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Inferior Frontal Gyrus-Based
Resting-State Functional
Connectivity and Medium
Dispositional Use of Reappraisal
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The previous neuroimaging functional connectivity analyses have indicated that the
association between the inferior frontal gyrus (IFG) and other brain regions results in
better emotion regulation in reappraisal tasks. However, no study has explored the
relationship between IFG-based resting-state functional connectivity (rsFC) and the
dispositional use of reappraisal strategy. Therefore, the present study examined the
potential associations between rsFC patterns of both left and right IFG and dispositional
reappraisal use. One hundred healthy participants completed the Emotion Regulation
Questionnaire (ERQ) and underwent a resting-state functional magnetic resonance
imaging (fMRI) acquisition. An approach of the seed-based rsFC analysis was recruited
to estimate the functional connectivity maps of bilateral IFG with other brain regions,
and the reappraisal scores from the ERQ were then correlated with the functional
maps. Our findings showed that IFG-based rsFC was positively correlated with
dispositional reappraisal only in the range of 4 to 5.5 points [medium reappraisal group
(MRG)]. Specifically, medium dispositional reappraisal was positively correlated with
rsFC between left/right IFG and bilateral temporal gyrus. Besides, medium dispositional
reappraisal was positively correlated with rsFC between left IFG and bilateral superior
parietal lobe (SPL), middle cingulate cortex (MCC), and right insula, as well as between
right IFG and dorsomedial prefrontal cortex (DMPFC) and anterior cingulate cortex
(ACC). In conclusion, these results indicate that bilateral IFG plays an important role
in the medium use of the reappraisal strategy.

Keywords: emotion regulation, inferior frontal gyrus, prediction, resting-state functional connectivity, medium
reappraisal

INTRODUCTION

Effective emotion regulation is necessary for our daily social life. Essentially, various
strategies can be employed to achieve successful emotion regulation, e.g., distraction,
cognitive reappraisal, and expressive suppression (Webb et al., 2012; Morawetz et al., 2017b).
Among these strategies, reappraisal, which entails the changing of the emotional value
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of stimuli that evokes emotions (Kanske et al., 2011; Webb
et al., 2012), is the most frequently applied and studied strategy
of emotion regulation (Wager et al., 2008; Kalisch, 2009;
Ochsner et al., 2012; Buhle et al., 2014). Moreover, Gross
and John (2003) developed a self-report Emotion Regulation
Questionnaire (ERQ) to measure the dispositional use of
two strategies, reappraisal (center on reinterpretation) and
suppression. Assessment of this kind of personality habitude
can reflect the utilization frequency of strategy, which may
finally implicate the individual differences in abilities of emotion
regulation. Also, more frequent use of reappraisal strategy has
been demonstrated to be associated with better regulation of
emotions, social interactions, and mental and physical health
(Gross and John, 2003; Meyer et al., 2012; Hu et al., 2014;
Picó-Pérez et al., 2018; Zaehringer et al., 2020).

The neural underpinnings related to reappraisal strategy
have usually been evaluated by measurement of functional
activation during experimental reappraisal tasks with functional
magnetic resonance imaging (fMRI). The previous meta-analytic
studies have shown that reappraisal recruits a widespread
network that includes dorsomedial prefrontal cortex (DMPFC),
dorsolateral prefrontal cortex (DLPFC)/superior frontal gyrus
(SFG), ventrolateral prefrontal cortex (VLPFC)/inferior frontal
gyrus (IFG), parietal lobes, temporal gyrus, and cingulate cortex
(Phillips et al., 2008; Buhle et al., 2014; Kohn et al., 2014;
Morawetz et al., 2017b). Importantly, the IFG/VLPFC is well
known as a critical region for processes of selection and
inhibition (Schulz et al., 2009; Kohn et al., 2014; Morawetz
et al., 2017b), language (Ochsner et al., 2012; Messina et al.,
2015), and social cognition (Kohn et al., 2014; Hartwigsen
et al., 2019) in emotion regulation. In particular, the IFG
has been observed with increased activation when multiple
appropriate reinterpretations emerge and a choice must be made
to achieve goal-directed behavior, as well as when required to
inhibit goal-inappropriate reinterpretations (Morawetz et al.,
2016; Braunstein et al., 2017).

Moreover, methods of IFG-based (with IFG serving as seed
regions) functional connectivity have also been used to explore
the neural correlations of reappraisal strategy in experimental
settings. Morawetz et al. (2017a) defined left IFG as a seed region
and examined effective connectivity between the seed region
and the remaining brain regions, with reappraisal success scores
as covariate. They have observed positive effective coupling
between the left IFG and DLPFC, DMPFC, right middle
temporal gyrus (MTG), and superior temporal gyrus (STG)
during downregulation of emotion. Furthermore, in another
study, Morawetz et al. (2016) found that the inhibitory effect
on connectivity from IFG to DLPFC could facilitate successful
reappraisal, deducing that the IFG may choose one from the
many feasible goal-relevant reinterpretations actively maintained
in the working memory (associated with DLPFC’s increased
activity), and suppress the DLPFC as soon as the selection process
is finished. On the other hand, Wager et al. (2008) found that the
right IFG could effectively predict reappraisal success with some
cortical and subcortical regions as mediators, such as DMPFC,
SFG, inferior temporal gyrus (ITG), and subgenual anterior
cingulate cortex (ACC).

Recent evidence has shown that the formation of intrinsic
resting-state functional architecture is influenced by repeated
task-based co-activation within a network (Mackey et al., 2013;
Guerra-Carrillo et al., 2014; Uchida et al., 2014), suggesting
a close correspondence between task-specific brain activation
and intrinsic brain connectivity, which is reflected by resting-
state functional connectivity (rsFC). In essence, Smith et al.
(2009) compared task-based activation networks derived from a
large database of functional imaging studies with the covarying
networks from 36 subjects’ resting fMRI data, and found that
these task-related networks closely matched the networks when
at resting state. Intriguingly, another study using a sample of
4- to 18-year-old healthy participants found that task-related
functional connectivity could even predict rsFC of up to 2 years
after the initial experimental task (Gabard-Durnam et al., 2016).
Thus, it seems possible that recurring activation caused by
a specific task may share an association with resting-state
connectivity pattern, and this may also apply to the emotion
regulation domain with IFG-based functional connectivity
during the reappraisal task. Besides, one study demonstrated that
activation of IFG in reappraisal task is positively correlated with
the frequency of dispositional reappraisal in daily life (Grecucci
et al., 2013). Consequently, it can be assumed that the reappraisal
task and dispositional reappraisal may share a similar IFG-based
functional connectivity pattern. However, since no study has
examined the association between dispositional use of reappraisal
strategy and rsFC with IFG seed regions, it is uncertain
whether IFG-based rsFC could also facilitate habitual reappraisal,
thus resulting in better emotion regulation, although previous
evidence indicates that both left and right IFG show associations
with DMPFC and temporal gyrus during the performance of a
reappraisal task. Nevertheless, it remains unknown whether the
functional connectivity pattern of the left IFG seed concerning
habitual reappraisal is the same as that of the right IFG seed.

Moreover, neural efficiency supposes that more adept
individuals optimally use the functional connectivity to
undertake minute neural processing and, hence, display
diminished neural activity alongside the performance facilitation
(Neubauer and Fink, 2009; Di Domenico et al., 2015; Curtin et al.,
2019). It is anticipated that the higher the scores of dispositional
reappraisal, the more frequent the use of reappraisal, and the
better the ability of emotion regulation. Presumably, the neural
efficiency may also be suitable for dispositional reappraisal,
a daily used specific strategy of emotion regulation, with a
changeable connectivity pattern along with a variation of
reappraisal scores. However, there is no evidence supporting
how the individual difference in frequency of reappraisal use
may affect functional connectivity during the resting state.
Considering the aforementioned close association between
rsFC and task-related functional connectivity, we asked another
question: Could it be possible that the IFG-based rsFC pattern
vary with the level of frequency of dispositional reappraisal?

Therefore, in an endeavor to answer the questions raised, the
present study applied seed-based rsFC analysis and prediction
analysis with an aim of (1) examining whether IFG-based rsFC
is related to individual dispositional use of reappraisal; (2)
investigating whether habitual reappraisal related rsFC pattern of
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the left IFG is the same as that of the right IFG; (3) exploring
whether IFG-based rsFC is specific to the frequency level of the
use of dispositional reappraisal. Based on the limited evidence
mentioned above, we hypothesized that dispositional use of
reappraisal would be positively correlated with IFG-based rsFC
and that the rsFC pattern of the left IFG and that of the right
IFG would be very similar, with both showing associations with
DMPFC and temporal gyrus. Moreover, according to the theory
of neural efficiency (Neubauer and Fink, 2009; Di Domenico
et al., 2015; Curtin et al., 2019), the individual differences in
dispositional reappraisal may be associated with the difference in
the IFG-based rsFC pattern, with a higher level of dispositional
reappraisal corresponding to a less IFG-based rsFC.

MATERIALS AND METHODS

Participants
One hundred and seven (N = 107) healthy, right-handed adults
(59 females, 17 to 26 years old, mean age 21.36 ± 2.052 years)
participated in the experiment after giving their written informed
consent. All participants reported no history of mental disorders,
head injury, or cardiovascular diseases. The study protocol
was approved by the Local Committee for the Protection of
Human Subjects of the University of Electronic Science and
Technology of China and was conducted according to the
declaration of Helsinki.

Behavioral Assessment
All participants completed the ERQ (Gross and John, 2003)
before scanning. The ERQ consisted of two subscales, cognitive
reappraisal and expressive suppression. Ten items, with six for
reappraisal and four for suppression, are included in the scale,
whose choices ranged from strongly disagree (1) to strongly agree
(7). In the current study, Cronbach’s α coefficient of reappraisal
subscale was 0.828 and that of suppression subscale was 0.601.
According to the scale used, four is the median score. In our
interpretation, the individuals who scored less than four points
do not frequently use either the reappraisal or suppression
strategy. On the other hand, a score of more than four implies
a frequent use of the aforementioned strategies. In our study,
a very small number of participants (n = 7) recorded less than
four points on the reappraisal subscale. Therefore, we found
it appropriate to examine the intrinsic neural mechanisms of

reappraisal strategy only among the individuals who frequently
apply this strategy in their daily life. Hence, we excluded the data
of n = 7 participants with low frequent use of reappraisal strategy
(<4 points). Subsequently, we categorized the remaining n = 100
participants into two groups, according to their reappraisal
scores. Those who had a score of between 4 (median) and 5.5
were classified as moderate users of reappraisal strategy and thus
put into the medium reappraisal group (MRG). Similarly, those
with a score of between 5.5 and 7 were considered as high-
frequency reappraisal strategy users and, therefore, categorized
into high reappraisal group (HRG). Ultimately, all the remaining
participants (n = 100) were assigned into either MRG (n = 80)
or HRG (n = 20). In MRG, neither scores of reappraisal and
suppression nor age showed significant gender differences (all
p > 0.08). This was the same case with HRG (all p > 0.4)
(Table 1). On the other hand, the reappraisal score was higher
than the suppression score in both groups [MRG: t(79) = 11.989,
p < 0.001; HRG: t(19) = 11.995, p < 0.001]. Finally, to compare
MRG with HRG, a subsample of 20 participants from MRG
(named as sMRG) were selected, with similar age, gender, and
suppression scores as HRG (all p > 0.4) (Table 2).

Image Acquisition and Data Analysis
A 3.0-T GE Sigma scanner was used to collect resting-state fMRI
images with a gradient echo planar imaging (EPI) sequence (TR,
2,000 ms; TE, 30 ms; FA, 90◦; FOV, 240 mm × 240 mm; matrix
size, 64 × 64; voxel size, 3.75 mm × 3.75 mm × 3 mm; slices,
43). The T1-weighted structural image was acquired with a high-
resolution T1-weighted scan (TR, 5.96 ms; TE, 1.96 ms; FA, 9◦;
FOV, 256 mm × 256 mm; matrix size, 256 × 256; voxel size,
1 mm × 1 mm × 1 mm; number of slices, 176). Participants
were instructed to rest with their eyes closed but not to fall asleep
during the scan.

Resting-state fMRI data analysis was conducted using the data
processing assistant for resting-state fMRI toolbox (DPARSF1)
and statistical parametric mapping software (SPM122). To keep
magnetic field stabilization, the first five EPI volumes of the
fMRI images were removed. Preprocessing consisted of the
following steps: Slice timing correction, 3D motion correction,
nuisance covariates regression (Friston-24 motion parameters;
white matter, cerebrospinal fluid, and global signals), spatial

1http://rfmri.org/DPARSF
2http://www.fil.ion.ucl.ac.uk/spm

TABLE 1 | Demographic characteristics and behavioral assessment.

MRG HRG

n Age Reappraisal Suppression n Age Reappraisal Suppression

M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

Female 44 21.20 (2.11) 4.93 (0.35) 3.40 (0.91) 12 21.25 (1.82) 6.04 (0.44) 3.52 (0.89)

Male 36 21.58 (2.09) 4.92 (0.33) 3.76 (0.94) 8 21.25 (2.05) 6.21 (0.54) 3.50 (1.16)

p 0.425 0.891 0.088 1.000 0.460 0.964

MRG, medium reappraisal group; HRG, high reappraisal group.
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normalization to the Montreal Neurological Institute (MNI)
template and resampling to 3 mm × 3 mm × 3 mm, removing
the linear trends, temporal band-pass filtering (0.01–0.1 Hz),
and spatial smoothing with a Gaussian kernel of full-width half-
maximum 6 mm. The head motion exclusion was applied with
translation not exceeding 3 mm and rotation not exceeding
3◦, and mean FD_Jenkinson not exceeding 0.2 (Power et al.,
2012; van Dijk et al., 2012). According to this threshold, no
participant was excluded.

Seed Definition
Degree centrality refers to the number of brain connections from
a voxel to others across the whole brain (Zuo et al., 2012; Yan
et al., 2017; Lv et al., 2018). The measure of degree centrality
has been widely performed to examine node characteristics of
intrinsic connectivity networks, especially for the identification
of functional hubs in functional connectivity analysis (Zuo et al.,
2012). In the present study, a voxel-wise functional connectivity
analysis was performed using DPARSFA, and the examination
of degree centrality was recruited to identify functional hubs
that were related to individual reappraisal scores. The correlation
threshold was set at r > 0.25 for the degree centrality calculation.
Then, the resulting degree centrality was used to conduct a
multiple regression analysis, with gender, age and suppression
scores controlled as covariates of noninterest and reappraisal
scores as a predictor of interest. For the exploratory purpose,
we lowered the statistical threshold to Puncorrected < 0.005 with
a cluster size > 50 voxels. At this threshold, only two clusters
emerged, the left and right IFG, whose degree centrality showed
a positive correlation with reappraisal scores (Table 3 and
Figure 1). Therefore, based on the results of the above voxel-wise

TABLE 2 | Comparison of behavioral assessment between HRG and sMRG.

Gender Age Reappraisal Suppression

Female/Male M (SD) M (SD) M (SD)

HRG 12/8 21.25 (1.86) 6.11 (0.48) 3.51 (0.98)

sMRG 12/8 21.70 (1.95) 4.90 (0.29) 3.43 (0.85)

p 1.000 0.460 <0.001 0.764

HRG, high reappraisal group; sMRG, subsample of medium reappraisal group.

TABLE 3 | Results of voxel-wise functional connectivity.

Region H K T MNI coordinates

x y z

Inferior frontal gyrus L 106 4.33 −54 6 15

3.85 −45 9 18

3.27 −51 12 3

Inferior frontal gyrus R 69 3.85 45 12 9

3.46 48 3 15

3.42 54 12 15

H, hemisphere; L, left; R, right; K, cluster size in number of activated voxels; T, T
value; MNI, the Montreal Neurological Institute coordinates.
Statistical threshold of Puncorrected < 0.005 was used for cluster correcting.

FIGURE 1 | Result of voxel-wise functional connectivity. Brain regions whose
degree centrality correlated with reappraisal scores. Statistical threshold of
Puncorrected < 0.005 was used for cluster correcting.

functional connectivity analysis, left IFG (−48 9 6) and right IFG
(54 12 18) were defined as seed regions for further seed-based
rsFC analysis. The two seed regions were separately built as a 6-
mm radius sphere centered around the peak activation using the
Marsbar toolbox3.

Seed-Based Voxel-Wise rsFC Analysis
After seeds extraction, seed-based voxel-wise rsFC analyses were
performed to explore brain regions connected with left/right
IFG, and the connectivity correlating with individual reappraisal
scores. Firstly, time series of all voxels located within these
two seed regions were abstracted and averaged, respectively.
Secondly, a Pearson correlation was conducted between each seed
region’s time series and those of all other brain voxels of each
participant. Thereafter, the resulting correlation coefficients were
transformed into Fisher’s z scores, representing the rsFC for each
connection of each participant. Subsequently, multiple regression
models were performed with reappraisal scores as a predictor
of interest, and the effect of gender, age, and suppression
scores simultaneously eliminated. All activations were applied
at the whole-brain level with a statistical significance of false
discovery rate PFDR < 0.05 and a cluster extent > 50 voxels.
Besides, multiple regression models were also performed with
suppression scores as a predictor of interest, suggested by Picó-
Pérez et al. (2018) in their similar study on the association
between dispositional use of emotional regulation strategies and
rsFC, but with the amygdala as seed regions. However, we
did not observe any significant activation when we used the
suppression scores as a predictor of interest at the same threshold
of PFDR < 0.05. Consequently, the suppression strategy was not
included in the result.

In addition, we further extracted the rsFC strength value
of each region of interest (ROI), which amounted to a sphere
of 6-mm radius centered around the peak of activation using
Marsbar toolbox (see text footnote 3). Then, the partial

3http://marsbar.sourceforge.net
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correlation analyses were performed between connectivity
strength and reappraisal scores after controlling for gender, age,
and suppression scores.

Initially, we tried to investigate the potential association
between IFG-based rsFC and reappraisal scores across the entire
range observed in the sample of n = 100. Unfortunately, we did
not find any significant activation at the threshold of PFDR < 0.05.
The previous literature, especially the theory of neural efficiency,
may provide a reasonable conjecture that individuals with a
higher level of frequency of dispositional reappraisal use may
show less connectivity between IFG and the remaining regions.
Hence, we considered that, probably, the high-frequency level of
dispositional use of reappraisal affects the association between
IFG-based rsFC and reappraisal scores. Therefore, as reported
before, the 100 participants were allocated into two groups (MRG
and HRG) according to the range of reappraisal scores.

Prediction Analysis Using Cross-Validation
To test whether the observed functional brain features in MRG
could reliably predict reappraisal scores of new individuals,
internal cross-validation analyses were performed using the
Pattern Recognition for Neuroimaging Toolbox (PRoNTo v2.14).
The input vectors were mean-centered using the training
data (Xie et al., 2020), while the effect of covariates of
noninterest (gender, age, and suppression scores) was regressed
out. The predictive power was assessed by calculating Pearson’s
correlation coefficients between the predicted and actual
reappraisal scores. Additionally, the statistical significance of the
correlation was determined by 5,000 times of permutation testing
without replacement.

In order to examine whether the reappraisal related IFG-based
rsFC pattern in MRG is the same as that in HRG, internal cross-
validation analyses were conducted using the reappraisal related
rsFC of sMRG to predict the reappraisal scores of HRG.

RESULTS

Functional Connectivity Analysis
In MRG, with the left IFG as a seed region, reappraisal
scores were positively correlated with rsFC between left
IFG and most bilateral regions consisting of STG/MTG/ITG,
superior parietal lobe (SPL), middle cingulate cortex (MCC),
postcentral/precentral gyrus, rolandic operculum, cerebellum,
and fusiform gyrus; and between left IFG and some left regions
including inferior parietal lobe (IPL), supplementary motor area
(SMA), precuneus, and occipital gyrus, as well as between left IFG
and right insula (Table 4 and Figure 2A). However, there was no
significant activation at the same threshold level in HRG.

Functional connectivity analysis with right IFG as a seed
region in MRG showed that reappraisal scores were positively
correlated with rsFC between right IFG and brain areas such
as the bilateral medial SFG, bilateral STG/MTG/ITG, bilateral
precuneus, bilateral postcentral, bilateral occipital gyrus, bilateral
fusiform, left ACC, left SFG, left insula, and right supramarginal

4www.mlnl.cs.ucl.ac.uk/pronto/

gyrus (Table 4 and Figure 3A). Although in HRG, there were still
no significant activation yielded at the same threshold level.

