jiang, 2018) and cuprous and silver halides (Zhang and Jiang,
2019). Particularly, the effects of including HLOs on the QP
correction have been demonstrated quantitatively to be larger for
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states with stronger metal-d characters (Zhang and Jiang, 2019).
For the FeS2 polymorphs with states of significant Fe-3d
characters in both valence and low-energy conduction band
regimes, GW with LAPW + HLOs is likely to give better
description of the QP energies and dispersion relation than
that with the standard LAPW basis.

A competitive alternative in the DFT framework to GW for
band structure prediction is the doubly screened hybrid (DSH)
functional method (Cui et al., 2018) in the category of hybrid
functionals with system-dependent parameters (Zhang et al.,
2020). Derived from a model dielectric function (Cappellini
et al., 1993; Shimazaki and Yoshihiro, 2008), the exchange-
correlation potential in DSH can be regarded as a further
approximation to the Coulomb hole and screened exchange
(COHSEX) approximation to the GW self-energy, and is able
to capture both dielectric and metallic screening in the exchange
interaction (Cui et al., 2018). It is shown that the DSH can
evaluate band gaps of typical sp semiconductors with accuracy
comparable to GW with the LAPW + HLOs basis while only at
modest computational cost (Cui et al., 2018). Furthermore, the
one-shot variant DSH0 can outperform fixed-parameter hybrid
functionals for band gap predictions in a wide range of materials
including narrow-gap semiconductors and transition metal
mono-oxides (Cui et al., 2018; Liu et al., 2020). Hence we
consider DSH as a hopeful approach to solve the FeS2 band
gap puzzle within the GKS framework of DFT.

In the present work, we investigate the electronic band
structures of the pyrite and marcasite polymorphs of FeS2 by
applying the state-of-the-art all-electron GW method with
the LAPW + HLOs basis. For comparison, we examine the
results from GW with the standard LAPW basis as well. We
also investigate the performances of several hybrid
functionals, including PBE0 (Perdew et al., 1996b), HSE06
(Heyd et al., 2003, Heyd et al., 2006), screened-exchange-PBE
hybrid functional (SX-PBE) (Bylander and Kleinman, 1990;
Seidl et al., 1996) and DSH (Cui et al., 2018), in attempt to
obtain insights into the failure of the conventional fixed-
parameter functionals in predicting the band gap of FeS2.

2 THEORY AND METHODS

2.1 The GW Method
The central task of the GW method is to solve the quasi-particle
(QP) equation with the self-energy operator Σ in the frequency
domain expressed as (Hedin, 1965)

Σ(r, r′;ω) � i
2π

∫∞

−∞
dω′eiω′δG(r, r′;ω + ω′)W(r′, r;ω′) (1)

where G is the time-ordered Green’s function

G(r, r′;ω) � ∑
nk

ψnk(r)ψ*
nk(r′)

ω − εnk + iηsgn(εnk − μ) (2)

With ψnk and εnk being the wave function and energy of the
single-particle state |nk〉 respectively, μ the chemical potential,
and δ and η positive infinitesimals. Atomic units are used

throughout the paper. The screened Coulomb interaction W
writes

W(r, r′;ω) � ∫ dr″ε−1(r, r″;ω)v(r″, r′) (3)

where v (r, r′) � 1/|r − r′| is the bare Coulomb interaction and
ε(r, r′; ω) is the microscopic dielectric function calculated at
the level of random phase approximation (RPA). In principle,
Eqs 1–3 have to be solved self-consistently along with the
Dyson equation for the Green’s function (Hedin, 1965).
However, due to the computational cost and generally
unsatisfactory results of the fully self-consistent GW for
solids [e.g. Grumet et al. (2018)], one usually turns to the
non-self-consistent variant G0W0. Considering the
resemblance of KS and QP wave functions in weakly
correlated systems (Hybertsen and Louie, 1986), the self-
energy or QP energy εQPnk can be computed perturbatively upon
the acquisition of Σ from the KS states as

εQPnk � εKSnk + Znk〈nk|Σ̂(εKSnk ) − V̂xc

∣∣∣∣nk〉 (4)

where Vxc is the KS exchange-correlation potential and Znk a
renormalization factor. One can further perform the so-
called energy-only self-consistent GW0 calculations, where
QP energies εQPnk in place of εKSnk in Eq. 2 are updated iteratively
while W is kept the same as in G0W0 (Shishkin and Kresse,
2007). The GW method has been implemented in various
numerical frameworks (Jiang, 2011; Golze et al., 2019). For a
detailed explanation of the basic theory and computational
techniques used in the present GW implementation, the
readers can refer to Jiang et al. (2013).

2.2 All-Electron Calculations With
HLOs-Extended LAPW Basis
In the all-electron framework with LAPW, KS wave functions are
expanded by the LAPW basis (Andersen, 1975; Singh and
Nordström, 2006; Blaha et al., 2020)

φLAPW
k+G (r) �

1��
V

√ ei(k+G)·r r ∉ Vα

∑
lm

Ak+G
αlm uαl(rα;Eαl) + Bk+G

αlm _uαl(rα;Eαl)[ ]Ym
l (r̂α) r ∈ Vα

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(5)

where Vα is the region enclosed by the muffin-tin (MT)
sphere of atom α centered at rα with radius Rα

MT, r
α � r −

rα, uαl (Eαl) is the solution of radial KS equation inside Vα at
chosen energy Eαl, _uαl(Eαl) ≡ zuαl(E)/zE|E�Eαl

, and Ym
l is the

spherical harmonic function. The coefficients Ak+G
αlm and Bk+G

αlm
are determined by enforcing that φLAPW

k+G (r) be smooth at the
boundary of Vα. Local orbitals (LOs) which vanish outside
the atomic spheres are proposed to supplement the LAPW
basis to better describe the semi-core states (Singh, 1991).
Inside the atomic sphere Vα, LOs take the following form

φLO,i
αlm (r) � ALO,i

αlm uαl(rα;Eαl) + BLO,i
αlm _uαl(rα;Eαl) + CLO,i

αlm uαl(rα;ELO,i
αl )[ ]Ym

l (r̂α)
(6)
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where ELO,i
αl is the energy parameter for the ith LO centered on

atom α with angular and azimuthal quantum numbers l and m,
respectively.

HLOs fall into the category of LOs with ELO
αl typically 10 ∼ 100

Ry above the Fermi level. Such extra LOs have been found to
facilitate accurate description of unoccupied states by remedying
the linearization error therein when using the LAPW basis
(Krasovskii et al., 1994; Krasovskii, 1997; Friedrich et al., 2006;
Michalicek et al., 2013). In ground state calculations with LDA/
GGA or hybrid functionals, the error causes no essential
difficulties, since only occupied and low-lying unoccupied
states are involved which are usually handled in sufficient
accuracy with the usual or standard LAPW basis generated as
default in popular DFT implementations with LAPWbasis (Blaha
et al., 2020). However, the error can be detrimental to the
numerical accuracy of methods where the summation over
unoccupied states is required, e.g. GW and DFT methods with
density approximations belonging to the fifth rung of Jacobi
ladder (Perdew and Schmidt, 2001) such as the adiabatic-
connection dissipation-fluctuation (ACFD) calculation under
RPA for ground-state energy (Ren et al., 2012; Cui et al., 2016;
Zhang et al., 2018). In these methods, the completeness of
summation and quality of unoccupied states play a crucial
role. Previous GW studies (Jiang and Blaha, 2016; Jiang, 2018;
Zhang and Jiang, 2019; Shen et al., 2020) have suggested that both
can be taken into account by including localized orbitals
energetically higher than the Fermi level in addition to the
standard LAPW basis. HLOs have been shown to effectively
improve the optical properties (Krasovskii et al., 1994;
Krasovskii, 1997), NMR chemical shifts (Laskowski and Blaha,
2012; Laskowski and Blaha, 2014), GW QP energies (Friedrich
et al., 2006; Friedrich et al., 2011a; Jiang and Blaha, 2016; Nabok
et al., 2016; Jiang, 2018; Zhang and Jiang, 2019), optimized
effective potential (Betzinger et al., 2011, 2012) and RPA
correlation energy (Betzinger et al., 2015).

In the current implementation, HLOs are generated
systematically by following the way described by Laskowski
and Blaha (2012). The quality of LAPW + HLOs is controlled
by two parameters besides those for the LAPW basis, namely, the
additional number of nodes in the radial function of highest
energy local orbital with respect to that of the LAPW function
with the same angular quantum number and the maximum
angular quantum number of used HLOs, denoted as nLO and
l(LO)max , respectively. Generally speaking, the larger nLO and l(LO)max
are, the higher the HLOs can reach in the energy space. We use
nLO � 0 to denote the usual or standard LAPW basis. Since the
convergence rate of the QP energy with respect to the two
parameters can be different for states featuring distinct atomic
characters, careful convergence check is required to obtain
numerically accurate GW results.

2.3 Hybrid Functionals
Hybrid functionals have been widely used in first-principles
simulations of condensed matter for their good balance
between performance and computational cost, and have been
actively developed to further exploit the potential of its particular
functional form. Readers interested in detailed description on the

current status of hybrid functional development are directed to
several recent reviews (Kümmel and Kronik, 2008; Baer et al.,
2010; Maier et al., 2019; Zhang et al., 2020). Here we briefly
introduce the general formalism of the range-separated hybrid
functionals and the variants relevant to the current study.

The essential ingredient in hybrid functional methods is the
exchange-correlation energy Exc or potential Vxc composed of
non-local orbital-dependent (screened) Hartree-Fock (HF)
exchange terms. In the present work, we focus on hybrid
functionals with Vxc in the range-separated form as (Zhang
et al., 2020)

Vxc(x, x′) � αsr VHF,sr
x (x, x′; μ) − VSL,sr

x (x; μ)δ(x − x′)[ ]
+αlr VHF,lr

x (x, x′; μ) − VSL,lr
x (x; μ)δ(x − x′)[ ]

+VSL
xc(x)δ(x − x′)

(7)

where VHF,sr
x and VHF,lr

x are the short- and long-ranged Fock
exchange potentials, respectively, which, using the reduced
density-matrix defined as ρ(x, x′) ≡ ∑i∈occψi(x)ψi*(x′), can be
written as

VHF,sr
x (x, x′; μ) � −ρ(x, x′)vsr(r, r′; μ)

VHF,lr
x (x, x′; μ) � −ρ(x, x′) v(r, r′) − vsr(r, r′; μ)[ ]. (8)

In Eq. 8 vsr (r, r′; μ) denotes the short-ranged Coulomb
interaction of a certain form characterized by screening
parameter μ (Zhang et al., 2020). x denotes collectively the
spatial and spin coordinates of an electron, x ≡ (r, σ). VSL,sr

x
and VSL,lr

x are the semi-local (SL) counterparts of the exchange
potentials in LDA, GGA or meta-GGA. μ and the mixing ratios
αsr and αlr are the adjustable parameters of the hybrid
functional form.

Conventionally, the parameters are determined by either
theoretical analysis or fitting against some dataset of
particular properties, and then applied to other systems as
fixed. Famous examples of the fixed-parameter hybrid
functionals include PBE0 αsr � αlr � 1/4 (Perdew et al.,
1996b) and the HSE series αsr � 1/4, αlr � 0, μ � 0.2–0.3 Å-1

(Heyd et al., 2003; Heyd et al., 2006). Recently, hybrid
functionals with system-dependent parameters are developed
by several groups (Shimazaki and Yoshihiro, 2008; Marques
et al., 2011; Kronik et al., 2012; Koller et al., 2013; Skone et al.,
2014; Chen et al., 2018; Cui et al., 2018). Among different
methods, the doubly screened hybrid (DSH) functional has
been demonstrated as a competitive candidate for accurate
description of band structures of both wide- and narrow-gap
semiconductors (Cui et al., 2018). The underlying idea of DSH is
to approximate the screening effect in solids by employing the
Bechstedt model dielectric function (Bechstedt et al., 1992)

ε(q) � 1 + (εM − 1)−1 + α
q

qTF
( )2[ ] (9)

where εM is the macroscopic dielectric constant, qTF the Thomas-
Fermi wave vector and α an empirical parameter chosen for
semiconductors (Cappellini et al., 1993). A screened Coulomb
interaction can be derived from this model to take both dielectric
andmetallic screening into account, leading to parameters inEq. 7 as
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αsr � 1, αlr � 1
εM

, μ � 2qTF
3

��
α

√ 1
εM − 1

+ 1( )1/2

. (10)

The corresponding short-ranged Coulomb interaction in Eq.
8 is

vsr(r, r′; μ) � erfc(μ|r − r′|)
|r − r′| (11)

where erfc is the complementary error function. In practice,
an initial εM is required, which can be obtained from the PBE
calculation or experimental measurements, to construct the
DSH potential and solve the GKS equation. The resulting
single-particle states act as the inputs to compute a new
εM, which is in turn used to update the DSH potential. The
self-consistent loop stops when εM is converged.
Alternatively, one can break after solving the GKS
equation with the initial εM, leading to the one-shot
scheme denoted as DSH0.

2.4 Computational Details
The unit cells of pyrite and marcasite FeS2 used in our
calculations are shown in the left panel of Figure 1. The
crystal structure of pyrite FeS2 (Figure 1A) can be viewed as a
faced-centered cubic cell of Fe atoms with S2 dumbbells
occupying the octahedral interstitials and pointing to
different <111> crystallographic axes. The anion
coordination octahedra (FeS6) are connected only through
sharing vertices. In the orthorhombic marcasite phase
(Figure 1C), (FeS6) are connected by sharing edges with
the two neighbors along c-axis and linked together through
sharing vertices on the aOb plane. In terms of lattice

parameters, we use a � 5.418 Å, u � 0.3850 for pyrite
(space group Pa3) and a � 4.443 Å, b � 5.425 Å,
c � 3.387 Å, u � 0.2005, v � 0.3783 for marcasite (space
group Pnnm). These values follow the results from X-ray
diffraction experiments at ambient conditions (Brostigen and
Kjekshus, 1969; Brostigen et al., 1973; Chattopadhyay and
Von Schnering, 1985; Zuñiga-Puelles et al., 2019). The
corresponding S-S bond lengths in the two polymorphs are
2.16 and 2.21 Å, respectively.

The present all-electron GW calculations are performed by
the GW facilities in the GAP2 program (Jiang et al., 2013; Jiang
and Blaha, 2016) interfaced to WIEN2K (Blaha et al., 2001, 2020).
Results in both G0W0 and GW0 schemes are presented, where
KS orbital energies and wave functions calculated with the PBE
(Perdew et al., 1996a) GGA are used as the input to construct
one-body Green’s function and screened Coulomb interaction.
The KS states are obtained by using charge density pre-
converged under self-consistent field (SCF) calculation with
PBE and the standard LAPW basis. The energy criterion for
convergence of SCF iterations is set to 10–8 Rydberg (Ry). 64 (4
× 4 × 4) and 120 (5 × 4 × 6) k points are sampled in the first
Brillouin zones of pyrite and marcasite FeS2, respectively. All
available unoccupied states are considered in the summation of
states for screened Coulomb interaction W and self-energy Σ.
Mixed product basis is used to describe the wave function
products in the two-point functions, e.g. W and Σ
(Aryasetiawan and Gunnarsson, 1994; Kotani and van
Schilfgaarde, 2002). We choose Q � 0.75 and lMB

max � 3for the
interstitial plane wave andMT product basis, respectively [Jiang
et al. (2013) for the meanings of these parameters]. LAPW and
LOs with Eαl < 20 Ry are used to build the MT product basis.
Frequency dependence of W is treated explicitly on a 16-point
double Gauss-Legendre grids along the positive imaginary axis.
Σ on the same grid is calculated and analytically continued to
the real axis (Rojas et al., 1995). A rather coarse k/q-point mesh,
2 × 2 × 2 for pyrite and 4 × 2 × 4 for marcasite, is sufficient to
converge the direct band gap at the Γ point Eg

Γ within 0.01 eV.
The QP band structure diagrams along particular k-point paths
(see the right panel of Figure 1) are calculated by interpolating
the QP energies obtained with the above mesh using the Fourier
interpolation technique (Pickett et al., 1988).

In terms of the LAPW basis, the usual or standard LAPW basis
set is created automatically in the recent version of WIEN2K (Blaha
et al., 2001), which is actually a mixture of the APW + lo basis for
the valence states (Madsen et al., 2001), the ordinary LAPW basis
for higher l channels up to lmax � 10 and additional local orbitals
(LOs) for semi-core Fe-3s and Fe-3p states (Blaha et al., 2001). The
convergence with respect to the two HLOs parameters nLO and
l(LO)max is investigated, the latter being represented by ΔlLO � l(LO)max −
l(v)max where l

(v)
max is the largest l of valence orbitals for each element.

In the present study, l(v)max � 2 and l(v)max � 1 for Fe and S,
respectively. Since the convergence with respect to HLOs
parameters are decoupled from the choice of k-point mesh, we
choose marcasite with a coarse 2 × 1 × 2 mesh for HLOs
convergence test. RKmax ≡ RMT,minKmax � 7.0 is chosen for the
plane-wave cut-off in the interstitial region, where RMT,min is the
minimal muffin-tin radius RMT used in the lattice. In the present

FIGURE 1 | Lattice structures (A,C) and first Brillouin zones (B,D) of
pyrite (upper) and marcasite (lower) phases of FeS2. Brown and yellow
spheres represent Fe and S atoms, respectively.
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FeS2 case, RMT is set to 2.1 Bohr for Fe and 1.9 Bohr for S. Using
RKmax � 9.0 will reduce the band gap from GW (LAPW + HLOs)
by less than 0.03 eV, indicating that adequate accuracy can be
delivered with the current RKmax � 7.0 setup. Due to limited
computational resources, RKmax � 6.0 is used for HLOs
convergence test. Following Laskowski and Blaha (2012), the
linear independence of HLO basis functions is assured by
choosing the energy parameters such that the overlap between
theHLO radial functions is smaller than a threshold, which is 0.6 in
the present work.

For hybrid functional calculations, we consider PBE0
(Perdew et al., 1996b), HSE06 (Heyd et al., 2003, 2006)
and screened exchange SX-PBE (Bylander and Kleinman,
1990) methods as well as DSH. All hybrid functional
calculations are performed with the projector augmented
waves (PAW) method (Blöchl, 1994) implemented in the
Vienna ab-initio Simulation Package (VASP) (Kresse and
Furthmüller, 1996). The static dielectric function is
calculated from the average of diagonal elements of
macroscopic dielectric tensor computed by using density
functional perturbation theory (DFPT) with local field effect
included (Baroni et al., 2001). Apart from 3d and 4s, the 3s
and 3p electrons of Fe are also treated explicitly in the
valence region. The Thomas-Fermi wave vectors are 2.57
and 2.56 Å-1 for pyrite and marcasite FeS2, respectively. The
cut-off energy of plane-wave basis for wave function
expansion is chosen as 400 eV, which is sufficient to
converge Eg

Γ of both FeS2 polymorphs within 2 meV. In
terms of k-point mesh, 64 (4 × 4 × 4) and 120 (5 × 4 × 6) k
points are sampled in the first Brillouin zones of pyrite and
marcasite for the self-consistent calculations, respectively.
Using a finer 6 × 6 × 6 sampling for pyrite will change the
band gap by less than 0.01 eV, and hence we consider the
results well converged with respect to the k-point mesh. The
energy convergence criterion is chosen to be 10–6 eV for the
SCF iterations.

3 RESULTS AND DISCUSSION

3.1The GW Results
In this part, we present the electronic band structures of pyrite
and marcasite FeS2 computed by the all-electron GW method. In
particular, we analyse the effect of high-energy local-orbitals
(HLOs) by comparing the results from GW with the standard
LAPW and LAPW + HLOs basis.

3.1.1 Convergence of QP Energies with Respect to
HLOs Parameters
To achieve a balance between the computational cost and
numerical accuracy of the LAPW + HLOs based GW method,
we have to decide an optimized HLOs setup for the FeS2
polymorphs of interest. That is to say, certain convergence
with respect to the two HLOs parameters, namely nLO and
ΔlLO, must be achieved for the QP band structures of both
polymorphs, while the number of basis functions should be
kept as few as possible. To simplify the notation, we denote
the setup of HLOs by (nLO, ΔlLO) so that (1, 1) indicates a set of
HLOs with nLO � 1 and ΔlLO � 1, for example. Since we are most
interested in the band gaps (direct and indirect) of the systems, we
choose the indirect band gap from the X point to the Γ point,
EX–Γ
g , as the descriptor for the band structure, and investigate its

dependence on the two HLOs parameters for marcasite.
Before discussing the results, we briefly illustrate the

appropriateness of this choice. First of all, EX–Γ
g is a

representative band gap energy for pyrite and marcasite FeS2.
This is because in both phases, the topmost valence state at the X
point, Xv, is close to the valence band maximum (VBM) and the
bottommost conduction state at the Γ point, Γc, is the conduction
band minimum (CBM) (that is the case for marcasite given the
coarse 2 × 1 × 2 kmesh in the convergence study). Second, either
Xv or Γc has similar atomic contributions in the two polymorphs,
and the effects of HLOs on such states are also similar, as shown
in the results for other polymorphs like zinc-blende and wurtzite
ZnO (Jiang and Blaha, 2016). Therefore the parameters optimized
for marcasite are considered transferable and can be applied to
the pyrite polymorph. Last but not least, as we will discuss later,
the effects of HLOs on Xv and Γc differ significantly, avoiding
considerable error cancellation in change of the QP correction to
the band gap upon including HLOs.

FIGURE 2 | Dependence on HLOs parameters of G0W0@PBE
calculated (A) the indirect band gap between X and Γ, EX–Γ

g , and self-energy
corrections to (B) bottommost conduction state at the Γ point, ΔϵΓc, and (C)
topmost valence state at the X point, ΔϵXv , for marcasite FeS2.

TABLE 1 | Energy parameters (unit: Rydberg) of high-energy local orbitals (HLOs)
used in pyrite FeS2 corresponding to HLOs parameters nLO � 4, ΔlLO � 4 for Fe
and S. Those for marcasite are essentially the same with difference by 0.02 Ry at
most in each element and l channel.

l = 0 1 2 3 4 5 6

S 5.30 15.72 14.46 24.02 33.08 42.40 —

— 35.76 34.72 30.82 43.64 55.88 68.30 —

— 62.42 59.66 53.00 69.00 84.30 99.70 —

— 95.04 90.32 80.96 99.94 118.24 136.60 —

— 133.50 — — — — — —

Fe 18.72 19.68 8.15 18.22 26.44 34.42 42.66
— 38.14 38.46 20.29 33.16 44.28 55.00 65.86
— 62.80 62.28 37.37 52.92 66.72 80.06 93.46
— 92.48 90.90 59.25 77.40 93.78 109.62 125.50
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Figure 2 summarizes the results of convergence study for the
G0W0@PBE method. EX–Γ

g (Figure 2A) is about 1.0 eV with the
standard LAPW basis (nLO � 0) and is significantly increased by
extending LAPW with HLOs. One can see that the convergence
rate of EX–Γ

g with respect to nLO differs with different ΔlLO, and is
faster for lower ΔlLO. The reverse is also true, i.e. the convergence
with respect toΔlLO is faster when nLO is smaller. It clearly indicates
that the convergence with respect to nLO and ΔlLO is coupled.
Increasing HLOs parameters from (4, 4) to (5, 5) changes EX–Γ

g by
less than 0.05 eV, indicating that HLOs (4,4) is able to deliver an
adequate accuracy. Therefore, unless stated otherwise, HLOs (4, 4),
amounting to 196 and 145 HLOs for Fe and S atoms, respectively,
is considered optimized and will be used in the subsequent GW
calculations denoted by LAPW+HLOs. The energy parameters for
HLOs (4, 4) can be found in Table 1.

It is worth noting that the effect of including HLOs on the QP
correction to EX–Γ

g is different from those on the valence and
conduction states. To illustrate this, we show the dependence on
nLO and ΔlLO of the self-energy corrections to Γc (ΔεΓc ) and Xv

(ΔεXv ) states in Figures 2B,C, respectively. Both ΔεΓc and ΔεXv
decrease with increasing nLO or ΔlLO, but the former converges
much faster than the latter, which agrees with the general trend
observed previously (Jiang and Blaha, 2016; Zhang and Jiang,
2019). With the standard LAPW basis, G0W0@PBE gives ΔεΓc �
0.48 eV and ΔεXv � 0.76 eV, indicating a negative QP correction to
the band gap, which is rarely observed in LDA/GGA-based GW
calculations of semiconductors (Jiang and Blaha, 2016). When
HLOs (5, 5) are included, ΔεΓcdecreases by 0.3 eV, much smaller
compared to the decreasing of 1.2 eV in ΔεXv . Such biased effects of
including HLOs on valence and conduction band states can be
attributed to the difference in atomic characteristics between the
states, and will be further discussed in the following sections.

3.1.2 Quasi-Particle Band Gaps
After having obtained the optimized HLOs, we perform the PBE-
based GW calculations for pyrite and marcasite FeS2 with the
LAPW + HLOs basis set, and compare with the PBE method and
GW with the standard LAPW basis.

The band gaps of pyrite and marcasite FeS2 calculated by PBE
and GW methods are presented in Table 2. The fundamental
band gaps are obtained by computing the band energies along the
k-point paths indicated in the right panel of Figure 1. In the PBE
reference, pyrite and marcasite are predicted to have indirect
fundamental band gaps of 0.70 and 0.83 eV, respectively. Our
PBE results are consistent with those from previous all-electron
LAPW study (Schena et al., 2013) and close to the recently
reported optical band gaps obtained from diffuse reflectance
spectroscopy (Sánchez et al., 2016). However, our PBE band
gap for pyrite is slightly larger than several reported PBE results
(Sun et al., 2011; Kolb and Kolpak, 2013; Lazić et al., 2013; Li et al.,
2015; Zhang et al., 2018). This can be attributed to the use of
different lattice structures in those studies (Eyert et al., 1998; Lazić
et al., 2013; Schena et al., 2013) from the current work.
Particularly, geometry optimization by PBE (Eyert et al., 1998;
Schena et al., 2013) generally gives a longer S-S dimer, which leads
to smaller splitting between bonding and anti-bonding S-3pσ
orbitals and a consequent shrink in the band gap.

For GW calculations with the standard LAPW basis, the QP
fundamental band gaps by G0W0@PBE are smaller than the PBE
counterparts in both FeS2 polymorphs. Pyrite FeS2 is predicted to
have a band gap of only 0.06 eV, which is 0.64 eV smaller than
that by PBE. The negative QP correction for pyrite band gap has
been reported by Schena et al. (2013). The QP fundamental band
gap for marcasite predicted by G0W0@PBE (LAPW) is also
smaller than PBE, while the change (0.26 eV) is less dramatic

TABLE 2 | Fundamental band gap (indicated by “fund.”) and other direct and indirect band gaps (unit: eV) for pyrite andmarcasite FeS2 calculated by PBE andGWmethods.
Results from previous GW studies and experimental measurements are presented for comparison. To simplify the notation, we use “L” and “L + H” to denote the
standard LAPW and LAPW + HLOs basis sets, respectively. PBE is used as the starting point for G0W0 and GW0 calculations unless stated otherwise.

Methods
Pyrite Marcasite

Fund. Γ → Γ X → Γ X → X M → Γ Fund. Γ → Γ Γ → T X → Γ X → T

PBE 0.70 0.82 0.72 1.68 0.85 0.83 1.74 1.37 1.32 0.95
G0W0 (L) 0.06 0.11 0.08 1.96 0.32 0.57 0.88 1.62 0.80 1.53
GW0 (L) metal — — — — 0.29 0.60 1.62 0.59 1.61
G0W0 (L + H) 1.04 1.16 1.06 2.14 1.18 1.15 1.80 1.55 1.54 1.28
GW0 (L + H) 1.14 1.28 1.16 2.21 1.28 1.16 1.87 1.56 1.59 1.28

Previous GW — — — — — — — — — —

G0W0
a

— 0.28 0.31 1.67 — 1.06 1.40 — 1.19 1.40
G0W0

b
— 0.61 0.63 1.72 — — 1.88 — 1.57 1.25

GW0
c 0.97 — — — — — — — — —

scGWd 1.01 — — — — — — — — —

QSGWe 0.81 — — — — — — — — —

Expt 0.95f, 0.82g — — — — 0.83g — — — —

aFrom Schena et al. (2013), using LAPW extended by HLOs up to 800 eV and with Fe 3s, 3p LOs included.
bFrom Schena et al. (2013), using LAPW extended by HLOs up to 800 eV but without Fe 3s, 3p LOs.
cFrom Ouarab and Boumaour (2017).
dFrom Kolb and Kolpak (2013), using PAW method and experimental lattice constants.
eFrom Lehner et al. (2012), using LMTO method.
fFrom Ennaoui et al. (1993).
gFrom Sánchez et al. (2016), optical gap at room temperature using diffuse reflectance spectroscopy.
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than that for pyrite. Such negative QP corrections to LDA/GGA
band gaps are uncommon in GW studies for closed-shell systems
(Klimes et al., 2014; Jiang and Blaha, 2016; van Setten et al., 2017;
Zhang and Jiang, 2019) as well as open-shell d/f-electron
semiconductors (Jiang, 2018). Switching on self-consistency of
the Green’s function by GW0@PBE further reduces the
fundamental band gaps of FeS2. In particular, pyrite is
predicted to be metallic by GW0@PBE, which disagrees
qualitatively with its semiconducting nature in experiment
(Ennaoui et al., 1993). For other direct and indirect band gaps,
those for Γ→ Γ and X→ Γ in pyrite and marcasite andM→ Γ in
marcasite are decreased from PBE to G0W0@PBE (LAPW). The
decrease is largest for the Γ → Γ gap in the two phases, 0.71 and
0.86 eV for pyrite and marcasite, respectively. On the other hand,
the gaps for X → X in pyrite, Γ → T and X → T in marcasite are
increased by 0.28, 0.25, and 0.58 eV, respectively. However, it
should be noted that the distinction in signs of corrections to the
QP gaps in different channels should not be considered as
intrinsic for FeS2. Instead, it is an artifact as a result of the
incomplete basis, which we will discuss in details below.

Now we turn to the LAPW + HLOs-based GW calculations.
With the G0W0@PBEmethod, including HLOs increases the QP
fundamental gap by 0.98 eV for pyrite and 0.58 eV for
marcasite. The resulting G0W0@PBE band gaps are 1.04 and
1.15 eV for pyrite and marcasite, respectively. In contrast, all
band gaps investigated are increased by G0W0 with LAPW +
HLOs compared to their PBE counterparts. We note that HLOs
have distinct effects among band gaps for different channels.
Once the HLOs are included, band gaps for channels with the
conduction state at the Γ point are increased by about 1 eV. On
the other hand, the QP correction to the X → X band gap in
pyrite increases by only 0.18 eV. Moreover, the gaps for Γ → T
and X→ T in marcasite even decrease. With the LAPW + HLOs
basis, using GW0 to switch on partial self-consistency further
increases the band gaps, but the change is moderate and no
more than 0.1 eV.

