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Editorial on the Research Topic

Computational Neuroscience for Perceptual Quality Assessment

Quality assessment aims to measure the degree of delight or annoyance of the users when
experiencing an application or service. With the quick improvement of content acquisition,
processing, transmission, and display techniques, the end-users are expecting and demanding
continuously improved quality of experience (QoE) from the service providers. To guarantee a
good QoE to end-users, perceptual quality assessment is introduced and widely studied in recent
years (Brunnström et al., 2013; Zhai and Min, 2020; Min et al., 2022). Since the ultimate receiver
of the processed signal is usually human, it is reasonable and beneficial to take human perception
properties into consideration. Though we still have limited knowledge of the intrinsic neuroscience
working mechanism of human perception, it is worthwhile to study and take inspiration from
neuroscience and utilize these properties for computational modeling of perceptual quality.

Many of the current quality assessment models have already attempted to include human
perception properties at some level, however, the majority of these models only take simplified
concepts of human perception, and use “black box” machine learning techniques to model the
QoE. The rapid development of neuroscience and computer science have provided opportunities
for deeper explorations of the intrinsic neuroscience working mechanism of quality perception,
and to utilize computational neuroscience theories and models for more efficient and explainable
quality assessment. Specifically, on one hand the underlying biological bases of human perception
especially those related to quality perception can be further explored on the basis of the recent
advancement of neurobiology. While on the other hand, it is worthwhile to seek better ways to
apply the relevant neuroscience working mechanisms for quality assessment and to build more
accurate brain-inspired computational quality assessment models.

This Research Topic is a collection of articles concerning computational neuroscience studies
for perceptual quality assessment and the potential applications in artificial systems. The final
list of accepted articles can be categorized into four groups: 1. Neuroscience studies of human
perception, especially those related to quality perception; 2. Neuroscience inspired perceptual
quality modeling; 3. Perceptual quality assessment for emerging and advanced multimedia
technologies; 4. Applications of perceptual quality modeling. The below is an overview and
discussion of the accepted articles.
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NEUROSCIENCE STUDIES OF HUMAN

PERCEPTION, ESPECIALLY THOSE

RELATED TO QUALITY PERCEPTION

In recent years, a large amount of perceptual quality
assessment studies has taken human perception
properties into consideration, since human is usually the
ultimate judger of signal quality. To study the intrinsic
neuroscience working mechanism of human perception,
subjective neuroscience and perceptual studies are
usually necessary.

The influence of audio on perceptual QoE has been studied
and verified by some previous studies (You et al., 2010;
Akhtar and Falk, 2017; Min et al., 2017, 2020a,b). In this
Research Topic, Sun and Hines give an overview for the
audiology and cognitive science researches which study how
cognitive processes influence the quality of listening experience.
Moreover, they also propose to introduce these mechanisms
from audiology and cognitive science into the current QoE
framework, through which we can better incorporate cognitive
load in speech listening. Pieper et al. use electroencephalogram
and some other questionnaire-based subjective measures to
study if noise-canceling technologies can reduce the influence
of external distractions and free up mental resources. Results
partially verify that an assumed lower mental load is observed
in no noise and noise-canceling environment compared to
that of in the noise environment. Han et al. study the
influence of the refresh rate of a display on the motion
perception response. Moreover, they introduce an objective
visual electrophysiological assessment model to better select the
display parameters.

NEUROSCIENCE INSPIRED PERCEPTUAL

QUALITY MODELING

Full understanding of the intrinsic neuroscience
working mechanism of human perception is difficult
in the current stage, however it is worthwhile to
study and take inspiration from neuroscience and
utilize these properties for computational modeling of
perceptual quality.

Over the last two decades, many perceptual quality assessment
models have been proposed (Wang et al., 2004; Brunnström
et al., 2013; Min et al., 2018a,b, 2022; Zhai and Min, 2020),
and many of them have taken inspirations from neuroscience.
Song et al. introduce a blind quality assessment model for
authentically distorted images by considering both distortion
degree and intelligibility. Specifically, they analyze the relation
between intelligibility and image quality, and then incorporate
such intelligibility into a highly generalizable image quality
prediction model. Feng et al. introduce an end-to-end cross-
domain feature similarity guided deep neural network for
perceptual quality assessment. This model is built based
on the observation that features for the object recognition

task and features for the quality prediction task are highly
correlated in terms of characteristics of the human visual
system. Experimental results have verified the effectiveness of the
proposed model.

PERCEPTUAL QUALITY ASSESSMENT

FOR EMERGING AND ADVANCED

MULTIMEDIA TECHNOLOGIES

Recently, a growing number of emerging and advanced
multimedia technologies or systems have invaded
into our daily lives, for example light field, virtual
reality, etc. Such emerging multimedia applications
also call for new quality perception models, since
traditional quality perception models are not good at
such contents.

In this Research Topic, Meng et al. propose a light field
image quality assessment model by predicting the global angular-
spatial distortion of macro-pixels as well as the local angular-
spatial quality of the focus stack. Wang et al. present a
quality metric for depth-image-based rendering images by
jointly measuring the synthesized image’s colorfulness, texture
structure, and depth structure. Hu et al. first introduce a
method to simulate the wrap-around artifact on the artifact-
free MRI image to increase the quantity of MRI data, and
then propose an image restoration method to reduce the wrap-
around artifact.

APPLICATIONS OF PERCEPTUAL

QUALITY MODELING

The research of perceptual quality modeling applications
has also aroused increasing attention in recent years, since
perceptual quality modeling can play an important role
in the quality control and optimization of multimedia
communication systems. In this Research Topic, Lei et al.
first introduce a new quality assessment database for swimming
pool images, and then propose an objective swimming pool
image quality measure by detecting the main target and
integrating multiple quality-aware features. Yu et al. first
construct a new image database by collecting 1,000 pictures
from the official social network accounts of nine well-
known universities, as well as the corresponding number of
page views.

We hope that readers find this Research Topic useful,
timely and informative, in addressing the important topics in
Computational Neuroscience for Perceptual Quality Assessment.
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Magnetic resonance imaging (MRI) is an essential clinical imaging modality for diagnosis

and medical research, while various artifacts occur during the acquisition of MRI

image, resulting in severe degradation of the perceptual quality and diagnostic efficacy.

To tackle such challenges, this study deals with one of the most frequent artifact

sources, namely the wrap-around artifact. In particular, given that the MRI data are

limited and difficult to access, we first propose a method to simulate the wrap-around

artifact on the artifact-free MRI image to increase the quantity of MRI data. Then,

an image restoration technique, based on the deep neural networks, is proposed for

wrap-around artifact reduction and overall perceptual quality improvement. This study

presents a comprehensive analysis regarding both the occurrence of and reduction in

the wrap-around artifact, with the aim of facilitating the detection and mitigation of MRI

artifacts in clinical situations.

Keywords: magnetic resonance imaging (MRI), wrap-around artifact, deep learning, image quality (IQ), image

restoration

1. INTRODUCTION

Magnetic resonance imaging (MRI) has become one of the most essential means in disease
diagnostics and management. It deepens our understanding of the pathology involved in the
development and progression of the disease. An MRI image is generally constructed using the
Fourier transform (FT) method. The MRI signal is obtained by the interaction between the
hydrogen atoms and the external electromagnetic fields. This signal is then encoded into the phase
information and frequency information that are subsequently utilized to construct the spatial
frequency map, also known as the K-space. The inverse Fourier transform (iFT) can be used to
reconstruct the K-space data into the human-interpretable image (Gallagher et al., 2008). Although
the MRI technique possesses numerous merits in clinical trials, such as radiation-free and high-
contrast imaging, artifacts occur throughout the entire image acquisition process, from the MRI
signal generation to the image display, which can significantly deteriorate the perceptual quality
of the MRI image and subsequently affect the reliability of diagnosis (Bellon et al., 1986; Liu
et al., 2018, 2019, 2020b; Zhai et al., 2020). Thus, it is crucial to effectively detect and eliminate
artifacts of MRI image. This study hereby deals with one of the most common artifacts of MRI,
namely the wrap-around artifact (also known as the aliasing artifact). We propose a novel artifact
reduction framework to reduce the wrap-around artifact of the MRI image while improving the
image perceptual quality.
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Wrap-around artifact occurs when the scanned area of the
human body exceeds the predefined field of view (FOV). These
areas outside the FOV cannot be properly encoded relative to
their actual position and are wrapped back into the opposite side
of the image, resulting in the wrapped information reappearing
on the other side of the image and subsequently cannot be
distinguished from the objects inside the FOV. The wrap-around
artifact can be further classified into frequency-related and phase-
related. During the imaging process, there are a number of
classical ways to mitigate the wrap-around artifact (Chen et al.,
2013). The frequency-related artifact can be mitigated by the
oversampling scheme that increases the density of the K-space
frequency data and thus increases the FOV. As for the wrap-
around in the phase-encode direction, we can swap phase and
frequency directions such that the phase direction is oriented
in the smallest direction. This method is straightforward while
maintains the same spatial resolution. However, it may induce
other artifacts to the MRI image, i.e., chemical shift artifact.
Another method for reducing the phase-related artifact is to
double the FOV in the phase direction, yet it may lower the
spatial resolution. These remedies are only operational during
the process of MR imaging. However, radiologists generally face
post-operated (reconstructed) MRI image without knowing the
occurrence of the artifact in the imaging processing. Eliminating
the wrap-around artifact from the post-operated MRI image has
remained a major deterrent to clinical adoption.

Numerous efforts for MRI artifacts reduction have been made
in the last decades. Yang et al. (2001) proposed a maximum
likelihood-based method to remove the ringing artifact, in
which the prior knowledge of MRI, i.e., the sampled low-
frequency data points, was adopted to deduce the high-frequency
data in the K-space. This method aims to increase the high-
frequency information and thus alleviate the artifact. Lee (1998)
designed a Bayesian framework with the regularization scheme to
reduce the MRI artifacts. This framework deduces the posterior
probability of the output image by the likelihood of sampled
spatial information and the local spatial structure of the input
image. Yatchenko et al. (2013) mitigated the ringing artifact
by computing the average edge-normal and edge tangential
derivatives in the edge area of the image. In Guo and Huang
(2009), a k-means-based method was proposed to remove the
MRI artifact. The maximum likelihood method was at first
employed to detect the artifact of the image. Then, the detected
structures were fitted to a k-means model to map the neighboring
pixel values and the estimation region. Sebastiani and Barone
(1995) proposed to use the Markov random field to model
the errors arisen in the truncation and characteristics of the
Fourier series. The modeled errors can be utilized to implement
artifact removal.

In addition to these model-based approaches, recent years
have seen the prosperity of the deep learning-based techniques
for the MRI artifact reduction. Lee et al. (2017) proposed a multi-
scale deep neural network to remove the wrap-around artifact.
This neural network estimates the area of a wrap-around artifact
based on the distorted magnitude and the phase information
of the input image. The removal of wrap-around artifact can
be achieved by subtracting the estimated artifact area from the

input image. Yang et al. (2017) proposed a de-aliasing strategy
based on the conditional generative adversarial networks. The
adversarial loss of thismodel incorporates three typical losses, i.e.,
the pixel-wise loss, frequency information loss, and perceptual
loss, in order to better learn the texture and edge information,
thereby improving the quality of the MRI image reconstructed
from undersampled k-space data. The work in Hyun et al. (2018)
presented a deep learning-based sample strategy to reconstruct
the MR image from the undersampled k-space data while
enhancing the image quality. This strategy adopts the uniform
sampling method to obtain phase information of the image so
that the details of the corrupted area of the image are preserved
after Fourier transform. Consequently, the deep learning model
can effectively learn the features of the wrap-around artifact.

Although the abovementioned model and learning-based
methods have shown great potential in reducing the MRI
artifacts, their capability for clinical practice is restricted. The
reason is fourfold. First, many methods, i.e., Yang et al. (2001)
and Guo andHuang (2009), directly manipulate the k-space data,
which could inadvertently remove the non-artifact information,
such as the anatomical or pathological details. Second, some
deep learning methods, i.e., Yang et al. (2017), are based on the
generative adversarial network (GAN), where the MRI image
is synthesized from the given samples. This strategy is not
very reliable since the synthesized MRI data may contain fake
information, which can complicate the pathologic diagnosis.
Third, in the context of Bayesian framework, such as Lee (1998)
and Sebastiani and Barone (1995), reconstructing the MRI image
from the undersampled k-space data is practically an ill-posed
problem, and the rate of convergence of these methods remains
questionable. Finally, one of the main limitations of the learning-
based method is the scarcity of MRI data. Nevertheless, given
the sensitivity and confidentiality of clinical data, it is rather
difficult to obtain adequate MRI data, which severely restricts the
development of learning-based methods.

We herein propose a novel wrap-around artifact reduction
framework to address the aforementioned issues. The proposed
framework comprises two stages, namely, artifact simulation and
image enhancement. For the artifact simulation, we design an
artifact occurrence mechanism to simulate the characteristics
of the wrap-around artifact. Two parameters are designed to
describe the characteristics of the wrap-around artifact. The first
parameter determines the size of the wrapped area indicating
how much area of the MRI image is corrupted by the artifact.
The second parameter describes the intensity of the wrapped
area, which is closely related to the distortion level of the
MRI image. A large intensity may completely contaminate the
wrapped area, of the MRI image, resulting in the difficulty of
artifact removal. These two parameters work jointly to simulate
the wrap-around artifact.

For the image enhancement, we propose a deep neural
network (DNN) to remove the wrap-around artifact while
improving the overall perceptual quality of the MRI image (Min
et al., 2020a,b). The proposed DNN is based on the U-net
network owing to its powerful performance in medical image
processing. The DNN composes of two phases, i.e., artifact
estimation and deep elimination. In the artifact estimation,
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a U-net-based network is trained by pairing artifacted MRI
images with the corresponding artifact patterns. This enables the
network to accurately estimate the wrapped area of the artifacted
MRI image, which can be subsequently utilized to assist the
network training at the second phase of deep elimination. As
for the deep elimination, an end-to-end U-net based network
is built, in which the inputs are the artifacted MRI images and
the outputs are the artifact-free MRI images. In this phase, the
loss function is dedicatedly designed based on the binary cross
entropy (BCE) loss and the mean squared error (MSE) loss
in order to maximize the performance of artifact elimination.
These two phases work cooperatively to remove the wrap-
around artifact while improving the image quality. Experiments,
in terms of quantitative metrics and qualitative visualizations,
demonstrate the high potential of the proposed method in the
reduction of the wrap-around artifact.

The rest of this study is organized as follows. Section 2 details
the proposed framework. Section 3 presents the experiments and
detailed analysis regarding the wrap-around artifact removal.
Finally, we conclude the work of this study in section 4.

2. METHODOLOGY

In section 2, we first propose a technique to simulate the wrap-
around artifact on the MRI image. Then, a dataset is formed
by pairing the artifact-free MRI image with the artifacted MRI
image obtained from the proposed simulation technique. At last,
the dataset is employed to train a deep learning network to
implement the removal of the wrap-around artifact.

2.1. Artifact Simulation
For the MRI image with the wrap-around artifact, two factors
affect the perceptual quality of the image, including the size and
intensity of the wrapped area. Therefore, we generate the wrap-
around artifact based on these two factors. Given an artifact-
free MRI image I ∈ R

M×N , we produce the artifact layer Î by
horizontally shifting the pixels in I as

Î(m̂, n̂) =

{

0, d + n̂ ≤ N
I(m̂, d + n̂− N) · r, otherwise

(1)

where Î(m̂, n̂) indicates the pixel of Î located at (m̂, n̂), d ∈ [1,N]
is the shift distance of Imeaning that I is shifted horizontally by d
columns, and r > 0 determines the intensity of the artifact layer.
This study only considers the horizontal shift, implying that the
wrap-around artifact only appears on either the right side or the
left side of the image. However, it is straightforward to apply the
proposed method to the situation of vertical shift.

After obtaining the artifact layer, the wrap-around artifact can
be produced by directly adding the image and the artifact layer
together. However, doing so will change the image contrast as the
pixel value of the wrapped area is increased after the summation.
Such a change will increase the difference between the light and
dark areas of the image leading to that light areas become lighter
and dark areas become darker. Consequently, the simulated
artifact is inconsistent with the clinical practice. Herein, we

propose a technique to circumvent these problems. Let F and F̂

be the binary patterns of I and Î, respectively, satisfying

F(m, n) =

{

1, I(m, n) > 0

0, otherwise
; F̂(m, n) =

{

1, Î(m, n) > 0

0, otherwise
.

We first overlay the image I with the artifact layer Î as

Ir = (I + Î)⊙ F, (2)

where ⊙ indicates the element-wise multiplication. The
summation of I and Î will lead to the artifact appearing on the
blank area of the image. This kind of artifact information does
not corrupt the image, and can be easily eliminated by applying
the binary pattern of I. Therefore, this study is only interested
in the artifacts that contaminate the image information of I. We
apply F in Equation (2) to remove the artifact on the blank area
of the image.

Then, the wrapped area of the image can be calculated by
V = (F + F̂) ⊙ F. The elements in V involves three different
values, such as 0, 1, and 2. The pixels in the wrapped area are
marked as 2. Therefore, we can obtain the location and size of
the wrapped area by counting the number of elements of 2 in
V . Following this, we calculate the brightness ratio between the
non-wrapped area and the wrapped area in the original artifact-
free image. When artifacts are generated, we maintain the same
ratio to avoid the problem of uneven brightness. Let I1 and I2
be the summation of the brightness in the unwrapped-area and
wrapped-area of the image, written by

I1 =
∑

I(m, n), for V(m, n) = 1

I2 =
∑

I(m, n), for V(m, n) = 2.
(3)

The final wrapped-around artifact is generated as

Is(m, n) =

{

Ir(m, n) · I2
I1
, V(m, n) = 2

Ir(m, n), otherwise.
(4)

The complete process of the wrap-around artifact simulation
is presented in Figure 1A. The proposed simulation technique
allows us to overcome the problem of data shortage. Hence,
we can produce adequate artifact resources to facilitate the
development of the artifact reduction technique. Toward this
end, a deep learning-based method for the reduction of the
wrap-around artifact is proposed.

2.2. Problem Formulation
In general, the observed image Y can be represented using a
discrete linear model, written by

WIs + ǫ = Y ≈ I, (5)

where Is and I are the artifacted and artifact-free images,
respectively. W is a linear operator representing various
operations against the image quality, i.e., the convolution
operation in the K-space for image deblurring or the non-local
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FIGURE 1 | The proposed wrap-around artifact reduction framework. (A) The process of the wrap-around artifact simulation. (B) The architecture of the DUARN

method.

means filtering for image denoising. ǫ is a bias term. Our purpose
is to solve W in Equation (2), which is an ill-posed inverse
problem that the solution of W is generally underdetermined.
The priori knowledge of Is, is therefore, required in order to
constrain the solution space of W. In other words, we hope to
findW such that

L =
1

2
||I − Y||22 + λR(Is) (6)

reaches minimum, where 1
2 ||I − Y||22 is known as data term.

The regularization term λR(Is) with the regularization parameter
λ is utilized to alleviate the problem of ill-posedness and R(Is)
generally involves lq-norms. Equation (6) can be solved by

learning-based method, such as the gradient descent method,
to iteratively minimize the difference between I and Y to the
local minimum.

2.3. Learning-Based Artifact Reduction
A deep learning-based method is herein proposed to solve
Equation (6). The proposed method is constructed by two U-
net networks; thus, we name it as Dual U-net Artifact Reduction
Network (DUARN). The two U-nets correspond to two phases
of DUARN, namely, artifact estimation and deep elimination.
In the first phase, we train a U-net by pairing the artifacted
MRI images with the binary artifact pattern aiming at accurately
predicting the artifact area from the input artifacted image. The
BCE loss is adopted in the network training owing to its powerful
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performance of binary image prediction. In the second phase, we
rewrite Equation (6) as

L = aLMSE ⊙ P1 + bLBCE (7)

where P1 is a binary pattern of the artifacted image obtained
from the first phase of DUARN. When the pixel of P1 is in
the area of artifact, it is equal to 1 otherwise equal to 0. We
use P1 to maximize the learning efficiency of the second deep
neural network. Since this study only deals with the wrap-
around artifact, we assume that there is no other artifact existing
outside the wrapped area of the image. Hence, when the network
learns from the loss function, we set a relatively small weight
for those losses outside the wrap-around artifact area, thereby
improving the efficiency and accuracy of the network. LMSE =

1

N

N
∑

i=1

(Ii−Y i)
2 indicates the pixel-wise image domain MSE loss,

where Ii and Y are the i−th pixel value of I and Y . LBCE =

−
1

N

N
∑

i=1

Y i log(p(Y i)) + (1 − Y i) ∗ log(1 − p(Y i)) refers to the

BCE loss that minimizes the average probability error between
the target and predicted images for each pixel. Herein, we adopt
the BCE loss to penalize the misalignment of boundaries. a and b
are small positive real numbers, satisfying a+b = 1. Empirically,
we set a = 0.75 and b = 0.25.

The architecture of DUARN is illustrated in Figure 1B. The
DUARN contains two U-nets, each of which involves four scales,
such as 64, 128, 256, and 512. In the input layer, 64 filters with
kernel size of 3×3 and ReLU as an activation function are applied.
Following the input layers, there are four convolution layers
(encoder) and four transposed convolution layers (decoder)
with each followed by batch normalization and ReLU layers.
The skip connection between the 2 × 2 strided convolution
(downscaling) and 2 × 2 transposed convolution (upscaling)
are employed in order to supplement the reconstruction details
with different level of features. Finally, a 1 × 1 convolution
layer is used to predict a single channel image as the output of
the network.

3. EXPERIMENTS AND ANALYSIS

In this section, we evaluate the proposed DUARN method with
respect to its quantitative and qualitative performance. First,
we enlist the help of radiologist to select 140 artifact-free and
high perceptual quality MRI images (T1-weighted). The invited
radiologist who has over 5 years of clinical experience in the
brain radiology. Following the MRI data acquisition, we simulate
the wrap-around artifact on the 140 artifact-free MRI images
using the method proposed in section 2.1. We generate five
different degrees of the wrap-around artifacts corresponding to
five distortion levels of the image, in which the distortion level of
1, 2, 3, 4, and 5 indicate minor artifact, mild artifact, moderate
artifact, severe artifact, and non-diagnostic as suggested by Liu
et al. (2017, 2020a) and Liu and Li (2020). The simulation
process of the artifact is carried out under the guidance of the
radiologist who visually assesses the quality of each simulated

image and recommends the parameter values of d and r in
Equation (1) to ensure the generated image matches the desired
distortion level. Examples of the simulated MRI images are
presented in Figure 2 with the distortion level ranging from
1 to 5. The ground truth image is also provided on the left
of Figure 2. It is observed that the wrap-around artifact on
the minor artifacted MRI image is insignificant in terms of
the area size and the intensity of the artifact. Images of such
a quality may still be useful if the diagnostic area of interest
is outside the artifact. Correspondingly, the MRI images with
severe and non-diagnostic artifact can hardly be useful under any
clinical situations.

We then produce the dataset of artifacted MRI images for
training the proposed DUARN method. Since we have 140
artifact-free images, the produced dataset yields to a total number
of 700 artifacted images. The dataset is split into two non-
overlapped parts, i.e., training data and testing data with the
standard ratio of 80/20%. We train the DUARN on the training
data and test it on the testing data. We at first train the first U-net
of DUARN, where the Adam optimizer is adopted with the initial
learning rate of 0.0001, batch size of 2, and momentum of 0.8.
When the training process is complete, we train the second U-net
using the artifacted MRI image and the output of the first U-net
as its inputs. The Adam optimizer is also applied to the second
U-net with the initial learning rate of 0.00001, batch size of 1, and
momentum of 0.9. The early stopping scheme is employed in the
training process of both U-nets for the prevention of overfitting.
In addition, the conventional data augmentation techniques,
such as image flipping, rotating, and brightness adjustment, are
adopted to boost the network performance.

In order to vividly demonstrate the performance of the
proposed method, we compare it quantitatively and qualitatively
with the state-of-the-art artifact reduction method in Tamada
et al. (2020). Tamada et al. (2020) proposed an artifact
reduction method, namely motion artifact reduction based on
convolutional neural network (MARC) method, to remove the
motion ghost from the MRI images. In the MARC method, a
convolutional neural network (CNN)-based network was trained
to extract the artifact components from the artifacted images.
The artifacts can be, therefore, removed by subtracting the
extracted artifact component from the input image. The targeted
artifact in Tamada et al. (2020) is similar to the wrap-around
artifact since both of them belong to the aliasing of the image.
We adapt the MARC method to implement the wrap-around
artifact reduction and present the results of the MARC method
and DUARN method in Figure 3. As can be observed, both
methods are capable of eliminating the wrap-around artifact to
a certain extent while the qualitative performance of the DUARN
method is notably better than the MARC method, especially
for those high distortion level image, i.e., 2nd and 5th images.
In addition, we noticed that although the MARC method can
alleviate the wrap-around artifacts, noise may be introduced
into the images, resulting in further degradation of image
quality. This is inconsistent with our purpose of obtaining high-
quality artifact-free MRI image. On the contrary, the DUARN
method can maintain the high perceptual quality after the
artifact removal.
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FIGURE 2 | MRI images with different degrees of wrap-around artifact. From the left to right is the ground truth image, minor artifact, mild artifact, moderate artifact,

severe artifact, and non-diagnostic.

FIGURE 3 | Qualitative visualizations. (A) Artifacted MRI images involving mild, moderate, severe, and non-diagnostic wrap-around artifacts. (B) Reconstructed MRI

images from the DUARN method. (C) Reconstructed MRI images from the MARC method. (D) Ground truth images.

TABLE 1 | The SSIM and PSNR from DUARN and MARC methods.

Minor artifact Mild artifact Moderate artifact Severe artifact Non-diagnostic Overall

SSIM

MARC 0.9033 0.8949 0.9006 0.8766 0.8739 0.8899

DUARN1 0.9221 0.9292 0.9339 0.9384 0.9401 0.9327

DUARN2 0.8941 0.8901 0.8867 0.9012 0.8993 0.8943

DUARN 0.9536 0.95577 0.9594 0.9654 0.9684 0.9605

PSNR

MARC 22.2786 20.7544 21.0742 17.6049 15.9149 19.5254

DUARN1 23.4502 23.6031 23.0125 24.5327 26.0182 24.1233

DUARN2 20.1963 19.7167 19.5369 22.3562 22.6943 20.9001

DUARN 24.3683 24.1942 24.0889 25.7176 27.6271 25.1992

DUARN1 and DUARN2 indicate the DUARN method with the MSE loss and the BCE loss, respectively. Overall indicates the average values of SSIM and PSNR for all the 140 testing

images. The highest performance values on each evaluation index are highlighted with boldface.

Finally, we evaluate the quantitative performance of the
DUARN method by quantifying the quality of the reconstructed
MRI image. Numerous image quality metrics have been proposed

in the last decades each with their respective merits (Zhang
et al., 2011; Mittal et al., 2012; Min et al., 2017, 2019, 2020c).
In this study, we adopt two widely used metrics to measure
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the MRI image quality, including the peak signal-to-noise ratio
(PSNR) and the structural similarity index measure (SSIM)
(Wang et al., 2004). Table 1 tabulates the PSNR and SSIM from
the DUARN and MRAC methods. The testing data contain
140 images with 28 images for each artifact type. We calculate
the average PSNR and SSIM for each artifact type, and the
overall in Table 1 refers to the average PSNR and SSIM for
all the 140 testing images. As can be observed, the DUARN
model achieves superior performance in the evaluation of
all types of artifacts. More importantly, when the degree of
image distortion increases, the performance of MARC method
shows a clear downward trend. Comparatively, the DUARN
method can still maintain a robust performance and even has
a slight upward trend. This implies that the capability of the
DUARN method will not be affected by the distortion level
of the image. Such a feature is essential because clinical trials
often face artifacted MRI images with various distortion levels,
which may exceed the scope of the test samples. An artifact
removal technique with stable performance can exert promising
application value in practice. The DUARN method can be
also combined with other image enhancement techniques, such
as contrast stretching and histogram equalization, to further
improve the perceptual quality of the reconstructed MRI image.
This can be considered in the future work. In addition, since
the DUARN method combines two losses of the BCE loss and
the MSE loss in the network training, we are interested in the
individual contribution of each loss in the performance of the
proposed method. Toward this end, we introduce each loss
to the network training of the DUARN method and quantify
the performance of each loss by the PSNR and SSIM. The
experimental results are presented in Table 1, where DUARN1
and DUARN2 indicate the DUARN method with the MSE loss
and the BCE loss, respectively. As observed, the MSE loss brings
more contributions in the DUARNmethod, and the combination
of these two losses earns the best performance, which evidences
that the BCE loss and the MSE loss play complementary roles in
the DUARN method.

4. CONCLUSION

This study deals with the wrap-around artifact of the MRI
image, wherein two contributions are made. We first propose
a simulation technique to generate the wrap-around artifact
on the MRI image. The design of the proposed method is
based on the image quality assessment scheme and with the
assistance of an experienced radiologist, which allows the
simulated artifact resources to match clinical situations. Then,
we propose a novel artifact reduction technique, based on the
deep neural network, to implement the elimination of the wrap-
around artifact. This technique composes two U-net networks
corresponding to two phases, such as artifact estimation and
deep elimination. Dedicated losses are designed in order to
maximize the effectiveness of artifact removal while improving
the perceptual quality of the reconstructed MRI image. Extensive
experiments are carried out to evaluate the quantitative and
qualitative performance of the proposed method, with the results
demonstrating the superiority of the proposed method against
the state-of-the-art method.
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Image quality assessment (IQA) for authentic distortions in the wild is challenging. Though

current IQA metrics have achieved decent performance for synthetic distortions, they

still cannot be satisfactorily applied to realistic distortions because of the generalization

problem. Improving generalization ability is an urgent task to make IQA algorithms

serviceable in real-world applications, while relevant research is still rare. Fundamentally,

image quality is determined by both distortion degree and intelligibility. However, current

IQA metrics mostly focus on the distortion aspect and do not fully investigate the

intelligibility, which is crucial for achieving robust quality estimation. Motivated by this, this

paper presents a new framework for building highly generalizable image quality model by

integrating the intelligibility. We first analyze the relation between intelligibility and image

quality. Then we propose a bilateral network to integrate the above two aspects of image

quality. During the fusion process, feature selection strategy is further devised to avoid

negative transfer. The framework not only catches the conventional distortion features

but also integrates intelligibility features properly, based on which a highly generalizable

no-reference image quality model is achieved. Extensive experiments are conducted

based on five intelligibility tasks, and the results demonstrate that the proposed approach

outperforms the state-of-the-art metrics, and the intelligibility task consistently improves

metric performance and generalization ability.

Keywords: image quality assessment, NR-IQA, intelligibility, distortion, generalization, semantic

1. INTRODUCTION

Image quality assessment (IQA) plays a vital role in image acquisition, compression, enhancement,
retrieval, etc. The existing IQA metrics are mainly designed for synthetic distortions and cannot
be applied to wild images satisfactorily due to the limited generalization ability. Fundamentally,
image quality embodies two aspects: distortion and intelligibility (Abdou and Dusaussoy, 1986).
Most IQA algorithms only focus on the distortion measurement and the intelligibility aspect is
rarely investigated. In this paper, we mainly investigate the role of intelligibility in building a highly
generalizable IQA model.

Intelligibility refers to the ability of an image to provide information to a person or a machine
(Abdou and Dusaussoy, 1986), that is, the degree to which the image could be understood.
Distortions affect image intelligibility, and accordingly, intelligibility is indicative of image quality
when humans make judgments. Traditional handcrafted feature-based IQA metrics mainly focus
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on distortions and cannot commendably describe image
intelligibility. Deep learning-based methods learn the IQA task
in a data-driven manner, and consequently do not directly pay
attention to image intelligibility, either.

Since the most essential function of image is to convey
information, when distortions seriously undermine the
expression of information, the intelligibility will also become
low, which in turn indicates poor image quality. Real-world
images are typically contaminated by complicated distortions,
which lead to different degrees of intelligibility. Figure 1 explains
how intelligibility indicates image quality. Figures 1A,B both
suffer from severe motion blur, and both contain human as the
main content. The human face in Figure 1A is too blurred to
be recognized, whereas a woman’s face in Figure 1B can still be
easily identified. Thus, Figure 1B has higher intelligibility and
accordingly higher quality score. The distortion in Figure 1C

is not heavier than Figure 1D, but Figure 1D is easier to be
recognized; hence, Figure 1D has higher intelligibility and
accordingly higher quality score. Finally, Figures 1E,F was
mainly underexposed with locally overexposed. The main
content in Figure 1E is illegible, whereas Figure 1F can still be
distinguished as a singing stage with performers. Therefore, the
quality of Figure 1F is better than that of Figure 1E. It can be
concluded from Figure 1 that images with similar distortions
may have significantly different quality due to different degrees
of intelligibility. Therefore, a robust quality assessment metric
should also take intelligibility into account, especially for
severe distortions.

Motivated by the above facts, this paper presents a new
framework to achieve highly generalizable image quality
assessment by integrating intelligibility and distortion measure.
The intelligibility of an image can be represented from different
perspectives, such as “whether the content of the image is

FIGURE 1 | Relation between intelligibility and image quality. (A–F) Compared to images in the first row, images in the second row have higher intelligibility and

accordingly higher mean opinion score (MOS). Images are from the KonIQ-10k (Hosu et al., 2020) dataset. The range of MOS is [1, 5], and higher MOS means better

quality.

recognizable,” “which category does the main object in the
image belong to,” and “what scene does the image show.”
The results of these questions are all important information
conveyed by the image, and through the mining of these
questions, we can obtain descriptions of image intelligibility.
These questions can be described by popular computer vision
tasks, such as image classification, scene recognition, object
detection, and instance segmentation. Therefore, we calculate

intelligibility features based on these semantic tasks. Then, we

propose a bilateral network to combine the distortion features

and intelligibility features. Further, we design different feature

selection strategies for different semantic understanding tasks.

This produces highly generalizable intelligibility features. The

distortion network is applied to extract distortion features that
are complementary to those intelligibility features. With the
bilateral network, highly generalizable intelligibility features with
rich semantic information can be fused with distortion features,
producing the final IQA model.

The contributions of this work are summarized as follows:

• We propose a new framework for designing highly
generalizable image quality models by integrating
intelligibility and distortion, two fundamental aspects of
image quality. In the proposed framework, intelligibility
features can be extracted based on popular semantic
tasks, such as image recognition, scene classification,
and object detection.
• Wepropose a bilateral network with an intelligibility enhanced

module to fuse intelligibility features with distortion features

for building a robust IQA model. A feature selection strategy

is proposed to extract intelligibility features instead of doing
direct training. This strategy can avoid the risk of damaging
generalizable features.
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• We have verified the effectiveness of the proposed method
through extensive experiments and compared with the
state-of-the-arts. The experimental results demonstrate
that the proposed model can achieve significantly better
generalization performance.

2. RELATED WORK

Early no-reference IQA (NR-IQA) metrics typically train a
regressor to obtain quality scores based on handcrafted features.
For example, BLIINDS-II (Saad et al., 2012), BRISQUE (Mittal
et al., 2012), and BIQI (Moorthy and Bovik, 2010) designed
features meticulously through natural scene statistics (NSS).
NFERM (Gu et al., 2014) incorporated features inspired by the
free energy theory, human visual system, and NSS. CORNIA
(Ye et al., 2012) and HOSA (Xu et al., 2016) trained large-
scale visual codebooks from natural image to make predictions.
The above handcrafted feature-based IQA models are usually
limited in handling the diversified scenes and distortion types in
real-world images.

With the boom of deep learning, convolutional neural
networks have been widely applied in IQA. Early attempts
utilized relatively shallow networks (Kang et al., 2014; Kang
et al., 2015; Kottayil et al., 2016) to extract features for assessing
synthetic distortions. Then, deeper networks were utilized to
handle more complex distortions (Bosse et al., 2017; Kim
and Lee, 2017; Ma et al., 2017; Yan et al., 2019; Zhai et al.,
2020; Zhang J. et al., 2020). It is widely acknowledged that
large datasets are needed for training deep neural networks.
However, so far the largest IQA dataset only has 11,125 images,
which are still limited. Thus, recent deep IQA metrics (Bianco
et al., 2018; Varga et al., 2018; Zhang W. et al., 2020) utilize
networks pre-trained on large-scale computer vision tasks and
then fine-tune on them. For example, Bianco et al. (2018) made
fine-tuning on the model pre-trained on subset of ImageNet
(Imagenet large scale visual recognition challenge, 1.3M images)
(Russakovsky et al., 2015) and Places-205 (Wang et al., 2015)
(2.5M images). Varga et al. (2018) made fine-tuning on deep
pre-trained network (ResNet101 He et al., 2016) to learn the
distribution of mean opinion score (MOS). Zhang W. et al.
(2020) utilized two different networks to evaluate synthetic and
authentic distortions, respectively, and the authentic network
was fine-tuned on pre-trained network (VGG16, Simonyan
and Zisserman, 2015). Make fine-tuning on pre-trained model
of recognition task is a suboptimal method because IQA
task is different from recognition tasks. Recognition tasks
should be robust to distortions while IQA should distinguish
distortions. Though fine-tuning with IQA images can improve
IQA performance, the generalizable features trained with large-
scale dataset were damaged during further training. And due
to the small sample property of IQA, generalization ability of
new features is still unsatisfying and cannot be adopted to
real-world applications.

Until recently, the generalization problem of IQA models
began to receive attention. Zhu et al. (2020) adopted meta-
learning to learn the prior knowledge of distortions in synthetic

distortions and then fine-tune on authentic distortions to
achieve better generalization ability. Hosu et al. (2020) built a
large dataset (KonIQ-10k: 10,073 images) for model training
and obtained better generalization performance. Su et al.
(2020) incorporated semantic features and multi-scale content
features to handle challenges of distortion diversity and content
variation. The abovemethods have achieved better generalization
performance than earlier metrics, but their generalization ability
is still far from ideal and further explorations are needed. In
this paper, we work toward this direction by proposing a new
framework to address the generalization problem, where the
intelligibility property of images is investigated.

3. PROPOSED METHOD

3.1. Relation Between Intelligibility and
Quality
As aforementioned, image intelligibility can be described by
semantic understanding tasks. The most popular one is the
classification task on Imagenet Large Scale Visual Recognition
Challenge, which has 1.3 M images belonging to 1,000 classes
(Russakovsky et al., 2015). Therefore, we take the deep
convolutional neural network (DCNN) trained on this task as an
example. The output of the classification network is a probability
distribution oi, i = 1, 2, ..., 1, 000, and 1, 000 is the total number
of classes. The prediction confidence c can be obtained by

c = max(oi), i = 1, 2, ..., 1000. (1)

The confidence c in Equation (1) also represents the top1-
probability. If the intelligibility of an image is high, the model
may easily recognize the category and the top1-probability may
be notably high. When the intelligibility is low, the model will be
unconfident of its predictions and the top1-probability also tends
to be low.

To have an intuitive understanding of the above characteristic,
we compare the average classification confidence score obtained
from images of different quality. First, we divide images from an
IQA dataset into several groups according to their MOS values
in ascending order. (Specifically, MOS are divided into 6 equal
intervals of [mi,mi+1] where i = 1 − 6, m1 = min(MOS),
m7 = max(MOS).) Then, we utilize an image classificationmodel
trained on ImageNet to obtain the confidence score of images
in each group. Finally, we calculate the average confidence score
of each quality group, and illustrate them in Figure 2A. We
can observe that images with poor quality tend to have lower
prediction confidence than those with high quality. That is, image
quality does have a significant impact on intelligibility.

In this paper, we are more interested in how intelligibility
indicates image quality. Therefore, we do another experiment
by dividing images according to the prediction confidence and
compare the average MOS value of different confidence intervals.
The results are presented in Figure 2B. Furthermore, to show
the relation more intuitively, we also show sample images in
Figures 2C–H that corresponds to the six ascending bins of
Figure 2B.We can observe from Figures 2B–H that intelligibility
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FIGURE 2 | Relation between recognition confidence and image quality. (A) Image quality affects recognition confidence; (B) recognition confidence indicates image

quality; (C–H) representative images with different prediction confidence and mean opinion score (MOS). Panels (C–H) correspond to six ascending bins of B whose

MOS increases with confidence. All results are obtained from the KonIQ-10k dataset based on EfficientNet-B0 network (Tan and Le, 2019).

described by image recognition task can distinctly indicate
image quality.

3.2. Our Framework
In this paper, we propose an intelligibility enriched IQA (IE-
IQA) framework, as illustrated in Figure 3. In our framework,
we propose a bilateral network to integrate intelligibility features
and conventional distortion features. Since intelligibility can
be represented using different image understanding tasks, it is
reasonable to utilize features from these tasks as intelligibility
features. However, IQA is different from image understanding
tasks, and directly utilizing features of image understanding tasks
may lead to negative transfer, which has been proved by many
transfer learning researches (Pan and Yang, 2010; Cao et al., 2018;
Zhang J. et al., 2018). Since intelligibility is vital to our framework,
utilizing features that are most relevant to intelligibility is a better
way. Thus, we first propose a feature selection module to pick
out more relevant features, and then fuse them with distortion
features through an intelligibility enhanced module.

The distortion backbone with parameter θ
∗ in Figure 3 is

denoted as Gθ∗ , which is adopted for extracting distortion

features gj from image I. The intelligibility backbone Fθ with
parameter θ is adopted for extracting intelligibility features fj. We
select the most important features fj

′ from fj and then fuse them
with distortion features gj (denoted as fj

′ ⇔ gj) to obtain quality
score q through a regressor Rθ ′ . The whole process is explained
as follows:















fj = Fθ (I),

f
′

j ← fj,

gj = Gθ∗ (I),
q = Rθ ′ (fj

′ ⇔ gj).

(2)

In this paper, four extensively studied semantic understanding
tasks are utilized to obtain intelligibility features, including image
recognition on subset of ImageNet (Russakovsky et al., 2015),
scene classification on Places-365 (Zhou et al., 2017), object
detection and instance segmentation on MS-COCO (Lin et al.,
2014). In addition, we also utilize a relevant unrecognizability
prediction task, which predicts the unrecognizable degree of
an image. This task is trained on the VizWiz-QualityIssues
dataset (Chiu et al., 2020), containing images with labels of the
unrecognizable degree. Even if intelligibility features of heavily
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FIGURE 3 | Proposed framework of IE-IQA. Our framework contains intelligibility and distortion backbone, and colorful blocks in the distortion backbone are trainable

while gray blocks in the intelligibility backbone are not trainable. An intelligibility enhanced module is adopted to fuse distortion features with intelligibility features

obtained from the proposed feature selection module.

distorted images cannot obtain desired results in original tasks,
they can still be distinguished from features of high-quality
images, which is beneficial to the IQA task.