Association of rsFC Strength With
Reappraisal
When considering the left IFG as a seed region in MRG, the
following ROIs showed significant correlation between strength
values and reappraisal scores: left SPL (−21 −57 48), r = 0.432,
p < 0.001; right SPL (24 −60 51), r = 0.388, p < 0.001; right insula
(42 −12 6), r = 0.431, p < 0.001; left STG (−57 −27 12), r = 0.476,
p < 0.001; right STG (54 −21 6), r = 0.450, p < 0.001; right MCC
(9 −15 42), r = 0.378, p = 0.001 (Figure 2B).

On the other hand, when the right IFG is considered as
a seed region in MRG, the following ROIs showed significant
correlation between strength and reappraisal scores: DMPFC
(rostral cluster) (−6 51 18), r = 0.506, p < 0.001; DMPFC (caudal
cluster) (−6 36 51), r = 0.442, p < 0.001; left ACC (−6 48 12),
r = 0.442, p < 0.001; left MTG (−48 −57 6), r = 0.395, p < 0.001
right MTG (42 −60 3), r = 0.428, p < 0.001; right STG (57 −42
21), r = 0.378, p = 0.001 (Figure 3B).

Prediction Analysis
In MRG, the left IFG seed-region-related rsFC could effectively
predict for individual reappraisal scores (r = 0.370, p = 0.002)
(Figure 4A), and this was also true for the right IFG seed
region (r = 0.330, p = 0.004) (Figure 4B). However, there was
no significant predictive power for individual reappraisal scores
of HRG with left IFG or right IFG seed-region-related rsFC in
sMRG (left IFG: r = −0.380, p = 0.636, Figure 5A; right IFG:
r = −0.590, p = 0.856, Figure 5B).

DISCUSSION

Previous studies have emphasized the key functional role of IFG
in collaboration with other regions in emotional regulation task-
based functional connectivity, while the present study constitutes
the first investigation into the associations between rsFC patterns
of bilateral IFG and the dispositional use of reappraisal.
Interestingly, we observed that medium dispositional use of
reappraisal was positively related to IFG-based rsFC. Specifically,
the medium habitual use of reappraisal was associated with
a significant positive coupling between: (1) bilateral IFG and
temporal gyrus; (2) left IFG and bilateral SPL, MCC, left IPL, and
right insula; and (3) right IFG and DMPFC/ACC. However, no
significant correlation emerged between left or right IFG-related
rsFC and the high dispositional reappraisal use. The predictive
analyses also showed that both left and right IFG-related rsFC
could effectively and separately predict for individual reappraisal
scores in MRG. However, IFG-related rsFC of sMRG had no
significant predictive power for reappraisal scores of HRG.

In line with our hypotheses, the associations of both left and
right IFG with temporal gyrus were linked to the habitual use
of reappraisal. Particularly, using the reappraisal strategy altered
the emotional value of stimuli by manipulating the conceptual
knowledge and creating opposite interpretations. This suggests
that the involvement of the semantic process is a core part

Frontiers in Neuroscience | www.frontiersin.org 5 June 2021 | Volume 15 | Article 6818598

http://www.mlnl.cs.ucl.ac.uk/pronto/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-681859 June 11, 2021 Time: 17:32 # 6

Li et al. IFG-Based rsFC Predicts Medium Reappraisal

TABLE 4 | Functional connectivity results.

Region H K T MNI coordinates

x y Z

Left IFG as a seed

Superior temporal gyrus/middle temporal gyrus/rolandic operculum L 320 5.50 −57 −30 3

5.26 −57 −27 12

Postcentral gyrus/precentral gyrus/superior parietal lobe/inferior parietal L 949 5.09 −21 −36 66

lobe/middle cingulate cortex/supplementary motor area/precuneus 4.64 −21 −51 51

Cerebellum/fusiform/inferior temporal gyrus R 314 5.01 24 −54 −18

4.59 39 −54 −15

4.46 48 −48 −21

Superior temporal gyrus/middle temporal gyrus/rolandic operculum/insula R 562 4.81 72 −30 0

4.57 39 −12 6

4.49 63 3 6

Postcentral gyrus/precentral gyrus/superior parietal lobe R 320 4.61 21 −36 66

Cerebellum/fusiform/inferior temporal gyrus L 385 4.68 −42 −57 −24

4.42 −39 −66 −18

Middle occipital gyrus L 128 4.65 −30 −78 12

Right IFG as a seed

Superior medial frontal gyrus/anterior cingulate cortex L 294 5.45 −6 51 18

Cerebellum/fusiform/superior occipital gyrus/hippocampus/middle temporal
gyrus/inferior temporal gyrus

L 1560 5.00 −36 −33 −27

4.71 −30 −9 −21

Superior temporal gyrus/middle temporal gyrus R 136 4.19 57 −42 21

Superior temporal gyrus/middle temporal gyrus L 299 4.43 −45 −45 12

3.88 −48 −57 6

Precuneus L 111 4.40 −9 −54 45

Superior medial frontal gyrus/superior frontal gyrus L 158 4.35 −6 36 51

R 3.87 3 39 48

Superior occipital gyrus R 152 4.09 15 −90 21

Middle temporal gyrus/insula L 114 4.11 −60 −15 −9

4.07 −45 −9 3

Postcentral gyrus/Precuneus R 101 3.92 27 −39 51

3.47 12 −54 45

Supramarginal gyrus/postcentral gyrus L 144 3.66 −54 −27 30

3.61 −54 −12 24

H, hemisphere; L, left; R, right; K, cluster size in number of activated voxels; T, T value; MNI, the Montreal Neurological Institute coordinates.
Statistical threshold of false discovery rate PF DR < 0.05 was used for cluster correcting.

of emotion regulation. Evidently, the semantic system plays a
critical role in the storage and controlled retrieval of conceptual
knowledge (Binder et al., 2009), contributing to representations
of relevant emotional information from emotional experiences
(Neumann and Lozo, 2012). Specifically, the temporal gyrus,
which has often been observed with enhanced activation in
reappraisal task (Goldin et al., 2008; Kanske et al., 2011; Dörfel
et al., 2014), is usually considered as part of semantic system
(Binder et al., 2009) and plays a role in both the storage and
the strategic retrieval of semantic knowledge (Davey et al.,
2016). Recent evidence on functional connectivity between IFG
and MTG at both task (Zhang et al., 2019) and resting-state
contexts (Kohn et al., 2014; Davey et al., 2016) indicates that
the cooperation between IFG and MTG makes strategic access
of semantic information possible. Similarly, the present study
also revealed strong functional connectivity between IFG and

temporal gyrus, alongside a positive correlation with medium
habitual use of reappraisal, perhaps supporting the capacity to
potentially engage and sustain semantic retrieval, in line with
goal-driven control of subjective emotional feelings.

Inconsistent with our preliminary expectation, only the right
IFG displayed an association with DMPFC. The DMPFC has
generally been proved to be involved in semantic and self-
reflective processes (Olsson and Ochsner, 2008; Binder et al.,
2009), and has repeatedly been observed to be significantly
activated in the reappraisal tasks (Kanske et al., 2011; Buhle et al.,
2014; Morawetz et al., 2017a, 2016). In particular, DMPFC is
implicated with the elaboration of the affective meaning of stimuli
and representation of value information concerning mental states
(Ochsner et al., 2012; Dixon et al., 2017). Thus, the right
IFG, with a close connection with DMPFC, may facilitate the
evaluation of the changing mental states, in relation to outcomes
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FIGURE 2 | Results of the left IFG-based rsFC related with dispositional use of reappraisal in MRG. (A) Brain regions whose rsFC correlated with reappraisal scores.
The brown sphere represented the seed region, and the green circles were drawn to display the ROIs. (B) Partial regression scatter plots depicted the correlation
between functional connectivity strength and reappraisal scores. Statistical threshold of false discovery rate PFDR < 0.05 was used for cluster correcting.

of appropriate or inappropriate interpretations of emotional
stimuli. Besides, with a correlation with medium habitual
reappraisal use, right IFG-based rsFC also showed a strong link
with ACC. Recent evidence suggests that ACC constitutes a
core part of the neural circuitry of valuation (Amemori and
Graybiel, 2012; Bartra et al., 2013; Clithero and Rangel, 2013),

playing an important role in evaluating interoceptive signals
based on self-referential and conceptual emotion knowledge
(Dixon et al., 2017). The evaluation role of ACC may thus
facilitate a better understanding of subjective emotional feelings,
by assigning conceptual meaning to these bodily sensations.
Notably, through interaction with ACC, DMPFC contributes to

Frontiers in Neuroscience | www.frontiersin.org 7 June 2021 | Volume 15 | Article 68185910

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-681859 June 11, 2021 Time: 17:32 # 8

Li et al. IFG-Based rsFC Predicts Medium Reappraisal

FIGURE 3 | Results of the right IFG-based rsFC related with dispositional use of reappraisal in MRG. (A) Brain regions whose rsFC correlated with reappraisal
scores. The brown sphere represented the seed region, and the green circles were drawn to display the ROIs. (B) Partial regression scatter plots depicted the
correlation between functional connectivity strength and reappraisal scores. Statistical threshold of false discovery rate PFDR < 0.05 was used for cluster correcting.

the maintenance of mental representations of an individual’s
feelings active in affective working memory (Lane et al., 2015)
and may subsequently transfer these internal state information
to IFG via a feed-forward mechanism (Phillips et al., 2008).
Therefore, it is highly plausible that the right IFG (roles in
selecting appropriate or inhibiting inappropriate interpretations

from semantic memory) strongly connects with DMPFC and
ACC (roles in perceiving and evaluating subjective emotional
feelings), exhibiting correspondingly more frequent reappraisal
skill, to achieve goal-directed emotional states.

Furthermore, as indicated above, we also observed a positive
correlation between medium dispositional use of reappraisal
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FIGURE 4 | Results of prediction in MRG. Severally using (A) the left and (B) the right IFG-based rsFC to predict reappraisal scores. The scatter plots and line charts
[in both panels (A,B)] described a significant correlation and consistency between actual and predicted reappraisal scores, respectively.

and connectivity of left IFG with bilateral SPL, MCC, left
IPL, and right insula during resting state. Consistent with
the previous findings on the activation of parietal lobes in
reappraisal task (Buhle et al., 2014; Morawetz et al., 2017b),
our study also found an association between habitual use of
reappraisal and co-activation of left IFG and parietal lobes
(including SPL and IPL), which usually engage in the attention
control process (Luks et al., 2007; Hutchinson et al., 2014;
Salo et al., 2017; Sang et al., 2017; Wang et al., 2020). More
importantly, it is documented that the parietal lobes and
prefrontal gyrus engage in cognitive control by exerting influence
on the temporal regions to change the semantic and perceptual
representations, so as to facilitate the selection of appropriate
behaviors, and the inhibition of maladaptive habitual actions
(Buhle et al., 2014; Dixon, 2015). Similarly, MCC has also been
found to be strongly involved in the allocation of attention to
emotional information and action monitoring (McRae et al.,
2008; Kragel et al., 2018). Indeed, the cognitive function of
MCC in performance monitoring may help guide the changing
emotional responses through reappraisal strategy in an intended
way (Ochsner et al., 2012). Moreover, MCC also combines with
the insula, which contains bodily information and sensations

(including interoceptive representation of emotions) (Craig,
2009; Lane et al., 2015), to project the affective information to
the neighboring IFG/VLPFC (Craig, 2009; Kohn et al., 2014),
indicating a motivation to IFG to select an appropriate response
in the final stage. During this process, IFG may work in concert
with the parietal lobes and temporal gyrus to focus attention on
the subjective feelings and select appropriate interpretation to
obtain a desirable emotional state.

As initially anticipated, we did not observe a significant
correlation between left or right IFG-related rsFC and the high
dispositional reappraisal use. More so, the IFG-related rsFC
pattern of MRG could not effectively predict for reappraisal
scores of HRG. This supports the neural efficiency view, that
the more adept the skill, the lesser the neural connectivity,
but the more enhanced the performance becomes (Neubauer
and Fink, 2009; Di Domenico et al., 2015; Curtin et al.,
2019). However, there is a conspicuous lack of evidence
on trait emotion regulation with reappraisal disposition to
support our findings. Nevertheless, some promising evidence
from cognitive training provides a potential explanation. For
example, Vartanian et al. (2013) proved that working memory
training can augment performance on divergent thinking task

Frontiers in Neuroscience | www.frontiersin.org 9 June 2021 | Volume 15 | Article 68185912

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-681859 June 11, 2021 Time: 17:32 # 10

Li et al. IFG-Based rsFC Predicts Medium Reappraisal

FIGURE 5 | Results of prediction between HRG and sMRG. We separately used (A) the left and (B) the right IFG-based rsFC of sMRG to predict the reappraisal
scores of HRG. Scatter plots and line charts indicated non-significant correlation and consistency between actual and predicted reappraisal scores, respectively.

and lead to lower activation in the prefrontal gyrus (VLPFC
and DLPFC) in adult participants, while Motes et al. (2018)
found that cognitive training results in a faster processing speed
along with reduced activation in the prefrontal gyrus in elderly
participants. Therefore, it is possible that individuals with high-
frequency daily use of reappraisal strategy, possess a more
adept skill of emotion regulation, and recruit less functional
connectivity between IFG and other regions in the resting state.
On the other hand, the limited sample size in HRG may also
be a potential reason to explain the non-significant results
of both the association between rsFC and reappraisal scores,
and the correlation in the internal cross-validation analysis. If
so, future study should bring into consideration the sample
size factor to ascertain whether the IFG-based rsFC pattern
is linked to the variation of frequency level of dispositional
use of reappraisal.

Overall, previous studies have emphasized the important role
of the IFG in cooperation with other brain regions in task-based
functional connectivity, in the selection and inhibition processes
of emotional regulation. The present study expands on these
findings by explicitly investigating how patterns of functional
connectivity between IFG and other brain regions change during
resting state, and how these changes may be linked to individuals’
habitual reappraisal use. Specifically, besides coupling with
temporal gyrus in the function of general semantic control, we
found that the left IFG, along with SPL, MCC, left IPL and
right insula, predominantly engages in monitoring the emotional
performance (cognitive control of emotion), while the right IFG,

coupling with DMPFC and ACC, predominantly engages in
representation of mental states (evaluation of emotion).

Despite the important contributions of our study, there are
several limitations needed to be noted. Firstly, as mentioned
above, the sample size of HRG is relatively smaller than that of
the MRG. Possibly, there may be some other potential intrinsic
functional connectivity patterns recruited by individuals with
higher emotion regulation capacity. To fully understand the
neural substrates of emotion regulation, more participants with
a higher ability of emotion regulation need to be included
in future studies. Secondly, the present study only recruited
healthy participants. Although the neural association observed
in these participants may provide potential neural evidence
for clinical practice, the dispositional reappraisal use may
show a different association with the resting-state networks
in the context of emotional dysregulation. Therefore, future
studies should consider a comparative analysis of the relevance
of habitual strategy use and regulation networks, between
patients with emotional disorders and healthy populations, to
improve the clinical understanding and intervention. Finally,
although we have not observed a significant association
between IFG-based rsFC and suppression scores, which is
also a personality trait of emotion regulation, it may exist
in other potential functional hubs and neural substrates
relevant to the dispositional use of the suppression strategy.
Thus, future studies should explore the potential neural
mechanism underlying trait suppression in both healthy and
clinical populations.
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In conclusion, the present study investigated the intrinsic
neural underpinnings of dispositional reappraisal employing
the IFG-based function connectivity approach during resting
state. Our findings demonstrate that the medium dispositional
reappraisal use relies on the cooperation of the functional hubs of
the bilateral IFG and other regions within the emotion regulation
cortex. These findings may explain how individuals cope with
emotional events in daily life, as well as applied in clinical
intervention for emotion-regulation-related disorders.
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Electroencephalographic (EEG) neurofeedback (NFB) is a popular neuromodulation
method to help one selectively enhance or inhibit his/her brain activities by means of
real-time visual or auditory feedback of EEG signals. Sensory motor rhythm (SMR) NFB
protocol has been applied to improve cognitive performance, but a large proportion
of participants failed to self-regulate their brain activities and could not benefit from
NFB training. Therefore, it is important to identify the neural predictors of SMR up-
regulation NFB training performance for a better understanding the mechanisms of
individual difference in SMR NFB. Twenty-seven healthy participants (12 males, age:
23.1 ± 2.36) were enrolled to complete three sessions of SMR up-regulation NFB
training and collection of multimodal neuroimaging data [resting-state EEG, structural
magnetic resonance imaging (MRI), and resting-state functional MRI (fMRI)]. Correlation
analyses were performed between within-session NFB learning index and anatomical
and functional brain features extracted from multimodal neuroimaging data, in order
to identify the neuroanatomical and neurophysiological predictors for NFB learning
performance. Lastly, machine learning models were trained to predict NFB learning
performance using features from each modality as well as multimodal features.
According to our results, most participants were able to successfully increase the SMR
power and the NFB learning performance was significantly correlated with a set of
neuroimaging features, including resting-state EEG powers, gray/white matter volumes
from MRI, regional and functional connectivity (FC) of resting-state fMRI. Importantly,
results of prediction analysis indicate that NFB learning index can be better predicted
using multimodal features compared with features of single modality. In conclusion,
this study highlights the importance of multimodal neuroimaging technique as a tool to
explain the individual difference in within-session NFB learning performance, and could
provide a theoretical framework for early identification of individuals who cannot benefit
from NFB training.

Keywords: neurofeedback (NFB), multimodal neuroimaging, sensorimotor rhythm (SMR), learning, functional
connectivity (FC)
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INTRODUCTION

Electroencephalographic (EEG) neurofeedback (NFB) training
is a popular neuromodulation method to train brain functions.
Through EEG NFB, one can learn to selectively enhance or
inhibit his/her brain activities by means of real-time visual or
auditory feedback of EEG signals (Sitaram et al., 2017). Since
its first attempts in the 1960s, EEG NFB has rapidly received
much attention because of its numerous potential applications for
healthy participants and patients (Gruzelier, 2014a,b,c; Sitaram
et al., 2017; Omejc et al., 2019). Among the diversity of NFB
training protocols, one popular protocol is to up-regulate the
amplitude of the sensory motor rhythm (SMR, 12-15 Hz), which
is associated with a mental state of “relaxed alertness” (Witte
et al., 2013). SMR NFB protocol has been applied to improve
cognitive performance, such as sustained attention and visuo-
motor skills of healthy participants (Gruzelier, 2014a; Kober
et al., 2020). In clinical situation, SMR NFB training could
improve the impaired cognitive functions in post-stroke patients
(Kober et al., 2015). However, the efficacy of EEG NFB has
been questioned recently because many sham-controlled studies
have shown that a large proportion of users (16% to 57%)
failed to self-regulate their brain activities and could not benefit
from EEG NFB training (Gruzelier, 2014c; Thibault and Raz,
2016; Alkoby et al., 2018; Weber et al., 2020; Zhang et al.,
2020a). It is of great importance to investigate the neural
mechanisms of the huge individual differences in EEG NFB
learning performance, because the successful learning during
EEG NFB training can directly contribute to the improvement
of disease symptoms in clinical patients (Gruzelier, 2014c). To
identify in advance those participants who are likely to benefit
from EEG NFB is a crucial step toward individualized and
precise neuromodulation. Therefore, it is highly desirable to
discover predictors of EEG NFB learning success and to establish
a machine learning model to predict the learning performance
based on identified predictors.

Some recent reviews concerned with the inefficiency problem
of EEG NFB training have summarized various types of
predictors of training performance (Alkoby et al., 2018; Weber
et al., 2020). However, according to these reviews, only a very
limited number of related studies have been carried out on and
their findings are not convergent and complete. Standardized
questionnaires or behavioral tasks are naturally considered as
candidate predictors, but existing evidence showed that these
questionnaires or tasks can predict NFB learning performance
to a limited extend (Kleih et al., 2010; Nan et al., 2012; Witte
et al., 2013; Alkoby et al., 2018). A batch of studies were
focused on neurophysiological signals, mainly EEG recorded
prior to training, for the prediction of performance during NFB
training. In a resting-state EEG study, Nan et al. found that the
amplitude of low beta (12–15 Hz) EEG rhythm measured before
training could predict the NFB learning ability of low beta (15–
18 Hz)/theta (4–7 Hz) ratio training (Nan et al., 2015). This
research group later proposed that, eye-closed resting-state EEG
activities in broad frequency bands, including lower alpha and
theta, measured before training could distinguish learners/non-
learners of alpha down-regulating NFB (Nan et al., 2018).

Similarly, resting-state SMR power before training was related to
the NFB training target at SMR activities (Reichert et al., 2015).

