
Edited by  

Markus Kunze, Andrey L. Karamyshev, Inhwan Hwang, 

Anastassios Economou and Nathan Alder

Published in  

Frontiers in Physiology 

Frontiers in Cell and Developmental Biology 

Frontiers in Microbiology

Targeting signals in 
protein trafficking 
and transport

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/research-topics/19113/targeting-signals-in-protein-trafficking-and-transport#overview
https://www.frontiersin.org/research-topics/19113/targeting-signals-in-protein-trafficking-and-transport#overview
https://www.frontiersin.org/research-topics/19113/targeting-signals-in-protein-trafficking-and-transport#overview
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/microbiology


December 2023

Frontiers in Physiology 1 frontiersin.org

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-8325-4172-2 
DOI 10.3389/978-2-8325-4172-2

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


December 2023

Frontiers in Physiology 2 frontiersin.org

Targeting signals in protein 
trafficking and transport

Topic editors

Markus Kunze — Medical University of Vienna, Austria

Andrey L. Karamyshev — Texas Tech University Health Sciences Center, 

United States

Inhwan Hwang — Pohang University of Science and Technology, Republic of Korea

Anastassios Economou — KU Leuven, Belgium

Nathan Alder — University of Connecticut, United States

Citation

Kunze, M., Karamyshev, A. L., Hwang, I., Economou, A., Alder, N., eds. (2023). 

Targeting signals in protein trafficking and transport. Lausanne: Frontiers Media SA. 

doi: 10.3389/978-2-8325-4172-2

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-4172-2


December 2023

Frontiers in Physiology 3 frontiersin.org

05 Editorial: Targeting signals in protein trafficking and transport
Markus Kunze, Nathan N. Alder, Inhwan Hwang, Guillaume Roussel 
and Andrey L. Karamyshev

08 Functional Organization of Sequence Motifs in Diverse Transit 
Peptides of Chloroplast Proteins
Jinseung Jeong, Inhwan Hwang and Dong Wook Lee

14 Liquid-Liquid Phase Separation Phenomenon on Protein 
Sorting Within Chloroplasts
Canhui Zheng, Xiumei Xu, Lixin Zhang and Dandan Lu

20 Coordinated Translocation of Presequence-Containing 
Precursor Proteins Across Two Mitochondrial 
Membranes: Knowns and Unknowns of How TOM and TIM23 
Complexes Cooperate With Each Other
Marcel G. Genge and Dejana Mokranjac

27 Protein Targeting Into the Thylakoid Membrane Through 
Different Pathways
Dan Zhu, Haibo Xiong, Jianghao Wu, Canhui Zheng, Dandan Lu, 
Lixin Zhang and Xiumei Xu

36 Identity Determinants of the Translocation Signal for a Type 1 
Secretion System
Olivia Spitz, Isabelle N. Erenburg, Kerstin Kanonenberg, 
Sandra Peherstorfer, Michael H. H. Lenders, Jens Reiners, Miao Ma, 
Ben F. Luisi, Sander H. J. Smits and Lutz Schmitt

49 Insights Into the Peroxisomal Protein Inventory of Zebrafish
Maki Kamoshita, Rechal Kumar, Marco Anteghini, Markus Kunze, 
Markus Islinger, Vítor Martins dos Santos and Michael Schrader

72 Signal Peptide Features Determining the Substrate 
Specificities of Targeting and Translocation Components in 
Human ER Protein Import
Sven Lang, Duy Nguyen, Pratiti Bhadra, Martin Jung, Volkhard Helms 
and Richard Zimmermann

104 Bacterial Signal Peptides- Navigating the Journey of Proteins
Sharbani Kaushik, Haoze He and Ross E. Dalbey

129 Monitoring peroxisome dynamics using enhanced green 
fluorescent protein labeling in Alternaria alternata
Ziqi Lu, Jian Guo, Qiang Li, Yatao Han, Zhen Zhang, Zhongna Hao, 
Yanli Wang, Guochang Sun, Jiaoyu Wang and Ling Li

139 The journey of preproteins across the chloroplast membrane 
systems
Gent Ballabani, Maryam Forough, Felix Kessler and 
Venkatasalam Shanmugabalaji

Table of
contents

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/


December 2023

Frontiers in Physiology 4 frontiersin.org

148 Aberrant protein targeting activates quality control on the 
ribosome
Zemfira N. Karamysheva and Andrey L. Karamyshev

152 Molecular basis of the glycosomal targeting of PEX11 and its 
mislocalization to mitochondrion in trypanosomes
Chethan K. Krishna, Nadine Schmidt, Bettina G. Tippler, 
Wolfgang Schliebs, Martin Jung, Konstanze F. Winklhofer, 
Ralf Erdmann and Vishal C. Kalel

170 Cell-specific secretory granule sorting mechanisms: the role 
of MAGEL2 and retromer in hypothalamic regulated secretion
Denis Štepihar, Rebecca R. Florke Gee, Maria Camila Hoyos Sanchez 
and Klementina Fon Tacer

191 Interactions of amyloidogenic proteins with mitochondrial 
protein import machinery in aging-related 
neurodegenerative diseases
Ashley L. Reed, Wayne Mitchell, Andrei T. Alexandrescu and 
Nathan N. Alder

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/


Editorial: Targeting signals in
protein trafficking and transport

Markus Kunze1*, Nathan N. Alder2, Inhwan Hwang3,
Guillaume Roussel4 and Andrey L. Karamyshev5

1Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of
Vienna, Vienna, Austria, 2Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT,
United States, 3Department of Life Sciences, Pohang University of Science and Technology, Pohang,
Republic of Korea, 4Laboratory of Molecular Bacteriology, Department of Microbiology, Immunology, and
Transplantation, Rega Institute, Katholieke Universiteit-Leuven, Leuven, Belgium, 5Department of Cell
Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States

KEYWORDS

protein transport, targeting signals, mitochondria, chloroplasts, endoplasmic reticulum,
peroxisomes, bacterial secretion

Editorial on the Research Topic
Targeting signals in protein trafficking and transport

“This Research Topic of Frontiers in Physiology is dedicated to the memory of Professor
Anastassios (Tassos) Economou, one of the guest editors of this issue, who recently passed away
during its formation.”

Introduction

The distribution of proteins among the different compartments of cells and the ability to
export proteins to the extracellular space is critically dependent on protein transport
processes. In most cases these processes are governed by the interaction between
targeting signals encoded in the primary sequence of proteins to be transported (cargo
proteins) and receptor proteins linking them with the general transport machinery. This
Research Topic is a collection of original articles and reviews covering transport processes
into peroxisomes, mitochondria and chloroplasts, into the endoplasmic reticulum (ER) and
across the secretory pathway, and protein secretion in bacteria. Remarkably, some targeting
signals, particularly the N-terminal ones, are structurally similar, which raises questions of
the relation between similarity and specificity (Kunze and Berger, 2015) and the conservation
through evolution.

Peroxisomes

Peroxisomes are single membrane bound organelles with two types of peroxisomal
targeting signals for matrix proteins (PTS1 and PTS2) and another for peroxisomal
membrane proteins (mPTS), which are recognized by the receptor proteins PEX5,
PEX7 together with a co-receptor, and PEX19, respectively (Rudowitz and Erdmann,
2023). Krishna et al. describe targeting signals encoded in the peroxisomal membrane
protein PEX11 from the protozoon Trypanosoma brucei, which not only has binding sites
for the cognate peroxisomal receptor PEX19 but also for the mitochondrial receptor
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TOM20 although mitochondrial targeting is only observed when
no peroxisomes are present. The first comprehensive inventory of
peroxisomal proteins of the zebrafish (Danio rerio) by Kamoshita
et al. reveals extensive similarity to the mammalian peroxisomal
proteome and of the PTS1 and PTS2 motifs encoded in the
homologous enzymes, which confirms D. rerio as promising
model organism for chordates. Based on a PTS2-tagged EGFP
reporter protein Lu et al. studied the peroxisomal dynamics in the
fungus Alternaria alternata as a developmentally interesting model
system for rapidly changing organismal states confirming previous
studies on the relevance of peroxisomes for fungal developmental
and infectious processes.

Mitochondria

Mitochondria contain two membranes and several distinct
subcompartments, each one with its own defined set of proteins
(Iovine et al., 2021). These organelles have their own genome and
biosynthetic machinery to produce some resident proteins. But the
vast majority of mitochondrial proteins are encoded in nuclear
DNA, synthesized on cytosolic ribosomes, and trafficked to the
organelle. Targeting mitochondrial proteins to their correct
subcompartments requires a diversity of import pathways, each
one having its own type of targeting signal. Most nuclear-encoded
proteins, however, are directed to mitochondria by N-terminal
presequences that engage the TOM and TIM23 complexes of the
outer and inner mitochondrial membranes, respectively. In this
Research Topic, Genge and Mokranjac review what is currently
known about the import of presequence-containing proteins into
mitochondria with particular emphasis on the cooperation of the
TOM and TIM23 complexes. Reed et al. review evidence for a
more non-canonical role of TIM23-mediated import in
neurodegenerative diseases, describing how amyloidogenic
proteins bearing cryptic targeting signals may import into
mitochondria as part of the pathogenic process, or perhaps as a
quality control mechanism.

Chloroplasts

Chloroplasts are an endosymbiotic organelle found in plants
and algae. For their function, chloroplasts contain a large
number of proteins, with estimates ranging from 2,000 to
5,000 different proteins. Over 95% of these proteins are
targeted from the cytosol to various suborganellar
compartments after translation (Peltier et al., 2000; Schleiff
and Becker, 2011). The protein targeting mechanisms for
chloroplasts are complex and diverse; each of the
suborganellar compartments of chloroplasts employs specific
protein targeting mechanisms. In this Research Topic, Jeong
et al. review the diverse nature of transit peptides for specific
targeting to chloroplasts and also provide analysis on how the
targeting specificity is determined between chloroplasts and
mitochondria. Zheng et al. summarize the properties and
significance of liquid-liquid phase separation in the sorting of
chloroplast twin arginine transport substrate proteins. Zhu et al.

review the various protein transport systems from the
chloroplast stroma to the thylakoid membrane and also
describe the targeting of chloroplast-encoded proteins to the
thylakoid membranes. Finally, Ballabani et al. review the
common features of targeting sequences in routing
preproteins to and across the chloroplast envelope as well as
the thylakoid membrane and lumen. They also summarize recent
findings on components of the import machinery at outer and
inner envelopes, thylakoid membranes, and stroma.

Secretory pathway

In humans, about 30%–40% of proteins are secretory and
membrane proteins. These proteins need to be transported to
different cellular organelles, inserted into membranes or
transported outside of the cells. Many of these proteins use signal
recognition particle (SRP) and SEC61 complex in ER for their
transport (Kellogg et al., 2021). This process is tightly regulated,
and its dysregulation is associated with multiple diseases. Secretory
proteins have N-terminal targeting signals called signal peptides
which are recognized by SRP, and mutations in them often lead to
diseases (Gutierrez Guarnizo et al., 2023). In this Research Topic,
Lang et al. reviewmolecular mechanisms of ER protein targeting and
translocation and analyze signal peptide features that determine the
specificity of protein transport. Karamysheva and Karamyshev
describe how cells protect themselves from aberrant secretory
proteins by activating the RAPP protein quality control on the
ribosome and discuss molecular mechanisms of human diseases
associated with dysregulation of protein transport. Štepihar et al.
focus on the late steps in protein transport—cell-specific secretory
granule sorting mechanism and role of MAGEL2 protein in
regulated secretion.

Bacterial transport

Amongst the numerous secretion systems in bacteria, each
secretory protein follows a dedicated pathway and therefore need
to indicate to the cell its journey and destination (Loos et al.,
2019). Evolution selected the signal peptide, a short amino-acid
sequence, to direct the client to the appropriate secretion system.
The review from Kaushik et al. examines in detail the complete
journey of the signal peptide during secretion; from the
cytoplasm where it delays the folding, then to the network of
chaperones sorting it to the appropriate secretion system to be
exported or inserted in the membrane; and finally, its degradation
by the signal peptidase; and how this critical step can be used as a
novel strategy for antibiotics development. While the key role of
the signal peptide has largely been attributed to its amino acid
sequence, the work of Spitz et al. on signal peptides from clients of
the Type 1 secretion system introduces an interesting concept
where a structural feature, a conserved amphipathic helix, is
encoded in the signal peptide and is more important than the
sequence itself.

Altogether, this Research Topic allows an up-to-date synopsis of
various transport systems covering all phylogenetic kingdoms and
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providing a plethora of information on different targeting signals,
the cognate receptor proteins, and their relevance for complex
transport processes. Highlighting the benefits of a systematic
analysis of the vast majority of proteins harboring the same type
of targeting signal either by experimental approaches or by
computational prediction of organellar proteomes from different
species and their comparison, fostering a comparison of targeting
signals directing proteins to different compartments in spite of
similar structural properties, and emphasizing the relevance of
protein transport systems and their associated quality controls
for human diseases, this Research Topic pinpoints critical
research questions of the field of protein transport today.

Author contributions

MK: Conceptualization, Writing–original draft, Writing–review
and editing. NA: Writing–original draft, Writing–review and
editing. IH: Writing–original draft, Writing–review and editing.
GR: Writing–original draft, Writing–review and editing. AK:
Writing–original draft, Writing–review and editing.

In memoriam

Professor Economou was a renowned scientist in bacterial
protein secretion, known for its significant and numerous
contributions to the Sec and Type III translocase mechanisms.
Native from Alexandroupolis in Greece, Tassos graduated in
Biology in Thessaloniki, and then earned his PhD in Molecular
Microbiology in 1990 from the John Innes Institute and University
of East Anglia in the United-Kingdom. He then pursued his career as
a postdoctoral researcher at the University of California in Los
Angeles (United States), and then the Medical School of Dartmouth
(United States). In 1999, he established his lab at the Institute of
Molecular Biology and Biotechnology—Foundation of Research and
Technology (IMBB-FORTH) at the University of Crete in Greece,
where he also founded the MINOTECH Biotechnology company
and Proteomics facility, and acted as a consultant for Pfizer and
Integrated Genomics. Tassos played a significant role in the
development and recognition of IMBB-FORTH as a center of
excellence and led to extensive funding for large European and
international programs in Greece. In 2013, Tassos changed to a
more temperate climate and moved his lab to Belgium. He became

professor of Molecular Biology and Biochemistry and the Head of
the Molecular Bacteriology division, at the REGA institute, KU
Leuven—Since his first publication in 1986, he collaborated on over
130 research articles, making notable contributions to top-ranking
scientific journals such as Cell, Nature, and Science. He had an
extraordinarily wide knowledge of the field of molecular biology,
specifically on the molecular basis of protein secretion and folding.
Over the years he created a unique infrastructure that encompasses
not only cutting-edge molecular biology but also a multi-
disciplinary biophysical toolset including single-molecule FRET
and hydrogen deuterium exchange mass spectrometry, using his
words, “A unique combination of tools that allow us to dissect the
intricate mechanisms involved in protein secretion”. Tassos’ deep
involvement in science extends beyond his publications, involving
active participation in departmental boards, advisory committees,
and diligent service as a reviewer and editor for renowned scientific
journals. He had an extraordinary passion for science which was a
profound source of inspiration and motivation for his students and
collaborators. He mentored his students with the utmost dedication
and fervor, instilling them with a lifelong love for science and the
pursuit of knowledge. Outside of his research lab, Tassos was a great
father of three kids, a dedicated husband for over three decades, a
caring friend, and an excellent cook (always bringing Greek
delicacies during the lab dinners). His legacy as a mentor and
scientist will continue to inspire the next generation of scientists,
forever grateful for the passion and enthusiasm with which he
guided them on their scientific and life journeys.
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Functional Organization of Sequence 
Motifs in Diverse Transit Peptides of 
Chloroplast Proteins
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Although the chloroplasts in plants are characterized by an inherent genome, the 
chloroplast proteome is composed of proteins encoded by not only the chloroplast 
genome but also the nuclear genome. Nuclear-encoded chloroplast proteins are 
synthesized on cytosolic ribosomes and post-translationally targeted to the chloroplasts. 
In the latter process, an N-terminal cleavable transit peptide serves as a targeting signal 
required for the import of nuclear-encoded chloroplast interior proteins. This import process 
is mediated via an interaction between the sequence motifs in transit peptides and the 
components of the TOC/TIC (translocon at the outer/inner envelope of chloroplasts) 
translocons. Despite a considerable diversity in primary structures, several common 
features have been identified among transit peptides, including N-terminal moderate 
hydrophobicity, multiple proline residues dispersed throughout the transit peptide, 
preferential usage of basic residues over acidic residues, and an absence of N-terminal 
arginine residues. In this review, we will recapitulate and discuss recent progress in our 
current understanding of the functional organization of sequence elements commonly 
present in diverse transit peptides, which are essential for the multi-step import of 
chloroplast proteins.

Keywords: chloroplast, transit peptide, sequence motif, protein targeting, protein translocation

INTRODUCTION

The chloroplast, a type of plastid, is an organelle uniquely present in plants and is believed to 
have been derived via the endosymbiosis of ancient cyanobacteria (Dyall et  al., 2004; Zimorski 
et al., 2014; Lee and Hwang, 2021). During the subsequent evolution of chloroplasts as subcellular 
organelles, more than 90% of the original cyanobacterial genes were transferred to the host 
nuclear genome (Ponce-Toledo et al., 2019). Consequently, both chloroplastic and nuclear genome 
systems now contribute to assembly of the chloroplast proteome in plants. Most of the nuclear-
encoded chloroplast proteins are synthesized on cytosolic ribosomes and targeted to chloroplasts 
post-translationally (Inaba and Schnell, 2008; Li and Chiu, 2010; Lee et al., 2013). These nuclear-
encoded chloroplast proteins can be  broadly categorized based on their sub-organellar locations. 
Proteins localized to the outer membrane of chloroplasts are primarily inserted directly into 
the outer membrane from the cytosol, with a few exceptions (Lee et  al., 2014, 2017; Day et  al., 
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2019; Gross et  al., 2021). However, most chloroplast interior 
proteins, which are localized to the inner membrane, stroma, 
or thylakoids, are imported into chloroplasts in a process mediated 
by the TOC/TIC (translocon at the outer/inner envelope of 
chloroplasts) translocons (Li and Chiu, 2010; Richardson et  al., 
2017, 2018). The chloroplast interior proteins are characterized 
by the presence of N-terminal cleavable targeting signals, called 
transit peptides (Bruce, 2000; Lee and Hwang, 2018), one of 
the hallmarks of which is the considerable diversity in their 
primary structure (Bruce, 2000; Lee et  al., 2008, 2015; Li and 
Teng, 2013). It has previously been proposed that these diverse 
transit peptides might have been generated via the selective 
assembly of short sequence motifs that are critical for interactions 
with the components of the TOC/TIC translocons (Li and Teng, 
2013; Lee et  al., 2015; Lee and Hwang, 2018). Indeed, it has 
been established that different transit peptides contain distinct 
sequence motifs that play vital roles during the multi-step import 
process (Lee et  al., 2006, 2008; Li and Teng, 2013; Lee and 
Hwang, 2018). Moreover, a previous study indicated that diverse 
transit peptides can be  classified into multiple subgroups based 
on their sequence motifs (Lee et  al., 2008).

Conversely, in addition to the inherent diversity of transit 
peptides, recent studies have revealed the presence of common 
sequence elements among different chloroplast transit peptides. 
In this review, we  will discuss how these common features 
contribute to the appropriate functioning of transit peptides 
and provide an overview of the organization of these sequence 
features in transit peptides.

SEQUENCE MOTIFS IN THE RUBISCO 
SMALL SUBUNIT TRANSIT PEPTIDE AS 
A MODEL SYSTEM

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is 
acknowledged to be  the most abundant protein in nature, 
accounting for approximately 30% of total leaf proteins (Jensen, 
2000). As an enzyme that is prominently involved in CO2 
fixation, Rubisco plays a central role in photosynthesis. The 
Rubisco complex comprises the Rubisco small subunit (RbcS) 
and Rubisco large subunit. Within the chloroplast stroma, the 
Rubisco large subunit produced in the chloroplast is assembled 
with the RbcS that is encoded in the nuclear genome and 
imported into the chloroplasts via the TOC/TIC translocons 
(Lee et  al., 2006; Chotewutmontri et  al., 2012; Holbrook et  al., 
2016). Given the abundance and essential roles of the RbcS 
in chloroplasts, the mechanisms underlying the import of RbcS 
have been extensively studied in several species as a representative 
chloroplast cargo protein, thereby providing a new perspective 
regarding our understanding of chloroplast biogenesis (Karlin-
Neumann and Tobin, 1986; Reiss et  al., 1987; Becker et  al., 
2004; Smith et al., 2004; Lee et al., 2006, 2015; Chotewutmontri 
et  al., 2012; Holbrook et  al., 2016; Richardson et  al., 2018; 
Chen et  al., 2019).

Early attempts to elucidate the organization of the RbcS transit 
peptide led to the conclusion that it contains multiple domains 

that play important roles during protein import into chloroplasts 
(Karlin-Neumann and Tobin, 1986; von Heijne et  al., 1989; 
Bruce, 2001; Becker et  al., 2004). Subsequently, extensive 
mutagenesis analysis of the Arabidopsis RbcS transit peptide 
revealed the presence of distinct sequence motifs, each of which 
proved to be  essential for the correct cytosolic navigation, 
chloroplast binding, or translocation of chloroplast preproteins 
across the envelope membranes (Lee et  al., 2006; Figure  1). 
Among these sequences, the sequence motif FP/RK was identified 
as the most important with respect to the efficient targeting of 
proteins to the chloroplasts (Figure  1). Furthermore, this motif 
has been established to be  fully functional in sequence contexts 
other than that of RbcS transit peptides (Lee et  al., 2015), and 
has been shown to facilitate the import of preproteins with 
less-efficient transit peptides (Lee et  al., 2009; Razzak et  al., 
2017). Interestingly, the findings of a site-specific cross-linking 
approach have indicated that the segment encompassing this 
motif displays a strong cross-linking patterns with not only the 
TOC translocon, but also Tic20, which functions as a translocation 
channel in the TIC translocon, thereby indicating that the FP/
RK motif plays an essential role in protein translocation across 
TOC/TIC translocons (Richardson et  al., 2018; Figure  1).

Another study identified the presence of a semi-conserved 
motif, FGLK, to be  crucial for the interaction with TOC34 
(Chotewutmontri et  al., 2012; Holbrook et  al., 2016; Figure  1). 
Together with TOC159, TOC34 is assumed to function as a 
receptor for chloroplast transit peptides on the outer membrane. 
Although the RbcS transit peptide of Chlamydomonas reinhardtii, 
a unicellular lower eukaryote, also has sequence motifs partially 
homologous to the Arabidopsis FNGLK and FP/RK motifs, this 
algal transit peptide proved to be non-functional when examined 
in Arabidopsis protoplasts (Razzak et  al., 2017). Interestingly, 
the restoration of Arabidopsis FNGLK and FP/RK motifs in the 
Chlamydomonas RbcS transit peptide was found to markedly 
enhance the delivery of GFP (green fluorescent protein) to 
chloroplasts in Arabidopsis protoplasts (Razzak et  al., 2017). 
Moreover, a synthetic transit peptide, in which the FNGLK and 
FP/RK motifs of the Arabidopsis RbcS transit peptide were 
incorporated, was demonstrated to deliver a vacuolar protein 
to chloroplasts, thereby confirming the importance of these 
motifs in chloroplast protein targeting (Lee et  al., 2015).

A further important feature of the RbcS transit peptide sequence 
is its N-terminal hydrophobicity. The N-terminal region of transit 
peptides is characterized by a higher proportion of hydroxylated 
amino acids, such as serine or threonine, than that of hydrophobic 
amino acids (Zybailov et  al., 2008). However, it has been found 
that when hydroxylated residues in the N-terminal region of 
the RbcS transit peptide are substituted with alanines, there is 
no corresponding perturbation of protein import into chloroplasts 
(Lee et  al., 2006). Contrastingly, hydrophobic residues in the 
N-terminal region of the RbcS transit peptide (MLM motif) 
have been established to be  essential for protein targeting from 
the cytosol to the chloroplasts (Lee et  al., 2006; Figure  1). 
Moreover, this region has also been proposed to function in 
preprotein translocation across the chloroplast membranes by 
interacting with stromal Hsp70, an ATP-driven molecular motor 
protein (Chotewutmontri and Bruce, 2015; Figure  1).
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Collectively, we  have accumulated considerable knowledge 
regarding the organization of sequence motifs in RbcS transit 
peptides, which will help in elucidating the import mechanisms 
of chloroplast proteins and in designing more efficient transit 
peptides to deliver proteins into the chloroplast.

SEQUENCE FEATURES REQUIRED FOR 
CHLOROPLAST-SPECIFIC TARGETING

The mitochondrion, another example of an endosymbiotic 
organelle, is universally present in all eukaryotic cells and is 
believed to have evolved prior to the chloroplast (Dyall et  al., 
2004). Interestingly, the protein import mechanisms of these 
two endosymbiotic organelles are remarkably similar, implying 
that plant cells possess appropriate sorting mechanisms that 
facilitate the site-specific targeting of proteins to chloroplasts 
and mitochondria (Schleiff and Becker, 2011; Lee and Hwang, 
2021). A recent study accordingly sought to elucidate the putative 
mechanisms underlying the specificity of chloroplastic and 
mitochondrial protein targeting, by constructing several hybrid 
targeting signals consisting of segments derived from both 
chloroplast transit peptides and mitochondrial presequences (Lee 
et  al., 2019). On the basis of the observed import behaviors 
of GFP-fused hybrid targeting signals, a simple but sophisticated 
principle has been deduced. Both transit peptides and presequences 
comprise two domains, one of which is the N-terminal specificity 
domain, which determines specific targeting to chloroplasts or 
mitochondria, and the other is the C-terminal translocation 
domain, which is interchangeable between the transit peptide 
and presequence (Lee et  al., 2019; Lee and Hwang, 2021).

With regard to the common features of the N-terminal 
specificity domain of transit peptides, as stated in the previous 
section, the moderate hydrophobicity of the N-terminal region 
of transit peptides is critical for efficient protein import into 
chloroplasts. Contrastingly, however, the findings of numerous 
previous studies have indicated that the N-terminal region of 
mitochondrial presequences contains multiple arginine residues 
(Bhushan et  al., 2006; Huang et  al., 2009; Ge et  al., 2014; 
Garg and Gould, 2016; Lee et al., 2020; Figure 2A). Surprisingly, 
the removal of these multiple arginine residues was sufficient 
to switch the final destination of cargo proteins from mitochondria 
to chloroplasts (Lee et  al., 2019, 2020; Lee and Hwang, 2021; 
Figure  2A). Moreover, although mitochondrial presequences 
obtained from fungi and humans, which lack chloroplasts, have 
no need of a mechanism that discriminates between chloroplast 
and mitochondrial proteins, they could deliver GFP to chloroplasts 
when multiple arginines in the N-terminal region were substituted 
with alanines (Lee et  al., 2020). These observations clearly 
indicate that the multiple arginine residues in mitochondrial 
presequences play a vital role in evading chloroplast targeting.

THE ROLES OF PROLINE AND BASIC 
AMINO ACID RESIDUES COMMONLY 
PRESENT IN DIVERSE TRANSIT 
PEPTIDES

Despite the considerable diversity among the primary structures 
of transit peptides, there are certain amino acids that are 

FIGURE 1 | Sequence motifs in the Rubisco small subunit transit peptide. Among the sequence motifs in the Rubisco small subunit (RbcS) transit peptide, the 
motifs, MLM, FNGLK, and FP/RK have been extensively characterized. The MLM motif is vital not only for cytosolic navigation, but also for translocation across 
chloroplast membranes, by interacting with stromal Hsp70. The FNGLK and FP/RK motifs have been demonstrated to mediate chloroplast binding via interactions 
with Toc34. The segment containing the FP/RK motif lies in close proximity to the TOC/TIC translocons during preprotein translocation, which may be essential for 
the efficient translocation of RbcS. TP, transit peptide; OM, outer membrane; IMS, intermembrane space; IM, inner membrane.
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preferentially incorporated into the transit peptides. Among these, 
the roles of multiple proline residues (which are commonly 
present in transit peptides) in chloroplast targeting have recently 
been investigated (Lee et  al., 2018). Proline is a unique amino 
acid in that it breaks the local secondary structure, thereby 
conferring an unstructured property to polypeptides such as 
transit peptides (Guzzo, 1965). Interestingly, whereas chloroplast 
preproteins containing proline-less transit peptides show no defects 
in early cytosolic steps, their translocation into chloroplasts is 
typically compromised (Lee et  al., 2018). In this regard, the fate 
of unimported preproteins harboring proline-less mutant transit 
peptides has been found to differ depending on the characteristics 
of preproteins. In the case of soluble stromal proteins, unimported 
precursors have been found to be  trapped within the TOC/TIC 
translocons (Figure  2B). Contrastingly, preproteins harboring 
hydrophobic transmembrane domain(s), such as Tic110 and Tha4 
(thylakoid assembly-4), and thus destined for the inner membrane 
and thylakoid membrane, respectively, have been found to 
be integrated into the outer membrane when the transit peptides 
lacked proline residues (Lee et al., 2018; Figure 2B). This aberrant 
insertion appears to occur during preprotein translocation through 
the Toc75 channel via lateral insertion, as opposed to direct 

insertion from the cytosol. Notably, it was found that in the 
wild-type cells, the behavior of Tha4 with a proline-less transit 
peptide was practically similar to that of Tha4 with a proline-
rich transit peptide in hsp93-V mutant cells (Lee et  al., 2018). 
Given that the translocation of preproteins is compromised in 
the hsp93-V mutant, these observations provide further evidence 
in support of the crucial role of proline residues in preprotein 
translocation (Lee et  al., 2015, 2018; Huang et  al., 2016).

Unlike the TOM/TIM (translocase of the outer/inner 
membrane) translocons in the mitochondria, TOC/TIC translocons 
in the chloroplasts can translocate small fully folded preproteins 
(Ganesan et al., 2018). Even a precursor with aggregation-prone 
GFP[V29A], a variant of GFP, was observed to be  efficiently 
imported into chloroplasts, which was mediated by proline-rich 
transit peptides (Lee et  al., 2018). However, the GFP[V29A] 
harboring a proline-less transit peptide was found to be aggregated 
to a greater extent, thereby markedly compromising translocation 
(Lee et  al., 2018). Collectively, the aforementioned observations 
provide compelling evidence to indicate the essential roles of 
multiple proline residues in transit peptides, with respect to 
efficient translocation of chloroplast proteins, particularly 
hydrophobic TMD-containing or aggregation-prone proteins.

A

B

FIGURE 2 | Common characteristics of different transit peptides. (A) Multiple arginine residues in the N-terminal region of targeting signals function as a chloroplast 
evasion signal. Removal of the arginine residues from the N-terminal region of mitochondrial presequences is sufficient to switch the final destination of proteins from 
the mitochondria to chloroplasts. (B) Multiple proline residues in transit peptides are essential for preprotein translocation into chloroplasts. In the case of soluble 
stromal proteins, preproteins with proline-less transit peptides are trapped within the TOC/TIC translocons, whereas for transmembrane domain (TMD)-containing 
chloroplast internal proteins, the preproteins are laterally inserted into the chloroplast outer membrane when the preproteins harbor proline-less transit peptides. TP, 
transit peptide; OM, outer membrane; IMS, intermembrane space; IM, inner membrane; TMD, transmembrane domain.
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A further common feature of different transit peptides is 
their preference for positively charged basic residues over 
negatively charged acidic residues (Bhushan et  al., 2006; 
Zybailov et al., 2008). Indeed, it has been shown that substitution 
of basic residues in some transit peptides with acidic residues 
markedly disrupts protein import into chloroplasts (Razzak 
et  al., 2017; Lee and Hwang, 2019). Other studies have 
demonstrated that a sequence motif, consisting of two 
consecutive basic residues, and thus referred to as a twin-
positive motif, play a role in specifically facilitating the import 
of plastid preproteins into leucoplasts, another type of plastid 
(Teng et  al., 2012; Chu et  al., 2020). Furthermore, recent in 
silico analysis of 1,153 Arabidopsis plastid proteins revealed 
that the presence of these twin-positive motifs is significantly 
correlated with a higher protein abundance in root leucoplasts 
(Chu et  al., 2020).

CONCLUSION AND FUTURE 
PERSPECTIVES

We have now begun to understand the complex nature of the 
diverse range of chloroplast transit peptides. Transit peptides 
may have been generated via the assembly of distinct sequence 
motifs, each playing a pivotal role during interactions with the 
components of the TOC/TIC translocons, either sequentially or 
in concert. In addition to the specific short sequence motifs, 
there are several common sequence elements that make an 
essential contribution to the functionality of transit peptides. 

These include a lack of arginine residues in the N-terminal 
region, the presence of multiple proline residues, and the preferential 
usage of positively charged basic residues. In the future, it will 
be necessary to investigate how these common features coordinate 
the interactions of preproteins with the TOC/TIC translocons 
to facilitate the efficient import of proteins into chloroplasts.
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In higher plants, chloroplasts are vital organelles possessing highly complex
compartmentalization. As most chloroplast-located proteins are encoded in the nucleus
and synthesized in the cytosol, the correct sorting of these proteins to appropriate
compartments is critical for the proper functions of chloroplasts as well as plant
survival. Nuclear-encoded chloroplast proteins are imported into stroma and further
sorted to distinct compartments via different pathways. The proteins predicted to
be sorted to the thylakoid lumen by the chloroplast twin arginine transport (cpTAT)
pathway are shown to be facilitated by STT1/2 driven liquid-liquid phase separation
(LLPS). Liquid-liquid phase separation is a novel mechanism to facilitate the formation
of membrane-less sub-cellular compartments and accelerate biochemical reactions
temporally and spatially. In this review, we introduce the sorting mechanisms within
chloroplasts, and briefly summarize the properties and significance of LLPS, with an
emphasis on the novel function of LLPS in the sorting of cpTAT substrate proteins. We
conclude with perspectives for the future research on chloroplast protein sorting and
targeting mechanisms.

Keywords: chloroplast, protein sorting, STTs, liquid-liquid phase separation, liquid droplets

INTRODUCTION

Chloroplasts are essential semi-autonomous organelles that are primarily responsible for
photosynthesis as well as many other functions, such as synthesis of amino acids, fatty
acids, pigments, and hormones (Jarvis and Lopez-Juez, 2013). Chloroplasts contain highly
complex sub-organellar compartments, including three membrane systems (the outer and inner
envelope membrane and the thylakoid membrane) delineating three aqueous compartments (the
intermembrane space, the stroma, and the thylakoid lumen) (Kirchhoff, 2019). Chloroplasts are
estimated to contain approximately 3000 different proteins, but only about 100 proteins are
encoded by the chloroplast genome (Jarvis and Robinson, 2004; Bouchnak et al., 2019). The vast
majority of proteins are encoded in the nucleus and synthesized in the cytosol as precursors before
being imported into chloroplasts post-translationally. Upon arrival at the stroma, some proteins
reside and function therein, while other proteins are further sorted and targeted to the inner
envelope or thylakoids depending on their specific targeting signals. Previous investigations have
revealed different sorting pathways and numerous factors involved in intra-chloroplast protein
sorting and targeting (Jarvis and Lopez-Juez, 2013; New et al., 2018; Ziehe et al., 2018; Xu et al.,
2021a). However, how the targeting signals are recognized and how the substrates are sorted in the
stroma are not yet fully elucidated.

Liquid-liquid phase separation (LLPS) is a basic physicochemical phenomenon, referred to
a state transition in which a homogeneous liquid spontaneously de-mixes into two or more
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coexisting liquids (Alberti, 2017). However, recent investigations
have shown that LLPS is a universal organizing principle
of liquid condensates or membrane-less compartments
in living cells, offering an exciting novel mechanism for
intracellular organization (Brangwynne et al., 2009; Shin
and Brangwynne, 2017). Intriguingly, LLPS has also been
found within the chloroplast to facilitate formation of
intraorganellar liquid droplets for protein sorting to thylakoid
lumen (Ouyang et al., 2020).

In this review, we provide an overview of the current
knowledge of protein sorting within chloroplasts, and briefly
summarize the significance and key components of liquid
condensates formed by LLPS, with a focus on the function
of LLPS on protein sorting within the chloroplast. Finally, we
prospect for the future research on intra-chloroplast protein
sorting and targeting.

PROTEIN SORTING WITHIN THE
CHLOROPLAST

Nuclear-encoded chloroplast proteins are synthesized in the
cytoplasm as precursors with an N-terminal cleavable targeting
signal, known as the transit peptide (Bruce, 2000; Lee and Hwang,
2021). The transit peptide is recognized by the chloroplast protein
import machinery, translocons at the outer (TOC) and inner
(TIC) envelope membrane of chloroplasts, which facilitate the
translocation of the protein across the outer and inner envelope.
Some chloroplast inner membrane proteins, such as albino or
pale green mutant 1 (APG1), are laterally released and thus
inserted into the membrane by stop-transfer mechanism during
translocation through TIC translocon (Viana et al., 2010; Lee
et al., 2017). For other proteins, the N-terminal transit peptide is
removed by the stroma processing peptidase (SPP) (Richardson
et al., 2014). These proteins may stay in the stroma or be further
sorted to other sub-organellar compartments, including the inner
envelope membrane, thylakoid membrane, or thylakoid lumen
(Jarvis and Lopez-Juez, 2013; Paila et al., 2015). Some inner
envelope proteins, such as FTSH12 and TIC40, are translocated
by the translocase SEC2 (Li et al., 2015, 2017; Lee et al.,
2017), whereas thylakoid proteins are sorted and targeted by
distinct pathways depending on the associated chaperones and
energy required.

Thylakoid membrane-located proteins may be sorted by the
following pathways: the chloroplast signal recognition particle
(RP) pathway, the chloroplast Guided Entry of Tail-anchored
protein (cpGET) pathway, or the “spontaneous insertion”
pathway. The cpSRP pathway is involved in the insertion
of light-harvesting chlorophyll-binding proteins (LHCPs) into
thylakoid membranes. The 14 amino-acid sequence located at
the beginning of the third transmembrane domain (TMD3)
of LHCPs, T14, is recognized by a stromal ankyrin protein
LHCP TRANSLOCATION DEFECT (LTD), which interacts
with cpSRP43 and subsequently routes LHCPs from the TIC
translocon to the cpSRP pathway (Ouyang et al., 2011). The
unique plastid chaperone cpSRP43 binds LHCPs with their
unique motif between TMD2 and TMD3, named the L18 peptide,

and together with the cpSRP54 GTPase, protects the substrates
from aggregation in the aqueous stroma (Stengel et al., 2008; Falk
and Sinning, 2010). Subsequently, cpSRP43 and cpSRP54 interact
with the membrane receptor CHLOROPLAST FILAMENTOUS
TEMPERATURE SENSITIVE Y (cpFtsY), and the latter mediates
the membrane insertion of LHCPs by integrase Albino3 (Abl3) in
a GTP-dependent manner (Lee et al., 2017; Ziehe et al., 2018).

Chloroplast tail-anchored (TA) proteins, which possess a
stroma-exposed N-terminus proceeding a single TMD and a
short C-terminal tail (Abell and Mullen, 2011), can be targeted to
the thylakoid membrane via the cpGET pathway. This pathway
is assisted by targeting factor Get3B that binds the TMD of
the TA protein in its hydrophobic groove (Anderson et al.,
2021). The analog of the cpGET pathway in the cytoplasm,
the GET pathway, is distributed throughout all eukaryotic cells
and targets numerous TA proteins to the membranes exposed
to the cytosol (Borgese et al., 2019). But thus far, the only
known substrate of the cpGET pathway is CHLOROPLAST
SECRETORY TRANSLOCASE E1 (cpSECE1), which appears to
be sorted based on the characteristics of its TMD and C-terminal
tail (Anderson et al., 2021). Further investigation is required
to understand whether more substrates are translocated by the
cpGET pathway and also the detailed regulatory mechanisms for
protein targeting.

Some thylakoid membrane proteins are presumably inserted
into the thylakoid membrane via the “spontaneous insertion”
pathway, which is supposed to require no energy input or
the assistance of other proteins for substrate insertion (Jarvis
and Robinson, 2004; Schunemann, 2007). The proteins, such as
THYLAKOID ASSEMBLY 4 (Tha4), HIGH CHLOROPHYLL
FLUORESCENCE 106 (Hcf106), CF0 II, PsbX, PsbY, PsaG, and
PsaK, are targeted by this pathway (Schleiff and Klösgen, 2001;
Lee et al., 2017). However, spontaneous membrane insertion of
these proteins could be only apparent: chaperones involved in
the process or assembly into complexes with other subunits may
actually occur but remain still unidentified. Examples include
the Plsp1, a plastidic type I signal peptidase, which can insert
into membrane spontaneously in vitro but is assisted by a large
complex containing chaperonin 60 (Cpn60) in the stroma and
cpSECY1 during insertion into thylakoid membranes (Endow
et al., 2015; Klasek et al., 2020).

The thylakoid lumen proteins are translocated by the
chloroplast secretory (cpSEC) pathway or the chloroplast twin-
arginine translocase (cpTAT) pathway. These proteins carry
an N-terminal bipartite targeting sequence, i.e., a standard
transit peptide followed by a lumen targeting peptide (LTP)
(Lee et al., 2017; Xu et al., 2021a). The cpSEC pathway
involves the SECA1 ATPase and the thylakoid membrane-
localized cpSECY1/E1 translocon, and tends to handle unfolded
proteins (Albiniak et al., 2012; Fernandez, 2018). The cpTAT
pathway comprises three membrane components, Hcf106, Tha4,
and cpTatC, which work together as the translocon (Celedon
and Cline, 2012; Ma et al., 2018). Compared to the cpSEC
pathway, substrates of the cpTAT pathway are folded proteins
or proteins assembled into complexes with co-factors, and their
transmembrane translocation is promoted by the thylakoidal
proton gradient (Jarvis and Lopez-Juez, 2013; New et al., 2018).
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Besides the conformational differences, substrates of the
cpSEC and cpTAT pathways have similar but different LTPs.
Specifically, while LTPs of both pathways contain three distinct
regions: an N-terminal charged region, a hydrophobic core, and
a polar C-terminal domain, the cpTAT LTPs possess a twin
arginine (RR) motif in the N-terminal region, which functions
as the “cpSEC avoidance” motif (Fernandez, 2018; New et al.,
2018). While the LTPs and the protein conformation required
by the two lumen targeting pathways are quite clear, the
underlying molecular mechanisms of targeting signal recognition
and protein translocation through the aqueous stroma were
almost completely unknown until recently, when Ouyang et al.
(2020) revealed a novel mechanism for the cpTAT substrate
sorting facilitated by STTs driven LLPS.

SIGNIFICANCE AND COMPOSITION OF
LIQUID CONDENSATES

Liquid-liquid phase separation (LLPS) is a prevalent mechanism
that drives intracellular membrane-less compartments formation
across kingdoms of life and accelerates biochemical reactions
spatiotemporally via concentrating macromolecules locally. In
humans, animals, plants, and many other organisms, LLPS
participates in various biological processes, such as ribosome
biogenesis, gene expression, RNA processing, heterochromatin
formation, etc. (Zhang et al., 2020; Emenecker et al., 2021; Kim
et al., 2021; Xu et al., 2021b). Disturbing the process of LLPS may
lead to liquid condensates vanishing or transforming into other
material states, which are associated with many human diseases,
including infectious diseases, neurodegeneration, and cancer
(Alberti et al., 2019). Several liquid droplets appear to be plant
specific, such as photobodies, which are sophisticated subnuclear
condensates that robustly induce light signal transduction (Pardi
and Nusinow, 2021), AUXIN RESPONSE FACTOR (ARF)
condensates, which are cytoplasmic condensates regulating
auxin transcriptional responses in Arabidopsis tissues that are
no longer actively growing (Powers et al., 2019), and the
pyrenoid, which is the liquid droplet for CO2 concentration
and fixation found in the chloroplast of most unicellular algae
(Freeman Rosenzweig et al., 2017).

Most liquid condensates formed via LLPS are composed of a
heterogeneous mixture of macromolecules, and phase separation
is driven by weak intermolecular forces between specific
macromolecular components, based on multivalent protein-
protein or protein-RNA interactions (Li et al., 2012; Emenecker
et al., 2021). Emerging evidence indicates that proteins
undergoing LLPS usually contain intrinsically disordered regions
(IDRs) and low-complexity regions (LCRs) (Zhang et al., 2020).
Intrinsically disordered regions fail to fold into a fixed three-
dimensional structure but instead exhibit flexible and versatile
conformations (Zhang et al., 2020). The net electric charge
and hydrophilicity/hydrophobicity of IDRs are variable, due
to the various biased amino acid compositions (Oldfield and
Dunker, 2014). Some IDRs contain the LCR, a domain enriched
in a specific subset of amino acid residues, such as poly-
glycine, poly-serine, and poly-glutamine (Kato et al., 2012;

FIGURE 1 | Structure of STT1/2 and LLPS driven by STT1/2. Both STT1 and
STT2 have an N-terminal intrinsically disordered region (IDR) and five
C-terminal ankyrin repeat domains following two α-helixes. STT1 and STT2
form an ellipsoidal-like core structure via the antiparallel interaction of their five
ankyrin repeat domains and two adjacent N-terminal helixes. STT1 and STT2
complex binds the lumen targeting peptide (LTP) of the cpTat substrate by
their IDRs and undergo liquid-liquid phase separation (LLPS).

Wright and Dyson, 2015). The flexible conformations of IDRs
and the multitude of identical or highly similar residues in LCRs
fulfill the requirement for weak multivalent interactions to drive
LLPS (Posey et al., 2018).

STTs CONDENSATES AND THE cpTAT
PATHWAY

In Arabidopsis, both STT1 and its homolog, STT2, are IDR-
containing proteins. They interact specifically with cpTAT
substrates OXYGEN EVOLVING COMPLEX SUBUNIT 23 kD
(OE23), OE17, and the photosystem I subunit PSI-N (PsaN), but
not with the cpSEC substrate OE33. Although STT1 and STT2
can physically interact with OE23 individually, together they
promote the targeting and binding of iOE23 (the intermediate
form of OE23 containing the LTP but without the transit
peptide) to thylakoid membranes. This result was further
confirmed by analyzing knock-down lines of STT1 and STT2.
In this experiment, cpTAT specific substrates were dramatically
reduced while other proteins were only moderately affected
(Ouyang et al., 2020).

STT1 and STT2 are two plant-specific proteins with an
N-terminal IDR and five C-terminal ankyrin repeat domains
(Figure 1). While individual STT1 or STT2 tends to aggregate,
bimolecular fluorescence complementation (BiFC) experiments
indicated STT1 directly interacts with STT2, facilitated by
their ankyrin repeat domains to form a STTs complex. This
is consistent with the results of crystal structure analysis,
which showed that truncated STT1 and STT2, lacking the
transit peptide and the IDR, form an ellipsoidal-like core
structure through the antiparallel interaction of their two
N-terminal helixes and five ankyrin repeat domains. Meanwhile,
the conserved positively charged residues within the ankyrin
repeat domains are crucial for STTs oligomer formation
(Ouyang et al., 2020).

Pull-down assays, isothermal titration calorimetry (ITC)
analyses, together with residue-substitution mutation assays
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showed that the STTs complex binds the cpTAT substrate
OE23 or its LTP at an approximately 1:1 protein: protein
or protein: peptide ratio, and that both the RR residues in
the N-terminal charged region and the hydrophobic core of
OE23 LTP, as well as the negatively charged residues of the
WEEPD motif in the STT1 IDR and the hydrophobic residues
of the LVP-W motif in the STT2 IDR, are required for STTs-
OE23 heterotrimers formation and subsequent cpTAT substrate
targeting (Ouyang et al., 2020).

Considering that STT1 and STT2 contain IDRs, the STTs
complexes may undergo LLPS. As speculated, microscopy
imaging assays and photobleaching showed that STTs complexes
lead to spherical liquid condensates through LLPS at high
concentration in vitro, when mixed with OE23 LTPs at
the ratio of 1:1 (Figure 1). STTs complex formation is
a prerequisite for LLPS, as shown by the observations
that liquid condensates after mixing with LTPs do not
form when individual STT1 or STT2 are used or when
the STTs complex formation is disrupted by mutating the
electropositive residues within the ankyrin repeat domains.
The STTs-LTP binding reaction is also required for LLPS,
as substitution of the residues of the LTP binding motif
within the STTs, such as the RR residues in the N-terminal
charged region and residues in the hydrophobic core, severely
compromised liquid condensates formation. Thus, multivalent
interactions and hydrophobic interactions between STT1,
STT2, and LTP drive LLPS and form STTs condensates
(Ouyang et al., 2020).

BiFC and pull-down assays further revealed that STT1
and STT2 interact with the stromal domain of cpTAT
translocon component Hcf106. Binding to Hcf106 hinders
STTs oligomerization and LLPS, thereby releasing and docking
cpTAT substrates to the cpTatC-Hcf106 receptor complex
and facilitating substrate translocation across the thylakoid
membrane (Ouyang et al., 2020).

In general, the STT1 and STT2 complex undergoes cpTAT
substrate-induced LLPS and form the STTs condensates to
facilitate the substrate targeting and translocation into the
thylakoid lumen. Along with the STTs, many other targeting
factors were predicted to contain IDRs. These factors include
but are not limited to the following (Ouyang et al., 2020): (1)
SECA1 in Arabidopsis and rice, and SECA2 in Arabidopsis but
not rice. These proteins are assistants of substrate translocation
to the thylakoid lumen and the inner chloroplast envelope,
respectively; (2) cpSRP43 and cpSRP54 in Arabidopsis and rice.
These proteins are the components of the cpSRP pathway; (3)
SRP54 in Escherichia coli, yeast, Arabidopsis and mice. This
protein is a cytosolic translocation factor for secreted proteins;
(4) PEX5 and PEX13 in Arabidopsis and mice. These proteins are
components of the peroxisomal protein translocation machinery;
(5) AKR2A in Arabidopsis and mice. This protein is a cytosolic
targeting factor. As IDR-containing proteins have been widely
implicated in mediating phase separation (Li et al., 2012; Molliex
et al., 2015), these factors mentioned above probably undergo
LLPS and lead to liquid condensate formation, implicating
that LLPS may be a universal and conserved mechanism for
substrate sorting not only in the chloroplast of the plant but

also in the cytoplasm across kingdoms (Lee and Hwang, 2020;
Ouyang et al., 2020).

PERSPECTIVES

Within cells, LLPS is tightly regulated by various mechanisms for
proper functions. Physical conditions that can change affinities of
biomolecular multivalent interactions, such as pH, temperature,
redox state, ionic strength, and osmotic pressure, are known
to have an effect on LLPS of biomolecular systems (Banani
et al., 2017). Within the chloroplast, the redox state, which
interplays with the photosynthetic light reactions, fluctuates
rapidly with light intensity changes, biotic and abiotic stresses
suffered, diurnal variation, and other environmental stimuli
(Foyer, 2018; Kuzniak and Kopczewski, 2020; Sachdev et al.,
2021). And the stromal pH oscillates during light-dark transition.
In the dark both the cytoplasmic and stromal pH is close to
7, but upon illumination the stroma becomes alkaline and the
pH increases to about 8.0, as a consequence of H+-pumping
into the thylakoid lumen (Heldt et al., 1973; Hohner et al.,
2016). In addition, dynamics of many ions in the stroma have
been observed in response to stress stimuli and also at the
transition between light and darkness, especially Mg2+ and Ca2+,
which play a critical role in regulating enzyme activity and other
numerous physiological and biochemical processes (Szabo and
Spetea, 2017; Frank et al., 2019; Li et al., 2020; Marti Ruiz et al.,
2020). In summary, physical conditions within the chloroplast
change frequently through variations of environmental and
metabolic conditions. In addition, various post-translational
modifications alter the interactions among macromolecules and
can modulate LLPS (Bah and Forman-Kay, 2016; Zhang et al.,
2020). While post-translational modifications in the chloroplasts
have been poorly investigated compared to whole plant cells,
animal cells, and yeast, numerous types of post-translational
modification have been identified and are believed to occur in
the chloroplast, such as phosphorylation, oxidation-reduction,
acetylation, methylation, and glutathionylation (Lehtimaki et al.,
2015; Grabsztunowicz et al., 2017). However, whether or not
STTs driven LLPS is regulated by any physical condition changes
or post-translational modifications within the chloroplast is still
unclear. Further studies on this topic will expand our knowledge
of the regulation of intra-chloroplast protein sorting.

The TAT system has been found in prokaryotes, chloroplasts,
and some mitochondria, allowing folded proteins to be
transported across membranes (Berks, 2015). The TAT pathway
in both chloroplasts and bacteria comprise similar membrane
located translocon components, cpTatC (TatC), Hcf106 (TatB),
and Tha4 (TatA) (New et al., 2018), but each has different
chaperones. In bacteria, some substrates of TAT pathway have
specific cytosolic chaperones, whereas some are assisted by the
general chaperones, such as DnaK and DnaJ in E. coli (Robinson
et al., 2011). In Arabidopsis, cpTAT passenger proteins are
assisted by the general chaperones, STT1 and STT2. However,
orthologs of STTs could be identified only in the angiosperm
and gymnosperm lineages, and none was detected in animals,
microorganisms, or even other photosynthetic species including

Frontiers in Physiology | www.frontiersin.org 4 December 2021 | Volume 12 | Article 80121217

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-801212 December 20, 2021 Time: 15:32 # 5

Zheng et al. LLPS on Chloroplast Protein Sorting

cyanobacteria, eukaryotic unicellular algae and mosses (Garcion
et al., 2006), indicating STTs-driven LLPS as an emerging
mechanism for cpTAT substrate sorting during plant evolution.
Phylogenetic analyses should be taken to find the origin of STTs
and chaperones for cpTAT pathway in lower plants need to
be identified, which are important challenges for the future to
decipher the sorting process and the mechanism for regulating
the cpTAT pathway.
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The vast majority of mitochondrial proteins are encoded in the nuclear genome and 
synthesized on cytosolic ribosomes as precursor proteins with specific mitochondrial 
targeting signals. Mitochondrial targeting signals are very diverse, however, about 70% 
of mitochondrial proteins carry cleavable, N-terminal extensions called presequences. 
These amphipathic helices with one positively charged and one hydrophobic surface 
target proteins to the mitochondrial matrix with the help of the TOM and TIM23 complexes 
in the outer and inner membranes, respectively. Translocation of proteins across the two 
mitochondrial membranes does not take place independently of each other. Rather, in 
the intermembrane space, where the two complexes meet, components of the TOM and 
TIM23 complexes form an intricate network of protein–protein interactions that mediates 
initially transfer of presequences and then of the entire precursor proteins from the outer 
to the inner mitochondrial membrane. In this Mini Review, we summarize our current 
understanding of how the TOM and TIM23 complexes cooperate with each other and 
highlight some of the future challenges and unresolved questions in the field.

Keywords: mitochondria, protein translocation, presequence pathway, TOM-TIM23 contacts, precursor transfer, 
intermembrane space, TOM complex, TIM23 complex

INTRODUCTION

Eukaryotic cells are defined by the presence of different membrane-enclosed compartments, 
cell organelles, that contain specific sets of proteins and provide specific chemical milieus. The 
obvious advantage of the subcellular compartmentalization is that a wide variety of cellular 
processes can take place simultaneously under vastly different conditions. The obvious disadvantage, 
however, is that eukaryotic cells needed to develop very precise mechanisms that would ensure 
that each protein is correctly sorted to the specific organelle where it can perform its function. 
In general, intracellular protein sorting relies on the presence of specific targeting signals 
within the proteins and on the respective receptors, usually localized on the surface of the 
organelle, that recognize these signals (Blobel, 2000). Upon recognition of targeting signals, 
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proteins are translocated across or inserted into the organelle 
membrane, usually through some form of the translocation 
channel and with the input of energy. Though this basic concept 
also applies to protein translocation into mitochondria, the 
complex structure of this organelle brings many additional 
challenges. One of them is the need to translocate the majority 
of its proteins across two membranes in a coordinated manner. 
In this Mini Review, we  briefly summarize and discuss our 
current understanding of this process.

The Presequence Pathway
Mitochondria are double-membrane-bounded organelles with 
four subcompartments: two membranes, the outer membrane 
(OM) and the inner membrane (IM), that define two aqueous 
subcompartments, the intermembrane space (IMS) and the 
innermost matrix. Though mitochondria possess their own 
genome, the mitochondrial DNA (mtDNA), and a complete 
apparatus for its expression, out of ca. 1,000–1,500 mitochondrial 
proteins, only 8  in yeast Saccharomyces cerevisiae and 13  in 
humans are encoded in the mtDNA. The vast majority of 
mitochondrial proteins are encoded by nuclear genes and 
translated on cytosolic ribosomes as precursor proteins with 
specific mitochondrial targeting signals. Upon initial recognition 
by cytosol-exposed receptors in the OM of mitochondria, 
precursor proteins are imported into their final place of function 
with the help of highly specific protein translocases present 
in all mitochondrial subcompartments (Neupert, 2015; 
Wiedemann and Pfanner, 2017; Hansen and Herrmann, 2019). 
The mitochondrial targeting signals are very diverse, mirroring 
the complex structure of the organelle. Still, about 70% of the 
mitochondrial precursor proteins carry at their N-termini 
typically 15–55 amino acids long, cleavable extensions called 
presequences (Vögtle et al., 2009). Presequences are characterized 
by the ability to form an amphipathic helix with a net positive 
charge (typically +3 to +6) on one side and a hydrophobic 
surface on the opposite side. By default, presequences target 
precursor proteins to the mitochondrial matrix, however, in 
combination with additional targeting signals, presequence-
containing precursor proteins can also be  targeted to the IM, 
IMS, and even OM. Translocation of presequence-containing 
precursor proteins across the two mitochondrial membranes 
is mediated by the TOM and TIM23 complexes in the outer 
and inner membranes, respectively (Figure  1). This import 
pathway is also termed the “presequence pathway.” As the main 
entry gate of mitochondria, the TOM complex is not only 
involved in the presequence pathway but also in import of 
essentially all nuclear-encoded mitochondrial proteins along 
other mitochondrial protein import pathways involving TOB/
SAM, MIM, MIA and TIM22 complexes (Neupert, 2015; Schulz 
et al., 2015; Wiedemann and Pfanner, 2017; Hansen and 
Herrmann, 2019; Pfanner et al., 2019).

Newly synthesized mitochondrial precursor proteins are 
bound to cytosolic chaperones that keep them in a largely 
unfolded, import-competent state (Becker et al., 2019; Avendaño-
Monsalve et  al., 2020; Bykov et  al., 2020). Presequences are 
recognized on the cytosolic surface of the OM, the so-called 
cis site, by the receptors of the TOM complex, Tom20 and 

Tom22 (Figure 1). The TOM complex has an additional receptor, 
Tom70. Though initial data suggested that Tom70 is specifically 
involved in recognition of internal targeting signals within 
mitochondrial proteins, recent work shows that its predominant 
function is in tethering cytosolic chaperones to the surface of 
mitochondria (Backes et  al., 2021), suggesting a more general 
role for Tom70  in protein translocation into mitochondria. 
After initial recognition by Tom20 and Tom22, presequences 
are transferred to the translocation channel of the TOM complex 
formed by the β-barrel protein Tom40. Transmembrane segments 
of Tom22 and of three small Tom proteins, Tom5, Tom6, and 
Tom7, are bound on the outer surface of the Tom40 barrel. 
On the IMS face of the channel, presequences bind to the 
so-called trans site of the TOM complex formed by the 
IMS-exposed segments of Tom22, Tom40, and Tom7. Already 
at this stage, presequences are recognized by the IMS-exposed 
receptors of the TIM23 complex, Tim50 and Tim23 (Figure 1). 
In a membrane-potential dependent step, presequences are 
subsequently inserted into the still mysterious translocation 
channel of the TIM23 complex, formed by the membrane-
embedded segments of Tim23 and Tim17. Once in the matrix, 
presequences are proteolytically removed by the mitochondrial 
processing peptidase. Translocation of the complete polypeptide 
chain into the matrix requires the ATP-dependent action of 
the import motor (Craig, 2018; Mokranjac, 2020). The peripheral 
membrane protein Tim44 recruits mtHsp70 (Ssc1), the 
ATP-consuming subunit of the motor, and its cochaperones 
Tim14 (Pam18), Tim16 (Pam16), and Mge1, to the translocation 
channel in the inner membrane. If the presequence is the only 
targeting signal present, precursor proteins will be  completely 
translocated into the matrix. However, if an additional hydrophobic 
sorting signal (“stop-transfer signal”) is present downstream of 
the presequence, translocation into the matrix will be  arrested 
and the hydrophobic segment will be  inserted laterally into the 
IM. The TIM23 complex contains three nonessential subunits, 
Pam17, Tim21, and Mgr2, that appear to play a role in the 
differential sorting of proteins into the matrix and the IM.

It is likely that all major players of the presequence pathway 
are identified by now. However, molecular understanding of 
how presequences are recognized and handed over along this 
pathway is still very rudimentary  – the only high-resolution 
structure of the receptor bound to the presequence peptide is 
that of the cytosolic domain of Tom20 (Abe et  al., 2000; Saitoh 
et al., 2007). Below we present and discuss our current knowledge 
of how TOM and TIM23 cooperate during transfer of presequences 
between outer and inner mitochondrial membranes.

Cooperation of TOM and TIM23 
Complexes During Transfer of Precursor 
Proteins
Upon solubilization of mitochondria, the TOM complex does 
not interact in a stable manner with the TIM23 complex, or 
with any other of the downstream translocases. Studies with 
isolated OM vesicles and purified and reconstituted TOM 
complex showed that the TOM complex is able to recognize 
presequence-containing precursor proteins and initiate their 
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translocation across the OM; however, they also showed that 
the TOM complex on its own is not able to translocate proteins 
completely across the membrane (Mayer et  al., 1995; Künkele 
et  al., 1998). On the other hand, experiments performed with 
mitoplasts, mitochondria in which the OM was artificially 
removed, showed that the TIM23 complex is, on its own, able 
to recognize and import precursor proteins across the IM 
(Hwang et al., 1989). In intact mitochondria, however, N-terminal 
presequences can be  proteolytically removed in the matrix 
while the C-terminal part of the protein is still in the cytosol. 
Also, the TOM-TIM23 supercomplex can be  stabilized with 
precursor proteins arrested as the TOM-TIM23 spanning 
intermediates (Chacinska et  al., 2003; Popov-Celeketić et  al., 
2008). These experiments show that the TOM and TIM23 
complexes do not operate as isolated units but rather mediate 
import of presequence-containing precursor proteins in a tightly 
controlled and coordinated manner. The cooperation of the 
TOM and TIM23 complexes is likely to take place in the IMS 
where the two complexes meet. The subunits implicated in 
TOM and TIM23 cooperation are Tom22, Tom7, and Tom40, 
from the TOM side, and Tim50, Tim23, and Tim21, from 
the TIM23 side (Figure  2A).

Biochemical and genetic experiments suggested that the trans 
site of the TOM complex is formed by the IMS-facing segments 
of Tom22, Tom7, and Tom40. All three proteins can be crosslinked 
to precursor proteins arrested in the TOM complex (Kanamori 
et  al., 1999; Esaki et  al., 2004). Simultaneous deletion of Tom7 
and the IMS segment of Tom22 leads to the accumulation of 
precursor forms of mitochondrial proteins in the cytosol, indicative 
of impaired import. These cells are not able to grow on a 
fermentable carbon source at higher temperatures and not at 

all on nonfermentable carbon sources (Esaki et  al., 2004). The 
recently determined cryo-EM structure of the TOM complex 
indeed suggests that they are all found close to each other at 
the Tom40 dimer interface (Araiso et al., 2019; Tucker and Park, 
2019). Unfortunately, the actual IMS-exposed segments of Tom40 
and Tom22, where the presequences most likely bind, were not 
resolved in the structure. However, biochemical evidence has 
been presented that the presequence-containing precursor proteins 
exit the channel in the middle of the dimer where the trans 
site of the TOM complex is expected to be  (Araiso et  al., 2019).

Experiments performed in intact mitochondria and with 
isolated recombinant proteins showed that the TIM23 complex 
interacts with the trans site of the TOM complex even in the 
absence of protein translocation (Figure  2A). Using chemical 
and/or site-specific UV crosslinking, Tim23 and Tim50 were 
crosslinked to the IMS-exposed segments of Tom22 and Tom40 
(Tamura et  al., 2009; Shiota et  al., 2011; Waegemann et  al., 
2015; Araiso et  al., 2019; Günsel et  al., 2020). Recombinantly 
expressed and purified IMS segments of Tim23 and Tim21 
bound to the IMS segment of Tom22 in vitro (Chacinska et al., 
2005; Mokranjac et  al., 2005; Albrecht et  al., 2006; Bajaj et  al., 
2014). A direct interaction of any of these TIM23 subunits 
with Tom7 has not been demonstrated yet, however, considering 
the recently shown proximity of Tom7 to the IMS-exposed 
segments of Tom22 and Tom40 (Araiso et  al., 2019; Tucker 
and Park, 2019), it is likely that Tom7 is present in the vicinity 
of and/or interacts with at least one of the three TIM23 subunits. 
Indeed, Tom7 genetically interacts with the N-terminal segment 
of Tim23, as does the IMS segment of Tom22 (Waegemann 
et  al., 2015). The unique feature of the N-terminal segment 
of Tim23 is that it is accessible to externally added proteases 

FIGURE 1 | Schematic representation of the TOM and TIM23 complexes. The TOM complex consists of the receptors, Tom20, Tom22, and Tom70, and a channel 
unit, formed by Tom40, associated with three small proteins Tom5, Tom6 and Tom7. It possesses cis and trans presequence-binding sites. The TIM23 complex can 
be functionally divided into receptors, translocation channel and import motor – Tim23, Tim17, Tim50, Tim44, Tim14, Tim16, mtHsp70 (Ssc1), Mge1, Tim21, Mgr2, 
and Pam17. See text for details. OM, outer membrane; IMS, intermembrane space; IM, inner membrane.
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in intact mitochondria (Donzeau et  al., 2000). Though still 
controversial, the exposure of Tim23 on the mitochondrial 
surface depends on the interaction between Tim23 and Tim50 in 
the IMS (Yamamoto et  al., 2002; Gevorkyan-Airapetov et  al., 
2009; Tamura et  al., 2009), the dynamics of the TOM complex 
(Waegemann et  al., 2015), the energetic state of the inner 
membrane (Günsel et  al., 2020) and the translocation activity 
of the TIM23 complex (Popov-Celeketić et  al., 2008). Whether 
Tim23 reaches the cytosol through the lipid bilayer, through 
the TOM channel or by some other, still unknown mechanism 
remains unclear. Even though this segment of Tim23 is not 
essential for cell viability (Chacinska et  al., 2003; Waegemann 
et al., 2015), it is only logical that, by crossing two mitochondrial 
membranes, Tim23 would bring them closer, facilitating transfer 
of proteins between TOM and TIM23 complexes.

The IMS-exposed segments of the TIM23 subunits not only 
interact with the trans site of the TOM complex but also with 
each other. The high-resolution structural information on these 
interactions is unfortunately still missing. Still, biochemical 
experiments showed that Tim21 binds to Tim23 and to Tim50, 
as judged by both in organello crosslinking and interactions 
between recombinantly expressed and purified proteins (Tamura 
et  al., 2009; Lytovchenko et  al., 2013; Bajaj et  al., 2014). The 
interaction between Tim23 and Tim50 has been extensively 
analyzed in vivo, in organello, and in vitro, and residues in 
both proteins have been identified that contribute to their 
interaction (Geissler et al., 2002; Yamamoto et al., 2002; Mokranjac 
et  al., 2003, 2009; Meinecke et  al., 2006; Alder et  al., 2008; 
Gevorkyan-Airapetov et  al., 2009; Tamura et  al., 2009; Qian 
et al., 2011; Schulz et al., 2011; Lytovchenko et al., 2013; Günsel 

A B

C D

FIGURE 2 | TOM and TIM23 cooperation during precursor translocation across two mitochondrial membranes. (A) Subunits implicated in TOM and TIM23 
cooperation are highlighted in red. Dashed lines represent identified interaction points. (B–D) Current working model for transfer of precursors from the TOM to the 
TIM23 complex. See text for details. OM, outer membrane; IMS, intermembrane space; IM, inner membrane.
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et  al., 2020; Gomkale et  al., 2021). Interestingly, Tim23 seems 
to bind to two distinct patches on the surface of Tim50 (Tamura 
et  al., 2009; Qian et  al., 2011; Dayan et  al., 2019). Also, lipids 
seem to play an important role in the interaction between the 
two proteins (Malhotra et  al., 2017). Despite many efforts, the 
picture of Tim23-Tim50 interaction and particularly its dynamics 
remains blurry, likely due to the intrinsically disordered character 
of the Tim23 segment involved in the interaction (Gevorkyan-
Airapetov et al., 2009; de La Cruz et al., 2010; Günsel et al., 2020).

Presequences are recognized by several components of the 
presequence pathway and precursor proteins influence not only 
the interactions between TOM and TIM23 complexes but also 
the interactions among the TIM23 subunits. Precursor proteins 
arrested at the trans site of the TOM complex can already 
be  crosslinked to Tim50 (Yamamoto et  al., 2002; Mokranjac 
et  al., 2003, 2009), making it the first subunit of the TIM23 
complex to recognize and bind presequences. The actual binding 
of presequences to the IMS segment of Tim50 was subsequently 
confirmed in a reconstituted system (Marom et  al., 2011). 
Details of how translocating precursor proteins are transferred 
from the trans site of the TOM complex to Tim50 remain 
unclear. Precursor proteins increased the efficiency of chemical 
crosslinking between Tim50 and Tom22 (Waegemann et  al., 
2015), but they decreased a site-specific crosslink between the 
two proteins (Shiota et al., 2011). The situation got complicated 
even further when it was shown that the IMS segment of 
Tim50 consists of two domains: the highly evolutionary conserved 
core domain and the fungi-specific presequence-binding domain 
(PBD; Schulz et  al., 2011). Though PBD was initially suggested 
to be solely responsible for recognizing and binding presequences, 
subsequent experiments showed that the core domain also binds 
presequences and even with similar affinity as PBD (Schulz 
et al., 2011; Lytovchenko et al., 2013). Recent NMR experiments 
indicate that the two domains of Tim50 bind to each other 
and that their interaction is modulated by presequences (Rahman 
et  al., 2014). The receptor function of Tim50 depends on its 
interaction with Tim23 (Mokranjac et  al., 2009; Tamura et  al., 
2009). Tim23 on its own also binds to presequences, however, 
with far lower affinity than Tim50 (Bauer et  al., 1996; de La 
Cruz et al., 2010; Marom et al., 2011; Lytovchenko et al., 2013). 
Presequences dissociated the interaction of Tim50 with Tim21, 
indicating that Tim21 modulates the dynamic interplay of the 
TOM and TIM23 subunits in the IMS with presequences 
(Lytovchenko et al., 2013). Recent purification of the TOM-TIM23 
supercomplex followed by crosslinking and mass spectrometry 
identified many new potential TOM-TIM23 interactions 
(Gomkale et  al., 2021). Particularly interesting are the multiple 
contacts between Tim21 and Tom22 as well as the ones between 
Tim23 and Tom5 and Tom40. Unfortunately, these new contacts 
were not yet analyzed in intact mitochondria. It is also surprising 
that the TOM-TIM23 crosslinks previously identified in intact 
mitochondria were not recapitulated in this work.

Based on the available data, the current working model of 
how presequences are transferred from the trans site of the TOM 
complex to the translocation channel in the inner membrane 
would suggest the following scenario. Precursor proteins exit the 
TOM channel at the trans site where presequences are recognized 

by Tim50 (Figure  2B). The changes in multiple interactions 
between TOM and TIM23 complexes, induced by the recognition 
of presequences, would allow the presequences to be  released 
from the trans site of the TOM complex, likely, to the PBD of 
Tim50. Binding of presequences to the PBD would then induce 
structural rearrangements within Tim50 so that presequences 
are further transferred to the core domain of Tim50 and the 
IMS-exposed segment of Tim23 (Figure  2C). In a membrane-
potential dependent step, presequences are finally inserted into 
the TIM23 channel for translocation across the IM (Figure 2D).

CONCLUDING REMARKS

Even ca. 30 years after identification of its first components, 
the presequence pathway still withholds many of its secrets. 
The major players involved in cooperation between the TOM 
and TIM23 complexes are probably all identified; however, 
we are only beginning to understand their multiple and dynamic 
interactions that underlie transfer of precursor proteins between 
two mitochondrial membranes and many open questions remain. 
Many of the TOM-TIM23 contacts have only been identified 
and their dynamics during translocation of proteins have not 
yet been analyzed. The different steps during transfer of 
presequences from the TOM to TIM23 complex remain 
speculative and unclear even on the level of components involved 
at different proposed steps. Understanding of presequence 
recognition in the IMS is still very limited, both on the level 
of the TOM and TIM23 complexes. Do the two domains of 
Tim50 bind presequences individually, do they together form 
a presequence-binding site or are they maybe involved in 
recognition of presequences during different stages of protein 
translocation? How does Tim23 contribute to presequence 
recognition in the IMS? Which domain of Tim50 is involved 
in which of the identified interactions of Tim50 and how do 
they change during translocation of proteins into mitochondria? 
If PBD of Tim50 is indeed only fungi-specific, how do higher 
eukaryotes deal with the lack of this domain? On a more 
general note, it will be  interesting to know whether newly 
synthesized precursor proteins in the cytosol already know 
which TOM complexes are associated with TIM23 complexes 
or if the coordination of the two complexes predominantly 
happens after the presequences have reached the trans site of 
the TOM complex. If former, what distinguishes TOM complexes 
bound to TIM23 from the rest?

The successful use of the recent developments in the 
cryo-EM to solve the high-resolution structure of the TOM 
complex (Araiso et  al., 2019; Tucker and Park, 2019; Wang 
et  al., 2020) represents a milestone toward understanding the 
molecular mechanisms of protein import through the TOM 
complex and its coordination with other protein translocases. 
The structure of at least part of the TIM23 complex will 
hopefully become available soon (Sim et al., 2021). The ability 
to generate and purify the TOM-TIM23 supercomplex gives 
hope that the same developments can also be  used to solve 
the structure of the supercomplex. The structures will certainly 
help in putting all the already available data in the structural 
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context but also in raising novel hypotheses that can then 
be  tested in careful biochemical experiments. The secrets of 
the presequence pathway seem less out of reach now than 
they were just few years ago.
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In higher plants, chloroplasts are essential semi-autonomous organelles with complex
compartments. As part of these sub-organellar compartments, the sheet-like thylakoid
membranes contain abundant light-absorbing chlorophylls bound to the light-harvesting
proteins and to some of the reaction center proteins. About half of the thylakoid
membrane proteins are encoded by nuclear genes and synthesized in the cytosol as
precursors before being imported into the chloroplast. After translocation across the
chloroplast envelope by the Toc/Tic system, these proteins are subsequently inserted
into or translocated across the thylakoid membranes through distinct pathways. The
other half of thylakoid proteins are encoded by the chloroplast genome, synthesized
in the stroma and integrated into the thylakoid through a cotranslational process.
Much progress has been made in identification and functional characterization of
new factors involved in protein targeting into the thylakoids, and new insights into
this process have been gained. In this review, we introduce the distinct transport
systems mediating the translocation of substrate proteins from chloroplast stroma to
the thylakoid membrane, and present the recent advances in the identification of novel
components mediating these pathways. Finally, we raise some unanswered questions
involved in the targeting of chloroplast proteins into the thylakoid membrane, along with
perspectives for future research.

Keywords: chloroplast protein import, cpSRP pathway, cpGet pathway, spontaneous pathway, cotranslational
protein transport

INTRODUCTION

Chloroplasts of higher plants, the semi-autonomous organelles with internal sheet-like membrane-
bound structure, are not only the sites for photosynthesis, but also for the synthesis of
many essential metabolites, such as fatty acids, amino acids, vitamins, tetrapyrroles, and some
phytohormones (Neuhaus and Emes, 2000; Wicke et al., 2011). Chloroplasts are believed to have
evolved from an ancient cyanobacteria-like endosymbiont. Following this endosymbiosis most
of the endosymbiont genes were transferred to the host nuclear genome. As a result, ∼3,000
chloroplast proteins are encoded by nuclear genes, while only ∼100 proteins are encoded by the
chloroplast genome and synthesized in the stroma (Lee et al., 2017; Sjuts et al., 2017; Nakai, 2018;
Richardson and Schnell, 2020). Chloroplasts contain three distinct membranes: outer envelope,
inner envelope, and thylakoid membranes, which separate the chloroplast into three compartments:
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the intermembrane space, chloroplast stroma and thylakoid
lumen (Staehelin, 2003; Kirchhoff, 2019). The thylakoid contains
several photosynthetic complexes including photosystem I (PSI),
photosystem II (PSII), the cytochrome b6f complex (Cyt b6f ),
and ATP synthase (ATPase), which are responsible for the
primary reactions of photosynthesis. About half of the subunits of
these complexes are encoded by the nuclear genome, synthesized
in the cytosol, imported into chloroplasts and transported to
the thylakoids. However, the complex structure of chloroplasts
makes translocation of these proteins across the membrane
system for correct targeting to their specific sub-compartment
highly challenging.

The nuclear-encoded thylakoid proteins with an N-terminal
transit peptide (TP) are first imported into the stroma by the
Toc/Tic (translocon at the outer/inner envelope membrane
of chloroplasts) complexes, and then the TP is removed
by the stromal processing peptidase, and the proteins are
targeted into or across the thylakoid membranes through
sophisticated targeting pathways (Martin et al., 2002; Leister,
2003). To date, several independent pathways have been
reported, of which the chloroplast signal recognition particle
(cpSRP) pathway, the spontaneous insertion pathway and the
recently discovered chloroplast Guided Entry of TA proteins
(cpGET) pathway are responsible for inserting proteins into
the thylakoid membrane (Figure 1), while the chloroplast
secretory (cpSec) and the chloroplast twin-arginine translocase
(cpTat) pathways are needed for translocating proteins into
the thylakoid lumen (Schünemann, 2007; Ouyang et al., 2020;
Anderson et al., 2021; Xu et al., 2021a,b). In contrast, proteins
encoded by the chloroplast genome are cotranslationally
transported from the stroma to thylakoids (Figure 1).
Although several translocation events can be distinguished
through their components and energy requirements, how
the imported chloroplast proteins are recognized and sorted
exactly to their distinct pathways is still largely unknown. In
this review, we describe the distinct transport mechanisms
for targeting nuclear- and chloroplast-encoded proteins
from the stroma to the thylakoid membrane. Moreover,
we review recent advances and the discovery of novel
components of these transport systems. Finally, we discuss
current challenges and present new perspectives in this
promising field.

PATHWAYS FOR INSERTING THE
NUCLEAR-ENCODED PROTEINS INTO
THE THYLAKOID MEMBRANE

The thylakoid membrane harbors the photosynthetic
apparatus composed of PSI, PSII, Cyt b6f, and ATP
synthase. Besides, several proteins involved in thylakoid
biogenesis and homeostasis are also anchored in the
thylakoid membrane. These proteins are encoded by both
the nuclear and chloroplast genomes, of which the nuclear-
encoded proteins are translocated into thylakoid membranes
through the cpSRP pathway, the spontaneous insertion

pathway, and the cpGET pathway, whereas chloroplast-
encoded proteins are inserted into the thylakoid membrane
cotranslationally (Figure 1).

Posttranslational Insertion Into the
Thylakoid Membrane Through the
Chloroplast Signal Recognition Particle
Pathway
The classical SRP system is responsible for cotranslationally
delivering newly synthesized proteins to their correct cellular
membranes. The functional core of cytosolic SRP is composed
of the SRP54 GTPase and SRP RNA, which is tightly bound to
SRP54. Notably, the cpSRP system in green plants is different
from all other SRP systems because the cpSRP lacks the associated
RNA and instead consists of a conserved cpSRP54 and a unique
chloroplast-specific cpSRP43 subunit. Contrary to the universally
conserved cytosolic SRP system which only binds to the short
nascent polypeptide chains and functions cotranslationally, the
cpSRP system evolved posttranslational activity to target the
light-harvesting chlorophyll a/b binding proteins (LHCPs) from
the stroma to the thylakoid membrane (Ziehe et al., 2017, 2018;
Costa et al., 2018). LHCP membrane integration requires the
cpSRP43/cpSRP54 complex and its receptor cpFtsY, the integral
translocase Alb3, and GTP, which is hydrolyzed by the cpSRP54
and cpFtsY GTPases (Moore et al., 2003; Ziehe et al., 2018;
Figure 1).

It was first confirmed that the L18 region between the
second and third transmembrane domain (TMD) of LHCP is
the binding site for cpSRP43 (DeLille et al., 2000; Tu et al.,
2000; Stengel et al., 2008). Recently, however, McAvoy et al.
(2018) found that cpSRP43 makes more extensive interactions
with all the TMDs within LHCP, thus protecting the hydrophobic
LHCP from aggregation in the stroma. These new interaction
sites are important for the chaperone activity of cpSRP43
based on the result that a class of cpSRP43 mutants are
specifically deficient in their ability of chaperoning full-length
LHCP but are not affected in their association activity with
the L18 region. NMR analysis showed three conformations
of cpSRP43. Interaction with cpSRP54 produces the active
state through structural rearrangement, thereby improving the
substrate binding efficiency of cpSRP43 (Gao et al., 2015; Liang
et al., 2016). The assembly of cpSRP54 to the cpSRP43/LHCP
complex leads to a much smaller LHCP/cpSRP transit complex
(∼170 kDa) than the cpSRP43/LHCP complex (∼450 kDa), most
likely to enable efficient LHCP insertion (Dünschede et al., 2015).

Upon formation of the cpSRP/LHCP transit complex, it is
guided to the thylakoid membrane and docks to the membrane-
bound cpSRP receptor cpFtsY, and then transfers LHCP to the
integrase Alb3 for insertion into the thylakoid membrane. cpFtsY
and cpSRP54 form a complex by association of their homologous
NG domains (the N-terminal four-helix bundle and the GTPase
domain), and stabilization of the cpSRP54/cpFtsY complex is
dramatically activated by anionic phospholipids and the Alb3
translocase (Chandrasekar and Shan, 2017). Moreover, a new
interaction site between a positively charged cluster within the
cpFtsY G-domain (the GTPase domain) and a negatively charged
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FIGURE 1 | Proteins targeting into thylakoid membranes through distinct pathways. The nuclear-encoded preprotein with an N-terminal transit peptide (TP) is
translocated into the chloroplast stroma through the Toc/Tic system, and then the TP is cleaved by stromal processing peptidase. The thylakoid membrane proteins
are further targeted mainly through the cpSRP pathway, cpGET pathway and the spontaneous pathway. In the cpSRP-dependent pathway, LHCP is transferred from
the Toc/Tic system to the SRP43/SRP54 complex with the help of LTD., cpSRP43 interacts with the L18 region between the second and third TMD of LHCP. Then
the cpSRP/LHCP complex interacts with cpFtsY and finally LHCP is insert into the thylakoid membrane by the integrase Alb3. In the cpGET pathway, imported TA
proteins are transferred to the targeting factor Get3b, followed by transferr to the unknown integrases. Some proteins are translocated into thylakoid membranes
spontaneously. On the other hand, the chloroplast-encoded proteins are synthesized in the stroma, and cotranslationally integrated into the thylakoid membrane with
the requirement of cpSec and cpSRP components. OE, outer chloroplast envelope; IE, inner chloroplast envelope. TP, transit peptide. TMD, transmembrane domain.

cluster in the cpSRP54 M-domain has been identified, in which
the M domain of cpSRP54 plays a similar role as the classical
SRP RNA to enhance the cpSRP54/cpFtsY complex assembly
(Chandrasekar et al., 2017; Figure 2).

The recruitment of the transit complex to the Alb3 translocase
for LHCP insertion is mediated through the cpSRP43/Alb3
interaction. The linear motif in the Alb3 C-terminal tail
(A3CT) interacts with the C-terminal chromodomains CD2
and CD3 of cpSRP43, which enables the efficient delivery
of LHCP to the Alb3 integrase (Falk et al., 2010; Horn
et al., 2015; Figure 2). A novel model has been proposed
in which the conformational dynamics of cpSRP43 enables
LHCP capture and release. Distinct conformations of cpSRP43
allow it to be activated by cpSRP54 assembly in the stroma
to capture LHCP and inactivated by association with Alb3
translocase in the thylakoid membrane to release LHCP (Liang
et al., 2016). Interestingly, cpSRP43 also directly interacts with
the N-terminal of glutamyl-tRNA reductase (GluTR), a rate-
limiting enzyme in tetrapyrrole biosynthesis (TBS), chaperones
and stabilizes GluTR, and consequently optimizes chlorophyll
biosynthesis. This interaction between cpSRP43 and GluTR

reveals a posttranslational coordination for LHCP insertion with
chlorophyll biosynthesis (Wang et al., 2018). More strikingly,
high temperature drives the dissociation of the cpSRP43/54
complex, thus freeing cpSRP43 to interact with GluTR, CHLH
(Mg-chelatase H subunit) and GUN4 (Genomes uncoupled 4)
to protect them from heat-induced aggregation (Ji et al., 2021).
Taken together, cpSRP43 not only functions as the hub for
LHCP membrane insertion since it recruits cpSRP54, chaperones
LHCP, and provides the docking site for Alb3 translocase, but
also chaperones proteins for chlorophyll biosynthesis and thus
coordinates the assembly of chlorophyll and LHCP into the
light-harvesting complex.

Several new components of the cpSRP pathway have also
been identified. An Arabidopsis ankyrin protein, LTD., which
is located in the stroma and interacts with the Tic complex,
LHCP and cpSRP43, was demonstrated to handover LHCP from
the Tic translocon to the cpSRP43/cpSRP54 complex (Ouyang
et al., 2011). In addition, STIC1 (suppressor of tic40) and STIC2
were revealed to act in the cpSRP54/cpFtsY-involved transport
pathway. The STIC1 gene encodes the Alb3 paralog protein,
Alb4, while STIC2 encodes a novel stromal protein that associates
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FIGURE 2 | LHCPs targeting into thylakoid membranes through the cpSRP pathway. After import into the stroma through the Toc/Tic system, the LHCPs are
transferred to the cpSRP43/cpSRP54 complex with the help of LTD. The L18 region between the second and third TMD of LHCP is the binding site for cpSRP43.
Then cpSRP54 interacts with cpFtsY through their homologous NG domains, while the negatively charged cluster of cpSRP54 M domain interacts with the positively
charged cluster of cpFtsY G domain and enhances the cpSRP54/cpFtsY complex assembly. Finally, Alb3 C-terminal tail (A3CT) interacts with the C-terminal
chromodomains CD2 and CD3 of cpSRP43, and thus facilitates LHCP delivery to the Alb3 translocase and insertion into the thylakoid membrane. TP, transit
peptide. TMD, transmembrane domain.

with Alb3 and Alb4. Loss of STIC1/Alb4 and STIC2 proteins
may mitigate the defect of protein import caused by the TIC40
mutation, thus revealing a potential link between the envelope
and thylakoid protein transport systems (Bédard et al., 2017).

Direct Insertion Into the Thylakoid
Membrane Through the Spontaneous
Pathway
Many proteins such as the photosystem subunit PsaG, PsaK,
PsbW, PsbX, and PsbY, the ATPase subunit CFo-II, and the
cpTat translocase subunits Tha4 and Hcf106, are integrated into
the thylakoid membrane via the spontaneous insertion pathway
which does not need any energy or proteinaceous components.
This direct insertion pathway was first proposed for CFo-II, a
nuclear-encoded single-membrane-spanning component of the
ATP synthase. Treatments that disrupt the cpSRP, cpSec and
cpTat dependent pathways do not affect the integration of CFo-
II, suggesting a direct interaction of CFo-II with the lipid

components of the membrane (Michl et al., 1994; Robinson et al.,
1996). CFo-II, PsbW, and PsbX all span the thylakoid membrane
with a single hydrophobic domain, whereas PsaG and PsaK insert
into the membrane with two transmembrane spans (Lorkovic
et al., 1995; Kim et al., 1998; Thompson et al., 1998; Mant
et al., 2001; Zygadlo et al., 2006; Aldridge et al., 2009). For PsbY,
the two transmembrane spans partition into the lipid bilayer of
the thylakoid membrane and provide the driving force required
for the translocation of the intervening charged region through
hydrophobic interactions (Thompson et al., 1999).

The mechanism of insertion of the M13 procoat protein
into the cytoplasmic membrane of E. coli was also originally
proposed to be by the spontaneous pathway. However, it was
subsequently found that YidC, the homolog of the chloroplast
Alb3 insertase, is actually required for the insertion of the
M13 procoat protein, which raised the question if there exists
a truly spontaneous insertion pathway (Kuhn et al., 1986;
Samuelson et al., 2000). PsbW and PsbX have remarkable
structural similarities with the M13 procoat protein. However,
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inactivation of Alb3 did not affect PsbW and PsbX insertion into
the thylakoid membrane, suggesting a direct insertion pathway
for these proteins (Woolhead et al., 2001).

Insertion of Tail-Anchored Proteins Into
the Thylakoid Membrane Through the
Chloroplast Guided Entry of TA Proteins
Pathway
In a typical eukaryote cell, 3%∼5% of the membrane proteins
are tail-anchored (TA) proteins with the feature of a cytosolic-
facing N-terminal domain and a single C-terminal TMD followed
by a tail within 30 amino acids. In these proteins TMD acts
both as a membrane anchor and a targeting signal (Shigemitsu
et al., 2016; Mateja and Keenan, 2018). TA proteins are
found in all cellular membranes and play key roles in protein
translocation, membrane fusion, vesicular trafficking, apoptosis,
organelle biogenesis, and other essential cellular processes
(Denic et al., 2013).

The posttranslational insertion of TA proteins from the cytosol
to cellular membranes depends on the GET pathway in yeast
and the TRC (Transmembrane Recognition Complex) pathway
in mammals (Farkas et al., 2019; Farkas and Bohnsack, 2021). The
yeast cytosolic GET machinery includes a pretargeting complex
consisting of Sgt2, a small glutamine-rich tetratricopeptide repeat
(TPR)-containing protein (SGTA in mammals), Get4 (TRC35
in mammals), and Get5 (UBL4 in mammals), of which Sgt2
captures newly synthesized TA proteins from the ribosomal exit
tunnel and is considered the most upstream factor in the GET
pathway (Wang et al., 2010; Shao et al., 2017; Zhang et al., 2021).
Subsequently Get4 and Get5 build up a “scaffolding complex”
by recruiting Get3 and the Sgt2-TA complex, respectively. This
scaffolding complex prevents aggregation and promotes loading
of TA proteins onto Get3 (Bat3 in mammals), the central
targeting factor that forms a closed structure after binding ATP.
The resulting hydrophobic groove recognizes the TMD of TA
proteins. At the endoplasmic reticulum (ER) membrane, Get2
(CAML in mammals) aids Get1 (WRB in mammals) to form a
tight complex with nucleotide-free Get3, resulting in the release
of the TA protein for insertion into the membranes. Finally,
Get3 is recycled to the cytosol to initiate a new round of
targeting (Schuldiner et al., 2008; Gristick et al., 2014; Rome
et al., 2014; Wang et al., 2014; Rao et al., 2016; Figure 3A).
A recent study showed that the cytoplasmic helix α3′ of
Get2/CAML forms a “gating” interaction with Get3/TRC40,
which is important for guiding TA proteins insertion into
membranes (McDowell et al., 2020).

While the GET pathway was originally identified in mammals
and yeasts, it was recently found to be partially conserved in
higher plants as well. Orthologs of Get1, Get3, Get4, Get5, and
Sgt2, but not Get2 have been identified in plant genomes through
bioinformatic approaches Get1, Get3, Get4, Get5, and Sgt2, Get2
(Paul et al., 2013; Srivastava et al., 2017). Further phylogenetic
analysis of 18 species revealed two Get3 clades termed Get3a and
Get3bc, of which AtGet3a, AtGet3b, and AtGet3c are localized
in the cytosol, chloroplast and mitochondria, respectively. Loss
of AtGet1 or AtGet3a results in a significant reduction of

the root hair-specific protein SYP123, and thus leads to root
hair growth defects in these Atget mutant lines (Xing et al.,
2017). Most surprisingly, overexpression of AtGet3a in the
Atget1 mutant causes a more severe phenotype in root, silique
and seed development compared with the parental lines. The
absence of GET pathway components may trigger alternative
insertion pathways. However, overexpression of AtGet3a in
the receptor mutant Atget1 might cause cytosolic AtGet3a/TA
protein aggregates and a consequent TA protein insertion block
through the alternative insertion pathway (Xing et al., 2017).