In our framework, the distortion backbone works in a data-
driven manner to search for the best distortion features, and
the intelligibility backbone is guaranteed to obtain features with
high generalization ability and rich semantic information. To
achieve these goals, we propose to freeze parameters θ of the
intelligibility backbone during the training process while keeping
parameters θ

∗ in the distortion backbone trainable. On the
one hand, the distortion network loads the pre-trained model
trained on ImageNet. Though the pre-trained model has decent
generalization ability, we still need to train the feature extractor
with image quality data so that the network can adapt to IQA task
and obtain better performance. Therefore, we make parameters
of the distortion backbone trainable. On the other hand, training
the intelligibility backbone may be problematic. High level
features of image understanding tasks are rich in semantic
information which is generalizable. If we train the intelligibility
network using the IQA data, the generalization ability of
intelligibility features (which are already generalizable) may be
destroyed. Therefore, we freeze the intelligibility backbone to
handle this problem.

In the proposed intelligibility enhanced module, we tried
several feature fusion strategies: (1) utilize one/two/three
fully connected (FC) layers to regress the quality score
and fuse intelligibility features to different FC layer with
add/multiply/concatenate operation; (2) utilize other layers to
align intelligibility features with distortion features and then use
other FC layers to regress the quality score; (3) utilize auxiliary
layers and loss fuction to train intelligibility features along with
strategy-(1) or strategy-(2); (4) replace low-dimensional features
with sparse selected features (features that are not selected are

set to zero) and then utilize strategy-(1) or strategy-(2). In
implementation, we have found that these strategies achieve
similar results. Due to the feature selection module, it is easy
to combine lower dimensional intelligibility features and simple
strategy can obtain satisfying results. The loss function we
utilized is the mean square error (MSE).

3.3. Feature Selection
During the feature fusion process, we propose strategies to select
intelligibility features. For a specific semantic understanding
task, only a part of neural units and corresponding features
in a DCNN are significantly activated during the inference
process, while others are not vital to the final prediction and
intelligibility (Hu et al., 2016; Zhang Q. et al., 2018; Zhou
et al., 2019). Since introducing too many features are not
conducive (even harmful in many transfer learning experiments)
to IQA performance and generalization, we design feature
selection strategies for different tasks based on contribution
and sensitivity. Contribution-based strategy chooses features
with greater contributions to predictions while sensitivity-
based strategy chooses features that predictions are more
sensitive to.

3.3.1. Contribution-Based Strategy
We propose to select features that have prominent contributions
to final predictions. Theoretically, this strategy is not limited to
any specified network as long as the network can be separated
into a backbone and one FC layer. In fact, this kind of network
architecture is very common in the image classification and scene
recognition. Specifically, the output of backbone can be denoted
by fj, j = 1, 2...,Nd, whereNd is the dimension of features and the
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output-logits of the FC layer can be described by

zi =

Nd
∑

j=1

wij × fj + bi, (3)

where wij, bi, zi are weights, bias and logits of the FC layer,
i = 1, 2, ...,C, and C is the number of total classes. The feature
selection strategy is shown in Algorithm 1. In Algorithm 1,
we locate the top1-probability first. Then, we calculate the
contribution of each dimension of feature fj by

contrbj = abs(wimax ,j × fj). (4)

Algorithm 1 | Feature selection strategy based on contributions.

Inputs: Output features of the backbone fj, j = 1, 2, ....,Nd;
weights of the FC layer wij;
the number of total classes C; selected percentage k.

Output: The selected features f
′

j .

1 // Obtain top1-probability index imax:

2 imax = argmax(zi);
3 // Calculate contributions of different features

contrbj:
4 contrbj = abs(wimax ,j × fj);
5 // Calculate the number of selected features Ns:

6 Ns = int(Nd × k%);
7 // Sort contrbj in descending order and obtain

index indj:
8 indj = argsort(contrbj);
9 // Select features of top-Ns contributions:

10 f
′

j = fj[sort(indj[1 :Ns])];

Return: f
′

j .

In Equation (4), the contributions of features are determined
by both weights and activation values. Finally, features that
contribute significantly to the top1-probability are selected.

3.3.2. Sensitivity-Based Strategy
Some networks have several non-linear FC layers and it
is not easy to measure their contributions. Consider the
unrecognizability prediction task for example. First, we train a
model with the backbone of EfficientNet-B0 (Tan and Le, 2019)
and three FC layers with RELU to regress the unrecognizability
score. Then, we adopt a sensitivity-based method to select
features and the sensitivity can be obtained by gradients.
Specifically, the input feature is fj, j = 1, 2, ...Nd and the FC
layers with active function are represented by function F. The
unrecognizability score s can be obtained by

s = F(fj). (5)

The sensitivity of features can be described by

gradj = abs(∂s/∂fj). (6)

Equation (6) represents the importance of features through
partial derivatives, which is widely used in sensitivity analysis
and model interpreting (Garson, 1991; Dimopoulos et al.,
1995). After obtaining the importance of features, the selected
number is calculated. Then, the index of sorted features can be
obtained through

indj = argsort(gradj), (7)

where “argsort” means that sort the sequence and return
corresponding index (it is the same with “argsort” in
Algorithm 1). Finally, a selection operation is executed.

In contrast to directly merging all intelligibility features with
distortion features, fusing features with lower dimension after
feature selection exhibits better performance and generalization
ability during the test process. Different from attention
mechanism, the proposed feature selection strategy can reduce
the dimension of the intelligibility feature and does not need any
additional module or further training.

4. EXPERIMENTS

4.1. Datasets
In our experiments, five image quality datasets with authentic
distortions are adopted, including KonIQ-10k (Hosu et al.,
2020), Smartphone Photography Attribute and Quality (SPAQ)
(Fang et al., 2020), LIVE in the Wild Image Quality Challenge
(LIVEW) (Ghadiyaram and Bovik, 2016), CID2013 (Virtanen
et al., 2015), and BID (Ciancio et al., 2011). Specifically, the
KonIQ-10k dataset has 10,073 labeled images selected from a
massive public database YFCC100M (Thomee et al., 2016), and
the labels are obtained from 1.2million ratings. The SPAQdataset
contains 11,125 labeled images obtained from 66 smartphones
with exchangeable image file format data tags and rich opinion
annotations. The annotations include MOS, attribute scores
(such as brightness, noisiness, and sharpness) as well as scene
category labels. LIVEW contains 1,162 labeled images and
CID2013 contains 480 images from eight scenes. Different from
the other four datasets, the BID dataset focuses on blur images
and contains 586 images.

4.2. Implementation and Evaluation
Protocol
In our experiments, the distortion network adopts the backbone
of EfficientNet-B0 and the intelligibility network for the image
recognition task is EfficientNet-B0 as well. EfficientNet-B0
consists of one convolutional layer followed by seven mobile
inverted bottleneck modules, and then another convolutional
layer followed by global average pooling. EfficientNet-B0 has
an input size of 224 × 224 and 5.3 M parameters, and the
dimension of its output feature is 1280. Network for scene
classification task is ResNet-18 (He et al., 2016), and object
detection is Faster-RCNN (Ren et al., 2017) with ResNet50-FPN
(Lin et al., 2017) backbone. The instance segmentation task is
DeeplabV3+ (Chen et al., 2018) with the backbone of ResNet101.
During the training process, SGD optimizer with initial learning-
rate 0.03 is utilized (we train FC layers first and then utilize
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TABLE 1 | Pearson’s linear correlation coefficient (PLCC)/Spearman’s rank order correlation coefficient (SRCC) results of cross-dataset test.

PLCC/SRCC KonIQ-10k SPAQ LIVEW CID BID

BIQI Moorthy and Bovik, 2010 0.637/0.595 0.622/0.661 0.492/0.471 0.612/0.599 0.478/0.493

NFERM Gu et al., 2014 0.725/0.689 0.697/0.711 0.551/0.540 0.708/0.680 0.529/0.530

BRISQUE Mittal et al., 2012 0.689/0.647 0.660/0.682 0.576/0.554 0.553/0.533 0.589/0.597

BLINDSII Saad et al., 2012 0.440/0.447 0.466/0.460 0.331/0.319 0.278/0.301 0.393/0.401

GWH-GLBP Li et al., 2016 0.549/0.514 0.614/0.628 0.464/0.435 0.071/0.002 0.477/0.483

FISBLIM Gu et al., 2013 0.375/0.347 0.566/0.569 0.376/0.289 -0.219/-0.234 0.392/0.344

CORNIA Ye et al., 2012 0.773/0.738 0.727/0.766 0.672/0.639 0.599/0.538 0.692/0.688

HOSA Xu et al., 2016 0.791/0.761 0.743/0.771 0.677/0.652 0.684/0.664 0.694/0.679

NSSADNN Yan et al., 2019 / / 0.813/0.745* 0.825/0.748* /

MEON Ma et al., 2017 / / 0.693/0.688* 0.703/0.701* /

BIECON Kim and Lee, 2017 / / 0.613/0.595* 0.620/0.606* /

DeepRN (ResNet101) Varga et al.,

2018

0.880/0.867 / 0.750/0.726 / /

DeepBIQ (InceptionV2) Bianco et al.,

2018

0.911/0.907 / 0.821/0.804 / /

HyperNet Su et al., 2020 0.917/0.906 0.843/0.846+ NA/0.785 0.808/0.782+ NA/0.819

MetaIQA Zhu et al., 2020 0.876/0.846 0.804/0.822 0.748/0.716 0.726/0.682 0.740/0.738

WaDIQaM-NR Bosse et al., 2017 0.657/0.631 0.675/0.702 0.521/0.523 0.584/0.495 0.499/0.538

DBCNN Zhang W. et al., 2020 0.892/0.868 0.827/0.836 0.802/0.775 0.788/0.758 0.769/0.769

Our Results

IE-IQA (w/ recognition task) 0.921/0.900 0.863/0.859 0.839/0.829 0.815/0.788 0.822/0.817

IE-IQA (w/ classification task) 0.920/0.900 0.862/0.858 0.835/0.828 0.818/0.795 0.819/0.813

IE-IQA (w/ detection task) 0.921/0.901 0.862/0.857 0.835/0.826 0.819/0.800 0.816/0.810

IE-IQA (w/ segmentation task) 0.917/0.900 0.862/0.857 0.825/0.826 0.827/0.801 0.812/0.809

IE-IQA (w/ unrecognization task) 0.920/ 0.902 0.863/0.858 0.835/0.829 0.819/0.794 0.816/0.813

The model is trained on 80% images of KonIQ-10k and directly tested on rest 20% KonIQ-10k images and other datasets. Results with “*” are obtained after fine-tuning on the dataset

and reported in original papers. Results with NA of HyperNet (only three datasets) are reported in original papers (Su et al., 2020) and results with “+” are obtained from the released

model. Best results are in bold.

FIGURE 4 | Loss and Pearson’s linear correlation coefficient (PLCC) during training and test. (A) Loss of training and test. Two enlarged subfigures shows results of

epochs 2–50 and epochs 200–250. (B) PLCC of training and test. The model is trained with recognition task on KonIQ-10k.

warm-up strategy when training the distortion backbone). For
all of our experiments, we first resize images into 244 × 244,
then we randomly crop them to 224 × 224 with a randomly
horizontal flip to augment training images. During the test

process, we directly resize test images into 224 × 224 and then
predict once, which is more efficient in real applications. We
tried different selection ratios of 1, 5, 20, and 50%. The final
selection ratio of the recognition task, class task, detection task,
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TABLE 2 | Pearson’s linear correlation coefficient (PLCC)/Spearman’s rank order correlation coefficient (SRCC) results of cross-dataset test.

PLCC/SRCC SPAQ KonIQ-10k LIVEW CID BID

NFERM Gu et al., 2014 0.832/0.823 0.455/0.447 0.591/0.542 0.437/0.342 0.578/0.570

BRSIQUE Mittal et al., 2012 0.833/0.822 0.446/0.433 0.593/0.553 0.499/0.504 0.589/0.578

CORNIA Ye et al., 2012 0.867/0.859 0.532/0.516 0.663/0.621 0.552/0.465 0.676/0.673

HOSA Xu et al., 2016 0.873/0.866 0.559/0.534 0.682/0.650 0.593/0.536 0.681/0.670

Baseline Fang et al., 2020 0.909/0.908 0.532/0.523+ 0.564/0.517+ 0.518/0.569+ 0.574/0.566+

MT-S Fang et al., 2020 0.921/0.917 0.486/0.485+ 0.539/0.493+ 0.342/0.389+ 0.530/0.529+

HyperNet Su et al., 2020 0.917/0.915 0.679/0.645 0.695/0.680 0.624/0.585 0.648/0.647

MetaIQA Zhu et al., 2020 0.871/0.870 0.722/0.686 0.765/0.731 0.737/0.695 0.743/0.735

Our Results

IE-IQA (w/ recognition task) 0.918/0.913 0.768/0.710 0.779/0.764 0.743/0.713 0.744/0.742

IE-IQA (w/ classification task) 0.917/0.915 0.761/0.720 0.764/0.758 0.737/0.702 0.737/0.737

IE-IQA (w/ detection task) 0.920/0.916 0.777/0.728 0.782/0.772 0.742/0.702 0.748/0.749

IE-IQA (w/ segmentation task) 0.918/0.914 0.775/0.724 0.781/0.768 0.752/0.737 0.744/0.746

IE-IQA (w/ unrecognization task) 0.920/0.916 0.770/0.721 0.774/0.764 0.752/0.725 0.747/0.746

The model is trained on 80% images of Smartphone Photography Attribute and Quality (SPAQ) and directly tested on rest 20% SPAQ images and other datasets. Results with “+” are

obtained from the released model. HyperNet are retrained with image size of 244 × 244. Best results are in bold.

TABLE 3 | Pearson’s linear correlation coefficient (PLCC)/Spearman’s rank order correlation coefficient (SRCC) results on intra-dataset tests.

Dataset KonIQ-10k SPAQ LIVEW CID2013 RBID

NFERM Gu et al., 2014 0.725/0.689 0.832/0.823 0.562 /0.517 0.825/0.823 0.585/0.559

BRISQUE Mittal et al., 2012 0.689/0.647 0.833/0.822 0.574/0.557 0.810/0.814 0.617/0.594

CORNIA Ye et al., 2012 0.773/0.738 0.867/0.859 0.692/0.655 0.822/0.803 0.712/0.695

HOSA Xu et al., 2016 0.791/0.761 0.873/0.866 0.703/0.667 0.835/0.833 0.716/0.684

NSSADNN Yan et al., 2019 / / 0.813∗/0.745∗ 0.825∗/0.748∗ /

MEON Ma et al., 2017 / / 0.693∗/0.688∗ 0.703∗ / 0.701∗ /

BIECON Kim and Lee, 2017 / / 0.613∗/0.595∗ 0.620∗/0.606∗ /

Baseline Fang et al., 2020 0.908/0.889 0.909∗/0.908∗ 0.825/0.794 0.876/0.881 0.802/0.794

WaDIQaM-NR Bosse et al., 2017 0.805∗/0.797∗ / 0.680∗/0.671∗ 0.729∗/0.708∗ 0.742∗/0.725∗

HyperNet Su et al., 2020 0.917∗/0.906∗ 0.914/0.909 0.882∗/0.859∗ / 0.878∗/0.869∗

DBCNN Zhang W. et al., 2020 0.892/0.868 0.915∗/0.911∗ 0.869∗/0.851∗ / 0.859∗/0.845∗

MetaIQA Zhu et al., 2020 0.887∗/0.850∗ 0.871/0.870 0.835∗/0.802∗ 0.784∗/0.766∗ 0.777/0.746

IE-IQA (w/ recognition task) 0.921/0.900 0.918/0.913 0.868/0.838 0.934/0.934 0.838/0.837

Results with ∗ are obtained from published papers. Other results are obtained from retrained model. Best results are marked in bold.

segmentation task, and unrecognization task are 5, 5, 20, 50,
and 50%, respectively.

Our evaluation criteria are two widely used correlation
coefficients: Pearson’s linear correlation coefficient (PLCC) and
Spearman’s rank order correlation coefficient (SRCC).

4.3. Performance Comparison
This paper aims to propose a highly generalizable NR-IQA
model, thus we train our model in one dataset and then test
on other datasets directly without doing any fine-tuning.
For comparison, we also re-train some popular handcrafted
feature-based methods, such as BRISQUE, CORNIA, HOSA,
and deep learning-based methods, including DBCNN
(Zhang W. et al., 2020), MetaIQA (Zhu et al., 2020), and
WaDIQaM-NR (Bosse et al., 2017) (codes are publically

available) with the same setting. All results trained on KonIQ-
10k are shown in Table 1. The middle group in Table 1 shows
deep learning-basedmethods, and the results of methods without
public codes are obtained from the original papers. The bottom
group shows our results.

From Table 1, we can observe that our framework with five
intelligibility tasks can consistently achieve the best cross-dataset
performance for most cases. It should be emphasized that our
models are only trained with KonIQ-10k (80% images) and
directly tested on other datasets without any fine-tuning. Though
NSSADNN, MEON, and BIECON made fine-tuning on the
target dataset, our generalization performance can still maintain
a significant advantage.

Efficient-B0 has 5.3M parameters, which is less than ResNet18
(11.7 M parameters, the backbone of MetaIQA), ResNet50 (26
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FIGURE 5 | Performance comparison for different tasks with/without feature selection strategy on KonIQ-10k. (A) Pearson’s linear correlation coefficient (PLCC)

results. (B) Spearman’s rank order correlation coefficient (SRCC) results. The recognition and classification task utilize contribution-based strategy, and the

unrecognizability task utilizes gradient-based strategy.

FIGURE 6 | Ablation study of intelligibility enriched IQA (IE-IQA). (A) Pearson’s linear correlation coefficient (PLCC) results of models trained with 80% KonIQ-10k. (B)

Spearman’s rank order correlation coefficient (SRCC) results of models trained with 80% KonIQ-10k. (C) PLCC results of models trained with 80% Smartphone

Photography Attribute and Quality (SPAQ). (D) SRCC results of models trained with 80% SPAQ.

M parameters, the backbone of HyperNet), and ResNet101 (44.5
M parameters, the backbone of DeepRN). Efficient-B0 is easy
to converge, and we show the loss and PLCC results during
training and test in Figure 4. We can observe from Figure 4

that the test loss decreases with the training loss and the test
performance increases with training performance. This means
that the network is trained without overfitting.

To make a further comparison, we also train our methods on
SPAQ and perform cross-dataset tests on the other four datasets.
The results are shown in Table 2.

The model “Baseline” in Fang et al. (2020) means the baseline
model (ResNet50) and “MT-S” means the model jointly trained
withMOS and scene labels (The SPAQ dataset has scene category
labels). We can observe that compared to MT-S, our method can
achieve similar performance on the training dataset. However, by
combining intelligibility features, the generalization performance
of the proposed method is apparently much better.

Comparing Table 2 with Table 1, we can observe that models
trained on KonIQ-10k have better cross-dataset performance.
One possible reason is the source of images. The SPAQ dataset
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TABLE 4 | Results of training the distortion network from scratch on 80%

KonIQ-10k.

PLCC KonIQ-10k(20%) SPAQ LIVEW CID BID

Only distortion 0.784 0.756 0.638 0.676 0.645

W/recognition 0.814 0.812 0.689 0.714 0.706

W/classification 0.814 0.763 0.653 0.695 0.659

W/detection 0.812 0.740 0.644 0.682 0.640

W/segmentation 0.826 0.758 0.676 0.688 0.684

W/unrecognization 0.811 0.749 0.651 0.691 0.666

Best results are in bold.

is obtained from smartphones only, while the image sources of
KonIQ-10k are more diversified. Another possible reason is that
the image size of the SPAQ dataset is very large (4000 × 3000 is
common) and our model has an input size of 224 × 224. Small
size input may lose much information and the interpolation
algorithm may bring new distortions.

Another phenomenon observed from Tables 1, 2 is that
the proposed method achieves slightly worse generalization
performance on the BID/CID databases than the other three
datasets. The BID dataset focuses on blur images and the CID
dataset consists of limited scenes of images (eight scenes).
This may lead to a more pronounced distribution discrepancy
between CID/BID and the training datasets.

Though our metric aims to achieve high generalization
ability, we still make further experiments on intra-dataset tests.
The results are listed in Table 3. We can summarize from
Table 3 that our metric can achieve state-of-the-arts intra-dataset
performance. Though HyperNet achieves better performance
for some cases, it needs to evaluate crop 25 patches during
evaluating, costing much more time than the proposed metric.
For example, when evaluating 1,000 images with the resolution
of 1024 × 768 (batchsize = 1, using one TITANXp GPU and
Intel Xeon E5-2630V4 CPU), HyperNet costs 2,040 s, while the
proposed metric only costs 84 s.

To explore how feature selection strategy affects prediction
results, we make a comparison of the results with/without
feature selection strategy, and show them in Figure 5. The results
show that removing noisy features and utilizing features having
significant influence on final predictions tend to achieve higher
performance and better generalization ability with only one
exception (recognition task) on the CID dataset. One possible
reason is that the CID dataset has only eight specific scenes and
many images in CID contain the same objects. In this situation,
selected features may not provide rich distinguished information
for evaluating quality of images with similar contents.

To demonstrate the effectiveness of intelligibility features, we
make ablation studies and show the results in Figure 6. The
baseline means the model with distortion backbone alone. From
Figure 6, we can observe that intelligibility features do improve
both performance and generalization ability. Therefore, it is
necessary to combine both intelligibility aspect and distortion
aspect in IQA metrics.

During the training process, the distortion network loads
the pre-trained model, and some semantic information and

TABLE 5 | Results of training the distortion network from scratch on 80%

Smartphone Photography Attribute and Quality (SPAQ).

PLCC SPAQ(20%) KonIQ-10k LIVEW CID BID

only distortion 0.878 0.568 0.605 0.665 0.598

w/recognition 0.883 0.591 0.628 0.702 0.628

w/classification 0.884 0.585 0.625 0.695 0.631

w/detection 0.882 0.598 0.626 0.698 0.623

w/segmentation 0.883 0.592 0.627 0.697 0.629

w/unrecognization 0.881 0.585 0.621 0.686 0.615

Best results are in bold.

FIGURE 7 | Visualization results of Grad-CAM. (A) Original images; (B)

heat-maps of the baseline model; (C) heat-maps of the intelligibility network;

(D) heat-maps of proposed model with image recognition task.

intelligibility features may have already existed in the pre-trained
model. To further investigate the effects of original intelligibility
features on the distortion network, we train the distortion
network from scratch. Then we fuse the intelligibility network
with the distortion network. The results are shown in Tables 4, 5.
From the tables, we can observe that the introduced intelligibility
network still benefits the performance of the whole framework
even the distortion network is not pre-trained.

To explore how intelligibility affects quality assessment results
intuitively, we utilize the method of Grad-CAM (Selvaraju
et al., 2017) to investigate which area of an image affects the
prediction most. Examples are shown in Figure 7, where red
areas have more conspicuous influence to the prediction than
blue areas. As shown in Figure 7, the intelligibility features
do play an important role in the quality assessment. The
baseline model with distortion network only (Figure 6B) cannot
effectively locate salient objects which people may pay attention
to. The intelligibility features (Figure 6C) alone mainly focus on
relatively local regions and cannot well utilize global information
of images. In contrast, the proposed model (Figure 6D) not only
meticulously locate salient objects (important for intelligibility),
but also pay more attention to wider areas, which catches global
information. It is widely acknowledged that both global and
local information are vital to IQA metrics (Fang et al., 2018);
hence, from this point of view, it is not hard to understand that
by combining the intelligibility features, our model can achieve
better performance.
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5. CONCLUSIONS

In this paper, we first analyzed the relation between intelligibility
and image quality. The results reveal that intelligibility is
indicative of image quality. Therefore, we proposed a new
framework, i.e., Intelligibility-Enriched-IQA, to combine
intelligibility with conventional distortion measure. Feature
selection strategy was proposed to select the most important
intelligibility features, which alleviates negative transfer and
avoids damaging highly generalizable features. Extensive
experimental results show the effectiveness of proposed method,
and our model achieves state-of-the-art performance in terms
of the generalization ability. These results demonstrate that
introducing intelligibility is a promising way in building highly
generalizable IQA metrics.
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At present, most of departments in colleges have their own official accounts, which have

become the primary channel for announcements and news. In the official accounts,

the popularity of articles is influenced by many different factors, such as the content

of articles, the aesthetics of the layout, and so on. This paper mainly studies how to

learn a computational model for predicting page view on college official accounts with

quality-aware features extracted from pictures. First, we built a new picture database

by collecting 1,000 pictures from the official accounts of nine well-known universities in

the city of Beijing. Then, we proposed a new model for predicting page view by using

a selective ensemble technology to fuse three sets of quality-aware features that could

represent how a picture looks. Experimental results show that the proposed model has

achieved competitive performance against state-of-the-art relevant models on the task

for inferring page view from pictures on college official accounts.

Keywords: page view, quality-aware features, selective ensemble, human visual system, college official accounts

1. INTRODUCTION

With the popularization and development of the Internet, the official accounts have attracted
extensive attention. The majority of college departments now own accounts because it has become
the main channel for publishing notices and posting news. Page view is a very significant indicator
for college official accounts, capable of visually showing the popularity of an article. If we can
predict the page views, it is of great help to improve the attention of audience for articles. The
number of views on articles is influenced by the content of pictures. To this end, we explore the
quality-aware features of pictures and attempt to predict page views in the official accounts based
on image processing technology in this paper.

In recent years, with the development of image processing technology, there are many
great contributions in multimedia telecommunication domain (Geng et al., 2011; Kang et al.,
2019; Moroz et al., 2019; Su et al., 2019; Wu et al., 2019; Yildirim, 2019), education
and teaching (Richard, 1991; Greenberg et al., 1994; Rajashekar et al., 2002; Yaman and
Karakose, 2016), and environmental perception and protection, such as air pollution detection
(Gu et al., 2020a,c, 2021b; Liu et al., 2021), PM2.5 monitoring (Gu et al., 2019, 2021a),
air quality forecast (Gu et al., 2018, 2020b), and distance education (Zheng et al., 2009).
Among them, picture quality assessment (PQA) has been receiving a lot of attention as
an important part of image processing technology. With a variety of PQA models available
from Wang et al. (2004), how to achieve evaluation results that are consistent with the
subjective PQA of human beings is crucial. Usually, subjective experiments are performed by
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human observers who score the pictures, and the final reliable
results obtained are taken as the ground truth (Gu et al.,
2014, 2015a). However, the method mentioned above is time
consuming and complicated, so the focus of relevant scientific
research has shifted to the design of objective PQA algorithms
implemented by computers. The objective PQA algorithm has
the characteristics of convenience, high-speed, repeatable, batch
processing, and real-time, which make up for the deficiency of
the subjective PQA method.

The objective PQA approach establishes a mathematical
model that is combined with the subjective human visual system
(HVS) to realize the evaluation of picture quality. According to
the amount of information provided by the reference picture,
the existing objective PQA methods can be divided into: full
reference (FR) PQA method, reduced reference (RR) PQA
method, and no reference (NR) PQA method. Among them,
the FR PQA method is the most reliable and technically mature
evaluation method. It has a complete original picture and
allows a one-to-one correspondence comparison of the distorted
picture with the pixels of the original picture. Instead, RR
PQA method requires only partial original picture information,
researchers like Liang and Weller (2016) and Wu et al. (2013)
put forward a series of novel RR PQA algorithms. The FR
PQA algorithm and the RR PQA algorithm combine the visual
features of the picture to quantify the difference between the
original picture and the distorted picture, so as to get the quality
of pictures.

In official accounts, the original picture information is
not available, so it is particularly important to propose PQA
algorithm. Most of the current NR PQA methods were proposed
based on two steps, which are feature extraction proposed by Gu
et al. (2017b) and the support vector machine (SVM) proposed
by Smola and Schölkopf (2004) that can find out the underlying
relationship between the selected features and human subjective
evaluations. No reference method is a situation where none of
the information contained in any reference picture or video
is used to draw quality conclusions. Since the picture is not
available in most cases, more and more metrics were proposed
for NR PQA method. Nowadays, the advanced method (e.g.,
BRISQUE) is a universal blind PQA model based on Natural
Scene Statistics (NSS) proposed by Mittal et al. (2012). Natural
scene pictures belong to a small domain of Internet picture
signals that follow predictable statistical laws. Specifically, the
natural scene pictures captured by high-quality devices obey
the Gaussian-like distribution, while the pictures with distortion
(such as blur, noise, watermarks, color transformation, etc.) do
not follow the Bell curve law. Based on this theory, the features
of NSS can be used as an effective and robust natural PQA tool.
In recent years, a large number of studies based on NSS have
been carried out, such as the MSDDs presented by Jiang et al.
(2018), Bliinds-II constructed by Saad et al. (2012), BLIQUE-
TMI created by Jiang et al. (2019b), GMLF designed by Xue
et al. (2014), and DIIVINE presented by Moorthy and Bovik
(2011), which is capable of assessing the quality of distorted
pictures across multiple distortion categories, etc. In addition,
Ruderman (1994) investigated the data rules of natural pictures,
which provides a basis for evaluating the perceptual quality of

pictures. The local features of pictures can perfectly reflect the
perceptual quality of pictures.

Due to the fact that most of the audiences get the information
from official accounts from vision, we also introduce into the
approach based on the HVS. Advances in brain science and
neuroscience studied by Friston et al. (2006) have encouraged
scholars to explore new fields of machine vision. Eye movement
research is also of significance to the visual perception of brain
science. Jiang et al. (2019a), Kim et al. (2019), Lin et al. (2019),
Tang et al. (2020), Zhang et al. (2020), Jiang et al. (2021), Wang
et al. (2021) had carried out a lot of research work. Brain science
research have shown that the brain produces an intrinsic model
to explain the process of perception and understanding, and that
the free energy generated during this cognitive process can reflect
the difference between picture signals and internal descriptions.
By modeling important physiological and psychological visual
features, Xu et al. (2016) discussed the mechanism related to
free energy in the human brain and proposed an efficient PQA
method by using JPEG and JPEG2000 compression, Jiang et al.
(2020) presented a new FR-SIQM method by measuring and
fusing the degradations on hierarchical features. Besides, Gu et al.
(2015b) designed the NFSDM in an alternative way of extracting
features. On the basis of the NFSDM approach, the NFERM is
combined with HVS to reduce the number of extracted by half,
further improving the accuracy of the evaluation.

Based on image processing technology, this paper investigates
a large collection of quality-aware features of pictures to
predict the page view that reflects the popularity of articles. To
accomplish this goal, the authors do a lot of work to collect
the pictures published by the WeChat official accounts of nine
universities in Beijing in recent months, and establish a new
picture database consisting of 1,000 pictures. In addition, we
collect three groups of features from the Official Accounts Picture
Quality Database (OAPQD) and use the selective ensemble
technique proposed for NSS, HVS, and histogram feature analysis
to fuse these features, allowing them to fit the correlation between
page view and the quality of pictures. The results of experiments
show that these features are able to predict the page view of
articles, and that the method of using the three groups of features
can more accurately fit the correlation.

The structure of this paper is as follows. In section 2, we
describe the construction of the OAPQD dataset. In section 3,
the three features and the selective ensemble method that can
fuse them are presented separately. We conduct the comparison
experiment on the OAPQD to analyze themagnitude of the seven
features on fitting the page view in section 4. Section 5 gives the
concluding remarks.

2. THE DATASET

With the development of information and network technology,
traditional media were gradually replaced by digital new media,
such as WeChat official account, which has been widely used by
all walks of life. Currently, most universities use official accounts
as the platform for campus culture construction. In order to
better explore the reasons why articles are popular on public
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accounts, we focus mainly on the page view of articles. To this
end, we first subscribed to the WeChat official accounts of nine
well-known universities in Beijing, then selected the pictures
inserted in the articles that were published by the accounts in
the past months, based on which a new database is created. To
be specific, the most researched and representative pictures are
extracted from the selected article. Simultaneously, the number
of page views corresponding to the selected article is recorded,
with a maximum of 100,000 and a minimum of 253. We selected
a picture from a large number of articles published by official
accounts of schools every day, and we have collected 1,276
pictures altogether. However, not each of the above pictures has
research value. In these pictures, the selection criteria are first
based on the picture content and type, and then exclude extreme
special cases, such as the case where the picture quality is very
poor but the number of clicks is very high. Finally, 1,000 most
representative pictures were selected to form the picture data set.
Figure 1 shows the subset of OAPQD.

By observing the data set we constructed, we find that there
is a positive correlation between picture quality and page view.
As shown in Figure 2, there are three pictures from left to right.
The picture on the left is the most colorful and clear among the
three pictures, giving a better visual experience with 41,000 hits.
The intermediate picture is of poor quality, with only 7,466 clicks.
The picture on the far right is the least visually appealing and thus
logically the least clicked picture with only 1,052.

3. METHODOLOGY

The specific features can well reflect the page view of pictures,
but the fitting accuracy of using a certain characteristic feature
alone is relatively low. In this section, we will introduce the three
groups of complementary features extracted based on natural
scene analysis, histogram, and free energy theory, and further
describe a selective ensemble approach capable of fusing the
99 features.

3.1. NSS-Based Feature Extraction
The first group is composed of 36 features (f01-f36), which were
proposed on the basis of NSS theory. Bovik (2010) suggested that
natural pictures have regular statistical characteristics, therefore,
the statistical features of natural scenes can be considered as
an effective and powerful tool for PQA. In general, complex
image textures affect the perceptual level of distortion, and the
local brightness normalization can greatly reduce the correlation
between adjacent pixels of the original picture and the distorted
picture. Thus, the classic spatial NSS model is first used to
preprocess the picture to remove the local mean value, and
then the picture is segmented and normalized to extract the
mean subtracted contrast normalized coefficient of natural scene
pictures. The Mean Subtracted Contrast Normalized (MSCN)
coefficients vary in different ways due to distinct distortions. On
the basis of this variation, the type of picture distortion and
the perceived quality of pictures can be predicted. The pixel
intensity of natural pictures follows a Gaussian distribution,
which can be represented by a Bell curve. In order to clearly
observe the differences in data distribution between different

distortion types and natural pictures, we use the generalized
Gaussian distribution (GGD) to fit the distribution of MSCN.
The sign of the transformed picture coefficients are regular, but
Mittal et al. suggested that the existence of distortion affects this
above correlation structure. In order to research the correlation
information between connected pixels, the zero-mode AGGD is
used to model the inner product of MSCN adjacent coefficient.
Themomentmatching-based approach proposed by Lasmar et al.
(2009) can estimate the parameters of the AGGD. Then we
calculate the adjacent pairs of coefficients from the horizontal,
vertical, and diagonal directions to obtain the 16 parameters,
respectively. Low-resolution pictures are obtained from each
picture through low-pass filtering and downsampling with a
factor of 2.Wemeasure theMSCN parameters fitted by GGD and
the 16 parameters generated by AGGD according to the above
two scales. Once all the work mentioned above is done, the first
feature set consisting of 36 features is obtained.

3.2. Histogram-Based Feature Extraction
The second group consists of 40 features (f37-f76), illustrating
the main features of the HVS introduced from biology in image
processing. Since the visual information in picture is often
redundant, the understanding of the HVS is mainly related
to its basic features, such as contour, zero cross, and so on.
Gradient magnitude (GM) feature can reflect the intensity of
local luminance variations. The local maximum GM pixels can
reflect small details and textural change of pictures, which is
the main element of contour. GM has been widely used for
PQA methods, such as FSIM proposed by Zhang et al. (2011),
GMSD constructed by Xue et al. (2013), PSIM designed by
Gu et al. (2017a), and ADD-GSIM established by Gu et al.
(2016), where picture quality is evaluated only by the similarity
of gradient magnitude. Besides, on the basis of GM method,
Min et al. (2019b) first proposed a picture dehazing algorithm,
then a novel objective index named DHQI was presented by
Min et al. (2019a) can be utilized to evaluate DHAs or optimize
practical dehazing systems. Finally, a blind PQA method was
introduced by Min et al. (2018) has a superior performance.
Generally, GM is calculated using linear filter convolution, where
the typical filters are mainly Sobel, Prewitt, Roberts, etc. Unlike
the GM operator, isotropic measurements on the second spatial
derivative of pictures show the strongest brightness variation.
The Laplacian of Gaussian (LOG) operator reflects the intensity
contrast of a small spatial neighborhood, and Marr and Hildreth
(1980) proposed that it can model the receptive fields of retinal
ganglion cells. The LOG operator and the GM operator adopt
the anisotropic calculation method without angular preference
to obtain the local picture structure from different angles. They
can represent the structural information of pictures, especially
the local contrast features, and therefore can be used to form
the semantic information of pictures. Finally, the picture local
quality prediction is achieved by using these two operators
mentioned above.

3.3. Free Energy-Based Feature Extraction
The 23 features (f77-f99) extracted in the third group are inspired
by the free energy principle and the structural degradation
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FIGURE 1 | Representative nine pictures from the OAPQD data set, the content of above mainly includes architecture, landscape, people, text content, meeting

scene, etc.

FIGURE 2 | The quality of the three pictures in the OAPQD decreases gradually from left to right.

model (SDM). A basic premise of the free energy theory is
that an internal generative model can be used to estimate the
gap between the viewing scene and the corresponding brain
prediction. It measures the difference between the probability
distribution of environmental quantities acting on the system
and an arbitrary distribution encoded by its configuration.
Since this process is very closely related to the quality of
human visual perception, it can be used for the PQA method.
The free energy of pictures can be approximated by the
AR model as the total description length of pictures data.

In an effective RR SDM proposed by Gu et al. (2015b),
we observe the structural degradation after low-pass filtering
of the picture. The spatial frequency of input picture I
has different degrees of decrease. We first define the local
mean and variance of I with a two-dimensional circularly
symmetric Gaussian weighting function. The linear dependence
between the free energy and the structural degradation
information provides an opportunity to characterize distorted
pictures in the absence of the information of original picture.
Furthermore, the NFEQM is added to the third group as
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feature f99 due to its excellent performance in noisy and
blurred pictures.

3.4. Selective Ensemble-Based Page View
Inference
A single picture feature does not represent the picture quality
well, which will lead to its poor fitting of the relationship
between features and page view. To solve this question, we
consider an ensemble learning approach which can produce
strong generalization to improve the fitting accuracy. This
content has become a hot research topic in the international
machine learning community, so there are more and more
methods presents by scholars, such as the geometric structural
ensemble (GSE) learning framework approach presented by Zhu
et al. (2018). Zhou et al. (2002) suggested that the presence of
high-dimensional selective ensemble methods based on direct
merging is prone to overfitting or some of these features
may be overlooked in the fitting process. On the basis of
this theory, we adopt the method of selective ensemble to
further enhance the performance of our presented approach in
this paper.

It is natural to combine features to derive a more effective
preprocessing method, so as to better remove random details
caused by the varying viewing method and picture resolution
in different but supplementary domains. We combine the
three features two by two and last fuse the three by using a
selective ensemble technique proposed by Gu et al. (2020b)
and Chen et al. (2021), so as to make an experimental
comparison with the accuracy of the fit using single features.
The following seven categories can be generated based on the
number of features: (1) BRISQUE; (2) GMLF; (3) NFERM; (4)
BRISQUE+GMLF; (5) BRISQUE+NFERM; (6) GMLF+NFERM;
(7) BRISQUE+GMLF+NFERM. The experimental results show
that the number of fused features affects the linearity of
the results, where the method that fuses three features has
the best performance and the single feature has the worst
accuracy in fitting the correlation between picture quality and
page view.

4. EXPERIMENTAL RESULTS AND
ANALYSIS

In this section, we carry out the comparison experiment on the
OAPQD, so as to understand the degree of seven features on
fitting the page view of articles. In this process, we select the two
classical metrics to evaluate the performance of experiments.

In order to further predict page view with quality-aware
features, experiments are conducted on the OAPQD dataset
consisting of 1,000 pictures selected from the WeChat official
accounts of nine universities in Beijing. The pictures from
the dataset used for testing are rich in content and variety,
and can improve well the hit of pictures published in the
college official accounts. This provides a certain foundation for
our proposed method. In the experimental analysis section,
we use two commonly statistical indicators as the metrics
to assess the performance, which are the Pearson linear

correlation coefficient (PLCC) and the Spearman rank order
correlation coefficient (SRCC). The PLCC is a linear correlation
coefficient with scale invariance, which indicates the degree of
similarity between picture features and page view. The PLCC is
defined as

PLCC =

∑

i(qi − q̄) · (oi − ō)
√

∑

i(qi − q̄)2 ·
∑

i(oi − ō)2
(1)

where oi and ō represent the features of the ith picture and its
overall mean value, and qi and q̄ are the page view of ith picture
and its mean value. Before using the PLCC metric for evaluation,
we employ the nonlinear regression equation proposed by Sheikh
et al. (2006), which is given by

p(x) = α1

[

1

2
−

1

1+ eα2(x−α3)

]

+ α4x+ α5 (2)

where p(x) represents the predicted score, αi (i = 1,2,3,4,5) is
the parameter of the generation fitting, and x is the original
prediction score. While the SRCC represents the strength of the
monotonic relationship predicted by the algorithm, it can be
calculated by

SRCC = 1−
6

N(N2 − 1)

N
∑

i=1

d2i (3)

where N is the number of pictures in the dataset, and di is the
difference between the ranking of ith picture in features and
page view. The value range of PLCC and SRCC is [−1, 1]. The
closer the absolute value of these two indicators is to 1, the
stronger the correlation between picture features and page view,
where >0 means a positive correlation and <0 means a negative
correlation. In the regression problem, the closer the value is to 1,
the higher the accuracy of the algorithm.

We extract three types of features, where the first set of
feature coefficients has the characteristic statistical property
of varying due to the distortion. Quantifying these variations
allows obtaining the type of picture distortion while enabling
the prediction of page view. The second group of features
is composed of 40 local contrast features, GM and LOG,
which can detect changes in the semantic structure of the
picture due to variations of luminance for the purpose
of predicting the page view of the article. The third set
of features consists of 23 features based on free energy
and structure degradation information. In addition, they are
inspired by the HVS and the free energy theory, which
fill the gap in the NR PQA method due to the lack of
prior knowledge.

The features mentioned above can reflect the page view
well, and based on this, we use selective ensemble technology
to fuse features in different ways for comparison experiments.
The results of comparison experiments show that the method
that fuses all the three features together obtain the largest data
value and the highest accuracy of the results, followed by the
method of fusing two features. The experimental data is placed
inside Table 1, where the values obtained by the best-performing
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TABLE 1 | The Pearson linear correlation coefficient (PLCC) and Spearman rank

order correlation coefficient (SRCC) values of seven feature fusion methods on the

dataset.