Besides above EEG predictors of NFB learning performance,
magnetic resonance imaging (MRI) has also been more and more
popularly used to investigate the problem of NFB inefficacy.
because multimodal MRI can provide various types of predictors
from brain structure, function, and connectivity with high spatial
resolution. For example, structural MRI (sMRI) studies found
that, the gray/white matter volume (GMV/WMV) could be the
predictors of NFB performance and they were related to the
neuroanatomical basis of the ability to learn to self-regulate
one’s own brain activity (Weber et al., 2020). Resting-state
functional MRI (rsfMRI) have also been applied to study neural
mechanisms of individual differences in self-regulation of many
other behaviors and brain functions (Kelley et al., 2015). Resting-
state functional MRI also offers many metrices of local brain
activity, such as regional homogeneity (ReHo) (Zang et al.,
2004) and the amplitude of low-frequency fluctuations (ALFF)
or fractional ALFF (fALFF) (Zou et al., 2008). All of this metrics
can be used to investigated correlation between baseline brain
activities and cognitive performance (Dong et al., 2015; Xiang
et al., 2016; Xie et al., 2021). Particularly, because the interactions
between brain regions are crucial for supporting cognitive
functions, recent studies suggested that functional connectivity
(FC) might be more promising for predicting complex high-
order cognitive processes than those measured based on local
brain regions (Qi et al., 2019; Horien et al., 2020). An fMRI-
based NFB study suggested that rsfMRI FC can be used to identify
individuals who are likely to benefit from fMRI NFB training
to control anxiety symptom (Scheinost et al., 2014). However,
rsfMRI (no matter which type of metrics) is still seldom used to
investigate the inefficiency problem of SMR NFB.

In summary, the predictors of SMR up-regulation in NFB
training has not been well understood yet. Multimodal brain
imaging techniques could provide complementary and/or novel
information about brain function, structure, and connectivity,
so it is promising that more predictors could be discovered
from multimodal brain imaging data and the accuracy to
predict NFB learning performance can be improved. Thus,
in the present study, we collected multimodal neuroimaging
data (resting-state EEG, sMRI, and rsfMRI) before SMR-
NFB experiments, with aims to identify the multimodal
neuroanatomical and neurophysiological predictors for within-
session learning performance of SMR up-regulation. The work
could obtain an early identification of individuals who would not
benefit from NFB training, and could increase the efficacy and
cost-effectiveness of NFB technique in practical uses.

MATERIALS AND METHODS

Participants
This study was approved by the Medical Ethics Committee of
the Health Science Center of Shenzhen University. Thirty-four
healthy participants (17 males, mean ± SD age: 22.8 ± 2.23)
were recruited from Shenzhen University. The participants
had no history of major medical illness, psychiatric or
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neurological disorder and had normal corrected-to-normal
vision. All participants gave their written informed consent
and the experimental procedure was approved by the local
ethics committee.

Data Acquisition
Electroencephalographic (EEG) signal during the NFB training
was recorded with a 32-bit OpenBCI Board (Cyton Biosensing)
connected to a lithium-ion polymer rechargeable battery. The
OpenBCI board was connected to Ag/AgCl wet electrodes
secured within an elastomeric EEG head-cap (Easy-Cap; Brain
Products GmbH, Munich, Germany). Electrodes were placed at
C1, C2, Cz, CPz, TP9, and TP10 positions according to the 10–20
electrode montage system. The reference electrode was located at
FCz, and the ground electrode was located at the forehead.

Resting-state whole-brain EEG measurements (3-min eyes-
open and eyes-closed) were also collected for each participant in
a separate session before the first session of NFB training. EEG
recordings were obtained with 64 Ag/AgCl electrodes placed on
the EasyCap (Brain Products GmbH, Munich, Germany) with a
reference electrode positioned at FCz. Vertical electrooculogram
was recorded with the electrode placed on the superior to the
nasion of the right eye. Input impedances were kept below
10 k� and the records were taken simultaneously at a sampling
frequency of 1000 Hz.

Structural and resting-state functional MRI Images were
collected using a 3.0 Tesla Siemens Trio scanner (Siemens
Medical, Erlangen, Germany) at Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences. A standard 12-
channel birdcage head coil was used and each participant’s head
was fixed by foam pads in order to reduce head movement.
Functional images were acquired with echo planar imaging
sequence with the following parameters: 31 contiguous slices
with a slice thickness of 4 mm; TR/TE = 2000/30 ms, 90◦ flip
angle; field of view (FOV) 192 × 192 mm2; 64 × 64 data matrix.
During the scanning of resting-state fMRI data, participants were
asked to remain motionless, keep their eyes open, stay awake, and
stare at the “+” sign. High resolution T1-weighted images were
collected with a volumetric three-dimensional spoiled gradient
recall sequence with the parameters: TR/TE = 2000/30 ms,
FOV = 240 × 240 mm2, matrix size = 256 × 256, flip angle = 90◦,
slice number = 176, voxel size = 0.9 × 0.9 × 1 mm3.

NFB Training
The SMR (12–15 Hz) up-regulating EEG NFB protocol was
employed in this study, and each participant had to complete
three sessions within one week and usually one day apart for
continuous sessions. Each session consisted of 10 NFB training
runs (3 min each). The first run is the baseline run during which
the participants saw moving feedback bar but were instructed
to relax themselves without trying to control the feedback bar
voluntarily. The EEG signal recorded in the NFB baseline run was
used to calculate initial individual threshold for SMR feedback
and the threshold of SMR power was adapted after each run using
the median value of SMR power in previous run.

During NFB training, the EEG signal was sampled at 250 Hz
and band-pass filtered between 0.5 Hz and 45 Hz. The SMR

power was calculated by fast Fourier-transforms (FFT) every
100 ms with a 10-s data window. The real-time SMR power (12–
15 Hz) was presented on the screen in front of the participants
as one vertical feedback bar. We only gave the participants
a minimum degree of guidance, telling them to relax and
concentrate physically during NFB training to increase the SMR
power. When the SMR power exceeded the threshold, the color of
the feedback bar changed from red to blue. Furthermore, when
participants were able to move SMR feedback bars above the
threshold and keeping for more than 1 s, they were rewarded with
one more point displayed on the top of the screen.

The within-session NFB learning performance was assessed
using a learning index (LI), which is calculated from the SMR
powers of all NFB training runs and has been successfully applied
in previous studies (Wan et al., 2014). Specifically, for each
session, the median values of SMR power were calculated for all
12 training runs and then a linear regression was performed on
these median values. Then LI was calculated as the average of the
regression slopes across three sessions. The learning performance
(LI) was checked for normality using Shapiro–Wilk test. It should
be noted that the NFB learning index LI was calculated using
SMR power values obtained from online EEG recorded by the
OpenBCI cap during NFB training, because these on-line EEG
results could better reflect the training performance.

Analysis of Resting-State EEG
Resting-state EEG data recorded by the 64-channel EasyCap were
analyzed by the Letswave toolbox1 and self-written MATLAB
scripts. Continuous data were bandpass filtered between 1 Hz
and 100 Hz. After visual inspection, bad channels were
interpolated with adjacent channels. Then the signal was split
into 1-s epochs and epochs with artefacts were rejected after
visual inspection. These remaining epochs were submitted to
an informax algorithm to decompose into their independent
components (Makeig et al., 1997; Jung et al., 2001; Olbrich et al.,
2011). The components related to eye blinking or movement were
removed from the original data. Finally, all EEG signals were
re-referenced to a common reference.

After preprocessing, data were transformed into the frequency
domain by the Welch’s method (with 1000-point FFT, 50%
overlapping, and Hamming windows). Then we extracted the
power values at four frequency bands: theta (4–8 Hz), alpha (8–
12 Hz), SMR (12–15 Hz) and beta (12.5–30 Hz). Because EEG
showed great inter-individual variabilities in the power, relative
SMR power was calculated as the ratio of the power within a
specific frequency band and the power and the total power in the
full frequency band. For each NFB run, the relative power values
were calculated for each epoch and then standardized across all
epochs. Finally, the median value of relative powers of all epochs
was taken as the relative power for the entire run. Furthermore,
to assess the topological distribution of relative powers, nine scalp
regions of interest (ROI) were defined (as shown in Figure 1) and
they are: left frontal (F5, F3, FC5, FC3), middle frontal (F1, Fz,
F2, FC1, FCz, FC2), right frontal (F4, F6, FC4, FC6), left central
(C5, C3, CP5, CP3), middle central (C1, Cz, C2, CP1, CPz, CP2),

1https://github.com/NOCIONS/letswave6
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FIGURE 1 | Distribution of NFB learning index LI.

right central (C4, C6, CP4, CP6), left parietal (P5, P3, PO7, PO3),
middle parietal (P1, Pz, P2, POz), right parietal (P4, P6, PO4,
PO8) (Reichert et al., 2015). The relative power of each ROI was
calculated as the average across all the electrodes within this ROI.

Because the learning index (LI) of NFB training is not
normally distributed (P = 0.0002), Spearman’s correlation
analysis was performed to evaluate the correlation between
resting-state EEG power and the learning performance (LI)
of NFB training for each ROI at each frequency band. False
discovery rate (FDR) correction was performed to address the
multiple comparison problem (Benjamini and Hochberg, 1995).

Analysis of Structural MRI Data
Voxel based morphometry analysis of sMRI images were
performed using Computational Anatomy Toolbox2, which
is an extension toolbox of Statistical Parametric Mapping
(SPM123). The sMRI images were segmented into gray matter,
white matter and cerebrospinal fluid areas using the unified
standard segmentation option in SPM12. The individual
structural images were then normalized into standard Montreal
Neurological Institute (MNI) template. Spatial normalization
into the MNI standard space was done by the high-dimensional
DARTEL (Diffeomorphic Anatomical Registration Through
Exponentiated Lie Algebra) approach. Then the generated gray
matter and white matter images were smoothed with an 8-mm
full-width at half-maximum (FWHM) Gaussian kernel.

The voxel-wise statistical analyses were performed using
statistical non-parametric mapping (SnPM) toolbox4. The non-
parametric permutation approach was applied because it did not
require any assumption on data normality (Nichols and Holmes,
2002). The standard general linear model (GLM) design setup
was used by creating design matrices for multiple regression
analysis of GMV or WMV, with individual NFB performance
(LI), age and gender as regressors. General linear model was used
to construct pseudo t-statistic images, which were then assessed

2http://www.neuro.uni-jena.de/cat/
3https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
4http://warwick.ac.uk/snpm

for significance using a standard non-parametric multiple
comparisons procedure based on randomization/permutation
testing (N = 10000). Significant clusters were extracted with
voxel-level P > 0.005 and cluster size >50.

Analysis of Resting-State fMRI
The rsfMRI data were processed by using the Data Processing
Assistant for Resting State fMRI (DPARSF5), which is based
on SPM12 and the toolbox for Data Processing & Analysis
of Brain Imaging (DPABI6). The preprocessing procedure was
as follows. The first 10 volumes were removed to avoid T1
equilibration effects. Slice timing used the middle slice as the
reference. Then the time series of rsfMRI images for each
participant were realigned using a six-parameter (rigid body)
linear transformation. The T1 images were co-registered to the
mean functional image and then segmented into gray matter,
white matter and cerebrospinal fluid. The Friston 24-parameter
model was used to remove the linear trend and other nuisance
signals (including Friston’s 24 motion parameters, cerebrospinal
fluid, white matter). The rsfMRI data were then normalized to the
MNI space and re-sampled to 3-mm isotropic voxels. A 6 mm
FWHM Gaussian kernel were applied to smooth the rsfMRI data.
Finally, a bandpass filter (0.01–0.1 Hz) was then performed on
the rsfMRI data.

Three rsfMRI regional features, including ALFF, fALFF, and
ReHo, were calculated. Amplitude of low-frequency fluctuations
is the mean of amplitudes within a specific frequency domain
of a voxel’s time course, and fALFF represents the relative
contribution of specific oscillations to the whole detectable
frequency range. ReHo is a rank-based Kendall’s coefficient of
concordance (KCC) which shows the synchronization among a
given voxel and its nearest neighbors (26 voxels) time courses.
ALFF/fALFF was calculated using smoothed (unfiltered) rsfMRI
timeseries, and ReHo was calculated using unsmoothed time
series. The metric maps for ALFF/fALFF and ReHo were
z-standardized (subtracting the mean value for the entire brain
from each voxel, and dividing by the corresponding standard
deviation). Normalized ReHo maps were then smoothed
using a 6-mm FWHM.

The relationship between the learning index LI and three
regional features were explored using SnPM toolbox. Standard
GLM design setup was used by creating design matrices for
multiple regression analysis of gray matter intensity, with
individual NFB performance (learning index LI), age and gender
as regressors. General linear model was used to construct pseudo
t-statistic images, which were then assessed for significance using
a standard non-parametric multiple comparisons procedure
based on randomization/permutation testing (N = 10000).
Significant clusters were extracted with voxel level P > 0.005 and
cluster size >50.

Besides three regional rsfMRI features mentioned above, we
also calculated the whole-brain FC using164 ROIs (160 ROIs
from the Dosenbach atlas and four emotional related ROIs)
(Dosenbach et al., 2010). The 164 ROIs were assigned into

5http://rfmri.org/DPARSF
6http://rfmri.org/dpabi
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7 intrinsic connectivity networks: (1) cerebellar, (2) cingulo-
opercular, (3) default mode, (4) frontoparietal, (5) occipital, (6)
sensorimotor, and (7) emotional. Each of the 164 ROIs was
defined as a sphere with an 8 mm radius and the mean time
series from all of the voxels within the ROI was extracted from
preprocessed rsfMRI timeseries. We then calculated Pearson’s
correlations between all pairs of ROIs for each participant
to generate a 164 × 164 correlation matrix. The obtained
correlation matrix for each participant was normalized using
Fisher’s z-transformation.

Subsequently, we calculated the correlation between the
learning index LI and rsfMRI FC strength between each ROI
pairs, using the Spearman partial correlation analysis with age
and gender as nuisance regressors. Significant resting-state FC
were extracted with P < 0.005.

Prediction of NFB Learning Performance
Lastly, machine learning models were trained to predict NFB
learning performance (LI) from multimodal neuroimaging
predictors (correlates), which were identified based on above
mentioned analyses of multimodal neuroimaging data (Sections
“Analysis of resting-state EEG,” “Analysis of structural MRI data,”
and “Analysis of resting-state fMRI”). According to previous
correlation analysis results between the NFB learning index and
features of each imaging modality, four sets of features were
employed in the prediction analysis: (1) band-limited relative
power of resting-state EEG, (2) GMV/WMV of sMRI, (3) three
regional features (ALFF, fALFF, ReHo) of rsfMRI, (4) FC of
rsfMRI. To investigate whether the combination of multimodal
features can improve the performance in predication of NFB
learning index, we further compare the prediction performance
using features from each modality as well as multimodal
features. The set of multimodal features were constructed by
concatenating all four types of feature vectors. Across-individual
normalization was performed for each feature as well as the
learning index LI before training the machine learning models.

Four machine learning techniques, namely, linear support
vector regression (SVR), linear regression (LR), Bayesian
automatic relevance determination regression (ARDR), and
random forest regression (RFR), were used here to quantitatively
predict the NFB learning index from multimodal neuroimaging
features (Pereira et al., 2009). Note that, because there is only one
EEG correlate (SMR power of the left central region) found to
be significantly correlated with LI (see Section “EEG correlates
of NFB learning performance”), a linear regression model was
used instead of SVR to predict LI from this EEG predictor.
A leave-one-out-cross-validation (LOOCV) strategy was adopted
to evaluate the performance of the prediction models. For each
iteration in LOOCV, one participant was selected as the test
sample and fed to the linear regression model (for EEG) or the
SVR model (for MRI and combined multimodal features) trained
with remaining samples, and the iterations were repeated for
each participant. To quantify the prediction performance, mean
absolute error (MAE), which was calculated as the average of
the absolute difference between actual and predicted values, as
well as Pearson correlation between actual and predicted values
were used. Furthermore, we compared the Pearson correlation

coefficient obtained using multimodal features and the Pearson
correlation coefficient obtained using each set of features from
single modality. The calculation and comparison of Pearson
correlations in this part were carried out using SPSS (SPSS
Statistics, version 22, IBM, Armonk, NY).

RESULTS

NFB Learning Performance
Seven participants were excluded from analysis due to incomplete
training or excessive EEG artifacts. Therefore, data from 27
participants (12 males, age: 23.1 ± 2.36) were available for
subsequent analysis. Most of the participants (19 of 27) were able
to increase their SMR power within-session as suggested by their
positive NFB learning index LI (as shown in Figure 1).

EEG correlates of NFB Learning
Performance
We performed correlation analysis between the NFB learning
index LI and EEG powers of nine scalp ROIs. As shown in
Figure 2, LI had significant positive correlations with SMR
power of left central ROI (including EEG channels C5, C3,
CP5, and CP3) during the eyes-open resting-state conditions
(P < 0.05, FDR-corrected).

sMRI Correlates of NFB Learning
Performance
General linear model (GLM) analysis revealed that the NFB
learning index LI was positively associated with GMV localized
in the inferior temporal gyrus and superior parietal gyrus,
and negatively associated with GMV localized in the frontal
gyrus, middle temporal gyrus, and supramarginal gyrus
(Figure 3A). For WMV, positive correlation was observed
mainly in the supplementary motor area, precuneus, and medial
occipitotemporal gyrus, and negative correlation was observed
in the precentral gyrus and hippocampus (Figure 3B). Detailed
information of these clusters with significant correlation can be
found in Supplementary Table 1.

rsfMRI Correlates of NFB Learning
Performance
GLM analysis found positive correlation between ALFF and
NFB learning index LI in the postcentral gyrus, lingual gyrus,
and hippocampus (as shown in Figure 4 and Supplementary
Table 2). However, other two types of regional rsfMRI features
(fALFF and ReHo) did not show any significant correlation
results with LI. As a result, only the identified ALFF features were
used to build a model for prediction of the NFB learning index.

Further, significant positive correlations between strength of
rsfMRI FC and NFB learning index LI were mainly observed
within the cingulo-opercular network, between the sensorimotor
network and occipital network (P < 0.005; Figure 4B); and
significant negative correlation was observed between the default
mode network and occipital network (P < 0.005; Figure 4C).
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FIGURE 2 | (A): Illustration of defined EEG-scalp regions of interest (ROI). (B): Positive correlation between SMR power at rest (baseline) and NFB learning index LI.
The ROI outlined in red contained C5, C3, CP5, CP3 and it showed significant correlation with LI (P < 0.05, FDR-corrected).

FIGURE 3 | Brain regions with (A) gray and (B) white volumes which show significant positive (red) or negative (blue) correlation with the NFB learning index LI
(P < 0.005, Cluster size > 50). SPG, Superior Parietal Gyrus; SFG, Superior Frontal Gyrus; MFG, Middle Frontal Gyrus; SMG, Supramarginal Gyrus; ITG, Inferior
Temporal Gyrus; MTG, Middle Temporal Gyrus; MTP, Middle Temporal Pole; SMA, Supplementary Motor Area; PCG, Postcentral Gyrus; MOG, Middle Occipital
Gyrus; FG, Fusiform Gyrus.
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FIGURE 4 | (A): Brain regions with rsfMRI ALFF which are significantly correlated with the NFB learning index LI (P < 0.005, Cluster size > 50). PCG: Postcentral
Gyrus; LG: Lingual Gyrus. (B) and (C) shows the correlation coefficients between rsfMRI FC and the NFB learning index LI (P < 0.005; (B), positive correlations; (C):
negative correlations). In B and C, nodes of different colors represent different brain regions, and the edge thickness represents the FC strength.

Prediction of NFB Learning Performance
Prediction analysis of the NFB learning index LI was performed
using features selected from each modality, as well as from
multimodal features. According to the results using SVR model,
the NFB learning index LI can be better predicted using
multimodal neuroimaging features, as compared with using
features of single modality (as shown in Figures 5). Specifically,
the MAE of multimodal features is 0.4341, which is smaller
than those of single modality (0.6136 for EEG features, 0.6565
for sMRI features, 0.6297 for rsfMRI ALFF features, 0.7994 for
rsfMRI FC features) (Figures 5A–D). Moreover, the correlation
coefficient between actual and predicted values using multimodal
features are significantly higher than the correlation coefficients
derived using features of single modality (Figure 5F). Prediction
of NFB learning index LI using other models can be found
in Supplementary Table 3 and Supplementary Figure 1, and
generally better results could be obtained using multimodal
neuroimaging features.

