About this Research Topic
Many of the current quality assessment models have already attempted to include human perception properties at some level, however, the majority of these models only take simplified concepts of human perception, and use ‘black box’ machine learning techniques to model the quality of experience. The rapid development of neuroscience and computer science have provided opportunities for deeper explorations of the intrinsic neuroscience working mechanism of quality perception, and to utilize computational neuroscience theories and models for more efficient and explainable quality assessment. Specifically, on one hand the underlying biological bases of human perception especially those related to quality perception can be further explored on the basis of the recent advancement of neurobiology. While on the other hand, it is worthwhile to seek better ways to apply the relevant neuroscience working mechanisms for quality assessment and to build more accurate brain-inspired computational quality assessment models.
This Research Topic solicits novel and high-quality papers to present computational neuroscience studies for perceptual quality assessment and the potential applications in artificial systems. The topics include, but are not limited to:
1) Neuroscience studies of human perception, especially those related to quality perception;
2) Computational neuroscience models for perceptual quality modeling;
3) Neuroscience inspired perceptual quality modeling, including perceptual quality assessment, control, and optimization;
4) Neuroscience inspired visual attention modeling, including the mechanism of visual attention, visual saliency prediction and the utilization of visual attention models in relevant applications;
5) Quality assessment based on advanced learning technologies, such as deep learning, transfer learning, unsupervised learning, contrastive learning, etc.
6) Quality assessment for emerging multimedia technologies, such as virtual reality, augmented reality, light fields, high dynamic range media, etc.
Keywords: Computational Neuroscience, Perceptual Quality Assessment, Perception, Multimedia, Image Processing
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.