Recently, Arabidopsis Get2 was also discovered by an
immunoprecipitation-mass spectrometry (IP-MS) method.
Using the AtGet1-GFP transgenic plants, G1IP (AtGet1-
interacting protein) was identified. G1IP exhibits low sequence
similarity but high structural similarity to Get2/CAML (Asseck
et al., 2021). Both G1IP and AtGet1 show a subcellular ER
localization and share the same expression profile. The g1ip
mutant shows reduced root hair elongation, which is similar
to other Atget lines. Moreover, G1IP interacts with AtGet1
and AtGet3a, and expression of G1IP and AtGet1 together can
complement the yeast GET receptor mutant 1get1get2 strain.
Besides, the G1IP N terminus contains a conserved cluster of
positively charged amino acids which is essential for the binding
of Get3/TRC40, and alteration of this motif in G1IP is sufficient
to inhibit TA protein transport. These results strongly suggest
that Arabidopsis G1IP encodes the functional ortholog of Get2,
although only a small part of its sequence is conserved between
yeasts, plants and mammals (Asseck et al., 2021).

Based on the facts that only Get3b and Get3c, but no other
Get system components are found in organelles, and that Get3bc
cannot rescue the growth defect of the Atget3a mutant, it was
previously considered to be unlikely that the organellar Get3
homologs were involved in TA protein insertion (Xing et al.,
2017). However, Anderson et al. recently demonstrated that
AtGet3b is structurally similar to the cytosolic Get3 protein and
serves as a targeting factor to deliver TA proteins from the
chloroplast stroma to the thylakoid membrane (Anderson et al.,
2021; Figure 3B). Chloroplast membranes contain several TA
proteins, such as cpSecE1, a component of the thylakoid Sec1
translocase and cpSecE2, a component of the chloroplast inner
envelope Sec2 translocase (Schüenemann et al., 1999; Li et al.,
2015). Both in vitro and in vivo assays indicated that AtGet3b
interacts with cpSecE1 rather than cpSecE2 to form a homodimer
or oligomer in the chloroplast stroma, mediated by the C-X-X-
C zinc coordination motif of AtGet3b (Anderson et al., 2021).
A domain-swapping strategy used between cpSecE1 and cpSecE2
suggests that the TMDs and C-terminal tails of TA proteins are
key factors that specify the interaction between AtGet3b and its
client TA proteins (Anderson et al., 2019). The physicochemical
features of the TMD and C-terminal regions of cpSecE2 make it
incompatible with the hydrophobic groove formed by AtGet3b
oligomerization (Anderson et al., 2021).

Loss of get3b in Arabidopsis displays a visually
indistinguishable phenotype from the wild type. Similar
observations have been made with the yeast get3 mutant,
suggesting that the Get system may operate in parallel or at
least be partially redundant with other insertion pathways
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FIGURE 3 | Comparison of the cytosolic and chloroplast GET pathway. (A) In the cytosolic GET pathway, the newly synthesized TA proteins are firstly captured by
Sgt2, and then transferred to the targeting factor Get3 by the Get4/Get5 scaffold complex, and finally integrated into ER membranes with the facilitation of Get1 and
Get2. TMD, transmembrane domain. (B) In the cpGET pathway, imported TA proteins are transferred to the targeting factor Get3b, and then integrated into the
thylakoid membrane with the aid of unknown integrases. OE, outer chloroplast envelope; IE, inner chloroplast envelope. TP, transit peptide. TMD, transmembrane
domain.

(Anderson et al., 2021). Consistent with this notion, the
get3bsrp54 double mutant and the get3bsrp43srp54 triple mutant
show much more severe defects in growth, including pronounced
dwarfism, obvious chlorosis and dramatically reduced PSI and
PSII activities. These results demonstrate synergistic interactions
between cpGET and the cpSRP pathways in delivering proteins
into thylakoid membranes (Anderson et al., 2021).

COTRANSLATIONAL INSERTION OF THE
CHLOROPLAST-ENCODED PROTEINS
INTO THE THYLAKOID MEMBRANE

Chloroplast genes encode ∼37 thylakoid membrane proteins
such as the PSII reaction center protein D1 and D2, and
the PSI subunits PsaA and PsaB, which are synthesized
in the stroma and integrated into thylakoid membranes
through a cotranslational process (Zoschke and Barkan, 2015).
However, little is known about the mechanisms that target
these proteins into the thylakoid membrane. The cpSRP54
(ffc) mutant contains much lower levels of D1, D2, PsaA,
and PsaB proteins, suggesting the involvement of cpSRP54 in
the cotranslational pathway (Amin et al., 1999). Cross-linking
experiments revealed an interaction between the D1-ribosome
nascent chain complex and cpSRP54, but not cpSRP43 (Nilsson
et al., 1999). cpSRP54 is present in two stroma pools. In
one of them it is recruited by cpSRP43 to function in the
posttranslational targeting for LHCPs, and in the other pool it is
associated with 70S ribosomes to function in the cotranslational
import of proteins such as D1 (Franklin and Hoffman, 1993;
Schüenemann et al., 1998). The interaction between cpSRP54
and D1 involves the first TMD of D1, and only occurs when

the D1 nascent chain is still attached to ribosomes, suggesting
that cpSRP54 functions in the early steps of D1 biogenesis
(Nilsson and van Wijk, 2002).

Besides cpSRP54, the SRP receptor cpFtsY is also considered
to function in the cotranslational integration process of
chloroplast-encoded thylakoid membrane proteins, based on the
observation of a strong reduction of D1 in the cpftsy mutant
(Tzvetkova-Chevolleau et al., 2007; Asakura et al., 2008). Zhang
et al. (2001) demonstrated a direct interaction between D1
elongation intermediates and the chloroplast Sec translocon
component cpSecY, suggesting that the cpSec pathway not
only functions in posttranslational targeting of nuclear-encoded
proteins, but also in cotranslational insertion of chloroplast-
encoded proteins. The Alb3 integrase of the cpSRP pathway
is also reported to act in a later insertion process, facilitate
release of D1 from the cpSecY translocase, and promote the
assembly of D1 into PSII (Ossenbühl et al., 2004; Walter et al.,
2015). Thus, the integration of D1 into the thylakoid membrane
suggests a functional link between the cpSRP and the cpSec
translocation machinery. Further evidence for this speculation
comes from the integration of Cytochrome f. Cytochrome f
insertion into the thylakoid membrane was initially thought to
be mediated through the cpSec translocon. However, further
analysis showed a severely decreased level of Cytochrome f in
the cpftsy mutant, indicating a coordinated mechanism between
the cpSRP and cpSec translocation pathways (Nohara et al., 1996;
Asakura et al., 2008).

Recently, Zoschke and Barkan performed a comprehensive
analysis of chloroplast ribosome profiling with separated soluble
and membrane fractions in maize. They found that about
half of the chloroplast-encoded thylakoid membrane proteins
are targeted cotranslationally while the other half is targeted
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posttranslationally. Synthesis of these cotranslationally integrated
proteins are initiated on stromal ribosomes, and then transferred
to the thylakoid-attached ribosomes in a nuclease-resistant
fashion shortly after the emergence of the first transmembrane
segment of the nascent peptide. In contrast, membrane proteins
whose translation terminates before a transmembrane segment
emerge from the ribosome’s exit channel will be integrated
into thylakoid membranes posttranslationally. These results
suggest a key role of the first transmembrane segment in
linking ribosomes to the thylakoid membrane for cotranslational
targeting (Zoschke and Barkan, 2015).

CONCLUSION AND FUTURE
PERSPECTIVES

In the past decades, much progress has been made in
understanding the molecular details of targeting both nuclear-
and chloroplast-encoded proteins into the thylakoid membranes.
However, several central issues still need to be further investigated
in the future. One avenue of study will be to explore novel
components of these translocation pathways. During evolution,
ancient translocation systems acquired and developed new
proteins and mechanisms to facilitate the correct targeting
of chloroplast preproteins. Thus, identification of these novel
components may provide new insights into how plant cells have
adapted prokaryotic mechanisms to the eukaryotic environment.
Another area yet to be examined is the overall structure
of these distinct translocases, a challenging task given their
highly dynamic and transient nature. Furthermore, the recent

discovered cpGET pathway has broadened our understanding
of protein targeting into thylakoid membranes. However, only
Get3b in this system has been identified, thus the search for
the remaining components of the cpGET pathway constitutes an
important task for the future.
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The toxin hemolysin A was first identified in uropathogenic E. coli strains and shown
to be secreted in a one-step mechanism by a dedicated secretion machinery. This
machinery, which belongs to the Type I secretion system family of the Gram-negative
bacteria, is composed of the outer membrane protein TolC, the membrane fusion protein
HlyD and the ABC transporter HlyB. The N-terminal domain of HlyA represents the
toxin which is followed by a RTX (Repeats in Toxins) domain harboring nonapeptide
repeat sequences and the secretion signal at the extreme C-terminus. This secretion
signal, which is necessary and sufficient for secretion, does not appear to require
a defined sequence, and the nature of the encoded signal remains unknown. Here,
we have combined structure prediction based on the AlphaFold algorithm together
with functional and in silico data to examine the role of secondary structure in
secretion. Based on the presented data, a C-terminal, amphipathic helix is proposed
between residues 975 and 987 that plays an essential role in the early steps of the
secretion process.

Keywords: bacterial secretion systems, secretion signal, ABC transporter, amphipathic helix, ATPase activity,
protein secretion

INTRODUCTION

Type 1 secretion systems (T1SS) are widespread in Gram-negative bacteria and translocate a large
variety of mainly proteinaceous substrates (Holland et al., 2016). The general blueprint of such a
nanomachinery consists of an ABC transporter, a membrane fusion protein (MFP) and an outer
membrane protein (OMP). In the presence of a substrate, the three components form a continuous
channel across the inner and outer membrane, which allows the translocation of the substrate from
the cytosol into the extracellular space in one step.

A well-known member of sub-family 2 of T1SS is the hemolysin A (HlyA) T1SS, which
is composed of the ABC transporter HlyB, the membrane fusion protein HlyD and the outer
membrane protein TolC [for recent reviews see Kanonenberg et al. (2013)], which was first
identified in uropathogenic E. coli strains (Felmlee et al., 1985). The secretion signal of the substrate
is located at the extreme C-terminus and is not cleaved prior, during or after transport (Gray
et al., 1986). Additionally, these substrates are characterized by Gly- and Asp-rich nonapeptide
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repeats, the so-called GG-repeats (Welch, 2001). These GG-
repeats with the consensus sequence GGxGxDxUx (x: any amino
acid, U: large, hydrophobic amino acid) bind Ca2+ ions with
an affinity of approximately 150 µM (Sanchez-Magraner et al.,
2007). As the concentration of free Ca2+ ions in the cytosol is
around 300 nM (Jones et al., 1999), orders of magnitude below
the KD, substrates of sub-family 2 remain unfolded in the cytosol,
as demonstrated for HlyA (Bakkes et al., 2010). In contrast, Ca2+

concentration in the extracellular space is around 2 mM. This
results in binding of Ca2+ ions to the GG-repeats, which induces
folding of the entire protein and formation of a β-roll structure
similar to that first identified in Pseudomonas aeruginosa alkaline
protease (Baumann et al., 1993). The GG repeats in the β-roll
defines the Repeat in ToXins (RTX) domain that is found in a
large family of T1SS-secreted proteins, and these are accordingly
referred to as RTX proteins.

With the exception of sub-family 1 (Kanonenberg et al., 2013),
all other substrates of T1SS contain a C-terminal secretion signal
at the extreme C-terminus that is necessary and sufficient for
secretion (Mackman et al., 1987). Mutational studies of HlyA
revealed that the secretion “information” is located in the last
50 to 60 residues (Nicaud et al., 1986; Mackman et al., 1987;
Koronakis et al., 1989; Jarchau et al., 1994). However, despite
extensive research, the exact nature of the information or code
remains enigmatic. Based on sequence comparisons, no real
conservation on the level of primary structure was evident within
all sub-families (Holland et al., 2016). This was confirmed by
random mutagenesis of the secretion signal of HlyA, indicating
a high level of redundancy with only eight positions showing
drastic influences on secretion efficiencies (Kenny et al., 1994).
This redundancy led to the proposal that secondary structures
might be encoded in the secretion signal. A putative amphipathic
α-helix located between residues 973 and 987 of HlyA was first
proposed by in silico approaches and subsequently supported
by mutagenesis studies (Koronakis et al., 1989; Stanley et al.,
1991) that indicated a larger α-helix between residues 976 and
1001. However, the presence of such a helix remained under
debate, and a series of studies either supported or contradicted
the theory (Stanley et al., 1991; Kenny et al., 1992, 1994; Chervaux
and Holland, 1996). A combinatorial approach combined with
structural studies provided further support for the importance
of an amphipathic helix, now situated between residues 975 and
988 (Yin et al., 1995; Hui et al., 2000; Hui and Ling, 2002).
Unfortunately, the crystal structure of the C-terminal part of the
RTX domain of CyaA did not provide further information, as the
last 33 C-terminal amino acids covering the corresponding region
in CyaA were disordered in the structure (Bumba et al., 2016).
Thus, the nature of the code of the secretion signal is still unclear,
and it is also an open question whether all RTX proteins use the
same code to initiate secretion: secondary structure predictions
as well as the few crystal structures of proteases and lipases of the
RTX family indicate rather the presence of β-strand structures,
but not an α-helical content of the C-terminus (Baumann et al.,
1993; Meier et al., 2007).

In this study, we re-examined the role of C-terminal secretion
signal of HlyA based on a set of mutants (Chervaux and Holland,
1996) within the proposed amphipathic α-helix, but extended

the number of mutants by including proline residues. Since
the hemolytic activities of all mutants were not affected, we
focused on the initial steps of secretion and determined the
rate of secretion per transporter. Here, important differences
became apparent pointing toward an essential role of a putative
amphipathic α-helix in the secretion of HlyA. Additionally, we
further supported the hypothesis by an in silico analyses of the
primary sequence and by modeling the structure of HlyA using
AlphaFold (Jumper et al., 2021). Overall, our results strongly
support the essential role of this amphipathic α-helix in the
initiation step of the secretion process of HlyA.

MATERIALS AND METHODS

AlphaFold Prediction of the HlyA
Structure
AlphaFold (Jumper et al., 2021) was used to predict the structure
of HlyA (Uniprot entry P08715) employing the ColabFold web
interface1 using standard settings (five models and no templates).

Cloning of Pro-HlyA Mutants
Mutations were introduced in the pro-HlyA plasmid pSU-HlyA
(Thomas et al., 2014a) by applying the quick-change PCR method
using primers listed in Table 1 and following the protocol of the
manufacturer (New England Biolabs).

Overexpression and Purification of
Pro-HlyA and Mutants From Inclusion
Bodies
Overexpression and purification was performed as described in
Thomas et al. (2014a). In brief, the expression of pro-HlyA was
induced by adding 1 mM IPTG to cultures. Incubation was
continued for 4 h and cells were harvested by centrifugation
(8000 g, 10 min, 4◦C). For the purification of pro-HlyA, cells
were resuspended in 50 mM HEPES pH 7.4, 150 mM NaCl, 10%
(w/v) glycerol, 0.05% (w/v) NaN3 and lysed by passing three
times through a cell disruptor at 1.5 kbar (M-110P, Microfluidics).
Inclusion bodies were collected by centrifugation at 18,000 g for
30 min. Pellets were washed and centrifuged successively in (1)
50 mM HEPES, pH 7.4, 50 mM EDTA, 1% (w/v) Triton X-
100, 0.05% (w/v) NaN3 and (2) 50 mM HEPES, pH 7.4, 1 mM
EDTA, 1 M NaCl, 0.05% (w/v) NaN3. The pellet was solubilized
overnight in 20 mM HEPES pH 7.4, 20 mM NaCl, 6 M urea)
at room temperature. Insoluble material was removed by ultra-
centrifugation (150,000 g, 30 min, 4◦C) and the urea-solubilized
inclusion bodies were stored at−80◦C.

Small Angle X-ray Scattering
Measurements
Size exclusion chromatography coupled small angle x-ray
scattering (SEC-SAXS) data of refolded proHlyA were collected
on beamline BM29 at the ESRF Grenoble (Pernot et al., 2010,

1https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/
AlphaFold2.ipynb
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TABLE 1 | Primers used for quick-change polymerase chain reaction.

Mutant Forward primer Reverse primer

P975G CAGGGTGATCTTAATGGAT
TAATTAATGAAATCAGC

GCTGATTTCATTAATTAA
TCCATTAAGATCACCCTG

N978G GATCTTAATCCATTAATTGG
TGAAATCAGCAAAATC

GATTTTGCTGATTTCACC
AATTAATGGATTAAGATC

E979G CCATTAATTAATGGAATCA
GCAAAATCATTTCAGCTGC

GCAGCTGAAATGATTTTGC
TGATTCCATTAATTAATGG

E979P CCATTAATTAATCCAATCA
GCAAAATCATTTCAGCTGC

GCAGCTGAAATGATTTTGC
TGATTGGATTAATTAATGG

I980S CCATTAATTAATGAATCCA
GCAAAATCATTTCAGCTGC

GCAGCTGAAATGATTTTGC
TGGATTCATTAATTAATGG

I980P CCATTAATTAATGAACCCA
GCAAAATCATTTCAGCTGC

GCAGCTGAAATGATTTTGC
TGGGTTCATTAATTAATGG

S981I CATTAATTAATGAAATC
ATCAAAATCATTTCAGC

GCTGAAATGATTTTGATG
ATTTCATTAATTAATG

S981P CATTAATTAATGAAATCC
CCAAAATCATTTCAGCTG

CAGCTGAAATGATTTTGG
GGATTTCATTAATTAATG

K982T CCATTAATTAATGAAATCA
GCACAATCATTTCAGCTGC

GCAGCTGAAATGATTGTG
CTGATTTCATTAATTAATGG

K982P CCATTAATTAATGAAATCAG
CCCAATCATTTCAGCTGC

GCAGCTGAAATGATTGGGC
TGATTTCATTAATTAATGG

I983S GAAATCAGCAAAAGC
ATTTCAGCTGCAG

CTGCAGCTGAAATG
CTTTTGCTGATTTC

I984S GAAATCAGCAAAATC
AGCTCAGCTGCAGG

CCTGCAGCTGAGCTG
ATTTTGCTGATTTC

I984P GAAATCAGCAAAATC
CCTTCAGCTGCAG

CTGCAGCTGAAGGGAT
TTTGCTGATTTC

S985A CAGCAAAATCATTG
CAGCTGCAGG

CCTGCAGCTGCAA
TGATTTTGCTG

S985P CAGCAAAATCATTC
CAGCTGCAGG

CCTGCAGCTGGAA
TGATTTTGCTG

F990P CATTTCAGCTGCAGGTAGCC
CCGATGTTAAAGAGGAAAG

CTTTCCTCTTTAACATCGGGG
CTACCTGCAGCTGAAATG

I983P GAAATCAGCAAACC
CATTTCAGCTGCAG

CTGCAGCTGAAATG
GGTTTGCTGATTTC

A986P GCAAAATCATTTCA
CCTGCAGGTAGC

GCTACCTGCAGGT
GAAATGATTTTGC

E979G-I980S
-K982T

CCATTAATTAATGGATCCAG
CACAATCATTTCAGCTGC

GCAGCTGAAATGATTGTGC
TGGATCCATTAATTAATGG

E979G-K982T CCATTAATTAATGGAATCA
GCACAATCATTTCAGCTGC

GCAGCTGAAATGATTGTGC
TGATTCCATTAATTAATGG

E979P-I980P
-K982P

CCATTAATTAATCCACCCA
GCCCAATCATTTCAGCTGC

GCAGCTGAAATGATTGGG
CTGGGTGGATTAATTAATGG

E979G-I980S CCATTAATTAATGGAAGCA
GCAAAATCATTTCAGCTG

CAGCTGAAATGATTTTGC
TGCTTCCATTAATTAATGG

I980S-K982T CCATTAATTAATGAAAGCA
GCACAATCATTTCAGCTGC

GCAGCTGAAATGATTGTG
CTGCTTTCATTAATTAATGG

2013). The BM29 beamline was equipped with a PILATUS
1M detector (Dectris) at a fixed distance of 2.869 m. The
measurement of refolded pro-HlyA (8.0 mg/ml, 110 µL inject)
were performed at 10◦C on a Superose 6 increase 10/300 column,
preequilibrated with 100 mM HEPES pH 8.0, 250 mM NaCl,
10 mM CaCl2. with a flowrate of 0.5 ml/min, collecting one frame
every 2 s. Data were scaled to absolute intensity against water.

All programs used for data processing were part of the
ATSAS Software package (Version 3.0.4) (Manalastas-Cantos
et al., 2021). Primary data analysis was performed with the
program CHROMIXS (Panjkovich and Svergun, 2017) and
PRIMUS (Konarev et al., 2003). With the Guinier approximation

(Guinier, 1939), the forward scattering I(0) and the radius
of gyration (Rg) were determined. The program GNOM
(Svergun, 1992) was used to estimate the maximum particle
dimension (Dmax) with the pair-distribution function p(r). Low
resolution ab initio models were calculated with GASBORMX
(Svergun et al., 2001; Petoukhov et al., 2012) (P2 Symmetry).
Dimer docking of the calculated AlphaFold (Jumper et al.,
2021) monomer model was done with SASREFMX (Petoukhov
and Svergun, 2005; Petoukhov et al., 2012). Superimposing
of the calculated dimer model was done with the program
SUPCOMB (Kozin and Svergun, 2001). The monomer/dimer
content of the scattering data was determined with OLIGOMER
(Konarev et al., 2003) using the AlphaFold monomer and the
SASREFMX dimer as input.

In vitro Acylation Assay and Hemolytic
Activity of HlyA
An in vitro acylation protocol was applied as described in Thomas
et al. (2014b). Briefly, the pro-HlyA mutants were unfolded in
6 M urea and any divalent cations were removed by adding
10 mM EDTA. Pro-HlyA was mixed with HlyC and acyl-carrier
protein (ACP) and the hemolysis-efficiency on erythrocytes was
quantified by measuring the hemoglobin release at 544 nm
(Thomas et al., 2014b) at a final concentration of HlyA of
18 µg/ml (160 nM). 1 µl of 16% SDS solution in 74 µl assay was
used as positive control to determine the value of 100% cell lysis.
The concentration of wildtype HlyA and the mutants was chosen
as it represents the lowest concentration of wildtype HlyA with
the highest lytic activity (Thomas et al., 2014b).

Secretion Assay of Pro-HlyA-Mutants
The secretion rate of the pro-HlyA mutants was determined
as described before (Lenders et al., 2016). Briefly, cells were
grown for a total of 4 h. Every hour, samples were taken and
the supernatants were analyzed by SDS-PAGE. Pro-HlyA as well
as the secretion apparatus was subsequently quantified and the
secretion rates were determined as amino acids per second and
transporter as described in detail in (Lenders et al., 2016).

Secondary Structure Prediction
Quick2D (Zimmermann et al., 2018) and AmphipaSeeK (Combet
et al., 2000; Sapay et al., 2006) were used to predict the
secondary structures. Quick2D is able to predict α-, π- and
TM-helices, β-strands, coiled coils, as well as disordered regions
(Zimmermann et al., 2018). AmphipaSeeK, on the other hand, is
specifically designed to identify amphipathic helices (Sapay et al.,
2006). The output includes a secondary structure prediction,
a predicted membrane topology (in-plane or not in-plane),
a prediction score for the proposed membrane topology and
an amphipathy score for each residue in dependence to the
neighboring residues.

Structure Prediction of HlyA Derived
Peptides
PEP-FOLD3 was used to model peptides of HlyA (Thevenet et al.,
2012; Shen et al., 2014; Lamiable et al., 2016).
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FIGURE 1 | (A) Model of pro-HlyA predicted by AlphaFold (Jumper et al., 2021). The N- and C-termini are indicated by numbers (1 and 1024, respectively). The
secretion signal is highlighted in red, the RTX in gray and the N-terminal pore-forming domain in cyan. The two Lys residues (K564 and K690) that are acylated by
HlyC prior to secretion are highlighted as spheres. (B) Zoom in into the C-terminal region of the structural model of folded pro-HlyA. The C-terminus (A1024) as well
as the positions of residues N974 and F990 are indicated. The amphipathic helix is shown in orange with the side chains in ball-and-sticks representation.
Hydrophobic residues are clearly located on one side of the helix, while polar and charged residues are located on the opposite side. The Repeat in ToXins (RTX)
domain, which adopts a β-roll structure even in the absence of Ca2+ ions, is oriented toward the back of the representation.
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FIGURE 2 | Denaturing gel of refolded pro-HlyA (indicated by an arrow) (A) and the corresponding SEC chromatogram (B). The void volume is indicated by an
asterisk and the elution peak of pro-HlyA by an arrow. The SDS-PAGE gel was stained with Coomassie Brilliant Blue.

Illustration and Visualization
The amphipathic nature of a helix was visualized by a helical
wheel projection using NetWheel (Mol et al., 2018). Protein
and peptide structures were visualized using PyMOL.2 In order
to illustrate and identify hydrophobic surfaces the yrb-script
was applied in PyMOL, which highlights carbon atoms that
are not bound to oxygen or nitrogen in yellow, the charged
oxygens of Glu and Asp residues in red, the charged nitrogens
of Lys and Arg residues in blue, while all other atoms are white
(Hagemans et al., 2015).

RESULTS

The structure of pro-HlyA is unknown and established homology
modeling tools such as PHYRE2 (Kelley et al., 2015) were
unable to model a complete structure of pro-HlyA. HlyA is
acylated at two Lys residues (K564 and K690) in the cytosol
of E. coli prior to secretion. Only its acylated version forms
pores in the host membrane. Consequently, the non-acylated,
inactive form is called pro-HlyA. Recent developments, resulting
in the program AlphaFold (Jumper et al., 2021) allowed the
modeling of the entire pro-HlyA monomer. Even in the absence
of Ca2+ ions, the characteristic feature of RTX proteins, the
β-roll of the GG-repeats (Linhartova et al., 2010) was completely
modeled (Figure 1A).

To verify this model experimentally, we turned to small angle
X-ray scattering (SAXS). Small angle X-ray scattering allows
the study of proteins in solution and offers information about
the oligomeric state. Wild type pro-HlyA, i.e., the non-acylated
version of the protein, was expressed and purified from inclusion
bodies (Figure 2A). As shown in Figure 2B, size exclusion

2www.pymol.org

chromatography indicated a broadly eluting sample, which was
used for subsequent SAXS experiments.

We used size exclusion chromatography-coupled SAXS (SEC-
SAXS) to separate different higher oligomeric species as well as
aggregates from the sample. Analyzing different frames revealed
an inhomogeneous distribution within the peak. Frames were
subsequently merged using CHROMIX and the corresponding
buffer frames were subtracted. The determined molecular
weight for pro-HlyA was near to that of the calculated dimer
(220.38 kDa), leading to the conclusion that the protein forms
a dimer in solution (Table 2). Nevertheless, a monomer/dimer
mixture was present in solution and an ab initio model for the
pro-HlyA dimer (χ2:1.19) was calculated using GASBORMX.
SASREFMX and the AlphaFold monomer model were used to
dock a dimer based on the SAXS data (χ2:1.4). With the resulting
dimer and the initial monomer, a content of 81.7% dimers and
18.2% monomers in the chosen frames using OLIGOMER was
determined. The SAREFMX dimer model was superimposed
with the calculated ab initio model of GASBORMX and the dimer
interface was localized to the C-terminal part of the pro-HlyA
protein (Figure 3).

The nature of the additional densities is highly speculative
and might reflect the high flexibility of pro-HlyA. However,
the good quality of the main part of the dimer model suggests
that the overall structure of pro-HlyA is of high reliability.
Most importantly, an amphipathic helix (Figure 1B) covering
residues 975–987 within the secretion signal was present in the
AlphaFold model.

In the early studies, random and directed mutagenesis
methods were applied to the secretion signal of an N-terminally
truncated construct of HlyA, called HlyA1 (residue 806–1024;
23 kDa) (Stanley et al., 1991; Kenny et al., 1992; Chervaux
and Holland, 1996), which covers three GG-repeats of the RTX
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TABLE 2 | Overall small angle X-ray scattering (SAXS) Data of pro-HlyA.

SAXS Device BM29, ESRF Grenoble
(Pernot et al., 2010, 2013)

Data collection parameters

Detector PILATUS 1 M

Detector distance (m) 2.869

Beam size 700 µm × 700 µm

Wavelength (nm) 0.099

Sample environment Quartz capillary,1 mm ø

s range (nm−1)‡ 0.025–5.0

Exposure time per frame (s) 2

Sample pro-HlyA refolded

Organism E. coli UTI89

UniProt ID and range P08715

Mode of measurement Online SEC-SAXS

Temperature (◦C) 10

Protein buffer 100 mM HEPES pH 8.0, 250 mM NaCl,
10 mM CaCl2

SEC-Column Superose 6 increase 10/300

Injection volume (µl) 110

Flowrate 0.5 ml/min

Protein concentrations 8.0 mg/ml

Structural parameters

I(0) from P(r) 97.54

Rg [real-space from P(r)] (nm) 7.04

I(0) from Guinier fit 95.91

s-range for Guinier fit (nm−1) 0.080–0.187

Rg (from Guinier fit) (nm) 6.65

points from Guinier fit 4–27

Dmax (nm) 25.26

POROD volume estimate (nm3) 346.40

Molecular mass (kDa)

From I(0) n.d.

From Qp (Porod, 1951) 242.10

From MoW2 (Fischer et al., 2010) 204.90

From Vc (Rambo and Tainer, 2013) 195.01

Bayesian Inference (Hajizadeh
et al., 2018)

208.00

From POROD 173.2–216.5

From sequence 110.19 (monomer)
220.38 (dimer)

Structure evaluation

Gasbor MX fit χ2 1.19

Sasref MX fit χ2 1.4

Oligomer fit χ2 (ratio) 1.32 (81.7% dimer/18.2% monomer)

Ambimeter score 2.525

Software

ATSAS Software Version
(Manalastas-Cantos et al., 2021)

3.0.4

Primary data reduction CHROMIXS (Panjkovich and Svergun,
2017)/PRIMUS (Konarev et al., 2003)

Data processing GNOM (Svergun, 1992)

Ab initio modeling GASBORMX (Svergun et al., 2001;
Petoukhov et al., 2012)

Rigid body modeling SASREFMX (Petoukhov and Svergun, 2005;
Petoukhov et al., 2012)

Mixture analysis OLIGOMER (Konarev et al., 2003)

Superimposing SUPCOMB (Kozin and Svergun, 2001)

Structure evaluation AMBIMETER (Petoukhov and Svergun, 2015)

Model visualization PyMOL (www.pymol.org)

‡s = 4πsin(θ)/λ, 2θ – scattering angle, λ – X-ray-wavelength, n.d. not determined.

FIGURE 3 | Ab initio and rigid body modeling of refolded pro-HlyA. Upper
panel: Volumetric envelope of the GASBORMX ab initio model. Lower panel:
Overlay of the ab initio and the dimer model. The single monomers are
colored in cyan and green.

domain as well as the secretion signal. These studies revealed
that the secretion signal is relatively tolerant toward mutations;
however, some mutations had drastic impacts on the amount
of secreted HlyA1 and most of them clustered in a proposed
amphipathic α-helix predicted between residue L973 and F990
(Koronakis et al., 1989). In light of the AlphaFold model and its
fit to the SAXS envelope (Figure 3), we therefore re-investigated
the mutational studies of this region (Chervaux and Holland,
1996). It is not expected that pro-HlyA will fold in the cytosol
of E. coli (Bakkes et al., 2010) as the concentration of free Ca2+

is too low [approximately 300 nM (Jones et al., 1999)] to bind
to the GG-repeats of the RTX domain and thereby inducing
folding. However, secondary structure elements also exist in
unfolded proteins as demonstrated by solid state NMR (Curtis-
Fisk et al., 2008; Wasmer et al., 2009) making the presence of the
amphipathic helix possible in the cytosol of E. coli.

We introduced all of these mutations and combinations
thereof (Chervaux and Holland, 1996) as well as proline-
substitutions into full length HlyA. In a first step, we explored
their hemolytic activities (for HlyA) as well as their secretion rates
(for non-acylated pro-HlyA). As pro-HlyA requires acylation
of two internal lysine residues (K564 and K690) for hemolytic
activity (Stanley et al., 1994), wild type and all mutants were
activated by an in vitro acylation assay according to Thomas
et al. (2014b). This allowed us to quantify their activity and,
most importantly, normalize it to the amount of HlyA used
in the hemoglobin release assay by measuring the absorption
spectrum. Here, and in contrast to earlier work (Chervaux and
Holland, 1996), normalization to the amount of active HlyA
in the assay clearly demonstrated that none of the mutations
affected the actual hemolytic activity of HlyA within experimental
error (Figure 4A).
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FIGURE 4 | (A) Normalized hemolytic activity of wild type HlyA (left bar), single, triple and quadruple mutations within the secretion signal. The lysis of erythrocytes
was quantified by measuring the release of hemoglobin by absorption spectroscopy at 544 nm. Control measurements shown to the right of the quadruple
mutations lacked HlyA (acylated form), the acylase HlyC, Acyl-carrier protein (ACP), or a combination of these, in the assay. These results demonstrated that lysis
was only induced in the presence of acylated HlyA. HlyA is as efficient in hemoglobin release as an SDS incubation (Thomas et al., 2014b) (not shown). Individual
assays were performed in at three biological independent experiments and shown as scatter dot plots. (B) Summary of the secretion rates of wild type pro-HlyA
(left), single, triple and quadruple mutations within the putative secretion signal. The value “WT” was taken from Lenders et al. (2016). Data represent the average of
three biologically independent experiments and are shown as scatter dot plots.

The hemolytic activity of all HlyA single point mutants, which
were already investigated by Chervaux and Holland (1996), did
not affect the hemolytic activity. We also created and included
triple mutants since they are part of the predicted amphipathic
α-helix to verify whether cumulative effects might be present. As
shown in Figure 4A, no change in hemolytic activity was detected
for these mutants. Based on the results of the hemolytic assay, we
moved one step further and determined the secretion rates of all
mutants according to Lenders et al. (2016) (Figure 4B).

In contrast to the hemolytic activity of acylated HlyA, the
secretion rates of non-acylated pro-HlyA clearly showed a
reduction in the rates for certain mutations. Wild type pro-
HlyA was secreted at 14.3 ± 3.1 amino acids∗T1SS−1∗s−1,
which is in the range of the reported value of 16.0 ± 1.3
amino acids∗T1SS−1∗s−1 within experimental error
(Lenders et al., 2016). All of the non-proline single point
mutations displayed the same secretion rates as the wild type
within standard error. The values ranged from 12.8 ± 2.0
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FIGURE 5 | In silico analysis of (A) amino acids 974 to 990 of the secretion signal of HlyA. H = α-helix, c = coiled coil. Predictions labeled with “SS” were obtained
from Quick2D, that utilizes multiple prediction algorithms. Topology = predicted by AmphipaSeeK: “A” indicated those residues that are predicted to be inserted
parallel into the membrane. Am. score = amphipathy score predicted by AmphipaSeeK with 1 = lowest amphipathy and 5 = highest amphipathy. (B) Helical wheel
projection of residue 974–990 of HlyA. Non-polar residues are colored yellow, lysine blue, glutamate red and polar residues green. (C) Superimposition of five
PEP-FOLD3 models of residue 974–990 of HlyA. The helix is similar in all five models with the C-terminal tail showing variability in orientation.

amino acids∗T1SS−1∗s−1 (I980S) to 20.2 ± 2.1 amino acids
amino acids∗T1SS−1∗s−1 (E979G). In contrast, all single proline
mutations, with the exception of E979P and S981P, displayed a
clear reduction in the secretion rates. In the case of E979P and
S981P, the rates were slightly higher than the rate of wild type
pro-HlyA (19.5 ± 2.3 amino acids∗T1SS−1∗s−1) and (19.4 ± 3.4
amino acids∗T1SS−1∗s−1, respectively). For the triple (red bars
in Figure 4B) and the quadruple (brown bars in Figure 4B)
mutants, the secretion rates were close to the background.

Proline is known as a so-called helix breaker, due to its unique
conformation and rigid rotation. Its preferred position in helices
is at the N-terminus (Richardson and Richardson, 1988), but
helices with proline in or close to the center are still possible (Kim
and Kang, 1999). In order to correctly interpret the secretion rates
of especially the proline mutants, secondary structure prediction
tools (Sapay et al., 2006; Zimmermann et al., 2018) as well as
peptide modeling with the tool PEP-FOLD3 (Thevenet et al.,
2012) were employed. This was necessary as the algorithm
implemented in AlphaFold was not trained on single mutants and
is insensitive to single side chain changes (Jumper et al., 2021).
Firstly, this analysis revealed that a putative amphipathic α-helix
of HlyA is situated between residue P975 and A987 (Figure 5)
in strong agreement with the structural model (Figure 1B).
Alternatively, the prediction tools placed the α-helix between
residues 975 and 987 or 974 and 986. Secondly, the mutants
E979P and S981P, which showed secretion rates similar to the
wild type within standard deviation (Figure 3), are still able to
form an amphipathic α-helix. In contrast, mutants such as I980P
and I984P, whose secretion rates were strongly reduced, showed
much shorter helices in the predictions (Figure 6).

The secondary structure prediction tools predicted
impairments of the amphipathic α-helix for almost all mutants
that exhibited a reduced secretion rate. Four mutants were
identified whose secretion rate was strongly reduced, but a helix
was still predicted: F990P, which is not part of the amphipathic
α-helix, K982P, S985P and A986P. However, their secretion
rate phenotypes can be rationalized with the help of additional
in silico tools.

The latter two mutations, S985P and A986P, showed a slightly
shortened amphipathic α-helix in the predictions (Figures 6E,G)

while A986 marks the end of the amphipathic α-helix in wild type
pro-HlyA, followed by another Ala residue and a Gly residue.
This region [(S)AAG] is therefore flexible, which is also reflected
by the five different models from PEP-FOLD3 for wild type HlyA-
amphipathic α-helix, where tails project in different directions
(Figure 5C). This flexibility is most likely impaired when a
proline residue is introduced at this position, which explains
the observed reduced secretion rate. In addition to the reduced
flexibility, the polarity of the polar side of the amphipathic α-helix
is reduced for S985P, which is illustrated in the helical wheel
projection (Figure 6H).

The mutant K982P also results in a change of polarity,
correlating with a reduced secretion rate of 1.3 ± 0.8 aa
T1SS−1∗s−1 (Figure 6I). However, the mutant K982T, which
equally eliminates the positive charge at this position, shows
wild type-like secretion (Figure 4B), showing that a positive
charge at this position is not essential for efficient secretion.
However, a proline at this position introduces a bend to
the amphipathic α-helix as seen in the PEP-FOLD3 models
(Figure 6J). The proline substitution at n-1 (S981P) also shows
a bend of the amphipathic α-helix but no impairment of
the secretion rate within experimental error (19.4 ± 3.4 aa
T1SS−1∗s−1) (Figure 6J). These two mutants were found to
bend the amphipathic α-helix in opposite directions, with S981P
resembling the wild type more than K982P (Figure 6I). This is
in line with the secretion rates (Figure 4B) and further supports
the hypothesis that the precise secondary structure of this motif
is essential for secretion.

F990 is not part of the predicted amphipathic α-helix but
highly susceptible to mutations and essential for secretion. In
previous studies it has been demonstrated that a substitution
of this residue to His, Cys, Ala, Ser, Ile, Asn or Pro strongly
reduced the secretion of HlyA to <20% compared to wild type
(Chervaux and Holland, 1996). The substitution to Tyr was least
affected and allowed a secretion of approximately 35% compared
to wild type protein (Chervaux and Holland, 1996). Interestingly,
CyaA from B. pertussis also contains a Tyr residue at this position
(Bumba et al., 2016).

Further support of the importance of the amphipathic α-helix
comes from calculations of the hydrophobic moment (Table 3).
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FIGURE 6 | Secondary structure predictions of mutants of the secretion signal of HlyA. Predictions labeled with “SS” are derived from Quick2D.
Topology = predicted by AmphipaSeeK, “A” indicated those residues that are predicted to be inserted parallel into the membrane. Am. score = amphipathy score
predicted by AmphipaSeeK with 1 = lowest amphipathy and 5 = highest amphipathy. H = α-helix, c = coiled coil, E = β-sheet, ? = no prediction. Mutated residues
are marked in red. Secretion rate (SR) is given for each mutant as mean ± SD of three independent measurements. (A,B) Single proline mutations with SR similar to
wild type pro-HlyA. (C,D) Single proline mutations with reduced SR compared to the wild type protein. (F,H) Helical wheel projection of A986P (F) and S985P (H).
Non-polar residues are colored yellow, lysine blue, glutamate red and polar residues green. Proline at position 985 reduces the polarity on the polar site of the
amphipathic α-helix compared to wild type HlyA (Figure 1B). (E,G,I) Proline substitutions with drastically reduced SR. (J) Cartoon representation of PEP-FOLD3
models of wild type pro-HlyA (green), S981P (pink) and K982P (cyan). Mutated proline residues are shown as sticks. All models have an identical orientation for
comparison. K982P and S981P bend the helix in opposite directions.
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The hydrophobic moments decreases with decreasing secretion
rates with the only exception being the I984P mutant. This
dependence again highlights that the amphipathic α-helix plays
an essential role during secretion.

At least five other RTX proteins can be secreted by the
HlyBD-TolC system (Figure 7; Gygi et al., 1990; Highlander
et al., 1990; Masure et al., 1990; Thompson and Sparling, 1993;
Kuhnert et al., 2000). The structure of the C-terminus of one of
these has been solved (CyaA), and also shows an amphipathic
α-helix followed by an aromatic residue (Bumba et al., 2016).
The secondary structures of the last 60 residues of the remaining
four RTX proteins have been predicted with secondary structure
prediction tools and all four show amphipathic α-helices in the
N-terminus of their secretion signal followed by an aromatic
residue (Figure 7). Taken together, the secretion rate phenotypes
of the HlyA mutants in combination with their in silico analysis
and the comparisons to heterologous substrates of the HlyBD-
TolC system strongly support the presence of an amphipathic
α-helix in the secretion signal and emphasize the importance of
the correct secondary structure for secretion.

In summary, the data presented here including functional
data, structural modeling and in silico analysis strongly
point toward an essential role of an amphipathic α-helix
covering amino acid residues 970-987 in the C-terminal
secretion signal of HlyA.

DISCUSSION

The AlphaFold algorithm (Jumper et al., 2021) correctly modeled
the β-roll domain of pro-HlyA (Figure 1A) even in the absence
of Ca2+ ions. Currently, ligands cannot be included, but the
predicted β-roll of pro-HlyA aligns well with the corresponding
regions of alkaline protease (Baumann et al., 1993) or block
IV/V of the RTX domain of CyaA (Bumba et al., 2016),
increasing the confidence in the model. Motivated by this three-
dimensional model produced by AlphaFold (Figure 1A) that
demonstrated the presence of an amphipathic α-helix in the
secretion signal (Figure 1B), we re-examined the presence and

TABLE 3 | Hydrophobic moments of the single side mutations of the predicted
amphipathic α-helix.

Sequence Calculated hydrophobic
moment

Secretion rate
[aa/T1SS*sec]

NPLINPISKIISAAGNF 0.519 19.5

NPLINEISKIISAAGNE 0.494 16

NPLINEIPKIISAAGNE 0.492 19.4

NPLINEISKIIPAAGNE 0.481 2.9

NPLINEISKIPSAAGNE 0.436 6.8

NPLINEPSKIISAAGNE 0.420 3.7

NPLINEISKIISPAGNE 0.41 0.4

NPLINEISPIISAAGNE 0.403 1.3

Hydrophobic moments were calculation using hmoment (https:
//www.bioinformatics.nl/cgi-bin/emboss/hmoment) employing standard settings.
Mutants are arranged according to decreasing hydrophobic moments.

FIGURE 7 | Helical wheel projections of RTX proteins that can be secreted by
the HlyBD-TolC apparatus. Helical wheels were drawn with NetWheel.
Non-polar residues are shown in yellow, polar residues in green, basic
residues in blue and acidic residues in red. Next to HlyA (A), secretion by
HlyBD-TolC has been shown for CyaA (B) by Masure et al. (1990), for FrpA
(C) by Thompson and Sparling (1993), for LktA (D) by Highlander et al. (1990),
for HlyIA (E) by Gygi et al. (1990) and for PaxA (F) by Kuhnert et al. (2000).

role of this amphipathic α-helix for the secretion of pro-HlyA by
its cognate T1SS.

Small angle X-ray scattering (SAXS) data of pro-HlyA in
solution were used to further improve the quality and accuracy of
the model (Figure 3). One has to note that pro-HlyA in solution
predominantly forms dimers (Thomas et al., 2014a), a fact that
was also confirmed by SEC-SAXS and included in docking of
the pro-HlyA model into the SAXS envelope (Figure 3). Without
going into the details of the obtained model, the presence
of an amphipathic α-helix (Figure 1B) was already proposed
by Koronakis et al. (1989) with slight deviations in the exact
position and length of the α-helix. Based on this agreement
between theory and experiment, we analyzed the precise nature
of the amphipathic α-helix signaling and its involvement in
the secretion process of HlyA. We also tried to verify this
structure by single particle cryo-EM. The C-terminal part, i.e.,
the RTX domain and the secretion signal, fitted well into the
map. However, no density was observed for the N-terminal part
indicating a high degree of flexibility and/or denaturation during
grid preparation (not shown).

The hemolytic assay of HlyA and the mutants did not reveal
any significant differences in activity (Figure 4A) as long as the
proteins were used at identical concentrations. This is in contrast
to mutations within the last six amino acids of HlyA (Jumpertz
et al., 2010). Here, a reduced hemolytic activity was determined,
which likely was due to impaired folding of the mutant protein.
In the case of mutations within the amphipathic α-helix, folding
and the resulting activity is apparently not influenced, pointing
toward a role of these residues in an earlier step of the secretion
process. Thus, steps taking place on the extracellular side are
not impaired and we focused processes at the cytoplasmic side
and measured the secretion rates per transporter of each mutant
and compared it to the wild type protein (Figure 4B). All
of the non-proline, single mutations within the amphipathic
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α-helix showed no change in the secretion rate per transporter
within experimental error. For the single proline mutations,
the situation was more complex. Positions E979 and S981 were
insensitive to mutations to proline, while positions I980, K982,
I983, I984, S985, and A986 were very sensitive and showed
drastic reductions of the secretion rate, some had secretion rates
close to background values (Figure 4B). This was also true for
position F990, which is not part of the amphipathic α-helix, but
one of the few amino acids that were determined in mutational
studies to be essential for efficient secretion (Chervaux and
Holland, 1996; Holland et al., 2016). Since the most efficient
secretion can be achieved by a substitution with another aromatic
residue, π-π interactions can be assumed, that are disrupted
in F990P. Vernon et al. provided an extensive study analyzing
π-π interactions in different protein crystal structures (Vernon
et al., 2018). Amongst other findings they show that Phe and
Tyr have very similar preferences for the nature of their contacts,
and that π-π stacking with non-aromatic residues is actually
more common than aromatic-aromatic stacking. Furthermore,
they identified Arg as the first or second most likely interaction
partner for any given aromatic side chain (Vernon et al., 2018).
Conserved Arg residues can be found, for example in the
cytosolic domain (CD) of HlyD and could present an interaction
partner to F990.

In summary, these results supported the notion that secretion
rates as read-out for impaired secretion efficiency is a valid
approach. The triple and quadruple mutants were also drastically
impaired in their secretion rates. Importantly, the secretion
rate of the triple mutant E979G/I980S/K982T, containing no
proline residues, was also reduced close to background levels.
This was in contrast to the single mutations, which displayed
secretion rates identical to the wild type protein, suggesting
an additive or even cooperative effect of these mutations in
HlyA secretion that disrupted the predicted amphipathic α-helix.
Since the AlphaFold algorithm was not trained to take single
site mutations into account for accurate structure predictions
(Jumper et al., 2021), we turned to an in silico analysis of the
mutants. For wildtype pro-HlyA, a close match between the
model and the prediction for the amphipathic α-helix using
different programs was obtained (Figure 5). More importantly,
however, was the analysis of the mutants. In all cases, in
which the secretion was not impaired within experimental
error, an amphipathic α-helix was predicted that resembled
strongly the wild type. In contrast, in all cases that impaired the
secretion rates, the length of the amphipathic α-helix was reduced
(Figures 6C,D) or the bending of the amphipathic α-helix was
inverted (Figures 6I,J). Thus, the correct length and bending
direction are indispensable for efficient secretion of the substrate,
which is also supported by the calculation of the hydrophobic
moments of the mutants (Table 3).

Moving one step further, we also analyzed further RTX
toxins, which have been secreted in the past using the HlyA
T1SS (Figure 7). For CyaA, the structure of block IV/V of the
RTX domain was determined by X-ray crystallography but the
region of the amphipathic α-helix and the flanking aromatic
residue (F990 in HlyA) is not resolved (Bumba et al., 2016).
Consequently, we performed an in silico analysis of those five

additional substrates. As shown in Figure 7, all five RTX proteins
contained an amphipathic α-helix and a flanking aromatic
residue. Obviously, five examples of substrates of sub-family 2
T1SS are not sufficient to make a real significant statement,
but these results suggest that the ‘amphipathic α-helix/aromatic
residue’ motif might be a general feature of sub-family 2 T1SS
and also impose a sort of substrate selectivity. Overall, we
propose that the presence and bending of the amphipathic α-helix
combined with a C-terminally flanking aromatic residue triggers
an early step in substrate secretion. Eventually it even constitutes
the initial trigger to assemble the continues channel across the
periplasm, through which HlyA is transported in one-step into
the extracellular space.
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Peroxisomes are ubiquitous, oxidative subcellular organelles with important functions
in cellular lipid metabolism and redox homeostasis. Loss of peroxisomal functions
causes severe disorders with developmental and neurological abnormalities. Zebrafish
are emerging as an attractive vertebrate model to study peroxisomal disorders as well
as cellular lipid metabolism. Here, we combined bioinformatics analyses with molecular
cell biology and reveal the first comprehensive inventory of Danio rerio peroxisomal
proteins, which we systematically compared with those of human peroxisomes. Through
bioinformatics analysis of all PTS1-carrying proteins, we demonstrate that D. rerio
lacks two well-known mammalian peroxisomal proteins (BAAT and ZADH2/PTGR3),
but possesses a putative peroxisomal malate synthase (Mlsl) and verified differences in
the presence of purine degrading enzymes. Furthermore, we revealed novel candidate
peroxisomal proteins in D. rerio, whose function and localisation is discussed. Our
findings confirm the suitability of zebrafish as a vertebrate model for peroxisome
research and open possibilities for the study of novel peroxisomal candidate proteins
in zebrafish and humans.

Keywords: peroxisomes, Danio rerio, proteome, lipid metabolism, organelle biogenesis, protein targeting, PTS1

INTRODUCTION

Peroxisomes represent ubiquitous, single-membrane bound subcellular compartments in
eukaryotes. They are oxidative organelles with important functions in cellular lipid metabolism
and redox homeostasis (Islinger et al., 2018). In mammals, peroxisomes perform a variety
of essential metabolic functions including fatty acid α- and β-oxidation, degradation
of D-amino acids, contribution to purine catabolism, and biosynthesis of ether lipids,
polyunsaturated fatty acids and bile acids (Wanders and Waterham, 2006). Loss of
peroxisomal functions causes severe disorders with developmental and neurological abnormalities,
highlighting the importance of peroxisomes for human health. Loss of functional peroxisomes
or enzyme deficiencies in humans result in an accumulation of undegraded molecules

Abbreviations: PEX, peroxin; PMP, peroxisomal membrane protein; PTS, peroxisomal targeting signal; TMD,
transmembrane domain; VLCFA, very long chain fatty acids.
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[e.g., very long chain fatty acids (VLCFA), bile acid intermediates,
phytanic acid], while physiologically essential molecules (e.g., bile
acids, plasmalogens, docosahexaenoic acid) become deficient.
In addition to lipid metabolism, mammalian peroxisomes
play a role in several non-lipid metabolic pathways such as
purine, polyamine, glyoxylate, and amino acid metabolism.
Due to their role in H2O2 metabolism and ROS homeostasis,
peroxisomes have also been linked to cellular ageing and age-
related disorders as well as cancer (Fransen et al., 2013; Islinger
et al., 2018). Moreover, functions in cellular signalling and anti-
viral defence have been revealed (Dixit et al., 2010; Lismont et al.,
2019). However, the role of peroxisomes in the functioning of
tissues and organs or during developmental processes remains
largely unresolved.

The zebrafish (Danio rerio) is a popular vertebrate model
organism for developmental biology and neurobiology due to
its similarly to mammals. Advantages are the rapid development
and short generation time, relatively low cost, ease of genetic
manipulation and optical transparency of the developing fish,
which in combination with novel imaging techniques allows the
in vivo visualization of biological processes at the organism level
(Dawes et al., 2020). In addition, zebrafish are used as a model
to study lipid metabolism in lipid-related diseases (Hölttä-Vuori
et al., 2010; Turchini et al., 2022). As peroxisomes are crucial
for cellular lipid metabolism and developmental processes as
well as neurological functions, zebrafish represent an attractive
model to study peroxisome biology. In line with this, zebrafish
has successfully been used as a model for adrenoleukodystrophy
(ALD) (Strachan et al., 2017), a devastating disorder based
on a defect in ABCD1, the peroxisomal transporter for
VLCFA (Engelen et al., 2014). Very recently, a zebrafish model
for Zellweger syndrome disorder (ZSD), a group of severe
peroxisome biogenesis disorders caused by loss of peroxisome
functions, has also been developed (Takashima et al., 2021).

Using diaminobenzidine (DAB)-cytochemistry for catalase, a
classical peroxisomal marker, proxisomes were already visualised
in the embryo and adult zebrafish by light- and electron
microscopy (Braunbeck et al., 1990; Krysko et al., 2010). Similar
to mammals and man, peroxisomes were most prominent in
the liver, renal proximal tubules and the intestinal epithelium.
Similarly to rodents, zebrafish hepatic peroxisomes respond to
peroxisome proliferators with an increase in peroxisome number
in liver when fish were exposed to fibrates or phthalate esters
(Ortiz-Zarragoitia et al., 2006; Venkatachalam et al., 2012). In line
with this, Peroxisome Proliferator-Activated Receptors (PPARs),
nuclear hormone receptors, which regulate the expression of
genes involved in lipid metabolism, have been identified in
zebrafish (Den Broeder et al., 2015).

Peroxisomal matrix protein import is mediated by the
peroxisomal import receptors PEX5 and PEX7, which bind to
type-1 or type-2 peroxisomal targeting signals (PTS1 or PTS2) on
cargo proteins in the cytosol. The PTS1 receptor PEX5 recognises
a C-terminal tripeptide (SKL-type), whereas PEX7 recognises a
nonapeptide within the N-terminus (Walter and Erdmann, 2019;
Kunze, 2020). Several predictors have been developed to identify
peroxisomal proteins, their PTS, and their sub-peroxisomal
location (Kunze, 2018; Anteghini et al., 2021).

Despite growing interest, a comprehensive analyis of the
D. rerio peroxisomal protein inventory and metabolic pathways
associated with peroxisomes as well as of peroxisomal targeting
signals is still missing. In this study, we combined bioinformatics
analyses with molecular cell biology, and provide the first
comprehensive inventory of peroxisomal proteins, their targeting
signals and association with metabolic pathways in zebrafish.
A comparison with H. sapiens gained new insights into the basic
peroxisomal protein inventory shared among vertebrates and
revealed novel candidate peroxisomal proteins and functions in
D. rerio. We show that D. rerio peroxisomal functions do not vary
considerably from those in humans confirming the suitability
of zebrafish as a vertebrate model for peroxisome research. Our
findings open possibilities for the study of novel peroxisomal
candidate proteins in zebrafish and humans.

MATERIALS AND METHODS

Search for Potential Peroxisomal
Proteins in Danio rerio
The Danio rerio proteome available on UniProt1 was screened for
proteins carrying a PTS1 at the very C-terminus using all possible
combinations of residues found in PTS1 motifs (consensus)
[ASCNPHTG]-[RKHQNSL]-[LMIVF] (Lametschwandtner
et al., 1998; Neuberger et al., 2003; Figure 1). Among 46,848
proteins, we identified 2,638 proteins matching the pattern.
We analysed the corresponding fasta sequences using the
software TMHMM Server v. 2.02 (Krogh et al., 2001). The
entries with defined topologies ‘o’ (out) or ‘i’ (in), without
transmembrane helices, were kept as well as the entries with
a ratio ≥ 0.9 between the expected number of amino acids in
transmembrane helices and the expected number of amino
acids in transmembrane helices in the first 60 amino acids
of the protein (with transmembrane helices just in the signal
peptide) resulting in 1,966 protein sequences (Figure 1). We
executed locally WoLF PSORT (Package Command Line
Version 0.2) (Horton et al., 2007) to obtain the predicted
subcellular location of each specific protein. Entries with “ER”
as possible subcellular localization were removed, resulting in
1,171 sequences. Thereafter, the identified proteins were further
analysed by PTS1 predictor algorithms3 (Neuberger et al., 2003;
Schlüter et al., 2010) and sequences which produced no hit
with the “metazoa” or “general” modus of the software were
removed (Figure 1). For further validation selected sequences
were screened for conservation of the potential PTS1 using
BLAST2.0. Additionally, mitochondrial targeting was examined
using Mitoprot2 (Claros and Vincens, 1996); and Predotar1.03
(Small et al., 2004); potential targeting to the secretory pathway
was screened with TargetP1.1 (Emanuelsson et al., 2000).
Peroxisomal targeting signal 2 (PTS2) was analysed by PTS2
prediction algorithms (Schlüter et al., 2007). Functions were
attributed to the potential peroxisomal proteins with regard

1www.uniprot.org
2https://services.healthtech.dtu.dk/service.php?TMHMM-2.0
3https://mendel.imp.ac.at/pts1/
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FIGURE 1 | Overview of the screening of the Danio rerio proteome to identify
candidate proteins with a C-terminal peroxisomal targeting sequence (PTS1).
See Materials and Methods for details.

to their homology to known proteins from other species and
proteins were organised into specific metabolic pathways. The
ZFIN zebrafish information network database4 was screened
for peroxisomal proteins (e.g., without a PTS1) including PMPs
and peroxisome biogenesis factors (peroxins), by key word
search and BLAST analysis. Furthermore, published data (Pub
Med) was included (e.g., Jansen et al., 2021). Protein sequence
alignment was performed by Clustal Omega (1.2.4) Multiple
Sequence Alignment (Madeira et al., 2019).

Mammalian Cell Culture and Transfection
COS-7 (African green monkey kidney cells, CRL-1651; ATCC)
and HEK293T (Human embryonic kidney 293T cells; ECACC)
cells were maintained in Dulbecco’s Modified Eagle’s Medium
(DMEM), high glucose (4.5 g/L) supplemented with 10% fetal
bovine serum (FBS), 100 U/ml penicillin and 100 µg/ml
streptomycin (all from Life Technologies) at 37◦C with 5%
CO2 and 95% humidity. COS-7 cells were transfected with
DNA constructs either by incubation with diethylaminoethyl
(DEAE)-dextran (Sigma-Aldrich) (Bonekamp et al., 2010) or
Turbofect (Thermo Fisher Scientific) (Supplementary Table S1).
For DEAE-transfection, 4 µg of plasmid DNA were mixed with
0.5 ml serum-free DMEM and 4 µg of DEAE–Dextran. The
mixture was applied to a 60-mm dish of non-confluent cells
after washing twice with PBS. After incubating 1.5 h at 37◦C in
a humidified incubator the DEAE–Dextran–DNA mixture was
removed and 4 ml complete DMEM as well as 4 µl of chloroquine
(Serva, Heidelberg, Germany) (60 mg/ml stock solution) were
added. After 3 h the medium was changed to complete DMEM.
For lipofection, 1 µg of DNA [0.1 µg EGFP-reporter plasmid
and 0.9 µg vector DNA without EGFP (pcDNA3.1)] was

4https://zfin.org/

premixed with 100 µl DMEM without supplements and 1.25 µl
of Turbofect was added. After 15 min incubation at room
temperature the mixture was dropped onto COS7 cells in 400 µl
fresh complete DMEM medium (24-well plate). After 24 h cells
were trypsinized and 50% of the cells were seeded on glass
coverslips (24-well plate). Cells were processed 24-48 h after
transfection for immunofluorescence microscopy.

Immunofluorescence and Microscopy
Cells grown on glass coverslips were fixed for 20 min with 4%
para-formaldehyde in PBS, pH 7.4, permeabilised with 0.2%
Triton X-100 (10 min), blocked with 1% BSA (10 min) and
sequentially incubated with primary and secondary antibodies
for 1 h in a humid chamber at room temperature (Bonekamp
et al., 2013). Rabbit anti-PEX14 (1:1400) (Grant et al., 2013)
(generated by D. Crane, Griffith University, Brisbane, Australia),
anti-PMP70 (1:3000) (ABR, Golden, CO, United States),
and mouse anti-Myc primary antibody (1:100) [Santa Cruz
Biotechnology, Inc (9E10)] were used. Species-specific Alexa
Fluor 488 (594) labelled secondary antibodies (1:500) (Thermo
Fisher Scientific) and Cy3-labelled Donkey-anti-rabbit IgG
(1:400) (Jackson Immuno Research Laboratories, West Grove,
PA, United States) were applied. Microscopy analysis was
performed using an Olympus IX81 microscope (Olympus
Optical. Hamburg, Germany) equipped with an UPlanSApo
100 × /1.40 oil objective (Olympus) and a CoolSNAP HQ2 CCD
camera. Digital images were taken and processed using VisiView
software (Visitron Systems). Images were adjusted for contrast
and brightness using MetaMorph 7 (Molecular Devices).

Molecular Cell Biology and Generation of
Plasmids
For cloning of human genes, total RNA was extracted
from HEK cells using Nucleo Spin RNA II kit (Macherey-
Nagel- NZ74095550) and reverse transcribed into cDNA using
SuperScript R© II Reverse Transcriptase kit (Invitrogen/Fisher).
N-terminally Myc-tagged expression constructs for human
CDC5L (NM_001253.4) (Cell division cycle 5-like protein) (Myc-
HsCDC5L) and KCTD5 (NM_018992.4) (Potassium channel
tetramerization domain-containing 5) (Myc-HsKCTD5) were
generated. Human CDC5L (Q99459) and KCTD5 (Q9NXV2)
were amplified from HEK cDNA, and the PCR products inserted
into pCMV-Tag-3 vector (Agilent Technologies, La Jolla, CA,
United States) (Supplementary Tables S1, S2).

To test the functionality of putative PTS1 or PTS2 motifs,
reporter proteins were used. For PTS1 motifs the plasmid
EGFP-C3 (Clontech) was digested with BglII/HindIII and
the respective oligonucleotides were inserted as described
previously (Chong et al., 2019; Supplementary Tables S1, S2).
This generated plasmids PTS1-DrUrad DLHSIVLSDIQTKL,
PTS1-DrMeox2a DLHDSDQSSDHAHL, PTS1-DrCdc5l
DLLMLDKQTLSSKI, PTS1-DrKctd5a DLKAKILQEQGSRM,
and PTS1-HsCDC5L DLLLEKETLKSKF. For PTS2 motifs the
reporter plasmid PTS2-tester (Kunze et al., 2011) was digested
with EcoRI and PstI and the oligonucleotides (Oli_2982 and
Oli_2983) were inserted to generate PTS2-DrUrah RLQHIRGHI
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(Supplementary Tables S1, S2). In-frame insertion of all
constructs was verified by sequencing (Eurofins Genomics).

RESULTS AND DISCUSSION

The study of model organisms has greatly contributed to our
understanding of peroxisome biology. Fungal model systems
greatly contributed to the identification of peroxisome biogenesis
factors (peroxins, PEX), and to the understanding of protein
import and peroxisome functions. The fruitfly Drosophila
melanogaster has also been established as a non-vertebrate model
organism to study peroxisomes (Pridie et al., 2020). In addition,
several mouse models have been developed to investigate the
physiological role of peroxisomes and their impact on human
disease (Van Veldhoven and Baes, 2013). The zebrafish Danio
rerio is now developing as a promising vertebrate model to
investigate peroxisome biology (Van Veldhoven and Baes, 2013),
but a comprehensive analysis of the D. rerio peroxisomal
protein inventory, metabolic pathways and protein targeting
is lacking. To delineate the peroxisomal proteome of D. rerio
as well as targeting information of candidate proteins, we
performed a comprehensive bioinformatics analysis (Figure 1).
For identification of proteins with a potential peroxisomal
targeting signal, we screened the proteome of D. rerio5 for
proteins with a PTS1 or PTS2 sequence (PTS2 based on
orthologous protein sequences). These are recognised by the
matrix protein import receptors PEX5 and PEX7, respectively
(Figure 2). The initial PTS1 search was performed with
the broader consensus [ASCNPHTG]-[RKHQNSL]-[LMIVF]
(Lametschwandtner et al., 1998; Neuberger et al., 2003) to also
detect potential non-canonical C-terminal PTS1 sequences (and
resulted in 2,638 proteins). We then determined potential ER
targeting signals as well as the presence of transmembrane
domains (TMD). Proteins with an ER signal peptide or
TMD were excluded resulting in 1171 proteins. The identified
candidate proteins were afterward analysed by PTS1 predictor
algorithms, which consider 12 aa at the C-terminus. This
approach resulted in a total of 371 candidate proteins with
a potential PTS1 (Supplementary Tables S3, S4). Of those,
204 had a predicted weak targeting signal (twilight zone). We
attributed functions to the candidate proteins based on homology
to known proteins from other species and organised them
into specific metabolic pathways. This was in part supported
by literature and database search (ZFIN; PODB) (Table 1 and
Supplementary Table S3). Peroxisomal membrane proteins and
peroxins were identified by key word and database search as well
as BLAST analysis.

Comparison of the Classical
Peroxisomal Protein Inventory Shared by
Humans and Zebrafish
In the following, we present the results of our comprehensive
analysis of the D. rerio peroxisomal protein inventory and
metabolic pathways associated with peroxisomes. First, we

5https://www.uniprot.org/proteomes/UP000000437

present and discuss the “core” peroxisomal proteins involved
in biogenesis, dynamics and metabolic pathways including fatty
acid oxidation, ether lipid biosynthesis, purine catabolism and
ROS metabolism. Furthermore, we link our analyses to recent
publications on peroxisome research in zebrafish providing a
timely overview.

Peroxin Proteins
Peroxins (encoded by PEX genes) represent proteins essential
for the biogenesis of peroxisomes. They include PEX
proteins required for peroxisomal matrix protein import,
membrane biogenesis, and peroxisome proliferation. D. rerio
encodes orthologues of all 14 human peroxins (Figure 2
and Supplementary Table S3). They belong to the core of PEX
proteins that are broadly conserved in most eukaryotes, including
PEX3/16/19 (peroxisomal membrane protein sorting), PEX1/6,
PEX2/10/12, PEX13/14, and PEX5/7 (matrix protein import)
and proteins of the PEX11 family (peroxisome proliferation)
(Figure 2 and Supplementary Table S3). Overall, 37 peroxins
have been identified in yeast, plants and animals (including
functional orthologues). Being a vertebrate, D. rerio most
closely reflects the situation in humans. Interestingly, DrPex3
possesses a predicted N-terminal mitochondrial targeting signal
(MTS) (Figure 2 and Supplementary Table S3). Potentially
hidden N-terminal MTS are also found in human PEX3 and
may explain its mistargeting to mitochondria in the absence
of peroxisomes (Sugiura et al., 2017). Like H. sapiens, D. rerio
encodes three isoforms of Pex11 (Pex11a, Pex11b, Pex11g),
which in mammals are involved in the growth, division and
proliferation of peroxisomes. In addition to the PTS1 receptor
Pex5, two Pex5-related proteins (Pex5la; Pex5lb) are present in
D. rerio. It should be noted that zebrafish often harbour two
copies of many genes. This is due to a genome wide duplication
event, which took place approx. 350 million years ago when
the bony fishes diverged from the common ancestor with
humans (Hölttä-Vuori et al., 2010). The duplicated genes often
exhibit differential tissue expression patterns with partitioning
of ancestral functions, rather than the evolution of completely
new functions (Force et al., 1999). The Pex5-related proteins
may represent paralogs of Pex5, which may no longer function
in peroxisomal matrix protein import. PEX5-related proteins are
found in other vertebrates; PEX5R/TRIP8b (tetratrico-peptide-
repeat containing, Rab8b-interacting protein) is involved in the
regulation of hyperpolarization-activated cyclic nucleotide-gated
(HCN) channels in the mammalian central nervous system
(Han et al., 2020). Although PEX5R can bind PTS1-containing
proteins in vitro (Amery et al., 2001), there is currently no
evidence for a role in peroxisome biogenesis as PEX5R does not
complement loss of PEX5. The PTS1 receptor Pex5 of D. rerio
contains several characteristic tetratricopeptide repeats (TPR)
at the C-terminus involved in the interaction with the PTS1
cargo, and a disordered region at the N-terminus. The latter
contains a PEX7-binding domain which is conserved in PEX5
proteins of several species (e.g., PEX5L, the long isoform in
humans) (Figure 2 and Supplementary Figure S1; Jansen et al.,
2021) and enables function as a PEX7 co-receptor for PTS2
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FIGURE 2 | Schematic overview of the predicted molecular machineries and D. rerio proteins localized at the membranes of peroxisomes in zebrafish. See text for
further details. Matrix protein import: after synthesis on free ribosomes, cargo proteins containing the peroxisomal targeting signals PTS1 or PTS2 bind to the
corresponding cytosolic receptors Pex5 (E7FGF7) or Pex7 (A8KBW8) (Pex-proteins are indicated as sole numbers) and form receptor–cargo complexes. The
Pex7–cargo complex requires accessory factors for import (e.g., Pex5L, a long isoform of Pex5). Import is achieved by a complex set of integral or peripheral PMPs
that form the matrix protein import machinery, which mediates docking of the cargo-bound import receptor at the peroxisomal membrane [Pex13 (Q6PFQ3), Pex14
(A0A2R8QMZ2)], cargo translocation into the matrix of the organelle by a dynamic translocon [Pex2 (E7F4V8), Pex10 (Q5XJ92), Pex12 (B0R157)], and export of the
receptor back to the cytosol [Pex1 (A0A0R4IPF0), Pex6 (F1QMB0)]. Recycling of the receptor involves its ubiquitination (Ub) and extraction from the membrane by
an AAA–ATPase complex (Pex1, Pex6). Pex6 binds to the membrane protein Pex26 (F1RBL0). Membrane assembly and insertion of PMPs (containing an mPTS)
depend on Pex19 (F1R313), Pex3 (Q5RIV3), and Pex16 (F1RDG2). Pex19 functions as a cycling receptor/chaperone, which binds the PMPs in the cytosol and
interacts with Pex3 at the peroxisomal membrane. Proliferation, growth and division: Pex11α (A3QJY9), Pex11β (Q0P453), and Pex11γ (Q4V8Z0) are involved in the
regulation of peroxisome size and number (proliferation). Pex11β remodels the peroxisomal membrane and interacts with the membrane adaptors Mff (F1Q877;
A8E7S0) and Fis1 (A0A2R8Q8G0), which recruit the dynamin 1-like fission GTPase Dnm1l to peroxisomes, which in mammals is activated by Pex11β. Motility:
mammalian peroxisomes move along microtubules, and Miro/Rhot (Rhot1a, Q6NVC5; Rhot1b, A0A0R4IGX0; Rhot2, Q32LU1) serves as membrane adaptor for the
microtubule-dependent motor proteins kinesin and dynein. Tethering: Acbd5 (E9QCH6; A5WV69) and Acbd4 (F1QA31) interact with ER-resident Vap (Vapb,
Q6P2B0) to mediate peroxisome–ER contacts. Metabolite transport: uptake of fatty acids in D. rerio peroxisomes is mediated by ABC transporter proteins (Abcd1,
F1RBC8; Abcd2, E7F973; Abcd3a, A0A0R4IRL4; Abcd3b, B0UY91). Other peroxisomal transporter and membrane proteins in zebrafish include (functions are in
part unclear): PMP34 (Slc25a17) (A5D6T2), a peroxisomal CoA transporter; PMP52 (Tmem135) (A4QN71) and PMP24 (Pxmp4) (A0A2R8QFW3) belong to the
Tim17 family of transporters; PMP22 (Pxmp2) (Q66HU7); Slc27a2/4 (F1QQC5, Q1ECW0; Q567D7), acyl-CoA synthetase long chain family member; Marc
(A0A2R8PWS6), mitochondrial amidoxime reducing component; Atad1 (A0A2R8RM20, B2GP29), ATPase family AAA (ATPase associated with various cellular
activities) domain-containing protein 1 with a potential role in dislocation/quality control of tail-anchored membrane proteins; Aldh3a2 (A0A2R8PW97, E9QH31), fatty
aldehyde dehydrogenase; Far1/2 (A0A0R4ICF6/Q1L8Q4), fatty acyl-CoA reductase 1/2 (ether lipid biosynthesis); Mavs (F1REK4), mitochondrial antiviral signalling
protein with a putative role in innate immune response; Trim37 (E7FBZ8), tripartite motif-containing protein 37, an E3 ubiquitin-protein ligase involved in Pex5
mediated peroxisomal matrix protein import; Usp30 (A2BGT0), ubiquitin-specific protease 30, a deubiquitinase involved in the turnover of peroxisomes; Pnpla8
(F1RE62), Patatin-like phospholipase domain-containing 8. Proteins with a potential dual localization to both peroxisomes and mitochondria are marked with an
asterisk. Pex, peroxin; PMP, peroxisomal membrane protein (adapted from Islinger et al., 2018, but containing the zebrafish specific nomenclature).
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TABLE 1 | Inventory of Danio rerio peroxisomal proteins and metabolic pathways in comparison to H. sapiens.

Function/pathway Protein Dr Hs

Fatty acid activation Very long-chain acyl CoA synthase (Slc27a2/Fatp2)

Very long-chain acyl CoA synthase (Slc27a4/Fatp4)

FA-CoA transport ABC transporter class D (Abcd1-3)

Acyl-CoA binding domain proteins (Acbd5, Acbd4)

Lipid metabolism Core enzymes FA β-oxidation Acyl-CoA oxidases (Acox) Acox1

Acox2 –

Acox3

Acoxl

Acyl CoA dehydrogenase 11 (Acad11)

Bifunctional enzymes Enoyl-CoA hydratase, hydroxyacyl-CoA
dehydrogenase (Ehhadh) (L-BP)

Hydroxysteroid (17-beta)
dehydrogenase 4 (Hsd17b4) (D-BP)

Thiolases 3-Ketoacyl-CoA thiolase/ Acetyl-CoA
acyltransferase (Acaa1)

PTS2 PTS2

Sterol carrier protein (Scp2)

Accessory β-oxidation Alpha-methylacyl-CoA racemase (Amacr)

enzymes Peroxisomal trans-2-enoyl-CoA reductase (Pecr)

Bile acid synthesis Bile acid-CoA:amino acid N-acyltransferase (Baat) –

α-oxidation Phytanoyl-CoA 2-hydroxylase (Phyh) PTS2 PTS2

2-Hydroxyphytanoyl-CoA lyase (Hacl1)

Fatty aldehyde dehydrogenase (Aldh3a2)

Saturation PUFAS 2,4-dienoyl-CoA reductase (Decr2)

3,2-enoyl-CoA isomerase (Eci2)

Peroxisomal enoyl CoA hydratase 1 (Ech1)

FA-CoA Peroxisomal acyl-CoA thioesterase (Acot8)

deactivation/export Acyl-CoA thioesterase (Acot4) –

Peroxisomal carnitine O-octanoyltransferase (Crot)

Carnitine O-acetyltransferase (Crata)

Ether lipid synthesis Glycerone phosphate O-acyltransferase (Gnpat)

Alkyldihydroxyacetone phosphate synthase (Agps) PTS2 PTS2

Fatty acyl-CoA reductase (Far1/2)

Alkyldihydroxyacetone phosphate reductase (Dhrs7b)

Glycolate/Glyoxylate metabolism Hydroxyacid oxidase 1 (Hao1)

Hydroxyacid oxidase 2 (Hao2)

Hydroxyacid oxidase 3 (Hao3) –

Malate synthase-like (Mlsl) –

Alanine-glyoxylate aminotransferase (Agxta)

Amino acid catabolism D-amino acid oxidase 1 (Dao1)

D-amino acid oxidase 2 (Dao2) –

D-amino acid oxidase 3 (Dao3) –

D-aspartate oxidase (Ddo)

3-hydroxy-3-methylglutaryl CoA lyase (Hmgcl)

Pipecolic acid oxidase (Pipox)

Amine metabolism Peroxisomal (poly)amine oxidase (Paox)

Purine and pyrimidine metabolism Urate oxidase (Uricase) (Uox) –1

Allantoicase (Allc) –

Urate (5-hydroxyiso-) hydrolase a (Uraha) PTS2 –1

Ureidoimidazoline decarboxylase (Urad) –1

Oxygen metabolism/Oxidation redox equivalents Catalase (Cat)

Epoxide hydrolase 2 (Ephx2)

Glutathione S-transferase kappa 1 (Gstk1)

Copper chaperone of SOD1 (Ccs)

Superoxide dismutase 1 (Sod1)

Peroxiredoxin 5 (Prdx5)

(Continued)
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TABLE 1 | (Continued)

Function/pathway Protein Dr Hs

Nitric oxide synthase 2 (Nos2)

Proteases Insulin-degrading enzyme (Ide)

Peroxisomal LON protease-like (Lonp2)

Trypsin domain containing 1 (Tysnd1)

Carbohydrate metabolism Glucose 6-phosphate dehydrogenase (G6pd)

Isocitrate dehydrogenase (Idh)

Peroxisomal malate dehydrogenase (Mdh)

Lactate dehydrogenase B (LDHB)

Glycerol-3-phosphate dehydrogenase 1 (Gpd1)

Cleavage of cofactors Coenzyme A diphosphatase (Nudt7)

Coenzyme A diphosphatase (Nudt19)

NADH pyrophosphatase (Nudt12)

Retinoid metabolism Short-chain alcohol dehydrogenase/Dehydrogenase/reductase SDR family member 4

L-Ascorbate synthesis L-gulonolactone oxidase (Gulo) – –

Peroxisome division Mitochondrial fission 1 (Fis1)

Mitochondrial fission factor (Mff)

Dynamin-like protein 1 (Dnm1l)

Peroxisome motility Rhot1 (Miro1)

Rhot2 (Miro2)

Misc. peroxisomal membrane proteins Slc25a17 (PMP34) (CoA transporter in Dr)

Pxmp2 (PMP22)

Pxmp4 (PMP24)

Tmem135 (PMP52)

Mpv17/Mpv17-like

Mitochondrial amidoxime reducing component (Marc/Mosc)

Mitochondrial antiviral-signaling protein (Mavs)

ATPase family AAA domain containing 1 (Atad1)

Ubiquitin carboxyl-terminal hydrolase 30 (Usp30)

Slc22a21 (Organic cation transporter)

Tripartite motif-containing 37 (Trim37)

Patatin-like phospholipase domain-containing 8 (Pnpla8)/Calcium-independent phospholipase A2γ

Fibronectin type III domain containing 5 (Fndc5b)

Other proteins with PTS1 in Dr or Hs Serine hydrolase-like protein (Serhl)

Dehydrogenase/reductase (SDR family) member 4 (Dhrs4)

Ubiquitin carboxyl-terminal hydrolase (Usp2 – short)

Ubiquitin carboxyl-terminal hydrolase (Usp2 – long)

Isochorismatase domain containing 1 (Isoc1)

β-Lactamase-like protein 2 (Lactb2)

Hydroxysteroid dehydrogenase-like 2 (Hsdl2)

CoA synthase (coasy)

Acyl-CoA thioesterase (Acot14) –

Acyl-CoA thioesterase (Acot15)

Acyl-CoA thioesterase (Acot16) –

Acyl-CoA thioesterase (Acot17) –

Acyl-CoA thioesterase (Acot18) –

Acyl-CoA thioesterase (Acot20)

Cell division cycle 5-like protein (Cdc5l)

Potassium channel tetramerization domain-containing 5 (Kctd5)

Kelch-like protein 41 (Klhl41b)

Prostaglandin reductase 3 (ZADH2/PTGR3) –2

Hs, H. sapiens; Dr, D. rerio.
� – absent/not identified.
� – Protein present, peroxisomal and/or with a predicted PTS1/PTS2.
� – Protein present without a confirmed PTS or peroxisomal localization.
1 inactivation by pseudogenization.
2 lost in Cypriniformes.
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import (Kunze, 2020). This indicates that Pex5 is required as a
co-receptor for Pex7-mediated PTS2 import in D. rerio.

While Pex7 (and PTS2 cargo proteins) are present in D. rerio,
other model organisms such as the nematode C. elegans, lack
PEX7 and a PTS2 targeting pathway (Motley et al., 2000). A PTS2
import pathway is also lacking in the fruit fly D. melanogaster,
but PEX7 is present (Pridie et al., 2020). C. elegans and
D. melanogaster also appear to lack PEX26, the anchoring protein
for PEX1/6, which is present in D. rerio and other vertebrates
(Jansen et al., 2021). The AAA (ATPase associated with diverse
cellular activities) ATPases PEX1 (Pex1, A0A0R4IPF0_DANRE)
and PEX6 (Pex6, F1QMB0_DANRE) are required for PEX5
export from the peroxisomal membrane in order to recycle it
back to the cytosol. Like in humans, D. rerio Pex26 is a tail-
anchored membrane protein supposed to retain Pex1 and Pex6
at the membrane (Figure 2 and Supplementary Table S3).

Very recently, a zebrafish model for Zellweger spectrum
disorders, a group of severe peroxisome biogenesis disorders
based on defects in PEX genes has been developed (Takashima
et al., 2021). Disruption of the zebrafish pex2 gene (encoding
an E3 ubiquitin ligase with a zinc RING finger domain residing
in the peroxisomal membrane, which is involved in matrix
protein import/receptor recycling) caused phenotypes similar to
human patients suffering from ZSD including locomotive defects,
eating disabilities, liver abnormalities and early death (Takashima
et al., 2021). Similar to the human disease, the ZS model fish
also showed increased tissue levels of VLCFA and branched
chain fatty acids as well as a reduction in ether phospholipids.
Furthermore, mutant specific gene-expression changes, that
might lead to the symptoms, were detected including a reduction
in crystallin (lens), troponin, parvalbumin (muscle contraction),
and fatty acid metabolic genes.

Proteins Involved in Peroxisome Division
and Motility
In addition to PEX11 proteins, which are involved in membrane
remodelling and growth/expansion of the peroxisomal
membrane prior to division, the tail-anchored adaptor proteins
FIS1 and MFF are required, which recruit the fission GTPase
DRP1/DLP1 to the peroxisomal membrane (Schrader et al., 2016;
Figure 2). Homologues of those proteins have been identified in
D. rerio (Fis1, Mffa, Mffb, Dnm1l) (Table 1 and Supplementary
Table S3). Interestingly, they are shared with mitochondria and
also mediate mitochondrial division. In addition, the orthologues
of the tail-anchored adaptor proteins Miro1/2 (Rhot1a, Rhot1b,
Rhot2) are present in D. rerio. In mammals they have been
implicated in the recruitment of microtubule motor proteins
(e.g., kinesin) to peroxisomes (and mitochondria) and regulation
of organelle motility. The Miro-motor complex can exert pulling
forces at the peroxisome membrane, which also contribute to
membrane elongation/expansion and division (Castro et al.,
2018; Covill-Cooke et al., 2021). Targeting of the tail-anchored
membrane proteins to peroxisomes is mediated by a combination
of biochemical properties of the TMD and tail region (TMD
hydrophobicity; positive net charge of the tail) and depends
on PEX19, the import receptor/chaperone for PMPs (Costello

et al., 2017a; Figure 2). In addition to its role in matrix protein
import, PEX14 may act as docking factor to microtubules via
its N-terminal tubulin binding domain (aa 1-78) (Reuter et al.,
2021), which is conserved between H. sapiens and D. rerio.

Peroxisomal Metabolism
Fatty Acid β-Oxidation
Peroxisomes fulfil important functions in cellular lipid
metabolism, often in cooperation with other subcellular
compartments such as mitochondria, ER and lipid droplets
(Silva et al., 2020). The β-oxidation of fatty acids is an important
and conserved peroxisomal pathway (see overview Figure 3A).
Fatty acid β-oxidation is distributed between peroxisomes and
mitochondria in animals and several fungi, but exclusively
peroxisomal in yeast and plants. In line with this, we identified
candidate genes coding for all the enzymes required for a
peroxisomal and a mitochondrial fatty acid β-oxidation pathway
in D. rerio (Table 1 and Supplementary Table S3). Substrates
for peroxisomal β-oxidation are VLCFA (>C22:0), branched
chain fatty acids (e.g., pristanic acid), bile acid intermediates
[such as di- and tri-hydroxycholestanoyl-CoA (DHCA, THCA)],
poly-unsaturated fatty acid (e.g., docosahexaenoic acid), long
chain dicarboxylic acids, 2-hydroxy fatty acids, and a number
of prostanoids. Mitochondria on the other hand preferentially
β-oxidise long chain, medium chain, and short chain fatty acids
(C18 and shorter).

Fatty acid degradation is preceded by activation of fatty acids
through conjugation to coenzyme A and subsequent import
into peroxisomes by members of the ATP-binding cassette
(ABC) transporter subfamily D (reviewed in Chornyi et al.,
2020; Figure 2). The esterification of fatty acids into their
corresponding CoA esters is catalysed by acyl-CoA synthetases,
and is a requirement for import via the peroxisomal ABCD
transporters as well as for fatty acid β-oxidation. In humans,
the two very-long-chain acyl-CoA synthetases SLC27A2 (FATP2)
and SLC27A4 (FATP4) have been partially localized to the
peroxisomal membrane (reviewed in Chornyi et al., 2020). Both
proteins are mainly involved in the activation of fatty acids
rather than transport across membranes. Similar to human
SLC27A2, the two D. rerio orthologues (Slc27a2a, Slc27a2b) have
a non-canonical PTS1 (TRL, FRL, respectively) (Table 1 and
Supplementary Table S3). The D. rerio Slc27a4 also possesses
a non-canonical PTS1 (QKL) (Supplementary Table S3). PTS1
signals normally mediate the targeting of matrix proteins, and
it has not been demonstrated that PTS1 signals also target
membrane proteins like SLC27A2 and SLC27A4. However,
peroxisomal SLC27A2 is supposed to be a peripheral membrane
protein facing the matrix (Smith et al., 2000), and splice variants
of SLC27A4, a putative transmembrane protein, with and without
TMD may exist. It is discussed whether hydrolysis of the CoA
ester bond is required for ABCD transporter-mediated acyl-
CoA transport into peroxisomes (reviewed in Chornyi et al.,
2020). In such a scenario, acyl-CoA synthetases must also
be present in the peroxisomal matrix, e.g., to re-activate the
imported fatty acids prior to β-oxidation. We also identified a
D. rerio acyl-CoA synthetase long chain family member 5 (Acsl5,
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FIGURE 3 | Schematic representation of the pathways of fatty acid β-oxidation (A), ether phospholipid synthesis (B) and purine catabolism (C) in peroxisomes.
(A) Peroxisomes degrade fatty acids in four consecutive steps: (1) oxidation, (2) hydration, (3) dehydrogenation, and (4) thiolytic cleavage. Step 1 is performed by
multiple acyl-CoA oxidases (1-n) with different substrate specificities. Steps 2 and 3 involve two bifunctional proteins (L-BP, D-BP) harbouring both enoyl-CoA
hydratase and 3-hydroxy-acyl-CoA dehydrogenase activity. Step 4 requires different thiolases (e.g., ACAA1, SCPx). Peroxisomes have acquired a set of accessory
enzymes (e.g., for fatty acid α-oxidation) to transform the acyl-CoA esters of those fatty acids (FA), which cannot directly enter the β-oxidation pathway (e.g.,
phytanic acid) (see text for details). (B) The first three steps of ether phospholipid synthesis take place in peroxisomes; synthesis continues in the endoplasmic
reticulum (ER). (C) Enzymes involved in purine catabolism in different vertebrate groups and their excretion products. Note that the cellular localisation (cytosolic,
peroxisomal) of these enzymes varies amongst vertebrate species. Xanthine oxidase is cytosolic (Cyt) in H. sapiens (Hs) and D. rerio (Dr). Urate oxidase, HIUase,
OHCU decarboxylase, and allantoicase are supposed to localise to peroxisomes (PO) in D. rerio, but are absent in H. sapiens (asterisks) (see also Table 1).
Allantoinase is cytosolic in D. rerio, but absent in H. sapiens (asterisks). AADHAPR, alkyl-dihydroxyacetone phosphate reductase; ADHAPS, alkyl-dihydroxyacetone
phosphate synthase; DHAP, dihydroxyacetone phosphate; DHAPAT, dihydroxyacetone phosphate acyltransferase; FAR1/2, fatty acyl-CoA reductases 1/2; HIUase,
5-hydroxyisourate hydrolase; OHCU decarboxylase, 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase (adapted from Islinger et al., 2010).

F1RAK0_DANRE) with a weak PTS1 (ANM), which appears
to be an N-terminal tail-anchored membrane protein localising
to multiple organelles (Supplementary Table S3). Mammalian
ACSL1, the most abundant acyl-CoA synthetase in liver, is
according to numerous proteomics studies also supposed to be
peroxisomal, and possesses a TMD at the N-terminus (Watkins
and Ellis, 2012; Yifrach et al., 2018).

In D. rerio four transporters homologous to the mammalian
peroxisomal transporters ABCD1 (Abcd1, F1RBC8_DANRE),
ABCD2 (Abcd2, E7F973_DANRE), and ABCD3 (Abcd3a,
A0A0R4IRL4_DANRE; Abcd3b, B0UY91_DANRE) were
identified (Figure 2, Table 1, and Supplementary Table S3).
Defects in human ABCD1, required for the uptake of very
long-chain fatty acids (VLCFA) into peroxisomes, cause
adrenoleukodystrophy (ALD), a devastating neurodegenerative
disease with central and peripheral demyelination (Engelen et al.,
2014). It has been shown that D. rerio Abcd1 is highly conserved
at the amino acid level with human ABCD1, and during
development is expressed in corresponding regions/tissues
including the central nervous system (CNS) and adrenal
glands (Strachan et al., 2017). A zebrafish model of ALD has
recently been established that recapitulates key features of the

human disease pathology. Similar to ALD patients, zebrafish
abcd1 mutants have elevated VLCFA levels, develop a motor
impairment, and show reduced life expectancy. Furthermore,
CNS development was disrupted, with reduced numbers of
oligodendrocytes with altered patterning, hypomyelination, and
increased apoptosis (Strachan et al., 2017). The zebrafish ALD
model has been successfully used in a drug screen to identify
compounds to alleviate lipid toxicity (Raas et al., 2021).

In mammals, ABCD1 and ABCD2 are involved in the
transport of long and very long chain fatty acids, whereas ABCD3
is suggested to mediate the transport of branched chain acyl-
CoA, the bile acid intermediates di- and tri-hydroxycholestanoyl-
CoA (DHCA and THCA), and medium to long-chain acyl-
CoA (Violante et al., 2019). Under normal conditions, the
latter are preferentially degraded in mitochondria. ABCD3
defects have been linked to hepatosplenomegaly, a liver disease
(Ferdinandusse et al., 2015). ABCD4 (Abcd4, K9M7F0_DANRE),
the fourth member of the ABC subfamily D, is no longer
considered a peroxisomal protein. It localises to the ER and
lysosomes, and is involved in vitamin B12 transport with defects
leading to vitamin B12-deficiency anaemia in man and zebrafish
(Kawaguchi and Morita, 2016; Choi et al., 2019).
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In addition to the ABC transporters, the acyl-CoA binding
domain containing proteins Acbd5a, Acbd5b, and Acbd4 have
been identified in D. rerio (Figure 2, Table 1, and Supplementary
Table S3). Human ACBD5 is required for VLCFA-acyl-CoA
import via ABCD1, and its loss results in a new peroxisomal
disorder, ACBD5 deficiency, with accumulation of VLCFA and
neurological abnormalities (Ferdinandusse et al., 2017; Yagita
et al., 2017; Darwisch et al., 2020). Furthermore, in mammals
ACBD5 and ACBD4 are involved in the tethering of peroxisomes
to the ER and membrane contact site formation (Costello et al.,
2017b,c; Hua et al., 2017). Like human ACBD4/5, the zebrafish
proteins are also tail-anchored membrane proteins.