DISCUSSION

Investigating the neural correlates of an individual’s learning
ability during NFB training is important since the learning ability
has a crucial mediation link with the behavioral or clinical
outcome after NFB training (Gruzelier, 2014a). Prediction of NFB
learning performance would help prevent unnecessary time and
resources used on participants who cannot learn to modulate
their brain rhythms, and could make these participants choose
other treatment means earlier. However, reliable predictors of
NFB learning performance remain elusive. Thus, this study
was aimed to investigate the association between learning
performance during the SMR up-regulating NFB-training and
multimodal neuroimaging data (resting-state EEG, sMRI, and
rsfMRI), and then to assess whether NFB learning performance
can be better predicted using multimodal features. According to
our results, most participants were able to successfully increase

the SMR power and the learning performance was significantly
correlated with a set of EEG or MRI features. Importantly,
results of prediction analysis indicate that NFB learning index
can be better predicted using multimodal features compared
with features of single modality. These results will be discussed
in detail bellow.

Advantages of Using Multimodal Data
Neurofeedback (NFB) training is generally based on real-time
feedback of voluntarily induced changes of brain activities, and it
is a process of operant conditioning which leads to self-regulation
of brain activity. Successful self-regulation of brain activity during
NFB training can be considered as a personal skill, and a relatively
high proportion of participants cannot achieve stable self-
regulation of the target brain activity (Alkoby et al., 2018). In line
with the trend to study the relationship between an individual’s
brain structure or function and individual differences in behavior,
many NFB studies explained the individual differences of
NFB learning performance based on neural recordings and
brain imaging data, such as resting-state EEG features and
neuroanatomical features (Alkoby et al., 2018; Weber et al., 2020).
A number of EEG NFB studies suggested that participants can
be grouped as “learners” or “non-learners,” based on their brain
ability or inability to regulate their brain activity during the NFB
training. Then, machine learning models can be trained to predict
NFB learning performance using single-modality neuroimaging
predictors (Wan et al., 2014; Nan et al., 2015; Reichert et al., 2015;
Nan et al., 2018).

More and more studies used multimodal neuroimaging in
human brain researches because it overcomes the limitations
of individual modalities. Different neuroimaging techniques
have different biochemical/biophysical mechanisms, which
lead to different capabilities in probing the human brain’s
structure and function (Zhang et al., 2020b). Specifically, EEG
passively records electric changes induced by extra- and intra-
cellular electric currents associated with neuronal brain activity
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FIGURE 5 | Comparison of performance in prediction NFB within-session learning index LI using different feature sets. (A). Prediction results using EEG features.
(B). Prediction results using sMRI features. (C). Prediction results using rsfMRI ALFF. (D). Prediction results using rsfMRI FC. (E). Prediction results using multimodal
neuroimaging features. The red dashed lines represent y = x while the red solid lines represent the regression lines. Each black dot represents one participant.
(F) shows the comparison of correlation coefficients between predicted and actual LI values among five different feature sets (*, P < 0.05; **, P < 0.005).

(Michel and Murray, 2012). Electroencephalographic has a high
temporal resolution and it is safe, cheap, and easy to operate.
On the other hand, MRI has a good spatial resolution and
can provide a more complete as well as more detailed picture
of the brain. Structural MRI can provide static anatomical
information (Symms et al., 2004) and fMRI depicts brain activity
by detecting the changes in brain hemodynamics (Howseman
and Bowtell, 1999). Multimodal neuroimaging data analysis
could take the advantages from multiple imaging techniques,
such as improving both spatial and temporal resolution and
illustrating the anatomical basis for functional activities (Zhang
et al., 2020b). Numerous neuroimaging studies have shown
that, multiple neuroimaging modalities may provide a more
comprehensive understanding of the complex interplay between
the brain (including structure, function, and networks) and
behavior. For example, integrating both functional and structural
features could improve prediction accuracy of intelligence
of healthy subjects (Jiang et al., 2020). Here in the current
study, we identified a set of NFB learning-performance-related
multimodal neuroimaging features, which greatly broaden

our knowledge about the neural mechanisms of NFB learning
effects. The results suggested that, in view of the underspecified
and complex character of NFB training task, the individual
difference in NFB learning performance is not attributed
to single modality, the individual difference in SMR NFB
performance is not attributed to one single factor, but modulated
by the brain’s baseline neural activity, structure, function, and
functional connections.

Multimodal Predictors of SMR NFB
Learning Index
EEG Predictors
According to existing findings, a well-known predictor of
NFB learning index should be the baseline EEG activity.
A higher baseline level of the training parameter (brain
activity of the training target) is advantageous for better
NFB training performance (Wan et al., 2014; Nan et al., 2015;
Reichert et al., 2015). In consistence with previous studies
(Reichert et al., 2015; Nan et al., 2018), we found that the
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eyes-open resting-state SMR power showed positive correlation
with NFB learning index. Generally, the most relevant resting-
state SMR power located in central regions, especially the left
central regions. It has been proposed that a certain baseline level
of SMR power is associated with a higher neural adaptability
which may allow a better modulation of this EEG rhythm
(Reichert et al., 2015).

fMRI Predictors
Similar to rest EEG, rsfMRI data are also easy to collect and
have gained widespread applications. Two types of features,
regional activities (ALFF/fALFF/ReHo) and FC of intrinsic brain
networks, can be calculated from rsfMRI. However, there is
no study to examined rsfMRI-based predictors for EEG NFB
training performance. We found significant positive correlations
between the NFB learning performance and the strength of
a set of FC features, which were mainly observed within the
cingulo-opercular network, between the sensorimotor network
and occipital network. Similarly, FC having significant negative
correlations with the learning performance were observed
between the default mode network and occipital network.

Considering the underspecified content of NFB training task,
successful learning performance requires participants to show
self-initiated multitasking, such as to focus on inner mental
thoughts and external stimuli at the same time. Therefore, while
concentrating on real-time feedback, participants have to redirect
attention away from irrelevant thoughts and toward goal-related
thoughts (Kober et al., 2017). Hence, positive correlation between
resting-state within-network FC of cingulo-opercular network
might be explained by its positive effects for redirection of
attention and maintenance of tonic alertness (Sadaghiani and
D’Esposito, 2015). A previous study showed that the intention to
control the moving bar of sham feedback is sufficient to engage
a broad cingulate-opercular network related to cognitive control
(Ninaus et al., 2013).

The default mode network is implicated in self-referential
and integrative processes and it generally has negative FC with
other task-positive networks during resting-state (Fox et al.,
2005). The anticorrelation between the default mode network
and task-positive visual networks may reflect the dichotomy
between NFB training requiring introspectively oriented and
extrospectively oriented attentional modes (Fransson, 2005).
The strength of this negative correlation could be considered
as an index of the degree of regulation in the default mode
and task-positive networks, and showed positive correlation
with behavioral performance (Kelly et al., 2008). Consistently,
better NFB training performance showed negative correlation
with resting-state FC between the default mode and occipital
networks, i.e., the higher the negative correlation, the better
the NFB training performance. Besides, performance during
NFB training is also positively correlated with resting-state FC
between occipital and sensorimotor networks. Both occipital and
sensorimotor networks are known to support more specialized
and mostly externally driven functions, and the FC between these
two networks is normally low during resting-state (Doucet et al.,
2011; Gu et al., 2015; Lee and Frangou, 2017). In addition to FC,
we also observed positive correlation between ALFF and NFB

learning performance in brain regions within the sensorimotor
and occipital networks, such as the postcentral gyrus and
lingual gyrus. Considering increased FC between the networks
responsible for processing different types of sensory information,
it can be inferred that better NFB learning performance might be
related to multisensory integration.

sMRI Predictors
VBM analysis of sMRI data measures the neuroanatomy
characteristic of the human brain, and it has been used in
previous studies to investigate the link between brain anatomical
properties and the individual difference in cognitive function
(Kanai and Rees, 2011). In order to reveal the neuroanatomical
basis of the ability to achieve self-regulation of one’s own brain
activity, two studies investigated structural predictors of learning
performance during up-regulation of SMR power (Ninaus et al.,
2015; Kober et al., 2017). Compared with these two studies, the
current study observed relevant findings on GMV and WMV
of more widely distributed brain regions. Specifically, for the
default mode network, a positive relationship between GMV
and NFB performance was observed in the superior parietal
gyrus, precuneus, and inferior temporal gyrus, and a negative
relationship was observed in the frontal gyrus and temporal pole.
Besides, a number of brain regions within the occipital network,
including the middle occipital gyrus, calcarine sulcus, lingual
gyrus, and fusiform gyrus, showed positive correlation between
WMV and NFB performance. As mentioned before, NFB
performance showed significantly correlation with the rsfMRI
FC strength between the default mode network and occipital
network. These results underscore the importance of these two
functional networks to the capability of learning self-regulation
of brain activity from the neuroanatomical perspective. So
far, a very limited number of studies investigated structural
predictors of NFB performance, and their results also explained
the neuroanatomical basis for learning self-regulation of brain
activity (Enriquez-Geppert et al., 2013; Ninaus et al., 2013,
2015; Kober et al., 2017). There are some differences between
the results obtained in this study and those reported before,
and the differences can be attributed to a number of reasons,
such as different NFB protocols, training characteristics, and
measurements of training performance. Future study should
attempt to reveal a more general “NFB network” in the brain,
regarding overlapping neuroanatomical correlates for different
NFB protocols (Weber et al., 2020).

Limitations
This present study has some limitations. First, the present study
was constrained in terms of the sample size, which could limit
and weaken the result of this study. Second, a corrected threshold
was only used for extraction of EEG correlates. The results
are sufficient to support our conclusion, but studies with more
strict feature selection approach are needed to verify the results
obtained here. Third, the multimodal prediction was primarily
achieved by simple concatenating brain features from different
modalities horizontally into a single, combined feature space,
thus not allowing for a full use of the joint information among
modalities (Sui et al., 2020). Forth, only within-session learning

Frontiers in Neuroscience | www.frontiersin.org 9 July 2021 | Volume 15 | Article 69999924

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-699999 July 19, 2021 Time: 16:36 # 10

Li et al. Multimodal Neuroimaging Predictors of Neurofeedback

effect was evaluated in this study. There is no generally accepted
best measure for assessing NFB learning success so far. One
might speculate that observed predictors for NFB performance
might be different if we had used another measure of learning
performance. But here in this study, our main purpose is
to validate the necessary of utilizing multimodal data when
investigating predictors of NFB learning success, therefore we
used a learning index (LI), which has been successfully applied
in previous studies. Last but not least, we haven’t collected
any behavioral data to characterize subject’s psychological state
during NFB training, such as mental strategy. This should be
considered in future study together with pre-NFB baseline factors
to make a more comprehensive investigation of NFB learning
performance predictors.

CONCLUSION

In conclusion, inter-individual differences concerning the ability
to regulate one’s brain activity are in the focus of current
NFB research. Existing studies proposed that the individual
differences in NFB learning performance can be attributed
to electrophysiological and anatomical baseline characteristics.
Our results support and extend these findings, since we found
reliable predictors of within-session NFB learning performance
from multimodal neuroimaging data. The results of this study
highlight the importance of multimodal neuroimaging technique
as a tool to explain the individual difference in learning
performance during NFB training, and could provide a basic
theoretical framework for development of individualization
of NFB protocols.
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Emotional singing can affect vocal performance and the audience’s engagement.
Chinese universities use traditional training techniques for teaching theoretical and
applied knowledge. Self-imagination is the predominant training method for emotional
singing. Recently, virtual reality (VR) technologies have been applied in several fields
for training purposes. In this empirical comparative study, a VR training task was
implemented to elicit emotions from singers and further assist them with improving
their emotional singing performance. The VR training method was compared against
the traditional self-imagination method. By conducting a two-stage experiment, the
two methods were compared in terms of emotions’ elicitation and emotional singing
performance. In the first stage, electroencephalographic (EEG) data were collected
from the subjects. In the second stage, self-rating reports and third-party teachers’
evaluations were collected. The EEG data were analyzed by adopting the max-relevance
and min-redundancy algorithm for feature selection and the support vector machine
(SVM) for emotion recognition. Based on the results of EEG emotion classification and
subjective scale, VR can better elicit the positive, neutral, and negative emotional states
from the singers than not using this technology (i.e., self-imagination). Furthermore,
due to the improvement of emotional activation, VR brings the improvement of singing
performance. The VR hence appears to be an effective approach that may improve and
complement the available vocal music teaching methods.

Keywords: vocal music teaching, singing emotion, self-imagination, virtual reality, electroencephalogram,
emotion classification

INTRODUCTION

The generation of human emotion has a certain regularity that reflects the degree of experience and
cognitive relationship between objectivity and subjectivity (Xi, 2010). Singing is a performing art
that uses sound as a tool to awaken the human spirit, which fully embodies the self-creation and
pursuit of human emotional expression (Xu, 2008). The art of singing is the art of human mood.
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The singing activities of singers are the expression of their
inner psychology. These activities are inseparable from important
psychological factors such as feeling, perception, consciousness,
will, memory, imagination, emotion, and thinking (Mu, 2011).
Singers need to pay attention to their emotional expression, truly
integrate their thoughts and feelings with the song, and give
life and soul to the song (Shi, 2002). Therefore, in the process
of learning vocal music, students not only need to master the
vocalization skills, but also need to actively invest in emotions,
effectively express the inner emotions of musical works, and give
them vitality and appeal.

Current vocal singing learning in Chinese universities is
mainly based on the teaching of vocal theories and knowledge.
The traditional self-imagination training for vocal learners does
not efficiently engage and attracts students’ attention. We have
observed that vocal music singers in our institution have
insufficient perception and lack the ability to sing emotionally.
In the process of song interpretation, the emotional expression
of the singers is not ideal, and the emotional state is not actively
mobilized. Thus it is difficult to achieve the requirements of the
singing state with a strong voice.

Immersive virtual reality (VR) technology has existed for
50 years (Slater, 2009) and has been regarded as a promising and
clinical tool (Kourtesis et al., 2019a). It enables researchers to
collect advanced cognitive and behavioral data through dynamic
stimuli and interactions in an ecologically valid environment, and
it can be combined with non-invasive brain imaging techniques
(Kourtesis et al., 2020). Virtual environments are sophisticated
human-computer interfaces that can be used for a wide variety of
applications (Skarbez et al., 2017). In recent years, VR technology
has greatly met the needs of art education due to its multi-
sensing, immersive, interactive, and imaginative characteristics.
Though it has been widely used in design (Huang and Chen,
2017; Pei, 2017) and art education (Gao, 2013; Zhang, 2018),
VR training has scarcely been used in the field of vocal teaching
performance. Vocal music requires a comprehensive response
of multiple psychological factors such as perception, thinking,
imagination, and movement.

An emotion is a subjective state of being that we often
describe as our feelings that impact human behavior and
mental health (Zhang G. H. et al., 2019). The neuroscience
research shows that the trigger of emotion is closely related to
physiological activities, especially brain activities (LeDoux, 2000),
which provides a theoretical basis for identifying emotional states
by analyzing brain activities. Electroencephalogram (EEG) signal
has the advantages of high time resolution, portability, and
non-invasiveness (Baig and Kavakli, 2018). Emotion recognition
based on EEG has received widespread attention (Alarcao and
Fonseca, 2017). Generally, researchers collect EEG data during
the elicitation of emotions by presenting videos, pictures, and
other emotionally stimulating means. Then they extract relevant
EEG features to explore the correlation between EEG features
and different emotion categories (Hajcak et al., 2010). Some
studies use machine learning algorithms to predict emotion
based on EEG features (Wang et al., 2014; Li et al., 2019).
Today EEG-based emotion recognition has been utilized in the
rehabilitation treatment of patients with impaired consciousness

(Huang et al., 2019), soldier mental state assessment (Lin et al.,
2017), driving status monitoring (Halim and Rehan, 2020), but
has not yet used in the area of eliciting singers’ emotion in singing.

In recent years, VR combined with EEG has been adopted in
rehabilitation (Calabrò et al., 2017), stress relief (Tarrant et al.,
2018), and teaching (Sood and Singh, 2018). Also, immersive VR
and brainwave technologies have been adopted across education
and training fields (Yang and Ren, 2019).

Inspired by these researches, an empirical study of combining
VR training and EEG to investigate the effect of the method in
eliciting emotions was designed. It is important to emphasize that
combined VR training and EEG has not yet been found in the
literature for vocal-music teaching and performance evaluation.
In this study, 16 music students were invited to participate in a
2-stage experiment. The two-stage experiment was designed to
collect data for the two teaching methods: self-imagination and
VR training. The two methods were compared by analyzing the
three types of data: self-rating reports, third-party evaluation, and
EEG emotion classification data. An empirical judgment of the
study is, as long as we elicit the emotional state corresponding
to the song emotion (such as the positive song corresponds to
the positive emotion), the singing effect will be improved; the
better the effect of the emotional elicitation, the more obvious the
improvement of the singing effect. Therefore, this study aimed to
verify the hypothesis that VR can better elicit the positive, neutral,
and negative emotions states than self-imagination, and further
improve the singing performance due to the improvement of
emotional activation.

METHODS

Figure 1 shows a flowchart of the proposed method, mainly
including data collection and data analysis. The data collection
part collected the EEG data, self-rating reports, and third-party
evaluation data. The data analysis part conducted a statistical
investigation on self-rating reports, third-party evaluation data,
and emotion recognition based on functional connectivity
features of EEG data.

Experiment and Data Collection
Participants
In this empirical study, 16 college students (8 male students and
8 female students, mean age of 19.5 ± 1.54) from the Art School
of Nanjing University of Aeronautics and Astronautics were
invited to participate in this experiment. All participants were
right-handed and have normal hearing, normal vision, or vision
correction, and no brain or mental illness. They were asked to
maintain adequate sleep time before the experiment. They agreed
and signed a written informed consent form. The experiment and
data in this empirical study complied with all relevant ethical laws
and regulations. Ethical guidelines were followed for conducting
experiments with human participants.

The Description of the Designed Experiment
Six songs in three emotion categories (positive, neutral, and
negative) were selected as emotional stimulation materials. Each
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FIGURE 1 | The flow chart of the empirical study.

emotion category has been assigned by two songs. Each song
was edited into a 3-min core segment, the lyrics of each song
were removed, and only the background music was retained. The
emotional category tags and song names of the selected songs are
shown in Table 1.

In the experiment, each subject was asked to participate
in a two-stage experiment on the emotion elicited by the
self-imagination and VR training. The complete experimental
paradigm is shown in Figure 2. In the self-imagination stage,
the vocal music teaching scene was simulated, the edited songs
were played, and the subjects were allowed to imagine themselves
according to the songs they heard, and mobilized the scenes,
and elicited emotions required for singing. In the VR training

TABLE 1 | Emotional stimulation materials.

Order Emotion
category

Translated
name of song

Original name of song

1 Negative Mama in the
candlelight

2 Negative Where does the
time go

3 Neutral Pastoral song

4 Neutral By Lake Baikal

5 Positive My motherland
and me

6 Positive In the field of
hope

stage, participants were asked to wear VR glasses (Quest2, Oculus,
United States) and watched VR videos made according to the
emotional background of the song. To better simulate the real
vocal music teaching scene, in the self-imagining stage, a teaching
guide commentary was added before the background music of
the song was played, which introduced the relevant background
of the song and the emotion required for the singing scene of the
song. However, the background music of the VR training video
was only the background music that the edited song played in
the VR training.

For each emotion category, each stage of the experiment
was divided into three groups, negative, neutral, and positive.
And each group included an experiment of two songs in the
same emotion category. The experimental process of each song
included self-imagination and watching a VR video for 3 min
to elicit emotion in singing. The subject sang for 1 min and
the singing was recorded for evaluating the subject’s singing
performance. Then the subject was asked to rest for 1 min and
continued the experiment of the next song. After completing the
experiment of two songs in each group, the subject was asked to
fill out two self-rating reports: Self-Assessment Manikin (SAM)
emotion self-rating form (Bradley and Lang, 1994), and vocal
performance self-rating form. The two songs of each group were
played in the order of negative, neutral, and positive, with a 3-
min rest between each group. Participants rested for 10 min after
the end of the three groups in each stage. In the experiment,
the subjects were asked to stay as still as possible to prevent
the influence of artifacts on the EEG. After all the experiments
of a subject were completed, third-party evaluators evaluated
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FIGURE 2 | Experimental paradigm.

the 12 songs according to the different dimensions of vocal
singing (2 scenes × 6 songs) and gave a score based on the
subject’s singing performance. The evaluators were five selected
professional vocal teachers.

