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INTRODUCTION

A pressing need of diagnostic, predictive, and prognostic markers exists in clinical settings.
Unfortunately, in spite of evidence for underpinnings in mental disorders over the past decade,
biologically based markers in reflection to the physiology for guiding clinical practice have
obviously lagged behind. On the one hand, the updated Diagnostic and Statistical Manual ofMental
Disorders remains to emphasize how mental disorders are expressed, although it provides a model
that helps clinicians to perform better diagnosis and follow-up care (Kupfer et al., 2013), like
cholesterol and blood pressuremeasurement. On the other hand, as the 23rd edition of the “Clinical
Handbook of Psychotropic Drugs” has said, “we can provide current evidence-based and clinically
relevant information to optimize patient care,” but the information is derived from randomized
controlled trials and leading clinical experts, etc. Therefore, clinical practice requests guidance of
some objective, quantitative, and specific biomarker, reflecting its neurobiological substrates for
diagnosis and treatment selection.

To this end, machine learning methods, as demonstrated by a sizable number of recent
neuroimaging studies, hold great promise for improving the diagnosis, treatment, and prediction
of prognosis in psychiatric domains, which will have an effect on personalized medicine. The term
“machine learning” was coined in 1959 by Arthur Samuel (Samuel, 1959), and it is a science of the
artificial intelligence, showing an evident capacity to reveal relationships between different variables
used for classification (Tandon and Tandon, 2018). Furthermore, radiomics is a newly developed
method to obtain high-dimensional features that might be options used for machine learning
analysis. This Research Topic “Machine Learning in Neuroscience, Volume II” in “Frontiers in
Neuroscience” provides new study strategy and applies radiomics/machine learning and distinct
neuroimaging inmental disorders. Transforming existing clinical pathways toward optimizing care
for the specific needs of each psychiatric patient, the significance is to achieve better diagnosis,
treatment, and prognosis of mental disorders using radiomics/machine learning.

The field of psychiatry research remains a focus of medicine; in particular, mental health has
arrived on the global health agenda. Currently, PubMed comprises more than 10 citations for
literature involving radiomics and mental disorders, and efforts to develop radiomics/machine
learning-based objective means have intensified for autism spectrum disorder (Chaddad et al.,
2017), attention-deficit/hyperactivity disorder (Sun et al., 2018), schizophrenia spectrum and other
psychotic disorders (Cui et al., 2018, 2021; Gong et al., 2020; Park et al., 2020; Xi et al., 2020), bipolar
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and related disorders (Wang et al., 2020), mild cognitive
impairment, and Alzheimer’s disease (Kai et al., 2018; Li
et al., 2018; Ranjbar et al., 2019; Huang et al., 2020).
Radiomics/machine learning enables the neuroimaging data of
mental disorders to be extracted for improving clinical decision
support (Wang et al., 2019).

Due to the excellent performance of radiomics analysis
for feature selection and classification, it is regarded as the
bridge between medical imaging and personalized medicine
(Lambin et al., 2017). However, a critical issue is related
to radiomics analysis in non-cancer field. In spite of a lack
of lesions for conventional feature extraction, neuroimaging-
based measures are features that could be extracted in
radiomics/machine learning study. Taking schizophrenia as an
example, previous studies on this topic illustrate the potential
value in the application of radiomics/machine learning methods
to disease definition and diagnosis and prediction of response to
antipsychotics (APs) or electroconvulsive therapy (ECT).

RADIOMICS AND MAGNETIC RESONANCE
IMAGING IN SCHIZOPHRENIA

Diagnosis and treatment of schizophrenia are pivotal
clinical issues that need to be solved urgently. In a recent
review, Kraguljac et al. (2021) highlighted and discussed the
neuroimaging biomarkers in schizophrenia. Magnetic resonance
imaging (MRI), as a non-invasive neuroimaging method,
has been widely used in the study of schizophrenia. As we
commented on a meta-analysis of the association of clinical
and demographic characteristics and magnetic resonance
spectroscopy in schizophrenia (“Targeting the Whole Clinical
Course of Schizophrenia With Magnetic Resonance Imaging,”
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/
2778479), MRI combined with radiomics/machine learning
could be the most important approach in schizophrenia
research, involving predicting transition from clinical high
risk to psychosis, providing evidence of macroscale neural
mechanisms, delving into the nature behind symptoms,
facilitating diagnosis and subtyping, predicting treatment
response, detecting psychopharmacological effects, and guiding

TABLE 1 | Radiomics/machine learning and MRI in schizophrenia.

Articles Subject number MRI Features selected Accuracy Sensitivity Specificity

Identifying patients

Park et al. (2020) Training: Pat = 60/Con = 46

Testing: Pat = 26/Con = 20

sMRI 30 radiomics features from the

bilateral hippocampal subfields

82.1% 76.9% 70%

Cui et al. (2018) Training: Pat = 52/Con = 66

Testing: Pat = 56/Con = 55

fMRI 32 connections of the whole

brain

87.09% 86.79% 87.22%

Predicting treatment response

Cui et al. (2021) Training: R = 47/N = 38

Testing: R = 41/N = 22

sMRI/fMRI Nine functional connections and

three cortical features

85.03% 92.04% 80.23%

Xi et al. (2020) Training: R = 22/N = 22

Testing: R = 6/N = 7

sMRI Three gray matter radiomics

features

93.18% 95.45% 90.91%

Search terms: “schizophrenia and radiomics”

Con, controls; N, non-responder; Pat, patient; R, responder.

neuronavigation of neuromodulation, thereby managing very-
late-onset schizophrenia-like psychosis. MRI-based studies are
promising for clinical translation (Jiang et al., 2020).

It is of no doubt that we took the precision medicine view

more seriously with the advent of radiomics/machine learning

in the field of schizophrenia research (Wang et al., 2019). The

number of publications on radiomics/machine learning via MRI

has increased to five until this year, including one regression

analysis (Gong et al., 2020) and four classification analyses (Cui

et al., 2018, 2021; Park et al., 2020; Xi et al., 2020) (Table 1).
There are two well-done MRI studies from Xi et al. (2020) and

Gong et al. (2020), respectively. They used radiomics features
on structural MRI (sMRI) to predict response to APs plus
ECT. In the first study, the group of Yi-Bin Xi and colleagues
extracted radiomics features from the regions of interest (ROIs)
with differences of gray matter volume between responders and
non-responders (Xi et al., 2020). Specifically, voxel-wise gray
matter volume was compared between responders and non-
responders, and then, 11 ROIs identified in the previous step
entered first-order statistics feature extraction and classification
analysis. A leave-one-out cross-validation (LOOCV) framework
and support vector machine (SVM) was used to perform
pattern classification analysis. This study built a fusion logistic
regression model (LRM) with the least absolute shrinkage and
selection operator (LASSO) with an accuracy of 93.18%, and
the fixed features were from the right anterior cingulum, left
supramarginal gyrus, and right hippocampus. In the second
study, the group of Gong et al. (2020) examined whether the
combination of gray and white matters can predict the outcome
using sMRI and diffusion tensor imaging. They selected first-
order statistics radiomics features from regions (gray and white
matters) with strong electric field distribution under ECT in this
regression analysis study. The prediction process was performed
with a support vector regression model based on a LOOCV
framework. Features in the left inferior frontal gyrus, right
superior temporal gyrus, left temporal pole, right insula, and
fibers connecting the frontal and temporal lobes were used
in the final support vector regression model. The majority of
ECT studies thus far has focused on identification of treatment
response biomarkers in major depressive disorder. These are

Frontiers in Neuroscience | www.frontiersin.org 2 June 2021 | Volume 15 | Article 6850055

https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2778479
https://jamanetwork.com/journals/jamapsychiatry/fullarticle/2778479
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Cui et al. Radiomics/Machine Learning in Mental Disorders

interesting studies that seek to predict treatment response
in patients with schizophrenia undergoing electroconvulsive
therapy. Based on the similar radiomics features, Park et al.
(2020) used bilateral hippocampal subfields to differentiate
patients with schizophrenia from healthy controls. ROIs were
automatically segmented, and various combinations of classifiers
(LRM, extra-trees, AdaBoost, XGBoost, or SVM) were trained,
yielding an accuracy of 82.1%. These findings on the basis of
structural differences with biological significance thus offer the
potential to add new information to the literature.

In addition to conventional features, another two studies
considered abnormal functional connectivity as features (Cui
et al., 2018, 2021). In a disease identification study, a total
of 137 connections determined by functional MRI (fMRI)
were detected between patients with schizophrenia and healthy
controls (Cui et al., 2018). Then, they reduced to 32 using the
LASSO binary LRM. The accuracy of detecting patients was
87.09%. One of the strengths of this study is the two types
of cross-validation (CV), i.e., intra- and inter-data set CV. In
an early treatment response prediction study, both functional
connectivity and cortical measures with group difference were
used to obtain baseline features (Cui et al., 2021). They
used CV-LASSO to conduct feature selection and dimension
reduction and constructed an SVM model to predict response
to treatment. The combined features obtained an outstanding
accuracy with 85.03%. Likewise, biologically meaningful group
differences of MRI reflect the pathophysiology of schizophrenia
in relation to diagnosis and treatment. Although these two
studies included non-conventional radiomics features, MRI
analyses produce tens of thousands of functional connections and
cortical measurements. In line with radiomics, high-throughput
mining of quantitative features frommedical imaging, we can call
it the radiomics strategy in schizophrenia research.

Nevertheless, dozens of MRI studies using machine learning
are emerging in schizophrenia. Many of them are characterized
by large international multicenter samples (Chen et al., 2020),
multimodal MRI fusions (Lei et al., 2020), elegant machine
learning models (Rozycki et al., 2018), considerable accuracy
with high generalizability (Koutsouleris et al., 2018), or enhanced
understanding of brain circuits that can serve as potential
biomarkers (Zhao et al., 2020). For this reason, MRI-based
machine learning approaches may offer better individual-
level diagnostic and predictive value in mental disorders
(Keshavan et al., 2020).

DISCUSSION

MRI-based radiomics/machine learning studies hold several
strengths with regard to schizophrenia, e.g., having biological

underpinnings (structure/function), extension of treatment
prediction (APs/ECT), and validation methods (intra-/inter-data
set CV). However, many critical challenges exist in this
field from both clinical and research perspectives. First, most
current classification studies treat a clinical diagnosis as the
gold standard; however, with MRI or psychopathology, some
recent unsupervised (Jauhar et al., 2018; Matsubara et al.,
2019) or supervised (Jacobs et al., 2021) machine learning
studies have tended to explore transdiagnostic characteristics
of mental disorders and try to break the boundary of
classic diagnosis and establish bioinformation-based disorder
classification. Second, many novel machine learning models,
such as generative adversarial networks (GANs), have been
applied to large multicenter MRI data in this field (Zhong
et al., 2020; Ren et al., 2021). GANs contribute a lot
to improving reproducibility of radiomics features across
manufacturers and increasing diagnostic accuracy (Marcadent
et al., 2020). The use of “radiomics” combining novel machine
learning models is considered an initiative and an important
development over prior work in the precision medicine of
mental disorders.

Driven by the need for better management of patients,
as well as advances in neuroimaging-based machine learning
approach, a quest for accurate detection of convention to illness,
identification of patients, and prediction of treatment response
and outcome is noted. MRI-based radiomics/machine learning
researchers should promote the generalizability of findings across
patients and pave the way to facilitate the guidance of clinical
decision making by means of these findings.
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Background: Emerging evidence suggests structural and functional disruptions of the
thalamus in schizophrenia, but whether thalamus abnormalities are able to be used
for disease identification and prediction of early treatment response in schizophrenia
remains to be determined. This study aims at developing and validating a method
of disease identification and prediction of treatment response by multi-dimensional
thalamic features derived from magnetic resonance imaging in schizophrenia patients
using radiomics approaches.

Methods: A total of 390 subjects, including patients with schizophrenia and healthy
controls, participated in this study, among which 109 out of 191 patients had
clinical characteristics of early outcome (61 responders and 48 non-responders).
Thalamus-based radiomics features were extracted and selected. The diagnostic
and predictive capacity of multi-dimensional thalamic features was evaluated using
radiomics approach.

Results: Using radiomics features, the classifier accurately discriminated patients from
healthy controls, with an accuracy of 68%. The features were further confirmed in
prediction and random forest of treatment response, with an accuracy of 75%.

Conclusion: Our study demonstrates a radiomics approach by multiple thalamic
features to identify schizophrenia and predict early treatment response. Thalamus-
based classification could be promising to apply in schizophrenia definition and
treatment selection.

Keywords: schizophrenia, thalamus, radiomics, machine learning, diagnosis, treatment
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INTRODUCTION

Driven by the need for precision medicine, a quest for accurate
diagnosis and treatment was recently noted in the management
of schizophrenia. A variety of abnormalities in the thalamus is
associated with this disorder, including reduced volume (Pergola
et al., 2015; Brugger and Howes, 2017; Dietsche et al., 2017;
Dorph-Petersen and Lewis, 2017) and disrupted structural and
functional connections to the cortices (Pergola et al., 2015;
Giraldo-Chica and Woodward, 2017; Murray and Anticevic,
2017), as well as increased perfusion (Scheef et al., 2010;
Zhu et al., 2015) and weaker correlation between glucose
metabolism and dopaminergic state (Mitelman et al., 2019).
Copious neuroimaging studies suggest thalamic association with
schizophrenia, ranging from region to network level.

Task-state studies have found increased blood oxygenation
level-dependent response to retrieval in the thalamus among
schizophrenia patients (Stolz et al., 2012). Meanwhile, resting-
state functional connectivity studies have reported thalamic
abnormal connectivity with the bilateral cerebellum, anterior
cingulate cortex, and multiple sensory-motor regions (Ferri
et al., 2018). Effective connectivity by means of dynamic causal
modeling revealed a deficit sensitivity of auditory cortex to
its thalamic afferents in schizophrenia (Li et al., 2017). In
addition, disrupted coactivation within resting-state networks
analysis has been observed in the thalamus (Cui et al.,
2017a). Both functional and structural imaging findings support
dysconnectivity of the thalamus and cerebellum (Liu et al.,
2011). As the neuroanatomical and neurochemical theories
implicated in the pathophysiology of schizophrenia, the notion
of emphasizing psychopathological processes mediated by the
thalamus (Parnaudeau et al., 2018) should also be paralleled
by identifying patients and predicting treatment response via
multi-dimensional thalamic features.

A number of studies indicate that magnetic resonance
imaging (MRI) techniques have provided insights into the
classification and prediction in schizophrenia. MRI combined
with machine learning technique represents a promising
approach to distinguish patients with schizophrenia from healthy
population, and responders from non-responders (de Filippis
et al., 2019; Wang et al., 2019). In general, previous studies
have related to the classification of schizophrenia using resting-
state functional MRI (Anderson et al., 2010; Shen et al., 2010;
Anderson and Cohen, 2013; Skatun et al., 2017; Cui et al.,
2018; Huang et al., 2019; Zeng et al., 2018), structural MRI
(Liang et al., 2018; Mikolas et al., 2018; Cui et al., 2019b; Liu
et al., 2020), or their combination (Cui et al., 2021a). More
importantly, classification approaches are able to aid subtyping
symptoms of schizophrenia (Dwyer et al., 2018) and trans-
diagnostic discrimination between schizophrenia and bipolar
disorder (Arribas et al., 2010; Schnack et al., 2014; Rashid
et al., 2016). In particular, MRI may be able to predict the
response of treatments in schizophrenia, including structural
(Fung et al., 2014; Hutcheson et al., 2014; Molina et al., 2014;
Morch-Johnsen et al., 2015; Premkumar et al., 2015; Altamura
et al., 2017; Dusi et al., 2017; Francis et al., 2018) and functional
(Hadley et al., 2014; Kraguljac et al., 2016a,b; Sarpal et al., 2016;

Doucet et al., 2018; Shafritz et al., 2018; Cui et al., 2019a) MRI (see
Cui et al., for review; Cui et al., 2019a). These studies involved
MRI features such as gray matter or white matter volume,
cortical thickness, morphology of gyrus, and brain activation
and connectivity with time of outcome assessment arranging
from 6 weeks to 3 years. The structural MRI findings have
shown a linkage between clinical improvements and higher gray
matter volume [e.g., bilateral caudate (Hutcheson et al., 2014),
bilateral lentiform and striatum (Fung et al., 2014), orbitofrontal
cortex (Premkumar et al., 2015), and total brain (Altamura
et al., 2017)], thinner right prefrontal (Molina et al., 2014) and
thicker left caudal middle frontal cortical thickness (Francis
et al., 2018), and rightward orbitofrontal cortex (Premkumar
et al., 2015). In contrast, poor response has been linked to
thinner left orbitofrontal cortex and left anterior cingulate cortex
(Morch-Johnsen et al., 2015), and decreased right dorsolateral
prefrontal cortex white matter volume (Dusi et al., 2017).
Several functional MRI studies have reported greater activation
in the anterior cingulate cortex in a simple response conflict
task (Shafritz et al., 2018), and increased regional activity in
the left postcentral gyrus/inferior parietal lobule (Cui et al.,
2019a) and distinctive striatal functional connectivity (Sarpal
et al., 2016) for responders. Hippocampal connectivity (Kraguljac
et al., 2016b), connectivity within the dorsal attention network
(Kraguljac et al., 2016a), and connectivity between ventral
tegmental area/midbrain and the dorsal anterior cingulate cortex
(Hadley et al., 2014) have been found to positively correlate to
changes in symptoms. However, these potential predictors are
inordinately heterogeneous and, to our knowledge, much earlier
prediction of treatment response has not been identified.

Emerging evidence suggests structural and functional
disruptions of the thalamus in schizophrenia, but whether
thalamus abnormalities are able to be used for classification and
prediction in schizophrenia remains to be determined. Thalamic
features with successful level prediction of electroconvulsive
therapy (ECT) response have been identified by radiomics (Xi
et al., 2020). An opinion article in this journal illustrates the
application of MRI and radiomics/machine learning methods
to the study of schizophrenia (see Cui et al. for review; Cui
et al., 2021b). Therefore, we aimed to validate a method of
classification for schizophrenia and prediction of treatment
response by multi-dimensional thalamic features derived from
structural MRI using radiomics approaches. Relying on the
thalamic association with schizophrenia, we hypothesized that
thalamus-based classification and prediction could play a role in
individualized diagnosis and treatment of schizophrenia as an
objective and useful tool in this study.

MATERIALS AND METHODS

This study was approved by the Institutional Ethics Committee,
First Affiliated Hospital (Xijing Hospital) of the Fourth Military
Medical University. All participants (or their parents for those
under age of 18 years) gave written informed consent after a full
description of the aims and design of the study. Table 1 provides
further details on the two patient and control populations.

Frontiers in Neuroscience | www.frontiersin.org 2 July 2021 | Volume 15 | Article 6827779

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-682777 June 29, 2021 Time: 18:32 # 3

Cui et al. Thalamus-Based Radiomics in Schizophrenia

Participants
The inclusion and exclusion criteria are shown in previous
studies (Cui et al., 2018, 2019a,b). The first dataset included 100
patients with schizophrenia patients and 92 healthy controls. The
structural clinical interview for Diagnostic and Statistical Manual
of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-
TR) was used, and consensus diagnoses were made using all the
available information. The second dataset included 91 patients
and 107 healthy controls, and DSM, Fifth Edition (DSM-5)
was used. Each patient was assessed by using the Positive and
Negative Syndrome Scale (PANSS) at the time of imaging (Cui
et al., 2018, 2019a,b).

Data were collected from May 2011 to December 2013
(dataset 1) and from April 2015 to December 2017 (dataset
2) in the Department of Psychiatry, Xijing Hospital,
respectively, including inpatients undergoing their first or
single hospitalization and outpatients seeking help. Inclusion
criteria for patients are as follows: (1) they were assessed by
two senior clinical psychiatrists, and consensus diagnosis of
schizophrenia was made; (2) PANSS score was not less than
60 at the time of imaging; (3) all subjects were right handed,
and their biological parents were of the Han Chinese ethnic
group. Two groups of healthy controls without any reported
psychotic syndrome (as assessed by psychiatrists) were recruited
by advertisement from the local community.

Exclusion criteria for patients included the following:
(1) presence of another psychiatric disorder; (2) history of
repetitive transcranial magnetic or current stimulation, or
a history of behavioral treatment; (3) history of clinically
significant neurological, neurosurgical, or medical illnesses;
(4) substance abuse within the prior 30 days or substance
dependence within the prior 6 months; and (5) pregnancy

or any other MRI contraindications, e.g., cardiac pacemakers
and other metallic implants. Exclusion criteria for healthy
controls included the following: (1) presence of any psychotic
syndrome; (2) history of receiving antipsychotics, repetitive
transcranial magnetic stimulation, transcranial current
stimulation, or behavioral treatment; (3) history of clinically
significant neurological, neurosurgical, or medical illnesses;
(4) substance abuse within the prior 30 days or substance
dependence within the prior 6 months; and (5) pregnancy
or MRI contraindications, e.g., cardiac pacemakers and other
metallic implants.

A total of 109 patients (67 from the first dataset; 42 from
the second dataset) had clinical data of early treatment
response. The majority of patients received second-
generation antipsychotics, and the minority of patients
received first-generation antipsychotics. Treatment response
at discharging was assessed using percentage change of
PANSS score: PANSS percentage change = (total score1 −

total score0) × 100 ÷ (total score0 − 30). Responders were
defined as 30% reduction in PANSS total scores previously used
(Cui et al., 2019a).

Image Acquisition
High-resolution structural imaging was acquired on a Siemens
3.0 T Magnetom Trio Tim MR scanner (the first dataset) or
General Electric (GE) Discovery MR750 3.0 T scanner (the
second dataset) using protocols described elsewhere (Xi et al.,
2016; Cui et al., 2017a,b). All the imaging data were collected
in the Department of Radiology, Xijing Hospital. A custom-
built head coil cushion and earplugs were used to minimize
head motion and dampen scanner noise. During data acquisition,
subjects were asked to remain alert with eyes closed and keep

TABLE 1 | Clinical and demographical data.

Characteristics Patients (n = 191) Healthy controls
(n = 199)

P-values Responders
(n = 61)

Non-responders
(n = 48)

P-values

Age (years) 25 ± 7 29 ± 9 <0.001 24 ± 6 27 ± 8 0.036

Gender (M/F) 107/84 109/90 0.804 40/21 26/22 0.226

Education level (years) 12 ± 3 14 ± 4 <0.001 12 ± 2 13 ± 3 0.579

Duration of illness (months) 19 ± 26 – – 17 ± 21 21 ± 31 0.368

PANSS score at baseline

Total score 90 ± 17 – – 90 ± 20 89 ± 14 0.774

Positive score 23 ± 6 – – 23 ± 7 23 ± 7 0.847

Negative score 21 ± 8 – – 21 ± 8 22 ± 8 0.548

General score 46 ± 9 – – 46 ± 10 45 ± 7 0.329

PANSS score at discharging

Total score – – – 60 ± 15 80 ± 12 <0.001

Positive score – – – 14 ± 5 20 ± 5 <0.001

Negative score – – – 14 ± 6 20 ± 7 <0.001

General score – – – 32 ± 8 40 ± 6 <0.001

Changes in PANSS score (%) – – – 51 ± 16 16 ± 11 <0.001

Stay in hospital (days) – – – 17 ± 5 15 ± 5 0.115

Antipsychotic dose (mg/day)a – – – 10 ± 4 10 ± 4 0.388

Data are means ± standard deviations.
aDefined Daily Dose (DDD).
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their head still. Participants in dataset 1 underwent scanning
using a 3.0-T Siemens Magnetom Trio Tim scanner and an eight-
channel phased array head coil (Siemens, Germany). Participants
in dataset 2 underwent scans on a GE Discovery MR750 3.0-T
scanner and an eight-channel phased array head coil (Milwaukee,
WI, United States). Detailed parameters of high-resolution T1-
weighted anatomical data are listed in Table 2. As performed
previously (Cui et al., 2018), steps for the following analysis are
shown in Figure 1.

Imaging Data Preprocessing and
Extracting Thalamus
T1-weighted image processing was performed using the
FreeSurfer image analysis suite (version 6.0.0)1. Data
preprocessing was to register the original high-resolution
structural image of each subject to standard template, and
project it back to each subject to extract thalamus tissue.
The preprocessing process is the standard process of the
FreeSurfer toolkit.

Briefly, preprocessing was performed with the following steps:
(i) skull stripping, (ii) normalization to a standard anatomical
template (Talairach and Tournoux, 1988), (iii) correction for
bias-field inhomogeneity, (iv) segmentation of subcortical white
matter and deep gray matter volumetric structures (Fischl et al.,
2002, 2004), (v) gray–white matter boundary tessellation and a
series of deformation procedures that consist of surface inflation
(Dale et al., 1999), and (vi) registration to a spherical atlas
(Fischl et al., 1999) and parcellation of the cerebral cortex into
units based on the gyral and sulcal structures (Fischl et al.,
2004). In line with previous studies using the radiomics features
from the bilateral structures in mental disorders (Chaddad
et al., 2017; Park et al., 2020), we considered the bilateral
thalami as regions of interest. In addition, the workflow of
extracting thalamus was as follows: (i) the T1 images after
preprocessing were matched to Anatomical Automatic Labeling
(AAL) cortical and subcortical 1 mm × 1 mm × 1 mm
atlas, and got the transformation matrix; (ii) use the inverse
matrix of the transformation matrix to register AAL to
individual space. After preprocessing, each subject’s thalamus
was registered to the standard space with consistent resolution.

1http://surfer.nmr.mgh.harvard.edu/

TABLE 2 | Scanning parameters of T1-weighted imaging.

The first dataset The second dataset

Scanner Siemens GE

TR (ms) 2530 8.2

TE (ms) 3.5 3.2

Flip angle (◦) 7 12

FOV (mm2) 256 × 256 256 × 256

Matrix 256 × 256 256 × 256

Slice thickness (mm) 1 1

Section gap (mm) 0 0

Number of slices 192 196

In this study, we did not perform interpolation in image
processing2.

Radiomics Features
The following analysis is based on the guidelines in radiomics
(Lambin et al., 2017; Vallieres et al., 2018). Each image feature
calculation formula is provided in the Supplementary Material,
and they were based on the image biomarker standardization
initiative3. Four types of radiomics features were used to quantify
thalamic characteristics (Aerts et al., 2014): (i) first-order features,
(ii) second-order features, (iii) texture features, and (iv) wavelet
features, which have been used in previous studies (Gong et al.,
2020; Xi et al., 2020). The first group quantified thalamus
intensity characteristics using first-order statistics, calculated
from the histogram of all thalamus voxel intensity values (14
radiomic features: energy, entropy, kurtosis, maximum, mean,
mean absolute deviation, median, minimum, range, root mean
square, skewness, standard deviation, uniformity, and variance).
Group 2 consists of features based on the shape of the thalamus
(eight radiomics features: compactness 1 and 2, maximum
3D diameter, spherical disproportion, sphericity, surface area,
surface-to-volume ratio, and volume). Group 3 consists of textual
features that are able to quantify intra-thalamus heterogeneity
differences in the texture that is observable within the thalamus
volume. These features are calculated in all three-dimensional
directions within the thalamus volume, taking the spatial location
of each voxel compared with the surrounding voxels into
account. In this research, texture features describing patterns
or the spatial distribution of voxel intensities were calculated
from, respectively, gray level co-occurrence (GLCM) and gray
level run-length (GLRLM) texture matrices. Texture matrices
were determined considering 26 connected voxels. Group 4
wavelet transform effectively decouples textural information by
decomposing the original image in low and high frequencies.
Here, the first- and second-order features and textural features
of eight directions (the original images were decomposed
into eight directions) were calculated. All feature algorithms
were implemented in Matlab 2016a (MathWorks, Natick, MA,
United States). In the process of feature extraction, we performed
the discretization and used 2 mm × 2 mm × 2 mm as
voxels to extract the imaging features of the thalamus and
take the mean value.

Feature Selection, Classification Model,
and Efficacy Prediction
Ten-fold cross-validation (CV) was used to assess the reliability
of the classification model (Figure 1). Briefly, 390 subjects (190
patients) were randomly separated into 10 groups. Each time, one
group in turn was used as a test group and the other nine groups
were used as training group.

A total of 4019 radiomics features were selected as initial
features. After that, we used a 10-fold CV-based Least Absolute
Shrinkage and Selection Operator (CV-LASSO) method to
further select features. Briefly, subjects in the training group

2https://ibsi.readthedocs.io/en/latest/
3https://arxiv.org/abs/1612.07003
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FIGURE 1 | Workflow for analysis in classification of patients and healthy controls. In the upper panel, all of the participants were randomly divided into 10 groups,
nine for training and one for testing. The lower panel summarizes radiomics steps. The radiomics features were extracted using CV-LASSO in the training group
and validated in the testing group using random forest.

were again randomly separated into 10 groups. Each time, one
group in turn was excluded from the dataset, and the LASSO
(Sauerbrei et al., 2007) method with mean of square error (MSE)
as the cost function was used on the remaining nine groups to
narrow down the initial features into the most important features
according to the MSE + 1SE criteria (Sauerbrei et al., 2007).
This step was repeated 10 times, which resulted in 10 different
groups of selected features. Finally, the edges that were included
in the selected feature group at least N times (i.e., occurring
N times) were selected as LASSO features for further analysis.
Next, the random forest (RF) method was used to construct
the classification model based on LASSO features in training
group. The accuracy, sensitivity, specificity, and recall indices
of the constructed model were calculated using testing group.
Considering any confound factors due to data from two scanners,
the differences of features selected between participants in the two
datasets were compared.

All these steps above were repeated 10 times. As for the
setting of P0, N, and the number of trees t in RF, we used
grid-search method to find them. These parameters were set
at a group of specific values when the accuracy index of the
constructed classification model achieved the maximum. The P0
was set from 0.01 to 0.1 with a step of 0.01. The N was set

from 1 to 10 with a step of 1. The t was set from 5 to 100
with a step of 5.

To avoid the random group effect, we repeated the 10-
fold CV 100 times. For each time, a new random group was
split. The mean ± standard deviation of each index across
the 1000 testing groups (10 × 100) was used to assess the
performance and stability of the constructed model. Finally,
1000 times permutation test (group label permutation) was
performed to check if our results were significantly different
from random labels.

Validation
Finally, we used another machine learning method, support
vector machine, to estimate the status of each participant
(schizophrenia or control; responder or non-responder) via
intra- and inter-dataset CV (Cui et al., 2018).

RESULTS

Clinical Characteristics
Table 1 shows the full description of demographic and clinical
characteristics of patients and healthy controls. No significant
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difference was found in gender between patients and healthy
controls. For patients, there was statistical difference in being
younger (P < 0.001) and having a lower education level
(P < 0.001).

Feature Selection
The RF was performed for the high-resolution T1-weighted
imaging. In this study, 4019 radiomics features were
extracted (Figure 2 and see the Supplementary Material),
resulting in 12 features for identifying patients (“W1.Mid,”
“W1.SRE_8,” “W2.LRHGLE_8,” “W3.Min,” “W4.Co_Corr_12,”
“W4.Co_Var_13,” “W5.Co_Corr_11,” “W5.RLN_9,”
“W6.Co_Corr_2,” “W6.Co_Corr_7,” “W7.IMC1_9,” and
“W9.Co_Corr_12”) and four features for predicting treatment
response (“W1.LRE_9,” “W3.Min,” “W6.Co_Corr_7,” and
“W6.Co_Var_7”). For the selected features, we performed
comparison between subjects on two scanners, e.g.,
patients/healthy controls on Siemens scanner and GE scanner,
and no significant difference was found between two scanners by
t-tests.

Classification Performance
Figure 3 and Table 3 show the classification performance. Using
12 features, the RF classifier accurately discriminated patients

from healthy controls on the basis of the receiver operating
characteristic (ROC) curve, with an accuracy of 68%. Four
features were further confirmed in the prediction of treatment
response, with an accuracy of 75%. The DeLong test suggested
that the model of the area under curve (AUC) of the ROC
analysis for response prediction was superior to that for diagnosis
(P = 0.015).

Validation
Combining radiomics and support vector machine method,
thalamic features had an accuracy arranging from 63 to 71% for
classification with intra- and inter-dataset CVs (Table 4).

DISCUSSION

Using radiomics approach and RF, we explored whether
multi-dimensional thalamic features define patients with
schizophrenia/patients who responded to treatment in this
study, resulting in an accuracy of 68% for distinguishing patients
with schizophrenia from healthy population and an accuracy of
75% for prediction of early treatment response. Furthermore,
support vector machine method revealed similar results through
intra- and inter-dataset CV. Our findings might help to facilitate
objective diagnosis and treatment selection based on quantitative

FIGURE 2 | Extraction of radiomics features. Four groups of radiomics features include first-order features, second-order features, texture features, and wavelet
features. A total of 4019 features were extracted.
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FIGURE 3 | Classification performance. In the upper panel, ROC analyses
showed an AUC of 0.7155 for predicting early treatment response. In the
lower panel, ROC analyses showed an AUC of 0.6413 for identifying
patients with schizophrenia.

and specific thalamic signature, reflecting its pathophysiology
underlying schizophrenia (Tomaszewski and Gillies, 2021).

With the exception of showing conventional features of the
thalamus, we also provide newly developed high-throughput
features on structural imaging. Findings from imaging and
postmortem studies of whole thalamus volume and other
structural measures are mixed in schizophrenia and may
be influenced by methods, disease state, and the fact that
the thalamus is an exceptionally heterogeneous structure.
Convergent findings based on multimodality MRI provide
support for these neural substrates mediated by the thalamus in
schizophrenia (Huang et al., 2015; Xi et al., 2016), suggesting that
thalamic abnormalities are implicated in the pathophysiology
of this mental disorder. Detecting schizophrenia based on
functional connectome is driven by a distributed bilateral

network including the thalamus and temporal regions (Lei et al.,
2019). As for predicting treatment response, higher baseline
glutamate/creatine in the thalamus was seen in non-responders
on aripiprazole monotherapy at week 6 and on naturalistic
antipsychotic treatment at week 26 compared with healthy
controls (Bojesen et al., 2019). Extending previous findings,
this evidence is the fundamental basis for disease definition
and treatment selection by means of thalamic features using
radiomics approach.

Neuroimaging findings have not been used for psychotic
disorders clinically, because they are “not sufficiently sensitive or
specific for reliable diagnosis in individual patients” (Lieberman
and First, 2018). Therefore, from the perspective of methodology,
via the quickly developed radiomics strategy, the diagnostic
performance of multi-dimensional thalamic features is proved
liable for identifying individual patients with schizophrenia and
predicting early treatment response. The accuracy varied from
82.1 to 87.09% in two previous similar studies by radiomic
features from the bilateral hippocampal subfields (Park et al.,
2020) and whole brain functional connectivity (Cui et al.,
2018). We obtained an accuracy of 68% using the high-
throughput thalamic features, in comparison to the diagnostic
performance with an accuracy of 78.3% by resting-state networks
features (Skatun et al., 2017) and 73.0–81.3% by resting-state
connectivity (Mikolas et al., 2016; Huang et al., 2019). Radiomics
is considered as the bridge between medical imaging and
personalized medicine, and promising to play a central role in the
context of psychiatry.

For the cutoff of less than 25% PANSS/Brief Psychiatric Rating
Scale (BPRS) reduction, the overall non-response is 43%, and for
the cutoff of less than 50% reduction, it is 66.5% (Samara et al.,
2019). In line with the finding from randomized controlled trials
that the response was assessed at 4–6 weeks, 48 out of 109 (44%)
were non-responders for less than 30% PANSS reduction assessed
at 2–3 weeks (15–17 days) in this study. Moreover, the olanzapine
equivalent was 10 ± 4 mg/day for both responders and non-
responders. Our results demonstrate a radiomics approach by
multiple thalamic features to predict early treatment response
with an accuracy of 75%, an increased level relative to diagnosis.
In addition to MRI, genetic evidence indicates schizophrenia
polygenic risk score as a predictor of response to antipsychotics
in patients with first-episode psychosis (Zhang et al., 2019).
An analysis combining neuroimaging and genetics is needed to
facilitate the prediction of antipsychotic efficacy in the future.
Moreover, radiomics risk modeling combined with time-to-
event analysis will contribute to clarifying treatment response
(Leger et al., 2017).

An issue of this study that needs to be pointed out is
the absence of validation in an independent cohort. Validation
could help to confirm the discriminating capacity from different
scanners and sites with heterogeneity. A previous study
combined independent data of KaSP (Karolinska Schizophrenia
Project) and HUBIN (Human Brain Informatics) (Skatun et al.,
2017), supporting generalizability across heterogeneous samples.
Features across MRI scanners with no difference suggest the
repeatability (Cui et al., 2018, 2021a). In the next step, the
combination of data from different scanners could consolidate
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TABLE 3 | Classification performance.

Accuracy Sensitivity Specificity AUC Features

Diagnosis (191 patients and
199 controls)

0.68 ± 0.04 0.60 ± 0.31 0.61 ± 0.30 0.64 ± 0.23 “W1.Mid”; “W1.SRE_8”; “W2.LRHGLE_8”; “W3.Min”;
“W4.Co_Corr_12”; “W4.Co_Var_13”; “W5.Co_Corr_11”; “W5.RLN_9”;
“W6.Co_Corr_2”; “W6.Co_Corr_7”; “W7.IMC1_9”; “W9.Co_Corr_12”

Prediction (61 responders and
48 non-responders)

0.75 ± 0.08 0.65 ± 0.25 0.80 ± 0.23 0.72 ± 0.12 “W1.LRE_9”; “W3.Min”; “W6.Co_Corr_7”; “W6.Co_Var_7”

AUC, area under the curve; “W1”–“W9”, Wavelet features; “_1”–“_13”, direction of each feature; Mid, middle; SRE, short run emphasis; LRHGLE, long-run high gray-level
emphasis; Min, minimum; Co_Corr, correlation; RLN, run length non-uniformity; IMC, informational measure of correlation; LRE, long-run emphasis; Var, variance.

TABLE 4 | Classification performance using intra- and inter-dataset cross-validation.

Accuracy Sensitivity Specificity Features

Intra-dataset cross-validation (80% dataset 1 and dataset 2 for training and the other 20% for testing)

Diagnosis (17 features) 68.37% 71.15% 70.62% W1.Mid; W1.Min; W1.Mid; W2.RMS; W2.Surface; W2.SVR; W2.Volume;
W2.SRE_8; W2.Homo2_13; W3.Min; W4.Co_Corr_12; W4.Co_Var_13;
W5.Co_Corr_11; W5.RLN_9; W6.Co_Corr_2; W6.Co_Corr_7; W7.IMC1_9

Prediction (7 features) 71.01% 72.53% 71.69% W1.SRLGLE_1; W1.Compactness1; W2.Energy; W2.MAD; W3.Min;
W6.Cluster_Shade_mean; W8.Cluster_Shade_8

Inter-dataset cross-validation (dataset 1 training, dataset 2 testing)

Diagnosis (12 features) 65.19% 63.21% 68.55% W1.Mid; W1.SRE_8; W1.Min; W2.RMS; W2.Surface; W2.Homo2_13; W3.Min;
W4.Co_Corr_12; W5.Co_Corr_11; W5.RLN_9; W6.Co_Corr_2; W9.SRHGLE_5

Prediction (5 features) 68.36% 65.75% 69.73% W1.LRE_9; W1.HGLRE_3; W2.Energy_GLCM_3; W7.Max_GLCM_1;
W8.AutoCorr_2

Inter-dataset cross-validation (dataset 2 training, dataset 1 testing)

Diagnosis (10 features) 63.88% 67.56% 66.46% W1.LGLRE_11; W1.SRE_6; W2.Sum_var_mean; W2.SRLGLE_6;
W4.Dissimilarity_1; W5.Dissimilarity_mean; W5.SRLGLE_4; W7.Diff_entropy_13;
W7.Homo2_13; W9.IMC1_mean

Prediction (4 features) 65.21% 69.02% 64.35% W1.Min; W2.Uniformity; W8.Energy_GLCM_1; W9.LRHGLE_mean

“W1”–“W9”, Wavelet features; “_1”–“_13”, direction of each feature; AutoCorr, autocorrelation; Co_Corr, correlation; GLCM, gray-level co-occurrence matrix; Homo,
homogeneity; IMC, informational measure of correlation; LGLRE, low gray-level run emphasis; LRE, long-run emphasis; LRHGLE, long-run high gray-level emphasis;
MAD, median absolute deviation; Max, maximum; Mid, middle; Min, minimum; RLN, run length non-uniformity; RMS, root mean square; SRE, short-run emphasis;
SRHGLE, short-run high gray-level emphasis; SRLGLE, short-run low gray-level emphasis; Var, variance.

and promote the generalizability of MRI findings in clinical
practice. As DSM-5 stated (American Psychiatric Association,
2013), “The peak age at onset for the first psychotic episode
is in the early- to mid-20s for males and in the late-20s
for females.” Our sample included patients with a wide age
range, so potential confounders of brain development could
not be excluded. A mixed group of high school students and
young adults in the study reflects the clinical heterogeneity
of schizophrenia. Besides, because of a very small number of
patients with relatively long medical history and no precise
boundary between short and long duration of illness, we were
unable to perform meaningful subgroup analyses, which may
introduce an effect on the results owing to the design of a
naturalistic study. Finally, connectomics defined by MRI and
genomics in neuropathology gain ground on brain disorder
(Jiang et al., 2020); hence, trans-omics is promising to shape a
refined diagnosis and prediction in schizophrenia. No “one fits
all” omics approach exists in this field (Shiri et al., 2020). It
depends on the study design.

Our study demonstrates a radiomics approach by multiple
thalamic features to diagnose schizophrenia and predict early
treatment response with a comparable accuracy. Combining
novel machine learning models, radiomics studies try to break

the boundary and tend to explore transdiagnostic characteristics
of mental disorders (Cui et al., 2021b), transforming the
guidance of diagnosis and treatment selection for mental
disorders in the future.
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The purpose of this study was to enhance the performance of steady-state visual
evoked potential (SSVEP)-based visual acuity assessment with spatial filtering methods.
Using the vertical sinusoidal gratings at six spatial frequency steps as the visual
stimuli for 11 subjects, SSVEPs were recorded from six occipital electrodes (O1, Oz,
O2, PO3, POz, and PO4). Ten commonly used training-free spatial filtering methods,
i.e., native combination (single-electrode), bipolar combination, Laplacian combination,
average combination, common average reference (CAR), minimum energy combination
(MEC), maximum contrast combination (MCC), canonical correlation analysis (CCA),
multivariate synchronization index (MSI), and partial least squares (PLS), were compared
for multielectrode signals combination in SSVEP visual acuity assessment by statistical
analyses, e.g., Bland–Altman analysis and repeated-measures ANOVA. The SSVEP
signal characteristics corresponding to each spatial filtering method were compared,
determining the chosen spatial filtering methods of CCA and MSI with a higher
performance than the native combination for further signal processing. After the visual
acuity threshold estimation criterion, the agreement between the subjective Freiburg
Visual Acuity and Contrast Test (FrACT) and SSVEP visual acuity for the native
combination (0.253 logMAR), CCA (0.202 logMAR), and MSI (0.208 logMAR) was
all good, and the difference between FrACT and SSVEP visual acuity was also all
acceptable for the native combination (−0.095 logMAR), CCA (0.039 logMAR), and MSI
(−0.080 logMAR), where CCA-based SSVEP visual acuity had the best performance
and the native combination had the worst. The study proved that the performance
of SSVEP-based visual acuity can be enhanced by spatial filtering methods of CCA
and MSI and also recommended CCA as the spatial filtering method for multielectrode
signals combination in SSVEP visual acuity assessment.

Keywords: visual acuity, steady-state visual evoked potential, spatial filtering, multielectrode signals
combination, canonical correlation analysis

INTRODUCTION

Visual acuity, one of the most necessary parameters to test visual function, is a measure of the spatial
resolution of the visual processing. In general, it is mainly tested by psychophysical methods, e.g.,
Sloan letters and tumbling E charts (Ricci et al., 1998). However, these methods require the subjects
to have sufficient intelligence to comply with the test process and are hard for preverbal or infantile
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children, the mentally disabled, and malingerers (Incesu and
Sobaci, 2011; Zheng et al., 2020c).

Noninvasive electroencephalography (EEG), e.g., steady-state
visual evoked potentials (SSVEPs), has been proved to provide
an alternative method to estimate visual acuity objectively
(Regan, 1973; Norcia et al., 2015). By varying the spatial
frequency of the visual stimuli, visual acuity can be measured
by a threshold determination criterion by establishing the
mathematical model between spatial frequency and SSVEP
signals (Hamilton et al., 2021a). Besides, previous studies proved
that a larger number of posterior electrodes was relevant to
optimize visual function assessment (Hemptinne et al., 2018)
and recommended multielectrode montage, e.g., six-electrode of
O1, Oz, O2, PO3, POz, and PO4 (Zheng et al., 2020a, 2021),
rather than single-electrode in SSVEP visual acuity assessment
(Hamilton et al., 2021b). However, in SSVEP visual acuity
assessment, SSVEPs are mainly collected at only one active
electrode, e.g., Oz at the midline over the occiput (McBain et al.,
2007; Odom et al., 2016; Ridder, 2019), except for some other
electrode montages, e.g., the bipolar electrodes of Oz and O1
(Norcia and Tyler, 1985a,b; Skoczenski and Norcia, 1999), which
was sometimes used to enhanced signal-to-noise-ratio (SNR),
especially close to the threshold (Hamilton et al., 2021b).

The spatial filtering technique combining the multielectrode
signals into single- or multichannel signals offers a better
method for extracting SSVEP features and eliminating nuisance
signals in SSVEP studies (Yan et al., 2018). Since scalp EEG is
usually regarded to be a linear mixture of multiple time series
from various cortical sources (Onton et al., 2006), the weight
coefficients can be applied for multielectrode scalp EEG signals
to estimate the cortical source activities (Nakanishi et al., 2018b).
On the basis of this idea, several methods of extracting optimal
spatial filters to reconstruct source activities from scalp EEG
signals have been carried out to enhance the SNR of SSVEPs.
For instance, the basic spatial filtering methods [e.g., Laplacian
combination (Friman et al., 2007) and common average reference
(CAR) (Zheng et al., 2020d)] and the model-based spatial filtering
methods [e.g., minimum energy combination (MEC) (Friman
et al., 2007), canonical correlation analysis (CCA) (Bin et al.,
2009; Zheng et al., 2020b; Li et al., 2021), and multivariate
synchronization index (MSI) (Zhang et al., 2014a)] have been
applied to improve the performance of SSVEPs. However, to
date, little is known about whether there is an enhancement
of the spatial filtering technique from multielectrode signals on
SSVEP visual acuity.

On the basis, in this study, 10 commonly used training-
free spatial filtering methods, i.e., native combination (i.e.,
single-electrode) (Friman et al., 2007), bipolar combination
(Hamilton et al., 2021b), Laplacian combination, average
combination (Friman et al., 2007), CAR, MEC, maximum
contrast combination (MCC) (Friman et al., 2007), CCA, MSI,
and partial least squares (PLS) (Ge et al., 2017), were compared
for multielectrode signals combination in SSVEP visual acuity
assessment. First, SSVEPs were induced by the vertical sinusoidal
gratings at six spatial frequency steps and recorded from six
occipital electrodes (O1, Oz, O2, PO3, POz, and PO4) for 11
subjects. Next, the SSVEP signal characteristics corresponding

to each spatial filtering method were compared to determine
the chosen spatial filtering methods with good performance for
further signal processing. Then, SSVEP visual acuity can be
obtained by the threshold estimation criterion for each chosen
spatial filtering method, and the statistical analyses, e.g., Bland–
Altman analysis and repeated-measures ANOVA, were used to
explore the performance of the spatial filtering technique from
multielectrode signals on SSVEP visual acuity. The main purpose
of this study was to enhance the performance of SSVEP visual
acuity with spatial filtering methods.

MATERIALS AND METHODS

SSVEP Model
For the visual stimulus with a temporal frequency of f, the
SSVEP signal, yi(t), measured as the voltage between a reference
electrode and the ith electrode at time t, can be modeled as
(Friman et al., 2007; Zerafa et al., 2018):

yi (t) =
Nh∑

h=1

ai,hsin
(
2πhft + φi,h

)
+ ei (t) (1)

This linear model consists of two parts: the evoked SSVEP
response signal and the noise signal. The evoked SSVEP response
consists of many sinusoids with the frequency given by the
stimulus frequency f and its harmonic frequencies. Nh is the
number of harmonic frequencies. Each sinusoid is determined by
its specific amplitude ai,h and phase φi,h. The noise signal ei(t) is
composed of other signals that are unrelated to SSVEP response,
such as electromyography (EMG), electrooculogram (EOG), and
other components.

Hence, the SSVEP signal for a time segment of Nt samples with
a sampling frequency Fs can be defined in vector form:

yi = Xf gi + ei (2)

where yi =
[
yi(1), . . . , yi(Nt)

]T
∈ RNt×1 contains the SSVEP

signal of the ith electrode in one segment of Nt samples, and ei ∈
RNt×1 is the noise vector. The SSVEP reference signals model
Xf ∈ RNt×2Nh is defined by Nakanishi et al. (2018b):

Xf =



sin
(

2πf
m
Fs

)
cos

(
2πf

m
Fs

)
...

sin
(

2πNhf
m
Fs

)
cos

(
2πNhf

m
Fs

)



T

, m = 1, . . . , Nt. (3)

The vector gi ∈ R2Nh×1 contains the corresponding amplitude
ai,h and phase φi,h.

Finally, for SSVEP signals recorded from Ne electrodes, the
model Y can be further defined as:

Y = Xf G+ E (4)
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where Y =
[
y1, . . . , yNe

]
∈ RNt×Ne contains the sampled SSVEP

signals from all electrodes, with each column corresponding to
an electrode. E ∈ RNt×Ne is the noise matrix, and G ∈ R2Nh×Ne

contains the amplitudes and phases for all sinusoids.

Spatial Filtering Model
In SSVEPs, the method of linearly combining the multielectrode
signals into single- or multichannel signals is called spatial
filtering (Yan et al., 2018) to enhance the SNR of SSVEP
response. Given Ne-electrode SSVEP signals Y as expressed
in Equation (4), single-channel s ∈ RNt×1 can be created by
combining Y linearly using weights w ∈ RNe×1 (Friman et al.,
2007):

s = Yw. (5)

More generally, multichannel signals S can be created by
combining Y linearly using weights W (Friman et al., 2007):

S = YW (6)

where S = [s1, , sNc ] ∈ RNt×Nc are the spatially filtered signals,
and Nc is the number of the channels considered for further signal
analysis. When Nc is 1, Equation (5) is the same as Equation (6).
W = [w1, . . . ,wNc ] ∈ RNe×Nc is the weight matrix for spatial
filtering. Below, 10 commonly used spatial filtering methods for
choices of W were introduced.

Spatial Filtering Methods
Here, we aimed to compare the effect on visual acuity assessment
by SSVEPs with different spatial filtering methods to combine
multielectrode signals into a single-channel signal. The visual
acuity results depend on the SSVEP amplitude changes versus
spatial frequencies (Zheng et al., 2020c), and the SSVEP
amplitude is usually obtained from single-channel SSVEP by
using Fourier analysis to transform an SSVEP signal from the
time domain to the frequency domain and extracting the specific
SSVEP amplitude at the fundamental frequency of the visual
stimulus from the resulting spectrum (Hamilton et al., 2021a,b).
Hence, here, we only focused on the single-channel spatial
filtering methods, i.e., Nc = 1, and W = w ∈ RNe×1.

Native Combination
The native combination is also called the monopolar
combination where only the SSVEP signals from one of the
electrodes are analyzed (Friman et al., 2007; Zerafa et al., 2018).
In the SSVEP analysis, the most used electrode is Oz (Yan et al.,
2021; Zheng et al., 2020c). Assuming that the SSVEP signals
from the Oz electrode are corresponding to the first column in
Ne-electrode SSVEP signals Y (same below), the spatial filtering
weights w can be expressed as:

w = [1, 0, . . . , 0]T. (7)

Bipolar Combination
The bipolar combination is used to reduce the common
noise signals by measuring the voltage of two closely placed
electrodes (Friman et al., 2007). In SSVEP visual acuity
assessment, the bipolar combination sometimes is also used

(Hamilton et al., 2021b). According to the previous studies
(Norcia and Tyler, 1985a,b), we chose the commonly used
electrode pair (Oz–O1). Hence, assuming that the SSVEP signals
from the O1 electrode are from the second column in Y , w can be
expressed as:

w = [1,−1, 0, . . . , 0]T. (8)

Laplacian Combination
The Laplacian combination is the improvement of the bipolar
combination by using the mean voltage of the surrounding
electrodes from one center electrode as the reference voltage
(Hamilton et al., 2021b). Laplacian combination is mainly divided
into two types in SSVEP visual acuity studies: one- and two-
dimensional Laplacian combination (Hamilton et al., 2021b).
One-dimensional Laplacian combination in SSVEP acuity studies
is carried out by using voltage from Oz − 1/2(O1 + O2) as
the signal (Bach and Heinrich, 2019; Knotzele and Heinrich,
2019; Kurtenbach et al., 2013). A two-dimensional Laplacian
combination, i.e., the fourth Laplacian combination of Oz −
1/4(O1 + O2 + POz + Iz) (Hamilton et al., 2013), is also used
in the relevant study. Here, assuming that the SSVEP signals
from the O1, O2, POz, and Iz electrode are the second, the
third, the fourth, and the fifth column in Y , respectively, w for
one-dimensional Laplacian combination can be expressed as:

w =
[

1,−
1
2
,−

1
2
, 0, . . . , 0

]T
. (9)

and w for two-dimensional Laplacian combination can be
expressed as:

w =
[

1,−
1
4
,−

1
4
,−

1
4
,−

1
4
, 0, . . . , 0

]T
. (10)

Average Combination
The average combination is used by taking the average signals
from all electrodes to amplify the SSVEP component and cancel
the electrode-specific noise (Friman et al., 2007), where the
weights w can be expressed as:

w =
[

1
Ne

, . . . ,
1

Ne

]T
. (11)

Common Average Reference
Common average reference, a commonly used spatial filtering
method, is achieved by subtracting the mean signals of all
electrodes from the selected electrode signals (Zheng et al.,
2020d). Here, also choosing the Oz electrode, the weights w can
be expressed as:

w =
[

Ne − 1
Ne

,−
1

Ne
, . . . ,−

1
Ne

]T
. (12)

Minimum Energy Combination
The MEC-based spatial filtering is proposed by Friman et al.
(2007) to minimize the energy from nuisance signals. First, by
removing any potential SSVEP activity from Ne-electrodes signals
Y by projecting them onto the orthogonal complement of the
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SSVEP model matrix Xf in Equation (3), the nuisance signals
Ỹ f ∈ RNt×Ne can be expressed as (Friman et al., 2007):

Ỹ f = Y − Xf

(
XT

f Xf

)−1
XT

f Y. (13)

where Ỹ f contains only nuisance signals and noise. In other
words, Ỹ f ≈ E.

Next is to find a weight vector ŵf ∈ RNe×1 to minimize the
energy of the combination of electrode signals Ỹ f ŵf :

ŵf = argmin
ŵf

‖ Ỹ f ŵf ‖
2
= argmin

ŵf

ŵT
f Ỹ

T
f Ỹ f ŵf . (14)

The above minimization problem can be solved by
decomposing the eigenvalues of the matrix ỸT

f Ỹ f , and the
spatial filter weights ŵf are defined by the eigenvector v1
corresponding to the smallest eigenvalue λ1 (Friman et al., 2007;
Yan et al., 2019):

ŵf =
v1
√

λ1
(15)

Maximum Contrast Combination
Maximum contrast combination is realized by maximizing
the SSVEP energy and minimizing the nuisance noise energy
simultaneously. Hence, MCC can be achieved as follows (Friman
et al., 2007):

ŵf = argmax
ŵf

‖ Yŵf ‖
2

‖ Ỹ f ŵf ‖
2 = argmax

ŵf

ŵT
f Y

TYŵf

ŵT
f Ỹ

T
f Ỹ f ŵf

. (16)

The above maxima can be found by a generalized eigen-
decomposition of the matrices YTY and ỸT

f Ỹ f , and the spatial
filter weights ŵf are defined as the eigenvector corresponding to
the largest eigenvalue (Zerafa et al., 2018).

Canonical Correlation Analysis
Canonical correlation analysis, a statistical way to measure the
underlying correlation between two sets of multidimensional
variables, was first used in SSVEP analysis by Lin et al. (2007).
Till now, CCA has become the most widely used method in
SSVEPs as a result of its effectiveness, robustness, and simple
implementation (Bin et al., 2009; Zheng et al., 2020b; Li et al.,
2021). Here, CCA finds the weights wy ∈ RNe×1 and wxf ∈

R2Nh×1 to maximize the linear combinations between y = Ywy ∈

RNt×1 and x = Xfwxf ∈ RNt×1 representing the multichannel
SSVEP signals and the SSVEP reference signals. Hence, the
weight vectors wy and wxf can be obtained as follows:

wy,wxf = argmax
Wy,Wxf

ρ
(
y, x

)
=

E
[
yTx

]√
E
[
yTy

]
E
[
xTx

]
=

E
[
wT
yYTXfwxf

]
√

E
[
wT
yYTYwy

]
E
[
wT
xfX

T
f Xfwxf

] . (17)

The maximum of ρ is the maximum canonical correlation.
The spatial filter weights wy is defined as the eigenvector

corresponding to the largest eigenvalue after transforming the
above optimization problem into the eigenvalue decomposition
problem (Yan et al., 2019).

Multivariate Synchronization Index
Multivariate synchronization index, introduced by Zhang et al.
(2014a), is another multichannel detection method for SSVEPs.
Assuming that the reference signal Xf is synchronized to the
SSVEP signals Y , MSI is used for estimating the synchronization
between Y and Xf . First, the matrices of Y and Xf are normalized
to have a zero mean and unitary variance. Then, a correlation
matrix C is estimated as (Zhang et al., 2014a):

C =

[
CYY CYXf

CXf Y CXf Xf

]
(18)

where

CYY =
1

Nt
YYT, CXf Xf =

1
Nt

Xf XT
f , CYXf = CXf Y =

1
Nt

YXT
f .

(19)
To weaken the effect from the autocorrelation on the

synchronization measure, the following linear transformation is
adopted:

U =

[
C-1/2
YY 0

0 C-1/2
Xf Xf

]
(20)

The transformed correlation matrix C′ is as follows after
canceling out the autocorrelation:

C
′

= UCUT (21)

Here, rather than the previous studies using the
synchronization index S-estimator in MSI-based frequency
recognition in SSVEPs (Zhang et al., 2014a; Zerafa et al., 2018),
the spatial filter weights w is directly obtained by the eigenvector
corresponding to the largest eigenvalue of the matrix C

′

.