Algorithm PLCC SRCC

BRISQUE (direct use) 0.0156 0.0347

GMLF (direct use) 0.0034 0.0343

NFERM (direct use) 0.0683 0.0146

BRISQUE (re-train) 0.3925 0.2707

GMLF (re-train) 0.3911 0.3340

NFERM (re-train) 0.3983 0.2782

BRISQUE+GMLF 0.4545 0.3577

BRISQUE+NFERM 0.4454 0.3054

GMLF+NFERM 0.4387 0.3655

BRISQUE+GMLF+ NFERM 0.4764 0.3863

The top data values are given in bold.

method are given in bold. In Table 1, it can be seen that the
values of PLCC and SRCC are very approximate when using
a single algorithm. It is not difficult to find that GMLF has
gained the best results (on average) of SRCC, which is sensitive
to pictures with gradient features. However, Table 1 reports the
low correlation performance on SRCC when combined with the
features from BRISQUE and NFERM. It also can be seen that
the more the number of fused picture features, the better the
fit to the relation between features and page view. Meanwhile,
it shows a certain degree of similarity between the features and
click-through rate. This method proposed in this paper can
provide guidance for themanagement of college official accounts.
For example, the insertion of high-definition and high-quality
pictures into published articles can increase the visibility of
the articles.

5. CONCLUSION

In this paper, we have studied the connection between picture
features and the popularity of articles published in college

official accounts. We elaborately select 1,000 pictures from

the official accounts of nine universities, construct a picture
database named OAPQD, and record the clicks of corresponding
articles. Three groups of features extracted from different angles
can reflect the features, and the stacked selective ensemble
technology is used to fuse them for comparison experiments.
The experimental results show that the method integrating three
groups of 99 features at the same time has the highest accuracy
in fitting the page view. Therefore, in future publicity work,
the selection of pictures is very meaningful for the popularity
of official account articles. For the publicity department of
the college, they can import our method to predict the
page views of their articles and use these data parameters
to adjust picture quality or change diffusion strategy. All of
these measures can improve the visibility of official accounts to
some extent.
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As working and learning environments become open and flexible, people are also

potentially surrounded by ambient noise, which causes an increase in mental workload.

The present study uses electroencephalogram (EEG) and subjective measures to

investigate if noise-canceling technologies can fade out external distractions and free up

mental resources. Therefore, participants had to solve spoken arithmetic tasks that were

read out via headphones in three sound environments: a quiet environment (no noise),

a noisy environment (noise), and a noisy environment but with active noise-canceling

headphones (noise-canceling). Our results of brain activity partially confirm an assumed

lower mental load in no noise and noise-canceling compared to noise test condition.

The mean P300 activation at Cz resulted in a significant differentiation between the no

noise and the other two test conditions. Subjective data indicate an improved situation

for the participants when using the noise-canceling technology compared to “normal”

headphones but shows no significant discrimination. The present results provide

a foundation for further investigations into the relationship between noise-canceling

technology and mental workload. Additionally, we give recommendations for an

adaptation of the test design for future studies.

Keywords: mental workload, ambient noise, noise-canceling, event-related potentials, EEG frequency,

subjective measures

1. INTRODUCTION

In flexible working surroundings like landscape offices, business trips, or even the home office,
people have to deal with noisy environments. It is hardly avoidable to be distracted by, e.g., other
conversations, traffic noise, or screaming kids while focusing on the actual task. The combination
of stressful influences and task difficulty increases the workload for the person. The interaction
of task characteristics and the person’s capacity influences the amount of mental load a person
is able to allocate in a task (Choi et al., 2014). Additionally, environmental stressors decrease
task performance and lead to motivational deficits (Evans and Stecker, 2004). In task solving,
which requires cognitive resources, keeping the demand on an appropriate level is important.
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Especially while working, a balance is necessary between the
work and any parallel (and potentially distracting) tasks to stay
focused over longer time (Teigen, 1994). There is evidence for a
relationship between the development of mental disorders and
continuous high levels of workload, as well as for decreased
satisfaction and well-being (van Daalen et al., 2009).

Mobile solutions which help to stay focused are frequently
used to improve the situation for the working person. One
option to directly reduce environmental auditory noise without
changing the working environment is headphones with active
noise-canceling. These technologies use a basic principle of wave
optics called destructive interference. A signal superimposes
the incoming noise signal, which has the same amplitude but
the opposite phase (Kuo et al., 2006). Thereby, noise-canceling
headphones offer an individual and a mobile solution for
noise suppression. In the present study, we examine to what
extent noise affects the workload level in task solving and
whether noise-canceling technologies can reduce the workload
compared to the use of headphones in normal mode in otherwise
identical circumstances.

In the present experiment, the participants performed the
same cognitive task in three different noise environments, which
serve as test conditions. The within-subject test design should
deliver insights about differences in the workload level between
conditions and changes over time for each condition separately.
In the no noise condition, the quiet environment should allow
the participants to focus on the task. We suggest the mental
load to be on a mid-level in this test condition. The ambient
noise presentation was assumed to increase mental load due
to a higher need for resources to stay focused. This effect
should become sharper in the noise condition as the persons
were directly exposed to the ambient noise. With the activation
of the noise-canceling feature in the noise-canceling condition,
the workload level was supposed to be lower compared to
the noise condition and slightly increased compared to no
noise condition.

For measuring workload, we employed subjective and EEG
measurement of brain. Subjective measures primarily assess
the participants’ reactions to experimental manipulation and
thereby give valuable insights about the person’s state at the
moment of the measurement. EEG and, in general, physiological
measures offer the advantage of a recording over an experiment’s
whole duration. The resulting continuous signal enables the
detection of stimulus-related reactions and also the observation
of changes over time. Therefore, the combination of measures is
assumed to give more complex insights as one measure alone.
We suggested the delivered findings from subjective measures
to give a fundamental differentiation between conditions into
the person’s mental and affective state. EEG should deliver
information about the brain’s underlying processes, which cause
differentiation in the level of mental workload for the three
test conditions.

Research about workload and its underlying processes was
extensively studied for decades, but it is still an elusive concept.
There are different considerations about how to define workload
and how it interacts with other mental processes. In an early
concept, given by Kahnemann, “mental effort” is described as

a capacity that is invested in task processing or demanded
by a task. The extend of effort invested in task solving is
less influenced by the task solver’s intention, but rather it is
regularized by the task demand (Kahneman, 1973). Later on,
Wickens describes “Workload” as the interrelation between
the task demand and the humans’ limited mental resources
needed for solving it. Depending on the complexity of one or
more tasks, multiple resources are required. These resources are
multidimensional and can be differentiated in several “stages”
and “modalities” (Wickens, 1979, 2008), whereas the resulting
load is a global (mental-) “load” on the human (Rasmussen,
1979; Wickens, 2008). Especially subjective measures have a
high operator acceptance because of paying attention to the
opinion of the participant (Hill et al., 1992). Since it appears
that emotions are related to the perceived workload of a task
and the other way around (Jeon et al., 2011; Chaouachi and
Frasson, 2012) we wanted to investigate aspects of the emotional
state of the participants in the current test design. With higher
ratings for negatively related emotional items, we suggest a higher
perceived workload.

In several studies, it was shown that both subjective
measurements and EEG measurements show sensitivity for
workload (Parasuraman, 1990; Hankins and Wilson, 1998;
Borghini et al., 2014). On the one hand, it is of interest to confirm
the results of one measurement with the other measurement
results. However, it is also suggested that subjective meaning
conscious ratings deliver deviating observations as unconscious
activation in the brain. We expect additional and possibly more
detailed observations from the study of brain activity.

EEG data can be investigated regarding mental processing
and workload, considering event-related potentials (ERPs) and
power spectral densities of frequency bands. In the frequency
domain, we investigate the spectral power of frequency bands.
The EEG frequency bands of interest are delta, theta, alpha,
beta, and gamma. We define the frequency range 0.1–4 Hz
corresponding to delta (delta is categorized differently but often
in the range between 0.3 and 4.5 Hz; see, e.g., Feinberg et al.,
1987; Anderson and Horne, 2003; Knyazev, 2012), 4–8 Hz
corresponding to theta, 8–12 Hz corresponding to alpha, 12–
30 Hz corresponding to beta, and 30–40 Hz corresponding to
gamma (gamma frequency range is referred to as < 30Hz;
see, e.g., Knyazev, 2012). An increase in delta activation was
observed in pilots during flying operations with rising cognitive
demand (Harmony et al., 1996; Wilson, 2002). The theta band
is suggested to be associated with memory processes and mental
workload (Klimesch, 1999). Reduced alpha in combination with
higher theta power is suggested to occur whenworkload increases
(Brouwer et al., 2012). With increasing task difficulty and thereby
with increasing cognitive load, the frontal-midline theta responds
with a maximum at frontal central electrode positions (Ishihara
and Yoshii, 1972; Gevins et al., 1998). The alpha band is the
dominant frequency in the human scalp EEG (Klimesch, 1999).
Alpha band power response to workload showed a varying
behavior. In a visual spatial task, alpha at parietal-temporal-
occipital region decreased with task difficulty (Gevins et al.,
1998). In a following experiment in which a memory component
extended the task, it was shown that alpha total power increased
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with task difficulty (Murata, 2005). In an experiment by (Yu
et al., 2009) with a mental arithmetic task, an alpha decrease
and a beta increase at parietal and occipital sites was shown.
Additionally, beta power activation seems to be related with
cognitive processing (Ray and Cole, 1985). Studies investigating
the gamma band suggest an increased activation with raised
task difficulty (Gevins et al., 1998; Knoll et al., 2011). Other
findings suggest gamma (40 Hz) activity reported an activation
in a selective attention task of auditory stimuli at the auditory
cortex (Tiitinen et al., 1993). It is also known to be more generally
associated with sensory processing and cognitive processes with
a wide distribution on the scalp (Başar-Eroglu et al., 1996).

Based on these insights, we suggested the highest delta, theta,
beta, and gamma power spectral density in the noise condition
and in the no noise condition the lowest. In the noise-canceling
condition, it was suggested to be on a mid-level. For alpha
power spectral density, it was suggested to be in lower in the no
noise, on a mid-level in the noise-canceling, and smallest in the
noise condition.

In the time domain, the stimulus-locked ERPs were
investigated. Based on a body of literature, we suggested
differences in the P300 that is a positive component of the
ERPs, which peaks 300 ms after a stimulus onset (Duncan
et al., 2009). It shows sensitivity to workload, a maximum
characteristic over midline scalp sites, and has a centro-parietal
distribution. The P300 component is often divided in two parts:
the P3a and the P3b. Whereby, the P3a appears as a response
to novelty of a stimulus and as an orienting response, and the
P3b shows a sensitivity for task-relevant processing and decision-
making processes (Friedman et al., 2001). The amplitude of
P300 has been reported to be an indicator of different levels of
difficulty (Wickens et al., 1977; Kramer et al., 1987) and thereby
workload (Ullsperger et al., 2001). With increasing workload, the
amplitude of P300 is suggested to remain smaller, whereby the
latency of the component remains higher (Duncan et al., 2009).
Studies of the P300 were conducted primarily in conjunction
with a classical Oddball paradigm. With our task design, we
deviate from the classic oddball like it was done in studies
about the discrimination of different workload levels (Ullsperger
et al., 2001; Allison and Polich, 2008). The main task, solving
mental arithmetics, is complicated with different levels of noise
intensities. This scenario is comparable to attending an online
meeting in a noisy environment while recording thoughts into
a protocol. The mental demand caused by the recall of numbers
and the calculation of the arithmetics is suggested to elicit a
P300. The spoken arithmetic equations and the environmental
noise address the same sensory modality, which means a higher
workload in this channel. So we suggest the P300 amplitude
to be smallest in the noise and most extensive in the no noise
condition. As the noise-canceling technology suppresses the
ambient noise, making it easier to focus as in the noise condition,
we suggested the amplitude to be on a mid-level (between the
other two conditions).

In the following, we explain the task and the whole test setup.
The following part reports the results and delivers the base for the
subsequent discussion, including limitations and suggestions for
future work. In the final section, we provide a conclusion.

2. MATERIALS AND METHODS

2.1. Task
The fundamental task of each trial was to solve an arithmetic
equation. These consisted of two numbers and the four basic
operators: addition, subtraction, multiplication, and division.
The two numbers and the result were in the range of 1–200,
and they were all integer numbers. These tasks were presented
auditory via headphones to the participant.

We decided against providing the participants with a fixed
time for answering because the difficulty among the tasks
varied heavily. In pre-tests, we observed participants to develop
answering strategies to cope better with the demanding situation.
For example, the task 3 + 2 was more intuitive to solve in a
short time for most participants, whereas many people took a
long time to solve 23 ∗ 7. While testing a constant time given
for all sorts of tasks, we noticed that participants sometimes
typed in the answer of an easy task but waited until the time
was almost over to provide themselves with a short break. If
we are now interested in, e.g., the total amount of tasks solved
correctly throughout a condition, this avoiding behavior will bias
our findings. Furthermore, the short, unplanned breaks might
impact the perceived workload as well. Hence, we decided to
create a machine learning-based algorithm to predict the ideal
time needed to solve the task for each participant. Since it
is not the focus of this paper to describe the algorithms in-
depth, we present here only the fundamental idea of the model:
Using general features from the arithmetic task at hand, e.g., the
operator and the digit-span, as well as the previous performance
of the participant, we predicted the time per task individually.
This allowed us to address the individual abilities of each subject
but also to not allow for any headroom in the time given.

2.2. Subjective Measures
We chose theNASATask Load Index (NASA-TLX) questionnaire
to assess the participants’ perceived workload. It is a sensitive
indicator of workload because participants describe their
personal impressions from their individual viewpoint (Hart and
Staveland, 1988). It is a widely acknowledged multi-dimensional
rating scale, which was adapted in several studies (Hart, 2006)
to obtain workload estimates. In the present study, ratings from
six dimensions (mental demand, physical demand, temporal
demand, frustration, effort, and performance) were averaged
without individual weights. We decided on the unweighted
version as it is easier to apply, and the sensitivity seems to be
similar as with adding the weighting process (Hart, 2006). Since
our approach was to get information about the participants’
affective states, we used the Self-Assessment Manikin (SAM).
The pictorial assessment is easy to explain and covers essential
aspects of a person’s affective reaction to a stimulus (Bradley and
Lang, 1994). The participant could rate with three items: pleasure
(from 1= satisfied to 9= unsatisfied), arousal (from 1= excited
to 9 = unexcited), and dominance (from 1 = controlled to
9 = controlling). Additionally, a scale for assessing subjectively
experienced effort was deployed. We referred to this scale as
“subjective rating scale (SRS).” The scale is an adaption from
the SEA scale (Eilers et al., 1986) and measures the subjectively
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experienced effort for performing the task. We transferred the
original scale into a numeric rating scale with equal intervals
starting from 1 (“little effort”) to 7 (“extreme effort”).

2.3. EEG
EEG data were continuously recorded from 14 standard scalp
locations according to the 10–20 system (Oz, O1, O2, P3, P4,
Pz, Cz, C3, C4, Fz, F3, F4, T3, T4). Since high-density EEG
measurements are often time consuming and unpleasant for the
test person due to the high number of electrodes, we aimed for
a reduced test setup that still delivers informative value. Kumar
and Kumar (2016) measured cognitive load by using EEG and
found reliable results with 14 channels (similar done by Anderson
et al., 2011). An even reduced number of channels was used in
studies by Brouwer et al. (2012) and Hogervorst et al. (2014),
in which they investigated workload with not more than seven
channels successfully. Given that the expected effects get visible
at different regions throughout the whole scalp characteristics
and considering potential noisy channels, we decided against a
minimum but a reduced setup of 14 channels.

2.4. Test Setup
The hearing ability of each participant was tested to ensure
a comparable experience of the auditory stimuli for every
participant. This was done using an audiometry tool (model
MA 33; MAICO Diagnostics GmbH, Berlin, Germany). Baseline
instructions and both tasks were deployed in PsychoPy (Peirce
et al., 2019) running on a ThinkPad X1 Carbon Ultrabook
(Lenovo Ltd., Hongkong). All visual stimuli were presented on a
Fujitsu (model: DY24W-7) monitor. The acoustic representation
of the mathematical equations was generated by the Win TTS
API (German language) and provided to the participants via
Sony WHX-1000X M3 headphones in 70 dB SPL. In two out
of the three condition blocks, the noise was presented to the
participants via four loudspeakers (model PM 0.4) from Fostex
(Foster Electric Co., Ltd., Tokyo, Japan) with 76 dB SPL. They
were mounted on stands at a height of 1.0 m, placed at a
1.5 m distance to the participants and at a 90◦ angle to each
other. The audio file of the background noise was controlled
from a notebook (model Vaio VPCF13C5E; Sony Corporation,
Tokyo, Japan) with the expansion card (model HDSP I/O
ExpressCard; RME Intelligent Audio Solutions, Audio AG,
Haimhausen, Germany). Noise consisted of a combination of
very frequent numbers (using the same TTS voice as for the tasks;
partially overlapping from different directions), environmental
noise (recordings from cars, public streets, cafe chatter; from
every direction, not overlapping), and speech snippets (excerpts
of German podcasts and news broadcasts; partially overlapping
from different directions).

EEG data, stimulus marker (e.g., keypresses of the
participant), and stimulus data from PsychoPy was time-
synchronized and recorded as one combined data stream via
Labstreaminglayer Framework in Lab Recorder running on
a ThinkPad X1 Carbon Ultrabook (Lenovo Ltd., Hongkong,
China). To access EEG data in Labstreaminglayer, we used

g.USBamp App1 (Pre-release 30.04.2019). For streaming
stimulus marker from PsychoPy, we used pylsl2 (version 1.13.1).

EEG was assessed via wet Ag/AgCl electrodes placed in a head
cap, a driver box for 16 channels and the g.USBamp amplifier by
g.tec (g.tec medical engineering GmbH, Schiedlberg, Austria).

EEG data and stimulus marker data (e.g., keypresses of
the participant) from PsychoPy were time-synchronized and
recorded as one combined data stream via Labstreaminglayer
Framework in Lab Recorder running on a notebook ThinkPad X1
Carbon Ultrabook (Lenovo Ltd., Hongkong). Figure 1A shows
the apparatus with all measures, the stimulus presentation, and
arrangement of loudspeakers. Also the environmental noise in
the setup is illustrated in Figure 1B. For analyzing the EEG data,
we used the open-source Python package MNE (Gramfort et al.,
2013) (version 0.19.1). Statistical analysis was computed with the
open-source package Pingouin (Vallat, 2018) (version 0.3.7).

2.5. Procedure
The experiment was conducted in a quiet standardized test room
adhering to ITU-T Rec. P.9103 and P.9114. The participants
were seated in a chair with a comfortable and upright seating
position for the whole duration of the test. In preparation for the
EEG measurement, the experimenter placed a flexible cap with
plugged-in electrodes on the participant’s head and inserted a
water-based conductive gel in every electrode. The preparation
was completed by equipping the participants with headphones.
Figure 2 illustrates the participants’ seating position and the
arrangement of applied electrodes on the scalp. To compare
individual responses to different sound environments, the
participants had to perform the task in three different conditions:
no noise (quiet environment), noise (noise environment), and
noise-canceling (noise environment with the noise-canceling
function of headphones). The order of the three condition
blocks was randomized. Additionally, the order of the condition
was counterbalanced [6 possible combinations; count of every
combination (M = 4.67, SD : 1.03)]. Each block followed the
same procedure: First, the participant had to perform the three
subjective measure ratings: NASA-TLX, SAM, and the subjective
rating scale. Each questionnaire was presented in a separate view
on display in front of them. The ratings were submitted by
moving a slider for each item. After the subjective measures, the
main task block started and had a duration of 30 min. After
the main task, the participants were again asked to rate their
state with the subjective measure questionnaires. Between the
condition blocks, the participants should rest for 5min.

2.6. Participants
In total, 29 persons aged 21–64 years (M = 34.62, SD = 12.62)
participated. The gender distribution was nearly balanced (male:
15, female: 14). All participants stated that they were employed,
studying at university, or both at that moment. Participants
were recruited via a university participant database. All of them
confirmed that they had a normal or corrected to normal vision

1https://github.com/labstreaminglayer/App-g.Tec/releases/tag/gusbamp
2https://github.com/chkothe/pylsl
3https://www.itu.int/rec/T-REC-P.910-200804-I/en
4https://www.itu.int/rec/T-REC-P.911-199909-I!Cor1/en
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FIGURE 1 | (A) Schematic presentation of the whole test setup, including measurements, stimulus presentation, and the acoustical setup. Four loudspeakers were

mounted on stands at the height of 1.0 m, placed at a 1.5 m distance to the participant and in at a 90◦ angle to each other. (B) Illustration of the environmental noise

situation in the noise and noise-canceling condition. It consisted of a combination of frequent numbers, environmental noise, and speech snippets.

FIGURE 2 | Schematic presentation of the participants’ seating position (A) and the electrode setup of EEG cap (B). It should be noted that on the left illustration (A),

the height of the loudspeakers was adjusted for display purposes but, as mentioned, was actually 1.0 m from the floor. (B) The distribution of applied electrodes on

the scalp.

and average hearing ability. None of the participants showed a
hearing impairment in the performed audiogram (see section
2.5). For participation, the persons got monetary compensation;
15 euro per hour and a bonus depending on their performance
in solving the arithmetic tasks (beginning with 50% performance
score: 5 euro to max. 10 euro in case of about 100%). This
was done to try to get the participants more motivated to
gain correct results. The participants were informed about the
experiment beforehand, and they agreed to it by signing the
informed consent sheet. The study abides by the standards
specified in the Declaration of Helsinki. The Ethics Committee
of the Faculty IV of Technical University Berlin evaluated the
procedure retrospectively and declared that all ethical aspects of
the study design follow the Guideline of the German Research

Foundation (date of assessment: 17.02.2021; fast track code:
FR_2021_01retro).

2.7. Data Analysis
2.7.1. Subjective Measures
The ratings for each item of the subjective measures were
collected before and after the task in each test condition
block. Values from the beginning of the test condition block
were subtracted from ratings after to gain baseline corrected
values. The differences between conditions were of interest. By
normalizing the values, we measured only changes in ratings
induced by the task and the noise situation. All “before”
ratings were performed in an equal quiet surrounding. Although
the test condition block order was randomized for every
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participant to avoid sequence effects, we could not exclude that
specific block sequences might affect the dependent variable.
Therefore, we considered the block order as within factor.
Consequential, a two-way repeated measurements ANOVA with
the within factors “condition” and “block order” was computed
for each questionnaire item (Subjective rating scale: 1 item,
SAM: 3 items, and NASA-TLX: 6 items). Significant main
effects are reported with a Greenhouse-Geisser corrected p-value.
The post-hoc comparisons were corrected with a Bonferroni–
Holm adjustment.

2.7.2. EEG Acquisition and Processing
EEGwas continuously recorded from 16 channels (for details, see
section 2.5) and sampled with 265Hz. The impedance between
EEG electrodes and the scalp was kept under 5 kω. One data
set had to be excluded from analysis due to an incorrect time
synchronization of the stimulus marker stream coming from
Psychopy and the measured EEG data stream. In total, data from
28 subjects were included in the EEG analysis. The raw data
were filtered with a fir (Filter design: Firwin) band-pass filter
from 0.1 to 45Hz with a Hamming window. The filter length was
8, 449 samples (33.004s). Additionally, a fir (Filter design: Firwin)
band stop filter with a Hamming window with 50Hz was applied.
The aim was to exclude high-frequency line-noise coming from
electrical equipment and to remove slow drifts. Channels with
extreme noise were detected by visual inspection and removed
from the data set and interpolate afterward. Interpolation of
bad channels in MNE is done with the spherical spline method
(Perrin et al., 1989) that computes the missing signal based on
the location and the data of the remaining channels. Afterward,
the filtered data were re-referenced to an average reference.

2.7.3. Artifact Rejection With SSP
For removing noise coming from eye movements (EOG)
and heart activity (ECG), we chose Signal-Space Projection
(SSP) (Uusitalo and Ilmoniemi, 1997). Therefore, we defined
one channel that showed the corresponding artifacts’ most
characteristic behavior. The computation of the SSP projectors
was done on the filtered and re-referenced continuous data of one
participant and per condition separately. For the calculation of
the EOG projector, the data were band-pass filtered from 1 to 10
Hz (filter design: Firwin; Window: Hann window) to remove DC
offset and distinguish blinks from saccades. On the basis of blink
detection creating events, the SSP projectors were computed.
After that, the data were filtered in one contiguous segment from
1 to 35 Hz [filter design: Firwin; Window: Hamming window;
Filter length: 2, 560 samples (10.000s)]. For creating the ECG
projector, data were band-pass filtered from 5 to 35 Hz [filter
design: Firwin; Window: Hann window; Filter length: 2,560
samples (10.000s)]. After the computation of the ECG projector,
the data were filtered with a band-pass filter [filter design: Firwin;
Window: Hann window; Filter length: 2, 560 samples (10.000s)]
in one contiguous segment from 1 to 35 Hz. The computed
EOG and ECG SSP projectors were saved and applied in further
processing steps.

2.7.4. Time Frequency Analysis
For analysis in the frequency domain, we segmented the
continuous data into epochs. The beginning audio output of
the math equation served as stimulus onset. Depending on the
number of solved tasks a participant reached per block, the
number of trials varied. All these events were used to create
epochs. Every trial epoch started 200ms before the event and
ended 3800ms after the stimulus onset. The 3800ms after stimulus
onset corresponds to the maximum audio output duration of the
longest equation. On the epoched data, we applied the formerly
calculated SSP projectors to remove ECG and EOG artifacts. We
then calculated the periodograms from 0.1 to 45Hz usingWelch’s
method (Welch, 1967) with a sliding hamming window and a
window size of 1.0s (256 samples), which were then averaged
for each channel and epoch. The calculation was done for every
participant and each condition block separately. The resulting
power spectral densities (PSDs) were normalized by dividing
each power value by the total power (per condition block). The
correction was done for each participant individually to consider
inter-individual variations. Afterward, we aggregated the PSDs of
the corresponding EEG frequency bands: delta: 0.1–4 Hz, theta:
4–8 Hz, alpha: 8–12 Hz, beta: 12–30 Hz, and gamma: 30–45 Hz.
To compare for differences between conditions, we calculated
the mean activity at channels in the region of interest for the
corresponding frequency bands: Delta: frontal, central, temporal;
Theta: frontal, central; Alpha: parietal, temporal, occipital; Beta:
parietal, occipital.

2.7.5. Event-Related Potentials
For investigation of ERPs, epochs of 200 ms before and 800ms
after the stimulus onset were created.We chose amore prolonged
epoch duration. We decided to do so as the stimulus is
continuous withmultiple information to be processed. Therefore,
the characteristic ERP component of interest could occur
delayed. We aggregated data from all epochs to the averaged
evoked response for each condition block and channel. We
calculated the average activation of a specific time of interest
for every condition to investigate differences in particular
components. As the P300 is known to be prominent at midline
electrodes, we included the channels Fz, Cz, and Pz separately
in our analysis. The respective time interval considered for P300
is between 250 and 400 ms. Due to the formerly mentioned
suspected occurrence delay, we also considered the time interval
between 400 and 800 ms in our analysis.

2.7.6. Statistical Analysis of EEG Data
Of the corresponding data, we investigated differences between
the three tests conditions. We computed a Mauchly’s to test if
the data met the assumption of sphericity. We tested for normal
distribution of the data with the Shapiro–Wilk test. If data were
not normally distributed, we conducted a Friedman’s test to
investigate differences between conditions. If the data met the
assumption of the normal distribution, we conducted a repeated-
measures ANOVA with the main effect test condition. Post-hoc
comparisons were calculated with a Wilcoxon signed-rank test.
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FIGURE 3 | (A) Normalized values for NASA TLX. Ratings from before were subtracted from ratings after. Error bars show 95% confidence interval. (B) Normalized

values for SAM. Error bars show 95% confidence interval.

3. RESULTS

3.1. Subjective Data
The differences of ratings between before and after one main task
block for NASA TLX and SAM are shown in Figure 3. Results
of the repeated measures ANOVA of normalized values showed
no significant main effect condition but a significant main effect
“block order” for SAM item “valence” [F(2, 56) = 4.413; p =

0.018; η2p = 0.136]. The post-hoc comparison showed significantly
(p = 0.022) lower ratings in the second compared to the first
block and lower values in the last (p = 0.032) compared to the
first block.

Although we found no other significant comparisons, on a
descriptive level, the normalized values of NASA-TLX, Figure 3A
show lower absolute values for negatively associated items, e.g.,
“effort” and “frustration” in the noise-canceling condition. This
goes along with higher ratings in the positive-related item
“performance” (NASATLX) and lower decreases in “dominance,”

“valence” (SAM) (see Figure 3B) and the rating of the subjective
rating scale.

Table 1 shows M and SD of ratings for every item before and
after the main task. The values suggest that participants felt more
mentally loaded or rather more uncomfortable after the task than
before. Out of that, we can assume that the main task seems to
be demanding in every condition. This observation is supported
by the normalized ratings of the items “mental,” “effort,” and
“temporal” (NASA TLX), which reached the highest scores of
the NASA TLX. As the comparisons between conditions are not
significant, it seems as if the participants invested similar effort
in all test conditions. Interestingly, the participants reported the
highest temporal pressure in the no noise condition.

3.2. EEG Data
Due to the individual response times for each equation and the
therefore varying overall number of quotations per condition, the
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TABLE 1 | Mean and standard deviation of subjective measure ratings before and after the performed task.

Condition

no noise noise-canceling noise

Before After Before After Before After

Questionnaire Item M SD M SD M SD M SD M SD M SD

NASA TLX Mental 6.14 5.36 15.69 4.09 9.07 5.92 16.62 3.65 6.97 5.23 16.66 3.94

Physical 2.66 2.91 6.55 5.68 3.93 4.63 7.07 6.37 2.79 3.03 6.76 5.65

Temporal 6.86 6.40 16.90 2.62 9.31 6.47 17.55 2.26 7.66 6.37 16.55 3.51

Performance 8.62 6.29 11.93 5.27 8.24 5.57 12.66 4.70 9.14 5.26 11.97 5.68

Effort 7.31 6.46 16.31 3.49 8.14 6.36 16.72 2.45 8.41 6.62 17.21 2.97

Frustration 8.17 6.38 14.45 4.76 8.52 5.84 14.62 3.86 8.03 5.98 15.07 3.99

SAM Valence 5.86 1.77 3.86 2.15 5.79 1.97 4.41 1.88 6.24 1.62 3.72 1.98

Arousal 4.24 1.92 5.52 2.03 4.48 1.90 5.76 2.05 3.90 1.76 6.07 1.81

Dominance 4.72 1.67 4.07 1.85 4.76 1.62 4.69 1.77 4.76 1.46 4.00 1.58

SRS 2.79 1.80 5.55 1.27 3.48 1.94 5.79 1.18 3.21 1.88 5.90 1.21

count of trials per condition considered for analysis varied: no
noise condition (M = 253.97, SD = 78.17, min = 129, max =

406); noise-canceling condition (M = 267.21, SD = 82.82,
min = 111, max = 430), and noise condition (M = 259.62,
SD = 75.89,min = 121,max = 410).

3.2.1. Frequency
From the repeated measures ANOVA results for the frequency
band delta, we cannot reject the null hypothesis in favor of the
alternate hypothesis [F(2, 54) = 1.488, p = 0.235, η

2
p= 0.052].

There is no significant differences between the average values of
the frequency band conditions. Similar results were obtained for
theta [F(2, 54) = 0.426, p = 0.655, η2p= 0.016], Beta [F(2, 54) =

0.708, p = 0.497, η
2
p= 0.026] and Gamma [F(2, 54) = 1.933,

p = 0.155, η2p= 0.067].
For alpha, the p values of Shapiro–Wilk tests were partly

significant (p < 0.001, p < 0.079, p = 0.12) for one
of the three levels of the condition-factor. As the assumption
normal distribution is violated we computed a Friedman test,
which revealed no significant difference between the conditions
χ
2
(2)

= 3.5, p = 0.174. Figure 4 shows the topography plots

for every condition and every frequency band, respectively. On a
descriptive level, the intensities show the hypothesized behavior
of higher power in Theta and Delta, frequency band for noise
compared to the other two conditions. Also Alpha power spectral
density seems to be smallest in the noise condition. But these
observations aren’t supported by statistical significant results.
The spectral power densities in Beta and Gamma frequency
band show only very minimal changes in intensity between
the conditions.

3.2.2. Event-Related Potentials

3.2.2.1. Time Interval 250–400ms After Stimulus Onset
From the repeated measures ANOVA results for Fz, we cannot
reject the null hypothesis in favor of the alternate hypothesis
[F(2,54) = 1.601, p = 0.211, η

2
p = 0.056]. We conclude that

the mean P300 activation at Fz does not significantly differ
between the conditions. The measure of effect size (partial eta
squared; η

2
p = 0.056) suggests that there is a negligible effect

of the conditions on the P300 activation. Mauchly’s test of
sphericity for Cz revealed a significant p-value (p = 0.006).
Hence the data did not meet the assumption of sphericity. As
the assumptions of the repeated measures ANOVAwere violated,
we ran a Friedman’s test to investigate a main effect of the
condition. The Friedman’s Test showed a significant difference
between the three conditions [χ2

(2)
= 12.214, p = 0.002]. A

pair-wise comparison using Wilcoxon signed-rank tests between
the conditions revealed significant differences between the noise
and the no noise condition (W = 76, p = 0.004), with a
higher amplitude for no noise (Mdn = 0.04) compared to
noise (Mdn = −0.10). This difference is remarkable visible
in Figure 5A. Also the difference between the noise-canceling
(Mdn = −0.58) and the no noise (Mdn = 0.04) condition
reached statistical significance (W = 82, p = 0.006). The
difference between noise and noise-canceling is not statistically
significant (W = 198, p = 0.909). We conclude that the data
at Pz is non-normally distributed as the p-values of Shapiro–
Wilk tests are partly significant (p < 0.001, p < 0.001,
p = 0.15) for two of the three levels of the condition factor.
As the assumptions of the repeated measures ANOVA were
violated, we ran a Friedman’s test to investigate a main effect
of the condition. The Friedman’s test showed no significant
difference between the three conditions, χ

2
(2)

= 2, p =

0.368.

3.2.2.2. Time Interval 400–800ms After Stimulus Onset
From the repeated measures ANOVA results for Fz, we cannot
reject the null hypothesis in favor of the alternate hypothesis
[F(2, 54) = 1.194, p = 0.311, η

2
p= 0.042]. We conclude that

the mean activation at Fz does not significantly differ between
the conditions.

As the assumptions of the repeated measures ANOVA is
violated (evidence for a violation of the assumption of sphericity
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FIGURE 4 | Topographies of the different frequency bands for noise, no noise, and noise-canceling condition. The red colored intensity shows the normalized power

spectral density values. The scaling of the intensities was adjusted according to the frequency bands.

FIGURE 5 | (A) Event-related potentials at Cz. The characteristic signal course of component of P300 the amplitude is higher in no noise compared to the other two

conditions. (B) Topography plot of event-related potentials aggregated from all sensors exemplary for the noise condition. Sensor positions are color-coded. The

activity range is given from −3 to 3µV. After 400ms after stimulus, the activation is increasingly prominent at the centro-parietal area of the scalp that indicates a

P300 response.

through Mauchly’s test at p < 0.001), we ran a Friedman’s
test to investigate the main effect of the condition at Cz. The
Friedman’s test shows a significant difference between the three
conditions [χ2

(2)
= 7.358, p = 0.025]. Post-hoc tests using a

Wilkoxon signed-rank test shows that the activation in the noise
condition (Mdn = 0.28) is higher than in the no noise condition
(Mdn = −0.08). This differences is statistically significant (Z =

107, p = 0.029). However, the differences between noise and
noise-canceling (Mdn = 0.17) are statistically non-significant
(Z = 138, p = 0.139). Likewise, the difference in the no
noise and the noise-canceling is not significant either (Z = 151,
p = 0.236).

As the assumptions of the repeated measures ANOVA for
Pz are violated [evidence for a violation of the assumption
of sphericity through Mauchly’s test (p < 0.001)], we ran a

Friedman’s test to investigate a main effect of the condition. The
Friedman’s test shows a non-significant difference between the
three conditions [χ2

(2)
= 1.786, p = 0.409]. All results can

also be found in Table 2 for a better overview. Figure 5B shows
the topographies of ERPs from all sensors exemplary for the
noise condition. Additional plots of event-related potentials at
midline electrodes can be found in Figures S1–S3. Topographies
of the evoked responses of all electrodes can be found in
Figure S4.

4. DISCUSSION

4.1. Subjective Assessment
The significant main effect of block order for the item “valence”
(SAM) indicates that the participants felt less positive and
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TABLE 2 | Statistical results of event-related potentials (ERPs) with different periods and the three midline sensors.

Time Sensor Main effect Post-hoc Median

n - nn n - nc nn - nc nn n nc

250–400 ms Fz F(2, 54) = 1.601, p = 0.211, η
2
p= 0.056

Cz χ
2
(2) = 12.214, p = 0.002 W = 76, p = 0.004 W = 198, p = 0.909 W = 82, p = 0.006 0.04 −0.10 −0.58

Pz χ
2
(2) = 2, p = 0.368

400–800 ms Fz F(2,54) = 1.194, p = 0.311, η
2
p = 0.042

Cz χ
2
(2) = 7.358, p = 0.025 Z = 107, p = 0.029 Z = 138, p = 0.139 Z = 151, p = 0.236 −0.08 0.28 0.17

Pz χ
2
(2) = 1.786, p = 0.409

In case of significant results, values are marked in bold. For significant post-hoc comparisons, median values of every condition are given.

therefore were potentially more uncomfortable in the later
stages of the experiment. According to descriptive values
of items “temporal” and “mental,” the participants seemed
to perceive high mental demand and time pressure. Based
on descriptive values (higher ratings in positive items and
lower ratings in negative items during noise-canceling, see
section 3.1), we conclude that the subjectively experienced
increase of, e.g., mental demand or stress is lower in the
noise-canceling condition. However, this assumption has to be
further substantiated in future studies. Surprisingly, we could
not find a similar observation in the no noise condition. A
possible explanation could be an unexpected psychological
influence reported verbally by few participants: in a quiet
environment, they felt more uncomfortable than in a noisy
environment. Potentially, the feeling of being observed increased
the pressure to perform well due to no excuse for making
mistakes. The presence of an experimenter is necessary to
guide and maintain the experiment procedure especially when
working with physiological measures. More importantly, we
ensure to minimize the feeling of being observed by placing
the experimenters to not look at the participants’ screen
and by emphasizing that the experimenter did not observed
them directly throughout the experiment. This should mimic
a general office situation with colleagues nearby but without
direct monitoring.

The fact that the differences between the silent (no
noise) and the noisy (noise and noise-canceling) conditions
indicated in the data did not reach significance could
be justified in the relatively short test block duration.
A prolongation of each test condition duration could
increase the already visible (but not significant) differences
between the conditions. Whereby, this adjustment could also
cause other influence factors like fatigue, which are hard
to control.

4.2. Brain Activity
The analysis of the spectral power of frequency bands delivered
no statistical evidence for differences between conditions. The
differences in activity between the conditions that are indicated
in Figure 4 reach no significant value.

The analysis of ERPs, however, revealed interesting results.
We suggested a decrease in amplitude of the P300 peak

amplitude with increasing noise levels. Our results support
the assumption that the P300 amplitude is highest in the
no noise condition at electrode Cz compared to the other
two. The difference between the no noise and noise condition,
as well as between no noise and noise-canceling was found
to be statistically significant in the time 250– 400 ms after
stimulus onset. After the peak in amplitude in the no noise
condition, the signal drops rapidly with a negative peak around
500ms after stimulus onset. In the other noisy conditions,
the activation stays positive and even slightly increases. The
difference reaches significance between the no noise and the
noise condition. The formerly mentioned observation that
the P300’s latency remains larger with a higher mental
workload could explain this behavior, which would support our
hypothesis of higher mental demand in the noise condition.
The topography of the ERP, as shown in Figure 5B, supports
this assumption.

A significant discrimination between noise-canceling and
noise could not be found in the ERPs. This lack of differentiation
could have several reasons. The present experiment presented
the target stimuli (arithmetic equations) directly on both
ears via headphones. The distracting stimuli was present as
ambient sound but also detectable for both ears similar.
Additionally, the target and distraction stimuli were complex
as they consisted of speech and environmental noise, which
varies in frequency and inter-stimulus intervals. This frequency
and time-varying presentation of stimuli could affect the brain
activity-related components in several ways. For example, a
jittering in stimulus presentation is known to reduce the peak
amplitude of ERPs. Furthermore, the resulting timing effect
of ERPs can shift and be later compared to non-jittered
stimulus presentations due to jittering in timing. Due to the
aforementioned multiple ways how the ERP components can
be influenced, an interpretation of a substantial influence
is difficult.

Further investigation should focus on more significant
discrimination between the two noisy test situations. Our
approach resulted in overall high demand (according to
ratings in NASA item “mental”) in all conditions, making
it hard to discriminate between the different experimental
manipulations. One reasonable modification would be
choosing a visual first task, for example, reading, and
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adding a second task like detecting specific auditory events
(“auditory oddball”; for more details, see Duncan et al.,
2009). This would address two modalities and reduce the
demand in one channel while keeping the overall demand
high. The second task would demand additional attentional
resources. This testing paradigm would still be comparable
to a real-life working situation (e.g., mobile working on a
business trip) in which a person is focused on the work but
must not miss important announcements. Additionally, this
approach has the advantage of clear differentiation in brain
characteristics, becoming more straightforward than the
present task.

4.3. Limitations
The study has some already mentioned limitations regarding
the setup and the stimuli, which should be addressed in further
studies. Regarding the processing of the EEG data, the main focus
was on the sensor-based analytic. It would be possible also to
consider doing the performed data analysis on source signals
obtained by a source reconstruction. Of course, that approach
is limited due to the number of used electrodes in the current
setup. It would be advisable to increase the number of electrodes
in total or focus on specific cortical areas known to show the
observed effects.

4.4. Conclusion
The current study aimed to investigate differences in the mental
load of participants in varying environmental noise situations.
Moreover, it was of interest if noise-canceling headphones help
to reduce mental load while focusing on a task. We suggested
finding indications that the noise condition results in a higher
mental load than the other two conditions. The noise-canceling
technology was suggested to improve the user’s situation in terms
of mental load and stress. Additionally, we assumed that in
the no noise condition, the participants felt less loaded as in
the noise-canceling condition. We found evidence in subjective
data that valence decreases from the beginning to the end of
the experiment.