Similar to mitochondrial β-oxidation, the peroxisomal
pathway degrades fatty acids in four consecutive steps, namely
by (i) oxidation, (ii) hydration, (iii) dehydrogenation, and
(iv) thiolytic cleavage (Figure 3A). The first step involves
acyl-CoA oxidases (ACOX), and we identified three ACOX in
D. rerio: Acox1 (F1R071_DANRE), Acox3 (F1QXK3_DANRE)
and an ACOX-like protein (Acoxl, A0A2R8QDD9_DANRE;
F1R4J4_DANRE) (Table 1 and Supplementary Table S3).
Alternative splicing isoforms of zebrafish Acox1 were described
suggesting tissue-specific modulation of Acox1 activity (Morais
et al., 2007). Acox1, Acox3 and Acoxl display canonical
PTS1 (SKL, AKL, SKL), whereas the other Acoxl isoform
(F1R4J4_DANRE) lacks a PTS1 or PTS2. Humans have four acyl-
CoA oxidases (ACOX1, ACOX2, ACOX3, ACOXL/ACOX4),
with ACOX1 preferentially degrading straight-chain fatty
acids with different chain lengths, while ACOX2 is the only
human acyl-CoA oxidase involved in bile acid biosynthesis,
and both ACOX2 and ACOX3 are involved in the degradation
of branched-chain fatty acids (Ferdinandusse et al., 2018).
We noticed that for human ACOXL/ACOX4, which is not
well studied (Van Veldhoven, 2010) similar to D. rerio Acoxl,
a C-terminally extended isoform exists (Q9NUZ1-4), which
possesses a PTS1 (AKL). If the other ACOXL/Acoxl isoforms
lacking a PTS1 also localise to peroxisomes, e.g., in a complex
with the PTS1-targeted isoforms, remains to be elucidated.

In animals, the second and third step is mediated by D-
and L-bifunctional enzymes (D- and L-BP), which both function
concomitantly as an enoyl-CoA hydratase and a 3-hydroxyacyl
CoA dehydrogenase, but display different substrate specificity
(Figure 3A). Both are present in D. rerio [Hsd17b4 (Dbp),
Ehhadh (Lbp)] and contain a PTS1 (Table 1 and Supplementary
Table S3). Knockdown of Dbp in zebrafish resulted in defective
craniofacial morphogenesis, growth retardation, and abnormal
neuronal development similar to D-BP mutations in humans
(Kim et al., 2014). Furthermore, the development of blood,
blood vessels, and endoderm-derived organs (e.g., liver, pancreas)
was impaired suggesting that zebrafish is a useful model to
study the role of peroxisomes during vertebrate development
(Kim et al., 2014).

In humans, two peroxisomal thiolases, 3-ketoacyl-CoA-
thiolase 1 (pTH1, ACAA1) and SCPx (sterol carrier protein x;
pTH2), can exert the last step. pTH1 metabolizes only straight
chain fatty acids, whereas the branched chain fatty acids and
bile acid precursors (pristanic acid, DHCA, and THCA) are
solely cleaved by SCPx. Sterol carrier protein 2 (SCP2) is a

second isoform from the same gene lacking the N-terminal
thiolase domain. SCP2 is a multilocalised protein described in
peroxisomes, the cytosol, the ER and potentially mitochondria as
it harbours a putative MTS at its N-terminus. D. rerio possesses
a 3-ketoacyl-CoA thiolase (Acaa1) carrying a PTS2 as well as two
sterol carrier proteins (Scp2a, Scp2b) with a PTS1 (AKL) (Table 1
and Supplementary Table S3). Scp2a represents the traditional
SCPx including the thiolase domain (538aa), whereas Scp2b
represents a shorter form (142aa) lacking the thiolase domain.
The crystal structure of the zebrafish Scp2-thiolase was recently
revealed (Kiema et al., 2019). Expression changes of scp2a and
acaa1, as well as the β-oxidation genes ehhadh (L-BP), hsd17b4
(D-BP), acox1 and acox3 were recently reported in a zebrafish
model for pex2 deficiency (Takashima et al., 2021).

The above mentioned proteins are involved in the β-
oxidation of straight-chain saturated fatty acids and α-methyl
branched-chain fatty acids with the methyl group in the (2S)-
configuration (Wanders and Waterham, 2006). However, the
β-oxidation of (2R)-methyl branched-chain FAs and unsaturated
FAs requires auxiliary enzymes (Table 1). As direct oxidation
of (2R)-methyl branched-chain fatty acids is not possible,
the peroxisomal 2-methylacyl-CoA racemase (AMACR), which
converts (2R)- into (2S) branched-chain acyl-CoAs, is required.
The D. rerio 2-methylacyl-CoA racemase (Amacr) possesses
a PTS1 (ARL) (Supplementary Table S3) and a potential
N-terminal mitochondrial targeting signal (Amery et al., 2000).

Peroxisomes also contain enzymes to remove the double
bonds in mono- and polyunsaturated fatty acids (Wanders
and Waterham, 2006; Chornyi et al., 2020). Degradation of
fatty acids with an internal double bond at an even-numbered
position involves a state of two conjugated double bonds,
which are subsequently processed by 2,4-dienoyl-CoA reductase
(DECR2) and 13,12-enoyl-CoA isomerase (PECI) before re-
entering β-oxidation in the hydratase step. Both enzymes
(Decr2, Eci2) are present in zebrafish both containing a PTS1
(Table 1 and Supplementary Table S3). Like the human
enzyme, the D. rerio 13,5, 12,4-dienoyl-CoA isomerase (Ech1)
is likely involved in the processing of fatty acids with a
double bond at an odd-numbered position, and possesses a
canonical PTS1 (SKL) (Table 1 and Supplementary Table S3).
Furthermore, an additional gene encoding a potential enoyl-CoA
isomerase/hydratase (zgc:101569, F1R2G5_DANRE) with a PTS1
(SKL) was identified (Supplementary Table S3).

After shortening of the fatty acid chains to medium chain fatty
acyl-CoA by the peroxisomal β-oxidation pathway, the fatty acids
are conjugated to carnitine, exit the peroxisomes, and undergo
further β-oxidation in mitochondria (Houten et al., 2020). The
D. rerio carnitine O-acetyltransferase a (Crata) displays a PTS1
(AKL), whereas the carnitine O-acetyltransferase b (Cratb) does
not possess a PTS1. D. rerio carnitine octanoyltransferase (Crot)
has a weak PTS1 (SQL) (Table 1 and Supplementary Table S3).
Crot is likely involved in the export of the medium chain fatty
acids, whereas Crat is most probably involved in the export of the
acetyl-CoA units generated by β -oxidation.

Alternatively, acyl-CoA products can be hydrolysed by
acyl-CoA thioesterases (ACOTs) that generate a free carboxylate
that can cross the peroxisomal membrane (Houten et al., 2020).
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Similar to humans, D. rerio Acot8 contains a canonical PTS1
(SKL), whereas a homologue of HsACOT4 was not identified
(Table 1 and Supplementary Table S3). Interestingly, an
orthologue of bile acid-CoA:amino acid N-acyltransferase
(BAAT), which in humans converts choloyl-CoA and
deoxycholoyl-CoA to taurine- or glycine-conjugated cholic
acid, or deoxycholic acid, was not identified in D. rerio (Table 1
and Supplementary Table S3). As Cypriniformes (including
D. rerio) lack C24 bile acids (which are formed by side chain
shortening in human peroxisomes), a peroxisomal contribution
to bile acid synthesis in zebrafish is rather unlikely (Hagey et al.,
2010). This is also supported by the absence of ACOX2, which in
humans is involved in bile acid biosynthesis. Comparison with
various other fish species demonstrate that BAAT is found in
neither of these species (Figure 4D).

Mitochondrial β-oxidation relies on acyl-CoA dehydrogenases
(ACADs). Interestingly, peroxisomes also harbour an acyl-CoA
dehydrogenase, ACAD11 (Camões et al., 2015). Like the human
ACAD11, the D. rerio Acad11 has a canonical PTS1 (AKL)
(Table 1 and Supplementary Table S3). If the enzyme contributes
to the 1st step of peroxisomal β-oxidation is not known; however,
this could circumvent generation of H2O2 by peroxisomal ACOX
(Camões et al., 2015). A potential Acad11 isoform was also
identified, which only contains the N-terminal aminoglycoside
phosphotransferase (APH) domain (E9QBY4_DANRE) but lacks
a PTS1. Fungi still contain independent enzymes with the APH
and ACAD function, which appear to be fused during evolution.
However, in fungi both individual enzymes possess a PTS1
(Camões et al., 2015).

Whereas a mitochondrial fatty acid β-oxidation pathway is
absent in yeast and plants, which solely rely on the peroxisomal
pathway, it is present in animals and many other fungi.
Zebrafish also encodes a set of homologous enzymes of human
mitochondrial β-oxidation, e.g., short-chain to very long-chain
specific acyl-CoA dehydrogenases (Acadvl, F1Q8J4_DANRE;
Acadl, A3KQR0_DANRE, Acadm, A2CG95_DANRE;
Acads Q6AXI7_DANRE) for the initial dehydrogenation
reaction of fatty acids, and enoyl-CoA hydratases (Hadhaa,
A7YT47_DANRE; Echs1, Q7ZZ04_DANRE) for the 2nd step.
Zebrafish candidates for the third and fourth reaction of
mitochondrial β-oxidation are again Hadhaa or 3-hydroxyacyl-
CoA dehydrogenase (Hadh, Q6DI22_DANRE) and the
3-ketoacyl-CoA thiolases (Hadhb, A0A2R8RRC9_DANRE;
Acat1, Q6AZA0_DANRE) and acetyl-CoA acyltransferase
2 (Acaa2, B0S5C5_DANRE). Hence, fatty acid substrate
spectra metabolized in peroxisomes or mitochondria seem
to closely resemble the situation in human. This is also
corroborated by the specific increase of very long chain fatty
acids in zebrafish knockout models for peroxisomal disorders
(Takashima et al., 2021).

Peroxisomal Fatty Acid Alpha-Oxidation
Our comprehensive analysis revealed candidate proteins for
several other important metabolic pathways in D. rerio
peroxisomes (Table 1). Due to a methyl group at position
3, 3-methyl branched-chain fatty acids such as phytanic acid
cannot undergo β-oxidation directly. Peroxisomal α-oxidation is

required to remove the last carbon atom generating a 2-methyl
branched-chain fatty acid, which can be β-oxidised (Wanders
and Waterham, 2006). D. rerio possesses a phytanoyl-CoA
2-hydroxylase (Phyh) carrying a PTS2 for hydroxylation of
phytanoyl-CoA (Table 1 and Supplementary Table S3). The
generated 2-hydroxyphytanoyl-CoA is cleaved by 2-hydroxyacyl-
CoA lyase (Hacl1) containing a PTS1 (SNL) to pristanal
and formyl-CoA. Pristanal is oxidised to pristanic acid by
a peroxisomal aldehyde dehydrogenase, which in humans is
FALDH, a tail-anchored membrane protein with a peroxisomal
and an ER-targeted isoform (Costello et al., 2017b). D. rerio
possesses two homologous fatty aldehyde dehydrogenases
(Aldh3a2a, Aldh3a2b), which are also tail-anchored membrane
proteins (Table 1 and Supplementary Table S3). However, their
peroxisomal or ER localisation needs to be determined.

Biosynthesis of Ether Phospholipids
The biosynthesis of ether phospholipids (e.g., myelin sheath lipids
and plasmalogens) is a characteristic feature of peroxisomes in
animals, but supposed to be absent in plants and yeast (Dorninger
et al., 2020). It requires metabolic cooperation of peroxisomes
with the ER. The formation of the typical ether bond in ether
phospholipids is catalysed by the peroxisomal enzyme alkyl-
dihydroxyacetone phosphate synthase (alkyl-DHAP synthase)
(Figure 3B). In D. rerio, this key enzyme (Agps) possesses
a PTS2 (Table 1 and Supplementary Table S3). Formation
of the two substrates for alkyl-DHAP synthase, namely acyl-
DHAP and a long chain alcohol, is catalysed by DHAP
acyltransferase (DHAPAT) (D. rerio Gnpat) carrying a PTS1
(ARL), and FAR1 or FAR2, two different acyl-CoA reductases
(Table 1 and Supplementary Table S3). Like human FAR1,
D. rerio Far1 (A0A0R4ICF6_DANRE) appears to be a tail-
anchored membrane protein; however, a potential Far1 isoform
without a TMD and a PTS1 (SRL) may exist (F1QSU9_DANRE)
(Supplementary Table S3). An orthologue of human FAR2
was also identified (si:dkey-97m3.1, Q1L8Q4_DANRE), which
appears to be a tail-anchored membrane protein as well (Table 1
and Supplementary Table S3). The DHAP-backbone (precursor
compound) is reduced by the enzyme acyl/alkyl-DHAP reductase
(AADHAPR) encoded by DHRS7B (dehydrogenase/reductase
SDR family member 7B) at the cytosolic face of the peroxisomal
or ER membrane. The D. rerio Dhrs7b possesses an N-terminal
TMD (Table 1 and Supplementary Table S3).

Glycolate/Glyoxylate Metabolism and
Detoxification
Furthermore, several enzymes involved in glycolate/glyoxylate
metabolism and detoxification have been identified including
hydroxyacid oxidase 1 and 2 (Hao1, Hao2) with a PTS1
(Tables 1, 2 and Supplementary Table S3). Humans express
three 2-hydroxyacid oxidases (HAOX1-3) in a tissue-specific
manner; an orthologue of HAOX3, which may have evolved
from Hao2, was not found in zebrafish. These flavin-linked
enzymes convert 2-hydroxy acids to 2-keto acids thereby
reducing molecular oxygen to hydrogen peroxide. HAOX1
shows a preference for the two-carbon substrate, glycolate,
but is also active on 2-hydroxy fatty acids, whereas HAOX2
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FIGURE 4 | Comparison of PTS1 motifs between D. rerio and H. sapiens: To depict the difference in the average abundance of amino acids at different positions of
the PTS1 in fish (A) and humans (B), we selected proteins from each species, which were predicted to harbour a PTS1 (Neuberger et al., 2003), and depicted them
as WebLogo (http://weblogo.threeplusone.com/create.cgi). (C) A comparison of the numerical values of the PTS1-predictions for those proteins is plotted for
H. sapiens (x-axis) and D. rerio (y-axis) and depicted relative to the threshold for the evaluation of targeted proteins (>0, red) or the “twilight zone” (–10 < x < 0,
grey); proteins with negative prediction are highlighted. (D) Systematic overview of orthologous fish proteins, which were either not found in D. rerio (ZADH2/PTGR3)
or lack a PTS1 (Usp-L, long isoform; Prdx-5). (+) or (–) indicate presence or absence of the protein; 2x indicates 2 variants; traditional PTS1 identified (green) or not
found (red); non-canonical PTS1 (yellow). (E) Schematic representation of the two isoforms of ubiquitin carboxyl-terminal hydrolase 2 (USP2) in H. sapiens (blue) and
D. rerio (red). No PTS1 was found in the long isoform of Usp2 (Usp2-L). (F) Schematic representation of the two isoforms of peroxiredoxin-5 (Prdx-5) in H. sapiens
(green) and D. rerio (orange). The long variant harbours an additional mitochondrial targeting signal, whereas the C-terminal sequence is identical. (G,H) Sequence
comparison of the C-terminal end of USP2 orthologues (G) and PRDX5-orthologues (H). The loss of the PTS1 in Usp2-L is unique for D. rerio, whereas the PTS1 of
human PRDX5 is found only in more ancient fish species.

displays a preference for 2-hydroxypalmitate, and HAOX3 for
the medium chain substrate 2-hydroxyoctanoate. These findings
suggest that HAOX1-3 are involved in the oxidation of 2-hydroxy
fatty acids and may also contribute to fatty acid α-oxidation
(Jones et al., 2000).

Zebrafish also contains a putative peroxisomal
alanine:glyoxylate aminotransferase (AGT) (Agxta, F1QY24

_DANRE) with a weak PTS1 (SRV), a key enzyme to prevent
oxalate accumulation (Table 1 and Supplementary Table S3).
The peroxisomal AGT converts glyoxylate generated in
peroxisomes (by HAOX1/glycolate oxidase) into glycine using
alanine as the primary amino group donor (Wanders and
Waterham, 2006). This prevents the conversion of glyoxylate
into oxalate, which is toxic. AGT enzymatic activities associated
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TABLE 2 | Candidate peroxisomal oxidases in zebrafish.

Name Protein symbol Uniprot ID ROS/NOS PTS1 Localisation (predicted)

Acyl-CoA oxidase 1 Acox1 F1R071_DANRE H2O2 SKL PO

Acyl-CoA oxidase 3 Acox3 F1QXK3_DANRE H2O2 AKL PO

Acyl-CoA oxidase-like Acoxl F1R4J4_DANRE H2O2 – PO?

L-α-Hydoxyacid oxidase 1 Hao1 Q7SXE5_DANRE H2O2 SRI PO

L-α-Hydoxyacid oxidase 2 Hao2 F1QCD8_DANRE H2O2 SRL PO

D-amino-acid oxidase 1 Dao1 Q4V981_DANRE H2O2 SRL PO

D-amino-acid oxidase 2 Dao2 Q6NY97_DANRE H2O2 SRL PO

D-amino-acid oxidase 3 Dao3 Q6P009_DANRE H2O2 SRL PO

D-aspartate oxidase Ddo A0A0R4IZE6_DANRE H2O2 ARL PO

L-Pipecolic acid oxidase Pipox A7MBQ2_DANRE H2O2 SSL PO

Polyamine oxidase Paox B8JJQ4_DANRE H2O2 SKL PO

Urate oxidase Uox Q6DG85_DANRE H2O2 ARM PO

Xanthine oxidase Xdh A0A2R8Q1T4_DANRE H2O2, NO•, O2•− – Cyt

L-gulonolactone oxidase (ascorbate synthesis) Gulo – H2O2 – absent

Inducible nitric oxide synthase (NOS2) (NO•, O2•− ) not listed (no PTS, Cyt, PO?).

with mitochondria are also required to utilize certain amino
acids for gluconeogenesis. Interestingly, zebrafish encode
another putative AGT (agxtb, Q6PHK4_DANRE) which lacks
a PTS1 but possesses an N-terminal MTS. Mitochondrial
AGT can transaminate alanine and serine to pyruvate and
hydroxypyruvate for gluconeogenesis. The peroxisomal and/or
mitochondrial localisation of AGT in animals reflects the
organism’s diet. Glyoxylate, as a metabolite of glycolate, is taken
up by the consumption of plants, whereas protein-rich diets
from animal sources deliver high quantities of amino acids
such as glycine, alanine and serine. Therefore, AGT localises to
mitochondria in many carnivores, to peroxisomes in herbivores,
and to both organelles in omnivores (Danpure, 1997). In contrast
to zebrafish, mammals contain only a single AGT gene, and
dual localisation of AGT, e.g., in rat or marmoset is often
mediated by alternative transcription/translation generating a
PTS1 or MTS. In humans, AGT is exclusively peroxisomal; AGT
deficiency results in primary hyperoxaluria, with accumulation
and precipitation of oxalate in the liver and kidney, ultimately
leading to kidney failure (Dindo et al., 2019). Hyperoxaluria
type 1 can also be caused by a polymorphism (Pro11Leu) in the
AGT gene in combination with the mutation Gly170Arg, which
creates a MTS mislocalising the enzyme to mitochondria in
homozygote patients (Leiper and Danpure, 1997). Furthermore,
we identified a malate synthase-like protein (Mls1) with a PTS1
(ARL) in D. rerio, which is absent in H. sapiens (Table 1 and
Supplementary Figure S3A). The enzyme can convert glyoxylate
and acetyl-CoA into malate.

Catabolism of D- and L-Amino Acids
Like mammals, zebrafish peroxisomes also appear to contain
several enzymes involved in the catabolism of D- and L-amino
acids. These include three putative D-amino acid oxidases (dao1-
3) carrying a SRL, which oxidize the D-isomers of neutral
and basic amino acids, as well as D-aspartate oxidase (Ddo),
which oxidizes the D-isomers of acidic amino acids such as
D-aspartate, D-glutamate, and N-methyl-D-aspartate that have

important neuroregulatory functions in the central nervous
system (Tables 1, 2 and Supplementary Table S3). Those
enzymes generate the corresponding keto-acids, ammonia, and
hydrogen peroxide (Wanders and Waterham, 2006). We also
identified enzymes, which may be involved in the degradation
of L-amino acids, e.g., leucine (Hmgcl, F1QTF0_DANRE)
(Table 1 and Supplementary Table S3). For human peroxisomal
hydroxymethylglutaryl-CoA lyase (HMGCL), a role in the
regulation of ketone body metabolism has been suggested
(Arnedo et al., 2019). Furthermore, a D. rerio L-pipecolate
oxidase (Pipox) with a weak PTS1 (SSL) was identified, which
likely oxidizes L-pipecolate to 11-piperideine-6-carboxylate
(Wanders and Waterham, 2006; Tables 1, 2 and Supplementary
Table S3). The enzyme is present in human and primate
peroxisomes but is mitochondrial in rabbit liver.

Polyamine Oxidation
Zebrafish also contain a candidate polyamine oxidase (Paox)
with a canonical PTS1 (SKL), which in humans is involved in
the degradation of spermine and spermidine (Wanders and
Waterham, 2006; Tables 1, 2 and Supplementary Table S3).
These natural polyamines are present in all eukaryotic
cells and support essential functions in cell proliferation,
differentiation and immune regulation, which requires tight
control of their levels.

Purine Catabolism
Peroxisomes also harbour enzymes for purine catabolism. In
fish, amphibians and many invertebrates purine degradation is
catalysed by xanthine oxidase, urate oxidase, allantoinase, and
allantoicase, which produce the metabolites uric acid, allantoin,
allantoic acid and urea as well as ureidoglycolate (Islinger
et al., 2010) (see overview Figure 3C). In freshwater fish such
as zebrafish xanthine oxidase and allantoinase are cytosolic
enzymes, whereas urate oxidase (Uox, Q6DG85_DANRE) and
allantoicase (Allc, Q6DGA6) are peroxisomal containing a PTS1
(Tables 1, 2 and Supplementary Table S3; Hayashi et al., 1989).
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The structure and activity of zebrafish urate oxidase was recently
reported (Marchetti et al., 2016). Most mammals excrete allantoin
and do not express allantoinase and allantoicase (Figure 3C).
Furthermore, humans (as well as other primates, birds and
reptiles) do not possess a functional uricase gene, thus excreting
uric acid (Hayashi et al., 2000; Islinger et al., 2020). This makes
humans susceptible to gout or urate kidney stones.

Other enzymes associated with urate degradation have
recently been identified (Ramazzina et al., 2006; Figure 3C). In
contrast to humans, zebrafish also possess a 5-hydroxyisourate
hydrolase (Uraha) involved in the degradation of uric acid to
(S)-allantoin (Table 1 and Supplementary Table S3). Following
urate oxidation to 5-hydroxyisourate (HIU), which is catalysed by
urate oxidase, hydrolysis of HIU to 2-oxo-4-hydroxy-4-carboxy-
5-ureidoimidazoline (OHCU) and subsequent decarboxylation
of OHCU to (S)-allantoin are catalysed by HIUase and OHCU
decarboxylase (Urad), respectively (Table 1 and Supplementary
Table S3). The structure of the D. rerio HIUase and OHCU
decarboxylase has been revealed (Zanotti et al., 2006; Cendron
et al., 2007). D. rerio Uraha contains a putative PTS2, which
is also found in the amphibian or mammalian proteins
(Ramazzina et al., 2006), whereas D. rerio Urad possesses
a predicted weak PTS1 (TKL). Interestingly, inactivation by
pseudogenization of the uricase gene (see above) and the HIUase
and OHCU decarboxylase genes of the pathway occurred during
hominoid evolution.

To verify the functionality of these targeting signals, we
generated EGFP reporter proteins with the respective PTS2 or
PTS1 sequence (PTS2-DrUraha; PTS1-DrUrad). Expression in
COS-7 cells revealed a predominantly cytoplasmic localisation
of PTS1-DrUrad; however, peroxisomes were also labelled
confirming that the PTS1 (TKL) is weak but functional
(Supplementary Figure S2). Surprisingly, PTS2-DrUraha was
not targeted to peroxisomes suggesting that the PTS2 may not
be functional in zebrafish (Supplementary Figure S2).

Oxygen and ROS Metabolism
Peroxisomes harbour a number of oxidases that reduce oxygen
to hydrogen peroxide (Table 2), thus contributing to oxygen and
ROS metabolism (Antonenkov et al., 2010). The H2O2 produced
can be decomposed by several peroxisomal enzymes. The key
enzyme is catalase, a heme-binding tetrameric enzyme, which
can perform a catalytic (2H2O2 → O2 + 2H2O) or peroxidatic
reaction (H2O2 + AH2 → A + 2H2O), in which the conversion
of H2O2 to H2O is coupled to the oxidation of a hydrogen
donor (AH2) (e.g., ethanol, methanol, formaldehyde, formate,
nitrite). Like other organisms, D. rerio catalase (Cat) contains
a non-canonical, less effective PTS1 (SKM), which is supposed
to allow proper folding of the protein prior to peroxisomal
import (Williams et al., 2012; Table 1 and Supplementary
Table S3). The peroxidatic reaction of catalase is exploited
for diaminobenzidine (DAB) cytochemistry to specifically label
peroxisomes for light- and electron microscopy (Fahimi, 2009),
and has been successfully applied to identify peroxisomes in
zebrafish tissues (Braunbeck et al., 1990; Krysko et al., 2010).

Xanthine oxidase, which generates superoxide anions, is likely
not peroxisomal in zebrafish, and localises to the cytosol instead

(Table 2). Superoxide radicals can be inactivated by superoxide
dismutases. The presence of Cu/Zn-SOD and Mn-SOD activities
in peroxisomes from mammals has been reported (Schrader
and Fahimi, 2006). Cu/Zn-SOD1, which does not possess a PTS
signal, is imported piggy-back into peroxisomes by its copper
chaperone which carries a PTS1 (Islinger et al., 2009), but also
localises to the cytosol, nucleus and mitochondria. A candidate
copper chaperone for SOD is also present in zebrafish (Ccs,
A0A0R4IHZ8_DANRE) showing a PTS1 (SHL), as well as
superoxide dismutase (Sod1, O73872-SODC_DANRE) lacking a
PTS1 (Table 1 and Supplementary Table S3). By contrast, Mn-
SOD (SOD2) has recently been reported to exclusively localize to
mitochondria in mice and men (Karnati et al., 2013).

Peroxisomes also contain nitric oxide (NO) synthase activity.
Zebrafish NO synthases (Nos2a, Nos2b) do not possess a PTS1,
however, the molecular mechanism of NO synthase targeting
is currently unclear, and the enzyme may present a source of
superoxide radicals in peroxisomes (Fransen et al., 2012; Table 1
and Supplementary Table S3).

Peroxiredoxins are a family of antioxidant proteins
ubiquitously conserved in a wide variety of organisms ranging
from bacteria to humans. In zebrafish, six peroxiredoxins
(Prdx1-6) have been identified. Prdx1 is a highly abundant
cytosolic thioredoxin-dependent peroxidase and appears to be
more efficient at removing H2O2 and organic hydroperoxides.
Prdx1 is important for vascular development in zebrafish
(Huang et al., 2017), and has a stimulatory role in the initiation
of adaptive humoral immunity (Liu et al., 2018). Different
isoforms of human peroxiredoxin-5 exist which localise to
the cytosol, mitochondria or peroxisomes. The peroxisomal
isoform possesses a PTS1 (Yamashita et al., 1999), whereas the
D. rerio Prdx5 (Prdx5, F1QCE3_DANRE) lacks a PTS1 or PTS2
(Figure 4, Table 1, and Supplementary Table S3). Thus, neither
of the D. rerio Prdx1-6 appears to possess a PTS1.

Peroxisomes, in addition to mitochondria, also contain
glutathione S-transferase kappa (GSTK1), which is supposed
to catalyse the conjunction of xenobiotics and lipid peroxide
products with glutathione for detoxification (Fransen et al.,
2012). The peroxisomal localisation of GSTK1 depends on a PTS1
(Morel et al., 2004), which is also present in D. rerio Gstk1 (PTS1
AKM) (Table 1 and Supplementary Table S3).

Finally, a candidate for D. rerio epoxide hydrolase 2
(Ephx2) with a PTS1 has been identified (Table 1 and
Supplementary Table S3). In mammals, EPHX2 localises to
the cytosol and peroxisomes carrying a weak PTS1 (Mullen
et al., 1999). The homodimeric enzyme is supposed to
detoxify fatty-acid derived epoxides converting them to the
corresponding dihydrothiols. Downregulation or inhibition of
epoxide hydrolase in zebrafish impaired the development of the
caudal vein plexus (Frömel et al., 2012).

Peroxisomal Proteases
We also identified D. rerio candidate proteins for the three
peroxisomal proteases identified so far. Whereas insulin-
degrading enzyme (Ide) may degrade oxidised proteins in
peroxisomes, Lon protease homolog 2 (Lonp2) is an ATP-
dependent protease that mediates the selective degradation of
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matrix proteins damaged by oxidation (Bartoszewska et al., 2012)
as well as sorting and processing of PTS1-containing proteins
(Omi et al., 2008). Trypsin domain-containing 1 (Tysnd1)
processes several PTS1-containing proteins, cleaves N-terminal
presequences from PTS2-containing protein precursors, and
proteolytic processing of β-oxidation enzymes (Kurochkin et al.,
2007; Okumoto et al., 2011). All three D. rerio proteases possess a
PTS1 (Table 1 and Supplementary Table S3).

Carbohydrate Metabolism
Peroxisomes also contain enzymes involved in carbohydrate
metabolism, for example the two pentose phosphate
pathway enzymes, glucose-6-phosphate dehydrogenase
and 6-phosphogluconate dehydrogenase (Wanders and
Waterham, 2006). It is supposed that these enzymes provide
intraperoxisomal NADPH from NADP+, which is generated
during beta-oxidation of unsaturated fatty acids by 2,4-
dienoyl-CoA reductase (DECR2) and through conversion of
phytenoyl-CoA into phytanoyl-CoA by trans-2-enoyl-CoA
reductase (PECR). Whereas the candidate D. rerio glucose
6-phosphate dehydrogenase (G6pd) possesses a weak PTS1
(HKL), the candidate 6-phosphogluconate dehydrogenases (Pgd)
do not possess a PTS1 (Table 1 and Supplementary Table S3).
Alternatively, intraperoxisomal NADPH can be regenerated
by isocitrate dehydrogenase 1 (IDH1) in a peroxisomal 2-
oxoglutarate/isocitrate NADP(H) redox shuttle (reviewed in
Chornyi et al., 2020). The D. rerio Idh1 contains a PTS1 (PKL)
indicating that this shuttle system also exists in zebrafish (Table 1
and Supplementary Table S3).

NADH, which is produced from NAD+ during peroxisomal
α- and β-oxidation, may be reoxidised to NAD+ by different
NAD+-dependent dehydrogenases, which have been reported
to reside in human peroxisomes and may contribute to a
NAD+/NADH shuttle system: (i) lactate dehydrogenase B
(LDHB), which converts pyruvate into lactate, (ii) malate
dehydrogenase 1 (MDH1), which converts oxaloacetate into
malate, and (iii) glycerol-3-phosphate dehydrogenase 1 (GPD1),
which converts DHAP into G3P (reviewed in Chornyi et al.,
2020). Human LDHA and LDHB both lack PTS signals, but
for LDHB a translational read-through of the stop codon was
reported to result in an alternative, C-terminally extended
isoform with a PTS1 (Schueren et al., 2014). Similarly,
MDH1 does not possess a PTS, but translational read-through
to generate an extended isoform with a functional PTS1
has been reported (Hofhuis et al., 2016). Interestingly, an
isoform of malate dehydrogenase 1Aa (Mdh1x, NP_001303854.1)
carrying a PTS1 (SRL) was identified in zebrafish, which is
generated by translational read through of the UGA stop
codon to the downstream UAA termination codon generating
a C-terminally extended isoform (Stiebler et al., 2014; Table 1
and Supplementary Table S3). Whereas a Gpd1-based redox
shuttle has been described in yeast (with ScGpd1 carrying a
PTS2), it is unclear how mammalian Gpd1 targets peroxisomes
as it lacks a PTS and does not show translational read-
through (reviewed in Chornyi et al., 2020). D. rerio Gpd1
(Q567A1_DANRE; Q5XIZ6| GPD1L_DANRE) does not appear
to possess a PTS2 or PTS1 signal. The same applies to the D. rerio

lactate dehydrogenases (Ldhb), and it appears that translational
readthrough and peroxisomal targeting of Ldhb is restricted to
mammals (Hofhuis et al., 2016). Furthermore, the higher degree
of conservation of MDH1 readthrough in comparison to LDHB
readthrough co-evolved with the targeting signal strength of
their respective PTS1. Thus, there is evidence for a peroxisomal
oxaloacetate/malate NAD+/NADH shuttle system in zebrafish,
whereas the peroxisomal localisation of other NAD+-dependent
dehydrogenases and their role in a NAD+/NADH shuttle system
need to be elucidated.

Peroxisomal CoA Transporter
The import and export of small metabolites (such as pyruvate,
lactate, oxaloacetate, malate, DHAP, G3P, isocitrate, and
2-oxoglutarate) is likely mediated by peroxisomal pore-
forming proteins and transporters. D. rerio possesses two
orthologues of the human peroxisomal transmembrane protein
PMP34/SLC25A17 (Slc25a17, A5D6T2_DANRE; Slc25a17-like),
which in zebrafish resulted from gene duplication and function
as a peroxisomal CoA transporter (Kim et al., 2020; Figure 2,
Table 1, and Supplementary Table S3). These members of the
solute carrier protein family (SLC) exhibit six transmembrane
domains, and have been shown to localise to peroxisomes
in zebrafish embryos (Kim et al., 2020). Targeting of PMPs
is mediated by the PMP import receptor/chaperone PEX19.
Knockdown of Slc25a17 impaired development of multiple
organs, including swim bladder, during zebrafish embryogenesis.
Furthermore, the concentration of VLCFA was increased after
Slc25a17 knockdown, whereas the concentration of plasmalogens
was decreased supporting a role in lipid metabolism/cofactor
transport (Kim et al., 2020).

CoA is an important co-factor in peroxisomal lipid
metabolism, which is released during hydrolysis of acyl-
CoA esters by the thioesterases (see section “Fatty acid
β-oxidation”). It is re-used inside peroxisomes (e.g., for the
activation of pristanic acid), or is degraded by one of the
peroxisomal Nudix Hydrolases (NUDT). Orthologues of the
human Nudix Hydrolases NUDT7 and NUDT19/RP2p, two
CoA diphosphohydrolases that degrade CoA and acyl-CoAs to
3′,5′-ADP and 4′-(acyl)phosphopantetheine, are also present in
zebrafish. D. rerio Nudt7 and Nudt19 have a canonical PTS1
(SKL), but the Nudt19 PTS1 signal appears to be weak and may
allow targeting to other subcellular compartments (Table 1 and
Supplementary Table S3). In addition, the pyrophosphatase
NUDT12, which mediates the degradation of NAD+ and
NADH, was reported to target human peroxisomes. However,
the D. rerio Nudt12 does not possess a predicted PTS1 and may
localise to the cytosol.

Peroxisomal Membrane Proteins
Orthologues of the human peroxisomal membrane proteins
PXMP2 (PMP22), PXMP4 (PMP24) and PMP52 (TMEM135)
were also identified in D. rerio (Pxmp2, Pxmp4, Tmem135)
(Figure 2, Table 1, and Supplementary Table S3). PXMP2
is supposed to be a pore-forming protein; PXMP4 and
TMEM135 belong to the Tim17 family and they may be
involved in peroxisomal metabolite transport (reviewed
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in Chornyi et al., 2020; Beasley et al., 2021). Furthermore,
orthologues of human membrane proteins MPV17 and MPV17-
like are present in zebrafish (Mpv17, Mpv17l, Mpv17l2), which
belong to the Mpv/Pxmp2 family (Figure 2, Table 1, and
Supplementary Table S3). Their peroxisomal localisation is
controversial (Iida et al., 2006; Spinazzola et al., 2006; Weiher
et al., 2016), and Mpv1 appears to be an inner mitochondrial
membrane protein (Martorano et al., 2019). It possesses a weak
predicted PTS1 (NKM), but as a multi-pass membrane protein,
peroxisomal targeting would depend on Pex19. The two D. rerio
Mpv17-like proteins are as well multi-pass membrane proteins.

Furthermore, only one orthologue of the human peroxisomal
membrane proteins MARC1/2 is present in D. rerio (Marc1,
Q66HU7_DANRE) (Figure 2, Table 1, and Supplementary
Table S3), which is most likely due to a recent gene duplication in
amniota after the separation from fish. MARC2, which has been
identified in proteomics studies of mammalian peroxisomes,
mediates the reduction of N-hydroxylated drugs in mitochondria
(Havemeyer et al., 2006), but its peroxisomal function is
unknown. Interestingly, MARC2 knockout mice exhibit lower
body weight and are resistant to high-fat-diet induced obesity
linking MARC2 function to the regulation of energy homeostasis
(Rixen et al., 2019). If D. rerio Marc localises to peroxisomes
needs to be determined. Other putative peroxisomal membrane
proteins identified in D. rerio are the mitochondrial antiviral-
signaling protein Mavs, a tail-anchored membrane protein,
which in humans localises to mitochondria and peroxisomes
(Dixit et al., 2010); the AAA-ATPase Msp1/Atad1, which dually
localises to mitochondria and peroxisomes and is involved in
the quality control of tail-anchored membrane proteins (Jiang,
2021); the deubiquitinase Usp30, which is regulating the turnover
of peroxisomes by suppressing basal pexophagy (Marcassa et al.,
2019; Riccio et al., 2019); the putative organic cation transporter
Slc22a21, which may be involved in carnitine transport (reviewed
in Chornyi et al., 2020), Trim37, an E3 ubiquitin-protein
ligase involved in Pex5 mediated peroxisomal matrix protein
import (Wang et al., 2017), and the phospholipase Pnpla8
(Figure 2, Table 1, and Supplementary Table S3). The latter
has been show to localise to mitochondria and peroxisomes,
where it may be involved in the maintenance of the organelle’s
membrane phospholipids, and possesses a canonical PTS1 (SKL)
(Mancuso et al., 2004, 2007). Pnpla8 was suggested to peripherally
associate to the inner leaflet of the peroxisome membrane
after import into the peroxisomal matrix (Mancuso et al.,
2000). Furthermore, Fibronectin type III domain containing
5, a putative single-pass transmembrane protein, containing a
PTS1 (SKV) has been identified (G1K2P4_DANRE) (Table 1 and
Supplementary Table S3). Mouse Fndc5/PeP has been shown
to target peroxisomes via its PTS1 in a Pex5-dependent manner
(Ferrer-Martínez et al., 2002). Murine Fndc5 is also supposed
to target the plasma membrane and contains an N-terminal
signal peptide. Interestingly, N-terminally truncated isoforms
lacking the signal peptide exist in zebrafish (G1K2P4_DANRE)
and humans (Q8NAU1-4). If those isoforms target peroxisomes
via their PTS1/PEX5 or mPTS/PEX19 remains to be elucidated.

L-gulonolactone oxidase, a single pass membrane protein,
is the ultimate enzyme of hepatic ascorbate formation in

ascorbate-synthesizing species. In mouse liver, it localises to
the ER and peroxisomes (Braun et al., 1999). However, the
enzyme is absent in teleost fish and also humans, who do not
synthesize ascorbate (Fracalossi et al., 2001; Tables 1, 2 and
Supplementary Table S3).

Analysis of Peroxisomal Targeting
Signals
After annotation of the peroxisomal protein inventory of
D. rerio, we analysed the peroxisomal targeting signals in more
detail. We revealed that similar to other vertebrates/animals,
the majority of the peroxisomal matrix proteins of D. rerio
contain a PTS1, and only a few possess a PTS2 (Table 1 and
Supplementary Table S3). The latter include peroxisomal 3-
ketoacyl-CoA thiolase (Acaa1), a protein exerting the last step
of peroxisomal fatty acid β-oxidation (see above), phytanoyl-
CoA 2-hydroxylase (Phyh), a key enzyme of peroxisomal fatty
acid α-oxidation, and alkylglycerone-phosphate synthase (Agps),
a key enzyme of peroxisomal ether phospholipid biosynthesis
(Table 1 and Supplementary Table S3). The human orthologues
of these enzymes also possess a PTS2. Furthermore, urate (5-
hydroxyiso-) hydrolase a (Uraha), an enzyme involved in urate
catabolism, which is not expressed in humans, carries a putative
PTS2 (Ramazzina et al., 2006), but may not target peroxisomes in
zebrafish (Supplementary Figure S2). The zebrafish orthologues
of other human proteins with a putative PTS2 (Kv channel-
interacting protein 4 isoform 1; von Willebrand factor A domain-
containing protein 8) do not possess a predicted PTS2.

To verify that the characteristic pattern of PTS1 motifs
was conserved between fish and humans, we compiled the
known human PTS1-carrying matrix proteins and their D. rerio
orthologues and plotted the relative abundance of amino acids
at each position of the PTS1 (Figures 4A,B). The patterns were
very similar, and a direct comparison using SeqLogo6 did also not
suggest any substantial differences (Supplementary Figure S3B).
To visualize the differences in the PTS1 motifs of all proteins
included in this study, we plotted either the prediction of fish
and human PTS1 sequences as x,y-plot (Figure 4C) to show
differences on the population scale or compared them side-by-
side (Supplementary Figure S3A). We found that in a number
of proteins the PTS1 estimation changed from “targeted” to
“twilight,” reflecting a putative reduction in efficiency, whereas
in several proteins a PTS1 was gained or lost. To investigate
the loss of PTS1 signals in selected D. rerio proteins further, we
also included other fish species in our analysis (Figure 4 and
Supplementary Figure S3C).

Overall, our analysis revealed that two well-known
mammalian peroxisomal proteins, bile acid-CoA:amino
acid N-acyltransferase (BAAT) and zinc binding alcohol
dehydrogenase domain containing 2/prostaglandin reductase
3 (ZADH2/PTGR3) are absent in D. rerio (Table 1).
A previous study revealed that mouse PTGR3 is a novel
15-oxoprostaglandin-1(13)-reductase with a critical role in the
modulation of adipocyte differentiation through the regulation
of PPARγ activity (Yu et al., 2013). Whereas BAAT appears to

6https://services.healthtech.dtu.dk/service.php?Seq2Logo-2.0
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be absent in fish, ZADH2 is present in other fish species and
possesses (with the exception of Siluriformes, a sister group of
Cypriniformes) a conserved PTS1 (SKL), which is also present in
the human protein (Figure 4D and Supplementary Figure S3C).
These findings highlight specific alterations in Cypriniform
evolution with respect to peroxisomal protein inventory and
metabolic functions.

Peroxiredoxin 5 (Prdx5) has lost its PTS1 in D. rerio and
in most teleost fish species, whereas human PRDX5 possesses
a PTS1, which is also retained in more ancient fish species
(Figures 4D,F,H) suggesting a subcellular relocation of an
originally peroxisomal protein in teleosts. Ubiquitin carboxyl-
terminal hydrolase 2 (Usp2) has also lost its PTS1 in D. rerio.
This only applies to the long isoform, Usp2-L (XP_005157570.1),
which contains a PTS1 in several other fish species and in
H. sapiens USP2 (Gousseva and Baker, 2003; Figures 4D,E,G).
The short isoform, Usp2-S (Usp2b, F1RDC7_DANRE), possesses
a PTS1 in D. rerio, H. sapiens (USP2-S; NP_004196.4) and in most
other fish species analysed (Figures 4D,E,G).

Other D. rerio proteins with a negative PTS1 score include
Crot, Acsl1, and Nudt12 (Figure 4C and Supplementary
Figure S3A). It should however be noted that the PTS1 signal of
the human orthologues, the carnitine octanoyltransferase CROT
and the acyl-CoA synthetase ACSL1, is unclear and that the
pyrophosphatase NUDT12 has only a weak PTS1.

Peroxisomal proteins with a PTS1 only identified in D. rerio,
but not in H. sapiens, include urate oxidase (Uox), which
is involved in purine catabolism (see above) (Figure 4C and
Supplementary Figure S3A). Due to differences in the secretion
products of purine degradation, several other enzymes of this
pathway are absent in H. sapiens, often through pseudogenization
(Figure 3C and Table 1). Furthermore, a malate synthase-like
protein (Mlsl, A0A0R4IAX5_DANRE) appears to be present in
D. rerio peroxisomes, but is absent in H. sapiens (Figure 4C,
Table 1, Supplementary Figure S3A, and Supplementary
Table S3). Malate synthase is a key enzyme of the glyoxylate
cycle required for carbohydrate synthesis from acetyl-CoA, which
exists in fungi, plants and bacteria. Malate synthase-like genes
have, however, also been identified in genomes from most fish,
amphibiens and marsupials (Kondrashov et al., 2006). In fungi
and plants, malate synthase is localized in peroxisomes. Animal
malate synthase-like proteins are functionally not characterized
and have a patchy distribution of predicted PTS1 sequences,
which we found in teleost fish and marsupials, but not in
amphibians, monotremata and cartilaginous fish. In some
animals, the degradation pathway of purines can lead to the
generation of glyoxylate through the cleavage of allantoic acid
by allantoicase activity (Kunze and Hartig, 2013). A possible
function of Mlsl may thus be to condense the glyoxylate derived
from purine degradation with acetyl-CoA to provide the versatile
metabolite malate.

Other PTS1 containing proteins have an altered targeting
prediction. Compared to the human orthologues, D. rerio Agt,
Decr2, Hsdl2, and Nudt19 have a less efficient predicted PTS1,
whereas Gstk1, Dhrs4, Hsd17b4 (Dbp), and Serhl appear to have a
more efficient PTS1 signal (Table 1, Supplementary Figure S3A,
and Supplementary Table S3).

In summary, our results demonstrate that although the
average properties of PTS1 motifs do not differ significantly
between the species (Figures 4A,B), differences are observed at
the level of the individual proteins as outlined above (Figure 4C
and Supplementary Figure S3A).

Identification of Predicted Novel
Peroxisomal Candidate Proteins in
Zebrafish
Our prediction also contributed to the identification of
potentially novel peroxisomal proteins in zebrafish and humans.
Interestingly, in addition to Acot8 (Table 1 and Supplementary
Table S3), we found several PTS1-containing acyl-CoA
thioesterases in D. rerio (Acot14-18, Acot20) (Table 1 and
Supplementary Tables S3, S4). ACOTs hydrolyze acyl-CoAs
to the free fatty acid and CoA, and are important for the
regulation of their intracellular levels. The identified Acots and
their isoforms all carry a PTS1 (AKL; Acot20: SML), but may
also localise to other compartments such as mitochondria, ER
or the cytosol. (Table 1 and Supplementary Tables S3, S4).
Several human ACOTs as well contain a potential PTS1
sequence: HsACOT2 localises to mitochondria (Hunt et al.,
2006), but its isoforms possess a PTS1 (SKV), and may thus
target mitochondria and peroxisomes. However, the C-terminal
sequence of HsACOT2 is identical to HsACOT1, which localises
to the cytosol and does not target peroxisomes (Hunt et al.,
2006). Of the human ACOTs, ACOT4 and ACOT8 have been
localised to peroxisomes. HsACOT6 (Q3I5F7, A0A2R8Y7H3)
possesses a predicted weak PTS1 (SKI) indicating that other
human ACOT family members may also localise to peroxisomes.
Remarkably, mice possess a gene cluster of six ACOT genes with
three (ACOT3-5) localizing to peroxisomes (Hunt et al., 2006).
When aligned with the mammalian sequences, zebrafish Acot20
appears to be most closely related to the human ACOTs 1–6,
while zebrafish Acot 14-18 build a more independent sequence
cluster. Apparently, multiple gene duplications and subsequent
losses resulted in a complex pattern of the ACOT gene family in
different animals.

We also identified an orthologue of human β-Lactamase-like
protein 2 (LACTB2), a zinc-binding endoribonuclease, which
has recently been localised to mitochondria (Levy et al., 2016).
However, the enzyme has also been identified in proteomics
studies of rat and human liver peroxisomes (Islinger et al.,
2007; Gronemeyer et al., 2013). The D. rerio Lactb2 possesses a
predicted PTS1 (SNL), as do humans (Q53H82; -AHL), whereas
the rat orthologue encodes a mutation (Q561R9; -ASL) (Table 1
and Supplementary Table S3). Myc-RnLACTB2 did, however,
not target peroxisomes when expressed in COS-7 cells, and
remained in the cytosol (Camões et al., 2015). As proteins
with both a mitochondrial and peroxisomal targeting signal
exist (Costello et al., 2018), peroxisomal targeting of Lactb2
may depend on certain environmental conditions. Many of the
proteins dually localized to peroxisomes and mitochondria are
associated with fatty acid and ROS metabolism. A competitive
recognition process between the peroxisomal and mitochondrial
targeting machineries has been suggested. This may involve a
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hierarchical targeting system where individual receptor proteins
scan a nascent protein in chronological order (Neuberger et al.,
2004; Kunze and Berger, 2015). Examples for such a hierarchical
sorting are the human alanine-glyoxylate aminotransferase
(AGT), where specific mutations in the N-terminus create
an MTS (see above), and L-bifunctional protein (EHHADH),
where N-terminal mutations result in a dual peroxisomal and
mitochondrial localisation (Klootwijk et al., 2014). However, how
the dual targeting is prioritized under physiological conditions, is
largely unknown (see Costello et al., 2018 for a recent review on
dual targeting to peroxisomes and mitochondria).

Surprisingly, we identified several nuclear proteins with
a potential PTS1 in zebrafish including the nuclear pore
complex protein Nup93, anaphase-promoting complex
subunit 5 (Anapc5), cell division cycle 5-like protein
(Cdc5l), bromodomain adjacent to zinc finger domain 1A
(Baz1a), BRISC and BRCA1-A complex member 2 (Babam2),
calcium/calmodulin-dependent protein kinase I (Camk1),
mesenchyme homeobox 2 (Meox2), and potassium channel
tetramerization domain-containing 5 (Kctd5) (Supplementary
Tables S4, S5). To verify the functionality of the PTS1 encoded
in the D. rerio proteins Meox2a (E7FEH1), Cdc5l (E9QIC1), and
Kctd5 (Q6NYY3), we generated expression plasmids for EGFP
variants extended by the last 12 amino acids of these proteins.
When expressed in COS-7 cells, PTS1-Meox2a was not targeted
to peroxisomes (Supplementary Figure S2), whereas PTS1-
Cdc5l showed a clear peroxisomal localisation (Figure 5). In
addition, PTS1-Kctd5 localised to peroxisomes, but also showed
a strong cytoplasmic background (Figure 5). This is consistent
with the PTS1 peroxisomal targeting prediction, which indicates
“targeting” for Cdc5l, but “twilight zone” for Meox2a and Kctd5
(Supplementary Tables S4, S5). However, the potential weak
Meox2a and Kctd5 PTS1 appear to be conserved in different
vertebrate species (Supplementary Table S5).

Putative PTS1 signals were also found in the human
orthologues with predicted targeting for HsCDC5L (Q99459) and
HsKCTD5 (Q9NXV2) (Supplementary Table S5). To verify the
functionality of the human PTS1-CDC5L, which slightly differs
from the D. rerio PTS1, we also generated an EGFP fusion. The
PTS1-CDC5L was clearly targeted to peroxisomes confirming the
functionality of the human PTS1 signal (Figure 5).

To investigate peroxisomal targeting of the human nuclear
candidates with a PTS1, we selected HsKCTD5 (SRM) and
HsCDC5L (SKF) because of their targeting sequence and
accessibility of the PTS1 within the C-terminus (based on
protein structure prediction). Expression of N-terminally Myc-
tagged CDC5L (Myc-CDC5L) in COS-7 cells resulted in nuclear
targeting, however, co-localisation with the peroxisomal marker
PEX14 was not observed (Figure 6). Myc-KCTD5 localised
mainly to the cytosol, but a peroxisomal localisation was
also not detected (Figure 6). Our findings indicate that the
PTS1 of human CDC5L (and zebrafish Cdc5L) is functional;
furthermore, the PTS1 sequences of some of the nuclear
candidate proteins identified appear to be maintained across
different vertebrate or mammalian species. Nevertheless, full-
length CDC5L is not efficiently targeted to peroxisomes in
our experimental setup. An explanation may be a hierarchy

FIGURE 5 | Verification of PTS1 functionality for selected candidate proteins.
COS-7 cells were transfected with an EGFP fusion protein containing the
C-terminal putative PTS1 of D. rerio Cdc5l DLLMLDKQTLSSKI (A), D. rerio
Kctd5a DLKAKILQEQGSRM (B), and H. sapiens CDC5L DLLLEKETLKSKF
(C). Cells were processed for immunofluorescence microscopy using
anti-PMP70 (red) as a peroxisomal marker. White arrows highlight
peroxisomes that are clearly detectable in both channels. Bars, 10 µm (A,C),
20 µm (B).

of targeting signals (Neuberger et al., 2004) with a functional
NLS dominating over a PTS1 under standard conditions.
However, targeting may be regulated by additional factors,

Frontiers in Physiology | www.frontiersin.org 18 February 2022 | Volume 13 | Article 82250966

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-13-822509 February 24, 2022 Time: 13:17 # 19

Kamoshita et al. Peroxisomal Proteins and Pathways in D. rerio

FIGURE 6 | Localisation of HsCDC5L and HsKCTD5 in COS-7 cells. COS-7 cells were transfected with Myc-CDC5L (A–C) or Myc-KCTD5 (D–F) and processed for
immunofluorescence microscopy using anti-Myc and anti-PEX14 (peroxisomal marker) antibodies. Note that a peroxisomal localisation is not detected (arrows), even
at large peroxisomal structures (circles). Bars, 10 µm.

which may be cell type-specific or are activated under
certain physiological conditions. As recently described for
the nuclear transcription factor FOXM1, which translocates
into mitochondria to inhibit oxidative phosphorylation (Black
et al., 2020), nuclear proteins could also target peroxisomes
to coordinate nuclear regulation with peroxisomal metabolism.
How this may be regulated under physiological conditions is
currently unknown. Our findings may inspire further studies on
nuclear-peroxisome communication, a research area, which is
not well explored.

CONCLUSION

We reveal the first comprehensive inventory of D. rerio
peroxisomal proteins, their targeting signals, association with
peroxisomal metabolic pathways and comparison to human
peroxisomes. Despite approx. 350 million years of coevolution,
the protein inventories of human and zebrafish peroxisomes
still appear to be largely identical implying a high degree of
conservation in peroxisome metabolic functions. However, some
critical changes in metabolic pathways need to be considered
such as differences in purine degradation and bile acid synthesis.
Our analysis confirms the suitability of zebrafish as a vertebrate
model for peroxisome research and opens possibilities to study
the functions of novel and established peroxisomal proteins in

zebrafish in order to gain novel insights into the contribution of
peroxisomes to human disorders.
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Signal Peptide Features Determining
the Substrate Specificities of
Targeting and Translocation
Components in Human ER Protein
Import
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In human cells, approximately 30% of all polypeptides enter the secretory pathway at the
level of the endoplasmic reticulum (ER). This process involves cleavable amino-terminal
signal peptides (SPs) or more or less amino-terminal transmembrane helices (TMHs),
which serve as targeting determinants, at the level of the precursor polypeptides and a
multitude of cytosolic and ER proteins, which facilitate their ER import. Alone or in
combination SPs and TMHs guarantee the initial ER targeting as well as the
subsequent membrane integration or translocation. Cytosolic SRP and SR, its receptor
in the ER membrane, mediate cotranslational targeting of most nascent precursor
polypeptide chains to the polypeptide-conducting Sec61 complex in the ER
membrane. Alternatively, fully-synthesized precursor polypeptides and certain nascent
precursor polypeptides are targeted to the ER membrane by either the PEX-, SND-, or
TRC-pathway. Although these targeting pathways may have overlapping functions, the
question arises how relevant this is under cellular conditions and which features of SPs and
precursor polypeptides determine preference for a certain pathway. Irrespective of their
targeting pathway(s), most precursor polypeptides are integrated into or translocated
across the ER membrane via the Sec61 channel. For some precursor polypeptides
specific Sec61 interaction partners have to support the gating of the channel to the
open state, again raising the question why and when this is the case. Recent progress
shed light on the client spectrum and specificities of some auxiliary components, including
Sec62/Sec63, TRAM1 protein, and TRAP. To address the question which precursors use
a certain pathway or component in intact human cells, i.e., under conditions of fast
translation rates and molecular crowding, in the presence of competing precursors,
different targeting organelles, and relevant stoichiometries of the involved components,
siRNA-mediated depletion of single targeting or transport components in HeLa cells was
combined with label-free quantitative proteomics and differential protein abundance
analysis. Here, we present a summary of the experimental approach as well as the
resulting differential protein abundance analyses and discuss their mechanistic
implications in light of the available structural data.
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1 INTRODUCTION

1.1 Protein Biogenesis at the Endoplasmic
Reticulum
In analogy to the division of the human body into various organs,
the nucleated human cell is divided into different compartments,
the cell organelles. Organelles are surrounded and, thus,
separated from the cytosol by phospholipid bilayers
(Figure 1A). The vast majority of the roughly 30,000 types of
polypeptides of human cells is synthesized in the cytosol.
Therefore, the proteins of the various organelles have to be
targeted to the specific organelles and, subsequently, inserted
into or translocated across the organelle membrane(s). Protein
import into the organelle network termed endoplasmic reticulum
(ER) is the first step in the biogenesis of about one third of the
different soluble and membrane proteins of human cells
(Gemmer and Förster, 2020; O’Keefe et al., 2021a; Pool, 2022;
Tirincsi et al., 2022a). The hallmarks of this process were first
established about 70 years ago by Palade et al., who also described
different ER morphologies, or -as these are termed today-
domains (Palade and Porter, 1954; Palade, 1975). From their
electron microscopic images these authors concluded that the ER
represents a “continuous, tridimensional reticulum” consisting of
“cisternae,” which appear to communicate freely with the
“tubules” (Palade and Porter, 1954; Palade, 1975).
Furthermore, Palade et al. wrote that “although such cisternae
may assume considerable breadth they seem to retain, in general,
a depth of ~50 µm” and “the surface of the latter appears to be
dotted with small, dense granules that cover them in part or in
entirety” (Palade and Porter, 1954; Palade, 1975). Today, those
original domains of the ER are referred to as rough sheets and
smooth tubules, where rough and smooth refers to the presence
or absence of the dense granules observed by Palade et al. (Palade
and Porter, 1954; Palade, 1975), i.e., ribosomes or polysomes
which are attached to the cytosolic ER surface (Figure 1B)
(Shibata et al., 2006; Shibata et al., 2010; Westrate et al., 2015;
Nixon-Abell at el., 2016; Valm et al., 2017).

Originally, the roughly 10,000 soluble and membrane proteins
that first enter the ER in the course of their biogenesis were
known to fulfill their functions in the membrane or lumen of the
ER plus the nuclear envelope, or in one of the organelles of the
pathways of endo- and exocytosis (i.e., ERGIC, Golgi apparatus,
endosome, lysosome, trafficking vesicles), or at the cell surface as
secretory- or plasma membrane-proteins. With the exception of
resident proteins of the ER, most of the correctly folded and
assembled proteins are transported to their functional location by
trafficking vesicles, which bud from sub-domains of the tubular
ER that are termed exit sites (ERES) (Raote et al., 2018; Raote
et al., 2020). In recent years, however, an increasing number of
membrane proteins destined to lipid droplets, peroxisomes or
mitochondria was observed to be first targeted to and inserted
into the ER membrane prior to their integration into budding

lipid droplets or peroxisomes or prior to their delivery to
mitochondria via the ER-SURF pathway (Hansen et al., 2018;
Schrul and Schliebs, 2018; Jansen and Klei, 2019; Dhimann et al.,
2020; Goodman, 2020; Koch et al., 2021; Lalier et al., 2021).
Interestingly, the budding of lipid droplets and peroxisomes also
occurs in sub-domains of the tubular ER, which may be spatially
or physically related to ERES (see below) (Schrul and Kopito,
2016; Song et al., 2021; Zimmermann et al., 2021). Moreover,
several cytosolic proteins are synthesized on ER-bound
ribosomes (Seiser and Nicchitta, 2000; Potter et al., 2001;
Pyhtila et al., 2008; Reid and Nicchitta, 2012; Calvin et al.,
2014; Berkovits and Mayr, 2015; Ma and Mayr, 2018).

1.2 Endoplasmic Reticulum Targeting
Mechanisms
Typically, protein import into the ER involves ER membrane
targeting as the first step and insertion of nascent or fully-
synthesized membrane proteins into or translocation of
soluble precursor polypeptides across the ER membrane as the
second step (Figures 1C,D). These two processes depend on
cleavable amino-terminal signal peptides (SPs) or non-cleavable
and more or less amino-terminal transmembrane helices
(TMHs), which, by definition, both serve as import
determinants in the precursor polypeptides (von Heijne, 1985;
von Heijne, 1986; von Heijne and Gavel, 1988; Goder and Spiess,
2003; Goder et al., 2004; Hegde and Bernstein, 2006; Baker et al.,
2017; Armenteros et al., 2019). In general, the Sec61 complex in
the ER membrane represents the entry point for most of these
precursor polypeptides into the organelle (Figures 1, 2; Table 1)
(Görlich et al., 1992b; Görlich and Rapoport, 1993; Hartmann
et al., 1994; Simon and Blobel, 1991; Beckmann et al., 2001; Wirth
et al., 2003; van den Berg et al., 2004; Pfeffer et al., 2012; Pfeffer
et al., 2014; Pfeffer et al., 2015; Voorhees et al., 2014, Voorhees
and Hegde, 2016). However, membrane insertion of some
precursors of membrane proteins can be facilitated by
alternative membrane protein insertases and components such
as the ER membrane protein complex (EMC), TMCO1 complex,
and WRB/CAML (Shurtleff et al., 2018; Chitwood et al., 2018;
Pleiner et al., 2020; Bai et al., 2020; O’Donnell et al., 2020; Wang
et al., 2016; Anghel et al., 2017; McGilvray et al., 2020). Notably,
the latter has its main role in the membrane insertion of tail
anchored (TA) membrane proteins (Borgese and Fasana, 2011;
Yamamoto and Sakisaka, 2012; Borgese et al., 2019). Together
with its cytosolic interaction partners, the latter can also facilitate
targeting of precursor polypeptides to the Sec61 complex, as
apparently do the SRP/SR-, PEX19/PEX3-, and SND-targeting
pathways (Figure 2) (Meyer and Dobberstein, 1980a; Meyer and
Dobberstein, 1980b; Gilmore et al., 1982a; Gilmore et al., 1982b;
Tajima et al., 1986; Siegel and Walter, 1988; Ng et al., 1996; Egea
et al., 2005; Gamerdinger et al., 2015; Aviram et al., 2016; Casson
et al., 2017; Haßdenteufel et al., 2017; Haßdenteufel et al., 2018;

Frontiers in Physiology | www.frontiersin.org July 2022 | Volume 13 | Article 8335402

Lang et al. ER Protein Import

73

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


FIGURE 1 | 3D reconstructions of a nucleated mammalian cell, a section of rough ER, and a ribosome-bound Sec61 translocon. (A) 3D reconstruction after live cell
fluorescence imaging, following import of GFP into the ER and of RFP into the mitochondria. The reconstruction was artificially complemented by a dashed line for the
plasmamembrane, by an orange ellipse for the nucleus, and by a couple of blue circles for peroxisomes. Typical concentrations of free Ca2+ are given for cytosol and ER
in a resting cell. (B) 3D reconstruction of cellular rough ER after CET of a slice through the respective tomogram. ER membranes are shown in yellow, 80S
ribosomes in blue. (C) 3D reconstruction of the native ribosome-translocon complex in rough microsomes. The membrane density was removed for better visibility of
membrane integral parts of the translocon complex. TMHs in Sec61 complex, TRAP and OST can be distinguished. Helix 51 of an rRNA ES and ribosomal protein eL38
represent contacts of TRAPγ, but are hidden by other ribosomal densities. (D) The concept of reversible gating of the heterotrimeric Sec61 complex by SPs and allosteric
effectors. The Sec61 channel is shown in its modeled closed (left) and open (right) conformational states, as viewed from the cytosol. These two states are suggested to
be in a dynamic equilibrium with each other. The fully open state of the Sec61 channel allows the initial entry of precursor polypeptides from the cytosol into the ER lumen
and ERmembrane, respectively, and is experimentally observed as cleavage of SPs by signal peptidase on the lumenal side of the ERmembrane. In addition, it allows the
passive efflux of Ca2+ from the ER lumen into the cytosol and can be observed in live cell Ca2+ imaging in cytosol and ER lumen (Erdmann et al., 2011; Schäuble et al.,
2012). Ca2+ efflux may also be possible in the expected transition state (not shown), which may be identical to the so-called primed state and is induced by ribosomes in
cotranslational- and by Sec62/Sec63 in posttranslational-transport. The Figure and Figure legend were adapted from Sicking et al. (2021a).
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Haßdenteufel et al., 2019; Hsieh et al., 2020; Jomaa et al., 2021).
Targeting of certain peroxisomal membrane proteins and some
but not all hairpin membrane proteins of lipid droplets or the ER
and their insertion into the ER membrane was found to involve
cytosolic PEX19 and PEX3 in the ER membrane (Schrul and
Kopito, 2016; Yamamoto and Sakisaka, 2018; Leznicki et al.,
2021).

In addition, there is targeting of mRNAs to the Sec61 complex
that depends on receptors for mRNAs (such as KTN1) (Ong et al.,
2003; Ong et al., 2006), or receptors for ribosome nascent chain
complexes, where the nascent polypeptide chains are not yet long
enough to interact with SRP (such as RRBP1, LRRC59, and AEG-
1) (Figure 2) (Savitz and Meyer, 1990; Tazawa et al., 1991;
Ohsumi et al., 1993; Savitz and Meyer, 1993; Calvin et al.,

2014; Hsu et al., 2018). In contrast to SRP/SR, these mRNA
targeting mechanisms are nucleic acid based and may deliver
essentially every kind of mRNA to the ER surface, including
mRNAs coding for soluble proteins of the cytosol or the
mitochondrial and peroxisomal matrix (Seiser and Nicchitta,
2000; Potter et al., 2001; Calvin et al., 2014; Berkovits and
Mayr, 2015; Ma and Mayr, 2018). In the case that the mRNA
codes for a cytosolic or matrix protein, the heterodimeric
cytosolic protein nascent polypeptide-associated complex
(NAC) can get access to the amino-terminus of the nascent
polypeptide and trigger its release from Sec61 and the
simultaneous release of the ribosome from the Sec61 complex
(Wiedmann et al., 1994; Moeller et al., 1998; Gamerdinger et al.,
2019; Hsieh et al., 2020). If the mRNA codes for a precursor

FIGURE 2 | Flow diagram for signal peptide-dependent import of precursor polypeptides into the human endoplasmic reticulum (ER). ER import of most precursor
polypeptides involves the Sec61 channel in the ER membrane, which mediates membrane insertion of membrane proteins and translocation of soluble proteins with
N-terminal signal peptides (SPs). Typically, SPs of nascent precursor polypeptides are cotranslationally targeted to the Sec61 complex in the ER membrane by SRP and
its dimeric receptor in the ER membrane (SR). Others are targeted co- or posttranslationally by the TRC-, PEX19/PEX3- or hSnd2/hSnd3-pathway. Furthermore,
there are components for mRNA- and/or RNC-targeting located in the ERmembrane. Additional ERmembrane proteins support Sec61 channel gating to the open state
(TRAP or Sec62/Sec63) or membrane protein insertion, such as EMC (not shown). Channel gating to the closed state can be supported by cytosolic Ca2+-CaM or BiP in
the ER lumen (Erdmann et al., 2011; Schäuble et al., 2012). The green arrows symbolize progress of the import reaction. See Table 1 for a complete list of proteins that
are involved in ER protein import.
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TABLE 1 | Protein transport components/complexes, associated proteins in HeLa cells and linked diseases.

Component/subunit Abundancea Locationb Linked Diseases

for ER targeting

#LRRC59 (LRC59, p34)c 2480 ERM

#RRBP1 (p180) 135 ERM Hepatocellular Carcinoma, Colorectal Cancer

KTN1 (Kinectin 1) 263 ERM

AEG-1 (LYRIC, MTDH) 575 ERM

#NACd

1412
C

- NAC α
- NAC β

#SRP C
- SRP72 355 Aplasia, Myelodysplasia
- SRP68 197
- SRP54 228 Neutropenia, Pancreas Insufficiency
- SRP19 33
- SRP14 4295
- SRP9 3436
- 7SL RNA

SRP receptor ERM
- SRα (docking protein) 249
- SRβ 173

Calmodulin 9428 C

hSnd1 unknown
ERMSnd receptor

- hSnd2 (TMEM208) 81
- §hSnd3 (TMEM109) 49

PEX19 80 C Zellweger Syndrome
PEX3 103 ERM,PexM Zellweger Syndrome
PEX16 9 ERM,PexM Zellweger Syndrome

for ER targeting plus membrane integration

#Bag6 complex C
- TRC35 (Get4) 171 CDG
- Ubl4A 177
- Bag6 (Bat3) 133 Lung cancer

SGTA 549 C Breast cancer, Lung cancer
TRC40 (Asna1, Get3) 381 C CDG
TA receptor ERM
- CAML (CAMLG, Get2) 5 CDG
- WRB (CHD5, Get1) 4 Congenital Heart Disease

for ER membrane integration

ERM protein complex ERM
- EMC1 124 Visual disorders
- EMC2 300
- EMC3 270
- EMC4 70
- EMC5 (MMGT1) 35
- EMC6 (TMEM93) 5
- EMC7 247
- EMC8 209
- EMC9 1
- EMC10 3 Developmental delay

#§TMCO1 complex ERM Glaucoma, Cerebrofaciothoracic Dysplasia
- TMCO1 2013
- Nicalin 99
- TMEM147 21

(Continued on following page)
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TABLE 1 | (Continued) Protein transport components/complexes, associated proteins in HeLa cells and linked diseases.

Component/subunit Abundancea Locationb Linked Diseases

- CCDC47 (Calumin) 193
- NOMO 267

PAT complex 193 ERM
- PAT10 (Asterix)
- CCDC47 (Calumin)

for ER membrane integration plus translocation

#§Sec61 complex ERM
- Sec61α1 139 Diabetese, CVIDf, TKD, Neutropenia
- Sec61β 456 PLD, Colorectal cancer
- Sec61γ 400 GBM, Hepatocellular carcinoma

#Sec62/Sec63 ERM
Breast-, Prostate-, Cervix-, Lung-Cancer- Sec62 (TLOC1) 26

- Sec63 (ERj2) 168 PLD, Colorectal cancer

#ERj1 (DNAJC1) 8 ERM

#TRAM1 26 ERM

TRAM2 40 ERM

#TRAP ERM
- TRAPα ((SSR1) 568
- TRAPβ (SSR2)
- TRAPγ (SSR3) 1701 CDG, Hepatocellular Carcinoma
- TRAPδ (SSR4) 3212 CDG

#RAMP4 (SERP1) ERM

for folding plus assembly

ER Chaperones
- BiP (Grp78, HSPA5) 8253 ERL HUS
- Calreticulin (CaBP3, ERp60) 14521 ERL
- #Calnexinpalmitoylated 7278 ERM
- ERj3 (DNAJB11) 1001 ERL PKD
- ERj4 (DNAJB9) 12 ERL
- ERj5 (DNAJC10) 43 ERL
- ERj6 (DNAJC3, p58IPK) 237 ERL Diabetes, Neurodegeneration
- ERj7 (DNAJC25) 10 ERM
- ERj8 (DNAJC16) 24 ERM
- ERj9 (DNAJC22) ERM
- Grp94 (CaBP4, Hsp90B1) 4141 ERL
- Grp170 (HYOU1) 923 ERL

Hyperinsulinismus, Allergic Asthma

- Sil1 (BAP) 149 ERL MSS

for covalent modification

#Oligosaccharyltransferase (OST-A) ERM
- RibophorinI (Rpn1) 1956
- RibophorinII (Rpn2) 527
- OST48 273 CDG
- Dad1 464
- OST4
- TMEM258
- Stt3A* 430 CDG
- DC2
- Kcp2

Oligosaccharyltransferase (OST-B) ERM
- RibophorinI (Rpn1) 1956
- RibophorinII (Rpn2) 527
- OST48 273
- Dad1 464 CDG

(Continued on following page)
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polypeptide with SP or TMH, however, the latter may
spontaneously interact with the Sec61 channel or the
productive interaction may be facilitated by one of the protein
targeting components.

In case of the SP- or TMH-dependent ER targeting,
cotranslational ER targeting of nascent precursor polypeptides
and their mRNAs is mediated by the cytosolic signal recognition
particle (SRP) and its heterodimeric receptor in the ER membrane,
i.e., SRP receptor or SR (Table 1) (Siegel andWalter, 1988; Ng et al.,
1996; Egea et al., 2005; Gamerdinger et al., 2015; Hsieh et al., 2020;
Jomaa et al., 2021; Meyer and Dobberstein, 1980a; Meyer and
Dobberstein, 1980b; Gilmore et al., 1982a; Gilmore et al., 1982b;
Tajima et al., 1986). Other binary targeting systems comprising a
single ribosome-associating component and a heterodimeric
membrane receptor may co- and posttranslationally direct
precursor polypeptides to the Sec61 complex and were named
TRC-, PEX19/PEX3-, and hSnd2/hSnd3-pathway (Borgese and
Fasana, 2011; Yamamoto and Sakisaka, 2012; Borgese et al., 2019;
Schrul and Kopito, 2016; Yamamoto and Sakisaka, 2018; Aviram
et al., 2016; Casson et al., 2017; Haßdenteufel et al., 2017;
Haßdenteufel et al., 2018; Haßdenteufel et al., 2019; Tirincsi
et al., 2022b). Some hairpin and most TA membrane proteins

depend on dedicated components and posttranslational
pathways for their ER targeting and subsequent membrane
insertion (Figure 3). The TRC-pathway (termed GET-
pathway in yeast) handles TA proteins and the PEX3-
dependent pathway some hairpin and certain peroxisomal
membrane proteins (Borgese and Fasana, 2011; Yamamoto
and Sakisaka, 2012; Borgese et al., 2019; Schrul and Kopito,
2016; Yamamoto and Sakisaka, 2018). In the case of the TRC-
pathway, membrane targeting involves the Bag6 complex as well
as additional cytosolic factors; in case of the PEX3-dependent
pathway, membrane targeting involves cytosolic PEX19
(Table 1). Notably, these pathways are not strictly separated
from each other, i.e., there are at least some precursor
polypeptides, which can be targeted by more than one
pathway. For example, certain small human presecretory
proteins with a content of less than 100 amino acid residues,
such as preproapelin, can be targeted to the Sec61 complex by
the SRP-, SND- as well as the TRC-pathway (Haßdenteufel
et al., 2017, 2018, and 2019). Likewise, some TA membrane
proteins (such as Sec61ß and RAMP4) can be targeted to the
membrane via the same three pathways (Casson et al., 2017). In
addition, the Sec61ß coding mRNA can be targeted to the ER by

TABLE 1 | (Continued) Protein transport components/complexes, associated proteins in HeLa cells and linked diseases.

Component/subunit Abundancea Locationb Linked Diseases

- OST4
- TMEM258
- Stt3B* 150 CDG
- TUSC3 CDG
- MagT1 33

Signal peptidase (SPC-A) ERM
- SPC12 2733
- SPC18* (SEC11A)
- SPC22/23 334
- SPC25 94 ERM

Signal peptidase (SPC-C)
- SPC12 2733
- SPC21* (SEC11C)
- SPC22/23 334
- SPC25 94

GPI transamidase (GPI-T) ERM
- GPAA1 9
- PIG-K 38
- PIG-S 86
- PIG-T 20
- PIG-U 42

aHere, abundance refers to the concentration (nM) of the respective protein in HeLa cells, as reported by Hein et al. (2015).
bLocalization refers to the functional intracellular localization(s) of the respective protein, i.e., C, Cytosol; ERL, ER lumen; ERM, ER membrane; PexM, Peroxisomal membrane.
cAlternative protein names are given in parentheses.
dComplexes are indicated by italics. Abbreviations for protein names: EMC, ER membrane (protein) complex; GET, Guided entry of tail-anchored proteins; GPI,
Glycosylphosphatidylinositol; NAC, Nascent polypeptide-associated complex; OST, Oligosaccharyltransferase; SEC, (Protein involved in) secretion; SND, SRP-independent; SPC, signal
peptidase; SR, SRP receptor; SRP, signal recognition particle; SSR, signal sequence receptor; TA, tail anchor; TMEM, Transmembrane (protein); TRAM, translocating chain-associating
membrane (protein); TRAP, Translocon-associated protein; TRC, transmembrane recognition complex.
eDiabetes was linked to the particular protein in mouse.
fAbbreviation for diseases, i.e., CDG, Congenital disorder of glycosylation; CVID, Common variable immunodeficiency; GBM, Glioblastomamultiforme; HUS, Hemolytic-uremic syndrome;
MSS, Marinesco-Sjögren syndrome; PKD, Polycystic kidney disease; PLD, Polycystic liver disease; TKD, tubulointerstitial kidney disease, as reported by Sicking et al. (2021a).
*Indicates enzymatic activity.
# indicates ribosome association.
§Indicates ion channel activity.
We note that Calnexin, ERj1, Sec61ß, Sec63, SRα, TRAM1, and TRAPα were shown to be subject to phosphorylation.
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an unknown mechanism (Cui et al., 2015). Thus there is
redundancy in the targeting process, i.e., the targeting
pathways have overlapping substrate specificities.

SPs for ER protein import, typically, comprise around 25
amino acid residues and have a tripartite structure with a
positively charged amino-terminus (defined as N-region), a
central hydrophobic region (defined as H-region), and a
slightly polar carboxy-terminus (defined as C-region)
(Figure 3) (von Heijne, 1985; Hegde and Bernstein, 2006). SPs
have a dual function; they target presecretory proteins to the
Sec61 complex and trigger the opening of an aqueous channel
within the Sec61 complex for translocation of the polypeptide
into the ER lumen (Görlich and Rapoport, 1993; Wirth et al.,
2003; Dejgaard et al., 2010; Conti et al., 2015; Voorhees and
Hegde, 2016). TMH are similar to SP in structure and function,
except for the positioning of positively charged amino acid
residues, which can be up- or downstream of the central
hydrophobic region and determine the TMH orientation in

the ER membrane, following the “positive inside rule” (Goder
et al., 2004; Baker et al., 2017; Whitely et al., 2021).

1.3 Translocation Mechanisms
In human cells, the heterotrimeric Sec61 complex forms a large
multicomponent system together with the ribosome and the
oligomeric membrane proteins translocon-associated protein
(TRAP) and oligosaccharyltransferase (OST), which catalyzes
N-linked glycosylation (Figure 1C) (Pfeffer et al., 2012; Pfeffer
et al., 2014; Pfeffer et al., 2015; Pfeffer et al., 2017; Mahamid
et al., 2016). This super-complex or Sec61 translocon can insert
into the membrane or translocate into the lumen a whole variety of
topologically very different precursor polypeptides (type I-, type II-,
type III-, TA and hairpin membrane proteins and soluble proteins,
respectively) (Figure 3). Next, these precursorsmature tomembrane
proteins with one or more hairpins or TMHs, as
glycosylphosphatidylinositol- (GPI-) anchored membrane
proteins, or soluble proteins in the ER lumen, such as ER-

FIGURE 3 | Types of ER membrane proteins and their biogenesis. (A,B) The cartoons depict a signal peptide (SP) and six classes of ER membrane proteins (MP,
underlined) with their particular membrane protein type and the respective mechanism of ER targeting and membrane insertion (both indicated below the cartoon in red).
Cleavable SPs (in yellow) have a tripartite structure and facilitate ER import of secretory proteins (in green), glycosylphosphatidylinositol (GPI)-anchored- and single-
spanning type I membrane proteins (in green). In addition, they may mediate ER import of certain multi-spanning membrane proteins, but not of hairpin, single-
spanning type II or III, other multi-spanning and TA membrane proteins, which depend on transmembrane helices (TMHs) that serve as SPs and facilitate membrane
targeting as well as insertion. Positively charged amino acid residues (+) play an important role in the orientation of membrane proteins and SPs in the membrane;
typically, the orientation follows the positive inside rule. In the case of membrane proteins with amino-terminal TMHs, membrane insertion typically involves the same
components and mechanisms, which deliver secretory proteins and GPI-anchored membrane proteins to the ER lumen. In certain cases, however, auxiliary membrane
protein insertases, such as EMC or TMCO1 complex may be involved. Following their ER import, GPI-anchored membrane proteins become membrane anchored via
their carboxy-termini by GPI-attachment. Some key references are given. The Figure and Figure legend were adapted from Sicking et al. (2021a). C, carboxy-terminus;
N, amino-terminus.
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lumenal or secretory proteins (Gemmer and Förster, 2020; O’Keefe
et al., 2021a; Tirincsi et al., 2022a; Liaci and Förster, 2021). Typically,
membrane insertion and translocation are facilitated by either a
cleavable amino-terminal SP or the TMH of the nascent precursor
polypeptide, which acts as a non-cleavable SP substitute. Cleavable
SPs are removed from the precursor polypeptides in transit by one of
the two signal peptidase complexes (SPCs), which have their catalytic
sites in the ER lumen (Kalies et al., 1998; Chen et al., 2001; Liaci and
Förster, 2021).

Thus, ER protein import involves three stages, i) co- or
posttranslational targeting of the precursor to the heterotrimeric
Sec61 complex in the ER membrane, ii) head-on (NER lumen or out-
Ccytosol or in) or loop (Nin-Cout) insertion of the SP or TMH into the
polypeptide-conducting Sec61 channel, and iii) completion of
membrane insertion or translocation. Co- and posttranslational
insertion of SP or TMH into the Sec61 channel and the
simultaneous gating of the Sec61 channel to the open state occur
either spontaneously or involve substrate-specific auxiliary
components of the Sec61 channel (such as TRAP, Sec62/Sec63,
TRAM1) (Wiedmann et al., 1987; Fons et al., 2003; Menetret et al.,
2008; Sommer et al., 2013; Lang et al., 2012; Lakkaraju et al., 2012;
Ziska et al., 2019; Görlich et al., 1992a; Voigt et al., 1996; Hegde et al.,
1998; Sauri et al., 2007). Typically, the orientation of SP- and TMH
in the Sec61 channel follows the positive inside rule (Goder et al.,
2004; Baker et al., 2017), i.e. positively charged amino acid residues in
the N-region support loop insertion (Nin-Cout) and positively
charged residues downstream of the SP or TMH interfere with
loop insertion and, therefore, favour head-on insertion (Nout-Cin)
that can be followed by a “flip turn” (Figure 3) (Devaraneni et el.,
2011).

Following the pioneering work by Blobel and Dobberstein
(1975a) and Blobel and Dobberstein (1975b), ER protein import
was studied in cell-free assays, which involve synthesis of a single
precursor polypeptide in the presence of ER derived membrane

vesicles or proteoliposomes and allow the conclusion of whether
and how targeting and membrane insertion or translocation of a
certain precursor can be facilitated by a certain component.
Recently, more global approaches were employed, such as
proximity-specific ribosome-profiling (Reid and Nicchitta,
2012; Calvin et al., 2014; Hsu et al., 2018; Shurtleff et al., 2018;
Hannigan et al., 2020) and quantitative proteomics (Nguyen et al.,
2018; Shurtleff et al., 2018; Tian et al., 2019; Klein et al., 2020;
Schorr et al., 2020; Bhadra et al., 2021a; Zimmermann et al., 2021;
Tirincsi et al., 2022b). We started to address the question which
precursors use a certain pathway or component in intact human
cells, i.e., under conditions of fast translation rates and in the
presence of competing precursors. Typically, our approach
employed siRNA-mediated depletion of single components in
HeLa cells, label-free quantitative proteomic analysis, and
differential protein abundance analysis to characterize client
specificities of various components.

2 SUMMARY OF PREVIOUSLY REPORTED
RESULTS FROM LABEL-FREE
PROTEOMICS

2.1 A Proteomic Approach for the Analysis
of Protein Import Into the Human
Endoplasmic Reticulum
Our experimental approach was designed to identify substrates or
clients of components, which are involved in targeting or
translocation of precursor polypeptides into the human ER
under cellular conditions, thereby setting it apart from
experiments where single precursor proteins are studied one
by one in either cell-free systems for synthesis of proteins and
their import into ER-derived vesicles (rough microsomes) or

FIGURE 4 | Experimental strategy. The experimental strategy involved i) siRNA-mediated gene silencing using two different siRNAs for each target and one non-
targeting (control) siRNA, respectively, with three replicates for each siRNA for 96 h; ii) label-free quantitative analysis of the total cellular proteome; iii) differential protein
abundance analysis to identify negatively affected proteins (i.e., putative substrates or clients of the target) and positively affected proteins (i.e., putative compensatory
mechanisms); iv) independent validation by western blot. For characterization of substrates, genes were screened for AU-rich elements (ATTTA motifs) in 3′UTRs
using the AREsite2 database (http://rna.tbi.univie.ac.at/AREsite2/welcome) and SPs were analyzed for hydrophobicity according to Kyte and Doolittle, (1982) (https://
www.bioinformatics.org/sms2/protein_gravy.html), GP-content (Nguyen et al., 2018), apparent Delta G for membrane insertion of TMHs (http://dgpred.cbr.su.se), or
segmentation (https://phobius.sbc.su.se) in combination with characterization of the SP segments with the same tools as above.
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proteoliposomes, or the ER of semi-permeabilized cells, or under
conditions where single precursor proteins are over-produced in
cells. The approach represents a combination of siRNA-mediated
knock down or CRISPR/Cas9-mediated knock-out of a certain
protein targeting or translocation component in human cells
(such as HeLa or HEK293 cells), label-free quantitative mass
spectrometric (MS) analysis of the total cellular proteome, and
differential protein abundance analysis for two different cell pools
that had been treated with two different siRNAs, which target the
same mRNA, compared to a pool of cells, which had been treated
with a non-targeting siRNA (defined as negative control)
(Figure 4). In the case of knock-out cells, only two cell pools
were compared, a control cell line and the knock-out line; where
available, deficient patient fibroblasts were analyzed (as in the
case of Congenital disorders of glycosylation or Zellweger
syndrome). The approach is based on the expectations that
precursors polypeptides, destined to the ER, are degraded by
the cytosolic proteasome upon interference with their ER import.
Therefore, their cellular levels decrease compared to control cells,
which is detected by quantitative MS in combination with
subsequent differential protein abundance analysis (Figure 4).
In several depletions (SEC61A, TRAPB, WRB, SRA) the absence
of the target subunit, typically, caused degradation of the other
subunit(s) of the complex or even other components of the same
pathway, reminiscent of the “use it or loose it principle” of muscle
physiology (Nguyen et al., 2018; Tirincsi et al., 2022b). Consistent
with the starting expectation, the decrease of secretory pathway
proteins was accompanied by an increase in ubiquitin-
conjugating enzymes in the cytosol. Furthermore, in some
cases the concomitant increase in other ER import
components was observed, which may point to a possible
functional, compensatory overlap between different pathways.
Alternatively or additionally, we observed an increase in
components for protein import into mitochondria, which
appears to be an alternative to protein degradation in
preventing aggregation of potentially dangerous polypeptides
in the cytosol (Pfeiffer et al., 2013). All these phenomena were
inversely correlated with the severity of the negative effect on
secretory pathway proteins.

As a proof-of-principle, the approach was established for the
Sec61 complex, which is necessary for or at least involved in the
ER import of most precursor polypeptides (Figures 1–3;
Supplementary Table S1) (Nguyen et al., 2018). In general,
the timing of the experiment was optimized to seeding of the
cells on day one with two consecutive siRNA transfections on the
same and the following day and harvesting of the cells on day four
(Figure 4). Alternatively, CRISPR/Cas9-treated knock-out cells
and, in some cases, deficient patient fibroblasts were cultivated in
parallel to the respective control cells for 96 h.

Typically, between 5,000 and 6,500 different proteins were
quantified and statistically analyzed (Supplementary Tables S1,
S2), including proteins with low and high cellular concentrations,
which ranged from below 1 to almost 10,000 nM (Hein et al.,
2015; Schorr et al., 2020; Bhadra et al., 2021a). For the control
cells, Gene Ontology (GO) terms assigned the expected 26%–29%
of proteins to organelles of the endocytic and exocytic pathways
plus the extracellular space and plasma membrane

(Supplementary Tables S1, S2). In the case of depletion or
deficiency of an ER targeting or translocation component, GO
terms assigned between 35% and 60% of the negatively
affected proteins to organelles of the pathways of
endocytosis and exocytosis plus cell surface, representing a
more or less pronounced enrichment as compared to the total
quantified proteome (Supplementary Tables S1, S2).
Furthermore, similar enrichment of precursor proteins
with SP, N-glycosylation, or membrane location was
typically detected, and cytosolic proteins were under-
represented among the negatively affected proteins (with
the exception of KTN1 depletion, see below). Taken
together, these results indicated that the precursors of
these negatively proteins are substrates or clients of the
respective component of interest.

As stated above, 30% of the total quantified proteome
comprises ER protein import substrates. However, even in the
case of Sec61 depletion, only 197 proteins with SP plus 98 with
TMH, i.e., about 300 of the 6,000 quantified proteins or 5%, were
negatively affected by the depletion (Supplementary Table S1).
Thus, our experimental approach underestimates the number of
different precursor polypeptides relying on this component by
far. As expected, the numbers of negatively affected proteins were
even lower for all the other translocation and targeting
components since these components are expected to be
precursor-specific, i.e., involved in import of only certain
precursor polypeptides (Nguyen et al., 2018; Tian et al., 2019;
Klein et al., 2020; Schorr et al., 2020; Bhadra et al., 2021a;
Zimmermann et al., 2021; Tirincsi et al., 2022b). Obviously,
this raises the question why we see only the tip of the iceberg
in respect to clients. There are several contributing factors under
conditions of siRNA-mediated knock-down: i) The depletion
efficiency and its duration, which were optimized for minimal
effects on cell growth and viability, was not high enough to cause
significant accumulation and degradation of precursor proteins.
Typically, the MS data suggested a depletion of close to 90% for
the targeting or translocation component, which was confirmed
by the validating western blot analysis. Thus the residual amount
of the component of interest may have been sufficient to sustain
the physiological functions of depleted proteins over the duration
of the experiment. ii) As stated above, a certain function in ER
protein import in human cells is compensated by other proteins
or pathways. Except for the Sec61 complex, we actually expected
that to be the case. iii) Some client proteins may have remained
largely unaffected because they either have longer half-lives than
the component of interest or may have a higher than average
affinity for the component of interest. iv) Last but not least, some
accumulating precursors may have stayed soluble in the cytosol,
aggregated, or ended up in mitochondria where they were
protected from degradation by the proteasome. Notably, we
have observed mistargeting of certain precursors of secretory
proteins into mitochondria in the absence of Sec61 function in
human cells (Pfeiffer et al., 2013). Under knock-out conditions,
the cells may also have adapted to the absence of a certain
component, a phenomenon we observed to a certain extent
even under siRNA-mediated depletion conditions in form of
positively affected transport components (Nguyen et al., 2018;
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Tian et al., 2019; Klein et al., 2020; Schorr et al., 2020; Bhadra
et al., 2021a; Zimmermann et al., 2021; Tirincsi et al., 2022b).