Partial Least Squares
Partial least squares is a commonly used multiple linear
regression method to compute the linear regression between
multidimensional predicted variables and multidimensional
observable variables (Trejo et al., 2006; Wang et al., 2014a). Wang
et al. (2014a) and Ge et al. (2017) proposed a double PLS-based
recognition method in SSVEPs, where the first step is to use PLS
as a spatial filter to enhance the SNR. Here, we mainly focused
on the first step.

In PLS, the SSVEP signals Y and the reference signal Xf are
first decomposed into bilinear terms by an iterative procedure to
extract the latent variables with maximal correlation (Rosipal and
Krämer, 2006):

Y = TPT
+ E (22)

Xf = UQT
+ F (23)

where matrices T = {ti}
D
i=1 and U = {ui}

D
i=1 are the extracted D

latent vectors (i.e., score vectors), P and Q are loading matrices,
and E and F are residual matrices. Since Y can be regarded as

Frontiers in Neuroscience | www.frontiersin.org 4 August 2021 | Volume 15 | Article 71605122

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-716051 August 14, 2021 Time: 15:44 # 5

Zheng et al. Enhancing SSVEP-Based Visual Acuity

a linear mixture of Xf and noise [see Equation (4)], Xf can be
decomposed by Y :

Xf = YW f + Ff (24)

where Ff is the residual matrix. W f is the matrix of linear
regression coefficients, which can be defined as (Rosipal and
Krämer, 2006):

W f = YTU
(
TTYYTU

)−1
TTXf (25)

The spatially filtered SSVEP signals S can be obtained by
removing the residual matrix Ff :

S = YW f (26)

Here, the spatial filter weights w is obtained by the eigenvector
corresponding to the largest eigenvalue of the matrix W f .

EXPERIMENT

Participants
Eleven healthy volunteers (four female, ages 22–27 years) were
recruited from Xi’an Jiaotong University. The subjective visual
acuity was evaluated by Freiburg Visual Acuity and Contrast
Test (FrACT) monocularly (Bach, 1996). The experimental
protocol was approved by the Human Ethics Committee of Xi’an
Jiaotong University, conforming to the Declaration of Helsinki.
All subjects also submitted the written consent after informed of
the contents of the experiment.

Experimental Equipment
Electroencephalography was recorded by an EEG system
(g.USBamp and g.GAMMAbox, g.tec, Schiedlberg, Austria) with
a sampling frequency of 1,200 Hz. According to the previous
studies (Hemptinne et al., 2018; Zheng et al., 2020a), six occipital
electrodes (O1, Oz, O2, PO3, POz, and PO4) were used to acquire
EEG signals, as shown in Figure 1. The ground electrode was
placed on the forehead (Fpz), and the reference electrode was
placed on the left earlobe (A1). Besides, a notch filter from 48
to 52 Hz was applied to eliminate the power line interference.
A 24.5-in LCD monitor (PG258Q, ASUS, Taipei, China) with a
resolution of 1,920 × 1,080 pixels, and a refresh rate of 240 Hz
was used to present visual stimuli.

Visual Stimuli
In this study, the vertical sinusoidal gratings with a reversal
frequency of 7.5 Hz were used as the visual stimuli with the
Michelson contrast of 50% and the mean background luminance
of 80 cd/m2 (Kurtenbach et al., 2013; Zheng et al., 2020c). The
visual angle of the stimulus pattern with a side length of 720
pixels was set as four degrees by adjusting the distance between
the display and subjects. Six spatial frequencies in logarithmically
equidistant steps of 3.0, 4.8, 7.5, 12.0, 19.0, and 30.0 cycles per
degree (cpd) corresponding to the optotypes of 1.0, 0.8, 0.6, 0.4,
0.2, and 0.0 logMAR were presented to subjects in each run
(Zheng et al., 2019). Each run contained six blocks corresponding

FIGURE 1 | Location of scalp electrodes.

to six spatial frequency steps. Each block contained five trials,
and each trial lasted 5 s with a 2-s interval between two trials.
The right eye was tested first and then the left eye. Besides,
four subjects accomplished two eyes’ experiments, while the
others only accomplished the right eye’s experiment. The visual
stimuli were developed by MATLAB (MathWorks, Natick, MA,
United States) using the Psychophysics Toolbox (Brainard, 1997).

Signal Processing
Data Preprocessing
Following the start and end times of each trial, the SSVEP data
segments were extracted. Then, a band-pass filter from 3 to 40 Hz
was imposed to exclude the high-frequency interferences and
low-frequency drifts. The five data segments of the same spatial
frequency corresponding to five trials in one block were averaged
to a 5-s data epoch for further data processing.

Spatial Filtering and Feature Extraction
The above 10 spatial filtering methods were used to linearly
combine the 5-s six-electrode data epoch into 5-s single-channel
signals, respectively. Since there was only one stimulus frequency,
i.e., 7.5 Hz, in stimulus presentation, the SSVEP reference signals
model Xf ∈ RNt×2Nh in this study was defined as:

Xf =

 sin
(

2πf
m
Fs

)
cos

(
2πf

m
Fs

)


T

, m = 1, . . . , Nt (27)

where f was set as 7.5 Hz, and the number of harmonic
frequencies Nh was set as 1. The number of sampling
points, Nt , was 6,000 in a 5-s data segment with a sampling
frequency of 1,200 Hz.
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Then, the SSVEP feature was extracted by the Fourier
transform to obtain the frequency-domain spectrum, and the
amplitude at the fundamental reversal frequency of 7.5 Hz was
considered as the SSVEP amplitude.

Signal-to-Noise Ratio
The noise was defined by the mean value of the 20 adjacent
amplitudes of either side of the fundamental frequency of 7.5 Hz
on the frequency-domain spectrum (Bach and Meigen, 1999;
Zheng et al., 2020b). Hence, the SNR can be determined by the
ratio of SSVEP amplitude at 7.5 Hz to noise:

SNR =
SSVEP amplitude

noise

=
a(f )

1
10 ∗

∑k=10
k=1 a

(
fk ∗ 4f

)
a(f − k ∗ 4f )

(28)

where a(f) denotes the amplitude on the frequency-domain
spectrum at frequency f, and frequency resolution 1f is 0.1 Hz.

Visual Acuity Determination Criterion
Figure 2 shows an example of the tuning curve for the SSVEP
visual acuity estimation criterion used in this study. SSVEP
amplitude can be plotted versus spatial frequency, and then
a regression line can be extrapolated from the last significant
SSVEP peak to a noise level baseline (Zheng et al., 2020b). The
range for the regression line was between the last significant
SSVEP peak and the last data point with an SNR higher than
the preset SNR level, and the noise level baseline for each visual
stimulus was defined as the mean of the noise of the six spatial
frequency steps (Hamilton et al., 2021b). Then, the SSVEP visual

FIGURE 2 | Example of tuning curve for steady-state visual evoked potential
(SSVEP) visual acuity estimation criterion. The green “ × ” represents the
noise corresponding to each spatial frequency step, and the green dashed
line represents the noise level baseline defined by the mean of the noise of the
six spatial frequency steps. The data points included in the linear regression
have an signal-to-noise ratio (SNR) higher than the preset SNR level, while the
excluded points do not. The red solid line represents the regression line
between the SSVEP amplitude and spatial frequency extrapolating from the
last significant SSVEP peak to the last data point with an SNR higher than the
preset SNR level. The red point is the intersection of the regression line and
the noise level baseline, with its corresponding spatial frequency value defined
as the visual acuity threshold.

acuity was defined as the spatial frequency corresponding to the
intersection point between the regression line and the noise level
baseline (Zheng et al., 2020b; Hamilton et al., 2021a). Besides,
the whole diagram of signal processing in this study is shown in
Figure 3.

Statistical Analysis
Bland–Altman was used to describe the agreement and difference
between the psychophysical FrACT and objective SSVEP visual
acuity for each spatial filtering method. Besides, one-way
repeated-measures ANOVA was also employed to evaluate
the difference among the FrACT and SSVEP visual acuity
results for each spatial filtering method, and the post-hoc
analysis with Bonferroni correction for multiple comparisons was
subsequently employed.

RESULTS

Comparison of the SSVEP Signal
Characteristics
Figure 4 shows an example of the time-domain, frequency-
domain, and time–frequency-domain analyses of SSVEPs after
each spatial filtering method. First, the 5-s single-channel SSVEP
signals corresponding to each spatial filtering method were
obtained according to the abovementioned signal processing flow
in Figure 3. Then, the time-domain waveforms were obtained by
averaging the 0.53-s nonoverlapping data segments subdivided
by the 5-s single-channel SSVEP signals, with each segment
containing four periods of the reversal process (Zheng et al.,
2020a). The frequency-domain spectrums were obtained by the
Fourier transform of the 5-s single-channel SSVEP signals. As
for the time–frequency-domain analysis, the 2.0-s window length
with 0.1-s sliding length over the 5-s single-channel signals
was used to obtain the time–frequency-domain characteristics
(Zheng et al., 2020a).

The time-domain waveforms in Figure 4A show that an
obvious main periodicity was the fundamental reversal frequency
of 7.5 Hz for all spatial filtering methods except for the two-
dimensional Laplacian combination, while some other periodic
components also existed in some waveforms, such as the native,
bipolar, and one-dimensional Laplacian combination. Both the
frequency-domain waveforms in Figure 4B and the time–
frequency-domain analyses in Figure 4C show clear significant
peaks at the fundamental reversal frequency of 7.5 Hz and the
second harmonic frequency of 15 Hz for all spatial filtering
methods except for the two-dimensional Laplacian combination,
indicating that all these spatial filtering methods except for
the two-dimensional Laplacian combination can obtain obvious
signal characteristics by combining the multielectrode signals
into single-channel signals.

Comparison of Spatial Filtering Effect
The main purpose of spatial filtering is to strengthen the
SSVEP components and suppress the non-SSVEP components
in EEG signals (Wong et al., 2020) and thus to enhance the
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FIGURE 3 | Diagram of signal processing in this study. First, the original signals for five trials in one block are filtered by a band-pass filter from 3 to 40 Hz, and
subsequently, the signal segments corresponding to five trials are averaged to a 5-s data epoch for each electrode. Then, each spatial filtering method linearly
combines the six-electrode signals into one single-channel signals, respectively. Next, the Fourier transform extracts the steady-state visual evoked potential (SSVEP)
amplitude and signal-to-noise ratio (SNR). Finally, the visual acuity determination criterion is carried out after six blocks in one run complete. Besides, the
model-based spatial filter is obtained by mathematical transformation of six-electrode EEG signals Y and reference signals Xf .

SNR (Friman et al., 2007). Hence, the spatial filtering effect was
evaluated by comparing the SNR values of the single-channel
SSVEP signals corresponding to various spatial filtering methods.
Since the visual stimuli at the spatial frequency of 3.0 cpd were
the clearest to all subjects, the comparison of the SNR values
corresponding to various spatial filtering methods at 3.0 cpd
over all subjects was obtained, as shown in Figure 5. Figure 5
shows that the SNR values of CCA (4.849 ± 1.101) and MSI
(4.115 ± 1.372) were higher than that of the native combination
(3.861 ± 1.188), with other spatial filtering methods had lower
or close SNR values to that of the native combination. Since
the native combination actually utilized only single-electrode
signals from Oz and was widely used in SSVEP visual acuity
assessment, here, the spatial filtering methods of CCA and MSI
were compared to the native combination in the further visual
acuity evaluation by SSVEPs.

SSVEP Visual Acuity Threshold
Determination Criterion
SSVEP visual acuity was defined by the intersection point
between the noise level baseline and the regression line
extrapolating from the last significant SSVEP peak to the last
data point with an SNR higher than the preset SNR level.
For the native combination, previous studies have given the
recommended value of SNR level, i.e., 1.0 (Yadav et al., 2009;
Zheng et al., 2020b). However, as shown in Figure 6, CCA and

MSI often obtained the higher SNR of SSVEPs than the native
combination, especially in high spatial frequencies close to the
visual acuity threshold. Hence, for the spatial filtering methods of
CCA and MSI, the SNR level of 1.0 may not be applicable since
both CCA and MSI enhanced the SNR of SSVEPs.

Here, first, the five SNR levels, i.e., 1.0, 1.5, 2.0, 2.5, and 3.0
(Zheng et al., 2019), were preselected for CCA and MSI. Then, as
shown in Figure 7, corresponding to Figure 6, the tuning curves
of the SSVEP visual acuity estimation criterion for the native
combination, CCA, and MSI with various SNR levels of 1.0, 1.5,
2.0, 2.5, and 3.0, respectively, can be obtained. Next, the range for
the linear regression of the native combination in Figure 7A was
from the first data point with the amplitude peak of 1.140 µV to
the last data point with an SNR of 1.508 higher than the SNR level
of 1.0, and the SSVEP visual acuity for the native combination
was determined as the spatial frequency of the intersection point
of the regression line and the noise level baseline, i.e., 26.554
cpd. Similar to this, as shown in Figures 7B,C, the SSVEP visual
acuities for CCA and MSI with various SNR levels were 32.470
cpd for CCA with the SNR levels of 1.0, 1.5, 2.0, and 2.5; 26.097
cpd for CCA with the SNR level of 3.0; 25.237 cpd for MSI with
the SNR levels of 1.0, 1.5, 2.0, and 2.5; and 20.892 cpd for MSI
with the SNR level of 3.0.

The unit of logMAR was used in the final visual acuity
expression for its uniformity in spatial frequency (Bach, 2007).
Finally, after SSVEP visual acuities for CCA and MSI at various
SNR levels over all subjects were obtained, the Bland–Altman
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FIGURE 4 | Example of the time-domain, frequency-domain, and time–frequency-domain analyses of steady-state visual evoked potentials (SSVEPs) at 3.0 cpd
after various spatial filtering methods (right eye of subject S9, Freiburg Visual Acuity and Contrast Test (FrACT) acuity = 0.00 logMAR). (A) Time-domain analysis. The
vertical dashed lines correspond to four periods of the reversal process. (B) Frequency-domain analysis. (C) Time–frequency-domain analysis. The vertical dashed
lines in Panel (B) and the horizontal dashed lines in Panel (C) correspond to the reversal frequency of 7.5 Hz and the second, third, and fourth harmonic frequencies
of 15, 22.5, and 30 Hz, respectively. “f” in all subfigures represents the reversal frequency of 7.5 Hz.

analysis was used to analyze the difference and agreement
between subjective FrACT visual acuity and objective SSVEP
visual acuity for CCA and MSI at each SNR level, as shown in

Table 1. Hence, the SNR level of 2.0 was chosen for CCA with
a low 95% limit of agreement (i.e., 0.202 logMAR) and a low
difference (i.e., 0.039 logMAR). Similarly, the SNR level of 1.5
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FIGURE 5 | Comparison of the mean values and SD of the signal-to-noise ratio (SNR) of the single-channel steady-state visual evoked potential (SSVEP) signals
corresponding to various spatial filtering methods at 3.0 cpd over all subjects.

FIGURE 6 | Examples of the steady-state visual evoked potential (SSVEP) response to six spatial frequency steps after three spatial filtering methods of native
combination, canonical correlation analysis (CCA), and multivariate synchronization index (MSI) (right eye of subject S2, FrACT acuity = −0.06 logMAR). (A) Native
combination. (B) CCA. (C) MSI. The vertical dashed lines correspond to the reversal frequency of 7.5 Hz.
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FIGURE 7 | Examples of the tuning curves for steady-state visual evoked potential (SSVEP) visual acuity estimation criterion corresponding to the native
combination, canonical correlation analysis (CCA), and multivariate synchronization index (MSI) with various signal-to-noise ratio (SNR) levels of 1.0, 1.5, 2.0, 2.5,
and 3.0, respectively (right eye of subject S2, FrACT acuity = −0.06 logMAR). (A) Native combination with the SNR level of 1.0. (B) CCA with the SNR levels of 1.0,
1.5, 2.0, and 2.5 for the left subpanel and 3.0 for the right subpanel. (C) MSI with the SNR levels of 1.0, 1.5, 2.0, and 2.5 for the left subpanel and 3.0 for the right
subpanel. The representations of the symbols and lines are the same as in Figure 2.

was chosen for MSI with a low 95% limit of agreement (i.e., 0.208
logMAR) and a low difference (i.e.,−0.080 logMAR).

Comparison of Visual Acuity Results
Figure 8 shows the Bland–Altman analysis between subjective
FrACT visual acuity and final objective SSVEP visual acuity
over all subjects for the native combination, CCA, and MSI,
respectively. The 95% limits of agreement for the native
combination, CCA, and MSI were 0.253 logMAR, 0.202 logMAR,
and 0.208 logMAR, respectively, indicating that SSVEP visual
acuity of the spatial filtering methods of CCA and MSI had better
accuracy than the native combination.

Figure 9 shows the comparison in visual acuity estimated
by four methods, i.e., FrACT and SSVEPs for three spatial
filtering methods of the native combination, CCA, and MSI,
over all subjects. One-way repeated-measures ANOVA found a
significant difference in visual acuity among these four methods
[F(3,45) = 10.277, p < 0.001]. Then, Bonferroni post-hoc analysis
showed no difference between psychophysical FrACT visual
acuity and each SSVEP visual acuity for the native combination,
CCA, and MSI (p > 0.05), as shown in Table 2, demonstrating
that the SSVEP visual acuity obtained by these three spatial
filtering methods all had a good agreement and a similar
performance with subjective FrACT visual acuity. Besides, a
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TABLE 1 | Results of Bland–Altman analysis between subjective Freiburg Visual
Acuity and Contrast Test (FrACT) visual acuity and objective steady-state visual
evoked potential (SSVEP) visual acuity for the native combination at
signal-to-noise ratio (SNR) level of 1.0, and canonical correlation analysis (CCA)
and multivariate synchronization index (MSI) at each SNR level of 1.0, 1.5, 2.0,
2.5, and 3.0, respectively.

SNR level Difference/logMAR LoA/logMAR

Native 1.0 −0.095 0.253

CCA 1.0 0.057 0.204

1.5 0.050 0.215

2.0 0.039 0.202

2.5 −0.011 0.230

3.0 −0.065 0.348

MSI 1.0 −0.902 0.254

1.5 −0.080 0.208

2.0 −0.158 0.290

2.5 −0.269 0.304

3.0 −0.298 0.256

LoA, 95% limit of agreement.

significantly higher SSVEP visual acuity was found in CCA
than the native combination (p = 0.005) and MSI (p < 0.001),
indicating CCA had a better performance in combining the
multielectrode signals in SSVEPs, especially when the spatial
frequency near the psychophysical threshold, causing the higher
SNR, i.e., higher SSVEP amplitude and lower noise, as shown in
Figure 5.

In summary, compared to FrACT visual acuity, SSVEP visual
acuity for the native combination, CCA, and MSI all had a
good agreement with it, demonstrating that these three spatial
filtering methods all had a good performance in SSVEP visual
acuity assessment. Besides, CCA-based SSVEP visual acuity had
a better performance than MSI and the native combination,
with a difference and a limit of agreement of 0.039 logMAR
and 0.202 logMAR, respectively, lower than −0.080 logMAR
and 0.208 logMAR for MSI and −0.095 logMAR and 0.253
logMAR for the native combination, as shown in Table 1. Hence,
this study recommended CCA as the spatial filtering method
for multielectrode signals combination in the SSVEP visual
acuity assessment.

DISCUSSION

In this study, to enhance the performance of visual acuity by
SSVEPs, 10 commonly used spatial filtering methods, i.e., native
combination, bipolar combination, Laplacian combination,
average combination, CAR, MEC, MCC, CCA, MSI, and PLS,
were compared to combine multielectrode SSVEP signals into
single-channel SSVEP signals for the vertical sinusoidal gratings,
finding that the Fourier analysis of SSVEP signals after these
10 spatial filtering methods all had a significant peak at the
fundamental reversal frequency, where CCA- and MSI-based
SSVEP signals had a higher SNR than the traditional single-
electrode from Oz, i.e., the native combination. Then, CCA and
MSI were used in the further SSVEP visual acuity evaluation.

Compared to the SNR level of 1.0 for the native combination,
according to the Bland–Altman analysis, the SNR levels of
2.0 and 1.5 were chosen for CCA and MSI, respectively, to
determine the regression range for visual acuity determination
criterion. After the calculation of SSVEP visual acuity over all
subjects, SSVEP visual acuity for the native combination, CCA,
and MSI all had a good agreement with subjective FrACT
visual acuity, with CCA-based SSVEP visual acuity realizing the
best performance, recommending CCA as the spatial filtering
method for multielectrode signals combination in SSVEP visual
acuity assessment.

The CCA-based SSVEP visual acuity achieved a difference
of 0.039 logMAR and a limit of agreement of 0.202 logMAR
from FrACT visual acuity, and that for MSI-based SSVEP visual
acuity were −0.080 logMAR and 0.208 logMAR, which was
all lower than them of SSVEP visual acuity for the native
combination with a difference and a limit of agreement of−0.095
logMAR and 0.253 logMAR. Since the spatial filtering methods
can enhance the SNR of SSVEPs and suppress the non-SSVEP
noise (Nakanishi et al., 2018b), this result illustrated that the
unrelated noise, e.g., EMG and EOG (Friman et al., 2007; Zhang
et al., 2021), was one of the reasons for the difference between
SSVEP and behavioral visual acuity (Hamilton et al., 2021b),
and the other methods of enhancing the SNR, such as signal
preprocessing (Kołodziej et al., 2016), e.g., time-domain filtering
(Zheng et al., 2021) and blind source separation (BSS) (Ji et al.,
2019), and SSVEP recognition algorithms (Zhang et al., 2021),
e.g., wavelet transform (WT) (Rejer, 2017) and empirical mode
decomposition (EMD) (Huang et al., 2013; Tello et al., 2014), may
also have the property to improve the agreement between SSVEP
and behavioral visual acuity.

The 10 commonly used spatial filtering methods in this
study can be divided into two categories. One is the basic
spatial filtering methods canceling the common noise of each
electrode via averaging or subtracting (Friman et al., 2007),
such as native combination, bipolar combination, Laplacian
combination, average combination, and CAR, and the other
is called model-based spatial filtering methods using the
mathematical transformation between multielectrode SSVEP
signals and the SSVEP reference signals l (Zerafa et al., 2018),
such as MEC, MCC, CCA, MSI, and PLS. Figure 5 shows that
the model-based spatial filtering methods generally had a better
performance than the basic spatial filtering methods in vertical
sinusoidal gratings except for the average combination (Friman
et al., 2007), and the reason for this may be that the model-based
spatial filtering methods can adjust the weight coefficients to each
electrode adaptively for various SSVEP signals.

All the spatial filtering methods used in this study were the
training-free methods (Wong et al., 2020), which did not require
any training data, and a new user can use this brain–computer
interface (BCI) system immediately (Zerafa et al., 2018). Because
of the fast and accurate requirement and infrequent testing
for visual acuity assessment (Zheng et al., 2021), the training-
free methods were adequate here. The filter bank strategy in
training-free methods, such as filter bank CCA (FBCCA) (Chen
et al., 2015) and filter bank MSI (FBMSI) (Qin et al., 2021),
may be also used to enhance the performance of SSVEP-based
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FIGURE 8 | Bland–Altman analysis between psychophysical Freiburg Visual Acuity and Contrast Test (FrACT) visual acuity and objective steady-state visual evoked
potential (SSVEP) visual acuity over all subjects for the native combination, canonical correlation analysis (CCA), and multivariate synchronization index (MSI),
respectively. (A) Native combination. (B) CCA. (C) MSI. In each panel, the red solid line represents the average value of the difference. The blue solid lines represent
the 95% limit of agreement. The dashed line represents the difference of zero.

FIGURE 9 | Comparison of the visual acuity assessed by Freiburg Visual Acuity and Contrast Test (FrACT) and steady-state visual evoked potentials (SSVEPs) from
three spatial filtering methods of the native combination, canonical correlation analysis (CCA), and multivariate synchronization index (MSI) over all subjects.

visual acuity assessment in future work. In contrast, the subject-
specific training methods with the best performance (Zerafa
et al., 2018), requiring training data from the specific user
and needing the cost of long and tiring training sessions, such
as individual template-based CCA (itCCA) (Bin et al., 2011),
combined-CCA (Nakanishi et al., 2014; Wang et al., 2014b),
multiway CCA (Zhang et al., 2011), multiset CCA (Zhang et al.,
2014b), and task-related component analysis (TRCA) (Nakanishi
et al., 2018a), may be more suitable for the situation where
the subjects need long-term use of BCI system, such as the
vision training with SSVEP biofeedback in amblyopia (Lapajne
et al., 2020). Besides, the subject-independent training methods
requiring training data from various subjects, providing a good
trade-off between training effort and performance (Zerafa et al.,
2018), such as transfer template CCA (ttCCA) (Yuan et al., 2015)
and combined-tCCA (Waytowich et al., 2016), may be further
applied in SSVEP visual acuity assessment.

As for the threshold determination criterion in this study,
the extrapolation technique by extrapolating a regression line
between significant SSVEP amplitudes and spatial frequencies
to a noise level baseline was used. Compared to the threshold
determination criterion of the finest spatial frequency evoking a
significant SSVEP (Hamilton et al., 2021a), where the precision
depends on the sampling density of spatial frequency when

near the threshold (Hamilton et al., 2021b), this extrapolation
technique is more practical (Zheng et al., 2020b). Compared
to the other stimulus paradigms, such as concentric rings with
oscillating expansion and contraction (Zheng et al., 2019), the
visual stimulus paradigm of vertical sinusoidal gratings in this
study can easily be realized, as recommended by the International
Society for Clinical Electrophysiology of Vision (ISCEV) standard
(Hamilton et al., 2021a).

Here, the basic spatial filtering methods used the fixed
reference electrode, Oz, for all subjects, but this may not
necessarily be the best choice for each subject (Yan et al., 2021), so
an adaptive reference electrode selection method may be explored

TABLE 2 | Bonferroni post hoc analysis of visual acuity among Freiburg Visual
Acuity and Contrast Test (FrACT) and steady-state visual evoked potentials
(SSVEPs) from three spatial filtering methods of the native combination, canonical
correlation analysis (CCA), and multivariate synchronization index (MSI).

Method Native CCA MSI

FrACT p = 0.061 p = 0.522 p = 0.096

Native – p = 0.005** p = 1.000

CCA – – p < 0.001***

***p < 0.001; **p < 0.01.
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in future work to improve the performance. In the model-based
spatial filtering methods, only the eigenvector corresponding to
one extreme value was chosen as spatial filter weights, e.g., the
spatial filter weights corresponding to the largest eigenvalue in
CCA, and there may be also some more signal information at
eigenvectors of the second largest eigenvalue or even the latter
eigenvalues (Zhao et al., 2020). Hence, future work may propose
more algorithm strategies to make full use of the information
from the spatial filtering methods. Finally, some subjects with
lower visual acuity rather than the normal visual acuity may be
also required for further research.

CONCLUSION

This study introduced the spatial filtering methods in SSVEP-
based visual acuity assessment, finding that CCA-based SSVEP
visual acuity had a better performance with an agreement of 0.202
logMAR and a difference of 0.039 logMAR, compared to the
single electrode and other spatial filtering methods. The study
proved that the performance of SSVEP-based visual acuity can
be enhanced by spatial filtering methods and also recommended
CCA as the spatial filtering method for multielectrode signals
combination in the SSVEP visual acuity assessment.
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In this study, we propose a deep-learning technique for functional MRI analysis.
We introduced a novel self-supervised learning scheme that is particularly useful for
functional MRI wherein the subject identity is used as the teacher signal of a neural
network. The neural network is trained solely based on functional MRI-scans, and the
training does not require any explicit labels. The proposed method demonstrated that
each temporal volume of resting state functional MRI contains enough information to
identify the subject. The network learned a feature space in which the features were
clustered per subject for the test data as well as for the training data; this is unlike the
features extracted by conventional methods including region of interests (ROIs) pooling
signals and principal component analysis. In addition, applying a simple linear classifier
to the per-subject mean of the features (namely “identity feature”), we demonstrated that
the extracted features could contribute to schizophrenia diagnosis. The classification
accuracy of our identity features was comparable to that of the conventional functional
connectivity. Our results suggested that our proposed training scheme of the neural
network captured brain functioning related to the diagnosis of psychiatric disorders
as well as the identity of the subject. Our results together highlight the validity of our
proposed technique as a design for self-supervised learning.

Keywords: deep-learning, functional MRI, neural network, feature extraction, psychiatric diagnosis, self-
supervised learning

INTRODUCTION

In this study, we propose a novel deep-learning technique which extracts a feature from
brain functional magnetic resonance images (fMRIs). Our proposed method solely depends on
MRI-scans and does not require any additional data regarding the subjects (e.g., diseases or
cognitive impairments), whereas the extracted features effectively capture the psychopathological
characteristics of the subjects. Recent advances in machine learning have demonstrated its
capability for medical sciences. Skin cancers have been successfully diagnosed from skin images
(Esteva et al., 2017) and retinal diseases from three-dimensional optical coherence tomography
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(OCT) images (De Fauw et al., 2018). In addition, Titano et al.
(2018) reported that machine learning with three-dimensional
brain computed tomography (CT) images performed well in
terms of detection of acute neurologic events including stroke,
hemorrhage, and hydrocephalus. These studies suggested the
further potential of the deep neural networks, especially for
the analysis of spatially structured data, including MRIs and
functional MRIs. These studies trained a neural network to
directly infer diseases from the input. This framework is called
fully supervised learning and is known to be effective when a
large training dataset with accurate labels is available. Titano et al.
(2018), who aimed to classify acute neurological events, collected
37,236 brain images with clinical annotations for training and
used 96,303 extra clinical reports to make the clinical annotations
more suitable for training. In the supervised learning framework,
the network is specialized for the target diseases, which further
enhances the performance. However, the requirement of a vast
amount of training data is not always practical; the number
of patients is sometimes too small to train a neural network
(Durstewitz et al., 2019; Khosla et al., 2019), and the accurate
diagnoses require expert skills (Durstewitz et al., 2019). These
drawbacks are remarkable especially for psychiatric disorders
because the sample size tends to be small, accurate diagnoses
are especially difficult, and the underlying mechanisms are still
under discussion. In contrast, self-supervised learning does not
require any explicit labels for training. Instead, the teacher signals
(i.e., labels) are generated from the original input data in self-
supervised learning. For example, Noroozi and Favaro (2016)
proposed a self-supervised learning scheme for natural image
processing, in which the input image was divided into nine
pieces, and the network was trained to infer the original position
of each piece. The intermediate outputs of the network were
subsequently fed into another linear classifier, which resulted
in comparable performance to fully supervised deep neural
networks. The advantages of self-supervised training potentially
overcome the shortages of clean labels for psychiatric disorders,
although the teacher signal must be carefully designed. In many
previous deep-learning studies for MRIs without additional labels
(Suk et al., 2016; Aghdam et al., 2017; Heinsfeld et al., 2018; Oh
et al., 2019; Yamaguchi et al., 2021), the teacher signal was the
same as the input, namely auto-encoder. Such an auto-encoder
tends to suffer from the bias-variance trade-off, wherein the
network either underfits or overfits the teacher signals due to
a lack of constraints to the feature manifold. In contrast, this
study proposes a novel self-generated teacher signal for resting-
state functional MRI; we used the temporal volumes as input,
and the subject ID as the teacher signal. The explicit labels enable
the network to generate a compact feature that represents a
conceptual distance from the owner of the input to the subjects
used in the training. In this study, we experimentally showed that:
(i) each temporal volume of functional MRI contains enough
information to identify the subject, (ii) the network learned a
feature space in which the features cluster subject-by-subject for
test data as well as for training data, and (iii) the extracted feature
contributes to a schizophrenia diagnosis. These experiments
together exhibit the validity of our proposed method as a design
for self-supervised learning.

MATERIALS AND METHODS

Dataset
We used a dataset from the Center for Biomedical Research
Excellence (COBRE) (Aine et al., 2012). The dataset is composed
of anatomical and resting-state functional MRI scans; 72
scans were from schizophrenia patients and 75 from healthy
controls. The anatomical and functional scans were acquired by
MPRAGE and EPI by 3.0-Tesla Siemens Trio scanner (Siemens
Healthineers, Erlangen, Germany). Each functional scan was
composed of 150 timepoints, and the repetition time was 2 s.
Each timepoint was originally composed of 64 × 64 × 32 voxels
(3 × 3 × 4 mm3), which was transformed to 91 × 109 × 91
voxels in MNI coordinates by the preprocessing (Supplementary
Section 1). We excluded subjects without meta-data and controls
with other psychiatric diseases, resulting in 69 patients (56 males
and 13 females, 37.8 ± 14.0 years old) and 72 controls (51 males
and 21 females, 35.9 ± 11.7 years old). We divided the patients
and controls into training 1, training 2, and test dataset with
random sampling stratified over present illness, age, and gender.
The training 1 dataset was used for training the neural network,
and training 2 was used for training the linear regressor for
inferring the subject attributes. The number of patients p and
controls c was (p, c) = (51, 54) in training 1, (9, 9) in training
2, and (9, 9) in test datasets. The mean and standard deviation
of the ages were 37.0± 13.4 in training 1, 36.4± 11.6 in training
2, and 36.3± 11.9 in test datasets. The number of males m and
females f was (m, f ) = (78, 28) in training 1, (15, 3) in training
2, (14, 4) in test datasets. We unequally allocated samples to
the three datasets because the neural network in training 1
possessed a huge number of optimization parameters (about
2 million), while the linear regressor/classifier used in training
2 has a relatively small number of optimization parameters
(3–10,000).

Training 1
The input of the network was a batch of temporal MRI volumes,
whose size was set to (80, 96, 80) by trimming outside of the
brain. The network included four convolutional blocks, followed
by two convolutional layers and one dense layer. Each block
consisted of two three-dimensional convolutions and one average
pooling layer (Figure 1). The number of convolutional blocks was
preliminarily explored. The less number of convolution blocks
resulted in underfitting, wherein the training accuracy was almost
the same as the chance, while the training did not converge for the
network with more convolution blocks.

The kernel size k and stride s were (k, s) = (3, 1) for each
convolutional layer, and (2, 2) for each pooling layer. The
number of output channels was set as 8 at the first convolutional
layer and doubled before the pooling layers, resulting in 128
before the dense layer. We used softmax cross-entropy as the
loss function, which was computed against a 105-dimensional
one-hot vector of subject ID. The network was optimized using
Adam (Kingma and Ba, 2015) with α = 0.0001 for the first 17,000
iterations and α = 0.00001 for the following 110,000 iterations,
with a batch size of 32.
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FIGURE 1 | Network architecture. Each rounded square represents a layer with the weight parameters. The number after the comma denotes the number of
channels for the layer.

Training 2
The output of the dense layer was extracted for each timepoint as
a feature vector. Subsequently, the feature vectors were averaged
for each subject, yielding an identity feature for each subject.
The identity features for the training 2 dataset were then fed
into a linear classifier (regressor) to learn schizophrenia diagnosis
and age regression.

We also trained a linear classifier with a slightly modified
version of the feature vector, in which the average of all elements
in the feature vector was subtracted from each element. This
operation was naturally introduced by the formulation of the
softmax function, in which the subtraction of the average does
not affect the output of the function or the training process. In
the following sections, we call the original feature vector (the
output of the dense layer) as classification, and the modified one
as classification+.

Experiment 1: Training Convergence
The training accuracy of the subject classification was computed
to evaluate training. Reporting training accuracy is slightly
unconventional in studies on neural networks because the
convergence of training is now trivial in conventional two-
dimensional natural scene image processing. However, to the best
of our knowledge, this is the first report which trained networks
to classify the subject from a single timepoint of functional MRI
by stacked three-dimensional convolutions, and we concluded
that the training convergence is worth reporting.

Experiment 2: Qualitative Analysis of
Extracted Features
The characteristics of the acquired feature space were first
qualitatively analyzed. We plotted the feature vectors in the
training 2 and test datasets by t-distributed stochastic neighbor
embedding (t-SNE) (Maaten and Hinton, 2008). The clusters
were then quantitatively evaluated by precision@150 for each

identity feature. Because the number of timepoints was 150
for each subject, precision@150 would be 1 if all the feature
vectors for a subject clustered around his identity feature.
The formula of precision@150 is given in Supplementary
Section 2, wherein the feature vectors are ranked by Euclid
distance to each identity feature in the original feature space.
We applied these qualitative and quantitative analyses to the
features of the classification and classification+ feature vectors
as well as the signals averaged over the ROI defined by
the automated anatomical labeling (AAL) atlas (Suk et al.,
2016; see Tzourio-Mazoyer et al., 2002 as the reference to
AAL), namely ROI-pooled signals, and the top three and
10,000 principal components (Damaraju et al., 2014). For these
features, the “identity” feature was also defined as the centroid
for each subject.

We explored all the principal components up to 10,000
where the rational upper limit of computational resources
for experiments 2 and 3. The results demonstrated that the
number of principal components did not affect precision@150
in experiment 2 and the statistical significance of schizophrenia
diagnosis in experiment 3, while the number affected the age
regression performance in experiment 3 wherein the top three
principal components performed the best and showed statistical
significance in correlation between predicted and actual age.
Therefore, we reported the results of the best (top three) and the
maximum (10,000) principal components for experiment 2 and 3.

Experiment 3: Relation to Subject’s
Attributes
The schizophrenia classifier and age regressor developed in
section “Training 2” were applied to the test dataset. The
classification accuracy was computed and tested using a sign
test, which evaluates a probability parameter of the binomial
distribution underlying that the classification is significantly
larger than chance (50%). This procedure was also applied to
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the identity features of the ROI-pooled signals, the top three
and 10,000 principal components, similar to that in Experiment
2. In addition, the procedure was applied to the functional
connectivity matrix (Liang et al., 2006; Kim et al., 2016), defined
as the correlation coefficients among the time series of the ROI-
pooled signals.

Ethics Statement
All experiments in this study were performed in accordance with
the Ethical Guidelines for Medical and Health Research Involving
Human Subjects in Japan.

RESULTS

Experiment 1: Training Convergence
The network was trained to classify the subject ID from each time
point of fMRI. The training accuracy at the 127,000 iteration was
97.85%, which was considerably improved over the chance rate,
suggesting that the training successfully converged.

Experiment 2: Qualitative Analysis of
Extracted Features
The distributions of the feature vectors extracted by our proposed
neural network, ROI-pooling, and PCA were visualized by t-SNE,
and are depicted in Figure 2A. It should be noted that t-SNE
preserves local adjacence well but it does not necessarily retain
the global structure.

The features extracted by the network clustered for each
subject, unlike the features extracted by ROI-pooling and PCA.
The clustering performance was quantitatively evaluated using
precision@150 around the identity feature for each subject. The
precision@150 was 81.5 and 61.4% for our proposed classification
and classification+ feature vectors, whereas it was 5.6% for
the ROI-pooled feature and the top three and 10,000 principal
components (Figure 2B). The precision@150 for each subject is
shown in Supplementary Section 3.

Experiment 3: Schizophrenia Diagnosis
The average of the features was computed as the identity feature
for each subject, and the identity features were fed into a linear
classifier for schizophrenia diagnosis with a logistic loss function.
The accuracies were 61.1 and 77.8% for the identity feature of
our proposed classification and classification+ feature vectors,
respectively. The performance of classification+ was significantly
better than the chance (p = 0.015). The accuracy was 72.2% for
the connectivity matrix, which was marginally higher above the
chance (p = 0.048). The identity features of the top three and
10,000 principal components and the ROI-pooled signals did not
significantly discriminate between the schizophrenia and control
group (acc. = 27.8, 50, and 61.1%, respectively), as shown in
Figure 3A.

Similarly, subject age was regressed from the identity feature.
The correlations between the predicted and actual age were
not significant (r = 0.128 and 0.115 for classification and
classification+), while the top three principal components

showed significant correlation (r = 0.57, p = 0.013). The other
conditions (i.e., the top 10,000 principal components, ROI-
pooled signals, and functional connectivity matrix) did not show
significant correlation (r =−0.21,−0.29, and 0.34, respectively),
as shown in Figure 3B.

DISCUSSION

We have shown that: (i) the self-supervised learning scheme
led our neural network to acquire the projection from the high
(∼106) dimensional signal space to the lower dimensional (∼102)
feature space in which each dimension represented subject
identity in the training dataset, (ii) the capability of the subject
identification was generalized to the unknown subjects in the
test dataset, and (iii) the temporal average of the extracted
feature vector reflected the psychiatric status of the subjects.
Surprisingly, our proposed method performed comparable to
or even better than the functional connectivity matrix for
schizophrenia diagnosis, which has been regarded as a promising
biomarker of cognitive functions (Liang et al., 2006; Kim et al.,
2016) and reported to reflect the cognitive trait in subjects
(Finn et al., 2015).

The transferred capability from the subject identification to
schizophrenia diagnosis can be regarded as a kind of “deep
feature extraction.” In the natural scene image processing, the
intermediate output in a neural network pre-trained with a
large-dataset classification often works well in another task,
known as a “deep feature extraction” (Oquab et al., 2014). The
underlying mechanism of the transferability is still under debate;
however, one of the dominant hypotheses is that the stacked two-
dimensional convolution itself works as the statistical prior of the
natural scene images, regardless of the training task (Ulyanov
et al., 2018). Our results showed that the transference also
occurred with the combination of the human-brain T2∗ images
and the stacked three-dimensional convolutions.

Our feature did not correlate with the subject’s age, unlike the
psychiatric status. This result suggests that subjects with similar
psychiatric status are adjacent on the feature space, whereas
similar age subjects are not. Given this discussion, the linear-
decomposition-based features (i.e., the principal/independent
components) and the functional connectivity matrix might have
potentially ignored the discontinuity on the signal-space, yielding
the results in the subject’s age regression different from our
identity feature.

Our identity feature and the functional connectivity exhibited
a significant performance on schizophrenia diagnosis. The
functional connectivity has been reported to be a good subject
identifier (Finn et al., 2015), and thus, the features that classified
patients from controls were those which behaved as the identifier
of the subjects. The linkage between subject identification and
the subject’s mental condition should be investigated in future
works. Although the difference in diagnosis accuracy was not
statistically tested due to the shortage of samples, the diagnosis
accuracy of our identity feature was slightly greater than that
of the functional connectivity. A potential reason behind this
superiority is the local interactions of the signal. In the functional
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FIGURE 2 | (A) Distribution of feature vectors, visualized by t-SNE. Each dot represents a feature vector for a single timepoint, colored for each subject.
(B) Precision@150 of the cluster for each feature vector.

FIGURE 3 | (A) Accuracy of the schizophrenia discrimination. (B) Pearson’s correlation coefficient of the age regression. The single asterisks show the statistical
significance at α = 0.05.

connectivity analysis, the signals are averaged for each ROI,
discarding the local signal interactions. In contrast, previous
studies have reported that both global and local activities in the
brain lead to our cognitive functions (see Panzeri et al., 2015 for
review). Both of the local and global interactions are modeled in
the neural network, and it might have led to a positive effect in
schizophrenia discrimination.

We introduced two versions of identity feature in this
study, namely “classification” and “classification+.” Both

the “classification” and “classification+” feature vectors
are the intermediate output of our neural network but the
characteristics of these feature vectors were slightly different:
“classification” feature vectors clustered more cohesive around
the subject’s identity feature than “classification+” feature
vectors, while “classification+” identity feature performed
better for schizophrenia diagnosis. The better performance
of “classification+” in the schizophrenia diagnosis might be
attributed to the small training dataset. The “classification+”
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feature can be regarded as the projected space from the
“classification” feature space to a hyperplane tangential to 1
(vector of all ones), which reduces the degree of freedom and
potentially regularizes the feature space. The regularization of
the feature space might have positively affected the training
with small samples for the schizophrenia diagnosis. The relation
between these two types of feature vectors should be investigated
in future work with a larger dataset.

In this study, we introduced a novel self-supervised learning
scheme and highlighted some of the characteristics of the
extracted feature, especially in terms of the relation to
schizophrenia. A few parameters, such as the optimal number of
subjects in the training, the optimal neural network architecture,
more detailed relations between the feature and the subject’s
attributes, and the mathematical analyses about the feature space
will be addressed in the future work. Furthermore, for the clinical
application, it is essential to evaluate the diagnosis accuracy
and robustness more precisely with larger dataset as well as to
explore better regressors rather than a simple linear regressor. We
hope these will be uncovered in future works along the further
accumulation of available datasets and with the advancement in
the field of machine learning.
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System Explained Through
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The early visual cortex is the site of crucial pre-processing for more complex, biologically
relevant computations that drive perception and, ultimately, behaviour. This pre-
processing is often studied under the assumption that neural populations are optimised
for the most efficient (in terms of energy, information, spikes, etc.) representation of
natural statistics. Normative models such as Independent Component Analysis (ICA)
and Sparse Coding (SC) consider the phenomenon as a generative, minimisation
problem which they assume the early cortical populations have evolved to solve.
However, measurements in monkey and cat suggest that receptive fields (RFs) in the
primary visual cortex are often noisy, blobby, and symmetrical, making them sub-optimal
for operations such as edge-detection. We propose that this suboptimality occurs
because the RFs do not emerge through a global minimisation of generative error,
but through locally operating biological mechanisms such as spike-timing dependent
plasticity (STDP). Using a network endowed with an abstract, rank-based STDP rule,
we show that the shape and orientation tuning of the converged units are remarkably
close to single-cell measurements in the macaque primary visual cortex. We quantify
this similarity using physiological parameters (frequency-normalised spread vectors),
information theoretic measures [Kullback–Leibler (KL) divergence and Gini index], as
well as simulations of a typical electrophysiology experiment designed to estimate
orientation tuning curves. Taken together, our results suggest that compared to purely
generative schemes, process-based biophysical models may offer a better description
of the suboptimality observed in the early visual cortex.

Keywords: vision, cortex, plasticity, suboptimality, Independent Component Analysis, Sparse Coding, STDP,
natural statistics

INTRODUCTION

The human visual system processes an enormous throughput of sensory data in successive
operations to generate percepts and behaviours necessary for biological functioning (Anderson
et al., 2005; Raichle, 2010). Computations in the early visual cortex are often explained
through unsupervised normative models which, given an input dataset with statistics similar
to our surroundings, carry out an optimisation of criteria such as energy consumption
and information-theoretic efficiency (Olshausen and Field, 1996; Bell and Sejnowski, 1997;
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van Hateren and van der Schaaf, 1998; Hoyer and Hyvärinen,
2000; Zhaoping, 2006; Bruce et al., 2016). While such approaches
could explain why many properties of the early visual system
are closely related to characteristics of natural scenes (Olshausen
and Field, 1996; Bell and Sejnowski, 1997; Lee and Seung, 1999;
Geisler, 2008; Hunter and Hibbard, 2015; Beyeler et al., 2019),
they are not equipped to answer questions such as how cortical
structures which support complex computational operations
implied by such optimisation may emerge, how these structures
adapt, even in adulthood (Wandell and Smirnakis, 2010; Hübener
and Bonhoeffer, 2014), and why some neurones possess receptive
fields (RFs) which are sub-optimal in terms of information
processing (Jones and Palmer, 1987; Ringach, 2002).

It is now well established that locally driven synaptic
mechanisms such as spike-timing dependent plasticity (STDP)
are natural processes which play a pivotal role in shaping the
computational architecture of the brain (Markram et al., 1997;
Delorme et al., 2001; Caporale and Dan, 2008; Larsen et al.,
2010; Masquelier, 2012; Brito and Gerstner, 2016). Indeed, locally
operating implementations of generative schemes have been
shown to be closer to biological measurements (see, e.g., Rozell
et al., 2008). Therefore, it is only natural to hypothesise that
locally operating, biologically plausible models of plasticity must
offer a better description of RFs in early visual cortex. However,
such line of reasoning leads to the obvious question: what exactly
constitutes a “better description” of a biological system, and
more specifically, the early visual cortex. Here, we use a series
of criteria spanning across electrophysiology, information theory,
and machine learning, to investigate how descriptions of early
visual RFs provided by a local, abstract STDP model compare to
biological data from the macaque. We also compare these results
to two classical, and important normative schemes – Independent
Component Analysis (ICA), and Sparse Coding (SC). Our results
demonstrate that a local process-based model of experience-
driven plasticity may be better suited to capturing the RFs of
simple-cells, thus suggesting that biological preference does not
always concur with forms of global, generative optimality.

More specifically, we show that STDP units are able to better
capture the characteristic sub-optimality in RF shape reported
in literature (Jones and Palmer, 1987; Ringach, 2002), and
their orientation tuning closely matches measurements in the
macaque primary visual cortex (V1) (Ringach et al., 2002). Taken
together, our findings suggest that while the information carrying
capacity of an STDP ensemble is not optimal when compared to
generatively optimal schemes, it is precisely this sub-optimality
which may make process-based, local models more suited for
describing the initial stages of sensory processing.

MATERIALS AND METHODS

Dataset
The Hunter–Hibbard dataset of natural images was used (Hunter
and Hibbard, 2015) for training. It is available under the MIT
license at https://github.com/DavidWilliamHunter/Bivis, and
consists of 139 stereoscopic images of natural scenes captured
using a realistic acquisition geometry and a 20◦ field of view.

Only images from the left channel were used, and each image
was resized to a resolution of 5 px/◦ along both horizontal
and vertical directions. Inputs to all encoding schemes were
3 × 3◦ patches (i.e., 15 × 15 px) sampled randomly from the
dataset (Figure 1A).

Encoding Models
Samples from the dataset were used to train and test three models
corresponding to the ICA, SC, and STDP encoding schemes.
Each model consisted of three successive stages (Figure 1B).
The first stage represented retinal activations. This was followed
by a pre-processing stage implementing operations which are
typically associated with processing in the lateral geniculate
nucleus (LGN), such as whitening and decorrelation. In the third
stage, LGN output was used to drive a representative V1 layer.

During learning, 105 patches (3 × 3◦) were randomly
sampled from the dataset to simulate input from naturalistic
scenes. In this phase, the connections between the LGN and
V1 layers were plastic, and modified in accordance with one of
the three encoding schemes. Care was taken to ensure that the
sequence of inputs during learning was the same for all three
models. After training, the weights between the LGN and V1
layers were no longer allowed to change. The implementation
details of the three models are described below.

Sparse Coding
Sparse Coding algorithms are based on energy-minimisation,
which is typically achieved by a “sparsification” of activity in
the encoding population. We used a now-classical SC scheme
proposed by Olshausen and Field (1996, 1997). The pre-
processing in this scheme consists of an initial whitening of
the input using low pass filtering, followed by a trimming of
higher frequencies. The latter was employed to counter artefacts
introduced by high frequency noise, and the effects of sampling
across a uniform square grid. In the frequency domain the pre-
processing filter was given by a zero-phase kernel:

H
(
f
)
= f · e−

(
f
f0

)4
(1)

Here, f0 = 10 cycles/◦ is the cut-off frequency. The outputs
of these LGN filters were then used as inputs to the V1 layer
composed of 225 units (3◦ × 3◦ RF at 5 px/◦). The total
number of weights in the model was 50,625. Retinal projections
of the converged RFs were recovered by an approximate reverse-
correlation algorithm (Ringach, 2002; Ringach and Shapley,
2004) derived from a linear-stability analysis of the SC objective
function about its operating point. The RFs (denoted as columns
of a matrix, say ξ ) were given by:

ξ = A
[
ATA+ λS" (0) I

]−1 (2)

Here, A is the matrix containing converged sparse
components as column vectors, λ is the regularisation parameter
(for the reconstruction, it is set to 0.14σ, where σ2 is the variance
in the input dataset), and S (x) is the shape-function for the prior
distribution of the sparse coefficients [this implementation uses
log (1+ x 2)].
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FIGURE 1 | Dataset and the computational pipeline. (A) Training data. The Hunter–Hibbard dataset of natural images was used. The images in the database have a
20◦ × 20◦ field of view. Patches of size 3◦ × 3◦ were sampled from random locations in the images (overlap allowed). The same set of 100,000 randomly sampled
patches was used to train three models: Spike-timing dependent plasticity (STDP), Independent Component Analysis (ICA), and Sparse Coding (SC). (B) Modelling
the early visual pathway. Three representative stages of early visual computation were captured by the models: retinal input, processing in the lateral geniculate
nucleus (LGN), and the activity of early cortical populations in the primary visual cortex (V1). Each input patch represented a retinal input. This was followed by
filtering operations generally associated with the LGN, such as decorrelation and whitening. Finally, the output from the LGN units/filters was connected to the V1
population through all-to-all (dense) plastic synapses which changed their weights during learning. Each model had a specific optimisation strategy for learning: the
STDP model relied on a local rank-based Hebbian rule, ICA minimised mutual information (approximated by the negentropy), and SC enforced sparsity constraints
on V1 activity. DoG, difference of Gaussian; PCA, Principal Component Analysis.
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Independent Component Analysis
Independent Component Analysis algorithms are based on
the idea that the activity of an encoding ensemble must
be as information-rich as possible. This typically involves a
maximisation of mutual information between the retinal input
and the activity of the encoding ensemble. We used a classical
ICA algorithm called fastICA (Hyvärinen and Oja, 2000) which
achieves this through an iterative estimation of input negentropy.
The pre-processing in this implementation was performed using
a truncated Principal Component Analysis (PCA) transform
(d̃ = 150 components were used), leading to low-pass filtering
and local decorrelation akin to centre-surround processing
reported in the LGN. The model fit a total of 33,750 weights. If
the input patches are denoted by the columns of a matrix (say X),
the LGN activity L can be written as:

L = ŨTXC (3)

Here, XC = X−〈X〉 and Ũ is a matrix composed of the
first d̃ (= 150) principal components of XC. The activity of these
LGN filters was then used to drive the ICA V1 layer consisting of
150 units, with its activity 6 being given by:

6 = WL (4)

Here, W is the un-mixing matrix which is optimised during
learning. The recovery of the RFs for ICA was relatively straight
forward, as, in our implementation, they were assumed to be
equivalent to the filters which must be applied to a given input
to generate the corresponding V1 activity. The RFs (denoted as
columns of a matrix, say ξ ) were given by:

ξ = ŨWT
+ 〈X〉 (5)

Spike-Timing Dependent Plasticity
Spike-timing dependent plasticity is a biologically observed,
Hebbian-like learning rule which relies on local spatiotemporal
patterns in the input. We used a feedforward model based
on an abstract rank-based STDP rule (Chauhan et al., 2018).
The pre-processing in the model consisted of half-rectified
ON/OFF filtering using difference-of-Gaussian kernels based
on the properties of magno-cellular LGN cells. The outputs
of these filters were converted to relative first-spike latencies
using a monotonically decreasing function (1/x was used), and
only the earliest 10% spikes were allowed to propagate to V1
(Delorme et al., 2001; Masquelier and Thorpe, 2007). For each
iteration, spikes within this 10% window were used to drive an
unsupervised network of 225 integrate-and-fire neurones. The
membrane potential of a V1 neurone was given by:

u (t) = H (θ−u)
∑

i∈LGN

wi (t) δ (t−ti) (6)

Here, ti denotes the latency of the i-th pre-synaptic neuron, H
is the Heavisde function, and θ is the spiking threshold. During
learning, changes in the synaptic weights between LGN and
V1 were governed by a rank-based, simplified version of the
STDP rule proposed by Gütig et al. (2003). After each iteration,

the change (1w) in the weight (w) of a given synapse was
given by:

1w =

{
−α− · (w−wmin)

µ−K
(
t, τ−

)
, t ≤ 0

α+ · (wmax−w)µ
+

K
(
t, τ+

)
, t > 0

(7)

Here, 1t is the difference between the post- and pre-
synaptic spike times, the constants α± describe the learning
rates for long-term potentiation (LTP) and depression (LTD),
respectively, µ± ∈ [0,1] characterise the non-linearity of the
multiplicative updates, K is a windowing function, and τ± are
the time-scales for LTP and LTD windows. Note that w is soft-
bound such that w ∈ (wmin,wmax). The model used wmin = 0
(thalamocortical connections are known to be excitatory in
nature), and wmax = 1. Since the intensity-to-latency conversion
operates on an arbitrary time-scale, weight updates were based
on the spike-order rather than precise spike-timing (rank-based).
This meant that the window for LTP (τ+) was variable and driven
by the first 10% thalamic spikes, while the window for LTD
(τ−) was theoretically infinite. During updates, the weight was
increased if a presynaptic spike occurred before the postsynaptic
spike (causal firing), and decreased if it occurred after the
post-synaptic spike (acausal firing). The learning rates were
α+ = 5 × 10−3 and α− = 0.75 × α+, and the nonlinearities
were µ+ = 0.65 and µ− = 0.05. The model has previously
been shown to be robust to both internal and external noise,
and the parameter values were chosen from a range which best
approximates the behaviour of the model under a realistic, V1-
like regime (Chauhan et al., 2018). The neural population was
homogeneous, with each neuron described by the exact same
set of parameters.

During each iteration of learning, the population followed
a winner-take-all inhibition rule wherein the firing of one
neurone reset the membrane potentials of all other neurones.
A total of 50,625 weights were fit by the model. After learning,
this inhibition was no longer active and multiple units were
allowed to fire for each input – allowing us to measure the
behaviour of the network during testing. This also renders the
model feed-forward only, making it comparable to SC and ICA.
The RFs of the converged neurones were recovered using a
linear approximation. If wi denotes the weight of the synapse
connecting a given neurone to the ith LGN filter with RF ψi, the
RF ξ of the neurone was given by:

ξ =
∑

i∈LGN

wiψi (8)

Evaluation Metrics
Gabor Fitting
Linear approximations of RFs obtained by each encoding strategy
were fitted using 2-D Gabor functions. This is motivated by the
fact that all the encoding schemes considered here lead to linear,
simple-cell-like RFs. In this case, the goodness-of-fit parameter
(R2) provides an intuitive measure of how Gabor-like a given
RF is. The fitting was carried out using an adapted version of
the code available at https://uk.mathworks.com/matlabcentral/
fileexchange/60700-fit2dgabor-data-options (Ecke et al., 2021).
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Frequency-Normalised Spread Vector
The shape of the RFs approximated by each encoding strategy was
characterised using frequency-normalised spread vectors (FSVs)
(Ringach, 2002; Chauhan et al., 2018). For a RF fitted by a Gabor-
function with sinusoid carrier frequency f and envelope size
σ =

[
σx σy

]T , the FSV is given by:[
nx ny

]T
=
[
σx σy

]T f (9)

While nx provides an intuition of the number of cycles in
the RF, ny is a cycle-adjusted measure of the elongation of the
RF perpendicular to the direction of sinusoid propagation. The
FSV serves as a compact, intuitive descriptor of the RF shape-
invariance to affine operations such as translation, rotation, and
isotropic scaling.

Orientation Tuning
Orientation tuning curves (OTCs) were estimated by presenting
each unit in each model with noisy oriented sine-wave grating
(SWG) stimuli at its preferred frequency. The orientation was
sampled in steps of 2◦ in the interval [0◦, 180]◦. For each
orientation, the activity was averaged over phase values uniformly
sampled in the interval [0◦, 360◦] using a step-size of 5◦. The
bandwidth of an OTC was taken as its half-width at 1/

√
2 of

the peak response (Ringach et al., 2002). The whole process
was repeated 100 times, and a bootstrap procedure was used to
determine 95% confidence intervals.