The ERPs of electrical brain activity resulted in significant
differentiation between the no noise and the other two
test conditions. The mentioned adjustment of the setup
and the analysis could lead to a stronger delimitation of
the two noisy situations. The findings of the current work
provide a foundation for the investigation of noise-cancelation

and its potential improvement of the working situation in
noisy surroundings.
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Accurately predicting the quality of depth-image-based-rendering (DIBR) synthesized

images is of great significance in promoting DIBR techniques. Recently, many

DIBR-synthesized image quality assessment (IQA) algorithms have been proposed to

quantify the distortion that existed in texture images. However, these methods ignore

the damage of DIBR algorithms on the depth structure of DIBR-synthesized images and

thus fail to accurately evaluate the visual quality of DIBR-synthesized images. To this end,

this paper presents a DIBR-synthesized image quality assessment metric with Texture

and Depth Information, dubbed as TDI. TDI predicts the quality of DIBR-synthesized

images by jointly measuring the synthesized image’s colorfulness, texture structure,

and depth structure. The design principle of our TDI includes two points: (1) DIBR

technologies bring color deviation to DIBR-synthesized images, and so measuring

colorfulness can effectively predict the quality of DIBR-synthesized images. (2) In the

hole-filling process, DIBR technologies introduce the local geometric distortion, which

destroys the texture structure of DIBR-synthesized images and affects the relationship

between the foreground and background of DIBR-synthesized images. Thus, we can

accurately evaluate DIBR-synthesized image quality through a joint representation of

texture and depth structures. Experiments show that our TDI outperforms the competing

state-of-the-art algorithms in predicting the visual quality of DIBR-synthesized images.

Keywords: depth-image-based-rendering, image quality assessment, colorfulness, texture structure, depth

structure

1. INTRODUCTION

With the advent of the 5G era and the advancement of 3-dimensional display technology, video
technology moves from “seeing clearly” to the ultra-high definition and immersive virtual reality
era of “seeing the reality.” Free-viewpoint videos (FVVs) have broad applications in entertainment,
education, medical treatment, military applications for its ability to provide users with visual
information of integrity, immersion, and interactivity (Selzer et al., 2019; Yildirim, 2019). Thus,
FVV is also regarded as the vital research direction of next-generation video technologies
(Tanimoto et al., 2011). Due to hardware conditions, cost, and bandwidth constraints, it is
feasible to collect a certain number of viewpoint images in realistic environments. Still, it is often
impractical to collect a full range of 360-degree viewpoint images. Therefore, it is necessary to
synthesize virtual viewpoint images from existing reference viewpoint images by relying on virtual
viewpoint synthesis techniques (Wang et al., 2020, 2021; Li et al., 2021a; Ling et al., 2021).
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Because depth-image-based-rendering (DIBR) technologies
only require a texture image and its corresponding depth
map to generate the image at any viewpoint, it becomes the
most popular virtual viewpoint synthesis technique (Luo et al.,
2020). Unfortunately, because the performance of existing DIBR
algorithms is not perfect, some distortions are often introduced
during the warping and rendering processes, as shown in
Figure 1. The quality of DIBR-synthesized images directly
influences the visual experience in FVV-related applications,
determining whether these applications can be successfully put
into use. Hence, studying the quality evaluation methods for
virtual viewpoint synthesis has important practical significance.

Image quality assessment (IQA) has been a crucial frontier
research direction in image processing in recent decades.
Massive IQA algorithms for natural images have been proposed,
divided into full-reference, reduced-reference, and no-reference
according to the required full, partial, and no information
of the reference image. For instance, Wang et al. (2004)
proposed a full-reference IQA metric based on comparing
the structural information between the reference and distorted
images, namely Structural SIMilarity (SSIM). Zhai et al. (2012)
quantify psychovisual quality of images based on free-energy
interpretation of cognition in brain theory. Min et al. (2018)
proposed a pseudo-reference image (PRI) based IQA framework,
which is different from the traditional full-reference IQA
framework. The standard full-reference IQA framework assumes
that the reference image is a high visual quality image. In contrast,
the framework proposed by Min et al. assumes that the reference
image suffers the most severe distortion in related applications.
Based on the PRI-based IQA framework, Min et al. measures the
similarity between the distorted image’s and the PRI’s structures
to estimate blockiness, sharpness, and noisiness.

In recent years, researchers have realized that IQA algorithms
for natural images have difficulty in estimating the geometric
distortion prevalent in DIBR-synthesized images. For this
problem, Bosc et al. (2011) calculated the difference map
between the synthesized image and the reference image based
on SSIM and adopted a threshold strategy to detect the
disoccluded area in the synthesized image. Then, the quality
score of a synthesized image is obtained by measuring the
average structural similarity of the disoccluded region. Conze
et al. (2012) used SSIM to generate a similarity map between

FIGURE 1 | Examples of the local geometric distortion and the color deviation distortion in the synthesized images. (A) is the ground-truth image. (B,C) are the

synthesized images, which includes the local geometric distortion and the color deviation distortion compared to the ground-truth image.

the reference image and the synthesized image and further
extracted the texture, gradient direction, and image contrast
weighting maps based on the obtained similarity map to predict
the synthesized image quality score. Stankovic et al. designed
the Morphological Wavelet Peak signal-to-noise ratio (MW-
PSNR) for assessing the synthesized image quality (Dragana
et al., 2015b). Meanwhile, the authors proposed a simplified
version of MW-PSNR called MW-PSNR-reduce (Dragana et al.,
2015b), which only uses the PSNR value of the higher-level
scale image to predict the synthesized image quality. For
better performance, Stankovic et al. adopted morphological
pyramid decomposition to replace the morphological wavelet
decomposition in the above-mentioned MW-PSNR (Dragana
et al., 2015b) and MW-PSNR-reduce (Dragana et al., 2015b),
which successively produce MP-PSNR (Dragana et al., 2015a)
and MP-PSNR-reduce (Dragana et al., 2016). Although these
methods for the synthesized images have better performance than
the IQA algorithms devised for natural images, their performance
still misses the actual requirements.

Over the past few years, researchers have been aware of a close
relationship between quantifying the local geometric distortion
and the quality assessment of DIBR-synthesized images and the
screen content images (Gu et al., 2017b). Gu et al. (2018a),
Li et al. (2018b), Jakhetiya et al. (2019), and Yue et al. (2019)
have arranged the idea in the design of DIBR-synthesized
IQA methods, respectively. In literature (Gu et al., 2018a), Gu
et al. adopted an autoregression (AR)-based local description
operator to estimate the local geometric distortion. Specifically,
the authors measure the local geometric distortion by calculating
the reconstruction error between the synthesized image and
its AR-based prediction. In literature (Jakhetiya et al., 2019),
assumed that the geometric distortion behavior is similar to
the outliers and further proved this hypothesis using ROR
statistics based on the three-Sigma rule. Based on this view,
the authors highlight the local geometric distortion through a
median filter and further fuse these prominent distortions to
assess the synthesized image quality.

Moreover, based on the local geometric distortion
measurement, Yue et al. (2019)’s and Li et al. (2018b)’s
methods introduce global sharpness estimation to predict the
synthesized image quality. Yue et al. (2019) considered three
major DIBR-related distortions, including the disoccluded
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region, the stretching region, and global sharpness. The authors
first detect disoccluded regions by analyzing the local similarity.
Then, the stretching regions are determined by combining the
local similarity analysis and a threshold solution. Finally, the
authors measure inter-scale self-similarity to estimate global
sharpness. Li et al. (2018b) designed a SIFT-flow warping based
disoccluded region detection algorithm. Then, the geometric
distortion is measured by combining with the size and distortion
intensity of local disoccluded areas. Moreover, a reblurring-based
solution is developed to capture blur distortion. We find two
critical problems from the above-mentioned DIBR-synthesized
IQA methods. First, these methods ignore the influence of color
deviation distortion on the visual quality of DIBR-synthesized
images. Second, These methods only focus on estimating the
geometric distortion and blur distortion from textured images
without considering the local geometric distortion’s adverse
effects on the synthesized image’s depth structure.

Inspired by these findings, we present a newly synthesized
image quality assessment metric that combines Texture and
Depth Information, namely TDI. Specifically, we adopt the
colorfulness module proposed by Hasler and Suesstrunk (2003)
to extract the color features of a synthesized image and its
reference image (i.e., the ground-truth image) and then calculate
the feature error to estimate the color deviation distortion. We
perform discrete wavelet transform on the texture information
of the synthesized image and its reference image and further
calculate the similarity of the high-frequency subbands of a pair
of synthesized and reference images. The similarity result is used
to estimate the local geometric distortion and global sharpness.
Meanwhile, we use SSIM to compute the structural similarity
between the depth maps of a pair of synthesized and reference
images to represent the effects of the local geometric distortion
and blur distortion on the depth of field of the synthesized image.
In addition, TDI develops a linear weighting scheme to fuse the
obtained features. We verify the performance of our TDI metric
on the public IRCCyN/IVC DIBR-synthesized image database
Bosc et al. (2011), and the experimental results prove that our
TDI metric performs better than the competing state-of-the-
art (SOTA) IQA algorithms. Compared with the existing works,
the highlights of the proposed algorithm mainly include two
aspects: (1) we integrate the color deviation distortion caused
by DIBR algorithms into the development of DIBR-synthesized
view quality perception model; (2) This paper estimates the
quality degradation brought by the local geometric distortion and
blur distortion from the texture and depth information of the
synthesized view.

The remaining chapters of this paper are organized as follows.
Section 2 introduces the proposed TDI in detail. Section 3
compares our TDIwith SOTA IQAmetrics for natural andDIBR-
synthesized images. Section IV summarizes the whole research.

2. PROPOSED METHOD

The design philosophy of our TDI is based on quantifying
the local geometric distortion, global sharpness, and color
deviation distortion. After extracting the corresponding features,

a linear weighting strategy fuses the above features to infer
the final quality score. Figure 2 shows the framework of the
proposed TDI.

2.1. Color Deviation Distortion Estimation
The human visual system (HVS) is susceptible to color, so the
measurement of color deviation distortion has a direct impact on
the visual experience (Gu et al., 2017a; Liao et al., 2019). As shown
in Figure 1, compared to the high-quality reference image, the
synthesized image has the color deviation distortion. However,
since it is not the main distortion in the synthesized image, most
existing DIBR-synthesized IQA algorithms ignore the impact
of the color deviation distortion on the visual experience. To
more accurately evaluate the synthesized image quality, this
paper takes the measurement of color deviation distortion into
account in the proposed TDI metric. In the literature (Hasler and
Suesstrunk, 2003), Hasler and Suesstrunk devised a highly HVS-
related image colorfulness estimation based on psychophysical
category scale experiments. The image colorfulness estimation
model is specifically defined as follows:

C = (σ 2
rg + σ

2
yb)

1
2 + 0.3 · (µ2

rg + µ
2
yb)

1
2 , (1)

where σrg , σyb, µrg and µyb are the variance and mean of the rg
and yb channels, respectively. The calculation method of rg and
yb channels is shown in formula 2.

rg = R− G, yb =
1

2
(R+ G)− B (2)

Then, we calculate the absolute value of the colorfulness
difference between a synthesized image and its associated
reference image (i.e., formula 5) as the quantized result of the
color deviation distortion that existed in the synthesized image.

Q1 = |Csyn − Cref |, (3)

where Csyn and Cref represent the colorfulness of the synthesized
image and its reference image, respectively.

2.2. Local Geometric Distortion and Global
Sharpness Measurement
The proposed TDI extracts structural features from the texture
image and its corresponding depth image and designs a linear
pooling strategy for information fusion to achieve a more
accurate measurement of the local geometric distortion and
global sharpness. This part explains in detail how TDI extracts
structure features from texture and depth images.

2.2.1. Structure Feature Extracting From Texture

Domain
We first use the Cohen-Daubechies-Fauraue 9/7 filter (Cohen
et al., 1992) to perform discrete wavelet transform on the
synthesized and reference images. Figure 3 shows some examples
of high-frequency wavelet subbands (i.e., HL, LH, and HH
subbands) of two synthesized images and their reference image.
From Figure 3, we observe that the geometric distortion regions
(such as the red box area) of the synthesized and reference
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FIGURE 2 | Framework of the proposed TDI metric for predicting the quality of DIBR-synthesized images.

FIGURE 3 | Examples of the high-frequency wavelet subbands (i.e., HL, LH, and HH subbands) of two synthesized images and their reference image. From left to

right, the images in each row are a synthesized/reference image and its corresponding HL, LH, and HH wavelet subbands. Note that the synthesized image of the first

row has only the warping process.

images in the HH subbands differ significantly. Motivated by
this, we measure the local geometric distortion by computing the
similarity between the HH subbands of a pair of synthesized and
reference images, which is defined as follows:

Q2 =
1

N

N
∑

i=1

[

2 ·HHsyn(i) ·HHref (i)+ ǫ

HHsyn(i)+HHref (i)+ ǫ

]

, (4)

where HHsyn and HHref represent the HH subbands of a
synthesized image and its corresponding reference image. i and
N are the pixel index and the number of pixels of a given
image, respectively. A small constant ǫ avoids the risk of zero
denominator. Moreover, since blur distortion usually causes
loss of high-frequency information in images, the energy of
high-frequency wavelet subbands has been widely used for no-
reference image sharpness estimation (Vu and Chandler, 2012;
Wang et al., 2020). Therefore, the developed similarity between
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FIGURE 4 | Examples of the depth maps of two synthesized images and their reference image. From top to bottom, the images in each column are a

synthesized/reference image and its corresponding depth map. Note that the synthesized image of the first column has only the warping process.

the HH subbands of the synthesized image and its reference
image can also effectively estimate the global sharpness of the
DIBR-synthesized image.

2.2.2. Structure Feature Extracting From Depth

Domian
Considering that local geometric distortion and global sharpness
damage the structural information of the synthesized view in the
texture domain and affect the depth structure of the synthesized
view. Thus, we measure the structural similarity between the
depth maps of a pair of synthesized and reference views in the
depth domain to estimate the depth degradation introduced by
the local geometric distortion and blur distortion. The depth
map prediction algorithm computes the depth map at the virtual
viewpoint. At present, massive deep learning-based depth image
estimation algorithms have been proposed (Atapour-Abarghouei
and Breckon, 2018; Li et al., 2018a; Zhang et al., 2018; Godard
et al., 2019). In our TDI, we employ Clément Godard’s depth
prediction network for estimating the depth maps of the DIBR-
synthesized image and its reference image. Figure 4 shows some
examples of the depth maps of two synthesized images and their
ground-truth image estimated by Clément Godard’s method.
From the green box area in Figure 4, it can be easily observed
that the local geometric distortion is very destructive to the depth
structure of the synthesized image. So the geometric distortion
contained in a synthesized image can be effectively estimated
by measuring the structural similarity between the depth maps
of a pair of synthesized and reference images. In particular, the
structural similarity between the depth maps of a synthesized
image and its reference image is computed as follows:

Q3 =
1

N

N
∑

i=1

(SSIM(Dsyn(i),Dref (i))), (5)

where Dsyn and Dref represent the depth maps of a synthesized
image and its reference image predicted by Clément Godard’s
algorithm. SSIM is an image quality evaluation index based on
the structural similarity between the reference and distorted
images (Wang et al., 2004; Jang et al., 2019).

2.3. Linear Pooling Scheme
To evaluate the visual quality of DIBR-synthesized views more
efficiently, this paper extracts three features from the texture
and depth domains to estimate the color deviation distortion,
the local geometric distortion, and global sharpness. Since the
features Q1, Q2, and Q3 are complementary, we propose a novel
linear pooling scheme to fuse the texture and depth information
to form the final TDI model. A smaller Q1 value shows the
difference between the colorfulness of the synthesized image
and its reference image is smaller. That is, the quality of the
synthesized image is higher. The Q2 and Q3 are the texture
and depth structure similarity between a pair of synthesized
and reference images, respectively. The values of Q2 and Q3

are higher, indicating that the quality of a pair of synthesized
and reference views is more similar. That is, the quality of
the synthesized image is better. With this fact, a linear pooling
scheme is developed to fuse the obtained features, which is
defined as follows:

S = −
α

1+ α + β
· Q1 +

1

1+ α + β
· Q2 +

β

1+ α + β
· Q3, (6)

where the parameters α and β are used to adjust the contribution
of Q1, Q2, and Q3. In section 3, we detail the selection of
parameters α and β .
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TABLE 1 | Performance comparison of 21 SOTA IQA measures on the IRCCyN/IVC database (Bosc et al., 2011).

Metric Type SRCC PLCC RMSE

PSNR Natural Images 0.3095 0.3976 0.6109

SSIM (Wang et al., 2004) Natural Images 0.4368 0.4850 0.5823

IW-SSIM (Wang and Li, 2011) Natural Images 0.4053 0.5831 0.5409

ADD-SSIM (Gu et al., 2016) Natural Images 0.4672 0.5512 0.5556

PSIM (Gu et al., 2017a) Natural Images 0.4576 0.5315 0.5640

NIQE (Mittal et al., 2013) Natural Images 0.3739 0.4374 0.5987

IL-NIQE (Zhang et al., 2015) Natural Images 0.5348 0.4998 0.5767

ARISM (Gu et al., 2015) Natural Images 0.3728 0.3994 0.6104

BIQME (Gu et al., 2018b) Natural Images 0.6770 0.7271 0.4571

MW-PSNR (Dragana et al., 2015b) DIBR-synthesized Images 0.5757 0.5622 0.5506

MP-PSNR (Dragana et al., 2015a) DIBR-synthesized Images 0.6227 0.6174 0.5238

MP-PSNR-reduce (Dragana et al., 2016) DIBR-synthesized Images 0.6634 0.6772 0.4899

NIQSV+ (Tian et al., 2018) DIBR-synthesized Images 0.6668 0.7114 0.4679

APT (Gu et al., 2018a) DIBR-synthesized Images 0.7157 0.7307 0.4546

CLGM (Yue et al., 2019) DIBR-synthesized Images 0.6528 0.6750 0.4620

STD (Wang et al., 2021) DIBR-synthesized Images 0.7729 0.7901 0.4082

LMS (Zhou et al., 2019) DIBR-synthesized Images 0.8050 0.7690 0.3940

IDEA (Li et al., 2021b) DIBR-synthesized Images — 0.7796 —

GANs-NRM (Ling et al., 2020) DIBR-synthesized Images 0.8070 0.8260 0.3860

OUT (Jakhetiya et al., 2019) DIBR-synthesized Images 0.7036 0.7678 0.4266

TDI (Pro.) DIBR-synthesized Images 0.7905 0.7992 0.4002

The best performance in each type is highlighted in bold.

3. EXPERIMENTAL RESULTS AND
DISCUSSIONS

In this part, we construct experiments on the IRCCyN/IVC
database to test the performance of the proposed TDI method
and other SOTA IQA algorithms.

3.1. Experimental Setup
3.1.1. Competing IQA Metrics
In this paper, we collect twenty SOTA IQA algorithms for natural
images and DIBR-synthesized images as competing algorithms.
The competing IQA metrics designed for natural images include
PSNR, SSIM (Wang et al., 2004), IW-SSIM (Wang and Li, 2011),
ADD-SSIM (Gu et al., 2016), PSIM (Gu et al., 2017a), NIQE
(Mittal et al., 2013), ILNIQE (Zhang et al., 2015), ARISM (Gu
et al., 2015), and BIQME (Gu et al., 2018b). The competing IQA
methods devised for DIBR-synthesized images consist of MW-
PSNR (Dragana et al., 2015b), MP-PSNR (Dragana et al., 2015a),
MP-PSNR-reduce (Dragana et al., 2016), NIQSV+ (Tian et al.,
2018), APT (Gu et al., 2018a), CLGM (Yue et al., 2019), STD
(Wang et al., 2021), LMS (Zhou et al., 2019), IDEA (Li et al.,
2021b), GANs-NRM (Ling et al., 2020), andOUT (Jakhetiya et al.,
2019).

3.1.2. Testing Dataset
In this paper, we test the performance of the proposed
TDI metric and twenty SOTA IQA algorithms on the public
IRCCyN/IVC database (Bosc et al., 2011). The IRCCyN/IVC
DIBR-synthesized image database contains 12 reference images

TABLE 2 | Ablation experiments about the proposed components.

Metric SRCC PLCC RMSE

Q1 0.4412 0.4971 0.5777

Q2 0.6126 0.6133 0.5259

Q3 0.4470 0.5346 0.5627

TDI (overall model) 0.7905 0.7992 0.4002

and its corresponding 84 synthesized images generated via seven
DIBR algorithms. In the subjective experiment, the authors adopt
the absolute category rating-hidden reference method to mark
DIBR-synthesized images. The images in the IRCCyN/IVC image
dataset are from three free-view sequences (i.e., “Book Arrival,”
“Lovebird,” and “Newspaper”) with a resolution of 1,024× 768.

3.1.3. Performance Benchmarking
In this paper, three commonly used indicators, including
Spearman Rank-order Correlation Coefficient (SRCC), Pearson
Linear Correlation Coefficient (PLCC), and Root Mean Square
Error (RMSE), are used to evaluate the performance of the
proposed TDI metric and other competing IQA algorithms
devised for natural images and DIBR-synthesized images. The
SRCC index evaluates the monotonic consistency between
subjective scores and objective scores predicted by IQA metrics.
The PLCC and RMSE indicators evaluate the accuracy of
the scores predicted by IQA algorithms. The larger values of
SRCC and PLCC, and the smaller value of RMSE, indicate the
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FIGURE 5 | The impact of the parameters α and β on the robustness of the proposed TDI metric.

performance of the corresponding IQA metric is better. The
PLCC is defined as follows:

PLCC =

∑

i(ai − ā)(li − l̄)
√

∑

i(ai − ā)2
∑

i(li − l̄)2
, (7)

where ai and ā are the estimated quality score of the i-th
synthesized image and the average value of all ai, respectively.
li and l̄ are the subjective quality label of the i-th synthesized
image and the average value of all li, respectively. The SRCC is
computed as follows:

SRCC = 1−
6
∑Q

q=1 d
2
q

Q(Q2 − 1)
, (8)

where Q is the number of pairs of predicted quality scores and
subjective quality labels. dq represents the ranking difference
between the predicted quality scores and the subjective quality
labels in each group. Before calculating the above indicators, we
need to map the quality scores of all IQA methods to the same
range through a non-linear logistic function (Min et al., 2020a,b),
which is defined as follows:

f (x) = τ1(
1

2
−

1

1+ eτ2(x−τ3)
)+ τ4x+ τ5, (9)

where τ1, τ2, τ3, τ4, and τ5 are the fitting parameters. x and
f (x) are the quality scores predicted by IQA algorithms and their
corresponding non-linear mapping results, respectively.

3.2. Performance Comparisons With SOTA
IQA Metrics
As shown in Table 1, our TDI metric achieves SRCC value of
0.7905, PLCC value of 0.7992, and RMSE value of 0.4002 on
the IRCCyN/IVC dataset, which outperforms most competing
IQA metrics designed for natural images and DIBR-synthesized
images. In terms of SRCC, the performance of our proposed

method is very close to that of the best-performing GANs-NRM.
From Table 1, we observe two important conclusions:

1. The performance of the IQA algorithms for natural images
on IRCCyN/IVC is far inferior to the IQA methods designed
for DIBR-synthesized images. The SRCC, PLCC, and RMSE
values of the best BIQME (Gu et al., 2018b) on the
IRCCyN/IVC dataset (Bosc et al., 2011) are 0.6770, 0.7271,
and 0.4571, respectively, and its SRCC value still does not
reach 0.7. Regarding SRCC, PLCC and RMSE, the proposed
TDI metrics are 16.77, 9.92, and 12.45% higher than the top
BIQME methods, respectively.

2. The APT (Gu et al., 2018a) and OUT (Jakhetiya et al., 2019)
metrics, existing best performing IQA algorithms on the
IRCCyN/IVC (Bosc et al., 2011) database based on geometric
distortion quantization, achieve SRCC value of 0.7157, PLCC
value of 0.7678, and RMSE value of 0.4266, respectively. Our
proposed TDImetric increases the values of SRCC, PLCC, and
RMSE by 10.45, 4.09, and 6.19% on this result. Experiments
show that the proposed TDI metric, combining colorfulness,
texture structure, and depth structure, can efficiently predict
DIBR-synthesized image quality.

3.3. Ablation Study
In this part, we conduct some ablation experiments to verify
the contributions of the proposed key components (i.e., Q1, Q2,
and Q3). Table 2 shows the test results of the components Q1,
Q2, Q3, and the overall module on the public IRCCyN/IVC
data set. From the results, we observe the performance of
the overall TDI model is far superior to each component,
which shows that the proposed sub-modules can complementally
evaluate the quality of the synthesized view. That is, the fusion
of texture and depth information is of great significance to
the view synthesis quality perception. Moreover, we further
analyze the influence of the parameters α and β in equation
(6) on the robustness of the proposed TDI metric, and
the experimental results are shown in Figure 5. Obviously,
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when the parameters α and β are smaller, the performance
of the proposed TDI metric is better, that is, compared to
the components Q1 and Q3, the component Q2 is more
important, which is also in line with the test results in Table 2.
According to the robustness analysis, the parameters α and β

are set to 0.1 and 0.2, respectively, to optimize the proposed
TDI module.

3.4. Applications in Other Fields
With the rapid development of computer vision, the three-
dimensional-related technologies can be implemented in
numerous practical applications. The first application is
abnormality detection in industry, especially the smoke detection
in industrial scenarios which has received an amount of attention
from researchers in recent years (Gu et al., 2020b, 2021b; Liu
et al., 2021). The process of abnormality detection relies on
images, therefore combining three-dimensional technology with
this can make the image acquisition equipment obtain a more
accurate, intuitive and realistic image information, so as to
enable the staff to monitor the abnormal situation in time and
then avoid bad things from happening. The second application
is atmospheric pollution monitoring and early warning (Gu
et al., 2020a, 2021a; Sun et al., 2021). The three-dimensional
visualized images contain more detailed information, thus
enabling efficient and accurate air pollution monitoring. The
third application field is three-dimensional vision and display
technologies (Gao et al., 2020; Ye et al., 2020). Compared with
the ordinary two-dimensional screen display, three-dimensional
technology can make the image is no longer confined to the
plane of the screen (Sugita et al., 2019), as if it can come out
of the screen, so that the audience has a feeling of immersion.
The fourth application is road traffic monitoring (Ke et al.,
2019). Three-dimensional technology can monitor the traffic
flow information of major intersections in an all-round and
intuitive way. All in all, there are several advantages of DIBR
technology, so it is necessary to extend this technology to
different fields.

4. CONCLUSION

This paper presents a novel DIBR-synthesized image
quality assessment algorithm based on texture and depth

information fusion, dubbed as TDI. First, in the texture
domain, we evaluate the visual quality of the synthesized
images by extracting the differences in colorfulness and
HH wavelet subband between the synthesized image
and its reference image. Then, in the depth domain, we
estimate the impact of the local geometric distortion on
the quality of the synthesized views by calculating the
structural similarity between the depth maps of a pair of
synthesized and reference views. Finally, a linear pooling
model is developed to fuse the above features to predict
DIBR-synthesized image quality. Experiments on the
IRCCyN/IVC database show that the proposed TDI algorithm
outperforms each sub-module and most competing SOTA
image quality assessment methods designed for natural and
DIBR-synthesized images.
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Perceived quality of experience for speech listening is influenced by cognitive processing

and can affect a listener’s comprehension, engagement and responsiveness. Quality

of Experience (QoE) is a paradigm used within the media technology community to

assess media quality by linking quantifiable media parameters to perceived quality.

The established QoE framework provides a general definition of QoE, categories of

possible quality influencing factors, and an identified QoE formation pathway. These

assist researchers to implement experiments and to evaluate perceived quality for any

applications. The QoE formation pathways in the current framework do not attempt

to capture cognitive effort effects and the standard experimental assessments of QoE

minimize the influence from cognitive processes. The impact of cognitive processes

and how they can be captured within the QoE framework have not been systematically

studied by the QoE research community. This article reviews research from the fields of

audiology and cognitive science regarding how cognitive processes influence the quality

of listening experience. The cognitive listening mechanism theories are compared with

the QoE formation mechanism in terms of the quality contributing factors, experience

formation pathways, and measures for experience. The review prompts a proposal

to integrate mechanisms from audiology and cognitive science into the existing QoE

framework in order to properly account for cognitive load in speech listening. The article

concludes with a discussion regarding how an extended framework could facilitate

measurement of QoE in broader and more realistic application scenarios where cognitive

effort is a material consideration.

Keywords: Quality of Experience (QoE), cognitive load, listening effort, subjective test, QoE framework

1. INTRODUCTION

Quality of experience (QoE) is a paradigm that assesses media quality by mimicking human
judgement. The goal is to understand and quantify how consumers perceive media quality. Instead
of using the measurable signal parameters, QoE researchers evaluate the quality of a multimedia
event based on reported quality ratings from participants in subjective experimental studies. To
void the biases from the interpersonal differences, a mean opinion score (MOS) is used to represent
an averaged perceived quality. The subjective ratings from experiments are also used to develop
signal-based QoE prediction models (also called objective models). Such models are expected to
predict quality judgements for multimedia application. Thus, the QoE evaluation approach has
been widely adopted to rapidly test the perceptual effect of new products and services.

Despite the wide applicability of QoE evaluation methods, current QoE evaluations for
naturalisticmultimedia consumption scenarios, when a person is listening to podcasts while driving
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for example, are limited. They lack the consideration of a
person’s comprehension, engagement, effort, and other mental
status. The current QoE framework, a conceptual model that
characterizes how QoE forms, adopts a simple filtering structure
that collapse all the interactions of different influencing factors
to a single outcome—people’s internal comparison between their
expectation of the signal properties and what they actually
perceive—which can be observed from the subjective quality
judgement. Such framework has been widely adopted and works
well for many scenarios. For instance, the telecommunication
industry uses it to analyse the quality impact of a change
in network capacity or system parameters. However, how the
cognitive processes affect the multimedia QoE are not addressed
by the framework nor by the evaluation methods.

As the multimedia consumption scenarios become more
complex, the cognitive aspects of the experience need to be
taken into account. QoE evaluation methods applicable to more
natural scenarios are important to understand the impact of
potential technological changes. Although cognitive aspects are
highly personal and are hard to be modeled, the theories
and the empirical studies in cognitive science can provide us
with practical tools to systematically evaluate the impacts of

FIGURE 1 | The QoE framework adapted from the QoE whitepaper (Brunnström et al., 2013) where the QoE formation pathways (lines with arrows), the QoE

observables (gray boxes), and the QoE influencing factors (orange boxes) are identified. The elements in the existing framework are denoted in black and the

expanded parts are in blue. The existing model assumes that the QoE is the outcome of comparing the expected event and the perceived event (see the mechanistic

diagrams in black). Both expectation and perception are influenced by different influencing factors. The influencing factors are grouped to four categories (orange

boxes). The perceived quality is observed by the subjective rating and/or description of an event (gray box at the bottom).

the cognitive processes. This paper reviews the existing QoE
framework as well as the cognitive listening methods and models
from the audiology and cognitive psychology domains. The paper
then discusses the potential ways to integrate cognitive effort
into the existing QoE framework. While this paper uses listening
effort as a focus, this review prompts consideration of broader
and more realistic QoE framework for application scenarios
where cognitive effort is a factor.

2. THE EXISTING QOE FRAMEWORK AND
ITS LIMITS

2.1. The QoE Framework
The QoE framework is a conceptual model that describes a
QoE formation mechanism for any multimedia consumption
scenario. It can be applied as a template to characterize a quality
judgement formation for an experience. The QoE framework
identifies the QoE formation pathways, the QoE observables, and
the QoE influencing factors (see Figure 1). Quality of Experience
(QoE) describes a person’s satisfactory level of a perceptual
event (Brunnström et al., 2013). It results from the fulfillment of
expectations. The satisfactory level of a perceptual experience can
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be reflected by people’s quality judgement. Therefore descriptions
and ratings are used as the observables to indicate the latent state
of interest—the perceived QoE.

Building on the QoE formation mechanism, influencing
factors are classified that contribute to either the formation
of one’s expectation or the perceived event via formation
pathways (the black lines with arrows in Figure 1). For
example, the context of media consumption can influence
one’s expectation (Sackl et al., 2017), e.g., for a free vs.
paid telephone call, or listening-only radio vs. conversational
telephone call (Moller et al., 2011). Other factors such as noise
and network conditions also affect the perceived event. All the
possible QoE influencing factors are grouped to four categories
in the QoE framework: signal, context, system, and human
factors (Brunnström et al., 2013), each has its own pathway
that ultimately contributes to the formation of QoE (see the
orange boxes in Figure 1). The identified categories of the QoE
influencing factors provide a structural guideline for researchers
to analyse the quality impact of any factors of interest in a variety
of scenarios. Together with the QoE formation pathways and
the observables, researchers can design subjective experimental
procedures that yield quantitative QoE measures.

2.2. QoE Evaluation in Practice
The two commonly used QoE evaluation approaches, the
“descriptive” and the “integrated” (Katz and Nicol, 2019)
approaches, conform well with the observables in the QoE
framework. The descriptive (or performance) approach uses
the verbal descriptions as QoE evaluation. The focus of
the experiential aspects will shift across different application
scenarios using this approach. For example, descriptions of the
noise and intelligibility levels are useful to evaluate the QoE of a
voice call; comments regarding the perceived origin of a sound
or how it blends with the rest of the environment are useful in a
spatial sound scenario. The integrated approach, to the contrary,
uses a single numerical value to represent the impression of
an overall QoE. For instance, the basic audio quality (BAQ)
test (ITU-R, 2015a,b; Schöffler, 2017) uses the mean opinion
scores (MOS) for QoE. Using a uni-dimensional representation
for QoE makes the comparison of different experiences easier,
and hence, making it an efficient solution for rapid evaluations
in industry. While acknowledging that experience is a high
dimensional concept, the QoE framework provides guidelines
to evaluate QoE that is repeatable experimentally and useful for
media technology development and evaluation.

2.3. The Overlooked Impact of Cognitive
Processes
The cognitive processes are modeled in the QoE framework
through the pathways connecting the human influencing factors
(orange box in bottom left of Figure 1). The human influencing
factors comprise factors such as mood, motivation, language,
or prior experience (Brunnström et al., 2013). The human
influencing factors only contribute to expectation formation, not
the downstream QoE formation as human influencing factors
are considered to be either temporarily volatile (such as mood
and motivation) or personal (such as language proficiency or

prior experience). In order to model a QoE evaluation that is
representative and relevant for a large population, the effect of
the transient factors needs to be dampened in the model. To
realize this, QoE evaluation protocols (ITU-T, 1996) recommend
implementing a variety of mechanisms to minimize the effect of
the human influencing factors such as accent familiarity, voice
preferences, fatigue, or boredom. Studies in both audiology and
cognitive neuroscience (Pichora-Fuller et al., 2016; Peelle, 2018;
Herrmann and Johnsrude, 2020) show that the effort expended
on our cognitive process has a substantial impact on perceived
experience. Increased listening effort is found to reduce the
ability to memorize (Murphy et al., 2000; Rabbitt, 2007; Heinrich
et al., 2008; Heinrich and Schneider, 2011), and thereafter
comprehension can be adversely affected (Piquado et al., 2012;
Ward et al., 2016) due to less context information available
from the memory to help decode the current information. A
sustained high listening effort is found to lead to lower arousal
levels (Aston-Jones and Cohen, 2005) and reduced affective
responses (Francis and Love, 2020) such as fatigue (Hockey,
2011) and boredom (Elpidorou, 2018). The strenuous cognitive
process is also found to have negative impact on behaviors
such as slower response time (Phillips, 2016), inferior task
performance (Wingfield et al., 2006; Hornsby, 2013; Lemke
and Besser, 2016; Phillips, 2016), or withdrawal from listening
task (Lemke and Besser, 2016; Herrmann and Johnsrude, 2020)
and social interactions (Mick et al., 2014; Shukla et al., 2020).
Several neurological evidences [such as EEG (Hunter and Pisoni,
2018), fMRI (Kuchinsky et al., 2013), and pupil dilation (Aston-
Jones and Cohen, 2005; Adank, 2012)] have showed distinct
patterns when listeners are exposed to challenging auditory
material, indicating the recruitment of different cognitive
resources in astute listening scenarios. These findings indicate
that the adverse effect of heavy auditory cognition is not only
relevant to the population who are diagnosed with hearing
impairment, but also relevant to anyone who needs to engage
with listening in their day-to-day activities as the recruitment
of other cognitive resources can directly affect the allocation of
attention and therefore the task performance.

From a multimodal perspective, the existing pathways in the
QoE framework are not exhaustive in modeling the effect of
different source signals. The combined effect of audio and visual
input signals have been shown to produce shifts in attention in
various studies (Talsma et al., 2006; Rapela et al., 2012; Chao
et al., 2020). Although themultimodal integration is still an active
area of study in neuroscience (Koelewijn et al., 2010; Fu et al.,
2020), the consideration of audio-visual interaction is shown to
be useful for attention and saliency modeling to improve existing
QoE prediction (Min et al., 2015, 2020; Zhu et al., 2020).

Attentional saliency, comprehension, fatigue level, task
performance, and emotional status are important building blocks
for understanding QoE in realistic listening scenarios, and these
aspects cannot be captured and fully understood by the quality
judgement alone via the standard QoE observable adopted by
the community. The existing QoE framework lacks an explicit
systematic model to guide effective studies exploring the impact
of the cognitive processes on QoE. The attentional control can be
influenced by the source signals (e.g., multimodal interaction) as
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well as by the human influencing factor (e.g., mental capacity).
This study will focus on the latter and use the uni-modal input
signal as an example to show how studies from cognitive hearing
and perception theory could provide complementary learning to
supplement the existing QoE framework.

3. INTEGRATING LISTENING EFFORT INTO
EXISTING QOE FRAMEWORK

To integrate listening effort into the QoE framework model, we
consider three questions: (i) what contributes to the increase in
the cognitive effort; (ii) how increased effort affects QoE; (iii)
how to quantify the effect of effort on QoE. These questions
correspond to the three core component in the QoE framework:
influencing factors, QoE pathways, and the observables.

This section addresses each question and discuss how each
component in the existing QoE framework can be adapted
with reference to two cognitive hearing models: the Framework
for understanding Effortful Listening (FUEL) (Pichora-
Fuller et al., 2016) and the Model of Listening Engagement
(MoLE) (Herrmann and Johnsrude, 2020). They also draw on
the more general cognitive load models (the load theory Murphy
et al., 2016 and the mental capacity model Kahneman, 1973).

3.1. Influencing Factors
Listening effort increases along with the listening
demand (McGarrigle et al., 2014) as more attentional resources
need to be allocated to meet the demand. The FUEL (Pichora-
Fuller et al., 2016) model categorizes the sources of listening
effort as source, transmission, listener, message, and context
factors. These categories all have their counterparts in the
QoE framework. Table 1 illustrates how different sources of
listening effort can be mapped to different influencing factor
categories in the FUEL and the QoE framework. The middle
column highlights that all four QoE influencing factor categories
contribute to the effort formation. The overlapping factors of
concern in both frameworks indicate that the existing QoE
framework has already incorporated the main factors that lead to
listening effort. The next step is to analyse whether the cognitive
effect of these influencing factors can be modeled by the QoE
formation pathways.

3.2. Pathways
The formation pathways in a model identify the possible
mechanisms through which the influencing factors can follow
to impact an outcome. Although the formation pathways are
not concrete, they are depicted in the models to guide research
protocol designs wishing to evaluate the effect of factors of
interest. The implications of increased listening effort are the
result of complex combinations of interactions. The existing QoE
formation pathways collapse the contributions of influencing
factors to an internal comparison, which limits the capacity to
capture the wider cognitive effects that make up our listening
experience. Cognitive hearing studies (McGarrigle et al., 2014;
Pichora-Fuller et al., 2016; Herrmann and Johnsrude, 2020)
indicate that multiple effort formation pathways exist during
speech listening. When a speech signal is being processed at
an early stage, with presence of noise for instance, effort arises

TABLE 1 | Sources of listening effort and their corresponding influencing factor

categories in the QoE framework and the FUEL.

Factors QoE FUEL

Voice degradation System Transmission

Bandwidth limit System Transmission

Noise System Transmission

Reverberation System Transmission

Multi-talker Signal Source & context

Spatial separation Signal Source & context

Synthesized voice Signal Source

Sustained speech Context Source

Voice similarity Signal Source

Foreign language Signal & context Message & context

Reward Human Motivation

Hearing loss Human Listener

when listeners inhibit the irrelevant signals and keep attentive to
the target signals. However, sometimes a higher load level helps
people to concentrate (Mick et al., 2014; Murphy et al., 2016;
Herrmann and Johnsrude, 2020). At a later stage when the speech
signal is being processed semantically, effort increases when the
content topic is obscure and more context information needs to
be recalled from memory to aid comprehension. Effort is also
be influenced by the demands of concurrent tasks (Skowronek
and Raake, 2014) as attention needs to be constantly reallocated
depending on the dynamics of a subtask. This pathway is
particularly relevant to the design of technology and multimedia
applications where people increasingly consume multimedia
while multi-tasking in day-to-day scenarios.

It has yet to be shown whether the effect of multiple effort
formation pathways can be simplified to a single pathway.
Therefore, we show multiple potential effort formation pathways
so that systematic investigations into the cognitive impact
can be designed. Multiple pathways might result in different
experiential implications in addition to the quality judgement,
thus additional measurements that capture different aspects of an
experience need to be recorded to compare the differences in the
perceptual experiences.

3.3. Observables
The observables are used by researchers to infer the impact of
influencing factors. The choice of the observables depends on the
outcome of interest and the corresponding formation pathways.
For instance, the corresponding observables for the percept
(Johnsrude and Rodd, 2016), cognitive activity, and the mental
capacity as a result of listening effort can be the self-reported
responses, neuroimaging, and concurrent task performance. As
multiple listening effort formation pathways might exist, a single
observable (i.e., a quality judgement) may not be sufficient to
capture the QoE. Initiatives in the QoE domain (Engelke et al.,
2017) already attempt to use other observables to give a broader
definition of QoE. We will next summarize the various listening
effort observables in use and discuss how different types of
observable account for different aspects of an experience.
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The most direct observables for listening effort are the self-
reported ratings or descriptions. Ratings are more commonly
adopted as they are both scalable and easier to process. The
NASA-TLX mental effort scale (Hart and Staveland, 1988), for
example, is a mature instrument that asks subjects to rate on
different relevant aspects such as fatigue, stress, and task difficulty
to gauge one’s overall cognitive load (Rubio et al., 2004). Another
example of a self-reported measure asks subjects to estimate the
duration they can sustain a task to gauge the cognitive load
while listening (Pichora-Fuller et al., 2016). However, due to
the retrospective nature of these self-reported measures, such
measures are susceptible to memory and descriptive biases.