As explained at the beginning, the fundamental band gap of
FeS2 has been controversial in the recent decades, partly due to
the widely varying experimental values (Ennaoui et al., 1993). In
the present study, the GW0@PBE method with the LAPW +
HLOs predicts that pyrite and marcasite have indirect
fundamental band gaps of 1.14 and 1.16 eV, respectively. The
GW0 gap of pyrite is slightly larger than the generally accepted
experimental value of 0.95 eV (Ennaoui et al., 1993).
Furthermore, the fact that the two polymorphs have almost
identical band gaps is consistent with the optical
measurements by Sánchez et al. (2016), although our predicted
band gaps are about 0.3 eV larger. However, it should be noted
that one must take exciton binding energy EB into account for a
meaningful comparison between the QP fundamental band gap
and experimentally measured optical gap. The difference between
the fundamental and optical gaps can be significant when the
exciton is localized, i.e. of Frenkel type (Fox, 2010). On the other
hand, while it is more straightforward to compare the QP gap
with spectral data from direct and inverse PES (Folkerts et al.,
1987; Mamiya et al., 1997), the resolutions of available
measurements for pyrite FeS2 are too low to extract a

meaningful gap value for comparison. Moreover, to the best
knowledge of the authors, no data of combined PES/IPS
measurements are available for marcasite. Therefore, further
experimental studies are required to determine and verify the
band gaps of the FeS2 polymorphs.

To close this part, we highlight that the present work resolve
two issues reported in previous GW studies in terms of QP band
structures of FeS2. First, Schena et al. (2013) performed a G0W0@
PBE study on pyrite and marcasite FeS2 with similar HLOs-
extended LAPW basis. The fundamental band gap of pyrite was
estimated as about 0.3 eV, by which the authors claimed to
explain the low VOC encountered in the pyrite solar cell.
However, according to our convergence study, such a small
band gap is likely to result from inadequate convergence with
respect to HLOs. More specifically, the largest angular
momentum of HLOs l(LO)max used in Schena et al. (2013) is 3,
i.e. f orbital, while l(LO)max � 2 + 4 � 6 (i orbital) is used in the
optimized HLOs of the present work. As a result, the highest
energy covered by HLOs in Schena et al. (2013) (800 eV) is much
smaller than that used in the present work (about 1800 eV).
Second, fully self-consistent GW (scGW) and quasi-particle self-
consistent GW (QPscGW or QSGW) calculations have also been
carried out to study the band structure of pyrite, and give
apparently satisfactory results (Lehner et al., 2012; Kolb and
Kolpak, 2013). However, variants of self-consistent GW
without taking the vertex function into account tend to
overestimate the band gaps of typical semiconductors, as
indicated by several works (Shishkin and Kresse, 2007;
Deguchi et al., 2016; Cao et al., 2017; Grumet et al., 2018).
Thus the error cancellation between the general tendency of
overestimating band gaps of semiconductors and the

FIGURE 3 | Comparison of band structures computed from PBE (black
dotted), G0W0@PBE with the standard LAPW basis (blue dashed) and
G0W0@PBE with the LAPW basis extended by optimized HLOs (LAPW +
HLOs, red solid) for (A) pyrite and (B) marcasite FeS2. The conduction
band minimum is aligned as the energy zero and marked by the black
dash-dotted line.
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numerical inaccuracy in the LAPW basis or the use of
conventional pseudo-potentials could contribute to the
apparent agreement between the generally accepted band gap
and the self-consistent GW results. Of course, without looking
into computational details of previous self-consistent GW
calculations, this is just our speculation. Further investigations
are needed to fully clarify this issue. We also note that similar
LAPW + HLOs calculation has been conducted for the pyrite
phase by Ouarab and Boumaour (2017) and gives a band gap
(0.97 eV) close to ours.

3.1.3 Quasi-Particle Band Structure
To further illustrate the significance of HLOs in applying the GW
methods to FeS2, we present the QP band structures of pyrite and
marcasite FeS2 calculated from the G0W0@PBE method with the
LAPW + HLOs basis set, and compare the results to those with
the standard LAPW basis.

Figure 3 shows the electronic band structures of the two FeS2
phases from different methods. Note that the bands are aligned to
the CBM at the Γ point for a better view of QP correction to the
valence states. With PBE, pyrite (Figure 3A) is found to be an
indirect band gap material with the CBM located at the Γ point
and the VBM near the X point along Γ–X. The top valence bands
within 1 eV below the VBM are dominated by the localized Fe-3d
states, also manifested by their flat dispersion. The dispersive
bands about 2 eV below the VBM are mainly composed of S-3p
states and well separated from the Fe-3d (t2g) valence bands. In

the conduction band region, the lowermost conduction bands are
also largely composed of Fe-3d (eg), except for the states close to
the Γ point with predominant S-3p characters. Particularly, the
CBM Γc state is exclusively formed by the σ anti-bonding
overlapping of S-3p orbitals in the S-S dimer (see projected
bands in Figure 4A). Valence and conduction bands with
strong Fe-3d characters are separated by about 2 eV. For
marcasite, an indirect band gap is also observed, with the
CBM located at the T point (Tc) and the VBM along Γ–X
(Δv). Both states at the VBM and CBM of marcasite are of
dominant Fe-3d characters (Figure 4D), in contrast to pyrite
where CBM is of pure S-3p characters. The wider Fe-3d valence
bands overlap with the S-3p bands near about 1.5 eV below the
VBM, which indicates stronger covalent bonding between Fe and
S in marcasite than in pyrite.

Then we compare the QP band structures obtained from
G0W0@PBE with the LAPW and LAPW + HLOs basis
(Figure 3). With the standard LAPW basis, G0W0@PBE
predicts pyrite almost as a semimetal with a nearly vanishing
band gap (Figure 3A). Dispersion of the conduction band around
the Γ point and the separation between the Fe-3d and S-3p valence
bands are enhanced compared to the PBE reference. For marcasite
(Figure 3B), although a noticeable gap (0.57 eV) is predicted by
G0W0@PBE, the band edges are different from those in PBE: the
CBM is located at the Γ point (Γc) and theVBM in themiddle of the
Z–Γ path (Λv). The change in the nature of band edges from semi-
local functional to GW method is also observed by Schena et al.

FIGURE 4 | (A) Projected band structure from GW with the LAPW + HLOs basis, (B) self-energy corrections Δε to Kohn-Sham states, and (C) the difference
between Δεwith LAPW +HLOs and LAPW basis against the weight of Fe-d characterswFe−d

nk defined by Eq. 12 for pyrite FeS2.GW are performed at theG0W0 level. The
quasi-particle (A) and Kohn-Sham (B) energies are aligned to the corresponding valence band maximum. In (A), projections of states on Fe-d and S-p orbitals are
proportional to the diameters of red and blue circles, respectively. (D–F) are the counterparts for the marcasite phase.
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(2013). Once HLOs are included in the basis set, QP band gaps of
both phases are dramatically enlarged. The fundamental gaps of
pyrite and marcasite are 1.04 and 1.15 eV, respectively, which are
0.2 ∼ 0.3 eV larger than the optical gaps from absorption spectra
(Sánchez et al., 2016). Band edges of marcasite by GW are also
recovered to those by PBE. The comparison indicates that both
negative QP corrections to band gaps and change of band edges in
GW (LAPW) are indeed artifacts due to the inadequate numerical
accuracy of the basis set.

To better understand how the HLOs basis functions influence
the QP band structures of FeS2, we scrutinize the QP correction to
Kohn-Sham state Δε, defined by the difference between the QP
energy εQP and the KS energy εKS, i.e. Δε ≡εQP − εKS. For pyrite,
with the standard LAPW basis, Δε to the CBM is smaller than
those to the valence Fe-3d t2g and conduction Fe-3d eg states as
shown in Figure 4B. Particularly, Δε for the VBM is about 0.7 eV
greater than that for the CBM. This leads to a up-shift of Fe-3d
states with respect to the CBM on a whole. Extending LAPWwith
HLOs reduces Δε for all states, but the reduction in Δε to the
VBM is more than that to the CBM by about 1.0 eV, resulting in
the sign change of the QP correction to the band gap. Similar
conclusion can be drawn from Δε in the marcasite phase
(Figure 4E). With the standard LAPW method, Δε to Tc

exceeds that to Γc by more than 1.1 eV. Consequently, Γc
drops down below Tc and becomes the CBM, as we have seen
in Figure 3B. Upon including HLOs, Δε to Tc is reduced more
significantly than Δε to Γc such that Tc recovers the conduction
band edge as in PBE.

Such biased effects of HLOs are clearly associated with the
atomic characteristics of Kohn-Sham states, as we have
demonstrated in the GW calculations of cuprous and silver
halides (Zhang and Jiang, 2019). In Figures 4C,F, we plot the
difference between Δε computed by G0W0 with LAPW + HLOs
and LAPW against the weight of Fe-d characters of the Kohn-
Sham orbitals |ψnk〉, wFe−d

nk , defined by

wFe−d
nk � ∑

i

∑2
m�−2

〈ϕFei
l�2,m |ψnk〉

∣∣∣∣ ∣∣∣∣2 (12)

where ϕFeil�2,m represents the pre-defined atomic function
centered on the ith Fe atom featuring spherical harmonic
function Ym

2 . The negative difference implies that including
HLOs generally brings down Δε. Moreover, the difference is
more dramatic for states with larger wFe−d

nk , indicating that
numerical error is more significant for states with stronger
Fe-d characters in GW calculations with the incomplete
LAPW basis.

3.1.4 GW Density of States
To end this section, we present the GW calculated density of
states (DOS) of FeS2 polymorphs in Figure 5. The results for
pyrite FeS2 are shown in Figure 5A. Due to different
definitions of the Fermi level in theoretical results and
experimental spectral data, we have shifted the experimental
data to match up the highest valence peak near the Fermi level.
With this alignment, the overall DOS from G0W0 (LAPW +
HLOs) agrees well with the energy distribution curves (EDCs)
from the PES experiments. The width of the valence Fe-3d
band and separation between the Fe-3d and S-3p valence bands
are consistent with the UPS experiment by Mamiya et al.
(1997) and the XPS experiment by Folkerts et al. (1987).
The location of the first peak in the conduction band region
is also in good agreement with the BIS data (Folkerts et al.,
1987). Interestingly, although G0W0 (LAPW) underestimates
the band gap severely, the location of the first peak in the
conduction region is almost identical to that by G0W0 (LAPW
+ HLOs), probably due to the error cancellation between QP
corrections to the valence and conduction Fe-3d bands.
However, such fortuitous cancellation does not hold in the
valence region as inferred by the too deep S-3p band in the
G0W0 (LAPW) results.

Figure 5B shows the calculated DOS for marcasite. Regardless
of the theoretical method used, the valence Fe-3d band of
marcasite has larger width than that of pyrite, indicating a
stronger Fe-S interaction in the marcasite phase. In the
conduction region, a sharp peak is observed with the G0W0

(LAPW) method, while only a plateau is found with G0W0

(LAPW + HLOs). However, the sharp peak is actually an
artifact of wrongly pushed up Fe-3d conduction bands due to
the inaccuracy of the standard LAPW basis as explained above.

FIGURE 5 | Density of states (DOS) computed from PBE (black dotted),
G0W0@PBE with the standard LAPW basis (blue dashed) and G0W0@PBE
with the LAPW + HLOs basis (red solid) for (A) pyrite and (B) marcasite FeS2.
Energy distribution curves (EDCs) of pyrite extracted from photo-
electron spectroscopy (PES) are presented for comparison. Each dataset is
normalized with respect to its highest peak. Theoretical data are aligned to its
valence band maximum as energy zero. The XPS + BIS and UPS + BIS data
for pyrite are obtained from Folkerts et al. (1987) and Mamiya et al. (1997),
respectively. To take into account the different definitions of the Fermi level in
theory and experiment, a rigid shift of 0.60 and 0.40 eV are employed for the
EDCs from XPS + BIS and UPS + BIS, respectively, to match the highest
valence peaks below the Fermi level.
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3.2 Results From Hybrid Functionals
As mentioned in the introduction, previous theoretical
studies found that various hybrid functionals, which are
typically able to describe the band gaps of semiconductors
quite accurately, performed badly for FeS2. In this section, we
look into this issue and present results by several hybrid
schemes including the DSH functional with system-
dependent parameters.

3.2.1 Band Gaps by Hybrid Functionals
Band gaps computed by different hybrid functionals are
collected in Table 3. The widely used PBE0 and HSE06
functionals have been reported to predict fundamental
gaps of pyrite and marcasite FeS2 larger than 2 eV in the
literature (Sun et al., 2011; Choi et al., 2012; Hu et al., 2012;
Schena et al., 2013; Liu et al., 2019), which is confirmed by our
results. DSH, the hybrid functional with system-tuned
parameters, does not improve the prediction over PBE0
and HSE06. This is surprising, given that DSH has been
previously shown to outperform several other hybrids in
evaluating band structures for wide- and narrow-gap
systems (Cui et al., 2018; Liu et al., 2020), including PBE0,
HSE06 and the dielectric-dependent hybrid (DDH)
functionals (Marques et al., 2011; Skone et al., 2014). SX-
PBE screened exchange functional gives band gaps of FeS2
significantly smaller than the hybrids mentioned above, but
the gaps are still larger than those from GW with the LAPW +
HLOs basis (Table 2) by about 0.5 eV.

Considering that the one-shot DSH, i.e. DSH0, may
outperform the self-consistent scheme in some transition
metal compounds (Cui et al., 2018; Liu et al., 2020), we also
employ DSH0 to calculate the two FeS2 polymorphs. The
macroscopic dielectric constant calculated with PBE εMPBE is
20.6 for pyrite, which agrees well with εMPBE � 21 from a previous
study (Choi et al., 2012). DSH0 with εMPBE predicts smaller band
gaps than DSH, but the values are still above 2 eV. Meanwhile,
DSH0 with experimentally obtained εM � 10.9 (Husk and Seehra,
1978) gives the pyrite band gap of 2.72 eV. In contrast, a modified
HSE functional (MHSE) with HSE06 screening parameter and
10% hybrid ratio, which is roughly equal to the inverse of the
experimental dielectric constant, as suggested by Liu et al. (2019),
gives band gaps close to the GW0 (LAPW + HLOs) result. The
MHSE results agree with those by Liu et al. (2019) and seem to
verify the suggestion by Schena et al. (2013) of using 1/εM as the
hybrid ratio in the HSE-type screened hybrid functional.

3.2.2 Band Structures by Hybrid Functionals
As summarized above, the investigated hybrid functionals except
for MHSE fail to give reasonable predictions for the band gaps of
pyrite and marcasite FeS2. In this section, we take a close look at
the band structures computed from these methods to understand
the failure.

The band structures for pyrite calculated from selected hybrid
functionals are shown in the upper panel of Figure 6. With PBE0
and HSE06 (Figures 6A,B), the fundamental band gap is a direct
one with both VBM and CBM located at the Γ point. An indirect

TABLE 3 | Fundamental band gap (indicated by “fund.”) and other direct and indirect band gaps (unit: eV) for pyrite and marcasite FeS2 calculated by different hybrid
functionals. Results from other theoretical studies and experimental measurements are presented as comparison.

Methods
Pyrite Marcasite

Fund. Γ → Γ X → Γ X → X M → Γ Fund. Γ → Γ Γ → T X → Γ X → T

PBE0 2.94 2.94 3.04 4.34 3.03 2.95 3.63 4.01 3.22 3.60
HSE06 2.22 2.22 2.32 3.58 2.31 2.26 2.91 3.26 2.53 2.88
MHSE 1.16 1.29 1.18 2.32 1.27 1.47 2.09 1.96 1.72 1.59
DSH0a 2.43 2.87 2.70 4.06 2.55 2.16 3.49 4.25 2.59 3.35
DSH0b 2.72 3.19 3.02 4.39 2.85 — — — — —

DSHc 2.96 3.46 3.28 4.67 3.10 2.57 3.90 4.69 3.00 3.79
SX-PBE 1.69 1.74 1.82 3.20 1.73 1.64 3.08 3.00 2.30 2.21

HSE06d 2.76 — — — — 2.72 — — — —

HSE06e 2.69 — — — — — — — — —

HSE06f 2.70 — — — — — — — — —

HSE06g 2.2 — — — — — — — — —

HSE06h 2.40 — — — — 2.16 — — — —

MHSEh 1.14 — — — — 1.26 — — — —

PBE0h 2.76 — — — — 2.94 — — — —

Expt. 0.95i, 0.82j — — — — 0.83j — — — —

aUsing εMPBE calculated by finite field method.
bUsing εM � 10.9 obtained from Husk and Seehra (1978).
cConverged εM: pyrite 7.8 and marcasite 9.2.
dFrom Sun et al. (2011), using PAW with experimental lattice constants.
eFrom Hu et al. (2012), using PAW with optimized lattice parameters (a � 5.422 Å, u � 0.385).
fFrom Choi et al. (2012), using PAW with experimental lattice constants.
gFrom Schena et al. (2013), using LAPW with optimized lattice parameters (a � 5.403 Å, u � 0.383).
hFrom Liu et al. (2019), using PAW.
iFrom Ennaoui et al. (1993).
jFrom Sánchez et al. (2016), optical gap at room temperature using diffuse reflectance spectroscopy.
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fundamental gap is obtained by SX-PBE and DSH (Figures 6C,D),
but the VBM is different from that in PBE or the GW method
(Figure 3A). In addition, compared to the GW (LAPW + HLOs)
results, the separation between valence Fe-3d and S-3p bands is
reduced and the splitting between the valence and conduction Fe-3d
bands is significantly increased by the hybrid functionals. We note
that both features can be understood tentatively as a result of
increased ligand field strength from the perspective of ligand field
theory. This indicates an overestimated interaction between the
ligand S-3pσ and Fe-3d orbitals in the selected hybrid functionals
than that in PBE. The overestimation is most significant in the DSH
method (Figure 6D), where the state of predominant S-3pπ
characters along the M–Γ path becomes the VBM and
conduction Fe-3d bands are raised beyond 6 eV above the
Fermi level.

We can observe similar features in marcasite band structures
from hybrid functionals, as shown in the lower panel of Figure 6.
In the valence band region, the S-3p bands are pushed up
relatively to Fe-3d bands compared with PBE and GW. The
increase is so significant that the VBM along Γ–X, which is
mainly of Fe-3d in PBE and GW, is now of predominant S-3p
characters. This also leads to a considerable overlap between the
two sets of bands in the energy window 1 ∼ 3 eV below the Fermi
level. The conduction bands are also shifted to higher energies.
However, the shifts are larger for the conduction Fe-3d bands
than for S-3p. For the DSH method as an extreme case, the Fe-3d
bands are raised up too high and even separated from the S-
3p bands.

The radical failure of DSH invites a close inspection of
feasibility of DSH for FeS2. As a preliminary exploration to
the possible cause, we make a direct comparison between the

FIGURE 6 | Band structures of pyrite (upper panel) and marcasite (lower panel) FeS2 computed from different hybrid functional methods. From left to right, the
methods used are PBE0 (A,E), HSE06 (B,F), SX-PBE (C,G) and DSH (D,H), respectively. The valence band maximum is aligned as the energy zero and indicated by the
black dash-dotted line.

FIGURE 7 | Inverse dielectric functions of pyrite used in the DSH
model and calculated from RPA@PBE with the LAPW + HLOs basis set.
Dielectric constant computed by PBE is used in the one-shot DSH0
method.
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inverse static dielectric function used in the DSH with εMPBE and
that from the RPA calculation with the LAPW + HLOs basis in
pyrite FeS2 as a function of the length of wave vector in the long-
range limit, i.e. q → 0. The inverse dielectric function
corresponding to DSH reads (Liu et al., 2020)

ε−1DSH(G) � 1 − 1 − 1
εM

( ) e−|G|
2/4μ2( ). (13)

We note that Eq. 13 differs from the inverse of Eq. 9 because in
the derivation of DSH, the exponential function is replaced by
erfc [Cui et al. (2018) for more details]. As shown in Figure 7,
while DSH overestimates ε−1 and underestimates the screening in
the short-wavelength region, i.e. near |G| � 0, DSH0 model
dielectric function with εMPBE closely resembles that from RPA
calculation, which is similar to the observation by Liu et al. (2020)
in transition metal oxides. Hence we consider that the screening
effect is reasonably captured in DSH0. Further investigation is
needed to understand the cause for the failure of DSH for FeS2.

4 CONCLUSION

In the present study, we have investigated the electronic band
structures of two FeS2 polymorphs, namely pyrite and marcasite,
by using methods in different frameworks. With the all-electron
many-body GW method implemented in the LAPW framework,
we find that by using GW0@PBE with the LAPW + HLOs basis,
pyrite and marcasite are predicted to have indirect fundamental
band gaps of 1.14 and 1.16 eV, respectively. The closeness of band
gaps for the two polymorphs agrees with the experimental
observation (Sánchez et al., 2016). The pyrite band gap from
GW0@PBE with LAPW + HLOs is very close to the generally
accepted experimental value (Ennaoui et al., 1993) and the
corresponding density of states also agrees well with energy
distribution curves obtained from the photoelectron
spectroscopy measurements (Folkerts et al., 1987; Mamiya
et al., 1997). In contrast, with the standard LAPW basis, PBE-
based G0W0 and GW0 both lead to negative QP correction to the
PBE fundamental gap, which is rarely observed in LDA/GGA-
based G0W0 and GW0 treatments of semiconductors. The
splitting between Fe-3d and S-3p valence bands of pyrite is
also significantly overestimated compared to experiment.
These artifacts exist not only in calculations with the standard
LAPW basis, but also in those with LAPW basis extended by an
inadequately converged HLOs (Schena et al., 2013). Therefore in
order to eliminate such artifacts, it is instrumental to carefully
converge the fundamental band gap with respect to the two
controlling parameters, namely nLO and ΔlLO. We have further
studied electronic band structures of FeS2 polymorphs with
different hybrid functionals, including PBE0, HSE06, the
screened exchange SX-PBE and the recently developed DSH
functional with system-tuned hybridization parameters. We
find that all those methods overestimate the band gaps of the
two polymorphs by 0.5 ∼ 1.9 eV compared to the results obtained
from G0W0 (LAPW + HLOs). The overestimation by PBE0 and
HSE06 as reported in the literature is reproduced in this work.

Furthermore, either self-consistent or one-shot DSHmethod fails
to improve over the conventional fixed-parameter hybrid
functionals. By comparing the model dielectric function used
in DSH with that from RPA calculation with LAPW + HLOs in
pyrite, we point out that the failure of DSH may not be caused
by the insufficiency of the dielectric model used and therefore
requires further investigation. Our investigations clearly show
that accurate prediction of electronic band structures of FeS2
polymorphs poses a stringent test on the state-of-the-art first-
principles approaches, and the GW method based on semi-
local density approximation performs well for this difficult
system if it is practiced with well-converged numerical
accuracy.

Finally, we note that further work in the following aspects can
be done to shed more light onto the band gap problem of FeS2 in
terms of GW and hybrid functional calculations. For one thing, it
is possible to build the screened Coulomb interactionW using the
KS states from the LAPW calculations and calculate the self-
energy Σ with G from LAPW + HLOs. One can compare it with
GW using LAPW to see whether it is the inaccurate band
summation in W or G to blame. For another, replacing the
PBE with the hybrid functional as starting point will be
worthwhile to evaluate the dependence of G0W0/GW0 results
on initial input for FeS2. Particularly, considering the severe
overestimation of FeS2 band gaps by the hybrid functionals, it
is of great interest to see whether G0W0/GW0 can produce a
negative QP correction to the gap from hybrid functional
calculations such that the experimental gap is approached
from above.
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Photoemission Spectra from the
Extended Koopman’s Theorem,
Revisited
S. Di Sabatino1,2,3*, J. Koskelo2,3, J. Prodhon2, J. A. Berger1,3, M. Caffarel 1 and
P. Romaniello2,3*

1Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, Toulouse, France, 2Laboratoire de
Physique Théorique, Université de Toulouse, CNRS, UPS, Toulouse, France, 3European Theoretical Spectroscopy Facility
(ETSF), Toulouse, France

The Extended Koopman’s Theorem (EKT) provides a straightforward way to compute
charged excitations from any level of theory. In this work we make the link with the many-
body effective energy theory (MEET) that we derived to calculate the spectral function,
which is directly related to photoemission spectra. In particular, we show that at its
lowest level of approximation the MEET removal and addition energies correspond to the
so-called diagonal approximation of the EKT. Thanks to this link, the EKT and the MEET
can benefit from mutual insight. In particular, one can readily extend the EKT to calculate
the full spectral function, and choose a more optimal basis set for the MEET by solving
the EKT secular equation. We illustrate these findings with the examples of the Hubbard
dimer and bulk silicon.

Keywords: extended Koopman’s theorem, strong correlation, photoemission, one-body Green’s function,
RDMFT, QMC

1 INTRODUCTION

The Extended Koopman’s Theorem (EKT) (Morrell et al., 1975; Smith and Day, 1975) has been
derived in quantum chemistry and used within various frameworks, from functional theories based
on reduced quantities, such as reduced-density matrix functional theory (Gilbert, 1975) (e.g., Pernal
and Cioslowski, 2005; Leiva and Piris, 2005; Piris et al., 2012; Piris et al., 2013) and many-body
perturbation theory based on Green’s functions (Hedin, 1965) (e.g., Dahlen and van Leeuwen, 2005;
Stan et al., 2006; Stan et al., 2009), to wavefunction-based methods (e.g., Cioslowski et al., 1997; Kent
et al., 1998; Bozkaya, 2013; Zheng, 2016; Bozkaya and Ünal, 2018; Pavlyukh, 2019; Lee et al., 2021).
The EKT allows one to calculate energies corresponding to charged excitations. Although it can be
formulated both for ionization potentials (IPs) and electron affinities (EAs), it has been widely used
only for the former, whereas for the latter applications have been limited to the calculation of the
lowest EA as the first IP of the (N+1)-electron system (in case of finite systems), withN the number of
electrons in the reference system. There exist hence many benchmarks for the IPs. So far, the method
has been mainly used for finite systems. The EKT is known to be in principle (i.e., using exact
ingredients, namely the one- and two body density matrices, as we shall see) exact for the first
ionization potential (Katriel and Davidson, 1980; Sundholm and Olsen, 1993). In the solid state
instead there are only a few applications which only focus on the band structure. It would be desirable
to have also the spectral function, i.e., the spectrum of electron addition and removal
energies weighted by the Dyson amplitudes, which measure the overlap between the eigenstates
of the (N + 1) − electron ((N − 1) − electron) system and the ground state of the N-electron system
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where an electron has been added (removed). The spectral
function is related to photoemission spectroscopy, which gives
precious information about the electronic structure and
excitations in a system, and, moreover, allows one to study
metal-insulator transitions, of paramount importance in
condensed matter.

A simple way to calculate the spectral functionA(ω) is through
the imaginary part of the one-body Green’s function G(ω), as
A(ω) � 1

π sgn(μ − ω)IG(ω), where μ is the chemical potential. The
one-body Green’s function is the fundamental quantity of many-
body perturbation theory; it can be obtained from the Dyson
equation G � G0 + G0ΣG, in which G0 and G are the
noninteracting and interacting Green’s functions, respectively,
and Σ the so-called self-energy, which contains all the many-body
effects of the system. This latter quantity needs to be
approximated in practical calculations. Commonly used
approximations, such as the well-known GW approximation
(Hedin, 1965), cannot capture the Mott physics (Romaniello
et al., 2009; Romaniello et al., 2012; Di Sabatino et al., 2015;
Di Sabatino et al., 2016; Di Sabatino et al., 2021). Therefore much
effort is devoted to develop better approximations to Σ (Springer
et al., 1998; Zhukov et al., 2004; Shishkin et al., 2007; Kuneš et al.,
2007; Guzzo et al., 2011; Romaniello et al., 2012; Lischner et al.,
2013; Stefanucci et al., 2014) or to develop novel ways to
determine G (Lani et al., 2012; Berger et al., 2014). In this
spirit in these last years we have developed the many-body
effective energy theory (MEET) (Di Sabatino et al., 2016), in
which the spectral function is expressed in terms of density
matrices, or, alternatively, in terms of moments of G, as
reported in Ref. (Di Sabatino et al., 2019). This has allowed us
to describe the band gap in several paramagnetic transition-metal
oxides (Di Sabatino et al., 2016; Di Sabatino et al., 2019; Di
Sabatino et al., 2021), such as NiO, which are considered strongly
correlated materials and which are described as metals by static
mean-field theories, such as DFT, and by GW. This is an
important result. However the band gap is hugely
overestimated by the MEET within the current low-order
approximation in terms of the (approximate) one- and two-
body density matrices. Improvements are needed, either by going
to higher-order density matrices, which, however, is not
guaranteed to converge, or by introducing some sort of
screening in the equations. Recently we have obtained
promising results for the description of the insulator-to-metal
transition of PM FeO under pressure by combining the MEET
and the local-density approximation (LDA) (Di Sabatino et al.,
2021), and we are currently working on introducing electron-hole
screening in the MEET equations. However there is another path
which we can explore, and this comes from the relation between
theMEET and the EKT. As we will show in the following, within a
given basis, the removal and addition energies obtained within
the MEET at the lowest-order approximation are equal to the
EKT removal and addition energies within the diagonal
approximation. In this work we discuss this link and its
impact on both theories.

The paper is organized as follows. In Theory we give the basic
equations of the EKT and the MEET and we make the link
between them. The Hubbard dimer and bulk silicon are used to

illustrate the difference between the EKT and the MEET (removal
and addition) energies in Mutual Insights and Illustration. In
Conclusions and Perspectives we draw our conclusions and
perspectives.

2 THEORY

In this section we briefly review theMEET and EKTmethods, and
wemake the link between the two.We will consider anN-electron
system governed by the following Hamiltonian in second
quantization

Ĥ � ∑
ij

hijâ
†
i âj +

1
2
∑
ijkl

Vijklâ
†
i â

†
j âlâk,

where â and â† are the annihilation and creation operator,
respectively, hij � ∫dxϕ*i (x)h(r)ϕj(x) are the matrix elements of
the one-particle noninteracting Hamiltonian h(r) � − ∇2/2 +
vext(r), with vext an external potential, and Vijkl �∫dxdx′ϕ*i (x)ϕ*j(x′)vc(r, r′)ϕk(x)ϕl(x′) are the matrix elements of
the Coulomb interaction vc. Here x � (r, α) combines space and
spin variables and i, j, . . . denote both space and spin labels (they
will be made explicit only when necessary).