The SAM self-rating scale was set from one to nine points and
used to measure emotional pleasure, activation, and dominance.
The higher the score, the stronger the emotion indicating higher
pleasure, higher arousal, and higher dominance. The vocal self-
rating form provides self-rating scores on singing performance
from seven aspects: coherence of song singing, use of breath, use
of resonance, intonation, rhythm, language use, musicality, and
emotional expression. A rubric with four levels for the assessment
is used: excellent, good, medium, and poor. The corresponding
numbers were 4, 3, 2, and 1. The higher the score, the better the
singing performance. As for the third-party evaluation, the same
seven aspects used for the vocal self-rating form were evaluated
except the scale was set to from 1 to 10 points. The higher the
score, the better the singing performance.

The Description of the EEG Recording
A 64-channel portable wireless EEG system (NeuSen.W64,
Neuracle, China) was used for EEG data collection, and the
sampling rate was set to 1,000 Hz. According to the international
standard 10–20 system, the EEG data were recorded of 59
electrodes, AF3/4, AF7/8, Fp1/2, Fz, F1/2, F3/4, F5/6, F7/8, FC1/2,
FC3/4, FC5/6, FCz, Cz, C1/2, C3/4, C5/6, FT7/8, T7/8, TP7/8,
CP1/2, CP3/4, CP5/6, FPz, Pz, P3/4, P5/6, P7/8, PO3/4, PO5/6,
PO7/8, POz, Oz, O1/2, with CPz as the reference electrode and
AFz as the ground electrode. Throughout the experiment, the
impedance of all electrodes was kept below 5 k�.

Experimental Method
EEG Signal Preprocessing
In this study, the EEGLAB (Delorme and Makeig, 2004) toolbox
was used to preprocess the EEG data. After channel location, the
original EEG data was band-pass filtered at 1–45 Hz, the whole
brain was averaged re-referenced, and down-sampled to 250 Hz.

Then, independent component analysis was used to decompose
the EEG signal into independent components, and the ICLabel
(Pion-Tonachini et al., 2019) was used to remove artifacts such as
eye movement and muscle movement. After preprocessing, the
last 150 s EEG signal of each song was divided into 1 s period EEG
signal as a sample to obtain the maximum emotional response
(Li et al., 2020).

Source Location and Functional Connectivity
Estimation
Due to the volume conduction effect, the brain activation
area derived from the scalp EEG is not accurate, and the
electrical signals from the brain can be recorded from multiple
nearby sensors (Dimitrakopoulos et al., 2017). Therefore, a brain
network calculation method was used similar to some literature
described (Dimitrakopoulos et al., 2017; Wang et al., 2020). First,
the source localization brain activation of each frequency band
was calculated, and then the cortical functional network was
calculated. The Brainstorm software (Tadel et al., 2011) for source
location was used. The ICBM152 template was used to construct
the head model and source space, and map the scalp electrodes
to the ICBM152 (T1) head model. The head model used in this
study was divided into three tissue types: scalp, brain, and skull.
Their default conductivity was 1, 0.0125, and 1 s/m, respectively.
The direction of each source was restricted to be perpendicular
to the surface of the cortex, and the Boundary Element Method
(BEM) (Mosher and Leahy, 1999) was used to calculate the
guiding field matrix L. The cerebral cortex source signal was
reconstructed by standardized low-resolution electromagnetic
tomography (sLORETA) (Pascual-Marqui, 2002), the direction
was fixed and perpendicular to the cortex, and all the parameters
of sLORETA uses the default settings.

According to the Desikan-Killiany map (Desikan et al., 2006),
the cerebral cortex gray matter was divided into 68 regions. The
Pearson correlation coefficient was used to construct functional
connectivity, which has been widely used in functional magnetic
resonance imaging research (Dimitrakopoulos et al., 2017). The
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source signal was split into five frequency bands (delta: 1–4 HZ,
theta: 4–8 HZ, alpha: 8–13 HZ, beta: 13–30 HZ, and gamma:
30–45 HZ), for the source of each frequency band in each
area. The signals were averaged to obtain the source signal of
the brain region. The functional network was calculated by the
Pearson correlation coefficient between the source signals of each
brain region pair. Each sample got 11,390 functional connectivity
features for classification, that was, 68 × (68−1)/2 = 2,278
features for each frequency band.

Feature Selection and Emotion Classification
In this empirical study, emotions were divided into negative,
neutral, and positive. For each sample, the source functional
connectivity features were extracted separately, and different tags
were marked according to different emotional types of songs.

The Max-relevance and min-redundancy (mRMR) algorithm
(Peng et al., 2005) was used for feature selection and select
the most important 10 features for emotion classification. The
algorithm uses mutual information to measure the relationship
between features and categories. It maximized the correlation
between features and categorical variables and minimized the
redundancy between features. In other words, the algorithm
found m features from the feature space that has the greatest
correlation with the target category and the least redundancy with
other features. The definition of maximum correlation is shown
in Eq. 1, and the definition of minimum redundancy is shown in
Eq. 2:

max D (S, c) =
1
|S|

∑
fi∈S

I
(
fi; c

)
(1)

min R (S) =
1
|S|2

∑
fi,fj∈S

I
(
fi; fj

)
(2)

where S represents the feature set; c represents the target category;
I
(
fi; c

)
represents the mutual information between the feature

i and the target category c; I(fi; fj)is the mutual information
between feature i and feature j.

The support vector machine (SVM) with a radial basis
function (RBF) kernel was used for emotion recognition. As a
widely used classifier, SVM has been proved by a large number
of studies to be a practical EEG classification method (Bashivan
et al., 2015). The 10-fold cross-validation was used to calculate
the accuracy of the classification. The SVM kernel function
parameters g (0.5–4, step size 0.5) and penalty coefficient c (10−2

to 102, step size coefficient is 10) were traversed to get the optimal
parameters. To explore the influence of functional connectivity
features of different frequency bands on the results, the functional
connectivity features of 5 frequency bands in the 2 scenarios were,
respectively, cross-verified 100 times. The five frequency band
features were classified separately and the five frequency band
features were spliced into a feature vector for classification.

Statistical Method
A statistical analysis of three rating scales was performed,
including SAM self-rating report, vocal performance self-
rating report, and third-party evaluation scores. Given different
emotion categories, the three rating scales of emotion data in both

self-imagination and VR training methods were gone through the
test by t-test and effect sizes (Lakens, 2013). The detailed results
are described in the following section.

RESULTS

SAM Self-Rating
The SAM self-rating data were collected from the 16 subjects,
from the perspective of emotional pleasure, activation and
dominance. The average score and statistical test results of SAM
are shown in Table 2. In the case of negative emotion, participants
reported lower evaluations of VR training (M = 3.00) than self-
imagination (M = 4.69), p < 0.01, 95%CI [1.02, 2.35], Hedges’s
g = 1.27 for pleasure; higher evaluations of VR training (M = 7.00)
than self-imagination (M = 5.56), p < 0.01, 95%CI [0.85, 2.02],
Hedges’s g = 1.03 for activation; lower evaluations of VR training
(M = 4.63) than self-imagination (M = 6.06), p < 0.01, 95%CI
[0.61, 2.26], Hedges’s g = 0.89 for dominance. Under neutral
emotion, participants reported higher evaluations of VR training
(M = 6.19) than self-imagination (M = 5.94), p = 0.43, 95%CI
[−0.41, 0.91], Hedges’s g = 0.18 for pleasure; higher evaluations of
VR training (M = 6.13) than self-imagination (M = 5.69), p = 0.34,
95%CI [−0.52, 1.39], Hedges’s g = 0.29 for activation; higher
evaluations of VR training (M = 6.69) than self-imagination
(M = 6.50), p = 0.59, 95%CI [−0.55, 0.92], Hedges’s g = 0.14 for
dominance. Under positive emotion, participants reported higher
evaluations of VR training (M = 8.06) than self-imagination
(M = 7.00), p < 0.01, 95%CI [0.57, 1.56], Hedges’s g = 1.13
for pleasure; higher evaluations of VR training (M = 7.56)
than self-imagination (M = 6.31), p < 0.01, 95%CI [0.89, 1.61],
Hedges’s g = 1.42 for activation; lower evaluations of VR training
(M = 6.06) than self-imagination (M = 6.44), p = 0.33, 95%CI
[−0.42, 1.17], Hedges’s g = 0.22 for dominance.

Self-Rating on Vocal Performance
The vocal self-rating data were collected from the 16 subjects,
and the score range was set to 1–4. The average scores and
statistical test results of the scale are shown in Table 3. In the
self-rating scale of negative emotion, participants reported higher
evaluations of VR training (M = 3.25) than self-imagination
(M = 2.81), p = 0.07, 95%CI [−0.04, 0.91], Hedges’s g = 0.62
for coherence; higher evaluations of VR training (M = 3.06)
than self-imagination (M = 2.69), p = 0.14, 95%CI [−0.14, 0.89],
Hedges’s g = 0.54 for breath; higher evaluations of VR training
(M = 3.06) than self-imagination (M = 2.50), p < 0.01, 95%CI
[0.23, 0.90], Hedges’s g = 0.93 for resonance; higher evaluations of
VR training (M = 3.06) than self-imagination (M = 2.94), p = 0.54,
95%CI [−0.30, 0.55], Hedges’s g = 0.20 for intonation; higher
evaluations of VR training (M = 3.06) than self-imagination
(M = 2.94), p = 0.43, 95%CI [−0.20, 0.45], Hedges’s g = 0.25
for language; higher evaluations of VR training (M = 3.44)
than self-imagination (M = 3.16), p = 0.06, 95%CI [−0.01,
0.63], Hedges’s g = 0.50 for musicality; higher evaluations of VR
training (M = 3.31) than self-imagination (M = 2.75), p < 0.01,
95%CI [0.23, 0.90], Hedges’s g = 0.88 for expression. In the self-
rating scale for neutral emotion, participants reported higher
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TABLE 2 | Average score and statistical test results of Self-Assessment Manikin (SAM).

Evaluation Negative Neutral Positive

Self VR p ES Self VR p ES Self VR p ES

Pleasure 4.69 3.00 p < 0.01 1.27 5.94 6.19 p = 0.43 0.18 7.00 8.06 p < 0.01 1.13

Activation 5.56 7.00 p < 0.01 1.03 5.69 6.13 p = 0.34 0.29 6.31 7.56 p < 0.01 1.42

Dominance 6.06 4.63 p < 0.01 0.89 6.50 6.69 p = 0.59 0.14 6.44 6.06 p = 0.33 0.22

evaluations of VR training (M = 3.38) than self-imagination
(M = 3.25), p = 0.43, 95%CI [−0.20, 0.45], Hedges’s g = 0.16 for
coherence; higher evaluations of VR training (M = 3.38) than self-
imagination (M = 3.19), p = 0.19, 95%CI [−0.10, 0.48], Hedges’s
g = 0.29 for breath; higher evaluations of VR training (M = 3.25)
than self-imagination (M = 2.88), p = 0.05, 95%CI [−0.01,
0.76], Hedges’s g = 0.63 for resonance; higher evaluations of VR
training (M = 3.31) than self-imagination (M = 3.13), p = 0.27,
95%CI [−0.16, 0.54], Hedges’s g = 0.26 for intonation; higher
evaluations of VR training (M = 3.38) than self-imagination
(M = 3.06), p = 0.06, 95%CI [−0.01, 0.63], Hedges’s g = 0.59
for language; higher evaluations of VR training (M = 3.56)
than self-imagination (M = 3.44), p = 0.33, 95%CI [−0.14,
0.39], Hedges’s g = 0.22 for musicality; higher evaluations of VR
training (M = 3.44) than self-imagination (M = 3.00), p < 0.01,
95%CI [0.10, 0.77], Hedges’s g = 0.76 for expression. In the self-
rating scale of positive emotion, participants reported higher
evaluations of VR training (M = 3.44) than self-imagination
(M = 3.31), p = 0.34, 95%CI [−0.14, 0.39], Hedges’s g = 0.23 for
coherence; higher evaluations of VR training (M = 3.31) than self-
imagination (M = 3.13), p = 0.19, 95%CI [−0.10, 0.48], Hedges’s
g = 0.31 for breath; higher evaluations of VR training (M = 3.06)
than self-imagination (M = 3.19), p = 0.5, 95%CI [−0.26, 0.51],
Hedges’s g = 0.22 for resonance; higher evaluations of VR training
(M = 3.00) than self-imagination (M = 2.69), p = 0.14, 95%CI
[−0.11, 0.74], Hedges’s g = 0.44 for intonation; higher evaluations
of VR training (M = 3.31) than self-imagination (M = 3.00),
p < 0.05, 95%CI [0.06, 0.57], Hedges’s g = 0.92 for language;
lower evaluations of VR training (M = 3.31) than self-imagination
(M = 3.38), p = 0.75, 95%CI [−0.35, 0.47], Hedges’s g = 0.09 for
musicality; higher evaluations of VR training (M = 3.63) than self-
imagination (M = 3.25), p < 0.05, 95%CI [0.05, 0.70], Hedges’s
g = 0.63 for expression.

Third-Party Evaluation
The third-party evaluation data on singing performance were
collected from the five professional vocal teachers. The average
score of the subjects and the results of statistical test are shown
in Table 4. Under negative emotion, participants reported higher
evaluations of VR training (M = 6.95) than self-imagination
(M = 6.66), p < 0.01, 95%CI [0.07, 0.50], Hedges’s g = 0.70
for coherence; higher evaluations of VR training (M = 6.98)
than self-imagination (M = 6.39), p < 0.01, 95%CI [0.38, 0.80],
Hedges’s g = 1.22 for breath; higher evaluations of VR training
(M = 6.96) than self-imagination (M = 6.34), p < 0.01, 95%CI
[0.33, 0.92], Hedges’s g = 1.42 for resonance; higher evaluations
of VR training (M = 6.26) than self-imagination (M = 6.18),

p = 0.18, 95%CI [−0.11, 0.29], Hedges’s g = 0.16 for intonation;
lower evaluations of VR training (M = 6.58) than self-imagination
(M = 6.66), p = 0.07, 95%CI [−0.04, 0.21], Hedges’s g = 0.17
for language; higher evaluations of VR training (M = 7.34)
than self-imagination (M = 6.58), p < 0.01, 95%CI [0.50, 1.02],
Hedges’s g = 1.52 for musicality; higher evaluations of VR training
(M = 7.81) than self-imagination (M = 6.61), p < 0.01, 95%CI
[0.95, 1.45], Hedges’s g = 2.21 for expression. Under neutral
emotion, participants reported higher evaluations of VR training
(M = 7.00) than self-imagination (M = 6.73), p < 0.01, 95%CI
[0.08, 0.47], Hedges’s g = 0.83 for coherence; higher evaluations
of VR training (M = 7.13) than self-imagination (M = 6.65),
p < 0.01, 95%CI [0.23, 0.72], Hedges’s g = 1.09 for breath; higher
evaluations of VR training (M = 7.38) than self-imagination
(M = 6.58), p < 0.01, 95%CI [0.46, 1.14], Hedges’s g = 1.42
for resonance; higher evaluations of VR training (M = 6.36)
than self-imagination (M = 6.29), p = 0.22, 95%CI [−0.13,
0.28], Hedges’s g = 0.14 for intonation; lower evaluations of VR
training (M = 6.63) than self-imagination (M = 6.64), p = 0.43,
95%CI [−0.15, 0.17], Hedges’s g = 0.03 for language; higher
evaluations of VR training (M = 7.35) than self-imagination
(M = 6.89), p < 0.01, 95%CI [0.19, 0.73], Hedges’s g = 1.02 for
musicality; higher evaluations of VR training (M = 7.73) than self-
imagination (M = 6.98), p < 0.01, 95%CI [0.54, 0.96], Hedges’s
g = 1.49 for expression. Under positive emotion, participants
reported higher evaluations of VR training (M = 7.10) than
self-imagination (M = 6.80), p < 0.01, 95%CI [0.12, 0.48],
Hedges’s g = 0.74 for coherence; higher evaluations of VR training
(M = 7.08) than self-imagination (M = 6.60), p < 0.01, 95%CI
[0.27, 0.68], Hedges’s g = 0.90 for breath; higher evaluations of VR
training (M = 7.39) than self-imagination (M = 6.56), p < 0.01,
95%CI [0.58, 1.07], Hedges’s g = 1.32 for resonance; higher
evaluations of VR training (M = 6.45) than self-imagination
(M = 6.38), p = 0.20, 95%CI [−0.11, 0.26], Hedges’s g = 0.13
for intonation; lower evaluations of VR training (M = 6.68)
than self-imagination (M = 6.69), p = 0.42, 95%CI [−0.12, 0.14],
Hedges’s g = 0.03 for language; higher evaluations of VR training
(M = 7.41) than self-imagination (M = 6.70), p < 0.01, 95%CI
[0.51, 0.91], Hedges’s g = 1.38 for musicality; higher evaluations
of VR training (M = 7.75) than self-imagination (M = 6.71),
p < 0.01, 95%CI [0.78, 1.30], Hedges’s g = 2.02 for expression.

Emotion Classification
In the 2 scenarios of self-imagination and VR training, based
on the top 10 features selected by the mRMR algorithm,
Table 5 shows the emotion classification accuracy using the
SVM under the optimal parameters (the average of 1,000
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TABLE 3 | Average scores and statistical test results of the self-rating.

Evaluation Negative Neutral Positive

Self VR p ES Self VR p ES Self VR p ES

Coherence 2.81 3.25 p = 0.07 0.62 3.25 3.38 p = 0.43 0.16 3.31 3.44 p = 0.34 0.23

Breath 2.69 3.06 p = 0.14 0.54 3.19 3.38 p = 0.19 0.29 3.13 3.31 p = 0.19 0.31

Resonance 2.50 3.06 p < 0.01 0.93 2.88 3.25 P = 0.05 0.63 3.06 3.19 p = 0.50 0.22

Intonation 2.94 3.06 p = 0.54 0.20 3.13 3.31 p = 0.27 0.26 2.69 3.00 p = 0.14 0.44

Language 2.94 3.06 p = 0.43 0.25 3.06 3.38 p = 0.06 0.59 3.00 3.31 p < 0.05 0.92

Musicality 3.16 3.44 p = 0.06 0.50 3.44 3.56 p = 0.33 0.22 3.38 3.31 p = 0.75 0.09

Expression 2.75 3.31 p < 0.01 0.88 3.00 3.44 p < 0.01 0.76 3.25 3.63 p < 0.05 0.63

We rename the performance from seven aspects as coherence, breath, resonance, intonation, language, musicality, and expression, respectively.

TABLE 4 | Average score of the subjects and the statistical test results of the third-party evaluation.

Evaluation Negative Neutral Positive

Self VR p ES Self VR p ES Self VR p ES

Coherence 6.66 6.95 p < 0.01 0.70 6.73 7.00 p < 0.01 0.83 6.80 7.10 p < 0.01 0.74

Breath 6.39 6.98 p < 0.01 1.22 6.65 7.13 p < 0.01 1.09 6.60 7.08 p < 0.01 0.90

Resonance 6.34 6.96 p < 0.01 1.42 6.58 7.38 p < 0.01 1.42 6.56 7.39 p < 0.01 1.32

Intonation 6.18 6.26 p = 0.18 0.16 6.29 6.36 p = 0.22 0.14 6.38 6.45 p = 0.20 0.13

Language 6.66 6.58 p = 0.07 0.17 6.64 6.63 p = 0.43 0.03 6.69 6.68 p = 0.42 0.03

Musicality 6.58 7.34 p < 0.01 1.52 6.89 7.35 p < 0.01 1.02 6.70 7.41 p < 0.01 1.38

Expression 6.61 7.81 p < 0.01 2.21 6.98 7.73 p < 0.01 1.49 6.71 7.75 p < 0.01 2.02

classification accuracy). All bands mean directly splicing all
the features of five frequency bands together. In the results of
six cases, the emotion classification accuracy of VR training
was greater than the accuracy of self-imagining. In the self-
imagination scenario, the highest classification accuracy was
82.82% based on all frequency bands. In a VR training scenario,
the highest emotion classification accuracy was 85.84% acquired
with the gamma frequency band. The best results were bold in
Table 5.

Selected Connectivity Features
This section showed the top 10 most important functional
connectivity features selected by the mRMR algorithm in the 2
scenarios and displays them in the form of charts. The specific
functional connectivity features and corresponding brain areas
are shown in Figure 3 and Table 6. The abbreviations of these
brain areas were adopted from Román et al. (2017) study.
It can be seen from Table 6 that the functional connectivity
features were only distributed in the beta and gamma frequency
bands. In both scenarios, three functional connectivity features
were located in the beta frequency band and the rest seven
were in the gamma frequency band. Also, the asymmetry
between the cerebral hemispheres was observed. In the self-
imagination scenario, there were 10 brain areas in the right
hemisphere and 7 brain areas in the left hemisphere; in the
VR training scenario, there were 7 brain areas in the right
hemisphere and 10 brain areas in the left hemisphere. Besides, the
connectivity features between the two hemispheres were strong.