Behavioral responses are also used to indicate effort. These
include the memory recall, speech comprehension (observed
after the task), or attention-related task performance (observed
during the task). The Span Test (Conway et al., 2005) is a
well established working memory test where participants are
asked to read a series of sentences and to recall the last
word from each sentence. It is used to indirectly evaluate
listening effort based on the assumption of working memory
capacity (Baddeley, 2000). In a demanding listening scenario, an
increase in the allocated cognitive resources to comprehend the
signal will adversely impact information recall capacity. Another
popular experimental paradigm is the dual-task method where
participants conduct a parallel task simultaneously to force the
division of attention. In this case, an increase in the listening
effort is indicated by a performance reduction in the concurrent
task (Hunter, 2020). The dual-task paradigm is based on the
assumption that attention allocated to one task will leave less
spare cognitive capacity to process another task (Kahneman,
1973; Beatty, 1977; Sweller, 1994; Schnotz and Kürschner, 2007)
leading to an observable reduced performances in the less
attended task.

Psychophysiological changes are also used to indicate the
effort involved in a listening task. Some physiological observables
(e.g., pupil dilation, cardiac responses, skin conductance,
and hormonal changes) are the result of sympathetic or
parasympathetic responses to stress or effort (de Waard, 1996;
Peelle, 2018). Thus, they are regarded as indirect measures
for listening effort. Observables captured around the brain
area (such as the activity intensity and the differences in the
activated brain regions) are also used as indicators of listening
effort. For example, an increase in the alpha band power in
the electroencephalography signal can be observed when there
is signal degradation or an increased demand for information
storage (Piquado et al., 2012; Pichora-Fuller et al., 2016; Hunter,
2020). An increase in activity is found in the cingulo-opercular
network from the functional magnetic resonance imaging when
listeners are exposed to less intelligible signals (Wild et al.,
2012; Erb et al., 2013; Vaden et al., 2013; Eckert et al., 2016).
The psychophysiological observables are highly susceptible to
many other internal and external factors such as environment
temperature and mental status. Yet the high resolution in time
makes them the preferred instruments for event-related analysis.

Identifying the potential and appropriate observables is
critical in order to select the methods that will capture how

effort affects different aspects of our experience. Using multiple
observables is also recommended to reduce the structural
interference in data analysis (Kahneman, 1973; Pichora-
Fuller et al., 2016). The theoretical and empirical cognitive
psychology literature provides a broad selection of observables to
complement the commonly-used self-reported measures in the
QoE community. It also prompts looking beyond the existing
QoE framework to consider pathways to better capture different
impacts of listening effort in naturalistic scenarios.

4. CONCLUSION AND FUTURE DIRECTION

This review introduced the QoE framework model used by
the media technology community to assign in designing
and selecting the appropriate methods to empirically evaluate
quality of experience. We introduced the rationale behind the
framework and explained the structural influencing factors,
pathways and observables. The limited capability within the
framework to capture and quantify how effort interacts with
QoE was highlighted. With a focus on listening effort, this
paper reviewed multiple listening effort formation pathways
from the cognitive science domain to complement the existing
QoE formation pathway. A review of literature and methods
drawn from the audiology and cognitive science domains,
illustrated how the QoE framework could be expanded and QoE
experimental methods could be applied to naturalistic listening
scenarios where the cognitive process plays a significant part in
QoE formation. Pathways and observables beyond self-reported
quality ratings were reviewed. We believe the review warrants
adding a cognitive dimension to QoE framework. It would allow
for more direct comparisons of different subjective experiments.
It would encourage the community to design subjective
experiments that consider the impact of less explored cognitive
processes. Furthermore, subjective experiments guided by such
framework should provide new insights into the more nuanced
experiential aspects of our multimedia consumption experience.

More generally, the review highlights the flexibility within
the framework for extension and the potential to capture a
better understanding of audio influence within wider QoE
studies, e.g., listening effort impacting video or immersive
QoE. This review also presents an opportunity to apply a
similar approach beyond listening, identifying new pathways and
observables within the QoE framework, for visual, haptic or
multimodal interactions.
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The refresh rate is one of the important parameters of visual presentation devices, and
assessing the effect of the refresh rate of a device on motion perception has always been
an important direction in the field of visual research. This study examined the effect of
the refresh rate of a device on the motion perception response at different stimulation
frequencies and provided an objective visual electrophysiological assessment method
for the correct selection of display parameters in a visual perception experiment. In
this study, a flicker-free steady-state motion visual stimulation with continuous scanning
frequency and different forms (sinusoidal or triangular) was presented on a low-latency
LCD monitor at different refresh rates. Seventeen participants were asked to observe
the visual stimulation without head movement or eye movement, and the effect of the
refresh rate was assessed by analyzing the changes in the intensity of their visual evoked
potentials. The results demonstrated that an increased refresh rate significantly improved
the intensity of motion visual evoked potentials at stimulation frequency ranges of 7–
28 Hz, and there was a significant interaction between the refresh rate and motion
frequency. Furthermore, the increased refresh rate also had the potential to enhance
the ability to perceive similar motion. Therefore, we recommended using a refresh
rate of at least 120 Hz in motion visual perception experiments to ensure a better
stimulation effect. If the motion frequency or velocity is high, a refresh rate of≥240 Hz is
also recommended.

Keywords: motion perception, refresh rate, brain computer interface (BCI), steady-state motion visual evoked
potential (SSMVEP), electroencephalogram (EEG)

INTRODUCTION

An accurate presentation of stimuli is a prerequisite for accurate results of visual perception
experiments. However, most modern monitors present motion objects at discrete locations,
showing an approximate continuous motion process (Chapiro et al., 2019). Motion blur will occur
when the motion speed or motion frequency is too high; it violates the assumption of smooth
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motion and causes stimulus distortion and false experimental
results (Tourancheau et al., 2009; Watson and Ahumada, 2011).
Since motion blur is positively related to speed and inversely
related to the refresh rate of a device, increasing the refresh rate
of the monitor used in experiments has become a mainstream
choice in visual motion perception research. However, hardware
cost and software compatibility limit the maximum refresh rate
that can be employed. Therefore, it is an important part of visual
motion perception research to analyze the effect of the monitor
refresh rate and select the monitor with an appropriate refresh
rate according to the stimulus.

Many studies have been conducted on the effect of the refresh
rate of a device on visual motion perception with psychological
methods. For example, Mulholland et al. (2015) used the contrast
thresholds method to evaluate the effect of the refresh rate on
temporal summation, and a CRT (cathode-tube-ray) monitor
with refresh rates of 60 and 160 Hz was used as the visual
stimulation device. Kime et al. (2016) evaluated perceptual
performance with a digital micromirror device (DMD) with
a high refresh rate of 1,000 Hz and a normal refresh rate of
60 Hz. Denes et al. (2020) asked participants to observe motion
stimuli at different speeds (15, 30, and 45 deg/s) on liquid crystal
displays (LCDs) with different refresh rates (50–165 Hz) and
evaluated the display quality with participative just-noticeable
differences (JND) indicators. However, due to differences in
motion stimulus parameters or evaluation indicators, different
studies have reached different conclusions on the effect of
the refresh rate of a device on the improvement of visual
motion perception. In particular, most reports use participative
psychological methods or sampling theory to study the effect of
the refresh rate of a device on visual motion perception (Kuroki
et al., 2006, 2007; Noland, 2014); hence, it is time-consuming
to conduct a continuous quantitative analysis of the interaction
between the refresh rate of a device and motion frequency (or
motion velocity) due the vast number of values possible for many
parameters (Emoto et al., 2014). These problems limit refresh
rate research in visual motion perception, and it is difficult to
provide suitable suggestions for the selection of a refresh rate in
visual experiments.

Brain computer interface (BCI) is a technology that directly
converts brain activity into external instructions (Wolpaw et al.,
2002; Nicolasalonso and Gomezgil, 2012), and many researchers
have noticed the potential of BCI in visual perception and
medical diagnosis (Norcia et al., 2015; Nakanishi et al., 2017;
Overbeek et al., 2018; Guger et al., 2021). Among them, the
steady-state visual evoked potential (SSVEP) (Middendorf et al.,
2000) method uses visual stimuli of a specific frequency to
induce steady-state potentials. The SSVEP method is a relatively
mature electroencephalogram (EEG)-BCI technology (Guger
et al., 2001; Bashashati et al., 2007), it has the characteristics of
a high SNR (signal-noise ratio). Compared with the broadband
distribution of noise signals, the SSVEP response has a narrow-
band distribution. By defining a specific frequency, researchers
can record the subtle differences of different visual stimuli
responses in a short period of time. Moreover, researchers can
measure the SSVEP response without noting obvious behavior,
control the influence of decision criteria after the sensory or

perceptual coding stage (de Lissa et al., 2020), and provide a
quantitative method for visual perception research on refresh
rates (Gembler et al., 2017; Nagel et al., 2018; Başaklar et al., 2019).

In addition to the commonly used flicker or pattern-reversal
stimulation methods, motion stimulation can also elicit a steady-
state response, which can be called steady-state motion visual
evoked potentials (SSMVEPs) (Xie et al., 2011); In recent years,
some researchers have tried to use the SSMVEP method to
analyze the effect of the refresh rate of a device on visual motion
perception. For example, Khoei et al. (2018) found that coherent
trajectory SSMVEP stimuli (3 Hz) induced stronger responses
at high refresh rates, and they suggested that a display with
higher refresh rates (≥240 Hz) should be used to induce visual
perception cortical responses. Chai et al. (2020) used the SSMVEP
paradigm (8–15 Hz) to induce visual cortical responses with
monitors that had refresh rates of 60 and 144 Hz. However, they
reported that the refresh rate of the monitor had no significant
effect on the improvement of the evoked response. These studies
use flicker or size scaling as the stimulus targets, resulting in
changes in brightness that interfere with the ability to achieve an
accurate motion perception response. Moreover, the frequency
range of the above SSMVEP experiment was limited, and the
effect of the refresh rate of the monitor on high-frequency or
high-speed motion was not analyzed. The design flaws of pattern
and frequency in the SSMVEP paradigm made the research
results incomprehensive.

The goal of this study is to offer an analysis method of
the effect of the refresh rate of a device on visual motion
perception using broadband flicker-free SSMVEP (Han et al.,
2018). The flicker-free SSMVEP paradigm utilizes the contraction
and expansion of the checkerboard texture, which has the
characteristics of low flicker and concentrated spectral peaks;
also, it is convenient for the analysis of response changes
under different conditions. In this study, the frequency of
the stimulus is set to 7–28 Hz, the motion form of the
paradigm is modulated by sine waves and triangle waves,
and the monitor refresh rates are 60, 120, and 240 Hz. By
analyzing the difference in induced response intensity under
different refresh rates, stimulation frequencies and motion
forms, we comprehensively evaluate the effect of the refresh
rate. Considering that the multiparameter experiment is time-
consuming and easily induces visual fatigue, this study uses
the sweep method to linearly modulate the stimulus frequency,
quickly induce a continuous broadband visual response, and
avoid interference from the evoked potential response.

MATERIALS AND METHODS

Participants
Seventeen healthy participants (with normal or corrected-to-
normal vision) participated in the experiment in this study
(including 7 women; age 20–25 years, average age 22 years).
Before the test, all experiment participants received training
to familiarize themselves with the experimental process. All
participants were asked to sign informed written consent
following a protocol approved by the institutional review
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board of Xi’an Jiaotong University and that conformed to the
Declaration of Helsinki.

Environment and Data Acquisition
The visual stimulator was an ASUS PG258Q 24.5-inch LCD
monitor (1,920 × 1,080 pixels, 543.7 × 302.6 mm, the actual
width of each pixel was approximately 0.28 mm, and the
maximum supportable refresh rate was 240 Hz). The experiment
was carried out in a quiet room with general lighting. All
participants were asked to sit in comfortable armchairs 65 cm in
front of the LCD monitor.

The EEG signals were recorded with ZhenTec NT1 (ZhenTec
Intelligence Ltd., China). The electrodes were arranged according
to the international 10–20 electrode system. A total of 6 electrodes
were arranged. These electrodes were placed in the occipital
region (POz, PO3, PO4, Oz, O1, and O2), the reference channel
was set in the unilateral earlobe (A1), and the ground channel was
set in the middle of the forehead (Fpz). The acquisition device
sampled EEG signals at a frequency of 1,200 Hz, the bandpass
filter was set at 2–100 Hz, and the notch filter was set at 48–52 Hz.
The impedance of all electrodes was kept below 5 kOhms.

Paradigm Design and Experiment
Process
Our paradigm design utilized motion checkerboard patterns
to construct flicker-free SSMVEP visual stimuli paradigm
(Han et al., 2018), motion checkerboard paradigm have the
characteristics of low contrast and low visual fatigue (Xie et al.,
2016; Zheng et al., 2019, 2020b), it can avoid the effects of fatigue
on the response of evoked potential. The motion checkerboard
pattern consisted of eight concentric rings, and each ring was
divided into 24 equal sectors of black and white squares. In
the experiment, participants were asked to gaze at motion
stimuli without head movement or eye movement. In order to
avoid interference from surrounding stimuli, the single-target
stimulation paradigm was used. Since the evoked visual potential
is most affected by the parameters in the visual field center
stimulus, the experiment results of the paradigm can ensure the
accuracy of the analysis conclusions.

The motion displacement curve of the stimulus was
modulated by a sinusoidal sweep signal (chirp) or
triangular sweep signal, and the frequency increased linearly to
induce a continuous wide-band steady-state visual potential.
Taking a sinusoidal motion stimulus as an example, the
expression of the displacement curve was constructed as

y(t) = A cos(2π(
a
2

t+
f0

2
)t+ϕ0) (1)

where A is the motion amplitude, a is the frequency change
rate, ϕ0 is the initial phase, and f 0 is the start motion reversal
frequency. The motion reversal frequency, which indicates the
frequency of motion direction conversion, is twice the frequency
of a whole period of motion. The stimulation parameter setting of
the SSMVEP paradigm is shown in Figure 1, the viewing angle of
the motion stimulus was set at 5◦, the motion amplitude was set at
0.6◦, the initial phase was set at 0◦, the duration of the stimulation

FIGURE 1 | Stimulation parameter settings of the paradigm. The motion
stimulus was modulated by sinusoidal or triangular sweep signals. The
duration of stimulation was set at 8.5 s, the start frequency was set at 7 Hz,
the end frequency was set at 28 Hz, the viewing angle of the stimulus was set
at 5◦, and the motion amplitude was set at 0.6◦.

trial was set at 8.5 s, the frequency change rate was set at about
2.47 Hz/s, the start motion reversal frequency was set at 7 Hz and
the end frequency was set at 28 Hz corresponding to an average
motion velocity of 8.4 deg/s (2∗0.6◦∗7) to 33.6 deg/s (2∗0.6◦∗28).

The motion reversal process is an important inducing factor
for SSMVEPs, and the frequency of the SSMVEP generally takes
the motion reversal frequency as the fundamental frequency.
Therefore, the stimulus frequency mentioned in this study is
equal to the motion reversal frequency.

To stabilize the visual evoked potential in advance, all
participants watched the motion stimulus with the start
frequency for 1 s before the formal experiment began. The
experiment process is shown in Figure 2. In order to ensure
the stability of the stimulation frequency, a photoelectric trigger
device was used to test the visual paradigm before the formal
experiment. The test results showed that only a few display
frames have time deviations, and the error does not exceed 10-ms.
When the formal experiment began, the stimulation frequency
began to change. The duration of stimulation was 8.5 s, and
the rest interval was 5 s. The experiment block with the same
parameters was repeated 5 times. The motion paradigm was
developed using MATLAB (MathWorks, Natick, United States)
and Psychophysics Toolbox Version 3.

Signal Analysis
Preprocessing of Electroencephalogram Data
A bandpass filter of 2–100 Hz and a 48–52 Hz notch filter were
utilized to eliminate high-frequency interference, low-frequency
drifts and power frequency interference of EEG signals. The five
blocks were averaged to an 8.5-s data epoch for the next step in
signal processing.
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FIGURE 2 | Experiment process. The duration of stimulation was 8.5 s, the
rest interval was 5 s, and the experiment block with the same parameters was
repeated 5 times.

Canonical Correlation Analysis
Although Fourier transform is widely used for frequency
detection with single-channel EEGs, it might still be sensitive
to noise if the signal to be analyzed is from a single
channel. Canonical correlation analysis (CCA) is an array signal
processing method that can be used to calculate the underlying
correlation between two sets of variables, it finds a pair of linear
transforms for two sets and then maximizes their correlation.

CCA has been widely applied for frequency detection in
multichannel visual-based BCIs (Lin et al., 2007; Zhang et al.,
2020) due to its high efficiency, high robustness, high signal-
to-noise ratio, and simple implementation (Bin et al., 2009;
Kalunga et al., 2013; Nakanishi et al., 2015). Therefore, CCA was
implemented to detect frequency components in our research.

Suppose that there are N frequencies f1,f2,. . .,fN that we need
to analyze. To detect the stimulation frequency, two sets of
signals are introduced into CCA. One set comprises the EEG
signals X from several different recording channels. The other
set comprises frequency signals Yi (i = 1, . . ., N), denotes the
reference signal and is constructed as

Yi =

(
sin (2πfin)

cos (2πfin)

)
, t =

1
Fs

,
2
Fs

, · · · ,
K
Fs

(2)

where Fs is the sampling rate and K is the number of sampling
points. In this study, only the corresponding responses under
different visual stimulations needed to be analyzed; therefore,
the reference signals Yi were only composed of sinusoid and
cosinusoid pairs at the same frequency of the stimulus.

CCA can be used to find a pair of weight vectors Wx and Wyi
to maximize the canonical correlation coefficient between linear
transformations X = XTWx and Yi = Yi

TWyi by the following
optimization problem:

Max
wx,wyi

ρ(x, yi) =
E[wT

x XYT
i wyi]√

E[wT
x XXTwx]E[wT

yiYiYT
i wyi]

(3)

where E represents the calculation of the expected value, ρ is
the canonical correlation coefficient, and x and yi are the first
pair of canonical variables. ρ(x,yi) corresponds to the maximum
canonical correlation coefficient between x and yi. When each
canonical correlation coefficient of fi (i = 1, . . ., N) is calculated

separately, the CCA response coefficient spectrum can be drawn
by the maximum ρ of N canonical correlations.

This study used sliding window CCA spectrum analysis for
time-frequency analysis. First, the 8.5-s EEG data in each block
were superimposed in the time domain. Then, the EEG data
were segmented according to a 0.75-s time window and a 0.25-s
overlap length. A total of 32 segments were generated in this case,
the frequency change range of each segment is about 0.66 Hz.
Finally, CCA calculation was performed on the segmented data to
obtain the correlation coefficient value. The response frequency
corresponding to each segmented data was the average scanning
stimulation frequency of the time window. The frequency range
of the CCA coefficient spectrum analysis was set from 5 to 40 Hz,
and the frequency interval was 0.2.

Statistical Analysis
Two-way repeated measures analysis of variance (ANOVA) and
one-way repeated measures ANOVA were used in this study to
analyze the difference and agreement between different refresh
rates and stimulation frequencies. Post hoc comparisons with the
Bonferroni correction method for multiple comparisons were
also used when necessary.

Before two-way or one-way repeated measures ANOVA
was performed, outliers were removed by the studentized
residual analysis, and the Shapiro-Wilk test was used to test
whether each group of data obeyed a normal distribution.
Mauchly’s test of sphericity was performed before repeated
measures ANOVA was conducted. If Mauchly’s test of sphericity
was violated, the data were corrected by the Greenhouse-
Geisser estimates of sphericity. Two-way and one-way repeated
measures ANOVA were carried out by SPSS (Version 22.0 IBM,
Armonk, United States).

RESULTS

Visual Evoked Potential Average
Response Analysis
This subsection qualitatively analyzed the effect of refresh rate
on the intensity of evoked response. First, the CCA coefficient
spectrum analysis was preformed, which could present the
response distribution of each subject under different stimulus
conditions. Then the appropriate response frequency was selected
to perform frequency response analysis, and the average evoked
response intensity trend of all subjects was obtained. Finally,
by dividing common EEG rhythms, the effect of refresh rate
on the evoked response intensity under different frequency
stimuli was presented.

Canonical Correlation Analysis Coefficient Spectrum
Analysis of the Average Stimulus Response
The CCA coefficient spectrum analysis of the average stimulus
response of all participants is presented in Figure 3. Figures 3A,B
shows the sinusoidal motion and the triangular motion
stimulation response, respectively.

The results of spectrum analysis demonstrate that the Sweep-
SSMVEP paradigm evoked “single fundamental peak” responses.
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FIGURE 3 | The CCA coefficient spectrum of the Sweep-SSMVEP paradigm. (A) The sinusoidal motion stimulation response. (B) The triangular motion stimulation
response. Each row represents the stimulus response at the same refresh rate, each column (column 1–17) represents the stimulus response of the same
participant, and the last column represents the average response of all participants under different refresh rates. In the CCA coefficient spectrum, the vertical axis
indicates the response frequency, the horizontal axis indicates the stimulation duration, and the color indicates the value of the CCA coefficients.

In other words, the fundamental frequency components of
the Sweep-SSMVEP response (7–28 Hz) were prominent,
whereas the higher-order harmonics were barely invisible.
In addition, different motion forms and different refresh
rates had little effect on high-order harmonic harmonics;
therefore, in the subsequent analysis, the fundamental
frequency response components were mainly considered
evaluation indices.

Frequency Response Analysis of Fundamental
Frequency
The average fundamental frequency responses of all participants
are presented in Figure 4. Figures 4A,B show the frequency
response of sinusoidal motion stimulation and triangular motion
stimulation, respectively. To compare the effect of the refresh rate
of the monitor on the evoked potential response under different

frequencies, the stimulation frequencies were divided into three
ranges according to the EEG rhythm: alpha wave (7–14 Hz), low
beta wave (14–21 Hz) and middle beta wave (21–28 Hz).

The changing trend of the fundamental frequency response of
the Sweep-SSMVEP paradigm was similar to that of the flicker
SSVEP paradigm. The response amplitude reached the highest
value when the stimulation frequency was approximately 10
Hz and then dropped as the stimulation frequency increased.
Furthermore, the results of frequency responses demonstrated
that refresh rates of visual motion stimulation significantly
influence the intensity of the evoked potential and that the law
of effect is also related to the frequency or form of stimulation.
The results show that the sinusoidal motion stimulation response
intensities under refresh rates of 120 Hz (Average CCA: 0. 0.4623)
and 240 Hz (Average CCA: 0. 0.4771) were both higher than that
under a refresh rate of 60 Hz (Average CCA: 0.4226) with an
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FIGURE 4 | Fundamental average frequency responses of all participants. (A) The frequency response of sinusoidal motion stimulation. (B) The frequency response
of triangular motion stimulation. The horizontal axis indicates the stimulation frequency at the corresponding time, and the vertical axis indicates the CCA coefficient
under the corresponding stimulation frequency. The blue solid lines depict the average visual response of all participants to stimulation with a refresh rate of 60 Hz,
the red solid line depicts the average visual response to stimulation with a refresh rate of 120 Hz and the yellow solid line depicts the average visual response to
stimulation with a refresh rate of 240 Hz. The black dotted line depicts the frequency divisions.

average increase of 8.8 and 12.4%, respectively. Moreover, the
triangular motion stimulation response intensity under refresh
rates of 120 Hz (Average CCA: 0.4162) and 240 Hz (Average CCA:
0.4236) were also both higher than that under a refresh rate of
60 Hz (Average CCA: 0.3915), with an average increase of 6.5 and
8.8%, respectively.

Average Response Intensity in Different Stimulation
Frequency Bands
As shown in the average stimulation response boxplot (Figure 5),
the alpha wave (7–14 Hz), low beta wave (14–21 Hz), and
middle beta wave (21–28 Hz) responses of all participants
were averaged. To distinguish parameters, a different color was
used to indicate different refresh rates. The box plot results
suggest that, in general, a high refresh rate can induce a higher
visual potential response than a low refresh rate, and sinusoidal
motion stimulation can induce a higher visual potential response
than triangular motion stimulation. These data were used in
subsequent statistical analyses.

The Effect of the Refresh Rate of the
Monitor on the Sinusoidal Visual Motion
Stimulation Response
The two-way repeated measures ANOVA was applied in this
subsection to analyze the effect of the refresh rate on the
sinusoidal visual motion stimulation response. First, it was
necessary to determine the interaction effect of the refresh rate
and stimulation frequency, that is, to find out whether the
refresh rate have a differentiated effect under different frequency
stimulations. When the interaction effect between refresh rate
and stimulation frequency was determined, one-way repeated
measures ANOVA was used to perform simple effect analysis in
each frequency band, respectively, which could determine the
response intensity significant difference under different refresh

rates. If the one-way repeated measures ANOVA show that the
refresh rate will have significant different effects on the evoked
response in a certain stimulation frequency range, then the
post hoc comparisons analysis could be further carried out to
determine the refresh rate response intensity difference between
each other, finally obtained specific statistical analysis results.

Analysis of the Interaction Effect of the Refresh Rate
and Stimulation Frequency
The CCA coefficient data of the sinusoidal stimulation response
satisfied the conditions of two-way repeated measures ANOVA,
and the distribution of response data obeyed a normal
distribution and satisfied the sphericity property [Mauchly’s test
of sphericity, χ2(9) = 4.17, P = 0.043 > 0.05].

The outcomes of the analysis suggest that the interaction effect
of the refresh rate and stimulation frequency had a statistically
significant effect on the evoked response to sinusoidal motion
stimulation [F(4, 56) = 3.30, P = 0.017 < 0.05, ηp

2= 0.19].
Therefore, it was possible to analyze evoked response changes
with different refresh rates under three frequency band sinusoidal
motion stimulations separately.

The Simple Effect Analysis of Refresh Rate in Each
Frequency Band
One-way repeated measures ANOVA was used to analyze the
simple effect of refresh rate in each frequency band. Mauchly’s
test of sphericity was also used to evaluate whether the sphericity
assumption was violated. The results showed that the CCA
coefficient data of 7–14 Hz sinusoidal stimulation responses
[χ2(2) = 6.83, P = 0.033 < 0.05] and 21–28 Hz stimulation
responses [χ2(2) = 6.16, P = 0.046 < 0.05] violated Mauchly’s
test of sphericity, and the CCA coefficient data of 14–21 Hz
stimulation responses [χ2(2) = 2.41, P = 0.300 > 0.05] were not
violated. Then, the Greenhouse-Geisser estimates of sphericity
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FIGURE 5 | Average stimulation response boxplot of different frequencies. The horizontal axis indicates the refresh rate, and the vertical axis indicates the average
CCA coefficient. The black dotted line is used to separate different motion forms, and the blue dotted line is used to separate different stimulation frequencies.

were used to correct the CCA coefficient data (ε7−14 Hz = 0.87,
ε21−28 Hz = 0.73).

The outcomes of one-way repeated measures ANOVA
suggested that the refresh rate had a statistically significant simple
effect on the evoked response under sinusoidal stimulation in
the 7–14 Hz frequency band [F(1.46, 23.43) = 17.24, P < 0.001,
ηp

2= 0.52], 14–21 Hz frequency band [F(2, 32) = 15.16,
P < 0.001, ηp

2= 0.49] and 21–28 Hz frequency band [F(1.452,
20.33) = 12.188, P = 0.01, ηp

2 = 0.47].

Post hoc Comparisons of the Refresh Rate in Each
Frequency Band
The differences in evoked responses under different refresh rates
in each stimulation frequency band were compared by post hoc
comparisons. The results are shown in Table 1. The column of
differences of evoked responses indicates the difference between
different refresh rates. The asterisk in the column of significance
indicates that the difference is statistically significant at the level
of α = 0.05.

Figure 6 is a graphical display of the data in Table 1. Figure 6A
shows the histogram of sinusoidal motion stimulation-evoked
responses, including the mean and standard deviation. Different
colors are used to indicate different refresh rates. Figure 6B
shows the relative proportion of evoked responses under different
refresh rates in each stimulation frequency. The relative average
CCA coefficient of evoked responses under a refresh rate of 60 Hz
was set at 1, which allowed the calculation and application of the
relative average CCA coefficient under 120 and 240 Hz.

The results of post hoc comparisons demonstrate that the
sinusoidal motion stimulation response intensities under refresh
rates of 120 and 240 Hz were both higher than that under a
refresh rate of 60 Hz with an average increase of 8.8 and 12.4%,
respectively, and the differences were statistically significant. The
response intensity was also higher under a refresh rate of 240 Hz
than that under 120 Hz refresh rate, with an average increase of
3.3%, but the difference was not statistically significant.

Furthermore, the stimulation frequency and refresh rate had
a significant interactive effect on the visual evoked potential
response. As shown in Figure 6B, the response intensity
differences between the 60 Hz refresh rate and 120 Hz refresh rate
under all frequencies of stimulation were remarkable. However,
the response intensity difference between the 120 Hz refresh rate
and the 240 Hz refresh rate varied drastically with stimulation
frequency. That is, the response intensity difference was minor at
lower frequency stimulation; as stimulation frequency increased,
the difference became larger, and the overall effect trend of the
refresh rate on response intensity became linear.

The Effect of the Refresh Rate on the
Triangular Visual Motion Stimulation
Response
The analysis of the effect of the refresh rate on the triangular
visual motion stimulation response was similar to the analysis
process of sinusoidal motion stimulation, the methods are as
follows: interaction effect analysis, simple effect analysis and
post hoc comparisons.
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TABLE 1 | The post hoc comparison results of sinusoidal motion stimulation with different refresh rates.

Stimulation frequency Refresh rate Average CCA coefficient mean (SD) Differences of evoked responses Significance

Mean (S.E.) 95% CI

7–14 Hz 60 Hz 0.546 (0.092) 120–60 Hz: 0.047 (0.009) [0.023 0.072] P < 0.001*

120 Hz 0.594 (0.094) 240–60 Hz: 0.052 (0.012) [0.019 0.085] P = 0.002*

240 Hz 0.599 (0.100) 240–120 Hz: 0.005 (0.007) [−0.014 0.024] P = 1

14–21 Hz 60 Hz 0.418 (0.053) 120–60 Hz: 0.047 (0.009) [0.022 0.072] P < 0.001*

120 Hz 0.465 (0.059) 240–60 Hz: 0.062 (0.013) [0.026 0.097] P = 0.001*

240 Hz 0.480 (0.079) 240–120 Hz: 0.015 (0.012) [−0.018 0.047] P = 0.73

21–28 Hz 60 Hz 0.295 (0.032) 120–60 Hz: 0.019 (0.005) [0.005 0.033] P = 0.006*

120 Hz 0.314 (0.035) 240–60 Hz: 0.038 (0.009) [0.012 0.063] P = 0.004*

240 Hz 0.332 (0.054) 240–120 Hz: 0.018 (0.008) [−0.03 0.039] P = 0.10

*p < 0.05.

FIGURE 6 | The post hoc comparison results and relative proportion comparison of sinusoidal motion stimulation. (A) The histogram of sinusoidal motion
stimulation-evoked responses, including the mean and standard deviation. The asterisks indicate that the difference is statistically significant at the level of α = 0.05.
(B) The relative proportion of sinusoidal stimulation-evoked responses under different refresh rates in each stimulation frequency range. The vertical axis indicates the
relative proportion, the horizontal axis indicates the refresh rate, and the black dotted thin line is used to separate different stimulation frequencies.

Analysis of the Interaction Effect of the Refresh Rate
and Stimulation Frequency
For triangular motion stimulation, the data satisfied the
sphericity property [Mauchly’s test of sphericity, χ2(9) = 8.21,
P = 0.52 > 0.05], which mean the data of triangular wave
stimulation responses met the conditions of two-way repeated
measurement ANOVA.

The outcomes of two-way repeated measures ANOVA also
demonstrated that the interaction effect of the refresh rate
and stimulation frequency was statistically significant [F(4,
56) = 2.532, P = 0.05, ηp

2 = 0.15].

Simple Effect Analysis of the Refresh Rate in Each
Frequency Band
The results showed that the CCA coefficient of triangular
stimulation response data at frequencies of 7–14 Hz [χ2(2) = 0.55,
P = 0.76 > 0.05], 14–21 Hz [χ2(2) = 0.19, P = 0.91 > 0.05]
and 14–21 Hz [χ2(2) = 4.88, P = 0.087 > 0.05] did not violate
Mauchly’s test of sphericity.

The outcomes of one-way repeated measures ANOVA
demonstrated that the refresh rate had a statistically significant
simple effect on the evoked response at the 14–21 Hz frequency
band [F(2, 30) = 10.63,P < 0.001, ηp

2= 0.415] and 21–28 Hz
frequency band [F(2, 28) = 13.07, P < 0.001, ηp

2= 0.483], and the
simple effect of the refresh rate on the 7–14 Hz evoked response
was not statistically significant [F(2, 32) = 2.456, P = 0.1 > 0.05,
ηp

2 = 0.13].

Post hoc Comparisons of the Refresh Rate in Each
Frequency Band
Consequently, only post hoc comparisons of responses to 14–
21 Hz and 21–28 Hz stimulations were performed. The analysis
results of triangular motion stimulation with different refresh
rates are shown in Table 2. The asterisk in the column of
significance indicates that the difference is statistically significant
at the level of α = 0.05.

Figure 7 is a graphical display of the data in Table 2. Figure 7A
shows the histogram of triangular motion stimulation-evoked
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TABLE 2 | The post hoc comparison results of sinusoidal motion stimulation with different refresh rates.

Stimulation frequency Refresh rate Average CCA coefficient mean (SD) Differences of evoked responses Significance

Mean (S.E.) 95% CI

7–14 Hz 60 Hz 0.374 (0.060) 120–60 Hz: 0.034 − −

120 Hz 0.407 (0.065) 240–60 Hz: 0.038 − −

240 Hz 0.412 (0.071) 240–120 Hz: 0.004 − −

14–21 Hz 60 Hz 0.374 (0.060) 120–60 Hz: 0.034 [0.009 0.058] P = 0.006*

120 Hz 0.407 (0.065) 240–60 Hz: 0.038 [0.015 0.064] P = 0.001*

240 Hz 0.412 (0.071) 240–120 Hz: 0.004 [−0.021 0.03] P = 1

21–28 Hz 60 Hz 0.295 (0.038) 120–60 Hz: 0.022 [0.008 0.035] P = 0.002*

120 Hz 0.316 (0.038) 240–60 Hz: 0.037 [0.014 0.061] P = 0.002*

240 Hz 0.332 (0.050) 240–120 Hz: 0.016 [−0.005 0.037] P = 0.18

*p < 0.05.

responses, including the mean and standard deviation. Figure 7B
shows the relative proportion of evoked responses under different
refresh rates in each stimulation frequency range.

Similar to the effect of refresh rate under sinusoidal motion
stimulation, the results demonstrate that the triangular motion
stimulation response intensity under refresh rates of 120 and
240 Hz were also both higher than that under a refresh
rate of 60 Hz, with an average increase of 6.5 and 8.8%,
respectively. However, this statistical significance only occurred
in the triangular motion stimulation with middle (14–21 Hz) and
high (21–28 Hz) frequencies. The response intensity under the
240 Hz refresh rate response intensity was also higher than that
under the refresh rate of 120 Hz, with an average increase of 2.1%,
and the difference was not statistically significant.

The interactive effect of stimulation frequency and refresh
rate under triangular motion stimulation was also similar
to the interactive effect under sinusoidal motion stimulation.
The response intensity differences between the 60 Hz refresh
rate and the 120 Hz refresh rate were notable, whereas
the response intensity difference between the 120 Hz refresh
rate and the 240 Hz refresh rate was minor under lower
frequency stimulation. As the stimulation frequency increased,
the difference became larger. This conclusion means that the
increase in refresh rate can improve the response intensity of
motion stimulation and enhance the perceptual ability of visual
motion. This conclusion further confirms that the refresh rate
enhances motion perception.

These conclusions from the analysis of sinusoidal and
triangular motion stimulation responses mean that an increased
refresh rate can improve the response intensity of motion
stimulation and enhance the perceptual ability of visual motion.

The Effect of the Motion Form in Each
Refresh Rate Group
The analysis of the effect of the motion form was similar to the
analysis process of the effect of the refresh rate, the methods are
as follows: interaction effect analysis and simple effect analysis.
Besides, it is worth pointing out that the post hoc comparison was

not applicable, because there were only two motion parameters in
simple effect analysis.

Analysis of the Interaction Effect of the Motion Form
and Stimulation Frequency
Similar to the above analysis, the data or corrected data of
different motion forms in each refresh rate group were tested
to meet the conditions of two-way and one-way repeated
measurement ANOVA.

The result of Mauchly’s test of sphericity showed that the
CCA coefficient data of the refresh rate of 60 Hz [χ2(2) = 7.84,
P = 0.02 < 0.05] did not violate Mauchly’s test of sphericity,
and the data of the refresh rates of 14–21 Hz [χ2(2) = 2.59,
P = 0.27 > 0.05] and 14–21 Hz [χ2(2) = 2.02, P = 0.364 > 0.05]
violated Mauchly’s test of sphericity. After data correction
(ε60Hz = 0.87), two-way repeated measures ANOVA was
performed on the data.

The outcomes of two-way repeated measures ANOVA suggest
that the interaction effect of motion form and stimulation
frequency under each refresh rate was statistically significant
[F60 Hz (1.42, 17.11) = 3.994, P60 Hz = 0.048 < 0.05,
ηp

2 = 0.25; F120 Hz (2, 24) = 6.69, P120 Hz = 0.005 < 0.05,
ηp

2 = 0.358; F240 Hz (2, 24) = 5.78, P240 Hz = 0.009 < 0.05,
ηp

2 = 0.325].
The outcomes of the simple effect analysis of motion forms

in each stimulation frequency band are shown in Table 3.
The column of differences of evoked responses indicates
the difference between sinusoidal stimulation and triangular
stimulation. The asterisk in the column of significance in Table 3
indicates that the difference is statistically significant at the level
of α = 0.05.

Figure 8 is a graphical display of the data in Table 3. Figure 8
shows the mean and standard deviation of stimulation-evoked
responses in each refresh rate group.

The outcomes of simple effect analysis of motion forms
suggest that the simple effects of motion forms at 14–21 Hz
were statistically significant under a 60 Hz refresh rate, the
simple effects of motion forma at 7–4 Hz and 14–21 Hz were
statistically significant under a 120 Hz refresh rate, the simple
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FIGURE 7 | The post hoc comparison results and relative proportion comparison of triangular motion stimulation. (A) The histogram of triangular motion
stimulation-evoked responses, including the mean and standard deviation. The asterisks indicate that the difference is statistically significant at the level of α = 0.05.
(B) The relative proportion of triangular stimulation-evoked responses under different refresh rates in each stimulation frequency range. The vertical axis indicates the
relative proportion, the horizontal axis indicates the refresh rate, and the black dotted thin line is used to separate different stimulation frequencies.

TABLE 3 | The simple effect analysis results of motion forms.

Refresh rate Stimulation
frequency

Motion form Average CCA
coefficient mean (SD)

Differences of evoked responses
(sinusoidal-triangular)

Significance

Mean 95% CI

60 Hz 7–14 Hz Sinusoidal 0.54 (0.091) 0.067 [−0.009 0.14] P = 0.079

Triangular 0.46 (0.1)

14–21 Hz Sinusoidal 0.42 (0.05) 0.049 [0.008 0.089] P = 0.022*

Triangular 0.36 (0.06)

21–28 Hz Sinusoidal 0.3 (0.028) 0.007 [−0.027 0.041] P = 0.65

Triangular 0.29 (0.039)

120 Hz 7–14 Hz Sinusoidal 0.58 (0.094) 0.099 [0.03 0.17] P = 0.008*

Triangular 0.47 (0.095)

14–21 Hz Sinusoidal 0.46 (0.061) 0.059 [0.008 0.11] P = 0.026*

Triangular 0.4 (0.065)

21–28 Hz Sinusoidal 0.32 (0.031) 0.003 [−0.032 0.037] P = 0.87

Triangular 0.31 (0.037)

240 Hz 7–14 Hz Sinusoidal 0.58 (0.099) 0.102 [0.027 0.18] P = 0.01*

Triangular 0.47 (0.098)

14–21 Hz Sinusoidal 0.47 (0.08) 0.072 [0.008 0.14] P = 0.029*

Triangular 0.4 (0.071)

21–28 Hz Sinusoidal 0.34 (0.055) 0.013 [−0.037 0.063] P = 0.58

Triangular 0.32 (0.036)

*p < 0.05.

effects of motion forms at 7–14 Hz and 14–21 Hz were statistically
significant in the 240 Hz refresh rate group.

However, it is worth pointing out that although the simple
effect of motion forms at the frequency of 7–14 Hz and the refresh
rate of 60 Hz was not statistically significant (P = 0.079 > 0.05),
the difference between the sinusoidal stimulation response and

triangular stimulation response was noteworthy. The reason
for this outcome may be the volatility of variance due to
the sample size.

These results demonstrate that the visual evoked response
intensity of sinusoidal motion stimulation is significantly
different from that of triangular motion stimulation. However,
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FIGURE 8 | The simple effect analysis results of motion forms in each refresh
rate group. Different colors are used to indicate different motion forms, and
the asterisks indicate that the difference is statistically significant at the level of
α = 0.05. The vertical axis indicates the coefficients of CCA, and the horizontal
axis indicates the stimulation frequency.

the difference is also related to the stimulation frequency; that
is, the response difference is significant at a frequency in low
and middle ranges (7–14 Hz and 14–21 Hz) whereas it is not
significant at a high-range frequency (21–28 Hz).

Difference of Various Motion Forms
The relative proportion of the response intensity difference
between different motion forms is shown in Figure 9. The
response intensity difference was calculated by subtracting the
average response of the triangular stimulation from the average
response of sinusoidal motion stimulation, then setting the
relative difference of the 60 Hz rate refresh to 1, and calculated
and achieved relative proportion of other relative difference
under 120 and 240 Hz.

FIGURE 9 | The relative proportion of the response intensity difference
between different motion forms. (A) The difference at the frequency of
7–14 Hz. (B) The difference at the frequency of 14–21 Hz. The horizontal axis
and different colors indicate stimulation frequencies, and the vertical axis
indicates the relative proportion of the response intensity difference between
different motion forms.

Figure 9A shows the difference at frequencies of 7–14 Hz, and
Figure 9B shows the difference at frequencies of 14–21 Hz. Since
the difference in the response intensity of different motion form
stimulations at a high frequency was not significant, the relative
difference at frequencies of 21–28 Hz is not presented in Figure 9.

At frequencies of 7–14 Hz, the response difference under
refresh rates of 240 and 120 Hz between sinusoidal motion
and triangular motion rises by 48 and 53% on average,
respectively, compared with that under a refresh rate of
60 Hz. At frequencies of 14–21 Hz, the response difference
rises by 30 and 54% on average, respectively. The results
demonstrate that increasing the refresh rate can increase
the difference in motion visual evoked potential between
sinusoidal stimulation and triangular stimulation; in particular,
this effect is prominent when the motion stimulation frequency
is not high. This conclusion further confirms that the
refresh rate enhances motion perception. However, since
data were limited by the maximum refresh rate in this
study, the difference in high-frequency stimulation between
different motion forms was insignificant, and it cannot be
indicated that increasing the refresh rate can effectively
improve the perception and ability to distinguish of high-
frequency motion.