2.2 mRNA Targeting to the Human
Endoplasmic Reticulum
As stated in the Introduction, there is SP- and, therefore, SRP-
independent targeting of mRNAs or ribosome nascent chain
complexes (RNCs) to the ER (Figure 2). According to pioneering
biochemical and cell biological analysis by C. Nicchitta and
coworkers, the synthesis of various types of polypeptides, such as
cytosolic proteins, is initiated on 80S ribosomes or even 60S
ribosomal subunits, which remain associated with the ER after
termination of protein synthesis (Seiser and Nicchitta, 2000;
Potter at al., 2001; Pyhtila et al., 2008; Reid and Nicchitta, 2012).
As of today, the involvedmRNA targeting appears to involvemRNA
receptor proteins in the ERmembrane, i.e., AEG-1 (Hsu et al., 2018),
LRRC59 (Tazawa et al., 1991; Ohsumi et al., 1993; Hannigan et al.,
2020), RRBP1 (Savitz and Meyer, 1990 and 1993; Bhadra et al.,
2021a) and KTN1 1 (Ong et al., 2003; Ong et al., 2006; Bhadra et al.,
2021a) (Table 1). Proximity-specific ribosome-profiling
experiments, however, suggested ER-targeting of RNCs with

nascent polypeptide chains, which are not sufficiently long to
interact with SRP, play a more important role in mRNA
targeting to the ER than direct targeting of mRNA to ER-
associated ribosomes (Calvin et al., 2014). Notably, the first is
translation-dependent, the latter is translation-independent
(Figure 2). Insights into the possible specificities of these mRNA
targeting reactions, however, are only beginning to accumulate (Hsu
et al., 2018; Hannigan et al., 2020; Bhadra et al., 2021a). Until
recently, there were just a couple of precursor polypeptides known to
involve RRBP1 either as receptor for RNCs or mRNA, i.e., the SP-
comprising precursors of the GPI-anchored membrane protein
placental alkaline phosphatase (Cui et al., 2012; Cui et al., 2013),
of certain Collagens (i.e., collagens Iα1 plus Iα2 and IIIγ) (Ueno et al.,
2010) and of the ER-resident protein Calreticulin (Cui et al., 2012).
More recent global data from mRNA crosslinking or ribosome
proximity labeling in combination with transcriptome analysis,
however, gave first glimpses of the substrate spectra of the two
mRNA receptors AEG-1 (Hsu et al., 2018) and LRRC59 (Hannigan
et al., 2020) (Figure 5).

We employed our MS approach to identify precursor
polypeptides that may involve targeting of the corresponding
mRNAs or RNCs by the two putative mRNA- or RNC-receptors

FIGURE 5 | Venn diagram for putative mRNA and RNC targeting components in the human ER membrane and their clients. The diagram summarizes precursors
with SP (in red) or TMH (in black), which are destined to the secretory pathway and were negatively affected by the indicated depletion in HeLa cells (Bhadra et al., 2021)
or were identified bymRNA crosslinking and ribosome proximity labeling, respectively (Hsu et al., 2018; Hannigan et al., 2020); membrane protein precursors with SP are
underlined. All these precursor polypeptides are defined as potential clients or substrates of the respective component. The percentage of membrane proteins (MP)
of the secretory pathway among the respective clients is indicated (%). For AEG-1 randomly selected examples of secretory pathway clients are shown and the % MP
refers to the complete set of clients; for LRRC59 the secretory pathway representatives among the top twenty clients are shown and the % MP refers to these clients.
COL4A2 is in italics to highlight that it was negatively affected by RRBP1 as well as KTN1 depletion. # highlights the presence of multiple ATTTA motifs in all mRNAs
clients (i.e., ATTTA ≥ 10), which was tested for the top twenty clients in the case LRRC59 and for the complete set of clients in all other cases. Asterisks indicate hairpin
proteins.
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RRBP1 and KTN1 (Bhadra et al., 2021a). The approach suggested
an additional collagen (i.e., COL4A2) and two ER-resident
hairpin membrane proteins (i.e., ATL2 and ATL3) among the
39 negatively affected proteins as RRBP1 clients (Figure 5;
Supplementary Table S1). For RRBP1, a role as RNC-receptor
in the biogenesis of 22 precursors with SP (including six
membrane protein precursors) plus 17 precursors with TMH,
destined to the secretory pathway, was also supported by the
positive effect on SRA and SRB as a consequence of RRBP1
depletion. For KTN1, in contrast, it turned out that not only
proteins, destined to the ER (i.e., three precursors with cleavable
SP –including one membrane protein- plus eight precursors with
TMH), are degraded in the absence of KTN1 but also several
cytosolic proteins, most notably cytoskeletal proteins and protein
kinases (Supplementary Table S1, see below). The negative effect
on ER protein import, however, is consistent with the idea that
KTN1 can also play a role in the biogenesis of proteins, destined
to the secretory pathway, as was suggested by the negative effect
on the membrane protein precursor CD47 as well as the positive
effect on RRBP1 (Figure 5). This view is consistent with our
observation that crosslinking of native human microsomes and
subsequent MS analysis observed among several intra-molecular
crosslinks for KTN1 the intermolecular crosslink (peptide
42REQKLIPTK52) to the translocon subunit TRAPγ (peptide
82FVLKHK89) (Fan, L. and Jung, M., unpublished).
Furthermore, the negative effect on CD47 suggested a function
of KTN1 as the elusive ER-resident mRNA receptor in the so-
called TIGER domain, which was proposed by C. Mayr to form a
cytosolic micro-domain, which allows the enrichment of
membrane protein-encoding mRNAs with multiple AU-rich
elements (AREs, specifically ATTTA motifs) in their 3′ UTRs
in the ER vicinity (Berkovits andMayr, 2015; Ma andMayr, 2018)
(Figure 2). Thus, the key observation may be that KTN1 plays a
role in targeting of certain mRNAs to ER subdomains. In the case
of ERj1 (Dudek et al., 2002; Dudek et al., 2005; Blau et al., 2005;
Benedix et al., 2010), another ER membrane protein that was
proposed to interact with mRNAs or RNCs, the proteomic
approach supports a function in cotranslational ER protein
import rather than in ER targeting of mRNAs or RNCs (see
below). Interestingly, when we compared our results with the
published results from ribosome profiling experiments for the
other two mRNA targeting components, we noticed that AEG-1
showed considerable overlap with clients of both KTN1 and
RRBP1 while there was no overlap detected for LRRC59
(Figure 5) (Hsu et al., 2018; Hannigan et al., 2020). When the
different putative clients were analyzed for ATTTA motifs, there
were no general rules for mRNA recognition by these receptors
emerging from the available data, with the possible exception of
these motifs in the case of some KTN1- and RRBP1-clients
(Bhadra et al., 2021a). The authors found that multiple
ATTTA motifs (≥10) are present in the 3′ UTRs of mRNA
clients of the different receptors to varying degrees, ranging
from 13% to 33% (Figure 5). Thus, different motifs in the
mRNAs appear to play a role.

In striking contrast to all other depletions of proteins that are
involved in ER protein import, KTN1 depletion affected
predominantly cytosolic proteins, i.e., their level increased from

the average of 29% to 39%. In total, 21 cytosolic proteins were
negatively affected, including two metabolic enzymes (GAPDH and
GAPDHS), several protein kinases (OXSR1, PAK1, PDPK1, PDPK2
and ZAK), and various cytoskeletal proteins (Junction Plakoglobin,
Myosin 11, Vinculin and Gamma-tubulin complex component 4).
This raises the interesting question why cytosolic proteins should be
degraded after their synthesis on free cytosolic ribosomes. We
hypothesize that for the negatively affected cytoskeletal proteins it
may be of importance to be synthesized and sequestered near their
site of action rather than distributed throughout the cytosol, in
particular for membrane interacting cytoskeletal proteins, such as
Junction Plakoglobin and Vinculin, at adherens junctions between
neighboring cells. In analogy, this may be true for certain protein
kinases, such as OXSR1 (which is involved in regulating the actin
cytoskeleton in response to environmental stress), PAK1 (which
regulates cytoskeletal reorganization for cell motility and
morphology), and PDPKs 1 and 2 (which are also located at cell
junctions). Notably, multiple ATTTA motifs were also detected in
the mRNAs of several cytosolic KTN1 clients (16% as compared to
31% of cytosolic clients of RRBP1, 43% for LRRC59, 13% for AEG-1,
and 21% for ERj1) (Bhadra et al., 2021a).

On the basis of the data it was proposed that KTN1 may
represent the mRNA-binding protein that resides in the ER
membrane and is enriched in the TIGER domain in order to
take over mRNAs from the cytosolic RNA-binding TIS11B and
allow initiation of their translation by Sec61-associated ribosomes
(Figure 2). If the mRNA codes for a membrane protein precursor
with SP (such as CD47) or with an amino-terminal TMH, the
nascent precursor begins to sample the Sec61 channel, which
leads to spontaneous channel opening or the recruitment of
auxiliary factors of the Sec61 channel. Since ERj1 was found
to have overlapping substrate specificities with KTN1 in our
proteomic studies, we suggest it to cooperate with KTN1 in
allowing Sec61 channel opening when BiP is bound to ERj1′s
J-domain (Dudek et al., 2002; Blau et al., 2005; Dudek et al., 2005;
Benedix et al., 2010; Schäuble et al., 2012). Subsequently, the
precursor is translocated into the ER or integrated into the ER
membrane (CD47). If the mRNA codes for a cytosolic protein,
however, sampling of the Sec61 channel remains unproductive
and NAC gets access to the amino-terminus of the nascent
polypeptide and causes its release from Sec61 and the
concomitant release of the ribosome from Sec61 (Moeller
et al., 1998). Next, synthesis of the cytosolic protein is
completed and the protein is enriched in the TIGER domain
to play its physiological role (Berkovits and Mayr, 2015; Ma and
Mayr, 2018).

2.3 Precursor Polypeptide Targeting to the
Human Endoplasmic Reticulum
2.3.1 SRP/SR
The signal hypothesis for targeting of nascent precursor
polypeptides to the ER was put forward by G. Blobel et al.
(Blobel, 1980). In later versions, it proposed that the amino-
terminal SP of a nascent presecretory protein is recognized and
bound by cytosolic SRP, which mediates a translational
attenuation and facilitates association of the RNC-SRP
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complex with the heterodimeric SRP receptor (SR), which is
membrane-anchored via the β-subunit (Siegel and Walter, 1988;
Ng et al., 1996; Egea et al., 2005; Gamerdinger et al., 2015; Hsieh
et al., 2020; Meyer and Dobberstein, 1980a; Meyer and
Dobberstein, 1980b; Gilmore et al., 1982a; Gilmore et al.,
1982b; Tajima et al., 1986; Jomaa et al., 2021; Jomaa et al.,
2022). The interaction of SRP with SR drives the mutual
hydrolysis of bound GTP and leads to transfer of the RNC to
the Sec61 complex (Halic and Beckmann, 2005, Halic et al., 2006;
Jomaa et al., 2021). Thus, SRP represents a precursor as well as a
mRNA targeting device (Figure 2). Comparative ribosome
profiling experiments addressed functionality of the bacterial
and yeast SRP in vivo (Chartron et al., 2016; Schibich et al.,
2016; Costa et al., 2018) and demonstrated the strong preference
of SRP for TMHs regardless of their position relative to the
amino-terminus of the nascent polypeptide chain. Furthermore,
they demonstrated the efficient ER targeting of precursors with
just cleavable SPs in absence of SRP. Thereby, these studies
stretch the versatility of SRP and reconciled two important

considerations. First, the comparatively low abundance of SRP
as compared to the abundance of translating ribosomes can be
compensated by an mRNA targeting step, probably extending the
time-window for the target recognition by SRP. Second, the
crowded environment at the ribosomal tunnel exit can be
eased by multiple iterations for SRP recognition without being
limited to recognition of the SP or first TMH.

Late in the 1980s, characterization of precursor proteins with
the ability for SRP-independent ER targeting, such as small
presecretory proteins in mammalian cells and TA-membrane
proteins in mammalian and yeast cells suggested alternative ER
targeting machineries (Müller and Zimmermann, 1987;
Schlenstedt and Zimmermann, 1987; Schlenstedt et al., 1990;
Kutay et al., 1993; Ast et al., 2013). In the early 2000s, some small
model presecretory proteins were shown to be targeted to the
mammalian ER membrane in an SRP-independent fashion by
their interaction with the cytosolic protein calcium-calmodulin
and its putative association with the calcium-calmodulin (Ca2+-
CaM)-binding site in the cytosolic amino-terminus of the Sec61α

FIGURE 6 | Venn diagram for components for precursor targeting to the human ER membrane and their clients. The diagram summarizes precursors with SP (in
red) or TMH (in black), which are destined to the secretory pathway and were negatively affected by the indicated depletion in HeLa cells (Tirincsi et al., 2022b) or by PEX3
depletion in HeLa cells and after PEX3 knock-out in Zellweger patient fibroblasts (Zimmermann et al., 2021); membrane protein precursors with SP are underlined, as are
TMH proteins with TA. All these precursor polypeptides are defined as potential clients or substrates of the respective component or complex. The percentage of
membrane proteins (MP) of the secretory pathway among the respective clients is indicated (%). HLA-C is in italics to highlight that it was negatively affected by PEX3 as
well as SRA and WRB depletion, likewise are highlighted FAR1 and HLA-A, HLA-B, ITPR3 plus TMEM41B, respectively. Asterisks indicate hairpin proteins.
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protein, possibly representing yet another targeting mechanism
(Shao and Hegde, 2011; Schäuble et al., 2012). With respect to
pathway interconnections, it is interesting to note that Ca2+-CaM
was found to inhibit rather than stimulate targeting of TA
proteins to the ER membrane (Haßdenteufel et al., 2011).

Recently, we applied the proteomic strategy to identify
precursor polypeptides that depend on SR for their targeting
to the ER. Applying the established statistical analysis, we found
that SRA depletion significantly affected the steady-state levels of
139 proteins: 133 negatively and 6 positively (Figure 6;
Supplementary Table S1) (Tirincsi et al., 2022b). Among the
negatively affected proteins, GO terms assigned 50% to organelles
of the endocytic and exocytic pathways, thus representing a firm
enrichment compared to the total quantified proteome (26%).
Furthermore, we detected significant enrichment of precursor
proteins with SP, N-glycosylated proteins, and membrane
proteins. The negatively affected proteins included 24 proteins
with cleavable SP, among them 14 membrane proteins plus 30
membrane proteins with TMH, including the ER hairpin
membrane protein ATL2, many single-spanning membrane
proteins and several multi-spanning membrane proteins,
including the hairpin protein REEP3. Thus, the precursors of
these negatively affected proteins with SP and TMH can be
expected to be clients of the SRP and SR targeting pathway.
When the SPs of SR-dependent precursor polypeptides were
analyzed for hydrophobicity, GP content, and SP segmentation
no significant distinguishing features were determined. Overall,
SRP and SR clients showed a preference for cleavable SP (44%) or
non-cleavable N-terminal targeting signals (77% of the remaining
membrane protein clients) and an underrepresentation of TA,
which is consistent with previous results from proximity-based
ribosome profiling experiments (Chartron et al., 2016; Costa
et al., 2018).

2.3.2 TRC
TA proteins are defined as single-spanning membrane proteins
with a defining carboxy-terminal TMH (Kutay et al., 1993).
Approximately 1% of the human protein-coding genome code
for TA proteins. Not all of these, however, have a functional
association with the secretory pathway (Borgese and Fasana,
2011; Borgese et al., 2019). TA proteins of the secretory
pathway, such as the β- and γ-subunits of the Sec61 complex,
the redox protein Cytochrome b5, many apoptosis-associated
proteins (including various Bcl family members) and many
vesicular trafficking components (i.e., Syntaxins and VAMPs),
have to be targeted to and inserted into the ER membrane
(Borgese and Fasana, 2011; Borgese et al., 2019). Similar to
SRP-mediated targeting, TA proteins are directed to the ER
membrane via a heterodimeric ER membrane resident
receptor complex, made up by WRB and CAML. The minimal
cytosolic targeting machinery for TA proteins was termed TA
receptor complex (TRC) in mammalian cells (Table 1). The
cytosolic ATPase TRC40 binds the TA protein with its
hydrophobic binding pocket and the WRB/CAML complex
facilitates their efficient ER targeting. The WRB/CAML
complex also facilitates the actual membrane insertion
(Schuldiner et al., 2008; Yamamoto and Sakisaka, 2012;

Borgese et al., 2019). Additionally, the TA targeting machinery
includes a ribosome binding complex (comprising Bag6, Ubl4A,
and TRC35), which acts upstream of TRC40 (Leznicki et al., 2010;
Mariappan et al., 2010; Leznicki et al., 2011).

We applied our experimental strategy to identify precursor
polypeptides that depend onWRB for their ER targeting (Tirincsi
et al., 2022b). Applying the established statistical analysis, we
found that WRB depletion significantly affected the steady-state
levels of 296 proteins: 144 negatively and 152 positively (Figure 6;
Supplementary Table S1). Among the negatively affected
proteins, GO terms assigned 45% to organelles of the
pathways of endocytosis and exocytosis. Some enrichment of
precursor proteins with SP and membrane proteins was also
detected. The identified precursors included 13 proteins with
cleavable SP (including six membrane proteins) and 14
membrane proteins without SP, including the ER hairpin
protein REEP3. When the SPs of WRB-dependent precursor
polypeptides were analyzed for hydrophobicity, GP content,
and SP segmentation, no significant distinguishing features
were determined. However, when more WRB clients were
identified under conditions of simultaneous depletion of WRB
and hSnd2 (Figure 6) a preference of WRB for multispanning
membrane proteins became visible and more WRB membrane
protein clients were observed to have relatively more central and
more carboxy-terminal TMH as compared to SRA dependent
membrane proteins (Tirincsi et al., 2022b). Taken together, these
results on the client spectrum of WRB point towards a more
general targeting role of the TRC pathway than previously
anticipated and may explain why pathogenic variants of
TRC35 or TRC40 as well as CAML are linked to Congenital
disorders of glycosylation in humans (Wilson et al., 2022).
Notably, first hints towards this end already came from
previous reports that small human presecretory proteins can
be targeted to the ER of semi-permeabilized human cells by
SR, WRB and hSnd2 (Haßdenteufel et al., 2018; Haßdenteufel
et al., 2019) and that the cytosolic TRC pathway-component
SGTA, which works upstream of Bag6, Ubl4A, and TRC35, is
cotranslationally recruited to ribosomes, which synthesize a
diverse range of membrane proteins, including those with
cleavable SP (Leznicki and High, 2020).

2.3.3 SND
Although roughly one dozen genes coding for yeast TA proteins
were characterized as essential, knock-out strains for the TA
targeting components are viable, suggesting at least one further
targeting route (Schuldiner et al., 2008). Indeed, in 2016 a high-
throughput screening approach in yeast by M. Schuldiner and
coworkers identified a novel targeting pathway, termed SRP-
independent (SND) (Aviram et al., 2016). Three components of
this pathway were identified and named Snd1, Snd2, and Snd3
(Table 1). Two hallmarks of the SND targeting pathway emerged.
First, similar to the SRP and TA targeting pathways, precursor
polypeptides were targeted via the combination of a cytosolic
factor (named Snd1) and a heterodimeric receptor in the ER
membrane (termed Snd2 and Snd3). Previously, Snd1 had
already been described as a ribosome-binding protein. Second,
the SND pathway showed a preference for substrates with a
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central, rather than an amino- or a carboxy-terminal TMH.
Furthermore, the SND pathway was able to provide an
alternative targeting route for clients with a TMH at their
amino- or carboxy-terminus (Aviram et al., 2016). Subsequent
sequence comparisons identified the ER membrane protein
TMEM208 as putative human Snd2 ortholog (named hSnd2)
(Aviram et al., 2016). In experiments, combining siRNA-
mediated gene silencing with protein transport into the ER of
semi-permeabilized human cells in cell-free assays, hSnd2
appeared to have a similar function as its yeast ortholog
(Casson et al., 2017; Haßdenteufel et al., 2017; Haßdenteufel
et al., 2018), i.e., the TAmembrane protein Cytochrome b5 as well
as some small presecretory proteins were targeted to the Sec61
complex in the mammalian cell-free assay. Briefly, the human
hormone precursor proteins preproapelin and prestatherin can
use Sec62 as well as SR for ER targeting in the cell-free assay.
Interestingly, prestatherin preferred SRα over Sec62-mediated
targeting, whereas preproapelin did the opposite, which was
attributed to the higher hydrophobicity of the prestatherin SP
(apparent ΔG −0.91 versus −0.19). Taken together with the
observation that carboxy-terminal extension (by 187 amino
acid residues) of preproapelin or prestatherin by the cytosolic
protein DHFR leads to Sec62 independence, our data support the
notion that small presecretory proteins use the SRP pathway for
Sec61 targeting in human cells inefficiently, because the
corresponding nascent chains are prone to be released from
ribosomes before SRP can interact (Müller and Zimmermann,
1987; Schlenstedt and Zimmermann, 1987; Müller and
Zimmermann, 1988; Schlenstedt et al., 1990; Lakkaraju et al.,
2012; Haßdenteufel et al., 2018). Therefore, these precursors rely
on alternative targeting pathways. In addition to SR and Sec62,
co- and posttranslational targeting of preproapelin and
prestatherin can also involve the TRC- and the SND-pathway,
albeit with different efficiencies (Haßdenteufel et al., 2018). An
ortholog of Snd1 has not yet been characterized in human cells.
Recently, precursors of TRPC6 and various GPI-anchored
proteins, such as CD55, CD59, and CD109 were added to the
growing list of SND-clients (Talbot et al., 2019; Yang et al., 2021).

We applied the established proteomic strategy to identify
precursor polypeptides that depend on hSnd2 for their
targeting to the ER (Tirincsi et al., 2022b). Applying the
established statistical analysis, we found that transient and
partial hSnd2 depletion significantly affected the steady-state
levels of 76 proteins: 43 negatively and 33 positively (Figure 6;
Supplementary Table S1). Among the negatively affected
proteins, GO terms assigned roughly 47% to organelles of the
endocytic and exocytic pathways. We also detected a small
enrichment of N-glycosylated proteins and a large one of
membrane proteins. The negatively affected proteins included
three proteins with cleavable SP (all being membrane proteins),
and nine membrane proteins with TMH, including TA
membrane proteins (such as Cytochrome b5) plus single-
spanning and multi-spanning membrane proteins (such as
TRPM7), thus confirming previously observed classes of
hSnd2 clients (TRPC6, Cytochrome b5). Thus, there seems to
be a preference of the human SND system for membrane protein
precursors (Figure 6). When the SPs of hSnd2-dependent

precursor polypeptides were analyzed for hydrophobicity, GP
content, and segmentation, no significant distinguishing features
were determined. However, when more hSnd2 clients were
identified under conditions of simultaneous depletion of
hSnd2 and WRB (Figure 6) a preference of hSnd2 for
multispanning membrane proteins became visible and more
hSnd2 membrane protein clients were found to have relatively
more central or carboxy-terminal TMHs than SRA dependent
membrane proteins (Tirincsi et al., 2022b), the latter two aspects
being consistent with results for the yeast SND targeting pathway
(Aviram et al., 2016). These observations are consistent with the
fact that only little overlap between SRA clients and clients of the
SND and TRC pathways was detected (Figure 6) and may explain
why the latter two pathways can partially substitute for each
other. In addition to SND clients, simultaneous depletion of
hSnd2 and WRB negatively affected the ER membrane protein
TMEM109, which was subsequently characterized as the hitherto
elusive hSnd3 in experiments that were addressing its interaction
with hSnd2 as well as its role in ER protein import (Tirincsi et al.,
2022b).

2.3.4 PEX19/PEX3
Furthermore, recent work characterized the PEX19/PEX3-
dependent pathway as a fourth pathway for targeting of
precursor polypeptides to the ER (Schrul and Kopito, 2016;
Yamamoto and Sakisaka, 2018). PEX3 was originally
characterized as peroxisomal membrane protein, which
cooperates with the cytosolic protein PEX19 in targeting of
peroxisomal membrane proteins to pre-existent peroxisomes
and in facilitating their membrane insertion (Erdmann et al.,
1989; Hettema et al., 2000; Schmidt et al., 2012). As it turned out,
however, PEX3 is also present in discrete subdomains of ER
membranes and is involved in targeting of certain precursor
proteins to ER membranes and most likely in their membrane
insertion (Schrul and Kopito, 2016; Yamamoto and Sakisaka,
2018). These precursor proteins include membrane proteins,
which either remain in the ER (the two-hairpin or reticulon-
domain containing proteins ARL6IP1, RTN3A, RTN4C) or are
pinched off in lipid droplets (such as the hairpin protein UBXD8)
(Schrul and Kopito, 2016; Yamamoto and Sakisaka, 2018). These
observations raised the question if this pathway, too, plays a more
global role in protein targeting to the ER (Schrul and Schliebs,
2018; Jansen and Klei, 2019; Dhimann et al., 2020; Goodman,
2020).

Therefore, we addressed the client spectrum of PEX3 in ER
protein targeting in human cells and asked if the PEX19/PEX3
pathway to the ER can also target precursor polypeptides to the
Sec61 complex (Zimmermann et al., 2021). Here, the approach
involved PEX3-depleted HeLa cells and chronically PEX3-
deficient Zellweger patient fibroblasts (Schmidt et al., 2012).
The negatively affected proteins found in the PEX3 knock-
down or knock-out cells included seven peroxisomal
membrane proteins and two hairpin proteins of the ER
(ATL1, RTN3), thus confirming the two previously identified
classes of PEX19/PEX3 clients for ER targeting in human cells
(Figure 6; Supplementary Table S1). In addition, 18 membrane
proteins (including TA proteins) and 28 proteins with SP (most
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notably 14 collagens plus collagen-related proteins as well as five
membrane proteins) and belonging to the secretory pathway were
negatively affected. The latter findings support the notion that
PEX3 indeed represents a fourth pathway for targeting of
precursor polypeptides to the Sec61 complex. Furthermore, it
may suggest a hitherto unknown spatial or at least physical
relationship between ER subdomains that are involved in ER
shaping and the budding of peroxisomal precursor vesicles, large
cargo vesicles, and lipid droplets. Thus in analogy to KTN1, the
key observation may be that PEX3 plays a role in targeting of
certain precursor polypeptides to Sec61 complexes in ER
subdomains.

2.4 Translocation of Precursor Polypeptides
Into the Human Endoplasmic Reticulum
2.4.1 Sec61 Complex
The heterotrimeric Sec61 complex provides an entry point for
precursor polypeptides with SPs into the ER. In the course of co-
and posttranslational membrane translocation, the SPs of
precursor polypeptides first approach the Sec61 channel
(Gumbart and Schulten, 2007; Lang et al., 2017; Lang et al.,
2019; Bhadra and Helms, 2021). Subsequently, they begin to
sample the cytosolic funnel of the Sec61 channel. According to
molecular dynamics simulations, sampling in the Sec61
channel is affected by various properties of precursors or

their mRNAs, i.e., deleterious charges, hydrophobicity,
mature protein length, arrest peptides or poly-proline
motifs in the precursor polypeptides and translation speed,
which is dependent on pause sites, rare codons or hairpins in
the mRNAs (Zhang and Miller, 2012). For productive SP
insertion into and simultaneous full opening of the Sec61
channel, comparatively high hydrophobicity and, therefore,
low apparent ΔG value for the H-region was found to be
conducive (Gumbart and Schulten, 2007; Zhang and Miller,
2012; Bhadra and Helms, 2021). H-region hydrophobicity of
the SP or TMH is supposed to be recognized by the
hydrophobic patch formed by four residues of Sec61α
TMHs 2 and 7, which line the lateral gate of the channel
(Voorhees et al., 2014; Voorhees and Hegde, 2016).

In our opinion, gating of the Sec61 channel can best be
described in analogy to an enzyme-catalyzed reaction where
the precursor polypeptides with their SPs are the catalysts and
the channel is their substrate (Figures 1D, 7) (Haßdenteufel et al.,
2018): Channel opening and closing represent two energetically
un-favorable reversible reactions and the clients with or without
support from auxiliary components or allosteric effectors (TRAP,
Sec62/Sec63, see below) are the co-catalysts, which lower the
activation energy for the required conformational transitions by
binding to the Sec61 complex (Lang et al., 2017; Lang et al., 2019).
Interestingly, there are SP mutations of certain precursor
polypeptides, such as preproinsulin, preprorenin, as well as

FIGURE 7 | Energetics and kinetics of Sec61 channel gating. In our view, the TRAP- or Sec62/Sec63 +/- BiP-mediated Sec61 channel gating is best visualized in
analogy to an enzyme-catalysed reaction. Accordingly, TRAP, Sec62, Sec63 or BiP reduce the energetic barrier for full channel opening, which can apparently be
reinforced by Sec61 channel inhibitors, such as cyclic heptadepsipeptides (such as CAM741) or certain eeyarestatins (such as ES24) (Pauwels et al., 2021; Pauwels
et al., 2022). At least in the case of ES24, binding of the inhibitor within the channel pore arrests the channel in a partially open state, which may be identical with the
primed state and is compatible with Ca2+-efflux but not with full channel opening for protein translocation (Gamayun et al., 2019; Bhadra et al., 2021b). TRAP and BiP
contribute to full channel opening by direct interaction with ER lumenal loops 5 and 7, respectively, of Sec61α (Figure 1D). SEC61A1 mutations can increase the free
energy barrier for channel opening per se (V67G, V85D and Q92Rmutation) or indirectly, such as by interfering with BiP binding (Y344Hmutation) (for recent reviews see
Sicking et al., 2021a; Tirincsi et al., 2022a). Notably, all these effects are precursor specific because the amino-terminal SPs are either efficient or inefficient in driving
Sec61 channel opening by themselves. Typical for an enzyme-catalysed reaction, BiP can also support efficient gating of the Sec61 channel to the closed state, i.e. the
reverse reaction. The Figure and Figure legend were adapted from Sicking et al. (2021a).
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SEC61A1 mutations that can cause the same hereditary diseases,
such as Diabetes mellitus and ADTKD (Lloyd et al., 2010; Guo
et al., 2014; Bolar et al., 2016; Devuyst et al., 2019; Sicking et al.,
2022). Again, this can best be described by an energy diagram for
Sec61 channel gating (Figure 7). Accordingly, substitutions of
crucial amino acids in either SPs or the pore-forming α-subunit of
the Sec61 channel may increase the activation energy for Sec61
channel opening and, therefore, slow down ER import of the
particular precursor polypeptide or a whole group of precursor
polypeptides, which is particularly dependent on a certain amino
acid residue in the Sec61 channel. Notably, SEC61A1 mutations
that cause ADTKD are discussed in the context of additional
Sec61-channelopathies in more detail below in the Discussion
and were recently reviewed by Sicking et al. (2021a).

As mentioned above, the depletion of Sec61α originally served
as a proof-of-principle for the proteomic approach (Figures 4, 8;
Supplementary Table S1). Among the negatively affected
proteins that included all three subunits of the Sec61 complex,
GO terms assigned 61% to organelles of the pathways of

endocytosis and exocytosis, thus representing a firm
enrichment compared to the value for the total quantified
proteome (26%) (Nguyen et al., 2018). Furthermore,
significant enrichment of precursor proteins with SP (6.8-fold),
N-glycosylated proteins (5.6-fold), and membrane proteins (3.0-
fold) was detected for the negatively affected proteins
(Supplementary Table S1). This suggests that the precursors
of these negatively affected proteins, 198 with SP (including 80
membrane protein precursors) and 90 with TMH, represent
clients of the Sec61 channel and, therefore, were degraded by
the cytosolic proteasome upon Sec61 depletion (Figure 8). As
also expected, the positively affected proteins included potential
compensatory components, including the two subunits of the
SRP receptor (Nguyen et al., 2018). When we analyzed the
physicochemical properties of the SPs of the Sec61 clients,
precursors with less-hydrophobic SPs were more strongly
affected by Sec61 absence, i.e., over-represented in the
negatively affected polypeptides, suggesting that precursor
polypeptides with a higher SP hydrophobicity are more

FIGURE 8 | Venn diagram for the Sec61 complex and ER membrane complex (EMC) in the human ER membrane and their clients. The diagram summarizes
precursors with SP (in red) or TMH (in black), which are destined to the secretory pathway and were negatively affected by the indicated depletion; membrane protein
precursors with SP are underlined, as are TMH proteins with TA. All these precursor polypeptides are defined as potential clients or substrates of the respective
component or complex. The section for Sec61 summarizes the negatively affected proteins after the Sec61 depletion in HeLa cells (Nguyen et al., 2018); the section
for EMC summarizes the negatively affected proteins after the EMC knock-out in HeLa cells (Shurtleff et al., 2018; Tian et al., 2019). The percentage of membrane
proteins (MP) of the secretory pathway among the respective clients is indicated (%).
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efficient in Sec61 channel opening than those with lower
hydrophobicity. Comparison of Sec61 clients with those of the
membrane protein insertase EMC confirmed the preference of
the latter for membrane protein precursors (Figure 8) (Shurtleff
et al., 2018; Tian et al., 2019). However, the EMC data would also
be consistent with the idea that EMCmay also be able to facilitate
Sec61 channel opening for precursors of soluble proteins with
weak SPs, i.e., in analogy to TRAP and Sec62/Sec63 (see below).

2.4.2 Sec62/Sec63 Plus BiP
While the Sec61-complex mediates import of most precursor
polypeptides into the ER, the Sec61-associated Sec62/Sec63
heterodimer supports ER protein import in a client-specific
manner. Direct interaction between the Sec61 complex and
Sec63 was demonstrated by co-immunoprecipitation as well as
in living human cells (Tyedmers et al., 2000; Sicking et al., 2021b).
Recently, four studies addressed the architecture of the
posttranslationally acting translocon complex in yeast by cryo-
electron microscopy (cryo-EM) (Itskanov and Park, 2019; Wu
et al., 2019; Weng et al., 2021; Itskanov et al., 2021). This
particular translocon represents a heptameric protein
ensemble, termed the SEC complex (Deshaies et al., 1991). In
the SEC complex the trimeric Sec61 complex is assembled with
the tetrameric Sec62p/Sec63p complex. The latter comprises two
essential, evolutionarily conserved subunits, the membrane
proteins Sec62p and Sec63p, and two non-essential subunits,
Sec71p and Sec72p. The data provided insights into the
mechanism how the SEC complex allows gating of the Sec61
complex and supports ER protein import. Most informative were
the observed interactions between Sec63p and the Sec61 complex,
which include contacts in the cytosolic, membrane and lumenal
domains. Strikingly, the cytosolic Brl domain of Sec63p contacts
loops 6 and 8 of Sec61α, thereby blocking the ribosome binding
site. Interestingly, as was structurally predicted for the interaction
of the TRAPα/β subunits with the Sec61 complex (Pfeffer et al.,
2017) and supported by Alphafold 2 (Jumper et al., 2021), the Brl
domain of Sec63p represents a canonical beta-sandwich fold to
allow an antigen-antibody-like binding to loop 6 of Sec61α. In the
membrane, Sec63p (specifically TMH 3 of Sec63) contacts all
three subunits of the Sec61 complex in the hinge region opposite
of the lateral gate, including TMHs 5 and 1 of Sec61α as well the
TMHs of Sec61β and Sec61γ (Figure 1D). Additionally, the short
lumenal amino-terminus of Sec63p intercalates on the lumenal
side of the channel between the hinge loop 5 of Sec61α and Sec61γ
(Itskanov and Park, 2019; Wu et al., 2019; Itskanov et al., 2021;
Weng et al., 2021). Apparently, binding of Sec62p/Sec63p to the
Sec61 channel causes wide opening of the lateral gate (Van den
Berg et al., 2004; Voorhees et al., 2014; Voorhees and Hegde,
2016). The functional implications for the SEC translocon as a
consequence of gating by the Sec62p/Sec63p are that SP of many
substrates are less hydrophobic and, therefore, have a lower
chance to enter the lateral gate and trigger complete opening
of the channel. Thus, in the SEC complex binding of the Sec62p/
Sec63p induces a fully opened channel that readily accommodates
even “weak” or inefficiently gating SPs (Ng et al., 1996; Trueman
et al., 2011). Consistent with the concept of the Sec62p/Sec63p
inducing wide opening of the lateral gate, yeast Sec62p was found

to be able to aid in membrane topology of moderately
hydrophobic signal anchor proteins, in particular single-
spanning type II membrane proteins, which perform the
energetically unfavorable 180° flip turn for correcting their
initial type I orientation (Reithinger et al., 2013; Jung et al.,
2014; Jung and Kim, 2021).

Similar to yeast, analyses of protein transport in mammalian
cells showed a client-specific role of Sec62 in ER protein import.
According to in vitro experiments with model proteins from
insects (such as preprocecropin A) and humans (such as
preproapelin and prestatherin), the ER import of presecretory
proteins with a content of less than 100 amino acid residues
(termed small precursor proteins) into the mammalian
endoplasmic reticulum (ER) can occur posttranslationally
(Schlenstedt et al., 1990; Shao and Hegde, 2011; Lakkaraju
et al., 2012; Johnson et al., 2013; Haßdenteufel et al., 2018)
and involves various targeting mechanisms (Haßdenteufel
et al., 2018) as well as the ER-membrane proteins Sec62 and
Sec63 (Lakkaraju et al., 2012; Lang et al., 2012; Johnson et al.,
2013; Haßdenteufel et al., 2017, 2018, and 2019). In case of
preprocecropin A, posttranslational ER import has been observed
in intact human cells (Shao and Hegde, 2011) and Sec62-
dependence of small human presecretory proteins was
observed in intact human cells (Lakkaraju et al., 2012).

In contrast to yeast, however, the mammalian Sec62 protein
apparently experienced a gain of function, i.e., it can interact with
ribosomes near the ribosomal tunnel exit and can support
cotranslational transport of certain clients, such as the
precursors of ERj3- and prion-protein with 358 and 253
amino acid residues, repectively (Müller et al., 2010; Ziska
et al., 2019; Schorr et al., 2020). Therefore, crosslinking
experiments with stalled precursor polypeptides in transit
through the mammalian translocon observed the dynamic
recruitment of allosteric Sec61 channel effectors, such Sec62
(Conti et al., 2015). In contrast, the model precursor bovine
preprolactin triggered Sec61 recruitment of accessory factors such
as the allosteric effector TRAP and the auxiliary translocating
chain-associating membrane (TRAM) protein. However, when
ERj3- or prion-protein were used as model transport substrates
the Sec62/Sec63 instead of TRAP and TRAM were recruited to
the channel in order to allow translocation of substrates having a
weak or inefficiently gating SP (Conti et al., 2015). In other
studies, another dynamic transition of the translocon was
observed for Sec62 and the SRP receptor. To allow
cotranslational targeting the SR can displace Sec62 from the
Sec61 complex, thereby switching the Sec61 channel from
Sec62- to SRP-dependent translocation (Jadhav et al., 2015).
According to the above mentioned crosslinking approach,
however, SR and Sec62 can also act sequentially, namely after
SRP-dependent targeting of precursors of ERj3- and prion-
protein, Sec62 can displace SR from the Sec61 channel and
-together with Sec63- support channel opening. Furthermore,
Sec63 has to “take over” loops 6 and 8 of Sec61α from the
ribosome. The cryo-EM structures of the yeast SEC complex
may support the idea of a dynamic transition and flexibility of
Sec62/Sec63. Both Sec62p and the ER lumenal J-domain of
Sec63p could not be sufficiently resolved in the single particle
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analysis and this might have been due to their structural flexibility
and dynamic assembly into the SEC translocon.

Notably, for the prion protein precursor, Sec62/Sec63-
dependent ER-import has also been demonstrated in a genetic
screen in human cells (Davis et al., 2015). Subsequent in vitro
import assays, using a full-length prion protein precursor,
demonstrated SRP-dependence and the fact that Sec63-
dependence is not only due to the SP but also due to a
polybasic motif, which is downstream of the SP in the mature
region (Ziska et al., 2019) and was missing from the artificial
prion protein construct in previous work (Rane et al., 2009; Davis
et al., 2015). Furthermore, these in vitro import assays
demonstrated that Sec63-dependence of the small preproapelin
and the precursors of ERj3 and prion protein is related to gating
of the Sec61 channel to the open state and coincides with BiP´s
involvement, which was linked to the combination of a weak SP
plus, in case of preproapelin (37RRK) and the prion protein
precursor (1KKRPK), a positively charged cluster in the
mature region (Haßdenteufel et al., 2018; Ziska et al., 2019).
Notably, loss of Sec63 protein function in the liver of a subset of

human patients with polycystic liver disease was also interpreted
in light of a client specific function of Sec63 in ER protein import
(Fedeles et al., 2011; Lang et al., 2012). Interestingly, Sec63-
dependence of ERj3 import into the ER was indirectly
confirmed in murine SEC63 null cells, which were generated
as an animal model for the human disease (Lang et al., 2012).
These SEC63−/− cells lacked ERj3 while the levels of various other
ER proteins were unchanged compared to murine SEC63+/+ cells
(Fedeles et al., 2011; Schorr et al., 2020).

With our proteomic approach, we determined the rules for
engagement of Sec62/Sec63 in ER-import in intact human cells
(Schorr et al., 2020). Applying the statistical analysis, we found
that Sec62 depletion significantly affected the steady-state levels
of 351 proteins: 155 negatively and 196 positively (Figure 9;
Supplementary Table S2). The identified precursors included 18
proteins with cleavable SP and six proteins with TMH. The
proteins positively affected by transient Sec62 depletion
included both SRP- receptor subunits (SRPRA, SRPRB) and
the TRAP ß-subunit (coded by the SSR2 gene). We assume
that these short-term compensatory mechanisms may have

FIGURE 9 | Venn diagram for human ER protein translocation components and their clients. The diagram summarizes precursors with SP (in red) or TMH (in black),
which are destined to the secretory pathway and were negatively affected by the indicated depletion; membrane protein precursors with SP are underlined, as are TMH
proteins with TA. All these precursor polypeptides are defined as potential clients or substrates of the respective component or complex. The section for Sec62 and
Sec63 summarizes the negatively affected proteins after the respective depletions in HeLa cells and the knock-outs in HEK293 cells, respectively (Schorr et al.,
2020); the section for TRAM1 summarizes the negatively affected proteins after the TRAM1 depletion in HeLa cells (Klein et al., 2020); the section for TRAP summarizes
the negatively affected proteins after the TRAPB depletion in HeLa cells and the TRAPD or TRAPG knock-outs in CDG patient fibroblasts (Nguyen et al., 2018). The
percentage of membrane proteins (MP) of the secretory pathway among the respective clients is indicated (%). ADAM10, CNPY4, CYR61, ITRIP, LNPEP and TMEM223
are in italics to highlight that they were negatively affected by TRAM1 as well as TRAPB depletion.
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FIGURE 10 | Physicochemical properties of Sec62/Sec63 clients. (A–C)We used custom scripts to compute the hydrophobicity of SPs (A,B) and SP H-regions
(C,D), respectively. Hydrophobicity score was calculated as the averaged hydrophobicity of its amino acids according to the Kyte-Doolittle propensity scale. For the
calculation of H-region hydrophobicity, each SP was subjected to segmentation using the prediction tool Phobius (https://phobius.sbc.su.se) and the H-region to the
calculation according to Kyte-Doolittle. (E)Relevant properties of SPs (hydrophobicity and positively charged amino acid residues, respectively) andmature regions
of four clients. Hydrophobicity scores were calculated according to the Kyte-Doolittle propensity scale and are displayed using the DNAstar software package. Apparent
delta G values were determined with the ΔGapp predictor for TM helix insertion (http://dgpred.cbr.su.se). Clusters of positive charges in the respective mature region that
were experimentally shown to contribute to Sec62/Sec63 dependence are indicated.
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contributed to the comparatively low number of negatively
affected proteins. The Sec63-depletion significantly affected the
steady-state levels of 34 proteins: 21 negatively and 13 positively
(Figure 9; Supplementary Table S2). The identified precursors
included four proteins with cleavable SP and six proteins with
TMH and only one of the proteins with SP had also been
negatively affected by Sec62-depletion (TGFBI). Upon closer
inspection of the potential overlap between Sec62 and Sec63
depletion in HeLa cells, four additional precursor polypeptides
with SP were negatively affected by Sec63-depletion in HeLa cells,
which, however, did not meet the significance threshold (ERj3
–coded by the DNAJB11 gene-, MAGT1, PDIA5, SDF2) (Schorr
et al., 2020).

To identify additional substrates, we performed similar
analyses after Sec62 or Sec63 knock-out, employing CRISPR/
Cas9 treated HEK293 cells compared to HEK293 control cells
(Fumagalli et al., 2017; Schorr et al., 2020). Here, we found that
Sec62 deficiency significantly affected the steady-state levels of
329 proteins: 208 negatively and 121 positively (Supplementary
Table S2). Of the negatively affected proteins, GO terms assigned
~48% to organelles of the endocytic and exocytic pathways. We
also detected significant enrichment of proteins with SP (5.5-
fold), N-glycosylated proteins (4.5-fold), and membrane proteins
(1.8-fold). The identified precursors included 74 proteins with
cleavable SP (including 19 membrane proteins) and 29 proteins
with TMH. As expected (Conti et al., 2015), ERj3 was negatively
affected. After Sec63 knock-out in HEK293 cells, we found that
Sec63-deficiency significantly affected the steady-state levels of
302 proteins: 199 negatively and 103 positively (Supplementary
Table S2). GO terms assigned ~37% of the negatively affected
proteins to organelles of the endocytic and exocytic pathways. We
also detected significant enrichment of proteins with SP (1.9-
fold), N-glycosylated proteins (2.4-fold), and membrane
proteins (1.8-fold). The identified precursors included 24
proteins with cleavable SP (including ten membrane
proteins) and 38 proteins with TMH (Figure 9). Here, 22
precursor polypeptides were negatively affected by Sec62 as
well as Sec63 deficiency, 11 each with SP (including six
membrane proteins) and with TMH, all belonging to the
secretory pathway (Figure 9). Upon closer inspection of the
potential overlap between Sec62 and Sec63 in HEK293 cells, six
additional precursor polypeptides with SP were negatively
affected by Sec63-deficiency, which did not meet the
significance threshold (MAGT1, PDIA5, RNASET2, SDF2,
SIL1, TMED5) (Schorr et al., 2020). Interestingly, the
analysis also identified 54 precursors with SP (including 11
membrane proteins) plus 17 precursors with TMH, which
showed a requirement for Sec62 but not for Sec63, as well as
12 precursors with SP (including four membrane proteins) plus
26 precursors with TMH, which showed a requirement for
Sec63 but not for Sec62, consistent with the previous
observation in vitro that the two proteins can also support
ER protein import independently of each other (Haßdenteufel
et al., 2018). Notably, the overlap was probably underestimated
since the analysis was done for mixed guide RNA clones in the
case of Sec63, i.e., the cell pool did not represent a SEC63 knock-
out (Schorr et al., 2020).

Along with confirming ERj3 as a client, 30 novel Sec62/
Sec63-clients were identified under these in vivo-like
conditions, 18 with SP (including eight membrane proteins)
and 12 with TMH (Figure 9; Supplementary Table S2). These
previously unknown substrates have in common less
hydrophobic SPs with longer but less hydrophobic
H-regions and lower C-region polarity (Figures 10A,C).
Further analyses with four substrates, ERj3 in particular,
revealed the combination of a weak SP and a translocation-
disruptive positively charged cluster of amino acid residues
within the mature part (20KKAYRK) as decisive for the Sec62-/
Sec63-requirement (Figure 10E) (Schorr et al., 2020). This is
reminscent of preproapelin and prion protein import
(Haßdenteufel et al., 2018; Ziska et al., 2019) and in all
three cases these features were found to be responsible for
an additional BiP-requirement and for sensitivity towards the
Sec61 channel inhibitor CAM741. Thus, human Sec62/Sec63
may support Sec61 channel opening for precursor
polypeptides with weak SPs by direct interaction with
Sec61α and/or via recruitment of BiP and its interaction
with the ER-lumenal loop 7 of Sec61α, which we supposed
to lower the activation energy for channel opening (Figure 7).

2.4.3 ERj1 Plus BiP
ERj1 belongs to the class of ribosome-associated membrane
proteins (RAMPs) (Dudek et al., 2002; Blau et al., 2005;
Dudek et al., 2005; Benedix et al., 2010). However, its
ribosome association, appears to be more dynamic as
compared to the classical RAMPs, i.e., Sec61, TRAM and
TRAP (Görlich et al., 1992b; Görlich and Rapoport, 1993).
This was microscopically confirmed by fluorescence
microscopy using fluorescently labeled antibodies against ERj1
in permeabilized MDCK cells (Snapp et al., 2004; Benedix et al.,
2010). According to cryo-EM, the cytosolic domain of ERj1 binds
at the ribosomal tunnel exit and involves expansion segment 27
(ES27) of the 28S rRNA (Blau et al., 2005). ERj1 was proposed to
play a role in ER protein import as a possible functional homolog
for Sec62/Sec63, combining the cytosolic ribosome binding
activity of Sec62 with the ER lumenal Hsp40-type co-
chaperone activity of Sec63 in one polypeptide (Dierks et al.,
1996; Skowronek et al., 1999; Mayer et al., 2000; Tyedmers et al.,
2000; Dudek et al., 2005; Tyedmers et al., 2005; Müller et al., 2010;
Lang et al., 2012; Schäuble et al., 2012). Notably, human Sec62
was microscopically confirmed as RAMP, too, by fluorescence
microscopy using fluorescently labeled antibodies against Sec62
in permeabilized MDCK cells (Snapp et al., 2004; Müller et al.,
2010). Interestingly, the cytosolic domain of ERj1 is able to
allosterically inhibit translation at the stage of initiation when
its ER lumenal J-domain is not associated with BiP but allows
translation when BiP is bound (Benedix et al., 2010). Thus, ERj1
would be perfectly able to allow initiation of protein synthesis of
precursor polypeptides on ER bound ribosomes when BiP is
available on the ER lumenal side of the membrane.

Employing the statistical analysis, we found that transient and
partial ERj1 depletion significantly affected the steady-state levels
of 172 proteins: 92 negatively and 80 positively (Figure 5;
Supplementary Table S2) (Bhadra et al., 2021a). Of the
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FIGURE 11 | Physicochemical properties of SPs of TRAP clients. (A–C)We used custom scripts to compute the hydrophobicity score (A), apparent delta G (B),
and glycine/proline (GP) content (C) of SP sequences. Hydrophobicity score was calculated as the averaged hydrophobicity of its amino acids according to the well-
known Kyte-Doolittle propensity scale. Apparent delta G values were determined with the ΔGapp predictor for TM helix insertion (http://dgpred.cbr.su.se). GP content
was calculated as the total fraction of glycine and proline in the respective sequence. (D)We also used custom scripts to extract protein annotations for all human,
E. coli and S. cerevisiae SPs from UniProtKB entries and to calculate their GP content. (E,F)Cartoon of unclipped (E) and clipped (F) 80S ribosome together with Sec61-
complex and TRAP, and OST. Notably, without clipping eL38 and helix 51 is partially hidden.
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negatively affected proteins, GO terms assigned almost 30% to
organelles of the pathways of endocytosis and exocytosis. The
identified precursors included seven proteins with cleavable SP,
among them two membrane proteins, and eight membrane
proteins with TMH and were discussed above in the context
of KTN1-dependent mRNA targeting to the ER.

2.4.4 TRAP
Originally, TRAP was characterized as signal-sequence receptor
(SSR) complex (Wiedmann et al., 1987). Furthermore, it had been
crosslinked to nascent polypeptides at late translocation stages
(Conti et al., 2015) and had been demonstrated to associate with
Sec61 (Menetret et al., 2008; Dejgaard et al., 2010; Pfeffer et al.,
2017). As mentioned in the Introduction, the ribosome-
associated Sec61-complex and the TRAP form a stable
stoichiometric super-complex called a translocon (Menetret
et al., 2008; Bano-Polo et al., 2017; Pfeffer et al., 2017). In
vitro transport studies showed that the TRAP stimulates
protein translocation depending on the efficiency of the SP in
transport initiation (Fons et al., 2003); Sec61 gating efficiency and
TRAP dependence were inversely correlated. Recent studies in
intact cells suggest that TRAP may also affect TMH topology
(Sommer et al., 2013), reminiscent of Sec62/Sec63 in yeast
(Reithinger et al., 2013; Jung et al., 2014).

To identify TRAP dependent precursors, we combined
siRNA-mediated TRAP depletion in HeLa cells, label-free
quantitative proteomics, differential protein abundance
analysis, and statistical analysis. We found that TRAPβ
depletion significantly affected the steady-state levels of 257
proteins: 180 negatively and 77 positively. Of the negatively
affected proteins, GO terms assigned ~40% to organelles of
the endocytotic and exocytotic pathways and included all four
subunits of TRAP. We also detected significant enrichment of
proteins with SP (3.3-fold), N-glycosylated proteins (2.7-fold),
and membrane proteins (2.1-fold). The identified precursors
included 38 proteins with cleavable SP and 22 proteins with
TMH, and represented N-glycosylated proteins and non-
glycosylated proteins (Figure 9; Supplementary Table S2).
For TRAP deficient fibroblasts from patients with a Congenital
disorder of glycosylation the steady-state levels of 318 proteins
were altered: 279 negatively and 39 positively (Supplementary
Table S2). Of the negatively affected proteins, GO terms assigned
36% to organelles of the pathways of endocytosis and exocytosis.
The identified precursors included 34 proteins with cleavable SP
and 41 proteins with TMH. Taken together, TRAP knock-down
and knock-out identified 59 membrane proteins with TMH and
66 proteins with SP (including 20 membrane proteins), all
belonging to the secretory pathway, as TRAP clients
(Figure 9). Interestingly, six of the TRAP clients were found
among the Sec62/Sec63 clients and nine among the Sec62
substrates, consistent with the view that these two allosteric
Sec61 channel effectors have overlapping but non-identical
functions.

The SP analysis of TRAP-substrates demonstrated an above-
average glycine-plus-proline content (GP content) and below-
average hydrophobicity as the key features (Figures 11A–C).
Thus, the Sec61-associated TRAP supports protein translocation

in a substrate-specific manner. We suggest that high GP content
and low hydrophobicity extend the dwell time of SP at the
cytosolic funnel of the Sec61 channel, and that TRAP can
compensate this potential problem by stabilizing SP on the
cytosolic surface and by aiding in Sec61 channel gating at the
lumenal side. This raises the question of how TRAP relays the
presence of an SP-bearing RNC to the Sec61 channel. In an
attempt to interpret our findings at the structural level, i.e., in the
context of the TRAP architecture, in which individual TRAP
subunits were assigned positions within the overall density of
human TRAP in native ER membranes by cryo-electron
tomography (CET) (Figures 11E,F) (Pfeffer et al., 2017), the
ER-lumenal domains of the TRAPαβ-subcomplex contact loop 5
in the hinge region between the amino- and carboxy-terminal
halves of Sec61α and, thereby, mediate Sec61 channel opening
by lowering the activation energy, required for channel
opening (Figure 7). TRAPγ occupies a central position in
human TRAP, contacting eL38 and short rRNA expansion
segment (ES) on the ribosome, thus coordinating the other
TRAP subunits with the ribosome and the additional
translocon components, i.e. the Sec61-complex (contacted
by TRAPαβ) and OST (contacted by TRAPδ). Previously,
the ribosomal components uL24 and H59, both in vicinity
to eL38 and TRAPγ, were observed to coordinate SP for SRP
binding in the bacterial system (Jomaa et al., 2016). Assuming
a similar SP position in the human system, the amino-terminal
SP tip may consequently be close enough to interact with eL38
and the cytosolic domain of TRAPγ during the “hand-over” of
the SP from SRP to Sec61 (Figure 11E). According to this
hypothetical scenario, TRAP may support the insertion of SP
into the Sec61 channel in the productive hairpin (rather than
head-first) configuration.

2.4.5 TRAM1
TRAM (since the discovery of TRAM2 (Stefanonvic et al., 2004)
termed TRAM1) represents an ER membrane protein with eight
TMHs. It belongs to a protein family, characterized by the TLC
(short for: TRAM/LAG1/CLN8) homology domain, which is
supposed to bind ceramide or related sphingolipids (Klein
et al., 2020). Similarly to TRAP, it was discovered by
crosslinking of nascent presecretory proteins in the context of
RNCs, but in contrast to TRAP early in their translocation into
the ER (Görlich et al., 1992b; Görlich and Rapoport, 1993).
Subsequently, it was described to interact with nascent
membrane proteins in the course of their initial integration
into the Sec61 channel (High et al., 1993; Mothes et al., 1994;
Do et al., 1996; Voigt et al., 1996; Hegde et al., 1998; McCormick
et al., 2003; Sadlish et al., 2005; Sauri et al., 2007). Actually,
TRAM1 was one of the first proteins found to provide substrate-
specific support for ER protein import (Görlich and Rapoport,
1993). Furthermore, it was observed that precursor proteins with
short charged amino-terminal domains in their SPs require
TRAM1 for efficient insertion into the lateral gate and that
TRAM1 can regulate cytosolic extrusion of nascent chain
domains into the gap between ribosome and translocon (Voigt
et al., 1996; Hegde et al., 1998). In addition, it was concluded that
precursors with shorter than average N-regions and shorter
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H-regions in their SP require the help of TRAM1 for efficient
insertion into the lateral gate.

By applying our unbiased proteomic approach, we
identified 30 potential TRAM1 substrates that included 13
precursors with SP (including four membrane proteins) and
17 with TMH (Figure 9; Supplementary Table S2) (Klein
et al., 2020). Comparing these precursors to those found for
Sec61 and TRAP in similar experiments, did not point to a
preference of TRAM1 for any particular type of precursor
polypeptides. Furthermore, analysis of the physicochemical
properties of SP and TMH of the TRAM1 substrates did not
point to a specific feature, except for precursors with short
N-regions in their SP. Notably, 27% of the TRAM1 substrates
were also negatively affected by TRAP depletion (Figure 9).
This is consistent with the co-localization of TRAM1 with
Sec61 and TRAP (Görlich and Rapoport, 1993; Dejgaard
et al., 2010). Considering the strong overlap in substrates
of these two transport components and TRAM1’s apparent
lack of precursor preference may indicate that TRAM1 does
not act as a receptor for SPs and TMHs. It may rather play a
supportive role in ER protein import, such as making the
phospholipid bilayer conducive for accepting SP and TMH in
the vicinity of the lateral gate of the Sec61 channel. This
interpretation is consistent with the above-mentioned
prediction that TRAM1 may be able to bind sphingolipids
(Klein et al., 2020).

3 DISCUSSION

In human cells, approximately 30% of all polypeptides enter the
secretory pathway at the level of the ER. This process involves
SPs or equivalent TMHs at the level of the precursor
polypeptides and a multitude of cytosolic and ER proteins,
which guarantee the initial ER targeting as well as the
subsequent membrane integration or translocation
(Figure 2). Cytosolic SRP and SR in the ER membrane
mediate cotranslational targeting of most nascent precursor
polypeptide chains to the polypeptide-conducting Sec61
complex in the ER membrane. Alternatively, nascent and
fully-synthesized precursor polypeptides are targeted to the
ER membrane by either the PEX3/19-, SND-, or TRC-
pathway and mRNAs are targeted to the ER membrane by
nucleic acid-based pathways. According to the classical in vitro
studies for ER protein import, these targeting pathways may
have overlapping functions, which raised the question how
relevant this is under cellular conditions and which features
of SPs and/or entire precursor polypeptides determine
preference for a certain pathway under these conditions.
Irrespective of their targeting pathway(s), most precursor
polypeptides are integrated into or translocated across the ER
membrane via the Sec61 channel. For some precursors Sec61
interaction partners have to support the gating of the channel,
again raising the question why and when this is the case,
i.e., what the client specificities of these auxiliary components
are, i.e., Sec62/Sec63, TRAM1 protein, TRAP. In the course of
the last 5 years, we combined siRNA-mediated depletion or

knock-out of single targeting or transport components in
human cells with label-free quantitative proteomics and
differential protein abundance analysis to characterize client
specificities of these components. Here, we present a summary
of the clients, which were identified in the respective differential
protein abundance analyses and highlight some of the lessons
learned.

In mRNA targeting to the human ER, the putative receptors
AEG-1 and RRBP1 show considerable overlap in their clients,
which are directed towards the secretory pathway (Figure 5)
(Hsu et al., 2018; Bhadra et al., 2021a). The results for KTN1
suggest a possible function of KTN1 (in possible cooperation with
ERj1 and BiP) as the hitherto elusive ER membrane-resident
mRNA receptor in the so-called TIGER domain, which may form
a cytosolic micro-domain that enriches certain membrane
protein- as well as cytoskeletal protein-encoding mRNAs with
multiple AU-rich elements (AREs, specifically ATTTA motifs) in
their 3′UTRs in the vicinity of the ER (Berkovits and Mayr, 2015;
Ma and Mayr, 2018; Bhadra et al., 2021a). Indeed multiple
ATTTA motifs were found in the 3′ UTRs of several mRNAs
and, therefore, appear to be one but certainly not the only
distinguishing feature in this process.

In targeting of precursor polypeptides to the human ER, the
results from the classical in vitro studies for ER protein import
were confirmed, i.e. all four known targeting pathways were
found to be able to target SPs and TMHs to the Sec61
complex in the ER membrane. When the respective SPs were
analyzed with various analytical tools, no significant
distinguishing features were determined. However, for the
PEX3/PEX19-dependent pathway, which plays its major roles
in targeting peroxisomal membrane proteins and certain hairpin
membrane proteins of the ER and lipid droplets to a hitherto ill-
defined ER subdomain (Schrul and Kopito, 2016; Yamamoto and
Sakisaka, 2018), the analysis suggested that this subdomain may
be physically or even spatially related to ER exit sites for large
cargo vesicles, which are crucial for collagen secretion
(Zimmermann et al., 2021). Therefore, various collagens as
well as collagen-modifying enzymes and interacting proteins,
most of them with SP, were found to be targeted to this
subdomain by unknown features. We proposed that the
defects in the biogenesis of certain collagens may contribute to
the devastating effects of PEX3 deficiency in Zellweger patients.
As expected, there were no TA membrane proteins found among
the SRα clients and the SRP/SR-dependent pathway showed the
expected preference for precursors with N-terminal SP or more
amino-terminal TMH (Tirincsi et al., 2022b). In contrast to both
the PEX3/PEX19- and SRP/SR-dependent pathways, TRC- and
SND-dependent ER protein targeting showed a preference for
multi-spanning membrane proteins as well as for membrane
proteins with central or carboxy-terminal TMHs (Tirincsi et al.,
2022b). These findings may explain why the latter two pathways
can substitute for each other to a certain extent. Furthermore,
they are consistent with the observations that there is a
considerable overlap in clients between the latter two pathways
and hardly any overlap with the other two pathways.

With respect to protein translocation into the human ER,
precursors with less-hydrophobic SP were more strongly
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affected by Sec61 depletion, i.e. over-represented among the
negatively affected polypeptides (Nguyen et al., 2018). Thus,
precursor polypeptides with a higher-than-average SP
hydrophobicity appear to be more efficient in Sec61 channel
opening than those with lower hydrophobicity, which may be
linked to the characteristics of the hydrophobic patch formed
by four residues of Sec61α TMHs 2 and 7 that line the lateral
gate of the channel and are crucial for its opening (Voorhees
et al., 2014; Voorhees and Hegde, 2016). In addition, SP
hydrophobicity was observed to be crucial for the roles of
the so-called allosteric effectors of the Sec61 channel, TRAP
and Sec62/Sec63 plus BiP, in channel opening, thereby
confirming conclusions from in vitro experiments and
extending them to the cellular level. This may explain why
the two auxiliary complexes share some substrates (Figure 9).
For SPs having low overall hydrophobicity in combination
with high glycine- plus proline-content, i.e. low alpha-helical
propensity, full Sec61 channel opening in cotranslational
transport was found to be supported by TRAP (Nguyen
et al., 2018), a SP feature that had not been previously
appreciated. Furthermore, to accommodate SPs with low
H-region hydrophobicity, particularly in combination with
detrimental features within the mature part, full Sec61
channel opening was observed to be supported by Sec62/
Sec63 with or without BiP involvement (Ziska et al., 2019;
Schorr et al., 2020). This raises the questions why this is the
case and what the possible benefits are. To answer the second
question first, we suggested that these features may allow
differential regulation of ER protein import under different
cellular conditions, for example by the known phosphorylation
or Ca2+ binding of the respective transport components
(Table 1). Sec63 and Sec62 were described to be subject to
phosphorylation and Ca2+-binding, respectively (Ampofo
et al., 2013; Linxweiler et al., 2013). Thus, these
modifications are candidates for Sec62/Sec63- and ER
protein import-regulation, i.e. the different requirements of
different precursors may provide a basis for dual intracellular
location of proteins, such as ERj6 –coded by the DNAJC3
gene- (Shaffer et al., 2005; Oyamadori et al., 2006; Rutkowski
et al., 2007; Petrova et al., 2008), a Sec62-client in HEK293 cells
and in HeLa cells (Schorr et al., 2020). Furthermore, ERj1 was
found to be subject to phosphorylation (Götz et al., 2009) and
TRAPα was found to be subject to phosphorylation as well as
Ca2+-binding (Wada et al., 1991) and, therefore, may
reciprocally respond to the same cellular conditions as
compared to Sec62/Sec63. We are convinced that the
detected variations in SP and TMH characteristics are
responsible for the known precursor specific defects in
various human diseases, termed Sec61-channelopathies
(reviewed by Haßdenteufel et al., 2014; Sicking et al.,
2021a), which include SEC61A1-linked Common variable
immunodeficiency (Schubert et al., 2018), Neutropenia (Van
Nieuwenhove et al., 2020) and Tubulointerstitial kidney
disease (Bolar et al., 2016; Sicking et al., 2022), SEC61B-
and SEC63-linked Polycystic liver disease (Fedeles et al.,
2011; Lang et al., 2012; Besse et al., 2017), and SSR- as well

as CAML-linked Congenital disorders of glycosylation (Pfeffer
et al., 2017; Nguyen et al., 2018; Wilson et al., 2022) (Table 1).

To address the first question, it is noteworthy that higher
than average overall hydrophobicity and higher than average
H-region hydrophobicity seem to define “weak” or inefficiently
gating SPs in the context of small precursor proteins
(Haßdenteufel et al., 2019) (Figures 10B,D), which is in
sharp contrast to the SP of precursor polypeptides in
cotranslational translocation mentioned above (Figures
10A,C). Therefore, the question is how these contradictory
findings can be reconciled. We suggest that both higher and
lower than average SP hydrophobicity extends the dwell time of
these SPs at the cytosolic funnel of the Sec61 channel, simply
because their interactions with the hydrophobic patch are either
too strong, i.e., disfavouring reversibility, or not strong enough
to trigger spontaneous opening of the lateral gate and
accompanying full channel opening, which may best be
envisioned in the energy diagram for Sec61 channel gating
(Figure 7). Therefore, these features were found to be
responsible for the additional BiP-requirement in the case of
the precursors of ERj3 (Schorr et al., 2020), prion protein (Ziska
et al., 2019), and proapelin (Haßdenteufel et al., 2018), and the
sensitivity towards the Sec61 channel inhibitor CAM741. This
SP effect appears to be reinforced by clusters of positive charges
downstream of the SP in co- and posttranslational translocation
(Figure 10E) (Haßdenteufel et al., 2018; Ziska et al., 2019;
Schorr et al., 2020). Therefore, allosteric Sec61 channel
effectors have to bind to the channel, which supposedly
lowers the activation energy for channel opening, in
particular when aberrant SP hydrophobicity coincides with
low SP helix propensity, as in the case of TRAP (Nguyen
et al., 2018), or with deleterious features downstream of the
SP in the mature region, as in the case of Sec62/Sec63 (Schorr
et al., 2020). According to the available structural data, both
accessory complexes, Sec62/Sec63 and TRAP, appear to act on
the Sec61 channel on its lumenal side, i.e., in proximity to loop 5,
which connects the amino- and carboxy-terminal halves of
Sec61α. Thus, interaction of the accessory complexes with
loop 5 might support the rigid body movement in the course
of Sec61 channel opening. When BiP is involved in channel
opening in addition to Sec62/Sec63, it is recruited to the Sec61
complex by Sec63, binds to ER lumenal loop 7 of Sec61α, and
contributes to the lowering of the activation energy for channel
opening (Schäuble et al., 2012; Haßdenteufel et al., 2018).

Considering the evolutionary conservation of the GP
content of SPs encountered in TRAP-containing humans
and TRAP-free organisms such as yeast and E. coli points
to a much higher GP content in the former (Figure 11D).
Thus, enabled by TRAP, the human Sec61 channel can manage
SPs with a higher content of glycines and prolines, i.e., a lower
helix propensity, compared to its homologous ancestors in
yeast and bacteria. Such a scenario speaks in favor of a co-
evolution of SPs and allosteric effectors of the Sec61 complex
eventually allowing for a broader client spectrum and a more
complex orchestration of protein transport.
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Bacterial Signal Peptides- Navigating
the Journey of Proteins
Sharbani Kaushik, Haoze He and Ross E. Dalbey*

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States

In 1971, Blobel proposed the first statement of the Signal Hypothesis which suggested
that proteins have amino-terminal sequences that dictate their export and localization in
the cell. A cytosolic binding factor was predicted, and later the protein conducting channel
was discovered that was proposed in 1975 to align with the large ribosomal tunnel. The
1975 Signal Hypothesis also predicted that proteins targeted to different intracellular
membranes would possess distinct signals and integral membrane proteins contained
uncleaved signal sequences which initiate translocation of the polypeptide chain. This
review summarizes the central role that the signal peptides play as address codes for
proteins, their decisive role as targeting factors for delivery to the membrane and their
function to activate the translocation machinery for export andmembrane protein insertion.
After shedding light on the navigation of proteins, the importance of removal of signal
peptide and their degradation are addressed. Furthermore, the emerging work on signal
peptidases as novel targets for antibiotic development is described.

Keywords: SecYEG translocase, SecA, signal peptide, protein transport, YidC, Tat pathway, signal peptidase,
antibiotic targets

1 INTRODUCTION

The transport of proteins across cell membranes is fundamentally significant to many biological
processes. Protein export also finds a special interest in biotechnology for production of hormones/
enzymes and recombinant proteins, in laboratory techniques and disease diagnosis. Considerable
progress has been made during the last several decades in understanding the characteristics of the
folded state of substrates during translocation in the cytosol, membrane targeting, the structure and
function of translocation devices, the insertion of membrane proteins into the lipid bilayer, and the
role of energy in protein export. Insight into these fundamental concepts is highly appreciated and
anticipated by scientists in the protein export field.

Protein integration and transport across the membranes are ubiquitous in every organism.
Typically, these proteins are synthesized with a stretch of amino acids called the “signal peptide” that
can be recognized by the cytosolic proteins for sorting and then targeting to the membrane. After
being transferred to the translocation machinery, the proteins are membrane inserted or translocated
across the membrane. In the final step, the signal peptide is proteolytically removed from the
exported protein by signal peptidase.

The signal peptide plays center stage in this export process with a myriad of functions (Hegde
and Bernstein, 2006). The signal peptides can bind to chaperones to prevent premature folding of
the protein in the cytosol. In addition to slowing down the folding of a mature domain of a
preprotein, signal peptides act as a zip code for sorting the proteins from the cytosol to the
membrane. Finally, the signal peptide activates the translocation machinery, initiating the
translocation process.
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This review highlights the function of signal peptides in Gram-
negative bacteria in protein sorting and targeting to the
inner membrane, and translocation across the membrane and
insertion. After navigating the journey of proteins, their removal
and degradation are discussed. Furthermore, the potential of the
signal peptidases (endopeptidases which remove signal peptides)
as antibacterial targets will be covered.

2 SIGNAL PEPTIDES

Most exported proteins in bacteria are transported across the
inner membrane by the general secretion (Sec) pathway or the
Twin arginine translocation (Tat) system or the simple
membrane protein insertase YidC [reviewed in (Crane and
Randall, 2017; Frain et al., 2019; Shanmugam and Dalbey,
2019; Oswald et al., 2021)]. The targeting of the preproteins to
these pathways are dependent on the pathway selective for the
respective signal peptide. These are the Sec signal peptide, the
lipoprotein signal peptide, the Tat signal peptide and the prepilin
signal peptide. Below we describe the properties of each of these
signal peptides.

The Sec signal peptide targets the protein to the Sec
machinery and is composed of three regions (Figure 1) (von
Heijne and Abrahmsèn, 1989; Perlman and Halvorson, 1983;
von Heijne, 1986a): 1) a positively charged N-terminal region
(n), 2) a central hydrophobic region (h) and, 3) a rather polar
C-terminal region which contains small amino acid residues at

positions -1 and -3 (with respect to the cleavage site).
Additionally, a helix breaking residue is often found at the -4
to -6 positions of the C-terminal region (von Heijne, 1986a).
Genetic and mutagenesis studies have shown that the apolar
region of the signal peptide is essential for the function of a
cleavable signal peptide (Emr et al., 1978; Bassford and
Beckwith, 1979; Michaelis and Beckwith, 1982). Moreover,
the basic amino terminus can be important for making
translocation more efficient (Vlasuk et al., 1983; Iino et al.,
1987).

Similar to the Sec signal peptide, the lipoprotein signal peptide
which is processed by signal peptidase 2 (SPase II, lipoprotein
signal peptidase) has a positively charged n region and a
hydrophobic central region (h region) (Figure 1). The main
difference between Sec and lipoprotein signal sequences is that
the c region of the lipoprotein contains the lipobox motif
comprised of Leu-Ala/Ser-Gly/Ala-Cysteine at the −3 to +1
position (Sankaran and Wu, 1994). The lipobox motif is a
structural determinant for lipid modification of the strictly
conserved Cys at the +1 position of the mature domain that
gets modified by diacylglyceride. The glyceride fatty acid lipid is
attached by a preprolipoprotein diacylglycerol transferase (Lgt),
prior to cleavage by SPase II (Sankaran and Wu, 1994). In
Gram-negative and some Gram-positive bacteria, most
lipoproteins are further modified by an acyl chain by N-acyl
transferase (Lnt) after SPase II cleavage (Gupta and Wu, 1991).
Analysis of the signal sequences have shown that the h regions
are shorter for lipoprotein signal peptides as compared to that

FIGURE 1 | Bacterial Signal peptides. Schematic representations of the Sec-type signal peptide, the twin-arginine (Tat) signal peptide, the lipoprotein signal
peptide, and the prepilin signal peptide. The various regions of the signal peptides (n, h, c and basic regions) are indicated. The SP cleavage site is represented with a red
arrow. N and C indicates amino and carboxyl-terminus, respectively.
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present in the Sec signal peptides (Klein et al., 1988; von Heijne,
1989; Tjalsma et al., 2000).

The Tat signal peptide targets proteins to the Tat machinery
and has a tripartite arrangement similar to the Sec signal peptide
(Figure 1). It was initially discovered in chloroplast in exported
proteins transported into the thylakoid lumen independently of
ATP hydrolysis. Later, Berks and others observed it in cofactor
containing periplasmic proteins of bacteria (Chaddock et al.,
1995; Berks, 1996; Bogsch et al., 1998; Sargent et al., 1998;
Weiner et al., 1998). The “Tat” signal peptide takes its name
from the invariant and essential twin arginines in the n-region of
the signal peptide. The motif for Tat signal peptides is RRXFLK
where X can be any residue and F, L and K are quite commonly
found. Mutagenesis of the twin arginines even to a lysine pair can
abolish or significantly reduce transport although single
mutations of the arginines are largely tolerated (Stanley et al.,
2000; Buchanan et al., 2001; DeLisa et al., 2002). Typically, the Tat
signal peptides are longer than the Sec signal peptides, and the
h-region is less hydrophobic than that present in the Sec signal
peptides (Cristobal et al., 1999). Moreover, there is often a basic
residue in the c-region that functions as a Sec avoidance sequence
(Bogsch et al., 1997). While most of the Tat preproteins are
processed by signal peptidase 1 (SPase I) (Lüke et al., 2009), some
contain a lipobox and are therefore processed by SPase II.

A specialized signal peptide called the prepilin signal
peptide is found on the type 4 pilus proteins. Similar to the
Sec and most lipoprotein signal peptides, it targets the protein
to the Sec machinery. Type 4 substrates are found on the
surface of many Gram-negative bacteria such as Pseudomonas
aeruginosa and Neisseria gonorrhoeae. Pilin subunits allow the
bacteria to stick to the surface of the host epithelial cells during
infection. The prepilin signal peptide is unique as it is cleaved
at the border of the n-h region (Strom and Lory, 1993; Mattick,
2002). The processing is carried out by prepilin signal
peptidase, which recognizes the GFTLIE motif and cleaves
after the glycine (Nunn and Lory, 1991). After cleavage, the
prepilin signal peptidase methylates the amino terminus of the
mature pilin (Strom et al., 1993). This generates
N-methylphenylalanine as the first amino acid of the
mature pilin.

In addition to these cleavable signal peptides, uncleaved signal
peptides containing a longer hydrophobic stretch target proteins
to the translocation machinery but remain as a membrane anchor
sequence. These uncleavable signal peptides are found in
membrane proteins which span the bacterial inner membrane
as an α-helix. These domains are enriched in hydrophobic
residues such as Ala, Ile, Leu, and Val but mostly void of
charged residues (von Heijne, 2006). The uncleaved signals
can span the membrane in different orientations, dictated by
the positive inside rule (von Heijne, 1986b; von Heijne, 1999). If
there are positive charges preceding the hydrophobic stretch, then
the transmembrane (TM) segment is oriented with the
C-terminus facing the periplasm whereas if the hydrophobic
stretches are followed by positively charged residues, then the
amino-terminus of the TM segment is localized to the cytoplasm.
The positive inside rule is based on the finding that the membrane
proteins have cytoplasmic loops that are enriched in positively

charged residues (Lys, Arg) as compared to the periplasmic/
translocated loops (von Heijne, 1986b).

2.1 Signal Peptide Targeting to the
Membrane
Targeting of exported and membrane proteins is initiated early
on after the amino terminus of the nascent protein emerges from
the ribosomal exit channel (Figure 2). The targeting pathway is
decided by the interaction of the nascent protein with the
ribosome-bound chaperones and targeting factors such as the
Trigger Factor (TF) (Hoffmann et al., 2010; Castanié-Cornet
et al., 2014), the signal recognition particle (SRP) (Grudnik
et al., 2009; Akopian et al., 2013; Saraogi and Shan, 2014) and
SecA (the ATPase motor of the Sec translocation machinery) in
some cases (Kusters and Driessen, 2011; Chatzi et al., 2014).
These chaperones and targeting factors facilitate the localization
to the inner membrane of bacteria.

In Gram-negative bacteria, the exported proteins are typically
targeted to the Sec complex or the Tat translocase by the post-
translational mechanism (Figure 2). Exported proteins which
employ the Sec pathway contain moderately hydrophobic signal
sequences and are transported through the Sec channel in a
largely unfolded state. In contrast, the Tat substrates are
translocated in the folded state after release of the protein
from the ribosome and hence post-translational. Typically, the
integral membrane proteins are targeted co-translationally either
to the Sec machinery or the YidC insertase as soon as the
hydrophobic TM segment emerges from the ribosomal tunnel.

2.1.1 Targeting of Exported Proteins
2.1.1.1 Sec Proteins
In the post-translational pathway, the TF is bound to the
ribosome over the exit channel shielding the nascent chains
from proteases (Figure 2) (Ferbitz et al., 2004). The ribosome-
bound TF provides a protective environment preventing the
premature folding and aggregation of the growing protein
chain. Ribosome profiling studies have shown that the TF
binds to the nascent chain only after approximately 100 amino
acids are synthesized and play a role for the biogenesis of many β-
barrel outer membrane proteins (Oh et al., 2011). After the
protein is released from the ribosome, some proteins can form
a complex with SecB (Kumamoto and Francetić, 1993), a
dedicated molecular chaperone for export in bacteria. SecB is a
tetramer (Xu et al., 2000) and how it keeps proteins in a non-
native loosely-folded form (Randall and Hardy, 1986) is an
intriguing mechanistic question. Recently, a state-of-the-art
NMR study revealed that an unfolded preprotein wraps
around the SecB. This is achieved by binding to the long
hydrophobic grooves of SecB that run around the tetramer
(Huang et al., 2016). The SecB delivers the preprotein to SecA
bound to SecYEG at the membrane (Hartl et al., 1990). The
targeting of the preprotein to SecA is achieved by SecA acting as a
receptor that binds the signal peptide (Gelis et al., 2007) and the
chaperone SecB (Zhou and Xu, 2003).

In an alternative scenario, cytosolic SecA can interact with
the nascent chains emerging from the ribosome (Figure 2).
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Indeed, previous studies had suggested that SecA interacts with
the nascent chains (Chun and Randall, 1994; Karamyshev and
Johnson, 2005). In more recent studies, SecA was shown to
interact with the ribosome near the ribosome exit channel
(Huber et al., 2011). The binding of SecA to the ribosome is
mediated by the ribosomal protein, L23. This interaction is
important since mutations in L23 perturb SecA ribosome
binding, significantly affecting the post-translational export
of proteins in vivo (Huber et al., 2011). The isolation of
mRNAs that copurify with SecA revealed that they encode
both Sec exported and membrane proteins (Huber et al.,
2017). The interaction of SecA with the nascent protein
chains occurs only when the chains are longer than 110
residues. The interaction of SecA with the nascent chains is
not dependent on TF or SecB. Notably, the authors found that
SecB interaction with the nascent chains depended on SecA
being bound to the nascent chains, suggesting that SecA
interacts with a subset of SecB dependent substrates co-
translationally (Huber et al., 2017). The emerging data
suggests that SecA bound nascent chains can target proteins
directly to the SecYEG complex or with the help of SecB
(Figure 2). However, it is uncertain if the interaction of SecA
with all SecA-dependent substrates occurs co-translationally.

In some cases, the preprotein is released from the ribosome
with the TF still bound (not shown in Figure 2). In vitro, TF has
been shown to form a stable 1 to 1 complex with proOmpA
(Crooke et al., 1988), making proOmpA translocation competent.
The TF functions as a holdase and foldase to bind its substrate in
an unfolded state (Hoffmann et al., 2010). Saio et al. (2014)
characterized the binding of the TF to the unfolded precursor of
alkaline phosphatase (pre-PhoA) by NMR. With the help of
multiple binding pockets, the TF engages with the nascent
polypeptide and shields the emerging hydrophobic regions of
pre-PhoA in solvent to prevent it from premature folding and
aggregation. De Geyter et al. (2020) showed that the TF is a
genuine export chaperone. Notably, they revealed that the TF
bound preprotein can associate with the SecB, which then recruits
SecA through its C-tail and promotes the transfer of the
preprotein to SecA.

2.1.1.2 Tat Proteins
A different post-translational mechanism is used for targeting of
Tat proteins to the inner membrane (Figure 2). These Tat
proteins need to be folded in the cytoplasm prior to their
translocation across the membrane (Palmer and Stansfeld,
2020). Many of the known substrates of the Tat pathway in

FIGURE 2 | Membrane targeting pathways. Overview of targeting of exported proteins and membrane proteins. After exported proteins are released from the
ribosome, Sec-dependent proteins can be stabilized by the molecular chaperone SecB in an unfolded state and then targeted to SecA at the membrane, followed by
translocation by the SecYEG complex. Alternatively, SecA can interact with the ribosome bound nascent chain and target the exported protein to the SecYEG complex.
In case of Tat complex, the proteins fold in the cytoplasm before being exported by the Tat complex. In the event of co-translational targeting, the nascent
membrane proteins form a complex with SRP, which target proteins to FtsY (SRP receptor) for membrane insertion either by the SecYEG complex or the YidC insertase.
Created with BioRender.com.
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bacteria bind a variety of redox cofactors, including
molybdopterin centers and FeS cluster. There are specialized
chaperones termed REMP (redox enzyme maturation proteins)
to mediate cofactor insertion and proof reading (Turner et al.,
2004; Robinson et al., 2011). For example, TorD is a REMP for
TorA that encodes Trimethylamine-N-Oxide Reductase. TorD
facilitates cofactor insertion and protects the TorA signal peptide
from proteases (Ilbert et al., 2003) enabling the TorA to be
delivered correctly to the Tat translocase (Jack et al., 2004).
Another REMP is the DmsD that is involved in the biogenesis
of dimethyl sulphoxide (DMSO) reductase (DmsA) (Ray et al.,
2003). DmsD associates with the DmsA signal peptide (Oresnik
et al., 2001) and also interacts with the molecular chaperones
DnaK, DnaJ, GroE, GroEL, and TF (Li et al., 20101804; Castanié-
Cornet et al., 2014). Finally, NapD is a REMP for the nitrate
reductase complex localized in the periplasmic space. NapD binds
to the Tat signal peptide of NapA (Maillard et al., 2007) and is
involved in the insertion of the molybdenum cofactor.

2.1.2 Targeting of Membrane Proteins
For integral membrane proteins the hydrophobic segments in the
nascent proteins interact with SRP at the ribosome exit channel
and are sorted away from exported proteins that contain less
hydrophobic sequences (Figure 2) (Lee and Bernstein, 2001). The
inference for this comes from ribosome profiling studies
examining the mRNAs that are bound to SRP engaged
ribosome nascent chains (Schibich et al., 2016). The study
revealed 87% of the SRP interactors are membrane proteins
and only 6% are periplasmic/outer membrane proteins
(Schibich et al., 2016). SRP can scan the ribosome with low
affinity even before the nascent chain reaches the exit tunnel and
interacts with the ribosomal binding proteins L23 and L29. This is
called the stand-by mode (Holtkamp et al., 2012). When the
nascent chain of 30–35 amino acids length reaches the exit site,
SRP forms a high affinity complex with the translating ribosome
and signal peptide (Bornemann et al., 2008; Holtkamp et al.,
2012). Soon after forming this high affinity complex, the nascent
chain is delivered to its receptor at the membrane (Figure 2, right
side) to form a quaternary complex. The receptor FtsY (in
prokaryotes) then transfers the ribosome nascent chain to the
SecYEG complex by a mechanism involving the catalysis of
GTPases.

The SRP has also been shown to target membrane proteins to
the YidC insertase (Welte et al., 2012) (Figure 2). For example,
MscL (Facey et al., 2007) and the tail anchored proteins SciP,
DjlC, and Flk require both YidC and SRP for membrane protein
insertion (Pross et al., 2016; Peschke et al., 2018). Ffh and FtsY
can be crosslinked to the cytoplasmic loop of YidC, suggesting
that the SRP-YidC nascent chains are targeted to FtsY that is in
proximity to the YidC cytoplasmic loop (Petriman et al., 2018).
The YidC cytoplasmic loop C2 and the C-tail of YidC binds to the
ribosome supporting YidC activity (Geng et al., 2015).

Although the classical model predicts that SRP binds to the
TM segment when it is exposed out of the ribosome exit channel,
SRP can also interact with the hydrophobic regions that are not a
part of the TM segment in some cases. Pross and Kuhn (2020)
proved that there are two hydrophobic segments in the amino-

terminal part of the C-tailed anchored protein SciP, which are
recognized by SRP allowing it to target SciP to YidC .
Additionally, in contrast to the classical view, ribosome
profiling studies showed that 29% of the SRP interactors
skipped interaction with the first TM segment of the
membrane protein but were bound to C-terminal TM
segments (Schibich et al., 2016). The SRP prefers to bind to
ribosomes exposing

˜

12-17 amino acids enriched in hydrophobic
and/or aromatic residues (Ile, Leu, Val, Met, Phe, Tyr, Typ)
(Schibich et al., 2016).

In another variation, certain membrane proteins with
internal TM segment can be co-translationally targeted to the
membrane by SecA (Wang et al., 2017). SecA binds to the
ribosome near the exit channel where it can recognize certain
membrane proteins. SecA interacts with high specificity with
nascent RodZ chains containing a TM segment far from the
amino-terminus and targets the protein to the inner membrane
(Wang et al., 2017). Previously, Rawat et al. (2015) had shown
that SecA drives TM insertion and that Ffh and FtsY were not
involved. SecA is sufficient for membrane targeting of RodZ
both in vivo and in vitro (Wang et al., 2017). Interestingly,
Knüpffer et al. (2019) found that SecA, just like SRP, deeply
inserts into the exit tunnel of the ribosome to make contact with
the intra-tunnel loop of L23 (Knüpffer et al., 2019). When the
nascent chain is synthesized, SecA withdraws from the tunnel
and the SecA bound to the L23 ribosome protein recruits the
nascent TM segment. It is intriguing that the SecA amino-
terminal amphipathic helix and the ribosomal L23 protein bind
the nascent chain TM segment with the TM segment clustered
in between, as revealed by Cro-EM studies (Wang et al., 2019).
The SecA ribosome nascent chain complex is then targeted to
the SecYEG complex, which repositions SecA on the ribosome,
allowing the TM segment containing the nascent chain to be
handed over to the SecYEG.

2.2 Crossing the Membrane
Once the signal peptide has navigated the transported protein to
the membrane, it promotes interaction with the translocation
machineries (see below). A vast majority of proteins are
translocated by the SecYEG/SecDF system (Figure 3C) and
SecA (Oliver and Beckwith, 1981; Crane and Randall, 2017;
Tsirigotaki et al., 2017; Cranford-Smith and Huber, 2018),
whereas the Tat machinery is involved in the export of around
30 proteins in E. coli (Berks, 2015; Palmer and Stansfeld, 2020)
(Figure 3A). As mentioned before, the Tat machinery is radically
distinct from the SecA/SecYEG/SecDF system as it can export
fully folded proteins.

The SecYEG/SecDF/YidC translocase (Figure 3C) plays the
principal role for placing membrane proteins in the lipid bilayer
with the correct topology (Cymer et al., 2015). Additionally, it
functions to translocate hydrophilic domains of membrane
proteins across the membrane and allows the hydrophobic
regions to integrate into the lipid bilayer. The YidC insertase
on its own or in cooperation with the Sec translocase can insert
membrane proteins (Kiefer and Kuhn, 2018) (Figures 3B,C). The
Tat machinery can act as insertase for the membrane proteins
with C-terminal TM segments (Palmer and Stansfeld, 2020).
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2.2.1 Protein Translocation Across the Membrane
2.2.1.1 SecYEG/SecA Translocase
SecA plays a crucial role for the export process both as a receptor
and molecular motor (Cranford-Smith and Huber, 2018). The
preprotein binds with high affinity to SecA/SecYEG but not to
SecYEG (Hartl et al., 1990). SecA is also necessary for the
translocation of proteins across the inner membrane (Oliver
and Beckwith, 1981).

The structure of the SecYEβ protein-conducting channel,
comprised of three subunits, was solved from Methanococcus
jannashii in 2004 (van den Berg et al., 2004). SecY is the main
channel forming unit that has a classic hourglass structure where
TM 1–5 and TM 6–10 form two symmetric bundles held together
by a linker (Figure 4A). The second subunit, SecE forms a clamp
around SecY by wrapping around the two sides via its TM
segment and cytoplasmic tail to stabilize the complex
(Figure 4A). The SecE in E. coli is a 14 kDa essential 3TM
protein. Sec61β (SecG of E. coli) is located on the third side of
SecY (Figure 4A). Both SecY and SecE are evolutionarily
conserved in bacteria, archaea and eukaryotes while SecG is
not conserved in the three domains of life (Hartmann et al.,
1994; Pohlschröder et al., 1997).

There is a pore ring with a diameter of 4—6 Å (Figure 4B) at
the center of the SecY channel (van den Berg et al., 2004). The
pore ring is formed by 6 hydrophobic aliphatic residues and
expands to accommodate the polypeptide chain during
translocation (Bonardi et al., 2011). A short helix TM 2a
termed as the “plug” keeps the pore closed (Figure 4C). The
plug functions to maintain the integrity and preserve the

permeability barrier of the membrane (Li et al., 2007). It has
been shown that deleting the plug domain does not result in a
major defect in protein export. However, channel experiments
have shown that deletions of the plug compromise the membrane
permeability of the channel as there are fluctuations between the
open and closed state of the translocon (Li et al., 2007). This
suggests that when the plug is present, the channel is stabilized in
the closed state. Finally, on the front side of the channel, is the
lateral gate (comprised of the TM 2a and TM 7) (Figure 4D) that
can open sideways to allow signal peptides or TM segments to exit
the channel (van den Berg et al., 2004).

The peripheral subunit of the Sec complex is SecA which docks
onto the SecYEG channel. It utilizes the energy from both ATP
binding as well as ATP hydrolysis to drive the transport of
unfolded proteins across the Sec channel. Structurally, SecA
contains multiple domains with two ATP binding domains
(NBD-1 and NBD-2) (Hunt et al., 2002), the HSD (helical
scaffold domain), a preprotein crosslinking domain (PPXD)
(Hunt et al., 2002), a helical wing domain (HWD), and a
carboxyl-terminal linker domain (CTL) (Figure 5A). The HSD
domain also has the central helix and the 2 helix finger (2HF)
(Zimmer et al., 2006) or the regulator of ATPase (IRA1)
(Karamanou et al., 1999) subdomains. PPXD and the 2HF
have been implicated in binding the signal peptide and the
mature region of the preprotein (Kourtz and Oliver, 2000;
Papanikou et al., 2005; Musial-Siwek et al., 2007).