Fisher Information
The information content in the activity of the converged units
was quantified by using approximations of the Fisher information
(FI, denoted here by the symbol J). If x = {x1, x2, x3, , xN} is
a random variable describing the activity of an ensemble of N
independent units, the FI of the population with respect to a
parameter θ is given by:

J (θ) =
∑N

i = 1 E
[{

∂
∂x ln P (xi|θ)

}2
]
P(xi|θ)

(10)

Here, E[.]P(xi|θ) denotes expectation value with respect to the
firing-state probabilities of the ith neurone in response to the
stimuli corresponding to parameter value θ. In our simulations,
θ was the orientation (defined as the direction of travel) of a
set of SWGs with additive Gaussian noise, and was sampled
at intervals of 4◦ in the range [0◦, 180◦). The SWGs were
presented at frequency of 1.25 cycles/visual degree, and the
responses were calculated by averaging over 8 evenly spaced
phase values in [0◦, 360◦). This effectively simulated a drifting
grating design within the constraints of the computational
models. Each simulation was repeated 100 times and a jackknife
procedure was used to estimate 95% confidence intervals. Noise
was added such that the signal-to-noise ratio (SNR) varied
between−6 and 6 dB in steps of 1 dB.

Decoding Using a Linear Classifier
In addition to FI approximations, we also used a linear decoder
on the population responses obtained in the FI simulations. The
decoder was an error-correcting output codes model composed

of binary linear-discriminant classifiers configured in a one-vs.-
all scheme. Similar to the FI experiment, ground-truth values
of the orientation at intervals of 4◦ in the range [0◦, 180◦)
were used as the class labels, and the activity generated by the
corresponding SWG stimuli with added Gaussian noise was used
as the training/testing data. The SWGs were presented at a
frequency of 1.25 cycles/visual degree, and the responses were
calculated by averaging over 8 evenly spaced phase values in
[0◦, 360◦). Each simulation was repeated 100 times, each time
with five-fold validation. A jackknife procedure was used to
estimate 95% confidence intervals.

Post-convergence Threshold Variation in STDP
To test how post-learning changes in the threshold affect the
specificity of a converged network, we tested an STDP network
trained using a threshold θtraining by increasing or decreasing its
threshold (to say, θtesting) and presenting it with SWGs (same
stimuli as the ones used to calculate the FI). We report the results
of seven simulations where the relative change in threshold was
given by 25% increments/decrements, i.e.:

θtesting−θtraining
θtraining

= {0, ± 0.25, ± 0.50, ± 0.75} (11)

Kullback–Leibler Divergence
For each model, we estimated probability density functions (pdfs)
over parameters such as the FSVs and the population bandwidth.
To quantify how close the model pdfs were to those estimated
from the macaque data, we employed the Kullback–Leibler (KL)
divergence. KL divergence is a directional measure of distance
between two probability distributions. Given two distributions P
and Q with corresponding probability densities p and q, the KL
divergence (denoted DKL) of P from Q is given by:

DKL (P||Q) =
∫
� p (x) log2

(
p(x)
q(x)

)
dx (12)

Here, � is the support of the distribution Q. In our analysis,
we considered the reference distribution p as a pdf estimated
from the macaque data, and q as the pdf (of the same variable)
estimated using ICA, SC, or STDP. In this case, KL divergence
lends itself to a very intuitive interpretation: it can be considered
as the additional bandwidth (in bits) which would be required
if the biological variable were to be encoded using one of
the three computational models. Note that P and Q may be
multivariate distributions.

Sparsity: Gini Index
The sparseness of the encoding was evaluated using the Gini
index (GI). GI is a measure which characterises the deviation of
the population-response from a uniform distribution of activity
across the samples. Formally, the GI (denoted here as 3)
is given by:

3 (x) = 1− 2
∫ 1

0 L (F)dF (13)

Here L is the Lorenz function defined on the cumulative
probability distribution F of the neural activity (say, x). GI is 0
if all units have the same response and tends to 1 as responses
become sparser (being equal to 1 if only 1 unit responds, while
others are silent). It is invariant to the range of the responses
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FIGURE 2 | Receptive field (RF) shape. (A–C) RFs of neurones randomly chosen from the three converged populations. The STDP population is shown in (A), ICA in
(B), and SC in (C). (D) Frequency-scaled spread vectors (FSVs). FSV is a compact metric for quantifying RF shape. nx is proportional to the number of lobes in the
RF, ny is a measure of the elongation of the RF, and values near zero characterise symmetric, often blobby RFs. The FSVs for STDP (pink), ICA (green), and SC
(blue), are shown with data from macaque V1 (black) (Ringach, 2002). Measurements in macaque simple-cells tend to fall within the square bound by 0.5 along both
axes (shaded in grey, with a dotted outline). Three representative neurones are indicated by colour-coded arrows: one for each algorithm. The corresponding RFs are
outlined in (A–C) using the corresponding colour. The STDP neurone has been chosen to illustrate a blobby RF, the ICA neurone shows a multi-lobed RF, and the SC
neurone illustrates an elongated RF. Insets above and below the scatter plot show estimations of the probability density function for nx and ny . Both axes have been
cut-off at 1.5 to facilitate comparison with biological data.
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within a given sample, and robust to variations in sample-size
(Hurley and Rickard, 2009). We defined two variants of the GI
which measure the spatial (3s) and temporal sparsity (3t) of
an ensemble of encoders. Given a sequence of M inputs to an
ensemble of N neurones, the spatial sparsity of the ensemble
response to the mth stimulus is given by:

3S (m) = 3
({
x1
m, x2

m,..., xNm
})

(14)

Here, xnm denotes the activity of the nth neurone in response to
the mth input. Similarly, the temporal sparsity of the nth neurone
over the entire sequence of inputs is given by:

3T (n) = 3
( {

xn1 , xn2 , ..., xnM
} )

(15)

Code
The code for ICA was written in python using the sklearn library
which implements the classical fastICA algorithm. The code for
SC was based on the C++ and Matlab code shared by Prof. Bruno
Olshaussen. The STDP code was based on a previously published
binocular-STDP algorithm available at https://senselab.med.yale.
edu/ModelDB/showmodel.cshtml?model=245409#tabs-1.

RESULTS

We used an abstract model of the early visual system with three
representative stages: retinal input, LGN processing, and V1
activity (Figure 1B). To simulate retinal activity corresponding
to natural inputs, patches of size 3◦ × 3◦ (visual angles) were
sampled randomly from the Hunter–Hibbard database (Hunter
and Hibbard, 2015) of natural scenes (Figure 1A). 105 patches
were used to train models corresponding to three encoding
schemes: ICA, SC, and STDP. Each model used a specific
procedure for implementing the LGN processing and learning
the synaptic weights between the LGN and V1 (see Figure 1B and
section “Materials and Methods”).

Receptive Field Symmetry
As expected, units in all models converged to oriented, edge-
detector like RFs. While the RFs from ICA (Figure 2B) and
SC (Figure 2C) were elongated and highly directional, STDP
(Figure 2A) RFs were more compact and less sharply tuned.
This is closer to what is observed from simple-cell recordings
in the macaque (Ringach, 2002) where RFs show high circular
symmetry, and do not seem to be optimally tuned for edge-
detection (see Jones and Palmer, 1987 for similar data measured
in the cat). To obtain a quantitative measure of this phenomenon,
we fit Gabor functions to the RFs and considered the frequency-
normalised spread vectors or FSVs of the fit (Eq. 9). The first
component (nx) of the FSV characterises the number of lobes
in the RF, and the second component (ny) is a measure of
the elongation of the RF (perpendicular to carrier propagation).
A considerable number of simple-cell RFs measured in macaque
tend to fall within the square bounded by nx = 0.5 and
ny = 0.5. The FSVs of a sample of neurones (N = 93)
measured in the macaque V1 (Ringach, 2002) indicate that 59.1%
of the neurones lay within this region (Figure 2D). Since they

are not elongated, and contain few lobes (typically 2–3 on/off
regions), they tend to be compact – making them less effective
as edge-detectors compared to more crisply tuned, elongated
RFs. Amongst the three encoding schemes, while a considerable
number of STDP units (82.2%) tended to fall within these realistic
boundaries, ICA (10.7%) and SC (4.0%) showed a distinctive shift
upwards and to the right. This trend has been observed in a
number of studies using models based on ICA and SC (see, e.g.,
Rehn and Sommer, 2007; Puertas et al., 2010; Zylberberg et al.,
2011).

The inlays in Figure 2D provide estimations of the probability
densities of two FSV parameters for the macaque data and the
three models. An interesting insight into these distributions is
given by the KL divergence (Table 1). KL divergence (Eq. 12) is
a directed measure which can be interpreted as the additional
number of bits required if one of the three models were used
to encode data sampled from the macaque distribution. The KL
divergence for the STDP model was found to be 3.0 bits indicating
that, on average, it would require three extra bits to encode
data sampled from the macaque distribution. In comparison,
SC and ICA were found to require 8.4 and 14.6 additional bits,
respectively. An examination of the KL divergence of marginal
distributions of the FSV parameters showed that STDP offers
excellent encoding of both the nx (number of lobes) and the ny
(compactness) parameter. ICA does not encode either of the two
parameters satisfactorily, while SC performance is closer to the
STDP model (especially for parameter nx).

Orientation Selectivity
Given this sub-optimal, symmetric nature of STDP RF shapes,
we next investigated how this affected the responses of these
neurones to sharp edges. In particular, we were interested
in how the orientation bandwidths of the units from the
three models would compare to biological data. Given the RF
shape, we hypothesised that orientation selectivity would be
worse for STDP compared to the ICA and SC schemes. To
test this hypothesis, we simulated a typical electrophysiological
experiment for estimating orientation tuning (Figure 3A). To
each unit, we presented noisy SWGs at its preferred spatial
frequency and recorded its activity as a function of the stimulus

TABLE 1 | Kullback–Leibler (KL) divergence of the distribution of macaque
frequency-normalised spread vectors (FSVs) from the models.

ICA SC STDP

Joint distribution[
nx ny

]T 14.6 8.4 3.0

Marginal distributions

nx 7.6 1.4 1.3

ny 14.0 3.8 0.4

The receptive-field (RF) shape of the neurones from the models and measurements
in macaque V1 (Ringach, 2002) was parametrised by estimating the frequency-
normalised spread vectors (FSVs). FSVs are characterised by two parameters
nx and ny : nx is proportional to the number of lobes in the receptive field, and
ny is modulated by its elongation perpendicular to the direction of periodicity.
The KL divergence reflects the number of additional bits required to encode the
parameter(s) of interest from the macaque data using the distributions from one of
the three models (ICA, SC, or STDP). All values are in bits.
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FIGURE 3 | Orientation encoding. (A) Orientation tuning. Sine-wave gratings with additive Gaussian noise were presented to the three models to obtain single-unit
orientation tuning curves (OTCs). OTC peak identifies the preferred orientation of the unit, and OTC bandwidth (half width at 1/

√
2 peak response) is a measure of its

selectivity around the peak. Low bandwidth values are indicative of sharply tuned units while high values signal broader, less specific tuning. (B) Single-unit tuning
curves. RF (left) and the corresponding OTC (right) for representative units from ICA (top row, green), SC (second row, blue), and STDP (bottom row, pink). The
bandwidth is shown above the OTC. (C) Population tuning. Estimated probability density of the OTC bandwidth for the three models (same colour code as panel B),
and data measured in macaque V1 (black) (Ringach et al., 2002). Envelopes around solid lines show 95% confidence intervals estimated using a bootstrap
procedure. All simulations shown here were performed at an input SNR of 0 dB.

orientation. This allowed us to plot its OTC (Figure 3B) and
estimate the tuning bandwidth, which is a measure of the local
selectivity of the unit around its peak – low values corresponding
to sharply tuned neurones and higher values corresponding to
broadly tuned, less selective neurones. For each of the three

models, we estimated the pdf of the OTC bandwidth, and
compared it to the distribution estimated over a large set of data
(N = 308) measured in macaque V1 (Ringach et al., 2002)
(Figure 3C). We found that ICA and SC distributions peaked at
a bandwidth of about 10◦ (ICA: 9.1◦, SC: 8.5◦) while the STDP
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FIGURE 4 | Orientation decoding. (A) Retrieving encoded information. Sine-wave gratings (SWGs) with varying degrees of additive Gaussian noise were presented
to the three models. The following question was then posed: how much information about the stimulus (in this case, the orientation) can be decoded from the
population responses? The theoretical limit of the accuracy of such a decoder can be approximated by estimating the Fisher information (FI) in the responses. In
addition, a linear decoder was also used to directly decode the population responses. This could be a downstream process which is linearly driven by the population
activity, or a less-than-optimal “linear observer.” (B) Linear decoding. The responses of each model were used to train a linear-discriminant classifier. The ordinate
shows the accuracy (probability of correct classification) for each level of added noise (abscissa). Results for ICA are shown in green, SC in blue, and STDP in pink.
(C) Post-training threshold variation in STDP. The SWG stimuli were also used to test STDP models with different values of the threshold parameter. The threshold
was either increased (by 25, 50, or 75%) or decreased (by 25, 50, or 75%) with respect to the training threshold (denoted by θo). The abscissa denotes the relative
change in threshold, and the ordinate denotes the estimated FI. The colour of the lines denotes the input SNR, which ranged from −6 dB (blue) to 6 dB (orange).

and macaque data showed much broader tunings (STDP: 15.1◦,
Macaque data: 19.1◦). This was also reflected in the KL divergence
of the macaque distribution from the three model distributions
(ICA: 2.4 bits, SC: 3.5 bits, STDP: 0.29 bits). Thus, while the
orientation tuning for STDP is much broader compared to ICA
and SC, it is also closer to measurements in the macaque V1,
indicating a better agreement with biology.

Decoding and Information Throughput
After characterising the encoding capacity of the models, we next
probed the possible downstream implications of such codes. The
biological goal of most neural code, in the end, is the generation of
behaviour that maximises evolutionary fitness. However, due to

the complicated neural apparatus that separates behaviour from
early sensory processing, it is not straightforward (or at times,
even possible) to analyse the interaction between the two. Bearing
these limitations in mind, we employed two separate metrics
to investigate this relationship. In both cases, the models were
presented with oriented SWGs, followed by a decoding analysis
of the resulting neural population activity (Figure 4A).

We examined the performance of a decoder built on linear
discriminant classifiers (these classifiers assume fixed first-order
correlations in the input). Such decoders can be interpreted
as linearly driven feedforward populations downstream from
the thalamo-recipient layer (the “V1” populations in the three
models), or a simplified, “linear” observer. Not surprisingly the
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accuracy of the three models increases with the SNR. We found
that SC was the most accurate of the three models under all
tested noise-levels, while ICA and STDP showed very similar
performances (Figure 4B). SC was also more robust to Gaussian
noise compared to both ICA and STDP. A major difference
between the three models tested in this study is that while ICA
and SC are based on linear generative units, the STDP model
has an intervening thresholding nonlinearity (Eq. 6). To test
the effect of this thresholding on the information throughput of
the STDP model, we ran simulations where, after training on
natural images, the value of the threshold parameter in the STDP
model was either increased or decreased (Eq. 11). The network
was presented with SWGs (same stimuli as Figure 4B), and the
average FI (Eq. 10) over the orientation parameter was estimated
for each simulation condition. Note that in all simulations the
model was first trained (i.e., synaptic learning using natural
stimuli, see Figure 1) using the same “training” threshold, and
the increase/decrease of the threshold parameter was imposed
post-convergence. The FI increased for thresholds lower than
the training threshold – possibly driven by an increase in the
overall activity of the network. On the other hand, increasing
the threshold led to lower FI due to the decreased bandwidth
of neural activity. Thus, it is indeed possible to manipulate the
information throughput of the spiking network by regulating the
overall spiking activity in the network. This trend was found to
occur robustly for all tested SNR values.

DISCUSSION

In this study, we showed that learning in a network with an
abstract, rank-based STDP rule can predict biological findings
at various scales. The FSVs of the converged RFs in the model
show strong similarities with single-cell data measured in the

macaque primary visual cortex, while the OTCs in the model
closely predict measured population tuning.

Optimality in Biological Systems
In neuroscience, normative schemes are typically used to relate
natural stimuli to an encoding hypothesis. Most normative
encoding schemes optimise a generative reconstruction of
the input by minimising an error metric (e.g., the L1 or
L2 losses) over a given dataset. An alternative approach to
studying stimulus encoding is through the use of process-
based schemes which model known biophysical mechanisms at
various levels of abstraction without making explicit assumptions
about optimality. Traditionally, process-based or mechanistic
schemes do not employ error metrics, and have been used to
study fine-grained neuronal dynamics (Kang and Sompolinsky,
2001; Moreno-Bote et al., 2014; Harnack et al., 2015). On
the other hand, normative schemes are employed to describe
population-level characteristics (Olshausen and Field, 1997; van
Hateren and van der Schaaf, 1998; Lee and Seung, 1999;
Hoyer and Hyvärinen, 2000). In this study, we show that
RFs predicted by a non-generative rank-based STDP rule are
closer to electrophysiological measurements in the macaque
V1 when compared to generatively optimal schemes such as
ICA and SC. While this study only employs the classical
variations of ICA and SC, subsequent work has demonstrated
that similar suboptimalities in RF shape can also be obtained
by generative models when biologically plausible nonlinearities
such as thresholding operations (Rehn and Sommer, 2007; Rozell
et al., 2008), or pointwise maxima operations (Puertas et al., 2010)
are introduced. However, the abstract rank-based STDP model
used here is free from generative optimisation and offers a much
more biologically plausible, normative description of “learning”

FIGURE 5 | Sparsity. (A) Sparsity indices. To estimate the sparsity of the non-spiking responses to natural stimuli, 104 patches (3◦ × 3◦ visual angle) randomly
sampled from natural scenes were presented to the three models. Two measures of sparsity were defined: Spatial sparsity Index (3S) was defined as the average
sparsity of the activity of the entire neuronal ensemble, while Temporal sparsity Index (3T ) was defined as the average sparsity of the activity of single neurones to the
entire input sequence. (B) Spatial sparsity. Estimated probability density of 3S for ICA (green), Sparse Coding (blue), and STDP (red). 3S varied between 0 (all units
activate with equal intensity) and 1 (only 1 u/U activates) by definition. (C) Temporal sparsity. Estimated probability density of 3T , shown in a manner analogous to
3S (panel B). 3T also varied between 0 (homogeneous activity for the entire input sequence) and 1 (activity only for few inputs in the sequence).
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through experience in the early visual system, where there is no
sensory “ground truth” to generate errors from.

Note that while process-based models can predict
suboptimalities observed in biological data, they cannot account
for the theoretical insights offered by generative normative
schemes. Local synaptic processes such as STDP can, in fact, be
viewed as neural substrates for the overall synaptic optimisation
employed by these schemes. The critique that gradient descent is
inherently biologically implausible is being challenged by recent
studies which frame error propagation and stochastic descent
in terms of local, biologically plausible rules (see, e.g., Lillicrap
et al., 2016; Melchior and Wiskott, 2019; Li, 2020). It has been
demonstrated that local plasticity rules can, in fact, be adapted to
describe various normative hypotheses about stimulus encoding
(Savin et al., 2010; Brito and Gerstner, 2016). A growing number
of insightful studies now employ hybrid encoding schemes which
address multiple optimisation criteria (Perrinet and Bednar,
2015; Martinez-Garcia et al., 2017; Beyeler et al., 2019), often
through local biologically realistic computation (Rozell et al.,
2008; Savin et al., 2010; Zylberberg et al., 2011; Isomura and
Toyoizumi, 2018).

Sparsity
Normative descriptions of the early visual system are grounded
in the idea of efficiency – in terms of information transfer,
and in terms of resource consumption. These assumptions,
in turn, determine the behaviour of population responses to
natural images. We quantified this behaviour by presenting the
converged models with patches randomly sampled from the
training dataset of natural images, and estimating the sparsity
of the resulting activations using the Gini coefficient (Eq. 13;
Hurley and Rickard, 2009). The sparsity was examined in two
contexts (Barth and Poulet, 2012) as shown in Figure 5A.
First, sparsity of the entire ensemble was estimated for each
presented stimulus – this is a measure of how many neurones,
on average, are employed by the ensemble to encode a given
stimulus (Eq. 14). Second, the sparsity of individual neurones
over the entire sequence of stimuli was estimated, allowing us
to infer how frequently the features selected/encoded by the
converged models occur in the sequence (Eq. 15). We denote
the former as spatial sparsity (3s), and the latter as temporal
sparsity (3t). For STDP, the indices were calculated for the
membrane potential to facilitate comparison with ICA and SC
activations. STDP membrane potential (red, Figure 5B) shows
high variability in 3s, whereas ICA (green) and SC (blue) show
much lower variance in comparison. This suggests that ICA
and SC converge to features such that each image activates
approximately equal number of units. On the other hand, the
sparsity of the STDP neurones is more variable and stimulus-
dependent, and likely driven by the relative probability of
occurrence of specific features in the dataset – thus reflecting
the Hebbian principal. ICA also exhibits a similar, small range
for temporal sparsity 3t (Figure 5C) – suggesting that ICA
encoding has uniform activation probability across its units. SC
and STDP, however, show a much broader range of temporal
sparsity across their units, with some units activating more
frequently as compared to others.

Taken together, this suggests that the ICA encoding scheme
converges to features such that the activation is distributed
uniformly across the units, both for a given stimulus, and across
multiple stimuli. This is likely to be driven by the objective
of minimising reconstruction loss while maintaining minimal
mutual information across the population. SC, on the other
hand, equalises the probability of firing over the population
for any given stimulus, but individual units may converge to
features which occur more or less frequently. Once again, this
behaviour is a consequence of the loss function which ensures
that the network activity is sparse for each stimulus, but does
not impose explicit constraints between the activity profile of
individual units. As the STDP model is unsupervised and does
not explicitly impose any generative loss function, we find high
variability in both the spatial and temporal sparsity of STDP
units. As shown in Figure 4C, this variability ensures that the
information throughput of the network can be modulated by
regulation of parameters such as the spiking threshold, even after
the initial training.

Emerging Technologies and
Process-Based Modelling in
Neuroscience
Traditionally, detailed process-based models have suffered from
constraints imposed by computational complexity, prohibitively
long execution times which do not scale well for large networks,
and hardware that is geared toward synchronous processing.
On the other hand, most normative models can leverage
faster computational libraries and architectures which have
been developed over several decades, thereby leading to more
efficient and scalable computation. However, with the growing
availability of faster and more adaptable computing solutions
such as neuromorphic hardware (event-based cameras, spike-
based chips), and event-driven computational frameworks (e.g.,
Nengo: Bekolay et al., 2014; or Brian 2: Stimberg et al., 2019),
implementations of such models are becoming increasingly
accessible and scientifically tractable. These frameworks can be
used not only to investigate detailed biophysical models or
create biologically relevant machine and reinforcement learning
pipelines, but to also investigate normative neuroscientific
hypotheses which require unsupervised learning. In the future,
we hope process-based modelling will be adopted more widely by
cognitive and computational neuroscientists alike.
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Accelerating Hyperparameter Tuning
in Machine Learning for Alzheimer’s
Disease With High Performance
Computing
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Driven by massive datasets that comprise biomarkers from both blood and magnetic
resonance imaging (MRI), the need for advanced learning algorithms and accelerator
architectures, such as GPUs and FPGAs has increased. Machine learning (ML) methods
have delivered remarkable prediction for the early diagnosis of Alzheimer’s disease (AD).
Although ML has improved accuracy of AD prediction, the requirement for the complexity
of algorithms in ML increases, for example, hyperparameters tuning, which in turn,
increases its computational complexity. Thus, accelerating high performance ML for
AD is an important research challenge facing these fields. This work reports a
multicore high performance support vector machine (SVM) hyperparameter tuning
workflow with 100 times repeated 5-fold cross-validation for speeding up ML for AD.
For demonstration and evaluation purposes, the high performance hyperparameter tuning
model was applied to public MRI data for AD and included demographic factors such as
age, sex and education. Results showed that computational efficiency increased by 96%,
which helped to shed light on future diagnostic AD biomarker applications. The high
performance hyperparameter tuning model can also be applied to other ML algorithms
such as random forest, logistic regression, xgboost, etc.

Keywords: machine learning, hyperparameter tuning, alzheimer’s disease, high performance computing, support
vector machine

INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia. In 2020, as many as 5.8 million
Americans were living with AD. This number is projected to nearly triple by 2060 (Prevention, 2021).
Machine Learning (ML) methods for AD and AD Related Dementias (ADRDs) is growing faster
than ever before (Waring et al., 2008; Magnin et al., 2009; O’Bryant et al., 2011a; O’Bryant et al.,
2011b; O’Bryant et al., 2013; O’Bryant et al., 2014; Weiner et al., 2015; O’Bryant et al., 2016; O’Bryant
et al., 2017; Grassi et al., 2018; Hampel et al., 2018; O’Bryant et al., 2018; Stamate et al., 2019;
Zetterberg and Burnham, 2019; Zhang and Sejdić, 2019; Franzmeier et al., 2020; O’Bryant et al., 2020;
Rodriguez et al., 2021). A PubMed search using keywords of AD and ML showed that the number of
publications related to ML for AD has increased by 146 percent from just two in 2006 to 294 in 2020.
For example, O’Bryant et al. developed a Support Vector Machine (SVM) model with 398 plasma
samples obtained from adults with Down syndrome to predict incident mild cognitive impairment
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(MCI) (AUC � 0.92) and incident AD (AUC � 0.88) (O’Bryant
et al., 2020). O’Bryant et al. also developed a precision medicine
model for targeted NSAID therapy in AD based on data collected
from a previously conducted clinical trial. This work included 351
patients with mild-to-moderate AD that were enrolled into one of
three trial arms: 1-year exposure to rofecoxib (25 mg once daily),
naproxen (220 mg twice-daily) and placebo. The SVM model
yielded 98% theragnostic accuracy in the rofecoxib arm and 97%
accuracy in the naproxen arm, respectively (O’Bryant et al., 2018).
Magnin et al. also built a SVMmodel with three-dimensional T1-
weighted MR images of 16 patients with AD and 22 elderly
controls and obtained a 94.5%mean accuracy for ADwith amean
specificity of 96.6% and mean sensitivity of 91.5% (Magnin et al.,
2009).

Improving speed and capability is a huge issue in applying ML
to AD. It is possible that certain ML computations can be delayed
because of the large amount of time to iteration that is required,
for example, time to train with hyperparameters tuning. High
performance computing (HPC) can be used to help meet the
increasing demands for the speed and capabilities of processing
ML for AD (Eddelbuettel, 2021). With the fast processing ability
of high-performance computing systems, faster results can be
delivered, which in turn would not only speed up finding the
optimal hyperparameters for AD with ML models but would also
identify opportunities to fix issues in hyperparameter tuning for
AD ML models.

In this paper, based on the multicores parallel structure of
Talon3 high performance computing provided by the University
of North Texas, we present a high performance computing
workflow to support our parallel SVM hyperparameter tuning.
We applied the multicore high performance SVM
hyperparameter tuning to 100 times repeated 5-fold cross-
validation model for longitudinal MRI data of 150 subjects
with 64 subjects classified as demented and 86 subjects
classified as nondemented. The computational time was
dramatically reduced by up to 96% for the high performance
SVM hyperparameter tuning model. The multicores parallel
structure and the high performance SVM hyperparameter
tuning model can be used for other ML applications.

MATERIALS AND METHODS

Parallel Structure
We used the Talon3 system (Table 1) provided by University
of North Texas for this study due to its convenient computing

services, which allowed us to import/export/execute large and
complex parallel ML. The hardware configuration of the
Talon3 contains the following: more than 8,300 CPU cores,
150,000 GPU cores, Mellanox FDR InfiniBand network, and
over 1.4 Petabytes of Lustre File Storage. The amount of AD
data necessary for performing ML with a PC workstation is
massive. For example, in one study with 300 samples, to
process just the 100 times repeated 5-fold cross-validation
for hyperparameters tuning with SVM, it would require about
3 h of consecutive CPU time and 12 GB of storage with a local
computer.

For parallel computing, the Talon3 provides several options
including: SNOW, Rmpi, and multicore. We chose multicore
because it executes parallel tasks on a single node as opposed to
multiple nodes and the level of flexibility is higher than the
other two options. For multicore parallel programming,
submitting high performance ML includes two parts: a shell
script and an R script. The shell script we submitted for
multicore is for a single node with 28 cores in C6320. And
for the R script high performance ML, we used doParallel
(Michelle Wallig et al., 2020; Eddelbuettel, 2021) and foreach
(Michelle Wallig and Steve, 2020; Eddelbuettel, 2021)
packages.

Parallel SVM Hyperparameter Tuning
Based on the above parallel structure in Talon3 and doParallel
package, we developed a high performance computing workflow
to support our parallel SVM hyperparameter tuning (Figure 1).
We used a grid search approach to find the best model parameters
in terms of accuracy. This procedure mainly contains three steps:
1) define a grid to vary cost and gamma, 2) perform 100 times

TABLE 1 | Talon3 computer nodes.

Quanity Memory (GB) Cores Description

192 64 28 Dell PowerEdge C6320 server with two 2.4 GHz Intel Xeon E5-2680 v4 14-core processors
75 32 16 Dell PowerEdge R420 server with two 2.1 GHz Intel Xeon E5-2450 eight-core processors
64 64 16 Dell PowerEdge R420 server with two 2.1 GHz Intel Xeon E5-2450 eight-core processors
8 512 32 Dell PowerEdge R720 server with four 2.4 GHz Intel Xeon E5-4640 eight-core processors
16 64 28 Dell PowerEdge R730 server with two 2.4 GHz Intel Xeon E5-2680 v4 14-core processors and two Nvidia Tesla K80 GPUS

(4,992 GPU cores/card)

TABLE 2 | Performance for testing set after hyperparameter tuning.

Actual demented Actual nondemented

Predicted demented 9 1
Predicted nondemented 3 16

Precision/PPV 90.00%
Accuracy 86.21%
Sensitivity 75.00%
Specificity 94.12%
NPV 84.21%
AUC 90.80%
PPV12 63.49%
NPV12 96.50%
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repeated 5-fold cross-validation splits on training data, and 3)
tune the cost and gamma of the SVM model.

100 Times Repeated 5-Fold
Cross-Validation
A single run of the 5-fold cross-validation (O’Bryant et al.,
2019) may result in a noisy estimate of model parameters. We
adopted 100 times repeated 5-fold cross-validation (Kublanov
et al., 2017) to improve the estimation of optimal parameters of
the ML model. This involves simply repeating the cross-
validation procedure 100 times and reporting the mean
performance across all folds from all runs. This mean
performance is then used for the determination of optimal
parameters.

Metrics
The following eight measurements were involved in our
evaluation: 1) Sensitivity (also called recall), the
proportion of actual positive pairs that are correctly
identified; 2) Specificity, the proportion of negative pairs
that are correctly identified; 3) Precision, the probability of
correct positive prediction; 4) Accuracy, the proportion of
correctly predicted pairs; 5) Area Under the Curve; 6)
Negative Predictive Value (NPV), the probability that
subjects with a negative screening test truly don’t have the

disease; 7) Negative Predictive Value at base rate of 12%
(NPV12); and 8) Positive Predictive Value at base rate of 12%
(PPV12).

RESULTS

We downloaded open access longitudinal MRI data available on
nondemented and demented older adults (Marcus et al., 2010a).
The dataset consisted of longitudinal MRI data from 150 subjects
aged 60 to 96. 72 of the subjects were classified as “nondemented”
throughout the study. 64 of the subjects were classified as
“demented” at the initial visit and remained so throughout the
study. 14 subjects were classified as “nondemented” at the initial
visit and were subsequently characterized as “demented”at a later
study visit. For each subject, three to four individual T1-weighted
magnetization prepared rapid gradient-echo (MP-RAGE) images
were acquired in a single imaging session (Marcus et al., 2010b).
The subject-independent model we developed for parallel
hyperparameter tuning is not based on a classifier trained for
each subject individually. We chose the following five imaging
and clinical variables to predict the status of AD: SES
(Socioeconomic Status), MMSE (Mini Mental State
Examination), eTIV (Estimated Total Intracranial Volume),
nWBV (Normalize Whole Brain Volume), and ASF (Atlas
Scaling Factor). Measurements of these variables in this cohort

FIGURE 1 | Pseudo code for parallel SVM hyperparameter tuning.
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including clinical dementia rating scale (CDR), nWBV, eTIV,
ASF, etc. have been previously described elsewhere (Marcus et al.,
2010b). Three demographic variables: Sex, Age, and Edu (Years of
education) were also added as covariates.

We used sbatch commands to submit shell scripts and R scripts
for comparing computational time for hyperparameter tuning under
different number of cores and repeated times of 5-fold cross-
validation in Talon3. With SVM modeling, we demonstrate in
Figure 2 how the number of cores affects the computational time
of hyperparameter tuning, which shows that the computational time
decreases proportionally as the number of cores increases. Figure 2
also demonstrates that the repeated times of the 5-fold cross-
validation algorithm for hyperparameter affects the computational
time. The computational time increased proportionally with the
increasing repeated times. The time spent initially for the
hyperparameter tuning without using high performance
computing is very large (140.73min for t � 100; 11.58min for t �
10). The computational time decreased to 5.44 and 0.67min, for t �
100 and for t � 10 respectively, when we used 28 cores to accelerate
hyperparameter tuning in ML. We thereby reduced computational
time by up to 96%, with high performance ML model.

The optimal hyperparameters we obtained are the same for all
runs (gamma � 0.005, cost � 32). We used grid search method
and set boundary for the two parameters: cost and gamma as
suggested in the paper (Hsu et al., 2003) where fine grid search
was on cost � (2, 32) and gamma � [2̂(−7), 2̂(−3)]. We extended

the cost boundary to (0.25, 512) and the gamma boundary to (0,
10) to catch as much change as possible. Variables importance
under the SVM model with the optimal hyperparameters shows
that the MMSE, nWBV, and SES are leading variables in
predicting dementia (AD) status. Out of the three
demographic variables, education was shown to be less
important for the SVM model than Age and Sex.

With the optimal hyperparameters, the average performance
that the SVMmodel achieved for a testing set of 12 Demented and
17 Nondemented is reported on below for both 100 times
repeated 5 -fold cross-validation and 10 times repeated 5 -fold
cross-validation. The performance (Table 2) is slightly higher
than previously reported at https://www.kaggle.com/hyunseokc/
detecting-early-alzheimer-s, which achieved accuracy � 0.82,
sensitivity � 0.70, and AUC � 0.82 for SVM. Our results show
that the high performance SVMhyperparameter tuning workflow
that we presented can significantly reduce computational time
while maintaining the necessary accuracy.

In order to demonstrate the extensibility of our
hyperparameter tuning workflow to other ML models, we also
followed the SVM hyperparameter tuning workflow (Figure 3)
and adopted random forest into our parallel hyperparameter
tuning workflow (Figure 4). We obtained consistent results that
the computation time for hyperparameter tuning of random
forest was also remarkedly reduced (Figure 5). The
computational time was reduced from 47.67 to 2.24 min by

FIGURE 2 | Computational time vs. number of cores with SVM modeling.
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95% and from 5.25 min to 18.17 s by 94%, for t � 100 and t � 10
respectively.

We also tested the adaptability of our hyperparameter tuning
workflow to the Texas Alzheimer’s Research and Care
Consortium (TARCC) dataset (Zhang et al., 2021). The
TARCC dataset contains a total of 300 cases (150 AD cases;
150 Normal Control cases). Each subject (at one of the five
participating TARCC sites) undergoes an annual standardized
assessment, which includes a medical evaluation,
neuropsychological testing, and a blood draw. The same
blood-based biomarkers in (Zhang et al., 2021) were used as
features for parallel hyperparameter tuning. Even when adopting
a new TARCC dataset into our parallel hyperparameter tuning
workflow (Figure 1), we obtained consistent results, which
showed that the computation time for the hyperparameter
tuning of the new TARCC dataset was also remarkedly
reduced by about 96%. The computational time was reduced
from 311.5 to 12.48 h by 96% and from 34.03 to 1.6 h by 95%, for
t � 100 and t � 10 respectively.

DISCUSSIONS

HPC advances have successfully helped scientists and researchers
to achieve various breakthrough innovations in the field of

Omics-medicine, technology, retail, banking and so on
(Merelli et al., 2014). For example, HPC has been applied to
Next Generation Sequencing that is extremely data-intensive and
needs ultra-powerful workstations to process the ever-growing
data (Schmidt and Hildebrandt, 2017). Hyperparameter tuning
component of ML can be a high-performance computing
problem as it requires a large amount of computation and
data motion. ML requires a computationally-intensive grid
search and lots of computational power to help enable faster
tuning cycles. Introducing HPC toML can take advantage of high
volumes of data as well as speed up the process of hyperparameter
tuning.

Therefore, we presented a parallel hyperparameter tuning
workflow with HPC to exploit modern parallel infrastructures
to execute large-scale calculations by simultaneously using
multiple compute resources. The rationales are 1) the foreach
package that the workflow is based on supports parallel execution
and provides a new looping construct for executing R code
repeatedly. Specifically, a problem is broken into discrete parts
that can be solved concurrently and an overall control/
coordination mechanism is employed; 2) the foreach package
can be used with a variety of different parallel computing systems,
include NetWorkSpaces and snow; and 3) foreach can be used
with iterators, which allows the data to be specified in a very
flexible way.

FIGURE 3 | Pseudo code for parallel RF hyperparameter tuning.
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The multicore high performance SVM hyperparameter tuning
workflow we presented is hardware-agnostic and can be used in
HPCs of most U.S. universities or commerical clouds for example,
Amazon AWS, Microsoft Azure, Google Cloud, etc. Before
executing the multicores high performance SVM hyperparameter
tuning, R package (V4.0.3, Linux) and doParallel and foreach
libraries should be installed successfully, which are met for HPCs
inmost U.S. universities or commerical clouds. There aremainly two
of the most popular job schedulers used for requesting resources
allocations on a multi user cluster: 1) the Simple Linux Utility for
Resource Management (Slurm) and 2) the Portable Batch System
(PBS). In Figure 6, we described the shell script for parallel

computing for the Slurm system. Similary a shell script for
parallel computing for PBS system is as followed.

The multicore high performance SVM hyperparameter tuning
workflow significantly reduced computational time while
maintaining a consistent detection accuracy. The workflow was
diagrammed through a multicore computing pseudo code using
the doParallel package in R for high performance hyperparameter
tuning. The basic idea of multicore computing is to allow a single
program, in this case R, to run multiple threads simultaneously in
order to reduce the “walltime” required for completion. The
doParallel package in R is one of several “parallel backends” for
the foreach. It establishes communication between multiple cores,
even on different physical “nodes” linked by network connections.
The foreach function evaluates an expression for each value of the
counter (iterator) “case”. The %dopar% operator is used to execute
the code in parallel. Using %do% instead would lead to sequential
computation by the primary process. When parallelizing nesting for
loops, there is always a question of which loop to parallelize. If the
task and number of iterations vary in size, then it’s really hard to
knowwhich loop to parallelize.We parallelized the outer loop in our
SVM hyperparameter tuning because this would result in larger
individual tasks, and larger tasks can often be performed more
efficiently than smaller tasks. The hyperparameter tuning could be
parallelized at the inner loop also if the outer loop doesn’t havemany
iterations and the tasks are already large.

The multicores high performance hyperparameter tuning
workflow can also be used for other ML such as random forest,
logistic regression, xgboost, etc. For example, we demonstrated that a
random forest model can be adopted into our parallel
hyperparameter tuning model (Figure 3) and the results we
obtained were consistent in that the computation time for
hyperparameter tuning of random forest models were remarkedly
reduced (Figure 7). In the future, we plan to use Rmpi library to
create multinodes parallel computing workflow for hyperparameter
tuning when Talon3 supports multinodes parallel computing to run
R script.

FIGURE 4 | R script for parallel computing.

FIGURE 5 | Variable importance of the eight variables.

FIGURE 6 | Shell script for parallel computing.
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Our optimal hyperparameter model also showed that MMSE,
Age, Sex, nWBV, and SES are important variables in AD
diagnosis, which is consistent with previous findings. For
example, Arevalo-Rodriguez et al. found that baseline MMSE
scores can achieve a sensitivity of 76% and specificity of 94% for
predicting conversion from MCI to dementia (in general) and a
sensitivity of 89% and specificity of 90% for predicting conversion
from MCI to AD dementia (Arevalo-Rodriguez et al., 2015).
Advanced age and sex are two of the most prominent risk factors
for dementia. Females are more likely to be susceptible for
developing AD dementia than males (Podcasy and Epperson,
2016). Podcasy at Penn PROMOTES Research on Sex in Health
and examined sex and gender differences in the development of
dementia and suggested that researchers should consider sex as a
biological variable for dementia research (Podcasy and Epperson,
2016). Rose et al. evaluated the combination of cerebrospinal fluid
biomarkers with education and normalized whole-brain volume
(nWBV) to predict incident cognitive impairment (Roe et al.,
2011). They concluded that time to incident of cognitive
impairment is moderated by education and nWBV for
individuals with normal cognition had higher levels of
cerebrospinal fluid tau and ptau at baseline (Roe et al., 2011).
Khan et al. and Leong et al. assessed the role of various features on
the prognosis of AD, and found that sex, age, MMSE, nWBV, and
SES were significantly associated with and made an impact on the

occurrence of AD (Leong and Abdullah, 2019; Khan and Zubair,
2020).
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Growing evidence suggests that excitatory neurons in the brain play a significant role in
seizure generation. Nonetheless, spiny stellate cells are cortical excitatory non-pyramidal
neurons in the brain, whose basic role in seizure occurrence is not well understood. In
the present research, we study the critical role of spiny stellate cells or the excitatory
interneurons (EI), for the first time, in epileptic seizure generation using an extended
neural mass model inspired by a thalamocortical model originally introduced by another
research group. Applying bifurcation analysis on this modified model, we investigated
the rich dynamics corresponding to the epileptic seizure onset and transition between
interictal and ictal states caused by EI connectivity to other cell types. Our results
indicate that the transition between interictal and ictal states (preictal signal) corresponds
to a supercritical Hopf bifurcation, and thus, the extended model suggests that before
seizure onset, the amplitude and frequency of neural activities gradually increase.
Moreover, we showed that (1) the altered function of GABAergic and glutamatergic
receptors of EI can cause seizure, and (2) the pathway between the thalamic relay
nucleus and EI facilitates the transition from interictal to ictal activity by decreasing
the preictal period. Thereafter, we considered both sensory and cortical periodic inputs
to study model responses to various harmonic stimulations. Bifurcation analysis of the
model, in this case, suggests that the initial state of the model might be the main cause
for the transition between interictal and ictal states as the stimulus frequency changes.
The extended thalamocortical model shows also that the amplitude jump phenomenon
and non-linear resonance behavior result from the preictal state of the modified model.
These results can be considered as a step forward to a deeper understanding of the
mechanisms underlying the transition from normal activities to epileptic activities.

Keywords: neural mass model, bifurcation analysis, linear/non-linear resonance, excitatory interneurons, preictal
state

INTRODUCTION

Epilepsy is one of the most common disorders of the central nervous system (CNS), which causes
sudden abnormal and synchronized brain activities, resulting in seizures. Interactions between
excitatory and inhibitory neurons shape mainly brain activities, and some transitory disparity in
the inhibitory/excitatory balance can trigger a seizure. One-third of people with epilepsy are likely
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to have drug-resistant epilepsy, and treatments such as surgery or
stimulation-based treatments like deep brain stimulation (DBS)
can be considered for these kinds of drug-resistant patients
(Shan et al., 2021). A seizure can be composed of four distinct
states including preictal, ictal, interictal, and postictal. The
preictal state appears before the seizure begins and indicates that
seizures do not simply start out of nothing. Experimental studies
(Bartolomei et al., 2004; Huberfeld et al., 2011) on human tissue
and intracranial EEG signals have shown that preictal spikes
are distinguishable from ictal and interictal signals. The preictal
signal can be used to predict seizure occurrence. Understanding
the mechanism of generation of the preictal period opens the
way for a more precise seizure prediction and thereby more
reliable automatic interventions to prevent the seizure occurrence
(Moghim and Corne, 2014).

Different seizures can be categorized into focal and generalized
onset seizures. Tonic, clonic, and absence seizures are the
generalized onset types of seizures, and they occur when a
widespread activity triggers in both hemispheres of the brain
(Scheffer et al., 2017). Furthermore, there are two groups of
seizures that have known hemispheric origins, i.e., generalized
and focal onset seizures (Fisher, 2017). Both groups are
categorized into two subclasses: motor and non-motor seizures.
Both subclasses have several motor seizure types in common
(e.g., tonic and clonic seizures). However, each type has different
manifestations and symptoms. On the other hand, absence
seizures are among well-known non-motor generalized onset
seizure groups that are also considered as sensory and emotional
seizures (Fisher, 2017). In tonic–clonic seizures, a clonic activity
follows the tonic activity. Electrophysiological observations have
shown the two-way transition between absence and tonic–clonic
seizures (Mayville et al., 2000), and dysfunction of the cortical
and/or thalamic circuitries is believed to produce the absence,
clonic, and tonic epileptic activities, together with transitions
between them. Recorded electroencephalogram (EEG) signals
indicate that seizures can vary in frequency contents. A typical
absence seizure can be considered as approximately synchronous
spike and wave discharges (SWD) with a frequency of 2∼4 Hz,
but atypical absence seizures (another kind of non-motor
generalized onset seizures) show different frequency ranges (<2
and >4 Hz) (Velazquez et al., 2007). A tonic seizure is a fast-
spiking activity (>14 Hz) with low amplitude, and a clonic seizure
is slow-wave activity (approximately 3 Hz) with high amplitude.

Several studies have shown that interneurons are cell types,
which play key roles in the initiation and termination of epileptic
seizures (Khan et al., 2018; Tran et al., 2020). Interneurons in
the cortex not only control the activity of pyramidal neurons
but also receive thalamic relay nucleus inputs. Therefore,
they are important factors in transferring and integrating the
sensory information coming from the thalamus to the cortex
(Danober et al., 1998). Interneurons are traditionally regarded
as inhibitory neurons, but more precisely, there are two kinds
of interneurons in the CNS, i.e., excitatory and inhibitory
interneurons. Inhibitory interneurons use the neurotransmitter
gamma-aminobutyric acid (GABA) or glycine, and excitatory
interneurons (EI) are spiny stellate cells in the neocortex of
the human brain and use glutamate as their neurotransmitters

(Okhotin, 2006). A study on the human brain (Steriade and
Contreras, 1998) has shown that the neurons in the neocortex
play a crucial role in SWD. Another study on the juvenile mice
using multi-photon imaging (Neubauer et al., 2014) suggested
that the neocortex has an intrinsic predisposition for seizure
generation and pathological recruitment of the thalamus into
joint synchronous epileptic activities. A genetic mutation study
on mice has shown that in the spiny stellate cells (in the
neocortex), an alteration in the kinetic of N-methyl-D-aspartate
receptors (NMDA) was sufficient to cause neuronal hyper-
excitability leading to epileptic activity in the brain (Lozovaya
et al., 2014). An experimental study on monkeys has shown
that synchronous discharges of EI could spread the epileptic
activity in the brain, and EI could play an important role in the
initiation and propagation of SWD, in which the spike is because
of the extracellularly synchronous and powerful depolarization
of EI, and the wave is because of the inhibitory interneurons.
Therefore, SWD can be generated as a result of the interactions
between inhibitory and EI (Steriade, 1974). Nevertheless, it is
not well understood how EI in the neocortex of the human
brain can explicitly cause a seizure. Therefore, understanding the
epileptogenic role of the EI in the neocortex of the human brain
is crucial to deepen our knowledge about neocortical epilepsy.

On the other hand, computational modeling of epilepsy
has provided dynamic insights into the mechanism underlying
the transition from normal to epileptic activities. Fan et al.
(2015) used a modified computational field model of a cortical
microzone and showed that the two-way transitions between
absence and tonic–clonic epileptic seizures are induced by
disinhibition between slow and fast inhibitory interneurons.
Nevertheless, they ignored the role of thalamic circuitry and
its interaction with the cerebral cortex in the proposed
computational model, whereas, in Zhang et al. (2015) and
Law et al. (2018) it is shown that the mechanism of seizures
depends on the dysfunctionality in the function of the thalamus
and or cortex. Experimental evidence suggests that interactions
between the thalamus and cerebral cortex influence the initiation
and propagation of SWD (Pinault and O’Brien, 2005). For
that reason, Taylor et al. (2014) developed a thalamocortical
model to investigate the SWD generation. Liu and Wang (2017)
introduced a thalamocortical model inspired by the model
developed by Taylor et al. (2014) and Fan et al. (2015). In their
model, they considered the dual pathways between fast and
slow inhibitory interneurons in the cortex and simulated normal
activity, clonic, absence, and tonic seizures. However, none of
the models mentioned above did consider the EI population in
the thalamocortical circuitry, and therefore, they did not study
the role of the EI population in transition from the interictal to
the ictal state.

In the present study, we modified and extended a
thalamocortical model, originally proposed by Liu and Wang
(2017). The original model describes absence, tonic, clonic, and
tonic–clonic seizure generation. That is one of the reasons we
chose this model and extended it to investigate the role of EI
on seizure onset using dynamical analysis. For this purpose, we
introduced an additional group of interneurons into the model,
which was excitatory and considered their interactions with
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pyramidal neurons, inhibitory interneurons, and thalamic relay
nucleus in the brain. As will be shown, this model not only is
capable of producing different types of epileptic seizures such as
absence, clonic and tonic, but also generates the preictal period.
The original model of Liu and Wang (2017) does not describe
the preictal period.

The organization of the paper is as follows. In section
“Materials and Methods,” the modified epileptic dynamical model
inspired by the model proposed in Liu and Wang (2017) is
introduced. Then, in section “Results,” we first explore the role
of impairment in the activity of the EI in interictal to ictal
transition. Using the modified model, we investigate the role
of GABAergic and glutamatergic receptors of EI in seizure
generation and transition between interictal and ictal states.

Through numerical simulations and bifurcation analysis, we
show that dysfunction of excitatory and inhibitory receptors of
EI leads to interictal to ictal transition. Moreover, we investigate
the effect of impairments in the interactions between the thalamic
relay nucleus and EI and we will investigate how they give
rise to interictal to preictal transition and also facilitate the
occurrence of an epileptic seizure. Then, we investigate the
behavior of the extended model in a more general framework
when the EI function properly, but there are dysfunctions in
the thalamus, more exactly in the synaptic strength between
the thalamic relay nucleus and reticular nucleus. Finally, in
section “Discussion,” we examine the frequency responses of the
modified thalamocortical model subjected to various sensory and
cortical periodic inputs to identify the effect of various stimuli on

FIGURE 1 | Schematic of the thalamocortical model including the excitatory interneuron population in the cortex. The model involves cortical and thalamic
subnetworks. In the cortical subnetwork, PY is the pyramidal neuronal population, EI is the excitatory interneurons population, and I1 and I2 are the fast and slow
inhibitory interneurons populations, respectively. In the thalamic subnetwork, TC is the thalamic relay nucleus population and RE is the thalamic reticular nucleus
population. Green arrows define the excitatory glutamatergic receptor. Red solid and dashed arrows define the GAGAA and GABAB inhibitory receptors, respectively.
The value of parameters of this model are as follows: cpy_py = 1.89, cpy_i1 = 4, ci1_py = 1.8, cre_re = 0.01, ctc_re= 10, cre_tc= 1.4, cpy_tc= 3, cpy_re = 1.4, ctc_py = 1,
cpy_i2 = 1.5, ctc_i1 = 0.05, ctc_i2 = 0.05, cei_i1 = 0.05, cei_py = 0.442, ci2_py = 0.05, ci2_i1 = 0.1, ci1_i2 = 0.5, cNpy_py = 1, cNtc_tc = 1, tau1 = 21.5, tau2 = 31.5,
tau3 = 0.1, tau4 = 4.5, tau5 = 3.8, tau6 = 3.9, hpy = –0.4, hi1 = –3.4, hi2 = –2, hei = –1, htc = –2.5, hre = –3.2, ε = 250,000, atc = 0.02, apy = 0.02, BNpy = 0.7, and
BNtc = 0.1. These parameters were obtained by trials and error such that the dynamic behavior of the model (i.e., the bifurcation diagrams) was the same as the
original model developed by Liu and Wang (2017).
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epileptic seizures. The obtained results show that the model starts
its non-linear resonator behavior when the shift from normal
activity to preictal state takes place. Therefore, the amplitude
jump phenomenon corresponding to chaotic behavior takes place
before the onset of a seizure.

MATERIALS AND METHODS

Model Structure
Recent studies Jiang et al. (2018) and Zhang et al. (2020) have
shown that during generalized seizures, dysfunctionality has been
identified in the thalamocortical network. Therefore, both the
cortex and thalamus play an important role in seizure generation.
Accordingly, we modified the thalamocortical model of Liu
and Wang (2017) and as shown in Figure 1. This model is a
neural mass model, which considers the inhibitory and excitatory
neuronal populations and their connections in the brain. The
cortical section of this model includes excitatory pyramidal
neuron population (PY) and mutual fast and slow inhibitory
interneuron populations (I1, I2) having inhibitory GABAA and
GABAB receptors. Activation of ionotropic GABAA receptors
causes fast inhibitory postsynaptic potentials (IPSPs) by allowing
the influx of Cl− into the postsynaptic cells, while activation
of metabotropic GABAB receptors mediates a slow inhibition
by inducing K+ efflux. The thalamic subsystem includes a
population of excitatory thalamic relay nucleus (TC) and the
inhibitory population of neurons located in the reticular nucleus
(RE). To investigate the effect of spiny stellate cells on seizure
onset, we considered the EI population, EI, in our thalamocortical
model (see Figure 1). In this new model version, we will
investigate the synaptic connectivity strength of EI to explore
dynamics, which lead to preictal state and dynamics during
transitions between absence, tonic, and clonic seizures.

In this thalamocortical model, we analyze the interactions
between neuronal populations in the network by varying the
strength of the synaptic connections. These synaptic connections
are associated with the type of receptors. In the brain, receptors
are either excitatory (glutamatergic) or inhibitory (GABAergic).
In the cortex, the pyramidal population is excitatory n and there is
a mutual excitatory connection between pyramidal and EI by the
glutamatergic receptors (Feldmeyer et al., 2002). Excitatory and
inhibitory interneurons are locally (Sun et al., 2006), and based
on this fact, we consider an excitatory and inhibitory connection
between EI and fast inhibitory interneurons. The thalamus is
globally connected to the EI by the thalamic relay nucleus, and
the thalamic relay nucleus is regarded as an excitatory population
(da Costa and Martin, 2011). Here, we consider an excitatory
connection from the thalamic relay nucleus population to the EI.

The thalamic relay nucleus receives all the sensory
information from different parts of the brain, and then this
information is sent to the appropriate area in the cortex for
further processing (Taylor et al., 2015; Castejon et al., 2016).
Here, we investigate the dynamic of the extended model when it
receives cortical and sensory inputs. In this regard, we consider
an input (Ntc) to the thalamic relay nucleus by adding a periodic
sensory input with frequency ftc, bias BNtc, and amplitude atc.

Moreover, we consider a cortical input (Npy) to the pyramidal
neuronal population by adding a biased sinusoidal waveform
with bias of BNpy, frequency of fpy, and amplitude of apy.

We implement the model using equations developed by Liu
and Wang (2017) and the Amari neural field equations (Amari,
1977) (for the EI population). The differential equations of the
model are given below.

dPY
dt
= tau1 (hpy−PY+cpy_py f (PY)−ci1_py f (I1)

+ctc_py f (TC)−ci2_py f (I2)+cei_py f (EI) )+Npy (1)

dI1
dt
= tau2 (hi1 − I1+ cpy_i1 f (PY)− ci2_i1 f (I2)

+ctc_i1 f (TC)+ cei_i1 f (EI)) (2)

dI2
dt
= tau3 (hi2 − I2+ cpy_i2 f (PY)− ci1_i2 f (I1)

+ctc_i2 f (TC)) (3)

dEI
dt
= tau4 (hei − EI + cpy_ei f (PY)− ci1_ei f (I1)

+ ctc_ei f (TC)) (4)

dTC
dt
= tau5 (htc − TC + cpy_tc f (PY)− cre_tc f (RE))

+ Ntc (5)

dRE
dt
= tau6 (hre − RE+ cpy_re f (PY)− cre_re f (RE)

+ ctc_re f (TC)) (6)

Npy = BNpy + apy sin(2π fpy t) (7)

Ntc = BNtc + atc sin(2π ftc t) (8)

Model Output = (PY + I1+ I2+ EI)/4 (9)

Dimensionless parameters c1,...,16,iny,ei,in1,in2 are the
connectivity parameters, which determine the coupling strength
between the populations, and hpy,i1,i2,ei,tc,re are input parameters,
tau1,2,...,6 are time scale parameters, and f(x) = 1/(1+ε−x) is
the transfer function, where ε determines the steepness and
x = PY,I1,I2,EI,TC and RE. Npy (cortical input) and Ntc (sensory
input) are inputs to the pyramidal population and thalamic
relay nucleus population, respectively. These parameters were
obtained by trials and error such that the dynamic behavior
of the model (i.e., the bifurcation diagrams) has a similar
mechanism as the model developed by Liu and Wang (2017).
The output of the model is taken as the mean activity of the four
cortical populations.

Simulations
Simulations are performed by the standard fourth-order
Runge–Kutta integration using MATLAB 9.4 and the MatCont
environments, with a step size of 0.0039 s. We set the time
window at 60 s and use the last 2 s of the time series to analyze
the stable state of the time domain and the deterministic behavior
of the model. We use the frequency domain and time domain
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analyses to explore the transitions from interictal to ictal states.
We extract the dominant frequency (the frequency that carries
the maximum energy) from the power spectral density using
the fast Fourier transform, and for the bifurcation analysis,
we extract the extrema (local maximum and minimum) of the
mean of four cortical populations from the time series. By doing
so, we can observe seven different epileptic activities such as
interictal state (or the normal background activity), preictal
state, which occurs before the seizure onset, slow rhythmic
activity that can be observed at seizure onset or during the
seizures, typical absence seizures, atypical absence seizures,
and tonic and clonic seizures. For 1D bifurcation diagrams
(sections “Transition Dynamics Produced by GABAergic
Receptor-Mediated Inhibition in EI,” “Transition Dynamics
Produced by Glutamatergic Receptor-Mediated Excitation in
Excitatory Interneurons,” and “Transition Dynamics Produced
by Glutamatergic Receptor-Mediated Excitation in Reticular
Nucleus”), we obtain the maximum and minimum of model
output as we change the bifurcation parameter. For hybrid
bifurcation analysis (section “Hybrid Cooperation of GABAergic
and Glutamatergic Receptors of EI in Epileptic Transition
Dynamics”) when both of the parameters of cpy_ei and ci1_ei are
changed, we computed the local maxima, local minima, and
frequency of the last two seconds of the model output, and then
we sorted the local maxima and minima from large to small to
obtain the largest (Pmax1) and the smallest (Pmax2) maxima
and the largest (Pmin1) and the smallest (Pmin2) minima. We
summarized our categorization in Table 1.