2.1 Key Equations of the MEET
Within the MEET the time-ordered 1-body Green’s function
G(ω) at zero temperature is split into removal (R) and addition
(A) parts as G(ω) � GR(ω) + GA(ω). In the following we
concentrate on the diagonal elements of G, which are related
to photoemission spectra. Within the MEET the diagonal matrix
elements of GR/A(ω) are written in terms of an effective energy
δR/Ai (ω) as (Di Sabatino et al., 2016):

GR
ii(ω) �

cii
ω − δRi (ω) − iη

, (1)

GA
ii (ω) �

1 − cii
ω − δAi (ω) + iη

, (2)

with cii the diagonal matrix element of the one-body density
matrix in a given basis set. We note that a similar effective energy
can be introduced also for the off-diagonal elements of GR/A. The
spectral function is hence expressed as

Aii(ω) � ciiδ(ω − δRi (ω)) + (1 − cii)δ(ω − δAi (ω)), (3)

where the symbol δ on the right-hand side indicates the Dirac
delta function. In our previous works we have chosen the
basis set of natural orbitals, i.e., the orbitals which
diagonalize the one-body reduced density matrix. In this
case cii � ni, i.e., the natural occupation numbers. This
choice has been made based on our results on exactly
solvable Hubbard clusters, where the MEET performs very
well. (Di Sabatino et al., 2016) However this does not
guarantee that it remains the best choice for more realistic
systems. In fact this is not the case as we shall see.

The effective energy δR/Ai (ω) can be written as an expansion in
terms of reduced density matrices. The expression truncated at
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the level of the one- and two-body reduced density matrices (2-
RDM) reads (in the basis of natural orbitals).

δR,(1)i � hii + 1
ni

∑
klm

VimklΓ(2)klmi (4)

δA,(1)i � hii + 1
(1 − ni) ∑k Vikik − Vikki( )nk

− 1
(1 − ni) ∑klm VimklΓ(2)klmi,

(5)

where Γ(2)klmi � 〈ΨN
0 |â†i â†mâlâk|ΨN

0 〉 are the matrix elements of the
two-body reduced density matrix, with ΨN

0 the ground-state
wavefunction of the N-electron system. As discussed in Ref.
(Di Sabatino et al., 2016) the various approximations
δR/A,(n)i (ω) are related to the n-th moments

μR/An,i � ∑kB
k,R/A
ii (ϵR/Ak )n∑kB

k,R/A
ii

of the GR/A
ii (ω). Here ϵRk � (EN

0 − EN−1
k ) and ϵAk � (EN+1

k − EN
0 )

are removal and addition energies, respectively, and

Bk,R
ii � 〈ΨN

0 |ĉ†i |ΨN−1
k 〉〈ΨN−1

k |ĉi|ΨN
0 〉

Bk,A
ii � 〈ΨN

0 |ĉi|ΨN+1
k 〉〈ΨN+1

k |ĉ†i |ΨN
0 〉,

with EN
0 and ΨN

0 the ground-state energy and wave function of the
N-electron system and EN±1

k and ΨN±1
k the kth state energy and

wave function of the (N ± 1)-electron system. This allows for amore
compact expression of GR/A

ii (ω) as a continued fraction of moments

GR
ii �

ni

ω − μR1,i
ω−μR1,i ...

ω−μR
2,i

μR
1,i

...

, (6)

(and similarly for GA
ii ). More details on the continued fraction

expression for G can be found in Refs (Di Sabatino et al., 2016;
Di Sabatino et al., 2019). At the level of δR/A,(1), the Green’s
function depends only on the first moment, while neglecting all
the higher-order frequency-dependent corrections. As shown in
Ref. (Di Sabatino et al., 2019) this means that each component
GR/A
ii has only one pole which is a weighted average of all the

poles of GR/A
ii . If each component of G has a predominant

quasiparticle peak, this is a good approximation, provided
that the approximation to the first moment is accurate
enough. At the level of δR/A,(2) the Green’s function depends
on the first and second moments; since now the corrections are
frequency-dependent more poles appear (namely, two removal
and two addition poles for each component of G, which are
visible if the corresponding weights are nonzero). This
approximation tends to reproduce the two most dominant
removal/addition peaks for each component of G. Higher-
order moments will produce more poles; however,
approximations become quickly uncontrolled (Di Sabatino,
2016), which can lead to unphysical results.

2.2 Key Equations of the EKT
Within the EKT one starts from the following approximation for
the removal energy ϵRi (Kent et al., 1998)

ϵRi � −〈Ψ
N
0 |Ô

†

i [Ĥ, Ôi]|ΨN
0 〉

〈ΨN
0 |Ô

†

i Ôi|ΨN
0 〉

(7)

withΨN
0 the ground-statemany-bodywave function of theN-electron

system, and Ôi � ∑kC
R
kiâk, Ô

†

i � ∑kC
R *
ki â

†
k, with {CR

ki} a set of
coefficients to be determined. The stationary condition (with
respect to the coefficients CR

ki) for ϵRi leads to the secular equation

(VR − ϵRi SR)CR
i � 0, (8)

with VR
ij � −〈ΨN

0 |â†j[Ĥ, âi]|ΨN
0 〉 and SR the one-body density

matrix SRij � cij � 〈ΨN
0 |â†j âi|ΨN

0 〉. If one defines the matrix ΛR �[SR]−1VR in the basis of natural orbitals, with SRij � niδij and
works out the commutator in VR

ij, one arrives at

ΛR
ij �

1
ni

nihji +∑
klm

VjmklΓ(2)klmi
⎡⎣ ⎤⎦. (9)

The eigenvalues of ΛR are the removal energies. (Morrell et al.,
1975; Pernal and Cioslowski, 2005) By comparing to Eq. 4 it
becomes clear that the diagonal element of ΛR are the removal
energy of the MEET within the low-order approximation. The
diagonal element of ΛR are also referred in literature as the
energies of the EKT within the diagonal approximation (DEKT).

Similar equations hold for the addition energies. One can
indeed define the addition energy ϵAi as

ϵAi � 〈ΨN
0 |[Ĥ, Ôi]Ô†

i |ΨN
0 〉

〈ΨN
0 |ÔiÔ

†

i |ΨN
0 〉

(10)

and in a similar way as for ϵRi we arrive at the eigenvalue equation

(VA − ϵAi SA)CA
i � 0, (11)

with VA
ij � 〈ΨN

0 |âi[Ĥ, â†j]|ΨN
0 〉 and SA related to the one-body

density matrix as SAij � 1 − cij. Similarly to the removal energy
problem, using the basis of natural orbitals, one can work out the
commutator inVA

ij and reformulate the problem in terms of the matrix
ΛA � [SA]−1VA1, which reads

ΛA
ij �

1
(1 − ni)×

(1 − ni)hji +∑
k

Vjkik − Vjkki( )nk −∑
klm

VjmklΓ(2)klmi
⎡⎣ ⎤⎦.

(12)

Again, the diagonal elements of ΛA are the MEET addition
energies within the approximation given in Eq. 5.2

1Since in the basis of natural orbitals the SR (SA)matrix is a diagonalmatrixwith the natural
occupation numbers ni (1-ni) as elements, the invertibility of thismatrix is strictly related to
the non-existence of so-called pinned states, i.e. states with occupation numbers equal to 1
or 0. This is an important question that has several consequences (e.g., Giesbertz and van
Leeuwen, 2013; Baldsiefen et al., 2015). Here we assume that SR (SA) is invertible in a
restricted space (of natural orbitals) in which the corresponding KS orbitals are occupied
(unoccupied). This is a reasonable assumption.
2Note that the standard EKT equations in RDMFT (Morrell et al., 1975) present a
prefactor 1/

����
ninj

√
(1/

������������
(1 − ni)(1 − nj)

√
) instead of 1/ni (1/(1 − ni)) in Eq. 9 (Eq. 12);

these two choices yield the same eigenvalues for the matrix ΛR (ΛA).
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3 MUTUAL INSIGHTS AND ILLUSTRATION

Now that we have established the link between the EKT and
the MEET we will study how these theories can benefit from
mutual insight.

3.1 Hubbard Dimer
We use a modified version of the Hubbard dimer in which the on-
site Coulomb interaction is different for the two sites. Its
Hamiltonian is given by

H � −t ∑
i,j�1,2
i≠j

∑
σ

â†iσ âjσ + U1n̂1↑n̂1↓ + U2n̂2↑n̂2↓, (13)

where i, j run over the sites, n̂iσ � â†iσ âiσ , Ui is the on-
site interaction at site i, − t is the hopping kinetic energy
(the site energy ϵ0 has been set to zero). Contrary to the
standard dimer with a unique on-site interaction, in the case
of two different on-site interactions the ΛR/A are not
diagonal in the basis of natural orbitals. Therefore, this
model allows us to study the effect of the diagonalization
on the removal/addition energies in the
diagonal approximation. The model can represent the
case of a heteronuclear diatomic molecule in a minimal
basis set in which the valence orbitals of the two atoms
are of different nature, such as HCl or NiO, for example. We
note that also using the asymmetric Hubbard dimer with
two different site energies the EKT equations are not
diagonal in the basis of natural orbitals, however the
difference between EKT and DEKT energies is not
significant.

3.1.1 Insights Into the EKT
Making the parallel with the MEET, one can readily define the
EKT spectral function as.

AR
ii(ω) � ciiδ(ω − ϵEKT,R

i ), (14)

AA
ii (ω) � (1 − cii)δ(ω − ϵEKT,A

i ), (15)

with cii and 1 − cii the diagonal matrix element of the
one-body density matrix in the basis which diagonalizes
ΛR
ij and ΛA

ij, respectively (not necessarily the same for ΛR
ij

and ΛA
ij). We notice that the factor cii should refer to a

proper one-body density matrix, i.e., a one-body
density matrix which fulfils the ensemble N-
representability constraints. In our case this is guaranteed
by the total energy minimization (which includes the
constraint 0 ≤ ni ≤ 1) in RDMFT. Moreover, as for the
MEET removal (addition) energies (in its lowest-order
approximation), the removal (addition) EKT energies
can be interpreted in terms of the first moment of GR

ii
(GA

ii ), i.e., as weighted averages of all the poles of GR
ii (G

A
ii )

within the basis that diagonalizes the ΛR (ΛA) matrix.
Indeed, inserting a complete set of eigenstates of the (N −
1)-electron system in Eq. 7, the commutator can be
rewritten as

ϵRi � −∑
k

〈ΨN
0 |Ô

†

i |ΨN−1
k 〉〈ΨN−1

k |[Ĥ, Ôi]|ΨN
0 〉

〈ΨN
0 |Ô

†

i Ôi|ΨN
0 〉

� −∑
k

〈ΨN
0 |Ô

†

i |ΨN−1
k 〉〈ΨN−1

k |Ôi|ΨN
0 〉

〈ΨN
0 |Ô

†

i Ôi|ΨN
0 〉

(EN−1
k − EN

0 )

�
∑
k

Bk,R
ii ϵRk

∑
k

Bk,R
ii

,

(16)

which is a weighted average of the poles of GR
ii . Inserting a

complete set of eigenstates of the (N + 1)-electron system in
Eq. 10 one can show in a similar way that the ϵAi �∑kB

k,A
ii ϵAk /∑kB

k,A
ii within the EKT basis. This means that if

there are not satellites in the EKT basis set, then the EKT
removal/addition energies are exact, provided that one uses
the exact first moment.

We notice that very recently Lee et al. (Lee et al., 2021), have
also proposed an expression for the spectral function from
the EKT.

3.1.2 Insights Into the MEET
Several choices for an optimal basis set for the MEET expressions
are now possible. In previous works we considered the basis of
natural orbitals as optimal basis set for the MEET based on the
following findings (Di Sabatino, 2016): i) theMEET (in this basis of
natural orbitals) gives the exact spectral function at all level of
approximations for the symmetric Hubbard dimer using exact
density matrices; ii) the MEET in its lowest level of approximation
in terms of one- and two-body density matrices gives good results
for the spectral function of the (symmetric) Hubbard model with

FIGURE 1 | Spectral function of the Hubbard dimer with two different
on-site interactions U1 and U2 for site 1 and site 2, respectively: exact solution
(black curves) vs. EKT (black curves, EKT is exact in this case, see text) and
DEKT/MEET in the basis of natural orbitals (red curves).
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more sites using approximate density matrices. Moreover, for
these (symmetric) model systems the ΛR/A matrices of the EKT
are diagonal in the basis of natural orbitals, therefore there is not
another better option. For the asymmetric Hubbard dimer
instead, and in general for realistic systems, the basis of
natural orbitals does not diagonalize the ΛR/A matrices,
therefore the set which diagonalizes these matrices can be a
better option for the MEET. We notice that this choice of the
optimal basis set can be generally applied to other methods
which express G as a continued fraction, such as the Lanczos
method (Balzer et al., 2011), in order to have more accurate
results at a given order of truncation of the series. For example
in Figure 1 we report the spectral function of the Hubbard
dimer governed by the Hamiltonian in Eq. 13 for two different
values of |U1 − U2|. The (D)EKT results are obtained using exact
density matrices. The results show that the basis which
diagonalizes the ΛR/A matrices is a much better choice than
the basis of natural orbitals the more the difference |U1 − U2| is
large. We also observe that the removal part is less affected by
the diagonal approximation than the addition part, and we
observe this trend also in more complex systems. The diagonal
approximation has been addressed in literature also for realistic
systems. (Piris et al., 2013; Kent et al., 1998) In particular in bulk
silicon QMC results show that the DEKT slightly overestimates
the EKT band gaps. Below we will address this system in more
details.

3.2 Realistic Systems: The Example of
Bulk Si
As an example of realistic systems we use bulk silicon, for which
results using the EKT within QMC are reported in Ref. (Kent
et al., 1998). The diagonal approximation to the EKT within
QMC works very well for the valence states and slightly less well
for the conduction states, with a band gap at the Γ point of 4.4 eV
vs. 3.8 eV from the full EKT compared to 3.4 eV in experiment.
(Kent et al., 1998) We note that this discrepency is largely due to
the energy of the conduction band at Γ. However, bulk silicon is a
relatively weakly correlated system, with hence a predominant
quasiparticle-like spectral function for which the EKT is a good
approximation. Larger overestimation of the band gap can be
expected for strongly correlated systems. This can be understood
from the interpretation of the EKT energies as first moments of
the one-body Green’s function. However, an important point to
stress is that even for these systems, which are a challenge for
state-of-the-art ab initio methods, such as GW, the EKT would
open a gap, in accordance with experiment.

As pointed out in Ref. (Kent et al., 1998) the choice of the trial
wave function for QMC calculations is of critical importance.
Indeed, as a result of the fixed-node approximation, QMC
calculations of the matrix elements of the density matrix and
operators VR,A (see EKT Equations 8, 11) are expected to
critically depend on the nodal structure of the trial wave
function employed. For the weakly correlated bulk silicon the
accurate QMC value of 3.8 eV reported above has been obtained
by (Kent et al., 1998) using a standard Slater-Jastrow trial wave
function whose nodes are those of a single determinant consisting

of LDA orbitals. For more strongly correlated systems the wave
function acquires a significant multi-determinant character and
getting physically meaningful nodes becomes much more
difficult. It is thus useful to use the EKT within alternative
approaches.

In our previous works (Di Sabatino et al., 2016, 2019, 2021) we
used reduced-density matrix functional theory (RDMFT)
(Gilbert, 1975) to find approximations to the one- and two-
body density matrices which are needed in the MEET equations.
More specifically the two-body density matrix in the MEET
equations is approximated using the Power functional, which
is given by Γ(2)ijkl � ninjδilδjk − nαi n

α
jδikδjl (α � 0.65). (Sharma et al.,

2013) The optimal natural orbitals {ϕi} and occupation numbers
{ni} are obtained by minimizing the total energy which is
expressed in terms of c and Γ(2), with Γ(2) as functional of c.
The Power functional is used also to approximate Γ(2)[c] in the
energy functional. In this work we use the same protocol for the
EKT equations. We implemented the EKT equations in a
modified version of the full-potential linearized augmented
plane wave (FP-LAPW) code ELK (Elk, 2004), with practical
details of the calculations following the scheme described in Ref.
(Sharma et al., 2008). For bulk Si we used a lattice constant of
5.43 Å and a Γ-centered 8 × 8 × 8 k-point sampling of the
Brillouin zone. In Figure 2 we report the DEKT spectral function
of bulk silicon: the direct band gap at Γ is 12.9 eV, while the
fundamental band gap is 8.18 eV, which is larger than the
experimental one of 1.12 eV (Sze, 1969). We also observe a
spurious peak in the band gap due to the fact that the Power
functional produces occupation numbers which strongly deviate
from 1 and 0 (as one would expect for this weakly correlated
system) close to the Fermi energy (see bottom panel of Figure 2).
This is in contrast with the QMC results. Note that we observe

FIGURE 2 | Spectral function of bulk Si within DEKT (violet solid line). The
experimental photoemission spectrum (small triangles) is taken from Ref.
(Chelikowsky et al., 1989). The color map illustrates the occupation numbers
ni that play a role into the spectrum for the reported energy range.
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similar deviations from 1 and 0 also for other weakly correlated
systems, such as diamond, which points to a problem of the
Power functional for the description of occupation numbers of
weakly correlated systems. Moreover, the full EKT does not
show any improvement over the DEKT, as one can see from
Figure 3, in which the EKT and DEKT energies are reported:
the fundamental band gap is reduced by only 0.06 eV. This is
again in contrast with the QMC results in which, although
small, there is a significant difference. We attribute this
different trend to the use of the Power functional, which
contracts the four-point 2-RDM to two points only, and
hence probably mitigating the impact of the diagonalization
of the ΛR/A matrices. These results on bulk Si indicate that,
although the EKT/DEKT are expected to overestimate the band
gap (even using very accurate density matrices, as for example
shown in the case of the Hubbard model (Di Sabatino et al.,
2016)), this overestimation can be much amplified by using
approximations such as the Power functional. More advanced
approximations to Γ(2) are hence needed, which give, in
particular, more accurate natural occupation numbers. We
notice that varying α would change the band gap width. In
particular α � 1 would give the HF band gap, which still
overestimates the experimental one, whereas decreasing α
would increase the overestimation of the band gap.

4 CONCLUSIONS AND PERSPECTIVES

We linked our recently derived Many-Body Effective Energy
Theory (MEET) for the calculation of photoemission spectra
to the Extended Koopman’s Theorem (EKT). Within the
lowest level of approximation in terms of one- and two-
body density matrices, the MEET equations correspond to
the so-called diagonal approximation to the EKT (DEKT)
equations. This allowed us to readily extend the EKT to the

calculation of an approximate spectral function as well as to
give an alternative interpretation of the EKT in terms of
moments of the one-body Green’s function. Using the test
case of the Hubbard dimer with two different on-site
interactions U1 and U2 for site 1 and site 2 we showed the
effect of the basis set on the MEET (removal and addition)
energies: in particular HOMO-LUMO gap in the basis sets
which solve the EKT secular equations (one basis set for the
valence part and one for the conduction part) is smaller than
the HOMO-LUMO gap obtained using the natural orbital
basis set. These results are in line with the EKT results
reported in literature for bulk Si using QMC. We have
implemented the EKT within reduced-density matrix
functional theory (RDMFT), which offers a convenient
computationally affordable framework to treat extended
systems. However one has to rely on approximate one- and
two-body density matrices. We showed that using the
currently available approximations the DEKT band gap of
Si largely deviates from the DEKT value obtained using QMC
(12.9 eV vs 4.4 eV at the Γ point) and, moreover, there is no
effect of the basis set (EKT vs DEKT) on the DEKT energies,
contrary to what is observed within QMC, where, although
small, there is a significant difference. These results on bulk Si
indicate that, although the EKT/DEKT are expected to
overestimate the band gap (even using very accurate density
matrices), this overestimation can be much amplified by
commonly used approximations in RDMFT. This also
explains the huge overestimation of the band gap obtained
by the MEET within RDMFT in strongly correlated systems
such as paramagnetic NiO. We are currently working on
improving approximations to correlation in RDMFT by
introducing some form of screening (for example the
screening due to electron-hole excitations as in GW), which
is of particular importance in solids.
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Using the simple (symmetric) Hubbard dimer, we analyze some important features of the
GW approximation. We show that the problem of the existence of multiple quasiparticle
solutions in the (perturbative) one-shot GWmethod and its partially self-consistent version
is solved by full self-consistency. We also analyze the neutral excitation spectrum using the
Bethe-Salpeter equation (BSE) formalism within the standard GW approximation and find,
in particular, that 1) some neutral excitation energies become complex when the electron-
electron interaction U increases, which can be traced back to the approximate nature of
the GW quasiparticle energies; 2) the BSE formalism yields accurate correlation energies
over a wide range of U when the trace (or plasmon) formula is employed; 3) the trace
formula is sensitive to the occurrence of complex excitation energies (especially singlet),
while the expression obtained from the adiabatic-connection fluctuation-dissipation
theorem (ACFDT) is more stable (yet less accurate); 4) the trace formula has the
correct behavior for weak (i.e., small U) interaction, unlike the ACFDT expression.

Keywords: hubbard dimer, multiple quasiparticle solutions, GW, bethe-salpter equation, trace formula, adiabatic-
connection fluctuation-dissipation theorem

1 INTRODUCTION

Many-body perturbation theory (MBPT) based on Green’s functions is among the standard tools
in condensed matter physics for the study of ground- and excited-state properties. (Aryasetiawan
and Gunnarsson, 1998; Onida et al., 2002; Martin et al., 2016; Golze et al., 2019). In particular, the
GW approximation (Hedin, 1965; Golze et al., 2019) has become the method of choice for band-
structure and photoemission calculations and, combined with the Bethe-Salpeter equation (BSE@
GW) formalism, (Salpeter and Bethe, 1951; Strinati, 1988; Albrecht et al., 1998; Rohlfing and
Louie, 1998; Benedict et al., 1998; van der Horst et al., 1999a; Blase et al., 2018, 2020), for optical
spectra calculations. Thanks to efficient implementations, (Duchemin and Blase, 2019, 2020,
2021; Bruneval et al., 2016; van Setten et al., 2013; Kaplan et al., 2015, 2016; Krause and Klopper,
2017; Caruso et al., 2012, 2013b,a; Caruso, 2013; Wilhelm et al., 2018), this toolkit is acquiring
increasing popularity in the traditional quantum chemistry community, (Rohlfing and Louie,
1999; van der Horst et al., 1999b; Puschnig and Ambrosch-Draxl, 2002; Tiago et al., 2003;
Boulanger et al., 2014; Jacquemin et al., 2015b; Bruneval et al., 2015; Jacquemin et al., 2015a;
Hirose et al., 2015; Jacquemin et al., 2017a,b; Rangel et al., 2017; Krause and Klopper, 2017; Gui
et al., 2018; Blase et al., 2018; Liu et al., 2020; Blase et al., 2020; Holzer and Klopper, 2018; Holzer
et al., 2018; Loos et al., 2020), partially due to the similarity of the equation structure to that of the
standard Hartree-Fock (HF) (Szabo and Ostlund, 1989) or Kohn-Sham (KS) (Hohenberg and
Kohn, 1964; Kohn and Sham, 1965) mean-field methods. Several studies of the performance of
various flavors of GW in atomic and molecular systems are now present in the literature, (Holm
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and von Barth, 1998; Stan et al., 2006; Stan et al., 2009; Blase
and Attaccalite, 2011; Faber et al., 2011; Bruneval, 2012;
Bruneval and Marques, 2013; Bruneval et al., 2015; Karlsson
and van Leeuwen, 2016; Bruneval et al., 2016; Bruneval, 2016;
Boulanger et al., 2014; Blase et al., 2016; Li et al., 2017; Hung
et al., 2016, 2017; van Setten et al., 2015, 2018; Ou and Subotnik,
2016, 2018; Faber, 2014), providing a clearer picture of the pros
and cons of this approach. There are, however, still some open
issues, such as 1) how to overcome the problem of multiple
quasiparticle solutions, (van Setten et al., 2015; Maggio et al.,
2017; Loos et al., 2018; Véril et al., 2018; Duchemin and Blase,
2020; Loos et al., 2020), 2) what is the best way to calculate
ground-state total energies, (Casida, 2005; Huix-Rotllant et al.,
2011; Caruso et al., 2013b; Casida and Huix-Rotllant, 2016;
Colonna et al., 2014; Olsen and Thygesen, 2014; Hellgren et al.,
2015; Holzer et al., 2018; Li et al., 2019, 2020; Loos et al., 2020),
and 3) what are the limits of the BSE in the simplification
commonly used in the so-called Casida equations. (Strinati,
1988; Rohlfing and Louie, 2000; Sottile et al., 2003; Myöhänen
et al., 2008; Ma et al., 2009a,b; Romaniello et al., 2009b; Sangalli
et al., 2011; Huix-Rotllant et al., 2011; Sakkinen et al., 2012;
Zhang et al., 2013; Rebolini and Toulouse, 2016; Olevano et al.,
2019; Lettmann and Rohlfing, 2019; Loos and Blase, 2020;
Authier and Loos, 2020; Monino and Loos, 2021). In the
present work, we address precisely these questions by using
a very simple and exactly solvable model, the symmetric
Hubbard dimer. Small Hubbard clusters are widely used test
systems for the GW approximation (e.g. Verdozzi et al., 1995;
Schindlmayr et al., 1998; Pollehn et al., 1998; Puig von Friesen
et al., 2010; Romaniello et al., 2009a, 2012). Despite its
simplicity, the Hubbard dimer is able to capture lots of the
underlying physics observed in more realistic systems,
(Romaniello et al., 2009a, 2012; Carrascal et al., 2015, 2018),
such as, for example, the nature of the band-gap opening in
strongly correlated systems as bulk NiO. (Di Sabatino et al.,
2016). Here, we will use it to better understand some features of
the GW approximation and the BSE@GW approach. Of course,
care must be taken when extrapolating conclusions to realistic
systems.

The paper is organized as follows. Section 2 provides the key
equations employed in MBPT to calculate removal and addition
energies (or charged excitations), neutral (or optical) excitation
energies, and ground-state correlation energies. In Sec. 3, we
present and discuss the results that we have obtained for the
Hubbard dimer. We finally draw conclusions and perspectives in
Sec. 4.

2 THEORETICAL FRAMEWORK

In the following we provide the key equations of MBPT (Martin
et al., 2016) and, in particular, we discuss how one can calculate
ground- and excited-state properties, namely removal and
addition energies, spectral function, total energies, and neutral
excitation energies.We use atomic units Z �m � e � 1 and work at
zero temperature throughout the paper.

2.1 The GW Approximation
Within MBPT a prominent role is played by the one-body
Green’s function G which has the following spectral
representation in the frequency domain:

G(x1, x2;ω) �∑
]

ψ](x1)ψ*
](x2)

ω − ϵ] + iη sgn(ϵ] − μ), (1)

where μ is the chemical potential, η is a positive infinitesimal, ϵ] �
EN+1
] − EN

0 for ε] > μ, and ϵ] � EN
0 − EN−1

i for ε] < μ. Here, EN
] is

the total energy of the ]th excited state of the N-electron system
(] � 0 being the ground state). In the case of single-determinant
many-body wave functions (such as HF or KS), the so-called
Lehmann amplitudes ψ] (x) reduce to one-body orbitals and
the poles of the Green’s function ε] to one-body orbital energies.

The one-body Green’s function is a powerful quantity that
contains a wealth of information about the physical system. In
particular, as readily seen from Eq. 1, it has poles at the charged
excitation energies of the system, which are proper addition/
removal energies of the N-electron system. Thus, one can also
access the (photoemission) fundamental gap

Eg � IN − AN, (2)

where IN � EN−1
0 − EN

0 is the ionization potential andAN � EN
0 −

EN+1
0 is the electron affinity. Moreover, one can straightforwardly

obtain the spectral function, which is closely related to
photoemission spectra, as

A(x1, x2;ω) � 1
π
sgn(μ − ω)ImG(x1, x2;ω). (3)

The ground-state total energy can also be extracted from G
using the Galitskii-Migdal (GM) formula (Galitskii and Migdal,
1958)

EGM
0 � − i

2
∫ dx1 lim

2→1+
i
z

zt1
+ h(r1)[ ]G(1, 2), (4)

where 1 ≡ (x1, t1) is a space-spin plus time composite variable and
h(r) � − ∇/2 + vext(r) is the one-body Hamiltonian, vext (r) being
the local external potential.

The one-body Green’s function can be obtained by solving a
Dyson equation of the form G � G0 + G0ΣG, where G0 is the
non-interacting Green’s function and the self-energy Σ is an
effective potential which contains all the many-body effects of
the system under study. In practice, Σ must be approximated
and a well-known approximation is the so-called GW
approximation in which the self-energy reads ΣGW � vH +
iGW, where vH is the classical Hartree potential, andW � ε−1vc
is the dynamically screened Coulomb interaction, with ε−1 the
inverse dielectric function and vc the bare Coulomb
interaction. (Hedin, 1965).

The equations stemming from theGW approximation should, in
principle, be solved self-consistently, since Σ is a functional of G.
(Hedin, 1965). Self-consistency, however, is computationally
demanding, and one often performs a single GW correction (for
example using G0 as starting point one buildsW and ΣGW as ΣGW �
vH + iG0W0, with vH � − ivcG0 and W0 � [1 + ivcG0G0]−1vc, from
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which G � {1 − G0ΣGW[G0]}−1G0). This cost-saving and popular
strategy is known as one-shot GW. The main drawback of the one-
shot GW method is its dependence on the starting point (i.e., the
orbitals and energies of the HF or KS mean-field eigenstates)
originating from its perturbative nature. To overcome this
problem, one can introduce some level of self-consistency.
Removal/addition energies are thus obtained by solving iteratively
the so-called quasiparticle equation

ω � ϵHF
i + 〈ϕHF

i

∣∣∣∣ΣGW
c (ω) ϕHF

i

∣∣∣∣ 〉. (5)

Here, we choose to start from HF spatial orbitals ϕHF
i (r) and

energies ϵHF
i , which are corrected by the (real part of the)

correlation contribution of the GW self-energy
ΣGW
c � ΣGW − ΣHF, where ΣHF � vH + ivcG is the HF (hartree

plus exchange) contribution to the self-energy. ΣGW
c is evaluated

with GHF at the first iteration, where GHF is the self-consistent
solution of GHF � G0 + G0ΣHFGHF. At the nth iteration, ΣGW

c is
evaluated as ΣGW

c [Gn−1], where Gn−1 has poles at the energies
from the (n − 1)-th iteration of Eq. 5 and corresponding weights
obtained from the Z factors given in Eq. 6. As a non-linear
equation, Eq. 5 has potentially many solutions ϵGWi,] . The so-called
quasiparticle (QP) solution ϵGWi,]�0 ≡ ϵQPi has the largest
renormalization factor (or spectral intensity)

Zi,] � 1 − 〈ϕHF
i

∣∣∣∣ zΣGW
c (ω)
zω

ϕHF
i

∣∣∣∣ 〉
∣∣∣∣∣∣∣∣ ω�ϵGWi,][ ]−1, (6)

while the satellite (sat) peaks ϵGWi,]>0 ≡ ϵsati,] share the remaining of
the spectral weight. Moreover, one can show that the following
sum rule is fulfilled (von Barth and Holm, 1996)∑

]
Zi,] � 1, (7)

where the sum runs over all the solutions of the quasiparticle
equation for a given mean-field eigenstate i. Throughout this
article, i, j, k, and l denote general spatial orbitals, a and b refer to
occupied orbitals, r and s to unoccupied orbitals, while m labels
single excitations a → r.