The crystal structures of the SecA-SecYEG complexes with
and without substrate have shed light on how SecA moves the
substrate polypeptide through the channel (Zimmer et al., 2008;

FIGURE 3 | The structures/models of the bacterial export and insertion machineries. Export of proteins across the membrane are catalyzed by (A) the Tat complex
(resting complex shown) in a folded state (left side) (Habersetzer et al., 2017) or (C) by SecYEG/SecDF/YidC [adapted from Botte et al. (2016) PDB: 5MG3] energized by
the SecA motor ATPase (not shown) in an unfolded state. TatA, TatB and TatC is shown in cyan, magenta and green, respectively. SecY, SecE, and SecG is shown in
green, red, and magenta; SecD, SecF and YidC are shown in orange, blue and cyan. Membrane protein integration is catalyzed by the SecYEG/SecDF/YidC (C)
complex or by the YidC insertase (B) [adapted from Kumazaki et al. (2014b) PDB: 3WVF]. The view is in the plane of the membrane with the periplasmic face at the top
and the cytoplasmic face at the bottom.
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Li et al., 2016; Ma et al., 2019). In the crystal structure of the
SecA–SecYEG complex, a single SecA protein is bound to a single
SecYEG protomer creating a groove for the passage of the
preprotein (Zimmer et al., 2008). A clamp region can be
observed at the interface of PPXD and NBD-2 domains
(Figure 5A). Based on the crosslinking studies, the clamp has
been proposed to bind the preprotein (Bauer and Rapoport,
2009). The 2HF region of SecA (Figure 6A) may push the
preprotein into the channel (Bauer and Rapoport, 2009).
Interestingly, while an NMR study (Gelis et al., 2007) showed
the signal peptide was bound to a SecA groove formed at the
interface of the 2HF and the PPXD (Figure 5B), it is possible that
it would move from this region to align more parallel to the 2HF,
such that it could be pushed into the channel. Indeed, based on
the FRET, mutagenesis and genetic studies, Oliver and coworkers
proposed a model where the signal peptide binds parallel to the
2HF (Figure 5C) (Grady et al., 2012).

To examine the structure of the SecY channel during active
SecA-dependent translocation, X-ray crystallography was used to
solve a substrate engaged SecA-SecYE complex (Figure 6A). The
substrate sequence, which included the OmpA signal sequence
and a short mature region, was inserted at the end of the 2HF of
SecA (Li et al., 2016). The structure suggested that the signal
peptide moved into the lateral gate facing the lipid bilayer and the
mature region inserted into the channel as a loop, displacing the

plug. Thus, the interaction of the signal sequence with the lateral
gate induces conformational changes and movements of the plug
domain. This leads the way for the substrate to move up the pore
ring towards the periplasm by repeated ATP binding and
hydrolysis events moving roughly 20–25 amino acids into the
translocon in each step.

More recently, in order to gain insight into the path of a
translocating polypeptide through SecA, another substrate
engaged SecA-SecYE was solved in an active transition state of
ATP hydrolysis with ADPBeFx bound (Figure 6B) (Ma et al.,
2019). The SecA/SecYE translocation intermediate with SecA
locked in an ATP bound state was generated using a substrate
fusion protein consisting of the proOmpA signal sequence, a
linker region, and a folded GFP. In order to stabilize the complex,
a cysteine was added after the signal sequence to form a disufide
bond to the cysteine introduced at the SecY plug. The protein was
then reconstituted into nanodiscs and solved by cryo-EM with a
resolution of about 3.5 Å. Tracing the substrate within the SecA-
SecYE complex confirmed that in addition to the polypeptide
being in proximity to the SecA 2HF, it also interacts with the SecA
clamp region via a short β-strand. It also showed that the signal
sequence forms a helix that is positioned in a groove outside the
lateral gate of the SecY channel.

There are several models that have been proposed to account
for the role of ATP energy in energizing SecA/SecYEG in protein

FIGURE 4 | Crystal structure of the SecYEβ complex in the resting state from Methanocaldococcus jannaschii [adapted from van den Berg et al. (2004) PDB:
1RHZ] (A). TM1-5 (red) and TM6-10 (cyan) are the halves of SecY. SecE and Sec61β are in yellow and purple, respectively. (B) The pore ring comprised of six residues
(pink) and lateral gate (TM2b in red and TM7 in cyan) are highlighted. (C) The plug helix located above the pore ring is indicated in dark blue. (D) The SecYEβ complex from
Thermus thermophiles (PDB: 5AWW). The lateral gate region comprised of TM2b (red) and TM7 (blue) is the site where the signal peptide or TM segments of
membrane proteins exit the channel upon opening of the gate. The SecYEβ structures in (A–C) are shown perpendicular to the membrane.

Frontiers in Physiology | www.frontiersin.org July 2022 | Volume 13 | Article 9331537

Kaushik et al. Protein Export in Bacteria

110

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


transport, including (Hegde and Bernstein, 2006) power stroke,
(Oswald et al., 2021), Brownian ratchet, (Frain et al., 2019), push
and slide, and other mechanisms. According to the power stroke
model, the SecA ATP hydrolysis causes conformational changes
that result in mechanical pushing of the polypeptide chain
through the SecYEG channel. Indeed, a large segment of SecA
was proposed to move through the SecYEG channel to the
periplasmic region in order to translocate the polypeptide to
the trans side of the membrane (Ulbrandt et al., 1992; Economou
and Wickner, 1994). Later versions of the power stroke model
proposed that the 2HF, which is positioned at the entrance of the
SecYEG channel, functions as a piston to push the polypeptide
through the membrane. This rationale comes from the fact that
the SecA 2HF interacts with the preprotein during protein
translocation (Erlandson et al., 2008). Upon ATP binding, the
2HF undergoes a large conformational change that pushes the
protein substrate chain into the SecY channel (Catipovic et al.,
2019). After the 2HF releases the polypeptide substrate of the
preprotein, the finger resets to its original position (Catipovic
et al., 2019). This cycle of conformational changes occur multiple
times until the polypeptide is translocated through the channel.

In a Brownian ratchet mechanism, the movement of a protein
chain occurs via diffusion through the channel. SecA would
mediate SecYEG channel opening thereby enabling the
preprotein to diffuse through the SecYEG pore. The evidence
for this action was presented in a model by Allen et al. (2016). The
authors demonstrated that the SecYEG gate is wide open when
ATP is bound to SecA and slightly open with ADP bound to SecA.
The slightly open channel allows protein substrate regions with

small side chains to slide through the pore, but larger side chains
would require the pore to open. Interestingly, the SecYEG
channel and the SecA 2HF are able to detect the presence of a
protein chain which results in nucleotide exchange, allowing ATP
to replace ADP. The binding of ATP to SecA leads to opening of
the SecYEG channel through which the chain crosses by
diffusion. Backsliding of the polypeptide chain is prevented by
closure of the channel. More recently, ATP-driven translocation
through the SecYEG channel was shown to be indirectly coupled
to ATP hydrolysis providing further support to the Brownian
ratchet model (Allen et al., 2020).

A push and slide mechanism combines the power strokes and
the passive diffusion models. Bauer et al. (2014) found that
certain protein chains can slide passively through the SecYEG
channel without ATP hydrolysis. Passive sliding of the
polypeptide chain takes place after the preprotein is released
by the 2HF and SecA has bound to ADP. Under these
conditions, the clamp region between PPXD domain and
NBD-2 domain is open and cannot bind the mature domain.
The polypeptide chain can passively slide in either direction.
Power stroke would occur again after the binding of ATP to
SecA. During the power stroke, segments of the polypeptide
chain move deep into the SecY channel (Catipovic and
Rapoport, 2020) as the SecA 2HF moves into the channel.
Prior to the retraction of the 2HF to the original position,
the SecA captures and tightens its clamp region around the
mature domain of the preprotein substrate, thus preventing
back sliding of the polypeptide chain (Catipovic et al., 2019).
This tightening enables the forward translocation of the chain to

FIGURE 5 | The NMR structure of SecA from E. coli [adapted from Gelis et al. (2007) PDB: 2VDA]. (A) The various domains of SecA are highlighted (without the
signal peptide). The nucleotide binding domains I (orange) and II (blue), the central helix subdomain of helical scaffold domain (HSD in purple), the preprotein crosslinking
domain (PPXD green), the helical wing domain (HWD cyan), and the observed carboxyl-terminal linker domain (CTL). Also highlighted is the 2-helix finger (2HF tan) within
the HSD domain. (B) The signal peptide (red) binds roughly perpendicular to 2HF based on NMR studies (Gelis et al., 2007). (C) The signal peptide is modeled
parallel to the 2HF of the E. coli SecA NMR structure based on FRET, mutagenesis and genetic studies (Grady et al., 2012).
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be maintained. The clamp closure occurs before or during SecA
ATP hydrolysis and that the 2HF resets all the way when the
clamp is closed. Otherwise, as the 2HF resets, and moves away
from the channel it would drag the polypeptide with it
(Catipovic et al., 2019; Catipovic and Rapoport, 2020). One
baffling fact is that the immobilization of the 2HF to SecYEG do
not inhibit translocation (Whitehouse et al., 2012).

In addition to the energy of ATP binding and hydrolysis, the
proton motive force (pmf) can also contribute to the
translocation of preproteins across the SecYEG channel
membrane (Date et al., 1980; Zimmermann and Wickner,
1983). SecD and SecF, which have 6 TM segments and a large
periplasmic domain, are required for pmf stimulation of protein
translocation (Arkowitz and Wickner, 1994). One model
proposes that SecDF assists in translocation by binding the
preprotein once it emerges from SecY and prevents back
sliding (Tsukazaki et al., 2011). Then it swivels its head

domain to translocate about 25 amino acids across the
membrane with the help of the pmf. Therefore, SecDF
functions in the pulling of preproteins across the membrane,
and the release of preproteins from the SecYEG complex after
complete translocation.

2.2.1.2 Tat Translocase
The Tat machinery exports fully folded proteins of different sizes.
It is comprised of TatA, TatB, and TatC (Tat complex) in E. coli
and TatAC in B. subtilis (Jongbloed et al., 2004; Berks, 2015;
Palmer and Stansfeld, 2020). The Tat components in E. coli are
assembled on the cytoplasmic membrane as a TatBC complex
and a cytoplasmic TatA pool. Interestingly, TatC membrane
insertion is a SecYEG and YidC dependent event (Welte et al.,
2012; Zhu et al., 2012). After forming the TatBC complex, the
TatA oligomers are recruited to the TatBC complex in a pmf
dependent event before substrate translocation. The recognition

FIGURE 6 | Structures of substrate engaged SecYE or Sec61 complexes. (A) Crystal structure of SecYE-SecA [adapted from Li et al. (2016) PDB: 5EUL] with a
portion of the preprotein (comprised of the OmpA signal sequence and a few residues in the mature region) fused into the 2HF (navy blue) by insertion between 741 and
744 of SecA. SecA (in light blue) was from B. subtilis and SecYE was fromGeobacillus thermodenitrificans. Nanobody (chartreuse) bound to the periplasmic side of SecY
(tan). (B) CryoEM structure of SecYEG-SecA complexed with a proOmpA sfGFP [adapted from Ma et al. (2019) PDB: 6ITC] fusion protein. The structure was
performed with SecYE in a lipid nanodisc. An anti-GFP nanobody was inserted at the C-terminus of SecA to recognize and stabilize the fused sfGFP of the substrate. In
addition, a disulfide was created between a cysteine at position 8 in the early mature region of the proOmpA GFP fusion protein and a cysteine placed in the plug domain
of SecY. Finally, a SecY nanobody that recognizes the periplasmic SecY region was added to stabilize the complex. SecA was from B. subtilis and SecYE was from
Geobacillus thermodenitrificans. The nanobody is shown in green in (A,B). (C) CryoEM structure [adapted from Voorhees and Hegde, 2016 PDB: 3JC2] in detergent of
the canine ribosome Sec61 channel engaged with the N-terminal 86-amino acid preprolactin region. (D) CryoEM structure [adapted from Gogala et al. (2014) PDB:
4CG6] of the canine Sec61 channel engaged with a hydrophobic TM segment (light green) of a leader peptidase (lep) arrested intermediate. The TM segment was
modeled within the opened TM2/TM7 lateral gate. (E) CryoEM structure (adapted from Bischoff et al. (2014) PDB: 5ABB) of a stalled E. coli ribosome SecYE complex
engaged with proteorhodopsin (TM indicated in light green). TM2 and TM7 of the lateral gate are shown in magneta and cyan, respectively in (A–E). The signal peptide
(red) is indicated in (A–C). The plug helix is indicated in yellow in (D,E).
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of the twin arginine motif by a conserved patch on TatC (Palmer
and Stansfeld, 2020) initiates the architectural reorganization of
the active complex assembly. The low stability, size and transient
nature of the active complex presents a daunting challenge to
identify the precise assembled active complex needed for Tat
translocation.

The Tat components TatA and TatB have similar features each
possessing a small periplasmic N-terminal region, a single short
TM helix (TMH) followed by an amphipathic helix (APH), and a
cytoplasmic domain. TatA is assumed to form the translocation
complex with the substrate as it is capable of forming oligomeric
rings of different sizes (Gohlke et al., 2005). TatB functions with
TatC as a receptor to bind Tat substrates (Cline and Mori, 2001;
Behrendt and Brüser, 2014). TatB and TatC form a 1:1 complex
and have an oligomeric structure with a size range of
360–700 kDa (Bolhuis et al., 2001).

In the resting state, the TatBC receptor complex most likely
has some TatA associated and recent studies suggest there are
three to four copies each of TatA, TatB and TatC in a ratio of 1:1:
1 (Bolhuis et al., 2001; Alcock et al., 2016; Habersetzer et al.,
2017). Based primarily on crosslinking studies it has been
proposed recently that in the resting state, this TatABC
complex is organized such that TatB binds to the TatC TM5
and TatA binds to the TatC TM6. Upon activation of the

complex by substrate addition, TatA and TatB switch
positions which may be triggered by the substrate with the
signal peptide moving further into the membrane interior
(Habersetzer et al., 2017).

NMR studies reveal that TatA and TatB proteins possess a
short α-helical TM segment followed by the amphipathic helix
(APH) (Figure 7A) (Rodriguez et al., 2013; Zhang et al., 2014).
TatA forms oligomeric rings with variable number of TatA
molecules (Rodriguez et al., 2013). Interestingly, structural
studies and molecular dynamic (MD) simulations predict that
the TatA structure causes significant thinning of the membrane
due to its short TM segments (Rodriguez et al., 2013). This may be
true with TatB as well since it has a short TM segment. The
structure of the 6-membrane spanning TatC from Aquifex
aeolicus revealed that the protein has a “cup hand” or “glove-
like structure” (Figure 7B), where TatC assembles into a concave
structure that can accommodate a TM segment of TatB or the
neighboring TatC (Rollauer et al., 2012; Ramasamy et al., 2013).
Remarkably, the TatC surface has an ionizable Glu165 side chain
that is expected to be buried in the hydrophobic interior of the
bilayer. MD simulations show that the TatC has a hydrated cavity
facing the cytosol with the conserved Glu/Gln at this position
inside the membrane. This hydrophilic cavity and the short TM
segments 5 and 6, cause thinning of the membrane.

FIGURE 7 | The Tat complex components and a model of TatC-signal peptide complex. (A) The single span TatA (PDB: 2MN7) and TatB (PDB: 2MI2) proteins
were determined by NMR (Rodriguez et al., 2013; Zhang et al., 2014). The structure of 6 membrane spanning TatC [adapted from Rollauer et al. (2012) PDB: 4B4A] was
solved by X-ray crystallography (Rollauer et al., 2012; Ramasamy et al., 2013). (B) The model of TatC binding with the Tat signal peptide in the groove adapted from
Ramasamy et al. (2013). Only signal peptide and early mature region of the preprotein are indicated.
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Export by the Tat pathway begins by the recognition of the Tat
signal peptide of the preprotein substrate by TatC within the
TatBC complex. TatC recognizes the RR motif via its N-terminal
domain and a cytoplasmic loop 1 (Figure 7B) (Alami et al., 2003;
Gérard and Cline, 2006). Subsequently, insertion of the signal
sequence into the interior of the membrane takes place by
contacting the periplasmic side of TatA. Following the
substrate insertion into the TatBC complex, the oligomeric
TatA complex is formed in a step that requires a TM pmf. An
oligomeric complex of TatA facilitates the translocation of the
folded substrate. TatA protomers are predicted to form
oligomeric ring-like pores of varying diameters in the
cytoplasmic membrane, permitting the movement of fully-
folded proteins into the periplasm (Lausberg et al., 2012).

The precise mechanism of translocation is still debatable, but we
will discuss the two main hypotheses documented in literature. The
trap door model postulates that the amphipathic helix (APH)
domain of TatA flips into the lipid bilayer with the help of
membrane potential on contact with the substrate carrying the
TatA interactive motif (Patel et al., 2014). Initially, TatA
oligomers self-arrange to form a pore of ~8.5–13 nm in diameter
to accommodate the folded protein (Frain et al., 2019). The APH of
the TatA oligomers at the cytoplasmic facemirrors a “trap door” that
regulates the transient channel for translocation of the substrate.
This would essentially depend on the flexible hinge (the conserved
Gly residue) between the APH and TMH (Frain et al., 2019). When
the APH swings up to align with the TMH, the polar residues may
interact with the hydrophilic protein to be translocated and thus the
folded protein is promoted across the formfitting passive conduit.

The second model proposed a weakening of the lipid bilayer
when TatA oligomerizes with its polar N-tail destabilizing the
membrane, allowing translocation of the Tat substrate (Brüser
and Sanders, 2003). This model where transient bilayer
disruptions occur, is gaining more support with the NMR
structure of TatA and suggests that the TatA topology may not
be as flexible as predicted by the trap door model. MD
simulations reveal the phospholipids are highly distorted
and the membrane thickness is dramatically shortened
(Rodriguez et al., 2013). It is believed that the thinning of
the membrane is due to the short TatA TM segment and the
presence of the conserved glutamine in the oligomer. However,
this model does not clarify what drives the translocation of the
substrate across the membrane.

2.3 The Insertion of Proteins Into the
Membrane
The insertion of proteins in their proper conformation and
orientation into the lipid bilayer is crucial for the functional
integrity of the membrane proteins [for recent reviews see
(Cymer et al., 2015; Tsirigotaki et al., 2017; Hegde and
Keenan, 2021)].

2.3.1 SecYEG/YidC
For membrane protein topogenesis, the nascent membrane
protein chain is presumed to be driven across the membrane
utilizing the GTP hydrolysis energy from protein synthesis. This

is possible because the ribosome binds to the SecYEG complex
and may form a single aqueous conduit that stretches across most
of the inner membrane.

As the membrane protein enters the SecYEG channel, the
hydrophobic TM sequence or signal peptide may first enter the
hydrophilic channel and then exit the lateral gate (van den Berg
et al., 2004) or it can slide into the membrane via the lateral gate
by thermodynamically partitioning between the lipid and the
aqueous pore (Cymer et al., 2015). Rather than the sequence of
amino acids of the TM segment, the overall hydrophobic
character of the segment is important for insertion into the
membrane (Hessa et al., 2005; Hessa et al., 2007). The
hydrophobic stretch can stabilize the open lateral gate (Zhang
and Miller, 2010).

As seen with the substrate engaged SecYEG/SecA complex, the
ribosome bound-Sec translocon showed the signal peptide in the
lateral gate region. A cryoEM structure of the canine ribosome
Sec61 translocon engaged with a preprolactin substrate revealed
the signal peptide in the lateral gate (Figure 6C) (Voorhees and
Hegde, 2016). The pore region of the channel would allow the
polar polypeptide chains to be translocated to the trans side of the
membrane (Erlandson et al., 2008). After translocation, a simple
membrane protein with 1 TM segment would completely exit the
channel and partition into the lipid bilayer.

Similarly, the lateral gate accommodates the TM segment of
the ribosome bound membrane protein inserting into the Sec61
complex, as revealed by cryo-EM study (Figure 6D) (Gogala
et al., 2014). Notably, another cryo-EM study of a nascent
membrane protein-SecYE complex demonstrated that the first
2 TM α-helices of proteorhodopsin had exited the lateral gate to
face the lipid with the N-terminus at the periphery of SecY
(Figure 6E) (Bischoff et al., 2014). Kater et al. (2019) further
elucidated that a partially inserted hydrophobic region can cause
opening of the lateral gate.

SecA is always required for translocation of large loops and
occasionally for small loops of membrane proteins (Kuhn, 1988;
Andersson and von Heijne, 1993; Deitermann et al., 2005; Soman
et al., 2014). However, the mechanism by which this task is
carried out has not been elucidated, as the ribosome is expected to
be already bound to the SecYEG complex when the membrane
protein inserts co-translationally. In order to perform the
translocation function by SecA, the ribosome should be
dissociated partly or completely from the SecYEG. This
illustrates the dynamic nature of the insertion process and the
interplay of the various SecYEG binding partners.

An interesting method to study in vivo insertion and co-
translational folding of membrane proteins is the application of
translational arrest peptides to measure forces acting on a nascent
protein during membrane insertion (Ismail et al., 2012; Sandhu
et al., 2021). In this approach, the arrest peptide binds to the
ribosomal tunnel and induces ribosomal stalling at a specific
amino acid. SecYEGmediated membrane insertion and folding of
a nascent chain is followed by examining the release of stalling
and resumption of protein synthesis. This technique has been
used to study the co-translational insertion of simple to complex
proteins spanning the membrane ten times, showing that the
surface helices and re-entrant loops that flank a TM segment can
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either advance or delay membrane protein insertion (Nicolaus
et al., 2021). Moreover, the results supported a sliding mechanism
where the inserting TM segment moved into the membrane along
the outer part of the lateral gate.

The mechanism of insertion of multispanning membrane
proteins is complicated with most of the findings coming from
studies of the endoplasmic reticulum (ER) membrane system
(Cymer et al., 2015; Hegde and Keenan, 2021). In some cases, a
TM segment is inserted into the translocase and then reoriented
within the channel (Goder and Spiess, 2003). Remarkably, some
TM segments of the membrane proteins such as the aquaporin 4
channel, exit the channel but apparently interact again at a later
stage in membrane biogenesis, validating the dynamic nature of
membrane protein biogenesis. The Sec machinery can handle the
internal TM segments by various mechanisms. Some TM
segments integrate into the lipid bilayer spontaneously
(Heinrich et al., 2000), others integrate into the lipid bilayer
only after the protein synthesis is terminated (Do et al., 1996;
McCormick et al., 2003), some pairs of TM segments co-integrate
into the membrane (Skach and Lingappa, 1993; Heinrich and
Rapoport, 2003), while the rest can be stabilized by chaperones
such as TRAM and YidC (Do et al., 1996; Heinrich et al., 2000;
Beck et al., 2001; Urbanus et al., 2001; Nagamori et al., 2004).

SecYEG plays the primary role in membrane insertion in the
plasma membrane in bacteria. The accessory component, YidC
actively participates in membrane protein biogenesis for several
different Sec dependent proteins (Figures 2, 3). Substrates that
require the synergistic action of both YidC and SecYEG for
insertion include, subunit a and b of the F1Fo ATP synthase
(Yi et al., 2004) and TatC of the twin arginine translocase (Welte
et al., 2012; Zhu et al., 2012). Moreover, YidC can bind to the TM
segment of membrane proteins after the TM segment exits the
SecYEG channel (Urbanus et al., 2001). This case is exemplified
by the TM segments of FtsQ and leader peptidase (Houben et al.,
2004) which were shown to initially contact SecYEG followed by
contact with YidC at a later stage during its translocation process.
This latter finding implied that YidC may facilitate Sec substrates
to partition into the bilayer and assist in the clearing the Sec
channel of its substrates. Remarkably, in the case of CyoA
(subunit of cytochrome bo3 oxidase), the amino-terminal
domain is inserted by the sole action of the YidC insertase
whereas the large C-terminal domain requires SecYEG
operating with the SecA motor ATPase for insertion (Celebi
et al., 2006; van Bloois et al., 2006; Kol et al., 2009).

Furthermore, YidC acts as a chaperone (Nagamori et al., 2004)
and assembler of multi-TM complexes (Saller et al., 2012). Studies
with LacY biogenesis showed that YidC acts in the late stages of
membrane protein biogenesis and is crucial for the correct folding
of the protein but nonessential for its insertion (Nagamori et al.,
2004; Zhu et al., 2013). Wagner et al. (2008) discovered a similar
trend with MalF, a subunit of the maltose binding complex. Upon
YidC depletion, the stability of the complex was affected without
compromising the insertion of the TM segments of MalF
mediated by the SecYEG complex.

In order to perform these multi-functions, YidC must be
located close to the SecYEG complex. Indeed, YidC, SecDF/
YajC may associate with SecYEG to form a holo-translocon

(Schulze et al., 2014). This has been validated by
copurification of YidC with the SecYEG and SecDF/YajC. The
purified complex is capable of inserting in vitro synthesized
membrane proteins (Komar et al., 2016). A low-resolution
structure of the holocomplex SecYEG/SecDFYidC revealed
that the SecYEG-YidC interface is a lipid filled cavity (Martin
et al., 2019). Although a YidC holocomplex can be isolated, YidC
is capable of dynamic interaction with SecYEG. When YidC
contacts SecYEG, it is in proximity to the lateral gate of
SecYEG and can contact helices on either side of the lateral
gate (TMs 2b, 3, 7 and 8) (Sachelaru et al., 2017). This contact is
maintained even in the absence of SecDF. Furthermore, SecYEG
contacts TM1 and cytosolic loop 1 of YidC (Petriman et al., 2018).
The Sec lateral gate can contact the YidC TM3-TM5 region which
forms the greasy slide (Steudle et al., 2021). Taken together, these
studies suggest that the insertion of Sec-dependent protein
substrates occurs at the interface of YidC/SecYEG.

2.3.2 YidC-Only Pathway
In addition to assisting SecYEG and acting as a chaperone for
membrane insertion, YidC can also operate independently.
Examples of the Sec-independent proteins include M13 phage
coat protein (PC) and the Pf3 coat protein, which were earlier
presumed to be inserted by an unassisted mechanism. Depletion
of YidC resulted in the accumulation of these proteins in the
cytoplasm (Samuelson et al., 2000; Chen et al., 2002; Serek et al.,
2004). Moreover, crosslinking studies revealed that YidC
interacts with the inserting Pf3 coat (Chen et al., 2002).
Subunit c of F1F0 ATPase was shown to be dependent on
YidC for membrane insertion both in vivo (Yi et al., 2003; van
Bloois et al., 2004) and in vitro (Van Der Laan et al., 2004).
Interestingly, YidC proteoliposomes were capable of forming the
subunit c oligomer whereas the liposomes were not (Kol et al.,
2006). The indispensable nature of YidC in cells is still
speculative. One of the reasons may be attributed to the fact
that YidC is required for the biogenesis of the respiratory
complexes (van der Laan et al., 2003).

Other substrates for the YidC-only pathway are MscL
(Mechanosensitive channel of large conductance), which
inserts co-translationally (Facey et al., 2007) and the tail
anchored membrane proteins TssL (SciP), DjlK, and Flk
(Aschtgen et al., 2012; Pross et al., 2016; Peschke et al., 2018).
In eukaryotes, the ER tail anchored membrane proteins with a
high hydrophobic TM segment are inserted by the Get pathway
while those proteins with low hydrophobic TM segment are
inserted by the ER membrane protein complex (EMC) (Hegde
and Keenan, 2021). Interestingly, Get1 and EMC3 of the Get
complex and EMC, respectively, are YidC homologs found in the
ER (Anghel et al., 2017; Chen and Dalbey, 2018; McDowell et al.,
2021).

The common feature of substrates of the YidC only pathway is
that they have a short translocated region (Hennon et al., 2015),
suggesting that the YidC insertase has limited translocase activity.
Indeed, if the polarity of the translocated domain exceeds a
certain threshold by introduction of charged/polar residues,
then YidC requires the assistance of the SecYEG complex,
implying that YidC is incapable to translocate these substrates
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unaided (Soman et al., 2014; Hariharan et al., 2021). The
switching from YidC-only pathway to the YidC/Sec pathway
indicates that both the YidC and the SecYEG are surveying the
polypeptide chain during the membrane insertion process. This is
feasible by dynamic interaction of YidC with SecYEG (Sachelaru
et al., 2017; Steudle et al., 2021) or, a certain portion of YidC is a
part of the SecYEG/SecDFYajC/YidC holocomplex (Schulze et al.,
2014).

Structural studies have shown that YidC is a monomer and
contains a hydrophilic cavity within the 5 TM core region
(Figure 8) (Kumazaki et al., 2014a; Kumazaki et al., 2014b).
This aqueous groove with a conserved positively charged residue
is open both to the cytoplasm and the lipid bilayer but closed from
the periplasmic side. The existence of a hydrophilic groove
located within the inner leaflet of the membrane was
supported by in vivo solvent accessibility and MD simulation
studies. The study also revealed that YidC shapes the membrane
with significant membrane thinning around the protein (Chen
et al., 2017). The presence of the hydrophilic groove in the
membrane decreases the membrane crossing distance which
would in turn reduce the energy cost of translocating a
polypeptide chain. Wu and Rapoport (2021) have recently
proposed that protein translocation through a locally thinned
membrane is a new paradigm for lowering the energy cost for
translocation.

Remarkably, the positively charged residue in the
hydrophilic groove is essential for SpoIIIJ (YidC1)

function in B. subtilis. It was proposed that the
hydrophilic groove participates in an electrostatic step
necessary to translocate the negatively charged N-terminal
tail region of MifM across the membrane (Kumazaki et al.,
2014a). However, the positive charge is not essential for the
E. coli YidC (Chen et al., 2014). Rather, the positively charged
residues plays a role in maintaining the hydrophilic
microenvironment in the groove, which is necessary for
the activity of YidC (Chen et al., 2022).

In addition to the hydrophilic groove, YidC has a cytoplasmic
helical hairpin-like domain (Figure 8A) (Kumazaki et al., 2014a)
which was predicted to be involved in the initial recruitment of
the substrate. The arrangement of two antiparallel helices in the
C1 region of EcYidC is rotated by 35° with respect to the core
region, as compared to that in the BhYidC structure. Moreover, in
both the structures the B factor for this region is high,
demonstrating the flexibility of the C1 cytoplasmic loop
region. Crosslinking studies of the essential C1 loop show
contacts not only with the targeting proteins SRP and FtsY
but also the Sec translocon (Geng et al., 2015; Petriman et al.,
2018).

The mechanism of the substrate TM recognition by YidC is
fascinating. Crosslinking studies have indicated that the TM3 of
YidC contacts the TM domain of FtsQ, leader peptidase, subunit c
of the F1FoATPase (Yu et al., 2008). Contacts are also observed
with TM3 and TM5 of YidC to Pf3 coat and MscL (Klenner et al.,
2008; Klenner and Kuhn, 2012). It has been proposed that the

FIGURE 8 | The YidC insertase [adapted from Kumazaki et al. (2014b) PDB: 3WVF]. (A) The E. coli YidC has a large periplasmic domain, a coiled cytoplasmic
domain, and a conserved core region comprising of 5 TM helices (TMs 2–6) that form a hydrophilic groove open to the cytoplasm and lipid bilayer. The hydrophilic groove
has a strictly conserved arginine that helps to keep the region hydrated. (B) A close-up view of the greasy slide (TM3 and TM5) that contacts the TM region of YidC
substrates during insertion. The residues that contact the substrate TM segment (s) are indicated in dark blue. (C) During membrane insertion of the Pf3 coat, the
TM segment moves up the greasy slide with the N-tail region captured transiently in the hydrophilic groove. The periplasmic domain of YidC is omitted in (B,C).
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substrate enters the YidC groove between these TM3 and TM5
segments, which constitutes a greasy slide where the TM segment
moves across the membrane (Figure 8B). Kedrov et al. (2016),
performed cryo-EM studies on a YidC-ribosome Foc nascent
chain complex where YidC was reconstituted in nanodiscs. The
study revealed that the Foc nascent chain was in proximity to
TM3 facing the lipid region.

He et al. (2020) elucidated the pathway employed by the single
spanning Pf3 coat to provide insight into the YidC insertion
mechanism of simple membrane proteins (Figure 8C). The
tracking of the Pf3 coat protein through YidC was obtained by
“freezing” each step of the insertion process by creating
translational arrested intermediates of different sizes and
investigating them by thiol crosslinking (He et al., 2020). The
results divulged that the TM segment of Pf3 moves up the YidC
greasy slide during membrane insertion. After the TM reached
the top of the slide, the N-tail transiently enters the YidC
hydrophilic groove. In the next step, the N-tail is released
from the groove and translocated across the periplasmic leaflet
of the membrane.

2.3.3 TatC and TatC/SecYEG
The Tat substrates of E. coli include the five integral membrane
proteins including HybO, FdnH, FdoH, HyaA and HybA
(Hatzixanthis et al., 2003). The genes encode subunits of
NiFe hydrogenase or formate dehydrogenase. They are
encoded with a Tat signal peptide and possess a C-terminal
TM segment that functions as a stop transfer domain. The
recognition of these membrane proteins by the Tat complex is
achieved by the interaction of the Tat signal peptide with the
TatBC complex.

Although mechanistically different, surprisingly, in some
bacteria, cooperation is observed between the Tat and the Sec
pathway for the insertion and assembly of polytopic
membrane proteins (Keller et al., 2012). The first evidence
for this was from the analysis of the iron-sulfur membrane
bound Rieske proteins from Gram-positive actinobacteria
that has 3 TM segments. While the first 2 TM segments are
inserted by the SecYEG translocase, the third TM segment,
which is preceded by a Tat motif was inserted by the Tat
system. To understand the mechanism of insertion further
and to decipher the handover process from Sec to Tat, the S.
coelicolor Rieske protein, Sco2149 was examined (Tooke
et al., 2017). The authors observed that a moderate
hydrophobicity of the TM3 segment and the presence of
several C-terminal positively charged residues promote the
release of the TM3 from the SecYEG apparatus. This further
allows the Tat TM segment to engage with the Tat translocase
and stimulate translocation across the membrane. Other
examples of the dual participation by Sec/Tat machineries
targeting membrane proteins include the five spanning
membrane proteins S. coelicolor Molybdenum cofactor
protein Sco3746, and the delta proteobacterium MLMS-1
FeS containing polyferredoxin. In these cases, the first
4 TM segments are inserted by the SecYEG complex, and
the Tat system inserts the last TM segment and translocates
the folded C-terminal domain. In each case, the fifth TM

segment has moderate hydrophobicity and an amino
terminal Tat RR-motif (Tooke et al., 2017).

2.4 Removal of the Signal Peptide and
Degradation
The last step in the translocation pathway is the removal of the
signal peptide. This allows the exported proteins to be released
from the membrane so that they can continue their journey to the
periplasm, outer membrane or to the extracellular medium. The
removed signal peptides are degraded by enzymes having signal
peptide hydrolase activity.

Signal peptidases cleave off the signal peptides and play crucial
roles as endopeptidases with clear cut substrate specificities
(Paetzel, 2019). Type I signal peptidase (SPase I; also known
as leader peptidase) processes the majority of preproteins while
Type II signal peptidases (SPase II; also known as lipoprotein
signal peptidase) process lipoprotein precursors (Paetzel, 2014).

2.4.1 Signal Peptidase I
The first signal peptidase to be characterized was E. coli signal
peptidase I (SPase I). It was overproduced and purified to
homogeneity (Wolfe et al., 1982). The purified protease in
detergent was shown to cleave a wide variety of preproteins,
including eukaryotic secretory preproteins (Watts et al., 1983).
Similarly, the eukaryotic signal peptidase can cleave bacterial
preproteins, demonstrating that the cleavage specificity is
evolutionarily conserved (Watts et al., 1983). Subsequently, the
E. coli protease enzyme was shown to be localized to the inner
membrane with its catalytic domain facing the periplasmic space
(Wolfe et al., 1983). Moreover, it was shown to be an essential
enzyme for the bacteria (Date, 1983).

Signal peptidases are indispensable for the secretion process.
Disruption of the signal peptide processing prevents the
preproteins from arriving to their correct destination in the
cell (Dalbey and Wickner, 1985). Under decreased SPase I
activity in a depletion strain, the accumulated preproteins
were translocated but were anchored to the inner membrane
by the uncleaved signal peptide. Therefore, the function of signal
peptidase is to release the exported protein from the membrane
by removing the signal peptide so that they proceed to their
destination. It is now established that SPase I processes the
majority of non-lipoproteins that are exported by the Sec
pathway or by the Tat pathway (Lüke et al., 2009).

To understand how SPase cleaves and binds substrates at the
active site, the structure of the E. coli signal peptidase periplasmic
domain (Δ2-75) (Tschantz et al., 1995) was solved to high
resolution of 1.9 Å (Paetzel et al., 1998) (Figure 9A). The
catalytic serine (Ser 91) was covalently attached to the cleaved
β-lactam inhibitor and the lysine 146 amino group was within
hydrogen bond distance. This corroborates with the mutagenesis
studies displaying the indispensable mechanism of active Ser and
Lys dyad for catalysis (Sung and Dalbey, 1992; Tschantz et al.,
1993; Paetzel et al., 1997) (Figure 9A) in contrast to the canonical
Ser-His-Asp mechanism (Paetzel and Dalbey, 1997).

Intensive analysis of the structure of the active site region
with the inhibitor (Paetzel et al., 1998) and a signal peptide
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modeled into the binding site of the apo enzyme (Paetzel et al.,
2002) revealed the binding pockets at the S1 and S3 positions
that account for the “-3 and -1” or “Ala-X-Ala” rule for
processing based on conserved residues in preproteins
(Heijne, 1983). The S1 pocket is quite small and the S3
pocket is slightly bigger, fitting well with the known substrate
specificity. The -2, -4 and -5 residues are solvent exposed,
consistent with almost any residue found at these positions.
The substrate binding pocket was further supported by the
structure of the S. aureus SPase I (SpsB) with a portion of
the signal peptide and the early mature region sequence binding
to the active site (Ting et al., 2016).

2.4.2 Signal Peptidase II
As mentioned earlier, the substrate for signal peptidase II (SPase
II) is a diacylglycerol modified prolipoprotein (Tokunaga et al.,
1982). Following cleavage and further maturation, the bacterial
lipoproteins possess a N-acyl diacylglycerylcysteine at the
N-terminal end of the protein, which serves to anchor
lipoproteins to the inner membrane or the outer membrane.

The gene for SPase II (lsp) was cloned by the Mizushima and
the Wu labs independently (Tokunaga et al., 1983; Yamagata
et al., 1983). The SPase protein spans the membrane four times
with the protein ends facing the cytoplasm. The initial evidence of
this peptidase as an aspartic protease was the fact that it was
inhibited by pepstatin (Dev and Ray, 1984). Also, in B. subtilis,
several aspartic acid residues located at the ends of the TM
segments were shown to be important for activity (Tjalsma
et al., 1999).

The structure of SPase II from Pseudomonas aeruginosa in
complex with the inhibitor globomycin solved to 2.8 Å provided
evidence that SPase II was an aspartic acid protease (Figure 9)
(Vogeley et al., 2016). Along with mutagenesis studies, the work
revealed that Asp 124 and Asp 143 comprise a catalytic dyad
(Figure 9A). Interestingly, the aspartic residues are located within
the predicted membrane region confirming that SPase catalyzes
intramembrane proteolysis. These findings validate the fact that
lipoprotein signal peptides typically have short hydrophobic
regions. Caffrey and coworkers proposed a model for how
SPase II binds the preprotein and carries out catalysis

FIGURE 9 | Peptidases involved in the removal of signal peptides and their degradation. (A) Signal peptidase 1 [adapted from Paetzel et al. (2004) PDB: 1T7D] is a
novel Ser-Lys protease that cleaves the preprotein at themembrane surface on the periplasmic side. Signal peptidase 2 [adapted from Vogeley et al. (2016) PDB: 5DIR] is
an aspartic acid protease that cleaves a diacyl glyceride modified preproteins within the plane of the membrane. (B) SppA [adapted from Kim et al. (2008) PDB: 3BF0] is a
tetrameric protein that degrades signal peptides which are released from themembrane into the periplasmic space. SppA employs a Ser-Lys dyad and is anchored
to the membrane by an amino terminal TM segment. (C) RseP signal peptide peptidase [from Methanocaldococcus jannaschii adapted from Feng et al. (2007) PDB:
3B4R] in open state. Both water molecules and peptide substrates reach the active site containing Zn2+ ion (blue) during its open state.
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(Vogeley et al., 2016). The signal peptide helix of the preprotein
enters the SPase II active region via TM segments 2 and 4, and
then binds to the protein to position the preprotein lipobox
residues analogous to the Leu-Ile-Ser tripeptide of the
globomycin inhibitor. The signal peptide region immediately
following the Leu residue in the lipobox is in an extended
conformation with the Gly-Cys scissile bond positioned in
proximity to the Asp catalytic dyad Asp124 and Asp143. The
mature domain of the preprotein is located in the periplasmic
region.

2.4.3 Signal Peptide Degradation
The final step “in the life and death of signal peptides (see ref von
Heijne, 1998)” is their degradation. Degradation of the signal
peptides is important because in many cases they can be toxic to
the cell or interfere with protein export (Wickner et al., 1987;
Bolhuis et al., 1999). The first protease discovered to possess
signal peptide hydrolase activity was SppA (or protease IV),
which was shown to degrade the lipoprotein signal peptide
(Hussain et al., 1982). SppA is an inner protein that forms a
tetrameric structure (Hussain et al., 1982; Ichihara et al., 1984).
The catalytic domain of SppA containing the active site Ser-Lys
dyad (Figure 9B) (Kim et al., 2008; Wang et al., 2008) is found
within the periplasmic region at a large distance from the
membrane indicating that the signal peptide is released from
the membrane prior to its degradation (Kim et al., 2008).
Apparently, SppA would cleave a wide variety of signal
peptides that are released into the periplasmic space. Other
proteases such as oligopeptidase A would hydrolyze signal
peptides that are released into the cytoplasm (Novak et al., 1986).

The bacterial RseP, like signal peptide peptidase in eukaryotes
(Lyko et al., 1995; Brown and Goldstein, 1997; Weihofen et al.,
2002), can catalyze cleavage of membrane spanning signal
peptides (Saito et al., 2011). RseP is a site-2 protease that can
cleave within TM segments of membrane proteins as well
(Akiyama et al., 2004). It is a zinc metalloprotease
(Figure 9C). The active site is in an aqueous environment
close to the cytoplasmic surface of the membrane. It binds
zinc and has an essential catalytic glutamic acid. Saito et al.
(2011) showed that RseP is capable of degrading a number of
signal peptides from a wide variety of preproteins such as OmpA,
M13 procoat, LivJ, LivK, PhoA, TolC, SecM, suggesting that it
significantly contributes to signal peptide degradation in E. coli.
This group of proteases is fascinating since they catalyze
proteolysis within the membrane.

3 TARGETING THE SIGNAL PEPTIDE
PROTEASES AS ANTIBIOTIC TARGET

Signal peptidase I and II are attractive antibacterial drug targets
(Paetzel et al., 2000; Rao et al., 2014; Craney and Romesberg,
2015; El Arnaout and Soulimane, 2019; Upert et al., 2021). SPase I
is conserved in bacterial pathogens and has a novel active site
architecture (Ser-Lys dyad) that can be targeted. Its active site
location on the periplasmic side of the membrane makes it readily
accessible (Smith and Romesberg, 2012). SPase II presents as

another target candidate as lipoprotein signal peptidases are
absent in the eukaryotic organism. The reduced efficacy of the
existing antibiotics and the emergence of drug-resistant bacterial
pathogens has led to the urgent demand for new treatments. This
warrants the study of novel antibacterial targets such as SPase I
and SPase II.

3.1 SPase I as Antibiotic Target
Various companies have centered on SPase I as an antibacterial
target including Smithkline Beecham pharmaceuticals (now
GlaxoSmithKline), Merck, Eli Lilly and Genentech. Some of
the first inhibitors were the β-lactams, including clavams,
thioclavams, penem carboxylate C6 Substituted esters, and
allyl (5S,6S)-6-[R)-acetoxyethyl]penem-3-carboxylate
(Figure 10A) and (5S)-tricyclic penem (Black and Bruton,
1998). Some of the peptide inhibitors such as, α-ketoamide
peptides and decanoyl-PTANA-aldehyde (Figure 10C) were
effective (Bruton et al., 2003; Buzder-Lantos et al., 2009).

Another promising class of inhibitors are the natural products
Krisynomycin and Arylomycins. They are produced in Streptomyces
by the non-ribosomal peptide synthesis. The Arylomycin family
includes Arylomycin A and B (Höltzel et al., 2002; Schimana et al.,
2002), and Arylomycin C (a lipoglycopeptide) (Kulanthaivel et al.,
2004) discovered in the beginning of the 21st century.More recently,
Arylomycin D was discovered (see below). Arylomycin D and its
derivative M131, as well as Krisynomycin displayed significant
antibacterial activity against the methicillin resistant S. aureus
(MRSA) (Therien et al., 2012; Tan et al., 2020). Romesberg and
others have developed a total synthesis of Arylomycin A2 (Roberts
et al., 2007), Arylomycins B2 (Dufour et al., 2010; Roberts et al.,
2011), Arylomycin C (Liu et al., 2011) and members of the
Arylomycin D class (Therien et al., 2012; Tan et al., 2020).

Noteworthy, Smith and Romesberg (2012) proposed that
Arylomycins may represent a class of latent antibiotics whose
activity can be masked bymutations in the SPase I protease which
otherwise would have rendered them susceptible. While
Arylomycins normally have a narrow spectrum of antibiotic
activity (Figure 10B), these antibiotics have the potential to
have a much broader spectrum antibiotic activity against both
Gram-positive and Gram-negative bacteria. Romesberg and
coworkers initially investigated Staphylococcus epidermidis that
was sensitive to Arylomycin A and isolated resistant strains which
had mutations in SPase I (Ser to Pro changes at position 29).
Intriguingly, the analogous Promutations in SPases that occurred
during evolution, accounted for the natural resistance that is
observed in E. coli, P. aeruginosa, and S. aureus. Strikingly, they
found that a wide variety of bacteria that lacked this Pro
substitution were sensitive to Arylomycin.

To gain insight into how to improve the potency of
Ayrlomycin the structure of the E. coli SPase-Arylomycin
complex was solved (Paetzel et al., 2004). Paetzel and
coworkers revealed that the carboxylate of Arylomycin was
bound to the catalytic serine, and the penultimate alanine of
the inhibitor was localized within the S3 pocket. The structure
also shows that residue 84 of E. coli SPase that confers resistance
to the antibiotic is positioned near the amino-terminal part of the
Arylomycin lipopeptide. A proline at the 84 position prevents the
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donation of one potential hydrogen bond from the backbone
amide group on the β-strand 1 of SPase I to the carbonyl oxygen
of the fatty acid of arylomycin. The presence of this extra H bond
interaction would presumably increase the affinity of arylomycin
to the SPase I proteins, making the bacteria more susceptible to
the antibiotic.

A potential breakthrough in the antibiotic field by scientists at
Genentech was the production of G0775, which represents a new
class of Gram-negative antibiotics, that targets SPase I
(Figure 10D) (Smith et al., 2018). This optimized arylomycin
had several modifications including a replacement for the natural
aliphatic tail, modification of the phenol groups of the tripeptide
ring, and the introduction of an electrophilic warhead at the
C-terminal carboxylate. GO775 was 500 times more potent than
the arylomycin A-C16 against E. coli and K. pneumoniae which
was normally not inhibited by arylomycin. It also had a potent
activity against other pathogens. Additionally, it was effective in
treating mice that were infected with Gram-negative bacterial
pathogens, without any toxic impact on the mammalian cells.
Intriguingly, the electrophilic warhead that was expected to
covalently modify the active site serine instead modified the
catalytic base lysine, by a novel mechanism. High affinity
interaction between the target protein and the inhibitor made
G0775 extremely active against multidrug resistant bacteria.

3.2 SPase II as Antibiotic Target
SPase II has been an attractive antibiotic target since the natural
products globomycin (Figure 10E) and myxovirescin

(Figure 10F) have been shown to have antibacterial activity
(Inukai et al., 1978a; Inukai et al., 1978b; Nakajima et al.,
1978; Xiao et al., 2012). Globomycin is a cyclic depsipeptide
produced in Streptomyces. Myxovirescin is a secondary
metabolite with a 28-membered macrocyclic lactone that is
made in myxobacteria. Inhibition of SPase II is lethal in all
Gram-negative bacteria.

Quite surprisingly, the structures of the S. aureus SPase II in
complex with either globomycin or myxovirescin (Olatunji et al.,
2020) revealed that the mode of inhibition is similar despite the
two antibiotics interacting mostly with the protein on opposite
sides of the substrate binding pocket. While both inhibitors bind
to the catalytic Asp dyad with the hydroxyl group wedging in
between (the β-hydroxy group of serine residue of globomycin
and a 6 OH group from myxovirescin), most of the remaining
parts of the molecule were on opposite sides of the substrate
binding region. The interaction of the OH with the aspartic acid
behaved like a non-cleavable tetrahedral analog (Olatunji et al.,
2020). The hydroxyl groups of the antibiotics inhibited the
enzyme by targeting the catalytic dyad aspartic acid residues.

To identify new inhibitors of SPase II, a high throughput
screen was performed (Kitamura et al., 2018) where 646,275
molecules were analyzed using a SPase II FRET substrate assay.
To validate their assay, they showed globomycin inhibited SPase
II with an IC50 of 1.2 nM. Myxovirescin had a comparable or
even better IC50. After identifying the best molecules from this
initial screening, further optimization of the compound by
medicinal chemistry resulted in an inhibitor of IC50 of 99 nM.

FIGURE 10 | Structures of Signal peptidase inhibitors (Rao et al., 2014). (A) allyl (5S,6S)-6 [(R)-acetoxyethyl]-penem-3-carboxylate. (B) Arylomycin A. (C)Decanoyl
PTANA aldehyde. (D) GO775, an optimized arylomycin. (E) Globomycin. (F) Myxovirescin.
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Although this was a potent SPase II inhibitor, it did not accrue
antibacterial activity in E. coli unless it was used in combination
with polymyxin B nonapeptide, which made the outer membrane
more permeable to compounds.

More recently, the structure of Globomycin was optimized to
improve its antibacterial activity against E. coli (Garland et al.,
2020) and its permeability across the outer membrane. Taking
advantage of the SPase-globomycin structure, modifications were
made to alter the lipophilic side chains, the n-hexyl group, and the
backbone to introduce a salt-bridge that interacted with the SPase
II catalytic aspartic residues. Several compounds were obtained
that had increased potency against several Gram-negative
pathogens.

4 SUMMARY AND OUTLOOK

In conclusion, the signal peptide plays a universal central role in
protein export in the three kingdoms of life. It orchestrates the
sorting of proteins from the cytosol to the membrane. After
targeting the protein to the membrane by binding to the receptor,
the signal peptide activates the translocase such that the
preprotein can make its way to the other side of the membrane.

Activation of the SecYEG channel occurs by binding of the
signal peptide to the lateral gate, leading to a conformational
change in the channel. Thus, signal peptide binding unlocks the
Sec channel for translocation. In case of the Tat translocation
machinery, the signal peptide provides the signal for the assembly
of an oligomeric Tat translocase capable of transporting fully
folded protein substrates. The key to triggering this process is the
twin arginines within the signal peptide that binds to the TatBC
receptor which switches on the Tat assembly process.

The final step in the translocation process is the removal of the
signal peptide and its degradation. The hydrophobic region of the
signal peptide positions the cleavage site for proteolysis by signal
peptidases. After having served its purpose of protein navigation,
the signal peptide is degraded by signal peptide hydrolases.

Owing to the decisive role the signal peptidases play in protein
transport process, they have been appreciated recently as novel
targets for antibiotics. The proteins so inhibited are involved in an
array of bacterial fundamental processes essential for growth and
viability of the bacteria/pathogen. The recent studies present
Arylomycin and its derivatives such as G0775 as promising
candidates for translation into new medicine to treat
multidrug resistant pathogens. These compounds and the next
generation of synthetic analogs will hopefully prove to be
successful antibiotics to combat bacterial infections.

Yet, much remains to be discovered in the protein targeting
and export field even 50 years after the Signal Hypothesis was
proposed by Günter Blobel. Snapshots of the machineries
engaged in substrate translocation are expected to provide new
mechanistic insight into the processes of translocation dynamics
and orientations of polytopic membrane proteins. Protein export
has entered an exciting chapter, and more is anticipated in the
days to come.
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Brown leaf spot on tobacco is a serious fungal disease caused by Alternaria

alternata. Peroxisomes are organelles playing an important role in the

development and infection of plant pathogenic fungi. But, until now, there

is no report on the peroxisome dynamics during the conidia germination of

A. alternata. To evaluate the roles of peroxisome in the development of the

fungus, in the present work, an enhanced green fluorescent protein (eGFP)

cassette tagged with peroxisome targeting signal 2 (PTS2) was integrated into

A. alternata to label the organelles, and an eGFP cassette carrying a nuclear

located signal (NLS) was performed parallelly. The transformants containing

the fusions emitted fluorescence in punctate patterns. The fluorescence

of eGFP-PTS2 was distributed exactly in the peroxisomes while those of

eGFP-NLS were located in the nucleus. Typical AaGB transformants were

selected to be investigated for the peroxisome dynamics. The results showed

that during spore germination, the number of peroxisomes in the spores

decreased gradually, but increased in the germ tubes. In addition, when the

transformants were cultured on lipid media, the numbers of peroxisomes

increased significantly, and in a larger portion, present in striped shapes. These

findings give some clues for understanding the peroxisomal functions in the

development of A. alternata.
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Introduction

Tobacco (Nicotiana tabacum L.) is an annual or perennial
herbaceous plant of Solanaceae and an important cash crop
with leaves of high commercial value. Both the planting
area and the output of tobacco in China rank first in the
world (Huang et al., 2021). Brown spot is one of the most
severe diseases of tobacco caused by Alternaria alternata (Fr.)
Keissler (Main, 1969; Dobhal and Monga, 1991), during the
growing season, especially the mature stage (Zhang et al.,
2011). The typical symptom of the disease on tobacco leaves
is brown necrotic spots surrounded by yellowish-green halos.
The disease normally causes broken leaves, and even affects
the color and thickness of the baked leaves, resulting in the
huge economic loss (Jenning et al., 2002; Slavov et al., 2004;
Yakimova et al., 2009; Chen et al., 2017). During the process
of infection, A. alternata forms a special infection structure
called appressorium, a specialized differentiated structure that
can firmly attach to the leaves (Hatzipapas et al., 2002; Wang,
2019).

The reactive oxygen species (ROSs) formed in host cells
is the main barrier to fungal invasion and establishment of
parasitism (Barna et al., 2003). The pathogens have to suppress
the ROSs for successful infection. The enzymes required in ROSs
degradation are distributed in peroxisomes in large portions.
It was proved that pathogens generated an increased number
of peroxisomes in response to the oxidative stress generated
by the host (Chen et al., 2017). The metabolic reactions
in the peroxisomes and the genes involved in peroxisomal
biogenesis were demonstrated related to the pathogenicity of
plant fungal pathogens. Peroxisomes plays important roles
in hyphal growth, conidiation, conidial germination, and
development of infection structures (Ramos-Pamplona and
Naqvi, 2006; Kubo et al., 2015; Li et al., 2017; Chen et al.,
2018; Wang et al., 2019; Falter and Reumann, 2022). The
peroxisomal dynamic in A. alternata during infection is helpful
for a better understanding of the pathogenesis of the fungus.
However, there is a little knowledge on this topic (Pliego
et al., 2009; Wang et al., 2015). Fluorescent proteins are widely
used to assess gene expression and monitor the proteins’
cellular or subcellular distribution (Yang et al., 2018). To date,
three fluorescent proteins [enhanced green fluorescent protein
(eGFP), red fluorescent protein (RFP), and yellow fluorescent
protein (YFP)] have been mainly used in fungi (Straube et al.,
2005).

In the present work, we used a fusion of eGFP with PTS2,
driven under the promoter of MPG1 gene (MGG_10315) from
Magnaporthe oryzae, to monitor the peroxisomes inA. alternata.
Using the Agrobacterium tumefaciens-mediated transformation
(AtMT), the eGFP-PTS2 was integrated and expressed stably in
the transformants. The dynamic changes of peroxisomes in the
spore germination of A. alternata were observed by fluorescence
confocal microscopy. Meanwhile, we marked the nucleus of

A. alternata using an eGFP version tagged with a nuclear
located signal (NLS) and compared the relative locations of the
nucleus and peroxisomes in the spores. These results provide
a framework for the study of the pathogenic mechanisms and
organelles biology of A. alternata.

Materials and methods

Fungal species and culture medium

We isolated A. alternata wild-type strain C15 from leaves
with typical symptoms of tobacco brown spots and stored
the strain in our laboratory. The wild-type strain and all
transformants were cultured on a complete medium (CM) at
28◦C for 3–10 days. The strain of A. tumefaciens used was AGL1.
YEB agar and liquid medium were prepared as described by
Holsters et al. (1978). YEB containing 50 µg/ml kanamycin,
34 µg/ml rifampicin, and 50 µg/ml ampicillin was used to
culture A. tumefaciens. Induction medium (IM) (solid) was used
to co-culture A. alternata and A. tumefaciens (Michielse et al.,
2008). CM plates containing 50 µg/mL hygromycin B (Roche,
Mannheim, Germany) was used to screen the transformants.
The wild-type and transformants strains were inoculated on a
minimal medium (MM) supplemented with 0.5% (v/v) Tween
80, 1% (v/v) olive oil, or 1% (v/v) glycerin, and cultured at 28◦C
for 7 days to compare the ability of the strains to utilize the
carbon sources (Li et al., 2017).

Construction of fluorescent fusion
vectors

p1300HMGB containing the HPH gene and eGFP-PTS2
(a PTS2-tagged eGFP), abbreviated as pHMGB in the present
work, were used as peroxisome markers. To construct the
pHMGB vector, we used p1300BMGB, a vector carrying
the glufosinate-ammonium resistance gene (BAR), and eGFP-
PTS2 with the promoter of MPG1 gene (MGG_10315) from
M. oryzae (abbreviated as pBMGB in present work) (Wang
et al., 2008; Li et al., 2014). A 1.36 kb fragment of the HPH
cassette was amplified using p1300-KO as the template and
the primer pair HPH-Xh1/HPH-Xh2. We replaced the BAR
gene in pBMGB with the HPH cassette using XhoI digestion to
generate pHMGB. All the primers used are listed in Table 1.
pHMGB was used to monitor the peroxisomes in A. alternata.
pRp27GFP-NLS was generated by fusing a NLS fragment to
the C terminus of eGFP, which was driven by a constitutive
promoter from M. oryzae ribosomal protein 27 gene (RP27)
in the binary vector pCAMBIA1300. All the vectors were
transformed into A. alternata, respectively, using the AtMT
method (Rho et al., 2001).
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Agrobacterium tumefaciens-mediated
transformation of Alternaria alternata

AGL1 carrying pHMGB or pRp27GFP-NLS was spread on
an LB agar plate containing kanamycin (50 mg/L) and incubated
for 2 days at 28◦C. A single colony was cultured in 5 mL of LB
broth containing 50 mg/L kanamycin at 28◦C with a shaking
speed of 200 rpm for 48 h. Cells of 2 mL culture were then
collected by centrifugation (5,000 × g) for 10 min, washed
using A. tumefaciens induction medium (AIM, lipid) for 2 min,
and then diluted, respectively, into OD600 about 0.6 in AIM
supplemented in 200 mM acetosyringone (AS) and an AS-free
AIM as a control. For transformation, 100 µL of A. tumefaciens
cells were mixed with 100 µL 1 × 106 of A. alternata
conidia, the mixture was spread on a sterilized nitrocellulose
filter membrane (Pore size 0.45, 850 mm, Whatman, Sangon,
Shanghai, China) overlaid on the surface of AIM agar plates
and incubated for another 48 h at 23◦C in the dark. After
the incubation, the nitrocellulose filter membrane was cut
with a sterilized knife into strips and transferred into selective
CM plates containing 200 µg/mL hygromycin B, 200 µg/mL
cefotaxime sodium, 200 µg/mL tetracycline hydrochloride and
incubated for 5–7 days to selected the transformants. Thirteen
selected hygromycin B-resistant transformants were verified by
growing in a new selective CM plate for another 3–4 days at
28◦C, together with the wild-type as a control.

Analysis of Alternaria alternata
transformants

We used polymerase chain reaction (PCR) to amplify the
HPH gene (with primers HPHCK1 and HPHCK2; Table 1).
The amplified fragment of HPH was 1.0 kb long. We used a
50 µL reaction volume containing 2 µL Taq, 4 µL dNTP, 5 µL
10 × buffer, 35 µL ddH2O, 2 µL forward primers, and 2 µL
reverse primer. Our PCR reaction conditions were 5 min at
95◦C; 35 cycles of 30 s at 95◦C, 30 s at 55◦C, and 90 s at 72◦C;
and 10 min at 72◦C. PCR products were held at 4◦C (Li et al.,
2014).

Measurement of colony growth and
spore production

The mycelia of the wild-type A. alternata strains and the
13 transformations were picked out and inoculated on a 9 cm
CM culture medium, respectively, which was cultured at 28◦C
for 10 days under darkness. The experiment was repeated three
times for each colony. Then, each plate was washed with 5 mL
of sterile water, and the collected solution was filtered through
three layers of lens paper. Collected spores were counted using a

TABLE 1 Hygromycin B amplification primer.

Primer Sequence Length

HPHCK1 TTCGCCCTTCCTCCCTTTATTTCA 1.0 kb

HPHCK2 GCTTCTGCGGGCGATTTGTGTACG

hemocytometer, and the conidia concentration and production
were calculated.

Confocal microscopy and calcofluor
white staining

We used a Leica SP2 confocal microscope (Leica, Germany)
and a ZEISS LSM780 inverted confocal microscope (Zeiss,
Germany) to examine transformant hyphae and spores. We
used an excitation wavelength of 488 nm, and an emission
wavelength of 520 nm. And we also observed the peroxisome
situation of four mediums (MM, MM + 0.5% (v/v) Tween 80,
MM + 1% (v/v) olive oil, or MM + 1% (v/v) glycerin) under
confocal microscopy. Each treatment sets three replications with
20 conidia per replicate (n = 60).

The concentration of conidia solution of A. alternata was
adjusted to 1 × 105 number/mL, and 20 µL of spore droplets
were placed on both plastic coverslips and the onion epidermis
and cultured under 28◦C dark moisturizing conditions. Then,
the spore solutions of 2, 4, 6, 8, 10, 12, 24, and 48 h were
taken, respectively, and the dynamic changes of peroxisomes in
the progress of spore germination and appressoria formation
of A. alternata were observed by the fluorescence confocal
microscopy. Each post-incubation hour set three replications. In
addition, with 10 conidia, germ tube or appressoria per replicate
were observed on plastic coverslips (n = 30).

Calcofluor white (CFW) staining using Fluorescent
Brightener 28 (10 mg/ml, Sigma-Aldrich, Saint Louis, MO,
USA) for the microscopy of mycelial branches was performed
as described by Harris et al. (1994).

Results

Acquisition of pHMGB transformant in
Alternaria alternata

The structures of pBMGB and pHMGB are shown in
Figure 1. By the AtMT method, we obtained 25 transformants
for pHMGB. These transformants grew normally on the CM
plates compared with the wild-type strain. After five successive
subcultures without selection pressure, all 25 transformants
were able to grow on selective CM but not the wild-type,
indicating that all the obtained transformants are stable under
our experimental conditions.
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FIGURE 1

The structure of p1300HMGB.

Then, 13 transformants were randomly selected and
confirmed by PCR amplification with the primers HPHCK1
(forward) and HPHCK2 (reverse). The hygromycin B gene can
be amplified in transformants strains, but not in the wild-type
strain C15. These results indicate that the pHMGB vector had
been successfully inserted into the genome of the transformants
(Figure 2).

Enhanced green fluorescent protein
labeling of peroxisome and nucleus in
Alternaria alternata

After the establishment of auxotrophic makers via the
AtMT, we were able to introduce a plasmid containing the maker
gene hygromycin B and eGFP under the strong constitutive
promoter MPG1 or Rp27. Inspection of non-transformed
A. alternata hyphae revealed strong auto-fluorescent in some
compartments under a fluorescence microscope. In order to
distinguish specific eGFP signals from such auto-fluorescent,
eGFP was C-terminally tagged with PTS2 or a NLS from
A. alternata. To quantify the transformation efficiency, we
screened transformants microscopically. After 24 h incubation
at 28◦C in CM medium, 13 out of 25 eGFP-PTS2 transformants
and 9 out of 14 eGFP-NLS transformants showed bright
green fluorescence under a laser-scanning confocal microscope.
However, no fluorescence was observed in the A. alternata wild-
type strain C15 (control). We found the dots fluorescence are
presented in hypha and spores of transformants. In AaGB, green
fluorescence is distributed in small green dots (0.2–1 µm in
diameter) throughout the cell. We select a typical transformant

AaGB-1 to observe the dynamic of peroxisome in the progress
of germination. The location and size of the small green dots are
consistent with that of the peroxisome (Figure 3A). In eGFP-
NLS transformants, they were visualized as spherical structures
in the center of mycelia and conidial cell, where the cell nucleus
is located (Figure 3B). These results indicate that the GFP fused
with PTS2 or NLS is located in peroxisome or cell nucleus,
respectively.

Peroxisomal dynamics of Alternaria
alternata during spore germination and
appressoria formation

To explore the role of peroxisome in spore germination and
the infection process of A. alternata, we observed the dynamic
changes in peroxisome by fluorescence confocal microscopy,
placed on both plastic membrane and the onion epidermis at
0, 2, 4, 6, 8, 10, 12, and 24 h, respectively. The fluorescence
in the eGFP-PTS2 transformants cells is punctate and mostly
located throughout the cell at 0 h. During the elongation of the
germ tube, the fluorescence intensity in the germ tube increased
gradually. The number of peroxisomes in conidia, germ tubes,
and appressoria was monitored within 24 h. The number of
peroxisomes in the spore kept increasing before 6 hpi and
decreased after 6 hpi, and increased continuously both in germ
tube and appressoria (Figures 4A,B).

Calcofluor white can be combined with the cellulose and
chitin of the fungal cell wall, so we can see the blue fluorescence
under the fluorescence microscope. Using calcofluor white to
stain the conidia solution of AaGB strain, which transformed the
pHMGB into A. alternata at 2, 4, 6, 8, 10, and 12 h, we observe
the structural dynamic changes in the conidia germination
process (Figure 4C).

Peroxisomal response to lipid stress

To observe the effect of lipid on peroxisome, AaGB is
inoculated on MM, MM-C + olive, MM-C + glycerin, and MM-
C + Tween culture medium, which are cultured for 7 days
at 28◦C and then observed by laser confocal fluorescence
microscope (Figure 5A). The number of peroxisomes is
increased in the conidia upon the strains cultured on the other
three media compared to those on the MM media. On MM
media, the number of peroxisomes is 20, and on the other
three media, the numbers of peroxisome are 32, 30, and 38,
respectively (Figure 5B). This result indicates that the addition
of the appropriate amount of lipids to the medium promotes
the division of peroxisomes, thus increasing the number of
peroxisomes. In addition, the peroxisome exhibited a strip
morphology on Tween media, while exhibiting a punctate
pattern on other lipid media (Figure 5A).
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FIGURE 2

The result of transformants amplification hygromycin B by PCR.

FIGURE 3

AaGB fluorescent labeling of the peroxisome with eGFP (A) and
NLS fluorescent labeling of the nucleus with eGFP (B),
bar = 10 µm.

Discussion

Previous studies have shown that peroxisomes are involved
in fungal growth, development, sporulation, invasion, and
parasitizing of several pathogenic fungi (Kubo et al., 2015; Li
et al., 2017; Wang et al., 2019; Falter and Reumann, 2022).
Visualization of peroxisomes did not affect their functions
or dynamics. It only required expression of the fusion gene
encoding PTS1 or PTS2 added to the C- or N-terminus of GFP,
respectively (Goto-Yamada et al., 2022). This also accords with
our observations, which showed that there was no significant
difference in growth morphology, appressorium formation,
and spore production between transformants and WT strains
(Supplementary material). Direct observation of peroxisomal
dynamic in A. alternata facilitates the understanding of the
pathogenesis of brown spot disease. Because it provides
useful information about peroxisome dynamics, such as

their morphology, number, size, intracellular distribution,
direction of movement, and interactions with other subcellular
components, which was difficult to obtain by traditional
approaches. Moreover, the fusion gene of GFP with NLS can also
be used to screen the genes related to plant disease resistance,
elucidating the mechanism underlying the interaction between
plants and pathogens (Geng et al., 2021).

The results of this study showed that the transformants
successfully expressed the peroxisome or nucleus marker eGFP-
PTS2 or NLS, respectively. To illustrate the dynamic of
peroxisome during spore germination, the labeled peroxisomes
were observed using a laser-scanning confocal microscope. As
shown in Figure 4B, the number of peroxisomes in the spore
first increased and then decreased after 6 h incubation, while
the number of peroxisomes in the germ tube kept increasing.
A possible explanation for this might be that there is a high
rate of fatty acid degradation by peroxisomal β-oxidation to
produce the energy needed for germination, reducing the
amount of lipid droplets, and the number of peroxisomes
located in close proximity to lipid droplets eventually decreased
as well. In addition, peroxisomes tended to gather at spore
septa. Similar results were obtained in other species such as
M. oryzae (Wang et al., 2008) and Fusarium graminearum
(Seong et al., 2008). Wang et al. (2008) found that the
number of peroxisomes increased rapidly during the first 2-
h of germination, and researched the maximum number at
2 h post-incubation (hpi). Then, the peroxisomes in spores
transferred to the infant appressoria, and the number of
peroxisomes in M. oryzae spore decreased (Wang et al., 2008).
Interestingly, as described by Seong et al. (2008), peroxisomes
also tended to be concentrated at spore septa, and the abundance
of peroxisomes in the asexual spores of F. graminearum is
correlated with a high number of lipid droplets in their vicinity,
which disappear during germination. Peroxisomes are essential
for the formation of fruiting bodies and the maturation and
germination of spores. They facilitate the utilization of reserve

Frontiers in Microbiology 05 frontiersin.org

133

https://doi.org/10.3389/fmicb.2022.1017352
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-1017352 October 19, 2022 Time: 15:27 # 6

Lu et al. 10.3389/fmicb.2022.1017352

FIGURE 4

AaGB dynamic change of peroxisome by fluorescence confocal microscopy (A), the number change of peroxisome (B), and dynamic changes
of the spore germination process by calcofluor (C), bar = 10 µm.

compounds via fatty acid β-oxidation and the glyoxylate cycle,
producing the energy, acetyl-CoA, and carbohydrates needed
for the synthesis of cell wall polymers and turgor generation
in infection structures (Peraza-Reyes and Berteaux-Lecellier,
2013; Falter and Reumann, 2022). In the rice blast fungus,
lipid droplets are translocated through septa from the conidial

cells to the appressorium. It is possible to hypothesize that
peroxisomes are localized near the spore septa to facilitate
fatty acid breakdown and energy mobilization at the site
of need. As shown in Figure 3, the location and size of
small green dots are consistent with that of the peroxisome,
exhibiting an elliptic peroxisome morphology. In eGFP-NLS
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FIGURE 5

AaGB Lipid induced peroxisome fluorescence images (A) and changes of number (B). These images were filmed by laser confocal fluorescence
microscope. AaGB is cultured for 7 days at 28◦C, bar = 10 µm.

transformants, eGFP visualized round nuclei, consistent with
previous studies (Escano et al., 2009; Shoji et al., 2010). RP27
from M. oryzae was used as a promoter to construct the
NLS vector pck128 and localized in nuclei during interphase
(Jones et al., 2016). To our knowledge, it is the first time
that the promoter RP27, which is from M. oryzae, also
worked in the vector pRp27GFP-NLS when transformed into
A. alternata.

It is well-known that peroxisomes plays an important role
in lipid metabolism. The results of the current study showed
that the number of peroxisomes markedly increased in the
strains grown on a fatty acid medium compared with those
grown on a minimum medium. The finding reflects that of
Imazaki et al. (2010) who also found that the number of
peroxisomes increased in hyphal cells grown on oleic acid
compared with those grown in a glucose medium. In addition,
there was an interesting finding that the peroxisome exhibited
strip morphology on Tween media compared with a punctate
pattern on other lipid media. Peroxisomes multiply by growth
and division from preexisting organelles. Peroxisome fission
is preceded by the elongation of the peroxisome membrane
via Pex11 family proteins (Navarro-Espíndola et al., 2020).
The possible explanation for this discrepancy might be that
peroxisome is in the process of being divided on Tween
media, and division has been completed on other lipid
media.

In conclusion, the results from our study confirmed
that eGFP combined with PTS2 and NLS can be integrated
into A. alternata to label organelles. Expressing N-terminal
GFP-tagged proteins can be used to verify the organelle
localization of some secondary metabolites’ biosynthesis-
related genes (Imazaki et al., 2010). Therefore, the labeling
of fungal strains with fluorescent proteins is an effective
way to elucidate the mechanisms underlying peroxisomal

physiological activity in fungi and plants (Motley and
Hettema, 2007; Goto-Yamada et al., 2022). The findings
of this study have some important implications for
future research, such as the co-localization of the nucleus
and peroxisome using multi-color fluorescent proteins
and the analysis of the gene involved in peroxisome
assembly.

The colony morphology and
conidiation of transformants

To observe the colony morphology difference of
transformants compared with wild-type strain, mycelial
blocks are incubated in CM plates for 10 days at 28◦C
under light conditions. The colonies were observed and
photographed each day. As the number of days of incubation
increased, the colonies became progressively larger and by
the 10th day the colonies had grown to cover the entire
plate. There were no significant differences in the colony
morphology between the transformants and the wild-type
strain (Supplementary Figure 1A). Colonies are irregularly
rounded adaxially dark brown, loose and obvious ring tread.
The edges are obvious, and peripheral yellow halo is narrow
or not obvious. A dark brown or black mold can be seen
at the center of the colony (Supplementary Figure 1A).
Sporulation is an important condition to measure the viability
of a strain. The conidia production of all the transformants
are similar compared with the wild-type strain. Conidiation
of wild-type are 1.85 × 108 cells/plate, and the transformants
are from 1.73 × 108 to 2.16 × 108 cells/plate. Thus, it can
be explained that the amount of sporulation of AtMT gene
transformed by A. alternata will not be affected basically
(Supplementary Figure 1B).
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The colony growth speed of
transformants

To measure the growth speed and development of
transformants strain, we choose one of the strains (AaGB-1) to
measure the colony diameters for 10 consecutive days. On the
first day of culture, AaGB-1 grew at a faster rate. On the 5th of
culture, the growth diameter was nearly 6 cm (Figures 4A,B). In
addition, the AaGB-1 strains cover the whole 9 cm plate on the
9th day (Supplementary Figures 2A,B).

The conidia development progress of
transformants

To observe conidia formation progress of transformations,
we culture the AaGB strains under 12 h light/12 h dark at 28◦C
for 5 consecutive days. The color of conidia is dark brown, which
is formed by conidiophore and is borne singly or in bunches.
With the increase in incubation time, the conidiophores will
gradually elongate, branch, and form mycelium.

To observe the growth dynamic of conidia, the
transformants strain are incubated in CM medium which
is obliquely inserted into the cover glass at 25◦C in the dark.
The cultures are observed every 12 h from 0.5 to 5 days. During
the first 2.5 days, the conidiophores continuously extend
forward and branch. At the same time, only one conidium
is formed at the apex of the branch, whose size and DNA
contents increased. The conidia are inverted rod-shaped, with a
transverse septum and longitudinal diaphragm on the surface,
where the transverse septum is thicker and the number of
transverse septa is mostly three. With the increase of culture
time, the melanin production of conidiophores and conidia
increased. New conidia constantly sprout from clusters of
the old conidia, whose color is light in the initial period and
melanin gradually deepens. Accordingly, the conidiophores
branch continuously to give rise to clusters of conidia. At this
point, a vast amount of conidia are produced, which are the
main forms of infecting the host (Supplementary Figure 3).

The conidia germination and
appressorial formation of
transformants

The conidia of the transformants AaGB were incubated
on a plastic membrane to allow appressoria formation for
24 h. The spores gradually germinate and grow sprouting
tubes at 28◦C in dark conditions. The conidia can grow
unilaterally out of the shoot tube and from multiple sides.
Under light microscopy, the lengths of the bud tube are similar
to these conidia and the rate of the conidia germination
is about 30% at the first 2 h, there were already transverse

compartments and longitudinal diaphragms within the
conidia. The attachment cell is the spores of the pathogenic
fungus that germinate and expand at the tip of the budding
tube, forming a special morphological structure similar
to a sucker. Appressoria are first formed at 4 h, and the
rate is only about 3%. As the incubation time increases,
the bud tube of spore germination gradually elongates as
well as the rate of conidia germination and appressoria
formation increased continuously. The rate of conidia
germination is about 95% and appressoria formation
is nearly 50% at 12 h. In addition, the rate of conidia
germination and appressoria formation is raised slightly at
24 h compared to 12 h. At 24 h, the rate of germination and
appressoria formation is at their highest, and the elongated
budding tubes began to branch and continue to elongate
(Supplementary Figures 4A–C).
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SUPPLEMENTARY FIGURE 1

PHMGB-Aa transformant colonies and wild-type morphology (A) and
their sporulation (B). These colonies and wild-type were obtained by
culturing in CM medium under dark conditions of 25◦C for 7 days.

SUPPLEMENTARY FIGURE 2

AaGB colony growth morphology changes (A) and growth diameter of
the colony (B). Observed and recorded continuously for 10 days at 28◦C
under light conditions.

SUPPLEMENTARY FIGURE 3

AaGB transformant spore growth dynamic. The growth dynamics of
spores in 5 days under 25◦C light conditions were observed and
recorded.

SUPPLEMENTARY FIGURE 4

Observation of the dynamics of AaGB conidial germination (A) and its
germination rate (B), appressorium formation rate (C). Conidial
germination dynamics were observed and germination rates were
recorded after 48 h of continuous incubation at 28◦C in the dark under
moisturizing conditions, with attached cells being produced during
spore germination. Adherent cell formation was observed continuously
for 24 h at 28◦C in the dark and the rate of formation was recorded,
bar = 10 µm.
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The journey of preproteins across
the chloroplast membrane
systems

Gent Ballabani†, Maryam Forough†, Felix Kessler* and
Venkatasalam Shanmugabalaji*

Laboratory of Plant Physiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland

The photosynthetic capacity of chloroplasts is vital for autotrophic growth in algae
and plants. The origin of the chloroplast has been explained by the endosymbiotic
theory that proposes the engulfment of a cyanobacterium by an ancestral
eukaryotic cell followed by the transfer of many cyanobacterial genes to the
host nucleus. As a result of the gene transfer, the now nuclear-encoded proteins
acquired chloroplast targeting peptides (known as transit peptides; transit peptide)
and are translated as preproteins in the cytosol. Transit peptides contain specific
motifs and domains initially recognized by cytosolic factors followed by the
chloroplast import components at the outer and inner envelope of the
chloroplast membrane. Once the preprotein emerges on the stromal side of
the chloroplast protein import machinery, the transit peptide is cleaved by stromal
processing peptidase. In the case of thylakoid-localized proteins, cleavage of the
transit peptides may expose a second targeting signal guiding the protein to the
thylakoid lumen or allow insertion into the thylakoid membrane by internal
sequence information. This review summarizes the common features of
targeting sequences and describes their role in routing preproteins to and
across the chloroplast envelope as well as the thylakoid membrane and lumen.

KEYWORDS

chloroplasts, preprotein, transit peptides, TOC-TIC, thylakoid

Introduction

The chloroplast is a member of the plastid organelle family known mostly for its
photosynthetic activity though it does perform a vast array of other metabolic activities
essential to plant survival, development, and stress responses (Jarvis and López-Juez, 2013).
Plastids are the result of an endosymbiotic process that started over a billion years ago
(Zimorski et al., 2014). Since that time, most plastid genes have either been lost or transferred
to the nucleus (Timmis et al., 2004). Of the 2,000 plus chloroplast proteins only about 10%
remain encoded by the chloroplast genome. The nuclear-encoded chloroplast preproteins
contain an N-terminal transit peptide (TP). The TP can be compared to a molecular zip code
of preproteins to be targeted to the chloroplast and imported via the chloroplast protein
import machinery (Lee and Hwang, 2021).

The import mechanism involves multiple steps at different (sub-)organellar locations.
Initially, the preprotein is guided through the cytosol accompanied by a chaperone complex
until it is handed off at the outer envelope of the chloroplast where the transit peptide makes
first contact with the TOC (Translocon at the Outer envelope of the Chloroplast) complex
(Flores-Pérez and Jarvis, 2013). This involves the action of the two GTP-binding receptors
TOC159 and TOC34. In a process that requires GTP and low concentrations of ATP
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(0.1 mM), the preprotein is inserted across the large hybrid outer
membrane protein-conducting channel that consists of the
C-terminal ß-barrel membrane (M-) domain of TOC159 and
that of TOC75 (Richardson et al., 2014; Schnell, 2019). At this
stage already, the transit peptide is in contact with the
intermembrane POTRA-domains of TOC75 and initiates contact
with components of the TIC (translocon at the Inner envelope of the
chloroplast) complex, namely, TIC22 and TIC20, however, without
traversing the inner membrane (Kouranov et al., 1998). In the
presence of high concentrations of ATP (> 1 mM) the preprotein
crosses the TIC20 inner membrane protein-conducting channel and
enters the chloroplast stroma assisted by ATP-dependent motor
components (Richardson et al., 2018).

Once inside the stroma, the transit peptide is cleaved by the
Stromal Processing Peptidase (SPP) (Richter and Lamppa, 1998).
Many imported, mature proteins remain in the stroma and are
folded with the help of chaperones. Some proteins, however, are
targeted further to the thylakoid membrane or lumen. Thylakoid
lumen targeted proteins possess bipartite targeting sequences
consisting of a transit peptide followed by a thylakoid targeting
signal that engages one of two pathways leading to the thylakoid
lumen: The ΔpH-dependent TAT (twin arginine targeting) and SEC
(secretory) pathways. However, the Signal Recognition Particle
(SRP) pathway inserting proteins into the thylakoid membrane
relies on targeting information residing within the mature
sequence. Each of these pathways relies on a distinct set of
protein components. Thylakoid targeting signals of preproteins
are removed by a thylakoid processing peptidase (TPP) which
promotes final assembly of the mature proteins leading to
functional chloroplasts (Mori and Cline, 2001; Albiniak et al.,
2012; Teixeira and Glaser, 2013).

Protein translocation into the
chloroplast

The primary structures of transit peptides
are highly diverse

“Signal Peptide” refers to an endoplasmic reticulum targeting
sequence, “pre-sequence” to a mitochondrial one, and “transit
peptide” is specific for chloroplast-targeted proteins (Bruce,
2000). In the late 1970s, after the signal hypothesis had been
proposed, a study showed that in vitro translated Rubisco small
unit (RbcS) protein had a higher molecular mass than mature
RbcS in plant extracts. It was therefore considered a putative
precursor (Dobberstein et al., 1977). The RbcS cDNA was cloned
and revealed an N-terminal extension that was not present in the
mature RbcS. It was identified as the chloroplast targeting
sequence and coined “transit peptide” (Broglie et al., 1981;
Coruzzi et al., 1983). Later studies demonstrated that the
putative precursor of RbcS was transported into isolated
chloroplasts and processed to its mature form (Highfield and
Ellis, 1976; Chua and Schmidt, 1978). It has been proposed that
transit peptides evolved from antimicrobial amphipathic
peptides derived from host cells during endosymbiotic events,
an intriguing hypothesis that is supported by experimental
evidence (Caspari et al., 2023).

A motif study has shown that transit peptides contain three
regions, a N-terminal region lacking charged amino acids, a central
one containing hydroxylated amino acids and C-terminal one
containing an arginine rich motif. This domain structure may be
common to most preproteins (Karlin-Neumann and Tobin, 1986;
von Heijne et al., 1989; Bruce, 2001). A later study, reporting
extensive mutagenesis of the RbcS transit peptide, provided clues
to the existence of FP/RK andMLMmotifs in the transit peptide and
their vital role in chloroplast protein import (Lee et al., 2006). Site-
specific cross-linking experiments with the RbcS transit peptide,
demonstrated that the FP/RK motif is important for interaction not
only with components of the TOC complex, but also with the
TIC20 component of the TIC complex (Richardson et al., 2018).
In addition, FGLK is a transit peptide motif that has been
characterized as being recurrent in transit peptides and playing
an important role in the preprotein recognition by TOC34. The
deletion of the FGLK sequence by mutagenesis prevented the
preprotein from being translocated into the chloroplast
(Chotewutmontri et al., 2012; Holbrook et al., 2016).

Based on a synthetic transit peptide, a study demonstrated that
FGLK and FP/RK motifs are essential for RbcS transit peptide
function and preprotein targeting of the chloroplast (Lee et al.,
2015). Moderate hydrophobicity at the N-terminal region of the
transit peptide is important for preprotein recognition, (Bhushan
et al., 2006; Lee et al., 2006; Lee et al., 2008). Exchange of basic amino
acids (N-terminal region) to acidic amino acids negatively affected
preprotein import into chloroplasts (Razzak et al., 2017; Lee and
Hwang, 2019). Twin-positive (positively charged amino acids)
motifs in the TP appear to play a key role in preprotein import
into old versus young chloroplasts (Teng et al., 2012). In addition,
large scale in silico analysis and experimental evidence revealed that
the twin-positive motif is important for preprotein import into
leucoplasts (Chu et al., 2020).

The importance of proline residues in transit peptides has been
demonstrated by comparing the import of preproteins containing
proline-rich transit peptides with those lacking proline residues. The
mutation of transit peptides by the replacement of prolines by
alanines resulted in reduced efficiency of translocation into the
chloroplast, specifically concerning transmembrane proteins and
proteins prone to aggregation (Lee et al., 2018; Jeong et al., 2021).
Proline is an amino acid that tends to disrupt the secondary
structures of polypeptides (Guzzo, 1965). As preproteins are
believed to be translocated across the TOC complex an
unstructured transit peptide as described by the “perfect random
coil hypothesis” may be advantageous to initiate the early stages of
protein import (von Heijne and Nishikawa, 1991).

Energetics of translocation across at the
chloroplast envelope membranes

The energy requirement of preprotein transport across the
chloroplast envelopes was first analyzed in an in vitro import
assay using isolated chloroplasts that were either light- or dark-
adapted. The study showed that import into dark-adapted
chloroplasts was compromised (Grossman et al., 1980).
Exogenously added ATP rescued imports into dark-adapted
chloroplasts, demonstrating that ATP was the primary energy
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source (Cline et al., 1985). Later studies demonstrated that import of
preproteins into chloroplasts was driven by the hydrolysis of ATP
inside the chloroplast (Flügge andHinz, 1986; Pain and Blobel, 1987;
Theg et al., 1989). It was then revealed that distinct concentrations of
ATP in different compartments defined separate steps of chloroplast
protein import. Low concentrations of ATP (50–100 µM) were
sufficient for preprotein binding to the surface of the chloroplast,
whereas high concentrations of ATP (1 mM or more) were required
for protein translocation across the chloroplast envelope (Olsen
et al., 1989). The RbcS preprotein could be chemically crosslinked to
chloroplast envelope component in an ATP-dependent manner
(Perry and Keegstra, 1994).

The energetics findings were exploited to generate preprotein
translocation intermediates and isolate the first components of the
protein import machinery from isolated pea chloroplasts (Schnell
and Blobel, 1993). In these experiments, recombinant preprotein of
RbcS fused to two IgG-binding domains of Staphylococcus aureus
ProteinA (resulting in pS-ProtA) was used as a tool. When
incubated at low ATP concentrations, pS-ProtA is stably bound
to isolated chloroplasts. pS-ProtA remained sensitive to exogenous
protease and the transit peptide was not cleaved. This state defines
the “early translocation intermediate”. When incubated at high ATP

concentrations, pS-ProtA was fully imported. However, its import
could be arrested by chilling on ice. At this stage, pS-ProtA was both
accessible to exogenous protease and the transit peptide partially
cleaved resulting in mature S-ProtA. Thus, pS-ProtA and S-ProtA
had traversed and were now spanning both the outer and inner
envelope membrane. This state defines the “late translocation
intermediate”. It is important to note that the formation of both
the “early” and “late” translocation intermediates critically depended
on the presence of the transit peptide in pS-ProtA (Schnell and
Blobel, 1993). The production of “early” and “late” translocation
intermediates was upscaled from analytical to biochemical
quantities allowing their isolation by IgG-affinity
chromatography. The “early” translocation intermediate pS-ProtA
was associated with three visible bands on a SDS-PAGE gel. These
first three proteins were molecularly cloned and sequenced and are
now known as TOC159, TOC75 and TOC34 (Kessler et al., 1994;
Schnell et al., 1994). The three form the core of the TOC-complex as
it is widely accepted today. In addition to the three core components
of the TOC-complex, the “late” translocation intermediate pS-ProtA
and S-ProtA associated with twomore bands. One is known today as
TIC110 while the second one, named IAP36 at the time, was never
identified (Schnell et al., 1994). To this day, the role of TIC110 in

FIGURE 1
Preproteins translocation into chloroplast membrane systems. General scheme of chloroplast import of nuclear-encoded preproteins containing a
transit peptide (TP) followed by a thylakoid Signal sequence (SS). Preprotein translocation passes through the Translocons at the Outer envelope (OE) of
the Chloroplast (TOC) and the Inner envelope (IE) of the chloroplast (TIC). Upon entry, the transit peptide is cleaved by the Stromal Processing Peptidase
(SPP) and processed by the PreP protease for recycling/degradation. The thylakoid-targeted proteins pass through either the Twin Arginine
Transport (Tat) pathway requiring the Proton Motive Force (PMF), the Sec requiring ATP, or the Signal Recognition Particle (SRP) pathway. Upon thylakoid
membrane insertion, the thylakoid signal sequence (SS) is cleaved by the Thylakoid Processing Peptidase (TPP), completing the final import step.
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chloroplast protein import remains contested and is notably absent
from algal protein import complexes (Ramundo et al., 2020).

Translocon complexes at the inner and outer
chloroplast membranes

The large majority of chloroplast proteins are imported via the
TOC-TIC complexes (Figure 1). The first components were
identified in the beginning of 1990s as a result of studies on
isolated pea chloroplasts and revealed three components of the
outer and one at the inner envelope membranes (namely, Import
intermediate Associated Proteins or Outer Envelope Protein), IAP/
OEP34, IAP/OEP75, IAP/OEP86 and Inner Envelope Protein
IAP100/IEP110 (Hirsch et al., 1994; Kessler et al., 1994; Perry
and Keegstra, 1994; Schnell et al., 1994). These translocon
components were renamed according to the TOC–TIC
nomenclature as Toc34, Toc75, and Toc159 (for IAP/OEP86)
and Tic110 (Schnell et al., 1997). The initial characterization
revealed that TOC159 and TOC34 were homologous GTP-
binding proteins exposed at the chloroplast surface. They were
both sensitive to the addition of exogenous thermolysin protease
fulfilling an important criterium for preprotein receptors at the
chloroplast surface (Kessler et al., 1994). TOC75 was insensitive to
exogenous thermolysin, bore homology to cyanobacterial ß-barrel
solute channels related to the β-barrel assembly machinery A
(BamA) family fulfilling criteria for a protein-conducting channel
at the outer chloroplast membrane. TIC110 had two N-terminal
alpha-helices and a large stromal domain suggesting that it may
function as scaffold coordinating late translocation functions such as
recruitment of chaperones for protein folding and assembly (Kessler
and Blobel, 1996).

The presence of GTP-binding proteins in the TOC complex
encouraged further energetics experimentation. Preprotein binding
to chloroplasts does not only require low concentrations of ATP but
also implicates GTP as non- and slowly-hydrolyzable GTP analogs
inhibited import. These findings supported the importance of the
role of TOC GTPase receptors (Olsen and Keegstra, 1992; Kessler
et al., 1994). Apart from the irreversible energy-dependent
interactions, the transit peptide is also reversibly bound to
TOC159 and TOC75 in an energy-independent way as
demonstrated by chemical cross-linking (Ma et al., 1996).