RESULTS

In this section, the role of EI in transition from interictal to ictal
and the frequency response of the thalamocortical model, when it
receives sensory and cortical inputs, are examined using various
bifurcation analyses and dynamical simulations. In section
“Transition Dynamics,” to explore the transition dynamics of the
model we assume that the inputs of the model are constant, i.e.,
Npy = BNpy and Ntc = BNtc. In section “Frequency Analysis
of the Different Initial States of the Model,” for investigating the
frequency response of the model, a sinusoidal waveform signal is
added to both sensory and cortical inputs, that is, Npy = BNpy +

apy sin(2 fpy t) and Ntc = BNtc + atc sin(2ftc t).

Transition Dynamics
EI are connected to the pyramidal neurons and fast inhibitory
interneurons by glutamatergic and GABAergic receptors,
respectively. The synaptic strength is not static, and the changes
in the neurotransmitters released by the excitatory and inhibitory
neurons in the brain can result in short-term or long-term
changes in synaptic strength. Antiepileptic drugs either block
glutamatergic receptors or facilitate the function of GABAergic
receptors, which result in a change in the glutamatergic
and GABAergic neurotransmitter release (Rogawski, 2011;
Vashchinkina et al., 2014). Moreover, a ketogenic diet can
bring about the altered function of receptors and change in
neurotransmitter release (Zhang et al., 2018). Experimental

studies have shown that changes in the function of GABAergic
and glutamatergic receptors in the cortex of rats can be seen in
genetic absence, tonic, and clonic seizure onset (Cortez et al.,
2004; Jones et al., 2008; Errington et al., 2011). However, the
transition dynamics from interictal to ictal and transitions
between absence, tonic, and clonic seizures caused by the
abnormalities in glutamatergic and GABAergic receptors of EI
are still unclear. In this section, by using bifurcation analysis, we
explore the effect of impairment in the function of GABAergic
and glutamatergic receptors of the EI population on the epileptic
dynamics of the model as the synaptic strengths ci1−ei and cpy−ei
change, respectively.

Transition Dynamics Produced by GABAergic
Receptor-Mediated Inhibition in Excitatory
Interneurons
Increasing the GABAergic inhibition is traditionally believed
to suppress epileptic seizures; however, a computational study
has shown that before seizure onset, the activity of GABAergic
interneurons increases, leading to synchronous neuronal activity
and epileptic seizures (Rich et al., 2020). Based on an
experimental study on humans, antiepileptic drugs such as
midazolam that increase the GABAergic neurotransmitters
in the brain can trigger seizure (Montenegro et al., 2001).
Abnormality in GABAA receptors brings about a shift in the
chloride reversal potential in neurons, which in turn results in
changing the behavior of GABA from inhibitory to excitatory
behavior and cause seizure (Khalilov et al., 2003). Therefore,
the role of GABAergic receptor epileptic seizures is more
complex than one could assume that they have only inhibitory
roles and anticonvulsant agents always inhibit their function.
Here, we investigate the effect of increasing inhibitory function
of GABAergic receptors of EI in the neocortex on seizure
generation. We explore the epileptiform activity induced by the
dysfunction of the GABAergic receptor of the EI population
as the synaptic strength ci1−ei changes. Results of Figure 2
show that the model displays rich dynamics as the parameter
ci1−ei varies.

In Figure 2, the overall bifurcation is shown in detail
for variations of ci1−ei as the bifurcation parameter. In the
bifurcation diagram from left to right, the red line corresponds
to the stable fixed points, which are related to the normal
background activity (Figure 2A), and upon increasing ci1−ei to
∼0.349, a stable fixed point coalesces with a stable limit cycle
and a supercritical Hopf bifurcation point (H1) happens; with
increasing of ci1−ei to ∼0.355, a period doubling bifurcation
(PD1) occurs, which forms the preictal spike patterns (transition
from normal background activity to ictal activity, Figure 2B).
With a further increase of the ci1−ei parameter to∼0.37, another
period doubling bifurcation (PD2) happens and the transition
from preictal state to clonic seizure takes place and shapes clonic
seizure patterns (Figure 2C). In addition, as ci1−ei is increased
up to ∼0.458, the first fold limit cycle bifurcation (LPC1) occurs,
and another fold limit cycle bifurcation (LPC2) takes place with
further increase in ci1−ei. With the coexistence of two stable
limit cycles in the range of ci1−ei bounded by twofold limit
cycle bifurcations (LPC1 and LPC2), a bistable region appears

Frontiers in Neuroscience | www.frontiersin.org 5 December 2021 | Volume 15 | Article 74372067

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-743720 December 20, 2021 Time: 15:31 # 6

Tabatabaee et al. Spiny Stellate Cells in Epilepsy

TABLE 1 | Specific characteristics of seven simulated signals.

Type of the signal Dominant frequency range The largest (Pmin1) and the smallest
minima (Pmin2)

The largest (Pmax1) and the smallest
maxima (Pmax2)

Normal background activity DF = 0 Hz – –

Preictal spikes DF < 3.5 Hz Pmin1-Pmin2 < 0.2 0.01 < Pmax1-Pmax2 < 0.12

Slow rhythmic activity DF < 15 Hz – –0.8 < Pmax1 <–0.1

Typical absence seizure DF ∈ [2,4] Hz 0.004 < Pmin1-Pmin2 –

Atypical absence seizure DF > 4 Hz and DF < 2 Hz 0.01 < Pmin1-Pmin2 –

Clonic seizure DF ∈ [2,4] Hz Pmin1-Pmin2 < 0.15 0.01 < Pmax1-Pmax2

Tonic seizure DF ≥ 14 Hz Pmin1-Pmin2 < 0.01 0.01 < Pmax1-Pmax2

Dominant frequency, the largest minima, the largest maxima, the largest minima, and the largest maxima are characteristics used to separate seven different mean
activities of the cortical populations.

FIGURE 2 | Bifurcation diagram and corresponding time series of the model output for different values of ci1_ei. The model output is defined as the mean value of the
output voltage of PY, I1, I2, and EI populations. The bifurcation diagram of the model (left) is calculated and plotted for ci1_ei as the bifurcation parameter and with
cpy_ei = 0.8, ctc_ei = 4.5, atc = 0, and apy = 0. We also set atc = 0 and apy = 0. In the plot, blue and green cycles represent the unstable and stable limit cycles,
respectively, and red and black lines represent the stable and unstable equilibrium points, respectively. According to the diagram as the parameter ci1_ei changes, the
model produces (A) normal background firing, (B) preictal spikes, (C) clonic discharges, (D) SWD, (E) slow rhythmic activity, and (F) tonic discharges. LPC1, LPC2,
and LPC3 are fold limit cycle bifurcation, H1 and H3 are supercritical Hopf bifurcation, H2 is subcritical Hopf, and PD1 and PD2 are periods of doubling bifurcations.

and creates the coexistence of two different amplitude SWD
patterns (Figure 2D). Moreover, stable points appear again at
ci1−ei around 0.508, where the first subcritical Hopf bifurcation
(H2) takes place, and another bistable region turns out with
coexistence of stable fixed points and a stable limit cycle until
the third fold limit cycle bifurcation (LPC3) at ci1−ei ∼ 0.611
takes place. Upon increasing the ci1−ei, the stable focus points,
which are corresponding to slow rhythmic activity, take place
(Figure 2E), and then at ci1−ei ∼ 0.634 another supercritical

Hopf bifurcation (H3) happens and shapes the tonic seizure
patterns (Figure 2F).

Transition Dynamics Produced by Glutamatergic
Receptor-Mediated Excitation in Excitatory
Interneurons
Studies have shown that antiepileptic drugs that are expected
to reduce excitation in the brain, on the contrary, can have a
paradoxical effect and brings about an aberrant synchronization
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FIGURE 3 | Bifurcation diagram and corresponding time series of the model output for different values of cpy−ei. The bifurcation diagram of the model is calculated
and plotted for cpy−ei as the bifurcation parameter with ci1−ei = 0.3 and ctc−ei = 4.5. We also set atc = 0 and apy = 0. In the bifurcation plot, blue and green cycles
represent the unstable and stable limit cycles, respectively, and red and black lines represent the stable and unstable points, respectively. It can be found from the
bifurcation diagram that as the parameter cpy−ei decreases, (A) normal background firing (interictal), (B) preictal spikes, (C) clonic discharges, (D) SWD, and (E)
slow rhythmic activity and tonic discharges can appear. (F) Tonic discharges. LPC1, LPC2, and LPC3 are fold limit cycle bifurcation, H1 and H3 are supercritical
Hopf bifurcation, H2 is subcritical Hopf, and PD1 and PD2 are period-doubling bifurcations.

in neural activity (Chaves and Sander, 2005; Thomas et al., 2006).
Based on the in vitro study on mice in the neocortex, impairment
in glutamate release, which is either due to the decreased function
of glutamate receptors or due to loss of glutamate receptors,
causes the generalized absence and tonic–clonic epileptic seizures
(Seal et al., 2008). A study on the neocortex of mice (Maheshwari
et al., 2013) has shown that the paradoxical seizure exacerbation
effect of the antiepileptic medication can be explained by the
unintended suppression of inhibitory interneurons following the
NMDA receptor blockade. Additionally, in an in vivo study
on a mouse model of tuberous sclerosis complex (TSC), the
mutation in either TSC1 or TSC2 can disturb the function of
NMDA receptors in the EI, which in turn can cause a shift from
normal activity to ictal activity (Lozovaya et al., 2014). However,
the mechanisms underlying the transition from interictal to
ictal activities associated with glutamatergic receptors on EI
remained unclear. Here, we take cpy−ei as the growing bifurcation
parameter to investigate the dynamics of a model to explore
the epileptiform activity induced by the glutamatergic receptor
function of EI. According to Figure 3, by gradually decreasing
the EI excitability in the cortex, we can observe rich epileptiform
transition dynamics.

According to the bifurcation diagram in Figure 3, from right
to left, we can observe the normal background activity, preictal
spikes, clonic seizures, absence seizures, slow rhythmic activity,
and tonic seizures, respectively, combined with corresponding
time series, as the parameter cpy−ei decreases. Hence, suppression
of glutamatergic receptors on EI can lead to the transition from
interictal to preictal signals, and also transition between epileptic
seizures. With decreasing synaptic strength cpy−ei, the system
encounters normal background activity (Figure 3A) for the
normal value of cpy−ei. As cpy−ei becomes smaller, a supercritical
Hopf bifurcation point (H1) happens and the stable fixed points
become unstable at cpy−ei ∼0.74. Upon approach of cpy−ei to
∼0.73, a period-doubling bifurcation (PD1) takes place and
shapes the two-amplitude preictal spike pattern (Figure 3B).
With further decrease of the cpy−ei parameter to ∼0.72, another
period-doubling bifurcation (PD2) happens and then starts to
form clonic seizure patterns (Figure 3C). In addition, with a
further decrease in the cpy−ei parameter to ∼0.678, a bistable
region including two stable limit cycles takes place between
the first- and second-fold limit cycle bifurcations (LPC1 and
LPC2) and shapes the SWD patterns (Figure 3D). As the
cpy−ei parameter decreases to ∼0.591, the first subcritical Hopf
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bifurcation (H2) occurs and the stable points appear again. The
second bistable region consists of stable focus points and a stable
limit cycle happens between the subcritical Hopf bifurcation (H2)
and the third fold limit cycle (LPC3) until cpy−ei is approaching
to ∼0.532. Upon decreasing the cpy−ei parameter, slow rhythmic
activity (Figure 3E) happens, and then at cpy−ei ∼0.451 the
second supercritical Hopf bifurcation (H3) arises from the steady
state and shapes the tonic seizure patterns (Figure 3F).

Altogether, this model showed that impairment of GABAergic
or glutamatergic receptors in the EI population causes the
transition from normal background activity to seizures (preictal
signal) and the transition between absence, tonic, and clonic
seizures. This model shows the possible existence of supercritical
Hopf bifurcation with growing amplitude oscillations when the
transition from interictal to ictal states occurs. In order to
have a deeper understanding of the interictal to ictal transition
dynamics, we investigate the bifurcation of the cortical and
sensory input frequencies in our model.

Hybrid Cooperation of GABAergic and Glutamatergic
Receptors of Excitatory Interneurons in Epileptic
Transition Dynamics
The genesis of generalized seizures requires interdependencies
in different thalamocortical connections. Studies on genetic
rat models have shown that the increasing excitatory coupling
strength from the thalamus to the cortex may facilitate the
maintenance and propagation of absence seizures (Sitnikova
et al., 2008; Lüttjohann and Pape, 2019). However, based on
the paradoxical behavior of glutamatergic and GABAergic
receptors discussed in sections “Transition Dynamics Produced
by GABAergic Receptor-Mediated Inhibition in Excitatory
Interneurons,” and ““Transition Dynamics Produced by
Glutamatergic Receptor-Mediated Excitation in Excitatory
Interneurons,” here, we explore the effect of decreased
glutamatergic synaptic strength from the thalamus to the
neocortex on seizure propagation using the extended model.
In this section, we investigate the effect of a dual collaboration
of intra-EI GABAergic and glutamatergic synaptic strength
in the cortex on the transition between different kinds of
activity, either from interictal to ictal signal or from absence
seizure to tonic and clonic seizures. Moreover, we explore the
influence of the TC to EI pathway dominated by glutamatergic
receptors on the initiation and propagation of epileptic activities
based on the altered ratio of the dual cooperation of intra-EI
GABAergic and glutamatergic receptors in the cortex. According
to Figure 4, the pattern evolutions for different values of
ctc−ei are obtained to investigate the state transition produced
by this model and their corresponding dominant frequency
distributions as the parameters of cpy−ei and ci1−ei varies in
region [0.1,0.9]× [0.2,0.9].

For higher values of synaptic strength like ctc−ei = 4.5
(Figures 4A,B), this model demonstrates seven different types of
activities, when ci1-ei varies from 0.2 to 0.9. We denoted these
seven activities as follows: type1, normal background activity
(DF = 0 Hz in Figure 4B); type2, preictal activity (DF < 3.5 Hz in
Figure 4B); type6, clonic seizure (DF≤ 7 Hz in Figure 4B); type5,
atypical absence seizure (DF > 4 Hz and DF < 2 Hz in Figure 4B);

type4, typical absence seizure (2 Hz < DF < 4 Hz in Figure 4B);
type3, slow rhythmic activity (DF = 0 Hz in Figure 4B); type7,
tonic seizure (DF ≥ 14 Hz in Figure 4B). Upon decreasing
the synaptic strength ctc−ei from 4.5 to 4 (Figures 4C,D), one
can see that the surface of the yellow region (atypical absence
seizure; Type5) and red region (tonic seizure; Type7) increases
with the reduction level of excitation of intra-EI. Accordingly,
the regions correspond to normal background activity (Type1),
preictal activity (Type2), clonic seizure (Type6), typical absence
seizure (Type4), and slow rhythmic activity (Type3) decreases.
Biologically, decreasing the excitatory coupling strength from TC
to EI interrupts the normal activity of the thalamic relay nucleus
in the thalamocortical network. This interruption facilitates the
transition from interictal to ictal, i.e., with the increasing of
cpy−ei and ci1−ei from their normal state, the transition from
normal background activity to ictal activity and also the transition
between clonic, absence, and tonic seizures can occur more easily.
Upon further decreasing of ctc−ei to 3.5 (Figures 4E,F), the
yellow and red regions correspond to atypical absence seizure
(Type5) and tonic seizure (Type7) extend, respectively. However,
the whole other regions decrease, which shows that the transition
from normal background activity to epileptic seizure activities
in this model can be influenced by the intra-EI GABAergic and
glutamatergic receptors in the cortex under the impact of the
thalamus to the cortex synaptic strength.

In summary, the intra-EI GABAergic and glutamatergic
receptors in the cortex can elicit seven different kinds of activity
in this model under the effect of excitatory synaptic strength
from TC to EI. The lower excitatory synaptic strength of ctc−ei,
in the model causes a faster transition from interictal to ictal
state. This implies the important role of the thalamus to cortex
synaptic strength in the initiation and maintenance of generalized
epileptic seizures.

Transition Dynamics Produced by Glutamatergic
Receptor-Mediated Excitation in Reticular Nucleus
Increasing the GABAergic inhibition is predominantly believed
to suppress epileptic seizures; however, studies (Klaassen et al.,
2006; Cope et al., 2009; Wong, 2010) have reported that
enhanced GABAergic inhibition in the brain promotes seizure
as well. The reticular nucleus (RE) is mainly composed of
inhibitory interneurons that their epileptogenic role in seizure
is investigated by Liu and Wang (2017) in their thalamocortical
model. Liu and Wang (2017) did not consider the EI population
in their model when they investigated the role of TC to RE
synaptic strength in epileptic activities. Therefore, here, we
investigate how the strength of the excitatory synapses of TC
affects the function of the inhibitory reticular nucleus population
in seizure generation in the presence of EI. By increasing the
strength of the excitatory synapses from TC to RE, we increase the
inhibitory behavior of RE in the proposed thalamocortical model.
In Figure 5, we show that the proposed model demonstrates
a rich dynamic and that the transition from interictal to ictal
occurs when we increase ctc−re. In Figure 5, from left to right,
first, we observe the normal background activity. After increasing
the parameter ctc−re to ∼9.4, the transition from steady state
to the limit cycle of preictal (supercritical Hopf bifurcation H1)
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FIGURE 4 | Hybrid modulation of the model. Patterns of evolutions of the model states are shown when the glutamatergic and GABAergic synaptic strength of EI
(cpy−ei, ci1−ei) in the cortex are changed. Each row corresponds to a given TC to EI excitatory synaptic strength (ctc−ei). The left column shows the states (normal or
epileptic activities), and the right column shows the dominant frequencies (DF) of the model output. We set atc = 0 and apy = 0. The various activities (A,C,E) and
their corresponding dominant frequencies (B,D,F) with decreasing excitatory synaptic strength ctc−ei from top to bottom, 4.5, 4, and 3.5, respectively, are shown.
The model produces different firing states with variation of cpy−ei and ci1−ei. These states are normal background firing (Type1; DF = 0 Hz), preictal activity (Type2;
DF < 3.5 Hz), slow rhythmic activity (Type3; DF = 0 Hz), typical absence seizure (Type4; 2 Hz < DF < 4 Hz), atypical absence seizure (Type5; DF > 4 Hz and
DF < 2 Hz), clonic seizure (Type6; DF ≤ 7 Hz), and tonic seizure (Type7; DF ≥ 14 Hz). The black horizontal and vertical arrows represent the transition routes from
the normal state to the pathological states.

happens. Further increasing the ctc−re to ∼9.58 and 9.63, the
first and second period-doubling bifurcations (PD1, PD2) take
place, respectively. After PD2, the limit cycles corresponding to

clonic seizure take place. With increasing of ctc−re to ∼10.1 the
first fold limit cycle (LPC1) and then at ctc−re ≈ 10.3 the second
fold limit cycles (LPC2), the model generates the first bistable
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FIGURE 5 | The bifurcation diagram for the bifurcation parameter ctc−re.
Other parameters of the model are cpy−ei = 0.75, ci1−ei = 0.33, and
ctc−ei = 4.2. We also set atc = 0 and apy = 0. In the bifurcation diagram, blue
and green cycles represent the unstable and stable limit cycles, respectively.
The red and black lines represent the stable and unstable points, respectively.
LPC1, LPC2, and LPC3 are fold limit cycle bifurcation, H1 and H3 are
supercritical Hopf bifurcation, H2 is subcritical Hopf, and PD1 and PD2 are
period doubling bifurcations.

region between LPC1 and LPC2, which shape the limit cycle
corresponding to absence seizure activity. The second bistable
region occurs between the subcritical Hopf bifurcation H2 at
∼10.6 and the third fold limit cycle LPC3 at ∼11.9. Then, at
ctc−re ≈ 11.8 the transition from limit cycles of absence seizures
and steady state occurs. Upon increasing of ctc−re to ∼12.1, the
transition from the stable equilibrium to the limit cycle of tonic
seizure happens. By increasing the parameter ctc−re to 9.5, we
can observe the first supercritical Hopf bifurcation (H1) and
the transition from interictal to preictal state. Then by further
increasing ctc−re and inducing more impairment in the TC to RE
pathway, we can observe that limit cycles correspond to clonic
and absence seizures, respectively.

Frequency Analysis of the Different Initial
States of the Model
According to clinical observations, sensory (Dawson, 1947)
and cortical (Bezard et al., 1999) stimulations can provoke
epileptic seizures. Therefore, in this section, we examine the
effect of sensory and cortical inputs in the interictal to ictal
transition using the extended thalamocortical model. Studies on
thalamocortical models (Haghighi and Markazi, 2017, 2019) have
shown that changes in the frequencies of cortical and sensory
periodic inputs can cause a transition from chaotic to periodic
activities in the output of the model. Therefore, we will first
examine the effect of frequencies of the cortical and sensory
inputs on the transition behavior of our model, and even more
importantly, we will discuss the effect of the initial state of the
model on this transition.

Figure 6 shows various bifurcation diagrams for different
initial states of the model, such as normal background activity

(interictal), preictal activity, and clonic, absence, and tonic
seizures. To change the initial state of the model, we used different
values for parameter cpy_ei. These values were selected using
the results of the bifurcation analysis shown in Figure 3, in
which cpy_ei is the bifurcation parameter. In Figures 6A,B, we
set cpy_ei = 0.76, which is in the range corresponding to interictal
activities. In Figures 6C,D, by decreasing the parameter cpy_ei
to 0.748, the initial state of the model corresponds to preictal
activities. In Figures 6E,F, we change the initial state of the model
to a clonic seizure state by decreasing the value of cpy_ei to 0.72. As
it is shown in Figures 6G–J, by further decreasing cpy_ei to 0.58
and then to 0.4, we set the model in absence seizure and then in
tonic seizure states, respectively.

On the other hand, for each state of the model, we changed
the frequencies of cortical and sensory periodic inputs separately
with a frequency step increment of 0.01 Hz. For the interictal
initial state (Figures 6A,B), the model shows a linear resonant
behavior with a resonant frequency of fpy ≈ 0.2 and ftc ≈ 4.7 as
the cortical and sensory input frequencies increase. The model, in
this case, behaves like a bandpass filter for the sensory input and
a low pass filter for the cortical input. For cpy_ei = 0.748, when
the frequency of cortical input is increased, a chaotic behavior
is resulted. In Figure 6C, with further increase in the cortical
input frequency (fpy), we notice a jump near the frequency of
fpy ≈ 1.7. Moreover, by increasing the frequency of the sensory
input, two jumps take place near the frequencies of ftc ≈ 1.8
and ftc ≈ 4 (Figure 6D). Then, upon increasing fpy and ftc, the
model returns to its normal periodic behavior. This observation
indicates that, when the initial state of the model changes from
normal background activity to preictal activity, the behavior
of the model changes from a linear resonator to a non-linear
resonator. In Figures 6E,F, where the model is in the clonic
seizure state, by increasing the frequencies of cortical and sensory
inputs, we observe that the model first displays a noticeable
chaotic behavior around 3 Hz, which is the main frequency of the
clonic seizure, and then returns to its expected periodic behavior.
In Figures 6G,H, when the model is in the absence seizure state,
increasing the cortical and sensory input frequencies yields two
chaotic behaviors with two different amplitude ranges; the reason
for this is the coexistence of the two different SWD patterns with
different amplitudes. This chaotic behavior can be seen around
the main frequency of absence seizure (fpy ∈ [2, 4]). As we can
see in Figures 6I,J, when the state of the model changes to tonic
seizure activities, we observe a chaotic behavior around the main
frequency of tonic seizure (fpy ≈ 16). As it is demonstrated
in Figures 6F,H,J, when the model is in the seizure activity
state, by increasing the frequency of sensory input, two peaks
in the frequency response of the model are observed. These two
peaks can be seen more clearly in tonic seizures (Figure 6J) and
correspond to the two jumps already observed in Figure 6D.

Figure 7 demonstrates the effect of the initial state of the
model on the transition between small-amplitude oscillation and
large-amplitude seizure activities, all in the time domain. We set
cpy_ei equal to 0.76 in order to adjust the model in its normal
state, and then we change the model state from interictal (normal
activity) to preictal activity by decreasing the cpy_ei parameter
to 0.748. In Figure 7A, the model receives a cortical input with
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FIGURE 6 | The bifurcation diagrams of the model output for different values of cpy−ei, when the frequencies of the cortical input (fpy) and sensory input (ftc) change.
Other parameters have the numerical values of ci1−ei =0.3 and ctc−ei =4.5. For the bifurcation diagrams shown in the left column (A,C,E,G,I), fpy is the bifurcation
parameter and atc has been set to zero; and for the bifurcation diagrams of the right column (B,D,F,H,J), ftc is the bifurcation parameter and apy is equal to zero.
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FIGURE 7 | The effect of state transition of the model on its output when the parameter of cpy_ei changes. The effect of the initial state of the model on the transition
between periodic signal and seizure when the cortical and sensory input frequencies are constant. In (A), we set the parameters of fpy = 1 Hz and atc = 0. In (B), we
set ftc = 1 HZ and apy = 0. The pattern of glutamatergic synaptic strength, cpy_ei, is presented on the right-hand side diagram.

a fixed frequency, fpy = 1 Hz, in the absence of sensory input.
However, in Figure 7B, we only consider the effect of the sensory
input on the output of the model and we set its frequency
ftc = 1 Hz. In Figures 7A,B, it is shown that based on the
bifurcation diagram of Figure 3, by changing cpy_ei from 0.76 to
0.748, the state transition from normal activity to typical absence
seizure activity occurs, and then it returns to the normal activity
as cpy_ei returns to its initial value.

DISCUSSION

Traditionally, mechanisms underlying seizures have been
considered to be due to increased excitation, decreased
inhibition, or even both of them resulting in hyper-excitability
and seizure generation. However, glutamatergic and GABAergic
neurotransmitters can exert paradoxical effects and cause
seizures. Antiepileptic drugs do not necessarily work by
decreasing excitation and increasing the inhibition of neural
activities. Studies Cossart et al. (2005), Fritschy (2008), Kaila
et al. (2014), Knoflach et al. (2016), and Trevelyan (2016) have
shown that some seizures occur when inhibition is enhanced
in the brain. Therefore, it might be oversimplifying if one
considers the role of GABAergic inhibition in the brain as
the only antiepileptics. In fact, understanding the seemingly
contradictory role of the excitatory and inhibitory neurons
in the brain can lead to new therapies for epileptic seizures.
Therefore, in the present study, we investigated the opposite
effect of GABAergic and glutamatergic receptors in seizure

onset through the dynamical analysis of an extended model. In
this direction, we proposed an extended neural mass model,
which considers the role of the spiny stellate cell population
connectivity with other cortical neural populations in different
states of seizure generation. The original thalamocortical model,
which was developed by Liu and Wang (2017), was modified and
extended and then used to simulate the preictal activity that has
a prevailing role in epileptic seizure prediction. Using this model,
we investigated the interactions between EI and the glutamatergic
pyramidal and inhibitory interneurons in the cortex, and how
they lead to epileptic seizures. This model enabled us to generate
preictal activities before the clonic seizure. To make this point
clearer, we calculated the bifurcation diagram of the output
of the model for ci1−py, as the bifurcation parameter, in two
cases: (1) without the EI population in the model and (2) at the
presence of EI. As one can see in Figures 8A,B by increasing the
inhibitory synaptic strength between PY and I1, first a clonic
seizure and then a tonic seizure occur. In Figure 8A, when
the EI population is not considered in the model, there exist
no preictal activities (please notice the high-amplitude clonic
activity after Hopf bifurcation H1). However, in Figure 8B, when
the role of EI in the model is considered, the preictal activity
emerges in the bifurcation diagram right after Hopf bifurcation
H1 (please notice the low-amplitude preictal activity after H1).
Therefore, one can conclude that although the order and list
of bifurcations that occur when the inhibition between fast
interneurons and pyramidal neurons increases are the same for
both cases (extended model and the original model developed
by Liu and Wang, 2017), the emergence of the preictal activities
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FIGURE 8 | (A) Bifurcation diagram of the output of the model when the excitatory interneurons are not considered in the model (parameters are set based on the
caption of Figure 1). The bifurcation parameter is the inhibition strength between I1 (fast interneurons) and PY (pyramidal) population (ci1_py). (B) Bifurcation diagram
of the output of the model when the excitatory interneurons are considered in the model (cpy_ei= 0. 8, ci1−ei= 0.3, ctc−ei= 4.5). The bifurcation parameter is the
inhibition strength between I1 (fast interneurons) and PY (pyramidal) population (ci1_py).

in the model depends on the EI. Without these neurons (and
certainly the feedback loop created by them), the model does not
show any preictal activities and the seizure starts abruptly.

Our results show the richness of the dynamics that the
proposed model can generate, including normal background
activity, preictal spikes, slow rhythmic activity, clonic seizure,
typical absence seizure, and tonic seizure, as we decreased and
increased the glutamatergic and GABAergic synaptic strengths
of the EI, respectively. Furthermore, bifurcation diagrams of
the model were obtained by varying the coupling strength of
GABAergic and glutamatergic receptors in EI. The diagrams in
Figures 2, 3, 5 show that the interictal to ictal transition occurs
when we increased the glutamatergic excitation and GABAergic
inhibition in the cortex. Based on our bifurcation diagrams,
pathological transitions are consequences of supercritical and
subcritical Hopf bifurcations as well as the fold limit cycle
bifurcation. The onset of preictal discharges is characterized by a
supercritical Hopf bifurcation. This results in a preictal activity,
which is characterized by growths in amplitude and frequency
of neural activities. As mentioned before, Liu and Wang (2017)
developed a thalamocortical model, which is originally inspired
by Taylor et al. (2014) and Fan et al. (2015) to study the
epileptogenic role of the synaptic strength between TC and ER
in the thalamus. Using that model, they did not consider the

spiny stellate cell population and its role in epileptic seizure
generation. One of the most important features lacking in their
results was the preictal state of the model. In fact, the model
was not able to generate the limit cycles of preictal state in
their bifurcation analysis when they investigated the excitatory
pathway from TC to RE. As a result, in their bifurcation diagrams
there was an abrupt appearance of ictal limit cycles after the
normal background activities. However, in Figure 5 we evaluated
the extended thalamocortical model in a more general framework
and we showed that this model is capable of generating the
preictal state when the synaptic strength from TC to RE is
changed. We showed that considering the role of EI was crucial
for the emergence of the preictal state. Using this model, we
demonstrated that ictal discharges do not appear abruptly after
a period of interictal activities. As it was shown in the bifurcation
diagrams (Figures 2, 3, 5), we can simulate the gradual increase
in frequency and amplitude from normal activities to ictal
activities. Consequently, the model demonstrates the key role
of the spiny stellate cells of the cortex in interictal to ictal
transition dynamics.

In order to have a deeper insight into the dynamics of
interictal to ictal transition, we also explored the effect of cortical
and sensory periodic (sinusoidal) inputs on the output of the
extended and modified model. Our simulation results reveal that
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the transition from normal activity to seizure activity occurs
when a perturbation in the dynamic structure of the model
relocates the model state from interictal to preictal state. Our
results show that during the preictal state, the extended model
is more susceptible to sensory and cortical inputs, which in turn
causes typical absence seizures. Moreover, the frequency response
of the model (Figure 6) makes it clear that model responses to the
cortical and sensory input are dependent on the initial state of the
model. According to the bifurcation analysis depicted in Figure 6,
when the model is in its normal state, it behaves as a linear
resonator. Therefore, when we stimulate the model with sensory
and cortical stimuli, the model output does not show a chaotic
behavior and comes back to its normal behavior as the input
cortical and sensory frequencies are increased. On the other hand,
when any impairments occur in the glutamatergic receptors of
the EI, these cause the model to enter the preictal state. Then, the
same sensory and cortical stimulations can cause the model to act
as a non-linear resonator and we can observe chaotic behaviors
and jump phenomenon. This non-linear behavior increases when
the initial state of the model changes to the ictal state. In general,
the cortical stimulations evoke more peak-to-peak amplitudes
of cortical output in this model, in comparison to sensory
stimulations, when it is in clonic and tonic seizure states. On the
contrary, the peak-to-peak amplitude of the model output when
it is in the seizure activity state is more intense when it receives
sensory stimulations. This demonstrates that absence seizures
are more sensitive to sensory stimuli than cortical stimulations.
Also, we investigated the effect of the initial state of the model
in absence seizure generation. As is shown in Figure 7, when
the extended model is in its normal state, we observe the low-
amplitude activities, which correspond to normal background
activity. However, by changing the model state from normal to
preictal state, we can observe that the absence seizures take place.
According to our observation, we suggest that alteration in the
initial states of the brain can be considered as one of the principal
causes of the absence and photosensitive seizures.

Finally, we examined the role of the thalamus in epileptic
seizure activities. We investigated the role of cooperation

of glutamatergic and GABAergic receptors of EI under the
effect of the thalamic relay nucleus (TC) in seizure generation
and propagation. As is shown in Figure 4, the results have
shown the dependence of cortical function on the thalamic
one in the initiation, propagation, and termination of epileptic
seizures. Recent studies Chang et al. (2020) and Prathaban and
Balasubramanian (2020) did not consider the thalamus and its
synaptic connectivity with other neuronal populations such as
EI in the cortical models they worked with. However, based on
the bifurcation analysis obtained from the hybrid modulation
of intra-EI excitatory and inhibitory synaptic strength in the
extended neural mass model, the pathway from the thalamic
relay nucleus to the EI facilitates the transitions between different
types of epileptic activities, either from interictal to ictal or
between clonic, absence, and tonic seizures. We believe that
these results provide useful insights for understanding more
thoroughly the function of the EI population and dynamics
caused by their connections to other populations in the
thalamocortical circuitry and the transitions between interictal
to preictal and ictal states. Therefore, the extended model
is more suitable to be used in epileptic seizure prediction
and abatement.
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Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. It is one of the
leading sources of morbidity and mortality in the aging population AD cardinal symptoms
include memory and executive function impairment that profoundly alters a patient’s
ability to perform activities of daily living. People with mild cognitive impairment (MCI)
exhibit many of the early clinical symptoms of patients with AD and have a high chance
of converting to AD in their lifetime. Diagnostic criteria rely on clinical assessment and
brain magnetic resonance imaging (MRI). Many groups are working to help automate
this process to improve the clinical workflow. Current computational approaches are
focused on predicting whether or not a subject with MCI will convert to AD in the future.
To our knowledge, limited attention has been given to the development of automated
computer-assisted diagnosis (CAD) systems able to provide an AD conversion diagnosis
in MCI patient cohorts followed longitudinally. This is important as these CAD systems
could be used by primary care providers to monitor patients with MCI. The method
outlined in this paper addresses this gap and presents a computationally efficient pre-
processing and prediction pipeline, and is designed for recognizing patterns associated
with AD conversion. We propose a new approach that leverages longitudinal data
that can be easily acquired in a clinical setting (e.g., T1-weighted magnetic resonance
images, cognitive tests, and demographic information) to identify the AD conversion
point in MCI subjects with AUC = 84.7. In contrast, cognitive tests and demographics
alone achieved AUC = 80.6, a statistically significant difference (n = 669, p < 0.05). We
designed a convolutional neural network that is computationally efficient and requires
only linear registration between imaging time points. The model architecture combines
Attention and Inception architectures while utilizing both cross-sectional and longitudinal
imaging and clinical information. Additionally, the top brain regions and clinical features
that drove the model’s decision were investigated. These included the thalamus,
caudate, planum temporale, and the Rey Auditory Verbal Learning Test. We believe
our method could be easily translated into the healthcare setting as an objective AD
diagnostic tool for patients with MCI.

Keywords: mild cognitive impairment, ADNI, longitudinal, deep learning, neuroimaging, clinical features,
multimodal
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive cognitive decline that
severely disrupts activities of daily living. It is estimated that
the number of people affected by AD will triple to over 120
million people by 2050, costing the United States alone billions
of dollars in healthcare expenses (Lane et al., 2018). Further,
no medications are currently available that can either reverse
or stop the cognitive decline in subjects with AD. There is
a clear need to develop novel treatments for those with AD.
To accomplish this, early detection and identification of AD
will facilitate the development of biomarkers and support the
discovery of novel molecules by providing the right population
for clinical trials.

Early dementia detection is paramount to decrease the chance
of further comorbidities and mortality (Ahmed et al., 2019).
This is especially relevant in clinical environments outside large
academic centers, such as community hospitals, where resources
are limited. Subjects with mild cognitive impairment (MCI)
have many of the neurological deficits found in AD subjects.
Additionally, about 10–15% of subjects with MCI will progress
to AD every year (Plassman et al., 2008). This estimate is
variable, with higher rates in clinical centers and some treatment
trials; and lower numbers in population-based studies. Hence,
subjects with MCI represent the perfect prodromal population
for the exploration of conversion biomarkers, which has been
one focus of the neurocognitive field (Desikan et al., 2010;
Jack et al., 2010; Landau et al., 2010; Young et al., 2014; Liu
et al., 2017; Ottoy et al., 2019; Giorgio et al., 2020). Creating
a computer-assisted diagnosis (CAD) tool would provide an
objective instrument for early AD diagnosis in patients with MCI.
The vast majority of community hospitals can perform basic
neuropsychological assessments and T1 magnetic resonance
imaging (MRI); as such, we propose a multi-modal approach
that combines both data sources to objectively and efficiently
confirm the AD diagnosis in patients with MCI (which are at high
risk of conversion).

For years, researchers have been investigating neuroimaging-
based biomarkers in conjunction with computational tools to
find early signs of AD within MCI subjects. Studies have
looked at the differences between all of the combinations
of healthy controls (CN), AD subjects, MCI subjects who
have converted to AD (cMCI), and MCI subjects who have
stayed stable (sMCI) (Mateos-Pérez et al., 2018). To determine
the crucial features of an MCI subject which eventually
converts to AD, we decided to focus on a cMCI vs. sMCI
comparison. Current works have combined many types of data
and a host of machine learning techniques. Recent papers
have used T1-weighted MRI images and linear support vector
machines (Sun et al., 2017; Tong et al., 2017), positron
emission tomography (PET) and random forests (Nozadi et al.,
2018), clinical information/neuropsychological measurements
with ensemble learning (Grassi et al., 2019), and T1-weighted
and diffusion MRI with linear models (Xu et al., 2019) to
predict MCI conversion. However, many of these techniques
require dimensionality reduction techniques, feature selection,
lengthy image pre-processing pipelines, and other tabular data

transformations that all require a priori hypotheses and increase
the model and hyperparameter search space (Moradi et al., 2015;
Ahmed et al., 2019).

Thus, scientists have turned to deep learning methods to
abstract some of these steps that may incur bias throughout
the pipeline. This class of models allows the incorporation
of different types of data that form complex, non-linear
relationships that could potentially provide more information
about the conversion risk of an MCI subject. Some of the
recent deep learning techniques for MCI classification use
multimodal data types. These include T1-weighted MRI imaging
with clinical variables (Spasov et al., 2019), cerebrospinal fluid
imaging and longitudinal brain volumetric features (Lee et al.,
2019a), T1-weighted and hippocampal imaging (Li et al., 2019),
and a recurrent neural network (RNN) structure that uses
cerebrospinal fluid, cognitive, and imaging biomarkers (Lee
et al., 2019b). Using an array of data has been shown to
have additive effects over using one data type alone for MCI
classification. Researchers are also interested in developing a
better understanding of the disease progression. Groups have
predicted MCI clinical trajectories through a longitudinal feature
framework (Bhagwat et al., 2018) and have used gray matter
density maps at multiple time points as inputs to an RNN
(Cui et al., 2019). This extension of data through time within
one subject’s trajectory has proven a complicated but necessary
problem to be able to incorporate all potential clinically available
data (Lawrence et al., 2017). This is a non-exhaustive list
of neuroimaging deep learning models for AD/MCI detection
and prediction, and we refer to recent comprehensive reviews
(Rathore et al., 2017; Ansart et al., 2021) for a complete
list. This body of work focuses on the prediction of future
AD in MCI subjects or diagnosis of AD using cohorts of
subjects included in studies after their AD diagnosis, and
therefore likely to have the disease for many years. To our
knowledge, limited to no attention has been given to the
development of automated CAD systems able to diagnose
the conversion from MCI to AD, in patient cohorts followed
longitudinally. This is important as these CAD systems could be
used by neurologists and non-specialized physicians to monitor
their MCI patients.

In our work, we propose to fill in this gap with a
model that combines multi-modal longitudinal data that
can be easily acquired in the vast majority of clinical
settings in the industrialized world (e.g., T1-weighted
magnetic resonance images, cognitive tests, and demographic
information). This model is based on a compact convolutional
neural network architecture that combines Attention and
Inception modules which is computationally efficient and
requires only linear registration between imaging time
points. We test the conversion diagnosis performance
of our model in a cohort of subjects that received a
confirmed AD diagnosis after having MCI in a previous
visit (cMCI) and subjects that remained with a stable
MCI diagnosis (sMCI). Our dataset has a relatively large
sample size (440 sMCI vs. 229 cMCI) compared to related
methodological studies, which has been a common criticism
(Mateos-Pérez et al., 2018).
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MATERIALS AND METHODS

Data
Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database1

in October 2019. The ADNI was launched in 2003 as a public–
private partnership led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), PET, other biological
markers, and clinical and neuropsychological assessment can be
combined to measure the progression of MCI and early AD.

Demographic information used in this study is displayed in
Table 1. The majority of subjects were categorized as white
(>93%) and non-Hispanic (>97%). Differences between sex
counts were tested using Fisher’s exact test, and differences in
baseline age, time between sessions, and years of education were
evaluated with Wilcoxon rank-sum tests. p-Values of less than
0.05 were considered statistically significant.

For each subject, T1-weighted structural magnetic resonance
images (MRI) were taken at two different time points in
addition to clinical and demographic variables (age, sex, and
years of education) available from ADNI. The clinical variables
included APOe4 genotypes, neuropsychological cognitive tests
like Montreal Cognitive Assessment (MoCA), Mini-Mental State
Exam (MMSE), and the Dementia Rating Scale (CDRSB),
the AD Assessment Scale (ADAS13, ADAS11, and ADASQ4),
memory evaluations from the Rey Auditory Verbal Learning
Test (RAVLT), and the functional activities questionnaire
(FAQ). Additionally, we used AD and CN subjects to pre-
train the model, and these subjects’ demographics are in
Supplementary Material.

The time points used for cMCI subjects were chosen by
selecting the session when the subjects were diagnosed with AD
(session two) and the previous session where the subjects were
still not converted (session one). Sessions for the subjects in the
other cohorts (sMCI, AD, and CN) were chosen by selecting two
consecutive sessions where both imaging and clinical evaluation
were present. The current dataset did not allow a design to match
the time between sessions for the whole cohort, this potential
confounder is accounted for in our analysis.

Mild cognitive impairment conversion was clinically
adjudicated by trained clinicians as described in the ADNI
protocol. Any subject who converted back from AD to MCI
was excluded from the study. Any subject included in the

1adni.loni.usc.edu

TABLE 1 | Demographics and time between imaging sessions of MCI subjects
used in this study (1 SD).

sMCI cMCI p-Value

Number of subjects 440 229

Baseline age, years [mean (SD)] 73.4 (7.7) 74.2 (7.1) 0.167

Time between sessions, years [mean (SD)] 2.9 (2.2) 3.7 (1.9) <0.0001

Years of education [mean (SD)] 15.8 (2.9) 15.8 (2.7) 0.831

Sex [male, n (%)] 260 (59.1) 134 (58.5) 0.934

sMCI cohort remained stable for all sessions present in the
ADNI dataset. For the subjects who converted (cMCI), the MRI
images selected were based on the closest imaging session to the
conversion adjudication; as such, we assumed that the T1 brain
image would be representative of the status of the subject at the
time of conversion as it is unlikely to significantly change in
this time period. The average elapsed time between the time of
conversion and the second imaging session was−0.7± 1.4 years.

The information on the conversion date can be found
in the DXSYM_PDXCONV_ADNIALL.csv file from
the ADNI database.

Image Preprocessing Pipeline
As shown in Figure 1, the T1-weighted MRI images were pre-
processed according to the steps outlined in our previous work
(Pena et al., 2019). In summary, the two images at two time
points were normalized and aligned to each other first and
then registered to a common space using a linear registration
algorithm. The normalization involved motion correction, non-
uniform intensity normalization, and skull strip as implemented
in the first pre-processing stages of the Freesurfer 6.0 pipeline.
The final common interpatient space was derived from 2 mm
MNI T1 template which was cropped of the background space
to reduce the computational complexity of the network for a final
resolution of 64× 80× 64. This pipeline was shown to drastically
decrease the pre-processing time compared with conventional
image processing pipelines such as the wull FreeSurfer-based
ones (Pena et al., 2019). These steps were extended to the full MCI
cohort used in this study.

Nine clinical variables were used at two different imaging
sessions (e.g., cross-sectional variables). In addition, the
longitudinal signed differences for each of these variables. Note
that while the APOe4 genotype is not expected to change between
sessions, it has followed the same processing for consistency
and simplifying the evaluation of the feature importance. Age,
sex, and years of education were also concatenated in the final
feature vector used in the model. These clinical variables were all
normalized by their mean value.

Deep Learning Pipeline
Experimental Design
A 10-fold stratified cross-validation procedure was employed
for model training and evaluation. Each fold was split into
training, validation, and test sets with proportions of 80, 10,
and 10%, respectively. Each fold maintained the distribution
of sMCI/cMCI. Binary cross-entropy and the Adam were the
loss function and optimizers used, respectively (Kingma and Ba,
2015). Each of the 10-folds had 75 epochs, and an early stopping
condition of 10 epochs was implemented based on the model’s
validation loss. Cyclical learning rates were used to dynamically
change the learning rate throughout the training process (Smith,
2017). This method has been shown to potentially allow the
model to “jump” out of local minima to subsequently find a lower
minimum to reduce the overall loss. The upper and lower bounds
for the learning rates were 1e−5 to 1e−8. A batch size of 4 was
used in the experiments. The area under the receiver operating
curves (AUC) and balanced accuracy were the experimental
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FIGURE 1 | Overview of image pre-processing pipeline implementation. This pipeline involves rigid registration to align the patient’s brains intra-patient first and then
inter-patient to a common space. cMCI subjects’ session one was before conversion, and session two was the imaging session at the clinically deemed conversion
date. sMCI subjects, by definition, are not diagnosed with an AD conversion at any point.

evaluation metrics. The DeLong’s test for statistical significance
was used to test differences between AUC curves (DeLong et al.,
1988). AUC curves’ 95% confidence intervals were calculated
using a Monte Carlo resampling simulation with 1,000 iterations,
and in each iteration, 80% of the total subjects’ probabilities were
randomly chosen.

Two of the experiments used a transfer learning approach
where an additional set of 190 AD and 243 CN subjects were
first used to pre-train the network aimed at a simpler task
first. None of the 433 AD/CN subjects in this pretraining step
were used for the cross-validation, this avoided any risk of data
leakage. The pretraining step followed all image pre-processing,
hyperparameters, and initializations as stated in the text above,
except for the cross-validation procedure. Finally, the pre-trained
model was then used as the starting point for the weights used in
the MCI classification task.

A fully connected network using only clinical variables was
tested to obtain baseline comparison with the multi-modal
network. This model is effectively equivalent to a logistic
regression trained using the same optimization technique and
validation approach as the multi-modal network; as such, it will
allow for a fair evaluation of the relative improvement of adding
brain imaging to the clinical data. The input feature vectors
were the clinical variables, and the outputs were the same as the
multi-modal network.

The experiments outlined were completed using Python 3.7,
Keras version 2.2, and TensorFlow 1.14. The graphical processing
units used were GeForce RTX 2080 Ti with 11 GB RAM. The
training times varied between 30 and 90 s per epoch, depending
on the architecture and experimental setup. The computational
performance at inference time, which is more relevant to evaluate
the ease of deployment of the model in a clinical environment, is
discussed in section “Results.”

Deep Learning Architecture
The network architecture employed was inspired by a model
that learned from spatial symmetry between brain hemispheres
in the stroke detection task (Barman et al., 2019; Sheth
et al., 2019). Our previous work extended this model in the
AD-progression and time domain (Pena et al., 2019). This
study has implemented a new network that combines cross-
sectional and longitudinal imaging data with clinical features,
which can be trained end-to-end on the MCI conversion
classification task. Further, we focused our efforts on a less
parameterized network to improve computational efficiency, as
we are primarily concerned with the clinical application of this
class of methods. This was possible through residual attention-
based modules (Wang et al., 2017), allowing the network
to focus on specific areas of the image with an Inception-
based network, which leads to learning convolutional filters at
different scales.

From a high level (Figure 2), the model can learn a
complex representation of two images at different time points
through the two subnetworks (Attention and Inception) in
addition to the temporal differences of the two brains through
the subtraction layer. This subtraction layer is sensitive to
changes and is referred to as the “longitudinal” portion of the
network. In the attention module, cross-sectional information
is added through skip connections. The output from these two
subnetworks is combined with clinical variables in a final dense
layer for prediction.

This model has several benefits:

• It has the potential to identify structural changes in
T1-weighted MRI scans over time, which is vital for
determining MCI conversion while utilizing commonly
available clinical information.
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FIGURE 2 | Deep learning architecture high-level overview. Imaging data pass through (A) an Attention-based subnetwork and (B) an Inception-based subnetwork.
The Attention-based network includes skip connections that concatenate cross-sectional information to the processed longitudinal information. The Inception-based
network only contains longitudinal information. These two subnetworks’ outputs are combined with clinical variables (C) that contain both cross-sectional and
computed longitudinal differences. Finally, these subnetworks are combined and input into a prediction layer. Note that transfer learning approaches were used with
AD and CN data, as stated earlier.

• It uses attention-based networks and deliberately leverages
a less parameterized network that inherently regularizes the
weights to only focus on important information.
• It incorporates an inception-based network that allows the

model to use multi-resolution to represent the images at
different scales in a non-sparse fashion.

Residual Attention Modules
Wang et al. (2017) extended the previously studied attention
mechanism and applied it to their approach for image-
level classification. Their overall network was composed of
blocks named the residual attention module. These modules
combined normal convolutional blocks (e.g., convolution, back
normalization, and max pooling) with a U-Net inspired structure
(Ronneberger et al., 2015) through a multiplication operator. The
U-Net subunit allows the model to learn important information
representing the input image through an encoder-decoder-
like structure. The convolutional blocks allow the model to
pay “attention” to these critical parts of the image through
multiplication. This output then goes through another series
of convolutional layers for further learning. Wang et al. (2017)
stacked these residual attention modules to create a deep

structure with complex attention mechanisms at different scales
of the images. However, to create a less parameterized network,
we limited the proposed network to just one residual attention
block. For additional details about these modules, we refer the
readers to the original publications.

Inception Modules
The inception modules used in this paper were inspired by the
work done by Szegedy et al. (2015) and were extended to the
3-dimensional space (3D). The inception modules used were a
combination of multi-resolution 3D convolutional layers. These
layers were composed of three parallel operations: 1 × 1 × 1,
3 × 3 × 3, and 5 × 5 × 5 convolutions with two filters. Previous
work has shown that this module can produce meaningful
results in neuroimaging applications (Barman et al., 2019,
2020; Pena et al., 2019). This style of operation allows the
model to view an image or input at different scales to learn
different types of spatial information. The outputs were then
concatenated and served as input to the next network layer. For
additional details about these modules, we refer the readers to the
original publications.
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FIGURE 3 | Deep learning architecture detailed overview. Longitudinal images pass through (A) an Attention-based network and (B) an Inception-based network.
These subnetworks are composed of an initially shared weight representation, a subtraction layer, and a subsequent flatten layer. These two subnetworks’ outputs
are combined with clinical variables (C). Lastly, this concatenation is put through a dense layer for the final prediction.

FIGURE 4 | Model experiments and associated AUC scores by varying input data and the use of transfer learning (left). ROC curves for comparing model
performance from the experiments conducted (right).

Layers
From the overall network perspective (Figure 3 below), the first
module layers learned a representation shared between the first

and second imaging time points. This representation proceeded
to a subtraction layer that took the difference between the two
sessions, and this difference was the input to another module.
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These longitudinal outputs then went through another module
to further learn from the differences between the two sessions.
Note that the attention subnetwork incorporated longitudinal
and cross-sectional information through the addition of skip
connections, as seen in the figure below. Next, these outputs were
flattened and concatenated with each other to form an imaging
and clinical feature vector. Finally, the prediction layer was used
for prediction utilizing the SoftMax activation function.

The code repository for this publication can be found at https:
//gitlab.com/lgianca/deepsymnet-att.

Confounding Variable Adjustment
A logistic regression model was fit with the deep neural network’s
probability output, baseline age, time between imaging sessions,
and sex to adjust for any potential confounders inherent in
the data chosen for the model. The logistic regression model
coefficients, the 95% confidence intervals, and corresponding
p-values were reported.

Feature Importance
To develop an intuition about which voxels from the T1-
weighted MRI images and features from the clinical variables,
we employed the epsilon layer-wise relevance propagation (e-
LRP) method (Bach et al., 2015). The e-LRP method starts from
the prediction layer and works its way backward through the
network. Layer-by-layer, the relevance of each of the previous
layer’s nodes is computed until the operation reaches the
input data layer. Each feature in the input data is assigned
a final relevance score that describes how important that
feature was for the final prediction. The codebase used in
our experiments follows the implementation of DeepExplain
(Ancona et al., 2018).

As stated above, relevance scores are projected onto
the input data, which, in this study, are the two T1-
weighted images and the subject’s clinical feature vector.
We used a global and regional method to compute the
magnitude of relative importance for the voxels in the MRI
images. For the global method, each subject’s MRI relevance
map was added for both sessions, and absolute values
were used to remove the risk of canceling out relevance
scores. Then, a heatmap allowed for the visualization of
this global method.

For the regional method, the cortical and subcortical regions
were segmented for each subject via the Harvard–Oxford atlas
(Caviness et al., 1996). Then, for each subject and session,
the summation of all the voxels’ magnitude in each region
was calculated. This value was then divided by the volume
of that particular region, resulting in a normalized relevance
magnitude for a particular brain region. This final value allowed
the different regions to be compared to one another on a
similar scale. A similar approach was used to find the relative
importance of the clinical features. The unsigned value for a
clinical feature was added for each subject and then ranked in
order of importance based on the magnitude of the total value.
The overall method is described in greater detail in our previous
work (Pena et al., 2019).

RESULTS

This study aims to (1) evaluate the use of different deep learning
architectures, input data modalities, and transfer learning for
MCI conversion classification using a computationally efficient
architecture and to (2) investigate the important imaging and
clinical features that drove the model’s decision based on the
e-LRP method.

Model Evaluation
As seen in Figure 4 and Table 2, the model that used imaging and
clinical input data was pre-trained using AD, and CN subjects
with frozen weights had the highest AUC score (Experiment 5).
This model was considered the “best” performing model in this
paper. The pre-trained model where all of the weights could be
fine-tuned had the best-balanced accuracy. Table 2 also shows
that the improvement between solely using clinical variables
(Experiment 1) and the best model that combined clinical and
T1 imaging was statistically significant. Further, our best model
was the only one significantly greater than the model that used
clinical variables only. The average time taken to pre-process an
image and for the model to make a prediction was 129.7 ± 19.8
and 0.12± 0.05 s, respectively.

We evaluate the individual importance of the Inception
and Attention subnetworks with ablation studies. We
use as a base model and training strategy what has been
described in Experiment 5. In order to account for the
artificial advantage that the architectures might have solely
on the basis of having more parameters, we increased the
number of convolutional filters in each of the independent
subnetworks to make them comparable with the full network.
In Table 3, we show that the Inception-based subnetwork
overperforms the Attention-based subnetworks. However,
their combination (with the addition of the clinical data)
outperformed the two architectures individually, even if the
number of parameters was comparable.

In order to evaluate the computational efficiency of the model,
we evaluated the time required to generate a prediction at
inference time (i.e., after model training) on an off-the-shelf
laptop without using any GPUs. We repeated this 100 times
and achieved an average execution time of 1.56 s (0.10 std).

TABLE 2 | Model experiments’ metric comparison for balanced accuracy, AUC
score, and testing for significant differences between AUC curves.

Experiment Balanced
accuracy

AUC score

(1) Clinical variables only 75.5 80.6

(2) T1-weighted MRI only 73.2 79

(3) Clinical variables + T1-weighted MRI 75.4 82.2

(4) Clinical variables + T1-weighted MRI
(pre-trained network: no frozen layers)

78.2 84.1

(5) Clinical variables + T1-weighted MRI
(pre-trained network: frozen layers)

77.8 84.7

p-Values were computed from the DeLong test for correlated ROC curves to reject
the null hypothesis that there is no statistical difference between the AUCs.
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TABLE 3 | Ablation studies indicate that the combination of the two Attention and
Inception-based subnetworks overperform the two individual subnetworks.

Experiment Number of
parameters

Balanced
accuracy

AUC score

Attention-based subnetwork
(imaging + pre-training with
frozen layers)

374,398 65.7 68.6

Inception-based subnetwork
(imaging + pre-training with
frozen layers)

333,352 73.6 77.6

Best performing network
(imaging + clinical + pre-
training with frozen
layers)

355,572 77.8 84.7

Note that the number of convolutional filters in the subnetworks were increased to
have comparable parameters with the entire network (i.e., within 10%).

This does not take into account the file conversion, initial brain
extraction and linear registration steps required, which can take
from tens of seconds to a few minutes, depending on the software
used. This compares favorably to the “de facto” Freesurfer-
based longitudinal pipeline that can take an average of 17 h
per subject (Pena et al., 2019) or methods relying on non-linear

registration and extraction of the warp field, taking each image
into template space. For example Spasov et al. (2019) report
approximately 19,200 h of CPU time on a high-performance
parallel computing cluster to non-linearly register the images,
which is∼19 h per subject.

The Network as a Clinical Decision
Support Tool
With the final model, we investigated the strength of the signal
(deep network output probability) between MCI subjects who
eventually converted to AD and those who stayed stable, as
seen in Figure 5. The starting point for the cMCI subjects is
higher than the sMCI subjects since there was some indication of
AD conversion-like progression using MRI imaging time points
before the actual conversion. However, this signal strengthens
when an imaging time point around AD conversion is included,
shown by the tendency toward higher probabilities on the right
side of the figure. The sMCI group has a smaller slope with respect
to time as there is no indication of AD conversion. This makes
for a clear, qualitative difference between the two groups. The
network derives a much stronger signal at the conversion point,
indicating its ability to recognize patterns distinctly associated
with AD conversion.