DISCUSSION

Selection of Monitor Parameters
CRT monitors have the characteristics of low latency and high
stability, and they have long been the standard equipment
used in visual perception research (Wiens and Öhman, 2007).
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However, LCD monitors have gradually become mainstream
equipment with the improvement of production technology;
they are more energy-efficient and compact and show little
or no visual flicker. Many studies have proven that the
performance of LCD monitors is also close to that of CRT
displays (Kihara et al., 2010; Lagroix et al., 2012; Bognár
et al., 2016; Zhang et al., 2018; Rohr and Wagner, 2020).
Therefore, the LCD monitor was chosen as the experimental
equipment in this study.

A low delay response time and high refresh rate are both
effective measures to improve the performance of motion
stimulation (Claypool and Claypool, 2007, 2009; Spjut et al.,
2019; Denes et al., 2020). The effect of the refresh rate on
visual perception was a major concern in this study. To avoid
interference from latency factors, a low-latency LCD monitor
(ASUS ROG PG258Q) with multiple optional refresh rates was
chosen as the experimental equipment. When the overdrive
setting parameter of the monitor was set to “normal,” the
average gray-to-gray (GtG) delay response time of this monitor
was approximately 4.9, 3.3, and 2.9 ms when the refresh rate
reached 60, 120, and 240 Hz, respectively.1 The GtG delay
response times were all less than the refresh time, and the
ghosting artifacts caused by the latency of response time were
slight, so the negative impact of the delay response time
was not considered.

The ultralow motion blur (ULMB) function of the monitor
was not enabled in the experiment. Although this function
helps reduce motion blur to a degree (Zhang et al., 2018),
it is a technology only available in high-end monitoring and
causes flicker sensation and visual fatigue. In the experimental
SSMVEP paradigm, the stimulus was internal texture motion
in a circle with fixed size and position, the participants
were required to gaze at the target stimulus without eye
movement, and the positive impact of the ULMB technique was
further limited.

The Effect of the Refresh Rate on the
Intensity of Steady-State Response,
Which Can Be Called Steady-State
Motion Visual Evoked Potentials
SSMVEPs are induced by the perception of stable frequency
visual motion stimulation. In previous studies, it was found
that the SSMVEP has the characteristic of a single peak, the
evoked response energy is concentrated (Han et al., 2018).
This characteristic makes the steady-state motion paradigm
very suitable as a “probe” for non-invasive visual perception
research. At present, a vision assessment method using steady-
state motion visual evoked potential has been proposed (Zheng
et al., 2019) to achieve an objective and quantitative assessment
of visual acuity. The experimental results show that the
correlation and agreement between objective SSMVEP and
subjective FrACT (Freiburg Visual Acuity and Contrast Test)
acuity were all good (Zheng et al., 2020a), demonstrating good

1https://www.tftcentral.co.uk/reviews/asus_rog_swift_pg258q.htm

performance in visual perception detection for the motion visual
stimulation paradigm.

Due to the refresh interval between display frames, the lower
the rendering refresh rate is, the greater the possibility of causing
motion blur and dispersion, which will have a negative impact
on the elicitation of visual potentials. Therefore, the change in
the response intensity of visual evoked potentials can be used
to measure whether the display system can correctly present
the motion stimulus. However, it is important to note that the
amplitude of EEG-based SSVEPs or SSMVEP is very unreliable
at very high frequencies (>40 Hz) or very low frequencies
(<2 Hz), and the assessment method in this study cannot be
used in this case.

The results of the study demonstrate that the refresh rate
has a significant positive effect on the perception response
of visual motion stimulation at different frequencies. The
intensity of the visual evoked potential under high refresh
rate stimulation is always higher than the intensity of that
under low refresh rate stimulation. Similar to the results
of previous research literature (DoVale, 2017), there is a
range in which a plateau of slow growth is observed, the
effect of refresh rate has obvious diminishing returns. The
positive effect of refresh rate is most significant when the
refresh rate is increased from 60 to 120 Hz, and then the
positive effect gradually gets into the realms of diminishing
returns as the refresh rate range continues to increase above
120 Hz. This trend has no concern with the form of
motion stimulation.

In addition, the diminishing return is also related to the
stimulation frequency, and the attenuation effect of improving
the evoked response at low-frequency stimulation is more
obvious than that at high-frequency stimulation. In other
words, under high frequency (21–28 Hz) stimulation, the
increment of response between 120 and 60 Hz refresh rates
is similar to that between 240 and 120 Hz refresh rates.
However, the increment of the response between the 120
and 60 Hz refresh rates was much larger than that between
the 240 and 120 Hz refresh rates under low-frequency (7–
14 Hz) stimulation.

The reason for this phenomenon may be related to the
adequacy of the spatiotemporal sampling of the stimulus
motion. Adelson and Bergen (1985) developed a model of
motion detection in which spatiotemporal filtering is used to
detect motion energy of luminance-defined motion. Fujii et al.
(2018) reported smoother motion in high frame rate content
should activate the central nerve of vision more effectively
because it produces more motion energy than low frame rate
stimulus based on these models. This mechanism explains
why there is a significant interaction between the refresh rate
and the stimulation frequency in our experiment. In other
words, high-frequency motion under low refresh rate has
poor smoothness, increasing the refresh rate in this case can
obviously improve the motion energy of visual stimulation,
but increasing the refresh rate is of little significance for
smoother motion.

It has been long known that the mammalian visual system
is highly sensitive to motion, even when presented briefly. The
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FIGURE 10 | The similarity of sinusoidal and triangular motion at different refresh rates. The vertical axis indicates displacement of stimulation, and the horizontal axis
indicates stimulation time.

middle temporal visual area is a region of the extrastriate visual
cortex in primates that has been demonstrated to be critical
for motion vision. Area MT has among the shortest response
latencies in the extrastriate cortex (Schmolesky et al., 1998;
Born and Bradley, 2005). In 2011, researchers used three refresh
rates to investigate how changes in the CRT (cathode ray tube)
temporal stimulus affect cortical responses in tree shrew V1
(the primary visual cortex), they find that refresh rate had a
large impact on firing rate and the amplitude of LFP (120
Hz > 90 Hz > 60 Hz). Since mean firing rate is positively
correlated with refresh rate, V1 acts like a high-pass filter for
sparse noise stimuli as a function of refresh rate (Potter et al.,
2014). Furthermore, researchers found the minimum timescale
for motion encoding by ganglion cells of cat retinal was 4.6 ms
and depended non-linearly on temporal frequency in 2011
(Borghuis et al., 2019). These anatomical evidences from retinal
nerves to higher visual cortex nerves demonstrated that the
perception frequency of human vision for continuous motion
may be much higher than previously speculated. Therefore,
consider of the display hardware burden, we choose 120 Hz
refresh rate as a conservative estimate of the optimal motion
presentation parameters.

The Effect of the Refresh Rate on the
Ability to Distinguish Motion Forms
The visual evoked responses caused by various motion forms are
different (Teng et al., 2011; Grgič et al., 2016; Labecki et al., 2016).

In this study, the experiments verified that there were
significant differences in the intensity of visual evoked potentials
between sinusoidal and triangular motion stimulation, and the
response of sinusoidal motion stimulation was higher than
that of triangular motion stimulation in general. The reason
may be the difference in continuity in the motion reversal
process. The motion reversal process is an important way
to induce SSMVEPs, and a continuous and clear motion
reversal process can improve the evoked response. In the
triangular motion stimulation, the absolute value of speed
always remains constant, and the rendering points are evenly
distributed in the motion trajectory. In the sinusoidal motion
stimulation, the rendering points are more concentrated around
the reversal position, and the motion reversal process is
more continuous, so the inducing effect of sine motion
stimulation is superior.

The results of this analysis show that the difference
in evoked potential response intensity between different
motion forms increases with the refresh rate. In other
words, the increase in refresh rate can improve the ability
to distinguish between similar visual motions. This conclusion
further demonstrates the positive effect of the rate refresh
on the perception response to visual motion stimulation.
Moreover, the difference in response intensity between different
motion stimulations is also affected by the stimulation
frequency. The difference is significant under low-frequency
stimulation, but as the frequency increases, the difference
decreases until it is not significant. Therefore, the changes
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in response difference under medium- and low-frequency
stimuli were mainly analyzed to evaluate the effect of
the refresh rate.

The reason for this phenomenon is also obvious, as shown
in Figure 10. In this figure, the results of a 14 Hz (motion
reversal frequency) motion stimulation process of sinusoidal and
triangular structures at different refresh rates are depicted. It is
difficult to distinguish the displacement details of different forms
under a low refresh rate. With the increase in the refresh rate,
the details of displacement are gradually improved, and different
motion forms can be distinguished.

Refresh Rate Selection With Different
Stimulation Frequencies
The above analysis determined the effect of the refresh rate on the
response intensity of evoked potentials with different stimulation
frequency bands. Within the frequency range (7–28 Hz) set by the
experiment, the response intensity and motion discrimination
ability at a refresh rate of 60 Hz are significantly lower than those
at refresh rates of 120 and 240 Hz. This result suggests that a
monitor with a refresh rate of 60 Hz has a limited ability to
present fast motion stimulation. Therefore, unless special displays
such as VR devices must be used or the frequency of motion
stimulation is very low, the findings study signify that a monitor
with a high refresh rate (120 Hz or above) should be chosen
to ensure accurate motion presentation in visual perception or
BCI experiments.

Furthermore, although the positive effect gradually enters
the realm of diminishing returns as the refresh rate range
continues to increase above 120 Hz, the decay trend is not
significant when the stimulation frequency is high, and choosing
a monitor with an ultrahigh refresh rate (240 Hz or above)
is also of considerable significance. It is recommended, if
conditions permit, to choose a monitor with an ultrahigh refresh
rate according to the motion frequency or speed.

This study proposes a visual motion perception assessment
method based on visual electrophysiological signals. A flicker-
free Sweep-SSMVEP paradigm was designed and utilized to
assess the effect of the refresh rate on motion stimulation of
different frequencies. The results demonstrate that the refresh
rate had a positive effect and improved visual motion perception,
and the refresh rate also had a significant interaction between the
refresh rate and stimulation frequency. In future studies, we will
examine the impact of motion perception with eye movement
on visual evoked potentials and improve the assessment method
to make it suitable for visual motion perception at extreme
frequencies or extreme velocities.

Visual Fatigue and Limitation
In the research of visual perception, long-term viewing of strong
stimuli may cause adaptation effect (Heinrich and Bach, 2001;
Priebe et al., 2002) and visual fatigue (Cao et al., 2014), resulting
in changes of the evoked potential amplitude that interfere with
the ability to achieve an accurate motion perception response.

Therefore, we improved the stimulation pattern to minimize
the limitation of visual fatigue. The steady-state motion reversal

stimulation was used as stimulation pattern in the visual
motion perception experiment, the steady-state motion reversal
stimulation can overcome the high susceptibility to adaptation
(Heinrich and Bach, 2003) and also has a good long-term fatigue
resistance (Xie et al., 2016; Zheng et al., 2020b). Furthermore,
the sweep signal was used to modulated the motion stimulation,
which greatly reduced the experiment time. Therefore, the
total visual stimulation time of each subject is less than
5 min, there would be no obvious fatigue problems during
this period of time.

However, visual fatigue still limits the development of this
research. The experiment only uses the common refresh rate
of 60, 120, and 240 Hz. Although the results show that the
refresh rate of 60–120 Hz has a significant effect on the motion
visual response, in order to control the duration of experiment,
accurate segmentation of the refresh rate is not performed which
leads to an inability to determine the influence trend detail
of refresh rate.

CONCLUSION

The implications of this study are that it proposes an objective,
reliable, visual electrophysiological method and assesses the
effect of the refresh rate on motion stimulation at different
frequencies with the method. The results demonstrated that an
increase in the refresh rate significantly improved the intensity
of sinusoidal motion visual evoked potentials at the three
stimulation frequency ranges of 7–14 Hz [F(1.46, 23.43) = 17.24,
P < 0.001, η2 = 0.52], 14–21 Hz [F(2, 32) = 15.16, P < 0.001,
η2 = 0.49], and 21–28 Hz [F(1.452, 20.33) = 12.188, P = 0.01,
η2 = 0.47]. The intensity of the response at refresh rates of 240
and 120 Hz increased by 8.8 and 12.4% on average, respectively,
compared with that at a refresh rate of 60 Hz. There was a
significant interaction between the refresh rate and sinusoidal
motion frequency [F(4, 56) = 3.30, P = 0.017 < 0.05, η2 = 0.19],
and the effect of the refresh rate more easily reached diminishing
returns at lower frequencies. Furthermore, the increased refresh
rate also had the potential to enhance the ability to perceive
similar motion. Therefore, a refresh rate of at least 120 Hz
is recommended for motion visual perception experiments to
ensure a better stimulation effect, if the motion frequency
or velocity is high, a refresh rate of 240 Hz or higher is
also recommended.
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Başaklar, T., Tuncel, Y., and Ider, Y. Z. (2019). Effects of high stimulus presentation

rate on EEG template characteristics and performance of c-VEP based BCIs.
Biomed. Phys. Eng. Express 5:035023. doi: 10.1088/2057-1976/ab0cee

Bashashati, A., Fatourechi, M., Ward, R. K., and Birch, G. E. (2007). A survey of
signal processing algorithms in brain–computer interfaces based on electrical
brain signals. J. Neural Eng. 4, R32–R57. doi: 10.1088/1741-2560/4/2/R03

Bin, G., Gao, X., Yan, Z., Hong, B., and Gao, S. (2009). An online multi-channel
SSVEP-based brain–computer interface using a canonical correlation analysis
method. J. Neural Eng. 6:046002. doi: 10.1088/1741-2560/6/4/046002

Bognár, A., Csibri, P., András, C. M., and Sáry, G. (2016). LCD monitors as
an alternative for precision demanding visual psychophysical experiments.
Perception 45, 1070–1083. doi: 10.1177/0301006616651954

Borghuis, B. G., Tadin, D., Lankheet, M. J., Lappin, J. S., and van de Grind,
W. A. (2019). Temporal limits of visual motion processing: psychophysics and
neurophysiology. Vision 3:5. doi: 10.3390/vision3010005

Born, R. T., and Bradley, D. C. (2005). Structure and function of visual area
MT. Annu. Rev. Neurosci. 28, 157–189. doi: 10.1146/annurev.neuro.26.041002.
131052

Cao, T., Wan, F., Wong, C. M., da Cruz, J. N., and Hu, Y. (2014). Objective
evaluation of fatigue by EEG spectral analysis in steady-state visual evoked
potential-based brain-computer interfaces. Biomed. Eng. Online 13:28. doi: 10.
1186/1475-925X-13-28

Chai, X., Zhang, Z., Guan, K., Zhang, T., Xu, J., and Niu, H. (2020). Effects of fatigue
on steady state motion visual evoked potentials: optimised stimulus parameters
for a zoom motion-based brain-computer interface.Comput.Methods Programs
Biomed. 196:105650. doi: 10.1016/j.cmpb.2020.105650

Chapiro, A., Atkins, R., and Daly, S. A. (2019). Luminance-aware model
of judder perception. ACM Trans. Graph. 38, 1–10. doi: 10.1145/333
8696

Claypool, K. T., and Claypool, M. (2007). On frame rate and player performance in
first person shooter games. Multimed. Syst. 13, 3–17.

Claypool, M., and Claypool, K. (2009). “Perspectives, frame rates and resolutions:
it’s all in the game,” in Proceedings of the 4th International Conference on
Foundations of Digital Games, Orlando, FL.

de Lissa, P., Caldara, R., Nicholls, V., and Miellet, S. (2020). In pursuit of visual
attention: SSVEP frequency-tagging moving targets. PLoS One 15:e0236967.
doi: 10.1371/journal.pone.0236967

Denes, G., Jindal, A., Mikhailiuk, A., and Mantiuk, R. K. (2020). A perceptual model
of motion quality for rendering with adaptive refresh-rate and resolution. ACM
Trans. Graph. 39, 133:1–133:17.

DoVale, E. (2017). High frame rate psychophysics: experimentation to determine a
JND for frame rate. SMPTE Mot. Imaging J. 126, 41–47. doi: 10.5594/jmi.2017.
2749919

Emoto, M., Kusakabe, Y., and Sugawara, M. (2014). High-frame-rate motion
picture quality and its independence of viewing distance. J. Disp. Technol. 10,
635–641.

Fujii, Y., Seno, T., and Allison, R. S. (2018). Smoothness of stimulus motion can
affect vection strength. Exp. Brain Res. 236, 243–252. doi: 10.1007/s00221-017-
5122-1

Gembler, F., Stawicki, P., Rezeika, A., Saboor, A., Benda, M., and Volosyak, I.
(2017). “Effects of monitor refresh rates on c-VEP BCIs,” in International

Workshop on Symbiotic Interaction, eds J. Ham, A. Spagnolli, B. Blankertz, L.
Gamberini, and G. Jacucci (Cham: Springer).
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As the research basis of image processing and computer vision research, image

quality evaluation (IQA) has been widely used in different visual task fields. As far as

we know, limited efforts have been made to date to gather swimming pool image

databases and benchmark reliable objective quality models, so far. To filled this gap,

in this paper we reported a new database of underwater swimming pool images for

the first time, which is composed of 1500 images and associated subjective ratings

recorded by 16 inexperienced observers. In addition, we proposed a main target area

extraction and multi-feature fusion image quality assessment (MM-IQA) for a swimming

pool environment, which performs pixel-level fusion for multiple features of the image

on the premise of highlighting important detection objects. Meanwhile, a variety of

well-established full-reference (FR) quality evaluation methods and partial no-reference

(NR) quality evaluation algorithms are selected to verify the database we created.

Extensive experimental results show that the proposed algorithm is superior to the

most advanced image quality models in performance evaluation and the outcomes of

subjective and objective quality assessment of most methods involved in the comparison

have good correlation and consistency, which further indicating indicates that the

establishment of a large-scale pool image quality assessment database is of wide

applicability and importance.

Keywords: image quality assessment, subjective/objective quality assessment, swimming pool image database,

main target extraction, multi-feature fusion

1. INTRODUCTION

The acquisition of underwater images plays a significant role in the research of underwater
rescue and biometric tracking at swimming pools in Fei et al. (2012), Alshbatat et al. (2020),
and Pleština et al. (2020). However, since the underwater environment is always complicated and
variable, this would lead to can result in inaccurate judgments if the unprocessed images extracted
from the swimming pool are analyzed directly. Image quality assessment (IQA) has contributed
significantly to the study of plentiful many visual signal applications (Wang, 2011), including
image transmission, enhancement, and restoration, so the underwater image quality evaluation of
swimming pools will open up the possibility for future visual research tasks. Nevertheless, to the
best of our knowledge, limited efforts have been made so far to gather a database of swimming pool
images and to identify a reliable benchmark for objective quality models.
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In recent years, a large number of IQA approaches have
been proposed, which mainly contain subjective and objective
evaluation methods. Human beings, as the ultimate recipients of
visual signals, have the highest voice in judging best ability to
judge the quality of images. But subjective assessment methods
involving humans are somewhat expensive, time-consuming,
and not very useful for practical applications. Therefore, it is
urgent necessary to design an objective evaluation method that
can simulate the human visual system (HVS) to automatically
measure the image quality. So far, these objective IQA approaches
can be classified into the following three categories based on
the degree of reference to the original image information: full
reference (FR) method, reduce reference (RR) method, and no
reference (NR) method. In the methods proposed by Gu et al.
(2017a), FR IQA method, requires all the information of the
original image. After decades of development, it has formed a
relatively complete theoretical system and a mature evaluation
framework. As the opposite of Unlike the FR method, NR IQA
does not require any information of on the original image. Since
it is not easy to obtain the original image in some cases, this
method has attracted the attention of scholars in recent years
(Gu et al., 2015b; Min et al., 2018), and RR method, which is
involved in Chen et al. (2021), can obtain some information of the
image. This method evaluates the image quality by comparing the
difference between the extracted reference image and the partial
information of the distorted image.

The most reliable FR IQA methods in the early days are
have traditionally been mean square error (MSE) and peak
signal-to-noise ratio (PSNR), which are statistical measurements
based on image pixels. Although these methods are simple and
easy to understand, the results obtained from their evaluation
are very different from vary based on the subjective perceived
quality of the images. Since then, there are a large number of
researchers. There has been significant work carried out toward
working on quality assessment models that simulate the human
visual system, such as Chandler and Hemami (2007), and so
on. One of the most popular algorithms based on HVS is
structural similarity (SSIM) presented by Wang et al. (2004),
which focuses on extracting the information of brightness,
contrast, and structure from reference images. Afterwards, many
extensions of the SSIM have been put forward successively.
Inspired by the natural scene statistics (NNS) pointed out
by Simoncelli and Olshausen (2001), Sheikh et al. resolved
the IQA question from the viewpoint of information theory,
and they put forward the information fidelity criterion (IFC)
mentioned in Sheikh et al. (2005) and its extension version,
which is called as the visual information fidelity (VIF) index
in Sheikh and Bovik (2006). Zhang et al. (2011) proposed
another impactive evaluation algorithm named the feature
similarity (FSIM), which selects phase consistency information
and gradient information as its two features. Blind parameter
algorithm solves the important problem that the original image
cannot be obtained. The traditional FR IQA algorithm proposes
many gradient evaluation functions from the perspective of
image sharpness, such as Brenner gradient function, Tenengrad
gradient function, and Laplacian gradient function, etc. Through
methods mentioned above can judge the level of image sharpness

to a certain extent, there may be major errors for different
types of images or scenes. After that, image quality assessment
methods based on Natural scene statistics (NSS) emerged. The
most typical model is dubbed blind/referenceless image spatial
quality evaluator (BRISQUE), an RR IQA method in the spatial
domain, which was proposed in Mittal et al. (2012). Other
experts and scholars have also made great contributions to
this kind of very practical algorithm. Gu et al. (2018) and Gu
et al. (2014) have provided corresponding solutions to problems
such as huge data and diverse distortion based on the RR IQA
model. With the advent of the era of big data, a series of
deep learning network structures have shown great advantages
in the application of image processing, such as environmental
protection (Gu et al., 2020a, 2021b; Liu et al., 2021), PM2.5

forecast (Gu et al., 2019, 2021a), and air quality prediction (Gu
et al., 2020b). Extensive Considerable attention from researchers
has been given to evaluating image quality with deep learning
(Hou et al., 2015; Liu et al., 2019) in the past few years. There
is no need to define image features as, it relies on a unique
deep structure to learn important features of the distorted image
so as to predict the image quality score. In recent years, many
scholars have improved the IQA methods mentioned above, so
there are a large number of IQA methods with high accuracy
and stability.

Despite the success of plentiful many IQA methods, there is
still a long way to go when it comes to studying a new complex
pool environment. To this end, in this paper, we created a large
pool database in the first step, and then we proposed the MM-
IQA model for the pool environment to objectively evaluate the
quality of the database. Finally, we conducted the comparison
experiments among available FR IQA and NR IQA methods on
the swimming pool image database and, analyzed the advantages
and disadvantages of different algorithms;, and the results show
that the database is effective and valuable, which and can be used
for the future visual research of the pool environment.

The rest of this paper is organized as follows. Section 2 first
introduces the swimming pool underwater image dataset. In
section 3, we propose an image quality evaluation method based
onmain object extraction andmulti-feature fusion and introduce
the quality evaluation method for comparison in experimental
parts. Experiments and analysis conducted on our proposed
database are reported in section 4. Finally, we conclude our paper
in section 5.

2. SWIMMING POOL IMAGE DATASET

Although IQA has made great progress in many areas involving
underwater images, very little research has been done in the
last decades specifically for the particular scene of swimming
pools. In order to make the underwater images of swimming
pools more objective to restore the real scene and better
reflect the underwater information, so as to meet the actual
research needs, we construct a novel and appropriative database
of swimming pool images in this paper, which are taken at
different shooting angles, locations, and different brightnesses.
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The process of creating the database will be described at length
in the following sections.

2.1. Original Image Creation and Filtering
We selected two natatoria for data collection on the spot, one
of which is the swimming pool of Ordos Stadium in Inner
Mongolia, and the other is the swimming pool of North China
University of Science and Technology. We used the same
equipment to collect pool images and choose cameras with
different angles to acquire images in order to construct a more
effective dataset. As the acquisition process is continuous, the
similarity of these collected photos is high. Therefore, we filter
the 3,000 frames collected when selecting the reference images
to obtain more images with different features. In addition, our
dataset includes images of simulated drowning pools and pools
without people. It is worth noting that, to further ensure the
standardization of the IQA database, all reference images are
selected according to the uniform size of the original image.
To sum up, our presented pool underwater database includes
150 raw images with a resolution of 1920 × 1080, as shown in
Figure 1.

2.2. Distortion Type and Distortion Level
Digital images often differ from the real environment;, for a
particular scene, the distortion type should be judged first. After
determining the distortion type, the performance of quality
evaluation in subsequent research can be improved (Min et al.,
2019a,b). There are many types of image distortion, including
blurring, JPEG compression, noise injection, etc. Actually, the
damaged image is complex, mainly reflected in many types of
distortion, distortion degree, and so on, which requires us to fully
consider all possible situations. The, integrated learning method
has been proposed accordingly (Gu et al., 2017a). Considering
that we are still in the early stages of this research area, we
chose only one distortion type to process the database. The
type of distortion chosen here is JPEG compression, which is a
common lossy compression format for images. The compression
process can be divided into five steps: image segmentation,
color space transformation, discrete cosine transformation, data
quantization, and coding.

We use the inwriter command in Matlab to generate JPEG
compressed images, by setting the parameter Q, we can get
images with compression levels of 10, 20, 30, 40, and 50
(distortion), as shown in Figure 2. In this way, we have a quality
evaluations database in swimming pools.

2.3. Subjective Evaluation Process
In fact, when people evaluate the quality of an image, many
factors should be taken into consideration, including not only
the factors of the image itself, but also the psychological factors
of subjects and the external environment. The distance between
the observer and the image is studied in Gu et al. (2015a).
According to ITU-R BT.500-1 in Union (2002), our subjective
viewing test experiment is conducted with a single-stimulus
method. In this process, we select 16 inexperienced subjects, most
of whom are college students from various professional fields.
The an interactive system is designed by using MATLAB, so

as to automatically display the images and collect the original
subjective scores, which are represented by x′

ab
. To reduce the

influence of memory on opinion scores, the presentation order
is provided randomly to the observers who are asked to give their
overall sensation of quality on a continuous quality scale of 1 to
5. Table 1 summarizes many critical parameters of the subjective
testing environment.

We calculate all of the gathered differential mean opinion
scores (DMOS) after the viewing test experiment. Here, we
denote the subjective assessment score on the distorted image
Ib as a and the number of distorted images as b, where a =

{1, ..., 16} and b = {1, ..., 1500}. In addition, we set xab to indicate
the score of the primitive images. Then, the following steps are
shown below:

• Outliers screening: Due to the large number of test pictures,
it is impossible for subjects to maintain a high level of attention at
all times, which can lead to outliers. To solve this issue, we adopt
the method proposed by Ponomarenko et al. (2009) to screen
the outliers of the scores. Specifically, we treat this value with
caution when the original DOMS value of an image is outsides
the standard deviation of the mean score of this image.

• Differential scores: Subtracting the score of original images
from its reference image, which can be expressed as Dab = xab −
x′
ab
.
• Average score: The DMOS value for the image is defined as

1
NA

∑

a Dab, where NA is the number of subjects.

3. METHODOLOGY

The objective evaluation method of image quality, which realizes
the accurate and automatic perception of image quality through
specific formulas, replaces the subjective visual system of human
eyes. In the past decades, a large number of evaluation criterions
have been put forward to assess the quality of images. In this
section, we will start with a detailed introduction of the MM-
IQA algorithm, followed by an overview of some classic quality
evaluation algorithms involved in comparison.

Higher recognition speed is desirable for underwater visual
research in swimming pools, especially when it involves
underwater tasks such as target recognition and tracking
and rescue assistance, which often requires high speeds of
recognition. Therefore, we put forward an image quality
evaluation method based on main target area extraction and
multi-feature fusion for swimming pool images. To begin with,
because the sensitivity of vision to distortion varies in different
areas, the main target area is separated from the large- scale
reference image and distortion image of the swimming pool
image. Then, the brightness, contrast, and gradient information
extracted from the small-scale image are fused into local structure
information. Finally, we obtained the image quality evaluation
results by structural fusion of the two scales.

3.1. Main Target Extraction
It is known to all accepted that the information of the outside
world is huge while the processing capacity of the human sensory
nervous system is limited. Human visual processing can be
naturally divided into two stages: the self-processing process
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FIGURE 1 | Nine lossless color images in the swimming pool database.

FIGURE 2 | One original image and its five distorted images vary from 10 to 50.

of distributed attention, parallel processing, and automatic
feature registration;, and then, the controlled processing process
of attention concentration and feature integration. Zhang
et al. (2020), Tang et al. (2020), and Emoto (2019) noted,
based on their observations, that the HVS tends to focus on
interesting areas of the images when viewing and judging the

quality of each distorted image. Furthermore, numerous studies
have shown that in computer vision tasks, the method of
dividing the target region into the main region first and then
studying the main region can greatly accelerate the detection
speed. In the paper, different degrees of distortion do not
affect the location of prominent targets (pool wall, swimmer,
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TABLE 1 | Subjective experimental conditions and parameters.

Method Single-stimulus(ss)

Evaluation scales Continuous quality scale from 1 to 5

Color depth 24

Image coder Joint Picture Group(JPG)

Subject Sixteen inexperienced subjects

Image resolution 1,920 × 1,080

Viewing distance Four times the image height

Room illuminance Dark

drowning person) in the pool. Therefore, we believe that the
main target area extraction can be used as a contributor to
improve the performance of the pool environmental quality
assessment algorithm.

The last decade has witnessed the development and expansion
of the extraction of the main target region, which has been
applied in various researches studies, e.g., Image quality
evaluation (Gu et al., 2016a), target tracking (Gongguo et al.,
2020), and target recognition (Gu et al., 2021b). In 2007, Hou
and Zhang (2007) proposed a significance detection method
based on spectral residuals. After a series of operations including
number spectrum analysis, spectral residuals extraction, and
spatial domain mapping of the input image, the region where
the main target is located was finally obtained. Fast Fourier
Transform (FFT) and Inverse Fast Fourier Transform (IFFT)
are known to us for the characteristics of fast detection speed
and high frequency information accessibility. And the improved
versions of this method these methods are used in our model
for extracting the main target contour of the image. Before
processing the image in frequency domain, we transformed
the pixel coordinates of two-dimensional images of the spatial
domain into the spectral coordinates of the frequency domain by
using Fourier transform. Hence, the FFT of image f (a, b) can be
defined as:

F(µ, θ) = 1
PQ

∑P−1
a=0

∑Q−1
b=0

f (a, b)e−j2π( µaP +
µb
Q ) (1)

where P, Q represent the size information of the image, a and
b are the spatial variables of the image, and µ and θ are the
frequency variables of the image.

The spectrum of the image h(x) is divided into amplitude
spectrum A(f ) and phase spectrum P(f ). In order to suppress
the influence of noise in the process of image acquisition,
we stretched the amplitude spectrum to get keep the energy
of different pixel values in a small gap interval. Then, We

normalized the stretched A′(f ) to get Ā(f ) =
∑

A(f )
∑

A′(f )
A′(f ),

the spectral residual R(f ) can be computed by subtracting the
product of Ā(f ) and δ from Ā(f ). By using IFFT, the main target
region map is constructed in the spatial domain. The values
of each pixel in the primary target area are then squared to
indicate the estimation error. Finally, smooth the saliency map
was smoothed with a Gaussian filter g(x) to achieve a better visual

effect. The whole process is as follows:

A(f ) = log(|F[h(x)]|),
P(f ) = ϕ(F[h(x)]),

A
′
(f ) = Aγ (f ),

R(f ) = Ā(f )− δĀ(f ),

Pmt = g(x) · F−1[eR(f )+P(f )]2

(2)

where F and F−1 represent the FFT operator and the IFFT
operator, δ is the 7× 7 identity matrix for mean filtering.

Considering that the difference of the main target area
is mainly reflected in the target contour, we further extract
the contour information. We select the similarity between
the reference image and the distorted image as the contour
information, which is a simple and effective method.

Con(x, y) =
2PMtx ·PMty+C1

P2Mtx
+P2Mtx

+C1
(3)

where the constants C1 is set to increase the stability when the
denominator is close to zero.

In addition, we found that different areas of the pool
contributed differently to the quality of the human perceived
image. For example, it is easier to draw conclusions by observing
the tiles on the pool walls and the swimmers when the distortion
is low. Therefore, location information is also essential for
similarity evaluation. We use PMtw = (Mtx · g(x)) ∪ (Mty · g(x))
to weight the global similarity;, g(x) is a gaussian matrix whose
function is to eliminate noise. After adding location information,
we can get the final global structure Gs :

Gs =
∑

�
Con(x,y)ψ ·PMtw (x,y)
∑

�
PMtw (x,y)

(4)

where � are the whole spatial domain, and parameter ψ is used
to adjust the relative importance of global structure.

3.2. Multi-Feature Fusion
The pool environment is complex and easily affected by the
external environment. Generally speaking, the fusion of a variety
of information can make up for the deficiency, which will make
the experimental results more complete and convincing (Gu
et al., 2020b, 2021a). So, in order to better describe the distortion
degree of the pool image, we compare the reference image with
the distorted image from local brightness, local contrast, and local
clarity. The characteristic of vision is non-linear, it being too
bright or too dark will cause varying degrees of damage to the
quality of the image. As the bottom feature of image, brightness
feature will directly affect the result of image quality evaluation
(Mantel et al., 2016). The basic information of the image or
pixel can be obtained from the brightness characteristics. When
the brightness value is lower than a certain value, the details
of an image will become difficult to observe, and the image
quality will also deteriorate if the image is overexposed. The
average intensities of reference image x and distorted image y are
calculated, respectively:

µx =
1
N

∑N
i=0 xi,µy =

1
N

∑N
i=0 yi (5)
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where µx and µy represent the local brightness of reference
and distorted pool images, respectively. And then, for luminance
comparison, the similarity measurement method has been used
between µx and µy:

Pl(x,y) =
2µx·µy+C2

µ2
x+µ

2
y+C2 (6)

where the constants C2 has the same function as C1.
As the key to the visual effect, contrast reflects the sharpness of

the image and the depth of the grooves in the texture. Generally
speaking, high contrast is of great help to image clarity, detail
performance, and gray level performance. On the contrary, a low
image contrast usually causes the whole image to be blurred.
Signal contrast is mainly obtained by estimating the standard
deviation (square root of variance) of the image, and the standard
deviation of discrete signal is calculated as:

σx = [ 1
N−1

∑N
i=0(xi − µx)]

1
2 ,

σy = [ 1
N−1

∑N
i=0(xi − µy)]

1
2

(7)

where σx and σy represent the local brightness of reference
and distorted pool images, respectively. Similarly, for contrast
comparison, the similarity measurement method has also been
used between σx and σy:

Pc(x,y) =
2σx·σy+C3

σ 2x+σ
2
y +C3 (8)

where the constant is C3 has the same function as C1 and C2.
Besides contrast and brightness, sharpness feature is another

important image feature, which includes sharpness of image
plane and sharpness of image edge. More attention has been
paid to the edge of the image when it comes to sharpness
feature (Tao et al., 2014; Sheng et al., 2015), which also makes
up for the lack of contrast sensitivity in this aspect of contrast.
Image edge is a set of pixels connected by the boundary between
two regions of an image. We can use gradient feature to fully
describe the information of image edge structure and contrast
change. Commonly used operators for calculating gradients
include the Sobel operator, the Prewitt operator, and the Scharr
operator. Here, we used the Scharr gradient operator to extract
gradient information of reference image x and distorted image
y, respectively:

Sh =





3 0 −3
10 0 −10
3 0 −3



 × 1
16 , Sv =





3 −10 3
0 0 0
−3 −10 −3



 × 1
16 (9)

where Sh and Sv are separately represent the Scharr convolution
masks along the horizontal and vertical directions, which are
used for gradient extraction of the image. We can obtained the
gradient magnitudes of x and y, denoted as sx and sy, which are
given by:

sx =
√

(Sh ∗ x)2 + (Sv ∗ x)2, sy =
√

(Sh ∗ y)2 + (Sv ∗ y)2 (10)

where symbol “∗′′ indicates the convolution operation. Then the
difference between sx and sy can be written as:

Ps(x,y) =
2sx·sy+C4

s2x+s2y+C4 (11)

where the constant is C4 has the same function as C1, C2, and
C3.

By structure-fusion of the three local features of brightness,
contrast, and sharpness in the small-scale range with the main
target region extraction in the large-scale range, we obtained the
final MM-IQA metric:

MM − IQA =
∑

�
[Ps+w1Pl·Pc]

θCon(x,y)ψ ·PMtw
∑

�
PMtw

(12)

where Ps + w1Pl · Pc presents a fusion of three local features, w1

is a weight parameter, and θ has the same function as ψ .

4. EXPERIMENTAL RESULTS AND
ANALYSIS

4.1. Performance Measures
This section will conduct a wide range of experiments on our
constructed database to assess the accuracy of these methods
mentioned above. The swimming pool image database is a large-
scale IQA database with 1500 images generated from 150 pristine
images, having 5 five distortion levels and 1 one distortion type,
therefore it is chosen as the testing bed. As per the suggestion
given by Corriveau (2017), we first map the prediction outputs of
each IQAmetrics to subjective scores using non-linear regression
with the five-parameter logistic function, which is regarded as:

S(q) = τ1

{

1
2 −

1
1+e(q−τ3)τ2

}

+ qτ4 + τ5 (13)

where q and S(q) are the input and mapped scores, and the
regressionmodel parameters τ1 to τ5 are to be determined during
the curve fitting process.

Then, we evaluate the IQA index using five commonly
used performance indicators, where the Spearman rank order
correlation coefficient (SROCC) and the Kendall rank order
correlation coefficient (KROCC) are applied for evaluating to
evaluate the monotonicity of prediction. The third index is
Pearson linear correlation coefficient (PLCC), which estimates
the prediction accuracy bymeasuring the correlation between the
MOS and objective fractions after non-linear regression. Finally,
in order to evaluate the prediction consistency, we also use the
Root mean square error (RMSE) and the Mean absolute error
(MSE) between S(q) and q.

4.2. Methods for Comparison
In this paper, we used the classical and the latest FR IQA
method and part of NR IQA method to conduct a comparative
experiment with MM-IQA in the underwater database of
swimming pools. The methods involved in the experiment are
shown below:

• TheMSE, PSNR, and SSIM proposed byWang et al. (2004),
are the benchmark IQA methods that are widely used in image
processing researches.
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• NQM inDamera-Venkata et al. (2000), quantifies the effects
of linear frequency distortion and noise injection on HVS.

• FSIM and FSIMc from Zhang et al. (2011), apply phase
congruency and gradient magnitude to represent the local quality
of the image based on the fact that the HVS understands images
mainly from the low-level features of the images.

• IGM in Wu et al. (2013), who decomposes the reference
image into a predicted part and a disordered part according to
the Bayesian prediction model. In addition, the PSNR and SSIM
values are used to measure the noise energy of these two parts,
respectively. Finally, we combine the two results to obtain the
overall mass score.

• MS-SSIM pointed out by Wang et al. (2003), performs
the SSIM in different scales and integrates their outputs with
psychophysical weights.

• VIF and VIFP, quantify the Shannon information shared
between the reference and distorted images in Sheikh and Bovik
(2006) by using a unified information fidelity criterion based on
NSS, distortion, and HVS modeling.

• MADpresented by Chandler (2010), combines two different
strategies based on detection and appearance. When the quality
of the image is high, local brightness and contrast masking
can be used to estimate the perceptual distortion based on
detection, while variations in local statistics of spatial frequency
components are used to estimate appearance-based perception
distortion in low-quality images.

• GSI developed by Liu et al. (2012), emphasizes on the
similarity of gradient sizes plays which play an important role in
scene understanding.

• GMSD is designed by Xue et al. (2014), and predicts visual
quality score by using the standard deviation of the similarity
graph of the gradient amplitude between the reference image and
the distorted image, which meets both the time and efficiency
requirements.

• VSI presented by Zhang et al. (2014), which would integrate
visual saliency into IQA metrics.

• ADD1 and ADD2 in Gu et al. (2016b), new aggregation
models in IQA, which proposed via analyzing the distortion
distribution of image content and distortion effects.

• PSIM fromGu et al. (2017a), combines two scales of the GM
similarities, both of which are color information similarity, and a
reliable perceptual-based pooling, respectively.

• BRISQUE in Mittal et al. (2012), an NR IQA method based
on natural scene statistics who that uses scene statistics of local
normalized luminance coefficient to quantify distortion.

• NIQE pointed out by Mittal et al. (2013), is proved to
be a simple and efficient quality assessment algorithm who that
calculates the deviation only and only relies on the statistical
rules in natural images without training the artificially assessed
distorted images.

• SISBLIM proposed by Gu et al. (2014), takes the multi-
distortion image problem as the research object and evaluates
image quality from six parts: noise estimation, image deionizing,
blur measure, JPEG-quality evaluator, joint effects’ prediction,
and HVS-based fusion.

• NIQMC from Gu et al. (2017b), an NR IQA based on the
concept of information maximization who that considers both

TABLE 2 | Performance comparison of FR-IQA metrics on the pool image

database.

Metrics SROCC KROOC PLCC MSE RMSE

MSE 0.8659 0.6591 0.4662 0.3616 0.4773

PSNR 0.8695 0.6591 0.4662 0.3537 0.4714

SSIM 0.8779 0.6940 0.5064 0.3416 0.4570

NQM 0.8546 0.6379 0.4527 0.3748 0.4955

VIF 0.8817 0.6931 0.5054 0.3380 0.4502

IGM 0.8842 0.6888 0.5014 0.3337 0.4457

FSIM 0.8835 0.6918 0.5037 0.3376 0.4469

FSIMc 0.8834 0.6885 0.5004 0.3376 0.4472

MS-SSIM 0.8859 0.6976 0.5097 0.3321 0.4426

MAD 0.8740 0.6734 0.4842 0.3489 0.4638

GSI 0.8820 0.6830 0.4942 0.3389 0.4497

GMSM 0.8840 0.6819 0.4948 0.3348 0.4461

GMSD 0.8833 0.6749 0.4859 0.3359 0.4474

PAMSE 0.8802 0.6740 0.4879 0.3394 0.4529

VSI 0.8799 0.6954 0.5107 0.3400 0.4534

SWGSSIM 0.8829 0.6769 0.4869 0.3375 0.4481

ADD1 0.8859 0.6944 0.5077 0.3327 0.4427

ADD2 0.8838 0.6753 0.4876 0.3358 0.4465

PSIM 0.8838 0.7197 0.5314 0.3348 0.4465

MM-IQA 0.8934 0.7508 0.5675 0.3246 0.4287

TABLE 3 | Performance comparison of RR-IQA metrics on the pool image

database.