In Arabidopsis as well as other species, both of the GTP-binding
TOCs are encoded by multigene families and consequently several
isoforms of each have been discovered. The structure of TOC34 as
well as those of its homologs consists of two main features, a
N-terminal GTPase domain and a single C-terminal alpha-helical
membrane-spanning domain followed by a short hydrophilic tail
(Jarvis et al., 1998). TOC159 and its three homologs in Arabidopsis
(atTOC120, −132, −90) possess a central GTPase (G-) domain, a
C-terminal membrane-anchoring (M-) domain, and a N-terminal
acidic (A-) domain at the N-terminus (Kubis et al., 2004). The
M-domain has now been shown to take on a ß-barrel structure and
associate with TOC75 to form a large hybrid channel at the outer
chloroplast membrane (Jin et al., 2022; Liu et al., 2023). The
A-domains in the four Arabidopsis isoforms of TOC159 are
much more divergent than the G- and M-domains and appear to
play a role in pre-protein specificity (Agne et al., 2010). It, however,

is not clear how the various A-domains distinguish the transit
peptides of different classes of preproteins (i.e., photosynthesis-
associated versus house-keeping) (Bauer et al., 2000; Ivanova
et al., 2004). TOC75 belongs to the BamA family with homologs
in Gram-negative bacteria as well as mitochondria and plastids
(Schleiff and Becker, 2011). Based on these similarities, TOC75 was
proposed to function as the protein-conducting channel at the outer
membrane of the chloroplast. TOC75 is encoded by a single
orthologous gene in the genomes of all plant species sequenced
so far. In addition to forming a ß-barrel channel, TOC75 has three
N-terminal POTRA (polypeptide transport-associated) domains
(Sánchez-Pulido et al., 2003; Srinivasan et al., 2023). The POTRA
domain contributes to preprotein recognition and has chaperone-
like activity to guide the incoming preprotein across the
intermembrane space (Kouranov and Schnell, 1997; Paila et al.,
2016; O’Neil et al., 2017).

At the inner envelope membrane, at least two models have
been proposed for the TIC complex, the first consisting of the
TIC20 (channel) TIC214 (plastid-encoded), TIC100, TIC56,
TIC21 and TIC12 forming a 1 MDa complex (Kikuchi et al.,
2013) the second consisting of TIC110 and TIC40. Currently, it is
not clear whether the second complex functions together with or
independently from the 1 MDa TIC complex in land plants.
Cryo-EM structures of the Chlamydomonas TOC-TIC
holocomplexes, however, did not contain homologs of
TIC40 or TIC110 (Jin et al., 2022; Liu et al., 2023). In
addition to the aforementioned components the
intermembrane space component TIC236 constitutes a
physical link between the TOC and TIC complexes (Chen
et al., 2018). TIC22, another intermembrane space component,
has been proposed to promote preprotein import across both
envelope membranes and the intermembrane space besides its
function as a chaperone (Kouranov et al., 1999). As preprotein
import requires ATP, the existence of ATP-dependent motors
has been proposed. However, the exact nature of such stromal
import motor(s) is currently contested. On the one hand
biochemical and genetic information provide support for a
chaperone network consisting of cpHsp70, Hsp90C, and
Hsp93) consuming the ATP and energizing translocation (Su
and Li, 2010; Inoue et al., 2013; Huang et al., 2016). On the other
hand, an alternative stromal motor has been proposed that
consists of a 2-MDa ycf2/FtsH1 complex that also has
predicted ATP hydrolysis activity (Kikuchi et al., 2018).
However, the respective significance of the two proposed
motor systems has not been evaluated so far, and neither of
the two systems were observed in the currently available Cryo-
EM structures (Jin et al., 2022; Liu et al., 2023).

Transit peptides are cleaved by stromal
processing peptidase

Upon entry into the chloroplast stroma and possibly before
complete translocation, the transit peptide is cleaved by Stromal
Processing Peptidase (SPP) (Figure 1) (Richter and Lamppa, 2002;
Richter and Lamppa, 2003). SPP is an M16 metallopeptidase
carrying out a function comparable to that of the Mitochondrial
Processing Peptidase (MPP), a metalloprotease, involved in the

Frontiers in Physiology frontiersin.org04

Ballabani et al. 10.3389/fphys.2023.1213866

142

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1213866


maturation of nuclear encoded proteins imported into mitochondria
(Pollock et al., 1988; Braun et al., 1992). SPP, cleaves at a
semiconserved motif ((I/V)-X-(A/C)-↓-A (arrow marks cleavage
site) at the C-terminus of the transit peptide (von Heijne et al.,
1989). Thereby initiating the final steps of preprotein maturation.
After transit peptide cleavage, these may include folding and/or
assembly in the stroma or insertion into or translocation across the
thylakoid membrane. SPP is an essential component of the import
mechanism as demonstrated by the aborted seed phenotype
observed in the spp homozygous knockout mutants (Trösch and
Jarvis, 2011). Once cleaved, transit peptides are further degraded by
presequence peptidases (PrePs) (Figure 1) (Ståhl et al., 2005).

Thylakoid membrane targeting sequences
and alternative insertion pathway

The thylakoid membrane is home to the light reactions of
photosynthesis. For thylakoid biogenesis, assembly of thylakoid
luminal and integral membrane proteins is essential. For a
considerable number of proteins, the journey therefore is not
finished upon arrival inside the chloroplast. Cleavage of the
transit peptide may expose a secondary targeting sequence that
will engage one of at least two entry pathways to the thylakoids. Two
routes exist for entering the thylakoid lumen: the twin-arginine
translocase (TAT) that may accommodate folded proteins, or the
SEC translocase for unfolded proteins (Figure 1) (Yuan et al., 1994;
Mori et al., 1999). In addition, integral thylakoid membrane proteins
require the signal recognition particle (SRP) pathway for alternative
insertion (Figure 1) (Schünemann, 2007). Interestingly, all three
pathways have been conserved from the cyanobacterial ancestor and
exist in bacteria and, in the case of the SEC and SRP pathways, in
animals to this day.

SEC translocation mechanism

The SEC pathway is well-known for its evolutionary conserved
mechanism (Dalbey and Chen, 2004). In thylakoid targeting signals,
the SEC-specific signal sequence has been described as containing
three domains, a charged domain at the N-terminal part, a
hydrophobic mid-section and C-terminal cleavage domain
containing an A-x-A motif set for interaction with the thylakoid
processing peptidase (TPP) (Hsu et al., 2011; Celedon and Cline,
2013). SEC1 is the SEC translocase at the thylakoid membrane
(Fernandez, 2018). The SEC1 complex contains SCY1 and
SECE1 thylakoid membrane protein channels associated with the
stromal motor protein SECA1 (Nakai et al., 1994). Nuclear-encoded
lumenal proteins are translocated in an unfolded form across the
SEC translocase. The N-terminal part of the signal peptide interacts
with SECA1 translocation motor and its ATPase activity provides
the energy for translocation across the SCY1/SECE1 channel.
Subsequently, the signal sequence is cleaved in the thylakoid
lumen (Figure 1) (Albiniak et al., 2012). HSP90C may also assist
the SEC1 translocation pathway in translocating thylakoid precursor
proteins from the stroma to the lumen (Jiang et al., 2020).
Surprisingly, a SEC2 translocase system also exists that is similar
to SEC1, but SCY2 and SECE2 are inner envelopemembrane protein

channels using the stromal motor protein SECA2 (Skalitzky et al.,
2011). The known examples of SEC2-dependent translocation of
inner envelope proteins are TIC40 and FTSH12 (Li et al., 2017).
However, the SEC2 translocase system is poorly understood
compared to SEC1 due to a lack of studies.

TAT translocation mechanism

The Twin Arginine Transport (Tat) pathway is so called
because the corresponding targeting sequences contain two
neighbouring arginine residues (Cline et al., 1992). The TAT
pathway is distinct from others in that it is able to transport fully
folded protein across the thylakoid membrane and into the
lumen. The TAT-specific signal sequence features are similar
to those of SEC with the exception of the N-terminal part that
contains the twin arginine (RR) motif. The RR motif is
responsible for SEC avoidance response in thylakoid targeting
(New et al., 2018). The Tat pathway is estimated to be responsible
for the import of an estimated 50% of the thylakoid lumen
proteins (Robinson and Bolhuis, 2004). The characteristic
twin-arginine motif is essential for translocation and is
disabled by mutation to other combinations of amino acids.
The TAT pathway requires only the proton motive force
(pmf) as energy source in order to achieve protein transport
and has therefore also been called the ΔpH pathway (Mould and
Robinson, 1991). Three proteins named TatC, Hcf106 and
Tha4 form a complex that binds to the precursor protein’s
RRXFLK motif in the N-terminal part of the signal sequence
in order to facilitate translocation (Figure 1). Liquid-liquid phase
separation by Hcf106-ankyrin-repeat proteins (STT) interaction
facilitates the TAT dependent translocation of the luminal
proteins (Ouyang et al., 2020). Several models of translocation
have been proposed for the plant TAT pathway. However, no
proven model exists to date (New et al., 2018).

SRP

The chloroplast signal recognition particle (cpSRP) pathway,
which is derived from prokaryotes and known as cpSRP pathway,
targets and inserts abundant thylakoid membrane proteins, for
example, light-harvesting chlorophyll-binding proteins (LHCPs)
(Ziehe et al., 2018). Unlike SEC and TAT pathways, no
conserved motif or domain is present at the N-terminal of the
protein for thylakoid targeting. Several studies address LHCP
recognition by the cpSRP pathway. The L18 motif (18 amino
acids within the second and third transmembrane helices) of
LHCP is crucial for recognition by cpSRP transit complex (Tu
et al., 2000). Once nuclear-encoded LHCP is imported into the
chloroplast via the TOC-TIC complex and processed by SPP, it
forms the stromal transit complex together with cpSRP54 (GTPase)
and cpSRP43 (Schuenemann et al., 1998). The cpSRP transit
complex containing LHCP binds to cpSRP receptor cpFtsY
(GTPase) (Kogata et al., 1999; Tu et al., 1999; Nguyen et al.,
2011) and docks to Alb3 (insertase at thylakoid membrane) via
cpSRP43, promoting precursor/LHCP insertion into thylakoid
membrane (Figure 1) (Moore et al., 2000; Bals et al., 2010).
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cpSRP43 has two distinct chaperone activities for i) LHCP insertion
and ii) tetrapyrrole biosynthesis enzymes. The chaperone activity
towards tetrapyrolle biosynthesis activity allows to coordinate LHCP
insertion with chlorophyll biosynthesis and assembly into LHCP.
Interestingly, cpSRP54 activates the cpSRP43 chaperone function
towards LHCP insertion and inhibits the chaperone activity towards
tetrapyrrole biosynthesis enzymes (Wang et al., 2018; Ji et al., 2021).
However, except for LHCP, there is a lack of information about how
the SRP targets are recognized by the components of the SRP
pathway.

Thylakoid processing peptidase (TPP)

The thylakoid proteins are translocated into the thylakoid
lumen by either the Sec or Tat pathways and, in a final step the
N-terminal thylakoid targeting sequence is cleaved by Thylakoid
Processing Peptidase (TPP) (Figure 1) (Hsu et al., 2011). TPP is a
member of the membrane-bound proteases belonging to the type
I signal peptidase (SPase I) family in both prokaryotes and
eukaryotes. Plsp1 and Plsp2A/B are the two TPPs present in
the thylakoids (Hsu et al., 2011). Plsp1 is known to be involved in
the SEC and TAT dependent signal sequence cleavage and,
surprisingly also, processing of TOC75 at the envelope
membrane, suggesting that at least the Plsp1 protease is found
not only in the thylakoid membrane but also in the envelopes.
Plsp1 is essential for chloroplast biogenesis, its mutation
resulting in a very pale green phenotype (Shipman and Inoue,
2009). Currently, the physiological and functional roles of
Plsp2A/B in signal peptide processing are unclear.

Conclusion and future perspectives

In the last years, significant progress has been made with regard
to the understanding of the molecular and mechanistic details of
chloroplast import of nuclear-encoded proteins by the TOC-TIC
complex. The recent cryo-EM structural studies reveal how the
TOC-TIC components are arranged in detail and provide some
information on the likely path of the preprotein and its transit
peptide across the chloroplast envelope. It would now be highly
interesting to study the cryo-EM structure of the TOC-TIC complex
in association with a preprotein and its transit peptide to gain a
complete understanding of the import process. Also, the recent cryo-
EM structures failed to reveal the cytosolic GTPase domains of the
TOC34 and −159 (Jin et al., 2022; Liu et al., 2023) that play a central
role in transit peptide recognition. The GTPase domains should
remain a key target in future structural work. Recent advances in the

chloroplast transit peptide field reveal that specific motifs, i.e., the
proline-rich motif, have vital roles in the preprotein interaction with
the TOC-TIC translocon. However, fundamental knowledge
concerning the recognition and distinction of transit peptides
belonging to different classes of preproteins (i.e., photosynthesis-
associated vs. nonphotosynthetic housekeeping) is still lacking. In
the future, the identification and investigation of particular motifs
playing essential roles in tissue- and plastid-specific protein import
pathways are predicted to be important research questions. Last but
not least, many questions regarding second targeting sequences and
their role in processing and assembly of the all-important
photosystems remain open and should be addressed in the future.
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Introduction

Cells synthesize thousands of different proteins that should be delivered to different
cellular compartments, integrated into membranes, or secreted outside of the cell to conduct
their functions. Over 20 thousand genes are detected in a human genome including about
3,000 genes encoding secreted proteins and 5,500 genes encoding membrane proteins
(Uhlen et al., 2015). Thus, about 40% of all proteins are transported through or integrated
into cellular membranes. What happens to secretory/membrane proteins that are not able to
be targeted to the endoplasmic reticulum (ER) because of the mutations in the signal
peptides or defects in the protein transport machinery? These proteins are potentially
harmful to cells if they are mislocalized. In this article we discuss secretory protein targeting,
signal peptides interactions with transport machinery of the cells, defects in these processes,
their possible implications in human diseases, and cellular mechanisms preventing synthesis
of defective secretory proteins.

Signal peptides and protein targeting to ER

How cells distinguish secretory and membrane proteins from others to transport them?
Many secreted proteins are synthesized with an extra N-terminal amino acid sequence called
signal sequence or signal peptide that is removed (cleaved off) upon translocation of the
proteins into ER lumen. These signal sequences are served as “tags” or “zip codes” to direct
proteins to the ER for their further transport. Some membrane proteins also have cleavable
signal peptides, while others use their first transmembrane spans for these purposes. Signal
peptides from different secretory proteins do not have consensus of distinct amino acid
sequences and they do not show significant amino acid homology. However, they have
similar organization and three featured domains—N, H, and C (Figure 1A). The N is
N-terminal portion of the signal peptides (1-5 amino acids), it often has one-two positively
charged amino acids; H or hydrophobic core is presented by a region of 7-15 hydrophobic
amino acids; and C region (3-7 amino acids) contains a site for signal peptidase (von Heijne,
1985; von Heijne, 1990). The signal peptide cleavage site is described by −3, −1 rule that
provides restrictions of the amino acid residues in those positions of the signal peptide (von
Heijne, 1983). Interestingly, signal peptides from different organisms (bacteria, yeast,
mammals, etc.) have similar organization and features demonstrating universal concept
for protein targeting signals.

Signal peptides are recognized by Signal Recognition Particle (SRP) (Hsieh and Shan,
2021; Kellogg et al., 2021). SRP dependent pathway is the major route for sorting of secreted
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and membrane proteins in mammalian cells. SRP is a complex of six
proteins (SRP9, SRP14, SRP19, SRP54, SRP68, SRP72) and one
noncoding RNA (7SL RNA) in mammals. SRP plays a key point in
selecting proteins for their targeting to the ER membrane. SRP
recognizes signal peptides of secretory protein precursors or
membrane spans of membrane proteins immediately after their
appearance from the ribosome during translation. SRP54 subunit
directly binds signal peptides during translation. This interaction
leads to the SRP molecular rearrangement, temporal elongation
arrest, targeting complex to the SRP receptor in the ER membrane,
transferring it to the translocon, then SRP leaves the complex,
translation resumes, and the polypeptide nascent chain is co-
translationally translocated into ER lumen through the
translocon (Figure 1B). Proteins translocated to ER are folded
with participation of the ER chaperones, subjected to co- and
post-translational modifications and transported further.

Aberrant signal peptides, defective
SRPs, protein quality controls and
human diseases

Mechanisms of protein targeting and transport are complex and,
thus, many things can go wrong. It could be a problem with
secretory protein itself because of genetic mutations or mistakes
of transcription/translation, or issues with transport machinery
because of defects in its components. Moreover, different stresses
can affect proteins as well. These events can lead to protein
mislocalization, misfolding and accumulation of insoluble protein
aggregates that are potentially harmful. There are several cellular
quality control mechanisms evolved to protect cells from these toxic
species. They work at different levels and substrates, some of them
are general and triggered by stress, others are specialized. Examples
are responses to stress (unfolded protein response, UPR; ribosome-
associated quality control, RQC, others), appearance of premature

stop-codon mutations in mRNAs (nonsense mediated decay,
NMD), mRNA truncations or ribosome stalling (no-go decay,
NGD), or the absence of a natural stop codon (nonstop decay,
NSD) (Brandman and Hegde, 2016; Shao and Hegde, 2016; Hetz
and Papa, 2018; Joazeiro, 2019; Kurosaki et al., 2019; Sitron and
Brandman, 2020; D’Orazio and Green, 2021). In addition, secretory
and membrane proteins are controlled by a specific protein quality
control on the ribosome termed Regulation of Aberrant Protein
Production (RAPP) (Karamyshev et al., 2014; Karamyshev and
Karamysheva, 2018). It senses signal peptide interactions with a
targeting factor SRP and degrades the secretory protein mRNAs if
these interactions are disrupted by mutations in a signal peptide or
defects in SRP.

What mutations in signal sequences trigger RAPP? As
mentioned above, the signal peptides have a domain
organization. The domain structure of signal sequences reflects
their functions. Thus, H region is crucial for binding with
SRP54—deletions of hydrophobic amino acids from this area
dramatically reduce interaction with SRP54, while alterations of
charged amino acids in the N domain have only mild effect (Nilsson
et al., 2015). Mutations in the signal peptide C region mostly affect
processing (Karamyshev et al., 1998). However, impact of mutations
in C region on SRP binding and protein transport have a minimal
affect (Nilsson et al., 2015). Thus, hydrophobicity of the H domain is
the major factor affecting SRP interaction with a signal peptide.
Indeed, mutations decreasing hydrophobicity of the signal peptide
in the preprolactin signal peptide H-region triggered degradation of
the mutated protein mRNA (Karamyshev et al., 2014). Moreover,
the effect of the mutations was graded—the mRNA degradation
gradually increased with the severity of the mutations. Interestingly,
depletion of the SRP54 subunit also triggers RAPP.

RAPP is a unique protein quality control—it co-translationally
recognizes aberrant proteins at the ribosome and prevents their
synthesis through specific mRNA degradation. It requires active
translation. The RAPP response involves engagement of

FIGURE 1
Signal peptides, protein targeting and its dysregulation. (A) Domain organization of signal peptides. (B) Scheme of SRP-dependent protein targeting
in eukaryotes and Regulation of Aberrant Protein Production (RAPP) quality control on the ribosome. Under normal conditions SRP recognizes signal
peptide and targets ribosomes to the SRP receptor in the ERmembrane, and finally the secretory protein is translocated through the translocon to the ER
lumen. However, when SRP is not able to recognize the signal peptide because of the mutations or because defects in the SRP itself, RAPP quality
control is activated and the mRNAs are degraded. (C) Mutations in signal peptide domains affect different processes: mutations in the N domain affect
efficiency of the protein translocation and secretion; mutations decreasing hydrophobicity of the H domain disrupt interaction with SRP, trigger RAPP
protein quality control and lead to mRNA degradation of the mutated protein; mutations in the C domain may affect processing by a signal peptidase.
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AGO2 protein, specific chaperone network (HSPA1A, DNAJB1,
HSP90AA1, others), ribosome rearrangement through exchange of
the ribosomal protein RPS27 and RPS27L, and ribosome-associated
ubiquitination (Karamyshev et al., 2014; Tikhonova et al., 2022). It is
proposed that ribosome heterogeneity and specialization may play
an important role in many cellular processes (Genuth and Barna,
2018a; Genuth and Barna, 2018b; Miller et al., 2023). Thus, exchange
of ribosomal proteins during RAPP activation may be important for
its molecular mechanism. It is also established that RAPP is a general
pathway controlling many secretory and membrane proteins
(Tikhonova et al., 2022). However, details of the molecular
mechanism of RAPP are not well understood.

There are many diseases associated with the defects in protein
targeting to ER. Generally, they can be divided into two large
categories—disorders associated with defects in a targeting factor
SRP, and diseases associated with mutations in specific secretory
proteins. The first category includes defects in SRP protein subunits
and 7SL RNA leading to very diverse disorders including cancer,
autoimmunity, hematological, neurological, neurodegenerative,
infectious, and other diseases (Kellogg et al., 2022). The
molecular mechanisms of these disorders are diverse and they
depend on the affected subunit. The loss of SRP54 as a result of
autoimmune response or some mutations in SRP54 may induce the
RAPP quality control. Some mutations may interfere with the
efficiency of SRP interaction with SRP receptor, or with SRP
complex formation. Several studies demonstrated that mutations
in the G-domain of SRP54 are associated with neutropenia and
Shwachman-Diamond syndrome (Carapito et al., 2017; Bellanne-
Chantelot et al., 2018; Juaire et al., 2021). The second category of
diseases is associated with mutations in secretory proteins. It is
connected with a loss of expression or a change of processing of a
single secretory protein. Among them are frontotemporal lobar
degeneration (FTLD) connected with granulin haploinsufficiency,
aspartylglucosaminuria caused by defects in
aspartylglucosaminidase, Wolman disease associated with
mutations in lipase A, and many others (Jarjanazi et al., 2008;
Karamyshev et al., 2020). Molecular mechanisms of these
diseases are associated with location of mutations in secretory
proteins and their severity. We proposed that mutations in the
signal peptide H-domain decreasing hydrophobicity induce RAPP,
while mutations located in the C-region do not activate RAPP, but
instead may inhibit processing (Tikhonova et al., 2019) (Figure 1C).
Mutations in the signal peptide N-domain are unlikely to induce
RAPP because this area is not important for interaction with SRP,
but it may be important for secretion efficiency. Recently we
elucidated that a pathological RAPP activation and mRNA
degradation of the granulins with W7R and A9D mutations is a
molecular mechanism of FTLD pathology for the patients bearing
these mutations (Pinarbasi et al., 2018; Karamysheva et al., 2019).
The similar conclusions were made for many other secretory
proteins with mutations that are associated with a number of
human diseases (Tikhonova et al., 2019). Thus, pathological
RAPP activation may play a significant role in many human

diseases. Interestingly, the RAPP pathway is also involved in
some cases of the Parkinson’s disease, however, the molecular
basis of it is not clear yet (Hernandez et al., 2021).

Conclusion

The protein transport is one of the most important cellular
processes. About 40% of all proteins in a cell are secretory and
membrane proteins. Mutations in the hydrophobic core of the signal
peptide or depletion of SRP54 subunit of the SRP complex lead to
the RAPP activation and elimination of the secretory protein mRNA
template. Activation of the RAPP pathway can cause a number of
human diseases; however, many details of the RAPP mechanism
remain unclear such as what components of mRNA degradation
machinery are involved in the degradation process, and how changes
in ribosome composition/modification contribute to RAPP.
Therefore, understanding of the fine details of the molecular
mechanism of the RAPP pathway is crucial for the development
of new strategies for treatment multiple human diseases.
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PEX19 binding sites are essential parts of the targeting signals of peroxisomal
membrane proteins (mPTS). In this study, we characterized PEX19 binding sites
of PEX11, the most abundant peroxisomal and glycosomal membrane protein
from Trypanosoma brucei and Saccharomyces cerevisiae. TbPEX11 contains two
PEX19 binding sites, one close to the N-terminus (BS1) and a second in proximity
to the first transmembrane domain (BS2). The N-terminal BS1 is highly conserved
across different organisms and is required for maintenance of the steady-state
concentration and efficient targeting to peroxisomes and glycosomes in both
baker’s yeast and Trypanosoma brucei. The second PEX19 binding site in
TbPEX11 is essential for its glycosomal localization. Deletion or mutations of
the PEX19 binding sites in TbPEX11 or ScPEX11 results in mislocalization of the
proteins to mitochondria. Bioinformatic analysis indicates that the N-terminal
region of TbPEX11 contains an amphiphilic helix and several putative
TOM20 recognition motifs. We show that the extreme N-terminal region of
TbPEX11 contains a cryptic N-terminal signal that directs PEX11 to the
mitochondrion if its glycosomal transport is blocked.

KEYWORDS

peroxisome, glycosome, peroxin, PEX19, PMP, mPTS, MTS

1 Introduction

Peroxisomes are single membrane bound organelles performing a wide range of
functions (Rhodin, 1954; De Duve and Baudhuin, 1966). Glyoxysomes in plants,
Woronin bodies in fungi, and glycosomes in trypanosomatid parasites are
specialized forms of peroxisomes (Reichle and Alexander, 1965; Breidenbach and
Beevers, 1967; Opperdoes and Borst, 1977). Peroxisomes can multiply by growth
and division, or they can form de novo from pre-peroxisomal vesicles that are
supposed to bud from the endoplasmic reticulum (Hoepfner et al., 2005; Motley
and Hettema, 2007). Peroxisomes import matrix as well as membrane proteins
post-translationally (Goldman Blobel, 1978; Lazarow and Fujiki, 1985; Sacksteder
et al., 2000; Jones et al., 2004). The import depends on a machinery of Peroxins
(PEX proteins) and requires the presence of peroxisomal targeting signals in the cargo

OPEN ACCESS

EDITED BY

Nathan Alder,
University of Connecticut, United States

REVIEWED BY

Dejana Mokranjac,
Ludwig Maximilian University of Munich,
Germany
Richard Rachubinski,
University of Alberta, Canada

*CORRESPONDENCE

Ralf Erdmann,
ralf.erdmann@rub.de

Vishal C. Kalel,
vishal.kalel@rub.de

RECEIVED 28 April 2023
ACCEPTED 03 August 2023
PUBLISHED 17 August 2023

CITATION

Krishna CK, Schmidt N, Tippler BG,
Schliebs W, Jung M, Winklhofer KF,
Erdmann R and Kalel VC (2023),
Molecular basis of the glycosomal
targeting of PEX11 and its mislocalization
to mitochondrion in trypanosomes.
Front. Cell Dev. Biol. 11:1213761.
doi: 10.3389/fcell.2023.1213761

COPYRIGHT

© 2023 Krishna, Schmidt, Tippler,
Schliebs, Jung, Winklhofer, Erdmann and
Kalel. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Original Research
PUBLISHED 17 August 2023
DOI 10.3389/fcell.2023.1213761

152

https://www.frontiersin.org/articles/10.3389/fcell.2023.1213761/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1213761/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1213761/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1213761/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2023.1213761&domain=pdf&date_stamp=2023-08-17
mailto:ralf.erdmann@rub.de
mailto:ralf.erdmann@rub.de
mailto:vishal.kalel@rub.de
mailto:vishal.kalel@rub.de
https://doi.org/10.3389/fcell.2023.1213761
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2023.1213761


proteins (Gould et al., 1989; Swinkels et al., 1991; Faber et al., 1995).
Biogenesis of peroxisomes requires two distinct machineries for protein
targeting: The first is responsible for the formation of the peroxisomal
membrane by the targeting and insertion of peroxisomal membrane
proteins (PMPs), and the second machinery is responsible for the
import of peroxisomal matrix proteins (reviewed in (Agrawal and
Subramani, 2016)). The trafficking of proteins destined for the
peroxisome matrix has been well studied. A striking feature is that
peroxisomes can import folded, even oligomeric proteins (McNew
andGoodman, 1994; Leon et al., 2006). Peroxisomal matrix
proteins contain type 1 or type 2 peroxisomal targeting signals
(PTS1/PTS2) at the extreme C-terminus or close to the
N-terminus, respectively (Gould et al., 1989; Swinkels et al.,
1991; Faber et al., 1995). Some proteins contain internal
targeting signals (Galland et al., 2010) and some are transported
by piggy-backing onto a PTS-containing protein (Islinger et al.,
2009). The import of peroxisomal matrix proteins depends on
cycling receptors that recognize peroxisomal proteins via their PTS
in the cytosol and target them to a docking complex at the
peroxisomal membrane. Import takes place through a transient
pore or hydrogel-filled pore in an unknown fashion (Erdmann and
Schliebs, 2005; Meinecke et al., 2016; Gao et al., 2022). The cargo-
unloaded receptors are mono-ubiquitinated and released to the
cytosol for another round of import in an ATP-dependent manner
by the peroxisomal exportomer (Platta et al., 2004; Platta et al.,
2005). The machinery that is responsible for the topogenesis of
membrane proteins is distinct from the import machinery for
matrix proteins (Reviewed in (Hasan et al., 2013; Mayerhofer,
2016)). Only three peroxins with a direct role in PMP targeting
have been identified, namely, PEX3 (Hettema et al., 2000),
PEX16 in mammals (South and Gould, 1999; Sacksteder et al.,
2000), and PEX19 (Sacksteder et al., 2000) (Also reviewed in (Kalel
and Erdmann, 2018)). In cells lacking any of these proteins, PMPs
are either degraded or mistargeted to other subcellular
compartments such as mitochondria, endoplasmic reticulum
(ER), and membranes of unknown origin (Ghaedi et al., 2000;
Hettema et al., 2000; Sacksteder et al., 2000). PMPs contain
multiple binding sites (BSs) for the cytosolic receptor and
chaperone PEX19 (Jones et al., 2004). These binding sites are
essential for targeting of the PMPs to the peroxisomal membrane,
as they can function as mPTS i.e., membrane peroxisome targeting
signal (Halbach et al., 2005). The mPTS often comprises part of the
transmembrane domains and a short adjacent sequence, which
contains either a cluster of basic residues or a mixture of basic and
hydrophobic amino acids (Marshall et al., 1996) (Reviewed in
(Baerends et al., 2000; Murphy et al., 2003; Van Ael and Fransen,
2006)). Rottensteiner et al., developed PEX19 binding site
prediction methodology using peptide arrays (Rottensteiner
et al., 2004). Unlike PTS1 and PTS2 signals, which can be
predicted more reliably (Kamoshita et al., 2022; Kunze, 2023),
PEX19 BSs are comparatively degenerate and can be present
multiple times in a PMP. Therefore, an efficient PEX19BS
predictor is still needed. Nonetheless, PEX19 binding sites (BSs)
have been identified in various yeast, human and parasite PMPs,
which shows evolutionary conservation across eukaryotes
(Rottensteiner et al., 2004; Saveria et al., 2007). In most
eukaryotes, PEX19 harbors a farnesylation motif (CaaX box),
and farnesylation has been shown to increase the binding

efficiency of PMPs (Rucktaschel et al., 2009). However,
trypanosomatid parasite PEX19 proteins lack such a CaaX
motif (Banerjee et al., 2005).

PEX11 is an integral peroxisomal membrane protein with at
least two predicted alpha-helical transmembrane domains and
both termini facing the cytosol (Abe et al., 1998b; Lorenz et al.,
1998; Anton et al., 2000; Bonekamp et al., 2013). In the yeast
Saccharomyces cerevisiae, Pex11p, Pex25p, and Pex27p are the
three members of the PEX11 protein family (Erdmann and
Blobel, 1995; Rottensteiner et al., 2003; Tam et al., 2003).
Similarly, mammals also encode three PEX11-family proteins
namely, PEX11α, PEX11β, and PEX11γ (Li and Gould, 2002;
Koch et al., 2010). In plants, there are five PEX11 homologs, for
e. g., in Arabidopsis thaliana AtPEX11a, -b, -c, -d, and -e
(Lingard and Trelease, 2006). PEX11 family proteins are
involved in the proliferation of peroxisome in yeasts, plants,
and mammals (Erdmann and Blobel, 1995; Abe and Fujiki,
1998a; Schrader et al., 1998; Orth et al., 2007; Koch et al.,
2010). Deletion of PEX11 in yeast has an effect on the β-
oxidation of fatty acids, which can be due to defects in the
transport of metabolites across the peroxisomal membrane
(Sulter et al., 1993). PEX11β is widely expressed in
mammalian tissues and it has a well-recognized function in
the initial phase of peroxisomal fission when it remodels and
elongates peroxisomal membranes (Delille et al., 2010; Yoshida
et al., 2015; Schrader et al., 2016). The functions of PEX11α and
PEX11γ are less clear (Schrader et al., 2016). Of the
PEX11 proteins in mammals, only PEX11β deficiency was
associated with the pathology of peroxisome biogenesis
disorders (PBDs) (Li and Gould, 2002; Thoms and Gartner,
2012; Schrader et al., 2016).

In trypanosomes, three PEX11 family proteins are known,
namely, PEX11, GIM5A and GIM5B (Lorenz et al., 1998; Maier
et al., 2001; Voncken et al., 2003). Like in mammals, yeast, and
plants, both N- and C-termini of TbPEX11 are exposed to the
cytosol (Lorenz et al., 1998). Overexpression of
TbPEX11 induces growth inhibition and transforms the
globular glycosomes into long tubule clusters that occupy a
large portion of the cytoplasm (Lorenz et al., 1998).
Accordingly, TbPEX11 appears to play a role in the
proliferation of glycosomes in trypanosomes like its homologs
in yeast and mammalian cells (van Roermund et al., 2000)
(Reviewed in (Moyersoen et al., 2004)). PEX11 and both
GIM5 proteins are essential for the survival of parasites
(Lorenz et al., 1998; Voncken et al., 2003). At primary
sequence level, PEX11 family proteins contain several
conserved helices particularly in the N-terminal region
(Lorenz et al., 1998; Opalinski et al., 2018). PEX19 binding
sites have been identified in various glycosomal membrane
proteins (Saveria et al., 2007), but not in TbPEX11.
Therefore, in this study, we characterized PEX19 binding sites
of PEX11 from Trypanosoma brucei and Saccharomyces
cerevisiae. TbPEX11 contains two PEX19 binding sites, the
N-terminal PEX19 binding site (BS1) in PEX11 is highly
conserved across different organisms and is required for
maintenance of the steady-state concentration as well as
efficient targeting to peroxisomes and glycosomes in both
baker’s yeast and T. brucei. Deletion or mutations of the
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PEX19 binding site in TbPEX11 (second PEX19 BS, i.e., BS2) or
ScPEX11 (single PEX19 BS) results in a mislocalization of the
proteins to mitochondria. Trypanosomes contain multiple small
glycosomes, but harbor a single mitochondrion (Tyler et al.,
2001). We show that the extreme N-terminal region of
TbPEX11 contains a cryptic N-terminal signal that directs
PEX11 to the mitochondrion if its glycosomal transport is
blocked.

2 Materials and methods

2.1 Cloning

Escherichia coli, yeast, and Trypanosoma expression plasmid
constructs and cloning strategies are listed in Table 1, and
oligonucleotide sequences are listed in Table 2. Point mutations
in ScPEX11, TbPEX111-89aa, and the gene fragment deletions

(TbPEX111-76aa and TbPEX11-GFP constructs) were generated by
overlap extension PCR. Sequences of the constructs, mutations, and
gene fragment deletions were verified for all constructs by
automated Sanger sequencing.

2.2 Cell culture

2.2.1 Trypanosoma
Trypanosoma procyclic form (PCF) 29–13 cell line (co-expressing

T7 RNAP and TetR) was used in this study. PCF cells were grown in
SDM-79 medium supplemented with 10% FBS at 28°C (Brun and
Schonenberger, 1979; Krishna et al., 2023). PCF cultures were
maintained at 1 × 106–30 × 106 cells/mL. Transfections were
performed with NotI-linearized plasmid constructs (pGN1-
TbPEX11 constructs), which was genomically integrated into the
rRNA locus in the genome of cell line 29–13. Clones were selected
using Blasticidin (10 μg/mL) as described previously (Kalel et al., 2015).

TABLE 1 Strains and plasmids.

Sl no. Expression in Construct Primer pair Restriction sites Cloned in vector

1 E. coli GST-TbPEX19 RE2926 - RE7038 BamHI/XhoI pGEX4T-2

2 E. coli GST-HsPEX19 pAH5 Halbach et al. (2005)

3 S. cerevisiae GAL4 AD-ScPEX14 Albertini et al. (1997)

4 S. cerevisiae GAL4 BD-ScPEX17167-199aa Girzalsky et al. (2006)

5 S. cerevisiae GAL4 AD-TbPEX191-285aa RE3310 - RE3311 (pIA13, AG Erdmann) SalI/NotI pPC86

6 S. cerevisiae GAL4 BD-TbPEX111-218aa RE7303 - RE7306 SalI/NotI pPC97

7 S. cerevisiae GAL4 BD-TbPEX111-89aa RE7303 - RE7305 SalI/NotI pPC97

8 S. cerevisiae GAL4 BD-TbPEX1190-218aa RE7304 - RE7306 SalI/NotI pPC97

9 S. cerevisiae GAL4 BD-TbPEX111-76aa RE8882—RE8883 Quick change PCR pPC97

10 S. cerevisiae GAL4 BD-TbPEX111-89aa (S 25 D) RE7713 - RE7714 Quick change PCR pPC97

11 S. cerevisiae GAL4 BD-TbPEX111-89aa (S 25 P) RE7715 - RE7716 Quick change PCR pPC97

12 S. cerevisiae GAL4 BD-TbPEX111-89aa (L 31 P) RE7717 - RE7718 Quick change PCR pPC97

13 S. cerevisiae GAL4 BD-TbPEX111-89aa (S 25 P, L 31 P) RE7715 - RE7716, RE7717 - RE7718 Quick change PCR pPC97

14 S. cerevisiae GAL4 AD-HsPEX19 RE7706 - RE7707 SalI/NotI pPC86

15 S. cerevisiae GAL4 BD-HsPEX111-73aa RE7843 - RE7844 SalI/NotI pPC97

16 S. cerevisiae GAL4 BD-HsPEX111-73aa RE7708 - RE7709 SalI/NotI pPC97

17 S. cerevisiae GAL4 BD-HsPEX111-74aa RE7845 - RE7846 SalI/NotI pPC97

18 S. cerevisiae ScPEX11-GFP Boutouja et al. (2019)

19 S. cerevisiae ScPEX11 (L 35 P)-GFP RE8063 - RE8064 Quick change PCR pUG35

20 T. brucei TbPEX11-GFP RE8070 - RE8071 BstBI/BamHI pGN1

21 T. brucei TbPEX11Δ13-35aa-GFP RE8072 - RE8073 Quick change PCR pGN1

22 T. brucei TbPEX11Δ77-99aa-GFP RE8074 - RE8075 Quick change PCR pGN1

23 T. brucei TbPEX111-90aa-GFP RE7378 - RE7379 ApaI/BamHI pGN1

24 T. brucei TbPEX111-90aa-Δ13-35aa-GFP RE8072 - RE8073 Quick change PCR pGN1

25 T. brucei TbPEX111-90aa-Δ2-11aa-GFP RE8096 - RE7379 BstBI/BamHI pGN1
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2.2.2 Yeast
S. cerevisiaewild-type strain BY4742 (for microscopy) and strain

PCY2 (WT or Δpex19 for yeast two-hybrid assay) were grown in
double dropout SD synthetic media as described in section 2.3 and
2.4.2. Yeast cells were transformed by the traditional Lithium-
acetate method (Gietz and Woods, 2002).

2.2.3 Escherichia coli
Escherichia coli strain TOP10 was used for all plasmid

amplifications and BL21 (DE3) strain was used for heterologous
expression of recombinant GST-PEX19 fusion proteins. Liquid
E. coli cultures were grown at 37°C under continuous shaking in LB
medium containing the appropriate selective antibiotic (100 μg/mL
Ampicillin).

2.3 Yeast two-hybrid analysis (Y2H)

Y2H studies were performed based on the Yeast protocols
handbook (Clontech, Protocol No. PT3024-1, Version No.
PR742227). Full length or various truncations of Trypanosoma
or Human PEX11 were cloned in pPC97 vector containing
GAL4-DNA Binding Domain (BD) and full-length
Trypanosoma or human PEX19 were cloned in pPC86 vector
containing GAL4-Activation domain (AD), as described in
Table 1. Co-transformation of various two-hybrid plasmids
i.e., BD and AD constructs were performed in WT PCY2 or
Δpex19 PCY2 strain in case of HsPEX19-HsPEX11 constructs.
The clones were selected on SD synthetic medium without
tryptophan and leucine. A filter-based β-galactosidase assay
and liquid culture assay using ONPG were performed in three
replicates as described in the Yeast protocols handbook
(Clontech).

2.4 Microscopy

2.4.1 Trypanosoma
Trypanosoma stable cell lines (Procyclic 29:13) encoding various

tetracycline inducible PEX11-GFP constructs (full-length and
mutants) were induced with 1 μg/mL tetracycline or treated
with DMSO alone as negative control. Cells were sedimented
and fixed by resuspension in 4% paraformaldehyde in PBS
(phosphate-buffered saline, pH 7.4) at 4°C for 15 min. Fixed
Trypanosoma cells were washed two times with PBS and
stored at 4°C in a dark box. For imaging, fixed cells were
immobilized on a glass slide (StarFrost 76 × 26 mm, Knittel
Glass) pre-coated with 10% (v/v) of poly-L-lysine (Sigma-
Aldrich) in water for 1 h at room temperature (RT). Further,
the cell membranes were permeabilized with PBS containing
0.125% Triton X-100 and incubated for 10–15 min, followed
by blocking with PBS containing 3% BSA, 0.25% Tween-20 for
1 h at RT. Rabbit α-Aldolase antibody (1:500 in blocking buffer)
was used as glycosomal marker and incubated at RT for 1 h.
Following 5 washes with PBS, anti-rabbit Alexa fluor
594 secondary antibodies (1:200 dilution) in PBS was applied
and incubated for 30 min at RT in the dark. Further, the stained
samples were washed, dried, and layered with anti-fading

mounting medium, i.e., Mowiol with DAPI (4′,6-diamidino-2-
phenylindole).

For mitochondrial staining, tetracycline-induced or uninduced
(DMSO-treated) Trypanosoma cells were harvested and resuspended
in the culture medium containing 75 nMMitoTracker® Deep Red and
incubated for 5 min at 28°C. Following incubation, cells were washed
with PBS twice and resuspended in the culture medium and further
incubated for 30 min at 28°C. Subsequently, cells were fixed with 4%
paraformaldehyde in PBS, and samples were prepared for microscopy
as mentioned above.

Glycosome- or mitochondrion-stained cells were visualized
and imaged with a Zeiss Elyra microscope and were analyzed
using Zeiss Zen 3.2 software (blue edition). Both aldolase and
MitoTracker which are markers for glycosome and
mitochondrion respectively, are pseudo-colored to magenta for
visualization.

2.4.2 Yeast
BY4742 yeast strain co-transformed with the plasmids

encoding ScPEX11-GFP (WT (Boutouja et al., 2019) and L35
to P mutant, with the endogenous promoter) and DsRed-SKL (as
a peroxisomal reporter (Kuravi et al., 2006)) were grown
overnight (16 h) with shaking in an SD synthetic medium
without uracil and histidine. Next day the precultures were
diluted to 0.1 OD600/mL and were incubated under shaking
until the cell density reached 0.6–0.8 OD600/mL. After
incubation, 1–2 mL cultures were harvested and washed with
water. For mitochondrial staining, 5 mL of yeast cells, grown to a
density of 0.6–0.8 OD600/mL, expressing the ScPEX11 constructs
were stained with 150 nM MitoTracker™ Orange CMTMRos
(Invitrogen) for 30 min with shaking in dark. Following
incubation, 1–2 mL cultures were harvested and washed with
water. All incubation steps were performed at 30°C. Yeast cells
expressing various fluorescent proteins were directly visualized
microscopically without fixation. Microscopy was performed
with Carl Zeiss Microscope, using the Axiovision
4.6.3 software, and images were analyzed using Zen 3.2 (blue
edition), a Carl Zeiss software. The DsRed-SKL, a peroxisomal
reporter is pseudo-colored to magenta for visualization.

2.5 Peptide array

The immobilized peptides of 15-amino acids length,
sequentially overlapping by 13 residues (2aa shift),
representing the entire sequence of TbPEX11 or the
N-terminal domains of three human PEX11 isoforms were
synthesized on a cellulose membrane as described previously
(Hilpert et al., 2007; Neuhaus et al., 2014). The peptide array was
first washed with ethanol for 10 min with gentle shaking followed
by three washes with TBS (50 mM Tris, 137 mM NaCl, 2.7 mM
KCl, adjusted to pH 8) for 10 min each. Further, the peptide array
was incubated with a blocking buffer (TBS +3% BSA +0.05%
Tween-20) for 2 h at room temperature (RT). The purified
recombinant proteins GST-TbPEX19, GST-HsPEX19, or GST
alone (10 mL of 1 µM solution prepared in blocking buffer)
were incubated with the arrays for 1 h at 4°C. Then, the arrays
were washed three times for 10 min at RT with TBS, and
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subsequently incubated with the anti-GST monoclonal antibody
(Sigma, 1:2000) at RT for 1 h. Followed by three washes with TBS
(10 min each), a secondary antibody (Horseradish peroxidase-
coupled anti-mouse IgGs, 1:5,000 in blocking buffer) was applied,

and the array was further incubated for 1 h at RT. After three
washes with TBS, the array was scanned with chemiluminescence
substrate (WesternBright Sirius) using Azure sapphire
biomolecular imager.

TABLE 2 Oligonucleotides.

Primer Sequence 5′to 3′

RE2926 GATCGGATCCATGTCTCATCCCGACAATGAC

RE3310 GATCGTCGACGATGTCTCATCCCGACAATGAC

RE3311 GATCGCGGCCGCCTACACTGATGGTTGCACATCG

RE7038 CCGCTCGAGTTACACTGATGGTTGCACATCGGCAAGTCC

RE7303 TGGACCGTCGACGATGTCTGAGTTCCAAAGGTTTGTT

RE7304 AATATAGTCGACTAAGTTCCTCCGCGTGCTGTGC

RE7305 AAGATAGCGGCCGCTTACAAGACCTCTTTCATGTTGAC

RE7306 AATAAGCGGCCGCCTATTTGATCTTGTTCCAGTTCAA

RE7378 AAGATAGGGCCCATGTCTGAGTTCCAAAGGTTTGTT

RE7379 AAATGGATCCGATCCGCTTCCCTTCAAGACCTCTTTCATGTTGAC

RE7706 AAGACGTCGACCATGGCCGCCGCTGAGGAAGGCTG

RE7707 AAGACGCGGCCGCTCACATGATCAGACACTGTTCA

RE7708 AAGATGTCGACAATGGACGCCTGGGTCCGCTTCAG

RE7709 AAGACGCGGCCGCTTATCTTTTGGCTGACTCAAGG

RE7713 GCCTTAAAGACACCATCAAATGCCTTTAGAATCTTGTCGCGGC

RE7714 GCCGCGACAAGATTCTAAAGGCATTTGATGGTGTCTTTAAGGC

RE7715 CTTAAAGACACCAGGAAATGCCTTTAGAATCTTGTCGCGG

RE7716 CCGCGACAAGATTCTAAAGGCATTTCCTGGTGTCTTTAAG

RE7717 GTGTCGAGGGAGCCAGGTGCCTTAAAGACAC

RE7718 GTGTCTTTAAGGCACCTGGCTCCCTCGACAC

RE7843 AGAAGTCGACAATGGACGCCTTCACCCGCTTCACC

RE7844 AAGAGCGGCCGCTTACTGCTCAGTTGCCTGTATAG

RE7845 AAGAAGTCGACAATGGCGTCGCTGAGCGGCCTGG

RE7846 AAGAGCGGCCGCTTATTGCTTAGTGTAGACAAACA

RE8063 CTGCTAAAAATCTTGCTGGATACTGCAGTAATCTGAGAACCTTTTCTCTGC

RE8064 GCAGAGAAAAGGTTCTCAGATTACTGCAGTATCCAGCAAGATTTTTAGCAG

RE8070 AAGAATTCGAAATGTCTGAGTTCCAAAGGTTTGTT

RE8071 AAGACGGATCCGATTTGATCTTGTTCCAGTTCAA

RE8072 TTCTTGAGACCTGTCAGAGCCGCTCAAG

RE8073 GACAGGTCTCAAGAAGCTTAACAAACCTTTGG

RE8074 TTCAGGATTATGTGCTCGGCGACAATG

RE8075 GCACATAATCCTGAATGGCATTCTGC

RE8096 AAGACTTCGAAATGGAGCAGACAGATGGCCGCGAC

RE8882 TTCAGGATTAAGCGGCCGCTAAGTAAG

RE8883 CCGCTTAATCCTGAATGGCATTCTGCATC
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2.6 Protein expression and purification,
in vitro pull-downs and AlphaScreen binding
assay

2.6.1 Protein expression and purification
The expression plasmids pGEX4T2, pGEX4T2-TbPEX19 or

pGEX4T1-HsPEX19, encoding for GST, GST-TbPEX19 or GST-
HsPEX19, respectively, were transformed into BL21 (DE3) E. coli
strain. Single colonies were inoculated in LB medium containing
ampicillin and incubated overnight with shaking at 37°C. On the
following day, the cultures were reinoculated with 0.1 OD600/mL and
further incubated at 37°C with shaking, until the cell density reached
0.6 OD600/mL. Protein expression was induced with 1 mM IPTG for
4 h at 30°C. Harvested cell pellets were stored at −20°C before use. For
protein purification, E. coli cell pellets were resuspended in PBS
with protease inhibitors (5 μg/mL Antipain, 2 μg/mL Aprotinin,
0.35 μg/mL Bestatin, 6 μg/mL Chymostatin, 2.5 μg/mL Leupeptin,
1 μg/mL Pepstatin, 0.1 mM PMSF, 25 μg/mL DNAse and 1 mM
DTT). Cells were disrupted using EmulsiFlex and unbroken cells
were removed by centrifugation at 4,500 rpm for 15 min
(rotor SX4400, Beckman Coulter). The resulting supernatant (SN1)
was subjected to a high-speed centrifugation at 14,000 rpm for 1 h
(rotor SS-34, Thermo Scientific), which yielded supernatant 2 (SN2), a
soluble fraction that included overexpressed proteins. Proteins were
purified by affinity chromatography using Glutathione Agarose 4B
beads (Macherey-Nagel). To this end, SN2 was incubated with the
pre-equilibrated glutathione agarose beads for 2 h in a tube rotator.
After collection of the flow-through, using a gravity flow column, the
protein-bound beads were washed five times with PBS. Proteins were
eluted with 10 mMreduced glutathione in 50 mMTris-Cl (pH 8). The
buffer of the eluted protein was exchanged to PBS using Amicon
centrifugation tubes with molecular weight cut-off (MWCO) 10 kDa.
The concentration of the proteins was determined by the Bradford
method (Thermo, Coomassie Plus assay kit), and protein aliquots
were stored at—80°C. All the purification steps were performed at 4°C.

2.6.2 In vitro pull-down
20 µL bed volume Glutathione Agarose 4B beads (Macherey-

Nagel) were incubated with 200 µg of recombinantly purified GST
and GST-TbPEX19 proteins in separate tubes for 2 h at 4°C with gentle
rotation. Following incubation, beads were washed with PBS to remove
unbound proteins. Subsequently, 25 µg of C-terminally His6-tagged
synthetic peptides of crude grade, containing the corresponding
TbPEX19 binding regions in TbPEX11 (BS1-BS3) were loaded to
the respective tubes and were incubated for 2 h at 4°C with gentle
rotation to allow binding of the peptides to GST-TbPEX19 or control
GST. Following washes with PBS, the bound proteins/peptides were
eluted with 50 µL 10 mM reduced glutathione in 50 mM Tris (pH 8).
The eluted samples were analyzed by SDS-PAGE followed by
Coomassie staining and immunoblotting. The sequences of the
TbPEX11 peptides used for the pull-down are as follows, BS1:
QTDGRDKILKAFSGVFKALGSLD-GS-His6, BS2: CRAKGKVNMKE
VLKFLRVLCNFL-GS-His6 and BS3: VLDVVALYGALQKRASDP
ATS-GS-His6.

2.6.3 AlphaScreen binding assay
N-terminal GST tagged TbPEX19 and TbPEX11 peptides with

C-/N-terminal His6 were used for the interaction study with the

AlphaScreen system. The final reaction volume used for the study was
25 μL, which consist of 5 μL of each protein solution (30 nM for
PEX19 and 300 nM of PEX11 peptides), 5 μL of buffer, and 5 μL of
solution for each of the donor and acceptor beads (5 μg/mL). The
above solutions were prepared in reaction buffer [0.5% BSA v/v, PBS
(pH7.4)] on the day of the assay. Compounds were incubated with the
proteins for 30 min at room temperature (RT). 5 μL of AlphaScreen
Nickel-chelate acceptor beads (cat. no. 6760619C, PerkinElmer®) were
added to the above mixture following 15 min incubation at RT. 5 μL
AlphaScreen Glutathione donor beads (cat. no. 6765300,
PerkinElmer®) were added to the mixture. The complete 25 μL
reaction solutions were incubated for 45 min at RT in the dark,
and Alpha signals were captured with Cytation 5 plate reader
(BioTek®) with the gain value set at 180. All above concentrations
mentioned for the AlphaScreen assays were final concentrations
unless otherwise stated. The sequences of the TbPEX11 peptides
used for the AlphaScreen assay are as follows, BS1:
QTDGRDKILKAFSGVFKALGSLD-GS-His6, His6-GS-QTDGRDKI
LKAFSGVFKALGSLD and BS2: CRAKGKVNMKEVLKFLRV
LCNFL-GS-His6. The binding assay were performed in three
biological replicates, with 3 technical replicates each.

2.7 Immunoblotting

Proteins separated by SDS-PAGE were transferred on a
nitrocellulose membrane with a pore size of 0.45 μm (Amersham
Biosciences). Blotting was performed by using the MiniProtean III
cell (BioRad) with blot transfer buffer (Dunn carbonate buffer) for
1 h with a constant current of 300 mA per chamber. Further, the
membrane was blocked for 1 h at room temperature (RT), under
constant swirling with 3% BSA in blot washing buffer (TBS with
0.05% Tween-20) to avoid nonspecific binding of antibodies. Then,
the membrane was washed three times for 5 min at RT, and
subsequently incubated with the primary antibodies in blot
washing buffer at 4°C overnight. Following primary antibodies
were used in this study: mouse anti-GFP (Sigma, 1:2,000), anti-
GAL4 AD/-BD (Santa Cruz Biotechnology, 1:1,000) or anti-His6
(Invitrogen, 1:2,000); rabbit anti-Trypanosoma Aldolase (1:20,000)
or Enolase (1:20,000), and anti-Porin (S. cerevisiae, 1:10,000). After
three washing steps, the corresponding secondary antibodies
i.e., goat anti-rabbit IRDye 680 or goat anti-mouse IRDye
800CW (LI-COR Biosciences, both 1:15,000 in blot wash buffer)
were applied, and the membrane was further incubated for 30 min at
RT in the dark. Following three washes, immunoblots were scanned
using the Li-Cor Odyssey 9120 Infrared Imaging System.

2.8 Statistical analysis

Microscopic data was collected from two independent
S. cerevisiae or T. brucei cultures. Images were quantified using
Pearson’s correlation coefficient, which was calculated with
colocalization tool of Zen 3.6 pro (blue edition). Statistical
significances for colocalization studies were calculated using a
one-way ANOVA (mixed) by Dunnett’s multiple comparisons
test (comparison with WT control) with each row representing
matched or repeated measures. Statistical analysis for AlphaScreen
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results was done using two-way ANOVA with Bonferroni’s multiple
comparison test (comparison with respective controls) with the
values obtained from three independent biological replicates, each
with three technical replicates.

3 Results

3.1 Identification and validation of
PEX19 binding sites in Trypanosoma brucei
PEX11

PEX19 acts as a cytosolic chaperone and receptor for the import
of newly synthesized class 1 peroxisomal membrane proteins
(PMPs), except the class II PMP i.e., PEX3, which can be
imported independent of PEX19 (Sacksteder et al., 2000; Jones
et al., 2004). PMPs contain multiple PEX19 binding sites, which
are well characterized in yeast and humans. This includes the most
abundant yeast PMP Pex11p and related PEX11-family proteins
Pex25p and Pex27p (Rottensteiner et al., 2004; Halbach et al., 2005).
In trypanosomatid parasites, PEX19 binding sites have been
identified in various glycosomal membrane proteins as well as
parasite specific PEX11 family proteins GIM5A/B (Saveria et al.,
2007). However, the PEX19-binding sites (-BS) in parasite
PEX11 remained uncharacterized. To identify these binding sites,
we obtained synthetic peptide arrays, containing consecutive 15-
amino acid peptides with two amino acid shifts, representing the

entire sequence of TbPEX11. Affinity purified recombinant GST-
TbPEX19 (Purification profile described in Supplementary Figure
S1), or GST alone were incubated with the arrays and bound
proteins were immuno-detected using monoclonal anti-GST
antibodies. Immunodetection of at least three consecutive spots
were considered as potential PEX19 binding sites (Rottensteiner
et al., 2004). Comparison of control and test peptide arrays revealed
the presence of three potential PEX19 binding sites (BS1-BS3) in
TbPEX11 (Figure 1). The topological prediction of transmembrane
domains (TMDs) using Phobius webserver (Kall et al., 2007)
indicates that TbPEX11 contains four TMDs and an N-terminal
extension of about 90 amino acids to the cytosol (Supplementary
Figure S2). The first PEX19 binding site (BS1) is present close to the
N-terminus of TbPEX11 between amino acid (aa) residues 13–35,
the second and third PEX19 binding sites are located between aa77-
99 and aa139-159, respectively, in proximity of the first and second
predicted transmembrane domains (Figure 1C). Both N- and
C-termini of TbPEX11 face the cytosol (Lorenz et al., 1998),
which implies that the BS1 would remain exposed to the cytosol
even after targeting and insertion of TbPEX11 into the glycosomal
membrane.

PEX19 binding motifs are conserved between peroxisomal
proteins of yeast or mammals and trypanosomal glycosomal
proteins (Saveria et al., 2007). Probing of the TbPEX11 peptide
array with GST-tagged recombinant human PEX19 also revealed a
similar binding pattern (Supplementary Figure S3) as observed with
TbPEX19 (Figure 1). This further demonstrates the conservation of

FIGURE 1
Identification of PEX19 binding sites in Trypanosoma PEX11 using synthetic peptide arrays. Synthetic 15-mer peptides with 2-amino acids shifts
corresponding to the complete TbPEX11 protein sequence were synthesized on cellulose membrane and probed with GST as negative control (A) or
GST-TbPEX19 (B). Bound analyte was immuno-detected using primary antibodies against GST and horseradish peroxidase coupled secondary
antibodies, followed by the signal detection using chemiluminescence. Three regions in TbPEX11 showed clear and specific interaction with
TbPEX19 as compared to the GST control (red boxes, marked BS1-BS3). (C) Scheme of TbPEX11 showing the identified binding regions in relation to
transmembrane segments predicted using Phobius webtool (https://phobius.sbc.su.se/) (Supplementary Figure S2).
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PEX19-BSs, which can be recognized by PEX19 from different
organisms.

Binding of TbPEX19 to the newly identified regions in
TbPEX11 were further investigated by yeast two-hybrid (Y2H)
analysis and in vitro binding assays using pull-down and
AlphaScreen. For the Y2H assay, GAL4-AD fusion of
TbPEX19 was used since the corresponding GAL4-BD fusions
showed autoactivation (not shown). In addition to this, the
corresponding GAL4-BD fused PEX11 constructs did not result

in the auto activation when tested with GAL4-AD alone (not
shown). Various TbPEX11 constructs fused to GAL4-BD were
tested for interaction with TbPEX19 (Figure 2A). Full length
TbPEX11 showed only a very weak interaction with TbPEX19.
This could be due to the presence of several predicted
transmembrane domains in TbPEX11, which may hinder the
translocation into the nucleus and activation of GAL-promoter.
However, the N-terminal fragment of TbPEX111-89aa that has been
predicted to be soluble (Supplementary Figure S2) showed a clear

FIGURE 2
Validation of TbPEX19 binding sites in TbPEX11 (A) Yeast two-hybrid assay (Y2H): Full length TbPEX19 and various TbPEX11 constructs fused to the
GAL4-activation domain (AD) or -binding domain (BD) as indicated (left panel) were co-transformed into PCY2 yeast strain and analyzed by Colony-lift
filter assay (middle panel) and liquid ONPG assay (right panel). Both assays were done in three replicates and the β-galactosidase activity units shown are
an average of the technical replicates with three different clones. Error bars represent mean with standard deviations. The soluble N-terminal
fragments of TbPEX11 comprising BS1 and partially BS2 (1–89) as well as a shorter fragment containing only BS1 (1–76) showed a clear interaction with
full-length TbPEX19. Full length TbPEX11 showed a weaker interaction, while the PEX11-fragment (90–218), lacking the N-terminal PEX19 BSs, did not
interact with TbPEX19. The GAL4-AD fusion of TbPEX19 and the various GAL4-BD fusions of TbPEX11 were tested for autoactivation and no coloration of
the filter was seen (not shown). (B) Expression of the GAL4-AD and -BD fusion proteins in the yeast two-hybrid (Y2H) assay was confirmed by
immunoblotting with monoclonal antibodies against GAL4-AD and -BD as indicated. Arrow marks on the right correspond to the predicted molecular
weights of the fusion proteins. The scheme at the bottom shows the modular structure of TbPEX11, highlighting the identified putative TbPEX19 binding
regions. (C) In vitro pull-down of TbPEX19 with His6-tagged synthetic peptides of TbPEX11 that correspond to the binding regions highlighted in the
PEX11 scheme. Recombinant GST-TbPEX19 or GST as negative control were pre-incubated with Glutathione agarose beads, followed by incubation with
the C-terminally His6-tagged synthetic peptides of TbPEX11. After thoroughwashing, bound proteins were elutedwith reduced glutathione and analyzed
by SDS-PAGE and staining with Coomassie brilliant blue (upper panel). The peptide corresponding to BS2 (migrating at ~10 kDa and marked with a red
asterisk) was pulled down with GST-TbPEX19, which was also confirmed by immunoblotting using an anti-His monoclonal antibody (lower panel). The
putative BS3 could not be validated by either of the assays, therefore it was not considered further and is shown as grey box in the scheme in (B). AD:
Activation domain, BD: Binding domain, ONPG: ortho-Nitrophenyl-ß-galactoside.
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and strong interaction with the full length TbPEX19, in both
plate-based (sensitive) and liquid Y2H assays (quantitative)
(Figure 2A). Construct that lacks the N-terminal domain but
contains BS3 (TbPEX1190-218aa) did not interact with TbPEX19.
TbPEX111-89 contains BS1 as well as partial BS2. We also tested a
shorter construct that contains only BS1 (TbPEX111-76), which
still showed a strong interaction with TbPEX19. Immunoblotting
confirmed that all constructs are expressed in yeast at correct
molecular weights (Figure 2B). Furthermore, we opted to
introduce two mutations in Trypanosoma PEX11. The first
mutation replaced serine 25, which is in the
TbPEX19 BS1 region, by aspartate to mimic phosphorylation
(based on the post-translational modifications database). For the
second mutation, we referred to a study in baker’s yeast, which
showed that replacing leucine at position 35 by proline results in
the loss of interaction (Rottensteiner et al., 2004). We aligned the
sequence with ScPEX11 and chose the closest leucine residue
(position 31) for replacement by proline. Mutation of serine25 to
aspartate i.e., phospho-mimicking did not affect the interaction,
whereas mutation of serine25 or leucine31 individually and
together to proline within BS1 in TbPEX111-89 led to a
reduced or complete abolishment of the interaction with
TbPEX19 (Supplementary Figure S4). Based on the peptide
blot and the Y2H studies, it can be concluded that BS1 is a
bona fide PEX19 binding motif.

As an alternative, we obtained C-terminally His6-tagged
synthetic peptides of TbPEX11 corresponding to the three
putative PEX19 binding sites. Affinity pull-down was
performed with GST-TbPEX19 or GST alone as negative
control, which were bound to the glutathione affinity beads.
Glutathione eluates of the in vitro pull-downs were analyzed
by Coomassie staining as well as immunoblotting using anti-His6
tag antibodies (Figure 2C; full profile of the pull-downs is shown
in Supplementary Figure S5). The analysis shows that the
synthetic peptide corresponding to BS2 (running at ~10 kDa)
is efficiently retained with TbPEX19 but not with GST alone.
Similar binding of the BS2 representing peptide of TbPEX11 was
also observed with recombinant human GST-PEX19 (not
shown). The synthetic peptides corresponding to BS1 and BS3
(both running at ~10 kDa) did not bind to recombinant GST-
TbPEX19 in this assay. The third putative PEX19 binding site
(BS3) in TbPEX11 that was identified in the peptide array analysis
(Figure 1) could not be further validated by the methods
employed here and was not considered further.

Finally, we analyzed the interaction of BS1 and BS2 with
TbPEX19 with the more sensitive AlphaScreen assay. This assay
was performed using C-terminally His6-tagged peptides that
represent the TbPEX11 binding sites with GST-TbPEX19 or
GST as negative control (Supplementary Figure S6). Again, the
BS2 showed a clear interaction with TbPEX19, while the BS1 did
not interact. As the interacting BS1 containing region was
N-terminally tagged in the Y2H assay (Figure 2A), we
considered that the orientation of the tag might have an
influence and therefore analyzed the interaction of an
N-terminally tagged BS1-peptide, which indeed showed a
significant interaction with TbPEX19 (Supplementary Figure
S6). Taken together this study identified two PEX19 binding
sites in TbPEX11 (BS1 and BS2).

3.2 Role of PEX19 binding sites in glycosomal
targeting of TbPEX11

We performed immunofluorescence microscopy analysis to
assess the relevance of the newly identified PEX19 binding sites
for the topogenesis of TbPEX11. Tetracycline inducible stable cell
lines of Trypanosoma were generated, which express C-terminally
GFP-tagged full-length TbPEX11 and variants lacking either BS1 or
BS2. Glycosomal localization of the constructs was investigated by
analysis of colocalization of the fluorescent GFP-fusions of
TbPEX11 with the glycosomal marker enzyme aldolase, which
was monitored by immunofluorescence microscopy.
Overexpressed TbPEX11WT-GFP colocalized with the glycosomal
marker, indicative for its glycosomal localization (Figure 3A, upper
panel). However, frequently glycosomes appeared to cluster,
confirming an earlier study reporting that overexpression of
TbPEX11 results in clustering of glycosomes in bloodstream form
of T. brucei (Lorenz et al., 1998). The GFP fluorescence of cells
expressing both truncated TbPEX11 variants was much weaker in
comparison to the wild-type protein and clustering of glycosomes
was not seen. This is explained by the decreased steady-state
concentration of both truncated proteins, which is much lower in
comparison to the full-length TbPEX11 as indicated by the
corresponding immunoblots. (Figure 3D). However, the
fluorescence was bright enough to allow investigation of their
subcellular localization. TbPEX11 lacking BS1 (TbPEX11△BS1-
GFP) still showed a partial glycosomal localization (Figure 3A,
Middle panel), while the TbPEX11 variant lacking BS2
(TbPEX11△BS2-GFP) was mislocalized, as indicated by the
lacking colocalization with the glycosomal marker (Figure 3A,
lower panel). Taken together this result demonstrated that
deficiency in either BS1 or BS2 affects the steady-state
concentration of TbPEX11. Thus, binding of PEX19 to either of
these sites might stabilize the protein. This is in agreement with
studies in yeast, which showed that various PMPs, including PEX11,
are unstable and their steady state levels are significantly reduced in
PEX19-or PEX3-deficient cells (Hettema et al., 2000). In the absence
of BS1, the remaining small amount of TbPEX11 is still directed to
glycosomes, while in the absence of BS2, PEX11 is mistargeted,
indicating that BS2 is essential for glycosomal targeting of TbPEX11.

In yeast, PEX11 mislocalizes to mitochondria in cells lacking
peroxisomal membranes (Hettema et al., 2000; Mattiazzi Usaj et al.,
2015). To assess whether mislocalized TbPEX11 is targeted to
mitochondria also in trypanosomes, mitochondrial staining was
performed. Indeed, colocalization of the truncated TbPEX11 with
the MitoTracker indicated that TbPEX11 lacking BS2 is mistargeted
to the mitochondrion (Figure 3B, lower panel).

Multiple sequence alignment of the N-terminal region
comprising BS1 of Trypanosoma, yeast, human, and plant
PEX11 family proteins or isoforms indicates a high degree of
sequence conservation, suggesting that the region corresponding
to trypanosomal BS1 is conserved among PEX11 species
(Figure 4A). To investigate the capacity of this region of human
PEX11 proteins for PEX19 binding, we obtained synthetic peptide
array of N-terminal soluble domains of all three human
PEX11 isoforms (15mer peptides with 2-amino acids shifts). The
arrays were probed with GST alone as a negative control, which
showed little or no background (Figure 4B, upper panel). Probing

Frontiers in Cell and Developmental Biology frontiersin.org09

Krishna et al. 10.3389/fcell.2023.1213761

160

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2023.1213761


the array with GST-HsPEX19 revealed that the peptides from PEX11γ
did not bind PEX19, while PEX11α and PEX11β do contain potential
PEX19-BS (Figure 4B, lower panel). To validate the interactions, Y2H
analysis was performed to investigate the interaction of N-terminal

domains of PEX11 isoforms and human PEX19 (Figure 4C). An
interaction was seen only with PEX11β, in both the plate-based and
the liquid assay. Immunoblot analysis of lysates of yeast cell used inY2H
shows that PEX11α and βwere expressed, but not PEX11γ (Figure 4D).

FIGURE 3
PEX19 binding sites are required for maintenance and essential for glycosomal targeting of TbPEX11. (A) Binding site 2 (BS2) is required for
glycosomal targeting of TbPEX11. Trypanosoma brucei parasites (procyclic form) expressing tetracycline-induced and C-terminally GFP tagged
TbPEX11 constructs (wildtype or mutant proteins lacking PEX19 binding sites) were analyzed for localization of the GFP fusion proteins, the glycosomal
marker aldolase, as well as the DAPI-stained nucleus and kinetoplast by fluorescence- or immunofluorescence microscopy. The GFP fusion of
wildtype TbPEX11 (upper panel) did colocalize with the glycosome marker aldolase (pseudo-colored to magenta). It is also evident that the
overexpression of the full-length TbPEX11 results in the clustering of glycosomes as previously reported (Lorenz et al., 1998). The mutant lacking the first
PEX19 binding site (middle panel) partially colocalized with the glycosome marker aldolase. In this case, a clustering of glycosomes was not seen, most
likely as the steady-state concentration of the truncated protein was much lower than the corresponding full-length TbPEX11 (see below). PEX11-GFP
harboring deletion of BS2 (Δ77-99aa) did not colocalize with the glycosomal marker aldolase (lower panel), but instead showed mislocalization to
mitochondrion as demonstrated by colocalization with the mitochondrial marker MitoTracker (pseudo-colored to magenta) (B). Scale bar—5 μm
and −2 μm. Schematic representation of the various PEX11-GFP constructs is shown on the right. (C)Quantification of the colocalization to glycosomes
(left) or mitochondrion (right). The Pearson’s coefficient of colocalization to respective organelle is shown. Dots within the violin plot indicates individual
Pearson correlation coefficient data points and the central line represents the median. Statistical significance were calculated by one-way ANOVA, with
Dunnett’s multiple comparisons test (n ≥ 35 cells). ****, p < 0.0001; ns, not significant. (D) Analysis of the expression levels of PEX11-GFP (wildtype and
mutants) upon tetracycline induction (+/−) by immunoblotting with anti-GFP antibodies. Cytosolic marker enolase and glycosomal marker aldolase
served as the loading controls (lower panel). Wildtype TbPEX11 expression was highly induced, resulting in a high steady-state concentration, while the
steady-state concentration of both truncation mutants of TbPEX11 were very low in comparison to the wildtype TbPEX11, most likely due to an instability
of the TbPEX11 constructs lacking either of the PEX19 binding sites.
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As PEX11γ was not expressed, no conclusion can be drawn from the
negative result of the two-hybrid study. However, the results are clear in
that PEX11β indeed does contain a PEX19 binding site in the region
that corresponds to trypanosomal BS1.

In yeast, ScPEX11 contains only one PEX19 binding site, spanning
amino acids 27–41 (Rottensteiner et al., 2004), that is homologous to
trypanosomal BS1. Mutational analysis of this binding site indicated
that the L35P mutation completely abolished interaction with ScPEX19
(Rottensteiner et al., 2004). Here we introduced this mutation into the
full-length sequence of PEX11 fused to GFP and analyzed its subcellular
localization in comparison to wild-type PEX11 by fluorescence
microscopy (Figure 5A). As expected, the full-length PEX11-GFP is
targeted to peroxisomes as indicated by its co-localization with the
peroxisomal marker DsRed-SKL (Figure 5A, middle panel). The
PEX11-GFP fusion harboring the L35P exchange, however, was
partly mislocalized to tubular structures (Figure 5A, lower panel).
We further performed staining of yeast cells that express PEX11L35P-
GFP together with a mitochondrial marker (MitoTracker) (Figure 5B,
lower panel), confirming that the L35P mutant is mislocalized to
mitochondria. Immunoblot analysis of cells shown in Figure 5A
show that GFP-tagged wild-type PEX11 is stable, but the steady-
state concentration of L35P mutant protein that cannot bind to
PEX19 is very low in comparison (Figure 5D).

The data show that PEX11 from Trypanosoma and yeast as well
as PEX11β from humans contain a conserved N-terminal region
that can bind PEX19. This region, corresponding to BS1 in
Trypanosoma, is required to maintain the steady-state
concentration of PEX11 in all studied species, and at least for
yeast, it is shown that it is also required for efficient targeting of
PEX11 to peroxisomes.

3.3 Cryptic N-terminal targeting signal of
trypanosomal PEX11

In the absence of PEX19, PMPs aremislocalized to the cytosol and
rapidly degraded, or mislocalized to other membranes. For example,
PEX3 localizes to the endoplasmic reticulum (Hoepfner et al., 2005)
but many PMPs, including yeast PEX11 and PEX13, accumulate in
mitochondria when peroxisomes are absent in the cell (Nuebel et al.,
2021). PEX13 that is mislocalized to mitochondria can recruit
functional docking and import peroxin complexes to mitochondria
and also some peroxisomal matrix proteins (Nuebel et al., 2021).
Peroxins also accumulate in mitochondria of Zellweger patient-
derived cells leading to mitochondrial dysfunction (Nuebel et al.,
2021). This can be rescued by overexpressing mitochondrial quality

FIGURE 4
The N-terminal PEX19 binding site in PEX11 is conserved among species. (A) Multiple sequence alignment of N-terminal sequences of
PEX11 proteins from parasites, baker’s yeast, humans, and plants shows a high degree of conservation. The N-terminal PEX19 binding site (BS1) identified
in Trypanosoma brucei is indicated by a black dotted box. The known PEX19 binding site from yeast and the newly identified PEX19 binding sites in
humans are also indicated by black dotted boxes. (B) Identification of N-terminal PEX19 binding site in the human members of the PEX11 family.
Synthetic 15-mer peptides with 2-amino acids shift of the N-terminal protein sequence ofHsPEX11 (α, β and γ) were synthesized on cellulose membrane
and probed with GST as a negative control (upper panel) or GST-HsPEX19 (lower panel). The bound analyte was immunodetected using primary
antibodies against GST and horseradish peroxidase coupled secondary antibody. The signal wasmonitored using chemiluminescence. Binding regions in
HsPEX11 (α and β) showed clear interaction with HsPEX19 (red boxes). (C) Validation of identified binding sites by Yeast two-hybrid analysis using Δpex19
PCY2 strain. Scheme of the cotransformed HsPEX19 and HsPEX11 (α, β and γ) N-terminal constructs is shown on the left. Colony lift filter assay (I) and
liquid ONPG assay (II) were performed using full-length HsPEX19 and different constructs of HsPEX11 fused to GAL4-AD and -BD as indicated. The
interaction of yeast PEX14-PEX17 served as a positive control. Both assays were performed in three replicates and the β-galactosidase activity units shown
are an average of the technical replicates with three different clones. Error bars represents mean with standard deviations. Of the three members of the
PEX11-family only the N-terminal fragment of HsPEX11β showed a clear interaction with full-length HsPEX19. (D) Expression of the GAL4-AD and -BD
fused proteins were tested by immunoblotting using GAL4-AD and -BD with monoclonal antibodies. No expression of Gal BD-HsPEX11γ N-terminal
fragment was detected.
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control ATPase ATAD1. We showed that TbPEX11-GFP lacking
BS2 is mislocalized to mitochondrion in trypanosomes (Figure 3B,
lower panel). However, glycosomal targeting also requires the
presence of a transmembrane segment for correct targeting.
Accordingly, the TbPEX11 construct containing the first 90 amino
acids fused to GFP that lacks the transmembrane domain (TMD) is
also mistargeted to mitochondrion. This construct is used here as a
control to investigate the requirement for the targeting of TbPEX11 to
mitochondria (Figure 6C, upper panel). Normally, mitochondrial

proteins are targeted via N-terminal or internal mitochondrial
targeting signals (Backes et al., 2018; Bykov et al., 2022), After
mitochondrial import, the N-terminal targeting presequences of
proteins are removed by mitochondrial processing peptidase
(MPP) to allow the proper folding of the imported protein
(Kunova et al., 2022). Here, we applied the Mitofates webtool to
predict putative mitochondrial targeting signals in the N-terminal
region ofTbPEX11 (Fukasawa et al., 2015). Although the tool does not
identify the TbPEX11-NTD as a classical mitochondrial presequence,

FIGURE 5
The N-terminal binding site for PEX19 is essential for peroxisomal localization of ScPEX11. Plasmids expressing ScPEX11-GFP (wildtype and L35P-
mutant) or the peroxisomal marker protein DsRed-SKL were cotransformed in the BY4742 yeast strain. (A)Clones expressing GFP fusion proteins and the
peroxisomal marker DsRed-SKL were grown on plates and visualized by fluorescence microscopy. Merged images reveal peroxisomal colocalization of
ScPEX11-GFP (wildtype) with DsRed-SKL (pseudo-colored to magenta), indicative for its peroxisomal localization. In contrast, the L35P exchange
that is known to block PEX19 binding site result in mislocalization of ScPEX11. (B) ScPEX11-GFP with mutation L35P mislocalizes to mitochondria as
demonstrated by its colocalization with MitoTracker (pseudo-colored to magenta). DIC–Differential Interference Contrast, Scale bar—5 μm. (C)
Quantification of the colocalization of ScPEX11-GFP to peroxisomes (left) or mitochondria (right). The Pearson’s coefficient of colocalization to
respective organelle is shown. Dots within the violin plot indicates individual Pearson correlation coefficient data points and the central line represents the
median. Statistical significances were calculated by one-way ANOVA, with Dunnett’s multiple comparisons test (n ≥ 35 cells). ****, p < 0.0001; ***, p =
0.0003; ns, not significant. (D) Expression of ScPEX11-GFP (wildtype and L35P mutant) was tested by immunoblotting with anti-GFP antibody, which
revealed that the steady-state concentration of the L35P is much lower than that of the corresponding wild-type protein. Porin served as the loading
control.
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FIGURE 6
Cryptic signal at the N-terminus causes mitochondrial mislocalization of TbPEX11. (A) Upper panel: Prediction of two overlapping putative
TOM20 motifs with positively charged amphiphilicity within the N-terminal region TbPEX11 and partially overlapping with the PEX19 binding site region
(red dotted box). The residue highlighted in red indicates the presence of a mitochondrial processing peptidase (MPP) cleavage site. The presence of a
predicted TOM20 recognition motif and positively charged amphiphilic region with MPP cleavage site were determined by Mitofates webtool
(https://mitf.cbrc.pj.aist.go.jp/MitoFates/cgi-bin/top.cgi). Lower panel: Multiple sequence alignment of N-terminal sequences of PEX11 proteins from
parasites, yeast, humans, and plants indicates the presence of conserved TOM20 motifs with positively charged (red) residues encased by hydrophobic
(blue) amino acid residues. (B) Subcellular localization of the N-terminal domain of TbPEX11 (1–90aa) fused to GFP with and without deletion of the
PEX19-binding site 1 (Δ13-35aa) or deletion of a N-terminal putative TOM20 binding motif (Δ2-11aa) by fluorescence and immunofluorescence
microscopy. The non-truncated fusion with and without PEX19 binding site 1 (BS1) did not co-localize with the glycosomal marker aldolase but was
targeted to mitochondrion as shown below (upper and middle panel). The TbPEX11-GFP lacking the TOM20 motif did mislocalize to the cytosol as

(Continued )
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it predicts the presence of two tandemTOM20 recognitionmotifs and
a positively charged amphiphilic region with mitochondrial
processing peptidase (MPP) cleavage site (Figure 6A, upper panel).
The putative TOM20 recognition motifs are in the N-terminal region
of TbPEX11 (4–31 aa), partially overlapping with the identified BS1-
binding region for TbPEX19 (13–35aa) (Figure 6A, upper panel).
Further, we looked for the TOM20 motifs by performing multiple
sequence alignment of N-terminal region of PEX11 across organisms
(Figure 6A, lower panel), which also contains PEX19 binding site (BS)
of yeast (Rottensteiner et al., 2004) and the identified PEX19-BS in T.
brucei and human (this study). This alignment indicates the
conservation of TOM20 motifs in the N-terminal region of PEX11,
pointing to its role in mitochondrial mislocalization. To test the
putative signal sequences for functionality, we analyzed the role of
this region for mitochondrial and glycosomal targeting by
fluorescence microscopy (Figure 6B). To this end, GFP tagged
N-terminal 90 amino acid region of TbPEX11, with or without
BS1 (Δ13-35aa) was analyzed for co-localization with glycosomal
marker aldolase (Figure 6B, upper and middle panel). Both fusion
proteins were expressed and not targeted to glycosomes but
mislocalized to mitochondrion as evident from co-staining with
mitochondrial marker (Figure 6C). The expression of these
constructs was confirmed by immunoblotting using α-GFP
monoclonal antibody (Supplementary Figure S7). Finally,
TbPEX11NTD(1-90aa)-GFP lacking amino acid residues 2–11, which
were predicted to contain TOM20 motifs and positively charged
amphiphilicity was analyzed. Expression of this construct did result
in a diffuse cytosolic labelling (Figures 6B,C, lower panels), indicating
that deletion of this extreme N-terminal region prevented
mitochondrial targeting of the fusion protein.

4 Discussion

Here we show that the glycosomal membrane protein
TbPEX11 contains two PEX19 binding sites in its N-terminal
region, as shown by peptide array analysis, yeast two-hybrid studies,
pull-down experiments, and AlphaScreen assays. PEX19 is a
peroxisomal membrane protein (PMP) receptor and chaperone that
stabilizes its cargo proteins and targets them to peroxisomes (Hettema
et al., 2000; Sacksteder et al., 2000; Jones et al., 2004). PEX19 binding
sites are distributed across the length of cargo proteins, including the
C-terminus in case of tail-anchored (TA) proteins (Halbach et al., 2006).
Apart from yeast Pex11p (aa 27–41), PEX19 binding sites close to the
N-terminus were also found in yeast Pex3p (aa 28–42) and Pxa1p (aa
33–47) (Rottensteiner et al., 2004). Along this line, the N-terminal
95 residues of Pxa1p have recently been shown to be sufficient for
targeting a reporter protein to peroxisomes. Interestingly, truncated
Pxa1p lacking residues 1–95 still localized to peroxisomes but its

targeting depended on the presence of its interaction partner Pxa2
(Jansen et al., 2023).

Eukaryotic organisms contain multiple proteins belonging to the
PEX11 family. In yeast, Pex11p contains a single PEX19-BS near its
N-terminus, while in the other ScPEX11-family members, Pex25p and
Pex27p, binding of PEX19 occurs far distal from the N-terminus
(Rottensteiner et al., 2004). A recent study identified a classical
PEX19-BS near the N-terminus of Pichia pastoris PEX11 (Zientara-
Rytter et al., 2022). However, the study also showed that amphipathic
helix 4 (H4) located in the C-terminal region of PpPEX11, functions as a
second, PEX19-independent mPTS, which is preserved among PEX11-
family proteins (Zientara-Rytter et al., 2022). Thus, unlike most PMPs,
PEX11 of Pichia pastoris can use two mechanisms of transport to
peroxisomes, where only one of them depends on its direct interaction
with PEX19, but the other does not. The presence of such a PEX19-
independent targeting signal is not confirmed in our studies for
PEX11 from T. brucei and S. cerevisiae, as N-terminal mutations or
truncations of PEX19-binding sites BS1 or BS2 but not of the
amphiphilic helix 4 did prevent efficient glycosomal or peroxisomal
targeting of the proteins.

Our data indicate that the N-terminal binding site (BS1) for
PEX19 is conserved among TbPEX11 orthologues but not in
PEX11-family member GIM5/B of Trypanosoma or Leishmania
(Saveria et al., 2007). Our results also indicate differences within
PEX11 isoforms in humans. All three isoforms, PEX11α,
PEX11β, and PEX11γ show sequence similarities to the
established PEX19 binding site BS1 in yeast and T. brucei, but
only HsPEX11β did bind human PEX19 (Figures 4B,C). PEX11β
is a key factor in the regulation of peroxisome abundance in
mammals (reviewed in (Schrader et al., 2016)). It functions as a
membrane-remodeling protein that can deform and elongate the
peroxisome membrane prior to fission (Delille et al., 2010;
Yoshida et al., 2015). Accordingly, PEX11β is the functional
counterpart of yeast and T. brucei PEX11 that are targeted to
their destination in a PEX19-dependent manner and contribute
to the morphogenesis of the peroxisomal membrane, which is
required for subsequent fission. Overall, the N-terminal PEX11-
binding sites for PEX19 are conserved among species. In this
study, this is highlighted by the peptide array analysis of
TbPEX11, which revealed that human PEX19 binds to the
same regions as trypanosomal PEX19 (Supplementary
Figure S3).

In the absence of peroxisomes, many PMPs are unstable and
degraded or mistargeted to other organelles such as ER and
mitochondria. This is seen in yeast as well as in human cells derived
from patients suffering from a Peroxisome Biogenesis Disorder (PBD)
(Hettema et al., 2000; Nuebel et al., 2021). In yeast, PEX3 localizes to the
ER (Toro et al., 2009), while several peroxins/PMPs including PEX13,
PEX14, PEX17 (peroxisomal docking complex) as well as PEX11 and

FIGURE 6 (Continued)
indicated by the overall cell labelling (lower panel). (C) The non-truncated fusion with and without PEX19 binding site 1 (BS1) localized to the
mitochondrion, demonstrated by their colocalization with MitoTracker (upper andmiddle panel, respectively). The glycosomal marker aldolase (pseudo-
colored to magenta) was labelled with the corresponding antibody, nuclei and kinetoplasts were stained with DAPI, and mitochondrion was visualized by
MitoTracker (pseudo-colored to magenta). Scale bar—5 μm. (D) Quantification of the colocalization to glycosomes (left) or the mitochondrion
(right). The Pearson’s coefficient of colocalization to respective organelle is shown. Dots within the violin plot indicate individual Pearson correlation
coefficient data points and the central line represents the median. Statistical significances were calculated by one-way ANOVA, with Dunnett’s multiple
comparisons test (n ≥ 35 cells). ****, p < 0.0001; ***, p = 0.0001; *, p = 0.0262; ns, not significant.
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PEX25 accumulated on mitochondria (Nuebel et al., 2021). Here we
show that mislocalization to mitochondria is seen for TbPEX11 lacking
its second PEX19-BS and ScPEX11 harboring mutation of its sole
PEX19-binding site, (Figure 3B; 5B). Mitochondria have been described
as emergency landing places for abandoned peroxins, which results in a
partial reconstitution of the peroxisomal import machinery and routing
of a substantial part of the peroxisomal proteome to mitochondria
(Nuebel et al., 2021; Vogtle andMeisinger, 2021). Themislocalization of
PMPs, especially peroxins, tomitochondria are supposed to be the cause
for mitochondrial dysfunction in PBD patients (Hettema et al., 2000;
Nuebel et al., 2021). Therefore, it is of interest to gain insight into why
some PMPs mislocalize to this particular organelle. Mitochondrial
targeting signals (MTS) have been extensively characterized across
different organisms and consensus motifs can be predicted.
Bioinformatic prediction indicated the presence of positively charged
amphiphilicity in the extreme N-terminal Helix 1 and detected four
TOM20 recognition motifs in NTD of TbPEX11, out of which two
tandem motifs coincide with the N-terminal PEX19-BS (Figure 6A).
There is no obvious structural similarity between PEX19 and TOM20.
The TOM20 recognizes motifs in cargo proteins via its TPR
(tetratricopeptide repeat) domain, which is not present in PEX19. In
our in vitro studies, PEX19 can directly interact with the PEX19-BSs,
without the requirement of an additional cofactor. Surprisingly, the
iMTS-Ls predictor also recognizes PEX19-BSs in Tb and ScPEX11 as
having Internal Matrix Targeting Signal-like Sequences (iMTSL)
propensity (Supplementary Figure S8) (Schneider et al., 2021). How
these signals that have primary sequence and potential structural
similarities, are faithfully recognized by the correct receptor, and
targeted to the correct location requires further investigation. The
expression of TbPEX11-NTD lacking N-terminal Helix 1 did not
any more mistarget to the mitochondrion. This demonstrates that
the N-terminal amphipathic helix at the extreme N-terminus of
TbPEX11 is essential for the mitochondrial mislocalization. This
result indicates that TbPEX11 harbors a cryptic mitochondrial
targeting signal. Whether this is also true for human PEX11 and
other PMPs, and involvement of TOM complex machinery requires
further investigation.

4.1 What could be the role of a
mitochondrial targeting signal of PEX11?

In mature glycosomes/peroxisomes of the wild type cells,
TbPEX11-NTD is exposed to the cytosol. In this case, the cryptic
N-terminal signals may be masked by the oligomerization of PEX11.
However, in newly formed glycosomes, which are importing PEX11,
these signals may be still accessible to interact with the mitochondrial
TOM machinery, and this may mediate glycosome-mitochondrion
membrane contact site (MCS). Accordingly, association of
ScPEX11 with the mitochondrial TOM complex has been seen in
two studies, i) 37-fold enrichment of ScPEX11 in the SILAC based
interactome of yeast TOM22 (Opalinski et al., 2018), and ii) interaction
of ScPEX11 with TOM22 in split-ubiquitin assay (Eckert and Johnsson,
2003). Recently, a nuclear membrane protein Cnm1 (Contact nucleus
mitochondria 1) was shown to interact with TOM70, a component of
the mitochondrial TOM (translocase of outer membrane) complex
(Eisenberg-Bord et al., 2021). This interaction establishes nuclear-
mitochondrial contact sites, which are regulated by

phosphatidylcholine metabolism. Interestingly, Cnm1 harbors two
predicted transmembrane domains close to the N-terminus, while
C-terminal end contains internal mitochondrial targeting signal-like
(iMTS-L) sequences, which are known to directly bind to TOM70
(Backes et al., 2018). Similarly, PEX11 localized to the glycosomal
membrane could still associate with the mitochondrial preprotein
import machinery to establish glycosome-mitochondrial contact.
Interestingly, PEX11 of parasite Entamoeba histolytica shows dual
localization to peroxisomes and mitosomes (Verner et al., 2021). In
baker’s yeast, PEX11 interacts with Mdm34, a component of the
ER–mitochondria encounter structure (ERMES), and act as a
peroxisome–mitochondria tether (Mattiazzi Usaj et al., 2015). It has
been shown that a mutant form of Mdm34, a component of the
ERMES, which impairs ERMES formation and diminishes its
association with the peroxisomal membrane protein PEX11, also
causes defects in pexophagy (Liu et al., 2018). Along this line, a role
for ERMES complex proteins on regulating peroxisome abundance has
been reported (Esposito et al., 2019).