In both scenarios, there were five connectivity features between
the hemispheres.

DISCUSSION

This empirical study conducted a statistical test on self-
rating report data and third-party teacher evaluation data for
the two methods: self-imagination and VR training. Emotion
classification based on the EEG functional connectivity features
was also conducted. From the perspective of self-rating reports
and third-party evaluation, the differences in an emotional
state and singing performance and the differences in functional
connectivity were compared and revealed. There were significant
differences between the two methods to some extent. The VR
training got higher evaluation scores than self-imagination. The
emotion classification accuracy in the VR training was higher
than that of the self-imagination. These results supported this
empirical study’s initial hypothesis that compared with the
traditional self-imagination method, VR training can better
elicit the emotional state of the singers, further improve their
singing performance, and provide a new teaching aid method for
vocal music teaching.

TABLE 5 | Classification accuracy of emotion recognition.

Cases Delta Theta Alpha Beta Gamma All bands

Self-imagination 43.00 47.75 53.00 79.05 80.47 82.82

VR training 45.68 51.80 55.55 80.55 85.84 84.69
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FIGURE 3 | Discriminative top 10 features, panel (A) is self-imagination and panel (B) is virtual reality (VR) training.

Self-Rating Scale
In this empirical study, the SAM scale and the vocal self-
rating scale were used to rate the emotional state and singing
performance. As shown in Table 2, regarding the self-rating scales
under the negative emotion and the positive emotion, there were
significant differences between the self-imagination and the VR
training in terms of pleasure and activation. The average scores
were in line with the expectations, that is, the VR training under
the negative emotion reduced pleasure, while under the positive
emotion, it increased pleasure. And, the VR training under both
negative and positive increased activation. However, in terms of
emotional dominance, there were significant differences between
the two methods under the negative emotion, and the VR training
reduced dominance, while under the positive emotion, there was
no significant difference between the two methods (p = 0.33),
this may be because VR training under the negative emotion
was easier to achieve good emotion-elicited effects (Liao et al.,
2019). Since the valence and arousal in the neutral emotion were
generally medium, there was no significant difference in terms of
pleasure, arousal, and dominance for the two methods.

It can be seen from Table 3, regarding the self-rating scale
for a vocal performance, there were significant differences in the
scores of emotional expression between the two methods. And
the average score of the VR training was higher than the average
score of self-imagination, indicating that the improvement of
emotional activation by VR training could be applied well in the
singers’ singing emotion.

Regarding the evaluation of third-party professional vocal
teachers on singing performance, Table 4 showed that in terms

of the singing coherence, breath use, resonance use, musical
sense, and emotional expression, the singing performance score
after VR training was significantly higher than that of the
self-imagination. This could be due to that the VR training
transmitted emotional information to the subjects in an audio-
visual way and enhanced the subjects’ emotional state. The
emotional information in a relaxed and natural state improved
the subjects’ singing level. In terms of pronouncing words and
intonation rhythm, there was no significant difference between
the two methods. The correct pronouncing of words is the
premise of language purity and could have an impact on
the performance of vocal art (Li, 2016). Singing pronouncing
words vary from person to person. The participants in the
experiment were all students who have received systematic vocal
training. They have undergone long-term professional training
in pronouncing words and intonation rhythm. The singing
songs had been practiced before the subjects participated in the
experiment, and the correct intonation rhythm had also been
mastered. It would not be significantly changed in a short time
through third-party evaluation data on singing performance.

Emotion-Related Functional Connectivity
This empirical study classified emotion from the two methods
based on the functional connectivity features after source
location. The accuracy of emotion classification under the VR
training was greater than the self-imagination. Among the five
frequency bands, the beta and gamma frequency bands had
high classification accuracy, and the top 10 most important
functional connectivity features selected were all located in the
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TABLE 6 | Discriminative top 10 functional connectivity features.

Cases Selected features

Self-imagination Beta: frontal pole L–temporal pole L (FPol L–TPol L), lateral
orbitofrontal R–pars orbitalis L (LOrF R–Or L), lateral
orbitofrontal R–rostral anterior cingulate L (LOrF
R–RoACg L).

Gamma: inferior temporal R–middle temporal R (IT R–MT
R), isthmus cingulate L–lateral orbitofrontal R (IstCg L–LOrF
R), lateral occipital L–middle temporal L (LO L–MT L), lateral
orbitofrontal L–superior temporal R (LOrF L–ST R), pars
opercularis L–posterior cingulate R (Op L–PoCg R), pars
opercularis L–superior temporal L (Op L–ST L), pars
orbitalis R–rostral anterior cingulate R (Or R–RoACg R).

VR training Beta: entorhinal R–fusiform L (En R–Fu L), lateral
orbitofrontal L–rostral anterior cingulate R (LOrF L–RoACg
R), medial orbitofrontal L–pars opercularis R (MOrF
L–Op R).

Gamma: frontal pole R–transverse temporal R (FPol R–TrT
R), fusiform L–temporal pole L (Fu L–TPol L), insula R–pars
triangularis R (Ins R–Tr R), lateral occipital L–pericalcarine L
(LO L–PerCa L), lateral orbitofrontal R–temporal pole L
(LOrF R–TPol L), pars orbitalis L–temporal pole R (Or
L–TPol R), posterior cingulate R–rostral anterior cingulate R
(PoCg R–RoACg R).

beta and gamma frequency bands. This was consistent with
previous studies, indicating that the beta and gamma bands of
brain activity are more related to emotional processing than
other frequency bands (Zheng and Lu, 2015; Zheng et al., 2017;
Li et al., 2018).

Among the functional connectivity features for the self-
imagination method, the right lateral orbitofrontal was related
to both beta and gamma bands, which was consistent with
the findings of previous studies. The lateral prefrontal cortex
controls the experience and expression of emotion, especially
playing an important role in the processing of negative emotion
(Hooker and Knight, 2006). There were also four brain regions
in the beta frequency band, including the left frontal pole,
left temporal pole, left pars orbitalis, and left rostral anterior
cingulate. There were 13 brain regions in the gamma band,
right inferior temporal, left and right middle temporal, left
isthmus cingulate, left lateral occipital, left lateral orbitofrontal,
left and right superior temporal, left pars opercularis, right
posterior cingulate, right pars orbitalis, right rostral anterior
cingulate. The prefrontal cortex played an important role
in emotional processing (Esslen et al., 2004). The temporal
cortex was involved in the processing of humor, laughter,
and smiles (Wild et al., 2006). The rostral anterior cingulate
had a regulatory effect on the brain regions that produce
emotional responses and can be enhanced by emotional
valence (Chiu et al., 2008). The pars opercularis played a
role in regulating the perception of emotional rhythm (Patel
et al., 2018). Emotional stimulation activated the posterior
cingulate cortex (Maddock et al., 2003) and the pars orbitalis
(Krautheim et al., 2020).

Among the functional connectivity features for the VR
training method, the left fusiform and the right rostral anterior
cingulate were related to both beta and gamma bands. This could

be due to the fusiform provided perception for participants in VR
scenes to detect the difference between the virtual environment
and the real physical world (Garcia et al., 2012), and the right
rostral anterior cingulate regulated emotion (Chiu et al., 2008;
Alvarez et al., 2011). There were also five brain regions in the beta
band, including the right entorhinal, left lateral orbitofrontal,
right rostral anterior cingulate, and left medial orbitofrontal,
and right pars opercularis. There were 13 brain regions in the
gamma band, including the left frontal pole, right transverse
temporal, left temporal pole, right insula, and right inferior
frontal pole, right pars triangularis, left lateral occipital, left
pericalcarine, right lateral orbitofrontal, left pars orbitalis, right
temporal pole, and right posterior cingulate. The entorhinal
cortex was a key neural structure for spatial navigation (Jacobs
et al., 2010). Many studies have studied the activation and changes
of the entorhinal cortex in the VR environment (Jacobs et al.,
2010; Howett et al., 2019). The medial frontal cortex (including
the medial orbitofrontal cortex) played a crucial role in the
processing of negative emotion (Sitaram et al., 2011). Insula
activation involves emotional processing, and studies have shown
that the posterior and anterior sub-regions of the human insula
showed obvious response characteristics to auditory emotional
stimuli (Zhang Y. et al., 2019).

Seven brain regions existed in the features selected for the
two methods, including the right rostral anterior cingulate, left
lateral occipital, right lateral orbitofrontal, left pars orbitalis, right
posterior cingulate, left lateral orbitofrontal, and left temporal
pole, were all related to the activation and processing of emotion
(Maddock et al., 2003; Esslen et al., 2004; Wild et al., 2006;
Güntekin and Basar, 2007; Chiu et al., 2008; Krautheim et al.,
2020). The brain regions and functional connectivity features
involved in this research provided references for research on
brain emotion activation mechanisms, the impact of VR on the
brain, and EEG-based emotion recognition.

Limitations
One limitation of the empirical study is that the common
template (ICBM152) was not used to obtain the head model
and source space representation of all participants. Studies have
shown that using an individualized template to construct a head
model and source space for each participant can obtain more
accurate results in the source location process (Lei et al., 2011;
Hassan and Wendling, 2018). The individualized template helps
further improve the performance of emotion recognition and
discover more physiologically relevant features. Other network
analysis methods, such as Phase Lock Value (PLV) (Li et al.,
2019), Phase Slope Index (PSI) (Basti et al., 2018), Partially
Directed Coherence (PDC) (Wang et al., 2020) can also be used
for functional network analysis after source location. Therefore,
individualized templates will be used in future work to establish
a head model in source space, and other functional connectivity
construction methods will be used to improve EEG-based
emotion recognition.

This study demonstrated the utility of VR for eliciting
emotions to trainees-singers and further improving their
performance. However, the cost of VR equipment may still be
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unaffordable for some institutions with a limited budget. Another
limitation is that EEG signals may be easily disturbed by singing
and/or moving actions. Finally, the sample size of this empirical
study was relatively small. Future attempts should strive to
address these limitations and collect data from a larger sample.

Furthermore, the adverse symptoms and effects (i.e.,
cybersickness) during VR training may undermine the health
and safety standards, and compromise the reliability of the
experimental results (Kourtesis et al., 2019a). The current
study did not examine the symptoms of cybersickness,
while they may negatively affect cognitive and behavioral
performance, as well as EEG data (Kourtesis et al., 2019a; Weech
et al., 2019). Also, this empirical study did not examine the
immersive user experience. These factors play a central role
in the efficiency of the VR experience (Slater, 2009; Skarbez
et al., 2017) and the incidence of cybersickness (Kourtesis
et al., 2019b; Weech et al., 2019). Future attempts should
consider the administration of recently published cybersickness
questionnaires (Somrak et al., 2021).

CONCLUSION

In this study, a VR training task was implemented to elicit
emotions from singers and assist them with further improving
their emotional singing performance. The VR training method
was compared against the traditional self-imagination method.
By conducting a two-stage experiment, the two methods were
compared in terms of emotions’ elicitation and emotional singing
performance. In the first stage, electroencephalographic (EEG)
data were collected from the subjects. In the second stage,
self-rating reports and third-party teachers’ evaluations were
collected. The EEG data were analyzed by adopting the max-
relevance and min-redundancy algorithm for feature selection
and the SVM for emotion recognition. The experimental results
have validated that VR can better elicit the positive, neutral,
and negative emotional states of singers than self-imagination,
and further improve the singing performance due to the

improvement of emotional activation. As such, we argue the
VR training method can be seen as an effective approach
that will improve and complement the available vocal music
teaching methods.
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Emotional brain-computer interface based on electroencephalogram (EEG) is a hot issue
in the field of human-computer interaction, and is also an important part of the field
of emotional computing. Among them, the recognition of EEG induced by emotion is
a key problem. Firstly, the preprocessed EEG is decomposed by tunable-Q wavelet
transform. Secondly, the sample entropy, second-order differential mean, normalized
second-order differential mean, and Hjorth parameter (mobility and complexity) of each
sub-band are extracted. Then, the binary gray wolf optimization algorithm is used to
optimize the feature matrix. Finally, support vector machine is used to train the classifier.
The five types of emotion signal samples of 32 subjects in the database for emotion
analysis using physiological signal dataset is identified by the proposed algorithm. After
6-fold cross-validation, the maximum recognition accuracy is 90.48%, the sensitivity
is 70.25%, the specificity is 82.01%, and the Kappa coefficient is 0.603. The results
show that the proposed method has good performance indicators in the recognition
of multiple types of EEG emotion signals, and has a better performance improvement
compared with the traditional methods.

Keywords: emotion recognition, emotional brain-computer interface, tunable-Q wavelet transform, binary gray
wolf optimization algorithm, EEG

INTRODUCTION

Emotion is a psychological phenomenon mediated by the subject’s needs and desires. It has
three components: physiological arousal, subjective experience, and external manifestation (Peng,
2004). Emotions have an important impact on people’s production and life, physical and mental
health, and interpersonal relationships. For example, for patients with depression or schizophrenia,
abnormal emotions are the main clinical manifestations. If negative emotions can be identified
before the onset, medical staff can intervene and treat in time. For the field of human-
computer interaction, computer recognition can be realized, understand and adapt to human
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emotions, the human-computer interaction environment is more
natural (Nie et al., 2012). Therefore, the decoding and recognition
of emotions is an important research goal in the field of
emotion computing.

Common emotion recognition methods are mainly divided
into two categories: recognition based on non-physiological
signals and recognition based on physiological signals.
Recognition based on non-physiological signals mainly
includes expression recognition and speech recognition,
but these two methods have the risk of artificial disguise. In
contrast, physiological signals can objectively reflect the true
emotional state of a person. Physiological signals caused by
emotions include heart rate, respiration, skin temperature,
electromyography, electroencephalogram (EEG), and so on.
Among them, EEG is not easy to be disguised, and the
recognition rate is higher than other physiological signal
recognition methods, so it is increasingly used in emotion
recognition research (Nie et al., 2012).

Brain-computer interface (BCI) directly connects the brain
and external devices, and realizes the information exchange
between the brain and the device by decoding EEG (Wolpaw
et al., 2000). With the rapid development of BCI and emotional
computing, emotional BCI (e-BCI) that automatically recognize
emotions have received extensive attention from all walks of life
(Fattouh et al., 2013). Among them, decoding the individual’s
emotional state from EEG information is the core content and
key technology of the e-BCI (Molina et al., 2009).

So far, there are many EEG-based emotion recognition
methods, and wavelet transform is one of the widely used ones.
For example (Asghar et al., 2020) used the wavelet transform
method to represent the EEG as a two-dimensional time-
frequency distribution image, and then used a neural network
method based on deep feature clustering (DFC) to evaluate the
emotional state of the subjects, and achieved the recognition
accuracy of 81.3% for four types of emotional states. On the basis
of wavelet transform (Zhou et al., 2020), extracted Mel-frequency
cepstral coefficient (MFCC) features, fused EEG features, and
used deep residual network (Resnet18) to recognize two kinds
of emotions in wake-up and price effect dimensions, with
recognition accuracy of 86.01 and 85.46%. Luo et al. (2020)
studied three algorithms of discrete wavelet transform (DWT),
variance and fast fourier transform (FFT) to extract features
of EEG signals, and spike neural network (SNN) to further
classify the emotion signal, the two types of recognition accuracy
of valence, arousal, dominance, and liking dimensions are 74,
78, 80, and 86.27%, respectively. Mohammadpour et al. (2017)
used DWT to extract features, and then used artificial neural
networks (ANN) performs emotion classification and achieves a
recognition accuracy of 55.58% for six types of emotional states.
Wei et al. (2020) used dual tree-complex wavelet transform (DT-
CWT) to decompose and reconstruct EEG, and then extract
features from time domain, frequency domain and non-linear
analysis and use different integration strategies to obtain the
recognition accuracy of the three types of emotions is 83.13%.

Although the wavelet transform can perform positioning
in the time domain and the frequency domain at the same
time, it is very convenient to perform the round-trip transform

between the time domain and the frequency domain for time-
varying signals, but a single wavelet basis function of the
wavelet transform is difficult to accurately represent the local
characteristics of the signal. It is easy to lose the original
time domain characteristics when reconstructing the signal.
Therefore, a new tunable Q-factor wavelet transform (TQWT)
has been proposed in recent years (Selesnick, 2011). Compared
with traditional wavelet transform, TQWT is more flexible and
can better reflect complex oscillation signals including EEG by
adjusting parameters, so it has quickly attracted the attention of
scholars in related fields.

However, the decomposition of the signal also increases
the amount of data to identify the features, which affects the
performance of the system. This study introduces a feature
selection algorithm to solve this problem. Traditional feature
selection methods include principal component analysis (PCA),
least absolute shrinkage and selection operator (LASSO), and
recursive feature elimination (RFE), etc. (Mao et al., 2007).
Among them, the binary gray wolf optimization (BGWO; Too
et al., 2018) is an improved version of the gray wolf optimization
(GWO; Sm et al., 2014), which was also inspired by the prey
hunting activities of the gray wolf. An optimized search method
of, it has the characteristics of strong convergence performance,
few parameters, and easy implementation. It has been used in
many fields by many researchers.

Therefore, this manuscript proposes a joint EEG recognition
algorithm based on TQWT and BGWO. The algorithm first
decomposes the sub-band from the original emotional EEG,
and then extracts the signal sample entropy, Hjorth parameter,
second-order difference mean and normalized second-order
difference mean as features, and then optimizes the feature set
through BGWO, and finally input to support vector machine
(SVM) for classification. The follow-up structure of this article
is as follows: First, the experimental materials and methods are
described, including; the relevant description of the experimental
data, the basic process of the TQWT algorithm, the feature
extraction index, the basic process of the BGWO algorithm,
and the classifier and algorithm evaluation index. The result
part shows the classification effect of the algorithm on the data
set, the analysis of the influence of different decomposition
sub-bands and experimental parameters on the experimental
results, and the comparative analysis with the classification effect
of the classic algorithm. Finally, the experimental results are
summarized and discussed.

MATERIALS AND METHODS

Experimental Data and Preprocessing
This research uses a database for emotion analysis using
physiological signals (DEAP; Koelstra, 2012), and its
experimental paradigm is shown in Figure 1A. The DEAP
data set includes the multi-modal physiological signals induced
by 32 subjects watching 40–60-s music video materials and
the subjects’ ratings of the video’s valence, arousal, dominance,
and liking. Among them, the physiological signals include: 32
channels of EEG, eight channels of peripheral physiological
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FIGURE 1 | (A) The experimental paradigm used in the database for emotion analysis using physiological signals (DEAP) dataset. Before each subject’s experiment,
the resting state signal was collected for 2 min; the trial serial number of 2 s was displayed to remind the subject of the current experimental progress; the baseline
acquisition was conducted for 5 s, which represented the beginning of the recording of electroencephalogram (EEG); the MV was played for 1 min, and then the
subject It takes about 15 s to fill in the SAM scale, and then after 3 s video conversion time, repeat the trial 40 times. (B) The five types of emotion models in this
study. Including neutral, happy, anger, sad, and relax. (C) DEAP collects EEG according to the 32 leads selected by the international 10–20 system, which are Fp1,
AF3, F3, F7, FC5, FC1, C3, T7, CP5, CP1, P3, P7, PO3, O1, Oz, Pz, Fp2, AF4, Fz, F4, F8, FC6, FC2, Cz, C4, T8, Cp6, Cp2, P4, P8, PO4, and O2.

signals: À current skin response, Á skin temperature, Â blood
volume pulse, Ã respiration, EMG Ä main muscles and Å

trapezius, Æ horizontal, and Ç vertical electrooculograms
(EOGs). In terms of subjective evaluation, the experiment used
self-assessment manikin (SAM; Morris, 1995) with a scale of
1–9 to quantify the participants’ ratings of the value, arousal,
advantage, and liking of video-induced emotions.

In this study, we set the threshold to 3, and divide each
emotion sample into three levels according to the 9 scales of
valence and arousal, 1–3, 4–6, and 7–9, respectively, mapped
to “−1,” “0,” and “1” on the rectangular coordinate system, five
types of emotion recognition are performed in two dimensions

(as shown in Figure 1B; Fang et al., 2021), each type. The emotion
setting rules are as follows:

• Happy (label 1): valence = 1 and arousal = 1
• Anger (label 2): valence = 1 and arousal =−1
• Sad (label 3): valence =−1 and arousal =−1
• Relax (label 4): valence =−1 and arousal = 1
• Neutral (label 5): valence = 0 or arousal = 0

In this study, a 32-channel EEG in the data set was
selected for emotion recognition. The position of the
EEG channel is shown in Figure 1C. Downsample the
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EEG data to 128 HZ, remove the EOGs artifacts, filter
the signal to 4–45 HZ through a band-pass filter, and
perform a whole-brain average reference. Each piece
of data includes 60 s video-induced EEG data and 3 s
video conversion.