Metrics SROCC KROOC PLCC MSE RMSE

BRISQUE 0.6540 0.5392 0.3783 0.5529 0.7219

SISBLIM-SM 0.8901 0.7535 0.5734 0.3343 0.4348

SISBLIM-WM 0.8861 0.7384 0.5560 0.3341 0.4432

NIQE 0.8787 0.7549 0.5702 0.3559 0.4555

ASIQE 0.8630 0.6851 0.5013 0.3612 0.4821

MM-IQA 0.8934 0.7508 0.5675 0.3246 0.4287

local and global information to generate the quality fraction of
the contrast distortion image.

• ASIQE presented in Gu et al. (2017c), which quantifies
the effects of image complexity, screen content statistics, overall
brightness quality and detail sharpness on HVS, is commonly
used to evaluate the quality of screen content images.

4.3. Overall Performance Evaluation
In order to better verify the effect of objective IQA method and
subjective consistency, we test and calculate the objective IQA
algorithm on a subjective IQA database. Tables 2, 3 illustrate the
performance results of PLCC, SROCC, KROCC, RMSE, MSE of
FR IQA, and NR IQA on the new pool database, respectively. At
the bottom of this these two tables is the performance of MM-
IQA method shown in bold, and the best models for both FR
IQA andNR IQA algorithms used for comparison are also shown
in bold.
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The performance of the same quality evaluation algorithm
varies from different databases. For the FSIM algorithm, the
result of SROCC in the swimming pool image database is 0.8835,
while the SROCC result of the same algorithm in the LIVE
database is 0.9634, which is pointed out by Sheikh (2003).
In addition, due to the good correlation between subjective
score and objective evaluation results, our proposed database
can also be used to compare the performance of some IQA
algorithms, e.g., the extended algorithms MSSSIM obtains better
performance than SSIM. We can transform the pool images
into grayscale for further study in that pool images are always
single singular in color. In this regard, we can conclude from the
results that FSIM using gray scale images achieves better results
than FSIMc. Surprisingly, the non-parametric algorithms also
perform the task of visual evaluation better on the pool database,
and even some of the non-parametric algorithms perform better
than the mature parametric algorithms. In terms of the overall
experimental results, the large-scale IQA database created in
this paper shows good consistency in testing different IQA
algorithms, which also proves the effectiveness of the database.

5. DISCUSSION AND CONCLUSION

As an interactive form of information, images are playing an
increasingly important role in the field of multimedia. Yet the
amount or importance of the information conveyed by images
is not only related to the content and the format of images,
but also to the image quality. In general, the higher the quality
of the image, the more information people can receive and
perceive by looking at the image. In At present, IQA method
is becoming more and more important in the field of image
processing and computer vision, and is widely used in different
practical scenarios.

As a new research field, the swimming pool image research
has also been more and more people’s attention been gathering

increasing attention in recent years, at present there are a lot
of swimming pool water to carry on many areas in which to
ask research questions, such as swimming pool environment
anomaly detection, swimming pool body posture recognition,
swimming pool, target tracking, etc., and the image quality
is the basis of all vision problems, so the establishment of
the swimming pool image database is very necessary. After
establishing the database, we evaluated the subjective and
objective image quality, respectively, then used three correlation
indices, SROCC, KROCC, and PLCC, to describe the consistency
between the subjective IQA approach and the objective IQA
method, and finally measured the error of the objective image
quality score with MOS by using MSE and RMSE. The results of
the experiment show that the subjective and objective evaluation
can match well, but as the swimming pool environment is easily
disturbed by the external environment (such as light, shade, and
water ripples). In the future, we will select more distortion types
to process the images in our database and further consider the
characteristics of the swimming pool environment, so as to seek
a more appropriate IQA model and make contributions to the
practical research.
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This work proposes an end-to-end cross-domain feature similarity guided deep

neural network for perceptual quality assessment. Our proposed blind image quality

assessment approach is based on the observation that features similarity across different

domains (e.g., Semantic Recognition and Quality Prediction) is well correlated with the

subjective quality annotations. Such phenomenon is validated by thoroughly analyze

the intrinsic interaction between an object recognition task and a quality prediction

task in terms of characteristics of the human visual system. Based on the observation,

we designed an explicable and self-contained cross-domain feature similarity guided

BIQA framework. Experimental results on both authentical and synthetic image quality

databases demonstrate the superiority of our approach, as compared to the state-of-

the-art models.

Keywords: cross-domain feature similarity, image quality assessment, deep learning, transfer learning, human

visual system

1. INTRODUCTION

Objective image quality assessment (IQA) aims to enable computer programs to predict the
perceptual quality of images in a manner that is consistent with human observers, which has
become a fundamental aspect of modern multimedia systems (Zhai and Min, 2020). Based on
how much information the computer program could access from the pristine (or reference) image,
objective IQA could be categorized into full-reference IQA (FR-IQA) (Wang et al., 2003, 2004;
Sheikh and Bovik, 2006; Larson and Chandler, 2010a; Li et al., 2011; Zhang et al., 2011, 2014; Liu
et al., 2012; Chang et al., 2013; Xue et al., 2013), reduced-reference IQA (RR-IQA) (Wang and
Simoncelli, 2005; Wang and Bovik, 2011; Rehman and Wang, 2012), and no-reference (or blind)
IQA (NR-IQA/BIQA) (Kim and Lee, 2016; Liu et al., 2017; Ma et al., 2017a; Lin and Wang, 2018;
Pan et al., 2018; Talebi and Milanfar, 2018; Sun et al., 2021). The absence of reference information
in most real-world multimedia systems calls for BIQAmethods, which are more applicable but also
more difficult.

Deep neural network (DNN) has significantly facilitated various image processing tasks (Fang
et al., 2017; Park et al., 2018; Casser et al., 2019; Ghosal et al., 2019) in recent years due to
its powerful capacity in feature abstraction and representation. It is also worth noting that the
success of deep-learning techniques is derived from large amounts of training data, which is
often leveraged to adjust the parameters in the DNN architecture to guarantee that both the
accuracy and generalization ability are satisfying. Unfortunately, image quality assessment is
typically a small-sample problem since the annotation of the ground-truth quality labels calls for
time-consuming subjective image quality experiments (Zhang et al., 2018a). Inadequate quality
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annotations severely restrict the performance of DNN-
based BIQA models in terms of both accuracy and
generalization ability.

In order to address the problem caused by limited subjective
labels, data augmentation is firstly employed to increase the
training labels (e.g., Kang et al. (2014)) proposed to split the
image with quality labels into multiple patches. and each of
the patches is assigned with a quality score which is the same
with the whole image. However, some distortion types are
inhomogeneous, i.e., the perceptual quality of local patches might
differ from the overall quality of the whole image. Therefore,
transfer learning has gained more attention to relieve the
small-sample problem (Li et al., 2016). Specifically, the BIQA
framework is comprised of two stages: which are pre-training
and fine-tuning. In the pre-training stage, the parameters in the
DNN architecture are trained by other image processing tasks
such as object recognition, whilst in the fine-tuning stage, images
with subjective labels are employed as training samples. Such a
transfer-learning scheme is feasible since the low-level feature
extraction procedure across different image processing tasks are
shared (Tan et al., 2018).

More recently, various sources of external knowledge are
incorporated to learn a better feature representation for the BIQA
issue. For example, hallucinated reference (Lin and Wang, 2018)
is generated via a generative network and employed to guide
the quality-aware feature extraction. The distortion identification
is incorporated as the auxiliary sub-task in MEON model (Ma
et al., 2017b), by which the distortion type information is
transparent to the primary quality prediction task for better
quality prediction. Visual saliency is employed in Yang et al.
(2019) to weight the quality-aware features more reasonably.
Semantic information is also employed for better understanding
of the intrinsic mechanism of quality prediction, e.g., multi-layer
semantic features are extracted and aggregated through several
statistical structures in Casser et al. (2019). An effective hyper
network is employed in Su et al. (2020) to generate customized
weights from the semantic feature for quality prediction, i.e., the
quality perception rule differs as the image content changes.

Unlike other studies, this paper employs the cross-domain
feature similarity as an extra restraint for better quality-aware
feature representation. Specifically, the transfer-learning based
BIQA approach is pre-trained in one domain (say, object
recognition in the semantic domain) and is fine-tuned in the
perceptual quality domain with similar DNN architectures, we
have observed that the cross-domain (Semantic vs. Quality)
feature similarity would, in turn, contribute to the quality
prediction task (as shown in Figure 1).

By thoroughly analyzing the intrinsic interaction between
object recognition task and quality prediction task, we think the
phenomenon represented in Figure 1 is sensible. As shown in
Figure 2, previous works (Larson and Chandler, 2010b) have
revealed that human observers would take different strategies to
assess the perceptual quality when viewing images with different
amounts of degradation: when judging the quality of a distorted
image containing near-threshold distortions, one tends to rely
primarily on visual detection of any visible local differences, in
such a scenario, semantic information is instructive for quality

perception since distortion in the semantic-sensitive area would
contribute more in the quality decision and vice versa. On the
other hand, when judging the quality of a distorted image with
clearly visible distortions, one would rely much less on visual
detection and much more on the overall image appearance, in
such a scenario, the quality decision procedure is much more
independent with semantic information.

Considering the effectiveness of cross-domain feature
similarity (CDFS), this work leverages CDFS as an extra restraint
to improve the prediction accuracy of BIQAmodels. As shown in
Figure 3, the parameters in our CDFSNet are updated according
to both the basic loss and the extra loss, which would restrain the
network yielding quality predictions as similar as the ground-
truth label whilst maintaining that the CDFS also correlates well
with the perceptual quality, in such a manner that, the accuracy
of the DNN architecture would get improved according to the
experimental results presented in section 3.

Compared to the aforementioned works, the superiority of
the cross-domain feature similarity guided BIQA framework is
embodied in the following aspects:

(1) The proposed cross-domain feature similarity is self-
contained for transfer-learning based BIQAmodels since the
transfer-learning procedure itself is comprised of the training
in two different domains (i.e., object recognition and quality
prediction). Therefore, no extra annotation procedure (such
as distortion identification in Ma et al., 2017b and visual
saliency in Yang et al., 2019) is needed.

(2) The proposed cross-domain feature similarity is more
explicable since it is derived from the intrinsic characteristic
of interactions between semantic recognition and quality
perception.

(3) In addition to general-purpose IQA, the performance of our
proposed CDFS guided BIQA framework is also evaluated
on other specific scenarios such as screen content (Xiongkuo
et al., 2021) and dehazing oriented (Min et al., 2018b, 2019)
IQA. The experimental results indicate that CDFS guided
BIQA has significant potential toward diverse types of BIQA
tasks (Min et al., 2020a,b).

The rest part of the paper is organized as follows: Section 2
illustrates the details of our CDFS-based BIQA framework
and section 3 shows the experimental results; Section 4 is
the conclusion.

2. MATERIALS AND METHODS

2.1. Problem Formulation
Let x denote the input image, conventional DNN based BIQA
works usually leverage an pre-trained DNN architecture f (·; θ)
(with learnable parameters θ) to predict the perceptual quality of
x via q̂ = f (x; θ), where q̂ denotes the prediction of perceptual
quality q.

Our work advocates employing the cross-domain feature
similarity to supervise the update of parameters in a quality
prediction network. Specifically, let f (·; θSmtc) denotes the DNN
with fixed and pre-trained parameters oriented toward semantic
recognition, and f (·; θQlty) denotes the DNN with learnable
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FIGURE 1 | The overall framework of our proposed CDFS guided BIQA approach. As shown in the lower part, the cross-domain feature similarity is highly correlated

with the perceptual quality. The ‘cross-domain similarity calculation’ is obtained by: (1) Extractinged the features from the last convolutional layer of pre-trained ResNet

(denoted as Rs) and fine-tuned ResNet (denoted as Rq); (2) Calculatinge the similarity matrix W according to Equation 1; (3) Obtaining the eigen values of W by

Ev = eig(W); (4) The similarity Sim is calculated by Sim = 1
std(v) , in which std(·) denotes the standard deviation operator.

FIGURE 2 | Illustration of different strategies that the human visual system would take to assess the perceptual quality when viewing images with different amounts of

degradation. Specifically, when judging the quality of a distorted image containing near-threshold distortions (Left), one tends to rely primarily on visual detection of any

visible local differences, e.g., the distortions in red boxed are slighter than that in the green box even though the noise intensity is the same. On the other hand, when

judging the quality of a distorted image with clearly visible distortions (Right), one would rely much less on visual detection and much more on overall image

appearance e.g., the distortions in each image area are roughly the same.

parameters oriented toward quality prediction. It should be
noticed that f (·; θSmtc) and f (·; θQlty) share the same architectures
whilst having own different parameters. This work attempts to
further improve the quality prediction accuracy by analyzing the
similarity between the features extracted for different tasks, i.e.,

features extracted for semantic recognition fts = f (x; θSmtc), and
features extracted for quality regression ftq = f (x; θQlty).

Given three-dimensional features fts and ftq with size
[C,H,W], where C, H, W denotes the channel size, height, and
width of the features, respectively, fts and ftq are firstly reshaped
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FIGURE 3 | The overall pipeline of our proposed CDFS-based IQA approach.

into Rq and Rs with size [C,H ×W]. The similarity Sim between
Rq and Rs is obtained via the following steps.

Step 1, employ linear regression to express Rq via Rs, i.e.,
Rq = W × Rs + e, where W denotes the weighting matrix and
e denotes the prediction error of linear regression. Therefore, W
could be obtained by

W = (RTs × Rs)
−1 × RTs × Rq (1)

Step 2, a learnable DNN architecture g(·; γ ) is employed to yield
the similarity between fts and ftq givenW, i.e., Sim = g(W; γ )

2.2. Network Design
The architecture of our proposed network is shown in
Figure 4, which mainly consists of a semantically oriented
feature extractor, perceptual-quality oriented feature extractor,
and cross-domain feature similarity predictor. More details are
described as follows.

2.2.1. Semantic Oriented Feature Extractor
The DNN pre-trained in large-scale object recognition datasets
(e.g., ImageNet Deng et al., 2009) are leveraged as the semantic
oriented feature extractor.

Specifically, this work employs the activations of the last
convolutional layers in ResNet50 to represent the semantic-aware
features fts of an specific image, i.e., fts = f (x; θSmtc).

It is worth noting that θSmtc is fixed during the training stage
since the proposed DNN framework will be fine-tuned in IQA
datasets in which the semantic label is unavailable.

2.2.2. Perceptual-Quality Oriented Feature Extractor
The architecture of perceptual-quality oriented feature extractor
f (·; θQlty) is quite similar with semantic oriented feature
extractor. However, the parameters θQlty in f (·; θQlty) are
learnable and independent with θSmtc.

The quality-aware features ftq = f (x; θQlty) are further
leveraged to aggregate the prediction of subjective quality score,
i.e., q̂ = h(ftq; δ), in which q denotes the subjective quality score
(MOS), q̂ is the prediction of q, and h(·; δ) stands for the MOS
prediction network given quality-aware features with learnable
parameters δ.

2.2.3. Cross-Domain Feature Similarity Predictor
As illustrated in section 1, the cross-domain feature similarity
would contribute to the prediction of perceptual quality.
However, directly evaluating the similarity between fts and ftq via
Minkowski-Distance or Wang-Bovik metric (Wang et al., 2004)
is not as efficient, as shown in Figure 6. We think the invalidation
of the Wang-Bovik metric is mainly attributed to its pixel-wise
sensitivity, i.e., any turbulence during the parameter initializing
and updating of the DNN framework would result in a significant
difference between fts and ftq.

To this end, this work proposes to depict the cross-domain
feature similarity through a global perspective. Specifically, the
similarity is derived from the weighting matrix W which is
employed to reconstruct ftq given fts via linear regression. Since
the W is derived from the features amongst all channels, it
is less likely to suffer from the instability of the DNN during
initializing and updating. The experiments reported in section
3.3 also demonstrate the superiority of our proposed similarity
measurement for cross-domain features. In our CDFS-guided
BIQA framework, the CDFS is incorporated as follows:

Linear regression is employed for the reconstruction and the
weighting matrix W could be obtained according to equation 1
and Step 1 in section 2.1

A stack of convolutional layers (denoted as g(·;γ )) is followed
to learn the cross-domain feature similarity givenW.

During the training stage, the cross-domain similarity is
employed as a regularization item to supervise the quality
prediction network.

2.2.4. Loss Function
The loss function L of our proposed network is designed as

L1 = argmin[

θQlty ,δ
]

∥

∥q− h(f (x; θQlty); δ)
∥

∥ (2)

L2 = argmin[

θQlty ,γ
]

∥

∥q− g(W; γ )
∥

∥ (3)

and

L = L1 + λL2 (4)
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FIGURE 4 | The detailed architecture of our proposed Cross-Domain Feature Similarity Guided Network. The “CONV” denotes convolutional layers followed by batch

normalization and ReLU layer, the “FC” denotes the fully-connected layer, and the ‘GAP’ denotes the global average pooling layer.

where ‖·‖ denotes the L1 norm operator, W is calculated
according to equation 1, and λ is a hyper parameter controlling
the weights of L1 and L2.

2.3. Implementation Details
Weuse ResNet50 (He et al., 2016) as the backbonemodel for both
the semantically oriented feature extractor and the perceptual-
quality oriented feature extractor. As aforementioned, the pre-
trained model on ImageNet (Deng et al., 2009) is used for
network initialization. During the training stage, the θSmtc is fixed
whilst θQlty is learnable. In our network, the last two layers of
the origin ResNet50, i.e., an average pooling layer and a fully
connected layer, are removed to output features fts and ftq.

For quality regression, a global average pooling (GAP) layer
is used to pool the features ftq into one-dimensional vectors,
then three fully -connected (FC) layers are followed with size
2048-1024-512-1 and activated by ReLu, except for the last layer
(activated by sigmoid).

The g(·; γ ) in cross-domain feature similarity predictor is
implemented by 3 three stacked convolutional layers, a GAP
layer, and three FC layers. The architectures of convolutional
layers are in(1) − out(32) − k(1) − p(0), in(32) − out(64) −
k(3) − p(1), and in(64) − out(128) − k(3) − p(1), respectively,
where in(α)−out(β)−k(x)−p(y) denotes the input channel size
and output channel size is α and β , the kernel size is x, and the
padding size is y. Each of the convolutional layers is followed by
a batch normalization layer and a ReLu layer. The GAP layer and
the FC layers are the same with quality regression except that the
size of FC layers is 128-512-512-1.

The experiment is conducted on Tesla V100P GPUs, while
the DNN modules are implemented by Pytorch. The size of
minibatch is 24. Adam (Kingma and Ba, 2014) is adopted to
optimize the loss function with weight decay 5 × 10−4 and
learning rate 1 × 10−5 for parameters in baseline (ResNet) and
1 × 10−4 for other learnable parameters. As mentioned, the

parameters in semantic oriented feature extractor is are fixed, i.e.,
the learning rate is 0 for θSmtc.

3. EXPERIMENTAL RESULTS

3.1. Datasets and Evaluation Metrics
Three image databases including KonIQ-10k (Hosu et al., 2020),
LIVE Challenges (LIVEC) (Ghadiyaram and Bovik, 2015), and
TID2013 (Ponomarenko et al., 2015) are employed to validate
the performance of our proposed network. The KonIQ-10k and
LIVEC are authentically distorted image databases containing
10,073 and 1,162 distorted images, respectively, and the TID2013
is a synthetic image database containing 3,000 distorted images.

Two commonly used criteria, Spearman’s rank order
correlation coefficient (SRCC) and Pearson’s linear correlation
coefficient (PLCC), are adopted to measure the prediction
monotonicity and the prediction accuracy. For each database,
80% images are used for training, and the others are used
for testing. The synthetic image database is split according
to reference images. All the experiments are under five times
random train-test splitting operation, and the median SRCC and
PLCC values are reported as final statistics.

3.2. Comparison With the State-of-the-Art
Methods
Ten BIQA methods are selected for performance comparison,
including five hand-crafted based (BRISQUE Mittal et al., 2012,
ILNIQE Xu et al., 2016, HOSA Zhang et al., 2015, BPRIMin et al.,
2017a, BMPRIMin et al., 2018a) and five DNN-based approaches
(SFA Li et al., 2018, DBCNN Zhang et al., 2018b, HyperIQA Su
et al., 2020, SDGNet Yang et al., 2019). The experimental results
are shown as in Table 1.

As shown in Table 1, our method outperforms all the
SOTA methods on the two authentic image databases in terms
of SRCC. As for PLCC measurement, our method achieves
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TABLE 1 | Performance comparison in terms of PCLL and SRCC on KonIQ,

LIVEC, and TID2013, respectively.

SRCC KonIQ LIVEC TID2013

BRISQUE 0.665 0.608 0.572

ILNIQE 0.507 0.432 0.521

HOSA 0.671 0.640 0.688

BPRI – – 0.899

BMPRI – – 0.929

SFA 0.856 0.812 –

DBCNN 0.875 0.851 –

HyperIQA 0.906 0.859 –

SGDNet 0.903 0.851 0.843

DeepFL 0.877 0.734 0.858

ours 0.918 0.865 0.899

PLCC KonIQ LIVEC TID2013

BRISQUE 0.681 0.645 0.651

ILNIQE 0.523 0.508 0.648

HOSA 0.694 0.678 0.764

BPRI – – 0.892

BMPRI – – 0.947

SFA 0.872 0.833 –

DBCNN 0.884 0.869 –

HyperIQA 0.917 0.882 –

SGDNet 0.920 0.872 0.861

DeepFL 0.887 0.769 0.876

ours 0.928 0.875 0.880

Values in bold represents the highest value.

FIGURE 5 | The scatter plot of CDFS vs. MOS on KonIQ.

the best performance on KonIQ and competing (the second)
performance on LIVEC. This suggests that calculating cross-
domain feature similarity for quality prediction refinement is
effective. Though we do not especially modify the networks for
synthetic image feature extraction, the proposed network has
achieved competing performance in TID2013. Specifically, the

TABLE 2 | Ablation results in terms of SRCC and PLCC on KonIQ.

Modules BaseLine +SP_wang +SP_W

SRCC 0.842 0.895 0.918

Gain(%) – 6.3 9.0

PLCC 0.849 0.913 0.928

Gain(%) – 7.5 9.3

FIGURE 6 | The scatter plot of Sim1, Sim2, and Sim3 vs. MOS on KonIQ.

proposed approach achieves the second-highest performance in
terms of SRCC and the third-highest performance in terms of
PLCC on TID2013.
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FIGURE 7 | Impact on selections of different λ. The experimental result is conducted on KonIQ, and a total of 20 epochs are involved.

3.3. Cross-Domain Feature Similarity
Visualization
In order to further illustrate the superiority of our proposed
CDFS, we firstly present the scatter plot of CDFS vs. MOS on
KonIQ in Figure 5, indicating the CDFS is well correlated with
perceptual quality.

In addition, we also investigate several non-learnable

approaches for calculating CDFS: (1) Sim1 = mean(
2×fts×ftq+C

ft2s+ft2q+C
),

where C denotes the constant to avoid numerical singularity;

and (2) Sim2 = std(eig(W)); (3) Sim3 = mean( 2×Ev×E1+C
Ev2+E12+C

), and

Ev = eig(W), in which E1 denotes the vectors with the same size as
Ev whilst whose elements are all 1.

Therefore, the calculation of Sim1 is directly comparing the
difference between fts and ftq, and the calculation of Sim2 and
Sim3 is based on the W derived according to equation 1. As
shown in Figure 6, Sim2 and Sim3 is more correlated with the
subjective score, demonstrating that measuring the cross-domain
feature similarity based onW is more effective.

3.4. Ablation Study
Ablation study is conducted on KonIQ-10k to validate the
efficiency of our proposed components, including the ResNet50
backbone (BaseLine), the similarity predictor (SP) obtained
by Wang-Bovik metric (SP_wang, similar as Sim1 in section
3.3), and the similarity predictor derived from the weighting
metric W (SP_W). The results are shown in Table 2, indicating

that incorporating a cross-domain similarity predictor could
significantly improve the accuracy of quality prediction. Our
proposed similarity measurement has achieved a great PLCC
improvement (1.8%) compared to SP_wang and a more
significant SRCC improvement (2.7%).

The impact of λ in equation 4 is also investigated, i.e., we
set λ = [0.2, 0.4, 0.6, 0.8, 1.0], respectively and observe the
corresponding performance as shown in Figure 7. Therefore,
we select λ = 0.4 for performance comparison and the
following experiments.

3.5. Cross-Database Validation
In order to test the generalization ability of our network,
we train the model on the entire KonIQ-10k and test on
the entire LIVEC. The four most competing IQA models in
terms of generalization ability are involved in the comparison,
which are PQR (Zeng et al., 2017), DBCNN, HyperIQA,
and DeepFL. The validation results are shown in Table 3,
indicating the generalization ability of our approach is higher
than existing SOTA methods for assessing authentically
distorted images.

However, if the network is trained on KonIQ-10k and directly
applied for a synthetic image database, its generalization ability
is not satisfactory, and the SRCC on TID2013 is only 0.577.
That is mainly because the distortion mechanisms between
synthetic and authentically distorted image databases are
widely different. Training the network solely on authentically
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TABLE 3 | Cross data base validation (Trained on KonIQ-10k and Tested on

LIVEC).

Modules DeepFL DBCNN HyperIQA PQR Ours

SRCC 0.704 0.755 0.770 0.785 0.817

Gain(%) – 7.2 9.4 11.5 16.1

TABLE 4 | SRCC and PLCC performance on CCT, DHQ, and SHRQ.

SRCC PLCC

CCT
20-%Test 0.9655 0.9672

100-%Test 0.5758 0.6193

DHQ
20-%Test 0.9533 0.9223

100-%Test 0.6819 0.6678

SHRQ
20-%Test 0.8875 0.9082

100-%Test 0.4233 0.4761

-distorted image databases could not learn the specific
synthetic distortion patterns such as JPEG compression,
transmission errors, or degradation caused by denoising,
etc.

3.6. Further Validation on Other Specific
IQA Tasks
In order to further validate the robustness of our BIQA
framework toward other specific IQA tasks, the performance
of CDFS guided BIQA network is evaluated on CCT (Min
et al., 2017b), DHQ (Min et al., 2018b), and SHRQ (Min
et al., 2019). The CCT contains 1,320 distorted images with
various types of images including natural scene images (NSI),
computer graphic images (CGI), and screen content images
(SCI); The DHQ contains 1,750 dehazed images generated
from 250 real hazy images.; The SHRQ database consists
of two subsets, namely: regular and aerial image subsets,
which include 360 and 240 dehazed images created from 45
and 30 synthetic hazy images using 8 eight image dehazing
algorithms, respectively.

The training pipeline is similar with section 3.1, i.e., 80% of
the CCT, DHQ, or SHRQ are involved as the training set and
the other 20% is the testing set. Considering that the scale of the
subset is not adequate for the training of DNN, we merge the
subsets in each datasets. For example, the NSI, CGI, and SCI are
merged as the training set of CCT.

As shown in Table 4, the predictions of our CDFS guided
BIQA framework shows significant consistency with subjective

scores, indicating that our proposed BIQA approach is feasible to
be generalized into other types of IQA tasks.

Furthermore, if the network is trained on KonIQ-10k and
directly applied on CCT, DHQ, and SHRQ, the accuracy is not
satisfactory, as shown in Table 4. Such phenomenon is similar
to the cross-database validation results discussed in section 3.5,
indicating that training the network solely on authentically-
distorted natural image databases could not sufficiently learn the
quality-aware features for CGI, SCI, etc.

4. CONCLUSION

This work aims to evaluate the perceptual quality based on
cross-domain feature similarity. The experimental results on
KonIQ, LIVEC, and TID2013 demonstrate the superiority of our
proposed methods.

We would further investigate such CDFS-incorporated BIQA
framework in the following aspects: (1) investigating more
efficient approaches of CDFS measurement; (2) investigating
more types of DNN baselines in addition to ResNet.
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Due to the complex angular-spatial structure, light field (LF) image processing faces

more opportunities and challenges than ordinary image processing. The angular-spatial

structure loss of LF images can be reflected from their various representations. The

angular and spatial information penetrate each other, so it is necessary to extract

appropriate features to analyze the angular-spatial structure loss of distorted LF images.

In this paper, a LF image quality evaluation model, namely MPFS, is proposed based

on the prediction of global angular-spatial distortion of macro-pixels and the evaluation

of local angular-spatial quality of the focus stack. Specifically, the angular distortion of

the LF image is first evaluated through the luminance and chrominance of macro-pixels.

Then, we use the saliency of spatial texture structure to pool an array of predicted values

of angular distortion to obtain the predicted value of global distortion. Secondly, the local

angular-spatial quality of the LF image is analyzed through the principal components of

the focus stack. The focalizing structure damage caused by the angular-spatial distortion

is calculated using the features of corner and texture structures. Finally, the global and

local angular-spatial quality evaluation models are combined to realize the evaluation of

the overall quality of the LF image. Extensive comparative experiments show that the

proposed method has high efficiency and precision.

Keywords: light field, objective image quality assessment, focus stack, macro-pixels, corner

INTRODUCTION

Light field (LF) imaging technology is designed to record rich scenario information. Compared
with ordinary two-dimensional (2D) images and binocular stereoscopic images, LF images are
favored in researches like immersive stereoscopic display and object recognition because of their
particular characteristics of dense view and post-focusing (Huang et al., 2016; Ren et al., 2017a).
For these applications, image quality degradationwill directly affect the perception of the immersive
experience and the accuracy of object recognition. However, the quality assessment of LF images is
different from that of ordinary image types. It involves analyzing the complex imaging structure
relationships among dense multi-view LF images. Therefore, it is beneficial to consider the
characteristics of LF images, such as the relationship between dense viewpoints, perception of
human eyes to the structure of multi-view images, to accurately evaluate the quality. Traditional
image quality evaluation models are not suitable for LF because they do not consider the special
characteristics of LF images. It is of great significance for the development of LF to build an
objective quality evaluation model that effectively utilizes the characteristics of LF images.
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The characteristics of LF images are reflected in its various
expressions. The dense viewpoints of an LF image, hereinafter
referred to as subaperture images (SAIs), represent spatial
information of the captured scenes from different visual
angles. Adjacent SAIs have strong texture similarity, which
enables the compression operation to be better realized.
Compression algorithms of LF images can alleviate the problem
of inconvenience in transmission caused by a large amount of
data of LF images. Furthermore, the reconstruction algorithms
play an excellent role in recovering the loss of spatial
resolution or angular resolution in the LF image processing.
The compression and reconstruction algorithms are mainly
based on the multiple representations of LF images: hexagonal
lenslet image, rectangular decoded image, SAIs, focus stack, and
epipolar plane images (EPIs) (Huang et al., 2019a; Wu et al.,
2019). All of the above representations can reflect the angular and
spatial characteristics of LF images. Although both compression
and reconstruction operations promote the practical application
of LF images, they inevitably bring the problem of quality
degradation. Moreover, the performance of these algorithms
varies a lot, so the criteria to check out the optimal one
are necessary.

For situations where SAIs are used to evaluate the quality of
LF images, Tian et al. (2018) presented a multi-order derivative
feature-based model using the multi-order derivative features
extracted on the SAIs of LF images. However, their analysis
remains in the texture aspect of spatial information, lacking
the analysis of the connection between the angular and spatial
information. As an LF image can be regarded as a low-rank
4D tensor, Shi et al. (2019) adopted the tensor structure of the
cyclopean image array from the LF to explore the angular-spatial
characteristic. Zhou et al. (2020) used tensor decomposition
of view stack in four directions to extract the spatial-angular
features. To explore the angular-spatial characteristics of LF
images, Min et al. (2020) averaged the structural matching degree
of all viewpoints to compute the spatial quality and analyzed
the amplitude spectrum of near-edge mean square error along
viewpoints to express the angular quality. Xiang et al. (2020)
computed the mean difference image from SAIs to describe the
depth and structural information of LF images, and it used a
curvelet transform to reflect the multi-channel characteristics of
the human visual system.

The focus stack is constructed by stacking the refocused
images from the perspective of depth, which reflects both the
texture and depth information of LF images. Meng et al. (2019)
compared different objective metrics under SAIs and the focus
stack, which verified the superiority of the refocus characteristic
of LF images. Meng et al. (2019) utilized the LF angular-spatial
and human visual characteristics and verified the effectiveness
of the assumed optimal parallax range. Meng et al. (2021)
built a key refocused image extraction framework based on the
maximal spatial information contrast and the minimal angular
information variation to reduce the redundancy of quality
evaluation in the focus stack.

The depth feature makes the LF more popular in object
detection, three-dimensional reconstruction, and other
applications. Paudyal et al. (2019) compared different depth

extraction strategies and assessed the quality of LF through
the structural similarity of the depth map. It is proven that
the depth information is effective in reflecting the distortion
degree of LF images, but Paudyal et al. (2019) ignored the texture
structure information of LF images. Therefore, some studies have
attempted to combine depth features with the features from SAIs
to achieve better prediction results. Shan et al. (2019) combined
the ordinary 2D features of SAIs and sparse gradient dictionary
of LF depth map. Tian et al. (2020) performed radial symmetric
transformation on the luminance components of all dense
viewpoints to extract symmetric features and used depth maps
to measure the structural consistency between viewpoints, which
explored the way humans perceive structures and geometries.

To preferably explore the angular-spatial characteristics
of LF, many pieces of research are devoted to take
advantage of various LF expressions. For the form of
uniting multiple representations, Luo et al. (2019) used the
global entropy and uniform local binary pattern features
of a lenslet image to evaluate the angular consistency,
and adopted the information entropy of SAIs to measure
spatial quality. Fang et al. (2018) calculated the change in
visual quality by combining the gradient amplitude of SAIs
and EPIs.

In addition to traditional methods, as deep learning exhibits
excellent performance in other aspects of image processing, some
teams have worked to fill the research gap of deep learning in
the quality evaluation of LF images. Zhao et al. (2021) proposed
an LF-IQA method based on the multi-task convolutional neural
network (CNN), in which the EPI patches were taken as the
input of the CNN model and the model followed ResNet in
the convolution layer. Lamichhane et al. (2021) proposed an
LF-IQA metric based on a CNN that measures the distortion
of the saliency map. Lamichhane et al. (2021) confirmed that
there is a strong correlation between the distortion levels of
normalized images and the corresponding saliency maps. Guo
et al. (2021) proposed a deep neural network-based approach, in
which the relationship among SAIs was obtained by SAI fusion
and global context perception models. To solve the problem of
insufficient databases, they proposed a ranking-based method
to generate pseudo-labels to pre-train the quality assessment
network, and then fine-tuned the model at small-scale data sets
with real labels.

This paper attempts to build a quality evaluation index that
comprehensively considers the angular-spatial characteristics
of LF images and human vision characteristics. The angular
information of LF is directly expressed in the form of macro-
pixel, which has been widely used in LF compression (Schiopu
and Munteanu, 2018). Macro-pixels can be simply used to
compare changes in angular information and do not involve
a complex analysis of texture. For lenslet images, the array of
pixels beneath each microlens is named as a macro-pixel. As
shown in Figure 1, the second line is the enlarged local macro-
pixels of the referenced lenslet image and the corresponding
distorted macro-pixels. The enlarged part of the lenslet image
contains 7 × 7 macro-pixels, and each macro-pixel contains 9
× 9 pixels. It can be seen from Figure 1C that luminance and
chrominance have changed in the distorted macro-pixels. Hence,

Frontiers in Computational Neuroscience | www.frontiersin.org 2 January 2022 | Volume 15 | Article 768021101

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Meng et al. Quality Evaluation of LF Images

FIGURE 1 | (A) The referenced light field (LF) image in the form of decoded lenslet. (B) The first column is the enlarged local macro-pixels from (A), and the other two

columns correspond to macro-pixels with different degrees of distortion, which increased from left to right. (C) Each column corresponds to the grid distribution of

gray values of a single macro-pixel in the green block in (B).

we first utilize the angular information of all spatial positions
to globally analyze the angular-spatial quality of LF images.
As for spatial information, texture structure is an important
and a direct means for human eyes to perceive image quality.
Ingeniously, the focus stack not only reflects the texture structure
information but also partly maps the angular information. Min
et al. (2018) mentioned that quality degradations can cause local
image structure changes, and Min et al. (2017a,b) mentioned
that corners and edges are presumably the most important image
features that are sensitive to various image distortions. Therefore,
we construct a local LF angular-spatial quality evaluation model
based on the focus stack through the measurement of corner
and texture structures. Finally, the abovementioned two clues
are combined to represent the overall quality of LF images.
The contributions of this paper mainly include the following
three points.

• A prediction framework of global angular-spatial distortion
of LF images is established on the lenslet images. First, the
distortion of angular information is calculated by averaging the

changes in luminance and chrominance of each macro-pixel. All
the evaluated values are arranged according to the corresponding
spatial coordinates, forming an array of predicted values of
angular distortion. Then, the visual saliency of the central SAI,
which reflects the spatial information distribution with human
visual characteristics, is introduced to pool an array of predicted
values of angular distortion to obtain the predicted value of
global distortion.

• An evaluation framework of local angular-spatial distortion
of LF images is built on the principal components of the focus
stack. The loss of the focalizing structure and the distortion
of spatial texture structure are analyzed on the principal
components through the corner similarity and texture similarity,
respectively. The final local distortion is evaluated by fusing the
predicted values of the focalizing structure and texture structure.

• The proposed method is compared with multiple objective
metrics in the stitched multi-view image framework, and their
results are analyzed with three subjective LF-IQA databases to
verify their effectiveness and robustness.
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FIGURE 2 | The proposed LF-IQA framework based on the angular-spatial feature information.

MATERIALS AND METHODS

Although the angular-spatial characteristics of LF are reflected
in various expressions of LF, it is still a great challenge
to extract and calculate the angular-spatial characteristics of
LF. The lenslet images not only macroscopically reflect the
global angular-spatial information of the LF images, but also
microscopically reflect the angular information distribution.
Inspired by this, we intend to start from the macro-pixels of
the lenslet images to evaluate the angular distortion at the
micro level, and then use the feature of spatial information to
pool the predicted values of angular distortion. In consideration
of the lack of analysis of useful texture and edge structure
in the scene, which has a great influence on the quality
perception, in the calculation of global distortion of LF
images, the study in this paper will combine with other
LF representations to supplement its deficiency. As each
refocused image in the focus stack contains both angular-spatial
information and texture structure, this paper chooses to analyze
the texture and edge structure of the LF images with the
focus stack.

According to the abovementioned analysis, we propose an
evaluation method to comprehensively predict the distortion of
LF images from both global and local aspects. The distribution
of global and local distortion is analyzed from the lenslet
images and focus stack, respectively. As illustrated in Figure 2,
the global distortion in lenslet images is analyzed at each
macro-pixel through the luminance and chroma channels. After
then, we utilize the visual salient feature of spatial information
to assign different weights to the measured values of each
distorted macro-pixel, so as to realize the fusion of spatial

information and angular information. Moreover, human visual
characteristic has been taken into account in the calculation of
visual saliency. As the single macro-pixel of a lenslet image lacks
the texture and edge information of the objects in the scene,
we complement the global distortion measurement by analyzing
the principal components in the focus stack. The prediction
processes of global and local distortion are described in sections
The Prediction of Global Angular-Spatial Distortion and The
Evaluation of Local Angular-Spatial Quality, respectively, and the
two complementary prediction frameworks are fused in section
The Evaluation of Union Angular-Spatial Quality.

The Prediction of Global Angular-Spatial
Distortion
A lenslet image is composed of an array of macro-pixels
embedded with angular information. The array of macro-
pixels reflects the distribution of angular-spatial distortion
macroscopically, while a single macro-pixel reflects the
distribution of angular distortion microscopically. The size of
a lenslet image is S × T units of macro-pixels, and the size of a
macro-pixel is I × J, where S × T is the spatial resolution of LF
images, and I × J is the angular resolution of LF images.

As it can be seen from Figures 1A,B, the distortion
of macro-pixels is manifested as the changes in luminance
and chrominance. Figure 1C describes the grid distribution
of referenced and different distorted macro-pixels, which
reflects the influence of distortion on the angular information.
Considering that a single macro-pixel involves all the angular
information of the corresponding spatial position, we first
compute the angular distortion within each macro-pixel.
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As a single macro-pixel does not involve the complex texture
and edge structure of the objects in the scene, we decided to study
the variation of luminance information and chroma information
in each macro-pixel. Without considering the image texture
structure information, the root mean squared error (RMSE)
method can simply and accurately calculate the error between
referenced and distorted macro-pixels. As people are more
sensitive to the change of luminance than that of chrominance
(Su, 2013), we mainly measure the distortion of each macro-pixel
on the luminance channel. Specifically, Equation (1) expresses the
RMSE of luminance (RMSEY ) of the referenced macro-pixel (YR)
and the distorted macro-pixel (YD):

RMSEY (xs,t) =

√

1

I � J

(

∑I

i=1

∑J

j=1

(

YR(xi,j)− YD(xi,j)
)2
)

(1)

where xs,t is the pixel value on the spatial coordinate (s, t). xi,j is
the pixel value on the angular coordinate (i, j). I and J are the
angular resolutions, in this paper, I = 9, J = 9.

In addition to the variation of luminance information in the
macro-pixel array, the distortion of chroma information will
also affect the perception of the overall quality of images. As
macro-pixels have no texture and edge structure of objects in
the scene, the measurement of chroma distortion of macro-
pixels can be simpler and more direct. Considering that the
chrominance information has a much smaller impact on the
overall quality than the luminance, we adopt the similarity
measurement method that is widely used in objective assessment
methods, as given in Equations (2) and (3). The chrominance
information is analyzed in the YUV color space. The similarity
map of each macro-pixel is averaged to calculate the quality value
of the corresponding spatial position (s, t).

SU(xs,t) =
1

I � J

(

∑I

i=1

∑J

j=1

2UR(xi,j) � UD(xi,j)+ C1

UR
2(xi,j)+ UD

2(xi,j)+ C1

)

(2)

SV (xs,t) =
1

I � J

(

∑I

i=1

∑J

j=1

2VR(xi,j) � VD(xi,j)+ C1

VR
2(xi,j)+ VD

2(xi,j)+ C1

)

(3)

where SU and SV are the color similarity of U and V channels.
UR and VR are referenced macro-pixels of U and V channels,
and UD and VD are distorted macro-pixels of U and V channels.
The constant C1 is used to maintain the stability of the similarity
measurement function (Zhang et al., 2011), we fixed C1 = 1
through the experiments.