We do not yet know whether the newly identified cryptic
mitochondrial targeting signal of TbPEX11 is of functional
relevance. However, peroxisomes are not only metabolically
linked to mitochondria but also share components of their
division machinery (Schrader et al., 2015). These include the tail-
anchored adaptor proteins FIS1 and MFF, which are dually targeted
to both peroxisomes and mitochondria, where they recruit the
fission GTPase DRP1 (also known as DNML1) to the organelle
membrane (Schrader et al., 2022). In this context, it is interesting to
note that targeting of PEX11β to mitochondria induces
mitochondrial division in human cells. Accordingly, like PEX11β
also TbPEX11 might have the potential to modulate mitochondrial
dynamics.
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Intracellular protein trafficking and sorting are extremely arduous in endocrine and
neuroendocrine cells, which synthesize and secrete on-demand substantial
quantities of proteins. To ensure that neuroendocrine secretion operates
correctly, each step in the secretion pathways is tightly regulated and
coordinated both spatially and temporally. At the trans-Golgi network (TGN),
intrinsic structural features of proteins and several sorting mechanisms and
distinct signals direct newly synthesized proteins into proper membrane
vesicles that enter either constitutive or regulated secretion pathways.
Furthermore, this anterograde transport is counterbalanced by retrograde
transport, which not only maintains membrane homeostasis but also recycles
various proteins that function in the sorting of secretory cargo, formation of
transport intermediates, or retrieval of resident proteins of secretory organelles.
The retromer complex recycles proteins from the endocytic pathway back to the
plasma membrane or TGN and was recently identified as a critical player in
regulated secretion in the hypothalamus. Furthermore, melanoma antigen
protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the
retromer-dependent endosomal protein recycling pathway and, by doing so,
ensures proper secretory granule formation and maturation. MAGEL2 is a
mammalian-specific and maternally imprinted gene implicated in Prader-Willi
and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly
discuss the current understanding of the regulated secretion pathway,
encompassing anterograde and retrograde traffic. Although our understanding
of the retrograde trafficking and sorting in regulated secretion is not yet complete,
we will review recent insights into the molecular role of MAGEL2 in hypothalamic
neuroendocrine secretion and how its dysregulation contributes to the symptoms
of Prader-Willi and Schaaf-Yang patients. Given that the activation of many
secreted proteins occurs after they enter secretory granules, modulation of the
sorting efficiency in a tissue-specific manner may represent an evolutionary
adaptation to environmental cues.
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1 Introduction

Constitutive secretion or exocytosis occurs in all cell types and
predominantly facilitates housekeeping functions, including protein
insertion into the plasma membrane or secretion of extracellular
matrix components, growth hormones, and plasma proteins. In
contrast, regulated secretion facilitates the specialized function of
excitable cells (i.e., neurons and endocrine and neuroendocrine
cells) which is to synthesize, store, and secrete on-demand
hormones, neuropeptides, and neurotransmitters. The
fundamental pathway and the basic machinery for regulated and
constitutive secretion are similar, but their regulation and sorting
mechanisms differ (Palade, 1975; Gerber and Sudhof, 2002).
Through a series of membrane-trafficking steps, secretory
proteins are synthesized in the endoplasmic reticulum (ER) and
transported in membrane vesicles via the Golgi network to the
plasma membrane (Palade, 1975). Unlike the continuous release of
secretory molecules in the constitutive pathway, neuropeptides and

hormones in the regulated secretion pathway are accumulated and
stored in secretory vesicles, referred to as secretory granules (SGs),
until cells receive a signal for their release through fusion with the
plasma membrane (Figure 1) (Kelly, 1985). Some secreted small
molecules, like neurotransmitters, are synthesized in the cytosol and
taken up into synaptic vesicles (SVs) just before exocytosis (Liu and
Edwards, 1997; Kogel and Gerdes, 2010). While some neurons
contain only SVs or SGs, hypothalamic neurons can contain both
at the same time (Thureson-Klein, 1983; Burgoyne and Morgan,
2003). Since the nomenclature and abbreviation of vesicles in
constitutive and regulated secretion are sometimes confusing, we
will use the terms secretory vesicles (SeVs) for organelles in the
constitutive secretion pathway and secretory granules and synaptic
vesicles for those in the regulated secretion pathway.

Although the two principal pathways of regulated secretion
share many components, they differ in the size of the vesicles
[i.e., SGs are bigger (>100 nm in radius) than SVs (<25 nm)],
mechanisms by which secretory vesicles are filled with secretory

FIGURE 1
Anterograde and retrograde transport pathways in secretory cells. After protein synthesis in the ER, secretory proteins are sorted in the TGN through
import signals, post-translational modifications, and other oligomeric associations. In the regulated secretion pathway, SGs go through a maturation
process that includes fusion with other immature SGs and condensation of cargo proteins, as well as the removal of excess membrane and missorted
cargo through the budding of clathrin-coated constitutive-like vesicles that may be secreted. Mature SGs accumulate near the plasma membrane
until receiving a signal to undergo exocytosis and release their contents. In contrast, secretory vesicles (SeVs) in the constitutive secretion pathway
continuously release their contents through unregulatedmembrane fusion. In retrograde transport, endocytosedmaterial (e.g., receptors) are brought to
a sorting endosome that directs endosomal material either back to the membrane in a recycling endosome, to immature SGs, to the lysosome for
degradation, or to the TGN.
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molecules, and how the vesicles recycle after exocytosis for a new
round of secretion (Gerber and Sudhof, 2002). In Figure 1, we
schematically depict the major pathways of anterograde and
retrograde trafficking and use only SGs to represent regulated
secretion as SVs are beyond the scope of this review. We will
focus on the regulation and sorting of cargo and resident
proteins of SGs and discuss the sorting mechanisms that direct
cargo and resident proteins in the anterograde transport to SGs.
Furthermore, we will discuss new insights into the regulation of
retrograde trafficking and how it contributes to secretion in the
hypothalamus. Recently, ubiquitination-mediated regulation of
retromer and F-actin nucleation was found to be critical for the
recycling of resident SG proteins and the neuroendocrine function
of the hypothalamus. Ubiquitination is governed by Prader-Willi
associated protein MAGEL2 in conjunction with E3 ubiquitin ligase
TRIM27 and deubiquitinating enzyme USP7 (Hao et al., 2013; Hao
et al., 2015; Chen et al., 2020).

2 Brief overview of the biogenesis,
maturation, and anterograde transport
of secretory granules

Regulated secretion of hormones and neuropeptides is a
multistep, tightly regulated process, involving protein synthesis in
the ER, protein sorting and packing into SGs at the trans-Golgi
network (TGN), SG maturation during vesicle transport from the
TGN to the plasma membrane, SG storage and accumulation near
the plasmamembrane, and ultimately, exocytosis to release SG cargo
in response to a physiological stimulus (Figure 1). For more details
on these steps beyond our summary below, please refer to the
following: (Tooze, 1998; Chieregatti and Meldolesi, 2005; Kim
et al., 2006; Wickner and Schekman, 2008; Kogel and Gerdes,
2010; Tanguy et al., 2016; Ma et al., 2021).

In a process similar to viral budding, nascent SGs start forming
from the TGN by protein accumulation that leads to GTP-
dependent membrane deformation (Tooze, 1998). Cholesterol
facilitates membrane bending and SG scission by promoting
negative membrane curvature and recruiting proteins, like the
ubiquitously expressed mechano-GTPase dynamin-2 (Wang
et al., 2000; Kim et al., 2006; Gonzalez-Jamett et al., 2013; Bhave
et al., 2020). After leaving the TGN, the nascent or immature SGs
(ISGs) undergo maturation while transported in a microtubule-
dependent manner toward the plasma membrane and the F-actin-
rich cell periphery (Figure 1) (Howell and Tyhurst, 1982; Rudolf
et al., 2001; Ponnambalam and Baldwin, 2003).

During granule maturation, the content and membrane
composition of granules undergo remodeling (Figure 2).
Homotypic fusion of ISGs, which contributes to the increased
size and density of mature granules, is mediated by several
proteins, including NSF, α-SNAP, syntaxin 6, and synaptotagmin
IV (Tooze et al., 1991; Urbe et al., 1998; Wendler et al., 2001; Ahras
et al., 2006; Kogel and Gerdes, 2010). During maturation, the lumen
of ISGs progressively acidifies through the activity of vacuolar-type
H+-ATPases (V-ATPases), which are integral membrane proteins in
SGs (Figure 2) (Urbe et al., 1997; Jefferies et al., 2008). Besides
enabling further condensation of soluble cargo, protein aggregation,
and dense core formation, the acidic intragranular pH also activates

PC1/3 and PC2 (Kogel and Gerdes, 2010). These proprotein
convertases (PCs) and carboxypeptidase E (CPE) process most
prohormones and neuropeptides into their mature, bioactive
forms (Steiner, 1998). The maturation of ISGs also involves the
removal of excess membranes and other proteins, including sortilin,
carboxypeptidase D (CPD), syntaxin 6, VAMP-4, synaptotagmin
IV, furin, and mannose-6-phosphate receptors (MPRs), which can
be recycled back to the TGN by retrograde transport (Figures 1, 2, 4)
(Klumperman et al., 1998; Varlamov et al., 1999; Eaton et al., 2000;
Wendler et al., 2001; Ahras et al., 2006; Mitok et al., 2022).
Mechanistically, ISGs contain coat protein patches of clathrin
and AP-1 adaptor complex that mediate the budding of these
proteins from ISGs into constitutive-like vesicles (Dittie et al.,
1996; Dittie et al., 1997; Klumperman et al., 1998; Tooze, 1998;
Eaton et al., 2000; Kakhlon et al., 2006). Overall, the process of
maturation refines the composition of SGs and imparts
responsiveness for regulated exocytosis (Burgoyne and Morgan,
2003; Kogel and Gerdes, 2010).

Mature SGs are stored near the membrane in the F-actin-rich cell
cortex until receiving a stimulus for exocytosis. In contrast to
constitutive secretion, exocytosis fusion is confined to specific sites
within the plasma membrane of the polarized secreting cell and is
temporally regulated by an extracellular secretion signal that increases
the intracellular concentration of Ca2+ or cAMP (Meldolesi, 2002;
Burgoyne and Morgan, 2003; Tanguy et al., 2016). Then, mature
SGs undergo a series of ATP-dependent processes, such as priming,
tethering, docking, and fusion to release their contents (Burgoyne and
Morgan, 2003; Tanguy et al., 2016). These processes are mediated by
several evolutionarily conserved proteins, including soluble
N-ethylmaleimide-sensitive factor attachment protein receptors
(SNAREs), NSF with adaptor proteins, Rab GTPases, SM (sec1/
munc18-like) proteins, and synaptotagmins (Gerber and Sudhof,
2002; Burgoyne and Morgan, 2003; Wickner and Schekman, 2008).
SNARE proteins enable the fusion of SGs with the plasma membrane
through the formation of the SNARE complex, where v-SNARE
(VAMP) on the SG membrane interacts with t-SNAREs (syntaxin
1 and SNAP-25) on the plasma membrane (Gerber and Sudhof, 2002;
Burgoyne and Morgan, 2003). Synaptotagmins are calcium-binding
proteins that act as calcium sensors and interact with both the granule
and plasmamembranes to trigger fusion and exocytosis (Sudhof, 2002).

Secretion is followed by rapid retrieval of the SG membrane and
resident proteins through multiple endocytic pathways whose
regulation is less understood but recently attracted our attention by
the serendipitous discovery of the role of MAGEL2 in retromer-
dependent retrograde transport (Chen et al., 2020). In the next
section, we will describe the composition of SGs with a focus on the
SG-unique resident proteins (i.e., granins, PCs, and CPE). Then, we will
describe the current understanding of their sorting into the regulated
secretion pathway at the TGN (i.e., anterograde transport) and their
retrieval and sorting at the endosome (i.e., retrograde transport).

3 Secretory granule composition with a
focus on SG-resident proteins

SGs are distinct organelles of endocrine and neuroendocrine
cells with a lipid bilayer that encases a dense proteinaceous core to
efficiently store hormones and neuropeptides in an osmotically inert
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environment (Figure 2) (Burgess and Kelly, 1987). Compared to
other biological membranes, SGs have a low protein-to-lipid ratio.
Membrane proteins in SGs include transporters [e.g., V-ATPase,
monoamine transporter, and peptidylglycine α-amidating
monooxygenase enzyme (PAM)] and proteins that facilitate SG
transport and exocytosis (e.g., VAMP and synaptotagmins)
(Figure 2) (Thiele and Huttner, 1998b). The composition and
size of SGs vary depending on cell type and maturation state
(Hammel et al., 2010; Shitara et al., 2020). SGs contain several
resident proteins, including PCs, CPE, and granins, that are required
for the proper sorting of cargo proteins into ISGs at the TGN and the
anterograde transport of SGs.

In neurons, SGs coexist with SVs that are filled locally with
neurotransmitters, such as biogenic amines, at the presynaptic
terminals and regenerated after exocytosis through the refilling of
their cargo. However, the vesicles themselves are generated at the
TGN (Burgoyne and Morgan, 2003). Though many proteins
involved in regulated secretion are shared between vesicles and
granules, some proteins are specific to SVs or SGs and facilitate their
distinct functions of neurotransmitter or neuropeptide/hormone
secretion, respectively (Gerber and Sudhof, 2002). SG-specific
components are mainly enzymes and proteins that enable
neuropeptide maturation and condensation during maturation

for long-term storage. Importantly, protein recycling of many of
these SG-resident proteins and granule membrane components is
necessary for regulated secretion in the hypothalamus (Hurtley,
1993; Bittner et al., 2013; Chen et al., 2020).

3.1 Proprotein convertases (PCs)

Neuropeptide precursors packaged into SGs are cleaved into
active peptides and hormones by SG-resident PCs. The PC family
contains nine members: PC1/3, PC2, furin, PC4, PC5/6, PACE4,
PC7, SKI-1/S1P, and PCSK9 (Seidah et al., 2013). PC1/3 and PC2
(proprotein convertase subtilisin/kexin type 1/3 and 2) are encoded
by PCSK1 and PCSK2 genes and act as basic proprotein convertases
that cleave after polybasic clusters (Seidah et al., 1991; Cendron et al.,
2023). PC1/3 and PC2 are selectively expressed in endocrine and
neuroendocrine cells, suggesting they are important in prohormone
processing within SGs (Figure 3) (Halban and Irminger, 1994; Zhou
et al., 1999). PC1/3 and PC2 process a plethora of prohormones,
including pro-opiomelanocortin (POMC), neuropeptide Y (NPY),
agouti-related peptide (AGRP), progrowth-hormone releasing
hormone (GHRH), prothyrotropin-releasing hormone (TRH),
proinsulin, and proglucagon (Paquet et al., 1996; Nillni, 2010;

FIGURE 2
Components of immature (A) and mature (B) secretory granules. Lipid-raft-associated proteins like CPE, CPD, and secretogranin III interact with
aggregates of regulated secretory pathway proteins and granulogenic proteins (e.g., granins like ChgA and ChgB) that form the dense proteinaceous core
of mature SGs. Proton pumps increasingly acidify the SG lumen during maturation, which activates proprotein convertases and carboxypeptidases that
process prohormones. The budding of clathrin-coated constitutive-like vesicles from immature SGs removes missorted constitutively secreted
proteins and many other proteins shown in brown, including the peptidase furin, M6P-lysosomal enzymes bound to mannose-6-phosphate receptors
(CI-M6PR or CD-M6PR), sortilin, synaptotagmin IV, VAMP4, and syntaxin 6. Calcium binding to synaptotagmin 1 stimulates exocytosis, which is mediated
by v-SNARE proteins and other complexes. Mature SG size ranges from 50 nm in the sympathetic nervous system to 1,000 nm in pituitary mammotrophs
or neurohypophyseal cells.
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Seidah, 2011; Cawley et al., 2016). Consequently, defects in PC1/3 or
PC2 activity result in several endocrinopathies in both humans and
rodents (Furuta et al., 1997; Jackson et al., 1997; Steiner, 1998; Zhu
et al., 2002; Scamuffa et al., 2006; Mbikay et al., 2007; Anini et al.,
2010; Creemers et al., 2012; Seidah and Prat, 2012).

3.2 Carboxypeptidase E (CPE)

After endoproteolytic cleavage by PC1/3 and/or PC2, the newly
exposed C-terminal basic residues of prohormones are removed by
CPE, another resident protein of SGs (Burgoyne and Morgan, 2003).
CPE was first identified as enkephalin convertase and subsequently
found to cleave the C-terminally extended basic residues from diverse
peptide intermediates, including POMC and probrain-derived
neurotrophic factor (BDNF) (Fricker and Snyder, 1982; Hook et al.,

1982; Fricker, 1988; Lou et al., 2005). CPE is expressed primarily in
endocrine tissues and specific areas of the central nervous system
(Figure 3) (Fricker, 1988; Cawley et al., 2012; Ji et al., 2017). CPE
differs from other carboxypeptidases in that its optimal pH is in the
acidic range, consistent with its localization to acidic compartments of
the TGN and to the dense core of SGs where prohormone processing
occurs (Supattapone et al., 1984; Ji et al., 2017).

Like other proteins in the regulated secretory pathway, CPE is
synthesized in the ER as a 476-amino acid precursor containing an
N-terminal signal peptide that directs proCPE into the ER before its
removal (Song and Fricker, 1995a). ProCPE is transported through
the Golgi to SGs where the 17-amino acid “pro” region is cleaved
after a penta-arginine sequence to generate mature membrane-
bound CPE that is glycosylated at two N-linked glycosylation
consensus sites, Asn139 and Asn390 (Song and Fricker, 1995a;
Cawley et al., 2012; Ji et al., 2017). Within SGs, the membrane-

FIGURE 3
Heatmap showing expression of constitutive components of SGs, retromer, MUST, WASH, and ARP2/3 complexes. Data was extracted from GTEx
on 05/24/2023.
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bound CPE can be further processed by cleavage of its C-terminal
cytoplasmic tail to generate a soluble form of CPE that is
enzymatically more active (Hook, 1985; Fricker and Devi, 1993).

In addition to its enzymatic function, CPE acts as the
quintessential regulated secretory pathway sorting receptor for
many prohormones (e.g., POMC, pro-BDNF, proenkephalin,
proinsulin, and prophogrin). Under mildly acidic conditions and
increasing calcium concentrations, CPE aggregates and binds SG
cargo proteins through their prohormone sorting signals, such as
those found in POMC (Song and Fricker, 1995b; Rindler, 1998;
Zhang et al., 1999). CPE binding enables protein condensation and
directs cargo proteins to SGs (Cawley et al., 2012). The C-terminus
of CPE forms an amphipathic α-helix under acidic conditions that
binds to lipid rafts in the TGN membrane and directs prohormones
bound to CPE into nascent granules (Fricker et al., 1990;
Dhanvantari and Loh, 2000; Dhanvantari et al., 2002; Zhang
et al., 2003; Cawley et al., 2012). In a neutral environment
(pH 7.2), CPE’s C-terminus does not exhibit a helical secondary
structure, preventing premature association with the membrane
(Dhanvantari et al., 2002). Interestingly, CPE may only sort
certain prohormones to the regulated secretory pathway, as CPE
depletion did not affect sorting of chromogranin A (CHGA) (Cool
et al., 1997; Normant and Loh, 1998; Ji et al., 2017).

3.3 The granin family

Chromogranins A and B (CHGB), secretogranins II and III
(SCGII and SCGIII), and a few additional related proteins together
comprise the granin family of water-soluble acidic glycoproteins
(Bartolomucci et al., 2011). These granin proteins serve essential
roles in the regulated secretory pathway, with the chromogranins
comprising much of the SG matrix (O’Connor and Frigon, 1984;
Borges et al., 2010), and, accordingly, are predominantly expressed
in endocrine and neuroendocrine cells (Figure 3) (Day and Gorr,
2003; Dominguez et al., 2018). Like CPE and other SG resident
proteins, granins are also synthesized at the rough ER, inserted into
the ER cisternae via a signal peptide located at their N termini, and
trafficked to the TGN via transport vesicles (Bartolomucci et al.,
2011). Several biochemical properties that are critical for the
function of granins include an acidic isoelectric point, Ca2+

binding, and thermostability (Yoo and Albanesi, 1991; Taupenot
et al., 2003; Bartolomucci et al., 2011). Additionally, granins
aggregate in an acidic environment (pH 5.5) with a millimolar
concentration of calcium ions and, by doing so, induce granule
formation (Chanat and Huttner, 1991; Parmer et al., 1993;
Koshimizu et al., 2010). Granins are negatively charged, which
may prevent premature aggregation, but a surplus of calcium
ions and protons in the SG lumen may help neutralize the
repulsive forces among the granin proteins to allow aggregation
(Glombik and Gerdes, 2000). An alternative explanation proposed is
that the pH gradient prompts interactions between negative and
positive charges of cargo proteins, and then divalent ions may
generate a chelate bridge between two negatively charged granins
to permit aggregation (Ma et al., 2008; Zhang et al., 2010).

CHGA, the most well-studied granin family member, is a
prohormone and a granulogenic factor in neuroendocrine tissues
(Laguerre et al., 2020). While CHGA is mostly hydrophilic, its C-

and N-termini contain hydrophobic and cell-specific evolutionarily
conserved sequences necessary for sorting and granulogenesis (Yoo
and Lewis, 1993; Cowley et al., 2000; Montero-Hadjadje et al., 2009;
Elias et al., 2010). Cysteine residues within the amino terminus form
an intramolecular disulfide loop to interact with the membrane
(Parmer et al., 1993; Yoo, 1994; Kang and Yoo, 1997). The primary
structure of CHGA contains several glutamic acid stretches that can
interact with Ca2+, leading to aggregation in specific environments,
such as the TGN and SG (Parmer et al., 1993). CHGAmay associate
with membrane either directly by binding to specific lipids (e.g.,
phosphatidic acids enriched in TGN and SG membranes) (Carmon
et al., 2020; Tanguy et al., 2020) or indirectly by interacting with
SCGIII, which in turn binds to cholesterol-rich membranes and
targets proteins to the regulated secretory pathway (Hosaka et al.,
2004; Han et al., 2008).

Besides their granulogenic function, granins contribute to
calcium homeostasis and many are also precursors of bioactive
peptides that, upon further processing in ISGs, modulate different
physiological processes, including pain pathways, inflammatory
responses, metabolic and mood disorders, and blood pressure
(Montero-Hadjadje et al., 2008). As an example, the CHGA-
derived peptide pancreastatin, which was the first granin-derived
peptide discovered, strongly inhibits glucose-induced insulin release
(Tatemoto et al., 1986; Bartolomucci et al., 2011).

Even though the granin family is ubiquitously expressed in
neuroendocrine tissues, individual proteins exhibit tissue
specificity and redundancy (Figure 3). For example, the ablation
of Chga and Chgb reduced the size and number of SGs in adrenal
chromaffin cells, while SGs in mouse hippocampal neurons were
unaffected (Dominguez et al., 2018). In addition, ablation of Chga
upregulated the expression of Chgb and secretogranins II-VI in the
adrenal medulla and other endocrine glands (Hendy et al., 2006).
These data indicate that chromogranin-mediated dense core
formation of SG is tissue-specific and that other granin family
members may perform a similar function.

3.4Mannose-6-phosphate receptors (MPRs)

MPRs facilitate the transport of soluble acid hydrolases from the
TGN to the lysosome by binding to mannose-6-phosphate (M6P)
modifications on the enzymes. There are two different MPRs, the
larger cation-independent receptor (CI-MPR) and the smaller
cation-dependent receptor (CD-MPR) that binds M6P more
efficiently in the presence of divalent cations (Gary-Bobo et al.,
2007). Besides binding to phosphomannosyl residues, the
extracellular region of CI-MPR, also known as IGF2R, binds
insulin-like growth factor (IGF)-II to facilitate its endocytosis and
clearance by lysosomal degradation (Oka et al., 1985; Oshima et al.,
1988; Schmidt et al., 1995; Brown et al., 2008). CI-M6PR also binds
other ligands, such as retinoic acid, granzyme B, latent TGF-β,
urokinase-type plasminogen activator receptor, and leukemia
inhibitory factor, impacting a variety of biological pathways
(Purchio et al., 1988; Kang et al., 1997; Blanchard et al., 1999;
Godar et al., 1999; Veugelers et al., 2006).

CI-MPR is one of the most thoroughly studied proteins that is
removed from ISGs and then recycled back to the TGN (Figures 1, 2,
4, 5) (Bonnemaison et al., 2013; Seaman, 2018). As SGs mature, the
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concentration of MPRs declines by about 90% (Klumperman et al.,
1998). MPRs are sorted from ISGs by binding to adaptor protein 1
(AP-1) and the Golgi-localized, γ-ear containing, ARF-binding
(GGA) family of proteins in clathrin and syntaxin 6–positive
vesicles that are delivered to endosomes (Figures 1, 2)
(Klumperman et al., 1998; Coutinho et al., 2012). Then, the
multiprotein retromer complex mediates the endosome-to-TGN
retrieval of CI-MPR (Bonnemaison et al., 2013; Seaman, 2018).
Retromer is critical for the recycling and reuse of MPRs in a new
cycle of acid hydrolase transportation.

In the following sections, we discuss sorting into the regulated
secretory pathway, as well as the retromer-dependent recycling of
CI-MPR, potential retrograde trafficking targeting motifs, and
finally, the tissue-specific role of MAGEL2 in the retromer-
dependent recycling of mature and immature SG components.

4 Sorting compartments, mechanisms,
and signals in the anterograde pathway
of regulated secretion

Overall, the cellular life of regulated secretory proteins (RSPs)
begins similarly to constitutive secretory proteins. An N-terminal
signal sequence enables the signal recognition particle (SRP)-
dependent co-translational translocation into the ER lumen. This
signal sequence is then removed from the nascent protein, and the

protein is post-translationally modified during anterograde transport
through the Golgi to the TGN. The TGN serves as the main sorting
station in the anterograde traffic of secretory proteins, and the sorting is
fine-tuned during ISG maturation when the missorted proteins are
removed by clathrin-coated vesicles (Figures 1, 2, 4) (Farquhar and
Palade, 1998). The canonical targeting signals that direct proteins into
the constitutive secretory pathway or to other cellular destinations (e.g.,
the plasma membrane, mitochondria, nucleus, and lysosomes), as well
as the signals for ER or Golgi retention, are well established. In contrast,
RSPs are not targeted to SGs by a common sorting motif but rather
through intrinsic protein features and a variety of motifs that may
synergize to increase granule-sorting efficiency (Glombik and Gerdes,
2000; Lacombe et al., 2005). As an example of multiple sorting signals
being present on a single molecule, prothyrotropin-releasing hormone
has two intermediates that are stored in different vesicles and secreted
by different stimuli (Perello et al., 2008). Specific sorting signals that
have been discovered on RSPs include linear amino acid sequences,
conformation epitopes, polypeptides, and post-translational
modifications (Thiele and Huttner, 1998b). The propensity of RSPs
to aggregate contributes to their sequestration in the TGN, packaging
into ISGs, and removal of mistargeted proteins from ISGs during
maturation. Besides aggregation, association with distinct membrane
lipids, sorting receptors, and adaptor proteins also facilitate the sorting
of soluble RSPs to SGs (Thiele and Huttner, 1998b; Glombik and
Gerdes, 2000; Kogel andGerdes, 2010; Bonnemaison et al., 2013). These
sorting signals and mechanisms can also be tissue- or cell-specific

FIGURE 4
Proposed sorting models for secreted proteins. (A) In the “sorting for entry” model, secreted and lysosomal proteins are segregated by binding to
specific receptors clustered in the TGN before granule formation. (B) In the “sorting by retention”model, secreted and lysosomal proteins enter nascent
SGs, but the non-regulated secretory proteins are excluded from the maturing SG by budding, possibly mediated by clathrin.
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(Chidgey, 1993; Marx et al., 1999; Cowley et al., 2000; Dikeakos and
Reudelhuber, 2007).

4.1 Sorting models

For secreted proteins, there are two proposed sorting models
that are not mutually exclusive, as supporting evidence suggests both
models may occur in cells (Figure 4) (Dikeakos and Reudelhuber,
2007; Goronzy and Weyand, 2009). In the “sorting-at-entry”model,
constitutively secreted proteins are segregated from regulated
proteins by binding to specific receptors clustered in the TGN
before granule formation (Figures 4, 5) (Chidgey, 1993). Initial
aggregation of cargo proteins (e.g., granins and prohormones) in
a mildly acidic pH (6.0–6.5) and cation-dependent manner excludes
certain constitutive proteins. Then, the aggregates can bind to
sorting receptors at the TGN membrane. One of the first sorting
receptors proposed was CPE, which sorts POMC and proBDNF
(Cool et al., 1997; Lou et al., 2005). SCGIII can also act as a sorting
receptor, as SCGIII associates with cholesterol-sphingolipid-rich
membrane microdomains (i.e., lipid rafts) in the TGN membrane
and, by doing so, serves as a sorting receptor for CHGA in pituitary

and pancreatic cells (Tooze, 1998; Hosaka et al., 2004; Park and Loh,
2008). Receptors are then recycled through vesicles budding off ISGs
(Tooze, 1998).

In the “sorting by retention” model, both regulated and non-
regulated proteins enter the nascent granule with the latter proteins
excluded from the ISG by budding of clathrin-coated vesicles
(Chidgey, 1993). In support of this model, lysosomal proteins
have been found in immature SGs, which are then most likely
excluded through binding to MPRs and budding of a
constitutive-like vesicle. All evidence points to the conclusion that
the best-fitting sorting model is reliant on the specific protein, its
affinity for aggregation, the relative speed of its synthesis, and tissue
or cell specificity (Tooze, 1998). As an example of cell specificity, the
sorting domain in the C-terminus of PC2 is essential for sorting in
Neuro2A cells (Assadi et al., 2004) but is not required in
corticotrophic AtT-20 cells (Taylor et al., 1998; Lacombe et al.,
2005). Similarly, the SG sorting of CHGA and CHGB requires an
N-terminal domain in neuroendocrine PC12 cells but not in
endocrine GH4C1 cells (Chanat et al., 1993); rather, a C-terminal
region of CHGA was required for proper sorting in GH4C1 cells
(Cowley et al., 2000). Different sorting domains on the same protein
offer insights not only into targeting efficiency but also into the

FIGURE 5
Sorting of proteins destined for the regulated secretory pathway occurs through various mechanisms, motifs, and adaptor proteins. (A,B)Within the
lumen of the TGN and ISGs, sortingmotifs within RSPs and interactions with other proteins facilitate aggregation and association with the membrane. (C)
On the cytosolic side of the TGN/SG membrane, adaptor proteins recognize specific motifs in RSPs to help with sorting, and phosphorylation of some
RSPs, like furin, enhances sorting.
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possibility of targeting signal redundancy, which may offer
protection from mutations and other damage.

4.2 Sorting mechanisms

Mechanistically, several processes contribute to sorting RSPs into the
regulated secretory pathway. An intrinsic propensity to aggregate
combined with Ca2+-binding motifs underly one sorting
mechanism–selective aggregation of a subset of soluble proteins in
the TGN, excluding soluble non-aggregating proteins and giving rise
to SGs (Figure 5). In this aggregation mechanism, only one or perhaps a
small number of proteins need to interact with the membrane, as the
other regulated proteins are targeted to the SG through protein-protein
interactions mediated by helper proteins, like the granins. Accordingly,
overexpression of CHGB led to more effective sorting into granules in
cells (Natori and Huttner, 1996; Huh et al., 2003). Expression of
granulogenic proteins (e.g., CHGA) in regulated secretory-deficient
cells was sufficient to induce the formation of vesicles that resembled
SGs (Kim et al., 2001; Huh et al., 2003; Beuret et al., 2004). However,
aggregation alone is insufficient to target all RSPs to SGs (Quinn et al.,
1991; Jutras et al., 2000), suggesting additional sorting mechanisms
(Lacombe et al., 2005).

Association with lipid rafts is another sorting-at-entry
mechanism used by several RSPs (Figure 5). Through insertion
into lipid rafts, the transmembrane domains of several prohormone-
processing enzymes, like PAM, mediate their own sorting into the
regulated secretory pathway (Bell-Parikh et al., 2001). In addition,
several sorting receptors in the TGN recruit and fasten SG-destined
proteins to membrane sites where a nascent vesicle will bud (Park
and Loh, 2008). For example, SCGIII, CPE, PC1/3, and PC2 have all
been reported to associate with cholesterol- and sphingolipid-rich
lipid rafts, which is crucial for their own targeting to the regulated
secretory pathway (Dhanvantari and Loh, 2000; Jutras et al., 2000;
Arnaoutova et al., 2003; Assadi et al., 2004; Hosaka et al., 2004;
Dikeakos et al., 2009).

Besides interacting with sorting receptors, various cargo
adaptors, such as adaptor protein (AP) complexes and
monomeric GGA proteins, can help direct proteins into their
appropriate transport carriers (Figure 5) (Robinson, 2004). The
AP family includes five cytosolic heterotetrameric complexes, AP-
1 to AP-5, that mediate sorting of transmembrane proteins on
defined intracellular routes (Bonnemaison et al., 2013). AP-1, AP-3,
and AP-4 are associated with the TGN, and AP-1 also removes
material from ISGs (Bonnemaison et al., 2013; Guardia et al., 2018).
AP-2 regulates clathrin-mediated endocytosis at the plasma
membrane, and AP-5 facilitates the retrograde transport of
proteins from endosomes to the TGN (Bonnemaison et al., 2013;
Hirst et al., 2013; Guardia et al., 2018). The subunits of these AP
complexes have several isoforms in mammals, suggesting
evolutionary adaptation to finetune the process of regulated
secretion, particularly in neurons that uniquely express two AP-3
subunits (Dell’Angelica et al., 1997; Boehm and Bonifacino, 2002;
Bonifacino, 2014; Li et al., 2016; Guardia et al., 2018). GGA proteins
act as monomeric clathrin adaptors (Bonifacino, 2004). Arf small G
proteins in an active GTP-bound, membrane-associated state
mediate the membrane recruitment of AP complexes and GGAs
(Traub et al., 1993; Austin et al., 2000; Collins et al., 2003; Ren et al.,

2013). Then, AP complexes can bind to the cytoplasmic tails of cargo
proteins and recruit coat proteins (i.e., clathrin) and accessory
proteins to drive vesicle formation (Bonnemaison et al., 2013;
Tan and Gleeson, 2019). Upon the release of secretory vesicles
from the TGNmembrane, coat proteins are dissociated and recycled
for additional rounds of vesicle formation (Tan and Gleeson, 2019).

4.3 Sorting domains and motifs

The motifs and domains on RSPs that are responsible for their
proper sorting into SGs remain enigmatic and not uniform. In
general, sorting signals facilitate the aggregation of cargo proteins or
piggyback anchoring through association with membrane domains
and other proteins (Figure 5).

Within the TGN lumen, proteins targeted to SGs tend to
aggregate, not only promoting formation of the dense core of the
SGs but also enabling their own sorting to the regulated secretion
pathway (Figure 5) (Burgess and Kelly, 1987). Several motifs and
domains within RSPs promote aggregation and sorting to SGs. In
the case of CHGA, several glutamic acid repeats interact with Ca2+

and promote aggregation at the TGN and in SGs (Parmer et al.,
1993). Small disulfide (CC) loops also act as SG sorting signals by
promoting self-aggregation at the TGN (Reck et al., 2022). These CC
loops are present frequently at the very N- or C-terminus of proteins
or close to processing sites and thus potentially exposed (Reck et al.,
2022). For example, in POMC, an N-terminal 13-residue CC loop is
necessary and sufficient for granule sorting (Tam et al., 1993; Cool
et al., 1995; Loh et al., 2002). Longer disulfide loops in CHGA and
CHGB are also involved in their sorting to SGs (Kang and Yoo, 1997;
Kromer et al., 1998; Glombik et al., 1999; Taupenot et al., 2002). In
addition, di-basic processing sites and acidic motifs in prohormones
were shown to promote granule sorting, likely via interaction with
PCs or CPE (Brechler et al., 1996; Lou et al., 2005). The sorting signal
motif for CPE recognition was first identified as two acidic residues
and two aliphatic hydrophobic residues in POMC (Cool et al., 1995),
and similar sorting motifs were subsequently found in proinsulin
(Dhanvantari et al., 2003), BDNF (Lou et al., 2005), and
proenkephalin (Normant and Loh, 1998; Cawley et al., 2016).

Amphipathic helices enable interaction with the granule
membrane and are important for the incorporation of RSPs and
enzymes, like PCs and CPE, into SGs. Besides a disulfide-bonded
hydrophobic loop that interacts with SG membrane (Kang and Yoo,
1997), the N-terminal region of CHGA also contains an
amphipathic α-helix that may be necessary for sorting CHGA/
hormone aggregates into SGs (Thiele and Huttner, 1998a;
Taupenot et al., 2002; Laguerre et al., 2020). Similarly,
proglucagon is sorted by α-helices present in the mature
hormone domains rather than in the typical prohormone domain
(McGirr et al., 2013; Guizzetti et al., 2014). Tissue-specific
processing of proglucagon by PCs yields glucagon in pancreatic α
cells (Furuta et al., 2001) or glucagon-like peptide 1 (GLP-1) and
GLP-2 in intestinal L cells and hypothalamic neurons (Dhanvantari
et al., 1996; Damholt et al., 1999; Holt et al., 2019). Although each of
these products contains α-helices, only the non-amphipathic,
dipolar α-helices on glucagon and GLP-1 efficiently target them
to the regulated secretory pathway (Guizzetti et al., 2014). In
contrast, GLP-2 has a more uniform negative charge distribution
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along the length of its α-helix (Guizzetti et al., 2014). PC1/3, PC2,
and PC5/6A also contain α-helices in their C-termini that form
electrostatic interactions and help sort proteins into the regulated
secretion pathway (Assadi et al., 2004; Dikeakos et al., 2007b;
Dikeakos et al., 2009). There seems to be no correlation between
the helix length or the isoelectric point and sorting efficiency, but
helices with a positive or negative charge and a hydrophobic
segment seem the most effective in sorting (Dikeakos et al.,
2007a), suggesting electrostatic interactions also play a role in
aggregation, either inter- or intra-molecularly (Zhang et al.,
2010). Indeed, Ma et al. (2008) identified four to five residues,
two of which are charged, as the elementary sorting unit for
protachykinin targeting to SGs. Clustering of these charged
elementary units improved aggregation, leading to an additive
and graduated effect that also improved sorting (Ma et al., 2008).
In summary, charged amphipathic helices or non-amphipathic
helices that have segregated charges and a hydrophobic patch are
sufficient for targeting to secretory granules (Dikeakos et al., 2007a).

On the cytosolic side, specific motifs in the cytoplasmic domains
of SG membrane proteins enable binding to adaptor proteins
(Figure 5). The acidic-cluster-dileucine motif (DXXLL, where X
is any amino acid) found in MPRs and sortilin, for example, is
recognized by GGA proteins (Johnson and Kornfeld, 1992a; b; Chen
et al., 1997; Nielsen et al., 2001; Puertollano et al., 2001). Serine and
threonine residues embedded within cytosolic acidic clusters serve as
substrates for casein kinase II (CKII) phosphorylation that enhances
the sorting of proteins, like PAM, CI-MPR, and furin (Meresse et al.,
1990; Jones et al., 1995; Chen et al., 1997; Steveson et al., 2001). In
addition, VAMP4, phogrin, MPRs, and lysosomal proteins contain
tyrosine-based (YXXΦ, where Φ is a bulky hydrophobic residue)
and dileucine [(D/E)XXXL(L/I)] sorting motifs that are recognized
by AP complexes (Glickman et al., 1989; Honing et al., 1997; Peden
et al., 2001; Ghosh and Kornfeld, 2004; Torii et al., 2005; Wasmeier
et al., 2005; Braulke and Bonifacino, 2009). These interactions
between sorting motifs and adaptor proteins directs MPRs and
their cargo proteins into TGN-derived, clathrin-coated vesicles that
fuse with endosomes (Doray et al., 2002; Waguri et al., 2003; Braulke
and Bonifacino, 2009).

In summary, several years of research uncovered how cells
control the secretion of proteins and proposed two major
models, sorting-at-entry and sorting by retention, to describe
how proteins are sorted into the proper pathway at the TGN.
Both models incorporate several sorting mechanisms that
promote protein aggregation and binding to unique membrane
lipids, leading to SG formation. After budding from the TGN,
both constitutive and regulated secretory vesicles are transported
to secretion sites at the plasma membrane via microtubule-based
transport systems (Park and Loh, 2008).

4.4 Cytoskeletal filaments in the sorting and
trafficking of regulated proteins

Kinesin, dynein, and myosin are molecular motors that
transport SeVs and SGs along microtubule or actin tracks. In
general, SeVs and SGs use the same type of microtubule motor,
such as kinesin, for anterograde transport to the secretion sites, and
cytoplasmic dynein for retrograde transport back to the cell body

(van den Berg and Hoogenraad, 2012). Tight regulation of the
transport machinery is critically important to ensure that
proteins are picked up and delivered to the right place at the
right time. At the end of microtubule-based transport, SGs are
transferred to the actin cortex close to the plasma membrane with
the help of myosin V and the F-actin motor proteins (Rose et al.,
2003; Rudolf et al., 2003). Actin and myosin have established
themselves as key players in regulated secretion by providing
tracks to target SGs to fusion sites, actively squeezing cargoes
from fused vesicles, and following fusion, retrieving excess
membrane to maintain cell surface area and recycle several SG-
resident proteins (Rudolf et al., 2003; Rojo Pulido et al., 2011; Li
et al., 2018; Miklavc and Frick, 2020). Besides its role as the transport
platform for myosin motors, F-actin acts as a physical barrier for SG
exocytosis and is also involved in the regulation of sorting at the
TGN (Park and Loh, 2008; Gutierrez and Villanueva, 2018). During
SG biogenesis, F-actin is recruited to the budding granule by actin-
related protein-2/3 (ARP2/3) and myosin 1b (Delestre-Delacour
et al., 2017). ARP2/3 complex binds to actin and exerts an active role
in SG formation through its nucleation and branching activities that
provide a structural or force-generating scaffold (Goley and Welch,
2006). The nucleation core activity of ARP2/3 is activated by
nucleation promoting factors, such as members of the Wiskott-
Aldrich syndrome family (WASP, N-WASP, WAVE, and WASH
proteins) (Welch and Mullins, 2002; Alekhina et al., 2017).

The fine-tuned control of actin polymerization on endosomes is
fundamental for the retrieval and recycling of several cargoes
(Puthenveedu et al., 2010; Simonetti and Cullen, 2019). Retrieval
and recycling are orchestrated by several multi-protein complexes,
including retromer, commander/CCC/retriever, sorting nexins, and
the ARP2/3-activatingWASH complex (Simonetti and Cullen, 2019;
MacDonald et al., 2020; Placidi and Campa, 2021). Recently,
MAGEL2 regulation of the WASH complex and ARP2/
3 activation was shown to prevent lysosomal degradation of SG-
resident proteins and enable the proper neuroendocrine function of
the hypothalamus, suggesting a tissue-specific regulation of
compensatory endocytosis in regulated secretion (Figure 6)
(Chen et al., 2020). In the next paragraphs, we will briefly
summarize retromer-dependent retrograde recycling and its
regulation.

5 Endocytic recycling of proteins in the
regulated secretory pathway

In the secretory pathway, the anterograde trafficking of
membranes is compensated by the retrograde transport of lipids
and proteins to maintain membrane homeostasis and recycle
various proteins and lipids. Endocytic recycling contributes to
membrane receptor abundance, cell resensitization, and
downstream signaling (Sannerud et al., 2003; Lucas and Hierro,
2017). Protein recycling is also important in the regulated secretion
of hormones and neuropeptides (Ferraro et al., 2005; Chen et al.,
2020; Neuman et al., 2021).

Endocytosis, occurring through clathrin-dependent and
-independent mechanisms, internalizes lipids and proteins from
the plasma membrane into early/sorting endosomes (Cullen and
Steinberg, 2018; MacDonald et al., 2020). From the sorting
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endosome, cargo can be recycled back to the plasma membrane or
retrograde trafficked to the TGN; both pathways prevent the
lysosomal degradation of these recycled proteins (Chamberland
and Ritter, 2017; Ma and Burd, 2020; Placidi and Campa, 2021).
Ubiquitinated endosomal cargo is directed to lysosomes for
degradation by ESCRT (endosomal sorting complex required for
transport) complexes (Placidi and Campa, 2021).

Cargo recycling was historically thought of as a passive process,
but the recent identification and characterization of specialized
recycling complexes (i.e., retromer and commander/CCC/
retriever complexes) that recognize specific signals in cytoplasmic
domains of cargo proteins revealed the complexity of retrograde
sorting machinery (Cullen and Steinberg, 2018; Singla et al., 2019;
MacDonald et al., 2020; Placidi and Campa, 2021; Yong et al., 2022).
The discovery that several transmembrane proteins, like CI-MPR
and β2-adrenergic receptor, travel specific recycling routes first
suggested the existence of active sorting to direct cargo into a
non-degradative endosomal pathway to its correct cellular
destination, such as the plasma membrane or TGN (Duncan and
Kornfeld, 1988; Cao et al., 1999; MacDonald et al., 2020; Placidi and

Campa, 2021). The subsequent discovery of the trimeric retromer
complex (VPS26, VPS29, VPS35) (Arighi et al., 2004; Seaman,
2004), other retromer-like complexes (i.e., retriever) (McNally
et al., 2017), and the WASH complex (composed of WASH,
FAM21, CCDC53, SWIP/KIAA1033, and Strumpellin) (Derivery
et al., 2009; Gomez and Billadeau, 2009; Harbour et al., 2010)
confirmed that sequence-dependent recycling actively opposes
degradation (Gershlick and Lucas, 2017; MacDonald et al., 2020;
Placidi and Campa, 2021). The WASH complex is the major
endosomal actin polymerization-promoting complex that
stimulates the activity of the ubiquitously expressed ARP2/
3 F-actin nucleation complex and the formation of branched
actin patches (Derivery et al., 2009; Gomez and Billadeau, 2009;
Liu et al., 2009; Seaman et al., 2013). As in anterograde transport,
actin and regulation of its polymerization are key components of
retrograde transport (Puthenveedu et al., 2010; Seaman et al., 2013;
Simonetti and Cullen, 2019; Miklavc and Frick, 2020). Furthermore,
the mammalian-specific MAGEL2 has emerged as a tissue-specific
regulator of WASH activation and actin nucleation in the
hypothalamus (Figure 6) (Chen et al., 2020).

FIGURE 6
MAGEL2 functions in regulated secretion of the hypothalamus. (A) Within hypothalamic neurosecretory cells, MAGEL2 plays a critical role in the
retromer-mediated transport of SG components (i.e., PC1/3, PC2, CHGA, CHGB, and CPE) and the lysosomal CI-MPR from the sorting endosome to the
TGN. MAGEL2-TRIM27-mediated ubiquitination leads to WASH activation and actin nucleation. (B) The loss ofMAGEL2 leads to decreased abundance of
SGs, SG-resident proteins, and neuropeptides in the hypothalamus, thus impairing hypothalamic neuroendocrine function.
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More than 150 membrane proteins rely on the retromer
complex for their localization on the cell surface (Steinberg
et al., 2013), and neurons are particularly susceptible to any
changes in endosomal trafficking due to their long axons and
branched dendrites (Chamberland and Ritter, 2017). Retromer
dysfunction has been linked to neurodegenerative diseases, such
as Parkinson’s disease, Alzheimer’s disease, and frontotemporal
lobar degeneration (Harrison et al., 2014; Seaman and Freeman,
2014; Reitz, 2018; Zhang et al., 2018). The loss of MAGEL2 in
neurons leads to aberrant endosomal protein trafficking and
reduces the abundance of SG proteins, contributing to the
etiology of Prader-Willi syndrome (PWS) (Chen et al., 2020).
In addition to neuronal and neuroendocrine functions, several
other physiological processes depend on retromer (Burd and
Cullen, 2014). Furthermore, pathogens like Chlamydia
trachomatis and Legionella pneumophila hijack the retromer
complex for successful infection (Elwell et al., 2017; Elwell and
Engel, 2018).

To summarize, the retrograde recycling of proteins is important
for maintaining a plethora of physiological functions. The proper
sorting of cargo proteins is critical for returning proteins to their
proper place for reuse and preventing their lysosomal degradation.
Retromer is at the very center of this retrograde sorting that happens
at the early endosome, soon after the cargo is endocytosed.

5.1 Retromer evolution and function

Retromer is an evolutionarily conserved complex that
regulates the retrograde pathway across all eukaryotes
(Koumandou et al., 2011; McGough and Cullen, 2011;
Chamberland and Ritter, 2017). In Saccharomyces cerevisiae,
where retromer was first discovered, five vacuolar protein
sorting (VPS) proteins compose the two retromer
subcomplexes: the cargo-selective complex and the tubulation
complex, both of which are conserved in higher eukaryotes
(Seaman et al., 1998; Neuman et al., 2021). The cargo-selective
complex is a trimer of Vps26, Vps29, and Vps35, which recruits
cargo via an association between Vps35 and a sorting motif
located within the cytoplasmic tail of cargo (Seaman et al.,
1998). Retromer is recruited to the endosomal membrane by
the sorting nexin (SNX) proteins Vps5 and Vps17 that form the
tubulation complex and contain C-terminal Bin/amphysin/Rvs
(BAR) domains that promote membrane tubulation and cargo
vesicle formation (Horazdovsky et al., 1997; Nothwehr and
Hindes, 1997; Seaman et al., 1998; Chamberland and Ritter,
2017).

Compared to the yeast retromer, the mammalian retromer is
more complex and allows for more cargo specificity and transport
regulation (Chen et al., 2019). In addition, the interactions
between the retromer subcomplexes are more transitional and
may not always occur in mammalian cells (Harbour and Seaman,
2011; Cullen and Steinberg, 2018). For example, both
subcomplexes are needed to facilitate recycling of CI-MPR
and other cargo in yeast cells (Yong et al., 2022), whereas the
SNX-BAR dimer and not the VPS trimer is required for CI-MPR
recycling in mammalian cells (Kvainickas et al., 2017; Simonetti
et al., 2017), implying functional segregation of the two

subcomplexes (Chamberland and Ritter, 2017). The
acquisition of new binding partners in mammals that are not
found in yeast provides further evidence of the functional
divergence between the subcomplexes (Chamberland and
Ritter, 2017). From now on in this manuscript, retromer will
refer to the VPS26-VPS29-VPS35 heterotrimer core that is found
in mammals (VPS26 has two isoforms in mammals).

The retromer complex serves as a hub for recruiting accessory
proteins and complexes, such as receptor-mediated endocytosis-8
(RME-8) (Freeman et al., 2014), Eps15 homology domain-
containing protein-1 (EHD1) (Gokool et al., 2007), TBC1D5
(Seaman et al., 2009), and the WASH complex (Kvainickas et al.,
2017; Simonetti et al., 2017), that regulate retromer’s role in
endosomal trafficking and endosomal tubule dynamics (Harbour
et al., 2010). For example, VPS35 binds to SNX3 and the GTPase
Rab7, leading to membrane recruitment of retromer (Burd and
Cullen, 2014; Harrison et al., 2014). While SNX3 directs retromer to
early endosomes by binding to phosphatidylinositol 3-phosphate
[PtdIns(3)P] (Harterink et al., 2011), Rab7-GTP recruits retromer to
late endosomes (Rojas et al., 2008; Progida et al., 2010; Harrison
et al., 2014). TBC1D5, which binds to VPS35 and VPS29, negatively
regulates membrane recruitment of retromer by acting as a GTPase-
activating protein for Rab7 (Seaman et al., 2009; Jia et al., 2016; Borg
Distefano et al., 2018). Another important accessory protein is the
WASH complex protein FAM21, which binds directly to
VPS35 through its C-terminal repeats of the LFa motif (Gomez
and Billadeau, 2009; Harbour et al., 2012; Jia et al., 2012; Helfer et al.,
2013; Chen et al., 2019).WASH, which is regulated byMAGEL2 and
USP7, then nucleates actin on the membrane (Hao et al., 2013; Hao
et al., 2015; Florke Gee et al., 2020). The interaction between WASH
and the Prader-Willi protein MAGEL2 will be discussed further in
the last section.

5.2 Retromer and the sorting nexin protein
family

Retromer functions as a coat complex that packages and delivers
its cargo via tubular or vesicular structures to the TGN or plasma
membrane (Lucas and Hierro, 2017; Wang et al., 2018). Vesicles
coated with retromer are defined as retromer-coated endosomal
tubular carriers (ETCs). Compared to other protein coats
(i.e., clathrin, COPI, and COPII), ETCs are much more
heterogeneous with a “loose” assembled coat, possibly an
adaptation to different membrane curvatures (Chen et al., 2019).
Retromer coat assembly depends on SNX proteins in mammals, as
retromer does not possess intrinsic membrane-binding properties
(Burd and Cullen, 2014; Chen et al., 2019). Different combinations
of SNX proteins and retromer are important for recycling specific
proteins (Gallon and Cullen, 2015; Chamberland and Ritter, 2017;
Yong et al., 2022).

The SNX protein family expanded from 10 proteins in yeast
to 33 in mammals and six of them (SNX1, SNX2, SNX3, SNX5,
SNX6, and SNX27) were shown to associate with the retromer
complex (Cullen, 2008; Burd and Cullen, 2014; Lucas and Hierro,
2017). SNX1 and SNX2 are Vps5 orthologs, and SNX5 and
SNX6 are Vps17 orthologs (McGough and Cullen, 2011). All
SNX proteins possess a Phox (PX) domain that binds to
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phospholipids, in particular PtdIns(3)P, found in endosomes
(Bugarcic et al., 2011; Chamberland and Ritter, 2017; Wang
et al., 2018). SNX proteins are divided into subfamilies based
on their domain architecture (Wang et al., 2018). SNX-PX
subfamily members, like SNX3, only possess a PX domain.
The SNX-FERM (4.1/ezrin/radixin/moesin) subfamily member
SNX27 contains a FERM domain, which can bind to PtdIns(3)P
and NPxY motifs, and a PDZ domain, which facilitates protein-
protein interactions (Zhang et al., 2018). The SNX-BAR
subfamily members contain a BAR domain that is capable of
sensing and inducing membrane curvature (Burd and Cullen,
2014). The retromer-interacting proteins from the SNX-BAR
subfamily include SNX1, SNX2, SNX5, and SNX6 (Lucas and
Hierro, 2017). Although most SNX proteins associate with early
endosome-enriched PtdIns(3)P, some also interact with late
endosome-enriched phosphatidylinositol 3,5-phosphate
[PtdIns(3,5)P]. SNX-PX-retromer and SNX-BAR-retromer
mediate retrograde transport to the TGN, and SNX27-
retromer mediates recycling to the plasma membrane through
its PDZ domain (Temkin et al., 2011; Steinberg et al., 2013; Lucas
and Hierro, 2017). Besides binding phosphatidylinositides,
SNXs also play a central role in cargo recognition (Wang
et al., 2018).

Retromer cargo selection is facilitated directly by VPS35 and
VPS26 and/or by adaptor proteins, like SNXs, AP-1, and GGAs
(Burd and Cullen, 2014; Cullen and Steinberg, 2018). The cargo
proteins CI-MPR, sortilin, Wntless, and polymeric
immunoglobulin (pIg) receptor possess a ΦX(L/M/V), where Φ
is F/Y/W, consensus sequence that facilitates direct binding to
SNX3-retromer (Verges et al., 2004; Seaman, 2007; Canuel et al.,
2008; Harterink et al., 2011; Harrison et al., 2014; Lucas and
Hierro, 2017; Cui et al., 2019; Yong et al., 2022). In general, at
least a hydrophobic (F/W)L(M/V) motif that is commonly present
in cargo proteins is needed for retromer-mediated sorting
(Seaman, 2007; Cullen and Steinberg, 2018). This direct
retromer interaction pathway is likely conserved in all
eukaryotes. In contrast, metazoan-specific adaptor-dependent
sorting allowed for the evolution of a plethora of sorting signals
to finetune retrograde trafficking (Cullen and Steinberg, 2018). For
example, a bipartite motif in VPS10, the functional homolog of CI-
MPR in yeast, is needed for precise recognition by yeast retromer
subunits Vps26 and Vps35 but not Vps17 (Suzuki et al., 2019).
However, mammalian SNX5/SNX6 (yeast orthologs of Vps17)
may function as the cargo-selecting module that recognizes a
bipartite motif in CI-MPR and many other cargo proteins
(Kvainickas et al., 2017; Simonetti et al., 2017; Simonetti et al.,
2019; Yong et al., 2020). As another example, metazoan-specific
SNX27 acts as an adaptor protein to select cargo through its FERM
and PDZ domains (Cullen and Steinberg, 2018; Chen et al., 2019).
Examples of SNX27 cargo containing a PDZ-binding motif [i.e., (S/
T)xΦ] include β2-adrenergic receptor, parathyroid hormone
receptor 1 (PTHR), α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptor, and the N-methyl-D-
aspartate (NMDA) receptor, which are all important in
neuroendocrine tissues (Temkin et al., 2011; Steinberg et al.,
2013; Lucas and Hierro, 2017). Some of these proteins,
particularly their sorting motifs, must be phosphorylated to
facilitate high-affinity binding to SNX27, suggesting additional

complexity in regulation and finetuning of retrograde transport
(Clairfeuille et al., 2016; Lucas and Hierro, 2017).

5.3 Retromer, the WASH complex, and
F-actin in retrograde trafficking

An essential part of endosomal recycling is membrane
remodeling, which is mediated by patches of branched F-actin,
and requires membrane localization of the retromer, WASH, and
ARP2/3 complexes (Fokin and Gautreau, 2021). Endosomal
cargo proteins are recognized by specific combinations of
retromer and SNXs (Gallon and Cullen, 2015; Chamberland
and Ritter, 2017; Yong et al., 2022). SNX proteins localize the
retromer complex to the membrane, and FAM21 binds to
retromer’s VPS35 to facilitate membrane localization of the
WASH complex (Harbour et al., 2010; Bugarcic et al., 2011;
Harbour et al., 2012; Jia et al., 2012; Helfer et al., 2013; Seaman
and Freeman, 2014; Chamberland and Ritter, 2017). A recent
study indicates that SWIP/KIAA1033 can also recruit the WASH
complex to the endosomal membrane independently of the
FAM21-VPS35 interaction (Dostal et al., 2023). The
endosomal membrane recruitment of WASH complex may
also be mediated through interaction with SNX27 (Temkin
et al., 2011; Steinberg et al., 2013) or its own direct interaction
with endosomal lipids (Derivery et al., 2009).

The WASH complex functions as the major actin nucleation-
promoting factor in endosomal recycling and is required for the
recycling of several proteins, including CI-MPR, glucose
transporter 1 (GLUT1), α5β1 integrin, and major
histocompatibility complex II (MHC II) (Gomez and
Billadeau, 2009; Zech et al., 2011; Piotrowski et al., 2013;
Graham et al., 2014; Dostal et al., 2023). WASH possesses a
conserved C-terminal VCA (verprolin homologous or WASP-
homology-2, connector, and acidic) domain that binds actin
monomers and ARP2/3 to trigger actin filament nucleation
(Linardopoulou et al., 2007; Duleh and Welch, 2010). More
specifically, binding of ARP2/3 to WASH’s VCA domain
induces a conformational change in ARP2/3 that loads the
first actin monomer and allows further actin polymerization
through rapid ATP hydrolysis on ARP2 (Derivery et al., 2009;
Padrick et al., 2011; Espinoza-Sanchez et al., 2018). Prior to actin
nucleation, WASH’s VCA domain is autoinhibited by intra- and
intermolecular interactions (Hao et al., 2013). Small GTPases and
PtdIns(4,5)P are some general regulators that may release VCA
motif inhibition, but tissue-specific machinery, like the MUST
complex (composed of MAGEL2, TRIM27 and USP7) might have
evolved to enable better adaptation to specific environmental
challenges (Figure 6) (Fon Tacer and Potts, 2017; Lee and Potts,
2017; Florke Gee et al., 2020).

The WASH complex promotes retromer trafficking by
triggering actin polymerization via ARP2/3 complex
recruitment and activation. Actin polymerization combined
with the action of SNX-BAR proteins and motor proteins
ultimately leads to the formation of tubular structures (Fokin
and Gautreau, 2021). Subsequent actin polymerization and the
activity of the dynein-dynactin complex leads to the fission of
tubular vesicles that carry various cargo proteins to their final
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destinations (Hunt et al., 2013; Wang et al., 2018; Fokin et al.,
2021). This pathway is well-established for diverse constitutively
secreted receptors; however, recent evidence suggests that
essential SG membrane proteins and granins are recycled back
to the TGN for nascent granule formation by retromer-
dependent retrograde transport, though the mechanistic
details and sorting motifs are still more or less unknown
(Ferraro et al., 2005; Ma et al., 2020; Neuman et al., 2021).
Interestingly, Prader-Willi mouse models with depletion of
Magel2 suggested that, in the hypothalamus, SG-resident
proteins are the major targets of Magel2-retromer-dependent
protein recycling (Figure 6) (Fon Tacer and Potts, 2017; Lee and
Potts, 2017; Florke Gee et al., 2020).

6 MAGEL2 in regulated secretion of the
hypothalamus

MAGEL2 is a mammalian-specific member of the melanoma
antigen gene (MAGE) family that is specifically expressed in the
brain and highly enriched in the hypothalamus (Figure 3) (Hao
et al., 2015; Fon Tacer et al., 2019). Like many MAGE family
proteins, MAGEL2 functions as a regulator of an E3 ubiquitin
ligase (Doyle et al., 2010; Lee and Potts, 2017; Florke Gee et al.,
2020). In particular, MAGEL2 interacts with the RING E3 ligase
TRIM27 and VPS35 in the retromer complex, thus facilitating the
localization of TRIM27 to retromer-positive endosomes (Figure 6A)
(Hao et al., 2013). MAGEL2-TRIM27 promotes K63-linked
polyubiquitination of WASH K220 (Hao et al., 2013). Unlike
some other ubiquitin linkage types, K63-linked ubiquitination
generally acts as a signaling event rather than targeting a protein
for proteasomal degradation. Accordingly, MAGEL2-TRIM27-
mediated ubiquitination leads to WASH activation and actin
polymerization (Hao et al., 2013; Hao et al., 2015; Fon Tacer and
Potts, 2017). The deubiquitinase USP7 forms a complex with
MAGEL2-TRIM27 and preferentially cleaves K63-linked
ubiquitin chains (Hao et al., 2015). Thus, USP7 fine-tunes
F-actin levels in the endosome by counteracting TRIM27 activity
and preventing the overactivation of WASH (Hao et al., 2015).
Although retromer is the major player in endosomal retrieval and
recycling, other similar complexes also recycle proteins (McNally
and Cullen, 2018). Interestingly, the WASH complex can also
associate with commander/CCC/retriever complex (Phillips-
Krawczak et al., 2015; McNally et al., 2017; Chen et al., 2019);
however, the role of MAGEL2 in activating WASH in association
with this complex is not known and warrants future investigation.
Furthermore, why WASH needs finetuning by MAGEL2 in the
hypothalamic neurons is the subject of current research.

The hypothalamus is a region of the brain that integrates signals
from different sensory inputs to maintain homeostasis by reacting
and adapting to any changes or stressors in the environment. By
controlling the autonomic nervous system via neurons linking it to
both the parasympathetic and sympathetic systems, the
hypothalamus regulates body temperature, hormones (e.g.,
thyrotropin-releasing hormone, gonadotropin-releasing hormone,
somatostatin, and dopamine), and behavioral responses. Hormones
released from hypothalamic neurons travel through the hypophyseal
portal system to the pituitary gland, controlling the release of other

hormones that regulate various endocrine glands and organs. By
linking the nervous and endocrine systems, this hypothalamus-
pituitary axis acts as a major control center in the body (Nillni,
2007). Intriguingly, the diverse functions of the MAGE protein
family are unified in their physiological function of stress adaptation
(Fon Tacer et al., 2019; Florke Gee et al., 2020).MAGEL2 is uniquely
expressed in the hypothalamus, and the molecular understanding of
its function suggests its role as a tissue-specific regulator of the
retrograde recycling of SG components and neuroendocrine
function in the hypothalamus (Hao et al., 2015; Fon Tacer and
Potts, 2017).

Given that the hypothalamus plays a key role in regulating many
physiological processes, perturbations in the regulated secretion
pathway lead to improper hypothalamic development and
function that phenotypically manifests in syndromes, such as
PWS and Schaaf-Yang syndrome (SYS) (Hoyos Sanchez et al.,
2023). PWS is a complex neurogenetic disorder caused by
paternal loss of the maternally imprinted 15q11-q13
chromosomal region (called the Prader-Willi region) that
contains small nucleolar RNA genes and six protein-coding genes
(MKRN3, NDN, NPAP1, SNURF-SNRPN, and MAGEL2) (Butler
et al., 2019; Alves and Franco, 2020). While the loss of MAGEL2
affects regulated secretion in the hypothalamus (Figure 6B), loss of
the other Prader-Willi region genes also impacts the clinical
presentation of PWS (Cassidy and Driscoll, 2009; Fon Tacer and
Potts, 2017; Chen et al., 2020). Currently, PWS and SYS have no cure
or effective therapy, and treatment focuses on managing the
symptoms that arise from perturbations in the regulated
secretion pathway and the dysregulation of crucial hypothalamic
hormones (Alves and Franco, 2020; Hoyos Sanchez et al., 2023).
Given that PWS is relatively common and affects 1 in
15,000 children, there is a pressing need to find better treatment
options (Cassidy and Driscoll, 2009). The recent findings about
MAGEL2’s role in regulated secretion suggest that restoring this
pathway may alleviate multiple symptoms of PWS and other similar
neurodevelopmental disorders (Chen et al., 2020).

While the mechanisms of retrograde trafficking are extremely
complex, cargo sorting at the endosomes culminates in ARP2/
3 activation and, in turn, actin nucleation. Through facilitating
the activation of WASH, MAGEL2 functions as a tissue-specific
regulator of ARP2/3 activation in the hypothalamus (Hao et al.,
2013; Hao et al., 2015). The loss of MAGEL2 expression causes
deficits in SG abundance and bioactive neuropeptide production,
impacting hypothalamic neuroendocrine function and contributing
to the clinical presentation of PWS (Figure 6B) (Chen et al., 2020;
Hoyos Sanchez et al., 2023). In particular, reduced levels of the
neuropeptides vasopressin, galanin, oxytocin, proenkephalin,
somatostatin, and thyrotropin-releasing hormone and the SG
components involved in their processing and release (i.e., CHGB,
secretogranin II and III, PC1/3, PC2, and CPE) have been discovered
in PWS mouse models and patient-derived neuronal cell models
(Chen et al., 2020; Hoyos Sanchez et al., 2023).

7 Conclusion

Together, several decades of research provided important
insights into the complexity of vesicle trafficking and protein
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sorting in neuroendocrine cells. In the regulated secretory
pathway, the anterograde transport is compensated by the
retrograde movement of lipids and proteins to maintain
membrane homeostasis and recycle various proteins.
Intriguingly, the recycling of constitutive proteins of
secretory granules (e.g., PCs, CPE, and granins) that enable
hormone and neuropeptide maturation and cargo condensation,
emerged as critical for proper hypothalamic secretion.
Furthermore, actin polymerization at the site of protein
sorting and vesicle budding controls retrograde transport and
is regulated in a tissue-specific manner by WASH complex and
MAGEL2 in the hypothalamus. Intriguingly, the diverse
functions of the MAGE protein family are unified in their
physiological function of stress adaptation. Given that
MAGEL2 is uniquely expressed in the hypothalamus, the
molecular understanding of its function suggests its role to
enable better and faster adaptation to an ever-changing
environment. The loss of MAGEL2 ultimately leads to
insufficient F-actin nucleation and a decreased percentage of
SG proteins recycled, which manifests in a perturbation of the
hormonal secretion in patients with Prader-Willi and Schaaf-
Yang syndromes. Further uncovering of the tissue-specific
regulation of anterograde and retrograde transport thus offers
potential therapeutic opportunities for patients.
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Most mitochondrial proteins are targeted to the organelle by N-terminal
mitochondrial targeting sequences (MTSs, or “presequences”) that are
recognized by the import machinery and subsequently cleaved to yield the
mature protein. MTSs do not have conserved amino acid compositions, but
share common physicochemical properties, including the ability to form
amphipathic α-helical structures enriched with basic and hydrophobic residues
on alternating faces. The lack of strict sequence conservation implies that some
polypeptides can be mistargeted to mitochondria, especially under cellular stress.
The pathogenic accumulation of proteins within mitochondria is implicated in
many aging-related neurodegenerative diseases, including Alzheimer’s,
Parkinson’s, and Huntington’s diseases. Mechanistically, these diseases may
originate in part from mitochondrial interactions with amyloid-β precursor
protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and
mutant forms of huntingtin (mHtt), respectively, that are mediated in part through
their associations with the mitochondrial protein import machinery. Emerging
evidence suggests that these amyloidogenic proteins may present cryptic
targeting signals that act as MTS mimetics and can be recognized by
mitochondrial import receptors and transported into different mitochondrial
compartments. Accumulation of these mistargeted proteins could overwhelm
the import machinery and its associated quality control mechanisms, thereby
contributing to neurological disease progression. Alternatively, the uptake of
amyloidogenic proteins into mitochondria may be part of a protein quality
control mechanism for clearance of cytotoxic proteins. Here we review the
pathomechanisms of these diseases as they relate to mitochondrial protein
import and effects on mitochondrial function, what features of APP/Aβ, α-syn
and mHtt make them suitable substrates for the import machinery, and how this
information can be leveraged for the development of therapeutic interventions.
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1 Introduction

Alzheimer’s Disease (AD), Parkinson’s Disease (PD) and
Huntington’s Disease (HD) are distinct neurodegenerative
disorders that involve the progressive loss of neuronal
structure and function. They are collectively classified as
proteopathies, which involve severe disruption in cellular
protein homeostasis (proteostasis) associated with protein
misfolding as well as disruptions in protein processing and
localization (Chowhan et al., 2015). Although the mechanistic
causes of these diseases are incompletely understood, each is
associated with the pathogenic accumulation of specific proteins.
Amyloid-β (Aβ), the proteolytic product of amyloid-β precursor
protein (APP), is associated with AD (Rocchi et al., 2003; Tcw
and Goate, 2017); α-synuclein (α-syn) is associated with PD and
other synucleinopathies (Stefanis, 2012); and expanded
polyglutamine (poly-Q) repeats underpin a range of
neurodegenerative disorders, including HD which is caused by
mutant forms of huntingtin (mHtt) (Li et al., 1993; Schilling et al.,
1995). Elucidating the mechanisms by which these proteins
precipitate their respective pathogenic cascades will be
essential in developing new treatments for their associated
neurodegenerative diseases.

As protein deposition diseases, AD, PD and HD are associated
with the conversion of soluble monomers or oligomers into highly
organized insoluble fibrillar aggregates, called amyloid fibrils, that
serve as their primary histopathological markers. Each of these
neurodegenerative diseases is associated with a specific
composition of protein deposits that target certain neuronal
subpopulations within the central nervous system (CNS). For
decades the dominant and unifying model to explain the
etiology of these cerebral proteopathies has focused on
aggregates of amyloid fibrils as the causative agents (Hardy and
Higgins, 1992). However, in recent years this model has been
challenged on two main fronts. First, there is accumulating
evidence that monomers or small oligomers of Aβ, α-syn, and
mHtt, rather than the large fibrils themselves, may in fact be the
cytotoxic species; and second, the extent of fibrillization is not
necessarily correlated with disease progression (Uddin et al., 2020;
Wells et al., 2021).

These changes in perspective have been accompanied by an
increasing recognition that mitochondrial dysfunction plays a key
role in neurodegenerative diseases (Swerdlow et al., 2014). More
specifically, APP/Aβ, α-syn, and mHtt have all been shown to
negatively impact different mitochondrial functions and to
accumulate within different mitochondrial subcompartments.
Such observations raise the intriguing mechanistic question of
how these amyloids target to mitochondria, given that
mitochondria contain a network of machineries that are
ostensibly designed to selectively import only polypeptides with
defined functions in the organelle. Here we review emerging
evidence that APP/Aβ, α-syn, and mHtt may contain “cryptic”
sequences that mimic the classic N-terminal targeting information
of mitochondrial proteins to interact with mitochondrial import
complexes, the implications this may have for the role of
mitochondrial dysfunction in neurodegeneration, and how such
insights could inform the development of novel therapeutic
strategies for AD, PD, and HD.

2 Mitochondria of the central nervous
system

The CNS is composed of neurons and glial cells (Figure 1A).
Neurons are morphologically complex cells that transmit
information by receiving a stimulus at dendrites that is
transferred to the cell body and then propagated as an action
potential (an electrochemical impulse) along the axon. Glial cells
provide physical and metabolic support to neurons and include
several subtypes including astrocytes, which serve mainly to support
neural function and signaling; oligodendrocytes, which form myelin
sheaths around axons; and microglia, the immune cells of the CNS.
Neurodegenerative disorders predominantly affect neurons in
particular anatomical regions of the brain (Dugger and Dickson,
2017; Fu et al., 2018); however, glial cells are purported to also play a
direct role in the pathomechanisms of these diseases (Gleichman
and Carmichael, 2020).

Mitochondria are morphologically complex, bound by a
mitochondrial outer (MOM) and inner (MIM) membrane that
enclose the intermembrane space (IMS), intracristal space (ICS)
and matrix aqueous compartments (Figure 1Bi). Mitochondria
assume a particularly important role in the physiology of
neurons and neuroglia, given the high metabolic and signaling
activity of these cells (Kann and Kovacs, 2007). First,
mitochondria of the CNS must ensure efficient energy
metabolism (Figure 1Bii). The brain comprises only 2%–3% of
the human body mass yet accounts for up to 20% of total energy
expenditure (Rolfe and Brown, 1997). This high energy demand is
due to processes that include the maintenance of ion gradients such
as Na+/K+-ATPases and Ca2+-ATPases for neuronal excitability, as
well as the synthesis, packaging, and cycling of neurotransmitters
(Attwell and Laughlin, 2001). To meet this demand, most neuronal
ATP is generated by mitochondrial oxidative phosphorylation
(OXPHOS) fueled by glycolysis-derived pyruvate, although some
glycolysis-derived ATP is utilized directly at nerve terminals during
stress to sustain synaptic transmission (Tsacopoulos andMagistretti,
1996; Murali Mahadevan et al., 2021). The astrocyte-neuron lactatae
shuttle model proposes that lactate produced by astrocytes is
subsequently taken up by surrounding neurons to support high
OXPHOS activity; however, the accuracy and relevance of this
model has been questioned (Dienel, 2017). Second, mitochondria
are the primary source of reactive oxygen species (ROS) in cells
(Figure 1Biii), most of which are generated from the partial
reduction of dioxygen (O2) by different enzyme complexes of the
electron transport chian (ETC) (Halliwell, 1992). As in other tissues,
ROS serve dual roles in CNS cells. On one hand, ROS are critical for
signaling processes required for neuronal plasticity and network
tuning, and on the other, mitochondrial dysfunction can lead to ROS
overproduction and oxidative damage, which is positively associated
with neurodegenerative disorders (Milton and Sweeney, 2012;
Oswald et al., 2018). Other central functions of mitochondria
involve their interactions with the endoplasmic reticulum (ER),
specifically at specialized regions of the ER called the
mitochondrial-associated membrane (MAM) that is tethered to
the MOM at sites termed mitochondria-ER contact sites
(MERCSs) (Aoyama-Ishiwatari and Hirabayashi, 2021; Sassano
et al., 2022). One function of MERCSs is the regulation of Ca2+

homeostasis (Figure 1Biv). The ER serves as the primary Ca2+
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FIGURE 1
The CNS and mitochondria. (A) CNS cell types. The neuron (nerve cell, green) typically consists of a cell body (soma), multiple branching dendrites
(afferent processes) that receive signals and transmit them to the cell body, and a single axon (efferent process) that forms an extended cable-like
structure ending with axon terminals. Glial cells include astrocytes (red) and oligodendrocytes (yellow), amongst other cell types. (B) Mitochondria
structure and major functions. (i) Subcompartments. Mitochondria have a two-membrane organization with a mitochondrial outer membrane
(MOM) and inner membrane (MIM), the latter subdivided into an inner boundary membrane (IBM) closely appressed to the MOM, and the cristae
membrane (CM). These membranes delineate the innermost matrix compartment from the intermembrane space (IMS) and intracristal space (ICS) that
connect at the functional boundary of the crista junction (CJ). (ii) Energy metabolism. The OXPHOSmachinery is parsed into complexes that generate an
electrochemical proton potential (Δ ˜μH+) across the CM (including respiratory complexes I, II, III and IV of the electron transport chain) and the F1FO ATP

(Continued )
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storage organelle, balancing ion uptake by the sarco/endoplasmic
reticulum Ca2+-ATPase (SERCA) pumps with transient release from
channels that include the inositol 1,4,5-triphosphate receptor (IP3R)
and the ryanodine receptor (RyR). Mitochondria serve as temporary
stores of cellular Ca2+ (e.g., during Ca2+ transients that occur with
action potentials in neurons), taking up ions through the β-barrel
voltage-dependent anion channel (VDAC) in the MOM and the
mitochondrial calcium uniporter (MCU) of the MIM. Ca2+

dyshomeostasis is a central feature of neurodegenerative diseases
(Kolobkova et al., 2017; McDaid et al., 2020; Xu et al., 2022a).
MERCSs also regulate lipid biosynthesis (Figure 1Bv) by serving as
platforms for the non-vesicular trafficking of phospholipids and
cholesterol and lipid droplet formation (Giordano, 2018; Benador
et al., 2019). Defects in lipid metabolism are also a central feature of
neurodegeneration, much of it attributable to alterations at the
MAM-mitochondria interface (Block et al., 2010; Alecu and
Bennett, 2019; Yin, 2023). Finally, mitochondria contain protein
import machinery for the biogenesis of nuclear-encoded proteins
(Figure 1Bvi). The role of the import machinery in mediating
mitochondrial interactions with amyloidogenic proteins is the
focus of this review.

Mitochondria are highly dynamic organelles, constantly
undergoing growth, fission into fragments balanced by fusion
into interconnected networks, and selective degradation of
dysfunctional organelles by mitophagy (Yapa et al., 2021).
Furthermore, neuronal mitochondria are distributed to match the
local metabolic and signaling requirements of the somatic, dendritic,
axonal, and synaptic regions, a process governed by anterograde and
retrograde trafficking (Mandal and Drerup, 2019). Mitochondrial
biogenesis requires the regulated import of proteins into the
organelle to accommodate growth and replacement of damaged
proteins to maintain an adequate population of healthy
mitochondria.

Mitochondria also have a specialized lipid composition
(Claypool and Koehler, 2012; Poulaki and Giannouli, 2022). The
glycerophospholipid cardiolipin is of particular relevance because it
is unique to mitochondria. Cardiolipin has an unusual structure,
with a two-phosphate headgroup that imparts a strong negative
charge to the membrane surface and four acyl tails, creating a
molecular geometry that affects lipid packing and stabilizes local
membrane curvature (Ikon and Ryan, 2017). Cardiolipin is
primarily localized to the MIM, where it accounts for
approximately 20 mol% of total phospholipid content, and is less
abundant in the MOM, where it makes up less than 5 mol% of
phospholipids. Externalization of cardiolipin from the MIM to the

MOM can occur with cellular stress, which can serve as a signal for
selective mitochondrial autophagy (mitophagy) or programmed cell
death (apoptosis) (Li et al., 2015).

A key question surrounding neurodegeneration is why neurons
are particularly vulnerable to proteostatic imbalance. The answer is
manifold: because neurons are terminally differentiated and non-
proliferative cells, they cannot rely on asymmetric mitosis to purge
aggregated proteins and must therefore rely on robust proteostatic
quality control machinery that can fail with age (Heydari et al., 1994;
Conconi et al., 1996; Taylor and Dillin, 2011); because neurons are
structurally polarized with long processes, the clearance of protein
aggregates from distal parts of the cell is energetically costly and
prone to dysregulation (Guo et al., 2020); and because neurons have
such specialized functional and metabolic demands (e.g.,
maintenance of ion gradients, calcium regulation, and
neurotransmitter cycling), there is a small energetic margin of
error to spare in the face of proteostatic stress, particularly with
age-related decreases in energy metabolism (Blaszczyk, 2020).

3 Mitochondrial protein import and the
proteostatic network

3.1 The mitochondrial protein import and
quality control machinery

The biogenesis and steady-state function of mitochondria
require a highly regulated system of protein import, sorting,
assembly, and quality control (Figure 2; Supplementary Table
S1). The human mitochondrial proteome consists of
approximately 1200–1500 individual proteins (Morgenstern et al.,
2021; Rath et al., 2021). Being semi-autonomous organelles,
mitochondria have the genome (mitochondrial DNA) and the
biosynthetic machinery (e.g., mitochondrial ribosomes, RNA/
DNA polymerases and tRNAs) to synthesize a handful of their
resident proteins, which in humans includes 13 subunits of
OXPHOS complexes I, III, IV and V. All other mitochondrial
proteins are encoded in nuclear DNA, synthesized on cytosolic
ribosomes, and subsequently imported into mitochondria. Multiple
pathways exist for the targeting and sorting of nuclear-encoded
proteins to the proper mitochondrial membrane or aqueous
subcompartment (Busch et al., 2023) (Figure 2A). These proteins
are synthesized with mitochondria targeting information encoded in
the polypeptide sequence itself, which must be recognized by the
dedicated import complexes that direct them to their correct

FIGURE 1 (Continued)
synthase (complex V) that uses the energy of the proton gradient to drive ATP synthesis. (iii) ROS production. Mitochondrial complexes I, II and III
generate superoxide (O2

.−) from the one-electron reduction of O2, which can subsequently be catalytically dismutated to H2O2 (a potent signaling
molecule) or converted to the cytotoxic hydroxyl radical (OH·). (iv) Calcium homeostasis. The sarco/endoplasmic reticulum acts as a Ca2+ repository
based largely on Ca2+ influx from ATP-dependent SERCA pumps and Ca2+ efflux from channels including the inositol (1,4,5)-triphosphate (IP3R)
receptor (tethered to the MOM by GRP75) and ryanodine receptor (RyR). Mitochondrial Ca2+ uptake across the MOM occurs through the voltage-
dependent anion channel (VDAC) and across the MIM by the mitochondrial calcium uniporter (MCU), with efflux occurring primarily by the Na+/Ca2+

exchanger (NCLX). (v) Lipid biogenesis and trafficking. Lipid biosynthesis complexes (cyan) and lipid transport proteins (LTPs) mediate the production of
phospholipids (PC, phosphatidylcholine; PS, phosphatidylserine; PE, phosphatidylethanolamine; PA, phosphatidic acid; and CL, cardiolipin) and
cholesterol (CHO). The MAM also mediates formation of lipid droplet (LD), enriched in cholesterol esters (CE) and triacylglycerol (TAG). MAM-MOM
tethering complexes are depicted in yellow. (vi) Protein import. Most mitochondrial proteins are nuclear encoded and imported from the cytosol. Nearly
all proteins enter mitochondria through the TOM complex, and most are imported to the final destination by modular assemblies of the TIM complex
(TIM23MOTOR and TIM23SORT).
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FIGURE 2
Mitochondrial import and proteostatic control. (A) Trafficking routes of mitochondrial proteins. Mitochondrial proteins include soluble proteins of the IMS/
ICS and matrix (green), α-helical membrane proteins of the MOM and MIM (yellow) and β-barrel proteins of the MOM (cyan). Trafficking routes are depicted for
nuclear-encoded proteins (solid lines) and mitochondrial-encoded proteins (dashed line). The major protein transport complexes include the translocase of the
outer membrane (TOM) complex, the mitochondrial import (MIM) complex, the sorting and assembly machinery (SAM) complex, translocases of the inner
membrane 22 and 23 (TIM22 and TIM23, respectively), themitochondrial IMS import and assembly (MIA) complex, and the oxidase assembly (OXA) insertase. The
trafficking of MTS-containing precursors via the TIM23 pathway is denoted by the thick arrows. (B) Targeting and topogenic sequences of TIM23 substrates. The
MTSs are depicted in gray as containing basic (+) and hydrophobic (ϕ) residues. The stop-transfer segment is depicted in black. (C) Themammalian TIM23 import,
processing, and quality control machinery. Components of the biogenesis machinery are categorized as: (i) chaperones that regulate the targeting of precursors
from the cytosol to the mitochondrion (violet), (ii) outer membrane (TOM and SAM) complexes (green), (iii) TIM23MOTOR and TIM23SORT complexes (yellow), (iv)
proteases that process TIM23 substrates (cyan), (v) matrix chaperones that mediate the folding of TIM23 substrates (orange), and (vi) proteases that mediate the
degradation of mitochondrial proteins (red). See Supplementary Table S1 for a listing of all relevant proteins.
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destinations. The majority (about two-thirds) of mitochondria-
targeted proteins are imported via the translocase of the
mitochondrial inner membrane 23 (TIM23) pathway, which
mediates the translocation of soluble proteins into the matrix as
well as the integration of membrane proteins into the MIM (Sinha
et al., 2014). In this section, we summarize our current
understanding of TIM23-based protein biogenesis and the
associated mitochondrial proteostasis machinery.

3.1.1 TIM23 presequences
A key defining feature of TIM23 substrates is an amino-terminal

targeting signal termed the mitochondrial targeting sequence
(MTS), or “presequence”. These proteins are synthesized as so-
called precursors that are recognized by receptors of the
mitochondrial import machinery and typically have their
respective MTSs cleaved to yield the mature form of the protein
upon reaching their destination. The MTS signals lack sequence
conservation, are highly variable in length (ranging from about 15 to
60 amino acids), and are unstructured in aqueous solution.
However, they all share a capacity to form amphipathic α-helices
with one face enriched in hydrophobic residues and the other
enriched in basic residues (mostly Arg). This is coupled with a
near absence of acidic residues, resulting in a net charge between
+3 and +6 (Roise et al., 1986; Roise et al., 1988; Roise and Schatz,
1988; Pak and Weiner, 1990; Vogtle et al., 2009; Calvo et al., 2017).
TIM23-targeted precursors have a diversity of targeting elements
(Figure 2B): (i) those containing only the N-terminal MTS followed
by a soluble mature protein, (ii) those with MTS-like structures
(iMTS-Ls) in the mature protein that bind mitochondrial receptors
and enhance import efficiency and kinetics (Backes et al., 2018;
Hansen et al., 2018), and (iii) those with a bipartite signal sequence
that, in addition to theMTS, contain a topogenic (membrane-active)
hydrophobic stop-transfer sequence that partitions into the MIM as
a transmembrane segment (Glick et al., 1992). It should also be
noted that MTS processing is not a strict feature of TIM23-mediated
import, as some TIM23 precursors are not processed following
translocation and some retain import competence even with their
MTSs deleted (Longen et al., 2014; Woellhaf et al., 2014; Weill et al.,
2018). Importantly, the variability of the sequence and the locations
of MTS and MTS-like sequences may explain the ability of some
amyloidogenic polypeptides to present cryptic TIM23 targeting
signals, as we discuss later.

3.1.2 Cytosolic trafficking of TIM23 substrates
The biogenesis of TIM23 substrates begins on cytosolic

ribosomes and is regulated by several molecular chaperones and
piloting factors (Figure 2C, violet). The targeting of these proteins to
mitochondria mostly proceeds post-translationally, whereby the
polypeptide is completely synthesized and released from the
ribosome before engaging the mitochondrial import machinery.
In this case, ATP-dependent cytosolic heat shock proteins (HSPs)
of the HSP70 (Deshaies et al., 1988; Murakami et al., 1988; Terada
et al., 1995; Endo et al., 1996) and HSP90 families (Young et al.,
2003; Fan et al., 2006) may bind precursors at different stages to
prevent their aggregation and maintain them in partially unfolded
states (Becker et al., 2019; Avendano-Monsalve et al., 2020), which is
particularly important for precursor proteins with transmembrane
segments (Claros et al., 1995). The HSP70/90 chaperones undergo

ATPase cycles that are allosterically coupled to substrate binding
and release (Rutledge et al., 2022). HSP70s inhibit folding of their
client substrates by extensively interacting with low specificity at
binding motifs of short hydrophobic segments flanked by charged
residues (Rudiger et al., 1997). By comparison, HSP90s have more
extended binding sites that recognize later-folding intermediates
(Karagoz and Rudiger, 2015). The activity of HSP70s is modulated
by co-chaperones that regulate ATP turnover and substrate
specificity (Moran Luengo et al., 2019). HSP70 co-chaperones
include J domain (HSP40) proteins, which stimulate ATP
hydrolysis, and nucleotide exchange factors (NEFs), which
promote exchange of bound ADP for ATP (Kampinga and Craig,
2010). Multiple J domain co-chaperones, including DNAJA1, 2, and
4 in mammals and Djp1, Ydj1 and Sis1 in yeast, have been
implicated in precursor protein targeting to mammalian
mitochondria (Bhangoo et al., 2007; Papic et al., 2013; Jores
et al., 2018).

Alternatively, the targeting of TIM23 substrates can proceed
co-translationally, wherein the polypeptide engages the
mitochondrial import machinery while it is still being
translated on the ribosome (Avendano-Monsalve et al., 2020;
Lenkiewicz et al., 2021). The existence of cotranslational
import in both yeast and mammalian mitochondria is
supported by evidence of mitochondria-bound ribosomes and
polysomes that is promoted, for example, following treatment
with the translation elongation inhibitor cycloheximide (Crowley
and Payne, 1998; Williams et al., 2014; Gold et al., 2017). Other
studies similarly support cotranslational targeting of different
TIM23 substrates (Ahmed et al., 2006; Yogev et al., 2007).
Although mitochondria do not appear to have a dedicated
cotranslational targeting route (for instance, analogous to the
signal recognition particle-mediated pathway of the ER (Akopian
et al., 2013)), there are systems in place for promoting
cotranslational mitochondrial import under certain conditions.
For example, mRNAs encoding mitochondria-targeted proteins
are enriched at the mitochondrial surface (Egea et al., 1997;
Matsumoto et al., 2012; Williams et al., 2014; Fazal et al., 2019;
Kuzniewska et al., 2020), and stabilized by MOM-localized RNA
binding proteins Puf3 in yeast (Wang et al., 2018) and perhaps
SYNJ2BP in mammals (Qin et al., 2021). Additionally, a
translation stimulator at the mitochondrial surface, the MDI-
Larp complex, was shown to enhance protein synthesis in the
vicinity of import complexes in Drosophila (Zhang et al., 2016).
Finally, mitochondria-targeted proteins can be recognized by the
heterodimeric nascent polypeptide-associated complex (NAC)
(Beatrix et al., 2000), which simultaneously binds ribosomes
and emerging nascent chains and may promote cotranslational
targeting to mitochondria (Wiedmann et al., 1994; George et al.,
1998; George et al., 2002; del Alamo et al., 2011; Gamerdinger
et al., 2019). In yeast, NAC binds to the SAM complex subunit
Sam37 (Ponce-Rojas et al., 2017; Avendano-Monsalve et al., 2022)
and the MOM protein OM14 (Lesnik et al., 2014); whether NAC
engages homologous proteins in mammalian mitochondria
remains an open question. NAC may play a special role in
amyloidogenic diseases, as it has recently been shown to
suppress aggregation of poly-Q expanded proteins (Shen K.
et al., 2019). The critical point is that regardless of whether
precursor substrates are imported co- or post-translationally,
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the targeting system is designed to maintain the substrate in an
unfolded state in order to preserve its import competence.