The shape of the preprocessed EEG data of the 32 subjects
is trial × channel × data, which is 40 × 32 × 8,064;
the shape of the label data is trial × label (1–5), which
is 40× 1.

Method
The algorithm flow is shown in Figure 2. In this study,
the original EEG was preprocessed and decomposed into
multiple sub-bands through TWQT, and then five features
of sample entropy, second-order difference mean, normalized
second-order difference mean, mobility and complexity were
extracted from each sub-band., And then use BGWO to reduce
the dimensionality of the feature set, and finally identify
the five types of emotions: neutral, happy, anger, sad and
relax through SVM.

Tunable-Q Wavelet Transform
Tunable-Q wavelet transform is a flexible DWT, a lifting
algorithm based on wavelet transform, which can analyze
complex oscillation signals more effectively (Selesnick, 2011), and
has been used for the decomposition of EEG (Hassan et al.,
2016). Its parameters are adjustable, so the transformation can
be tuned and applied according to the oscillation behavior of
the signal. The main parameters of TQWT are quality factor Q,
total oversampling rate r and number of stages J. The degree to
which Q affects the duration of wavelet oscillation is the ratio of
its center frequency to its bandwidth. r is the total oversampling
rate (redundancy) when calculating TQWT when J ≥ 1, that is,
the total sampling rate coefficient of all sub-bands, which controls
the excessive ringing of the system by affecting the scaling factor
(l, h; Krishna et al., 2019). J represents the number of stages
of the wavelet transform, which consists of a sequence of two-
channel filter banks, and the low-pass output of each filter bank
is used as the input of the continuous filter bank. The sub-
bands (J + 1) obtained by signal decomposition are composed
of the output signal of the high-pass filter of each filter bank

FIGURE 2 | The method flow chart of this research. The research decomposes the pre-processed EEG input tunable-Q wavelet transform (TQWT) into multiple
sub-bands (SB), extracts time-domain and non-linear features from the sub-bands, used binary gray wolf optimization (BGWO) to reduce dimensionality, selects the
optimized subset as the classifier input, and finally passes support vector machine (SVM) Identify five types of emotions.
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and the output signal of the low-pass filter of the final filter bank
(Selesnick, 2011).

The low-pass filter frequency response HJ
0 (ω) and the high-

pass filter frequency response HJ
1 (ω) after level J should be

defined as:

HJ
0 (ω) =

{∏J−1
m=0 H0

(
ω
lm
)
, |ω| ≤ lJπ

0, lJπ < |ω| ≤ π
(1)

HJ
1 (ω) =

{
H1

(
ω

lJ−1

)∏J−2
m=0 H0

(
ω
lm
)
,
(
1− h

)
lJ−1π≤ |ω| ≤ lj−1π

0, ω ∈ [−π, π]
(2)

where low-pass scaling factor (l) and the high-pass scaling factor
(h) are defined as:

l = 1−
h
r

(3)

h =
2

Q+ 1
(4)

In this study, the EEG is decomposed into five sub-bands with a
Q factor of 3 and an oversampling rate (r) of 3 by TQWT, and
feature extraction from the sub-bands (Q = 3, r = 3, and J = 4).
Figure 3 is a time-frequency diagram of TQWT decomposing the
Fp1 channel EEG into five sub-bands.

Feature Extraction
Extract five time-domain non-linear features for each sub-band
signal decomposed by TQWT, namely sample entropy, two
differential features and two Hjorth parameters as classification
features:

(1) Sample entropy

Sample Entropy (SampEn; Richman and Moorman, 2000)
measures the complexity of time series by measuring the
probability of generating a new pattern in the signal. It is similar
to approximate entropy (AE) but is more consistent. Define the
sample entropy of a finite array as:

SampEn = −ln
[

Am(r)
/

Bm(r)
]

(5)

where ln represents the natural logarithm; Bm (u) is defined as:

Bm (u) =
1

N −m

N−m∑
i=1

Bm
i (u) (6)

Bm
i (u) =

1
N −m− 1

Bi (7)

Am(u) is defined as:

Am (u) =
1

N −m

N−m∑
i=1

Am
i (u) (8)

Am
i (u) =

1
N −m− 1

Ai (9)

where m represents the dimension of the vector, generally 1 or 2;
N represents the length of the sequence; u represents the measure
of “similarity,” generally choose u = 0.1 × std–0.25 × std, where
std represents the standard deviation of the original time series.
In this study, m = 2, u = 0.2× std.

FIGURE 3 | Time-frequency diagrams of five sub-bands obtained from single-channel EEG and TQWT decomposed signal. TQWT decomposes the EEG data of a
single channel into five sub-bands (Q = 3, r = 3, and J = 4), among which sub-band 1 has energy fluctuations at 15–25 HZ, and both sub-bands 2 and 3 are at
10–45 HZ There are energy fluctuations from time to time. Sub-band 4 has energy fluctuations in the time-frequency axis within 4–45 HZ just like the original data,
and the energy fluctuation of sub-band 5 is 8–45 HZ.
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(2) Second-order difference mean (2dif)

2dif =
1

N − 2

N−2∑
n=1

(x (n+ 2)− x (n)) (10)

where x(n) represents the time series vector.

(3) Normalized second-order difference mean (2ndif)

2ndif =
2dif
σx

(11)

where σx is the standard deviation.

(4) Hjorth parameter: mobility

The Hjorth parameter was proposed by Hjorth (1970). Among
them, Hjorth-Mobility (HM) is a parameter to estimate the mean
frequency, which measures the mobility of EEG:

HM =

√√√√var
(

dx(n)
dn

)
var (x (n))

(12)

where var represents the variance.

(5) Hjorth parameter: complexity

Hjorth-Complexity (HC) is often used to estimate the
bandwidth of the signal and measure the complexity of the EEG:

HC =
Mobility

(
dx(n)

dn

)
Mobility (x (n))

(13)

In this study, five types of features are extracted from the
five sub-bands decomposed by TQWT, and the data shape of
each sub-band is a trial feature, namely 40 × 32. A total of
32 feature matrices of 40 × 160 are obtained for subsequent
feature selection.

Feature Selection
The feature matrix extracted from the TQWT sub-band is
selected by the binary gray wolf optimization algorithm (BGWO;
Too et al., 2018). The GWO algorithm is an optimized search
method developed by simulating the hierarchy and hunting
process of the wolf pack. The α, β, δ, and ω wolves in the wolf pack
represent different social classes, respectively. This algorithm has
been used by many researchers in the research fields of feature
selection, parameter optimization and motor control because of
its considerable optimization performance and simplicity and
ease of implementation (Wei et al., 2017).

Emary et al. (2016) proposes two BGWO algorithms (BGWO1
and BGWO2) are proposed for feature selection. Among them,
BGWO1 uses a crossover operator to update the wolf ’s position,
while BGWO2 uses a crossover operator to update the wolf ’s
position, while BGWO2 updates the wolf by converting the

position into a binary vectors position. In this study, the
BGWO2 method will be selected to optimize the feature set by
dimensionality reduction, and the formula is as follows:

Yn (t + 1) =

{
1, if S

(
Yn

1+Yn
2+Yn

3
3

)
≥ r0

0, else
(14)

where r0 is a random number in [0,1]; t is the number of
iterations; n is the dimension of the search space; Y1, Y2, and
Y3 are defined as binary steps affected by α, β, and δ wolves,
respectively; Yn (t + 1) is iteration the updated binary position
in dimension n at time t. S(a) is defined as:

S (a) =
1

1+ e(−10(a−0.5))
(15)

This article discusses the optimization effect of BGWO in
three situations: (1) Fusion of the sub-band data of 32 subjects,
and optimization of the five feature sets through BGWO, and the
data is reduced from 40 × 160 to 40 × 57–92; (2) Fusion All the
test data are optimized for the feature sets of the five sub-bands,
and the data is reduced from 1,280 × 32 to 1,280 × 7–17; (3)
Fusion of all test and sub-band data, the optimized data length is
reduced from 1,280,160 to 1,280× 43–67 not waiting.

Classifier and Evaluation Index
This research uses a SVM classifier. The basic idea of SVM is
to solve the separation hyperplane that can correctly divide the
training data set and have the largest geometric interval (Hsu and
Lin, 2002). Originally to solve the two-classification problem, it is
now widely used in the recognition of multiple types of emotional
EEG (Kawintiranon et al., 2016; Samara et al., 2017).

In order to evaluate the effectiveness of the method proposed
in this manuscript, four indicators of accuracy (Acc), sensitivity
(Sen), specificity (Spe) and Kappa coefficient (Chu et al., 2021)
are calculated through 6-fold cross-validation. The calculation
formula of each indicator is as follows:

Acc =
TP+ TN

TP+ TN+ FP+ FN
× 100% (16)

where TP refers to true positive, TN is true negative, FP is false
positive, and FN is false negative.

Sen =
TP

TP+ FN
× 100% (17)

Spe =
TN

FP+ TN
× 100% (18)

Kappa =
Acc− pe

1− pe
(19)

where pe is the completely random classification accuracy. For the
five classification problems in this manuscript, pe = 0.2.
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Accuracy is our most common evaluation index. Generally
speaking, the higher the accuracy, the better the classifier.
Sensitivity represents the proportion of all positive examples that
are matched and measures the classifier’s ability to recognize
positive examples. Specificity represents the proportion of all
negative cases that are matched and measures the ability of the
classifier to recognize negative cases. The Kappa coefficient is
usually used for consistency testing. It can be used as an index
to measure the accuracy of classification, and it can also be
used as a normalized index to measure the accuracy of different
classification numbers.

Experimental Results
The experiment is carried out on MATLAB R2019b platform
under Windows 8.1 64 bit operating system. The system CPU
is AMD Radeon R5 and the memory is 8 GB. This study uses
the DEAP data set to verify the effectiveness of the algorithm
for emotion recognition from five aspects: (1) The data of
each subject is decomposed by TQWT, and the features are
extracted after fusing the sub-bands. The feature sets are classified
by SVM before and after BGWO. In order to explore the
classification performance of the algorithm to individuals, and
the improvement effect of BGWO on the algorithm. (2) Extract
features from each sub-band decomposed by TQWT, and merge
the feature sets of all subjects into SVM classification before
and after BGWO to explore the classification performance of the
algorithm for different sub-bands of TQWT. (3) Fuse the data of
the subject and the sub-bands, and the total feature set obtained
after BGWO optimization is used as the classification feature to
explore the overall recognition performance of the algorithm. (4)
On the basis of experiment (1), the influence of key parameters
of the algorithm on the accuracy of individual recognition
is explored. (5) Compare and analyze other EEG emotion
recognition methods of the same data set, in order to explore the
effectiveness of this method for multi-type emotion recognition.

Accuracy of Individual Recognition
The EEG of 32 subjects were decomposed into five sub-bands by
TQWT, the sub-bands were fused and features were extracted and
then classified by SVM, the emotion recognition accuracy rate of
each subject was obtained as shown in Figure 4. Among them,
“Before” indicates that the feature set is not optimized by BGWO,
and “After” indicates the accuracy information after feature
selection by BGWO. Judging from the recognition accuracy of
the five categories in the figure, the average recognition accuracy
of the two differences, two Hjorth parameters and sample
entropy as the classification features is 53.37%; the maximum
recognition accuracy of the individual is 87.7%, appearing in 20th
subject. After the feature set is optimized by BGWO, the average
recognition accuracy of the five types of features is 60.44%; the
maximum recognition accuracy of the individual is 88.1%, which
appears in the 18th subject. The accuracy of each participant
increased by 7.07% on average.

In order to show the time complexity of the algorithm, Table 1
counts the time consumption information of the 63 s emotion
recognition process of a single trial.

The Recognition Accuracy of Different
TQWT Sub-Bands
The feature sets of 32 subjects were fused, and the feature
matrixes of five sub-bands were respectively, passed through
BGWO, and the classification accuracy before and after
optimization of each feature was obtained as shown in Table 2.
It can be seen from the table that the classification accuracy
of each feature when the five sub-bands are not optimized
are 57.168 ± 1.34, 58.36 ± 2.08, 58.28 ± 1.34, 58.28 ± 1.22,
and 57.578 ± 1.34%, respectively. The recognition accuracy of
each sub-band after BGWO was 63.36 ± 2.64, 62.89 ± 1.32,
62.764± 2.07, 62.768± 0.95, and 62.734± 1.88%, and the Acc of
each sub-band increased by 4.97± 0.28% on average.

Recognition Results of Fusion of
Subjects and Sub-Band Data
Table 3 counts the accuracy (All Acc)%, sensitivity (Sen)%,
specificity (Spe)%, and Kappa coefficient information of the five
types of emotion recognition overall data (fusion of subjects and
sub-band data) with five types of features. The overall recognition
accuracy of the algorithm in this manuscript is 62.34%, the
average sensitivity is 65.22%, the average specificity is 78.13%, and
the Kappa coefficient is 0.53. It can be seen that the classification
performance of time-domain non-linear features is similar in
accuracy and Kappa coefficient; the optimal performance of
sensitivity and specificity are both differential features.

The Impact of Key Parameters on
Recognition Accuracy
Tunable-Q wavelet transform can adjust three parameters to
apply to different individuals and achieve the best classification
effect. Selesnick (2011) provides suggestions for the selection of
TQWT parameters, that is, Q≥ 1, r value of 3.0 or 4.0, and J ≥ 1.
On this basis, this article will specifically explore the influence
of parameters on the accuracy of different individual emotion
recognition. Through repeated trials, the optimal recognition
accuracy of 32 subjects and their corresponding parameter
combinations are shown in Table 4. It can be seen from the table
that the average recognition accuracy rate of the subjects obtained
after the personalized parameters is 65.2%, and the accuracy rate
increases to 68.24% after passing BGWO.

Figure 5 shows the Kappa coefficient of the best combination
of parameters for each subject. It can be seen from the figure that
the maximum Kappa coefficient is 0.88, and the average Kappa
coefficient is 0.603. The Kappa coefficients of different subjects
are quite different.

Comparative Analysis of Related
Research
Table 5 compares some EEG emotion recognition research
methods based on the DEAP data set, and normalizes the
classification accuracy of different categories into the Kappa
coefficient. Among them, the creator of this database (Koelstra,
2012) used the correlation coefficient to do a 2-classification
study, and the Kappa coefficients of the arousal, valence and
dominance dimensions were 0.24, 0.15, and 0.11. Yin et al. (2020)
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FIGURE 4 | The accuracy information of the feature set before and after BGWO. Where before refers to the average recognition accuracy ± standard error of the five
types of feature sets without BGWO optimization; After refers to the average recognition accuracy ± standard error of the feature set after BGWO optimization.

TABLE 1 | Time consumption statistics of this research method(s).

Subject TQWT Feature extraction BGWO SVM Total time

1 0.0052 0.0797 1.0827 0.7377 1.9850

2 0.0046 0.0789 1.1811 0.5733 1.9168

3 0.0055 0.0830 1.1099 0.2136 1.4950

4 0.0049 0.0815 1.1091 0.4496 1.7266

5 0.0054 0.0812 1.1513 0.5508 1.8699

6 0.0055 0.0820 1.1019 0.2911 1.5625

7 0.0047 0.0825 1.0904 0.3029 1.5630

8 0.0053 0.0808 1.1171 0.5324 1.8164

9 0.0048 0.0848 1.1645 0.3213 1.6602

10 0.0045 0.0800 1.1011 0.5356 1.8012

11 0.0047 0.0822 1.1166 0.6990 1.9847

12 0.0059 0.0796 1.1249 0.3097 1.5997

13 0.0048 0.0791 1.1123 0.4574 1.7327

14 0.0045 0.0807 1.1144 0.6253 1.9056

15 0.0052 0.0825 1.1876 0.4849 1.8427

16 0.0046 0.0801 1.1382 0.4296 1.7326

17 0.0063 0.0829 1.1028 0.2028 1.4777

18 0.0062 0.0792 1.2041 0.1932 1.5619

19 0.0050 0.0803 1.3384 0.5900 2.0940

20 0.0060 0.0787 1.4798 0.2691 1.9123

21 0.0050 0.0845 1.1740 0.2876 1.6356

22 0.0047 0.0812 1.2576 0.4934 1.9181

23 0.0059 0.0804 1.3163 0.4459 1.9289

24 0.0051 0.0810 1.2210 0.2974 1.6855

25 0.0056 0.0869 1.1947 0.2966 1.6707

26 0.0054 0.0884 1.2080 0.5649 1.9551

27 0.0044 0.0802 1.3141 0.3100 1.7889

28 0.0056 0.0814 1.1724 0.6294 1.9702

29 0.0054 0.0838 1.2144 0.6628 2.0502

30 0.0048 0.0828 1.2136 0.3896 1.7736

31 0.0056 0.0803 1.2812 0.4850 1.9324

32 0.0048 0.0820 1.1622 0.2938 1.6248
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TABLE 2 | Statistics of accuracy (%) of various features of each sub-band before
and after binary gray wolf optimization (BGWO).

BGWO Feature Sub-band

SB1 SB2 SB3 SB4 SB5

Before 2dif 57.81 58.2 58.59 57.81 59.38

2ndif 58.98 58.59 60.16 57.42 56.64

HC 55.86 61.33 58.59 59.37 58.59

HM 55.86 55.47 56.64 57.03 56.25

Sampen 57.42 58.21 57.42 59.77 57.03

Average 57.186 58.36 58.28 58.28 57.578

Std 1.34 2.08 1.34 1.22 1.34

After 2dif 63.67 63.28 61.72 61.36 62.11

2ndif 67.58 64.45 66.41 63.28 62.11

HC 60.94 63.67 61.33 63.67 65.62

HM 61.33 61.72 62.25 62.25 63.28

Sampen 63.28 61.33 62.11 63.28 60.55

Average 63.36 62.89 62.764 62.768 62.734

Std 2.64 1.32 2.07 0.95 1.88

Bold values means the maximum accuracy of each sub-band.

TABLE 3 | The overall accuracy (All Acc)%, sensitivity (Sen)%, specificity (Spe)%,
and Kappa coefficient of five types of emotion recognition based on tunable-Q
wavelet transform (TQWT) and BGWO.

All Acc Sen Spe Kappa

2dif 62.1 70.25 81.33 0.5263

2ndif 62.5 64.19 82.01 0.5313

HC 62.6 62.12 79.29 0.5325

HM 62.4 65.13 68.7 0.53

Sampen 62.1 64.4 79.3 0.5263

Average 62.34 65.22 78.13 0.53

Std 0.23 3.03 5.41 0.003

All means fusion of all subjects and sub-band data. Bold value means the optimal
value of each indicator.

used locally-robust feature selection (LRFS) method is used to
conduct a 2-classification study, and the Kappa coefficients of
the arousal and valence dimensions are 0.3 and 0.36. Gupta
et al. (2016) used the graph-theoretic feature extraction method
for three classification studies, the Kappa coefficients in four
dimensions were 0.54, 0.51, 0.48, and 0.48. Tao and Dan (2021)
proposed a multi-source co-adaptation framework for mining
diverse correlation information (MACI), the Kappa coefficient of
the three categories was 0.45. Zhang et al. (2016) used the ReliefF
feature selection method to conduct the four-category study,
and the Kappa coefficient of the category was 0.45. Gupta et al.
(2019) used flexible analytic wavelet transform (FAWT) Extract
features for four classification studies, the Kappa coefficient
was 0.45. Atkinson and Campos (2016) proposed an emotion
recognition model combining the feature selection method based
on minimum-Redundancy-Maximum-Relevance (mRMR) and
kernel classifier. The Kappa coefficients of the two categories were
0.46 and 0.46, the kappa coefficients of the three categories were
0.43 and 0.41, and the Kappa coefficients of the five categories
were 0.33 and 0.32, respectively. Generally speaking, the higher

TABLE 4 | The optimal recognition accuracy of different individuals and their
corresponding TQWT parameter combinations.