FIGURE 5 | Line graph visualizing the difference in output network scores between cMCI (blue) and sMCI subjects (orange) with 95% confidence intervals in the
shaded regions. The darker lines represent the mean trajectory based on the distribution of scores of the respective groups. Note that the cMCI subjects’ starting
score is computed using the network and both imaging time points before conversion. The ending score includes the second time point when the AD conversion
was diagnosed. The sMCI subjects’ starting scores are taken using the baseline and time point near the baseline date, and their ending score is using the baseline
and a later date.
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TABLE 4 | Summary of the logistic regression coefficients, confidence intervals,
and p-values for model output probability and confounding variables.

Baseline age Time between
sessions

Years of
education

Sex Deep learning
output

probability

0.0140
(0.001–0.027)*

0.0916
(0.010–0.174)

0.0361
(−0.024 to

0.096)

0.0521
(−0.358 to

0.462)

−4.0714
(−4.700 to
−3.443)***

*p < 0.05.
***p < 0.0001.

Confounding Variable Adjustment
Further, the deep learning output probabilities were assessed
for statistical significance with a logistic regression model
and potential confounding variables. As seen in Table 4, the
output probability remained statistically significant (p < 0.0001).
Interestingly, though there were group differences between the
imaging variable, as seen in Table 1, these differences were not
significant when combined with the output probabilities.

Feature Importance
Next, model feature importance was evaluated for both the
imaging and clinical inputs. The imaging feature importance
was completed on both a voxel-wise level and a brain regional
level (subcortical vs. cortical regions), as seen in Figure 6.
These saliency maps are smoother than our previous work (Pena
et al., 2019), and we attributed this improvement to the use
of attention-based modules and a less parameterized network.
These model characteristics perform significant regularization,
highlighting only the most informative regions for the given task.

Further, the top five regions from the cortical and
subcortical regions were plotted in Figures 6B,C. After
volume normalization, the thalamus, caudate, pallidum, and
lateral ventricle subcortical regions contained the highest overall
contribution to the model’s decision. For the cortical regions,
the planum temporale and parietal operculum cortex had the
highest contributions. Both the cortical and subcortical regions
had similar contribution magnitudes, as seen in the x-axis of
Figure 7.

The clinical variables’ contributions are shown in descending
order in Figure 8. The RAVLT score from the second session
was the most important clinical feature, with ADAS11 from the
second session and MoCA scores from the first session following.

DISCUSSION

This study employed a deep learning model to enable a CAD
system able to provide an AD conversion diagnosis in an
MCI cohort followed longitudinally. The model combined both
Attention and Inception modules and was designed to be less
parameterized to form a sparse yet rich representation of the
input imaging and clinical features. The experiments performed
demonstrated that the combination of imaging and clinical
features produced a better model than using either type of
data alone. Also, a model pre-trained on AD and CN subjects

that served as a baseline for MCI classification was a better
starting point for subsequent model fine-tuning than random
weight initialization. Further, the brain regions that drove the
model’s decision were visualized and quantified through the
e-LRP method. The clinical features included in the model were
also ranked and analyzed for relevance.

One of the main contributions of this network architecture is
the combination of longitudinal and cross-sectional information.
The subtraction operation was used between the two imaging
and clinical time points and their respective features; thus,
the network could learn from the differences over time.
Further, this information was preserved throughout the training
process by keeping the raw signal from the individual time
points (e.g., cross-sectional data). The imaging-focused part of
the network was divided into the Attention and Inception-
based mechanisms. The attention module extended the residual
attention used in computer vision, allowing the model to
introduce sparsity into the network parameters. This allows
the model to focus on certain parts of the brain input data
related to MCI conversion to AD. The inception modules
used 3D convolutional filters to find information at different
spatial scales and granularity. We empirically show that
using a combination of these modules, both the balanced
accuracy and AUC were higher than using these modules
individually in a network.

Further, we showed that the network improved AUC
performance by incorporating more information in the time
domain (cross-sectional and longitudinal) and in data modality
(T1-weighted MRI and clinical features). This has been shown to
be the case in related MCI and AD research (Goryawala et al.,
2015; Spasov et al., 2019). The best model was also pre-trained on
a cohort of AD and CN subjects. This model’s only trainable layer
was the dense layer right before the prediction layer. Exclusively
fine-tuning of the penultimate layer allowed the model to focus
on changing a smaller number of weights compared to the
entire model. This transfer learning setup also assumed that the
brain representation from the AD and CN subjects was a good
representation for an MCI application, making intuitive sense
since this is modeling a progression pattern in subjects at high
risk of developing AD in their lifetime. Finally, after controlling
for several potential confounding factors, the network output
probabilities remained statistically significant. Once the model is
trained, the whole model can run in∼1.5 s plus the time required
to perform basic pre-processing involving file conversion, skull
stripping, and linear registration (typically tens of seconds to
a few minutes) on an off-the-shelf laptop without GPU. This
would enable a neurologist to use this system as a computer-aided
diagnostic tool during the office visit once the required imaging
and/or clinical variables are acquired.

Once the experiments were completed, the crucial features
for driving the model’s decision were investigated. To narrow
down the imaging analysis for interpretation, we focused on
the subcortical and cortical regions. The thalamus, caudate,
pallidum, and lateral ventricle had the highest overall activation
magnitude for the subcortical regions. Cholinergic synapses
have a high density in several parts of the brain, including the
thalamus, and have played a central role in research in aging and
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FIGURE 6 | Epsilon layer-wise relevance propagation relevance maps displaying voxel-level and region-level contribution to model output probability at different brain
slices. The maps are at the (A) voxel-level, (B) cortical, and (C) subcortical levels. Maps (B,C) are normalized to the brain region volume. The scales indicate the
degree of voxel contribution magnitude.

cognitive decline. Cholinesterase inhibitors are considered first-
line treatments for mild and moderate AD (Hampel et al., 2018).
Likewise, an in vivo imaging study found reduced serotonin
transporter availability in MCI subjects in the thalamus compared
to controls (Smith et al., 2017). Qing et al. (2017) found
that impairment of spatial navigation skills, a clinical feature
of AD found in MCI subjects, was significantly correlated to
neuroimaging variable changes in the pallidum and thalamus.

Similarly, Fischer et al. (2017) investigated mobility changes
in subjects with MCI. They found that decreased gray matter

volume in the caudate nucleus was associated with a lower
speed in functional mobility tasks. Crocco et al. (2018) applied
a cognitive stress test to AD and MCI subjects and showed
that negative clinical results were related to dilation of the
lateral ventricle, among other regions. Yi et al. (2016) found
that gray matter volumes in subcortical regions, including,
but not limited to, the thalamus, caudate, and pallidum, were
significantly reduced in MCI subjects when compared to controls.
Additionally, many of these subcortical volumes were correlated
with cognitive function.
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FIGURE 7 | Brain regional contribution magnitude of the top five (top) cortical and (bottom) subcortical regions. The contributions were calculated by summating all
the magnitudes within the brain region and then normalized to the brain region volume.

For the cortical regions, the planum temporale, operculum
cortex, and occipital cortex were some of the top regions
with associated findings in AD and MCI literature. Researchers
using several independent AD datasets found that anatomical
changes in the planum temporale and thalamus were among
the top features for their predictive model (Giraldo et al.,
2018; Li et al., 2020). Others have found that changes in
cortical minicolumn organization and premortem cognitive
scores were significantly related in the planum temporale,
potentially reflecting a phenomenon in brain atrophy in
AD subjects (Chance et al., 2011). Alternatively, this might
indicate the importance of auditory processing in MCI
to AD progression as planum temporale is involved in
auditory processing. A clinical study that used functional
connectivity imaging and associated metrics found decreased
intrinsic connectivity in the operculum cortex among MCI
and AD subjects (Xie et al., 2012). Finally, a PET study
demonstrated a significant and high overlap in hypoperfusion
and hypometabolism in AD subjects in the occipital cortex
(Riederer et al., 2018).

From the clinical features, ADAS, MoCA, and MMSE scores
are among the top five variables with the most relevance for the
model’s decision. This is unsurprising as MoCA and MMSE are
the most widely used screening tools in clinical practice. ADAS
is frequently used as a progression measurement in both clinical
settings and clinical trials.

Interestingly, the RAVLT, a recent memory test, was the
variable with the most relevance for the model’s decision for the
first session, and it was ranked as one of the top five variables
for the second session. Memory for recent events is distinctively

impaired in AD and is served by the hippocampus, entorhinal
cortex, and related structures in the medial temporal lobe.

This could indicate that the RAVLT provides more
complementary information that is harder to directly learn
from the imaging alone. Multiple clinical and neuroimaging
studies have shown the importance of this variable in AD and
MCI research; one of the earliest was performed by Estévez-
González et al. (2003). More recently, Eliassen et al. (2017)
used PET imaging and clinical scores to show that RAVLT were
significant predictors in changes in cortical thickness between
MCI and CN participants. A neuroimaging study conducted
by Moradi et al. (2017) found that the MRI-based volumetric
features were suitable variables for predicted parts of the RAVLT
tool using an elastic net-based linear regression model. Russo
et al. (2017) found that parts of the RAVLT assessment can have
differences in discrimination accuracy and response bias between
MCI and AD subjects, indicating there could be diagnostic
specificity if using different test portions.

Our study has some limitations. First, the absolute
classification performance of our method was lower than
some found in the literature (Liu et al., 2017; Tong et al.,
2017; Spasov et al., 2019) that report AUC scores around 90%.
However, these models focus on the prediction of future AD
rather than an actual diagnosis of the AD conversion, and they
typically involve a very long pre-processing pipeline that would
be hard to use in clinical settings. The use of longitudinal data
to output an AD diagnosis can also be considered a limitation
as it requires data from two-timepoints. The dataset used did
include a majority of Caucasian non-Hispanic population, as
such, the generalizability of the algorithm needs to be further
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FIGURE 8 | Clinical variable-level contribution magnitude. These values were calculated by summation of the contribution across all subjects. Neurological clinical
variables denoted with “first_ses” and “second_ses” correspond to the subjects’ first and second clinical sessions, respectively. The clinical variables without a suffix
represent the longitudinal change in that particular variable over time. Demographic variables included were age, sex, and years of education.

confirmed on an entirely external dataset including a more
diverse population. Finally, while the model can handle missing
imaging or clinical data (as a whole), it currently cannot leverage
clinical data with missing variables (unless imputation is used).

Future work could extend the ADNI dataset to incorporate
multiple sources. This would increase the model’s generalizability
to bias and errors that are inherent to different datasets. Also,
adding more time points by extending this model using recursive
neural networks or Gaussian processes algorithms could give a
more nuanced trajectory signal that may unearth a strong signal
for MCI progression and conversion to AD.

CONCLUSION

In this paper, we introduce a novel method that utilizes T1-
weighted MRI and clinical data at two-time points to diagnose
AD in patients with MCI. At a high level, the model is a
deep learning framework that combines residual Attention and

Inception modules while taking advantage of cross-sectional and
longitudinal data. The epsilon layer-wise propagation method
allowed the interpretation of essential brain regions and clinical
features that drove the model’s output. Some of the top
subcortical and cortical regions included the thalamus, caudate,
planum temporale, and operculum cortex. Further, RAVLT was
the clinical feature that had the highest contribution to the
final prediction. This method could easily be translated to the
healthcare environment because it integrates variables commonly
used in a clinical setting and has a fast image processing and
prediction pipeline. This instrument could potentially be used as
an objective and efficient diagnostic tool for patients at high risk
of AD conversion.
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The present paper examines the viability of a radically novel idea for brain–computer

interface (BCI), which could lead to novel technological, experimental, and clinical

applications. BCIs are computer-based systems that enable either one-way or two-way

communication between a living brain and an external machine. BCIs read-out brain

signals and transduce them into task commands, which are performed by a machine.

In closed loop, the machine can stimulate the brain with appropriate signals. In recent

years, it has been shown that there is some ultraweak light emission from neurons within

or close to the visible and near-infrared parts of the optical spectrum. Such ultraweak

photon emission (UPE) reflects the cellular (and body) oxidative status, and compelling

pieces of evidence are beginning to emerge that UPE may well play an informational role

in neuronal functions. In fact, several experiments point to a direct correlation between

UPE intensity and neural activity, oxidative reactions, EEG activity, cerebral blood flow,

cerebral energy metabolism, and release of glutamate. Therefore, we propose a novel

skull implant BCI that uses UPE. We suggest that a photonic integrated chip installed on

the interior surface of the skull may enable a new form of extraction of the relevant features

from the UPE signals. In the current technology landscape, photonic technologies are

advancing rapidly and poised to overtake many electrical technologies, due to their

unique advantages, such as miniaturization, high speed, low thermal effects, and large

integration capacity that allow for high yield, volume manufacturing, and lower cost.

For our proposed BCI, we are making some very major conjectures, which need to

be experimentally verified, and therefore we discuss the controversial parts, feasibility

of technology and limitations, and potential impact of this envisaged technology if

successfully implemented in the future.

Keywords: ultraweak photon emission, brain-computer interface, photonic interferometry, pattern recognition,

integrated photonic circuit, on-chip photon detection, quantum technology
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1. INTRODUCTION

Brain–computer interface (BCI), or generally brain–machine
interface (BMI), is a computer (machine)-based system that
maps brain signals into computer (machine) commands or
actions. This mapping may involve intermediate analysis and
processing. Moreover, a closed-loop BCI is also possible, whereby
the brain is stimulated via relevant neuro-bio-signals. The most
common brain signals used in BCIs are electromagnetic, that is,
of classical/non-quantum origin. Herein, we turn attention to
an exciting and emergent literature that reveals the brain also

emits “photons,” which are quanta of electromagnetic waves.
The intensity of these emissions varies from a few photons
to several hundred photons per second per square centimeter,
mainly with spectral range of 200–800 nm (Salari et al., 2015).
A caveat is that most single-photon sensitive detectors used in
the experiments were only sensitive up to about 900 nm. Hence,

observations with detector platforms that are sensitive in the
900–1,600 nm range, such as superconducting nano-wire single-
photon detectors (SNSPDs) (Marsili et al., 2013), which also can
be shaped as arrays (Wollman et al., 2019), may reveal hidden
obscured about the UPE light.

The body of evidence for ultraweak photon emission

(UPE) is fast growing and is being independently observed
by different scientific communities/labs. Due to infancy of
the research field, many different terms are used to describe
this phenomenon, including biophotons, ultraweak photon
emission, ultraweak bioluminescence, self-bioluminescent
emission, photoluminescence, delayed luminescence, ultraweak

luminescence, spontaneous chemiluminescence, ultraweak glow,
biochemiluminescence, metabolic chemiluminescence, dark
photobiochemistry, etc. (Salari et al., 2017; Esmaeilpour et al.,
2020). In this report, we will henceforth adopt the term UPE. It
has been evidenced that neurons and other living cells (e.g., in
plants, animals, and humans) have spontaneous UPE (Cifra and
Pospisil, 2014; Pospisil et al., 2014) mediated via their metabolic
reactions associated with physiological conditions. In 1967, it
was first reported that electric pulses in neurons can induce weak
photon emission (in the visible region of the EM spectrum) due
to chemical reactions accompanying pulses, while a dead-neuron
does not exhibit any photon emission (Artem’ev et al., 1967).
In 1984 (Imaizumi et al., 1984) and 1985 (Suzuki et al., 1985),
it was demonstrated experimentally that after the induction
of hypoxia states in a rat brain, UPE increases. Isojima et al.
(1995) showed that there is a correlation between the intensity
of UPE and neural metabolic activity in the rat hippocampal
slice. In 1997, Zhang et al. (1997) revealed that the intensity of
UPE from intact brains isolated from chick embryos was higher
than the medium in which the brain was immersed. In 1999,
Kobayashi et al. (1999b) detected spontaneous UPE in the rat’s
cortex in vivo without adding any chemical agent or employing
external excitation and found that the UPE correlates with the
electroencephalography (EEG) activity, cerebral blood flow,
and hyperoxia, and the addition of glutamate increases UPE,
which is mainly originated from the energy metabolism of the
inner mitochondrial respiratory chain through the production
of reactive oxygen species (ROS). Kataoka et al. (2001) detected

spontaneous UPE from cultured rat cerebellar granule neurons
in the visible range and demonstrated that the UPE depends on
the neuronal activity and cellular metabolism. Then, a fascinating
experimental discovery by Sun et al. revealed that photons can
be conducted along neuronal fibers. In 2011, Wang et al. (2011)
show-cased in vitro experimental evidence of spontaneous
UPE and visible light-induced UPE (delayed luminescence)
from freshly isolated rat’s whole eye, lens, vitreous humor, and
retina. Subsequently, in 2014 (Tang and Dai, 2014) Tang and
Dai provided experimental evidence that the glutamate-induced
UPE can be transmitted along the axons and in neuronal circuits
in mouse.

These observations raise the following intriguing question:
what are the underlying physiological processes that underpin
UPE? Specifically, in the brain what are the associated
neurophysiological processes? Although a complete picture has
not been provided, it has been shown that the origin of UPE is
in direct connection with the ROS. Moreover, its intensity has a
direct correlation with thermal, chemical, and mechanical stress,
the mitochondrial respiratory chain, cell cycle, neural activity,
EEG activity, cerebral blood flow, cerebral energy metabolism,
and release of glutamate. Experiments also show that cells can
absorb photons by photochemical processes and slowly release
these photons as delayed luminescence (Scordino et al., 2014).
Interestingly, it has been shown that delayed luminescence
emitted from the biological samples provide valid and predictive
information about the functional status of biological systems
(Musumeci et al., 2005; Niggli et al., 2005, 2008). All this
opens novel exciting mathematical and physical questions at
the interface of quantum biology. For example, if we consider
UPE in the context of metabolism, then there has been efforts
to propose quantum-metabolism (Demetrius, 2003). As it is
well-known, biological systems are essentially isothermal and as
such energy flow in living organisms is mediated by differences
in the turnover time of various metabolic processes in the
cell, which occur cyclically. The mean cycle time (τ ) of these
metabolic processes (turnover of essentially redox reactions) are
related to the metabolic rate (g), that is, the rate at which the
organism transforms the free energy of nutrients into metabolic
work. This is related to two coupled chains (electron-proton
transport) of the ATP system in the mitochondria. In quantum-
metabolism the main variables are metabolic rate, the entropy
production rate, and the mean cycle time. Then the fundamental
unit of energy is given by E(τ ) = gτ , where g is related to
the electron–proton transport. Noteworthy, this is in contrast,
but has some correspondence to quantum thermodynamics,
where the thermal energy per molecule is given by E =
KbT, which relates specific heat, Gibbs–Boltzmann entropy, and
absolute temperature T. The difference is that biological systems
work far from thermodynamic equilibrium, hence in quantum-
metabolism the variables depend on fluxes (rates of change
of energetic values). On top of this, Albrecht-Buehler (1995)
hypothesized that the electron–proton transport releases photons
(E = hν, where E is the photon energy, h is plank constant,
and ν photons frequency). Other researchers have contemplated
at why UPE displays wide variety of frequencies, with Popp
suggesting that these are coherent and mediated by DNA, thus
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it may regulate life processes of an organism (Popp et al., 1984,
1988). However, the coherence idea of UPE is still under debate
(Salari and Brouder, 2011) and it is yet unclear if UPE is just a by-
product in biological metabolism or it has some informational or
functional role.

So far, UPE signals have only been studied in the context
of basic science and has not been considered for experimental
and clinical applications or novel technologies such as BCIs.
The present article takes that first step forward and propose
an implant BCI chip based on UPE. Since UPE is correlated
to several sub-cellular, cellular, and neural tissue processes,
there is also the potential that it can be used as a novel
technological probe/bio-marker for both normal brain function
and pathological conditions. In the subsequent sections, we will
first briefly review the traditional classical methods in BCI and
then we will focus our discussion toward UPE detection and
pattern recognition for the development of a novel UPE-based
skull implant BCI.

2. CLASSICAL BRAIN–COMPUTER
INTERFACE TECHNOLOGY

In traditional BCI techniques, different types of signal acquisition
may be used, depending on the application. In the following, we
briefly review four types of brain signals, their properties, and the
suitable machine interfaces.

• Electroencephalography (EEG) signals

EEG is the most employed method to detect electrical
activity of the brain by use of small electrodes attached to
the scalp (Niedermeyer and da Silva, 2004). These signals are
recorded by a machine for tracing both normal brain function
and diagnosing pathological conditions (e.g., epilepsy). In
stimulus (e.g., visual cue) induced EEG, there is positive
deflection of voltage with a latency (delay between stimulus
and response) of roughly 250–500 ms, which is called event-
related potentials (ERP). Examples of such ERP is the so-called
P300 formed at time 300 ms, which is related to decision
making. Indeed, cognitive impairment is often correlated with
modifications in the P300 (Polich, 2007). It is considered
an endogenous potential, as its occurrence links not to a
stimulus’ physical attributes, but a person’s reaction to it. More
specifically, the P300 is thought to reflect processes involved
in stimulus evaluation or categorization. The presence,
magnitude, topography, and timing of this signal are often
used as metrics of cognitive function in decision-making
processes and hence used in BCIs. The P300 has several
desirable qualities for pattern recognition. First, the waveform
is consistently detectable and is elicited in response to precise
stimuli. The P300 waveform can also be evoked in nearly
all subjects with little variation in measurement techniques,
which help simplify interface designs and permit greater
usability. The speed at which an interface can operate depends
on how detectable the signal is despite “noise.” One negative
characteristic of the P300 is that the waveform’s amplitude
requires averaging multiple recordings to isolate the signal.
This and other post-recording processing steps determine the
overall speed of a BCI interface (Donchin et al., 2000).

• Magnetoencephalography (MEG) signals

MEG is a functional neuroimaging technique monitoring
brain activity via magnetic fields of electrical currents in the
brain, using SQUIDs (superconducting quantum interference
devices), which are very sensitive magnetometers operated
in a cryogenic environment. Another type of magnetometer
is spin exchange relaxation-free (SERF) magnetometer
(Hämäläinen et al., 1993), which can increase portability of
MEG scanners, while it features sensitivity equivalent to that
of SQUIDs. A typical SERF magnetometer is relatively small
and does not require bulky cooling system to operate. It has
been demonstrated that MEG could work with a type of
SERF, i.e., chip-scale atomic magnetometer (CSAM) (Sander
et al., 2012), where its development can be used efficiently
for BCI. Basically, MEG may provide signals with higher
spatiotemporal resolution than EEG, and therefore useful for
an increased BCI communication speed.

• Electrocorticography (ECoG) signals

ECoG uses electrodes placed directly on the surface of the
brain to record electrical activity from the cerebral cortex,
i.e., an invasive technology that involves removing a part of
the skull to expose the brain surface to enable the implant
of an electrode grid on the surface of the brain, i.e., called
craniotomy, which is a surgical procedure performed either
under general anesthesia or under local anesthesia if patient
interaction is required for functional cortical mapping. The
spatial and temporal resolution of the resulting signal is higher
and the signal to noise ratio (SNR) superior to those of EEG
due to the closer proximity to neural activity. Thus, ECoG is
a promising recording technique for use in BCI, especially for
decoding imagined speech or music, in which users simply
imagine words, sentences, or music that the BCI can directly
interpret (Shenoy et al., 2007).

• Functional near-infrared spectroscopy (fNIRS) signals

fNIRS is a non-invasive optical imaging technique that
measures changes in hemoglobin (Hb) concentrations in the
brain by means of the characteristic absorption spectra of Hb
in the near-infrared (NIR) range (Scholkmann et al., 2014).
fNIRS tomography makes use of the fact that light penetrates
up to several centimeters into biological tissue, i.e., a safe
technique that is minimally invasive and which relies on small,
relatively inexpensive easy-to handle technology, and provides
relatively low spatial resolution. The penetration range of light
in tissue limits the size of the target tissue volume. fNIRS can
be used in BCI for the restoration of movement capability for
people with motor disabilities. fNIRS cannot afford high error
rates for safety purposes, and must be fast enough to provide
real-time control. Several fNIRS-BCI studies have tried to
improve classification accuracies and information transfer
rates (Naseer and Hong, 2015).

3. POTENTIAL APPLICATION OF UPE IN
BCI

UPE is largely mediated by cellular metabolism and it is presently
believed that it is merely a by-product (i.e., epiphenomenon). A
tempting question is whether it is possible (or not) to retrieve
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information from stochastic emission of UPE? In previous
sections, we already saw that there are different experimental
reports on significant correlations between UPE emission and
neuronal activity and associated metabolic processes (Isojima
et al., 1995; Kobayashi et al., 1999b; Kataoka et al., 2001; Tang
and Dai, 2013). Therefore, even if UPE is an epiphenomenon,
its intensity can be a proxy for tracking the underlying neural
information that dynamically changes under various conditions.
Indeed, UPE seem to include information for monitoring
physiological variations in a neuronal tissue. Note that for EEG
signals we have a similar scenario. Indeed, EEG signals do not
provide specific information about single neurons. Rather, it
reflects a non-trivial summation of the synchronous activity
of thousands of neurons and not that of a single neuron or
dendrite. Thus, retrieving patterns as information from EEG is
a data-science activity typically involving statistical comparisons
between different brain states (e.g., normal and abnormal
brain states).

Scholkmann (2015, 2016) hypothesized that UPE may be
is used by neurosystems as an additional signal enabling cell-
to-cell communication and coupling. Indeed, Sun et al. (2010)
found that UPE can conduct along the neural fibers. It has
been hypothesized based on numerical simulations that neurons
(or myelinated axons) may act as optical fibers and, hence,
may conduct light associated with UPE (Kumar et al., 2016),
and through these waveguides UPE may even mediate long-
range quantum entanglement in the brain (Kumar et al., 2016;
Zarkeshian et al., 2018; Simon, 2019). These myelinated axons
are tightly wrapped by the myelin sheath, which has a higher
refractive index (Antonov et al., 1983) than the inside of the
axon and the interstitial fluid outside. Myelin is an insulating
layer (sheath) around nerves, which is formed by two types of
specialized glial cells, oligodendrocytes in the central nervous
system (CNS) and Schwann cells in the peripheral nervous
system (Simons and Trajkovic, 2006). Muller glia cells have also
been suggested to guide photons within mammalian eyes (Franze
et al., 2007; Agte et al., 2011; Reichenbach and Bringmann, 2013).
These observations suggest that UPE and bioelectronic activities
are not independent biological phenomena in the nervous
system, and their synergistic action may take on considerable
function in neural (quantum) signal and information processes
(Salari et al., 2016b; Wang et al., 2016).

3.1. UPE Intensity From the Surface of the
Human Brain
The UPE observed to date has been extremely weak. However,
the true UPE intensity within neurons can be significantly higher
than the one expected from the UPE measured a short distance
away from the brain, as was done in all previous observations.
Since photons are strongly scattered and absorbed in cellular
or neural systems, the corresponding intensity of UPE within
the organism or brain can even be two orders of magnitude
higher (Slawinski, 1988; Chwirot, 1992). Based on the data from
experiments with rat brain—employing a 2D photon-counting
tube with a photocathode featuring a minimum detectable
radiant flux density of 9.9× 10−17W/cm2 under 1-s observation

time—the intensity of UPE has approximately 100 counts
sec.cm2 from

the cortex surface (Imaizumi et al., 1984; Adamo et al., 1989;
Kobayashi et al., 1999a,b). Moreover, the limited quantum
efficiency (QE) of the detector may impede the detection of
UPE due to the limited SNR. Regarding the human brain, the
neuronal density in V1 in visual cortex is 60 × 106 Neurons

cm3 in
postmortem human brains (Pakkenberg and Gundersen, 1987),
It should be noted that postmortem studies use fixatives, which
lead to shrinking of the tissue. The result is that the cell density
is overestimated, while the volume of the extracellular space is
underestimated. The reported number can be used only as an
absolute best-case scenario for the interface. The V1 thickness is
about 0.2 cm, and V1 surface area of one hemisphere is about
26 cm2 in adult humans. At least, 106 neurons in object-related
areas and 30×106 neurons in the entire visual cortex are activated
by a single-object image (Levy et al., 2004). Based on a rough
estimation, about 106 free radicals can be produced by each brain
cell per second (Bokkon et al., 2010), which yields 106 × 106 =
1012 free radicals produced by human visual neurons per second
in V1 of one hemisphere during perception of a single-object
image. Since UPE mainly originates from free radicals, the actual
UPE intensity inside neuronal cells is expected to be considerably
higher than the intensity measured by a detector outside [e.g.,
100 counts/(s.cm2)]. If the QE of an ideal photodetector is close
to 100%, we conjecture that it may measure the UPE intensity at
the cortex surface at least on the order of 1,000 counts/(sec.cm2)
for an object visualization.

4. SKULL-IMPLANT SETUP FOR THE
UPE-BASED BCI

We now provide the complete design specification of a radically
novel skull-implant that can facilitate a UPE-based BCI (see
Figure 1). The envisaged BCI is not aimed for deep brain
implants (although possible) but rather for intracranial brain
surface implant (i.e., minimally invasive). The environment
of a closed skull (after surgical implantation) is sufficiently
dark and, therefore, a suitable environment for the detection
of UPE signals. Once the UPE signals are detected, they are
wirelessly relayed to a machine, computer, or smartphone.
We also envisage alternative designs with closed-loop signals
(photons) for modulating the metabolic processes of a neural
tissue. However, herein we will only consider the read-out of
UPE signals. The center-piece of the envisaged technology is the
UPE-based integrated chip, which we will discuss at length in the
subsequent sections. The integrated photonic chip is assembled
from different component parts; specifically, a receiver optical
plane (ROP), optical fibers, a photonic interferometery circuit,
a complementary metal-oxide-semiconductor (CMOS) detector
array, a battery, and a wireless system (see Figure 2). The use of
the implantable CMOS image sensor has been described in recent
years especially for optogenetic imaging (Tokuda et al., 2021).

The UPE photons first enter an ROP on the chip, which is
essentially a photo-receiver array made up of optical fibers of
size of N × N, where N is the number of pixels (or fibers) in
each row or column and each pixel is indeed an optical fiber
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FIGURE 1 | A detector chip can be installed on the interior surface of the skull without touching the brain tissue, i.e., non-invasive. The environment of the closed skull

in the head is sufficiently dark and therefore it is a suitable environment for the detection of UPE with the installed chip. The intensity of UPE is stronger close to the

surface of the brain, which can be captured by chip on the skull.

that couples into a waveguide on the chip, using grating couplers
(Cheng et al., 2020). Alternatively, the UPE light can be directly
coupled to waveguides created by femto-second laser-writing
and since these can be patterned at different depths in the chip
(Nolte et al., 2003), and they can directly facilitate serialization
step. Subsequently, the N × N pixels are serialized into a 1D
vector (where N′ = N × N is the number of optical fibers
connected to the waveguides in the optical interferometer with
N′ input ports in a series and linear 1D form, and therefore
N′ CMOS pixels in a single row as the output port on the
PIC). In fact, the received photons on ROP are guided to the
optical interferometer via optical fibers. The advantage of an
optical interferometer is that it may discriminate the emission
patterns of photons. We estimate that UPE intensity ranges
10–1,000 counts per second per each cm2 of the whole array,
depending on how active a neuron or neural tissue is at a given
time instant. In fact, we expect that similar and non-similar
UPE emissions (in wavelength) generate different detection
distributions, where interference will occur between photons
with similar wavelength (i.e., emanating from the same-type
neural processes). Thus, the detection distributions for similar-
wavelength photons will be closer to an optical interference
pattern, which is uniquely determined by the wavelength of these
interfering photons. In this regard, one of the concerns may
arise from the fact that UPE emission over a broad range of
wavelengths can lead to the observation of different patterns at
the same time, rendering an ambiguous combination of several
independent patterns. Such complexity may bring disadvantages
over the direct detection (i.e., no interferometer), or even could
cause wrong interpretations. This potential problem can be
alleviated by classifying those different wavelength patterns,
again with pattern recognition techniques in machine learning,
such as (PCA) (Jolliffe, 2002), which allows distinguishing the
differences in an ensemble of patterns, and identifying each
pattern according to the respective wavelength, after many

sets of training data. The optical interferometer photons are
then converted into electrical signal via the CMOS array (see
Figure 6 for details). Finally, these signals are wirelessly linked
to a smartphone or computer for pattern recognition/extraction.
Noteworthy, since the number of detected photons is relatively
low and because the data acquisition is in real time, the
recognition of patterns should be done via machine learning
protocols, e.g., convolutional neural networks (CCN), which is
a powerful tool for 2D pattern recognition. We subsequently
discuss in more detail each component part of the UPE-based
electronic chip.

4.1. On-Chip Photonic Integrated Circuits
We base our proposed technology on photonic integrated circuits
(PICs) (Coldren et al., 2012). These are chip that contains
photonic components that operate with light (photons), where
photons pass through optical components such as waveguides
(equivalent to a resistor or electrical wire in an electronic
chip). With electronic integrated circuits arriving at the end
of their integration capacity, PICs have the potential to be the
preferred technology. Nowadays, photonic platforms present
several advantages for quantum information protocols enabling
long coherence times, full connectivity, scalability, and operation
in room temperature. Different photonic degrees of freedom
including polarization, spectral, spatial, and temporal modes can
be used to encode information, providing different experimental
resources for a wide variety of quantum information tasks.

For our application, we consider a PIC containing an optical
interferometer. A linear interferometer can be fabricated through
silica-on-silicon or laser-written integrated interferometers, or
electrically and optically interfaced optical chips (Szameit et al.,
2007; Spring et al., 2012; Carolan et al., 2015), which makes
a simple processor reducing the amount of physical resources
needed for implementation.
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FIGURE 2 | In a brain–computer interface (BCI) proposal, an optical chip is implanted on the interior surface of the skull. A few number of ultraweak photon emission

(UPE) photons interfere in a photonic chip and the results are detected as different single photon distributions at detectors vs. time. This results are communicated via

wireless signals from the detector part of the chip to a receiver (e.g., smartphone or a computer).

4.2. Photons Statistics and Distributions
In the context of optics, coherence is a property of light. In
a simplified picture, coherence is the ability of light to make
interference, e.g., in the double-slit interference experiment light
can create interference patterns (bright and dark bands) for
both a wave (classical) and photon (quantum) picture. Thus,
coherence of light can be both of a classical and quantum
character. For example, thermal states of light can be described
in the classical and the quantum framework, while other states,
such as squeezed states, can only be described in the quantum
framework. One of the essential conditions to show the coherence
property of light is for its intensity/photon-number distribution
to be a Poisson distribution. However, this condition is not
sufficient to conclude that the light is certainly coherent. Other
types of sources may yield a Poisson distribution, e.g., shot noise
and dark noise. In the following paragraphs, we will introduce a
couple of photon-number distributions in order to demonstrate

how this measure provides insight into the nature of the UPE
light being emitted.

The photocount statistics of coherent light is a Poisson
distribution (Cifra and Brouder, 2015).

Pn(t,T) =
〈n〉n

n!
e−〈n〉 (1)

where 〈n〉 is the average number of photons measured between
time t and time t + T. The variance of Poisson distribution is
equal to its mean 〈(1n)2〉 = 〈n〉. The deviation of the photon-
number distribution from the Poisson distribution is measured
by the Fano factor F such that 〈(1n)2〉 = 〈n〉F, or by the Mandel
parameter Q = F − 1. A photocount statistics is said to be
super-Poissonian if F > 1 and Q > 0, and sub-Poissonian (and
therefore non-classical) if F < 1 and Q < 0. Hence, the shift
from a Poisson distribution is a sign of non-classical (quantum)
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FIGURE 3 | (A) Poisson distribution for four different average values of photon counts 〈n〉. (B) Demonstration of thermal field photocount distribution for different

number of thermal modes for the average number of 10 photons. (C) Thermal field photocount distribution (with similar 〈n〉) approaches Poisson distribution for a large

number of modes M.

characteristics of the light (Cifra and Brouder, 2015) while a
Poisson distribution is a sign of classicality.

The photocount statistics of a thermal source with Mmodes is
approximated by the expression

Pn(t,T,M) =
(n+M − 1)!

n!(M − 1)!
)(1+

M

〈n〉
)−n(1+

〈n〉
M

)−M (2)

where 〈n〉 is the average number of photons and M is the
number of field modes (Cifra and Brouder, 2015). An important
characteristic of these states is the relation between the variance
and the mean 〈(1n)2〉 = 〈n〉+ 〈n〉2

M . The coefficientM is generally
very large for chaotic sources. So that the relation between the
variance and the mean is close to that of a coherent state, i.e.,
for large M, Pn(t,T,M) approaches a Poisson distribution (see
Figure 3). In relation to UPE, it is important to know whether
the photocount statistics can distinguish between the coherent
and thermal emissions, because photocount statistics of thermal
light becomes equal to that of a coherent state when the number

of modes M is large. Since the photocount statistics are not able
to discriminate between a coherent and a thermal state with
many modes.

Another type of emission is super-radiance, which is the
coherent emission of light by several sources, and its main
characteristic is the fact that the intensity of the emitted light
can vary with the square of the number of sources because
they can emit in phase. The photocount statistics of super-
radiant emission is sub-Poissonian (Cifra and Brouder, 2015),
and the photon state of a super-radiant system is generally not
a coherent state.

4.2.1. Photon Detection With Interference
The photons collected onto our chip will then be propagated
through a PIC featuring several interference paths and other
components. The model of the effect of the PIC on the incident
photons aims to predict the probability distribution of photons
at the detector following their propagation and interference in
a linear interferometer. The experimental setup only requires
photodetectors and linear optical elements, i.e., beam splitters
and phase shifters. Suppose the chip is injected with an input

state of single photons of UPE, |S〉 = |s1, s2, ..., s′N〉 where sk
are the number of UPE emitted photons in the kth mode and
injected into the chip. The output state of the chip can be written
as |O〉 = |x1, x2, ..., x′N〉. For the sake of simplicity, suppose
that there are four outputs on the chip. Therefore, probabilities
of output detection for N = 1 input photons in case there is
no dissipation in the circuit are P|1000〉, P|0100〉, P|0010〉, P|0001〉,
and for N = 2 input photons the probabilities at the output
are P|1001〉, P|1010〉, P|1100〉, P|0110〉, P|0011〉, P|0101〉, P|2000〉, P|0200〉,
P|0020〉, P|0002〉. Now, we consider a general case for N

′ outputs.
The signal processing and the interpretation of the signals
require machine learning techniques. As the signal acquisition
is performed through an interferometer, different interference
patterns may form. We suggest a pattern recognition approach
via convolutional neural networks (CNNs) (Fukushima, 1980)
for an efficient interpretation of output signals on the photonic
interferometer chip. Here, the conjecture is that a synchronous
activity in a specific region of cortex makes synchronous similar
metabolism with similar chemical reactions producing similar
ROS by-products simultaneously, and therefore the probability
of detection of similar photons (even with a low probability
of interference in the interferometer) during a specific brain
activity is higher than the normal state with stochastic photon
emissions. Discrimination between the interference pattern of
active and normal states will be non-trivial but tractable via
machine learning. This conjecture is expected to be reasonable
based on highly synchronized brain activities for different specific
cognitive tasks. In fact, the photonic chip continuously produces
data under normal and active states of the brain. The patterns
can be recognized by studying the data and classifications via
discrimination between the signals of normal and active states.
In such a state, both supervised and unsupervised learning can be
performed on software. This can be an advantage of the method.

The idea of using UPE signals for BCI applications still
remains at the level of conjecture, relying on a mere fact that
UPE shows correlations with some brain activities. Therefore,
from a BCI point of view, such correlations are very important
because for almost all types of brain signals for BCI applications,
it is hardly possible to extract specific information from the
signals directly. With an analysis of signals over thousands of
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FIGURE 4 | On-chip optical interferometer with N’ inputs and N’ outputs. The

output patterns can be processed for feature extraction via machine learning

techniques. It is expected that for each cognitive task or decision making, a

similar pattern (in average) forms after many runs under training for specific

tasks. The features of the average pattern can be recognized by deep learning

methods, or specifically by convolutional neural networks (CNNs) on a

software.

training trials, it will be possible to obtain an average pattern
with specific features (for feature extraction) that finally make
it easy for a specific algorithm to recognize the pattern in
the next acquisition signals directly. Here, we suggest using
a machine-learning algorithm to discriminate variations and
extraction of features by enhancement of training data. A deep-
learning algorithm becomes stronger in learning with increasing
the training data to a specific level. This is a benefit for
an implanted chip since it is always creating thousands of
patterns easily to be processed by software on a computer or a
smartphone. There is no need to perform separate experiments
each time for training. Therefore, a deep-learning algorithm
can learn how to understand features from UPE signals and
interpret them according to the relevant cognitive task. Thus,
data analysis of the output UPE signals of the chip can be
performed via machine learning in general and deep learning
specifically. For instance, a possibility is via deep learningmethod
called CNN technique, which enables high-resolution pattern
recognition. Since CNNs are ideal for 2D imaging processing,
then the UPE signals detected at the receiver optical plane
pixel-array can be readily adapted for CNN (see Figure 4).
The pattern analysis can be enhanced depending on the details
our architecture. CNN error minimization methods are used to
optimize convolutional networks in order to implement quite
powerful pattern transformations. This is very useful when

the input is spatially or temporally distributed. The first layer
of a CNN generally implements non-linear template-matching
at a relatively fine spatial resolution, extracting basic features
of the data. Subsequent layers learn to recognize particular
spatial combinations of previous features, generating “patterns
of patterns” in a hierarchical manner. If down-sampling is
implemented, subsequent layers perform pattern recognition at
progressively larger spatial scales, with lower resolution. A CNN
with several down-sampling layers enables processing of large
spatial arrays, with relatively few free weights. As we discussed
before, an ensemble of wavelengths may make different patterns
at the same time and obscure the interference patterns, where a
PCA algorithm (Jolliffe, 2002) can find the differences between
different patterns in the overlapped patterns, and classify each
pattern for the relevant wavelength after many sets of training
data.

4.3. Implementation Feasibility
We now discuss the feasibility of fabricating all elements of our
envisaged skull-implant UPE-based BCI (to be followed with
Figure 5).

4.3.1. Chip Ingredients
The design and fabrication of PICs is a mature technology,
which is realized on a variety of material platforms, which
are tailored to the needs and requirements of the application
at hand. Available platforms for lithography-based fabrication
include silicon photonics [Silicon on Insulator (220 nm and
3 µm SOI), Si-based silica on silicon (SiO2, also known as
PLC), and silicon nitride (SiN and TriPleX)], III-V photonics
such as indium phosphide (InP), gallium arsenide (GaAs) and
derivatives, and finally lithium niobate (LiNbO3) and other
more exotic materials (Liang and Bowers, 2009; Washburna
and Bailey, 2011; Fang and Zhao, 2012; Arakawa et al., 2013;
Chrostowski and Hochberg, 2015; Muñoz et al., 2017; Boes
et al., 2018; Zhu et al., 2021). It should be noted that the
SIO platform is not a suitable candidate for the UPE in the
visible spectrum as the relatively small band-gap of silicon
renders it completely opaque below a wavelength of about
1,000 nm. SiN, which, on the other hand, is transparent in
the visible wavelength-range and features compatibility with
CMOS technology (Romero-Garcia et al., 2013), appears to be
a strong candidate as a PIC platform for our proposed BCI.
As an alternative to the lithography-based PIC, femto-second
laser-written waveguides (FLWs) in SiO2 (glass) have in recent
years been used to successfully implement advanced PICs (Davis
et al., 1996; Marshall et al., 2009). The unique advantage of
FLWs is that the ability to define waveguides in three dimensions,
i.e., including at different depths in the chip. This allows more
complex routing, such as the crossing of waveguides (Marshall
et al., 2009).

Choosing the right technology will be the starting point for
having a successful integrated chip. By integrating all devices
into a single chip, complex assembly, alignment, and stabilization
processes are avoided, and packaging and testing are greatly
simplified. Moreover, it is the only way to scale up complexity
when moving over 20–30 components into a single package.
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FIGURE 5 | Feature extraction and pattern recognition of detected ultraweak photon emission (UPE) by a chip composed of complementary

metal-oxide-semiconductor (CMOS) array via convolutional neural network (CNN) on a software installed on a computer, machine, or smartphone; (top) direct UPE

detection without optical interferometer, and (bottom) UPE detection after the interferometer. The existence of optical interferometer is to discriminate UPE

wavelengths, since interference of similar photons (in wavelength) make a different pattern with non-similar photons. One of the advantages of such an interferometer

is to have a simple “spectrometry” over similar wavelengths. However, an ensemble of wavelengths may make different patterns at the same time and obscure the

interference patterns which may not make advantage over a direct detection, but one can classify those ensemble patterns with pattern recognition techniques such

as PCA, which can find the differences between different patterns in the overlapped patterns, and classify each pattern for the relevant wavelength after many sets of

training data. The direct detection of UPE by CMOS array and indirect detection after an optical interferometer both can be used for UPE data acquisition.

The selection of the integration material will then determine
the capabilities and limitations for the technology platform,
making some of them more appropriate for certain applications
than others. This is thus a critical choice and needs to be
carefully evaluated.

4.4. Noise and Loss in the PIC
Design of an PIC, testing and packaging from the beginning
should be done carefully. The steps are device level (optical,
thermal, andmaterial simulations), circuit level (virtual lab to test
performance), system level (PIC connected to a CMOS array),
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FIGURE 6 | A typical on-chip ultraweak photon emission (UPE) detector can be built from an array of optical fibers connected to an integrated photonic circuit, which

has an output gate composed of complementary metal-oxide-semiconductor (CMOS) photosensor array.

layout level (generate the design intent), verification, simulation
of each process step, fabrication, and finally packaging.Moreover,
a software should be designed to process the detected signals.
Here, we would like to estimate the noise magnitude in the
optical section of the PIC. The optical section is composed of
receiver optical plane (ROP), optical fibers (OF), and optical
interferometer (OI).

4.4.1. Noise and Loss in the Receiver Optical Plane
First, we note that blackbody radiation is not a significant
source of photons in the visible wavelength range at body
temperature. On our BCI, photons are directly coupled to the
ROP’s fibers that are very close (approximately in contact)
with the cortex, thereby leading to a minimal coupling loss.
In terms of noise, shot noise [also known as “quantum noise”
(Gardiner and Zoller, 2004) or “photon noise”] is the most
important contribution in the ROP. It describes the fluctuations
of the number of photons received due to their occurrence
independent of each other. Optical detection is said to be
“photon noise limited” as only the shot noise remains. Just as
with other forms of shot noise, the fluctuations in a photo-
current due to shot noise scale as the square-root of the

average intensity:

SN : =|
√

(n− 〈n〉)2 |

4.4.2. Loss in Optical Fibers
The intensity of photons will become lower when traveling
through the core of fiber optic. Thus, the signal strength becomes
weaker. This loss of light power is generally called fiber optic
loss or attenuation. This decrease in power level is described
in dB. There are two types of loss in optical fibers known as
intrinsic fiber core attenuation (mainly due to light absorption
and scattering) and extrinsic fiber attenuation due to bending
loss as well as splicing (or coupling) loss between the fibers
and chip. Given that the length of the fibers are to be in
centimeter scale, the former will be negligible. However, bending
and splicing/coupling loss can be significant depending on the
process of binding the fibers to the photonic chip. For example,
based on subwavelength gratings, it has been shown that it is
possible to couple broadband light with very low coupling losses.
Guiding of visible light in the wavelength range of 550–650 nm
with losses down to 6 dB/cm is feasible using silicon gratings
(having absorption of 13,000 dB/cm at this wavelength), which
are fabricated with standard silicon photonics technology. This

Frontiers in Neuroscience | www.frontiersin.org 10 January 2022 | Volume 15 | Article 780344103

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Salari et al. BCI via Photonic Chips

approach allows one to overcome traditional limits of the various
established photonics technology platforms with respect to their
suitable spectral range (Urbonas et al., 2021).

4.4.3. Noise and Loss in Optical Interferometer
The main elements of an optical interferometer on a photonic
chip are couplers and optical modulators, as illustrated in
Figure 7. There are different types of optical modulators
such as MEMS, liquid crystal on silicon (LCOS), electro-
optic LiNbO3 waveguide, III-IV semiconductor optical amplifier
(SOA), Mach-Zehnder interferometer (MZI), and micro-ring
resonator (MRR) (Stefanov et al., 2020). Compared with the
above technologies, the silicon photonic modulators based
on silicon-on-insulator (SOI) platform attract more attention
because of high device density, whose volume is 1/1,000 of silicon
dioxide devices, functional integration with active photonic
devices and complementary metal oxide semiconductor (CMOS)
circuit, and fabrication process compatible with a mature CMOS
manufacturing technology. One of the state of art of the silicon
photonic modulator engine that is very useful for quantum
interference is MZI. A typical 2 × 2 MZI modulator cell consists
of two 3 dB coupler and a dual-waveguide arm between them.
One of the arms has a phase shifter based on the change of
refractive index. Since the silicon has both strong thermo-optic
(T-O) effect (1.86×10−4 K−1) (Stefanov et al., 2020), the phase
shifter can be categorized as T-O switch with a heater and electro-
optic (E-O) switch with a p-i-n junction diode. The T-O switch
has a response time of microsecond-scale to millisecond-scale,
while the E-O switches have a response time of nanosecond-scale.

The loss in on-chip optical interferometers arise from non-
unity coupling from fiber to the input ports of the chips as well
as attenuation through the waveguides patterned on the chip.
As discussed above, the coupling loss can be significantly less
than 1 dB through the advanced coupling methods. However,
the waveguide propagation loss is given by the chip platform.
Depending on the wavelength, this loss can vary substantially, in
particular in the wavelength range of 300–700 nm, as shown in
Table 1.

4.5. Noise and Loss in the CMOS Sensor
Array
Noise can be produced by fluctuations in signal that makes
uncertainty in detection. Essentially, the signal-to-noise ratio
(SNR) is the ratio of pattern signal to the total noise. For larger
SNR, it is easier to distinguish pattern from noise, which makes a
higher confidence in measurements.

CMOS (Complementary metal–oxide–semiconductor)
primary noise sources are shot (photon) noise (i.e., SN), dark
noise (i.e., DN), and read noise (i.e., RN). Shot noise is due
to physical property of light, regardless of sensor, and it is
SN =

√

Signal. Dark noise is temperature dependent and
higher for global shutter and its magnitude is obtained as

DN =
√
Dark Current. Read noise includes Random Telegraph

Noise (RTN), which is non-Gaussian, and depends on multiply
column and pixel amplifiers, RN = Read Noise. RTN is the most
significant component of CMOS noise. The SNR for CMOS is

FIGURE 7 | Schematic of various of Mach-Zehnder interferometer (MZI)

modulator cells in an optical interferometer. The undesirable attenuation of light

in the waveguides and modulators depends on material of the chip platform as

well as the dimension and structure of modulators (Stefanov et al., 2020),

which determine bending and scattering loss.

obtained as follows:

SNR =
S

√

SN2 + DN2 + RN2
(3)

where S is Signal=Photon flux × time × QE (Dragulinescu,
2012).

Scientific CMOS (sCMOS) sensor is a novel technology with
room to grow, which allows for higher speed operation with
larger pixel arrays than EMCCD and CCDs with similar noise
performance to conventional CCDs.

4.5.1. Quantum Efficiency
QE is defined as

QE =
Converted photons to electrons

Total incident photons

which is a measurement of sensitivity to light. As a ratio, QE is
dimensionless, but it is closely related to the responsivity, which is
expressed in amps (A) per watt (W). Since the energy of a photon
is inversely proportional to its wavelength, QE is often measured
over a range of different wavelengths to characterize a detector
efficiency at each photon energy level.

The photodetector matrix consist of CMOS-compatible
photodiodes (formed between drain diffusion and p-well) with
associated readout and sensor selection circuits. The spectral
measurements of the photodiode have exhibited a QE better than
60% at 650 nm, and better than 40% between 500 and 850 nm
(Dragulinescu, 2012).

A chip design for UPE detection can be inspired by retina
implants, but with bigger array size and significantly higher
QE. The irradiance on the retina even under a bright daytime
illumination does not exceed 1 µWmm−2. At such illumination
a 20 µm diameter photodiode (having even 100% QE) can
provide only 40 pA of current (Palanker et al., 2005). Basically,
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TABLE 1 | Data adapted from APL Photonics 5, 020903 (2020); Optica 6(3), 380-384 (2019); and Optics Express 14 (11), 4826-4834 (2006).

Loss vs. wavelength for various chip platforms

Loss (dB/cm) 300–400 nm 400–500 nm 500–600 nm 600–700 nm

Aluminum nitride (AlN) 40–50 40–50 30–40 20–30

Alumina (Al2O3) ∼ 3 2 1 < 1

Tantalum pentoxide (Ta2O3) N/A ∼ 4 ∼ 2 < 1

Silicon-nitride (Si3N4) N/A 5–20 < 1 < 1

Lithium niobate (LiNbO3) N/A N/A N/A ∼ 0.06

Femto-second laser-written waveguides in glass (SiO2 ) N/A N/A N/A ∼ 0.2

each photoreceptor cell can produce 1 pA with a single
photon absorption (Salari et al., 2016a). To provide stimulating
current on the order of 1–2 µA, which would be minimal for
physiological stimulation, current amplification by a factor of
about 1,000 is required. Suitable current levels would require
photodiodes more than 600µm in diameter, so that ambient light
cannot be used to power more than a token number of electrodes
on a retinal chip. An additional source of power will be needed
for any practical chip (Palanker et al., 2005). The stimulation
current for an electrode of 10 µm in diameter is on the order
of 1 µA. The photodiode converts photons into electric current
with efficiency of up to 0.6 AW−1, thus 1.7 µW of light power
will be required for activation of one pixel. If light pulses are
applied for 1 ms at 50 Hz, the average power will be reduced
to 83 nW/pixel. With 18,000 pixels on the chip, the total light
power irradiating an implant will be 1.5 mW (Palanker et al.,
2005). In the case of skull-implant PIC chip, the main difference
with the retina implant is that the retina implant should activate
neurons with the currents produced by external light, which
needs a relatively high intensity of light, while for the PIC chip
there is no need to activate neurons, and a low light intensity
even with a few numbers of photons is sufficient for the CMOS
pixels activation to be reported to the software. In silicon, a
single-photon with a wavelength between 300 and 1,100 nm can
generate only one electron–hole pair. Therefore, for visible and
near-infrared light, the task of single-photon detection becomes
a task of single-electron (or hole) detection. This is not easy
due to the unavoidable readout noise of the sensor, which is
usually too high for the reliable detection of a single electron.
Another difficulty for room temperature applications are the
thermal dark currents, because they are indistinguishable from
photogenerated signals.

4.5.2. Chip Battery and Wireless Sectors
In order to have a dynamic chip for monitoring signals of the
brain continuously, the chip requires a long lifetime battery. The
size and lifetime of the battery is one of the major challenges
in design of an implant chip for biomedical applications. As
an alternative, replacing the battery with a miniaturized and
integrated wireless power harvester aid the design of sustainable
biomedical implants in smaller volumes (Masius and Wong,
2020). Currently, implanted batteries provide the energy for
implantable biomedical devices. However, batteries have fixed
energy density, limited lifetime, chemical side effects, and large

size. Thus, researchers have developed several methods to harvest
energy for implantable devices. Devices powered by harvested
energy have longer lifetime and provide more comfort and
safety than conventional devices. A solution to energy problems
in wireless sensors is to scavenge energy from the ambient
environment. Energies that may be scavenged include infrared
radiant energy, wireless transfer energy, and RF radiation energy
(inductive and capacitive coupling) (Hannan et al., 2014).
Recently, a chip has been developed that is powered wirelessly
and can be surgically implanted to read neural signals and
stimulate the brain with both light and electrical current. The
technology has been demonstrated successfully in rats and is
designed for use as a research tool. The chip is capable of
16-ch neural recording, 8-ch electrical stimulation, and 16-
ch optical stimulation, all integrated on a 5 × 3 mm2 chip
fabricated in 0.35-µm standard CMOS process. The trimodal
SoC is designed to be inductively powered and communicated
(Jia et al., 2020).

4.6. Biocompatibility of the Chip
Brain implants may induce side effects; for instance they may
interact acutely and chronically with the brain tissue possibly
causing blood–brain barrier (BBB) breach, vascular damage,
micromotions, diffusion, etc. (Prodanov and Delbeke, 2016). The
advantage of our suggested photonic chip is that it is minimally
invasive compared to invasive implants (e.g., ECoG) since it does
not need to penetrate the brain tissue.

Some of the key fundamental questions associated to brain
implants are related to how long an implant can record
useful neuronal signals and what degree of acquisition and
decoding reliably can be achieved if the tissue is affected
by chip implant. Functional neural tissue survival, distance
from the chip contact to target and long-term stability are
essential parameters to be considered (Prodanov and Delbeke,
2016).

In the case of photonic chip, it should be installed on the
inner surface of the skull and not to be implanted directly
in the brain tissue. However, there is still the possibility of a
close contact with the brain meninges (i.e., layered membranes
that protect the brain and spine) due to the mechanical or
volume changes of the brain. In this case, it has been shown
that Silicone causes the least amount of inflammation relative
to other materials tested at all sacrifice points, which makes
it the leading standard neurosurgical implant material and an
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appropriate control for studies of brain biocompatibility (Mofid
et al., 1997). Thus, we envisage to adopt silicone chips but we also
expect that research in biocompatibility will provide alternative
and advanced materials. However, since the photonic chip can
be implanted in between the meninges and the skull, there
can be concerns about the limitation of brain UPE detection
due to the existence of meninges. The meninges layers of
the human brain are composed of three main layers: dura,
arachnoid, and falx. The key question is whether light can
pass through these layers and if it does, then what are the
scattering and absorption effects of photons? For instance, to
have a reasonable data acquisition should the dura be open?
The optical properties of the human brain and its meninges
have been investigated decades ago. It has been shown that
meninges is approximately transparent for the near-IR range,
but almost half of emissions will not pass through it in
the visible range, and less than 40% of emissions can pass
through the meninges in the UV range (200–400 nm) (Eggert
and Blazek, 1987). As a result, based on the high efficiency
of the photonic chip in the near-IR range, the existence of
meninges reduces the intensity of UPE but it does not lead to a
significant limitation.

Additionally, because of the aqueous and biochemically
aggressive nature of the body, the lifetime of brain implants
strongly depends on packaging. There are different methods
for packaging, which may be especially important for the
case of traditional electric chips with wireless neuromodulatory
implants with increasing electrode count to have an in vivo
lifetime comparable to a sizable fraction of a healthy patient’s
lifetime (>10–20 years) (Shen and Maharbiz, 2021). For our
suggested photonic chip, the situation is considerably better
because the chip does not have electrodes in the wet biological
tissue nor contact with that, and the environment between the
meninges and skull is not aqueous, and therefore the probability
of water leakage in the photonic chip is minimal. If there
will be an injury in the meninges layers due to some impact
or accident, then the aqueous leakage may occur, where the
photonic chip should be investigated for packaging based on the
materials used.