In eigenvalue self-consistent GW (commonly abbreviated as
evGW), (Hybertsen and Louie, 1986; Shishkin and Kresse, 2007;
Blase and Attaccalite, 2011; Faber et al., 2011; Rangel et al., 2016;
Gui et al., 2018), one only updates the poles ofG, while keeping fix
the orbitals (or weights). G is then used to build ΣGW and W. At
the nth iteration, the removal/addition energies are obtained from
the GW quasiparticle solutions computed from Gn−1W (Gn−1)
where the satellites are discarded at each iteration. Nonetheless, at
the final iteration one can keep the satellite energies to get the full
spectral function (Eq. 3). In fully self-consistent GW (scGW),
(Caruso et al., 2012, 2013b,a; Caruso, 2013; Koval et al., 2014), one
updates the poles and weights of G retaining quasiparticle and
satellite energies at each iteration.

It is instructive to mention that, for a conserving
approximation, the sum of the intensities corresponding to
removal energies equals the number of electrons, i.e.,∑ϵGWi,] < μZi,] � N. scGW is an example of conserving
approximations, while, in general, the one-shot GW does not
conserve the number of electrons.

2.2 Bethe-Salpeter Equation
2.2.1 Neutral Excitations
Linear response theory (Oddershede and Jorgensen, 1977;
Casida, 1995; Petersilka et al., 1996) in MBPT is described
by the Bethe-Salpeter equation. (Strinati, 1988). The standard
BSE within the static GW approximation (referred to as BSE@
GW in this work, which means the use of GW quasiparticle
energies to build the independent-particle excitation energies
and of the GW self-energy to build the static exchange-
correlation kernel) can be recast, assuming a closed-shell
reference state, as a non-Hermitian eigenvalue problem
known as Casida equations:

Aλ Bλ

−Bλ −Aλ( ) Xλ
m

Y λ
m

( ) � Ωλ
m

Xλ
m

Y λ
m

( ), (8)

where Ωλ
m is the mth excitation energy with eigenvector

(Xλ
m Yλ

m)u at interaction strength λ, u is the matrix
transpose, and we have assumed real-valued spatial orbitals.
The non-interacting and physical systems correspond to λ � 0
and 1, respectively. The matrices Aλ and Bλ are of size OV × OV,
where O and V are the number of occupied and virtual orbitals,
respectively, and O+ V is the total number of spatial orbitals.
Introducing the so-called Mulliken notation for the bare two-
electron integrals

(ij|kl) � ∫∫ dr1dr2ϕi(r1)ϕj(r1)vc(r1 − r2)ϕk(r2)ϕl(r2), (9)

and the corresponding (static) screened Coulomb potential
matrix elements

Wij,kl(ω � 0) � ∫∫ dr1dr2ϕi(r1)ϕj(r1)W(r1, r2;ω � 0)ϕk(r2)ϕl(r2),
(10)

the BSE matrix elements read (Maggio and Kresse, 2016).

Aλ,σσ′
ar,bs � δabδrs(ϵQPr − ϵQPa ) + λ ασσ′(ar|sb) −Wab,sr(ω � 0)[ ],

(11a)

Bλ,σσ′
ar,bs � λ ασσ′(ar|bs) −Was,br(ω � 0)[ ], (11b)

where ϵQPi are the GW quasiparticle energies, and α↑↓ � 2 and
α↑↑ � 0 for singlet (i.e., spin-conserved) and triplet (i.e., spin-flip)
excitations, respectively.

In the absence of instabilities (i.e., when Aλ − Bλ is positive-
definite), (Dreuw and Head-Gordon, 2005), Eq. 8 is usually
transformed into an Hermitian eigenvalue problem of half the
dimension

(Aλ − Bλ)1/2(Aλ + Bλ)(Aλ − Bλ)1/2Vλ
m � (Ωλ

m)2Vλ
m, (12)

where the excitation amplitudes are

(Xλ + Y λ)m � (Ωλ
m)−1/2(Aλ − Bλ)+1/2Vλ

m, (13a)

(Xλ − Y λ)m � (Ωλ
m)+1/2(Aλ − Bλ)−1/2Vλ

m. (13b)

Singlet (Ω↑↓
m ≡ Ωλ�1,↑↓

m ) and triplet (Ω↑↑
m ≡ Ωλ�1,↑↑

m ) excitation
energies are obtained by diagonalizing Eq. 8 at λ � 1.
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2.2.2 Correlation Energies
Our goal here is to compare the BSE correlation energy EBSE

c
obtained using two formulas, namely the trace (or plasmon)
formula (Rowe, 1968; Ring and Schuck, 1980) and the
expression obtained using the adiabatic-connection
fluctuation-dissipation theorem (ACFDT) formalism. (Furche
and Van Voorhis, 2005; Toulouse et al., 2009, 2010; Hellgren
and von Barth, 2010; Angyan et al., 2011; Heßelmann and
Görling, 2011; Colonna et al., 2014; Maggio and Kresse,
2016; Holzer et al., 2018; Loos et al., 2020). The two
approaches have been recently compared at the random-
phase approximation (RPA) level for the case of Be2, (Li
et al., 2020), showing similar improved performances at the
RPA@GW@PBE level with respect to the RPA@PBE level and
an impressive accuracy by introducing BSE (BSE@GW@HF)
correction in the trace formula. Here we would like to get more
insights into the quality of these two approaches.

The ground-state correlation energy within the trace formula
is calculated as

ETr@BSE
c � ETr@BSE

c,↑↓ + ETr@BSE
c,↑↑

� 1
2
∑
m

Ω↑↓
m − Tr(A↑↓)⎡⎣ ⎤⎦ + 1

2
∑
m

Ω↑↑
m − Tr(A↑↑)⎡⎣ ⎤⎦,

(14)

where Aσσ′ ≡Aλ�1,σσ′ is defined in Eq.11a and Tr denotes the
matrix trace. We note that the trace formula is an approximate
expression of the correlation energy since it relies on the so-called
quasi-boson approximation and on the killing condition on the
zeroth-order Slater determinant ground state (Li et al., 2020 for
more details). Note that here both sums in Eq. 14 run over all
resonant (hence real- and complex-valued) excitation energies
while they are usually restricted to the real-valued resonant BSE
excitation energies. Thus, the Tr@BSE correlation energy is
potentially a complex-valued function in the presence of
singlet and/or triplet instabilities.

The ACFDT formalism, (Furche and Van Voorhis, 2005),
instead, provides an in-principle exact expression for the
correlation energy within time-dependent density-functional
theory (TDDFT). (Runge and Gross, 1984; Petersilka et al.,
1996; Ullrich, 2012). In practice, however, one always ends up
with an approximate expression, which quality relies on the
approximations to the exchange-correlation potential of the
KS system and to the kernel of the TDDFT linear response
equations. In this work, therefore, we use the ACFDT
expression within the BSE formalism and we explore how well
it performs and how it compares to the trace Eq. 14.

Within the ACFDT framework, only the singlet states do
contribute for a closed-shell ground state, and the ground-state
BSE correlation energy

EAC@BSE
c � 1

2
∫1

0
dλTr(K↑↓Pλ,↑↓) (15)

is obtained via integration along the adiabatic connection
path from the non-interacting system at λ � 0 to the physical
system λ � 1, where

K � ~A
λ�1

Bλ�1

Bλ�1 ~A
λ�1( ) (16)

is the interaction kernel, (Angyan et al., 2011; Holzer et al., 2018;
Loos et al., 2020) ~A

λ,σσ ′

ar,bs � ασσ ′λ(ar|sb), and

Pλ � Y λ(Y λ)u Yλ(Xλ)u
Xλ(Y λ)u Xλ(Xλ)u( ) − 0 0

0 1
( ) (17)

is the correlation part of the two-body density matrix at interaction
strength λ. Here again, the AC@BSE correlation energy might
become complex-valued in the presence of singlet instabilities.

Note that the trace and ACFDT formulas yield, for any set of
eigenstates, the same correlation energy at the RPA level. (Angyan
et al., 2011). Moreover, in contrast to density-functional theory
where the electron density is fixed along the adiabatic path,
(Langreth and Perdew, 1979; Gunnarsson and Lundqvist, 1976;
Zhang and Burke, 2004), at the BSE@GW level, the density is not
maintained as λ varies. Therefore, an additional contribution to Eq.
15 originating from the variation of the Green’s function along the
adiabatic connection should, in principle, be added. However, as
commonly done within RPA (Toulouse et al., 2009, 2010; Angyan
et al., 2011; Colonna et al., 2014) and BSE, (Holzer et al., 2018; Loos
et al., 2020), we neglect this additional contribution.

3 RESULTS

As discussed in Sec. 1, in this work, we consider the (symmetric)
Hubbard dimer as test case, which is governed by the following
Hamiltonian

Ĥ � −t ∑
σ�↑,↓

ĉ†1σ ĉ2σ + ĉ†2σ ĉ1σ( ) + U n̂1↑n̂1↓ + n̂2↑n̂2↓( ). (18)

Here n̂1σ � ĉ†1σ ĉ1σ (n̂2σ � ĉ†2σ ĉ2σ) is the spin density operator on
site 1 (site 2), ĉ†1σ and ĉ1σ (ĉ†2σ and ĉ2σ) are the creation and
annihilation operators for an electron at site 1 (site 2) with spin σ,
U is the on-site (spin-independent) interaction, and − t is the
hopping kinetic energy. The physics of the Hubbard model arises
from the competition between the hopping term, which prefers to
delocalize electrons, and the on-site interaction, which favors
localization. The ratio U/t is a measure for the relative
contribution of both terms and is the intrinsic, dimensionless
coupling constant of the Hubbard model, which we use in the
following. In this work we consider the dimer at one-half filling.

3.1 Quasiparticle Energies in the GW
Approximation
We test different flavors of self-consistency in GW calculations:
one-shot GW, evGW, partial self-consistency through the
alignment of the chemical potential (pscGW), where we shift
G0 or GHF in such a way that the resulting G has the same
chemical potential than the shifted G0 or shifted GHF,
(Schindlmayr, 1997), and scGW. In the one-shot formalism,
we also test two different starting points: the truly non-
interacting Green’s function G0 (U � 0) and the HF Green’s
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function GHF. These two schemes are respectively labeled as
G0W0 and GHFWHF in the following.

The G0W0 self-energy (in the site basis) and removal/
addition energies are already given in Ref. (Romaniello
et al., 2012) for the Hubbard dimer at one-half filling. For
completeness we report them in Supplementary Appendix S1,
together with the renormalization factors, which are discussed
in Sec. 3.1.1.

Starting from GHF, which reads

GHF,IJ(ω) � 1
2

(−1)(I−J)
ω − (t + U/2) + iη

+ 1
ω + (t − U/2) − iη

[ ], (19)

where I and J run over the sites, the (correlation part of the)
GHFWHF self-energy is ΣGW

c,IJ (ω) � ΣGW
IJ (ω) − δIJU/2 with

ΣGW
c,IJ (ω) �

U2t

2h
1

ω − (t + h + U/2) + iη
+ (−1)I−J
ω + (t + h − U/2) − iη

[ ],
(20)

where h � ��������
4t2 + 4Ut

√
. Here we used the following expression for

the polarizability P � − iGG with elements

PIJ(ω) � (−1)I−J
4

1
ω − 2t + iη

− 1
ω + 2t − iη

[ ] (21)

to build the screened interactionW � vc + vcPW, whose only non-
zero matrix elements read

WII,JJ(ω) � UδIJ + (−1)I−JU
2t

h

1
ω − h + iη

− 1
ω + h − iη

[ ] (22)

due to the local nature of the electron-electron interaction. The
quantities defined in Eqs 19−22 can then be transformed to the
bonding (bn) and antibonding (an) basis (which is used to recast
the BSE as Eq. 8) thanks to the following expressions:

|bn〉 � |1〉 + |2〉�
2

√ , |an〉 � |1〉 − |2〉�
2

√ . (23)

Therefore, the one-shot removal/addition energies read

ϵ1,± � +h
2
+ U

2
±
���������������
(h + 2t)2 + 4tU2/h
√

2
, (24a)

ϵ2,± � −h
2
+ U

2
±
���������������
(h + 2t)2 + 4tU2/h
√

2
, (24b)

with the quasiparticle solutions being ϵQPbn � ϵ1,− and
ϵQPan � ϵ2,+, which correspond to the bonding and antibonding
energies, respectively. As readily seen in Eqs 24a, 24b, in addition
to the quasiparticle, there is a unique satellite per eigenstate given
by ϵsatbn � ϵ1,+ and ϵsatan � ϵ2,−. Moreover, the closed-form
expression of the renormalization factors (Eq. 6) reads

ZQP
bn/an �

t h2 + 2ht + 2U2 + h
���������������
(h + 2t)2 + 4tU2/h
√[ ]

h3 + 4h2t + 4ht2 + 4tU2 − h2
���������������
(h + 2t)2 + 4tU2/h
√ (25)

and Zsat
bn/an � 1 − ZQP

bn/an.
The evGW and scGW calculations were performed

numerically using the meromorphic representation of G,
following Ref. (Puig von Friesen et al., 2010) with some slight
modifications (Supplementary Appendix S2 for more details).
At each iteration, the solution of the Dyson equations for G and
W (Sec. 2.1) produces extra poles. In order to keep the number of
poles under control in scGW, the poles with intensities smaller
than a user-defined threshold (set from 10–4 to 10–6 depending on
the ratioU/t) are discarded and the corresponding spectral weight
is redistributed among the remaining poles.

In Figure 1, we present the spectral function of G (Eq. 3) for
different values of the ratio U/t (U/t � 1, 5, 10, and 15) and using
GHF as starting point. We consider three GW variants: GHFWHF,
evGW, and scGW. For U/t ≲ 3, all the schemes considered here
provide a faithful description of the quasiparticle energies. For
larger U/t, GW (regardless of the level of self-consistency) tends
to underestimate the fundamental gap Eg (Eq. 2), as shown in the
upper left panel of Figure 2. GHFWHF and evGW give a very
similar estimate of Eg, whereas the quasiparticle intensity ZQP

bn/an
defined in Eq. 25 is quite different and overestimated by both
methods, at least in the range of U/t considered in Figure 2
(center left panel).

The main effects of full self-consistency are the reduction of Eg
(see upper left panel of Figure 2), and the creation of extra
satellites with decreasing intensity (see upper panel of Figure 1).
For small U/t, the fundamental gap is similar to the one predicted
by other methods while for increasing U/t the agreement worsen
and Eg is grossly underestimated. The quasiparticle intensity is
very similar to the one predicted by GHFWHF. Concerning the
position of the satellites, we observe that the one-shot GHFWHF

scheme gives the most promising results. Numerical values of
quasiparticle and first satellite energies as well as their respective
intensities in the spectral functions presented in Figure 1 are
gathered in Table 1.

We notice that a similar analysis for H2 in a minimal basis has
been presented in Ref. (Hellgren et al., 2015) with analogous
conclusions.

For the sake of completeness, we also report in the bottom left
panel of Figure 2 the total energy calculated using the Galitskii-
Migdal formula (Eq. 4). Since the Galitskii-Migdal total energy is
not stationary with respect to changes in G, one gets meaningful
energies only at self-consistency. However, for the Hubbard
dimer, we do not observe a significant impact of self-
consistency, as one can see from Figure 1 by comparing the
total energy at the GHFWHF, evGW, and scGW levels. For each of
these schemes which correspond to a different level of self-
consistency, the Galitskii-Migdal formula provides accurate
total energies only for relatively small U/t (≲ 3).

If we considerGHF as starting point and we define the chemical
potential as μ � (ϵQPan + ϵQPbn )/2, then the alignment of the chemical
potential has no effect on the spectrum, this means that GHFWHF

and pscGW are equivalent.

3.1.1 G0: A Bad Starting Point
In the following we will illustrate how the starting point can
influence the resulting quasiparticle energies. The Green’s
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function obtained from the one-shot G0W0 does not satisfy
particle-hole symmetry, the fundamental gap is
underestimated (top right panel of Figure 2) yet more
accurate than GHFWHF (top left panel of Figure 2), the
quasiparticle intensity relative to the bonding component is
close to the exact result up to U/t ≈ 16 (center right panel of
Figure 2), while overestimated for the antibonding components.
Moreover, we note that the intensities of the two poles of the
bonding component crosses at U/t � 24. This means that if we
sort the quasiparticle and the satellite according to their intensity
at a given U/t, the nature of the two poles is interchanged when
one increases U/t, which results in a discontinuity in the QP

energy. Meanwhile, the total number of particle is not conserved
(N < 2). For G0W0 we found a small deviation from N � 2 for
small U/t (e.g. N � 1.98828 at U � 1), which becomes larger by
increasing the interaction (e.g. N � 1.55485 for U/t � 10). Instead,
starting from GHF the particle number is always conserved. We
checked that for the self-consistent calculations the total particle
number is conserved, as it should.

Considering G0 as starting point in evGW, we encounter the
problem described in Ref. (Véril et al., 2018), namely the
discontinuity of various key properties (such as the
fundamental gap in the top right panel of Figure 2) with
respect to the interaction strength U/t. This issue is solved, for

FIGURE 1 | Spectral function ofG (Eq. 3) as a function of (ω−μ)/t (where μ �U/2 is the chemical potential) at various values of the ratioU/t (U/t � 1, 5, 10, and 15) for
different levels of theory: exact (black), GHFWHF (red), evGW (blue), and scGW (green). All approximate schemes are obtained using GHF as starting point.

FIGURE 2 | Fundamental gap (Eg), quasiparticle weight factors (ZQP
bn/an), and ground state energy (E0) as functions of U/t obtained from one-shot GW (dashed red

line), evGW (dashed-dotted blue line), scGW (dotted green line) using GHF (left) or G0 (right) as starting point. The black curves are the exact results.
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the Hubbard dimer, by considering a better starting point or
using the fully self-consistent scheme scGW. Note, however, that
improving the starting point does not always cure the
discontinuity problem as this issue stems from the
quasiparticle approximation itself. Full self-consistency,
instead, avoids systematically discontinuities since no
distinction is made between quasiparticle and satellites.
Unfortunately, full self-consistency is much more involved
from a computational point of view and, moreover, it does not
give an overall improvement of the various properties of interest,
at least for the Hubbard dimer, for which GHFWHF is to be
preferred. For more realistic (molecular) systems, it was shown in
Ref. (Berger et al., 2020). that the computationally cheaper self-
consistent COHSEX scheme solves the problem of multiple
quasiparticle solutions.

3.2 Bethe-Salpeter Equation
For the Hubbard dimer the matrices Aλ and Bλ in Eq. (8) are just
single matrix elements and they simply read, for both spin
manifolds,

Aλ,↑↓ � ΔϵGW + λ
U

2
, Bλ,↑↓ � λ

U

2
4tU

h2
+ 1( ), (26a)

Aλ,↑↑ � ΔϵGW − λ
U

2
, Bλ,↑↑ � λ

U

2
4tU

h2
− 1( ), (26b)

while ~A
λ,↑↓ � λU. We employ the screened Coulomb potential

given in Eq. 22 at ω � 0 for the kernel, and the GW quasiparticle
energies from Eqs 24a and 24b to build the GW approximation
of the fundamental gap ΔϵGW � ϵQP

an − ϵQP
bn . For comparison

purposes, we also use the exact quasiparticle energies [see Eq.
(C3) of Ref. (Romaniello et al., 2012).], which consists in
replacing ΔεGW by the exact fundamental gap
Eg �

��������
16t2 + U2

√ − 2t. In such a case, one is able to
specifically test how accurate the BSE formalism is at
catching the excitonic effect via the introduction of the
screened Coulomb potential.

We notice that, within the so-called Tamm-Dancoff
approximation (TDA) where one neglects the coupling matrix
Bλ between the resonant and anti-resonant parts of the BSE
Hamiltonian (Eq. 8), BSE yields RPA with exchange (RPAx)
excitation energies for the Hubbard dimer. This is the case also for
approximations to the BSE kernel which are beyond GW, such as
the T-matrix approximation. (Romaniello et al., 2012; Zhang
et al., 2017; Li et al., 2021), and it is again related to the local
nature of the electron-electron interaction. Hence, to test the
effect of approximations on correlation for this model system we
must go beyond the TDA.

3.2.1 Neutral Excitations
In Figure 3, we report the real part of the singlet and triplet
excitation energies obtained from the solution of Eq. 8 for λ � 1.
For comparison, we report also the exact excitation energies
obtained as differences of the excited- and ground-state total
energies of the Hubbard dimer obtained by diagonalizing the
Hamiltonian (18) in the Slater determinant basis
{|1↑, 1↓, |1↑, 2↓, |1↓, 2↑, |2↑, 2↓} built from the sites [Ref.
(Romaniello et al., 2009a) for the exact total energies]. For theT
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singlet manifold, this yields, for the single excitation Ω↑↓
1 and

double excitation Ω↑↓
2 , the following expressions:

Ω↑↓
1 � 1

2
U + ��������

16t2 + U2
√( ),Ω↑↓

2 � ��������
16t2 + U2

√
, (27)

while the unique triplet transition energy is

Ω↑↑
1 � 1

2
−U + ��������

16t2 + U2
√( ). (28)

Of course, one cannot access the double excitation within the
static approximation of BSE, (Strinati, 1988; Romaniello et al.,
2009b; Loos and Blase, 2020), so only the lowest singlet and triplet
excitations, Ω↑↓

1 and Ω↑↑
1 , are studied below.

Using one-shot GHFWHF quasiparticle energies (BSE@
GHFWHF) produces complex excitation energies (see right
panel of Figure 3). We find the same scenario also with other
flavors of GW (not reported in the figure), such as scGW. The
occurrence of complex poles and singlet/triplet instabilities at the
BSE level are well documented (Holzer et al., 2018; Blase et al.,
2020; Loos et al., 2020) and is not specific to the Hubbard dimer.
For example, one finds complex poles also for H2 along its
dissociation path, (Li and Olevano, 2021), but also for larger
diatomic molecules. (Loos et al., 2020). For U/t > 12.4794, the
singlet energy becomes pure imaginary, the same is observed for
the triplet energy for 7.3524 < U/t < 12.4794. These two points
corresponds to discontinuities in the first derivative of the
excitation energies with respect to U/t (Figure 3). The BSE
excitation energies are good approximations to their exact
analogs only for U/t ≲ 2 for the singlet and U/t ≲ 6 for the
triplet. Using exact quasiparticle energies instead produces real
excitation energies, with the singlet energy in very good
agreement with the exact result; the triplet energy, instead,
largely overestimates the exact value. This seems to suggest
that complex poles are caused by the approximate nature of
the GW quasiparticle energies, although, of course, the quality of
the kernel also plays a role. Indeed, setting W � 0 but using GW
QP energies, BSE yields real-valued excitation energies. It would
be interesting to further investigate this issue by using the exact
kernel together with GWQP energies. This is left for future work.

3.2.2 Correlation Energy
For the Hubbard dimer, we have EHF � − 2t + U/2, and the
correlation energy given in Eq. 15 can be calculated analytically.
After a lengthy but simple derivation, one gets

EAC@BSE
c � −U

2
+ t2 − 2U2

2U(2t + 3U){ΔϵGW−
1

2(t + U)
�������������������������������������������
[−U2 + 2(t + U)ΔϵGW] U(2t + 3U) + 2(t + U)ΔϵGW[ ]√ }

− t + 2U

2
����������
U(2t + 3U)√ 3t + 4U

2t + 3U
+ t

U
( )ΔϵGW

atan − U
����������
U(2t + 3U)√

2ΔϵGW(t + U) +
�������������������������������������������
[−U2 + 2(t + U)ΔϵGW][U(2t + 3U) + 2(t + U)ΔϵGW]
√⎧⎪⎨⎪⎩ ⎫⎪⎬⎪⎭.

Results are reported in Figure 4 and are compared with the
exact correlation energy (Romaniello et al., 2009a)

Ec � −
��������
16t2 + U2

√
2

+ 2t. (29)

The AC@BSE correlation energy does not possess the correct
asymptotic behavior for small U, as Taylor expanding Eq. 29 for
small U, we obtain

EAC@BSE
c � −U

2

32t
− 5U3

96t2
+ 323U4

6144t3
+O(U4), (30)

while the exact correlation energy behaves as

Ec � −U
2

16t
+ U4

1024t3
+O(U6). (31)

Moreover, we found that the radius of convergence of the
small-U/t expansion of EAC@BSE

c is very small due to a square-root
branch point for U/t ≈ − 2/3.

In the case of the trace formula Eq. 14, the singlet and triplet
contributions behave as

ETr@BSE
c,↑↓ � −U

2

32t
− 7U3

128t2
+ 99U4

2048t3
+O(U5), (32a)

ETr@BSE
c,↑↑ � −U

2

32t
+ 7U3

128t2
− 157U4

2048t3
+O(U5), (32b)

FIGURE 3 | Real and imaginary parts of the singlet (solid) and triplet (dotted) neutral excitations, Ω↑↓
1 and Ω↑↑

1 , as functions of U/t: exact (black), BSE with exact
quasiparticle energies and WHF (gray), BSE@GHFWHF (red).
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which guarantees the correct asymptotic behavior for the total
Tr@BSE correlation energy

ETr@BSE
c � −U

2

16t
− 29U4

1024t3
+O(U5), (33)

and cancels the cubic term (as it should).
The trace formula is strongly affected by the appearance of the

imaginary excitation energies: as shown in Figure 4 where we plot
the real and complex components of the BSE@GHFWHF correlation
energy as functions of U/t at various levels of theory, irregularities
(i.e., discontinuities in the first derivative of the energy) appear at the
values ofU/t for which the triplet and singlet energies become purely
imaginary. The ACFDT expression, instead, is more stable over the
range of U/t considered here with only a small cusp on the energy
surface at the singlet instability point after which the real part of
Ec
AC@BSE behaves linearly with respect to U/t. Overall, however, the

correlation energy obtained by the trace formula is almost on top of
its exact counterpart over a wide range of U/t, with a rather small
contribution from the triplet component, i.e., |ETr@BSE

c,↑↑ |≪ |ETr@BSE
c,↑↓ |.

For comparison purposes, the RPA correlation energy, which is
obtained from the trace or ACDFT formula using BSE@GHFWHF

with W � 0 in the BSE kernel, is also reported in Figure 4. Both
formulas yield the same correlation energies as expected, and they
show no irregularities thanks to the fact that BSE excitation energies
are real-valued at the RPA level. Also correlation energies obtained
using BSE@exact (also shown in Figure 4) do not show irregularities
for the same reason. Moreover, they show a visible upshift with
respect to the corresponding AC@BSE@GHFWHF and Tr@BSE@
GHFWHF results, which worsens the agreement with the exact
correlation energy. Finally, we observe that both expressions for
the correlation energy (at BSE@GW level) produce better results
than the Galitskii-Migdal Eq. 4, as one can see from Figure 4, in
particular at large U/t.

4 CONCLUSION

In this work we have used the symmetric Hubbard dimer to better
understand some features of theGW approximation and of BSE@
GW. In particular, we have found that the unphysical discontinuities

that may occur in quasiparticle energies computed using one-shot or
partially self-consistent GW schemes disappear using full self-
consistency. However, full self-consistency does not give an overall
improvement in term of accuracy and, at least for the Hubbard dimer,
GHFWHF is to be preferred.

We have also analyzed the performance of the BSE@GW approach
for neutral excitations and correlation energies.We have found that, at
any level of self-consistency, the excitation energies become complex
for some critical values of U/t. This seems related to the approximate
nature of theGW quasiparticle energies, since using exact quasiparticle
energies (hence the exact fundamental gap) solves this issue. The BSE
excitation energies are good approximations to the exact analogs only
for a small range of U/t (or U/t ≲ 2 for the lowest singlet-singlet
transition and U/t ≲ 6 for the singlet-triplet transition), while the
strong-correlation regime remains a challenge.

The correlation energy obtained from these excitation energies
using the trace (or plasmon) formula has been found to be in very
good agreement with the exact results over the whole range of U/t
for which these energies are real. The occurrence of complex singlet
and triplet excitation energies shows up as irregularities in the
correlation energy. The ACFDT formula, instead, is less sensitive to
this. However, we have found that the AC@BSE correlation energy
is less accurate than the one obtained using the trace formula. Both,
however, perform better than the standard Galitskii-Migdal
formula. Finally, we have studied the small-U expansion of the
correlation energy obtained with the trace and ACFDT formulas
and we found that the former, contrary to the latter, has the correct
behavior when one includes both the singlet and triplet energy
contributions. Our findings point out to a possible fundamental
problem of the AC@BSE formalism.

Although our study is restricted to the half-filled Hubbard dimer,
some of our findings are transferable to realistic (molecular) systems.
In particular: 1) a fully self-consistent solution of the GW equation
cures the problemofmultipleQP solutions, avoiding in the process the
appearance of discontinuities in key physical quantities such as total or
excitation energies, ionization potentials, and electron affinities; 2) a
“bad” starting point (G0 in the case of the Hubbard dimer) may result
in the appearence ofmultipleQP solutions; 3) potential energy surfaces
computed with the trace formula and within the ACFDT formalism
may exhibit irregularities due to the appearence of complex BSE

FIGURE 4 | Real and imaginary parts of the BSE@GHFWHF correlation energy as a function of U/t at various levels of theory: total (dotted blue line) and singlet-only
(dashed green line) Tr@BSE, AC@BSE (dot-dashed magenta line), RPA (triple-dotted orange line), GM (double-dot-dashed red line), and exact (solid black line). For
comparison also the BSE@exact (Tr@BSE, double-dotted dark grey line; AC@BSE, dot-dashed light grey line) correlation energies are shown. Discontinuities in the first
derivative of the energy (corresponding to the appearance of complex poles) are indicated by open circles.
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excitation energies; 4) for the Hubbard dimer at half-filling, the trace
formula has the correct asymptotic behavior (thanks to the inclusion of
singlet and triplet excitation energies) for weak interaction, contrary to
its ACFDT counterpart. It would be interesting to check if it is also the
case in realistic systems.
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The GW/BSE Method in Magnetic
Fields
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The GW approximation and the Bethe–Salpeter equation have been implemented into the
TURBOMOLE program package for computations of molecular systems in a strong, finite
magnetic field. Complex-valued London orbitals are used as basis functions to ensure
gauge-invariant computational results. The implementation has been benchmarked
against triplet excitation energies of 36 small to medium-sized molecules against
reference values obtained at the approximate coupled-cluster level (CC2
approximation). Finally, a spectacular change of colour from orange to green of the
tetracene molecule is induced by applying magnetic fields between 0 and 9,000 T
perpendicular to the molecular plane.