3.1.3 Structure and function of the TOM complex
The translocase of the outer mitochondrial membrane (TOM)

complex of theMOM serves as the entry site for all TIM23 substrates
into mitochondria (Figure 2C, green). This complex contains seven
different subunits: the Tom40 β-barrel channel that serves as the
aqueous transmembrane conduit for precursors; small TOM
proteins (Tom5, Tom6, Tom7) that regulate TOM complex
assembly; and several receptors, including Tom22, Tom20 and
Tom70 (Pitt and Buchanan, 2021; Araiso and Endo, 2022). The
core complex appears to form as equi-stoichiometric assemblies of
Tom40/22/5/6/7 that can arrange as dimeric or higher order
structures (Kunkele et al., 1998; Model et al., 2008; Mager et al.,
2010; Shiota et al., 2015; Bausewein et al., 2017; Sakaue et al., 2019);
in contrast, the Tom20 and Tom70 receptors appear to be more
loosely bound. Thus, these receptors may instead assemble with the
TOM complex in an on-demand basis depending on the presence of
substrate (Dekker et al., 1998; Bhagawati et al., 2021). Recent cryo-
EM structures of the TOM complex in yeast (Araiso et al., 2019;
Tucker and Park, 2019) and human (Wang et al., 2020a; Guan et al.,
2021; Su et al., 2022) have shed light on the structural interactions
among TOM subunits and how precursor proteins are recognized
and translocated. For example, the TOM receptors play
complementary and partially overlapping roles in the recognition

of MTS-containing proteins. Tom20, Tom70, and Tom22 all have
receptor domains containing tetratricopeptide repeat (TPR) motifs
that mediate protein interactions (Zeytuni and Zarivach, 2012) and
appear to have general protein chaperone function in addition to
acting as precursor receptors (Yano et al., 2004; Yamamoto et al.,
2009). Tom20 serves as the general receptor for preproteins and is
paradigmatic for MTS-receptor interactions because it is the only
mitochondrial receptor for which high-resolution structural
information is available in the MTS peptide-bound state (Abe
et al., 2000; Saitoh et al., 2007; Saitoh et al., 2011). The
Tom20 cytosolic C-terminal receptor domain contains two helix-
turn-helix motifs that define a single prototypical TPR motif with an
embedded nonpolar patch flanked by two acidic regions and a
region rich in Gln residues (Figure 3A). The binding groove of
Tom20 is shallow and short, accommodating only about eight
residues of the MTS. The Tom20 recognition motif within MTSs
is ϕχχϕϕ, where ϕ is a nonpolar residue and χ is any residue. This
relatively nonspecific recognition motif enables a dynamic, weak-
affinity and multi-mode interaction with the substrate, dominated
by nonpolar contacts (Muto et al., 2001; Obita et al., 2003). Tom70,
by comparison, has a much larger receptor domain containing
11 TPR motifs that are divided into N- and C-terminal parts
(Wu and Sha, 2006) (Figure 3B). The N-terminal region of
Tom70 contains a homodimerization interface and forms a
clamp-like region (TPR motifs 1–3) that binds Hsp70 and
Hsp90 chaperones, perhaps serving as a co-chaperone for the

FIGURE 3
Mitochondrial protein import receptors of known structure. Soluble receptor domains are shown as cartoon traces superimposed with electrostatic
surfaces (red, acidic; blue, basic; white, neutral). Grey curved rectangles show approximate positions of transmembrane segment attachment. (A) Rat
Tom20 receptor from crystal structure with disulfide-bound MTS (green) showing two different binding states resolved by distinct MTS-receptor
chemical tethering strategies (the so-called A-linker [PDB 2V1T], above; and the Y-linker [PDB 2V1S], below). (B) Yeast Tom70 receptor from crystal
structure (PDB 2GW1). (C)Human Tom22 receptor from cryo-EM structure (PDB 7VDD). (D) Tim50 receptor (homology model of human receptor based
on yeast Tim50 core domain) from crystal structure (PDB 3QLE), showing the predicted MTS binding pocket and protruding β-hairpin.
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transfer of Hsp70/90-bound precursors to the TOM complex
(Young et al., 2003; Wu and Sha, 2006). This function
underscores its recently discovered role in recruiting chaperones
to the mitochondrial surface (Backes et al., 2021). The C-terminal
region of Tom70 (TPR motifs 4–11) forms a large pocket that likely
binds polytopic membrane precursor proteins destined for the
TIM22 pathway (Wiedemann et al., 2001; Rehling et al., 2003),
and may bind targeting signals of TIM23 substrates as well (Hines
et al., 1990; Hines and Schatz, 1993; Wu and Sha, 2006; Melin et al.,
2015). The central receptor Tom22 regulates TOM complex
assembly, and unlike the primary Tom20 and Tom70 receptors,
it is tightly bound to the TOM complex. Additionally,
Tom22 features receptor domains on both the cytosol-facing
(Figure 3C) and IMS-facing sides of the MOM (Bolliger et al.,
1995; Honlinger et al., 1995; Dekker et al., 1998; van Wilpe et al.,
1999; Yamano et al., 2008). While Tom22 and Tom20 have similar
substrate profiles (Mayer et al., 1995; Yamano et al., 2008), the
Tom20 receptor mediates hydrophobic interactions with the MTS,
whereas Tom22 interactions are dominated by electrostatic
attraction between the basic face of the MTS and the partially
disordered acidic Tom22 binding pocket (Kiebler et al., 1993).
However, the strict requirement of these negatively charged
residues has been questioned (Nargang et al., 1998). The
dominant model describing how precursor proteins traverse the
membrane through the TOM complex is by an “acid chain” of
negatively charged patches on TOM subunits that guide the
positively charged MTS. By this model, Tom5 and Tom22 make
up an acidic pathway on the cytosolic face of the MOM (the cis site)
(Bolliger et al., 1995; Dietmeier et al., 1997; Schatz, 1997; Komiya
et al., 1998), the precursor moves through the Tom40 pore guided by
acidic residues on the interior wall of the β-barrel (Suzuki et al.,
2000; Gabriel et al., 2003; Shiota et al., 2015), and the precursor then
binds sites on the IMS side of the MOM comprised of Tom22,
Tom40 and Tom7 (the trans site) (Court et al., 1996; Moczko et al.,
1997; Rapaport et al., 1997; Kanamori et al., 1999; Esaki et al., 2004).
The selective positioning of acidic binding sites with increasing
affinity for the MTS from the cytosolic to the IMS sites drives the
vectorial movement of the precursor through the TOM complex.

3.1.4 Structure and function of the TIM23 complex
The TIM23 complex is the dedicated machinery of theMIM that

mediates the import and sorting of all MTS-containing precursor
proteins (Genge and Mokranjac, 2021) (Figure 2, yellow). The
general organization of TIM23 is evolutionarily conserved;
however, in comparison with the more fully understood yeast
complex, human TIM23 forms multiple functionally distinct
complexes containing alternate subunit isoforms (Sinha et al.,
2014; Pfanner et al., 2019). The core TIM23 complex in humans
contains the channel forming Tim23 and Tim17A/B1/B2 isoforms
that assemble to make an aqueous conduit across the MIM for the
passage of preproteins (Bauer et al., 1999; Moro et al., 1999;
Martinez-Caballero et al., 2007; Demishtein-Zohary et al., 2017;
Matta et al., 2017). It also contains Tim50, which serves as the main
receptor for MTS-bearing precursors (Geissler et al., 2002;
Yamamoto et al., 2002; Mokranjac et al., 2003a) and, in
mammals, acts as a broad specificity phosphatase (Guo et al.,
2004; Chaudhuri et al., 2021). The conserved core domain of the
Tim50 receptor contains a putative MTS binding groove lined with

negatively charged and hydrophobic residues as well as a prominent
β-hairpin (Qian et al., 2011) (Figure 3D). The N-terminal extension
of the Tim23 channel is an intrinsically disordered region that
specifically interacts with Tim50 near the β-hairpin (Geissler
et al., 2002; Yamamoto et al., 2002; Mokranjac et al., 2003a;
Meinecke et al., 2006; Alder et al., 2008a; Gevorkyan-Airapetov
et al., 2009; Mokranjac et al., 2009; Tamura et al., 2009; Qian et al.,
2011; Schulz et al., 2011; Lytovchenko et al., 2013; Malhotra et al.,
2017; Dayan et al., 2019; Gunsel et al., 2020). This interaction
between the disordered N-terminal extension of Tim23 and
Tim50 maintains the Tim23 channel in a quiescent, dimeric state
that preserves the transmembrane potential (Δψm) across the MIM
(Bauer et al., 1996; Meinecke et al., 2006; Alder et al., 2008a).

To deliver precursors to their correct destination, the
compositionally dynamic TIM23 complex forms two different
assemblies adapted to the Tim23/17/50 core. The TIM23MOTOR

complex mediates the translocation of soluble precursors into the
matrix (Mokranjac, 2020), a process that requires the recruitment of
a matrix-localized molecular motor system (the presequence
translocase-associated motor, or PAM complex) that includes: the
central subunit mitochondrial Hsp70 (mtHsp70, also called
mortalin), which serves as the ATP-driven molecular motor
(Goswami et al., 2010; Esfahanian et al., 2023); Tim44, which
anchors mtHsp70 to the TIM23MOTOR complex (Kronidou et al.,
1994; Schneider et al., 1994; Silva et al., 2004); and co-chaperones
that modulate the ATPase activity of mtHsp70. The latter include
the GrpE-Like 1 and 2 (GrpEL1 and GrpEL2) NEFs (Schneider et al.,
1996; Naylor et al., 1998; Srivastava et al., 2017), the paralogous
DnaJC15 (C15) and DnaJC19 (C19) that are homologous to the
yeast J-protein Pam18/Tim14 (Silva et al., 2003; Mokranjac et al.,
2003b; Richter-Dennerlein et al., 2014), and isoforms of the
mitochondria-associated granulocyte-macrophage colony
stimulating factor (GM-CSF) signaling molecule (Magmas-1 and
2) that are orthologs of the yeast J-like protein Pam16/Tim16 (Elsner
et al., 2009; Sinha et al., 2010; Waingankar and Silva, 2021). By
contrast, the TIM23SORT complex mediates the lateral sorting of
membrane-directed precursor proteins into the MIM. This sorting
complex lacks the PAM motor and recruits additional membrane
subunits. These include Tim21, which makes specific contacts with
Tim23 and Tim50 (Tamura et al., 2009; Lytovchenko et al., 2013;
Bajaj et al., 2014) and mediates the assembly of membrane-bound
subunits of respiratory complex IV (Mick et al., 2012; Richter-
Dennerlein et al., 2016), and ROMO1, a subunit homologous to
yeast Mgr2 that promotes the interaction of Tim21 with the
TIM23SORT complex and is specifically required for the import of
mitochondrial proteases (Ieva et al., 2014; Richter et al., 2019; Matta
et al., 2020). Apropos of these proposed discrete TIM23SORT and
TIM23MOTOR models for MIM integration and matrix import, it
should be noted that other experimental results support a model in
which TIM23 is a single structural entity that is actively remodeled
to support translocation or integration depending on substrate
availability instead of existing in two disparate states (Popov-
Celeketic et al., 2008).

The import of MTS-containing substrates by the
TIM23 complex is a multistep, energy-requiring process. The
transfer of precursor proteins to the TIM23 complex is facilitated
by the formation of a TOM-TIM23 supercomplex that is stabilized
by interactions of the IMS-facing trans site of the TOM complex and
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the IMS-facing regions of Tim21, Tim50, and Tim23 subunits of the
TIM23 complex (Dekker et al., 1997; Chacinska et al., 2003;
Mokranjac et al., 2005; Albrecht et al., 2006; van der Laan et al.,
2006; Chacinska et al., 2010; Shiota et al., 2011; Gold et al., 2014),
which have been verified primarily by crosslinking experiments
done with yeast models and with purified proteins (Chacinska
et al., 2005; Mokranjac et al., 2005; Albrecht et al., 2006; Tamura
et al., 2009; Shiota et al., 2011; Bajaj et al., 2014; Waegemann et al.,
2015; Araiso et al., 2019; Gunsel et al., 2020). Upon emerging from
the TOM complex, the MTS first binds the Tim50 receptor, thereby
displacing receptor interactions with the Tim23 N-terminus and
Tim21 and altering the TOM-TIM23 association (Geissler et al.,
2002; Yamamoto et al., 2002; Mokranjac et al., 2003a; Mokranjac
et al., 2009; Marom et al., 2011a; Shiota et al., 2011; Lytovchenko
et al., 2013; Waegemann et al., 2015). The MTS then binds the now-
exposed Tim23 N-terminus (Bauer et al., 1996; de la Cruz et al.,
2010; Marom et al., 2011a; Lytovchenko et al., 2013) and is directed
to the Tim23 channel which, like Tom40, has specific residues along
the channel lumen that interact with substrates (Alder et al., 2008b;
Denkert et al., 2017). The dynamic Tim23 channel undergoes
conformational alterations in response to substrate and changes
in the Δψm (Popov-Celeketic et al., 2008; Malhotra et al., 2013) and
the presence of the MTS activates the Tim23 channel gating (Bauer
et al., 1996; Truscott et al., 2001). The basic MTS is
electrophoretically pulled toward the negatively charged matrix
through the activated Tim23 channel (Martin et al., 1991), with
unidirectional movement imparted by increasing binding affinity
between the MTS and Tim23, Tim50, and Tim44 (Marom et al.,
2011b). Soluble precursor proteins are then translocated completely
into the matrix by the TIM23MOTOR complex, whereby the ATPase
activity of mtHsp70, modulated by co-chaperones DnaJC15/19 and
Magmas-1/2, pulls the substrate by a Brownian ratchet or active
pulling mechanism (Mokranjac et al., 2003a; Mokranjac, 2020; Silva
et al., 2003; Mokranjac et al., 2003b; Truscott et al., 2003). By
contrast, when a hydrophobic stop-transfer sequence is detected
on the substrate, translocation stalls, the complex recruits subunits
of the TIM23SORT complex, and the nonpolar segment partitions
laterally into the MIM as an α-helical transmembrane segment in a
manner driven by the Δψm (Gartner et al., 1995; Gruhler et al., 1997)
and mediated by the ROMO1 and Tim21 gatekeepers (van der Laan
et al., 2006; Mick et al., 2012; Ieva et al., 2014; Richter-Dennerlein
et al., 2016; Richter et al., 2019; Lee et al., 2020). Notably, an
alternative structure-based model of TIM23 function suggests
that instead of forming an aqueous channel, Tim23 and
Tim17 together form lipid-exposed cavities that provide a protein
translocation pathway (Sim et al., 2023), consistent with evidence
that TIM23 precursors are translocated across the MIM at the
Tim17-bilayer interface rather than via a channel defined by
Tim23 (Fielden et al., 2023).

3.1.5 Processing and quality control of
TIM23 substrates

During import, precursor proteins are selectively processed to
their mature forms by a set of mitochondria-localized processing
proteases (Gomez-Fabra Gala and Vogtle, 2021; Kunova et al.,
2022) (Figure 2C, cyan). The vast majority of TIM23 complex
substrates are processed in a way that removes the N-terminal
targeting sequences (Vogtle et al., 2009). The main protease is the

matrix-localized mitochondrial processing peptidase (MPP), a
metalloendopeptidase that forms a dimeric complex (PMPCA
and PMPCB subunits in human) (Taylor et al., 2001). MPP
cleaves at defined recognition sites (predominantly with the
scissile bond two or three residues C-terminal to an Arg residue
(Calvo et al., 2017)), thereby releasing the MTS which is
subsequently degraded by the presequence protease (PreP)
(Alikhani et al., 2011a; Kucukkose et al., 2021). Following MTS
cleavage, some matrix-targeted precursors require additional
maturation steps at the new N-terminus that involve the
removal of either a single residue (mediated by the
XPNPEP3 protease (Singh et al., 2017)) or an octapeptide
(mediated by the MIP protease (Vogtle et al., 2011)), both of
which remove destabilizing N-terminal residues to increase
protein half-life (Vogtle et al., 2009; Varshavsky, 2011).
Additionally, some TIM23-targeted substrates integrated into
the MIM are processed by the inner membrane peptidase IMP
(IMMP1L and IMMP2L in human), which releases a soluble IMS-
facing domain of the imported protein as the mature, functional
form (Nunnari et al., 1993).

To ensure the proper folding of newly-imported proteins,
mitochondria contain two main chaperone systems in the
matrix (Figure 2C, orange). The mitochondrial Hsp60/
Hsp10 chaperonin complex, a homolog of the bacterial GroEL/
GroES chaperonin, sequesters unfolded or kinetically-trapped
folding intermediates inside an Anfinsen cage-like cavity and
undergoes ATPase-driven structural changes to release properly
folded proteins (Cheng et al., 1989; Ellis, 1996; Nielsen and Cowan,
1998; Apetri and Horwich, 2008; Chakraborty et al., 2010;
Nisemblat et al., 2015). In addition, a soluble complex of
mtHsp70 (mortalin) resides in the matrix (Horst et al., 1997;
Havalova et al., 2021), where it performs its protein folding
functions with three co-chaperones that have been identified in
human: the Hsp70-escort protein 1 (HEP1) and J-domain protein
tumorous imaginal disc protein 1 (TID-1), which regulate ATPase
activity of mtHsp70, and the NEFs GrpEL1/2 (Sichting et al., 2005;
Zhai et al., 2008; Iosefson et al., 2012; Dores-Silva et al., 2013;
Havalova et al., 2021). These main matrix chaperone systems are
supplemented in mammals by the HSP90 paralog TRAP1, which
performs diverse functions including acting as a late-stage folding
chaperone for mitochondrial matrix proteins (Joshi et al., 2022).

In addition, mitochondria contain several proteases for the
degradation of misfolded and damaged proteins (Gomez-Fabra
Gala and Vogtle, 2021) (Figure 2C, red). In human mitochondria,
four main ATP-fueled proteases of the AAA+ (ATPases associated
with diverse cellular activities) superfamily are responsible for the
surveillance and clearance of proteins. These include the MIM-bound
metalloproteases m-AAA (homo-oligomers of AFG3L2 or hetero-
oligomers of AFG3L2 and SPG7 with catalytic domains facing the
matrix) and i-AAA (composed of YME1L1 with catalytic domains
facing the IMS), both of which can extract and break down MIM
proteins (Opalinska and Janska, 2018). Additionally, the matrix
contains soluble AAA+ serine proteases. LONP1 is a
homohexameric assembly that serves as the central quality control
protease in the matrix, degrading misfolded and damaged proteins
(Szczepanowska and Trifunovic, 2022) in addition to promoting
protein folding by cooperating with mtHsp70 (Shin et al., 2021).
The CLPXP complex, on the other hand, is a heterooligomeric
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protease assembly involved in diverse functions including
mitoribosome and OXPHOS maintenance (Szczepanowska and
Trifunovic, 2022). The HTRA2 (high temperature requirement)
soluble serine protease of the IMS is involved in caspase-
dependent apoptosis and has been implicated in PD progression
(Vande Walle et al., 2008). Finally, there are additional MIM-bound
proteases, including PARL andOMA1, that have amore specific set of
substrate proteins that regulate mitochondrial dynamics, mitophagy,
and stress responses (Pellegrini and Scorrano, 2007; Jiang et al., 2014).
As discussed below, the quality control machinery for newly imported
proteins may also be involved in stress responses involving
amyloidogenic proteins.

3.2 Amyloid misfolding and cellular
proteostasis

Cellular proteostasis involves the regulation of all stages of the
protein life cycle (Labbadia and Morimoto, 2015; Klaips et al., 2018):
molecular chaperones guide cotranslational folding of nascent
chains during ribosomal synthesis and promote protein folding
and assembly of oligomeric complexes, degradation mechanisms
such as the ubiquitin-proteasome system (UPS) and the autophagy-
lysosome pathway (ALP) remove misfolded and aggregated
proteins, and stress response pathways respond to protein folding
stress, such as the ER-based unfolded protein response (UPRER)

FIGURE 4
Amyloids and cellular proteostasis. The proteostasis network of mammalian cells is depicted by black arrows. Chaperones that guide cotranslational
folding on the ribosome include the nascent polypeptide-associated complex (NAC) and the ribosome-associated complex (RAC). Additional
chaperones guide monomer folding and assembly into complexes. The ubiquitin-proteasome system (UPS) targets misfolded proteins, or proteins that
are no longer needed, by ubiquitination and digestion by the proteasome. The autophagy-lysosome pathway (ALP) targets misfolded proteins (and
larger structures such as large aggregates and organelles) by delivering them to the lysosome via distinct pathways (macroautophagy, microautophagy
and chaperone-mediated autophagy). Protein unfolding stress can activate complex signal transduction pathways leading to gene expression changes
for restoring protein homeostasis, most notably the ER-based unfolded protein response (UPRER). Amyloidogenesis, depicted by gray arrows, can initiate
from intrinsically disordered or misfolded structures and proceed by stepwise formation of oligomers, protofibrils, and finally mature fibrils. It can also be
accelerated by secondary nucleation and fragmentation of existing fibrils.
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(Figure 4, black arrows). All three of these protein quality control
processes are implicated in neurodegenerative diseases (Scheper and
Hoozemans, 2015; Park et al., 2020; Schmidt et al., 2021).

AD, PD, and HD are proteostatic diseases associated with the
misfolding of Aβ, α-syn, and mHtt, respectively, in a process that
leads to the formation of amyloid fibrils (Figure 4, grey arrows). This
process can begin with precursors that include intrinsically
disordered peptides such as Aβ and α-syn, or with partially and
misfolded globular proteins. The kinetics of amyloid fibrillization
have a marked dependence on protein concentration, as well as
factors that affect the tendency for polypeptides to self-associate,
including mutations, post-translational modifications (PTMs),
cofactors, and oxidative stress (Alexandrescu, 2005; Rezaei-
Ghaleh et al., 2016; Hu et al., 2019; Lontay et al., 2020; Chiki
et al., 2021; Gottlieb et al., 2021; He et al., 2021; McGlinchey
et al., 2021). Fibrillization follows nucleation kinetics, accounting
for the “seeding” properties of amyloids (Chiti and Dobson, 2017;
Almeida and Brito, 2020). Nucleation can occur through primary or
de novo processes, or secondary mechanisms whereby mature fibril
surfaces act as templates for new fibril growth (Ferrone et al., 1985;
Padrick andMiranker, 2002; Patil et al., 2011; Tornquist et al., 2018).
Amyloid fibrils share a common structural property of protein
association through a cross-β spine motif, stabilized by
intermolecular hydrogen-bonded parallel β-sheet layers arranged
perpendicular to the long axis of the fibril (Nelson et al., 2005; Chiti
and Dobson, 2017; Almeida and Brito, 2020). They also share similar
morphologies, often being microns long with widths of ~10 nm and
a twisting repeat of ~100 nm (Dobson, 2003; Qiang et al., 2017).

Amyloidogenic aggregates have historically provided the
primary histopathological markers of AD, PD, and HD. These
aggregates are generally termed “amyloid fibrils” when formed
extracellularly and ‘inclusions’ when formed intracellularly. The
hallmarks of AD are extracellular plaques composed primarily of
Aβ peptides and intracellular neurofibrillary tangles enriched in
hyperphosphorylated variants of the protein tau (Zheng and Koo,
2011). PD is characterized by cytoplasmic aggregates called Lewy
bodies and inclusions called Lewy neurites, of which α-syn is the
main component (Braak et al., 1999). Intracellular accumulation of
mHtt into amyloid-like inclusion bodies is a primary feature of HD
(Yamamoto et al., 2000; Arrasate et al., 2004).

The concept that insoluble fibrils, whether extra- or intra-
cellular, are the primary cytotoxic factors that initiate
amyloidogenic disease is the core tenet of the “amyloid cascade
hypothesis” (Figure 5, left) first proposed by Hardy and Higgins to
describe the role of Aβ amyloids in AD pathogenesis (Hardy and
Higgins, 1992). Subsequently it was proposed that α-syn fibrils are
the primary cytotoxic factors in PD (Stefanis, 2012) and that
amyloid fibril-like inclusions of mHtt are the primary cytotoxic
factors in HD (Scherzinger et al., 1999). There is considerable
controversy, however, on whether amyloid fibrils are the only, or
even the principal culprits in pathology. A confounding factor is the
heterogeneity of species associated with amyloid formation.
Amyloidogenesis involves a hierarchy of structures that starts
from the functional, soluble form of a protein or peptide and
proceeds to oligomers, nuclei, β-sheets, protofilaments,
protofilament bundles, and finally mature fibrils (Serpell, 2000)

FIGURE 5
The amyloid and mitochondria cascade hypotheses. These two mechanisms describe the cause-and-effect relationships in the progression of
neurodegenerative diseases, proposed originally for AD but also relevant for other proteinopathies. The amyloid cascade hypothesis proposes that
amyloid accumulation, fibrillization, and plaque formation trigger the pathogenic events, includingmitochondrial damage, that lead to neuronal damage.
As a corollary to this hypothesis, the most effective interventions would target the accumulation, clearance, and fibril formation of amyloids. The
mitochondria cascade hypothesis proposes that mitochondrial dysfunction is the primary driver of neurodegeneration that leads to cellular damage,
including amyloid aggregation. As a corollary to this hypothesis, the most effective interventions would be those aimed toward improving mitochondrial
physiology. In both mechanisms, amyloid aggregation andmitochondrial dysfunction can be part of a vicious cycle that accelerates disease progression.
Note that the interaction of amyloidogenic proteins with the mitochondrial import machinery likely plays a central role in both mechanisms.
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(Figure 4). Within the fibrils themselves, there are structural
polymorphs that can differ depending on whether they are
grown in vitro or isolated from patients. In fact, increasing
evidence suggests distinct structural polymorphs are associated
with specific disease subtypes. Therefore, considerable uncertainty
surrounds which species represent the culprits in pathogenicity
(Carulla et al., 2005; Lansbury and Lashuel, 2006; Haass and
Selkoe, 2007; Zraika et al., 2010), with some recent proposals
advancing that soluble oligomers (Larson and Lesné, 2012; Arbor
et al., 2016; Cline et al., 2018) or even individual proteins/peptides
(Hoffner and Djian, 2014; Hillen, 2019) could initiate the
phenotypic cascade of amyloidogenic diseases. Because mature
fibrils are insoluble and extremely stable, many view soluble
oligomeric precursors as the most likely candidates for
cytotoxicity. However, studies on amyloid oligomers have been
hampered by the low concentrations and transitory nature of
these intermediates (Engel, 2009), thereby contributing to a lack
of evidence for this model. Finally, it unclear whether cytotoxicity is
associated with intracellular or extracellular forms of amyloidogenic
proteins (Cuello, 2005; Gurlo et al., 2010; Aston-Mourney et al.,
2011).

Much of the current research on the mechanisms of
amyloidogenic diseases has shifted focus towards processes
preceding mature fibril formation. As a result, it has now been
widely demonstrated that mitochondrial dysfunction occurs early in
the pathogenesis of AD (Wang et al., 2020b), PD (Malpartida et al.,
2021), and HD (Carmo et al., 2018). The “mitochondrial cascade
hypothesis”, originally proposed by Swerdlow and colleagues,
proposes that it is in fact the progressive decline in
mitochondrial function that promotes AD pathology and
influences the progression of the disease (Swerdlow et al., 2014)
(Figure 5, right). Therefore, exactly how amyloidogenic proteins
interact with mitochondria, and specifically how they may engage
the mitochondrial protein import machinery, is a key mechanistic
question in understanding the pathology of neurodegenerative
disorders.

4 Neurodegenerative diseases and
pathogenic mechanisms of amyloids

Aβ, α-syn, and Htt/mHtt are among the approximately
50 amyloidogenic proteins associated with human diseases (Chiti
and Dobson, 2017). In this section, we review the roles of these
proteins in AD, PD, and HD, respectively, with a special emphasis
on their interactions with mitochondria.

4.1 Alzheimer’s disease and the roles of APP
and Aβ

AD is the leading cause of senile dementia, affecting several
regions of the brain involved in memory and cognition, including
the hippocampus, the neocortex, and the basal forebrain (Auld
et al., 2002). While the exact etiology of AD is unknown, it is
biologically characterized by the aggregation of two misfolded
proteins: Aβ, the primary component of extracellular plaques, and
hyperphosphorylated variants of the microtubule-associated

protein tau, which form intracellular inclusions known as
neurofibrillary tangles (NFTs) (Knopman et al., 2021). Aβ is
produced through sequential cleavage of APP, a membrane
glycoprotein with isoforms ranging from 100 to 140 kDa that
predominantly reside at neuronal synapses (Zhou et al., 2011;
Hoe et al., 2012) (Figure 6A). APP plays a vital role in neural
development and synaptic plasticity, as it is implicated as a
receptor involved in kinesin 1 cargo recognition (Lazarov et al.,
2005), the Wnt signaling pathway (Liu T. et al., 2021) and other
functions including cell adhesion, synaptogenesis (Baumkötter
et al., 2014), and iron export (Duce et al., 2010). As a type I
integral membrane protein, APP has a large ectodomain at its
N-terminus, a single α-helical transmembrane segment, and a
small C-terminal intracellular domain. APP belongs to a highly
conserved superfamily of genes (Coulson et al., 2000; Jacobsen and
Iverfeldt, 2009). In mammals, alternative splicing generates eight
APP isoforms, the three most common being APP695, APP751, and
APP770, among which APP695 is most highly expressed in neurons
(Sandbrink et al., 1996; Belyaev et al., 2010). Like other plasma
membrane proteins, the life cycle of APP following synthesis
consists of membrane trafficking via the secretory pathway and
degradation and recycling by the endocytic system (Lin et al.,
2021). The Aβ peptides that form amyloid plaques in AD are
derived from the processing of APP through sequential actions of
β- and γ-secretases (Selkoe and Hardy, 2016; Zhao et al., 2020)
(Figure 6B). The generated Aβ peptides range in size, with the 42-
residue Aβ42 being much more aggregation-prone than the more
abundant 40-residue Aβ40 (Seubert et al., 1992; Haass and Selkoe,
2007; Chow et al., 2010). Monomeric Aβ40 and Aβ42 are
intrinsically disordered in solution (Roche et al., 2016), with
Aβ42 having a transient population of β-sheet structure
(Kakeshpour et al., 2021).

The neuropathology of AD has historically been described by
the amyloid cascade hypothesis, whereby Aβ deposition is the
causative event (Hardy and Higgins, 1992). In support of this
hypothesis, early-onset familial AD (FAD) is caused by autosomal
dominant inheritance mutations in the genes encoding APP or
APP processing enzymes (Bekris et al., 2010; Ricciarelli and Fedele,
2017). However, the vast majority of cases are sporadic, late onset
AD (LOAD) occurring without mutations in the genes encoding
APP or APP processing enzymes (Bekris et al., 2010). While the
correlation between Aβ and AD remains strongly supported
(Herrup, 2015), intracellular Aβ in the form of soluble
monomers and oligomers are now considered to be the primary
toxic species rather than insoluble, fibrillar assemblies of Aβ that
form extracellular plaques (Goure et al., 2014; Gallego Villarejo
et al., 2022). Despite this, soluble Aβ species precede the formation
of plaques, which are found in patient brains prior to the onset of
clinical symptoms, and it has been shown that Aβ alone is not
sufficient to induce disease pathogenesis (Herrup, 2015). This
suggests a more complex pathological mechanism at play that
led to the development of a variety of alternative hypotheses
surrounding AD etiology.

One prevailing proposal is the ApoE cascade hypothesis
(Martens et al., 2022), based on the genetic association of
LOAD with the apolipoprotein ε4 allele (APOE4) (Corder et al.,
1993). APOE4 carriers have a vastly increased risk of developing
LOAD and a reduced age of onset compared to carriers of the
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APOE3 and APOE2 isoforms (Corder et al., 1993; Sando et al.,
2008). ApoE is a 34 kDa lipid-binding protein that primarily
functions in lipid transport and metabolism (Mahley, 2016),
with differences among the ApoE2, E3, and E4 isoforms
confined to two sites (residues 112 and 158) (Najm et al., 2019;
Martens et al., 2022). The primary functional difference in
ApoE4 is its binding preference for very-low density lipoprotein
(VLDL) over high-density lipoprotein (HDL), whereas the
ApoE2 and ApoE3 isoforms preferentially bind HDL (Raffai
et al., 2001; Belloy et al., 2019). While ApoE contributes to Aβ
synthesis, accumulation, and clearance in an isoform-dependent
manner, there is conflicting evidence on the isoform-specific roles
of ApoE in Aβ pathology (Koistinaho et al., 2004; Castellano et al.,
2011; Huang and Mahley, 2014; Najm et al., 2019). The ApoE
cascade hypothesis does not include Aβ as a contributing factor in
disease pathogenesis, stating that the biophysical and structural
properties dependent of the ApoE isoform initiate a cascade of
events driving AD and aging-related pathogenic condition
(Martens et al., 2022). ApoE4 has been shown to alter lipid
homeostasis and metabolism, leading to changes in lipid droplet
formation, cholesterol turnover, and the PC/PE ratio (Farmer
et al., 2019; Lazar et al., 2022; Yang et al., 2023). Consistent
with MAM alterations, several lines of work support the

involvement of ApoE in mitochondrial dysfunction as a
contributing component to disease pathogenesis, including
recent findings suggesting mitochondrial dysfunction influences
ApoE expression and secretion (Dose et al., 2016; Martens et al.,
2022; Wynne et al., 2023).

AD is associated with pronounced defects in mitochondrial
function (Cenini and Voos, 2019; Wang et al., 2020c). These
include alterations in mitochondrial biogenesis and morphology,
and decreases in mitochondrial number (Hirai et al., 2001; Qin et al.,
2009; Oka et al., 2016; Brustovetsky et al., 2023); compromised
energy metabolism, including glucose hypometabolism (Kumar
et al., 2022) and deterioration of the TCA and OXPHOS systems
(particularly CIV) (Bubber et al., 2005; Liang et al., 2008; Zhang
et al., 2015; Mastroeni et al., 2017; Sorrentino et al., 2017; Adav et al.,
2019; Ryu et al., 2021); oxidative stress (Misrani et al., 2021); effects
on mitochondrial dynamics, most notably a general increase in
fragmentation (Wang et al., 2008a; Wang et al., 2009); impairment
of mitochondrial trafficking (Calkins et al., 2011); and altered ER-
mitochondria apposition with associated cellular Ca2+

dyshomeostasis (Leal et al., 2020; Fernandes et al., 2021; Li et al.,
2023). While these effects could be associated with the interaction of
APP/Aβ with mitochondria (see below), other AD-related factors
could also be involved.

FIGURE 6
AD and the role of APP and Aβ. (A) APP domain organization. Full-length APP contains an extracellular domain (ED, yellow), a transmembrane region
(TM), and the APP intracellular domain (AICD, red). The proteolysis product corresponding to Aβ is shown in cyan. The N-terminal ER- andmitochondria-
targeting sequences are shown in light and dark gray, respectively. (B) APP processing and Aβ aggregation. APP has twomain proteolytic fates. In the non-
amyloidogenic pathway (top), APP is first cleaved by α-secretase to yield soluble APPα (sAPPα) and the α-C-terminal fragment (α-CTF), the latter of
which is then cleaved by γ-secretase to produce AICD and the non-amyloidogenic extracellular peptide p3. In the amyloidogenic pathway (bottom), β-
secretase proteolyzes full-length APP to yield soluble APPβ (sAPPβ) and the β-C-terminal fragment (β-CTF), the latter of which is then cleaved by γ-
secretase to produce AICD and the amyloid beta peptide Aβ. The Aβ peptide, particularly Aβ42, is disordered in solution and prone to aggregation and
fibrillization.
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4.2 Parkinson’s disease and the role of α-syn

PD involves the selective degeneration of nigrostriatal
dopaminergic neurons, manifesting as progressive effects on
movement that include rigidity, resting tremor, and bradykinesia
(Zhai et al., 2018). The main histological features of PD are
cytoplasmic inclusions called Lewy bodies (LBs) and neuritic
inclusions called Lewy neurites (LNs) whose core component is
α-syn (Baba et al., 1998; Spillantini et al., 1998) but also contain
vesicular structures, membranes and fragmented organelles
(Shahmoradian et al., 2019; Ericsson et al., 2021). These α-syn
aggregates are characteristic of a general group of
neurodegenerative disorders termed synucleinopathies. α-syn is a
140 residue protein encoded by the synuclein alpha (SNCA) gene
that contains three domains: (i) an N-terminal amphipathic region,
(ii) a highly hydrophobic region called the non-amyloid-β
component (NAβC), and (iii) a C-terminal acidic region (Bisi
et al., 2021) (Figure 7A). Being enriched in the axon terminals of

presynaptic neurons, α-syn is a membrane-interactive protein that
plays a role in synaptic function, including vesicle trafficking and
exocytosis by assembly of SNARE complexes, synaptic membrane
remodeling, and maintenance of neurotransmitter vesicle pools
(Bendor et al., 2013; Burre, 2015). α-syn also localizes to the
nucleus, where it regulates gene expression (Somayaji et al., 2021).

Monomeric α-syn is intrinsically disordered in solution,
dynamically interconverting among many different
conformations that differ with respect to short- and long-range
electrostatic interactions and transient secondary structures
(Weinreb et al., 1996). The N-terminus of α-syn in solution has
helical propensity with a low fractional population assuming α-helix
conformation; however, when bound to membranes, it adopts a
stable helical structure that is either a continuous helix or two
separate helices (Davidson et al., 1998; Bussell and Eliezer, 2003;
Chandra et al., 2003; Ulmer et al., 2005; Croke et al., 2008; Georgieva
et al., 2008; Jao et al., 2008; Stockl et al., 2008; Cho et al., 2009;
Bodner et al., 2010; Rao et al., 2010; Croke et al., 2011; Ullman et al.,

FIGURE 7
PD and the role of α-syn. (A) α-syn domain organization. α-syn contains an N-terminal amphipathic region involved in membrane interactions
(yellow, residues 1–60), a central non-amyloid β component (NAβC) responsible for protein fibrillization (green, residues 61–95) and a highly acidic
C-terminal region (red, residues 96–140). Circled numbers indicate the seven 11-residue repeats containing the KTKEGV motif; H1 and H2 indicate the
regions of helical propensity that form two helices in the micelle-bound state or can form an elongated helix when bound to lower-curvature
membranes. Arrows indicate sites of point mutations and phosphorylation, as indicated, that enhance α-syn misfolding and aggregation (B) α-syn
function and aggregation. When membrane bound, α-syn folds into a single elongated helix or forms a two-helix structure. In solution, α-syn is largely
disordered and prone to aggregation and fibrillization.
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2011; Adao et al., 2020; Musteikyte et al., 2021).Membrane binding
is facilitated by seven imperfect repeats of the 11-residue pattern
xKTKEGVxxxx that extend from the amphipathic domain into the
NAβC domain, a motif also found in apolipoproteins A2 (Bussell
and Eliezer, 2003). This membrane-interactive region imparts
classic amphitropic behavior to α-syn, which consequently
promotes its interaction with curved bilayers, particularly with
those enriched in negatively charged phospholipids (Jo et al.,
2002) and cholesterol (Fantini et al., 2011). This membrane-
binding activity is critical for its function in synaptic vesicle
interaction (Fortin et al., 2005; Sarchione et al., 2021). The
hydrophobic NAβC domain nucleates α-syn aggregation, forming
the canonical β-structure of amyloid fibrils along with parts of the
N-terminal domain (Rodriguez et al., 2015). The fraction of α-syn
that natively exists in neurons in a membrane-bound state, as an
unfolded monomer (Fauvet et al., 2012; Theillet et al., 2016), or as
aggregation-resistant folded tetramers (Bartels et al., 2011; Wang
et al., 2011) remains an open question.

Familial autosomal dominant PD is linked to defects in several
genes, most of which have a connection to mitochondrial physiology
(Cieri et al., 2017; Billingsley et al., 2018). Among them, the six
known heritable mutations in the SNCA gene (A30P, E46K, H50Q,
G51D, and A53E/T) all localize to the amphipathic N-terminal
region of α-syn and promote aggregation (Flagmeier et al., 2016). α-
syn aggregation can also be potentiated by increases in its copy
number (Srinivasan et al., 2021). However, PD is primarily an
idiopathic disease in which aging-related increases in α-syn
aggregation and/or certain post-translational modifications of α-
syn are commonly involved (Anderson et al., 2006; Manzanza et al.,
2021; Roshanbin et al., 2021). The balance between α-syn function
and pathogenicity is depicted in Figure 7B.

Mitochondrial dysfunction plays a key role in the pathogenesis
of PD (Vicario et al., 2018). The enhanced expression of α-syn or
particular mutants of α-syn known to promote PD cause the
disruption of mitochondrial dynamics (Xie and Chung, 2012;
Thorne and Tumbarello, 2022) and promote fragmentation
(Kamp et al., 2010; Nakamura et al., 2011; Gui et al., 2012; Pozo
Devoto et al., 2017), impair mitochondrial trafficking (Pozo Devoto
et al., 2017) and autophagic clearance (Gao et al., 2017), impact
mitochondrial energetics (Banerjee et al., 2010), and alter Ca2+ flux
by the enhancement (Cali et al., 2012) or disruption (Guardia-
Laguarta et al., 2014; Guardia-Laguarta et al., 2015; Paillusson et al.,
2017) of specific ER-mitochondria tethering sites. One of the most
prominent effects of PD is the impairment of respiratory Complex I
associated with reduced energetic output and an overproduction of
ROS (Devi et al., 2008; Marella et al., 2009). This multitude of effects
is in line with the many mitochondrial subcompartments α-syn has
been found to target, including the MOM (Li et al., 2007; Cole et al.,
2008; McFarland et al., 2008; Nakamura et al., 2008; Zhang et al.,
2008; Kamp et al., 2010; Nakamura et al., 2011; Di Maio et al., 2016a;
Pozo Devoto et al., 2017), the MIM/IMS (McFarland et al., 2008;
Nakamura et al., 2011; Zhu et al., 2011; Lu et al., 2013; Robotta et al.,
2014; Amorim et al., 2017), the matrix (McFarland et al., 2008;
Ludtmann et al., 2016; Ludtmann et al., 2018) and the MAM (Cali
et al., 2012; Guardia-Laguarta et al., 2014; Paillusson et al., 2017).
Importantly, this extensive interaction of α-syn with mitochondria is
mediated in part through lipid bilayer interactions, particularly with
regions enriched with the mitochondrial lipid cardiolipin

(Ramakrishnan et al., 2003; Cole et al., 2008; Nakamura et al.,
2008; Grey et al., 2011; Zigoneanu et al., 2012; Robotta et al.,
2014; Ryan et al., 2018) that provides the negative surface, high
curvature, and acyl packing defects necessary to promote α-syn
binding (Sharon et al., 2003; Nuscher et al., 2004; Middleton and
Rhoades, 2010; Pfefferkorn et al., 2012; Ouberai et al., 2013;
Gilmozzi et al., 2020).

4.3 Huntington’s disease and the role of
mHtt

HD is associated with neurodegeneration of the basal ganglion,
with preferential deterioration of striatal medium spiny GABAergic
neurons, that clinically presents as progressive loss of motor control
and cognition (Morigaki and Goto, 2017). This monogenic disease is
caused by heritable alterations in Htt (Jurcau and Jurcau, 2022).
Structurally, Htt is a 348 kDa protein that contains two domains of
HEAT tandem repeats that form α-solenoid structures connected by
a bridge domain, and an N-terminal region with a tripartite
organization that contains a highly conserved sequence of
17 N-terminal amino acids (Nt17), a stretch of glutamine
residues (poly-Q), and a proline-rich domain (PRD) (Saudou and
Humbert, 2016; Guo et al., 2018) (Figure 8A). Htt is
conformationally dynamic, with an extensive list of interaction
partners likely owing to the protein-interaction functions of its
HEAT repeats (Shirasaki et al., 2012). As such, it serves as a
multivalent molecular scaffold, a function that likely supports its
many interactions in synapses including axonal transport, vesicle
recycling, autophagy, transcriptional regulation, and endocytosis
(Barron et al., 2021).

HD is an autosomal dominant disorder caused by an extension
of the poly-Q tracts resulting from polymorphic CAG trinucleotide
repeat expansion in exon 1 of the HTT gene (MacDonald et al.,
1993). HD is part of a larger family of neurodegenerative diseases
associated with polyglutamine expansion of proteins (Lieberman
et al., 2019). Whereas Htt in healthy individuals contains fewer than
36 CAG repeats, the pathogenically expanded poly-Q region can
contain between 42 and 250 CAG repeats, with disease severity and
earlier age of onset directly related to the extent of expansion
(Rubinsztein et al., 1996; Penney et al., 1997). Because Htt is
ubiquitously expressed, HD affects not only the brain but also
peripheral tissues with high metabolic activity (Chuang and
Demontis, 2021). Poly-Q expansion causes the resulting mHtt
protein to have altered folding (Vijayvargia et al., 2016) and
interactions (Ratovitski et al., 2012; Greco et al., 2022). This
makes mHtt prone to aggregation, forming inclusion bodies in
the cytoplasm and nucleus (Davies et al., 1997) with diverse
aggregate structures (Tanaka et al., 2001; Poirier et al., 2002) and
a complex composition that includes lipids, proteins, and
membrane-bound organelles (Kegel-Gleason, 2013; Riguet et al.,
2021). Notably, the primary cytotoxic, aggregation-prone species in
HD may not be full-length mHtt, but rather heterogeneous
populations of N-terminal fragments of mHtt exon 1 (Httex1)
(Mangiarini et al., 1996; Cooper et al., 1998; Hackam et al., 1998;
Martindale et al., 1998; Hoffner et al., 2005; Barbaro et al., 2015) that
can arise by cleavage of the mature protein by caspase, calpain, or
other proteases (Goldberg et al., 1996; Wellington et al., 1998; Kim
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et al., 2001; Gafni and Ellerby, 2002; Lunkes et al., 2002; Graham
et al., 2006; Schilling et al., 2007; Landles et al., 2010; Tebbenkamp
et al., 2012; Martin et al., 2019), or by aberrant splicing and
premature polyadenylation of pathogenic HTT exon 1 with
expanded CAG repeats (HTTex1 transcripts) (Sathasivam et al.,
2013; Neueder et al., 2017; Neueder et al., 2018) (Figure 8B).

Mitochondrial dysfunction plays a central role in HD
pathogenesis (Bossy-Wetzel et al., 2008; Carmo et al., 2018;
Jurcau and Jurcau, 2023). HD is associated with reduced
mitochondrial biogenesis and quality control (Steffan et al., 2000;
Cui et al., 2006;Weydt et al., 2006; Jin and Johnson, 2010; Wong and
Holzbaur, 2014; Khalil et al., 2015; Guo et al., 2016; Dubois et al.,
2021; Sonsky et al., 2021), mtDNA heteroplasmy (Wang et al., 2021),
defective energy metabolism and OXPHOS activity (Sawa et al.,
1999; Klivenyi et al., 2004; Seong et al., 2005; Benchoua et al., 2006;
Pandey et al., 2008; Mochel et al., 2012; Silva et al., 2013; Naia et al.,
2015; Burtscher et al., 2020), altered mitochondrial Ca2+ handling

and sensitivity to the mitochondrial permeability transition pore
(mPTP) (Panov et al., 2002; Choo et al., 2004; Milakovic et al., 2006;
Giacomello et al., 2013), increased mitochondrial oxidative stress
(Sorolla et al., 2008; Chae et al., 2012; Ribeiro et al., 2012; Ribeiro
et al., 2014; Chen et al., 2017; Moretti et al., 2021; Lopes et al., 2022;
Egidio et al., 2023), defective mitochondrial dynamics and hyper-
fission (Costa et al., 2010; Song et al., 2011; Shirendeb et al., 2012;
Manczak and Reddy, 2015; Cherubini et al., 2020), defective
mitochondrial trafficking (Trushina et al., 2004; Chang et al.,
2006; Orr et al., 2008; Shirendeb et al., 2012; Berth and Lloyd,
2023), and altered cytochrome c release with apoptosis (Chen et al.,
2000; Kiechle et al., 2002; Zhang et al., 2006; Wang et al., 2008b).
Althoughmany of these effects are related to spurious interactions of
mHtt with cytosolic proteins, there are several reports that full-
length and N-terminal fragments of Htt/mHtt interact directly with
mitochondria (Panov et al., 2002; Choo et al., 2004; Petrasch-Parwez
et al., 2007; Orr et al., 2008; Song et al., 2011; Guo et al., 2016). Some

FIGURE 8
HD and the role ofmHtt. (A)Htt domain organization. Full-length huntingtin is a 3144-residue protein that consists of N-terminal (residues 91–1683)
andC-terminal (residues 2092–3057) α-helical solenoid domains containingmultiple HEAT (huntingtin, elongation factor 3, protein phosphatase 2A, lipid
kinase TOR) repeats (yellow) connected by a helical linker region (red, residues 1684–2091). The full-length protein also features an N-terminal region
consisting of the Nt17 sequence (grey, residues 1–17), the poly-Q tract, which is expanded in HD (cyan, residues 18–40), and a proline-rich domain
(green, residues 41–90). (B) Htt biogenesis, processing, and misfolding. In the nucleus, normal splicing of the HTT gene results in a full-length transcript,
whereas alternative splicing and premature polyadenylation results in a transcript encoding Httex1. Following translation in the cytosol, full-length Htt is
subject to extensive proteolysis, which also contributes to the pool of Httex1 protein. Httex1 is unstructured in solution and prone to aggregation and
fibrillization.
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FIGURE 9
MTSs and cryptic targeting sequences of amyloids. Sequences and helical wheel diagrams of MTSs and select regions of amyloidogenic
proteins are depicted. Helical projections and parameters were determined using the HeliQuest server (Gautier et al., 2008). Mean
hydrophobicity is denoted as <H>, hydrophobic moment as <μH>, and net charge as z. For all projections, the N-terminal residue is oriented
due North (0o), and yellow arcs indicate the hydrophobic face of the amphipathic helices determined by <μH> values. (A) Example MTSs.
Human variants of select TIM23 substrates aldehyde dehydrogenase, subunit IV of Cytochrome c oxidase, and aconitase are shown. (B) Cryptic
targeting signals of amyloidogenic proteins. These include the putative MTS of: (i) APP, (ii) Aβ (1-42), (iii) α-syn (1-32), and (iv) huntingtin (1-17).
Helical projections to the left show the entire sequence. Helical projections to the right show the 11-residue (~3 helical turn) section with the
strongest amphipathic character, indicated by the underlined residues. Known sites of post-translational modification are indicated above the
primary sequences in red (A, acetylation; G, glycosylation; N, nitration; O, oxidation; P, phosphorylation; S, SUMOylation; U, ubiquitinylation).
Single letter amino acid codes colored by side chain functionality: yellow, hydrophobic; red, acidic; cyan, basic; green, polar uncharged.
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of these studies specifically implicate interactions with the MOM
(Hamilton et al., 2020) and some show interactions with internal
mitochondrial compartments (Yano et al., 2014; Yablonska et al.,
2019). In general, accumulation of N-terminal mHtt fragments with
mitochondria increases with age (Orr et al., 2008). Potential
interactions between Htt/mHtt and the mitochondrial import
machinery are discussed below.

5 Interactions of amyloidogenic
proteins with the mitochondrial protein
import machinery

5.1 Noncanonical and multi-specific
targeting signals

Most proteins that are targeted to cellular compartments
other than their site of ribosomal synthesis contain
unambiguous targeting sequences that faithfully direct them to
a specific location. For example, as described above, the MTSs of
TIM23 substrates form an N-terminal amphipathic α-helix that
serves as the primary recognition element of the TIM23 import
machinery. Three examples of MTSs shown in Figure 9A
illustrate their amphipathic character: they have an
appreciable number of nonpolar residues quantified as the
mean hydrophobicity (<H>) (Fauchere and Pliska, 1983), a
net charge (z) that reflects a preponderance of basic residues,
and an asymmetric distribution of nonpolar and basic residues
quantified by the hydrophobic moment (<μH>) (Eisenberg et al.,
1982). Yet it is also notable that MTSs vary significantly with
respect to sequence, length, and extent of amphipathicity. Thus,
while canonical MTSs encompass a range of physicochemical
properties, they are sufficiently well-defined enough to be
recognized by a single import pathway.

For some proteins, however, the relationship between the
targeting sequence and the organellar import pathway is not
straightforward and some targeting sequences can direct
passenger proteins to multiple cellular compartments by non-
mutually exclusive mechanisms (Karniely and Pines, 2005).
Indeed, targeting fidelity requires multiple levels of regulation
and precise recognition because mitochondrial MTSs, ER signal
peptides, chloroplast transit peptides, and even some
peroxisomal targeting signals share similarity in that they all
form N-terminal amphipathic α-helices with a hydrophobic face
and a basic (or polar) face (Kunze and Berger, 2015).

Some proteins contain an ambiguous (or cryptic) targeting
sequence that can be recognized by multiple import machineries
(Lu et al., 2004; Ventura et al., 2004; Chatre et al., 2009). Other
proteins contain well-defined targeting signals whose
accessibility or targeting efficiency can be modified by folding,
protein binding, or post-translational modifications (Karniely
and Pines, 2005). Still other proteins contain multiple targeting
signals that direct them to different compartments (Petrova et al.,
2004; Pino et al., 2007). For example, some cytochromes P450
(CYPs) expressed in hepatocytes contain chimeric signals with
amino-terminal ER-targeting sequences in tandem with a
mitochondrial-targeting sequence (Addya et al., 1997;
Anandatheerthavarada et al., 1999; Robin et al., 2001; Robin

et al., 2002). The bipartite targeting sequence of these
cytochromes contain a cryptic mitochondria localization signal
that remains idle until activation. In the case of CYP2E1, the
mitochondrial targeting signal is activated by cyclic-AMP-
dependent phosphorylation of a Ser residue in the cryptic
sequence (Robin et al., 2002). Moreover, an inducible
endoprotease has been identified that activates mitochondrial
import by cleaving bimodal targeting signals to expose the cryptic
mitochondrial targeting signal (Boopathi et al., 2008). It is
unclear whether such cleavage of chimeric signals is a general
requirement for mitochondrial targeting.

By allowing greater diversity of potential cellular locations,
noncanonical targeting imparts flexibility to the functional range
of individual proteins that can be subject to regulation by the cell in
response to different physiological demands. However, cryptic
targeting sequences can also cause the pathogenic accumulation
of proteins in organelles. In the following sections, we review the
cryptic mitochondria targeting sequences present in Aβ/APP, α-syn,
and Htt/mHtt that may facilitate their interactions with the
mitochondrial import machinery.

5.2 Interactions of Aβ and APP with the
mitochondrial import machinery

Several lines of evidence indicate that full-length APP engages
the TIM23 import pathway. The canonical biogenesis route of APP
entails targeting to the ER via the SRP/Sec61 pathway, translocation
across the ER membrane attendant with glycosylation of the
ectodomain, integration as a type I membrane protein, and
trafficking by the secretory, endocytic and recycling routes
(Muresan and Ladescu Muresan, 2015). APP contains a classic
N-terminal Sec-targeting signal with a predicted Signal Peptidase
cleavage site (AxA) between positions 17 and 18 (Auclair et al., 2012;
Almagro Armenteros et al., 2019). Following this ER-targeting signal
is a potential cryptic MTS spanning residues 37 to 67, segments of
which could form an amphipathic helix (Figure 9Bi). Thus, together
they form a chimeric ER-mitochondria targeting signal (Devi and
Anandatheerthavarada, 2010). Indeed, it has been shown using
human cortical neuronal cells that a non-glycosylated form of
APP695 can stall in the mitochondrial import pathway with a
predicted Nmito/Ccyto topology. This stalled intermediate made
crosslinking-detected interactions with Tom40, Tim23, and
Tim44, in a manner that required the Δψm and the positive
residues Arg40, His44, and Lys51, all three of which reside on a
common face of the putative MTS (Anandatheerthavarada et al.,
2003) (Figure 9Bi). Similar translocation intermediates of APP were
observed in mitochondria of transgenic AD mouse models
(Anandatheerthavarada et al., 2003) and in postmortem samples
of AD brains (Devi et al., 2006), the latter showing stable association
of APP with ~480 kDa complexes containing the TOM machinery
and ~620 kDa complexes containing the TIM23 machinery. The
stalling of APP in the import machinery appeared to be due to the
tight folding of the APP acidic domain (residues 220–290) blocking
transport along the TOM complex, as deletion of this domain
facilitated complete translocation (Anandatheerthavarada et al.,
2003). This observation is consistent with the formation of
stalled translocation intermediates observed with native
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FIGURE 10
Interactions of amyloidogenic proteins with the TIM23 complex. Models show import complex color scheme used in Figure 2 (TOM/SAM complex,
green; TIM23 complex, yellow) with other proteins depicted in grey. Subunits known to interact with amyloids are explicitly indicated by their names.
Putative cryptic targeting signals of Aβ/APP, α-syn, and Htt/mHtt are shown in red. [(A), left] APP. (1) APP forms a two membrane-spanning intermediate,
engaging both TOM and TIM23 complexes in a Δψm-dependent manner, with complete translocation blocked by the tight folding of the C-terminal
AICD domain. (2) Stalled APP intermediates block the import of native mitochondrial precursor proteins. (A, right) Aβ. (1) Aβ interacts with the TOM
complex (subunits Tom22 and Tom40), which (2) disrupts the import of native mitochondrial precursors. (3) Aβ forms co-aggregates with mitochondrial
precursors in the cytosol. Aβ interacts with proteins of the (4) MOM, (5) matrix, and (6) MIM, most notably CIV and CV. (7) Aβ is degraded by thematrix PreP
protease. A general feature of APP/Aβ stress is dysfunctional CIV and excess ROS production by the OXPHOSmachinery. (B) α-syn. (1) Multimers of α-syn

(Continued )
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mitochondria-targeted substrates with tightly folded (cofactor-
bound) C-terminal domains and fusion constructs with MTSs
fused to cofactor-stabilized domains like DHFR (Schneider,
2018). In agreement with the known effects of AD on
mitochondria function, APP translocation intermediates were
shown to interfere with the import of native mitochondrial
proteins (Devi et al., 2006). The extent to which mitochondrial
targeting of APP may be facilitated by endoprotease cleavage of the
ER targeting signal to expose the cryptic MTS (Boopathi et al., 2008)
is an open question. Figure 10A (left) summarizes the interactions of
APP with mitochondria.

The Aβ peptide has also been widely reported to accumulate in
mitochondria through the import machinery. The presence of Aβ
within mitochondria is well documented by its direct interactions
with many mitochondrial proteins, includingMOMproteins VDAC
(Manczak and Reddy, 2012) and Drp1 (Manczak et al., 2011), matrix
proteins Hsp60 (Caspersen et al., 2005), Aβ-binding alcohol
dehydrogenase (ABAD) (Lustbader et al., 2004) and cyclophilin
D (Du et al., 2008), and OXPHOS complexes including Complex IV
(Hernandez-Zimbron et al., 2012) and ATP synthase (Beck SJ. et al.,
2016). Furthermore, a pronounced feature of AD pathogenesis is the
mitochondrial accumulation of Aβ (Caspersen et al., 2005; Manczak
et al., 2006; Cha et al., 2012). Aβ42 has been shown to enter
mitochondria through the TOM complex, associating with the
MIM fraction in a Δψm-independent manner and localizing to
cristae in both in vitro import systems and in mitochondria from
human brain biopsies (Hansson Petersen et al., 2008). The specific
interactions of Aβ with the TOM complex were explored using a
yeast mitochondria model system, indicating that Aβ binds directly
to the Tom22 receptor, but not Tom20 or Tom70, and that Aβ
residues 25–42 were indispensable for this interaction (Hu et al.,
2018). The accumulation of Aβ within the import machinery is
functionally relevant because it inhibits the import of native nuclear-
encoded proteins (Sirk et al., 2007). However, it should also be noted
that cytosolic Aβ may inhibit the import of mitochondrial proteins
by coaggregation in the cytosol that does not involve blocking the
mitochondrial import machinery (Cenini et al., 2016). A common
theme in these studies is that the more aggregation-prone Aβ42 has a
stronger interaction with the import machinery than the Aβ40
variant (Sirk et al., 2007; Cenini et al., 2016; Hu et al., 2018).
Figure 10A (right) summarizes the interactions of Aβ with
mitochondria.

As mentioned, ApoE4, the primary genetic risk factor for AD,
induces increased connectivity betweenMAMs and mitochondria in
different ADmodels (Area-Gomez et al., 2012; Tambini et al., 2016).
MAMs have lipid raft-like membranes, enriched in sphingolipids
and cholesterol, which promote the interaction between APP and its

processing enzymes (β-secretase and γ-secretase) that have been
found to localize at the MAM. The biophysical properties of these
microdomains may enhance amyloidogenic processing of APP
(Diaz et al., 2015; Del Prete et al., 2017; Area-Gomez et al.,
2018). Additionally, the protein interactome of MAMs in cells
with mutant APP is enriched in mitochondrial import
components Tom22, Tim17b, and Sam50 (Del Prete et al., 2017).
Enhanced proximity of APP to the mitochondrial import machinery
could contribute to spurious import of APP.

There are some potentially confounding factors regarding the
import of the Aβ peptide through the mitochondrial import
machinery. The first is that Aβ produced from APP proteolysis is
released into exocytoplasmic compartments (ER lumen or the
extracellular space), whereas engagement with the mitochondrial
import machinery occurs from the cytosol. However, there is
evidence that proteolytically produced or externally added Aβ
can be taken up by cells via clathrin-dependent or -independent
endocytosis, followed by endosomal escape, which could allow it to
localize to mitochondria (Saavedra et al., 2007; Hansson Petersen
et al., 2008; Berridge, 2010; Friedrich et al., 2010). Furthermore, Aβ
produced in the vicinity of mitochondria by MAM-localized
secretases could directly access mitochondria (Area-Gomez et al.,
2009). The second is that the presence of Aβ in the matrix would
necessitate TIM23-mediated translocation; however, to date there is
no evidence of a direct interaction between Aβ and the
TIM23 complex. One explanation could be that the association
between the short Aβ peptide and the TIM23 receptors and channel
is too transient to be captured by techniques like crosslinking or
immunoprecipitation. Lastly, the Aβ sequence does not contain any
segments with strong amphipathicity (opposing basic and nonpolar
faces) that are present in canonical MTSs (Figure 9Bii). This feature
may hinder transport along the “acid chain” of the TIM23 pathway,
possibly explaining how Aβ could stall nonproductively at the TOM
complex.

It is noteworthy that AD is associated with a general disruption
of the mitochondrial import machinery. Analysis of RNA-seq
datasets from brains of AD patients versus age-matched healthy
individuals showed that expression of mitochondrial import genes
was decreased with AD (Sorrentino et al., 2017), consistent with the
observed decrease in expression of Tom20 and Tom70 in
postmortem neocortex samples of AD patients that correlate with
higher Aβ42/Aβ40 ratios (Chai et al., 2018). It has also been proposed
that the length of a poly-T polymorphism in the TOMM40 gene
correlates with LOAD, supporting the involvement of the TOM
complex channel in AD pathogenesis (Roses et al., 2010); however,
this finding has been questioned (Chiba-Falek et al., 2018). It is
possible that altered expression of TOM complex subunits could

FIGURE 10 (Continued)
interact with free Tom20, blocking its assembly with the TOMcomplex. The engagement of α-synwith TOMcomplex receptors and channel may (2)
hinder import of native mitochondrial proteins, (3) reduce Tom40 expression, and/or (4) disrupt PINK1/Parkin-mediated mitophagy; (5) Interaction of α-
syn with CI or CIV may disrupt ETC activity and cause ROS overproduction; (6) Interaction of α-syn with MICOS subunit Mic60 may affect cristae
morphogenesis; (7) Interaction of α-syn with ATP synthase (CV) or the adenine nucleotide translocase (ANT) may disrupt adenine nucleotide flux
and/or ATP production. (C) Htt/mHtt. (1) Htt may engage the TOM machinery with a tendency to accumulate in the IMS. (2) mHtt engages the TIM23
complex, (3) possibly facilitated by the unstructured poly-Q segment C-terminal to Nt17, which provides a flexible linker for Nt17 to engage TIM23
subunits. (4) mHtt may alternatively accumulate on the cytosolic side of the MOM. (5) Blockage of the import machinery by Htt/mHtt hinders import of
mitochondrial precursors.
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modulate mitochondrial interactions of APP/Aβ; for instance,
decreased Tom20/70 expression relative to Tom22 could promote
Aβ binding to the TOM complex (Hu et al., 2018).

The most compelling evidence that the mitochondrial import
and processing machinery serves as a mechanism for amyloid
clearance comes from the interaction between Aβ and PreP, the
matrix-localized protease that digests MTSs (Pinho et al., 2014). This
degradation step is critical because MTSs, being amphipathic and
membrane-interactive, can disrupt MIM integrity and their buildup
can lead to Δψm collapse and OXPHOS uncoupling (Teixeira and
Glaser, 2013). Importantly, PreP was shown to degrade Aβ variants
in vitro (Falkevall et al., 2006) and PreP activity is lower in the
temporal lobes of AD patients and transgenic AD mice compared
with controls, which may be further attributed to disease-related
oxidative modifications (Alikhani et al., 2011b). Given the functional
coupling between precursor processing and MTS turnover
(Kucukkose et al., 2021), the accumulation of Aβ could overcome
the MTS-clearing capacity of PreP and cause feedback inhibition of
MIP and MPP, thereby inhibiting import by the toxic buildup of
precursors and MTSs in the matrix (Mossmann et al., 2014).
Conversely, overexpression of PreP in AD mouse models
decreases mitochondrial Aβ concentrations and improves
organellar function (Fang et al., 2015; Brunetti et al., 2016; Du
et al., 2021). Given the key role of PreP in proteostasis (Brunetti
et al., 2021), mitochondrial import of Aβ and its subsequent
degradation may be essential for balancing cellular Aβ
concentrations.

5.3 Interactions of α-syn with the
mitochondrial import machinery

Several studies support the entry of α-syn into mitochondria
through the import complexes. α-syn was first shown to accumulate
in mitochondria in a manner that required the Δψm across the MIM
and an accessible Tom40 channel (Devi et al., 2008). Furthermore,
the possibility that the N-terminus of α-syn targets mitochondria is
supported by the indispensable role of residues 1–32 in
mitochondrial uptake (Devi et al., 2008) and of residues 1–11 in
association of α-syn with isolated mitochondria (Robotta et al.,
2014). When folded as an α-helix (stabilized by membrane
interactions), the N-terminal 32 residues of α-syn form an
amphipathic structure (Figure 9Biii), made up in part by the first
two imperfect KTKEGV repeats that produce a Lys-rich basic face
and a Val-rich nonpolar face. The N-terminus of α-syn therefore has
strong potential to act as a cryptic MTS (Devi and
Anandatheerthavarada, 2010).

TIM23-mediated uptake of α-syn is also supported by its
physical and genetic interactions with subunits of the import
machinery. Based on proteomics analysis of the interactome of
the α-syn C-terminal peptide and its variants phosphorylated at
Tyr125 and Ser129 that are known to promote aggregation (Samuel
et al., 2016; Fayyad et al., 2020), the unmodified and phosphorylated
peptides were found to preferentially interact with mitochondrial
and cytosolic proteins, respectively (McFarland et al., 2008). In this
study, the unmodified α-syn C-terminal peptide bound Tom40,
Sam50, and Tom22, with the interaction to MOM proteins
Tom40 and Sam50 strongly reduced by phosphorylation,

suggesting the preferential import of unmodified α-syn
(McFarland et al., 2008). This connection between α-syn
aggregation propensity and mitochondrial import is further
supported by the fact that all known PD-related missense
mutations reside in the N-terminal region (Flagmeier et al., 2016)
near the cryptic targeting sequence (Figure 7A). Perhaps more
compelling are the specific ways in which N-terminal mutants of
α-syn feature altered cellular interactions; namely, the A53T mutant
shows increased affinity for mitochondria and the MAM, whereas
the A30P mutant shows weaker affinity (Cole et al., 2008; Devi et al.,
2008; Guardia-Laguarta et al., 2014; Pozo Devoto et al., 2017). This
may be related to the decreased binding affinity of A30P mutant α-
syn for lipid membranes (Jo et al., 2002; Fortin et al., 2004).
Therefore, these PTMs and site mutations likely alter the
aggregation propensity and membrane interactions of α-syn that
subsequently affect its interaction with the mitochondrial import
machinery in complex ways.

The involvement of the TOM complex in α-syn import was
further investigated in two other studies. In one report, brain tissue
taken from postmortem PD patients and transgenic mice
overexpressing α-syn showed decreased expression of
Tom40 concurrent with mtDNA damage, oxidative stress, and
reduced bioenergetic efficiency (Bender et al., 2013). Another
report used a rotenone-induced Complex I dysfunction model of
PD, as well as postmortem brain tissue of PD patients, to show that
α-syn (specifically, the S129 phosphomimetic and soluble
oligomers) demonstrated strong but reversible binding to
Tom20 and reduced Tom20 expression. This binding thereby
prevented interactions between the Tom20/Tom22 receptors,
inhibited the import of mitochondrial proteins, and inhibited
respiration (Di Maio et al., 2016b). In these studies, the
overexpression of either Tom40 (Bender et al., 2013) or Tom20
(Di Maio et al., 2016b; De Miranda et al., 2020) reversed α-syn
aggregation and its associated mitochondrial defects. Taken
together, these results show a direct interaction between α-syn
and the TOM complex, although exactly how the oligomeric
state of α-syn or its PTMs may modify such interactions remain
open questions. It should be noted that to date, there is no strong
evidence for the specific interaction between α-syn and the
TIM23 import complex of the MIM. However, transport and
sorting of α-syn via the TIM23 machinery is highly likely given
the submitochondrial distribution of α-syn, which includes theMIM
and matrix. Figure 10B summarizes the interactions of α-syn with
mitochondria.

Another feature supporting the mitochondria-targeting capacity
of the α-syn N-terminus is its membrane-interactive nature. In its
functional role of fusing synaptic vesicles with the presynaptic
membrane, α-syn binds anionic phospholipid bilayers through its
N-terminus, which then adopts a stable α-helical structure and
displaces the unstructured C-terminal end resulting in an
elongated conformation (Bartels et al., 2010). Similar membrane
interactions have long been known for bona fide mitochondrial
MTSs, which can undergo a coil-to-helix transition upon anchoring
to lipid bilayers without perturbing membrane integrity (Skerjanc
et al., 1987; Hoyt et al., 1991; Wieprecht et al., 2000). Functionally,
this could allow the mitochondrial precursor to undergo a two-
dimensional random walk on the membrane surface to seek out its
cognate import receptor more efficiently. It is possible that α-syn
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adopts a similar mechanism to accumulate on membrane surfaces to
increase its local concentration in the vicinity of import complexes.

The interaction of α-syn with the mitochondrial import
machinery has important mechanistic implications for
mitochondrial stress responses and quality control related to PD
(Thorne and Tumbarello, 2022). One of the main pathways for
mitophagy-based removal of damaged mitochondria is the PINK1/
Parkin system. Under non-stressed conditions, the serine/threonine
kinase PINK1 engages mitochondrial import complexes and
becomes proteolyzed and efficiently degraded; however, under
stress conditions that lower the Δψm of the MIM,
PINK1 accumulates at the MOM and recruits the E3 ubiquitin
ligase Parkin, which ubiquitinylates mitochondrial proteins. This
signals for autophagic degradation of dysfunctional organelles and
consequently blunts cellular expansion of the damage (Ge et al.,
2020). Importantly, defects in PINK1 and Parkin (encoded by
PINK1 and PRKN genes, respectively) cause the deregulation of
mitochondrial quality control and together they represent the
preeminent monogenic forms of heritable PD (Klein and
Westenberger, 2012).

Moreover, the specific affinity of the α-syn N-terminal region for
cardiolipin (Ramakrishnan et al., 2003; Cole et al., 2008; Nakamura
et al., 2008; Grey et al., 2011; Robotta et al., 2014) may explain its
interaction with mitochondria during stress. The translocation of
cardiolipin from the MIM to the MOM is an early signaling event in
mitophagy and apoptosis (Li et al., 2015), and it has been shown
using α-syn mutant models of PD that cardiolipin becomes
externalized to the cytosol, where it then binds α-syn and
promotes the refolding of α-syn monomers from aggregated
fibrils (Ryan et al., 2018). This may represent a feed-forward
process whereby the stress of α-syn burden causes cardiolipin
externalization, thereby resulting in the recruitment of more α-
syn to the mitochondrial surface. Mitophagy then results when α-
syn burden outmatches the refolding ability of cardiolipin.

It should be emphasized that α-syn may play a physiological role
in mitochondria (Faustini et al., 2017). For example, consistent with
the general role that α-syn appears to play in cellular lipid
metabolism and signaling (Jenco et al., 1998; Golovko et al.,
2005; Narayanan et al., 2005; Golovko et al., 2006), the lack of α-
syn in SNCA-/- mice causes mitochondria to have reduced
cardiolipin with altered acyl compositions (Ellis et al., 2005;
Barcelo-Coblijn et al., 2007). This effect on cardiolipin in turn
alters the physical properties of the MIM coupled with reduced
Complex I and III activity (Ellis et al., 2005) and is accompanied by
increases in neutral lipids including cholesterol and cholesterol
esters (Barcelo-Coblijn et al., 2007). Other studies indicate that
α-syn may play critical roles in mitochondrial dynamics, quality
control and transport (reviewed in (Pozo Devoto and Falzone,
2017)). While these roles of α-syn could in principle be exerted
within or outside the mitochondrion, some reports indicate a role of
α-syn within the organelle. For example, α-syn appears to interact
directly with the matrix-facing catalytic domain of mitochondrial
ATP synthase, with monomers positively regulating its catalytic
activity (Ludtmann et al., 2016) and oligomers promoting the
mitochondria permeability transition involved in cell death
(Ludtmann et al., 2018). This functional duality indicates that, as
with cytoplasmic α-syn, it may be the abundance and/or aggregation
of α-syn within the mitochondrion and not the mere presence of α-

syn itself, that dictates pathogenicity inside the organelle. As such,
the TIM23 machinery must then play a key role in regulating this
balance of mitochondrial α-syn.

5.4 Interactions of Htt/mHtt with the
mitochondrial import machinery

In Htt, the site of pathogenic poly-Q expansion is flanked by the
first 17 residues of the N-terminus (Nt17) and the proline-rich
domain (PRD) (Figure 8A). The Nt17 sequence has the hallmarks of
a moderately amphipathic MTS (Figure 9Biv). Many structural and
computational studies have addressed the conformational dynamics
of the Nt17 sequence in the context of the tripartite structure of Htt.
Nt17 itself does not adopt a stable secondary structure but has the
characteristics of a compact coil (Thakur et al., 2009), which is
similar to other IDPs (Uversky, 2002), and has the propensity to
form α-helical structures, particularly in the presence of membranes
(Davies et al., 1997; Tam et al., 2009). Indeed, Nt17 forms α-helices
in the context of oligomers or fibrils of Httex1 fragments (Kim et al.,
2009; Sivanandam et al., 2011; Michalek et al., 2013). The α-helical
Nt17 structure promotes aggregation of Httex1 by promoting helical
structure within the poly-Q tract (Thakur et al., 2009). By contrast,
the PRD forms a polyproline II structure (PPII), which reduces
aggregation propensity (Bhattacharyya et al., 2006). Importantly,
Htt constructs lacking the Nt17 fail to localize to mitochondria,
supporting a role of this segment in mitochondrial targeting
(Rockabrand et al., 2007).

Using a combination of biochemical and microscopy-based
analyses with striatum-derived cell lines and murine models of
HD, Friedlander and colleagues found that Htt and mHtt (and
N-terminal fragments thereof) interact directly with the
mitochondrial TIM23 complex and are localized to the IMS
(Yano et al., 2014; Yablonska et al., 2019) (Figure 10C). In these
studies, immunoprecipitation/mass spectrometry and surface
plasmon resonance spectroscopy were used to show interactions
with TIM23 complex subunits Tim23, Tim50 and Tim17a. They
revealed that mHtt had higher affinity interactions with
TIM23 subunits and inhibited the TIM23-mediated import of
native mitochondrial proteins to a greater extent than wild type
Htt counterparts. Importantly, these studies showed that both the
Nt17 segment and the expanded poly-Q tract are crucial for
interactions with the TIM23 complex. The authors concluded
that this inhibition of mitochondrial import by mHtt is an early
event in HD pathology (detected pre-symptomatically) and that this
effect alone can result in neuronal cell death. Figure 10C summarizes
the interactions of mHtt with the mitochondrial import machinery.

These observations provide potential clues as to how Htt,
specifically N-terminal segments of mHtt, may engage and
disrupt the TIM23 machinery during HD-related proteostatic
stress. First, the requirement of Nt17 for TIM23 interactions
suggests that this sequence acts like a MTS, assuming an
amphipathic α-helical structure to engage the TOM/
TIM23 receptors and accumulate Htt/mHtt at mitochondria
during HD progression. Second, because TIM23 substrates must
be unfolded to traverse the import pathway, N-terminal fragments
of Htt/mHtt may be more likely to engage TIM23 than full-length
Htt/mHtt, as this would require significant unfolding for import.
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Finally, the selective interaction of mHtt fragments with
TIM23 suggests that the poly-Q expansion provides a sufficiently
long, unstructured tether for the Nt17 to access the TIM23 binding
sites. Indeed, it has been shown that a sufficiently long presequence
is required for TIM23 precursors to span both mitochondrial
membranes and engage matrix mtHsp70, which translocates
substrates by an active power stroke or Brownian ratchet
mechanism (Matouschek et al., 1997; Okamoto et al., 2002). The
localization of Htt/mHtt to the IMS suggests incomplete
translocation of these polypeptides into the matrix, creating
stalled translocation intermediates that could explain the
inhibition of TIM23 import. It should be noted that the findings
of the Friedlander group were subsequently questioned in a study
that found mitochondria-localized mHtt to reside only on the
cytosolic side of the MOM and to have no measurable effect on
the import of TIM23 substrates (Hamilton et al., 2020). Future work
will be required to reconcile these contradictory findings.

6 Discussion

We have reviewed current evidence that APP/Aβ, α-syn, and
Htt/mHtt interact with the mitochondrial import machinery
through their cryptic N-terminal targeting sequences. These
interactions have implications for the physiological roles of these
proteins as well as their pathogenic interactions in AD, PD, and HD,
respectively. They also set the stage for addressing how
mitochondrial import may serve as a clearance mechanism for
amyloids during proteostatic stress, as well as presenting new
directions for developing interventions for neurodegenerative
diseases. These two questions are addressed below.

6.1 Proteostatic mechanisms that may
involve mitochondrial import

Mitochondrial proteostasis involves many stress response
pathways that either directly or indirectly involve the protein
import machinery (Figure 11), and any combination of them
could be marshalled in response to amyloid burden at the
TIM23 complex. First, some responses involve the degradation of
toxic peptides or proteins in the matrix subcompartment. As noted
above, the MTS-degrading enzyme PreP (Figure 11A) has an
established role in the breakdown of Aβ (Falkevall et al., 2006)
and may assume a more general role in the clearance of other
amyloidogenic peptides. Other pathways have been described
whereby mitochondria import unfolded or aggregated proteins
into the matrix for degradation, providing a proteostatic
mechanism for the clearance of cytotoxic proteins. These
mechanisms, termed Mitochondria as Guardian in Cytosol
(MAGIC) (Ruan et al., 2017) and the FUNDC1/HSC70 pathway
(Li Y. et al., 2019), both entail the uptake of aggregation-prone
proteins into mitochondria with subsequent degradation by matrix
proteases. Thus, these pathways may explain why some
amyloidogenic proteins are ectopically imported into
mitochondria (Figure 11B). Alternative quality control pathways
involve feedback mechanisms between the mitochondria and the
nucleus to signal defects in mitochondrial protein biogenesis.

Among them, the best characterized is the mitochondrial
unfolded protein response (UPRmt), which senses the
accumulation of unfolded proteins and ROS in mitochondrial
compartments and activates transcription factors to express
nuclear genes encoding mitochondrial chaperones, proteases, and
antioxidant systems (Wodrich et al., 2022) (Figure 11C). Indeed,
UPRmt activation is implicated in neurodegeneration (Zhu et al.,
2021), and particularly in AD (Beck JS. et al., 2016; Sorrentino et al.,
2017; Shen Y. et al., 2019), PD (Cooper et al., 2017), and HD
(Berendzen et al., 2016; Fu et al., 2019). Other stress responses serve
to clear the cytosol of mitochondrial precursor proteins when
import is compromised. Namely, the UPR activated by the
mistargeting of proteins (UPRam) (Wrobel et al., 2015) and the
associated mitochondrial precursor overaccumulation stress
(mPOS) response (Wang and Chen, 2015) (Figure 11D) respond
to increased cytosolic concentrations of precursors, which are
normally very low, by activating the proteasome and
downregulating cytosolic protein synthesis, respectively. Other
similar responses are designed to extract stalled translocation
intermediates from the TOM complex and direct them to the
proteasome for degradation. These include the mitochondrial
compromised import response (MitoCPR) system (Weidberg and
Amon, 2018) and the mitochondrial protein translocation-
associated degradation (MitoTAD) system (Martensson et al.,
2019) (Figure 11E). Although many of these stress responses
have been resolved in lower eukaryotes, there is evidence that
they exist in mammalian systems as well, although the
mechanistic details have yet to be elucidated.

One confounding factor in these mitochondria-based
proteostasis mechanisms is the question of how aggregated
proteins in the cytosol could access the TOM/TIM23 machinery,
given that the import requires an unfolded precursor. A potential
solution may come from the observation that a cytosolic HSP70/co-
chaperone system is capable of disaggregating amyloid structures
(Wentink et al., 2020). Such a system could in principle dislodge
amyloid proteins and deliver them as monomers in a post-
translational, chaperone-bound fashion to the mitochondrial
import machinery. Indeed, several amyloids are found as distinct
disease-associated polymorph structures (Qiang et al., 2017; Yang
et al., 2022) that could differ in their stabilities and proclivities to
dissociate soluble species. A second possibility is that since amyloid
fibril structures feature rigid cores surrounded by disordered “fuzzy
coats”, the solvent exposure of these flexible regions could promote
PTMs and/or dissociation of monomers (Lin et al., 2017). Thus, shed
monomers or proteolytic fragments of amyloidogenic proteins from
fibrillar aggregates could then be free to interact with the
mitochondrial protein machinery.

In summary, the degree to which PreP, MAGIC, and FUNDC1/
HSC70 may assist as general clearance systems for amyloidogenic
proteins like Aβ, α-syn, or mHtt requires further investigation, as do
the pathways by which these amyloids may trigger mitochondrial
import-related stress responses.

6.2 Prospects for drug development

The interactions between amyloidogenic proteins and the
mitochondrial import machinery may inform strategies for
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developing novel therapeutic interventions for neurodegenerative
diseases. Clinical studies and drug discovery efforts have led
researchers to question the role of amyloid fibrils themselves as the
primary causative agents in AD, PD, and HD. For example, the extent
of fibril formation does not always correlate with disease severity
(Breydo et al., 2012; Ow and Dunstan, 2014), fibrils can be present
even in the absence of disease symptoms (Ke et al., 2020), and

therapeutic strategies designed to disrupt fibril formation have
been met with mixed success (Pardridge, 2016; Barker and
Mason, 2019; Paolini Paoletti et al., 2020; Pardridge, 2020;
Yiannopoulou and Papageorgiou, 2020). Hence, alternative
intervention approaches, including targeting mitochondrial
dysfunction, are being developed for neurodegenerative
disorders (Xu et al., 2022b). Here we review some promising

FIGURE 11
Mitochondrial proteostatic stress responses involving the import machinery. Depicted are complementary stress responses of mammalian systems
that involve the mitochondrial import machinery and may be upregulated with amyloid burden. (A) PreP degradation. The PreP peptidase that cleaves
MTSs also degrades Aβ in the matrix and may play a broader role in clearing imported peptides, including amyloids. (B) MAGIC and FUNDC1/HSC70. By
these processes, cytosolic proteins are imported into mitochondria for sequestration and proteolysis. In the MAGIC pathway, cytosolic
Hsp104 dissociates aggregated proteins, which are imported via the TOM complex into the matrix, where they are degraded by the Pim1 (yeast)/LONP1
(human) protease. In the FUNDC1/HSC70 axis, the MOM protein FUNDC1 interacts with cytosolic HSC70 to import unfolded proteins that are either
degraded by LONP1 or assembled into non-aggresomal mitochondrion-associated protein aggregates (MAPAs) that can be subsequently degraded by
autophagy. (C) UPRmt. This process involves transcriptional reprogramming based on mitochondria-nuclear communication in response to protein
aggregates in the matrix. The UPRmt involves multiple pathways (1). The ATF5 transcription factor is imported into mitochondria under non-stressed
conditions, but when its import is hindered it traffics to the nucleus with other transcription factors (ATF4/CHOP) to activate genes encoding
mitochondrial chaperones and proteases. Peptides from the degradation of misfolded mitochondrial proteins, likely produced by CLPXP, may then be
exported to facilitate ATF5 translocation (2). Protein aggregates in the IMS activate the AKT kinase, which phosphorylates ERα, serving as a transcription
factor to induce expression of IMS-specific proteases (3). Matrix aggregates and ROS activate the sirtuin SIRT3 to deacetylate matrix proteins and activate
the FOXO transcription factor that activates mitochondrial antioxidant genes. (D) UPRam and mPOS. These reactions respond to cytotoxic accumulation
of mitochondrial precursor proteins in the cytosol resulting from defective import. The response of UPRam includes activation of the proteasome,
whereas that of the mPOS pathway involves global reduction in cytosolic protein synthesis. Upregulation of the HSP1 transcription factor increases
expression of chaperones and other stress response factors. (E)MitoTAD andMitoCPR. These systems remove stalled, nonproductive intermediates from
the import machinery by continual monitoring of the TOM complex. TOM complex-associated adaptor proteins Cis1/Ubx2 recruit AAA ATPases Msp1/
Cdc48 to extract stalled precursors and direct them to the proteasome for degradation.
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interventions that directly or indirectly involve the amyloid-
TIM23 pathway interaction.

From a broad perspective, given that AD, PD, and HD are all
diseases of aging (Blumenthal, 2004; Taylor and Dillin, 2011),
targeting general aging-related mitochondrial dysfunction may be
an effective strategy. For example, the efficiency of the UPRmt

declines with age (Bennett and Kaeberlein, 2014; Munoz-Carvajal
and Sanhueza, 2020) making it a potential target for
neurodegenerative diseases (Suarez-Rivero et al., 2022). Indeed,
compounds that increase cellular NAD+ levels, including
nicotinamide riboside and olaparib, improved longevity in C.
elegans models of Aβ proteotoxicity by activation of UPRmt and
mitophagy (Sorrentino et al., 2017). Because the UPRmt involves
upregulation of the TIM23 machinery (Xin et al., 2022),
mitochondrial import may either be an important target of
UPRmt-modulating compounds, or serve as a marker for
pharmacological UPRmt activation. Another mitochondrial
parameter that declines with age is the Δψm (Sugrue and Tatton,
2001; Berry and Kaeberlein, 2021; Berry et al., 2023). Caloric
restriction (CR) and rapamycin, which extend lifespan in several
wild type organisms (Nakagawa et al., 2012; Bitto et al., 2016;
Shindyapina et al., 2022), can mediate their effects by regulating
Δψm (Paglin et al., 2005; Cheema et al., 2021; Berry et al., 2023).
These treatments could therefore operate in part by rescuing
TIM23-mediated protein import, which functions in a
Δψm-dependent manner. However, thorough pre-clinical testing
of these interventions in AD, PD, and HD models would be
warranted as CR and UPRmt activation can shorten or extend
lifespan depending on the context in which the treatments are
applied (Liao et al., 2010; Bennett and Kaeberlein, 2014; Angeli
et al., 2021; Xin et al., 2022). Notably, a recent study with rapamycin
in a mouse model of AD showed increased amyloid plaque
formation upon treatment (Shi et al., 2022).

Given the potential role of mitochondria-resident proteases in
amyloid degradation, these may represent pharmacological targets.
For instance, as mentioned, the mitochondrial PreP enzyme degrades
MTSs and has been implicated in degradation of Aβ in the matrix
(Falkevall et al., 2006; Alikhani et al., 2011b; Mossmann et al., 2014;
Fang et al., 2015; Du et al., 2021); thus, PrePmay represent a potential
drug target for neurodegeneration (Brunetti et al., 2021). In fact,
researchers using the Senescence Accelerated Mouse Prone 8
(SAMP8) AD model found that restoring global mitochondrial
function with metabolic modulators (essential and branched-chain
amino acids) was accompanied by a reversal of aging-related declines
in PreP levels (Brunetti et al., 2020). Similarly, researchers using the
APPswe/PS1dE9 AD model, associated with FAD mutations in APP
and γ-secretase, found that treatment with the neuroprotective
compound Ligustilide reduced disease progression with a
concurrent increase in PreP levels (Xu et al., 2018). Very recently,
Pioglitazone, an antagonist of the PPAR-γ transcription factor that
regulates mitochondria structure and function, was shown to
upregulate PreP and the insulin degrading enzyme IDE, thereby
restoring the peptide processing machinery (Di Donfrancesco
et al., 2023). Original efforts toward developing agonists of PreP
were focused on small molecule benzimidiazole derivatives
(Vangavaragu et al., 2014), but these results were called into
question (Li NS. et al., 2019). Therefore, the potential efficacy of
specific effectors of PreP requires further validation.

Finally, there are several therapeutic compounds effective in
treating neurodegenerative diseases that improve mitochondrial
function as part of their mechanism of action. Three such
compounds, described here, could have direct or indirect effects
on mitochondrial protein import. First, the synthetic tetrapeptide
SS-31 (elamipretide) targets mitochondria by interacting with the
cardiolipin-rich MIM (Szeto, 2014). SS-31 is protective against
mitochondrial dysfunction associated with a range of diseases,
including myopathy, cardiac, retinal, and kidney diseases, and
has demonstrated neuroprotective function (Zhu et al., 2018;
Zhao et al., 2019; Liu Y. et al., 2021; Nhu et al., 2021), including
efficacy in models of AD (Manczak et al., 2010; Calkins et al., 2011;
Reddy et al., 2017; Reddy et al., 2018), PD (Yang et al., 2009), and
HD (Yin et al., 2016). In these studies, SS-31 has been shown to
restore mitochondrial biogenesis, dynamics and energetic output,
reduce oxidative stress, and preserve mitochondria structure, with a
notable effect on upregulating TOM complex receptor expression
(Reddy et al., 2018). SS-31 and its side chain variants may act by
modulating membrane electrostatics (Mitchell et al., 2020; Mitchell
et al., 2022), mitigating Ca2+ stress at the MIM (Mitchell et al., 2020),
and/or preserving the Δψm (Zhang et al., 2020). Furthermore, SS-31
has an extensive interactome in mitochondria (Chavez et al., 2020)
and may therefore attenuate pathogenic interactions of peptides
such as Aβ and α-syn with different mitochondrial proteins. Second,
the curcumin derivative J147 is a neuroprotective compound that
has been explored as an effective treatment in AD models (Prior
et al., 2013; Goldberg et al., 2018; Currais et al., 2019; Goldberg et al.,
2020; Kepchia et al., 2021; Kepchia et al., 2022). Based on these
studies, several molecular mechanisms have been ascribed to J147,
including improved energymetabolism, modulation of Ca2+ flux and
activation of the AMPK/mTOR pathway, reduction of plasma free
fatty acid levels, and regulation of acetyl-CoA metabolism. Third,
polyphenols constitute a broad class of phytochemicals, many of
which show neuroprotective properties (Naoi et al., 2019). Among
them, urolithin A has demonstrated efficacy in models of AD
(Ballesteros-Alvarez et al., 2023) and PD (Liu et al., 2022).
Mechanistically, urolithin A activates mitophagy (Ryu et al.,
2016; Amico et al., 2021), which may reverse defects in PINK1/
Parkin mitophagy that are implicated in both familial and sporadic
PD (Dawson and Dawson, 2010). Because the PINK1/Parkin
mechanism is based on interactions with the TIM23 pathway,
urolithin A may help reduce proteostatic stress caused by
interactions of α-syn with the import machinery. Notably, SS-31,
J147, and polyphenolics are all known to interact with
mitochondrial F1FO ATP synthase (Ahmad and Laughlin, 2010;
Goldberg et al., 2018; Chavez et al., 2020), an enzyme whose
dysfunction is implicated in neurodegeneration, particularly AD
(Ebanks et al., 2020). Increasing evidence supports that dysfunction
of ATP synthase coincides with AD progression (Liang et al., 2008;
Terni et al., 2010; Beck SJ. et al., 2016), which may mechanistically
occur by interactions of Aβ with the OSCP subunit (Beck SJ. et al.,
2016). It has also been shown that loss of OSCP drives the opening of
the mPTP and activates the UPRmt (Angeli et al., 2021). Hence,
compounds that bind ATP synthase may help maintain its function
during amyloidogenic stress and/or inhibit mPTP pore opening
induced by the pore initiator cyclophilin D, producing a result
similar to the action of cyclosporin A (Connern and Halestrap, 1994;
Gauba et al., 2019). Such interventions could increase ATP synthase
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activity and prevent membrane depolarization, thereby improving
available ATP levels to enhance proteostatic clearance and matrix-
directed import through the TIM23 pathway.

7 Conclusion

Aβ/APP, α-syn, and Htt/mHtt all contain MTS-like sequences that
promote their interactions with the mitochondrial TIM23 import
machinery. These interactions can directly impact mitochondrial
protein import function, as well as allow incorporation of amyloids
into mitochondrial subcompartments, which could contribute to
pathogenicity in AD, PD, and HD, respectively. The engagement of
Aβ/APP, α-syn, andHtt/mHtt with the import complexesmay be part of
the normal physiological function of these proteins, may represent an
amyloid clearance mechanism, or may be purely pathogenic. Addressing
these questions will be critical in understanding the role of mitochondria
in neurodegeneration. We note that evidence for the engagement of
amyloids with the import machinery does not necessarily favor either the
amyloid ormitochondrial cascade hypotheses, as these interactions could
occur under both scenarios. However, determining whether the amyloid-
import machinery interaction is an upstream cause, or a downstream
effect will help resolve the role of mitochondrial dysfunction in the
sequence of events associated with neurodegeneration. Further
investigation of the interactions of amyloidogenic proteins with the
mitochondrial import machinery will add to our understanding of the
role of mitochondria in proteostatic stress and facilitate the development
of therapeutic interventions.
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