5. DISCUSSION AND CONCLUSION

We propose a radically novel BCI that is based on UPE from
the brain. We describe its feasibility of fabrication based on
integrated photonic circuits that be readily implemented in a lab.
The envisaged BCI chip can be implanted on the interior surface
of the skull to monitor in real-time UPE signals emanating
from the cortex surface. The proposed chip is not only useful
for BCI technology but also it can be used as a photonic
sensor for imaging, spectroscopy, and sensitive measurements at
low light levels in several applications from biological UPE to
quantum optical processing (Salari et al., 2021). Although our
proposed technology is, admittedly, at the level of conjecture,
requiring comprehensive tests and investigations for verification,
we still envision complementary features as well as certain
advantages over established technologies, including ECoG. The

inherent advantage of our proposed technology is that it is
minimally invasive when compared to ECoG. Furthermore,
there are certain side effects that may affect the quality of data
acquisition over time in ECoG, whereas we expect a relatively
stable long-term data acquisition in our proposed approach. In
addition, if our suggested photonic chip-technology reaches a
satisfactory detection performance based on our estimations,
we anticipate that it can feature some other advantages. For
example, it may provide additional information about brain
functioning, such as an approximately real-time imaging (in
slightly longer timescales, e.g., each 15, 20, 30, 60 min, or so)
and open the door to studying metabolism variations, variation
of ROS production, delayed luminescence but also undertake
novel and complementary studies on object visualization studies,
sleep studies, and neurodegenerative diseases (Breakspear et al.,
2006; Fülöp et al., 2021). Indeed, the emphasis of our conjectural
paper is to develop a novel technology and methods that
could provide complementary information to improve our
understanding of brain activity with potential applications for
BCI technologies.

Now, we would like to discuss the advantages and limitations
of our proposed technology vs. the current BCI methods. On-
chip PICs offer advantages such as miniaturization, higher
speed, low thermal effects, large integration capacity, and
compatibility with existing processing flows that allow for high
yield, volume manufacturing, and lower prices. In the case
of UPE detection, there is no need for on-chip single-photon
sources, which is one of the most difficult challenges in PICs
for quantum computation and communication. In the suggested
chip, single photons are produced naturally by metabolism in
neurons and therefore a lower power with battery is needed
for energy consumption on an implant PIC. Loss is low in
NIR range (e.g., 2 × 10−6 dB/cm). In addition, photons are
bosons, which do not interact and crosstalk is minimal. A
PIC for optical interferometery is efficient for the wavelengths
typically in the near infrared range, 800–1,650 nm. This makes
a limitation for detection of UPE photons that are in the
visible range and the overlapped part to NIR, 400–800 nm. For
example, loss is high for the visible range (e.g., 0.6 dB/cm at
600 nm).

Moreover, it may look that the single-photon detections
on a CMOS array have a low QE besides the dark current
in room temperature, which may lose considerable amounts
of UPE. Another concern may be that the output of CMOS
is electrons, which are charged particles and fermions, and
therefore electronic crosstalk is inherent. In fact, the CMOS
QE is about 75%, which is about three times higher than the
photo-multiplier tubes (PMTs) with QE about 25%. The SNR
of a PMT at room temperature to detect UPE photons is about
1–2, thus a cooling system is required to cool down the PMT
sensor to enhance the SNR to reach 3 and higher. Obviously,
there is no cooling system on an PIC chip, but in this case,
the QE of the CMOS sensor can compensate the lack of a
cooling system. For a simple estimation, assuming a 1 × 1 cm
chip and considering the length of each CMOS pixel is 4 µm,
it is possible to have 2,500 CMOS pixels as the output port
on the chip, including 50×50 pixels on the ROP. According
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the estimations in the main text, the amount of total photon
loss from the receiver optical plane (ROP) to the output of
the optical interferometer (OI) is about 50%, and the QE of
CMOS at the output of the OI is estimated to be 25% in body
temperature under the implant conditions on the skull to have
a final SNR from 1 to 2. Consequently, it is estimated that
only 10% of incident photons can be safely recognized in the
output and reported wirelessly to the software on a computer or
smartphone. Considering 10–1,000 incident photons per second
received in the ROP under a cognitive task (e.g., an object
visualization), there can be 1–100 photons per second efficiently
detected in the output port, which are enough to have a
relatively successful implant PIC chip for an acceptable pattern
for UPE processing, where the size of the machine learning
program is N × N sparse matrix, which is not a difficult task
for a chip size number of pixels. To conclude, in this paper,
we advance major conjectures regarding the relevance of UPE
patterns and decision making as well as the feature extractions
from UPE signals, which need to be experimentally verified.
However, despite some probable limitations in chip fabrication
and efficiency, it may be used for wireless BCI signal acquisition
with several advantages vs. traditional counterparts such as speed,
size, minimally invasive, cheap, scalability, etc. This can be a
potential step forward for real-time brain imaging and biological
information processing.
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Neural codes are reflected in complex neural activation patterns. Conventional
electroencephalography (EEG) decoding analyses summarize activations by
averaging/down-sampling signals within the analysis window. This diminishes
informative fine-grained patterns. While previous studies have proposed distinct
statistical features capable of capturing variability-dependent neural codes, it has been
suggested that the brain could use a combination of encoding protocols not reflected
in any one mathematical feature alone. To check, we combined 30 features using
state-of-the-art supervised and unsupervised feature selection procedures (n = 17).
Across three datasets, we compared decoding of visual object category between
these 17 sets of combined features, and between combined and individual features.
Object category could be robustly decoded using the combined features from all of
the 17 algorithms. However, the combination of features, which were equalized in
dimension to the individual features, were outperformed across most of the time points
by the multiscale feature of Wavelet coefficients. Moreover, the Wavelet coefficients also
explained the behavioral performance more accurately than the combined features.
These results suggest that a single but multiscale encoding protocol may capture the
EEG neural codes better than any combination of protocols. Our findings put new
constraints on the models of neural information encoding in EEG.

Keywords: neural encoding, multivariate pattern decoding, EEG, feature extraction, feature selection

INTRODUCTION

How is information about the world encoded by the human brain? Researchers have tried to answer
this question using variety of brain imaging techniques across all sensory modalities. In vision,
people have used invasive (Hung et al., 2005; Liu et al., 2009; Majima et al., 2014; Watrous et al.,
2015; Rupp et al., 2017; Miyakawa et al., 2018) and non-invasive (EEG and MEG; Simanova et al.,
2010; Carlson et al., 2013; Cichy et al., 2014; Kaneshiro et al., 2015; Contini et al., 2017) brain
imaging modalities to decode object category information from variety of features of the recorded
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neural activations. While majority of EEG and MEG decoding
studies still rely on the within-trial “mean” of activity (average
of activation level within the sliding analysis window) as the
main source of information (Grootswagers et al., 2017; Karimi-
Rouzbahani et al., 2017b), recent theoretical and experimental
studies have shown evidence that temporal variabilities of neural
activity (sample to sample changes in the level of activity)
form an additional channel of information encoding (Orbán
et al., 2016). For example, these temporal variabilities have
provided information about the “complexity,” “uncertainty,” and
the “variance” of the visual stimulus, which correlated with the
semantic category of the presented image (Hermundstad et al.,
2014; Orbán et al., 2016; Garrett et al., 2020). Specifically, object
categories which show a wider variability in their exemplars (e.g.,
houses) evoke more variable neural activation than categories
which have lower variability (e.g., faces; Garrett et al., 2020).
Accordingly, it is now clear that neural variabilities carry
significant amounts of information about different aspects of
sensory processing and may also play a major role in determining
behavior (Waschke et al., 2021).

Despite the richness of information in neural variabilities,
there is no consensus yet about how to quantify informative
neural variabilities. Specifically, neural variabilities have
been quantified using three classes of mathematical features:
variance-, frequency-, and information theory-based features,
each detecting specific, but potentially overlapping aspects of the
neural variabilities (Waschke et al., 2021). Accordingly, previous
studies have decoded object category information from EEG
using variance-based (Wong et al., 2006; Mazaheri and Jensen,
2008; Alimardani et al., 2018; Joshi et al., 2018), frequency-based
(Taghizadeh-Sarabi et al., 2015; Watrous et al., 2015; Jadidi et al.,
2016; Wang et al., 2018; Voloh et al., 2020) and information
theory-based (Richman and Moorman, 2000; Shourie et al.,
2014; Torabi et al., 2017; Ahmadi-Pajouh et al., 2018) features.
However, these previous studies remained silent about the
temporal dynamics of category encoding as they performed the
analyses (i.e., feature extraction and decoding) on the whole-trial
data to maximize the decoding accuracy. On the other hand,
time-resolved decoding analyses studied the temporal dynamics
of category information encoding (Kaneshiro et al., 2015;
Grootswagers et al., 2017; Karimi-Rouzbahani, 2018). However,
few time-resolved studies have extracted any features other than
the instantaneous activity at each time point, or the mean of
activity across a short sliding window (e.g., by down-sampling
the data), to incorporate the information contained in neural
variabilities (Majima et al., 2014; Karimi-Rouzbahani et al.,
2017a). Therefore, previous studies either did not focus on the
temporal dynamics of information processing or did not include
the contents of neural variabilities in time-resolved decoding.

Critically, as opposed to the Brain-Computer Interface (BCI)
community, where the goal of feature extraction is to maximize
the decoding accuracy, in cognitive neuroscience the goal is to
find better neural correlates for the behavioral effect under study
(Williams et al., 2007; Jacobs et al., 2009; Hebart and Baker,
2018; Woolgar et al., 2019; Karimi-Rouzbahani et al., 2021a,b).
Specifically, a given feature is arguably only informative if it
predicts behavior. Therefore, behavior is a key benchmark for

evaluating the information content of any features including
those which quantify neural variabilities. Interestingly, almost
none of the above-mentioned decoding studies focused on
evaluating the predictive power of their suggested informative
features about behavior. Therefore, it remains unclear if
the additional information they obtained from features of
neural variabilities was task-relevant or epiphenomenal to the
experimental conditions.

To overcome these issues, we proposed a new approach
using medium-sized (50 ms) sliding windows at each time step
(5 ms apart). The 50 ms time window makes a compromise
between concatenating the whole time window, which in theory
allows any feature to be used at the expense of temporal
resolution, and decoding in a time resolved fashion at each
time point separately, which might lose temporal patterns of
activity (Karimi-Rouzbahani et al., 2021b). Within each window,
we quantify multiple different mathematical features of the
continuous data. This allows us to be sensitive to any information
carried in local temporal variability in the EEG response,
while also maintaining reasonable temporal resolution in the
analysis. In a recent study, we extracted a large set of such
features and quantified the information contained in each using
multivariate classification (Karimi-Rouzbahani et al., 2021b). We
balanced the number of extracted values across features using
Principal Component Analysis (PCA). Across three datasets,
we found that that the incorporation of temporal patterns of
activity in decoding, through the extraction of spatiotemporal
“Wavelet coefficients” or even using the informative “original
magnitude data (i.e., no feature extraction),” provided higher
decoding performance than the more conventional average
of activity within each window (“mean”). Importantly, we
also observed that for our Active dataset where participants
categorized objects, the decoding results obtained from the same
two features (i.e., Wavelet coefficients and original magnitude
data) could predict/explain the participants’ reaction time in
categorization significantly better than the “mean” of activity in
each window (Wavelet outperformed original magnitude data).
We further observed that more effective decoding of the neural
codes, through the extraction of more informative features,
corresponded to better prediction of behavioral performance.
We concluded that the incorporation of temporal variabilities
in decoding can provide additional category information and
improved prediction of behavior compared to the conventional
“mean” of activity.

One critical open question, however, is whether we should
expect the brain to encode the information via each of these
features individually, or whether it may instead use combinations
of these features. In other words, while each of feature may
potentially capture a specific and limited aspect of the generated
neural codes, the brain may recruit multiple neural encoding
protocols at the same time point or in succession within
the same trial. Specifically, an encoding protocol might be
active only for a limited time window or for specific aspects
of the visual input (Gawne et al., 1996; Wark et al., 2009).
For example, it has been shown in auditory cortex that two
distinct encoding protocols (millisecond-order codes and phase
coding) are simultaneously informative (Kayser et al., 2009).
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Another study showed that spike rates on 5–10 ms timescales
carried complementary information to that in the phase of
firing relative to low-frequency (1–8 Hz) local field potentials
(LFPs) about which epoch of naturalistic movie was being shown
(Montemurro et al., 2008). These examples suggest that two
very distinct encoding protocols (rate vs. phase coding) might
be at work simultaneously to provide information about distinct
aspects of the same sensory input. Therefore, it might be the
case that multiple neural encoding protocols contribute to the
encoding of information. Alternatively, the brain may implement
one general multiscale encoding protocol [e.g., multiplexing
strategy which combines same-structure neural codes at different
time scales (Panzeri et al., 2010)], which allows different aspects
of information to be represented within a more flexible encoding
protocol. More specifically, the brain might implement a general
platform, which allows the representation of information at
different temporal and spatial scales. For example, in visual
stimulus processing, one study found that stimulus contrast
was represented by latency coding at a temporal precision of
∼10 ms, whereas stimulus orientation and its spatial frequency
were encoded at a coarser temporal precision (30 and 100 ms,
respectively; Victor, 2000). This multiplexed encoding protocol
has been suggested to provide several computational benefits
to fixed encoding protocol including enhancing the coding
capacity of the system (Schaefer et al., 2006; Kayser et al., 2009),
reducing the ambiguity inherent to single-scale codes (Schaefer
et al., 2006; Schroeder and Lakatos, 2009) and improving the
robustness of neural representations to environmental noise
(Kayser et al., 2009).

To see if EEG activations reflect the neural codes using several
encoding protocols simultaneously, we created combinations
from the large set of distinct mathematical features in our
previous study (Karimi-Rouzbahani et al., 2021b). We asked
whether their combination recovers more of the underlying
neural code, leading to additional object category information
and increased accuracy in predicting behavior, compared to
the best performing individual feature from the previous study
(i.e., Wavelet). Specifically, we used the same three datasets,
extracted the same features from neural activity, selected
the most informative features at each sliding time window
and evaluated their information about object categories. We
also evaluated how well each combined feature set explained
behavioral recognition performance. Our prediction was that
as targeted combinations of informative features provide more
flexibility in detecting subtle differences, which might be ignored
when using each individual feature, we should see both a
higher decoding accuracy and predictive power for behavior
compared to when using individual features. However, our
results show that, the most informative individual feature (the
Wavelet transform) outperformed all of the feature combinations
(combined using 17 different feature selection algorithms).
Similarly, Wavelet coefficients outperformed all combinations of
features in predicting behavioral performance. Therefore, while
the relationship between neuron-level encoding of information
and EEG signals remains to be investigated in the future,
these results provide evidence for a general multiscale encoding
protocol (i.e., captured by Wavelet coefficients) rather than

a combination of several protocols for category encoding
in the EEG data.

MATERIALS AND METHODS

As this study uses the same set of datasets and features used
in our previous study, we only briefly explain the datasets
and the features. The readers are referred to our previous
manuscript (Karimi-Rouzbahani et al., 2021b) as well as the
original manuscripts (cited below) for more detailed explanation
of the datasets and features. The datasets used in this study and
the code are available online at https://osf.io/wbvpn/. The EEG
and behavioral data are available in Matlab “.mat” format and the
code in Matlab “.m” format.

All the open-source scripts used in this study for
feature extraction were compared/validated against other
implementations of identical algorithms in simulations and
used only if they produced identical results. All open-source
scripts of similar algorithms produced identical results in our
validations. To validate the scripts, we used 1,000 random
(normally distributed with unit variance and zero mean) time
series each including 1,000 samples.

Overview of Datasets
We selected three highly varied previously published EEG
datasets (Table 1) for this study to be able to evaluate the
generalizability of our results and conclusions. Specifically,
the datasets differed in a wide range of aspects including
the recording set-up (e.g., amplifier, number of electrodes,
preprocessing steps, etc.), properties of the image-set (e.g.,
number of categories and exemplars within each category,
colorfulness of images, etc.), paradigm and task (e.g., presentation
length, order and the participants’ task). The EEG datasets were
collected while the participants were presented with images of
objects, animals, face, etc. Participants’ task in Dataset 1 was
irrelevant to the identity of the presented objects; they reported
if the color of fixation changed from the first stimulus to the
second in pairs of stimuli. Participants’ task for Dataset 2 was
to respond/withhold response to indicate if the presented object
belonged to the category (e.g., animal) cued at the beginning
of the block. Participants had no explicit active task except for
keeping fixation on the center of the screen for Dataset 3. To
obtain relatively high signal to noise ratios for the analyses,
each unique stimulus was presented to the participants 3, 6,
and 12 times in datasets 1–3, respectively. The three datasets
previously successfully provided object category information
using multivariate decoding methods. For more details about the
datasets see the original manuscripts cited in Table 1.

Preprocessing
The datasets were collected at a sampling rate of 1,000 Hz.
Each dataset consisted of data from 10 participants. Each object
category in each dataset included 12 exemplars. For datasets 1 and
2, only the trials with correct responses were used in the analyses
(dataset 3 had no task). To make the three datasets as consistent
as possible, we pre-processed them differently from their original
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TABLE 1 | Details of the three datasets used in the study.

Dataset # and type of
electrodes

Band-
pass

filtering

Notch
filtering

#
object

categories

# stimulus
repetition

Stimulus
presentation

time

Stimulus
size

(periphery)

Task Participants’
accuracy

Participants’
Age (median)

Participants’
gender

1 Karimi-
Rouzbahani

et al.,
2017a

31 (Passive-
10–20 system)

0.03–
200 Hz

50 Hz 4 3 50 ms 2◦–13.5◦

(0.7◦–8.8◦)
Color

matching
(passive)

%94.68 22.1 Seven male
Three female

2 Karimi-
Rouzbahani
et al., 2019

31 (Passive-
10–20 system)

0.03–
200 Hz

50 Hz 4 6 900 ms 8◦ × 8◦ (0) Object
category
detection
(active)

%94.65 26.4 Six male
Four female

3 Kaneshiro
et al., 2015

128 (Passive
high-density
HCGSN 128)

0.03–50 Hz No 6 12 500 ms 7.0◦ × 6.5◦

(0)
No task
(fixation)

N/A 30.5 Seven male
Three female

manuscripts. We performed notch-filtering on datasets 1 and 2 at
50 Hz. Datasets 1 and 2 were also band-pass-filtered in the range
from 0.03 to 200 Hz. The band-pass filtering range of dataset 3
was 0.03–50 Hz, as we did not have access to the raw data to
increase the upper bound to 200 Hz. Despite potential muscle
artifacts in higher frequency bands of EEG (e.g., >30 Hz; da
Silva, 2013; Muthukumaraswamy, 2013), the upper limit of the
frequency band was selected liberally (200 Hz) to avoid missing
any potential information which might be contained in high-
frequency components (gamma band) of the signals (Watrous
et al., 2015). As sporadic artefacts (including muscle activity,
eye and movement artifacts) do not generally consistently differ
across conditions (here categories), they will only minimally
affect multivariate decoding analyses (Grootswagers et al., 2017;
Karimi-Rouzbahani et al., 2021c). For the same reason, we did
not remove the artifacts. We used finite-impulse-response filters
with 12 dB roll-off per octave for band-pass filtering of datasets
1 and 2. The filtering was applied on the data before they were
epoched relative to the trial onset times. Data were epoched from
200 ms before to 1,000 ms after the stimulus onset to cover most
of the range of event-related neural activations. The average pre-
stimulus (−200 to 0 ms relative to the stimulus onset) signal
amplitude was removed from each trial of the data. For more
information about each dataset see the references cited in Table 1.

Features
We briefly explain the 26 mathematically distinct features used
in this study below. Note that 4 of the features, which were event-
related potentials, were excluded from this study as they could not
be defined across time. For more details about their algorithms,
their plausibility and possible neural underpinnings please see
Karimi-Rouzbahani et al. (2021b). Each feature was calculated
for each EEG electrode and each participant separately. The
following features were extracted after the raw data was filtered,
epoched and baselined as explained. Each of the features was
extracted from the 50 samples contained in 50 ms sliding time
windows at a step size of 5 ms along each trial. The sampling rate
of the data remained at 1,000 Hz and the features were extracted
from the 1,000-Hz data but only calculated every 5 ms to decrease
the computational load. Note that the width of the sliding
analysis window needs special attention as it involves a trade-off

between noise and potential information (about conditions and
behavior) in EEG signals. Specifically, very short windows may
lose potentially informative longer patterns, whereas very long
windows might lose shorter patterns as they might be dominated
by slow fluctuations. In the original work (Karimi-Rouzbahani
et al., 2021b) we tested window widths between 5 and 100 ms and
found 50 ms to be the most informative range for decoding, so
that is the value we use here.

Mean, Variance, Skewness, and Kurtosis
These are the standard 1st to 4th moments of EEG time series. To
calculate these features, we simply calculated the mean, variance,
skewness and variance of EEG signals over the samples within each
sliding analysis window within each trial (50 samples). Please note
that this differs from averaging over trials, which is sometimes
used to increase signal to noise ratio (Hebart and Baker,
2018). “Mean” of activity is by far the most common feature
of EEG signal used in time-resolved decoding (Grootswagers
et al., 2017). Specifically, in time-resolved decoding, generally
the samples within each sliding time window are averaged
and used as the input for the classification algorithm. People
sometimes perform down-sampling of EEG time series, which
either performs simple averaging or retains the selected samples
every few samples. Variance (Wong et al., 2006), Skewness
(Mazaheri and Jensen, 2008), and Kurtosis (Pouryazdian and
Erfanian, 2009; Alimardani et al., 2018) have shown success
in providing information about different conditions of visually
evoked potentials.

Median
We also calculated signal’s median as it is less affected by
spurious values compared to the signal mean providing less noisy
representations of the neural processes.

While the moment features above provide valuable
information about the content of EEG evoked potentials,
many distinct time series could lead to similar moment features.
In order to be sensitive to this potentially informative differences
nonlinear features can be used which, roughly speaking, are
sensitive to nonlinear and complex patterns in time series. Below
we define the most common nonlinear features of EEG time
series analysis, which we used in this study.
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Lempel-Ziv Complexity
We calculated the Lempel-Ziv (LZ) complexity as an index of
signal complexity. This measure counts the number of unique
sub-sequences within the analysis window (50 time samples),
after turning the time samples into a binary sequence. To generate
the binary sequence, we used the signal median, within the
same analysis window, as the threshold. Accordingly, the LZ
complexity of a time series grows with the length of the signal
and its irregularity over time. See Lempel and Ziv (1976) for more
details. This measure has previously provided information about
neural responses in primary visual cortices (Szczepański et al.,
2003). We used the script by Quang Thai1 implemented based on
“exhaustive complexity” which is considered to provide the lower
limit of the complexity as explained by Lempel and Ziv (1976).

Higuchi and Katz Fractal Dimensions
Fractal is an indexing technique which provides statistical
information determining the complexity of how data are
organized within time series. Accordingly, higher fractal values,
suggest more complexity and vice versa. In this study, we
calculated the complexity of the signals using two methods of
Higuchi and Katz, as used previously for categorizing object
categories (Torabi et al., 2017; Ahmadi-Pajouh et al., 2018;
Namazi et al., 2018). We used the implementations by Jesús
Monge Álvarez2 after verifying it against other implementations.

Hurst Exponent
This measure quantifies the long-term “memory” in a time
series. Basically, it calculates the degree of dependence among
consecutive samples of time series and functions similarly to the
autocorrelation function (Racine, 2011; Torabi et al., 2017). Hurst
values between 0.5 and 1 suggest consecutive appearance of high
signal values on large time scales while values between 0 and 0.5
suggest frequent switching between high and low signal values.
Values around 0.5 suggest no specific patterns among samples
of a time series.

Sample and Approximate Entropy
Entropy measures the level of perturbation in time series. As the
precise calculation of entropy needs large sample sizes and is also
noise-sensitive, we calculated it using two of the most common
approaches: sample entropy and approximate entropy. Sample
entropy is not as sensitive to the sample size and simpler to
implement compared to approximate entropy. Sample entropy,
however, does not take into account self-similar patterns in the
time series (Richman and Moorman, 2000). We used an open-
source code3 for calculating approximate entropy.

Autocorrelation
This index quantifies the self-similarity of a time series at specific
time lags. Accordingly, if a time series has a repeating pattern

1https://www.mathworks.com/matlabcentral/fileexchange/38211-calc_lz_
complexity
2https://ww2.mathworks.cn/matlabcentral/fileexchange/50290-higuchi-and-
katz-fractal-dimension-measures
3https://www.mathworks.com/matlabcentral/fileexchange/32427-fast-
approximate-entropy

at the rate of F hertz, an autocorrelation measure with a lag of
1/F will provide a value of 1. However, it would return −1 at
the lag of 1/2F. It would provide values between −1 and 1 for
other lags. More complex signals would provide values close to
0. A previous study has been able to decode neural information
about motor imagery using the autocorrelation function from
EEG signals (Wairagkar et al., 2016).

Hjorth Complexity and Mobility
These parameters measure the variation in the signals’
characteristics. The complexity measure calculates the variation
in a signal’s dominant frequency, and the mobility measures
the width of the signal’s power spectrum [how widely the
frequencies are scattered in the power spectrum of the signal
(Joshi et al., 2018)].

Mean, Median, and Average Frequency
These measures calculate the central frequency of the signal in
different ways. Mean frequency is the average of all frequency
components available in a signal. Median frequency is the median
normalized frequency of the power spectrum of the signal and
the average frequency is the number of times the signal time
series crosses zero. They have shown information about visual
categories in previous studies (Jadidi et al., 2016; Iranmanesh and
Rodriguez-Villegas, 2017; Joshi et al., 2018).

Spectral Edge Frequency (95%)
Spectral edge frequency (SEF) indicates the high frequency below
which x percent of the signal’s power spectrum exists. X was set
to 95% in this study. Therefore, SEF reflects the upper-bound of
frequency in the power spectrum.

Signal Power, Power, and Phase at Median
Frequency
Power spectrum density (PSD) represents the intensity or the
distribution of the signal power into its constituent frequency
components. Signal power was used as a feature here as in
previous studies (Majima et al., 2014; Rupp et al., 2017), where
it showed associations between aspects of visual perception and
power in certain frequency bands. Signal power is the frequency-
domain representation of temporal neural variability (Waschke
et al., 2021). We also extracted signal power and phase at median
frequency which have previously shown to be informative about
object categories (Jadidi et al., 2016; Rupp et al., 2017).

For the following features we had more than one value per trial
and sliding time window. We extracted all these features but later
down-sampled the values to one per trial using the (first) PCA
procedure explained below (Figure 1) before using them in the
feature combination procedure.

Cross-Correlation
This refers to the inter-electrode correlation of EEG time series.
It simply quantifies the similarity of activations between pairs
of EEG electrodes. Therefore, for each electrode, we had e-
1 cross-correlation values with e referring to the number of
electrodes. This measure has been shown to contain information
about visual object categories before (Majima et al., 2014;
Karimi-Rouzbahani et al., 2017a).
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FIGURE 1 | Decoding pipeline. From left to right: successive stages shown for a sample dataset comprising 100 trials of data from two categories recorded using a
31-electrode EEG amplifier. (1) Features are extracted from each trial and time window of the data. The features can be single- or multi-valued resulting in different
number of values per trial and analysis time window. (2) We split the trials into training and testing sets and use the training sets in PCA and training the classifiers
throughout the pipeline. (3) We used a PCA-based dimension reduction to reduce the number of values of only the multi-valued features to one equalizing them with
single-valued features. (4) We used a second PCA to project all values of each feature to one dimension to be able to feed to the feature selection (FS) algorithms. (5)
We selected the five most informative features using the FS algorithms. (6) We combined these features using concatenation of the selected features in their original
size received from stage 4. (7) We reduced the dimension of the concatenated feature set to equalize it with the single-valued individual features from the previous
study so that they could be compared. (8) We decoded/classified all pair-wise categories using the final dataset in each fold. This figure shows the procedure for a
single cross-validation fold at one time point and was repeated for all the folds and time points. To avoid circularity, PCA was only ever applied on the training set and
the parameters (mean and eigen vectors) used to derive the principal component of both the training and testing sets. The green arrows indicate example selected
feature sets sent for combination.

Wavelet Coefficients
Considering the time- and frequency-dependent nature of ERPs,
Wavelet transform seems to be a very reasonable choice as it
provides a time-frequency representation of signal components.
It determines the primary frequency components and their
temporal position in time series. The transformation passes
the signal time series through digital filters (Guo et al., 2009),
each of which adjusted to extract a specific frequency (scale)
at a specific time. This filtering procedure is repeated for
several rounds (levels) filtering low- (approximations) and high-
frequency (details) components of the signal to provide more
fine-grained information about the constituent components of
the signal. This can lead to coefficients which can potentially
discriminate signals evoked by different conditions. Following
up on a previous study (Taghizadeh-Sarabi et al., 2015), and to

make the number of Wavelet features comparable in number to
signal samples, we used detail coefficients at five levels D1,. . .,D5
as well as the approximate coefficients at level 5, A5. This led
to 57 features in the 50 ms sliding time windows. We used
the “Symlet2” basis function for our Wavelet transformations as
implemented in Matlab. The multistage, variable-sized filtering
procedure implemented in Wavelet coefficients, make them ideal
for detecting multiscale patterns of neural activity, which has
been suggested to be produced by the brain for information
encoding (Panzeri et al., 2010).

Hilbert Amplitude and Phase
This transformation is a mapping function that takes a function
x(t) of a real variable, and using convolution with the function,
1/πt, produces another function of a real variable H(u) (t).
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This technique provides amplitude and phase information of the
signal in the transformed space allowing us to tease them apart
and evaluate their information content about visual categories
(Wang et al., 2018).

Original Magnitude Data (Samples)
We also used the post-stimulus signal samples (i.e., 50 samples
in each sliding analysis window) to decode object category
information without any feature extraction. This allowed
us to compare the information content of the extracted
features with the original signal samples to see if the former
provided any extra information. Note that, this is different
from averaging/down-sampling of magnitude data within the
analysis windows conventionally used in multivariate decoding
(Karimi-Rouzbahani et al., 2017a).

Feature Selection Algorithms
We set out to test whether neural information about object
categories might be captured by combinations of the above
features, better than by any one feature individually. For this,
we combined the 26 extracted features using Feature Selection
Library (FSLib, version 6.2.1; Roffo, 2016). Feature selection
(FS), which refers to selecting a subset of features from a
larger set, is generally used (for example, in machine learning)
to reduce the dimensionality of the data by removing the
less informative features from the dataset. FS algorithms can
be categorized as supervised or unsupervised (Dash and Liu,
1997). The supervised methods receive, as input, the labels of
trials for each condition (i.e., object categories here), and try
to maximize the distance between conditions. We used eight
different supervised FS algorithms. The unsupervised methods,
on the other hand, incorporate different criteria for FS such as
selecting features that provide maximum distance (i.e., unfol)
or minimum correlation (i.e., cfs). The FSLib implements 19
different feature selection algorithms. As it is not yet known how
the brain might recruit different encoding protocols or a potential
combination of them, we used all the FS algorithms available by
the FSLib to combine the features in this study, except two (rfe-
SVM and L0) which we were not able to implement. Although
there are other feature selection algorithms in the literature,
we believe that using these 17 methods, we capture a decent
range of different approaches. We set the number of selected
features to 5, which was chosen to balance between including
too many features, which could obscure interpretability, and
including too few, which risks missing informative but lower-
ranked features. Below we briefly explain the eight supervised
and nine unsupervised feature selection algorithms. Readers are
referred to the original manuscripts for more detail about each
feature selection method as reviewed (Roffo, 2016).

Among supervised algorithms, Relief is a randomized and
iterative algorithm that evaluates the quality of the features
based on how well their values discriminate data samples from
opposing conditions. This algorithm can be sensitive when
used on small data samples. Fisher evaluates the information
of features as the ratio of inter-class to intra-class distances.
Mutual Information (mutinffs) measures the association between
the data samples (observations) within each feature and their

class labels. Max-Relevance, Min-Redundancy (mrmr) method,
which is an extension of the mutual information method, is
designed to follow two basic rules when selecting the features:
to select the features which are mutually far away from each
other while still having “high” correlation to the classification
labels. As opposed to the above methods, which rank and
select the features according to their specific criteria, the Infinite
latent (ILFS) method, selects the most informative features based
on the importance of their neighboring features in a graph-
based algorithm. It is a supervised probabilistic approach that
models the features “relevancy” in a generative process and
derives the graph of features which allows the evaluation of
each feature based on its neighbors. Similarly, the method of
Eigenvector Centrality (ECFS), generates a graph of features
with features as nodes and evaluates the importance of each
node through an indicator of centrality, i.e., eigen vector
centrality. The ranking of central nodes determines the most
informative features. LASSO algorithm works based on error
minimization in predicting the class labels using the features as
regression variables. The algorithm penalizes the coefficients of
the regression variables while setting the less relevant to zero
to follow the minimal sum constraint. The selected features are
those which have non-zero coefficients in this process. Concave
Minimization (fsv) uses a linear programming technique to inject
the feature selection process into the training of a support
vector machine (SVM).

Among unsupervised FS algorithms, Infinite FS (InfFS), is
similar to the graph-based supervised methods in which each
feature is a node in a graph. Here, however, a path on a graph is a
subset of features and the importance of each feature is measured
by evaluating all possible paths on the graph as feature subsets in a
cross-validation procedure. Laplacian Score (laplacian), evaluates
the information content of each feature by its ability of locality
preserving. To model the local geometry of the features space, this
method generates a graph based on nearest neighbor and selects
the features which respect this graph structure. Dependence
Guided (dgufs) method evaluates the relationship between the
original data, cluster labels and selected features. This algorithm
tries to achieve two goals: to increase the dependence on the
original data, and to maximize the dependence of the selected
features on cluster labels. Adaptive Structure Learning (fsasl),
which learns the structure of the data and FS at the same
time is based on linear regression. Ordinal Locality (ufsol)
is a clustering-based method which achieves distance-based
clustering by preserving the relative neighborhood proximities.
Multi-Cluster (mcfs) method is based on manifold learning
and L1-regularized models for subset selection. This method
selects the features such that the multi-cluster structure of
the data can be best preserved. As opposed to most of the
unsupervised methods which try to select the features which
preserve the structure of the data, e.g., manifold learning, L2,1-
norm Regularized (UDFS) method assumes that the class label of
data can be predicted using a linear classifier and incorporates
discriminative analysis and L2,1-norm minimization into a joint
framework for feature selection. Local Learning-Based (llcfs)
method is designed to work with high-dimensional manifold
data. This method associates weights to features which are
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incorporated into the regularization procedure to evaluate their
relevance for the clustering. The weights are optimized iteratively
during clustering which leads to the selection of the most
informative features in an unsupervised fashion. Correlation-
Based (cfs) method simply ranks the features based on how
uncorrelated they are to the other features in the feature
set. Therefore, the selected features are those which are most
distinct from others.

Decoding Pipeline
The pipeline used in this study for feature extraction,
dimensionality reduction, feature selection, feature combination
and decoding had eight stages and is summarized in Figure 1.
Below we explain each stage of the pipeline for a simple sample
dataset with 100 trials collected using a 31-electrode EEG setup.
Our actual datasets, however, had varied number of trials and
electrodes as explained in Table 1. Note that the data from all
electrodes were included in the analysis and could have affected
the final decoding results equally.

Feature Extraction
We extracted the set of 26 above-mentioned features from the
dataset. This included features which provided one value for each
sliding time window per trial (single-valued) and more than one
value (multi-valued). For the sample dataset, this resulted in data
matrices with 100 rows (trials) and 31 columns (electrodes) for
the single-valued datasets and 31 × e columns for multi-valued
features, where e refers to the number of values extracted for each
trial and time window.

Cross Validation
After extracting the features, we split the data into 10 folds, used
9 folds for dimension reductions and training the classifiers and
the left-out fold for testing the classifiers. Therefore, we used a 10-
fold cross-validation procedure in which we trained the classifier
on 90% of the data and tested it on the left-out 10% of the data,
repeating the procedure 10 times until all trials from the pair of
categories participate once in the training and once in the testing
of the classifiers. The same trials were chosen for all features in
each cross-validation fold.

Dimensionality Reduction 1: Only for Multi-Valued
Features
The multi-valued features explained above resulted in more than
a single feature value per trial per sliding time window (e.g., cross-
correlation, wavelet, Hilbert amplitude, and phase and signal
samples). This could lead to the domination of the multi-valued
over single-valued features in feature selection and combination.
To avoid that, we used principle component analysis (PCA) to
reduce the number of values in the multi-valued features to one
per electrode per time window, which was the number of values
for all single-valued features. Specifically, the data matrix before
dimension reduction, had a dimension of n rows by e × f
columns where n, e, and f were the number of trials in the
dataset (consisting of all trials from all categories), the number of
electrodes and the number of values obtained from a given feature
(concatenated in columns), respectively. Therefore, the columns

of multi-valued features included both the spatial (electrodes) and
temporal (elements of each feature) patterns of activity from which
the information was obtained. This is different from single-valued
features where the columns of their data matrix only included
spatial patterns of activity. As f = 1 for the single-valued
features, for the multi-valued features, we only retained the e
most informative columns that corresponded to the e eigen values
with highest variance and removed the other columns using
PCA. Therefore, we reduced the dimension of the data matrix to
n × e which was the same for single- and multi-valued features
and used the resulting data matrix for decoding. This means
that, for the multi-valued features, in every analysis window, we
only retained the most informative value of the extracted feature
elements and electrodes (i.e., the one with the most variance in
PCA). Accordingly, multi-valued features had the advantage over
single-valued features as the former utilized both the spatial and
temporal patterns of activity in each sliding time window, while
the latter only had access to the spatial patterns.

Dimensionality Reduction 2: For Feature Selection
For feature selection, each feature should have a dimension of 1
to go into the FS algorithm. However, our features had as many
dimensions as the number of electrodes (i.e., e). Therefore, we
further reduced the dimension of each feature from e to 1 to
be able to feed them to the FS algorithms, compare them and
select the most informative features. This allowed us to know
the general amount of information that each feature rather than
each of its elements/dimensions (e.g., electrodes in single-valued
features) had about object categories. Please note that, however,
after finding the most informative features, we used the selected
features in their original size which was e (output of step 3
goes to stage 6).

Feature Selection
Feature selection was done using 17 distinct algorithms (above)
to find the five most informative features in every sliding time
window. This stage only provided indices of the selected features
for combination in the next stage. To avoid any circularity
(Pulini et al., 2019), we applied the FS algorithms only on the
training data (folds) and used the selected features in both
training and testing in each cross-validation run. Please note
that feature selection was performed in every analysis window
across the trial. In other words, different sets of five features could
be selected for each individual analysis window. This allowed
multiple features to contribute at each time point (multiple codes
to be in use at the same time) and for different features to be
selected at different time points (different codes used at different
points in the trial).

Feature Combination
We only concatenated the five selected features into a new data
matrix. At this stage, we received five feature data matrices which
had a dimension of n × e with n referring to the number of
trials and e referring to the number of values per trial, which
were 100 × 31 for the sample dataset explained in Figure 1.
The combination procedure led to a concatenated data matrix
of 100 × 155 (n × 5e).
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Dimensionality Reduction 3: Equalizing the
Dimensions of Combined and Individual Feature
Spaces
We used another round of PCA to simultaneously combine and
reduce the dimensionality of each data matrix (feature space) to
equalize it with the feature space of the individual features. This
made the combined and individual features directly comparable,
so that we could test whether a combination of the most
informative features could provide additional category-related
information, over and above the information decodable from
individual features. Had we not controlled for the dimension of
the data matrix, superior decoding for the combined features
could arise trivially (due to having more predictors). Note that,
whereas we knew the features which were selected on stage 5,
as a result of this PCA transformation, we did not know which
features contributed to the final decoding result. Therefore, in
the worst case scenario, the final feature set might have only
contained one of the five selected features. However, this seems
unlikely to be the case as generally all inputs contribute to the
distributions of the data in the PCA space. To avoid circularity
(Pulini et al., 2019), we again applied the PCA algorithms on the
training data (folds) only and used the training PCA parameters
(i.e., eigen values and means) for both training and testing (fold)
sets for dimension reduction, carrying this out in each cross-
validation run separately.

Multivariate Decoding
Finally we used time-resolved multivariate decoding to test
for information about object categories in the features and
combinations of features. We used linear discriminant analysis
(LDA) classifiers to measure the information content across
all possible pairs of conditions (i.e., object categories) in each
dataset. We repeated the decoding across all possible pairs
of categories within each dataset, which were 6, 6 and 15
pairs for datasets 1–3, which consisted of 4, 4 and 6 object
categories, respectively. Finally, we averaged the results across all
combinations and reported them as the average decoding for each
participant. We extracted the features from 50 ms sliding time
windows in steps of 5 ms across the time course of the trial (−200
to 1,000 ms relative to the stimulus onset time). Therefore, the
decoding results at each time point reflect the data for the 50 ms
window around the time point, from −25 to +24 ms relative
to the time point.

Decoding-Behavior Correlation
We evaluated the correlation between neural representations
of object categories and the reaction time of participants in
discriminating them. To that end, we generated a 10-dimensional
vector of neural decoding accuracies (averaged over all pairwise
category decoding accuracies obtained from each participant) at
every time point and a 10-dimensional vector which contained
the behavioral reaction times (averaged over all categories
obtained from each participant) for the same group of 10
participants. Then we correlated the two vectors at each time
point using Spearman’s rank-order correlation (Cichy et al., 2014;
Ritchie et al., 2015). This resulted in a single correlation value for
each time point for the group of 10 participants.

Parameters of Decoding Curves
To quantitatively evaluate the patterns of decoding curves
and decoding-behavior correlations, we extracted four distinct
parameters from the decoding curves and one parameter from
the correlation to behavior curves. All parameters were calculated
in the post-stimulus time span. The “average correlation to
behavior” was calculated by averaging the level of across-subject
correlation to behavior. The parameters of “average decoding”
and “maximum decoding” were calculated for each participant
simply by calculating the average and maximum of the decoding
curves. The “time of maximum decoding” and “time of first
above-chance decoding” were also calculated for each participant
relative to the time of the stimulus onset.

Statistical Analyses
Bayes Factor Analysis
First we asked whether we could decode object category
from the combined features returned by each of the 17 FS
methods. To determine the evidence for the null and the
alternative hypotheses, we used Bayes analyses as implemented
by Bart Krekelberg4 based on Rouder et al. (2012). We used
standard rules of thumb for interpreting levels of evidence
(Lee and Wagenmakers, 2005; Dienes, 2014): Bayes factors
of >10 and <1/10 were interpreted as strong evidence for the
alternative and null hypotheses, respectively, and >3 and <1/3
were interpreted as moderate evidence for the alternative
and null hypotheses, respectively. We considered the Bayes
factors which fell between 3 and 1/3 as suggesting insufficient
evidence either way.

To evaluate the evidence for the null and alternative
hypotheses of at-chance and above-chance decoding,
respectively, we compared the decoding accuracies obtained
from all participants in the post-stimulus onset time against
the decoding accuracies obtained from the same participants
averaged in the pre-stimulus onset time (−200 to 0 ms). We also
asked whether there was a difference between the decoding values
obtained from all possible pairs of FS methods. Accordingly,
we performed the Bayes factor unpaired t-test and calculated
the Bayes factor as the probability of the data under alternative
(i.e., difference; H1) relative to the null (i.e., no difference;
H0) hypothesis between all possible pairs of FS methods for
each dataset separately. The same procedure was used to
evaluate evidence for difference (i.e., alternative hypothesis)
or no difference (i.e., null hypothesis) in the maximum and
average decoding accuracies, the time of maximum and above-
chance decoding accuracies across FS methods for each dataset
separately. To evaluate the evidence for the null or alternative
hypotheses of lack of or the existence of difference between the
decoding accuracies obtained from FS algorithm and the Wavelet
feature, we calculated the Bayes factor between the distribution
of the two distributions of decoding accuracies on every time
point and for dataset separately.

Priors for the Bayes analysis can be selected based on previous
work or can be estimated based on predetermined Cauchy
distribution according to common effect sizes. We opted to use

4https://klabhub.github.io/bayesFactor/
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default priors. This choice was motivated by the absence of
identical studies to ours available from which we could accurately
estimate priors and the awareness that publication biases in
any case will tend to exaggerate effect sizes. The priors for all
Bayes factor analyses were determined based on Jeffrey-Zellner-
Siow priors (Zellner and Siow, 1980; Jeffreys, 1998) which are
from the Cauchy distribution based on the effect size that is
initially calculated in the algorithm using t-test (Rouder et al.,
2012). The priors are data-driven and have been shown to be
invariant with respect to linear transformations of measurement
units (Rouder et al., 2012), which reduces the chance of being
biased toward the null or alternative hypotheses. We did not
perform correction for multiple comparisons when using Bayes
factors as they are much more conservative than frequentist
analysis in providing false claims with confidence (Gelman and
Tuerlinckx, 2000; Gelman et al., 2012). The reason for this is
that properly chosen priors [here using the data-driven approach
developed by Rouder et al. (2012)], reduce the chance of making
type I (false positive) errors (Gelman and Tuerlinckx, 2000;
Gelman et al., 2012).

Random Permutation Testing
To evaluate the significance of correlations between decoding
accuracies and behavioral reaction times, we calculated the
percentage of the actual correlations that were higher (if
positive) or lower (if negative) than a set of 1,000 randomly
generated correlations. These random correlations were obtained
by randomizing the order of participants’ data in the behavioral
reaction time vector (null distribution) on every time point,
for each feature separately. The correlation was considered
significant if surpassed 95% of the randomly generated
correlations in the null distribution in either positive or negative
directions (p < 0.05) and the p-values were corrected for multiple
comparisons across time using Matlab mafdr function, where
the algorithm fixes the rejection region and then estimates its
corresponding error rate resulting in increased accuracy and
power (Storey, 2002).

RESULTS

Do Different Ways of Combining
Individual Features Affect the Level and
Temporal Dynamics of Information
Decoding?
As an initial step, we evaluated the level of information which can
be obtained from the combination of features, each potentially
capturing different aspects of the neural codes. To be as confident
as possible, we used a large set of 17 distinct supervised and
unsupervised FS methods to select and combine the top 5 most
informative features at every time point in the time-resolved
decoding procedure. The information content of features were
determined based on either how much they could contribute
to discriminating the target object categories (supervised) or
some predefined criteria which could implicitly suggest more
separation between object categories (unsupervised). We split the

FS algorithms into three arbitrary groups for the sake of clearer
presentation of the results (Figure 2).

All FS algorithms for the three datasets showed strong
(BF > 10) evidence for difference from chance-level decoding at
some time points/windows after the stimulus onset (Figure 2).
This means that, any of the FS algorithms could combine
the features in a way that they could decode object category
information from brain signals. As expected from the difference
in their mathematical formulations, however, no pairs of FS
algorithms provided identical patterns of decoding in any of
the three datasets. Consistently across the three datasets there
was moderate (3 < BF < 10) or strong (BF > 10) evidence
for continuous above-chance decoding from around 80 ms post
stimulus onset for all FS algorithms. While the decoding showed
evidence for above-chance accuracy (BF > 3) up until 550 ms
(dataset 2) or even later than 800 ms (dataset 3) for the best FS
algorithms such as UDFS, lasso and ufsol, all curves converged
back to the chance-level earlier than 500 ms for dataset 1. This
difference may reflect the longer stimulus presentation time for
datasets 2 and 3 vs. dataset 1, which may have provided stronger
sensory input for neural processing of category information, as
we saw previously when evaluating individual features alone
(Karimi-Rouzbahani et al., 2021b).

In order to quantitatively compare the decoding curves for
the different FS algorithms, we extracted four different amplitude
and timing parameters from their decoding curves as in previous
studies (Isik et al., 2014): maximum and average decoding
accuracies (in the post-stimulus time window), time of maximum
decoding, and time of first above-chance decoding relative to
stimulus onset (Supplementary Figure 1). Results showed that
ILFS, relief and llcfs were the worst performing FS algorithms
with the lowest maximum and average decoding accuracy
(Supplementary Figures 1A,B; red boxes). UDFS, lasso and ufsol
were the best performing FS algorithms leading to the highest
maximum and average decoding accuracies (Supplementary
Figures 1A,B; black boxes). Dataset 2 tended to yield higher
decoding accuracies compared to the other datasets, which
might be attributed to the longer presentation time of the
stimuli and the active task of the participants (Roth et al., 2020;
Karimi-Rouzbahani et al., 2021a,c). UDFS, ufsol and relief were
among the earliest FS algorithms to reach their first above-
chance and maximum decoding accuracies (Supplementary
Figures 1C,D). However, there was not a consistent pattern of
temporal precedence for any FS algorithms across the datasets.

Which Individual Features Are Selected
by the Most Successful Algorithms?
The difference in the decoding patterns for different FS
algorithms suggest that they used different sets of features in
decoding. To see what features were selected by different FS
algorithms, and whether the informative individual features
were selected, we calculated the merit of each of the individual
features in each FS algorithm across the time course of the trial
(Supplementary Figure 2). Here, merit refers to the frequency
of a feature being selected by the FS algorithm for decoding. We
calculated the merit as the ratio of the number of times the feature
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FIGURE 2 | Time-resolved decoding of object categories from the three datasets using the 17 FS methods. We split the FS algorithms into three arbitrary groups
(rows) for each dataset for the sake of clearer presentation. Each column shows the results for one dataset. The top section in each of the nine panels shows the
decoding accuracies across time and the bottom panels show the Bayes factor evidence for decoding to be different (H1) or not different (H0) from chance-level.
The horizontal dashed lines refer to chance-level decoding, the vertical dashed lines indicates time of stimulus onset. Non-black colored filled circles in the Bayes
Factors show moderate (BF > 3) or strong (BF > 10) evidence for difference from chance-level decoding, black filled circles show moderate (BF > 3) or strong
(BF > 10) evidence for no difference from chance-level decoding and empty circles indicate insufficient evidence (1/3 < BF < 3) for either hypotheses.
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was among the top selected five features to the number of times
the decoding was performed on every time point (i.e., all possible
combination of category pairs).

Visual inspection of the results suggests that each FS algorithm
seemed to rely on consistent sets of features across the three
datasets, which are generally different between FS algorithms.
This reflects that different FS algorithms have different levels of
sensitivity and distinct selection criteria. Results also showed that
the merit of different features varied across the time course of
trials based on their information content about object categories
relative to other features (Supplementary Figure 2). Therefore,
the recruitment of features varied across the time course of
the trial: while some features were only temporarily selected
(e.g., Average and Mean frequency in the laplacian method from
∼200 to 600 post-stimulus onset), there were features which
were constantly used for decoding even before the stimulus
onset (e.g., Cros Cor in the fsasl method), although they did
not lead to any information decoding in the pre-stimulus time
span (Figure 2). This might again be explained by the different
levels of sensitivity and distinct selection criteria implemented
by different FS algorithms. Importantly, the FS algorithms that
provided the highest level of decoding (i.e., ufsol, lasso, and
UDFS) showed the highest merits for the features of Mean,
Median, Samples, and Wavelet which were among the most
informative features when evaluated individually across the three
datasets (Karimi-Rouzbahani et al., 2021b). On the other hand,
the FS algorithms that performed most poorly (ILFS, relief, and
llcfs) either used scattered sets of features (ILFS) or did not
use the informative features of Mean, Median, Samples and
Wavelet (llcfs and relief). Therefore, the FS algorithms that
used the informative individual features outperformed other FS
algorithms which did not.

Are the Neural Codes Better Captured by
a Combinatorial Encoding Protocol or by
a General Multiscale Encoding Protocol?
The main question of this study was to see whether the
flexibility obtained by the combination of features provides
any additional information about object categories compared to
the best-performing individual features by detecting the neural
codes more completely. In other words, we wanted to test the
hypothesis that the brain uses a combination of different neural
encoding protocols simultaneously as opposed to using a general
multiscale encoding protocol (such as reflected in the Wavelet
transform). To test this hypothesis, we directly compared the
decoding accuracy obtained from the top performing individual
feature from the original study (Wavelet; Karimi-Rouzbahani
et al., 2021b), which is able to detect multiscale spatiotemporal
patterns of information, with the decoding accuracy obtained
from the top performing FS algorithm, which used a set of
combined features (ufsol; Figure 3). Results showed consistent
patterns across the three datasets with the Wavelet feature
outperforming the decoding accuracies obtained by the ufsol
FS algorithm across most time points. Maximum continuous
evidence for difference (BF > 10) occurred between 80 and 320,
75–180, and 85–325 ms for datasets 1–3, respectively. Therefore,

it seems that, at least for object categories, the coding scheme
in the brain is best captured by a general multiscale encoding
protocol (implemented here by the Wavelet coefficients), rather
than a combination of distinct encoding protocols (captured here
by different features).

Can a Combinatorial Encoding Protocol
Predict Behavioral Accuracy Better Than
a General Multiscale Encoding Protocol?
Our final hypothesis was that a combinatorial encoding protocol
might predict the behavioral performance more accurately than
a general multiscale encoding protocol as the former can
potentially detect more distinctly encoded neural codes from
brain activation. We could test this hypothesis only for Dataset
2 where the task was active and we had the participants’
reaction times (i.e., time to categorize objects) to work with.
We calculated the (Spearman’s rank) correlation between the
decoding accuracies and the behavioral reaction time across
participants, to see whether, at each time point, participants
with higher decoding values were those with the fastest reaction
times. We expected to observe negative correlations between
the decoding accuracies and the participants’ reaction times in
the post-stimulus span (Ritchie et al., 2015). Note that since
correlation normalizes the absolute level of the input variables,
the higher level of decoding for the individual (Wavelet) feature
vs. the combined features (ufsol; Figure 3) does not necessarily
predict a higher correlation for the individual feature of Wavelet.

Results showed significant negative correlations appearing
after the stimulus onset for most FS algorithms (except dgufs)
especially the laplacian algorithm which showed the most
negative peak (Figure 4A). This confirms that the distances
between object categories in neural representations have inverse
relationship to behavioral reaction times (Ritchie et al., 2015). We
previously observed that the individual features which provided
the highest decoding accuracies could also predict the behavior
most accurately (Karimi-Rouzbahani et al., 2021b). Therefore,
we asked if the FS algorithms which provided the highest levels
of decoding could also predict the behavior more accurately
than the less informative algorithms. The rationale behind this
hypothesis was that, more effective decoding of neural codes,
as measured by higher “average decoding” and “maximum
decoding” accuracies (Figure 2), should facilitate the prediction
of behavior by detecting subtle but overlooked behavior-related
neural codes. To test this hypothesis, we evaluated the correlation
between the parameters of “maximum decoding” and “average
decoding” accuracies (extracted from the decoding curve of
each feature in Figure 4A) and the “average correlation to
behavior” (calculated simply by averaging the correlation to
behavior in the post-stimulus time span for each FS algorithm
in Figure 4A). We also calculated the correlation between the
“time of maximum decoding” and “time of first above-chance
decoding” as control variables, which we did not expect to
correlate with behavior (as in Karimi-Rouzbahani et al., 2021b).
Results showed no significant correlations between any of the
four parameters of decoding curves and the level of prediction
of behavior (Figure 4B). Therefore, more efficient combinations

Frontiers in Neuroscience | www.frontiersin.org 12 March 2022 | Volume 16 | Article 825746121

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-825746 February 25, 2022 Time: 12:38 # 13

Karimi-Rouzbahani and Woolgar Multiscale EEG Patterns Are Informative

FIGURE 3 | Comparison of decoding accuracies between the most informative individual feature [Wavelet; from Karimi-Rouzbahani et al. (2021b)] and combined
feature set (obtained using ufsol algorithm) from the three datasets and Bayesian evidence for a difference between them. Each column shows the results for one
dataset. Thick lines show the average decoding accuracy across participants (error bars show Standard Error across participants). Top section in each panel shows
the decoding accuracies across time and the bottom section shows the Bayes factor evidence for the difference between the decoding curves. The horizontal
dashed lines on the top panels refer to chance-level decoding. Red filled circles in the Bayes Factors show moderate (BF > 3) or strong (BF > 10) evidence for
difference between decoding curves, black filled circles show moderate (BF > 3) or strong (BF > 10) evidence for no difference and empty circles indicate insufficient
evidence (1/3 < BF < 3) for either hypotheses.

of features (as measured by higher decoding accuracies) did not
correspond to more accurate prediction of behavior.

To visually compare the behavioral prediction power of
the top-performing individual and combined features we
plotted their correlation-to-behavior results on the same figure
(Figure 4C). For this we selected Wavelet and laplacian FS,
based on them being the single feature and FS algorithm with
the largest negative peak. We used this, rather than selecting
based on average correlation with behavior because the temporal
position of the peak can also provide some temporal indication
about the timing of the decision, which if reasonable [e.g., after
200 ms post-stimulus and before the median reaction times of
participants: 1,146 ms (Karimi-Rouzbahani et al., 2019)], can be
more assuring about the existence of true correlation to behavior.
The combined features (laplacian) did not provide a negative
peak as large as the Wavelet feature, and tended to underperform
Wavelet throughout the time course (Figure 4C). Therefore,
in contradiction to our hypothesis, the combined features did
not provide additional prediction of behavior compared to the
individual feature of Wavelet.

DISCUSSION

Abstract models of feed-forward visual processing suggest that
visual sensory information enters the brain through retina,
reaches the lateral geniculate nucleus in thalamus and continues
to early visual cortices before moving forward (along the ventral
visual stream) to reach the anterior parts of the inferior temporal
cortices where semantic information (e.g., about the category
of the presented object) is extracted from the visual inputs
(DiCarlo et al., 2012). However, two outstanding questions
are how neurons along the way encode the information and
how this information is reflected in invasively (e.g., LFPs)
and non-invasively collected (e.g., EEG) neural data. While
in invasively recorded data, researchers have found significant

information about visual information in low-frequency power
of LFPs (Belitski et al., 2008) or phase-amplitude coupling of
electrocorticography (ECoG), there is no reason for these to
directly imprint on EEG. In fact, there is evidence that EEG
activations represent the information in a feature different [e.g.,
phase rather than the amplitude of slow (theta band) oscillations]
from the invasive neural data such as spiking activity (Ng et al.,
2013). Therefore, more detailed investigation of neural coding in
EEG seems necessary.