Keywords: GW, Bethe-Salpeter, excitation energy, magnetic field, density functional theory

1 INTRODUCTION

The description of excited states of molecules in strong magnetic fields poses a major challenge for
quantum chemical methods. (Delos et al., 1983; Turbiner and López Vieyra, 2004; Hampe and
Stopkowicz, 2017; Stopkowicz, 2018; Hampe and Stopkowicz, 2019;Wibowo et al., 2021). On the one
hand, it is well known that introducing magnetic fields also introduces a gauge-dependence when
standard, real-valued Gaussian-type basis functions are used. As a solution, as proposed by London, a
complex phase factor countering the gauge-dependence of the magnetic field, can be used. (London,
1937; Helgaker and Jørgensen, 1991; Ruud et al., 1993; Tellgren et al., 2008). This in turn leads to
complex-valued basis functions, which significantly increase the cost of subsequent calculations. On
the other hand, many “work-horse” methods used to describe excited states as linear-response (LR)
time-dependent density functional theory (TD-DFT) cannot be straightforwardly adapted to include
arbitrary magnetic fields due to instabilities occurring in the respective non-collinear exchange-
correlation (XC) kernel. The instabilities in the XC kernel are related to the same instabilities that also
plague other non-collinear TD-DFT kernels in, for example, relativistic two-component TD-DFT.
(Gao et al., 2005; Egidi et al., 2017; Komorovsky et al., 2019). While solutions to these problems have
been proposed, they inevitably lead to XC kernels that do not exhibit full rotational invariance. (Egidi
et al., 2017; Komorovsky et al., 2019). Contrary to TD-DFT, coupled-cluster methods are not plagued
by any instabilities, but suffer from their steep cost, which increases exponentially with their
accuracy. Furthermore, the complex gauge-independent London atomic orbitals lead to another
steep increase in the computational complexity, effectively preventing calculations on systems with
more than a few electrons. (Hampe and Stopkowicz, 2017; Hampe et al., 2020). Even though the
computational limitations are severe, the investigation of molecular properties in strong external
magnetic fields has become an increasingly popular topic within the field of quantum chemistry in
recent years. Several field-dependent properties including non-linear effects on the electronic
structure of small molecules, (Tellgren et al., 2008; Tellgren et al., 2009; Lange et al., 2012;

Edited by:
Linn Leppert,

University of Twente, Netherlands

Reviewed by:
Xinguo Ren,

Institute of Physics (CAS), China
Antonios Alvertis,

Lawrence Berkeley National
Laboratory, United States

*Correspondence:
Wim Klopper

klopper@kit.edu

Specialty section:
This article was submitted to

Theoretical and Computational
Chemistry,

a section of the journal
Frontiers in Chemistry

Received: 23 July 2021
Accepted: 19 October 2021

Published: 25 November 2021

Citation:
Holzer C, Pausch A and Klopper W

(2021) The GW/BSE Method in
Magnetic Fields.

Front. Chem. 9:746162.
doi: 10.3389/fchem.2021.746162

Frontiers in Chemistry | www.frontiersin.org November 2021 | Volume 9 | Article 7461621

ORIGINAL RESEARCH
published: 25 November 2021

doi: 10.3389/fchem.2021.746162

75

http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2021.746162&domain=pdf&date_stamp=2021-11-25
https://www.frontiersin.org/articles/10.3389/fchem.2021.746162/full
https://www.frontiersin.org/articles/10.3389/fchem.2021.746162/full
http://creativecommons.org/licenses/by/4.0/
mailto:klopper@kit.edu
https://doi.org/10.3389/fchem.2021.746162
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2021.746162


Stopkowicz et al., 2015), molecular geometries, (Tellgren et al.,
2012; Irons et al., 2021), spin-phase transitions (Sun et al., 2019a)
and excited state properties (Sun et al., 2019b; Sen et al., 2019;
Stetina et al., 2019; Wibowo et al., 2021) have been explored using
quantum-chemical methods at different levels of theory.

Since the largest magnetic field currently created on Earth
exhibits a field strength of about 100 T, (Sims et al., 2008), there is
hardly any need to treat strong magnetic fields in more than a
perturbative manner from an experimental point of view. Still,
scientific curiosity has for a long time been a strong motor to
investigate also situations which are (currently) not directly
accessible. Given the lack of experimental data, highly accurate
quantum-chemical methods are desirable in order to explore
molecular properties in the field regime of > 100 tesla.

With the GW/Bethe–Salpeter equation (BSE) method, a
suitable way of calculating properties from Kohn-Sham (KS)
reference states has emerged within the last few years.
(Bruneval et al., 2015; Jacquemin et al., 2015; Leng et al., 2016;
Holzer and Klopper, 2017; Krause and Klopper, 2017; Gui et al.,
2018; Blase et al., 2020; Kehry et al., 2020). It has seen great
success, exhibiting a more favourable behaviour than TD-DFT on
many occasions. While both TD-DFT and the GW/BSE method
start from the same Kohn-Sham reference, GW/BSE fully
accounts for charge-transfer and Rydberg excitations due to its
correct asymptotic long-range behaviour. (Sagmeister and
Ambrosch-Draxl, 2009; Blase and Attaccalite, 2011; Blase
et al., 2011; Blase et al., 2018). Furthermore, the description of
core excitations is significantly improved within the GW/BSE
method. (Olovsson et al., 2009; Vinson et al., 2011; Kehry et al.,
2020). The accuracy of the GW/BSE method is an improvement
over TD-DFT. Therefore, adapting the GW/BSE method to be
applicable to arbitrary molecules in arbitrary magnetic fields is
worthwhile. It allows for an investigation of the effects of strong
magnetic fields in sizable molecular systems while still retaining a
certain robustness with respect to accuracy.

Within this paper we therefore aim at describing a fully consistent
formulation and implementation of the GW/BSE method for the
description of optical spectra of sizable molecules within strong
magnetic fields. In the following chapters, the general formulas for
the G0W0 and the eigenvalue self-consistent GW (evGW) methods
as well as the BSE in strong magnetic fields are outlined. The
resulting implementation is able to describe excited states of
molecules of significant size. As such strong external magnetic
fields are not accessible in experimental setups, a set of
benchmark values obtained from truncated coupled cluster theory
is provided for 36 small to medium-sized molecules. Finally, we
demonstrate the capabilities of the GW/BSE equation in strong
magnetic fields by predicting the colour change of tetracene in a
strong uniform magnetic field.

2 THEORY

2.1 GW Approach in Magnetic Fields Using
London Atomic Orbitals
GW quasiparticle (QP) energies form the basis for calculating
excitation energies from the Bethe–Salpeter equation. The

principal theory to obtain GW QP energies in a magnetic field
has been outlined in Ref. (Holzer et al., 2019). for atoms and
complex-valued spinors. For molecules, to retain full gauge-
invariance, instead of real Gaussian-type atomic orbitals,
complex London-type atomic orbitals (LAOs) have to be used.
These are obtained as a direct product of a Gaussian-type orbital
ϕμ(r) and a complex phase factor:

ξμ(r) � ϕμ(r)e−i kμ ·r (1a)

kμ � 1
2
B × Rμ −O( ) (1b)

The complex phase factor is used in order to cancel the
dependency of all observable properties on the gauge origin O
which naturally arises from the choice of a Coulomb gauge
(∇ ·A � 0) for a magnetic vector potential (∇ ×A � B). In a
two-component (2c) framework, complex spinors can be
constructed as a linear combination of LAOs:

|p〉 � φp(x) � ∑
μ

Cα
μpξμ(r)α(σ) + Cβ

μpξμ(r)β(σ){ }. (2)

Non-collinear spin densities are well represented in this 2c
spinor framework. Therefore, uniform and non-uniform
magnetic fields can be included in this way. (Sen et al., 2019).
More generally, within the notation used in this paper, any
arbitrary non-collinear spin density can be employed.
Furthermore, the complex phase-factor including LAOs are
strictly needed to ensure gauge-independence for GW
quasiparticle energy evaluations of multi-atomic systems, as
well as for consecutive calculations of excitation energies using
the Bethe–Salpeter equation. As the magnetic field is represented
by a one-electron operator within 2c Kohn–Sham equations, the
according information is fully absorbed into the complex spinors
expanded in LAOs. Therefore, all quantities occurring in the BSE
in a magnetic field must generally be assumed to be complex,
unless further symmetries can be exploited.

To obtain the working formulas for G0W0 and evGW, we
closely follow Refs. (Holzer et al., 2019). and (Hedin, 1991) and
define the charge-fluctuation potential as

Vm(x) � ∫∞

−∞
1

|r − r′|ρm x′( ) dx′, (3)

where m denotes an excited state, and where the space-spin-
coordinate x ≡ (r, σ) includes both space and spin coordinates.
The charge fluctuation can be expressed using molecular
spinors as

ρm(x) � ∑
ia

φp
a(x)φi(x)Xm

ia + φp
i (x)φa(x)Ym

ia[ ], (4)

whereXm
ia (Y

m
ia) refers to the elements “ia” of themth column of the

matrix X (Y) obtained from solving the direct random-phase
approximation equation (dRPA) as defined by Equations 4–7 of
Ref. (Holzer et al., 2019). Here and in the following, we use the
indices i, j, k, . . . for occupied molecular spinors, a, b, c, . . . for
unoccupied (virtual) molecular spinors, and p, q, r, . . . for arbitrary
molecular spinors, expanded in a basis set of LAOs. It is worthwhile
to note that complex molecular spinors can be obtained from
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London atomic orbitals as well as from real Gaussian orbitals, and
after the transformation from an atomic to a molecular picture, the
working equations are the same for the two basis sets. However, only
molecular spinors from LAOs incorporate the information needed
for proper gauge-invariant calculations.

In the GW approximation, the correlation self-energy is
obtained from the expression

Σc x, x′;ω( ) � − 1
2πi

∫∞

−∞
eiω′0+Wc x, x′;ω′( )

×G x, x′;ω + ω′( )dω′,

(5)

where G is the one-electron Green’s function

G x, x′;ω( ) � ∑
p

φp(x)φp
p x′( )

ω − εp + iδsgn εp − μ( ). (6)

As usual, to avoid instabilities and to make Eq. 6 integratable, a
small positive number δ is added to the denominator. εp is the
eigenvalue of the pth spinor that solves the Kohn-Sham equation for
the underlying density functional approximation. The Fermi-level
chemical potential μ is chosen to lie between the energy levels of the
lowest unoccupied and highest occupied spinors, and Wc is the
correlation contribution to the linearly screened potential,

Wc x, x′;ω( ) � ∑
m≠0

Vm(x)Vp
m x′( )

ω − ωm + iδ
− Vp

m(x)Vm x′( )
ω + ωm − iδ

[ ]. (7)

Evaluating the integral on the right-hand side of Eq. 5 yields

Σc x, x′;ω( ) � ∑
k

∑
m≠0

Vm(x)Vp
m x′( )φk(x)φp

k x′( )
ω + ωm − εk − iη

+∑
c

∑
m≠0

Vp
m(x)Vm x′( )φc(x)φp

c x′( )
ω − ωm − εc + iη

,

(8)

where η � 2δ. We thus obtain the following working equation for
the real-valued correlation contribution to the quasiparticle
energy:

〈p|Σc εp( )|p〉 � ∑
k

∑
m≠0

| pk|ρm( )|2D+
p,k,m

+∑
c

∑
m≠0

| cp|ρm( )|2D−
p,c,m,

(9)

with

D±
p,q,m � εp − εq ± ωm

εp − εq ± ωm( )2 + η2
. (10)

The two-electron integrals (pq|ρm) are computed as

pq|ρm( ) � ∑
ia

(pq|ai)Xm
ia + (pq|ia)Ym

ia[ ]. (11)

The exchange self-energy is

〈p|Σx|p〉 � −∑
k

(pk|kp), (12)

and the G0W0 quasiparticle energies are computed as (van Setten
et al., 2012; Krause et al., 2015; Holzer et al., 2019)

εG0W0
p � ε(0)p + Zp〈p|Σc ε(0)p( ) + Σx − Vxc|p〉, (13)

with

Zp � 1 − 〈p| zΣc(ε)/zε( )ε�ε(0)p
|p〉{ }−1

, (14)

where ΣX is the exchange self-energy and Vxc is the exchange-
correlation potential of the underlying density functional theory. To
obtain eigenvalue self-consistent quasiparticle energies (i.e., evGW
quasiparticle energies), Eq. 13 is evaluated repeatedly with Z � 1
until the obtained eigenvalues are converged.

ε(n+1)p � ε(0)p + 〈p|Σc ε(n)p( ) + Σx − Vxc|p〉. (15)

It was found that DIIS (direct inversion in the iterative subspace)
(Pulay, 1980) procedures can speed up this process considerably.
Usually less than ten consecutive evaluations of Eq. 15 are then
needed to obtain converged evGW quasiparticle energies.

Finally, we note that also the analytic continuation (AC) and
contour deformation (CD) GW variants described in Ref. (Holzer
and Klopper, 2019) can be adapted to LAOs in the same manner.
However, unlike the previous formulas derived for the analytic GW
variant in an magnetic field, our current AC-GW and CD-GW
variants are approximate in the sense that they ignore the lack of
time-reversal (Kramers) symmetry. While we expect our AC-GW
andCD-GW variants to bewell behaved in a systemwith a vanishing
spin expectation value (〈S2〉 ≈ 0), more research on these methods
has to be performed in cases of non-vanishing 〈S2〉.

2.2 The Bethe–Salpeter Equation in a
Magnetic Field
Starting from the gauge-invariant quasiparticle energies
described in the previous section, the gauge-invariant
excitation energies can be obtained from the Bethe–Salpeter
equation also making use of LAOs. The BSE can be expressed
in terms of complex spinors as

A B
Bp Ap( ) Xm

Ym( ) � ωm
1 0
0 −1( ) Xm

Ym( ). (16)

The orbital rotation matrices A and B are defined as

Aia,jb � εi − εa( )δijδab + vai,bj −Wji,ba, (17a)

Bia,jb � vai,jb −Wbi,ja, (17b)

where εi is the quasiparticle energy of the ith Kohn–Sham
eigenstate from a preceding GW computation, via,bj is a
Coulomb integral over complex spinors,

via,bj � φaφi|φbφj( ) � ∫∫φp
a(x)φi(x)

1
|r − r′|φ

p
b x′( )φj x′( ) dxdx′,

(18)

and Wpq,rs is the static screened potential from the BSE. Properties
such as for example oscillator strengths, excited state dipole
moments, or nuclear forces can be obtained in a straightforward
manner from the solutions of the eigenvalue problem of the BSE,
again expressed in a basis of LAOs. Using complex LAO-based
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spinors, the static (i.e.,ω � 0) screened potentialW, which is given in
its real-space expression in Eq. 7, takes the form

Wpq,rs � ∑
tu

ϵ−1( )pq,tuvtu,rs (19a)

ϵpq,tu � δptδqu −∑
tu

vpq,tu χ0( )tu,tu , (19b)

where ϵ is the dielectric function. The non-interacting response-
function χ0 is diagonal and real if the quasiparticle energies are
real, even if complex LAO-based spinors are used:

χ0( )tu,tu � ∑
kc

δtkδuc + δtcδuk
εk − εc

. (20)

From the response function, and using the resolution-of-the-
identity (RI) approximation

vpq,rs � ∑
P

RP
pq( )pRP

rs, (21)

the screened potential Wpq,rs can be evaluated as (Krause and
Klopper, 2017)

Wpq,rs � ∑
PQ

RP
pq( )p δPQ − 2R∑

ck

RP
ck χ0( )ck,ck RQ

ck( )p⎡⎣ ⎤⎦−1RQ
rs . (22)

For the 3-index intermediate RP
pq

RP
pq � ∑

Q

V−1/2( )PQ ϕQ|φpφq( ), (23a)

VPQ � ϕP|ϕQ( ) � ∫∫ ϕP(r)
1

|r − r′|ϕQ r′( ) drdr′ , (23b)

ϕQ|φpφq( ) � ∫∫ ϕQ(r)
1

|r − r′|φ
p
p x′( )φq x′( ) drdx′, (23c)

the auxiliary functions ϕP are chosen to be real as ordinary
Gaussian-type atomic orbitals without losing gauge invariance
of the results obtained from computations in a magnetic field.
This considerably simplifies the inner part of Eq. 22, representing
the response function in the auxiliary subspace,

χPQ � δPQ − 2R∑
ck

RP
ck χ0( )ck,ck RQ

ck( )p, (24)

which is symmetric and real for the special case of the static BSE
even in a (uniform or nonuniform) magnetic field. Finally, the
efficient evaluation of the 3-index integrals (ϕQ|φpφq) has been
described in Ref. (Pausch and Klopper, 2020). Therefore, the
evaluation of the BSE in magnetic fields can proceed in a
straightforward manner, making it an invaluable tool to assess
excited stats of molecules in magnetic fields at roughly the same
cost as required for linear-response Hartree–Fock computations,
with the advantage of being significantly more accurate.

3 COMPUTATIONAL DETAILS

All implementation work in this work have been carried out in
the framework of the TURBOMOLE (Ahlrichs et al., 1989; Furche
et al., 2014; Balasubramani et al., 2020) program package.

Consequently, all calculations have also been done using
TURBOMOLE.

To assess the correctness of the implementation and theory of
the GW/BSE method in magnetic fields, the first excited triplet
states of 36 small molecules have been evaluated using evGW/BSE
in a magnetic field of 1,000 T in z-direction with respect to the
coordinates supplied in the Supporting Information (SI). The
molecules used in this evaluation are acetaldehyde, acetylene,
CCl2, CClF, CF2, cyanoacetylene, cyanoformaldehyde, cyanogen,
diacetylene, difluorodiazirine, formaldehyde, formic acid, formyl
chloride, formyl fluoride, glyoxal, H2C3, HCN, HCP, HNO, HPO,
HPO, HPS, HSiF, isocyanogen, nitrosamine, nitrosylcyanide,
phosgene, propynal, pyrazine, selenoformaldehyde, SiCl2,
silylidene, tetrazine, thioformaldehye, thioformylchloride,
thionylcarbonylfluoride, and thiophosgene. The set of
molecules is taken from Ref. (Suellen et al., 2019). Starting
from the geometries provided in Ref. (Suellen et al., 2019), the
geometries have been re-optimized using RI-MP2 (resolution-of-
identity Møller–Plesset perturbation theory to second order) in
the corresponding magnetic field of 1,000 T in z-direction using
numerical gradients. At the RI-MP2-optimized geometries, the
three first excited states have been evaluated using evGW/BSE
and PBE0, (Perdew et al., 1997; Adamo and Barone, 1999), LC-
ωPBE, (Vydrov and Scuseria, 2006), BHLYP (also known as
BH&HLYP), (Becke, 1993), and CAM-B3LYP (Yanai et al.,
2004) as underlying functionals. In all calculations the energy
and norm of the difference density matrix were converged to 10−8

hartree and 10−7, respectively. The def2-TZVP basis set (Weigend
and Ahlrichs, 2005) was used throughout, in conjunction with the
resolution-of-identity (RI) approximation for the Hartree and
exchange terms with the corresponding auxiliary fitting basis sets
for the Kohn–Sham ground-state (Weigend, 2006; Weigend,
2008) as well as the appropriate auxiliary fitting basis sets for
the RI-MP2 and GW/BSE calculations. (Hättig, 2005).

For further comparison, the corresponding excited state
energies have also been determined using the approximate
coupled-cluster RI-CC2 method, (Hättig and Weigend, 2000),
which has been adapted to calculations in finite magnetic fields in
the course of the present work. It is closely related to the
equation-of-motion coupled-cluster singles-and-doubles
(EOM-CCSD) method in magnetic fields that has been
described by Hampe and Stopkowicz, (Hampe and
Stopkowicz, 2017), and to the two-component RI-CC2
implementation of Krause and Klopper. (Krause and Klopper,
2015). Compared to EOM-CCSD, RI-CC2 is computationally
significantly less involved. This allows for the assessment of the
larger molecules in the test set in the applied magnetic field.

For tetracene, we performed calculations on the evGW (10)/
BSE@DFT level using the contour deformation (CD) technique.
(Holzer and Klopper, 2019). CD-evGW (10) denotes that only the
highest 10 occupied and lowest 10 unoccupied spinor energies
have been corrected using CD-evGW, while the remaining spinor
energies are shifted (“scissoring”) accordingly. Testing the self-
energy obtained from the CD-GW variant reveals that indeed for
the systems and magnetic field strengths investigated in this
paper, CD-GW exhibits errors of the order of 1 meV or less,
making it perfectly feasible for (not too strong) magnetic fields.
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As reference density functionals for the evGW(10)/BSE@DFT
calculations, we used PBE0, B3LYP, BHLYP and CAM-B3LYP.
Also the tetracene calculations were carried out in the def2-
TZVP basis.

4 RESULTS AND DISCUSSION

4.1 Test Set of Small Molecules
For the 36 molecules tested, in a field of 1,000 T, all ground states
retain their closed-shell character, yielding no spin polarization.
Therefore, the spacing in-between the three triplet states (T−1,0,1),
which are non-degenerate in the magnetic field, are solely

determined by the Zeeman effect. The T−1,1 components of
the triplet are found exactly at ET0 ± B. At a field of B �
1,000 tesla, this translates into ≈ ± 0.116 eV above and below
the T0 state. The center-of-mass of the triplet, being located
exactly at the zero-component of the triplet, is however shifted
when compared to the degenerate triplet state in the field-
free case.

Figure 1 compares the RI-CC2 and evGW/BSE excitation
energies of the full set. It exhibits a near-linear shift between the
two methods, with the difference getting more pronounced for
excited states with higher energy. Furthermore, RI-CC2
consistently yields blue-shifted excitation energies when
compared to evGW/BSE. This is in accordance with the finding

FIGURE 1 | Comparison of excitation energies from the RI-CC2 and
evGW/BSE@DFT methods. evGW/BSE calculations have been performed
using either PBE0, LC-ωPBE, BHLYP or CAM-B3LYP spinors. All calculations
used the def2-TZVP basis set. All values in eV.

FIGURE 2 | Comparison of excitation energies from the RI-CC2 and
evGW/TDA-BSE@DFT methods. evGW/BSE calculations have been
performed using either PBE0 or LC-ωPBE spinors. All calculations used the
def2-TZVP basis set. All values in eV.
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of Suellen et al., who also found CC2 to yield too high excitation
energies on average for this test set, though in the field-free case. In
contrast, evGW/BSE was found to yield too low excitation energies
on average, especially for triplet excited states. (Gui et al., 2018). Too
low triplet excited states are well known phenomenon for the GW/
BSE method. (Rangel et al., 2017; Jacquemin et al., 2017; Holzer and
Klopper, 2018). While Jacquemin et al. proposed to use the Tamm-
Dancoff approximation (TDA) to improve this, (Jacquemin et al.,
2017), two of us proposed adding the correlation kernel of the
underlying density functional approximation to improve triplet
excitations, yielding the correlation-kernel augmented BSE (cBSE)
approach. (Holzer and Klopper, 2018). While a linear-response
time-dependent DFT implementation in magnetic fields would be
needed to apply the cBSE method, using the TDA is
straightforwardly obtained by setting B � 0 in Eq. 16. For the
tested molecules, these findings can be partly confirmed, with the
TDA leading to a significantly blue shift of especially the lower lying
excited states, improving the agreement between evGW/TDA-BSE
and RI-CC2 (Figure 2). The improvement of the GW/BSE method
when using the TDA is generally also observed in field-free cases.
(Rangel et al., 2017).

A closer inspection of Figure 1 reveals that for the evGW/BSE
method, two distinct groups, one with smaller deviations from
RI-CC2 and one with larger deviations, are found. The “high-
error” group is composed of the molecules nitrosamine (1.02 eV),
HCP (3.61 eV), diacetylene (4.20 eV), cyanoacetylene (4.55 eV),
cyanogen (5.03 eV), isocyanogen (5.42 eV), acetylene (5.65 eV),
and HCN (6.58 eV). The values in parenthesis are the T0

excitation energies of the corresponding RI-CC2 references.
Except for the low-energy excited state of nitrosamine, all
these molecules feature triple bonds in their respective ground
states. Furthermore we find instabilities for the molecules HNO
(0.74 eV) and nitrosylcyanide (0.72 eV) with rather low lying
triplet excited states. This is further hinting at triple bonds and
nitrosyl groups being described with sub-par quality within the
evGW/BSE methods. For the remaining molecules significantly
smaller errors are found.

Employing the TDA removes the instabilities encountered in
the evGW/BSE calculations for the molecules HNO and
nitrosylcyanide, in both cases yielding excitation energies that
are lower by ≈ 0.4eV when compared to their RI-CC2
counterparts as shown in Table 1.

As displayed also in Figure 1 and Figure 2, Table 1 reveals
that BHLYP, which incorporates a relatively large amount of

Hartree–Fock exchange, performs best for the investigated
molecules. The range-separated hybrids LC-ωPBE and CAM-
B3LYP yield comparable results, and generally perform better
than PBE0 but worse than BHLYP. This is in line with
observations for field-free cases, indicating that (at least for
moderate field strength) conclusions drawn from field-free
benchmarks are still applicable. (Holzer et al., 2021).

As shown in Figure 2, the class of molecules with triple bonds
or nitrosyl groups exhibits a significantly reduced error within the
TDA for all investigated functionals. Triplet excitation energies
from the latter class of molecules are now in line with all other
molecules. We therefore expect the TDA to be especially valuable
for molecules with triple bonds or nitrosyl groups. Still, regarding
the TDA, there are some caveats left. While some of the
improvements can indeed be related to error compensation,
where the blue-shift of the TDA counteracts the general red-
shift of the evGW/BSE method with respect to CC2 excitation
energies, this can not fully explain the strong reduction of the
error regarding the class of molecules with triple bonds or nitrosyl
groups, which indicates that also the correlation from the BSE is
sometimes insufficient to describe triplet excitations sufficiently
well. Given the overall increase in accuracy from the TDA, it may
be advisable to even use it by default in magnetic fields until the
cBSE method becomes available. (Holzer and Klopper, 2018).
However, it shall be noted that the usage of CC2 as reference
method is not the best possible but a pragmatic choice for this test
set. While its accuracy is comparable or even slightly better than
that of EOM-CCSD, (Suellen et al., 2019), more refined methods
as CC3 or EOM-CCSDT would be needed to obtain true
reference values with errors significantly below 0.1 eV. Given
the immense computational cost of the latter two methods, only
results for a single diatomic molecule, namely CH+, have been
reported for EOM-CCSDT so far in a finite magnetic field.
(Hampe et al., 2020). RI-CC2 as computational efficient
method is therefore a suitable compromise, providing robust
values. However, as shown in Ref. (Suellen et al., 2019), CC2 has a
tendency to deliver too high excitation energies when compared
to experimental and CC3 excitation energies. In contrast, evGW/
BSE tends to underestimate excitation energies as shown in Ref.
(Gui et al., 2018), especially for triplet excited states. This has to be
taken into account when comparing the CC2 and evGW/BSE
methods. Concerning the reference state, evGW is able to even
out the differences between the underlying functionals
completely. The difference between excitation energies
obtained from either evGW/BSE@PBE0 or evGW/BSE@LC-
ωPBE is statistically insignificant. The presented results suggest
that the performance of the evGW/BSEmethod in magnetic fields
is similar to its performance in field-free situations, yielding good
to excellent excitation energies, at a considerably reduced effort
when compared to coupled-cluster methods.

4.2 Optical Properties of Tetracene in a
Magnetic Field
As established in the last section, the evGW/BSE method quite
accurately predicts molecular excitation energies in the
presence of an external magnetic field. Our implementation

TABLE 1 | Mean average error (MAE), mean signed error (MSE), standard
deviation (SD), and maximum error (MAX) of evGW/BSE@DFT (“BSE”) and
evGW/TDA-BSE@DFT (“TDA”) excitation energies with respect to CC2 excitation
energies. All values in eV.

DFT PBE0 LC-ωPBE BHLYP CAM-B3LYP

Method BSE TDA BSE TDA BSE TDA BSE TDA

MAE 0.61 0.41 0.58 0.38 0.53 0.34 0.59 0.39
MSE −0.61 −0.41 −0.58 −0.38 −0.53 −0.34 −0.59 −0.39
SD 0.28 0.18 0.25 0.17 0.23 0.16 0.25 0.16
MAX 1.29 0.90 1.24 0.85 1.05 0.68 1.19 0.81
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into the TURBOMOLE package thus appears to be an efficient yet
reliable method of predicting excited state properties of sizable
molecules in strong magnetic fields. As a consequence, real-
world properties such as the absorption and emission spectra,
and therefore also the colour, of a substance can now be
obtained by simulating the vertical excitations and related
oscillator strengths of a molecule under such extreme
conditions. In this section, the effects of a strong external
magnetic field on the excited states of tetracene are studied in
detail, exemplifying the effects such extreme environments can
have on chemical substances.

The optical spectrum of tetracene in the absence of an external
magnetic field is mainly composed of three bands. The p-band
(peak at 455–477 nm) corresponds to the HOMO → LUMO
transition (B2u symmetry). The α- and β-bands correspond to the
HOMO→ LUMO+1 and HOMO −1→ LUMO transitions (both
B3u symmetry), respectively, and show peaks at 373–393 nm
(α-band) as well as 272–275 nm (β-band). While the two
bands in the visible (p) and near-UV (α) region of the
spectrum exhibit relatively small oscillator strengths, the β
excitation is associated with an oscillator strength several
orders of magnitude larger than that of the two other
transitions. (Guidez and Aikens, 2013; Sony and Shukla, 2007;
Klevens and Platt, 1949; Biermann and Schmidt, 1980; Bree and
Lyons, 1960).