The smaller RMSEY between the referenced and distorted
macro-pixel signifies the smaller error of the luminance
components between them, while the greater chrominance
similarity represents the smaller chroma error. For each macro-
pixel, we use Equation (4) to fuse the predicted values of
luminance and chrominance components. The values of RMSEY
are in the range of 0–255, tomake the contribution of chroma less
to the overall distortion prediction than the luminance, we set C2

to 0.01, so that the range of chroma error is 0.99–100.

PVDMP(xs, t) =
RMSEY (xs, t)

SU(xs, t) � SV (xs, t)+ C2
(4)

where PVDMP(xs ,t) is the fused prediction value of the distorted
macro-pixel in the spatial coordinate (s, t), sǫ[1, S], tǫ[1, T]. S
and T are the spatial resolution, in this paper, S = 434, J = 625.
The PVDMP values arranged in spatial coordinates form an array
of predicted values of angular distortion.

To integrate the angular information and spatial information
of LF images in the process of image quality assessment, we
intend to pool the predicted values of angular distortion using the
spatial information. The exciting thing is that the corresponding
spatial coordinates of macro-pixels reflect the significance of the
texture and contour of the LF images. As the central SAI is the
main perspective from which humans observe the scenes, we
choose to use the features of the central SAI to pool an array
of predicted values of angular distortion. The visual saliency
map of the central SAI, which reflects the spatial information
distribution with human visual characteristics, is introduced to
pool the predicted values of all distorted macro-pixels, as given
in Equation (5):

PVGD =

∑S
s=1

∑T
t=1 PVDMP

(

xs, t
)

� VSm
(

xs, t
)

∑S
s=1

∑T
t=1 VSm

(

xs, t
)

(5)

where PVGD is the predicted value of global angular-spatial
distortion of LF images. VSm (xs,t) = max [VSr(xs,t), VSd(xs,t)],
VSr(xs,t), and VSd(xs,t) are visual saliency maps of the central
SAIs of referenced and distorted LF images, respectively. In this
paper, we use the simple saliency model in Zhang et al. (2013),
which integrates the frequency prior, color prior, and location
prior and has been proven to be a simple and an effective visual
saliency model that simulates the perceptual characteristics of
human eyes to the images (Zhang et al., 2014).

The Evaluation of Local Angular-Spatial
Quality
As mentioned earlier, the prediction of global angular-spatial
distortion lacks direct measurements of the texture and edge
structure of the objects in the scenes. This section aims to
complement the global distortion measurement by analyzing the
principal components in the focus stack. The focus stack consists
of a series of refocused images arranged in the direction of
depth. A refocused image is obtained by shifting and summing
the SAIs at a given slope. Therefore, the refocused images
only contain the local angular-spatial information of LF images.
Specifically, the distortion of the angular information is directly
manifested as the loss of the focalizing structure in the focus
stack, while the distortion of the spatial information is manifested
as various forms of destruction of the texture and edge structure
in the scenes.

The loss of the focalizing structure is reflected as the disorder
of the focus state. As shown in Figure 3A, the red and green boxes
correspond to the cross and vertical sections of the focus stack.
The sections of the referenced focus stack show that the focalizing
structure is orderly, while the focusing state of the distorted focus
stack is chaotic. Specifically, the foremost focusing position of
the referenced focus stack is located on the wood plate, while the
forefront refocused slice of the distorted focus stack is not in the
focus state.Moreover, Figure 3B shows that the backmost refocus
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FIGURE 3 | Focus stack. (A) The focus stack of reference and distortion from

left to right. The red and green boxes are the cross and vertical sections of the

focus stack, respectively. (B) The partial focus stack of reference and distortion

from left to right.

slice of the referenced focus stack focused on the text, while the
corresponding distorted refocus slice was not focused on the text
that should be focused due to the angular-spatial distortion. In
a word, the energy distribution of the distorted focus stack is
scattered throughout the whole depth range, and the original
focalizing structure is destroyed.

We also noticed from Figure 3 that there is a defocused blur
in the unfocused parts of the focus stack. When human eyes
focus on a point of the scene, the object points at other depths
of the field become blurred. The focus stack simulates the human
eyes’ habit of viewing a scene, so a defocused blur is inevitably
introduced. To alleviate the effect of a defocused blur, we attempt
to use principal component analysis (PCA) to extract the main
components from the focus stack, as shown in the first and third
rows of Figure 4. As we have analyzed the effect of chrominance
on the prediction of global distortion (section Databases for
Validation), the principal components are extracted only in the
grayscale of the focus stack (Ren et al., 2017b).

Principal component analysis is a means of dimension
reduction. The advantage is that PCA not only reduce the
calculation amount for the focus stack but also alleviate the
influence of a defocused blur in the analysis of the focalizing
structure. By sorting the eigenvalues and corresponding
eigenvectors of the covariance matrix of gray refocused slices
in the focus stack, the focus stack can be rearranged according
to the proportion of information content. As for the number of
selected principal components, the experimental comparison
and analysis are conducted (section 4.6). In this paper, the first
three principal components are selected to predict the local
angular-spatial quality for accuracy and simplicity.

For the principal components of the focus stack, we analyze
the loss of focalizing structure and texture damage caused by the

FIGURE 4 | The first and third rows are the principal components of the

referenced and distorted focus stack, respectively. The second and fourth

rows are the corners of referenced and distorted principal components,

respectively. (A) The first principal component; (B) the second principal

component; and (C) the third principal component.

angular-spatial distortion. Firstly, the corner structure based on
phase congruency (PC-corner) is used to evaluate the focalizing
structure loss. As shown in the second and fourth rows of
Figure 4, the PC-corner operator detects the features as points
in an image with a high-phase component order in the Fourier
domain, and it is not affected by luminance, contrast, and scale.
The PC-corner feature operator can detect a wide range of
features, such as angle, line, and texture information of images.

The corner response function is developed based on the
covariance matrix of PC (Kovesi, 2003), as given in Equation (6):

CM =

[

PCx
2 PCx � PCy

PCx � PCy PCy
2

]

(6)

where PCx and PCy are PC-corner at horizontal and vertical
directions. The phase consistency utilizes the log-Gabor filter of
multi-scale and multi-direction. The final covariance matrix is
normalized with the orientations used in the log-Gabor filter. In
this paper, we use three scales (n= 1, 2, 3) and six orientations (θ
= 0, π /6, π /3, π /2, 2π /3, 5π /6).
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Being different from the structural loss of ordinary image,
the structural loss of the focus stack includes the reduction
and increment of structure due to the angular-spatial distortion.
Therefore, we use the form of Equation (7) to calculate
the corner similarity SC between referenced and distorted
principal components.

SC =
NR
⋂

ND

NR
⋃

ND + 1
(7)

where NR and ND are the number of corners in referenced and
distorted principal components, respectively.∩ is the intersection
of NR and ND, and ∪ is the union of NR and ND. The constant 1
is added to avoid the denominators being 0.

Secondly, in addition to assessing the loss of the focalizing
structure, the angular-spatial distortion can also lead to an
obvious texture damage of the focus stack. Similar to the
evaluation of focalizing structure, the prediction of texture
distortion is conducted on the principal components of the focus
stack. The vertebrate retina can be mathematically represented
by the Laplacian of Gaussian, which is an effective method of
texture calculation reflecting the characteristics of human vision.
Considering that the waveform distribution of DoG algorithm
is similar to that of Laplacian of Gaussian, and the complexity
of DoG is much smaller, we choose DoG to calculate the
texture feature.

The DoG is the difference of the image signal I(xs ,t) convolved
with the two different Gaussian scales σ1, σ2:

L(xs,t , σ1) = G(xs,t , σ1) ∗ I(xs,t) (8)

L(xs,t , σ2) = G(xs,t , σ2) ∗ I(xs,t) (9)

DoG(xs,t) = L(xs,t , σ1)− L
(

xs,t , σ2
)

(10)

where L (xs ,t, σ 1) and L (xs ,t, σ 2) are convolutions of the
image signal I (xs ,t) with Gaussian functions at the two different
Gaussian scales (σ1, σ2).

Equation (11) was initially used in the calculation of structure
similarity (SSIM) (Wang et al., 2004), and then widely used
for the distance calculation of feature similarity (FSIM) in
objective assessment methods. Hence, the texture similarity of
referenced and distorted principal components is calculated by
Equation (11).

SDoG(xs,t) =
2DoGR(xs,t) · DoGD(xs,t)+ C3

DoGR
2(xs,t)+ DoGD

2(xs,t)+ C3
(11)

where DoGR and DoGD are differences of Gaussian feature
of referenced and distorted principal components, respectively.
The constant C3 is used to maintain the stability of the
similarity measurement function, we fixed C3 = 0.1 through
the experiments.

Concretely, the similarity map of DoG is pooled through the
feature of visual saliency to obtain the quality of texture QT , as
given in Equation (12). The calculation method of visual saliency
is the same (as mentioned in section Databases for Validation):

QT =

∑S
s=1

∑T
t=1 SDoG

(

xs,t
)

� VSm
(

xs,t
)

∑S
s=1

∑T
t=1 VSm

(

xs,t
)

(12)

FIGURE 5 | The light flow in the focus stack and the visual saliency map. (A)

The light flow of referenced focus stack. (B) The light flow of distorted focus

stack. (C) The visual saliency map based on the sum of light flow of focus

stack.

We define the light flow in the focus stack as the sum of the
differences between adjacent refocus slices. The feature of visual
saliency VSm is computed with the light flow of the focus stack,
as shown in Figure 5 and Equation (13).

VSm = max(VSLif -R,VSLif -D) (13)

where VSLif−R and VSLif−D are visual saliency maps of the light
flow of referenced and distorted focus stack, respectively.

Finally, the local angular-spatial quality QL is obtained by
averaging the fused quality of the focalizing structure and texture.
M in Equation (14) is the number of principal components,
which is analyzed in section 4.6 at differentM values.

QL =
1

M

∑M

m=1
SC � QT (14)

The Evaluation of Union Angular-Spatial
Quality
According to sections Databases for Validation and Performance
Analysis of ImageQualityMetrics, a smaller PVGD value indicates
the smaller global distortion, which corresponds to the higher
global quality, while a smallerQL value indicates the smaller local
quality. The overall quality of LF images is calculated by fusing
the predicted value of global angular-spatial distortion PVGDand
local angular-spatial quality QL. Considering that PVGD and QL

are inversely and directly proportional to the overall quality,
respectively, we use Equation (15) to calculate the overall quality
of the LF images.

Q = log(
QL

PVGD + ε
+ ε) (15)

where log operation is added to increase the linearity of the
results, which conforms to the human eyes’ ability to recognize
the light intensity (Min et al., 2020). PVGD is given by Equation
(5), and QL is given by Equation (14). ε is a constant for equation
stability, which is set as 0.0001.

Frontiers in Computational Neuroscience | www.frontiersin.org 7 January 2022 | Volume 15 | Article 768021106

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Meng et al. Quality Evaluation of LF Images

TABLE 1 | The detailed information of LF-IQA databases used in the experiment.

Database Distortion types Distortion levels

SHU Traditional

Distortion

JPEG

JPEG2000:

Motion Blur:

Gaussian Blur:

White Noise:

QLs: 1, 10, 15, 20, 50, 90

CRs: 10, 70, 150, 200, 250,

400, 600

MLs: 10, 20, 60, 100, 150, 200

SDs: 0.5, 2, 4, 5, 10, 20

SDs: 0.05, 0.1, 0.3, 0.5, 1, 2

VALID-

10bit

Video & LF

Compression

HEVC, VP9, Ahmad

et al., 2017; Tabus

et al., 2017; Zhao

and Chen, 2017

Bpp: 0.005, 0.02, 0.1, 0.75.

NBU-

LF1.0

LF

Reconstruction

NN, BI, EPICNN

DR

VDSR

RFs: 5, 3, 2

RFs: 7, 5, 3

RFs: 2, 3, 4

RESULTS

Databases for Validation
Resource identification initiative. To verify the performance
of the proposed method, experiments were conducted on
three subjective quality assessment databases of LF images,
including the database of traditional distortion types: SHU
(Shan et al., 2019), video compression, and LF compression
types: VALID-10bit (Viola and Ebrahimi, 2018), and LF
reconstruction types: NBU-LF1.0 (Huang et al., 2019b).
The detailed information of these databases is listed in
Table 1.

1) SHU database: traditional distortion types. The SHU database
is composed of 8 referenced LF images and 240 distorted
LF images. There are five distortion types, including the
classical compression artifacts (JPEG and JPEG2000) and
other distortions (motion blur, Gaussian blur, and white
noise). Each type of distortion has six distortion levels. The
database is visualized by pseudo-sequence video of SAIs to
the subjects.

2) VALID-10bit database: video compression and LF compression
distortion types. There are two general compression schemes
(HEVC and VP9) and three compression schemes specifically
designed for LF (Ahmad et al., 2017; Tabus et al., 2017; Zhao
and Chen, 2017). For each compression type, 4 levels of
compression are introduced, and a total of 100 compressed
LFs are included in this data set. It has five referenced LF
contents and is evaluated in the passive methodology. For
the passive evaluation, the perspective views were shown as
animation and followed by the refocused views (Viola et al.,
2017).

3) NBU-LF1.0 data set: reconstruction distortion types. It includes
five LF reconstruction schemes: neighbor interpolation (NN),
bicubic interpolation (BI), learning-based reconstruction
(EPICNN), disparity-map-based reconstruction (DR),
and spatial super-resolution reconstruction (SSRR).
It has 14 referenced LF contents and 210 distorted
LF images. Each reconstruction type has three levels
of reconstruction.

To reduce the complexity, the number of multiple views selected
from the databases in Table 1 is 9 × 9, and the image resolution
is 434× 625.

Performance Analysis of Image Quality
Metrics
There are three main representations of LF with whole global
information: EPIs, lenslet images, and SAIs. First of all, the
oblique texture structure in EPIs is not similar to the texture
structure of objects in ordinary images, which is not conducive
to the realization of traditional image quality evaluation
methods. Except for the statistical IQA method at pixel-level,
such as peak signal-to-noise ratio (PSNR), most traditional
image quality evaluation methods cannot take the advantage
of their simulation in image structure and human visual
characteristics. Secondly, lenslet images have discontinuities
of scene texture due to the angular information, which is
not conducive to the application of algorithms based on
human visual characteristics. Thirdly, SAIs can be regarded
as a matrix of 2D images distributed in different angular
directions. The superiority of traditional algorithms can be
developed in the stitched SAIs, which is due to the fact that
the stitched SAIs can be seen as a large 2D image with
texture redundancy. Hence, we decide to apply the traditional
algorithms to the stitched SAIs to carry out the following
comparison experiments.

In general, the objective evaluation includes three categories
according to their dependence on the reference image: full
reference (FR), reduced reference (RR), and no reference (NR)
(Wang and Bovik, 2006). In Table 2, the performance of the
proposed MPFS is broadly compared with the classical FR,
RR, and NR metrics over three subjective LF-IQA databases.
The metrics mainly include classical traditional IQA metrics
and the state-of-the-art LF-IQA metrics. 2D FR IQA metrics
include PSNR, SSIM (Wang et al., 2004), multi-scale SSIM (MS-
SSIM) (Wang et al., 2003), information weighting SSIM (IW-
SSIM) (Wang and Li, 2010), FSIM (Zhang et al., 2011), FSIM
based on Riesz transforms (RFSIM) (Zhang et al., 2010), noise
quality measure (NQM) (Damera-Venkata et al., 2000), gradient
similarity (GSM) (Liu et al., 2011), visual signal noise ratio
(VSNR) (Chandler andHemami, 2007), most apparent distortion
(MAD) (Larson and Chandler, 2010), gradient magnitude
similarity deviation (GMSD) (Xue et al., 2013), and HDRVDP
(Mantiuk et al., 2011). Sparse feature fidelity (SFF) (Chang
et al., 2013), universal image quality index (UQI) (Wang and
Bovik, 2002), visual saliency-induced index (VSI) (Zhang et al.,
2014), 2D RR IQAmetrics include wavelet-domain natural image
statistic model (WNISM) (Wang and Simoncelli, 2005), wavelet-
based contourlet transform (WBCT) (Gao et al., 2008), and
contourlet (Tao et al., 2009). Multi-view FR IQA metrics include
morphological pyramids PSNR (MP-PSNR) (Sandić-Stanković
et al., 2015), morphological wavelets PSNR (MW-PSNR) (Sandić-
Stanković et al., 2015), MW-PSNRreduc (Sandić-Stanković et al.,
2015), and 3DSwIM (Battisti et al., 2015). LFI FR IQA metrics
include the algorithms in Min et al. (2020) and Meng et al.
(2020). LFI NR IQA metrics include BELIF (Shi et al., 2019),
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TABLE 2 | The performance comparison of classical IQA indexes on three benchmark databases.

Database SHU VALID-10bit NBU-LF1.0 Overall

Metric RMSE PLCC SROCC KROCC RMSE PLCC SROCC KROCC RMSE PLCC SROCC KROCC WSROCC MSROCC

2D-FR PSNR 0.6316 0.8190 0.8859 0.7315 0.4122 0.9036 0.8868 0.7158 0.5982 0.7627 0.7609 0.5640 0.8383 0.8295

SSIM 0.6422 0.8121 0.8262 0.6567 0.3481 0.9323 0.9273 0.7614 0.6197 0.7424 0.7223 0.5218 0.8049 0.8253

MS-SSIM 0.5192 0.8817 0.8909 0.7150 0.3155 0.9447 0.9348 0.7793 0.5447 0.8083 0.8125 0.6078 0.8689 0.8794

IW-SSIM 0.5129 0.8848 0.8892 0.7181 0.2781 0.9573 0.9441 0.7957 0.5461 0.8071 0.8045 0.6032 0.8668 0.8793

FSIMc 0.5362 0.8733 0.8928 0.7168 0.2907 0.9533 0.9477 0.8006 0.5351 0.8157 0.8106 0.6055 0.8714 0.8837

RFSIM 0.5977 0.8397 0.8473 0.6686 0.5738 0.8028 0.7915 0.6006 0.7877 0.5242 0.5352 0.3857 0.7180 0.7247

NQM 0.6507 0.8065 0.8129 0.6330 0.7043 0.6815 0.6675 0.4867 0.7369 0.6044 0.5938 0.4264 0.7028 0.6914

GSM 0.6381 0.8148 0.8209 0.6410 0.4159 0.9018 0.8686 0.7139 0.6890 0.6671 0.6583 0.4914 0.7675 0.7826

VSNR 0.6255 0.8228 0.8408 0.6547 0.5425 0.8260 0.8049 0.6234 0.6199 0.7422 0.7497 0.5497 0.7995 0.7985

MAD 0.5311 0.8759 0.8652 0.6869 0.2744 0.9585 0.9327 0.7776 0.4798 0.8549 0.8583 0.6614 0.8748 0.8854

GMSD 0.5353 0.8737 0.8782 0.7003 0.2604 0.9627 0.9465 0.8037 0.5669 0.7902 0.7900 0.5916 0.8569 0.8716

HDRVDP 0.6668 0.7955 0.7754 0.5935 0.4254 0.8970 0.8799 0.6963 0.7358 0.6059 0.5247 0.3744 0.6987 0.7267

SFF 0.4594 0.9087 0.9196 0.7597 0.3299 0.9394 0.9245 0.7662 0.5554 0.7997 0.8009 0.6050 0.8752 0.8817

UQI 0.8322 0.6544 0.6004 0.4424 0.4148 0.9024 0.8578 0.7049 0.7729 0.5493 0.5630 0.4066 0.6329 0.6737

VSI 0.5755 0.8524 0.8556 0.6819 0.5122 0.8466 0.8191 0.6438 0.7044 0.6481 0.6399 0.4774 0.7666 0.7715

2D-RR WNISM 0.7477 0.7338 0.7250 0.5578 0.3341 0.9378 0.9394 0.7846 0.8057 0.4911 0.4710 0.3229 0.6670 0.7118

WBCT 0.7582 0.7248 0.7617 0.5861 0.5122 0.8466 0.8191 0.6438 0.6869 0.6697 0.6393 0.4636 0.7254 0.7400

Contourlet 0.6985 0.7728 0.7498 0.5812 0.4473 0.8854 0.8704 0.6919 0.6595 0.7012 0.6605 0.4786 0.7376 0.7602

Multi- view FR MP-PSNR 0.5983 0.8393 0.8599 0.6694 0.3633 0.9260 0.9239 0.7614 0.6885 0.6678 0.6611 0.4799 0.7956 0.8150

MW-PSNR 0.5970 0.8401 0.8548 0.6658 0.3597 0.9275 0.9219 0.7561 0.6600 0.7007 0.6934 0.5019 0.8054 0.8234

MW-PSNRreduc 0.6452 0.8101 0.8337 0.6433 0.3833 0.9172 0.9100 0.7369 0.7034 0.6494 0.6492 0.4653 0.7771 0.7976

3DSwIM 0.5958 0.8408 0.8849 0.7135 0.2762 0.9579 0.9513 0.8185 0.7594 0.5709 0.5506 0.3890 0.7693 0.7956

LFI NR BELIF 0.4847 0.8985 0.8697 0.6953 0.2431 0.9643 0.9454 0.8211 0.7072 0.6489 0.5983 0.4304 0.7798 0.8045

Tensor-NLFQ 0.3494 0.9469 0.9392 0.8020 0.3163 0.9476 0.9074 0.7586 0.6603 0.6988 0.6064 0.4318 0.8063 0.8177

VBLFI 0.4025 0.9354 0.9135 0.7613 0.2268 0.9705 0.9414 0.8042 0.5568 0.7934 0.7439 0.5549 0.8538 0.8663

LFI FR Min et al., 2020 0.5951 0.8412 0.8460 0.6745 0.3335 0.9380 0.8524 0.7052 0.6843 0.6728 0.6659 0.4773 0.7784 0.7881

Meng et al., 2020 0.4291 0.9208 0.9067 0.7427 0.2692 0.9601 0.9484 0.8043 0.5823 0.7770 0.7040 0.5133 0.8369 0.8530

MPFS 0.3436 0.9500 0.9534 0.8183 0.2207 0.9734 0.9599 0.8305 0.4336 0.8833 0.8754 0.6908 0.9248 0.9296

Tensor-NLFQ (Zhou et al., 2020), and VBLIF (Xiang et al.,
2020).

This paper used four IQA indexes to measure the fitting
of the degree of objective scores and subjective scores. The
Pearson linear correlation coefficient (PLCC) and the RMSE
denote the accuracy of correlation between mean opinion scores
(MOS) and predict scores. The Spearman rank order correlation
coefficient (SROCC) and the Kendall rank order correlation
coefficient (KROCC) can measure the prediction monotonicity
of IQA metrics.

Table 2 presents the performance of classical objective metrics
on SHU, VALID-10bit, and NBU-LF1.0 databases, where the
values in bold indicate the best performance. The results
show that the proposed MPFS method consistently fits well
with MOS in both accuracy and monotonicity over the
databases of traditional distortion, compressed distortion, and
reconstructed distortion.

It can be seen from Table 2 that the performance of traditional
algorithms varies in different databases. Although these three
databases contain different distortion types, their effects on
angular and spatial information are reciprocal. First of all, some
traditional algorithms perform well in the VALID-10bit database.

This may be due to the fact that angular and spatial distortions
in the VALID-10bit database are evenly distributed. Secondly,
although the distortion of the SHU database is not derived from
LF processing, it is still difficult to estimate the effects of these
distortions on LF contents. For example, traditional algorithms
do not take advantages they should have for traditional types
of distortion. This is due to the fact that traditional algorithms
fail to consider the relationship between the angular and spatial
quality. In addition, most objective metrics cannot achieve good
results in the NBU-LF1.0 database. This may be due to the
complex distribution of angular-spatial distortion, for example,
the cross effects of angular-spatial distortion vary greatly in
different perspectives.

The performance of the multi-view algorithms is similar
to that of the traditional 2D algorithms. They perform well
when the distribution of the angular-spatial distortion is not
complex, but worse for the NBU-LF1.0 database containing the
distortion of reconstructed types. It somewhat indicates that the
angular-spatial distortion caused by reconstruction algorithms is
more complex.

The NR LF-IQA models were trained with 80% contents from
each data set used in this paper, and 20% of contents were used
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TABLE 3 | PLCC performance of different distortion types on VALID-10bit, SHU and NBU-LF1.0 databases.

Database VALID-10bit SHU NBU-LF1.0

Type Metric HEVC VP9 P1 P2 P3 GB JPEG2k JPEG MB WN NN BI EPICNN DR VDSR

2D-FR PSNR 0.9522 0.9392 0.9282 0.9361 0.8569 0.9198 0.9502 0.9752 0.8674 0.9570 0.7740 0.9345 0.8794 0.7030 0.7176

SSIM 0.9493 0.9407 0.9531 0.9453 0.9289 0.9133 0.8697 0.9724 0.8446 0.9420 0.7951 0.8654 0.8502 0.4157 0.8415

MS-SSIM 0.9625 0.9522 0.9444 0.9464 0.9360 0.9070 0.9321 0.9725 0.8983 0.9548 0.7695 0.9083 0.9294 0.6854 0.9056

IW-SSIM 0.9727 0.9674 0.9567 0.9561 0.9599 0.9366 0.9375 0.9688 0.9430 0.9549 0.7409 0.9108 0.9360 0.7219 0.6393

FSIMc 0.9667 0.9651 0.9569 0.9619 0.9409 0.9394 0.9389 0.9797 0.9134 0.9157 0.7810 0.9201 0.9213 0.6561 0.8912

RFSIM 0.9368 0.9219 0.9220 0.7790 0.8378 0.8057 0.8593 0.9162 0.6631 0.9439 0.9189 0.8742 0.2057 0.8104 0.6917

NQM 0.7686 0.6794 0.7272 0.6573 0.6725 0.7450 0.8479 0.8890 0.5832 0.9322 0.7128 0.8002 0.6220 0.7248 0.5475

GSM 0.9761 0.9555 0.9677 0.9367 0.8530 0.8351 0.8257 0.9377 0.5277 0.9316 0.9507 0.8943 0.7124 0.8552 0.6360

VSNR 0.8820 0.8273 0.8644 0.8747 0.8119 0.8363 0.6665 0.8758 0.6889 0.8569 0.8079 0.8498 0.8144 0.6629 0.7619

MAD 0.9793 0.9674 0.9774 0.9504 0.9366 0.8769 0.9174 0.9186 0.8498 0.9551 0.9095 0.9501 0.9429 0.8496 0.8973

GMSD 0.9782 0.9701 0.9731 0.9738 0.9520 0.9210 0.9637 0.9716 0.9260 0.9009 0.7216 0.9170 0.9265 0.7432 0.9314

HDRVDP 0.9530 0.8827 0.9135 0.9016 0.8796 0.7197 0.8695 0.9523 0.5510 0.9600 0.8910 0.9418 0.9396 0.8500 0.7857

SFF 0.9646 0.9528 0.9646 0.9678 0.8787 0.8799 0.9408 0.9734 0.8470 0.9308 0.7845 0.9462 0.9271 0.7273 0.9466

UQI 0.9699 0.9680 0.9749 0.8785 0.9207 0.6885 0.4614 0.2193 0.5023 0.8736 0.7082 0.8691 0.1932 0.7449 0.0975

VSI 0.9669 0.9503 0.9668 0.7954 0.8796 0.8413 0.8489 0.9525 0.5385 0.9378 0.9355 0.8994 0.7243 0.8505 0.6240

2D-RR WNISM 0.9651 0.9537 0.9522 0.9282 0.9038 0.8924 0.6937 0.8170 0.8839 0.8508 0.7289 0.6830 0.7778 0.4444 0.8648

WBCT 0.9128 0.8492 0.9105 0.9079 0.8648 0.8075 0.7910 0.7716 0.7744 0.9101 0.5781 0.8303 0.9144 0.6609 0.8089

Contourlet 0.9288 0.9007 0.9373 0.9231 0.8498 0.8579 0.8528 0.7922 0.7789 0.9471 0.7039 0.8098 0.9218 0.6773 0.8650

Multi-view FR MP-PSNR 0.9818 0.9766 0.9725 0.9701 0.9508 0.8475 0.8758 0.9391 0.7919 0.8190 0.8414 0.8441 0.6679 0.7210 0.7039

MW-PSNR 0.9709 0.9619 0.9641 0.9610 0.9435 0.8221 0.8760 0.9622 0.6799 0.9074 0.8137 0.8917 0.6805 0.7601 0.6554

MW-PSNRreduc 0.9784 0.9760 0.9749 0.9626 0.9539 0.7508 0.8706 0.9512 0.6076 0.8345 0.8159 0.8427 0.6096 0.7392 0.6788

3DSwIM 0.9801 0.9780 0.9728 0.9640 0.9459 0.9522 0.9458 0.8893 0.9344 0.9139 0.8997 0.8746 0.8392 0.8333 0.8720

LFI NR BELIF – – – – – 0.9045 0.8308 0.9585 0.9388 0.9665 0.9026 0.9100 0.7182 0.7520 0.9134

Tensor-NLFQ – – – – – 0.9399 0.9284 0.9849 0.9411 0.9749 0.9243 0.8819 0.8430 0.8096 0.7926

VBLIF – – – – – 0.9578 0.7452 0.9694 0.9632 0.9854 0.8820 0.8905 0.8421 0.7051 0.8885

LFI FR Min et al., 2020 0.9338 0.9667 0.9540 0.9801 0.9616 0.9288 0.9643 0.9397 0.9534 0.9581 0.7851 0.8303 0.7428 0.7492 0.9219

Meng et al., 2020 0.9825 0.9739 0.9665 0.9486 0.9473 0.9647 0.8398 0.9772 0.9815 0.9586 0.8258 0.8812 0.8758 0.1380 0.9234

MPFS 0.9828 0.9789 0.9765 0.9702 0.9722 0.9480 0.9456 0.9774 0.9682 0.9505 0.8766 0.9677 0.9435 0.7765 0.9389

for prediction. The optimal training parameters were obtained by
multiple adjustments, and the result of each adjustment was the
median value of 1,000 experiments. It can be seen from Table 2

that they achieved preferable results at the first two databases, but
perform worse for the reconstruction distortions with complex
angular-spatial artifacts.

For the FR LF-IQA, the concept of optimal parallax range
of human eyes is introduced into the focus stack to calculate
the quality of LF images. Meng et al. (2019) used some
camera parameters provided by the EPFL database (Honauer
et al., 2016) when calculating the optimal parallax range, while
some databases do not have these parameters. Therefore, in
combinationwith the experiments of refocusing factors in section
4.7, we set the focusing range of Meng et al. (2020) as [−3, 3] over
all databases for the sake of fairness. Min et al. (2020) computed
the quality of LF images through the global–local spatial quality
and the angular consistency measurement. It is necessary to note
that the angular resolution of all databases is set as 9 × 9 in the
comparison experiment for fairness. Therefore, the performance
of both Meng et al. (2020) and Min et al. (2020) presented in
Tables 2, 3 is not optimal.

It should be known that the performance of the same objective
algorithm is slightly different in different databases. As suggested
in Wang and Li (2010) and Zhang et al. (2014) we analyze the

objective IQAmetrics with the weighted average results across all
databases for the overall performance. The weighted average ρ is
computed as follows:

ρ=

∑

i ρi · ωi
∑

i ωi
(16)

where ρi (i = 1, 2, 3, 4) is the fitting performance for each
database. The weight coefficient of each database depends on the
number of distorted images in the respective database. Table 2
presents the overall performance and the ranking of weighted-
average SROCC of LF-IQA metrics over all databases.

The last two columns in Table 2 are the weight-average
SROCC (WSROCC) and the mean SROCC (MSROCC) for each
objective metric over all databases, respectively. It can be seen
that MPFS performs much better than the other metrics on the
WSROCC and the MSROCC.

Robustness Against Distortion Types
The robustness of the proposed objective IQA model against
various distortion types is verified. Table 3 presents the
performance comparison of classical objective models on the
abovementioned three databases, covering various distortion
types. Specifically, the VALID-10bit database contains two
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classical video compression schemes and three compression
schemes specialized for LF images. The SHU database contains
classical compression distortion and display distortion, and
the NBU-LF1.0 database contains a variety of reconstructed
distortion types specialized for LF images.

In Table 3, the values in bold indicate the first three best PLCC
values for each distortion type. The performance of different
objective algorithms for different distortion types is analyzed
through PLCC, which can reflect the fitting accuracy of two
sets of data. The results show that many algorithms have the
optimal scope of application, and can only be sensitive to some
specific distortion types. For example, most algorithms have a
good predicted effect on the compressed distortion types in the
VALID-10bit database, but are not effective for the reconstructed
distortion types in the NBU-LF1.0 database or the traditional
distortion types in the SHU database. The reason may be that
the angular and spatial distortion in the VALID-10bit database is
evenly distributed, while the cross effects of angular and spatial
distortion of the other two databases vary greatly in different
perspectives. The proposed method cannot achieve the best
prediction for each distortion, but it performs relatively stable
for all distortion types. The robustness of MPFS is superior to
other metrics.

The Validity of the MPFS Model
The proposedMPFS method has two applications: the prediction
of global angular-spatial distortion and the evaluation of
local angular-spatial quality. The prediction framework
of global angular-spatial distortion is established on the
lenslet images. The angular distortion is first predicted at
each macro-pixel. Then, the visual saliency of the central
SAI is introduced to combine the angular and spatial
information. The evaluation framework of local angular-
spatial quality utilized the PC-corner and DoG algorisms
to evaluate the loss of the focalizing structure and texture
structure on the principal components of the focusing
stack, respectively.

Table 4 compares the performance of the proposed MPFS
in three cases: only the prediction framework of global
angular-spatial distortion, only the local angular-spatial quality
framework, and the combination of global and local frameworks.
It can be seen that both local and global frameworks are effective
in the VALID-10bit database, and they have reverse effects on the
other two databases. The local angular-spatial quality evaluation
framework based on the focus stack is more effective for both the
spatial texture distortion and the focalizing structure loss caused
by the angular distortion. Because the global framework is mainly
based on the prediction of angular distortion, it will be mediocre
when the distribution of the angular-spatial distortion is more
complex. But the combination of the two frameworks works well,
benefiting from their complementarity. Besides, Table 5 lists the
time complexity of the proposed MPFS method. The listed time
under each data set is calculated by averaging the run time of all
LF images. Although the size of some LF images in the NBU-
LF1.0 database is slightly different from those in the other two
databases, the running time is similar.

TABLE 4 | Performance of individual case on SHU, VALID-10bit, and NBU-LF1.0

databases.

Database VALID-10bit SHU NBU-LF1.0

PLCC SROCC PLCC SROCC PLCC SROCC

Local 0.9662 0.9551 0.8477 0.8286 0.8462 0.8356

Global 0.9493 0.9412 0.8610 0.8633 0.7854 0.7780

Local_Global 0.9734 0.9599 0.9500 0.9534 0.8833 0.8754

TABLE 5 | Time complexity on SHU, VALID-10bit, and NBU-LF1.0 databases.

Database VALID-10bit SHU NBU-LF1.0

Time (second) 76.4793 74.0516 74.0665

TABLE 6 | Performance of individual features on SHU, VALID-10bit, and

NBU-LF1.0 databases.

Database VALID-10bit SHU NBU-LF1.0

Features PLCC SROCC PLCC SROCC PLCC SROCC

PC-corner 0.9643 0.9528 0.8339 0.8203 0.8336 0.8301

PC-corner-DoG 0.9662 0.9551 0.8477 0.8286 0.8462 0.8356

PC-corner-DoG-Y 0.9664 0.9534 0.8896 0.8785 0.8757 0.8684

PC-corner-DoG-YUV 0.9734 0.9599 0.9500 0.9534 0.8833 0.8754

The Validity of Individual Quality
Component
After analyzing the contributions of the local/global angular-
spatial quality framework, Table 6 presents various features used
in the proposed MPFS algorithm, the first two features measure
the loss of focalizing structure and texture structure in the
local angular-spatial quality framework. It can be seen that the
combination of PC-corner and DoG features can better evaluate
the angular-spatial distortion of the focus stack. However, due to
the complex distribution of angular-spatial distortion, it does not
work well in the SHU database.

In addition to the PC-corner and DoG features, Table 6

also presents the performance after adding the luminance and
chrominance features. These two features improve the accuracy
of the evaluation algorithm. It can be seen that the chroma
information contributes greatly to improve the performance of
the proposed method in the SHU database because of the high
chromaticity distortion of JPEG.

The Impact of Principal Components on
the MPFS Model
The order of the principal components of the focus stack
is obtained by sorting the eigenvalues and the corresponding
eigenvectors of its covariance. The eigenvectors with larger
eigenvalues reflect a larger amount of information. As can be seen
from Figure 4, the first-order principal component reflects most
of the low-frequency information in the focus stack, in which the
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FIGURE 6 | The distribution of Pearson linear correlation coefficient

(PLCC)/Spearman rank order correlation coefficient (SROCC) of the MPFS

method at different numbers of the principal components in the focus stack

over the three databases.

defocused blur of the focus stack is mainly distributed in the first-
order principal component. The other principal components
mainly reflect the high-frequency information of the focus stack,
and the distortion of focalizing structure is obvious in the higher-
order principal components.

Although the PCA is carried out in the local angular-spatial
quality evaluation framework, we analyze the impact of different
numbers of principal components on the overall algorithm
due to the complementarity of the two frameworks. Figure 6
describes the distribution of PLCC/SROCC of the proposed
MPFS method at different numbers of the principal components
in the focus stack over the three databases. It can be seen
that the variation trend of the final evaluation results over the
three databases is inconsistent with an increase of the number
of principal components, which is related to the completely
different distortion types of the three databases.We finally choose
the first three principal components to calculate the local angular-
spatial quality for accuracy and simplicity.

The Impact of Refocusing Factors on the
MPFS Model
The evaluation framework of local angular-spatial quality is based
on the focus stack, while the refocusing factors will affect the
evaluated final results. Specifically, the refocusing factors contain
the refocus scope and refocus step. This paper conducts the
refocus operation in the spatial domain. The refocused images
are obtained by the LFFiltShiftSum function in LFToolbox0.4,
which acts on shifting and summing the SAIs within a given slope
scope to obtain the focus stack. Different slopes correspond to
different depth planes. A step between the two slopes determines
the number of refocused images within the given refocus scope.

Table 7 lists the PLCC and SROCC in multiple refocus scopes
over the three databases. We set 15 intervals for all to refocus
scopes in Table 7, that is, 16 refocus images are obtained. Table 8

TABLE 7 | PLCC and SROCC of different refocus scopes on VALID-10bit, SHU,

and NBU-LF1.0 databases.

Database VALID-10bit SHU NBU-LF1.0

Scope PLCC SROCC PLCC SROCC PLCC SROCC

[-1, 1] 0.9694 0.9544 0.9475 0.9503 0.8802 0.8727

[-2, 2] 0.9691 0.9560 0.9475 0.9499 0.8802 0.8721

[-3, 3] 0.9734 0.9599 0.9500 0.9534 0.8833 0.8754

[-4, 4] 0.9723 0.9583 0.9473 0.9514 0.8735 0.8582

TABLE 8 | PLCC and SROCC of different refocus intervals on VALID-10bit, SHU,

and NBU-LF1.0 databases.

Database VALID-10bit SHU NBU-LF1.0

Scope PLCC SROCC PLCC SROCC PLCC SROCC

[-3, 3, 10] 0.9655 0.9488 0.9433 0.9475 0.8743 0.8642

[-3, 3, 15] 0.9734 0.9599 0.9500 0.9534 0.8833 0.8754

[-3, 3, 20] 0.9718 0.9583 0.9495 0.9525 0.8765 0.8616

illustrates the effect of different intervals on the local angular-
spatial quality under the optimal refocused scope in Table 7.

The results show that the optimal refocus scope of the focus
stack is [−3, 3] in the local angular-spatial quality evaluation
framework, and the optimal number of refocusing intervals is 15.
However, the change of the refocus scope and step cannot cause
a great influence, which indicates that the local angular-spatial
quality framework based on the focus stack is relatively stable.

DISCUSSION

The quality evaluation for LF images is a new challenge due
to the abundant scene information and the complex imaging
structure. The existing objective methods are mainly carried
out on the classical representations of LF images, especially
SAIs, focus stack, and EPIs. It should be noted that different
LF representations usually place different emphasis on the
distribution of angular and spatial information. Comparatively
speaking, the lenslet image and EPIs directly reflect the distortion
of angular information, while the focus stack and SAIs directly
reflect the distortion of spatial information. The advantages of
angular-spatial information distribution in each representation
can be better utilized by combining these LF representations, but
the disadvantage is increased computational complexity.

The key to quality evaluation of LF images lies on how
to combine the human visual perception and the LF angular-
spatial characteristics. In this paper, we propose a new LF quality
evaluation method through the global angular-spatial quality
framework based on macro-pixels and the local angular-spatial
quality framework based on the focus stack. The global angular-
spatial quality framework evaluates the distortion of luminance
and chrominance at each macro-pixel, primarily representing
the angular distortion. Then, the visual saliency of human
eyes to spatial texture structure is introduced to pool an array
of predicted values of angular distortion. However, although
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the macro-pixel array reflects the global information of LF
images, the single macro-pixel lacks the texture information of
objects in the scene. Fortunately, the focus stack can help to
measure the damage of spatial texture structure and the loss
of the focalizing structure caused by the angular distortion.
Therefore, a local angular-spatial quality framework based on the
principal component of the focus stack is adopted to complement
the global framework. The losses of the focalizing structure
and texture structure are analyzed through the PC-corner
similarity and DoG texture similarity, respectively. Extensive
experimental results show that better performance can be
obtained by combining the complementary local/global angular-
spatial quality evaluation framework.

In the future work, we decide to explore ways to reduce
the computational complexity of evaluating global angular-
spatial distortion distribution, such as introducing the random
sampling mechanism into the distortion prediction of macro-
pixels. Moreover, how to achieve better integration of LF angular-
spatial characteristics and human visual characteristics under the
condition of low computational complexity is still a challenge for
the quality evaluation of LF images. The application of human
visual characteristics in this paper is divided into two types.
First, the global framework uses the saliency distribution of
spatial information as the weight to realize the integration of the
distribution of angular distortion and spatial structure. Second,
feature extraction operators of PC-corner and DoG, which
simulate human visual characteristics, are, respectively, applied
to the calculation of focalizing structure and texture structure.
In general, the application of human visual characteristics in

the quality evaluation of LF images mainly lies on the fusion
of angular and spatial distortion prediction, or the feature

extraction in the prediction of angular distortion and spatial
distortion. It is difficult to achieve the perfect fusion of LF
angular-spatial characteristics and human visual characteristics
in the traditional algorithms, while the deep learning methods
have strong ability to learn the relationship between the angular
information and spatial information, as well as the relationship
between the human visual characteristics and LF angular-
spatial characteristics.
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