To gain a better understanding of EEG, previous studies
have extracted a wide variety of features of neural activations
to extract information about visual object categories. However,
they have generally used whole-trial analyses, which hide the
temporal dynamics of information processing, or time-resolved
decoding analyses, or considered the response at each time point
separately, ignoring potentially informative temporal features
of the time series data. To fill this gap, our previous study
extracted and compared a large set of features from EEG in time-
resolved analysis (Karimi-Rouzbahani et al., 2021b). However,
an outstanding question in the literature was whether the neural
code might be best captured by combinations of these features,
i.e., if the brain uses a combinatorial encoding protocol to
encode different aspects of the sensory input using distinct
encoding protocols on the same trial (Gawne et al., 1996;
Montemurro et al., 2008). Alternatively, previous invasive neural
recording studies have suggested a general multiscale encoding
procedure that allows the generation of all the information
within the same platform (Victor, 2000; Kayser et al., 2009;
Panzeri et al., 2010). To address this question we combined
a large set of distinct mathematical features (n = 26) of the
EEG time series data from three datasets, and combined them
using a large set of FS algorithms (n = 17), each having
different criteria for selection. We compared the performance
of different FS algorithms using multivariate decoding of
category information. Our results showed that, no matter
how we combined the informative features, their combined
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FIGURE 4 | Correlation between the decoding accuracies obtained using 17 FS algorithms and behavioral reaction time of Dataset 2. (A) Top section in each panel
shows the (Spearman’s) correlation coefficient obtained from correlating the decoding values and the reaction times for each feature separately. Thickened time
points on the curves indicate time points of positively or negatively significant (P < 0.05; corrected for multiple comparisons) correlations as evaluated by random
permutation of the variables in correlation. (B) Correlation between each of the amplitude and timing parameters of time-resolved decoding (i.e., maximum and
average decoding accuracy and time of first and maximum decoding) with the average time-resolved correlations calculated from panel (A) for the set of N = 17 FS
algorithms. The slant line shows the best linear fit to the distribution of the correlation data. (C) Correlation between the decoding accuracies obtained from the
feature which showed the highest maximum correlation from individual features (Wavelet) and from the combined features (laplacian).

decodable information about object categories, and their power
in predicting behavioral performance, was outperformed by the
most informative individual feature (i.e., Wavelet), which was
sensitive to multi-scale codes from the analysis time window and
across electrodes (i.e., spatiotemporal specificity).

The main question of this study was whether the brain
recruits and combines a number of different protocols to
encode different aspects of cognitive processes involved in
object category recognition ranging from sensory information
to behavioral response. For example, the brain may use one
encoding protocol for the encoding of feed-forward visual

information processing, e.g., theta-band power, which would
later in the trial be dominated by alpha/beta-band feedback
information flow involved in semantic object categorization
(Bastos et al., 2015). The brain may also use different encoding
protocols to process different aspects of the same stimulus [e.g.,
contrast or the orientation of visual stimulus (Gawne et al.,
1996)]. Alternatively, the brain may implement a single but
multiscale protocol [e.g., multiplexing strategy which combines
the codes at different time scales (Panzeri et al., 2010)] which
allows different aspects of information to be represented within
the same encoding protocol. Our results provide support for
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the latter by showing that spatiotemporally sensitive features,
which can detect patterns across multiple scales (e.g., Wavelet
coefficients) best capture variance in the EEG responses evoked
by different categories of visual objects. Therefore, rather than a
combinatorial and switching encoding protocol, the brain may
instead encode object category information through a single but
multiscale encoding protocol.

This study does not provide the first evidence showing that
temporal patterns of activity provide information about different
aspects of visual sensory input. The richness of information in the
temporal patterns of activity has been previously observed in light
encoding (Gollisch and Meister, 2008), co-occurrences of visual
edges (Eckhorn et al., 1988), orientations in primary visual cortex
(Celebrini et al., 1993) as well as object category information in
the temporal cortex (Majima et al., 2014). While we do not claim
that this EEG study provides direct evidence about processing
of information at the level of single neurons, our findings are
consistent with the above invasively-recorded neural data and
provide evidence for information content in neural variability of
EEG data. Our study also aligns with the recent move toward
incorporating within- and across-trial temporal variability in
the decoding of information from neural time series such as
MEG (Vidaurre et al., 2019), EEG (Majima et al., 2014), invasive
electrophysiological (Orbán et al., 2016) and even fMRI (Garrett
et al., 2020) data. On the other hand, this current study contrasts
with the conventional time-resolved decoding analyses which
merely consider amplitude at each time point (Grootswagers
et al., 2017), overlooking informative multi-scale temporal codes.

The field of Brain-Computer Interface (BCI) has already
achieved great success in decoding visually evoked information
from EEG representations in the past two decades, mainly
through the use of rigorous supervised learning algorithms
[e.g., Voltage Topographies (Tzovara et al., 2012), Independent
Component Analysis (Stewart et al., 2014), Common Spatial
Patterns (Murphy et al., 2011), and Convolutional Neural
Networks (Seeliger et al., 2018)] or by combining multiple
features (Chan et al., 2011; Wang et al., 2012; Qin et al.,
2016; Torabi et al., 2017). However, the predictive power
of a feature about behavior might not be as important for
BCI where the goal is to maximize the accuracy of the
commands sent to a computer or an actuator. In contrast,
one of the most critical questions in cognitive neuroscience to
understand whether the neural signatures that we observe are
meaningful in bringing about behavior, as opposed to being
epiphenomenal to our experimental setup (e.g., Williams et al.,
2007; Jacobs et al., 2009; Ritchie et al., 2015; Hebart and
Baker, 2018; Woolgar et al., 2019; Karimi-Rouzbahani et al.,
2021a,b). To address this point, we evaluated whether our
extracted features and their combinations were behaviorally
relevant, by correlating our decoding patterns with the behavioral
object recognition performance (reaction times in Dataset
2). Moreover, to directly compare the information content
of the combined feature sets with the individual features,
we equalized the dimensions of the data matrix for the FS
algorithm to that obtained for individual features. This avoided
artefactualy improving behavioral predictive power with higher
dimensionality. Contrary to what we predicted, however, we

observed that even the laplacian FS algorithm, which provided
the best peak prediction for the behavioral performance, was
outperformed by the individual Wavelet feature at most time
points. Therefore, the multiscale feature of Wavelet not only
provides the most decodable information, but seems to most
closely reflect the neural processes involved in generating
participant behavior.

One unique property of our decoding pipeline, which we
believe led to the enhanced information encoding for the Wavelet
feature relative to other individual features (Karimi-Rouzbahani
et al., 2021b), is the incorporation of spatiotemporal codes in
decoding in each 50 ms analysis window. The neural code can
be represented in either time (across the analysis time window),
space (across electrodes in EEG) or a combination of both
(Panzeri et al., 2010). Specifically, most of the previous studies
have evaluated the neural codes in either time, being limited by
the nature of their invasive recording modality (Houweling and
Brecht, 2008; Benucci et al., 2009), or space by averaging/down-
sampling of data within the analysis window. However, our
spatiotemporal concatenation of EEG activity across both time
and electrodes (i.e., performed at the first PCA stage for
individual features and at the third PCA stage for the combined
features in Figure 1), allows the neural codes to be detected
from both spatially and temporally informative patterns. The
50 ms time window chosen here makes a compromise between
concatenating and decoding the whole time window in one shot,
which loses the temporal resolution, and time-resolved decoding
at each time point, which ignores temporal patterns of activity
(Karimi-Rouzbahani et al., 2021b).

While this study provided insights about how neural codes
might be detected from EEG activations, there remain two
main limitations in understanding the nature of neural codes in
EEG. First, physiological evidence is limited about how neurons
produce, often such complicated codes, even in studies where
the mathematical features of this study were first introduced.
There are theories and mathematical justifications to explain
why these complicated codes are helpful (Schaefer et al., 2006;
Kayser et al., 2009; Schroeder and Lakatos, 2009, etc.) but not
on how neurons produce them. Second, it seems unlikely that
the distinctly-defined mathematical features necessarily extract
distinct attributes/neural codes. In fact, many of the extracted
features overlap: some of them are slightly different ways of
quantifying similar characteristics of the neural activity (e.g.,
variance vs. power, which both quantify the strength of variability
of the signal). Therefore, there are not necessarily distinct neural
underpinnings for each feature.

There are several future directions for this research. First, as
the encoding protocols for different cognitive processes might be
different from object category processing (Panzeri et al., 2010),
the generalization of our results to other domains of cognitive
neuroscience needs to be evaluated. Second, previous results
(Panzeri et al., 2010) suggest that different aspects of information
(e.g., category processing, decision making and motor response)
may be encoded using different encoding protocols. Our data did
not allow us to tease those aspects apart, which is interesting area
for future investigation. Third, following previous suggestions
that even different aspects of visual information (e.g., color,
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variations, and task) might also be encoded using different
encoding protocols (Gawne et al., 1996), the number of selected
features might need to be varied from one dataset to another.
Ideally, we would only keep the informative features above a
certain threshold. Here, we chose an arbitrary threshold of 5
included, but it would be interesting to explore the impact of this
parameter in the future.

The large-scale EEG analysis of this study aligns with the
recent shift to cross-dataset meta-analyses for different human
cognitive abilities such as working memory (Adam et al., 2020)
and sustained attention (Langner and Eickhoff, 2013). Such
studies lead to more generalizable conclusions and provide
deeper insights into the human cognition. Here, across three very
different datasets we showed that, the brain seems to implement a
temporally and spatially flexible and multiscale encoding strategy
rather than a combinatorial or switching encoding strategy, at
least in object category processing.
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Brain connectivity analyses have conventionally relied on statistical relationship between
one-dimensional summaries of activation in different brain areas. However, summarizing
activation patterns within each area to a single dimension ignores the potential statistical
dependencies between their multi-dimensional activity patterns. Representational
Connectivity Analyses (RCA) is a method that quantifies the relationship between multi-
dimensional patterns of activity without reducing the dimensionality of the data. We
consider two variants of RCA. In model-free RCA, the goal is to quantify the shared
information for two brain regions. In model-based RCA, one tests whether two regions
have shared information about a specific aspect of the stimuli/task, as defined by
a model. However, this is a new approach and the potential caveats of model-free
and model-based RCA are still understudied. We first explain how model-based RCA
detects connectivity through the lens of models, and then present three scenarios where
model-based and model-free RCA give discrepant results. These conflicting results
complicate the interpretation of functional connectivity. We highlight the challenges
in three scenarios: complex intermediate models, common patterns across regions,
and transformation of representational structure across brain regions. The article is
accompanied by scripts (https://osf.io/3nxfa/) that reproduce the results. In each case,
we suggest potential ways to mitigate the difficulties caused by inconsistent results.
The results of this study shed light on some understudied aspects of RCA, and allow
researchers to use the method more effectively.

Keywords: representational connectivity analysis, multi-dimensional connectivity, functional connectivity,
multivariate pattern analysis, representational similarity analysis

INTRODUCTION

To study the neural underpinnings of cognitive processes, we need not only to characterize the
response of individual brain regions but understand the functional connectivity between them.
This is critical to understand how brain regions interact in giving rise to cognition (Bressler and
Menon, 2010). Functional connectivity across the brain has been conventionally evaluated using
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univariate/one-dimensional analyses (Bastos and Schoffelen,
2016). In these analyses, responses in each brain region is
initially summarized by a one-dimensional metric (Biswal et al.,
1995). If the 1D metrics for different regions are statistically
related, we then infer functional connectivity between them
(Bastos and Schoffelen, 2016). For example, methods such as
gamma-band synchronization (Gregoriou et al., 2009), phase
covariance across regions (Bar et al., 2006), frequency coupling
(Karimi-Rouzbahani et al., 2021b), and differential equations
(Friston et al., 2013) have been used to evaluate connectivity
after summarizing the activation patterns across vertices (sensors
or voxels) within each region. However, univariate connectivity
analysis can miss connectivity if the pairs of regions are
statistically related through multi-dimensional patterns of
activation rather than the summarized (e.g., averaged) activation
within each region (Coutanche, 2013; Basti et al., 2019, 2020).
For example, for heterogeneous ROIs, where multiple response
modes co-exist, projecting multivariate response patterns on
a line (one dimension) could lead to strong distortions. This
has led to a recent shift from univariate to multi-dimensional
(multivariate) connectivity analyses (Coutanche and Thompson-
Schill, 2013; Goddard et al., 2016; Anzellotti and Coutanche,
2018; Basti et al., 2019, 2020; Karimi-Rouzbahani et al., 2021a,c;
Shahbazi et al., 2021). One approach to multi-dimensional
connectivity is Representational Connectivity Analysis (RCA;
Kriegeskorte et al., 2008), which utilizes the versatility of
Representational Similarity Analysis (RSA) to move from the
direct comparison of representations to the comparison of
representational geometries (Kriegeskorte et al., 2008). Recent
implementations of RCA can be divided into model-free
[e.g., Information Flow Analysis (Goddard et al., 2016), RSA-
Granger Analysis (Kietzmann et al., 2019), static RSA (Karimi-
Rouzbahani et al., 2021c), and jackknife-resampling RCA
(Coutanche et al., 2020)] and model-based (Clarke et al., 2018;
Karimi-Rouzbahani et al., 2021a) methods, each having specific
characteristics. Here, we describe model-free and model-based
RCA and point out their differences. Specifically, we present
three simple scenarios where model-free and model-based RCA
provide inconsistent connectivity results, flagging the situations
where they should be used with caution and adding nuance to
how the results of each should be interpreted.

One key feature of RCA is that, rather than activations
(Anzellotti et al., 2017a,b; Basti et al., 2019), it evaluates the
statistical dependency between the geometry/structure of
neural representations across areas. Accordingly, RCA relies
on the distinctiveness (i.e., dissimilarity) of patterns across
conditions, which is conceived in terms of “information
encoding/representation,” rather than the activity patterns
themselves. Therefore, one prerequisite for performing RCA is
to have enough distinct experimental conditions to obtain the
geometry of representations in the neural data [see, however,
how we performed RCA on a single condition across time
(Karimi-Rouzbahani et al., 2021c)]. This usually precludes
RCA from being used to test functional connectivity in
resting-state data (single, continuous fMRI, or M/EEG time
series), which dominates univariate functional connectivity
analyses. On the flip side, however, the representational

nature of RCA provides several advantages over activity-based
connectivity analyses. First, RCA allows the evaluation of
connectivity across any two regions with different number of
response channels (i.e., vertices, voxels, sensors, or sources;
Kriegeskorte et al., 2008). Second, it allows one to ask
how information (e.g., sensory, cognitive, etc.), rather than
activation, is potentially transferred across areas. Third,
model-based RCA allows one to target specific aspects of
information, based on hypotheses about how a specific aspect
of information is transferred, avoiding the influence from
undesired confounders on connectivity (Clarke et al., 2018;
Karimi-Rouzbahani et al., 2021a). Despite these advantages,
under some circumstances representational connectivity analysis
can miss true connectivity or erroneously detect non-existing
(false) connectivity. This necessitates further investigation of
RCA methods before they are more widely used as measures of
multi-dimensional connectivity.

From a broad perspective, model-free RCA (Basti et al., 2020;
Coutanche et al., 2020; Karimi-Rouzbahani et al., 2021c; Shahbazi
et al., 2021) evaluates whether there is any commonality in
the distributed patterns of activity for two brain regions. The
commonality might reflect shared information due to similar
encoding in the two regions. But it might also be due to the
encoding of nuisance factors that are shared across regions. On
the contrary, model-based RCA asks whether the two regions
have shared information with regards to a specific hypothesis
defined by a model. Having the model(s) can give a more
specific picture of the multi-dimensional regional interactions. In
this article, we compare model-free and model-based RCA and
explain their pros and cons. In particular, we raise some cautions
for using each method by showing simulated cases where one
method fails to capture functional connectivity between two
regions with shared information.

METHODS AND RESULTS

General Simulation Details
We generated multidimensional patterns of activity using scripts
from the Matlab RSA toolbox (Nili et al., 2014; mean = 0;
variance = 0.5; same statistics for every simulated subject). The
Matlab script for reproducing the results can be downloaded from
https://osf.io/3nxfa/. We simulated activity patterns for 16 stimuli
in two brain regions. The number of vertices/voxels were set to
120 and 150 for regions of interest (ROIs) 1 and 2, respectively.
The 16 conditions can be thought of as corresponding to four
peripheral positions of the visual field (e.g., top left, top right,
bottom left, and bottom right) of four semantically distinct
visually presented object categories (e.g., animals, faces, fruits,
and objects). For simpler explanation and interpretation of
the results one can think of region of interest (ROI) 1 as
visual area 2 (V2) and ROI 2 as inferior temporal cortex
(ITC). Accordingly, ROI 1 dominantly represents position (i.e.,
regardless of the category of the objects) and ROI 2 dominantly
represents semantic categories (i.e., regardless of the position
of the stimuli). Figure 1A depicts the arrangements of the
conditions in the Representational Dissimilarity Matrix (RDM).
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FIGURE 1 | Arrangement of the simulated conditions in the representational
dissimilarity matrices (RDMs), model and neural RDMs and their pairwise
correlations. (A) There are 16 conditions in the RDM consisting of four
semantic categories of objects in four distinct positions. Example stimuli are
from Kriegeskorte et al. (2008) available at http://www.cns.nyu.edu/kianilab/
Datasets.html. (B) Top matrices show the ground truth for the two ROIs that
represent “positions” (left) and “semantic categories” (right). The neural RDMs
shown in the bottom were generated by adding noise to the activity patterns
used to generate the two top model RDMs. Therefore, the simulated neural
RDMs are highly correlated to the ground truth (r = 0.96). The correlations
between the (model and/or neural) RDMs of the two different ROIs are
negative (r < –0.2) implying no connectivity between them.

RDMs are generated by calculating the dissimilarity (here 1-
correlation coefficient) of activity patterns across all experimental
conditions and characterize the geometry of representations
in the representational space (Kriegeskorte and Kievit, 2013).
Figure 1B shows the ground-truth of the RDMs in the two ROIs
and neural RDMs for a simulated subject which are different from
the ground truths due to the added noise.

We used Pearson’s (linear) correlation for comparing
RDMs. Accordingly, we only considered significantly positive

correlations as indicating representational connectivity. We
performed significance testing using a one-sided Wilcoxon’s
signed rank test (Wilcoxon, 1992) across subjects and applied a
threshold of 0.001 for statistical significance. Note that as RDMs
are symmetric matrices, we only analyzed the elements in the
upper triangle excluding the diagonal. We simulated data for
N = 20 subjects to match it to the conventional number of
subjects in real-life neuroimaging experiments and performed the
statistical tests at group level.

Simulation 1: Model-Based
Representational Connectivity Analysis
Tests Connectivity Through the Lens of
Model(s)
Problem Statement
Model-based RCA is designed to test whether two ROIs are
related with regards to a specific model1. A model privileges a
specific direction in the dissimilarity space so that all comparisons
would be made with respect to the direction specified by
the model. This allows us to test whether two regions share
particular information. Although there have been (two) different
implementations of model-based RCA (Clarke et al., 2018;
Karimi-Rouzbahani et al., 2021a), here we use a minimalistic
implementation to raise concerns about caveats of model-based
RCA as clearly as possible. A model-free approach to test for
representational connectivity would be to directly compare the
RDMs in the two ROIs. Here, we use linear correlation to
perform model-free RCA.

Despite the potential benefits of model-based RCA, it has
some limitations that should be considered with caution. For
example, consider the scenarios depicted in Figure 2A (note
that although RDMs can generally reside in a high dimensional
dissimilarity space, we illustrate the main point with 2D figures).
Figure 2A shows a case where RDMs from two ROIs have
a positive correlation to a model RDM and in fact identical
similarities to it (e.g., Pearson correlation of 0.7). Conceptually,
model-based RCA asks whether correlations of two brain RDMs
to a model RDM are similar. It would be tempting to conclude
that two ROIs share the information captured by a model if they
are equally close (similar) to it. However, in this example, the
RDMs in the two ROIs are in fact orthogonal, so this conclusion
would be erroneous. Unlike model-based RCA, model-free RCA
(e.g., the correlation of the two RDMs) would correctly conclude
no functional connectivity.

Conversely, consider the case depicted in Figure 2B. The
neural RDMs in the two ROIs have a positive correlation (e.g.,
a Pearson correlation of 0.7). This means that model-free RCA
would indicate representational connectivity. However, one ROI
has no relationship to the model (correlation of 0) and another
ROI has a positive correlation to it (r = 0.7), and therefore
from the perspective of the model, the two ROIs would not be
connected. While the two regions share some information, this is
not the same information that is captured by the model.

1We use the term “model” in a general sense: it can be a conceptual model, a
computational model or a third brain region, etc.
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FIGURE 2 | An intermediate model RDM can lead to the wrong conclusion that two uncorrelated ROIs (RDMs) are connected. RDMs can be represented as a vector
emanating from the origin in the N-dimensional space [N = number of elements in the RDM, i.e., n(n–1)/2 with n being the number of conditions]. (A) Shows a
situation where a model RDM has equal angles to two orthogonal (unrelated) neural RDMs. Looking from the lens of this model can leave the impression that the two
neural RDMs are similar as they project similarly on the model RDM. (B) Shows a situation where two neural RDMs are positively correlated, but might look unrelated
(disconnected) when looking at them through the lens of the model RDM. This is because only one has a component along the model RDM’s vector and the other is
orthogonal. (C) The model RDM used in Simulation 1, which has components of the representations in ROI 1 (position) and ROI 2 (semantic category). This model
RDM has equal correlations (= 0.6) to the models used to generate neural RDMs of the two ROIs (shown in Figure 1, top); almost similar correlations to the neural
RDMs (0.6). (D) The correlation between the neural RDM of the two ROIs (model-free RCA) and between the neural and model RDMs of each ROI (model-based
RCA). Red asterisks show significant above-chance correlation values (connectivity) as evaluated by a one-sided Wilcoxon’s signed rank test against zero.

These examples show that model-based and model-free RCA
can easy lead to different results. It follows from the fact
that model-free RCA is based on direct comparison of neural
RDMs in the original dissimilarity space and that model-
based RCA is based on comparison of projected RDMs on
a line (projection), defined by the model. The degree of
inconsistency depends on the neural RDMs and the direction
defined by the model.

In Simulation 1 we present a scenario (similar to Figure 2A)
where applying model-based RCA to two ROIs which represent
independent aspects of visual stimuli could result in the wrong
conclusion that the two are functionally connected.

Simulation Details
The general simulation details are provided in section “General
Simulation Details.” For model-based RCA, we used a model
RDM that incorporates both aspects of the stimuli (i.e., position
and object category). This “intermediate” model hypothesized a
larger pattern dissimilarity for two conditions that are different
in both position and object category. The model had equal
level of correlation/similarity to the neural RDM in each of the
two ROIs (r = 0.6 between the model in Figure 2C and the
RDMs shown in top and/or bottom panels of Figure 1). To
implement model-based RCA, for each ROI we calculated the
correlation between the neural RDM and the model for each
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subject. Then, we statistically compared the correlation results
across subjects for the two ROIs. Specifically, two ROIs are
considered to reflect model-based representational connectivity
if they show significant positive correlations to a model and
their correlations to the model are not significantly different. To
implement the model-free RCA, we calculated the correlation
between the neural RDMs of the two ROIs directly. Therefore,
statistically positive correlation between neural RDMs shows
model-free representational connectivity.

Simulation Results
Two ROIs that represent statistically unrelated information are
not connected and do not have any shared information. However,
looking at the two ROIs through the lens of an intermediate
model in model-based RCA can leave the impression that the
ROIs are connected. There was significant positive correlation for
the two ROIs with the intermediate model, and the correlations
between the model and the two ROIs were not statistically
different (Wilcoxon’s signed rank test; p = 0.94, Figure 2D).
This (incorrectly) suggests that the two ROIs are connected, by
virtue of sharing the information captured in the intermediate
model. However, model-free RCA (i.e., direct correlation between
the two ROIs) correctly showed no positive correlation between
the ROIs suggesting no connectivity. It might be worth adding
that had we used a simple model instead of the intermediate
model, for example, one of the two models illustrated in the top
panel of Figure 1B, we would have correctly observed no model-
based RCA. Therefore, the issue relates to the representational
structures of the two ROIs as well as the model used for
examining their connectivity.

Potential Solutions
To avoid false conclusion about connectivity across ROIs, it is
important to evaluate it using both model-based and model-
free RCA, see that if the results agree, and interpret accordingly.
Where possible, for model-based RCA, it may also help to use
minimal models where only one, rather than several, aspects
of information is captured. In our simulation, the fact that our
intermediate model had components from both aspects of stimuli
(i.e., position and category) made it possible to capture variances
explained by different processes, i.e., independent encoding of
each aspect. Simpler models, for example models that correspond
to simple hypotheses, might help to untangle representational
connectivity along different dimensions of information transfer.
However, it might be difficult to know these models in advance,
unless the tasks are simple, and the underlying representations
are already well characterized.

It is of note that, while we implemented a simplified version of
RCA here, implementations in the literature have incorporated
other parameters, such as time and delay, and other techniques
such as multi-linear regression and partial correlation (Goddard
et al., 2016, 2021; Karimi-Rouzbahani, 2018; Karimi-Rouzbahani
et al., 2019, 2021a) each of which may affect the results. However,
both the previous published implementations of model-based
RCA (Clarke et al., 2018; Karimi-Rouzbahani et al., 2021a)
ultimately rely on assessing the similarity in model fits between
regions, so are subject to the concern we have demonstrated.

Simulation 2: Spurious Connectivity
From Common Input to Regions With
Distinct Representations Can Be
Avoided Using Model-Based
Representational Connectivity Analysis
With Appropriate Models
Problem Statement
There can be situations where common uninformative patterns
are present along with the informative representations in the
pair of ROIs considered for connectivity analysis. The common
patterns can be as simple as measurement or neural noise which
might be statistically dependent across areas and/or the leakage or
feeding of activations from a third ROI to both ROIs as a result of
proximity and/or poor spatial resolution (e.g., in EEG and MEG).
On the other hand, it can also be the case that the two ROIs
encode/represent some shared aspects, which are either task-
irrelevant or not the target of study. For example, both position-
selective early visual area (V2) and the semantically selective area
(ITC) can be sensitive to low-level image statistics such as the
spatial frequencies of the stimulus due to connections from V1.
This shared information may lead to apparent connectivity if
their RDMs are directly compared (as in model-free RCA), but
may not reflect shared information of interest to the researcher.
In general, we are not interested in capturing commonality in
noise, and may not be interested in capturing this low-level
information (i.e., spatial frequency) which are represented in
both ROIs, but rather by the particular information for which
we have hypotheses. In this simulation we ask whether model-
based RCA is robust to this type of shared information and allows
us to draw a specific conclusion about the shared information of
interest to the researcher.

Below we simulate the impact of adding common patterns
of activation to a pair of ROIs which otherwise represent
distinct information, and show how model-free RCA, and
some implementations of model-based RCA, can be affected.
We show that using appropriate models that match the
dominant representations of the two ROIs can mitigate the
false connectivity.

Simulation Details
The neural patterns generated here are the same as Simulation
1 (with no connectivity between the two ROIs) except that now
we also include the time course of representations to be able
to implement more realistic model-free and model-based RCAs
(rather than the simplified ones implemented in Simulation
1). We added the temporal dimension so that correlations
could be computed over time. Please note that, however, ROI
representations at different time points were consistent with
the same structures depicted in Figure 1B. In other words,
the information did not change over time but experienced
some additive Gaussian noise (zero-mean; variance = 0.5). We
simulated the activity patterns of the two ROIs over 200 time
samples. The two ROIs were simulated to encode the two above-
mentioned distinct aspects of information (i.e., position and
semantic categories).
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We performed model-free RCA by calculating the direct
correlation between RDMs of the two ROIs at every time
point and then averaging the resultant correlations over the
simulated time window.

In this Simulation (and also the next simulation), we
consider two versions of model-based RCA that have different
motivations. In either case, we first obtained the correlation
between the neural and the corresponding model RDM of each
ROI at every time point and then calculated the correlation
between the time courses of neural-model correlations
for the two ROIs.

In the first version, we considered a common model for the
two ROIs (similar to Simulation 1) and in the second version
we used ROI-specific models (i.e., one model per ROI). The
motivation for the first approach (1-model RCA) was that the
experimenter might simply want to evaluate the information
exchange reflecting a single known aspect of information (e.g.,
familiarity information across occipital vs. frontal areas: Karimi-
Rouzbahani et al., 2021a). On the other hand, the experimenter
might hypothesize that the dominant aspect of information
represented in each of the two ROIs is different (e.g., visual
information in lower visual areas vs. semantic information in
ITC: Clarke et al., 2018). In this case it might be more suitable
to compare each ROI to a specific model of itself (ROI-specific
models) and use a 2-model RCA. In this case the interpretation
of 2-model RCA results would be different and will be explained
below (Simulation 3). For our implementation of 1-model
RCA in the simulated example, we used the position model
for both ROIs. For the 2-model RCA, we used the position
model for ROI 1 and a semantic-category model for ROI 2;
therefore, the models perfectly matched what was dominantly
represented in each ROI.

We added a non-structured (noise) pattern to both ROIs and
evaluated its impact on connectivity (Figure 3A). To generate
the common pattern, we used Gaussian noise (zero-mean;
variance = 7) and a random transformation matrix (containing
random numbers from a zero-mean unit-variance Gaussian
distribution) to impose correlated noise across areas. Similar to
Basti et al. (2020), we first simulated the added noise for one ROI
and then transformed it via a multivariate linear mixing matrix to
obtain the noise in the other ROI (Figure 3B).

Simulation Results
The results are shown in Figure 4A. As expected, before
adding the common patterns to the ROIs, the three connectivity
measures were either negative (model-free RCA) or around-
zero (1-model and 2-models RCA), suggesting no connectivity
between the ROIs (Figure 4A). However, the addition of
common noise patterns to the two ROIs led to spurious
connectivity for model-free and 1-model RCA, with both
showing significantly above-chance connectivity. This was
expected for the model-free RCA because it relies on shared
information across ROIs, which become correlated by the
added correlated noise (similar to the example depicted in
Figure 3B). The researcher would conclude that the ROIs were
connected, when in fact the positive result reflected shared
information of no interest.

This result was especially interesting for 1-model RCA because
the method required the two ROIs to be temporally correlated
to show connectivity. This confirms that the common pattern
has not only correlated the patterns of the two ROIs on every
time point, but it has also added temporal correlations to the
patterns of the two ROIs making them fluctuate similarly over
time (which is key for our model-based connectivity). We also
observed that this spurious connectivity for 1-model RCA was
not specific to the particular model we used and remained when
using any arbitrarily defined random models (results not shown).
Specifically, we observed that even models unrelated to the
representational structure of one of the two ROIs (e.g., position
and/or semantic categories) could lead to false connectivity in
1-model RCA. This can be explained by the fact that the time-
locked common input will make the RDMs of the two ROIs be
more similar to each other and also to any random RDM.

Finally, despite the correlations imposed on the contents of
representations and the temporal patterns across ROIs, the 2-
model RCA (correctly) showed negative correlations between
the ROIs after the common input suggesting no connectivity
(Figure 4A). This negative correlation can be explained by the
fact that the two correlated representations will have a negative
correlation when evaluated against two negatively correlated
models. 2-model RCA is determined by the relationship between
the neural RDMs of the two ROIs after projecting them
on their relevant model RDMs. More specifically, it suggests
that if the model RDMs for two ROIs do not correlate, or
correlate negatively (suggesting distinct codes represented in
each of them), they can remain immune to the added common
noise. To test this hypothesis, we generated random models
for the two ROIs of each simulated subject and calculated
the level of increase in correlation/connectivity from before
to after adding the common noise. Results showed a direct
relationship between the similarities of the two models (and
the corresponding ROIs) and the change in (2-model RCA)
connectivity under the influence of the added noise (Figure 4B).
Specifically, the more correlated the two models were, the
larger the influence of adding correlated patterns. For negatively
correlated models, like those in our simulation, adding correlated
noise reduced the connectivity, so would not lead to spurious
results. Therefore, 2-model RCA can be robust to shared noise
or other common signals of no interest, but only if the 2-models
are orthogonal or negatively correlated (and negative correlations
are not interpreted).

Potential Solution
Both model-free and model-based RCA are affected by common-
inputs to the two ROIs. This is particularly important for
model-free RCA and 1-model RCA where it will always be the
case, and should be taken into consideration when interpreting
results. However, in 2-model RCA, where the two ROIs originally
represented two distinct aspects of the task, the results were
robust to the added common noise. This result was dependent
on the chosen model RDMs not being positively correlated.
Therefore, for cases where two regions are hypothesized to
represent distinct information, the use of 2-model RCA with
orthogonal or negatively correlated models can avoid spurious
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FIGURE 3 | (A) Simulation settings, a common input is added to the responses in both ROIs, so that the patterns in the two ROIs covary at each time-point.
(B) Example RDMs from the two ROIs before and after adding the common input. RDMs originally had a negative correlation (–0.22). The correlations went up from
–0.22 to 0.84 due to the common input.

FIGURE 4 | Addition of common pattern to pair of ROIs can make them look connected in model-free and 1-model RCA but not 2-model RCA if the ROIs are
distinct enough. (A) Addition of common non-structured (noise) patterns to both ROIs leads to significant connectivity when evaluated using model-free and 1-model
RCA, but not 2-model RCA because the two ROIs dominantly represent information that is negatively correlated (see Figure 1B). Red asterisks show significant
above-chance correlation values (connectivity) as evaluated by one-sided Wilcoxon’s signed rank test against zero. (B) The more distinct the dominant information
represented across the ROIs, the less the effect of added common noise on their connectivity. Dots show the amount of change in connectivity as a function of
correlation between the information represented in the two model RDMs used in 2-model RCA. Each dot represents data from a single simulated subject. The line
shows the best linear fit to the data. The correlation and the significance of correlations are also shown as calculated using Pearson’s linear correlation.

connectivity caused by common patterns of activation such as
correlated noise.

Simulation 3: Model-Based
Representational Connectivity Analysis
With Region of Interest-Specific Models
Can Detect Transformation of
Information Across Region of Interests
Problem Statement
There can be situations where the structure of the information
is transformed from one ROI to the next. In fact, it seems
unlikely that information remains intact (“copied”) between
any two ROIs in the brain. Therefore, direct comparison of

neural representations, as implemented in model-free RCA, can
miss such potential connectivity simply because the statistical
relationship may be lost in transformation. However, model-
based RCA may allow us to detect the connectivity between two
areas, which encode distinct information, based on their temporal
statistical congruency. Below we simulate two ROIs that represent
two distinct aspects of information, with dynamics that are either
temporally congruent or incongruent between ROIs. Specifically,
the information about the stimulus position initially appears in
the source ROI (V2) and is followed by the semantic-category
information which appears in the destination ROI (ITC)2. This

2We consider the case where the information is reliably transferred from one
ROI to another as temporally congruent and cases where there is no transfer
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scenario resembles a study which found evidence in support of
causal information transfer and transformation from early visual
to ITC areas (Clarke et al., 2018). As the detection of connectivity
using model-based RCA with ROI-specific models also needs the
adoption of correct model for each ROI, because the information
is transformed, we also examine the effect of choosing the correct
model for each ROI.

Simulation Details
We used simulations to investigate the transformation of
information using model-based RCA. The details of information
representation in the two ROIs in this simulation are identical
to Simulation 2, with the exception that the information does
not appear throughout the simulation window but rather for
a fixed period of time in each ROI (samples 30–60 in ROI 1;
solid black curve in Figure 5A). There was a delay of ±20
samples between ROIs 1 and 2 (positive for congruent and
negative for incongruent case) which was jittered between 0 and
10 samples (uniform random distribution) across the simulated
subjects (N = 20). This led to information appearing in ROI
1 before ROI 2 in congruent cases, and in ROI 2 before
ROI 1 in incongruent cases (Figure 5A). Specifically, patterns
could appear between samples of 40 and 80 in ROI 2 in the
congruent case and between samples of 0 and 40 in ROI 2 in the
incongruent case. The activity patterns of the two ROIs did not
contain any information in the samples outside the mentioned
windows. Note that similar to the previous simulations, the
information which was dominantly represented in the two ROIs
was different [position encoding in V2 (source) and semantic
category encoding in ITC (destination)]. This scenario simulated
information flow from the source to the destination area that
has been evaluated in previous studies using both model-free
and model-based RCA (Goddard et al., 2016, 2021; Clarke et al.,
2018; Karimi-Rouzbahani, 2018; Karimi-Rouzbahani et al., 2019,
2021a). In this analysis, the onset of information in each ROI
predicts the direction of information transfer (e.g., potential
information flow from V2 to ITC). Here we only evaluate the
feed-forward information flow/connectivity from ROI 1 to ROI
2 (e.g., as in the ventral visual stream) and not vice versa.
In testing the connectivity for both model-free and model-
based RCA methods, we set the analysis delay-time (i.e., lag)
between ROIs to be 20 (no jitter) for all our subjects. This
parameter is usually set by the researcher and fixed across subjects
(Goddard et al., 2016, 2021; Karimi-Rouzbahani, 2018; Karimi-
Rouzbahani et al., 2019, 2021a). We performed model-free RCA
by calculating the direct correlation between the RDM of the
source ROI at time t and the RDM of the destination ROI at
time t + τ where τ refers to the delay (= 20 samples) and then
averaged the time course of correlations within each subject.
For model-based RCA, we calculated the correlation between
the neural and model RDMs for each ROI on every time point
as in Simulation 2 (note that we considered the two cases of
having one model RDM or two different model RDMs), shifted
the model-correlation time course of ROI 2 by 20 (jittered

of information or the transformation is not reliable/consistent as temporally
incongruent.

between 0 and 10 samples) relative to ROI 1, and computed
their correlation coefficient. In both model-free and model-based
analyses, the incorporation of the delay compensated for the
inter-ROI delay in the data.

Our assumption here is that two ROIs that encode/represent
statistically unrelated information can be considered connected
if their temporal information-encoding profiles are statistically
related/congruent (representations appear in the destination after
the source ROI at around the hypothesized delay). We ask
whether such a relationship would be detected using model-free,
1-model and 2-model RCA.

Simulation Results
Figure 5A shows the time courses of correlations between the
RDM of each ROI with its corresponding specific model RDM.
In congruent trials, correlations between RDMs from ROI1 and
model1 (black solid curve) peak reliably earlier than correlations
between ROI2 and model2 RDMs (gray solid curve).

Simulation results show that model-free RCA did not
detect any connectivity between the two ROIs (Figure 5B).
The 1-model RCA also failed to detect the connectivity
whether the representations in ROIs appeared congruently
or incongruently. The reason is that the representations that
were transformed from the source to the destination ROI no
longer matched the common model in the destination ROI
(we used the model RDM from ROI 1 for both ROIs). The
2-model RCA also failed to detect the connectivity when the
representations appeared incongruently across the ROIs (first
in the destination followed by the source) because information
time courses in one did not reliably follow the other according
to the hypothesized lag. However, the 2-model RCA could
detect the connectivity when the representations appeared
congruently across the ROIs. Therefore, for the transformed
information to be detected, one needs to have both accurate
models of information representations as well as correct
prior knowledge about temporal dynamics and direction of
information flow across ROIs.

Note that in these simulations, we incorporated the delay in
our analysis and the two ROIs followed the temporal profiles
of representations shown in Figure 5A. Therefore, the absence
of connectivity in the model-free and 1-model RCA cannot
be explained by the fact that we used lagged correlations in
the 2 model case. Specifically, we incorporated the delay in all
our RCA measures here to avoid any systematic difference in
RCA across methods.

Potential Solutions
Model-free RCA is only sensitive to direct statistical relationship
between neural RDMs, and fails to detect the connectivity if
the two ROIs do not statistically relate. However, 2-model RCA
allows detection of congruent inter-ROI statistical dependencies
by having models that capture the representational structure of
each ROI. Importantly, as 2-model RCA relies on hypotheses
about the representations in source and destination areas, it
will be less affected by confounders such as noise which are
generally represented similarly across the two ROIs. Similar
to the observation made in Simulation 2, it might be that
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FIGURE 5 | 2-model RCA allows us to detect transformation of information if the temporal dynamics across ROIs are statistically related/congruent. (A) Time course
of information encoding in the two ROIs at a delay of 20 samples [congruent (cng), solid gray line] and a delay of –20 from ROI 1 to ROI 2 [incongruent (inc), dashed
gray line]. The delay was variable across simulated subjects. The time courses show the correlation between each ROI and its corresponding model (position model
for ROI 1 and semantic-category model for ROI 2). (B) Transformation of information across ROIs causes all model-free and model-based RCAs to miss the
connectivity except when the information appears congruently across ROIs (first in ROI 1 followed by ROI 2) and using 2-model RCA. Red asterisk shows significant
above-chance correlation value (connectivity) as evaluated by one-sided Wilcoxon’s signed rank test against zero.

FIGURE 6 | Different types of inference about functional connectivity: top left and top right show the response patterns for N experimental conditions in two ROIs.
Larger activations in a voxel are shown by lighter colors. One classical approach would be to reduce the dimensionality of data in each ROI to 1, and summarize the
rich patterns of activity by a single vector containing one number for each experimental condition (or time-point for the case of resting-state data). Significant
correlation between these vectors implies co-activation, i.e., that activations in ROI1 and ROI2 co-vary. Multi-dimensional connectivity methods that we consider in
this article characterize the response patterns for different conditions by a representational dissimilarity matrix (RDM). Direct comparison of the RDMs (model-free
RCA) tests for shared information (i.e., whether the two sets of response patterns in the two ROIs have any shared information with regards to the experimental
conditions). Incorporation of models, i.e., model-based RCA, when a common model is used for both ROIs (1-model RCA) tests for shared information about a
specific aspect of task/stimuli. This hypothesis in RCA is specified in the ROI-common model. Finally, model-based RCA with ROI-specific models (2-model RCA)
detects potential transformation of information.

common task-irrelevant patterns in both ROIs obscure the shared
information as captured by 1-model RCA or the transformation
of information as captured by 2-model RCA. A solution to this

would be to remove their contribution by regressing out the
RDM of the common pattern from the RDM of each ROI at
each time-point. However, for this one needs the knowledge
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about the structure of the common patterns, which is not
often known a priori. Researchers should be aware of these
limitations so that they can choose their analysis method and
interpretation accordingly.

Another solution to the failure of model-free RCA to detect
connectivity under transformed representations might be to
use non-linear mapping functions. Such functions allow more
flexible relationships to be detected between areas despite drastic
transformation of the representational structure. Such non-linear
mapping functions include distance correlation (Geerligs and
Henson, 2016), projection to a Riemannian manifold (Shahbazi
et al., 2021) or more general functions estimated by artificial
neural networks (Anzellotti et al., 2017b). These potential
solutions are not investigated here.

DISCUSSION AND CONCLUSION

Multi-dimensional connectivity is a rapidly developing area of
brain connectivity analysis. One of the approaches to multi-
dimensional connectivity is representational connectivity
analysis (RCA). RCA quantifies the similarity of inter-
relationship between the neural representations across
experimental conditions for distributed patterns of activity
of two brain regions (Kriegeskorte et al., 2008). This allows us
to track “information” (by the representational geometry in
the multi-dimensional response space) rather than the mere
similarity of average response levels across two regions. Despite
its versatility, a better understanding of the situations that can
challenge and/or mislead RCA is needed. In this manuscript,
we explain two main approaches of RCA. One is model-free
RCA that directly compares the representational geometries of
two brain ROIs. Model-free RCA can tell us whether two brain
ROIs have any shared information in their multi-dimensional
response patterns. The other is model-based RCA. In this
article, we make a further distinction between two approaches
to model-based RCA: using a single or multiple models. We
think this distinction is important, since besides the difference
in technical details and implementation, they entail different
interpretations about regional interactions. The first variant
of model-based RCA, which uses a common model (1-model
RCA), tests whether the representational geometries of the
two ROIs are similarly concordant to a hypothesized geometry
(i.e., the model). This can tell us whether two brain regions
have shared information with regard to a specific aspect of
the stimuli/task. The other variant of model-based RCA uses
ROI-specific models, which, with time-resolved data, tells us
whether information in one region is transformed into different
information in another region. Therefore, while this also pertains
to functional connectivity, it does not explicitly get at shared
information. Figure 6 provides an overview of the distinctions
explained in the article.

Model-free and model-based RCA can potentially
provide inconsistent results in certain circumstances. These
inconsistencies depend on many factors, some of which are the
spatiotemporal structure of neural representations and the choice
of the model(s) used in the analysis, and inform interpretation.

Here, we focused on three simulations where model-free and
model-based RCA provided opposing connectivity results.

First, we simulated a situation where the neural
representations across a pair of regions showed unrelated
information. As expected, model-free RCA showed no
connectivity between the pair of regions. Interestingly, however,
we observed that using model-based RCA with an intermediate
model, which contains information about the representations in
both regions, can leave the false impression that the two regions
are connected. Specifically, the two regions showed almost equal,
positive and significant correlation to the intermediate model
suggesting that from the “lens” of the selected model, the two
regions appear to be connected.

There are a few considerations. First, although for simplicity
we did not directly implement either of the two published
methods of model-based RCA (Clarke et al., 2018; Karimi-
Rouzbahani et al., 2021a), the problem we pointed out here
can affect both those methods. This is because they compare
the correlation between the models either explicitly (Clarke
et al., 2018), or implicitly within the formulation of partial
correlation (Karimi-Rouzbahani et al., 2021a). Second, although
we used a two-component model for this simulation to
simplify the interpretation, this situation is not limited to
two-component models. In fact, any other models that share
roughly equal amounts of variance with different components
encoded in two areas would lead to a similar situation. Third,
the false connectivity observed in this scenario is not driven
by the specific similarity metric we used (i.e., Pearson’s linear
correlation). Although different similarity metrics show different
characteristics (Walther et al., 2016; Shahbazi et al., 2021), as long
as the selected metric provides similar values for the similarity
between two different neural and a given RDM model, the
same effect will be observed. The reason is that all similarity
metrics summarize a high-dimensional representational space
into a single-dimensional space, which inevitably leads to loss of
information. Finally, at the other end of the spectrum, there can
be cases where two regions represent one or several very similar
aspects of information, but they still look unrelated/disconnected
through the lens of a particular model. However, this case seems
less problematic since the main reason behind using model-
based rather than model-free RCA is to limit the representations
to the desired information (Karimi-Rouzbahani et al., 2021a).
Nonetheless, it would be good practice to do perform both
types of RCA (together with RSA information mapping) and to
compare the results while being aware of the limitations and
caveats of each.

In the second simulation, we modeled a situation where the
addition of statistically related patterns of activity to a pair of
statistically unrelated regions imposed a statistical relationship
between them. This led to apparent connectivity in model-free
RCA and when using 1-model RCA. However, the common
pattern did not affect apparent connectivity when using 2-
model RCA, as long as the two models were orthogonal and
the two ROIs represented distinct information. Please note
that the added common pattern can be non-structured or
structured. Although we have seen that both common noise
(non-structured) and structured patterns (data not shown)
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led to similar results, the structure of the common pattern
can affect the connectivity as a result of interaction with the
representations in the regions and models. It is also of note that
the addition of common patterns does not always inflate the
connectivity (e.g., in model-free or 1-model RCA); it can also
decrease it leading to missing the connectivity. For example, if
two regions are perfectly correlated, the addition of common
noise (if not perfectly identical but only statistically related
across regions) could lead to a decline in model-free RCA as
a result of distorting the patterns. Generally, both model-free
and model-based RCA can be affected by the noise as a result
of the complex interaction between the representation in each
region, the structure of the added pattern, the models, and
the temporal dynamics of representations. Therefore, despite
the situation shown in Simulation 2, these methods we are
still far from remaining immune to common noise. We can,
however, understand where we are most susceptible to it. One
simple remedy for the effect of common patterns would be
to regress out its contribution from the RDMs of the two
ROIs prior to computing connectivity measures. This is in
spirit similar to our recent implementation of model-based
RCA (using partial correlation), where we partialled out the
effect of additional low-level image statistics from the two
regions under study (Karimi-Rouzbahani et al., 2021a). However,
as the structure of the added pattern (noise or common
structure of no interest) is usually unknown, this will not
always be an option.

In the third simulation, we showed a situation where two
regions encoded different types of information that were either
temporally congruent or incongruent. In other words, the
information initially appeared in one region and after some delay
in the other region (temporally congruent). Model-based RCA
with proper choices of models can capture this relationship. This
may be useful as transformation of information seems an integral
part of brain connectivity as it seems unlikely that information
would remain intact from one brain region to another (Lahaye
et al., 2003; Hlinka et al., 2011). Transformations of information
have already been reported in visual system of human and
monkey brain (DiCarlo et al., 2012; Kietzmann et al., 2019) and
are implemented by other sensory hierarchies as well (Winkowski
and Kanold, 2013). For example, it has been suggested that visual
information is moved from low- to a high-dimensional space
along the ventral visual stream and brought back to the low-
dimensional space in later stages of the stream to compensate
for variations of visual objects and form semantically categorized
object clusters (DiCarlo et al., 2012; Karimi-Rouzbahani et al.,
2017a,b). Using model-based RCA, previous work has found
that information transforms from visual to semantic brain areas
(Clarke et al., 2018). In our simulation, the drastic transformation
of information simulated in Simulation 3 meant that the
connectivity was missed by model-free RCA and 1-model RCA.
However, 2-model model-based RCA detected the connectivity as
a result of its simultaneous sensitivity to targeted region-specific
information representation and the temporally congruent
patterns of information representation. Therefore, a hypothesis-
driven method of RCA allows us to detect information that is
transformed as it passes between brain regions.

This simulation also demonstrated the importance of the
delay in connectivity analysis matching the data. The delay in
the analysis potentially captures the neural lag in information
transfer in the brain (Cichy et al., 2014). The delay is
generally set a priori, meaning that choice of improper delays
(negative vs. positive; which also determines the direction of
information) can lead to missing the connectivity. A more
principled way of estimating the delay would be to partition
the data and estimate the optimal delay from one half and
apply it to the other half. However, this requires independent
measurements of the same task in each subject. A more extended
version of the RCA could be to perform Granger causality
to examine Granger-causal relationships between areas as in
previous studies (Goddard et al., 2016, 2021; Clarke et al.,
2018; Karimi-Rouzbahani, 2018; Karimi-Rouzbahani et al., 2019;
Kietzmann et al., 2019). That would also be subject to similar
considerations. However, comparing the different approaches
at a conceptual and mathematical level is beyond the scope of
the current study.

It is generally desired that a connectivity method determines
the transferred content, direction, and temporal dynamics of
information flow. To that end, previous studies implemented
techniques including partial correlation (Goddard et al., 2016,
2021; Karimi-Rouzbahani, 2018; Karimi-Rouzbahani et al.,
2019, 2021a) and regression (Kietzmann et al., 2019), or tested
for Granger causal relationship between areas (Goddard et al.,
2016, 2021; Clarke et al., 2018; Karimi-Rouzbahani, 2018;
Karimi-Rouzbahani et al., 2019), or used models to measure
the contribution of one area to another in the direction of
the task (Karimi-Rouzbahani et al., 2021a) or incorporated
autoregressive approaches to estimate proper delay between
areas (Clarke et al., 2018). In our most recent effort, to
bring together the advantages of the mentioned methods,
we proposed a variant of model-based RCA which provided
information about the content of the transferred information,
its direction and temporal dynamics simultaneously (Karimi-
Rouzbahani et al., 2021a). This method showed distinct
dynamics and direction of face familiarity-information flow
across peri-frontal and peri-occipital cortices for different
levels of perceptual uncertainty. Despite our minimalist
approach in the current study, the insights and cautions
provided by this work can be generalized to more complex
implementations of RCA as well.

Additionally, one could also consider other extensions
to model-free RCA. Similar to “information connectivity”
(Coutanche, 2013) where multi-dimensional connectivity is
established by correlating time series of classification-accuracies
across regions, one can compare time courses of the exemplar
discriminability index (EDI, Nili et al., 2020) across regions. EDI
is a model-free RSA statistic in each region and quantifies the
extent to which different experimental conditions elicit distinct
patterns of activation. Similar to the implementation of model-
free RCA, however, this definition of model-free RCA also does
not shed light into the content of shared information.

One limitation of the current study is that we only evaluated
connectivity using linear, rather than non-linear, relationships.
While this simplification allowed us to make more intuitive
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predictions about the relationship between brain responses and
the models, a more general approach would be to incorporate
non-linear connectivity between areas as well. While we believe
that the cases evaluated in Simulations 1 and 2 will not be affected
by using a non-linear connectivity metric, non-linear mapping
functions in Simulation 3 (Geerligs and Henson, 2016; Anzellotti
et al., 2017b; Basti et al., 2020; Shahbazi et al., 2021) may allow
for detecting non-linear relationships between areas. Therefore,
future studies will need to evaluate the impact of non-linear
mapping functions in RCA.

This work takes initial steps toward better characterization
of the model-free and model-based RCA approaches that have
been increasingly used in recent years. We tried to make
the simulations as general and ideal as possible (no nuisance
factors, e.g., measurement noise, leakage incorporated), so that
the insights can be generalized to different implementations
of the two general classes of model-free and model-based
RCA. Therefore, the points made here can provide insight
when studying brain connectivity using variety of neural
recording modalities such as EEG, MEG, multi-electrode
electrophysiology, and fMRI. Specifically, apart from Simulation
1, which presents a conceptual point applicable to all
multivariate imaging/recording modalities, the methods
implemented in Simulations 2 and 3 can directly be applied to
EEG and MEG data.
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Due to overlapping tremor features, the medical diagnosis of Parkinson’s disease (PD)
and essential tremor (ET) mainly relies on the clinical experience of doctors, which
often leads to misdiagnosis. Seven predictive models using machine learning algorithms
including random forest (RF), eXtreme Gradient Boosting (XGBoost), support vector
machine (SVM), logistic regression (LR), ridge classification (Ridge), backpropagation
neural network (BP), and convolutional neural network (CNN) were evaluated and
compared aiming to better differentiate between PD and ET by using accessible
demographics and tremor information of the upper limbs. The tremor information
including tremor acceleration and surface electromyogram (sEMG) signals were
collected from 398 patients (PD = 257, ET = 141) and then were used to train the
established models to separate PD and ET. The performance of the models was
evaluated by indices of accuracy and area under the curve (AUC), which indicated
the ensemble learning models including RF and XGBoost showed the best overall
predictive ability with accuracy above 0.84 and AUC above 0.90. Furthermore, the
relative importance of sex, age, four postures, and five tremor features was analyzed and
ranked showing that the dominant frequency of sEMG of flexors, the average amplitude
of sEMG of flexors, resting posture, and winging posture had a greater impact on the
diagnosis of PD, whereas sex and age were less important. These results provide a
reference for the intelligent diagnosis of PD and show promise for use in wearable tremor
suppression devices.

Keywords: Parkinsonian tremor, essential tremor, tremor differentiation, machine learning algorithms, upper limb
posture

INTRODUCTION

Parkinson’s disease (PD) and essential tremor (ET) are two common diseases usually accompanied
by tremors of the upper limbs, which may severely impair motor function and have a negative
influence on patients, especially in the aging population (Helmich et al., 2013). The symptoms of
PD are complex and severe in the later stages; therefore, early diagnosis and effective treatment are
crucial (Mark, 2007).
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Owing to overlapping tremor features, it remains difficult to
distinguish between PD and ET (Algarni and Fasano, 2018).
Given that there is currently no gold standard to differentiate
between PD and ET, the diagnosis of the two diseases mainly
relies on the clinical experience of doctors (Thenganatt and
Jankovic, 2016). Individuals diagnosed with PD typically have
gradual development of non-motor symptoms for years before
movement symptoms begin, but often they will not mention these
symptoms unless specifically queried (Armstrong and Okun,
2020). Dopamine replacement therapy works better to diagnose
PD. However, it could be difficult in the early stage of the disease
and thus approximately a quarter of PD are misdiagnosed as ET,
which usually causes the optimal medical treatments of the two
diseases to be overlooked (Rizzo et al., 2016; Reich and Savitt,
2019; Armstrong and Okun, 2020).

Some efficient and accessible non-invasive biomarkers
such as tremor signals including tremor acceleration and
surface electromyogram (sEMG) have been investigated for
the differentiation between PD and ET (Meigal et al., 2013;
Barrantes et al., 2017). And a series of statistical characteristics
of tremor signals including the dominant frequency and
peak value were extracted and studied for distinguishing
PD and ET (Hossen et al., 2010; Thanawattano et al., 2015;
De Oliveira Andrade et al., 2020).

Artificial intelligence technology is widely used to solve
problems in the medical field, including differentiating between
PD and ET (Xiao et al., 2019; Duque et al., 2020). Based
on various extracted statistical characteristics of tremor
signals and methodologies of machine learning, a series of
machine learning algorithms, such as linear models (logistic
regression, ridge classification, etc.), ensemble learning models
(random forest, XGBoost, etc.), the kernel-based model
(support vector machine, etc.), and neural network models
(backpropagation neural network, convolutional neural

network, etc.) have been introduced for the diagnosis and
progression prediction of PD and ET (Ai et al., 2011; Hossen,
2013; Ahmadi Rastegar et al., 2019; Hssayeni et al., 2019;
Qin et al., 2019).

Tremors of the upper limbs in PD patients are mainly
manifested as a resting tremor which can be used as an
important symptom to distinguish between PD and ET, however,
only 20% of ET patients suffer from that (Oren Cohen et al.,
2003; Jankovic, 2008; Helmich et al., 2013). In addition to
resting posture, stretching posture and some novel postures
were introduced and investigated to evaluate their ability to
discriminate PD from ET showing that tremors information
collected from various postures behaves more effectively in
differentiating between PD and ET compared to a single posture
(Zhang et al., 2018).

Although research has been carried out by using tremor
information of the upper limbs to differentiate PD and ET,
the influence of various upper limb postures, tremor features,
and demographics on the diagnosis has been rarely studied.
To help clinicians better distinguish between PD and ET,
we evaluated and compared seven prediction models using
machine learning algorithms. Based on the results, we analyzed
and compared the relative importance of various upper limb
postures, tremor features, and demographics in the diagnosis of
the two diseases.

MATERIALS AND METHODS

Subjects and Data Collection
A total of 398 patients confirmed PD or ET with upper limb
tremors were recruited for the experiment from June 2020 to
November 2020 by the Department of Neurology of Rui Jin
Hospital (Shanghai, China). With the help of a medical device

FIGURE 1 | Experimental setup. Tremor information was collected from four postures by a medical device system called Dantec R© Keypoint R© G4 for each patient.
(A) Dantec R© Keypoint R© G4. (B) Resting posture. (C) Stretching posture. (D) Winging posture. (E) Vertically winging posture.
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system (Dantec R© Keypoint R© G4, Natus Medical Inc.), the tremor
information, including acceleration and sEMG, was collected
from four postures for each subject. And most of the subjects were
tested on medication.

Two accelerometers were fixed onto the distal finger
of both hands, respectively, and six sEMG sensors were
fixed onto the extensor and flexor muscles on both sides.
In this experiment, each patient performed four respective
postures (Figure 1): resting, stretching, winging, and vertically
winging, meanwhile acceleration measurements and sEMG
measurements were acquired.

For each patient, the sensor signals were measured for 30 s
in each posture and sampled at a rate of 12,000 Hz. Patients
were asked to avoid unrelated behaviors, and irrelevant personnel
were removed from the room throughout the experiment. The
demographics of age and sex for each patient were also recorded.

For each posture, five tremor features (each tremor feature
with two tremor variables), including the dominant frequency
of the acceleration signals, the dominant frequency of sEMG
(extensor), the dominant frequency of sEMG (flexor), the average
amplitude of sEMG (extensor), and the average amplitude of
sEMG (flexor), were acquired by the Dantec R© Keypoint R© G4
medical device system. Finally, a total of 40 tremor variables
(Table 1) were obtained from the four postures. Our study
was approved by the local ethics committee of Shanghai Jiao
Tong University.