In order to investigate the optical properties of tetracene for
the field-free case, we first optimized the geometry at the PBE0,
B3LYP, BHLYP and CAM-B3LYP levels, respectively. Using
these structures, subsequent CD-evGW/BSE@DFT calculations
were carried out. The resulting wavelengths for the excitations are
presented in Table 2. The different reference functionals provide
similar values for the α- and β-excitations, slightly overestimating
the energies of both excitations. The energies of the p-excitation,
however, vastly differ with respect to the reference functional,
ranging from 465 nm at the CD-evGW/BSE@BHLYP level to
614 nm at the CD-evGW/BSE@PBE0 level. Further investigations
reveal that this is almost exclusively an effect of the geometry and
not the method itself as using the CAM-B3LYP reference
geometry yields wavelengths between 468 and 487 nm for the
p-excitation in all cases. This is to be expected as the impact of the
reference functional is usually not very large for evGW/BSE
calculations. (Holzer et al., 2021).

In order to gain a better insight into the electronic processes
behind the optical spectrum, the transition densities are

examined for the p-, α- and β-excitations. In accordance with
the literature, (Lim et al., 2004; Guidez and Aikens, 2013), it is
found that while the p-band corresponds to a transition polarized
along the short axis of the molecule, the α- and β-excitations can
be described by transitions polarized along the long axis of the

TABLE 2 | Wavelengths of p-, α- and β-excitations in nm as calculated at the CD-evGW/BSE@DFT level employing different reference functionals. In order to highlight the
dependence on the geometry, all calculations were performed both on the geometry as optimized using the reference functional as well as on the geometry as optimized
using the range-separated hybrid (RSH) functional CAM-B3LYP. Experimental values are also given.

Geometry Geometry optimization CAM-B3LYP (RSH) geometry

Functional PBE0 B3LYP BHLYP RSH PBE0 B3LYP BHLYP Exp. Guidez and Aikens, (2013); Sony and Shukla, (2007); Klevens and Platt,
(1949); Biermann and Schmidt, (1980); Bree and Lyons, (1960)

p-Excitation 614 505 465 470 484 487 468 455–477
α-Excitation 370 369 349 354 359 360 351 373–393
β-Excitation 270 269 260 265 264 264 261 272–275

FIGURE 3 | Transition densities of the p-, α- and β-excitations as
generated by a two-component CD-evGW/BSE@CAM-B3LYP calculation.
The plots were generated with VMD using an isovalue of 0.0001 a−30 for the p-
excitation and 0.0002 a−30 for the α- and β-excitations. The colour blue
indicates a loss while red indicates a gain of electron density.
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molecule. The transition densities of the three excitations are
depicted in Figure 3.

Having gained a general overview of the electronic excitations
that mainly constitute the optical spectrum of tetracene, it is now
possible to extend these findings in order to understand the effect
a strong external magnetic field may have on such a system.
Furthermore, it is now possible to use these findings in order to
predict the colour shift of the tetracene molecule under the
influence of such a strong magnetic field.

This investigation contains three steps: Firstly, it is necessary
to generate the optical spectrum of tetracene in the absence of a
magnetic field. This was done using the CD-evGW (10)/BSE@
DFT methods employing BHLYP and CAM-B3LYP as reference
functionals as they most accurately describe the electronic
excitations in the zero-field compared to the experimental
values. The peaks are broadened using a damped sum-over-
states formalism which translates to a Lorentzian line shape
with full width at half maximum of 0.15 eV for all excitations.
(Norman et al., 2004; Barron, 2004; Fernandez-Corbaton et al.,
2020). From this information, the RGB colour code of the

substance can be computed. By calculating the integrals over
the entire visible part of the spectrum and arbitrarily setting it to 1
for the zero-field case, the relative intensities of the colour may
also be calculated.

Secondly, the immediate influence of an external magnetic
field has to be assessed. Applying the external field perpendicular
to the molecular plane lowers the symmetry of the system. The
point group of tetracene in such an external field is C2h instead of
D2h. The excitations of the p-, α- and β-bands are all of Bu
symmetry. A further investigation reveals that the subsequent two
excitations (here denoted as c and δ) are also of Bu symmetry.

Thirdly, by slowly raising the magnetic field strength in steps of
1,000 T and generating the optical spectrum at each field strength as
previously described, it is possible to track how the excitations are
influenced by the external magnetic field. The resulting UV/Vis
spectra and the energies of the five lowest excitations are plotted in
Figures 4A,B. While the excitation energies of the α–δ-excitations
are only slightly shifted between 0 T and 9,000 T, the p-band is
strongly red-shifted. At the same time, the oscillator strength of the
p-excitation decreases with an increasing field strength. The resulting

FIGURE 4 | (A)UV/Vis spectra of tetracene as predicted at different magnetic field strengths between 0 T and 9,000 T. Solid lines denote calculations using the CD-
evGW (10)/BSE@BHLYP method while dashed lines denote CD-evGW (10)/BSE@CAM-B3LYP calculations. (B)Wavelengths of the relevant lowest vertical excitations
of tetracene at different magnetic field strengths between 0 T and 9,000 T. The p-excitation, which is predominantly responsible for the colour of tetracene, is most
affected by the external field. Solid lines denote calculations using the CD-evGW (10)/BSE@BHLYPmethod while dashed lines denote CD-evGW (10)/BSE@CAM-
B3LYP calculations. (C) Colour of tetracene as predicted at the CD-evGW (10)/BSE@CAM-B3LYP level of theory at different magnetic field strengths between 0 T and
9,000 T. To obtain the depicted colours, the vertical excitations of the optical spectrum were broadened by 0.15 eV and converted into a RGB colour code while the
intensity was scaled relative to the zero-field by integrating over the visible region of the spectrum.
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UV/Vis spectrum is mostly dominated by both the location and
intensity of the p-band while only a small section of the violet and
blue part of the spectrum between 400 and 500 nm is caused by the
other excitations. Only the five lowest excitations (p, α–δ) are
depicted in Figure 4B, but the UV/Vis spectrum was generated
by the 75 lowest excitations. However, none of the other excitations
contribute significantly to the visible part of the spectrum.

The resulting predicted colours of tetracene at various
magnetic field strengths are shown in Figure 4C. As the p-
band is red-shifted, the main absorption band moves from the
blue part of the spectrum towards the red. The orange-red colour
of tetracene therefore shifts towards the colour blue. Finally,
between 5,000 T and 9,000 T, the contribution of the p-band does
not contribute significantly to the spectrum anymore. Since the
α–δ-bands are still active and relatively unchanged in their
location, part of the blue light is still absorbed, resulting in a
turquoise to green colour which becomes less and less intense as
the magnetic field strength is increased.

It is worth noting that while the peak positions of the
α–δ-excitations exhibit only a minor dependence on the applied
field, their respective oscillator strengths change significantly as the
β-excitation becomes less important. Subsequently, the c- and
δ-excitations become dominant at different magnetic field
strengths. Furthermore, certain additional transitions slowly
start to arise as they are no longer symmetry forbidden due to
a lowering of the point group symmetry in the magnetic field. At a
magnetic field strength of approximately 6,000 T, specifically, the
c- and δ-excitations are very close energetically to the usually
predominant β-excitation, leading to resonance phenomena such
as a splitting into multiplets.

Finally, the strong influence of the external field on the excitation
energy of the p-band can best be understood by examining the
changes to the electronic structure of tetracene. In themagnetic field,
the energy of the HOMO increases and the energy of the LUMO
decreases. Thus, the HOMO-LUMO gap decreases significantly. As
the p-excitation corresponds to the HOMO → LUMO transition,
the resulting excitation energy is subsequently lowered.

The transition density of the p-excitation at a magnetic field
strength of 8,000 T is depicted in Figure 5. It exhibits the effects
the magnetic field has on this most important transition, showing

a slightly more delocalized nature of this transition in the
magnetic field compared to the zero-field case. In order to
ensure gauge-origin invariance, the transition density plot was
generated employing London atomic orbitals.

5. CONCLUSION

In this paper, we have presented a gauge-invariant formulation of
the GW/BSE method for excited states in strong magnetic fields.
The resulting implementation was benchmarked against
reference values obtained from approximate coupled-cluster
(CC2) theory. The obtained results indicate that the GW/BSE
method provides a similar accuracy in strong magnetic fields as in
the field-free case. The known issue of an underestimation of the
excitation energy of triplet excited states is also present in
magnetic fields. Like in the field-free case, it is shown that the
Tamm-Dancoff approximation is able to remove a significant
amount of this underestimation, improving the overall accuracy
when compared to coupled-cluster values. The remaining error is
nearly linear, making it easy to be accounted for.

Furthermore, using the tetracene molecule as showcase
example, it was demonstrated that the GW/BSE method is
able to tackle systems far beyond the possibilities of any prior
ansatz that has been used to describe excited states in strong
magnetic fields. For the tetracene molecule, we analyzed the shift
of the main absorption peaks in magnetic fields ranging from 0 to
9,000 T. It was found that some excited state energies are more
affected than others, leading to prominent changes in the
spectrum. Ultimately, the colour of tetracene was estimated
from the calculated spectra in the assessed magnetic fields.
Starting from the bright orange colour of tetracene, we predict
the compound to exhibit a blue colour at 5,000, which is
converted towards a green colour at 9,000 T. While the
dependence of the excited states on the external magnetic field
are interesting on their own, the example of tetracene also
outlines the fascinating world that even moderately strong
magnetic fields could open for the broad field of photochemistry.

To summarize, the GW/BSE method has proven once more
that it has become a formidable member of the toolbox of
quantum chemistry.
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The GW Miracle in Many-Body
Perturbation Theory for the Ionization
Potential of Molecules
Fabien Bruneval*1, Nike Dattani2 and Michiel J. van Setten3

1CEA, Service de Recherches de Métallurgie Physique, Direction des Energies, Université Paris-Saclay, Paris, France, 2HPQC
Labs, Waterloo, ON, Canada, 3IMEC, Leuven, Belgium

We use the GW100 benchmark set to systematically judge the quality of several
perturbation theories against high-level quantum chemistry methods. First of all, we
revisit the reference CCSD(T) ionization potentials for this popular benchmark set and
establish a revised set of CCSD(T) results. Then, for all of these 100 molecules, we
calculate the HOMO energy within second and third-order perturbation theory (PT2 and
PT3), and, GW as post-Hartree-Fock methods. We found GW to be the most accurate of
these three approximations for the ionization potential, by far. Going beyondGW by adding
more diagrams is a tedious and dangerous activity: We tried to complement GW with
second-order exchange (SOX), with second-order screened exchange (SOSEX), with
interacting electron-hole pairs (WTDHF), and with a GW density-matrix (cGW). Only the cGW

result has a positive impact. Finally using an improved hybrid functional for the non-
interacting Green’s function, considering it as a cheap way to approximate self-
consistency, the accuracy of the simplest GW approximation improves even more. We
conclude that GW is a miracle: Its subtle balance makes GW both accurate and fast.

Keywords: electronic structure ab initio calculations,many-body ab initio structure, ionization potential (IP), density-
functional theory (DFT), Green’s function (GF), feynman diagram expansion, coupled-cluster method, high-precision
benchmarks

1 INTRODUCTION

Many-body perturbation theory (MBPT) (Fetter and Walecka, 1971) is currently actively used to
predict the excitation energies of molecules (Shirley and Martin, 1993; Grossman et al., 2001;
Rostgaard et al., 2010; Blase et al., 2011; Bruneval, 2012; Körzdörfer and Marom, 2012; Ren et al.,
2012; Sharifzadeh et al., 2012; Bruneval and Marques, 2013; van Setten et al., 2013; Koval et al., 2014;
Govoni and Galli, 2015; van Setten et al., 2015; Blase et al., 2016; Knight et al., 2016; Kuwahara et al.,
2016; Heßelmann, 2017; Maggio et al., 2017; Golze et al., 2018; Lange and Berkelbach, 2018; Wilhelm
et al., 2018; Golze et al., 2019; Lewis and Berkelbach, 2019; Blase et al., 2020). The boost in the
application of MBPT to molecules is being driven by the advent of physicists’ methods, most
noticeably the GW approximation (Hedin, 1965) for electron attachment and detachment energies
and the Bethe-Salpeter equation (Onida et al., 1995) for neutral excitations. The present Research
Topic acknowledges this new situation and this contribution will specifically focus on electron
detachment energies.

The arrival of the physicists’ methods that had been limited in their application to extended
systems should not hide the fact that MBPT had been already present in chemistry for several
decades, however with different approximations (Szabó and Ostlund, 1996). Indeed in the 70s,
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Cederbaum and coworkers explored the performance of MBPT
for electron attachment and detachment energies (Cederbaum
et al., 1973; Cederbaum and Niessen, 1974; Cederbaum, 1975; von
Niessen et al., 1977; Cederbaum and Domcke, 1977; Cederbaum
et al., 1978). Their approximations were based on a strict order-
by-order expansion with respect to the electron-electron
Coulomb interaction v. Here we name the second-order
perturbation theory, PT2, and the third-order perturbation
theory, PT3. Going beyond the third-order has seldom been
attempted (Ortiz, 1988) for computational reasons.

The physical approximations took another path when it was
realized that PT2 was producing divergent energies for the
homogeneous electron gas (Mahan, 2000). It was then
proposed to consider the screened Coulomb interaction W
(Hedin, 1965) instead of the bare Coulomb interaction v as
the perturbation. It turned out that the first-order correction,
namely the GW approximation (Onida et al., 2002), was very
effective for extended systems (Hanke and Sham, 1975; Godby
et al., 1986; Hybertsen and Louie, 1986).

Now that the GW approximation has permeated
chemistry, we think it is time to compare the performance
in both accuracy and speed of the different approximations
on a fair, unbiased basis. Fortunately, one of us has recently
introduced a wide benchmark, named GW100 (van Setten
et al., 2015), which consists of the ionization potentials (IP)
of 100 atoms and small to medium-sized molecules. Close to
twenty different codes have by now used this set to evaluate
their results, and in general, when all convergence
parameters are considered, the results agree well.
Reference IP energies were calculated by Krause et al.
(2015) via differences in the total energies calculated for
the neutral and positively-charged species with the CCSD(T)
approximation.

The GW100 benchmark is hence to be the boxing ring in
which we want to scrutinize the quality of the different
MBPT approximations (PT2, PT3, GW, and beyond GW).
With GW we denote here the one-shot GW appoximation
that does not include self-consistency; in the literature it is
sometimes denoted as G0W0. However, before doing so, we
will revisit the CCSD(T) reference IPs. We observed that the
set from Krause et al. (2015) is not sufficiently precise for
this level of benchmarking: for instance the SO2 IP was more
than 1 eV off the trend. We present here a complete
recalculation of the CCSD(T) reference IPs for the
GW100 benchmark.

With this updated benchmark, we explain the success of the
GW approximation for the IP of molecules: The GW
approximation is both accurate and fast. Going beyond GW
often worsens the result.

The article is organized as follows: In MBPT: v-based or
W-based expansions, we recapitulate the different MBPT
approximations and explain them with Goldstone-Feynman
diagrams. In CCSD(T) ionization potentials for GW100,
we set up new CCSD(T) reference values of the IPs for the
GW100 benchmark set. Benchmarking the MBPT Strategies
compares the performance of the different approximations
based on a standard Hartree-Fock starting point. MBPT From

an Improved Mean-Field Starting Point shows an attempt to
approach MBPT self-consistency with tuned hybrid
functionals. Finally the conclusions are drawn in
Conclusion. Hartree atomic units are used throughout this
work. The numerical values are made available as
Supplemental Material, under the wide-spread machine-
and human-readable JSON file format.

2 MBPT: V-BASED OR W-BASED
EXPANSIONS
2.1 Green’s Function and Self-Energy in
MBPT
In MBPT, the central quantity is the one-electron Green’s
function. The Green’s function describes the time-
propagation of an additional particle in the electronic
system: an extra electron for propagation forward in time,
or a hole for propagation backward in time. The Green’s
function contains a great deal of information. For instance its
diagonal is the electronic density, and, most interesting for
us, its poles are the ionization energies (Fetter and Walecka,
1971).

Once an approximate Green’s function G0 is known, the exact
Green’s functionG can be obtained thanks to the Dyson equation:

G(ω) � G0(ω) + G0(ω)ΔΣ(ω)G(ω), (1)

where the spatial indices, later defined as p and q, have been
dropped for simplicity.

The operator ΔΣ stands for the self-energy difference. It
performs the humongous task of connecting G0 to G. If the
Hartree-Fock approximation (HF) is used for G0, then ΔΣ
coincides with the missing correlation part of the self-
energy Σc.

When a mean-field approximation is selected for G0, it can be
expressed analytically:

G0 pq(ω) � δpq
2

ω − ϵp ± iη
, (2)

where the factor of 2 accounts for spin, p and q are molecular
orbital (MO) indices, ϵp and ± iη is a vanishing imaginary number
that ensures the correct analytic behavior of G0. G0 is diagonal in
the corresponding MO basis.

In practice, we make the further approximation that the self-
energy difference is also diagonal in the MO basis:

ΔΣpq(ω) � δpqΔΣpp(ω). (3)

This approximation is believed to be very good and is common
practice in this field (Golze et al., 2019).

Recasting the Dyson Eq. 1 into

G−1
0 (ω) − ΔΣ(ω)[ ]G(ω) � I, (4)

where I is the identity operator, it becomes clear that the diagonal
approximation of ΔΣ will induce a diagonal approximation to G,
since G and therefore also G−1

0 are diagonal in the corresponding
molecular basis.
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Furthermore, the poles of G correspond to the zeroes of the
term in between the brackets in Eq. 4:

ω − ϵp � ΔΣpp(ω). (5)

This equation is named the quasiparticle equation and the
highest zero for the p index that corresponds to occupied
states is ϵHOMO � − IP. The HOMO energies reported in this
work are obtained with this procedure, which is often referred
to as the “graphical solution” of the quasiparticle equation
(Golze et al., 2019).

We can calculate the spectral weight Z associated with a pole of
G with

Zp(ω) � 1 − zΔΣpp

zω
( )−1

. (6)

Being a weight, this quantity should range from 0 to 1 and hence
zΔΣpp

zω should be negative.
Note that the mean-field orbitals indexed by p might not be

ordered properly. That is why in practice one needs to consider
not only the mean-field HOMO, but also a few states below. This
pathological behavior is known to occur for N2 for instance (von
Niessen et al., 1977).

The challenge in MBPT is then to derive approximate
expressions for ΔΣ that are both accurate and
computationally tractable. Henceforth, we use the Goldstone-
Feynman diagram representation to describe the different
working approximations. The analytic expressions can be
found in the cited references.

2.2 HF, PT2, PT3
In this Section, we follow the traditional approach in quantum
chemistry for the so-called post-Hartree-Fock calculations (Szabó
and Ostlund, 1996; Helgaker et al., 2000).

Let us start gradually and begin with the formulation of the HF
approximation in terms of Goldstone-Feynman diagrams. In the
upper panel of Figure 1, we have presented the two Goldstone-
Feynman diagrams of HF: the Hartree and the Fock exchange
terms. The blue arrows indicate the entry and the exit points. The
black arrow is a Green’s function and the red dashed line is the
bare Coulomb interaction v. As v is assumed to be instantaneous,
we represent it horizontally (so that the vertical axis would be the
time axis).

The Hartree diagram (upper left-hand diagram in Figure 1)
translates into the following integral:

vH(r) � ∫ dr′
ρ(r′)
|r − r′|, (7)

Where ρ(r) � G(rt, rt+) is the electronic density. From the
Hartree Goldstone-Feynman diagram, we can immediately see
that the Hartree potential is local in space and in time, since the
entry and exit points are identical. The exchange diagram (upper
right-hand diagram in Figure 1) is non-local in space, but local
in time, since its entry and exit points share the same y
coordinate.

In regular MBPT, one considers the electron-electron
interaction v as the meaningful order parameter that will allow
us to derive more and more complex approximations.

The second-order perturbation theory, PT2, considers all the
possible Goldstone-Feynman diagrams having two Coulomb
interactions. There are only two of those diagrams and they

FIGURE 1 | All the Goldstone-Feynman diagrams in HF (upper panel),
PT2 (central panel) and an illustrative subset of the Goldstone-Feynman
diagrams in PT3 (lower panel).
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are drawn in the middle panel of Figure 1. The first one
accounts for the propagation of an electron (or a hole)
interacting with an electron-hole pair. The second one is the
so-called second-order exchange (SOX). These two diagrams are
still rather simple and can be found in chemistry textbooks (Szabó
and Ostlund, 1996).

However, the next level, namely PT3, brings in many new
terms. PT3 considers all the possible Goldstone-Feynman
diagrams with three Coulomb interactions, which results in
the analytic terms reported in the Appendix of Ref.
(Cederbaum and Domcke, 1977). The formulas extend over
three printed pages and will not be reproduced here. We will
instead draw a few instructive Goldstone-Feynman diagrams
in the lower panel of Figure 1. PT3 contains some static
diagrams (the A-diagrams in Cederbaum’s notation), such
as the two first diagrams drawn in the PT3 panel. They can
be interpreted as corrections to the Hartree and Fock terms
due to a correction to the density and the density-matrix.
Besides these, some dynamical diagrams are displayed with
two electron-hole pairs, or one interacting electron-hole pair,
or a ladder diagram, etc.

The PT3 approximation had been implemented and tested
by Cederbaum and coworkers (Cederbaum et al., 1973;
Cederbaum and Niessen, 1974; Cederbaum, 1975;
Cederbaum and Domcke, 1977; Cederbaum et al., 1978),
but never applied to a systematic benchmark, to the best of

our knowledge. Those authors noticed that PT3 was not fully
satisfactory and proposed the rescaling of some of the terms to
form a better estimate of the IP. This empirical rescaling,
known as outer valence Green’s function (OVGF) or as
electron propagator theory (EPT), is not applied here, as
our focus is the MBPT itself.

Considering the huge number of terms in PT3, it is not
surprising that PT4 has only rarely been used (Ortiz, 1988).

2.3 W, GW, SOSEX
In condensed-matter physics, it has been realized that the one-
ring diagram in PT2 (See Figure 1) was producing an infinite
value when evaluated for a gapless system (Mahan, 2000). A
renormalized interaction was then introduced then to mitigate
this problem (Baym and Kadanoff, 1961; Hedin, 1965).

The upper panel of Figure 2 represents the screened Coulomb
interaction W within the random-phase approximation. W is
represented with wiggly lines that are not necessarily horizontal
in the diagrams, because W is not instantaneous as v is. W is an
infinite series of subsequent non-interacting electron-hole pairs.

There exists only one first-order diagram in W: the so-called
GW approximation to the self-energy, represented in the middle
left-hand panel of Figure 2. AsW contains an infinite number of
diagrams, the GW approximation cannot be rationalized with the
v-based MBPT recapitulated in the previous section. Notice the
similarity between the exchange diagram in HF (Figure 1) and
theGW diagram: The Coulomb interaction has just been replaced
by a non-horizontal W wiggly line.

This single GW diagram has been proven to yield very good
results for the homogeneous electron gas (Hedin, 1965;
Lundqvist, 1967), and for real periodic solids (Hanke and
Sham, 1975; Strinati et al., 1982; Hybertsen and Louie, 1985;
Godby et al., 1986). More recently, it has been realized that the
same good performance is reached for molecules (Shirley and
Martin, 1993; Grossman et al., 2001; Rostgaard et al., 2010; Blase
et al., 2011; Bruneval, 2012; Körzdörfer and Marom, 2012; Ren
et al., 2012; Sharifzadeh et al., 2012; Bruneval and Marques, 2013;
van Setten et al., 2013; Koval et al., 2014; Govoni and Galli, 2015;
van Setten et al., 2015; Blase et al., 2016; Knight et al., 2016;
Kuwahara et al., 2016; Maggio et al., 2017; Golze et al., 2018;
Lange and Berkelbach, 2018; Wilhelm et al., 2018; Golze et al.,
2019; Lewis and Berkelbach, 2019; Blase et al., 2020).

Of course, the single GW diagram is just the first of an infinite
expansion in W. However, the next diagrams become very
complex, very quickly. They are often named “vertex
corrections” in the literature. Vertex corrections appear in two
different locations in Hedin’s equations (Hedin, 1965) (or
equivalently in the diagrams): in W beyond RPA and in the
self-energy itself.

Adding more diagrams in W would incorporate the electron-
hole interaction that is present in PT3 but not in GW. Lewis and
Berkelbach have worked on this point and showed a small effect
(Lewis and Berkelbach, 2019). We will test improving GW along
that line by using a W interaction calculated within time-
dependent Hartree-Fock (TDHF), labeled WTDHF.

Adding more diagrams in the self-energy would incorporate
the SOX diagram and more. For instance, we represent in

FIGURE 2 | The first Goldstone-Feynman diagrams in the RPA screened
Coulomb interaction W (upper panel), the GW diagrams (middle left-hand
panel), the SOSEX diagram (middle right-hand panel), and the two cGW

diagrams (lower panel).
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Figure 2 the so-called second-order screened exchange (SOSEX) of
Ren and coworkers (Ren et al., 2015). It is an extension to SOX that
considers a screened interaction W together with an unscreened
interaction v. The complete second-order diagrams with two W
wiggly lines has been very recently considered in Ref. (Wang et al.,
2021). The authors conclude that it does not bring large
contributions and we will use the simpler SOSEX diagram here.

It should be added that there exist additional low-order
diagrams when the Green’s function is not calculated self-
consistently. Indeed, the two diagrams in the lower panel of
Figure 2 are first-order diagrams inW that give corrections to the
Hartree potential and the Fock exchange. Similar diagrams show
up in PT3, however with one electron-hole pair only. These two
diagrams do not appear in Hedin’s equations, because Hedin’s
derivation is obtained considering the self-consistentG. One of us
has recently studied these diagrams and highlighted a sizable
effect on the IP (Bruneval, 2019a), on the electronic densities
(Bruneval, 2019b), and on the total energies (Bruneval et al.,
2021). We shall name these diagrams γGW in this work, as they
only affect the one-electron reduced-density-matrix.

To summarize the many approximations we have presented
above, Figure 3 sketches the different diagram sets used in this
study. We see that PT3 contains PT2 and that GW has an overlap
with PT2, but misses the SOX diagram. Some diagrams ofGW are
not present in PT2, nor in PT3: the n-pair diagrams with n > 2.
GW + SOSEX entirely contains PT2, but obviously misses many
diagrams of PT3. GWTDDFT captures the 1-interacting-pair
diagram of PT3 and adds the further interacting pairs. GW +
cGW has the 1-pair inclusion in Hartree and Fock exchange. For
instance, the ladder diagram is present in PT3 only.

At this stage, there is no way to judge which approximation is
best. Ideally in a perturbation theory, the more diagrams, the
better. However, in MBPT, the perturbation is by no means
“small” and, in our opinion, only practical calculations on trusted
benchmarks are able to draw conclusions. This will be the topic of
the next Sections.

3 CCSD(T) IONIZATION POTENTIALS
FOR GW100

3.1 GW100
In this work we use the set of molecules defined in the GW100
set as our boxing ring. This set came into existence first in a
comparison between only three codes (van Setten et al.,
2015). In the meantime the developers of many other
codes have used the set to test and benchmark their
implementations, both for GW and other computational
approaches aiming at the calculation of ionization energies
and electron affinities (Caruso et al., 2016; Vlček et al., 2017a;
Maggio et al., 2017; Wilhelm and Hutter, 2017; Govoni and
Galli, 2018; Rodrigues Pela et al., 2018; Colonna et al., 2019;
Gao and Chelikowsky, 2019; Brémond et al., 2020; Förster
and Visscher, 2020; Gao and Chelikowsky, 2020; Bintrim and
Berkelbach, 2021; Duchemin and Blase, 2021; Förster and
Visscher, 2021; Wilhelm et al., 2021). At present over a
hundred data sets have appeared for the GW100 set.

The GW100 set uses established geometries and keeps
them fixed for each set of calculations. In the work on the
GW100 set using plane-wave basis sets in the PAW
formalism using the VASP code (Maggio et al., 2017), it
was noticed that for two molecules, phenol and vinyl
bromide, the structure used originally was not correct.
From this point the two new structures have been added
to the set in order to enable comparison between sets
containing only one or both versions. In this work, we use
the updated geometries, so that the total number of data
points is 100.

For a completely correct comparison of the molecules in the
GW100 set, between codes employing different basis sets, an
extrapolation to the complete basis set limits is paramount
(van Setten et al., 2015; Maggio et al., 2017; Govoni and Galli,
2018). However, the use of more complete basis sets that are
necessary for an extrapolation is limited by the numerical
scaling of the reference CCSD(T) calculations. Fortunately, for
comparisons of different methods “beyond” one-shot GW in
codes that are based on Gaussian orbitals, this is not strictly
necessary, as long as the same basis set is used consistently. The
def2-TZVPP basis set (Weigend and Ahlrichs, 2005) has
historically been used for these comparisons (Krause et al.,
2015; Caruso et al., 2016). We will hence use this basis set in
this work as well. In this work, we refrain from interpreting
small differences below 0.1 eV that could be affected by the
basis set incompleteness, so that our qualitative conclusions
would be equally valid for larger basis sets.

In their work providing CCSD(T) reference values for the GW100
molecules, Krause et al. also used the def2-TZVPP basis set (Krause
et al., 2015). Close inspection of these results however shows that in
some cases large deviations with the experimental values exist and
larger than one would hope for CCSD(T). Moreover, in a number of
these cases the discrepancy is larger than the one between GW and
experiment. In the present comparison we need especially accurate
reference energies and since also three molecular systems of the
GW100 set are missing in the data by Krause et al., we start by
revisiting the CCSD(T) reference set.

FIGURE 3 | Sets of Goldstone-Feynman diagrams considered here:
PT2, PT3, GW, GWTDHF, GW + SOSEX, GW+cGW. Some diagrams are
explicitly named to give examples.
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3.2 Update of the CCSD(T) Reference IP

The CCSD(T) benchmark values for the ionization potentials, which
have been used by all GW100 studies up to now, were done by the
authors of Ref. (Krause et al., 2015). using an unrestricted Hartree-
Fock (UHF) reference and no spatial symmetry constraints. In all
cases, stability analysis was done at the UHF level to ensure that the
UHF solution was indeed the lowest in energy, within their
convergence tolerance.

While using the lowest energy UHF solution determined via
such a stability analysis, can be a very convenient choice, it may not
lead to themost accurate CCSD(T) energy. For example, in the case
of SO+

2 , the UHF solution with the lowest energy at Hartree-Fock
level, actually can lead to a higher energy at the frozen-core
CCSD(T) level than a UHF solution with a higher energy at the
Hartree-Fock level (see Table 1). While it is true that in general, a
lower CCSD(T) energy does not necessarily mean a better one, the
lowest energy in Table 1 is the closest one to our FCI (full
configuration interaction, a numerically exact energy within the
chosen basis set) estimates (Dattani, 2021), so the lowest CCSD(T)
energy is actually the more accurate one in this case. Indeed, SO+

2
was one of the worst cases in the benchmark study of Ref. (Krause
et al., 2015), in terms of the disagreement between CCSD(T) and
experiment for the ionization energy, and it was a case where the
GW calculation matched the experimental ionization energy better
than the “benchmark” CCSD(T) calculations did.

In this work we have re-calculated the frozen-core CCSD(T)
energies for the entire GW100 set, however we chose to use
GAUSSIAN 16 (Frisch et al., 2016) (with default settings) instead
of CFOUR, and the default in GAUSSIAN is an RHF (restricted
Hartree-Fock) reference for all singlet species (in this paper, all
neutral species), and a UHF reference for all species with a higher
multiplicity (in this paper, all of the cations). This led to 46 IP
values being updated with respect to Ref. (Krause et al., 2015),
including the case of OCSe, for which Krause et al. accidentally
used sulfur instead of selenium in their calculation. The most
noticeable updates are SO2, MgO, cytosine, and uracil with
changes larger than 0.4 eV.

Our revised IPs improve very much the consistency of CCSD(T)
with the related method named equation-of-motion coupled-cluster
(EOM-IP-CCSD). Indeed, Lange and Berkelbach (Lange and
Berkelbach, 2018) have evaluated the IPs for the complete
GW100 set within this approximation and found a somewhat
good agreement with Krause et al. with an MAE of 0.09 eV.
However, this correct MAE is hiding a few terrible outliers, such
as SO2, MgO, cytosine, and uracil.

Now, comparing our updated CCSD(T) to Lange’s EOM-IP-
CCSD yields not only an improved MAE of 0.06 eV, but also fixes
all the mentioned outliers. The deviations between the updated
CCSD(T) and EOM-IP-CCSD never exceed 0.30 eV.

As our updated CCSD(T) set very much improves the
consistency across the methods and the comparison to
experiment when experimental data are available, we have
confidence that our updated values are a genuine
improvement. We remind the Reader that all the numerical
values are reported in the Supplemental Material.

4 BENCHMARKING THE MBPT
STRATEGIES

A noticeable source of misunderstanding between the different
MBPT flavors is the starting mean-field approximation used for
the non-interacting Green’s function G0 in Eq. 2. Chemists using
PT2 and PT3 typically use HF. This has several advantages: the
strict order-by-order expansion is enforced and no first-order
terms exist by virtue of the Brillouin theorem (Szabó and Ostlund,
1996). However, an HF G0 is maybe not the optimal Green’s
function.

The physicists, quite the opposite, constantly play with the
starting mean-field in order to improve the final quasiparticle
energy. This strategy, sometimes named “best G, best W”, is very
effective for periodic systems (Hybertsen and Louie, 1986; Aulbur
et al., 1999). Indeed the HF approximation is typically not
accurate for solids: the band gaps are overestimated by a lot
(Silvi and Dovesi, 1988). Contrarily, GW based on a local density
approximation (LDA) or on a semi-local approximation yields
very decent results (van Schilfgaarde et al., 2006). For molecules,
hybrid functionals (Bruneval and Marques, 2013) with a
significant amount of Hartree-Fock exchange like BHLYP
(Becke, 1993) or CAM-B3LYP (Yanai et al., 2004) are known
to often produce good results.

TABLE 1 | Energies for SO+
2 calculated with a default initial UHF guess in CFOUR

(Matthews et al., 2020), and with the lowest-energy UHF solution. As in Ref.
(Krause et al., 2015), no spatial symmetry was enforced at any time, and the
number of frozen (uncorrelated) electrons was the same as for the calculations in
Ref. (Krause et al., 2015).

Type of reference SCF CCSD(T)

UHF (default) −546.861 914 −547.532 246
UHF (lowest) −546.881 967 −547.488 601

FIGURE 4 |Box plots for GW100 HOMO energy errors for HF, PT2, PT3,
and GW from an HF G0. CCSD(T) total energy differences are considered as
the reference. Mean absolute errors (MAE) are also printed.
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As the discussion about the mean-field starting point can blur
the conclusions, we only use an HF starting point in this Section.
Discussion about an improved starting point and its connection
to self-consistency is postponed to the next Section.

Henceforth, all the self-energy calculations are performed with
the code MOLGW (Bruneval et al., 2016). It implements MBPT
self-energies on a Gaussian-type orbital basis. It also takes
advantage of the approximation of the resolution-of-the-
identity (RI) (Weigend et al., 2002; Blase et al., 2011; Ren
et al., 2012) with the automatic generation of the auxiliary
basis set as described in Ref. (Yang et al., 2007). This technical
approximation has been proven to be very accurate (Blase et al.,
2016). We systematically evaluate the MBPT self-energy for the
four highest occupied molecular orbitals in order to cure the
possible incorrect ordering of the states in the starting mean-field
approximation.

We will use box plots like in Figure 4 to summarize the error
distribution of the HOMO energies with respect to CCSD(T).
These plots, also known as whisker plots, report in a graphical
way several relevant statistical characteristics: themedian with the
orange horizontal line, the first quartile with the lower box limit
(25% of the distribution is below), and the last quartile with the
upper box limit (75% of the distribution is below). The whiskers
extend to 1.5 times the first to last quartile distance on each side.
They are used to determine the so-called outliers, which are
shown with the red diamonds. In addition to these box plots, we
also provide the mean absolute error:

MAEX � 1
100

∑100
i�1

ϵXHOMO,i − ϵCCSD(T)HOMO,i

∣∣∣∣ ∣∣∣∣, (8)

Where i runs over the 100 molecules in GW100.

4.1 Standard MBPT Methods: PT2, PT3, GW
Figure 4 shows that HF HOMO energies are too deep compared to
CCSD(T), with a large spread. PT2 improves very little compared to
HF: While the median is closer to zero, the mean-absolute error

(MAE) remains almost as large. PT3 is a significant improvement: The
median is closer to zero and the spread is reasonable. However there
exists a dozen outliers with an error over 1 eV, among which the
molecules containing fluorine are over-represented.

Turning to the GW approximation, the situation improves
significantly. Not only is the MAE reduced to 0.3 eV, but also the
spread is decreased. Furthermore, not a single outlier is identified
in the whisker plot! It is striking to see how the computationally
simpler GW outperforms PT3, even though PT3 contains many
diagrams that GW does not have.

To understand some of the problems with PT3, let us analyze
here in greater details the case of beryllium oxide. BeO is one of
the worst failures of PT3, with a 2.26 eV deviation fromCCSD(T).
In Figure 5 we represent the correlation part of the self-energy
expectation value (the right-hand side of Eq. 5) and the line
ω − ϵHF

HOMO. The intersection between these two curves defines the
quasiparticle energy.

In Figure 5, we observe a pathological behavior of PT3: its
derivative zΣc/zω is sometimes positive, which is not allowed for
the exact self-energy. Remember that Z introduced in Eq. 6 is a
spectral weight. A positive slope yields a nonphysical spectral
weight that exceeds 1. The PT3 analytic expression contains
double poles, such as the C1, D1, C6, D6 terms in the
Appendix of Ref. (Cederbaum and Domcke, 1977). These
terms can induce this pathological behavior. PT2 and GW
only contain single poles as shown for GW in Eq. 47 of Ref.
(Bruneval et al., 2016) and have the correct analytic behavior by
construction.

As a conclusion, based on the GW100 IP benchmark set, GW
is clearly the winner by knock-out on the boxing ring: It shows the
best MAE, the narrower distribution of errors, and no outlier. It
has, by construction, the correct analytic behavior. Furthermore,
the structure of the GW self-energy that contains only electron-
hole pairs is perfectly suited for the RI approximation. An N4

scaling is then achieved with the contour deformation integration
technique (Mejia-Rodriguez et al., 2021) and numerical methods

FIGURE 5 | BeO quasiparticle equation graphical solution of Eq. 5 for
the different self-energy approximations. HF is used for G0.

FIGURE 6 | Box plots for GW100 HOMO energy errors for GW and
beyond starting from an HF G0. CCSD(T) total energy differences are
considered as the reference. Mean absolute errors (MAE) are also printed.
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with better scaling have also been proposed (Foerster et al., 2011;
Vlček et al., 2017b; Wilhelm et al., 2018; Duchemin and Blase,
2021). In comparison, PT2 also has N4 scaling due to the
infamous “atomic orbital to molecular orbital integral
transform” step and PT3 has N5 scaling due to the quintuple
MO summations (Cederbaum and Domcke, 1977).

4.2 Beyond GW
Now a legitimate question would be whether one could improve
the GW approximation by adding some of the diagrams shown in
Figure 3.

The simplest addition to GW would be to add the SOX
diagram of Figure 1. This idea has already been tested by
Marom et. al. (Marom et al., 2012) and was not successful
according to them. In Figure 6, we confirm their conclusion:
the results are better than PT2, but worse than GW alone.

Intuitively, it seems that the effect of the SOX diagram is too
strong. That is why the GW + SOSEX proposal is appealing. The
SOSEX diagram would temper the bare SOX. And this is precisely
what it does: the spread of GW + SOSEX is narrower than that of
GW + SOX. However, the results in Figure 6 show that the
median and the MAE are still far from zero and that GW alone is
still better.

Now let us test the possibility to incorporate the interacting
electron-hole pairs, by using the TDHF screened Coulomb
interaction WTDHF. This contribution gives a significant push
upwards, so that the median is close to zero. Unfortunately,
many outliers appear, mostly the ionic dimers of GW100, such
as LiH, LiF, BeO, MgO, FH, KH. Please note that boron nitride,
BN, had to be excluded from the benchmark here. Indeed the
TDHF calculation failed because of a negative excitation
energy. In other words, the HF self-consistent solution
reached by MOLGW is not the lowest HF energy. A
stability search could solve the problem (Seeger and Pople,
1977), but this implementation is not currently available in
MOLGW.

Finally, we evaluate the effect of the first-order correction to
the Hartree and Fock exchange terms, as depicted in Figure 2.
In agreement with previous work on a smaller benchmark
(Bruneval, 2019a), we observe a significant improvement over
the GW approximation. The MAE becomes very good and the
distribution is well centered around zero. The only worrying
point is the existence of two outliers: TiF4 and MgO. While the
TiF4 HOMO was already much too negative in GW@HF
(−0.62 eV compared to CCSD(T)), MgO is more intriguing.
It was very good with GW (−0.08 eV compared to CCSD(T))
and deteriorates very much with GW + cGW. BeO, which is
chemically similar to MgO, is quite different in terms of its
deviation, with a deviation of only 0.01 eV for GW + cGW with
respect to CCSD(T).

Of course, we did not explore all the possible combinations
of diagrams beyond GW. However, we can state that with GW
being already very good, it is a difficult task to improve over
it. Adding diagrams may destroy the subtle balance, which
makes GW so successful. Among all the additions we
considered, only GW + cGW can be considered as a
systematic improvement.

5MBPT FROMAN IMPROVEDMEAN-FIELD
STARTING POINT

It is attractive to calculate Green’s functions self-consistently for
several theoretical reasons. First, this is a systematic way to
include more diagrams (Fetter and Walecka, 1971). The
Green’s function lines in Figures 1, 2 would already include
an infinite series of interactions. Second, Baym and Kadanoff
(Baym and Kadanoff, 1961) showed that self-consistency enforces
the fulfillment of several conservation laws, including the number
of electrons itself.

However for practical reasons, self-consistent calculations are
rarely carried out and one rather uses a one-shot approximation
on top of a mean-field calculation. In the previous Section, we
only used an HF mean-field for comparison reasons.

Now with the idea of approximating the self-consistent
Green’s function, we can consider using an improved non-
interacting Green’s function G0. For molecules, it has been
identified (Bruneval, 2016; Rangel et al., 2016; Bruneval,
2019a) that hybrid functionals with boosted Hartree-Fock
exchange have the best HOMO compared to CCSD(T). Then
one can reasonably hope these hybrid functionals would also be
good approximations to the self-consistent G.

Here we use PBEh(0.75), a global hybrid functional which
mixes the PBE exchange energy and the Hartree-Fock exchange
energy in a 1:3 ratio (25% PBE, 75% Hartree-Fock). In the box
plot reported in Figure 7, we show that the HOMO energies
obtained with PBEh(0.75) are quite close to the CCSD(T)
references: The distribution is nearly perfectly centered around
zero and the MAE is reasonably low (0.35 eV).

At this point, there is a cross-road between chemistry and
physics methods again. When performing a perturbation theory
based on a mean-field different from HF, the Brillouin theorem
breaks down (Szabó and Ostlund, 1996) and first-order terms,
named PT1, appear (Ren et al., 2011). Should we include those

FIGURE 7 | Box plots for GW100 HOMO energy errors for HF, PT2,
PT2+PT1, PT3, andGW, starting from a PBEh(0.75)G0. CCSD(T) total energy
differences are considered as the reference. Mean absolute errors (MAE) are
also printed.
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terms? In a strict order by order expansion, the answer would be
affirmative. We have tested this inclusion in the case of PT2 based
on PBEh(0.75), as reported in Figure 7. Looking at the two box
plots for PT2 and PT2+PT1, we conclude that the effect of the
PT1 term is not significant.

Then we consider that the PBEh(0.75) Green’s function G0 is
an approximation to the self-consistent G. As a consequence, no
first-order terms appear in PT2 and some Goldstone-Feynman
diagrams should be removed from the original PT3. The static
diagrams (“A” diagrams in Cederbaum’s notation) are
corrections to the Hartree and Fock exchange terms (See
Figure 1). If PBEh(0.75) gives the correct Green’s function, it
would also give the correct density and density-matrix, and then
it would yield the correct Hartree and Fock exchange
contributions.

Hence, Figure 7 reports the box plot of PT3 without the static
diagrams. The outcome is very bad, which means that providing
PT3 with a better starting point actually worsens the final result.
This statement clearly advocates against PT3.

Now turning to GW@PBEh(0.75) in Figure 7, we obtain the
best result of this study: The errors are evenly distributed
around zero, no outliers are spotted, and the MAE is very low
(0.15 eV). The accuracy is even better than that reached by the
genuine self-consistent GW calculations of Caruso and
coworkers (Caruso et al., 2016). It is often stated that self-
consistent GW has quasiparticle peaks that are too weak (Holm
and von Barth, 1998). We conjecture that this might be a
reason why mean-field Green’s functions are superior in
the end.

Finally, we make an attempt at combining a better non-
interacting Green’s function with the additional diagrams we
tested in Section IVB. In Figure 8 we report the box plots for
the HOMO errors with respect to CCSD(T) for GW + SOSEX,
GWTDDFT, and GW + cGW based on the PBEh(0.75) Green’s
function. The GW + SOSEX somewhat improves compared to

GW + SOSEX@HF. But it is still deteriorating the results
compared to the simpler GW approximation. Next, we test
GWTDDFT where W was obtained from time-dependent DFT
using the same functional as for G0. Again the results are
disappointing.

Last, we consider GW + cGW. If G0 was the self-consistent
GW Green’s function, the cGW diagrams would vanish.
Remember that the cGW diagrams are not present in
Hedin’s equations, which are obtained for a self-consistent
G. Figure 8 shows that it is indeed the case: GW + cGW is very
similar to GW. Besides MgO, which behaves badly again, the
similarity between the error distribution of GW and GW + cGW

is compelling.

6 CONCLUSION

In this study, we have conducted a comprehensive benchmark of
the MBPT performance for the calculation of the IP of molecules.
Our boxing ring was the GW100 set introduced by one of us (van
Setten et al., 2015) a few years ago. Our reference was the
CCSD(T) total energy difference, often coined as the “gold
standard” in quantum chemistry. But before the competition
could even start, we realized the CCSD(T) reference energies
needed a thorough update. Indeed CCSD(T) energies strongly
depend on the prior HF step, especially for the cations. We
updated almost half of the reference IPs with respect to the
existing list in Ref. (Krause et al., 2015).

Based on the same HF starting point, we evaluated the 100
HOMO energies of GW100 for PT2, PT3, GW, and several
methods beyond GW. Among the classical approximations,
GW is clearly the winner. Then our attempts to improve over
GW by adding more diagrams have been unsuccessful,
besides the GW + cGW diagrams that add corrections to
the Hartree and Fock exchange expectation values.

Then starting from an improved mean-field (here we chose
PBEh(0.75)), deteriorates the classical approximations, PT2 and
PT3. Contrarily, GW improves with a more realistic starting
mean-field. Our champion is then GW@PBEh(0.75) with a
claimed MAE of 0.15 eV.

Of course, other accurate diagrammatic techniques exist, such
as the algebraic diagrammatic construction (ADC) (Schirmer
et al., 1983) or equation-of-motion coupled-cluster (EOM-CC)
(Lange and Berkelbach, 2018). However they do not box in the
same weight class. The miracle of GW is the fact that its in a
featherweight class: GW, when combined with the resolution-of-
the-identify, has an attractive N4 scaling. GW now routinely runs
on molecular systems with several hundreds of atoms (Vlček
et al., 2017b;Wilhelm et al., 2018; Bruneval et al., 2020; Duchemin
and Blase, 2021).
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Double k-Grid Method for Solving the
Bethe-Salpeter Equation via Lanczos
Approaches
Ignacio M. Alliati 1, Davide Sangalli 2† and Myrta Grüning1*†

1School of Mathematics and Physics, Queen’s University Belfast, Northern Ireland, United Kingdom, 2Division of Ultrafast
Processes in Materials (FLASHit), Istituto di Struttura della Materia—Consiglio Nazionale delle Ricerche (CNR-ISM), Rome, Italy

Convergence with respect to the size of the k-points sampling grid of the Brillouin zone is
the main bottleneck in the calculation of optical spectra of periodic crystals via the Bethe-
Salpeter equation (BSE). We tackle this challenge by proposing a double grid approach to
k-sampling compatible with the effective Lanczos-based Haydock iterative solution. Our
method relies on a coarse k-grid that drives the computational cost, while a dense k-grid is
responsible for capturing excitonic effects, albeit in an approximated way. Importantly, the
fine k-grid requires minimal extra computation due to the simplicity of our approach, which
also makes the latter straightforward to implement. We performed tests on bulk Si, bulk
GaAs and monolayer MoS2, all of which produced spectra in good agreement with data
reported elsewhere. This framework has the potential of enabling the calculation of optical
spectra in semiconducting systems where the efficiency of the Haydock scheme alone is
not enough to achieve a computationally tractable solution of the BSE, e.g., large-scale
systems with very stringent k-sampling requirements for achieving convergence.

Keywords: theoretical spectroscopy, optical properties, Bethe-Salpeter equation (BSE), excitonic effects,
semiconductors

1 INTRODUCTION

Many-body perturbation theory (MBPT) offers the right framework for treating neutral excitations
via Green’s function methods (Onida et al., 2002; Marini et al., 2009; Martin et al., 2016; Reining,
2018; Golze et al., 2019). This requires solving the Bethe-Salpeter equation (BSE) (Salpeter and Bethe,
1951; Hedin, 1965; Hedin and Lundqvist, 1971), which relies on a two-particle propagator to account
for the presence of electron-hole pairs (i.e., excitons). The description of excitonic effects is crucial to
compute optical spectra in extended systems, particularly in semi-conductors and insulators, for
whichmethods based on the Random Phase Approximation (RPA) or time-dependent (TD-) density
functional theory (DFT) with (semi-)local exchange-correlation functionals tend not to agree with
experimental results (Onida et al., 2002; Martin et al., 2016). Calculations within the BSE framework
are generally much more cumbersome and computationally demanding than DFT ones, and it is
rather easy to reach the limits of what can be practically computed. Hence, the need for convergence
studies is a key aspect of every MBPT calculation to alleviate the computational burden as much as
possible while, at the same time, trying to ensure an accurate description of the system at hand. In
general, electronic structure calculations in periodic systems treated with plane waves require
convergence with respect to the size of this basis set as well as the sampling of the Brillouin zone (BZ).
In particular, MBPT methods also require the inclusion of unoccupied states in the form of an, in
principle, infinite summation that needs to be truncated to the minimum value that nonetheless
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captures the physics at play. Furthermore, the solution of the BSE
requires far denser k-sampling than DFT calculations to achieve
an accurate description of excitons. This is because the excitonic
wave-functions are usually quite spread out, with a periodicity
well beyond the unit cell, and in order to expand them in a basis of
transitions {vck} (electron-hole space), very dense k-grids are
required. Moreover, BSE methods do not exploit symmetry so
they are solved in the full BZ. The cubic scaling of the number of
k-points in bulk systems from one grid to the next makes matters
even worse (the quadratic scaling in 2D systems is more
manageable). Such k-grid requirements may still be feasible
for small systems, with few atoms per unit cell and few
valence electrons per atom. However, medium to large size
unit cells of atoms with many valence electrons (e.g.,
transition metals) become prohibitively costly as the number
of k-points increases, and the solution of the BSE in a very dense
grid (e.g., 60 × 60 × 60) is simply out of reach. For all these
reasons, the issue of k-point convergence is critical for the
solution of the BSE and represents the bottleneck in its
computational implementation. Therefore, the introduction of
alternative numerical methods and approximations that can
effectively deal with k-point convergence in the BSE is of
utmost importance.

Albeit with the limitations described above, there are currently
several approaches to solve the BSE. These are, in order of
decreasing computational cost, inversion, full diagonalisation
and Lanczos approaches, and will be described below. A first
distinction would be based on whether the equation is solved in
its Dyson-like form or re-cast as a two-particle Hamiltonian in
transition space. The first approach requires the inversion of the
BSE kernel matrix which, depending on the size of the matrix, can
become impracticable. In such cases one would turn to the
Hamiltonian formulation of the problem [see, for example,
Onida et al. (2002)]. In the latter, the two-particle
Hamiltonian is diagonalised to obtain the eigen-values
(excitonic energies) and eigen-vectors (excitonic wave-
functions). If the BSE matrix of a given system is still too big
for full diagonalisation, one can resort to Lanczos (1950)
approaches which are usually a cost-effective option for sparse
matrices (Cini, 2007). These algorithms have been widely used for
the calculation of response functions, both at the TD-DFT (Rocca
et al., 2008; Ge et al., 2014) and BSE (Rocca et al., 2012) levels. In
the latter, Lanczos approaches eliminate the need for inverting the
BSE kernel or fully diagonalising the two-particle Hamiltonian.
Rather, the latter is re-expressed as a tri-diagonal matrix based on
recursive relations, which leads to an iterative solution of the
problem that is computationally cheaper than full
diagonalisation. Unfortunately, while previously described
solvers produce the full set of both excitonic energies and
wavefunctions of the system at hand, Lanczos schemes lead to
a partial solution of the problem. For instance, Haydock’s
implementation (Haydock, 1980) of the Lanczos approach
provides only the full set of the eigen-values of the two-
particle Hamiltonian (i.e., one obtains the full spectrum but
not the excitonic wave-functions). Despite the numerical
advantages of Lanczos solvers, a given system could still be
too big for computing optical spectra. As the diagonalisation

itself ceases to be a problem with Lanczos schemes, the bottleneck
now shifts to the previous step of computing and storing the BSE
kernel, which can render the calculation impracticable depending
on the size of the electron-hole (e-h) basis. Nothing too extreme
would be required to reach this condition, e.g., a magnetic system
with around 100 electrons per unit cell, slow convergence with
respect to bands and a 6 × 6 × 6 k-grid would certainly be beyond
reach. At this point, there is little alternative for solving the BSE
and computing optical spectra, which is the challenge we intend
to tackle in this manuscript.

The work presented here concentrates on improving the
convergence of optical response spectra calculations within the
BSE with respect to the number of k-points. This issue has been
the target of many research efforts over the years. Rohlfing et al.
introduced a scheme to interpolate the BSE matrix in the BZ
(Rohlfing and Louie, 1998). Their strategy is based on a double
grid approach by which the kernel matrix elements are properly
calculated on a coarse k-grid and approximated on a fine k-grid.
As a function of q, the k-point difference between two transitions
in e-h space, the BSE kernel is sharply peaked at the origin and a
regular interpolation in the BZ would fail. However, expressing
these matrix elements as aq−2 + bq−1 + c results in the coefficients
varying slowly in the BZ. These coefficients are then interpolated
by virtue of knowing them exactly in the coarse k-grid. Their
approximation also considers the varying phases of the single-
particle states in the BZ, which requires knowledge of the
wavefunctions in the fine k-grid. This crucial point becomes a
drawback when one is limited by memory and disk storage rather
than computation, which is increasingly the case nowadays. More
recently, Fuchs et al. proposed the use of hybrid k-meshes in the
form of a coarse k-grid for the whole BZ and a denser k-grid
around the Γ-point only (Fuchs et al., 2008). Even though the
kernel matrix elements are properly calculated on both grids, this
method allows to refine k-sampling only where is needed,
resulting in fewer k-points in total. The downside of using
non-uniform grids becomes apparent in the calculation of the
electron-hole attraction term of the BSE kernel, as knowledge of
the screening at q-points not included in the hybrid grid itself will
be needed. This complication requires additional computation
(or at least an interpolation) if one intends to use the RPA
screening, as is the case in this work. Kammerlander et al.
applied double grid techniques to solving the BSE by inversion
(Kammerlander et al., 2012). In the latter, the BSE is solved on the
coarse k-grid while the fine k-grid is used compute the
independent particle part of the two-particle response
function. This technique, which also benefits from Wannier
interpolation of the Kohn-Sham (KS) orbitals, has proven
successful in accurately reproducing the spectra of several
materials. However, as it ultimately relies on matrix inversion,
its application is limited to small systems, i.e., systems which
could be computed by the inversion solver in the coarse grid,
albeit underconverged. Finally, an interesting generalisation of
the method in Rohlfing and Louie (1998) has been proposed by
Gillet et al. (2016), where the interpolation of the BSE kernel
matrix element at a given fine-grid k-point considers eight
coarse-grid k-points around it. Importantly, this method is
compatible with Haydock’s solution scheme to the BSE.
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Moreover, substantial savings in memory requirements and disk
storage are achieved by interpolating kernel matrix elements on
the fly. Nevertheless, this method still requires knowledge of the
KS orbitals in the fine grid. Depending on the number of bands
and density of the fine grid, this can entail prohibitive memory
requirements.

In this work, we also propose a double grid approach,
including a coarse k-grid where the BSE kernel is properly
calculated and a fine, denser k-grid where the corresponding
matrix elements are approximated. At variance with
Kammerlander et al. (2012), we propose an approximation
that is compatible with the computationally cheapest solution
to the BSE, namely Lanczos-based iterative solvers. Crucially, this
allows us to target materials for which optical spectra cannot be
currently computed, i.e., relatively big systems that can only be
solved by Lanczos approaches and in k-grids that fall short of a
converged solution. Another distinctive feature of the method
presented here is its simplicity. It is far easier to implement than
previous attempts (Rohlfing and Louie, 1998; Fuchs et al., 2008).
Importantly, the introduction of the fine k-grid requires minimal
extra computation and memory with respect to the coarse k-grid.
In particular, knowledge of the wavefunctions in the fine k-grid is
not needed, nor is the calculation of the RPA screening in any
extra k-point. Therefore, the computational cost remains roughly
at the level of the coarse k-grid, while an approximate description
of broad excitons is achieved by virtue of adding a fine k-grid. The
remainder of the manuscript is structured as follows. Section 2
describes the proposed double grid approach in detail while
Section 3 reports the results obtained for a variety of
semiconductors. Section 4 presents the gains in computational
cost that our implementation achieves. It also outlines a
comparative assessment of particular choices made within the
method and discusses the limitations of the approach.

2 METHODS

2.1 Haydock Solution of the BSE
Optical absorption spectra are represented by the imaginary part
of the macroscopic dielectric function Im[ϵM], which is
obtained by taking the long wavelength limit of an expression
involving the microscopic dielectric function ϵ (q, ω)—where q
represents the transferred momenta while ω is the frequency. For
neutral excitations, ϵ (q, ω) is defined in terms of the polarisation
or density-density response function χ, which is in turn calculated
within the RPA, i.e., as a Dyson-like equation being the non-
interacting polarisation χ0 a product of non-interacting one-
particle Green’s functions that describe the propagation of one
electron or one hole. However, optical spectra of extended
systems require the inclusion of excitonic effects, which will
ultimately lead us to a two-particle Green’s function that
describes the dynamics of an electron-hole pair (vck) (we only
consider vertical transitions at point k in the BZ between an
occupied band v and an empty band c). This is achieved by
defining the macroscopic dielectric function via an interacting
polarisation �χ, i.e., ϵM(q,ω) ≡ 1 − v(q)�χG�0,G′�0(q,ω). This

interacting polarisation is obtained in terms of an electron-
hole (e-h) Green’s function �L as in Eq. 1,

lim
q→0

�χG�0,G′�0 q,ω( ) � −i ∑
nmk

∑
n′m′k′

lim
q→0

ρnmk* q,G � 0( )ρn′m′k′(q,G′ � 0)[ ]�L
nmk
n′m′k′

ω( ).

(1)

In Eq. 1, ρnmk (q,G) � 〈nk|ei(q+G)·r|mk−q〉 are the oscillator
strengths. For simplicity, unpolarised electrons are assumed in
the discussion, however we stress that the method is not limited to
non-magnetic systems. The Bethe-Salpeter equation is then the
Dyson-like equation for �L,

�L
nmk
n′m′k′

ω( ) � L0
nmk ω( ) δnn′δmm′δkk′ + i ∑

vck1

Ξ
nmk
vck1

�L
vck1
n′m′k′

ω( )⎡⎢⎣ ⎤⎥⎦, (2)

where the matrix Ξ is the so called BSE kernel,

Ξ
nmk
vck1

� W
nmk
vck1

− 2 �V
nmk
vck1

, (3)

W
nmk
vck1

� 1
ΩNq

∑
G,G′

ρnvk q � k − k1,G( )ρpmck1
q � k − k1,G′( )

ϵ−1G,G′v q + G′( ), (4)

�V
nmk
vck1

� 1
ΩNq

∑
G≠0

ρnmk q � 0,G( )ρpvck1 q � 0,G( )v G( ). (5)

The BSE kernel is written as shown in Eq. 3 and its two
contributions, namely the e-h attractionW and the e-h exchange
�V, can be calculated as in Eqs. 4, 5. The solution of this Dyson-
like equation would require to invert the BSE kernel, which can
be prohibitively costly as explained in Section 1. Hence, the
problem is re-cast in terms of a two-particle Hamiltonian in e-h
space,

H2p

nmk
n′m′k′

� Enmk δnn′δmm′δkk′ + fnk − fmk( ) Ξ
nmk
n′m′k′

, (6)

where Enmk is the energy of the vertical transition from band n to
band m at point k according to either the KS or quasi-particle
(QP) energies.