Establishment of Models
Based on several predictive models widely adopted in many
clinical applications, seven predictive models, including random
forest (RF), eXtreme gradient boosting (XGBoost), support
vector machine (SVM), backpropagation neural network
(BP), ridge classification (Ridge), logistic regression (LR), and
convolution neural network (CNN), were established and
compared to differentiate PD and ET using tremor information
collected from upper limbs.

For the linear models, LR and Ridge were selected. For the
ensemble learning models, such as RF and XGBoost, multiple
evaluators were established using the sample, and an output
response was obtained after considering and aggregating the
results of multiple evaluators. And a traditional machine learning
algorithm, SVM, was built. Finally, the neural network models,
including BP and CNN, were selected due to their powerful non-
linear learning ability and extensive application to diagnose and
predict the progression of PD (Hossen, 2013).

Because of different principles and usage between the CNN
model and the other six models, the raw sensor signals, including
the acceleration measurement and sEMG measurement of upper
limbs, were used to train the CNN model to differentiate PD
and ET. Due to the large volume of the time-series data which
needs to be further processed for CNN, we did not combine
demographic data to train the model. For the other six models,
40 tremor variables acquired from the Dantec R© Keypoint R© G4
medical device system, as well as two demographics (sex and
age), were used to train these models. Therefore, for CNN and
the other six models, the data preprocessing and training of the
models were different.

TABLE 1 | Demographic data of 398 patients.

Cases (n = 398, Male 196, Female 22) Mean SD

Age 66.23 40.85

Resting
posture

Dominant frequency Acc (L) 3.41 3.17

Flexor (L) 8.83 4.21

Extensor (L) 8.77 4.26

Acc (R) 3.48 2.97

Flexor (R) 8.31 4.53

Extensor (R) 8.95 4.11

Average amplitude Flexor (L) 212.38 173.45

Extensor (L) 201.94 119.85

Flexor (R) 202.28 120.14

Extensor (R) 171.96 88.05

Stretching
posture

Dominant frequency Acc (L) 3.99 2.90

Flexor (L) 9.21 4.30

Extensor (L) 10.33 4.55

Acc (R) 3.38 2.78

Flexor (R) 9.38 3.93

Extensor (R) 10.23 4.53

Average amplitude Flexor (L) 167.54 76.38

Extensor (L) 203.56 73.17

Flexor (R) 173.75 97.12

Extensor (R) 210.59 76.67

Winging
posture

Dominant frequency Acc (L) 6.25 2.33

Flexor (L) 7.59 4.09

Extensor (L) 9.18 4.43

Acc (R) 3.53 2.53

Flexor (R) 8.68 3.91

Extensor (R) 10.35 5.56

Average amplitude Flexor (L) 196.71 103.60

Extensor (L) 213.69 79.56

Flexor (R) 188.90 119.53

Extensor (R) 217.25 81.16

Vertically
winging
posture

Dominant frequency Acc (L) 4.17 2.33

Flexor (L) 8.77 3.95

Extensor (L) 9.70 4.33

Acc (R) 3.66 7.88

Flexor (R) 8.55 3.96

Extensor (R) 9.68 4.39

Average amplitude Flexor (L) 196.01 98.92

Extensor (L) 190.21 84.42

Flexor (R) 182.90 83.32

Extensor (R) 188.41 70.05

SD, standard deviation; L, left; R, right.
Acc (L) affiliated to “Dominant frequency” attached to “Resting posture”: the
dominant frequency of the acceleration signal collected from the left hand; Flexor
(L) affiliated to “Dominant frequency” attached to “Resting posture”: the dominant
frequency of the surface EMG signal collected from the flexor on the left hand;
Extensor (L) affiliated to “Dominant frequency” attached to “Resting posture”: the
dominant frequency of the surface EMG signal collected from the extensor on the
left hand. And the others have similar meanings.

For these six models (RF, XGBoost, SVM, BP, Ridge, and LR),
data preprocessing was performed as follows. For each patient,
40 tremor variables and two demographics (sex and age) were
used as the variables with the diagnosis of either PD or ET as
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the labels, resulting in a total of 398 samples. Table 1 indicates
the two demographics (sex and age) and a total of 40 tremor
variables affiliated to four postures, with each posture having
ten tremor variables. First, we filled in the null values with the
mean value of each variable (Zheng and Casari, 2018; Géron,
2019). Then, we scaled the data using Z-score normalization
(Eq. 1) to enhance the predictive ability of the model and prevent
overfitting (Géron, 2019).

z =
x− u

σ
(1)

Whereuis the mean of the variable andσis the standard deviation.
For the CNN model, data preprocessing was performed as

follows. Raw acceleration and sEMG measurements were used to
train the CNN model. The middle 25 s of each signal was selected
to avert potential noise in the experimental procedure, and then
the extracted data were down-sampled to 120 Hz for ease of
calculation, following which these down-sampled signals were
converted to the frequency domain using a fast Fourier transform
(FFT). Because the frequency band of pathological tremors is
mainly in the 2–20 Hz range, the FFT signals at 2–20 Hz were
finally chosen. The 24 converted signals from the acceleration
measurement and sEMG measurement were stacked along the
vertical axis to form a two-dimensional array for CNN input
(Figure 2), and they were scaled using Eq. 1 (Kim et al., 2018).

Training of Models
Some parameters were selected and adjusted using the grid search
method to acquire the best parameter combination for each
model. Table 2 lists the technical parameters of the models. First,
the data were preprocessed as described above and then randomly
divided into a training set (80%) and a validation set (20%). The

TABLE 2 | Tuning parameters of the seven models.

Models Tuning

RF n_estimators (subtrees)

XGBoost max_depth(maximum depth of number)

SVM γ(Gaussian kernel), C(Cost)

BP Size (hidden layer units); α(Regulation parameter)

Ridge α(Regulation parameter)

LR C (reciprocal of Regulation parameter)

CNN The number of convolutional layers, the number of kernels

RF, random forest; XGBoost, eXtreme Gradient Boosting; SVM, support vector
machine; BP, backpropagation neural network; LR, logistic regression; Ridge, ridge
classification; CNN, convolutional neural network.

proportion of PD and ET in the training set was consistent with
that in the validation set.

Ten-fold cross-validation was applied to the training set to
obtain the optimal model parameters. The training set was
divided into ten parts, nine of which were used to train the
model in turn; the remaining one was used to test the model.
The average value of AU-ROC, which was calculated ten times,
was used as an indicator to evaluate the model for determining
the different parameter combinations for each model. A forecast
flow chart is shown in Figure 3. Because of the high sampling
frequency and lack of good connectivity between muscles and
sensors in some aged patients, some acceleration measurements
or sEMG measurements were corrupted and became distorted,
which led to only 188 samples could finally being used to
train the CNN model.

For the CNN model, a specially formulated structure
(Figure 4) containing several layers of neural networks was
established to distinguish between PD and ET. The first layer

FIGURE 2 | Input array for the training of the CNN model. All signals from the acceleration measurement and sEMG measurement have been converted into the
frequency domain by the Fast Fourier Transform and stacked along the vertical axis to form a two-dimensional array for CNN input.
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FIGURE 3 | Model training, parameter adjustment, and performance evaluation. 398 patients were recruited in the current study. The data were pre-processed and
randomly divided into a training set (80%) and a validation set (20%), and the proportion of the two class proportions in each set is the same. In the training set,
k-fold cross-validation (k = 10) is used, and various parameter combinations are exhausted by grid search. Performance evaluation index of AUC was adopted to
judge the average predictive performance of the model. The average performance maximum is used as the best performance tuning parameter, and the prediction is
finally performed on the test set.

of the convolutional neural network received a normalized two-
dimensional input array, and 4 × 20 convolution kernels with
4 × 5 strides were used to fuse the local signal information
from a signal sensor with the output size of 6 × 73. The second
convolutional layer with 2 × 10 convolution filters and 2 × 2
strides was used to extract the sensor information. After each

FIGURE 4 | Final CNN architecture for separating PD from ET.

convolutional layer, a batch normalization layer and a dropout
layer with a 30% dropout rate were used to avoid overfitting.
Finally, a fully connected layer and a softmax classifier were used
to distinguish between PD and ET.

Evaluation of Models
Evaluation indicators, including the confusion matrix, accuracy,
area under the curve (AUC), recall (TPR, sensitivity), specificity,
F1, false positive rate (FPR,1- specificity), and precision
calculated by true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN), were used to evaluate
the performance of each model (Eqs 2–7). And higher AUC value
indicates a better overall performance of the current feature, ς.

TPR =
TP

TP + FN
(2)

FPR =
FP

FP + TN
(3)

Precision =
TP

TP + FP
(4)

Accuracy =
TP + TN

TP + FP + FN + TN
(5)

AUC =
∫
∞

−∞

TPR(ς)− FPR(ς)dς (6)

F1 = 2×
Recall× Precision
Recall+ Precision

(7)

where AUC denotes the area under the curve value of the
variable ς .
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FIGURE 5 | Tuning results of model parameters. (A–G) Four models (RF, XGBoost, Ridge, and LR) have one adjustment parameter, and three models (BP, SVM, and
CNN) have two adjustment parameters. For each set of parameters, the model parameters were evaluated for fit using the procedure described in panel Figure 2.
The optimal parameters for each model are selected by obtaining the parameters that the model evaluates to the maximum.

Furthermore, we analyzed the relative importance of the
variables in each model, except for CNN. The models XGBoost
and RF allowed the importance of variables to be derived during

TABLE 3 | Confusion matrices of seven models.

Confusion matrix Actual Prediction

PD ET

RF PD 44 7

ET 6 22

XGBoost PD 49 2

ET 10 18

SVM PD 50 1

ET 27 1

BP PD 41 10

ET 12 16

Ridge PD 38 13

ET 16 12

LR PD 40 11

ET 9 19

CNN PD 19 3

ET 5 10

AUC, area under the curve; PD, Parkinson’s disease; ET, essential tremor.

model training; the coefficients of the Ridge model were used as
the importance factor.

For models, such as LR, BP, and SVM, wherein the importance
of variables was difficult or impossible to extract, the mean
decrease accuracy was obtained by directly measuring the effect
of each feature on the accuracy of the model. Briefly, the model
was fitted, and parameter adjustment was performed to predict
the validation set to obtain the model performances. Then, the
feature values were disturbed to establish a new disturbance
prediction set. Obviously, for the unimportant variables, the

TABLE 4 | Evaluation summary based on AUC, recall, specificity, accuracy,
FPR and precision.

Models AUC Recall Specificity Accuracy FPR Precision F1

RF 0.90 0.86 0.79 0.84 0.21 0.88 0.87

XGBoost 0.95 0.96 0.64 0.85 0.36 0.83 0.89

SVM 0.81 0.98 0.04 0.65 0.96 0.65 0.78

BP 0.75 0.80 0.57 0.72 0.43 0.77 0.78

Ridge 0.71 0.75 0.43 0.63 0.57 0.70 0.72

LR 0.73 0.78 0.68 0.75 0.32 0.82 0.80

CNN 0.77 0.86 0.67 0.78 0.33 0.79 0.83

FPR, false positive rate.
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scrambling order has little effect on the accuracy of the model,
but for the important variables, the scrambled order will reduce
the accuracy of the model. Finally, the relative importance ratio of
all the eigenvalues was given a weight between 0 and 1 according
to the overall proportion.

We added the relative importance of the ten tremor variables
affiliated to each posture as the relative importance of the
four postures, respectively. In addition, we added the relative
importance of the two tremor variables affiliated to each tremor
feature attached to the four postures as the relative importance
of the five tremor features, respectively, thereby obtaining
the effect sizes.

RESULTS

Tuning of Parameters
The average AU-ROC for different models and their parameters
are listed (Figure 5). In these models, XGBoost obtained the
best overall performance, and the parameter max_depth of five
was optimal. RF achieved optimal performance as the parameter
n_estimators reached nine. A two-layered CNN architecture
with 35 convolution kernels was developed (Figure 4). The
other four models had a similar performance, with a maximum
performance index of approximately 0.7. The cost (C) of SVM
was two, and the parameter gamma of 0.01 produced the best

performance. For LR, parameter C (reciprocal of the regulation
parameter) of 15 performed the best. For BP, parameter hidden
layer sizes of 15 and an alpha of 0.01 produced the best
performance. The alpha of the Ridge was one, which enabled the
optimal performance.

Validation of the Training Set
The confusion matrices of the seven models are displayed in
Table 3. The number of actual subjects of PD and ET in the
confusion matrix is 51 and 28, respectively.

For RF and XGBoost, the sum of false negatives (FNs) and
false positives (FPs) could be controlled within 13, while the
others had a sum of FNs and FPs above 20 (79 validation
samples). For CNN, the sum of FNs and FPs was eight (37
validation samples). The evaluation indices, including recall
(TPR, sensitivity), specificity, accuracy, FPR (1-specificity), and
F1 for each model, are displayed in Table 4. For the ensemble
learning models, RF and XGBoost show a better performance,
with an accuracy rate equal to and above 0.84. XGBoost has
a higher accuracy rate than RF. However, the specificity of RF
is higher, which means that it has a higher accuracy rate in
identifying ET patients. For the neural networks, the accuracy
of BP and CNN reaches 0.72 and 0.78, respectively. Compared
with BP, the CNN model has a stronger non-linear predictive
ability. In this study, the accuracy of CNN was also higher
than that of BP. However, the neural network did not perform

FIGURE 6 | Factors effect size. The (A–F) histogram displays the proportion of the factoric importance of sex, age, and four postures calculated by the models. For
each model, the relative importance is quantified by assigning a weight between 0 and 1 for each variable and then the relative importance of the four postures is
calculated by the sum of the factoric importance of the corresponding variables affiliated to that posture. The models XGBoost and RF allow the importance of
variables to be derived during model training; the coefficients of the Ridge model are used as the basis for factor importance; the LR, BP, and SVM models are
obtained by the Mean decrease accuracy method.
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well owing to the limited number of samples. The Ridge linear
model obtained the lowest accuracy rate of 0.63 and the lowest
AU-ROC value of 0.71.

Important Features
The relative importance of sex, age, and the four postures
(resting, stretching, winging, and vertically winging), were
calculated using the models displayed in Figure 6. The
relative importance of sex, age, and the five tremor features,
including the dominant frequency of acceleration of distal fingers
(Dom_fre_acc), the dominant frequency of sEMG of extensors
(Dom_fre_ext), the dominant frequency of sEMG of flexors
(Dom_fre_fle), the average amplitude of sEMG of extensors
(Ave_amp_ext), and the average amplitude of sEMG of flexors
(Ave_amp_fle), were calculated by the models as displayed in
Figure 7.

Among the seven established models, the ensemble learning
models, including RF and XGBoost showed the best prediction
capabilities. Thus, the relative importance obtained from these
two models was adopted. In the two models, the relative
levels of importance of sex, age, the four postures, and the

five tremor features were ranked showing that resting posture,
winging posture, Dom_fre_fle, and Ave_amp_fle had a significant
influence on the predictability of the models, whereas sex and age
had a slight impact on the prediction.

DISCUSSION

Most PD and ET patients suffer from tremors of the upper limbs
(Zhang et al., 2018; Duque et al., 2020). Owing to the overlapping
tremor features, misdiagnosis between PD and ET is common.
As a non-invasive biomarker, the tremor information of upper
limbs, including acceleration and sEMG, has been investigated to
distinguish PD from ET. Although some tremor features (tremor
amplitude, dominant frequency, etc.) from various upper limb
postures are extracted for the differentiation of PD and ET, the
relative importance of the tremor features and various upper limb
postures have been less frequently investigated.

In this study, we applied the tremor signals, including the
acceleration measurements and sEMG measurements, which
were collected from the four upper limb postures and two

FIGURE 7 | Factors effect size. The (A–F) histogram displays the proportion of the factoric importance of sex, age, and five tremor features calculated by the
models. For each model, the relative importance is quantified by assigning a weight between 0 and 1 for each variable and then the relative importance of the five
tremor features is calculated by the sum of the factoric importance of the corresponding variables affiliated to that tremor feature. The models XGBoost and RF allow
the importance of variables to be derived during model training; the coefficients of the Ridge model are used as the basis for factor importance; the LR, BP, and SVM
models are obtained by the Mean decrease accuracy method.
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demographics (sex and age) to distinguish PD from ET using
seven machine learning algorithms. The ensemble learning
models RF and XGBoost provided a rapid classification of
outpatients. Various complex models could be established, and
accurate decisions could be made using machine learning
algorithms when given certain data. In this study, we used a
dataset with a size of 398 and 42 dimensions. It was proved that
the ensemble learning models performed better than the other
models and fulfilled the clinical needs.

It may be considered that the current sample was not sufficient
to support the result owing to the limited sample size. In
the case of small data size and high data dimensions, the
ensemble learning classifier XGBoost and RF could separate
samples more effectively, whereas the other models of SVM,
LR, BP, Ridge, and CNN exhibited a lower accuracy. Owing
to the high data dimensions, SVM had a low predictive
ability, resulting in most samples being predicted as PD, and
Ridge had the lowest accuracy rate. The more complex neural
network model with a powerful non-linear learning ability
also did not perform well. In this study, among the seven
established models, the ensemble learning models RF and
XGBoost performed ideally, while the other five models lacked
a significant predictive ability.

Although some assistive engineering approaches using tremor
information of the upper limbers collected by wearable sensors
have been proposed to differentiate between PD and ET,
the results are less convincing limited by a few subjects.
In this paper, we evaluated seven classification models using
machine learning algorithms to differentiate PD and ET
by using accessible demographics and tremor information
of the upper limbs collected from various postures. The
results with AUC above 0.90 and accuracy above 0.84
for RF and XGBoost models are convincing because more
subjects (398 cases) were collected and the data was adequate
compared with previous studies. Furthermore, we firstly analyzed
and ranked the relative importance of sex, age, the four
postures, and the five tremor features for differentiating
PD and ET, which could help the diagnosis of PD in
the early stage.

Recent progress in artificial intelligence and wearable
technology has made wearable tremor suppression devices for
PD a potentially viable alternative for tremor management.
The relative importance of sex, age, the four postures, and the
five tremor features, provides a reference for the intelligent
diagnosis of PD and shows promise for use in wearable tremor
suppression devices. To further enhance the performance of the
established models, more ET subjects will be recruited in the
subsequent study.

CONCLUSION

In this study, seven models were evaluated and compared for
separation of PD from ET by using the tremor information of
the upper limbs in various postures. It was determined that the
ensemble learning models, including RF and XGBoost, had the
greatest overall predictive ability and could effectively distinguish
PD and ET. We also found that the dominant frequency of
flexor sEMG, the average amplitude of flexor sEMG, the resting
posture, and the winging posture had a greater impact on
the predictability of the models, whereas the other predictors,
specifically sex and age, were less important. These results
provide a reference for the intelligent diagnosis of PD and are
promising for use in wearable tremor suppression devices. This
study investigating the differentiation between PD and ET using
machine learning algorithms was preliminary. With the further
acquisition of data of ET subjects in future work, the performance
of models will be further improved and more valuable results
will be obtained.
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The use of multimedia learning is increasing in modern education. On

the other hand, it is crucial to design multimedia contents that impose

an optimal amount of cognitive load, which leads to efficient learning.

Objective assessment of instantaneous cognitive load plays a critical role

in educational design quality evaluation. Electroencephalography (EEG) has

been considered a potential candidate for cognitive load assessment among

neurophysiological methods. In this study, we experiment to collect EEG

signals during a multimedia learning task and then build a model for

instantaneous cognitive load measurement. In the experiment, we designed

four educational multimedia in two categories to impose different levels of

cognitive load by intentionally applying/violating Mayer’s multimedia design

principles. Thirty university students with homogenous English language

proficiency participated in our experiment. We divided them randomly into

two groups, and each watched a version of the multimedia followed by a recall

test task and filling out a NASA-TLX questionnaire. EEG signals are collected

during these tasks. To construct the load assessment model, at first, power

spectral density (PSD) based features are extracted from EEG signals. Using

the minimum redundancy - maximum relevance (MRMR) feature selection

approach, the best features are selected. In this way, the selected features

consist of only about 12% of the total number of features. In the next

step, we propose a scoring model using a support vector machine (SVM)

for instantaneous cognitive load assessment in 3s segments of multimedia.

Our experiments indicate that the selected feature set can classify the

instantaneous cognitive load with an accuracy of 84.5± 2.1%. The findings

of this study indicate that EEG signals can be used as an appropriate tool for

measuring the cognitive load introduced by educational videos. This can be

help instructional designers to develop more effective content.

KEYWORDS

instantaneous cognitive load, EEG, classification, educational video, multimedia
design
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Introduction

Cognitive load is defined as the load being imposed on
working memory while performing a cognitive task (Paas et al.,
2004). There are three types of cognitive load: intrinsic, which
is dependent on the nature of the task and cannot be modified
by the designer; extraneous, which is related to the design of
the task and can be altered by formatting the materials being
presented; germane load which is associated with the amount
of mental effort for building the schema in working memory
(Sweller et al., 2019). Cognitive load assessment has a critical role
in different areas such as education (Sweller, 2018) and human-
computer interaction (HCI) designing (Zagermann et al., 2016).
Multimedia plays an essential role in modern education.
Keeping the amount of cognitive load at an optimum level is
crucial in instructional design (Mutlu-Bayraktar et al., 2019).
Mayer (2002), in his book Multimedia Learning, introduced
twelve principles that help multimedia designers to minimize
the amount of cognitive load on learners. Among these
principles, five of them are devoted to extraneous processing,
a type of cognitive processing in instructional multimedia
learning, originating from the extra material in multimedia
without any relevance to the instructional goal. The five
principles for reducing extraneous processing are (1) Coherence
Principle: extraneous words, images, and sounds should be
excluded (e.g., attractive but non-related images); (2) Signaling
Principle: essential materials should be highlighted with a
cue (e.g., color highlight); (3) Redundancy Principle: in the
presence of graphics and narration, the on-screen text should be
excluded; (4) Spatial Contiguity Principle: corresponding words
and images should be presented near to each other; (5) Temporal
Contiguity Principle: corresponding words and images should
be presented simultaneously, not successively. The effect of
the introduced rules on cognitive load has been investigated
based on behavioral, self-reported, and performance test data
(Mayer and Mayer, 2005).

Cognitive load can be measured in five levels, within or
between distinct tasks: overall, accumulated, average, peak, and
instantaneous load (Antonenko et al., 2010). Instantaneous load
reflects the amount of imposed cognitive load in each moment
of a cognitive task (Antonenko et al., 2010). In general, there
are two methods for cognitive load assessment: subjective [e.g.,
NASA-TLX questionnaire (Hart and Staveland, 1988)], and
objective [e.g., electroencephalography (EEG) (Antonenko et al.,
2010), eye-tracking (Pomplun and Sunkara, 2003; Barrios et al.,
2004; Chen et al., 2011; Kruger and Doherty, 2016; Dalmaso
et al., 2017; Latifzadeh et al., 2020), and fMRI (Tomasi et al.,
2006)]. Subjective methods which are based on self-reporting
have limitations for instantaneous or online assessment of
cognitive load, and they are mainly being used for overall
and average assessment of mental workload (Anmarkrud et al.,
2019). In contrast, physiological measurements as objective
methods have the advantage of measuring the cognitive load

continuously and online during a cognitive task (Antonenko
et al., 2010), such as video-based learning.

Electroencephalography as a neurophysiological measure
with a high temporal resolution (approximately 1 ms) is a
well-suited candidate for the assessment of cognitive load in
educational environments because this method is objective,
non-invasive, and less restricted in comparison to other
neuroimaging methods (Antonenko et al., 2010). Nowadays,
many portable EEG devices can be easily used in classrooms
for cognitive load assessment (Xu and Zhong, 2018). Moreover,
it has a high temporal resolution which is a good property
for the assessment of instantaneous cognitive load. This ability
may provide the opportunity to monitor the dynamics of
cognitive load on working memory during a cognitive task
such as multimedia learning. During the past decades, cognitive
load has mainly been measured using subjective methods and
behavioral data such as reaction times and error rates to perform
specific tasks. According to the literature, EEG band power
spectra (i.e., delta, theta, alpha, and beta) at different brain
regions have been introduced to assess cognitive workload.
Specially, theta and alpha have been linked to cognitive
workload studies (Mazher et al., 2017; Puma et al., 2018; Castro-
Meneses et al., 2020).

Several recent studies have empirically examined the
relationship between cognitive demands and EEG activity at
different frequency bands and brain regions. These studies have
used EEG, alone or along with other subjective and objective
measures, to assess participants’ cognitive workload in different
environments, including performing the arithmetic task (Borys
et al., 2017; Plechawska-Wójcik et al., 2019), engaging in a
virtual reality space (Dan and Reiner, 2017; Tremmel et al., 2019;
Baceviciute et al., 2020), and being in a multitasking situation
(Puma et al., 2018). Moreover, most studies utilized statistical
analysis to assess cognitive states/conditions based on subjective,
behavioral, and physiological measure (Baceviciute et al., 2020;
Castro-Meneses et al., 2020; Scharinger et al., 2020). However,
recent studies have been focused on the usage of machine
learning methods to improve the performance of cognitive load
measurements (Plechawska-Wójcik et al., 2019; Appriou et al.,
2020; Rojas et al., 2020).

Borys et al. (2017) applied several classification methods
on different combinations of EEG and eye-tracking features
to classify cognitive workload states on arithmetic task. They
calculated power spectra of three frequency bands (theta,
alpha, and beta) acquired from five scalp locations (Cz, F3,
F4, P3, and P4) as EEG features. Their results showed that
none of the EEG features were used in the best classification
model. One limitation of this research was concentration
on the specific brain regions with low effect in reducing
workload. In a study carried out by Dan and Reiner (2017),
they focused on EEG-based measures for cognitive load
assessment related to event processing in 2D displays against
3D virtual reality environments. They calculated the ratio of
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the average power of the middle frontal theta (Fz) and the
central parietal alpha (Pz) as cognitive load indicator. They
found that the cognitive load of processing 3D information is
lower than 2D. In a subsequent study, Tremmel et al. (2019)
evaluated the feasibility of passive monitoring of cognitive
workloadviaEEG while performing a classical n-back task in
an interactive VR environment. They extracted EEG spectral
powers of four frequency bands (theta, alpha, beta, and
gamma) from eight electrode positions (Fz, F3, F4, C3, C4,
P3, P4, and Pz). The Results revealed the positive correlation
of alpha activity in the parietal area with workload levels.
In another experimental paradigm, Puma et al. (2018) used
theta and alpha band power to assess cognitive workload
in a multitasking environment. In this task, the participants
completed a task commonly used in airline pilot recruitment,
with an increasing number of concurrent sub-tasks from one
phase to the next phase of the task. They conducted their
EEG analysis only on five electrodes centered in the frontal
area (Fz, F3, F4, F7, and F8) for the theta rhythm and
five electrodes centered in the parietal area (Pz, P3, P4, P7,
and P8) for the alpha rhythm. Besides these EEG features,
the researchers collected performance, subjective (NASA-TLX)
and pupillometry measurements as overall cognitive workload
indicators. According to the results, the power of both theta
and alpha bands increased with task difficulty, indicating
the direct effect of these bands in cognitive load. Although
different indicators have been proposed in the literature, it
is essential to explore the most optimal indices for assessing
cognitive load in a specific research area such as multimedia
learning environments.

In addition, there are a few studies on using EEG for
cognitive load assessment in multimedia and video-based
learning. Wang et al. (2013) used EEG frequency bands to
classify two videos labeled confusing and non-confusing based
on the participants’ self-reported feelings. They obtained an
accuracy of 0.67 using a Gaussian Naïve Bayes classifier. In
another study, Mazher et al. (2017) displayed identical video-
based multimedia to their participants in three different sessions
followed by a performance test. They assumed that by repeating
the same content, cognitive load decreases. They also divided
EEG signals into 10 s sections as the samples of their study.
Using partial directed coherence (PDC) and support vector
machine (SVM) classifiers, they inferred that the alpha band
in the frontal and parietal lobes of the brain cortex could be
a good indicator of cognitive load in multimedia learning. Lin
and Kao (2018) showed that using Power Spectral Density (PSD)
of all channels in EEG signal can discriminate different levels
of mental effort in online educational videos. They examine
three other models, including ANN, SVM, and decision tree. In
a recent study, Castro-Meneses et al. (2020) assigned different
levels of cognitive load based on the linguistic complexity of
the presented content. They showed that theta oscillations are
potentially an objective indicator of cognitive load.

In comparison to the previous related works, we follow
an approach to reach the most informative brain regions
and frequency bands associated with cognitive load. We
assume that multimedia learning is a complex task in which
different parts of the brain and may be different frequency
bands are involved. Thus, it is hard to claim that only
one or two regions of the brain in specific bands are
important for measuring cognitive workload. Furthermore,
we try to simulate the different conditions of instantaneous
cognitive load in instructional videos by applying/violating
the principles of multimedia which has rarely been attempted
in the previous related works. We also investigate different
time windows to find the optimal time frame for cognitive
load assessment.

In this study, we aim to quantitatively measure the
instantaneous cognitive load in multimedia learning using
EEG signals. To this end, we design an experiment by
applying/violating multimedia design principles to have two
levels of cognitive load. Then, we build a classification model
on the most informative spectral features. Using this model,
we reach the goal of this manuscript, instantaneous cognitive
load assessment. The rest of the manuscript is organized as
follows. In the next section, we describe the materials of our
study, including the educational videos, and the procedure of
the experiment, and the methods that have been applied in our
analyses. In section “Results,” we report the results of the current
study, and finally, in section “Discussion,” a discussion on the
results will be provided.

Materials and methods

Participants

Thirty-six university students between the ages of 18 and
25 participated in our experiment. Except for two, all other
participants were male. The data acquired from six of them
were discarded due to failure in recordings. The final set of
our subjects includes thirty participants. We only excluded
participants whose data were entirely corrupted. Thus, we tried
to preserve as much data as possible for analysis. They are
divided into two groups randomly to perform the task in
two separate sessions. According to Figure 1A, 16 of them
are in group 1 (LV1HV2) and 14 in group 2 (LV2HV1).
Unfortunately, some participants participated only in one
session and refused to continue the experiment due to their
preferences. Thus, nine participants from group 1 and five
participants from group 2 only watch one multimedia (see
Supplementary material for detailed information about data
management approach). The native language of all participants
is Farsi (Persian), all of them are in the range of 23–32
in terms of listening skills of English which is evaluated
by simulating the listening part of the International English
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FIGURE 1

Experiment design. (A) Based on two audio narrations, four versions of videos (two for each narration) were created: LV1 (HV1) and LV2 (HV2) by
applying (violating) the principles of multimedia design. Low load and high load video identified by green and red, respectively. Participants are
randomly divided into two groups: LV1HV2 and LV2HV1. In our experiment, the LV1HV2 (LV2HV1) watched LV1 (LV2) and HV2 (HV1) videos in two
separate sessions. As illustrated in the figure, in each group, some subjects participated only in one session. (B) The procedure of the
experiment (left to right): first, looking at a black-filled circle for recording baseline data; second, watching the multimedia (no interaction);
third, taking part in the recall test (via mouse interface); and finally completing the NASA-TLX questionnaire (paper-based version). In the first
and second steps, electroencephalography (EEG) signals are collected.

Language Testing System (IELTS) exam. All participants
were right-handed and had normal or corrected-to-normal
eye vision. All participants signed informed written consent
before attending the study. The experimental protocols were
approved by the ethics committee of the Iran University of
Medical Sciences.

Educational multimedia

We created four multimedia. In two of them, we apply the
multimedia design principles to impose a minimum amount of

extraneous cognitive load on our participants. In contrast, the
other two multimedia are created by violating these principles
to impose a higher amount of cognitive load on the subjects
in our study. We selected two chapters of Open Forum 3
(Duncan and Parker, 2007) which are listening comprehension
tasks; lesson 6 and lesson 11 (for online access to the
resources, see https://elt.oup.com/student/openforum/3?cc=ir&
selLanguage=en hosted on Oxford University Press). Using the
audio of each lesson, we created two versions of motion-graphic-
animation (low-load and high-load) as two multimedia for that
lesson (see Figure 2). The videos corresponding to lessons 6
and 11 have the length of 290 and 342 s, respectively. Two
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FIGURE 2

Educational multimedia. Examples of application (i.e., left panels: A,C,E)/violation (i.e., right panels: B,D,F) of multimedia design principles.

linguists in English language teaching devised the scenario for
making the instructional videos and arranging the materials
(texts and images). Then, all four videos have been created by
a motion graphic specialist in Adobe After Effects CC 2017
v14.2.1.34 environment. We name the low-load versions of
lesson 6 and lesson 11 as LV1 and LV2, respectively. Also, the
high-load versions of lesson 6 and lesson 11 are named HV1 and
HV2, respectively.

Recall test and subjective
questionnaire

We designed a multiple-options-question (MCQ) as a
computer-based recall test with twelve identical questions for

LV1 and HV1 and twelve identical questions for LV2 and
HV2. The recall test has been designed by two linguists in
the field of English language teaching. In addition to the
recall test, we use the classic paper-based version of NASA-
TLX (Hart and Staveland, 1988) as a subjective measure to
compare the overall cognitive load between two conditions (i.e.,
low-load and high-load) in our study. NASA-TLX is a self-
report index of cognitive load in the range of 0–100. Although
the NASA-TLX is often used to measure general workload, a
study (Mutlu-Bayraktar et al., 2019) that systematically reviews
the cognitive load research literature in multimedia learning
environments introduces NASA-TLX as a subjective indicator
and performance outcomes as an indirect objective indicator for
assessing cognitive load (the detailed information about NASA-
TLX subscale values is provided as Supplementary material).
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Baseline

Before performing the main experiment, all subjects are
requested to look at a black-filled circle (r = 5 mm) at the center
of a gray screen for approximately 20 s. They are asked to keep
relax and not think about anything special. We record EEG
signals during this task and use the middle 10-s of the signals
as our baseline in the analysis.

Experiment design

After setting up the EEG cap on the participant’s head
by a technician, the recording was started. The participant
was alone in the semi-dark room, sitting 57 cm away from
a 17-inch monitor with a refresh rate of 60 Hz. After a few
seconds, when a timer in the center of the screen ends, the
multimedia was played automatically. We asked participants to
pay attention to the concepts presented in the video. There was
no interaction between the person and the computer during
the playing video. A few seconds after the multimedia is over;
the recall test was started automatically. The participants could
answer the questions in 420 sviaa mouse interface. Participants
had this option to leave any question unanswered. Moreover,
there was the feasibility of moving between questions at any
time, but only one question with all its options was displayed
on the screen at a time. Also, the subject could terminate
the recall test before the end of the timer. But by stopping
the timer, the test phase was being finished automatically.
The software platform for presenting the multimedia and
recall test has been written in Java (for more details, see
https://github.com/K-Hun/multimedia-learning-hci hosted on
GitHub). After these steps, the EEG was stopped, and then
the paper-based NASA-TLX was given to them. To make
sure participants are familiar with the procedure and software
environment of the experiment, we designed a trial phase
before the experiment. In the trial phase, EEG signals are not
recorded and also the multimedia is a 1-min video that is
quite different in content and topic from the main multimedia
of the experiment.

We assigned all thirty participants into two groups
randomly, called LV1HV2 and LV2HV1 groups. Each subject
participated in two distinct sessions of the experiment.
The conditions in each group were counterbalanced across
participants. Subjects in the LV1HV2 (LV2HV1) group
performed the experiment in a session with LV1 (LV2)
multimedia and in another session with HV2 (HV1) (some
starting with the low load condition, and others with the
high load one). Using this arrangement, each participant
will not observe two multimedia with the same topic and
audio and thus the concept of each multimedia is new
to her/him. We summarized the experiment procedure in
Figure 1.

Electroencephalography recording and
preprocessing

To collect EEG data, we use a portable 32-channels eWave
amplifier (Karimi-Rouzbahani et al., 2017a,b; Shooshtari et al.,
2019) paired with eProbe v6.7.3.0 software. In this study, we
recorded EEG data from 29 passive wet electrodes (FP1, FP2,
FPz, F3, F4, F7, F8, Fz, FC1, FC2, FC5, FC6, C3, C4, Cz, T7,
T8, CP1, CP2, CP5, CP6, P3, P4, P7, P8, Pz, O1, O2, and
Oz) according to the 10–20 system of electrode placement,
plus two bilateral mastoids (M1: left and M2: right) as the
online reference for EEG signal potentials (see Figure 3A). The
system has 24-bits data resolution with capturing 1K samples
per second. Electrode impedances were kept below 5 K� in all
recordings and electrode sites.

Analysis of EEG data and preprocessing are performed using
the EEGLAB Toolbox v2020.0 and scripting in the MATLAB
(R2019b) environment as shown in Figure 3B. As the first
step, the basic FIR band-pass filter in the range of 1–30 Hz
is applied to remove DC and high-frequency noise. Mastoid
referencing makes EEG signals prone to external experimental
artifacts. These artifacts come from the unstable connection
of the EEG sensor to the mastoids, generating large spikes
that are several orders of magnitude more prominent than
the neural response produced by EEG. Therefore, in the next
step, to reduce the effect of these artifacts, we apply the
re-referencing part of the PREP pipeline algorithm (Bigdely-
Shamlo et al., 2015) to estimate the true reference. Next, we
utilize the Artifact Subspace Reconstruction (ASR) algorithm
(Mullen et al., 2013) to correct corrupted parts of EEG data. ASR
is being used to detect and remove high-amplitude components
such as eye blinks, muscle movements, and sensor motion
(Mullen et al., 2015). We perform ASR using Clean_Rawdata
plug-in with default settings. A visual examination of the
signals indicates that there are still some artifacts related to eye
movements in the data. Thus, in the last step of preprocessing,
independent component analysis (ICA) is applied using fastICA
algorithm and the remaining artifacts (i.e., eye movements) are
removed from the data using IC Label with threshold of 90%
(Pion-Tonachini et al., 2019).

Segment length analysis

One challenge in the assessment of instantaneous cognitive
load is selecting the most appropriate segment length. This issue
has not been clearly answered in the previous related studies,
so different time interval has been adopted as segment length.
Here, we are faced with a content-oriented task (i.e., multimedia
learning). To this end, we are seeking to achieve the smallest
meaningful and informative interval in the multimedia learning
task by analyzing the optimal time window selection. Hence, we
consider the average time spent to convey a meaningful phrase
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to learners as a metric to determine the segment length. For
this purpose, we use the silent moments in the audio narrations
of the multimedia as an appropriate situation for learners to
understand the contents presented before these moments. We
use WavePad Sound Editor v12.4 to find silence points with
minimum duration of 300 ms and below 25 dB level. The
segments with audio narration that conveys some words without
silent interruptions in two multimedia are shown in Figure 4.
The figure illustrates the number of time frames with audio
narration for each segment length. As shown in this figure, it
is desirable to choose a segment length in the range of 2.5–4 s.
Thus, in the following, we assess the instantaneous cognitive
load for segments with a length of 3 s.

Feature extraction

We adopt a time-frequency-based analysis approach for
feature extraction. For each participant’s EEG data, the PSD in
each channel is estimated by calculating the squared magnitude
of the fast-Fourier transform (FFT) (Semmlow, 2011) from 50%
overlapping windows, which is tapered by the Hanning window
to reduce the spectral leakage. A window size contains 1,000
sample points (1 s) and an overlap of 500 sample points (500 ms)
(see Figure 3C). Next, relative band power (rBP) of 3 s segments
are extracted in each frequency band: delta (δ : 2–3 Hz), theta
(θ : 4–7 Hz), alpha (α : 8–12 Hz) and beta (β : 13–30 Hz). In
order to extract these frequency bands, for each segment, we
performed the decibel (dB) conversion (Cohen, 2014). The dB
conversion is a baseline normalization method that quantifies
the ratio of the median PSD in each band and the median PSD of
the baseline on a logarithmic scale. In this way, we overcame the
positively skewed distribution of EEG power data. By applying
this method, power values are often normally distributed and
thus parametric statistical analysis is an appropriate approach
for feature extraction (Cohen, 2014).

To calculate the rBP, we use Eq. (1) where rBPi
ch,b is the

median power of i-th segment seg in the channel ch (ch ∈
{1, 2, ..., 29}) and the band b (b ∈ {δ, θ, α, β}) relative to the
median power of the baseline base in same channel and band.
Moreover, segi indicates EEG data of the i-th segment.

rBPi
ch,b = 10log10

(
median PSDsegi

ch,b

median PSDbase
ch,b

)
(1)

By concatenating the extracted features for the i-th segment,
a feature vector (FV i) is constructed for that segment. This
feature vector consists of 116 elements (4 rBPs in 29 channels),
as follows:

FV i = [rBPi
1,δ, rBPi

1,θ, rBPi
1,α, rBPi

1,β, ..., rBPi
29,δ, rBPi

29,θ,

rBPi
29,α, rBPi

29,β]1 × 116 (2)

Extracted features of each participant in all segments are
illustrated in Figure 3D.

Feature selection

In the next step, we select the best discriminative feature
set with the highest prediction accuracy. Also, it is essential
to determine the regions of the brain and frequency bands
that are highly informative for predicting cognitive load. To
address this goal, we use the minimum redundancy-maximum
relevance (MRMR) algorithm (Peng et al., 2005), which is
a mutual information-based feature selection method. The
algorithm follows an incremental search method iteratively. At
each iteration, the candidate feature will be examined whether it
has: (1) maximum relevance with respect to the class label, and
(2) minimum redundancy with respect to the features selected
at previous iterations. To evaluate the importance of features,
a score is calculated for each feature according to these two
criteria. Next, the MRMR algorithm will rank the features based
on the scores in descending order. This process returns the
ranking of 116 features which indicates the importance of each
frequency band and channel. However, the limitation of this
process is that the best feature set is not determined, and the
optimal feature set must be selected by evaluating the ranked list
with respect to the classification performance. To this end, we
evaluated the ranked features by applying Linear Discriminant
Analysis (LDA) (McLachlan, 2004) to samples in the following
manner, to achieve the best set that improves the performance
of classification. At first, the samples of all segments are split
into 10 folds such that one fold is considered as the test set and
the remaining folds are used to train the LDA model. Then, by
increasing the number of features for every sample from 1 to
116 according to the ranking obtained by the MRMR algorithm,
the LDA model is trained using selected features and prediction
accuracy is computed on the test set. This process is repeated
10 times by considering each fold as a test set. Finally, by
averaging over prediction accuracy of different folds, the final
accuracy is computed for a subset of features (from 1 to 116)
(see Figure 3E).

Classification of cognitive load

In this phase, in order to assess the instantaneous cognitive
load, we follow an approach that classifies segments into two
conditions (i.e., low-load and high-load). Our goal is to assign a
score of cognitive load to each 3 s segment based on the distances
between the samples and decision boundary (see Figure 3F).

To perform classification and assign scores to segments, we
use the SVM algorithm. The algorithm has been widely used for
non-linear binary classification problems in machine learning.
It has achieved desirable results in cognitive and mental task
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applications (Amin et al., 2017). SVM transforms input data
into higher dimensional space by applying the kernel trick,
after which it finds the hyperplane with the best generalization
capabilities by maximizing the margins (Wang et al., 2009).
SVM with the kernel is extremely sensitive to hyperparameters,
so it must be tuned to achieve a good level of performance.
Hence, we apply the radial basis function (RBF) kernel, which
only needs to optimize two hyperparameters (i.e., C as the
penalty parameter and γ as the kernel width parameter) (Hsu
et al., 2003). We examine various pairs of (C, γ) values using
the Bayesian optimization algorithm, and the one set with the
lowest cross-validation loss is selected. In the next step, in
order to measure the performance of the optimized classifier
and extract classification scores, we randomly select 70% of
samples as a training set, and the rest of the samples are
considered as a test set. Then, the classification scores are
computed as mental workload scores. Indeed, these scores
indicate the signed distance between a sample and the decision
boundary. The score (si) for i-th segment is computed as
follows:

si =

n∑
j = 1

pjyjG
(
svj, segi

)
+ q (3)

where G
(
svj, segi

)
is a non-linear transformation with radial

basis function (RBF) which is defined in Eq. (4).

G
(
svj, segi

)
= exp

(
−
∣∣∣∣svj−segi

∣∣∣∣2) (4)

where n is the number of support vectors, svj is j-th support
vector, yj ∈{−1,1} (i.e., low-load: −1 and high-load: +1) is the
label of j-th support vector, pj is the estimated SVM parameter
for j-th support vector and q is the bias term. For more details on
the estimation of (p1, ..., pj, q) see Cristianini and Shawe-Taylor
(2000).

Three values of the score (s) would be possible based on
the position of each sample: (1) zero value (s = 0) when
the sample is located on the decision boundary (hyperplane);
(2) positive value (s > 0) when the sample has been correctly
classified; (3) negative value (s < 0) otherwise. Once the scores
are determined, we will normalize them to the range of 0–1 using
the min-max normalization method as follows:

SCi =
si −min (S)

max (S)−min (S)
(5)

where si and S are the scores of the i-th segment and the set of all
segments’ scores obtained after SVM classification, respectively.

Results

In this section, first, we validate the experimental
conditions. Second, we examine the appropriate time
interval for assessing the cognitive load imposed by the

educational videos. Third, we evaluate the selected features
and identify the most important frequency bands and brain
regions for distinguishing two mental workload conditions.
Finally, we present the results of the scoring model for
instantaneous cognitive load assessment and investigation of its
generalizability.

Validation of experimental conditions

To validate two experimental conditions (i.e., low-
load and high-load), we performed statistical analysis on
NASA-TLX scores and recall test. The assumption is that
applying/violating multimedia design principles imposes
different levels of cognitive load on learners. As a result, a
two-sided independent samples t-test was used to investigate
statistical differences for the two experimental conditions.
The average and standard deviation of NASA-TLX scores and
recall test scores in each group are presented in Figure 5. This
analysis on NASA-TLX scores indicates a significant difference
between cognitive load imposed by the different instructional
design in multimedia, t (18) = − 4.87, p < 0.0002 and
t (24) = − 6.07, p < 0.0001 for multimedia 1 (i.e.,
LV1 and HV1) and multimedia 2 (i.e., LV2 and HV2),
respectively. Also, the same analysis on recall test shows that
t (18) = 6.41, p < 0.0001 and t (24) = 6.22, p < 0.0001
for multimedia 1 and multimedia 2, respectively. Thus,
two groups in both multimedia have significantly different
performances. These results validate the assumption
that the different mental demands are elicited due to the
experimental conditions.

Evaluation of selected features and
activated cerebral regions

The goal of feature selection is to extract the optimal feature
set by reducing redundancy while keeping the information of
gathered data. After performing the method described in section
“Feature selection,” we select the top 14 features of the MRMR
algorithm as the best subset. This feature set can achieve the
highest classification accuracy of 78.34± 1.3% using the LDA
method for two load conditions. The best feature set is ordered
in Eq. (6), where each element represents the selected channel
with the band in the subscription.

Best Features = {O1α, C3α, P3θ, P7θ, CP1δ, P7β, O2δ, FC5α,

CP1β, FPzα, FC6α, C4θ, F7α, F7δ} (6)

For evaluating the selected features, we investigated the
overall brain topographic difference between two experimental
conditions in each frequency band. For this purpose, first, we
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FIGURE 3

Electroencephalography (EEG) analysis workflow. (A) EEG acquisition: data collected from 29 channels for each participant during displaying
the multimedia. (B) Pre-processing: includes band-pass filter, re-referencing, and artifacts removal processes. (C) Data segmentation: a sliding
window (size = 1,000 ms; 50% overlappings) moves on the signal of each channel. Each of the six adjacent windows forms a 3s segment.
(D) Feature extraction: by performing Hann window and by using the FFT method, PSD of all frequency sub-bands is calculated for each
window. Next, the ratio of the median power of each 3s segment to the median power of the baseline is considered as the relative band power
(rBP) of that segment. For each rBP, the superscript shows the segment number and the subscripts show the channel number and the band,
respectively. Finally, the extracted features of each participant for each of the multimedia will be formed in 96 × 116 and 114 × 116 dimensions
for multimedia 1 (i.e., LV1 and HV1) and multimedia 2 (i.e., LV2 and HV2), respectively. (E) Feature selection: the best set of features will be
selected by evaluating the importance of the features which is ranked by the MRMR algorithm. (F) Classification: an SVM (kernel: RBF) is built to
assign a score to each segment (assessment of instantaneous cognitive load).

calculated the average rBP [see Eq. (1)] of all 3 s segments of
each condition (i.e., low-load and high-load) in each band and
then subtracted the average of low-load average from the average
of high-load. Figure 6 illustrates the difference between the rBP
averages of two conditions in each band. The powers in each
band are scaled to the range of −1 to +1. According to this
figure, active cortical areas are different in each band, and we can
determine active cerebral regions for each band as below where
the superscription (i.e., L: low-load and H: high-load) indicates
the corresponding condition.

δACTIVE = {F7H, CP1H, FC5H, FC2L, P3L, FPzL, CP2L,

OzL, CP6L, FzL, O2L
} (7)

θACTIVE = {P7H, F3H, FC5H, T7H, T8L, OzL, FzL,

FP2L, O1L
, C4L, P3L

} (8)

αACTIVE = {C3H, FC5H, F7H, P4H, FC1H, P3L, O2L,

OzL, FC6L, FPzL, O1L
} (9)

βACTIVE = {P7H, FC1L, P4L, T8L, FPzL, CP1L, P8L
} (10)

The results show that the selected features are consistent
with the active cerebral regions in different locations and bands.
It is inferred from the comparison of the best feature set [as
mentioned in Eq. (6)] and the active cerebral regions [as stated
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FIGURE 4

Segment length analysis in (A) multimedia 1 and (B) multimedia 2. Histograms show the frequency of number of meaningful timeframes
regarding segment length for multimedia 1 (A) and multimedia 2 (B).

FIGURE 5

Comparison of (A) NASA-TLX scores and (B) recall test scores in two experimental conditions. In each graph the scores [NASA-TLX scores in
panel (A) and Recall scores in panel (B)] are compared between two conditions (LV and HV) for each multimedia (Multimedia 1 and Multimedia
2). The scores have been scaled in the range [0, 100].

FIGURE 6

Differences between average relative band powers of electroencephalography (EEG) features (bands and locations) in two conditions.
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TABLE 1 Classification accuracy and standard deviation (std) of
electroencephalography (EEG) band powers using linear discriminant
analysis (LDA).

Frequency bands

Delta (δ) Theta (θ) Alpha (α) Beta (β)

Accuracy 72.97 68.33 73.85 68.22

Std (±) 2.29 2.23 2.73 2.23

Results are presented in percentage.

above in Eqs (7–10)]. So that, all the selected features were
selected from the active cortical areas. This indicates that the
feature selection method effectively selects a combination of
informative and relevant features to cognitive load with respect
to the brain activity map.

In order to identify which frequency band can distinguish
two cognitive load conditions more effectively, we perform
the classification task in each frequency band separately
by selecting the feature subset associated with that band.
Again, we apply 10-fold cross-validation using the LDA
method on data. As presented in Table 1, the alpha is
the best frequency band for predicting mental workload.
The predictive power of the alpha feature set is 73.85±
2.73%. Figure 7 illustrates brain topographies of relative
alpha power distribution in two conditions compared to the
baseline. According to this figure, the diagonal activity of
alpha power in each condition attracts attention. In low-
load condition, most alpha activation is concentrated in the
left lateral posterior to the right lateral anterior cortices.
Conversely, in high-load condition, this pattern is localized
in the right lateral posterior to the left lateral anterior
cortical areas. By comparing Eqs (6) and (9), it is found that
alpha power suppression in prefrontal midline (FPz), right
lateral frontal (FC6), and left lateral occipital (O1) cortices

have a more significant impact on increasing cognitive load.
Also, activation of alpha power in the left lateral frontal
(FC5, F7) and left central (C3) cortical areas synchronize by
increasing cognitive load.

Instantaneous cognitive load scoring
model results

After evaluating the best feature set, we evaluate the
performance of the classification method presented in section
“Classification of cognitive load” for assigning scores to
segments. Thus, we compute the average and standard deviation
of classifier accuracy to assess the SVM model performance. The
performance of the model is achieved 84.5± 2.1%. As described
previously, assigned scores are converted into normalizing
scores (SCs) using Eq. (5).

Then, the cognitive load imposed at each moment of each
multimedia is calculated by averaging over the normalized
scores obtained by the SVM in the corresponding segments at
that moment. Figure 8 displays predicted workload scores in
two multimedia over time. As depicted in this figure, the average
of predicted scores corresponding to two load conditions is
significantly different across multimedia timeline. These scores
for LV1, HV1, LV2, and HV2 are 29, 43, 46, and 60, respectively.

Discussion

In this study, based on the most informative feature set,
we construct an SVM model for assessing instantaneous
cognitive load. To impose low or high levels of cognitive
load on the participants, we designed an experiment with
two versions of multimedia by applying or violating the
principles of multimedia design. The conditions of our

FIGURE 7

Brain topographies of alpha power distribution in two conditions compared to baseline. From left to right, the topographies represent the
average relative alpha power for the eye-opened baseline, low-load, and high-load conditions.
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FIGURE 8

Predicted cognitive load scores in (A) multimedia 1 and (B) multimedia 2 over time.

experiment are evaluated by a recall test and a NASA-
TLX as a subjective measurement of cognitive load. As a
result, applying the principles leads to lower NASA-TLX
scores and improvement of performance tests, indicating
that this experimental condition will induce a lower
cognitive load in comparison to the condition of violating
design principles.

In order to extract the informative and relevant EEG
features as an objective measurement of cognitive load, first,
we calculated the PSD of the common frequency bands.

Then, we extracted the optimal feature set by using the
MRMR algorithm, which is a ranking method based on
mutual information. The main advantage of this feature
selection method is the effective reduction of redundant features
while preserving relevant features. In addition, compared to
other dimensionality reduction techniques such as PCA, the
readability and interpretability of the features are held, and no
changes are made to the data.

The selected feature set includes less than 12% of the
total features. These 14-top features confirmed the different
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conditions of the cognitive load imposed on the subjects
very good. The selected features show a remarkable
combination of activated frequency bands in different
brain regions associated with executive functions of brain
which are referred to as supervisory cognitive processes
(e.g., attention, cognitive inhibition, or learning) because
they involve higher level organization and execution of
complex thoughts and behavior (Alvarez and Emory, 2006;
Whelan, 2007). Especially, in multimedia learning, verbal
information (e.g., words or sentences) and visual part
(e.g., illustrations, photographs, or diagrams) are merged
(Gyselinck et al., 2008). These audio/visual signals may
arise conflicting effects and overloads on the overall brain,
and thus it is expected to have a simultaneous activation
of different areas of the cerebral cortex. Given the specified
locations/frequencies, it can be possible to find cognitive
load differences at these locations/frequencies using simple
statistical analysis.

Most of the selected features are from the frontal region
(FPzα, FC5α, FC6α, F7α, and F7δ). Except for one of them
(F7δ), the other mentioned features belong to the alpha
band. In addition, two features have been selected from the
centro-parietal (C3α) and the occipital (O1α) regions. This
result is in line with previous studies that link cognitive
processes to the frontal and parieto-occipital regions (e.g.,
Puma et al., 2018 for review), and alpha band activity
(e.g., Foxe and Snyder, 2011 for review). According to
the literature, activation of alpha indicate two opposite
behaviors related to cognitive processing: active processing
associated with memory maintenance and inhibition of
irrelevant information (Jensen and Mazaheri, 2010). In fact,
the increase in cognitive workload may be due to either
of these two reasons or both of them. In this study, we
observed that the power of alpha band in the low-load
condition (i.e., applying design principles) is higher than
the high-load condition (i.e., violating design principles),
prominently in the prefrontal and the occipital regions. The
increases of alpha spectral power seems to reflect the top-
down control of the parieto-frontal attention network. As
reported in recent studies, this mechanism inhibits irrelevant
information flow from the visual perception system and
internal cognitive processing (Pi et al., 2021). In this way,
the information is transferred from task-irrelevant regions to
task-relevant ones (Jensen and Mazaheri, 2010). Therefore,
the decrease in alpha power near Broca’s area, which plays
a significant role in language comprehension (Novick et al.,
2005), suggests the effective engagement of cognitive resources
related to the task.

After feature analysis, we propose a scoring model to
measure instantaneous cognitive load in 3s segments of
multimedia. The model can predict the mental workload
scores in multimedia across time at appropriate accuracy.
In other words, applying (violating) principles at each

moment has caused that the predicted cognitive load score
for LV1 (HV1) and LV2 (HV2) is lower (higher) than
HV1 (LV1) and HV2 (LV2) at that moment. This allows
us to monitor and manage learners’ cognitive status while
watching multimedia at each moment. In this way, we
can evaluate the quality of presented instructional materials
and design principles in multimedia across time. Also, it
can be possible to measure the effect size and impact of
applying each principle. Therefore, by detecting the segments
of multimedia that impose a great cognitive load on learners,
we can provide the optimal load and improve learning
performance by applying appropriate instructional materials
and effective design principles. Moreover, a comparison of
several multimedia that convey the same content can be
feasible. This ability facilitates the production or selection
of appropriate educational multimedia based on cognitive
neurophysiological indicators.

Several limitations in the current research should be
noticed. The first limitation of this study is the use of
gel-based EEG equipment to collect data. The sensitivity
of this device to get good contact of electrodes to scalp
sites makes data prone to noise, resulting into extra time
for preprocessing and increase in data loss rate. Moreover,
for future studies, it might be useful to evaluate some
cognitive-related abilities of subjects such as short-term memory
capacity, visual attention, auditory and visual processing, etc.
These abilities can be evaluated by common psychometric
tests. In addition, it is a good idea to consider the
cognitive and learning styles of participants in future studies.
Another limitation to be mentioned here is the restriction
of the analytical method. We assessed cognitive load by
analyzing features extracted from the electrodes individually.
Therefore, the interconnected functionality of the brain
during a cognitive task is not considered. It is essential to
consider the brain connectivity analysis approach in future
researches to investigate information flows that are important
in cognitive processes.

Conclusion

In this study, we investigated the possibility of instantaneous
assessment of cognitive load in educational multimedia
using EEG data as an objective measure. Our experimental
conditions, which impose two distinct levels of cognitive
load by applying/violating multimedia design principles to
learners, were validated by using the result of the NASA-
TLX and recall test. We extracted the relative band powers
for common frequency bands in each cerebral area. The most
informative and relevant feature set for measuring cognitive
load was selected using the MRMR method. We constructed
an SVM classification model to predict cognitive load scores
at 3s moments. The proposed model was validated for
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generalization from one multimedia to another. This capability
can significantly help educational multimedia designers to
construct multimedia by imposing an optimal amount of
cognitive load on learners. In short, our main contributions in
this study can be considered as (1) investigation of active cortical
areas and major frequency bands associated with cognitive
load in learning task, (2) instantaneous assessment of cognitive
load in educational multimedia using objective indicators, and
(3) generalizability of the workload scoring model from one
multimedia to another.
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