Diagonalising this matrix would provide the excitonic eigen-
values and eigen-vectors required to compute optical spectra,
however in this work, we focus on Lanczos-based methods. In
particular, Haydock’s algorithm (Haydock, 1980; Benedict et al.,
1998; Benedict and Shirley, 1999) consists on an iterative method
based on a set of recursive relations, namely,

an � 〈Vn|H2p|Vn〉, (7)

bn+1 � ‖ H2p − an( )|Vn〉 − bn|Vn−1〉‖, (8)

|Vn+1〉 � 1
bn+1

H2p − an( )|Vn〉 − bn|Vn−1〉[ ], (9)

with n being the iteration index. This set of equations corresponds
to Hermitian Hamiltonians [the pseudo-Hermitian case has a
slightly more complicated form (Grüning et al., 2011)]. Eqs. 7–9
allow for the calculation of the factors a and b, and the so called
Haydock vector for the next iteration |Vn+1〉. The initial Haydock
vector is calculated as |V0〉 � |P〉

‖P‖ being |P〉 the vector defined as
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|P〉 � ∑
vck

lim
q→0

1
|q|ρ

p
vck q,G � 0( )|vck〉. (10)

On each iteration n, the optical spectrum is calculated
according to,

ϵ n( )
M ω( ) � 1 − ‖P‖2 1

ω − a1( ) − b22

ω−a2( )−b2
3
...

, (11)

until the difference between spectra of successive iterations is
below an acceptable threshold.

2.2 Double Grid Approach
First, we consider a coarse k-grid where no approximations are
applied, i.e., the BSE kernel is computed for all vertical transitions
involving k-points in this grid, which requires knowledge of the KS
orbitals and energies (potentially corrected toQP energies) at each of
these k-points. The solution of the BSE in this grid would typically be
computationally manageable but produce underconverged optical
spectra. Thus, a much denser fine k-grid will be added to the system.
We will denote k-points belonging to the fine grid with the letter κ,
while those in the coarse grid will be labelled K. Moreover, κ-points
will be grouped in domains centred around theK-points in such way
thatDom (KI) will be composed by the κ-points that are closer toKI

than to any other K-point. The number of k-points in this fine grid
would ordinarily be too large for the BSE to be solved in full, and
hence, approximations will be introduced for the fine grid. The two-
particle Hamiltonian in Eq. 6 can be thought of as a shift (the
diagonal matrix containing the energies of each transition) plus a
rotation (the BSE kernel). The approximation proposed implies that
the diagonal matrix is calculated in the fine grid, for which
knowledge of the KS energies of each band at every κ-point in
the fine grid is required. The BSE kernel, however, will not be
calculated in full but rather, every matrix element involving at least
one transition in the fine grid will be approximated according to
some rules for kernel extension. This allows the method to dispense
with the KS orbitals in the fine grid, which has a great impact on
memory requirements.

The way in which the BSE kernel is extended from the coarse
to the fine grid has been carefully considered as it has significant
impact on the results. The best agreement with experimental
spectra was achieved with an approach we refer to as diagonal
kernel extension (DKE). Let us consider one k-point in the coarse
grid,KI. There will be a group of κ-points in the fine grid that map
to it, namely those in the domain Dom (KI). We will label those
with a second numerical sub-index as κI1, κI2, κI3, . . . , κIi , . . ..
Given that the fine grid contains the coarse grid, we have that
κI1 � KI, while κIi with i ≠ 1 are other fine grid points close to KI.
Having established the nomenclature in this way, then DKE
would imply the definition

Ξ
nmκIi
n′m′κIi′′

≡ Ξ
nmKI
n′m′KI′

δii′, (12)

where the R.H.S is known and calculated exactly while the L.H.S is
the unknown matrix element we are trying to approximate (see

Supplementary Material for a visual representation of Eq. 12).
Thus, Eq. 12 is only exact for the k-point that belongs both the
coarse and the fine grids (i � i′ � 1), and approximated otherwise.
Even though the BSE kernel is not, in general, a diagonally-
dominant matrix, it is true that the diagonal matrix elements
usually have values orders of magnitude higher than those of
immediately close off-diagonal elements. The DKE approach
preserves this character when extending the kernel from the
coarse grid to the fine grid. Essentially, each matrix element of
the coarse grid BSE kernel expands into a block in the fine grid
matrix. The DKE method ensures that each block is strictly
diagonal, which is very relevant when expanding one of the
diagonal matrix elements of the coarse grid matrix. In Section
4.2, the DKE is compared with a possible alternative kernel
extension.

Finally, let us discuss how this double grid method fits
within the Haydock algorithm. It is apparent from Eqs. 7–9
that this scheme relies mainly on the matrix vector
multiplication H2p|Vn〉, so we will focus on how this is
adapted to account for the fine grid. The two-particle
Hamiltonian has already been described above, i.e., the
BSE kernel is approximated by DKE (Eq. 12) and the
diagonal part needs no approximation as the KS (or QP)
energies are known in the fine grid. All there is left is then to
define how the Haydock vectors |Vn〉 are extended to the fine
grid and initialised. The initial Haydock vector |V0〉 is
calculated in the coarse grid according to Eq. 10. Each
component is associated to one transition vck and thus,
when moving from the coarse to the fine grid, the number
of components will increase according to the ratio between
the number of κ-points and K-points. From Eq. 10, it is clear
that the KS orbitals at the κ-points would be required to
properly initialise the Haydock vector in the fine grid. As
these orbitals are not available in our method, those
components will be initialised as being equal to the
corresponding transition in the coarse grid. In other words,

|P〉FG � ∑
vcKI

lim
q→0

1
|q|ρ

p
vcKI

q,G � 0( ) ∑
κIi ∈

Dom KI( )

|vcκIi〉, (13)

where FG denotes the fine grid. It is apparent that |P〉FG has
many more components than |P〉, due to each coarse grid
transition (at KI) being replicated into many transitions at all
the κ-points in the domain of KI. The recursive relations in
Eqs. 7–9 would formally require the multiplication of the fine
grid (full) BSE kernel times Haydock vectors of the size of |
P〉FG. In our implementation, we calculate the matrix-vector
multiplication without storing the BSE kernel on the fine grid.
Let us divide a given Haydock vector |V〉 in fragments
according to the κ-point of each transition. Formally, this
would mean projecting |V〉 over the different transitions (i.e,
the abstract vectors |vcκIi〉 that form the new/extended basis of
e-h space) and then grouping components by their κ-point as
fragments. These fragments are convenient for the matrix
vector multiplication. In fact, this operation can be
expressed as
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rnmκIi
� ∑

n′m′κIi′′

Ξ
nmκIi
n′m′κIi′′

cn′m′κIi′′
, (14)

where cvcκIi � 〈vcκIi|V〉 are the components of the vector to be
multiplied and r are, analogously, the coefficients of the
resulting vector. Applying the DKE to the BSE matrix (Eq.
12), we obtain

rnmκIi
� ∑

n′m′KI′

∑
i′ ∈

Dom KI′( )
Ξ

nmKI
n′m′KI′

δi,i′ cn′m′κIi′′
� ∑

n′m′KI′

Ξ
nmKI
n′m′KI′

cn′m′κIi′
,

(15)

where matrix elements in the R.H.S are those of the coarse-grid
BSE kernel and the resulting summation runs over the K-points
in the coarse grid only. Computationally, this means adding a
loop over the κ-points in the domain of each K.

3 RESULTS

The double grid method proposed here to calculate optical
spectra via the BSE has been implemented in the Haydock
solver of the Yambo code (Marini et al., 2009; Sangalli et al.,
2019) and tested on a variety of semiconductors. In this section,
we present the resulting optical spectra of each material. We note
that the spectra produced by this approach represented a sharp
improvement with respect to the coarse grid solution, while
requiring only a marginal increase in computational cost.
Although Gamma-centred k-grids were used throughout this
study, our method can also be used with shifted grids (see an
example in Supplementary Material).

3.1 Si Bulk
It is notoriously difficult to converge the optical spectrum of bulk
Si with respect to k-points since a very dense k-sampling is
required to properly describe its excitons. The starting point for
our Si calculations is a severely under-converged 8 × 8 × 8 k-point
grid. The spectrum produced by this coarse grid alone shows
numerous spurious peaks (Figure 1), which reveals a high degree
of artificial localisation of the excitons imposed by the 8 × 8 × 8 k-
grid. We then took the latter as the coarse grid for the double grid
method and added a fine grid of κ-points to it. Supplementary
Figure S1 shows that a fine (double) grid of 24 × 24 × 24 κ-points
on top of this coarse grid immediately suppresses this artificial
localisation. Denser double grids improve upon this result
(Supplementary Figure S2). Ultimately, the spectrum
obtained with a 60 × 60 × 60 fine κ-grid on top of an 8 × 8 ×
8 coarse K-grid is in close agreement with experiments
(Figure 1). The comparison here is done with experimental
data at 10 K available in the literature for Si bulk (Jellison and
Modine, 1983).

3.2 GaAs Bulk
As in the case of Si, GaAs also requires very dense k-sampling for
its optical response to be converged. The coarse grid in this case is
an under-converged 10 × 10 × 10 Gamma-centred k-point grid.
Indeed, the spectrum produced by this coarse grid alone also
presents various spurious peaks, revealing a high degree of
artificial localisation of its excitons (Figure 2). Supplementary
Figure S3 shows that adding a fine (double) κ-grid of 20 × 20 × 20
does not solve the problem fully. However, the spectra with 40 ×
40 × 40 or 60 × 60 × 60 κ-grids match the experimental data
relatively well (Supplementary Figure S4 and Figure 2,

FIGURE 1 | Optical absorption spectra of bulk Si. BSE spectra
calculated using the double-grid approach described in this work are
assessed against the experimental spectrum at 10 K from Jellison andModine
(1983). Spectra are calculated on an 8 × 8 × 8 coarse k-grid and a
denser fine k-grid, indicated by Nκ. NK � 83 corresponds to a standard
calculation on an 8 × 8 × 8 k-grid while Nκ � 603 corresponds to a double-grid
calculation with a 60 × 60 × 60 fine grid. We consider all e−h pairs from the top
four valence bands to the four bottom conduction bands. All k-grids are
Gamma-centred.

FIGURE 2 | Optical absorption spectra of bulk GaAs. BSE spectra
calculated using the double-grid approach described in this work are
assessed against the experimental spectrum at 22 K from Lautenschlager
et al. (1987). Spectra are calculated on a 10 × 10 × 10 coarse k-grid and
a denser fine k-grid, indicated by Nκ. NK � 103 corresponds to a standard
calculation on a 10 × 10 × 10 k-grid while Nκ � 603 corresponds to a double-
grid calculation with a 60 × 60 × 60 fine grid. We consider all e−h pairs from the
top four valence bands to the four bottom conduction bands. All k-grids are
Gamma-centred.
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respectively). In particular, the latter grid appears to capture the
splitting of the first exciton present in the experimental data,
although a denser coarse grid would be required as a better
starting point to fully reproduce this feature. Indeed, this result
still seems to suffer from slight artificial localisation, e.g., at
3.5 eV. The comparison is drawn to available experimental
data for GaAs at 22 K (Lautenschlager et al., 1987).

3.3 MoS2 Monolayer
The convergence of the absorption spectrum of monolayer MoS2
with the k-grid within BSE has been discussed in the appendix of
Molina-Sánchez et al. (2013). The latter study reports a converged
spectrum using a very dense k-point grid and clarifies that when
spin-orbit coupling is not considered, the first excitonic peak
should not show any splitting. In fact, other works which used an
under-converged k-grid, mistakenly showed a splitting of the first
excitonic peak in collinear spin-polarised calculations with no
spin-orbit coupling accounted for.

Here, we aim to reproduce the spectra in Molina-Sánchez
et al. (2013) via the double-grid method (i.e., at a fraction of the
computational cost). Our results follow a similar trend to the
spectrum thereby reported. In the work of Molina-Sanchez
et al., spectra with 12 × 12 × 1 or 18 × 18 × 1 (single grids) show
splitting of the first peak while (single) k-grids of 24 × 24 × 1 or
30 × 30 × 1 solve the issue. Our result with a 12 × 12 × 1 single
grid is equivalent to that of Molina-Sánchez et al. (2013) (except
for a rigid shift in energy), i.e., it shows undue splitting (Figure 3).
Adding a double grid of 24 × 24 × 1 κ-points also results in undue
splitting while 48 × 48 × 1 appears to eliminate it (Supplementary
Figures S5, S6, respectively). A double grid of 60 × 60 × 1 further
improves upon this result (Figure 3). Importantly, the quality of
the double grid spectrum with a double grid of 60 × 60 × 1 κ-

points is not far from what was achieved in Molina-Sánchez
et al. (2013) with a 30 × 30 × 1 single grid. The double grid
approach correctly captures the physics at play despite
representing roughly the computational cost of a 12 × 12 × 1
regular BSE Haydock calculation (see Section 4).

4 DISCUSSION

4.1 Computational Cost
As described above, Lanczos approaches to the BSE eliminate the
need to invert the BSE kernel or fully diagonalise the two-particle
Hamiltonian, which would become the bottleneck of the
calculation whenever required. Instead, Lanczos solvers replace
these highly demanding tasks by very efficient and
computationally inexpensive iterative schemes. This numerical
advantage means that the solution step itself does not drive the
computational cost any longer, but rather, computing and storing
the BSE matrix now becomes the bottleneck of the calculation.
The method proposed in this work addresses this issue directly.
First, the KS orbitals in the fine grid need not be available, i.e., not
stored nor loaded into memory. Moreover, the kernel matrix
elements in the fine grid, and consequently, the corresponding
oscillator strengths, need not be calculated. As a result, the size of
the BSE kernel matrix will effectively be that of the coarse grid.
For instance, if we consider a coarse grid of 10 × 10 × 10 and a fine
grid of 60 × 60 × 60 then there would be 1000 K-points and
216 000 κ-points. The full BSE kernel would have
(200 ×Nc ×Nb)2 more matrix elements than the
approximated one. Depending on the number of bands

FIGURE 3 |Optical absorption spectra of monolayer MoS2. BSE spectra
calculated using the double-grid approach described in this work. Spectra are
calculated on a 12 × 12 × 1 coarse k-grid and a denser fine k-grid, indicated
by Nκ. NK � 122 corresponds to a standard calculation on a 12 × 12 ×
1 k-grid whileNκ � 602 corresponds to a double-grid calculation with a 60 × 60
× 1 fine grid. We consider all e−h pairs from the top three valence bands to the
five bottom conduction bands. All k-grids are Gamma-centred.

FIGURE 4 | CPU time in seconds required to calculate and store the
BSE kernel, and solve it via Haydock’s iterative scheme as a function of the
number of k-points. Brown circles represent fullBSE calculations. The data for
48 × 48 × 1 and 60 × 60 × 1 k-grids have been estimated via a quadratic
fitting. The diamonds denote double-grid BSE calculations. Lines connect
double-grid calculations using the same coarse-grid. All calculations were
carried out in one processor for comparability purposes. The data plotted here
corresponds to monolayer MoS2. We consider all e−h pairs from the top three
valence bands to the five bottom conduction bands.
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required for convergence, the steps of computing and storing that
many matrix elements may draw the line between what is feasible
and what is not, not only in terms of processing power, but also
due to memory and disk-storage limitations.

Let us consider monolayer MoS2 to address how the
computational cost compares between our double grid
approach with a given fine κ-grid and the regular (full) BSE
calculation using that same fine grid as the only (single) k-grid.
Figure 4 shows the combined time required to calculate the BSE
kernel and solve the eigen-problem via Haydock’s scheme as a
function of k-points used in the calculations. For comparability
purposes, all the calculations shown in Figure 4 have been
carried out with just one processor. For the full solution of the
problem (brown circles) the number of k-points has quadratic
scaling from one k-grid to another (as it does for any 2D
material) and the CPU time scales quadratically with the
total number of k-points. This latter dependence stems from
the size of the e-h basis set and the number of matrix elements of
the BSE kernel, i.e., (Nk ×Nc ×Nb)2. The computational cost of
the double grid approach proposed in this work (green-blue
diamonds connected by lines) increases only slightly with the
size of the fine-grid, when the same coarse grid is used. Since the
BSE kernel is calculated only in the coarse-grid, this increase is
due to the Haydock solver, which now has to process larger
Haydock vectors. Nonetheless, it is apparent that the increased
CPU time due to Haydock is minor and far more manageable
than the scaling of the full BSE problem. Overall, fine grid has
little impact on the CPU time required by the method we
propose. In fact, Figure 4 clearly shows that the
computational cost of the double grid method is roughly
driven by the coarse grid.

4.2 Kernel Extension to Fine Grid
The kernel extension is the key approximation used in the
double-grid approach. The DKE in Section 2 was selected for
its simplicity and low computational cost. There are other
possible kernel extensions. In particular, we also considered a
kernel extension with similar characteristics, that we refer to as
full kernel extension (FKE). First, let us define the FKE approach
formally: FKE implies that each matrix element of the coarse grid
BSE kernel is expanded into an all-ones block times the original
matrix element, which leads to

Ξ
nmκIi
n′m′κIi′′

≡ Ξ
nmKI
n′m′KI′

∀ i, i′ (16)

(see Supplementary Material for a visual representation of Eq.
16). As a result, the way in which the fine-grid matrix vector
multiplication is carried out also differs from DKE. In FKE, this
operation is performed as

rnmκIi
� ∑

n′m′KI′

Ξ
nmKI
n′m′KI′

∑
i′ ∈

Dom KI′( )
cn′m′κIi′′

. (17)

Eqs. 16, 17 of FKE are analogous to Eqs. 12, 15 of DKE,
respectively.

In terms of the spectra produced by either kernel extensions,
the comparison consistently favours DKE over FKE in all the
materials tested in this work. The difference may be less
noticeable in systems with weaker excitonic effects. A
comparison for the materials in Section 3 is shown in
Figure 5. In the case of Silicon (Figure 5A), it is apparent
that DKE is better than FKE at suppressing the artificial
localisation found around 3.6 eV. For GaAs (Figure 5B), DKE
also shows an improvement with respect to FKE when dealing
with the artificial localisation at around 3.1 eV. Finally,
monolayer MoS2 (Figure 5C) also follows the trend found in
this work, i.e., DKE is consistently better than FKE. In this case in
particular, the difference between both approaches is very stark.
In fact, the FKE approach shows little to no improvement with
respect to the 12 × 12 × 1 single k-grid as far as the first exciton is
concerned (cf. Figure 3).

In order to explain the better performance of DKE over
FKE, we will discuss the properties of the BSE kernel and the
two-particle Hamiltonian matrices, which are related by Eq.
6. In general, the kernel matrix elements Ξ nmk

n′m′k′
are sharply

peaked at q � 0 (Rohlfing and Louie, 1998; Rohlfing and
Louie, 2000), i.e., for k � k9. This does not mean that every
matrix element with q � 0 will have a higher value than the
remaining matrix elements. In fact, that is only true for the
diagonal elements Ξ nmk

n′m′k′
, while the q � 0 elements coupling

different sets of bands (Ξ nmk
n′m′k′

) are closer in value to all other

q ≠ 0 matrix elements. This is again exemplified with
monolayer MoS2 in Figure 6. The latter shows the module
of every matrix element between a given transition (v � 13, c �
14 and k1 � (−0.166, −0.166, 0)) and every other transition in
the e-h space, i.e., one row of the BSE kernel matrix. This data
is plotted as a function of the magnitude ‖q‖/‖q‖max sgn (qx),
where q � k−k1. Figure 6A shows the BSE kernel as obtained
with a single grid of 6 × 6 × 1 k-points, where we can see that
the diagonal matrix element (the selected transition with
itself) is an order of magnitude higher than all other
matrix elements (many of which also have q � 0). The fine
grid of 12 × 12 × 1 k-points better captures the build-up to the
peak of the graph as it has many more k-points around the
selected one (Figure 6B). Unfortunately, the double grid
approach proposed here cannot capture this feature
because it is meant not to imply any extra computation or
storage of matrix elements at fine grid κ-points. However, the
reader should bear in mind that while this feature is missing
in our approximated BSE kernel, the benefits of this double
grid approach reside in exactly knowing the transition
energies at the fine grid κ-points (see Supplementary Material
for detailed discussion). At this point, what we expect from the
approximated kernel is not to introduce unphysical matrix
elements, and in this regard DKE performs much better than
FKE. Figure 6C shows how the BSE kernel matrix elements
approximated by DKE still represent a function of q that is
sharply peaked at the origin. Conversely, the FKE approach
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means that manymatrix elements inDom (k1), and consequently at
q ≠ 0, will take the value of the peak. We know that such behaviour
as a function of q would not arise should more k-points be included
(Figure 6B). Hence, we believe DKE constitutes a better
approximation of the BSE kernel than FKE. Further arguments
in favour of the DKE over the FKE are presented in Supplementary
Material.

4.3 Limitations of the Approach
The double-grid approach presented in Sec. IIB is based on two
approximations: the DKE (Eq. 12) and the approximation of the
starting Haydock vector (Eq. 13). The DKE has been extensively
analysed in Sec. IVB. From the analysis, it emerges that the

predominance of the matrix elements with q ≈ 0 is crucial to the
success of the approximation. This is consistent with the spatial de-
localisation of the exciton overmany unit cells. Conversely, when the
exciton is localised on few unit cells—as it is the case for instance in
wide-gap insulators—the approximation may break down because
of the significant contribution to the BSE kernel of matrix elements
with q ≠ 0. We verified this is the case, for example, for bulk
hexagonal boron nitride (h-BN). The breakdown of the approach for
these cases is, however, not critical. In fact, excitons that are localised
on few unit cells can be described accurately with a modest k-point
sampling and the double-grid is not needed.

The approximation for the starting Haydock vector (Eq. 13)
implies the assumption that (within the length gauge and dipole

FIGURE 5 |Optical absorption spectra of bulk Si (A), GaAs (B) and MoS2 monolayer (C). Comparison of spectra obtained by diagonal kernel extension (DKE) and
full kernel extension (FKE). For Si and GaAs the coarse k-grid was 8 × 8 × 8 and 10 × 10 × 10 respectively and the fine k-grid, 60 × 60 × 60. For the MoS2 monolayer, the
coarse k-grid was 12 × 12 × 1 and the fine k-grid, 60 × 60 × 1.

FIGURE 6 | Module of the BSE Kernel matrix element between one transition (vck1) and every other transition in the e-h space (nmk). The data plotted here
corresponds to MoS2 considering all e-h pairs from the top three valence bands to the five bottom conduction bands. (A) shows the matrix elements considering only a
single grid of 6 × 6 × 1 k-points. The DKE and FKE ((C,D), respectively) matrix elements are obtained from a 6 × 6 × 1 coarse K-grid and a 12 × 12 × 1 double κ-grid. The
fine grid data (B) is simply what DKE and FKE try to approximate, i.e., the kernel matrix elements obtained with one single grid of 12 × 12 × 1 k-points.
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approximation) the dipole matrix elements in the fine grid can be
approximated by those in the coarse grid, namely,

〈nκIi| r̂ |mκIi〉≈〈nKI| r̂ |mKI〉, (18)

for κIi ∈ Dom(KI), where r̂ is the position operator. This
assumption can be verified at the level of the independent
particle approximation (IPA) by comparing the IPA spectrum
obtained with the double-grid approach (which we call Haydock-
IP) with the IPA spectrum calculated on the fine grid. In fact, in the
independent particle case, Eq. 18 is the only approximation
introduced by the double grid. For the systems considered in
Section 3, we verified that indeed the IPA spectra obtained within
the double-grid approach agree well with the IPA calculated on the
corresponding fine grid (Figure 7). It is also interesting to note that
this particular approximation is valid for h-BN, which singles out
the BSE kernel (q ≈ 0) approximation as the only factor hindering
the application of the double-grid method to this material. In
particular, GaAs shows a minor discrepancy in the IPA spectra
around 2.1 eV (Figure 7), a region of the spectrum where k-point
convergence is markedly difficult. This is due to the steep
dispersion of the conduction band of GaAs around the Gamma
point, where the optical gap occurs [see, for example,
(Lautenschlager et al., 1987)]. As a result, the approximation of
the oscillator strengths around Gamma by the corresponding
matrix element at Gamma (Eq. 18) is a rather poor one, which
translates into an unphysical feature around 2.1 eV in the BSE
spectrum as well (Figure 2).

There are also instances in which the approximation in Eq. 18
breaks down substantially. As an example, Figure 7 shows this

breakdown for the optical absorption of bulk black-phosphorous
(BP) along the armchair direction (Tran et al., 2014). The IPA
spectrum obtained within the double-grid approach has strong
peaks around 0.3 eV which are not present in the reference
calculation. The appearance of this artefact can be understood
considering that the dipole matrix elements (Eq. 18) are calculated
as 〈nKI| v̂ |mKI〉

EnmKI
, where v̂ is the velocity operator. BPhas aminimumKS

band-gap of about 0.2 eV (0.1 eV at the DFT level) and thus the
corresponding dipole matrix element is large. Within the double-grid
approach, all fine-grid k-points in the domain of the k-point
corresponding to the minimum KS band-gap use the same value
which largely overestimates the actual dipole matrix element. Notably,
carrying out the calculations in the primitive rather than in the
conventional unit cell (Figure 7), improves the agreement with the
reference IPA fine-grid spectrum, suggesting that in this case the
coarse grid does a better job at sampling the Brillouin zone around the
k-point corresponding to the minimum KS band-gap. Nevertheless,
this Haydock-IP spectrum still presents artificial features between 0.5
and 1.0 eV, preventing the application of the double-grid method
presented in this work to BP.

Further to note is that using Eq. 18 the extension from the
coarse to the full grid is done for the position dipoles, i.e. within the
length gauge. This implies that, to ensure gauge invariance (Sangalli
et al., 2017), 〈nκIi| v̂ |mκIi〉 � 〈nKI| v̂ |mKI〉(EnmκIi

/EnmKI). An
alternative choice could be instead to assume
〈nκIi| v̂ |mκIi〉 � 〈nKI| v̂ |mKI〉, i.e. to perform the extension of
the velocity matrix elements and accordingly obtain
〈nκIi| r̂ |mκIi〉 � 〈nKI| r̂ |mKI〉(EnmKI/EnmκIi

). Preliminary
results show that such choicemay in fact lead to better results for BP.

FIGURE 7 | Optical absorption spectra at the IP level calculated with the double grid method (labelled Haydock-IP) and via a full calculation on a fine grid
(labelled IP), for all materials considered in this study. In all cases, the fine grid in the double-grid Haydock-IP calculation is of the same dimensions as the fine grid
used in full for the IP calculation. The coarse grids and double/fine grids used for each material are listed below. Si: 8 × 8 × 8 and 60 × 60 × 60, GaAs: 10 × 10 × 10
and 40 × 40 × 40, MoS2: 12 × 12 × 1 and 60 × 60 × 1, h-BN: 12 × 12 × 4 and 24 × 24 × 8, BP(c): 14 × 10 × 4 and 42 × 30 × 12, BP(p): 5 × 5 × 6 and 30 × 30 × 36.
All k-grids are Gamma-centred.
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4.4 Workflow Implementation
Based on this discussion, we can propose a workflow to assess
whether a given material satisfies these approximations and
could thus be described well by the double-grid method
presented here. Firstly, a full fine grid IP calculation must
be converged with respect to k-points. Alternatively one could
choose the densest k-grid that can be treated at the IP level,
where limitations usually reside on memory. Let us take an
example where this first step of the procedure returns a 60 × 60
× 60 k-grid. The next stage would be to find an appropriate
coarse k-grid, i.e., one that satisfies the approximation in Eq.
18. This would entail running several double-grid calculations
at the IPA level (Haydock-IP) with varying coarse grid and
with a fine grid of 60 × 60 × 60. By matching the Haydock-IP
spectrum to the full 60 × 60 × 60 fine-grid IP spectrum, a sound
coarse grid can be chosen by means of a fairly inexpensive
procedure (e.g., 8 × 8 × 8). The next step in the workflow would
necessarily involve BSE calculations as the approximation on
the BSE kernel cannot be tested at the IPA level. With the
chosen coarse grid, successive double-grid BSE calculations
with varying fine grids should be carried out in order to
converge the dimensions of the latter. It is worth
mentioning that all these calculations have roughly the
same computational cost and requirements, at the level of
the coarse-grid 8 × 8 × 8 BSE calculation. It should be
highlighted that convergence of the fine-grid in the double-
grid method does not guarantee the validity of the DKE
approximation. At this point, one should turn to available
data, either experimental or theoretical, in order to assess the
validity of the results on physical grounds.

5 CONCLUSION

In this work, we presented a double grid approach to the problem
of k-point sampling in the solution of the BSE equation for the
calculation of optical spectra of semiconductors. This responds to
the fact that very dense k-point grids are required for BSE
calculations to be fully converged due to the large periodicity of
excitonic wavefunctions, usually reaching several supercells. This
sampling requirement is the bottleneck in BSE calculations and, for
a wide variety of solids, this imposes a computational burden that
renders the calculation prohibitively costly. We tackled this
challenge by applying a double grid approach to the
computationally cheapest among the BSE solvers, i.e., the
Lanczos-based Haydock scheme, thus maximising the size and
range of materials for which this method could be useful. Our
double grid approach is based on combining a coarse k-grid where
both KS eigen-values and eigen-vectors are known with a fine k-
grid where only KS energies are required, which eases memory and
disk storage requirements. With this strategy, the coarse k-grid
drives the computational cost while the k-fine grid tries to capture
the physics of spread out excitons in an approximated way without
requiring significant extra computation.

This scheme was implemented in the Yambo code (see
Supplementary Material for availability) and tested for

bulk Si, bulk GaAs and monolayer MoS2, all of which are
known to require very dense k-point grids to achieve
convergence. The results are satisfactory in all cases,
reproducing data reported elsewhere with a relatively low
computational cost close to that of the coarse grid alone.
There is a slight increase in the CPU time required by the
Haydock step, however this scales very favourably with
increasingly dense k-meshes, at variance with regular non-
double grid approaches. Different ways to extend the BSE
kernel calculated in the coarse grid to the fine grid are
discussed and compared, determining that the so-called
diagonal kernel extension is the preferred method.

The approximations introduced with the double-grid
approach have been discussed, together with the limits they
impose to its validity. On the one hand, the diagonal kernel
extension limits the applicability of this approach to systems
with excitons delocalised over many unit cells. On the other
hand, the latter are precisely the main target of the double-grid
approach, given that spatially localised excitons are usually well
described by a relatively coarse k-grids. Further, we discussed
how the validity of the approximation on the dipole matrix
elements can be verified and controlled with inexpensive
calculations at the level of the independent particle
approximation.

In light of the promising results achieved by the double grid
approach presented in this work, considering its simplicity and
taking into account its compatibility with the very efficient
Lanczos based BSE solution schemes (i.e., Haydock), we hope
our work will facilitate the calculation of optical spectra in
semiconductors that could not be computationally afforded
to date.
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