Subject TQWT parameter Accuracy (%)

Q r J Before BGWO After BGWO

1 1 3 4 52.38 60.32

2 3 3 2 42.86 46.03

3 5 3 3 89.68 90.48

4 1 3 4 52.78 54.76

5 1 3 4 59.52 59.92

6 1 3 2 82.14 83.33

7 1 3 1 59.52 63.1

8 4 3 1 67.86 74.21

9 1 3 4 77.38 77.78

10 3 3 1 79.76 80.56

11 1 3 3 57.94 58.33

12 4 3 3 57.54 58.73

13 4 3 1 52.38 55.95

14 1 3 5 57.54 59.92

15 2 3 3 85.71 87.3

16 5 3 3 85.32 85.71

17 3 3 3 82.94 83.33

18 3 3 1 70.24 73.41

19 2 3 6 68.25 69.84

20 3 3 1 88.10 88.10

21 4 3 4 62.70 72.22

22 4 3 1 51.59 55.16

23 1 3 3 67.86 72.22

24 1 3 3 70.24 75.40

25 5 3 6 54.37 61.9

26 1 3 6 51.98 60.32

27 1 3 1 55.16 57.14

28 3 3 1 42.46 43.25

29 1 3 4 45.63 48.41

30 1 3 1 67.06 75.4

31 3 3 1 73.02 73.41

32 3 3 3 74.60 77.78

Average 65.20 68.24

Std 13.72 12.99

Bold values indicate the subject maximum accuracy.

the number of machine learning classifications, the lower the
classification accuracy (Kong et al., 2021). It can be seen from
the table that the classification performance of this method has
reached a 5-class Kappa coefficient of 0.603. Compared with the
classification performance of the above methods, this research has
achieved outstanding classification effects.

DISCUSSION

In this study, for the EEG-based e-BCI, the method of TQWT
and BGWO was used to identify the five types of emotions in
the DEAP dataset: neutral, happy, sad, relax, and anger. First
of all, in terms of the number of identifications, this research
has improved compared with previous traditional studies, and
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FIGURE 5 | The Kappa coefficient of the optimal parameter combination of each subject and the average Kappa coefficient of all subjects.

TABLE 5 | Comparison of classification performance between the method in this manuscript and other studies on the database for emotion analysis using physiological
signals (DEAP) dataset.

Authors Method Accuracy (%) Kappa

2 Classes 3 Classes 4 Classes 5 Classes

Koelstra, 2012 Correlation coefficient + NB 62, 57.6, 55.4 – – – 0.24, 0.15, 0.11

Yin et al., 2020 LRFS + LSSVM/NB 65, 68 – – – 0.30, 0.36

Gupta et al., 2016 Graph-theoretic + SVM/RVM – 69, 67, 65, 65 – – 0.54, 0.51, 0.48, 0.48

Tao and Dan, 2021 MACI – 63.31 – – 0.45

Zhang et al., 2016 ReliefF + SVM – – 58.75 – 0.45

Gupta et al., 2019 FAWT + SVM – – 59.06 – 0.45

Atkinson and Campos, 2016 mRMR + SVM 73.14, 73.06 62.33, 60.7 – 46.69, 45.32 0.46, 0.46/0.43, 0.41/0.33, 0.32

This work TQWT-BGWO + SVM – – – 68.24 0.603

increased the types of signal identification. Secondly, for EEG-
based emotion recognition, the current more innovative TQWT
algorithm is selected to analyze the signal. In addition, for the
EEG feature selection method, BGWO is used for the first time to
optimize the EEG emotional features, and its optimization effect
on the emotion recognition task is verified.

It can be seen from Figure 4 that it is feasible to extract
the time domain and non-linear dynamic characteristics from
TQWT and use SVM to identify five types of emotions. The
classification accuracy of different subjects for the same trial is
significantly different, indicating that the same emotion-inducing
material has different emotion-inducing effects for different
subjects. Excluding subjects or trials with poor emotion-inducing
effects may improve the overall recognition accuracy. Therefore,
designing an emotion-induced paradigm suitable for different
subjects is still a prominent problem of e-BCI. Secondly, Figure 4
shows that after using BGWO, the accuracy of a single subject has
been enhanced, showing better applicability. In addition, it can
be seen from part Feature Selection that BGWO can effectively
reduce the data size of the feature set. It shows that BGWO is also
an effective optimization method for EEG emotion recognition
tasks. It can be seen from Table 1 that the time consumption of
each stage of the method proposed in this manuscript basically
meets the online BCI system.

It can be seen from Table 2 that the optimal classification
accuracy can be obtained by taking the TQWT sub-band as the
classification axis. In addition, the standard deviation Std ≤ 2.64
of the classification accuracy of the same classification feature in
different sub-bands indicates that the stability of the recognition
accuracy of the TQWT decomposition signal is good. Table 3
shows the accuracy, sensitivity, specificity, and Kappa coefficient
of the five features under this research method. Among them, the
average accuracy rate is 62.34%, which exceeds the probability of
random guessing (above-chance level) by 42.34%. For sensitivity
and specificity, this method has a 65.22% ability to recognize
positive cases and 78.13% on negative cases. If understood from
a medical point of view, sensitivity and specificity measure the
missed diagnosis rate and the misdiagnosis rate, respectively. The
Kappa coefficient is 0.53, which represents the ratio of the error
reduction of the classification and the chance level.

Table 4 statistics the optimal TQWT parameter combination
of each subject and the recognition accuracy information before
and after the obtained BGWO. Compared with Figure 4,
tuning the TQWT parameters for different subjects can achieve
better recognition performance, achieving a maximum individual
recognition accuracy of 90.48% and an average recognition
accuracy of 68.24%. Figure 5 shows the Kappa coefficient
information of the subjects. It can be seen that the average Kappa
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coefficient of all subjects is 0.603, and the Kappa coefficients of
all subjects are linearly related. In addition, for all subjects, the
optimal value of Q factor is between 1 and 5, the optimal value of r
is both 3, and the optimal value of J is between 1 and 6. Individual
differences are not only manifested in the inducing effect of
emotions, but also in system parameters. Therefore, TQWT
with adjustable parameters is an effective method to overcome
individual differences. It is worth noting that the EEG emotion
recognition methods based on TQWT and BGWO use simple
and common features and classifiers. If try other advanced or
improved features and classifiers, can achieve good classification
results, or you can switch the emotion category It is a control
instruction for BCI equipment, which will be more conducive to
the development of e-BCI.

CONCLUSION

In this study, the TQWT-BGWO method was used to recognize
five types of emotions from EEG. TQWT decomposes the EEG
into sub-bands, extracts features from the sub-bands, and used
the SVM classifier to classify after BGWO optimization to
realize the recognition of five types of emotion signals: neutral,
happy, sad, relaxed, and anger. The parameterized TQWT signal
decomposition can overcome individual differences to a certain
extent, and combined with the BGWO feature selection method
with fast convergence speed and good optimization performance,
it can effectively improve the recognition accuracy of the system.

Through the DEAP data set, the effectiveness of the proposed
algorithm is verified. The experimental results show that the
research method in this manuscript has an average recognition
accuracy of 68.24%, a sensitivity of 65.22%, a specificity of
78.13% and a Kappa coefficient of 0.603 for the five types
of emotions. The proposed algorithm can effectively identify
multiple types of emotional states, and provides new ideas
for emotional BCIs.
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Increasing social pressure enhances the psychological burden on individuals, and
the severity of depression can no longer be ignored. The characteristics of high
immersion and interactivity enhance virtual reality (VR) application in psychological
therapy. Many studies have verified the effectiveness of VR relaxation therapy, although
a few have performed a quantitative study on relaxation state (R-state). To confirm the
effectiveness of VR relaxation and quantitatively assess relaxation, this study confirmed
the effectiveness of the VR sightseeing relaxation scenes using subjective emotion
scale and objective electroencephalogram (EEG) data from college students. Moreover,
some EEG features with significant consistent differences after they watched the VR
scenes were detected including the energy ratio of the alpha wave, gamma wave,
and differential asymmetry. An R-state regression model was then built using the
model stacking method for optimization, of which random forest regression, AdaBoost,
gradient boosting (GB), and light GB were adopted as the first level, while linear
regression and support vector machine were applied at the second level. The leave-
one-subject-out method for cross-validation was used to evaluate the results, where the
mean accuracy of the framework achieved 81.46%. The significantly changed features
and the R-state model with over 80% accuracy have laid a foundation for further
research on relaxation interaction systems. Moreover, the VR relaxation therapy was
applied to the clinical treatment of patients with depression and achieved preliminary
good results, which might provide a possible method for non-drug treatment of patients
with depression.

Keywords: VR, EEG, relaxation state, regression model, machine learning, depression therapy

INTRODUCTION

The rapidly developing society enhances pressure on individuals, while mental health problems are
getting increasingly critical. By the end of 2020, mental health problems became the second most
critical disease worldwide (Randy et al., 2019). Statistics from the World Health Organization in
2020 showed that more than 300 million individuals were suffering from depression, with over 80%
not receiving appropriate treatment (WHO, 2020). Patients with mental disorders have a profound

Frontiers in Neuroscience | www.frontiersin.org 1 September 2021 | Volume 15 | Article 71986952

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.719869
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2021.719869
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.719869&domain=pdf&date_stamp=2021-09-24
https://www.frontiersin.org/articles/10.3389/fnins.2021.719869/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-719869 September 24, 2021 Time: 13:21 # 2

Zhang et al. Relaxation Degree Analysis Using EEG

negative impact on their personal development, bringing burdens
to their families and society (Sidra et al., 2013). Since many
studies have confirmed that relaxation could relieve depression
(DeBerry, 1982; Lolak et al., 2008), it is highly important to
effectively reduce stress and relax.

The current primary methods to relax include deep respiration
(Ilse et al., 2014), muscular relaxation (Wesley and Douglas,
1977), music relaxation (Claas et al., 2008; Olga et al., 2011),
meditation (Lazar et al., 2000; Narendra et al., 2017), and
autogenic training (Ernst and Kanji, 2000). These methods were
easily subject to the environment and devices.

The advantages of free space, high immersion, and
interactivity have enhanced virtual reality (VR) application
in psychological therapy with its rapid development, thus
achieving good results (Imran et al., 2014; Allison et al., 2017).
Nevertheless, most of these VR scenes are static in nature without
scene transitions (Andersen et al., 2017; Kiefl et al., 2018), which
might cause boredom and affect the relaxation effect. Moreover,
current studies have only made a subjective and qualitative
evaluation (Freeman et al., 2017; Linda et al., 2020).

Subjective scales and physiological parameters are generally
used to assess the relaxation degree, where the former refers
to Perceived Stress Scale (Cohen et al., 1983) and State-trait
Anxiety Inventory (Theresa and Hilary, 1992), and the latter
includes electroencephalogram (EEG) (Knott et al., 1997; Xing
et al., 2019), heart rate variability (Patil and Shirley, 2006; Shu
et al., 2020), galvanic skin response (Alexandros et al., 2015),
and respiration (Joseph et al., 2016). EEG can relevantly reflect
people’s emotional state more accurately among the physiological
parameters (Soraia and Manuel, 2019) since emotion is a natural
product of neural activity in the brain. Consequently, EEG would
be an ideal parameter for measuring relaxation state (R-state),
and frontal EEG is considered as the first choice considering its
simple operation.

Relevant studies have proved that different frequencies of
brain electricity reflect different brain states (Hou et al., 2020),
in which alpha, theta, and gamma waves show stronger relevance
with R-state. Cahn and Delorme found that the long-term
training of Vipassana meditation could increase gamma power
(Baruch et al., 2016). Du and Lee observed that low-frequency
alpha waves in the left frontal lobe while high-frequency alpha
waves in the right frontal lobe increased significantly during
positive emotional audio stimulation, where the experimental
materials were from the standard International Affective Digital
Sounds dataset (Du and Lee, 2015). However, there is a
lack of EEG-based relaxation regression models under a VR
environment as well as an effective VR relaxation system.

To explore the relaxation effect of VR scenes and the
correlation between R-state and frontal EEG, VR relaxation
scenes were used as emotion-evoked materials in this study,
and a relaxation rating model was established based on EEG
data. The VR relaxation scenes and R-state model were then
used on patients with depression to explore the possibility of
VR relaxation therapy for depression. The study is organized
as follows. Section “Materials and Methods” introduces the
methods of relaxation VR scene design, data collecting, and
model building. Section “Results” shows the results of the analysis

of EEG data and the effect of the relaxation model. Section
“Application” introduces the application of the research. Section
“Discussion” and section “Conclusion” present the discussion
and conclusion, respectively.

MATERIALS AND METHODS

Design of Virtual Reality Relaxation
Scenes
Four sightseeing-relaxation VR scenes were selected as
experimental materials including National Park, Snow Mountain,
the Great Wall, and Yunnan. Western classical and new age
music were chosen, as background music since O’Sullivan’s
research had proved that relaxation music was mainly soft music
composed of slow rhythm, low pitch, low volume, beautiful
melody, and orchestral instruments (O’Sullivan, 1991), which
were copyright free and had been evaluated (Zhu et al., 2019).
The selected background music was absolute music without
lyrics to avoid cognitive and cultural differences. The description
of the scenes and music is shown in Table 1.

The design process of VR relaxation scenes is illustrated in
Figure 1. Appropriate VR scenes and background music were
chosen and combined to get visual and auditory fusion materials.
EEG was collected during the whole period of watching the VR
scene, after which a subjective scale was completed. A designed
relaxation VR scene was officially completed when it was verified
to achieve an ideal relaxation effect through subjective scale and
EEG data evaluation.

Methods of R-State Evaluation
The forehead prefrontal EEG electrodes of FP1, FP2, and
FPZ were chosen to acquire EEG signals for analyzing the
relaxation degree of the participants, since the forehead region
of the brain was found to be most associated with emotions
(Suranjita and Rajesh, 2019).

Furthermore, subjective emotion scale Self-Assessment
Manikin (SAM) and R-state were used as subjective emotion
labels. SAM was based on the valence–arousal–dominance
emotion model, which assessed emotion state through three
indices. Each score of the three indices ranged from 1 to 9.
A higher score indicated a more intense emotion state (higher
valence, arousal, and dominance) (Bradley and Lang, 1994; Shu
et al., 2018). R-state was based on the R-state pyramid theory
proposed by Smith (2005). To keep the grading uniform, the
value of the R-state also ranged from 1 to 9. A value of R-state
greater than five indicated relaxation, and the numbers 5–9
corresponded to the five levels of R-state, as shown in Figure 2
(value 5 of R-state corresponded to level 1 of stress relief). The
higher the score, the more relaxed the participant was.

Participants and Experimental Procedure
Thirty-three healthy college students (age ranging from 20 to
26 years) including 19 men and 14 women participated in the
experiment, with data of only 30 participants valid (16 men and
14 women) for the reason that there were three participants
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TABLE 1 | Selected VR relaxation scenes.

Sample figure of VR scenes

Scene name National Park Snow Mountain The Great Wall Yunnan

Scene length 199 s 156 s 90 s 144 s

Background music Pastoral Symphony Wight Light Sonata for Spring The Reiki Gold

VR, virtual reality.

FIGURE 1 | Design process of virtual reality relaxation scenes.

FIGURE 2 | R-state pyramid.
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FIGURE 3 | Experimental procedure.

whose EEG data were not fully collected due to the instability
of electrode–scalp interface of the EEG collection device. The
experiment was conducted in a 30-dB closed soundproof room
(Hengqi, Dongguan, China), with experimental equipment, two
comfortable chairs, and a table. A pre-training was conducted to
make the participants familiar with the experimental steps and
SAM scale evaluation method. The procedure of the experiment
is shown in Figure 3. After offering personal information and
wearing VR glasses together with the EEG acquisition device,
participants needed to rest for 2 min with a black screen
insight, before and after watching each relaxation scene, the
duration of which lasted 90–199 s. Each participant was asked
to randomly watch three of the four scenes. The participants
were asked to keep their eyes open during the whole experiment
to control the variables. The experiment procedure was based
on other relevant studies (Zhu et al., 2019). The experimental
procedures were approved by the Guangzhou First People’s
Hospital (202002030262, on April 1, 2020).

The VR scenes were watched by HTC Vive, and the EEG
acquisition device was a Mangold-10 multichannel physiological
instrument with an acquisition frequency of 256 Hz. Figure 4

shows the experimental equipment and the data collection
settings for the participants. Three flexible EEG electrodes were
embedded in the sponge of the VR device to collect forehead EEG
data. The subjective scale was finished after each scene.

Electroencephalogram Data Processing
Considering the EEG data collection from watching one section
of the VR scene as one segment of data, 80 segments of effective
data of normal participants were collected for further analysis (20
segments for each scene). To explore the relaxing effect of the VR
scenes, data sections in each segment of EEG data before and after
watching scenes for the 30 s (noted as pre EEG and post EEG) and
30-s data during the period of watch VR scenes (noted as begin
EEG and end EEG) were selected (Nitin et al., 2016), as shown in
Figure 5.

Selected EEG data were filtered using a 1- to 45-Hz
Butterworth filter to eliminate the power interference and the
baseline drift, after which each segment of de-noised EEG data
was decomposed into seven frequency bands according to the
different frequencies including delta (δ, 1–3 Hz), theta (θ, 4–
7 Hz), low alpha (α_l, 8–10 Hz), high alpha (α_h, 10–12 Hz)
(Dombrowe and Hilgetag, 2014), low beta (β_l, 12–20 Hz), high
beta (β_h, 20–30 Hz) (Kwon et al., 2011), and gamma waves
(γ, 31–50 Hz). Then, EEG features of each band were extracted
including the EEG energy value (E), energy ratio (ER), energy
entropy (EE), differential entropy (DE), power spectral density,
the asymmetry (ASM), rational asymmetry (RASM), differential
asymmetry (DASM) of the alpha wave, and the asymmetry of
EEG energy ratio of each frequency band, as shown in Table 2
(Jenke et al., 2014; Tortella-Feliu et al., 2014; Zheng and Lu, 2015;
Deng et al., 2021).

The feature changes of the four data sections extracted from
each segment of EEG data including pre–post EEG, pre–end
EEG, and begin–end EEG were tested using t-test except begin–
post EEG for the reason that the mood swings were evident
by the VR scene and the goal emotion had not been fully
aroused with huge mood swings at the beginning. Moreover,
the relaxing emotion would be somewhat diminished during
the period of post EEG. Consequently, comparing the begin–
post EEG involves multiple variables that cannot be controlled.
The features with significant variance (p < 0.05) after watching
VR scenes were selected for further study. Since participants
were exposed to visual and auditory stimuli during the begin
EEG period of time, this EEG might be different from pre EEG
collected in the resting state. Therefore, both pre–end EEG and
begin–end EEG are worth analyzing.

R-State Model
Since four of the 30 normal participants did not finish the
subjective emotion scale, which meant that some of their EEG
data lacked an R-state label, and seven segments of the EEG
data had obvious noises due to the large body or eye movements
during the experiments, only 71 segments of EEG data of 26
participants were used for relaxation model building. After
being preprocessed, 147 EEG features were selected to train the
R-state model.
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FIGURE 4 | Experimental equipment and settings for college participants.

FIGURE 5 | Selected electroencephalogram (EEG) data.

TABLE 2 | Selected features.

Features Selected band Description

E (energy) All Transformed and calculated by Fourier transform

ER (energy ratio) All Ratio of EEG energy in different frequency bands ER(ab) = E(a)/E(b)

EE (energy entropy) All EE=
∑

i
log(P2

i )

DE (differential entropy) All DE(X)= 1
2 log(2πeσ2)

PSD (power spectral density) All
PSD(f)=

êp

|1+
p∑

k=1
âp (k)e−j2πfk |

(ASM) Energy asymmetry Alpha ASM = E(right) − E(left)

ERASM (energy ratio asymmetry) All ERASM = ER(right) − ER(left)

DASM Alpha DASM = DE(Xleft) − DE(Xright)

RASM Alpha RASM = DE(Xleft)/DE(Xright)

EEG, electroencephalogram; DASM, differential asymmetry; RASM, rational asymmetry.
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TABLE 3 | Input data groups.

Training group EEG length (s) Window size (s) Step length (s) Input data number

Group 1 30 2 1 2,059

Group 2 30 4 2 994

Group 3 30 6 3 639

Group 4 60 2 1 4,189

Group 5 60 4 2 2,059

Group 6 60 6 3 1,349

Group 7 60 8 4 994

EEG, electroencephalogram.

FIGURE 6 | The stacking model diagram.

First, different lengths of EEG were selected for training. The
last 30 and 60 s of EEG data while watching the scenes were
chosen to extract selected features for EEG regression model
training. Cross-subject research was adopted to make the model
more generalized. The leave-one-subject-out (LOSO) method for
cross-validation was used to evaluate the accuracy (Tommaso
et al., 2006). The LOSO would be performed with n iterations
when given a dataset from n participants. The classifier would
be trained with EEG data of n − 1 participant and tested on
the remaining single subject in each iteration. In this study, the
whole segments of EEG data of one participant were considered
as one subject data.

Data Enhancement
To increase the number of the existing dataset to increase training
accuracy, each segment of EEG data was divided into several
fragments, and all the fragments in one segment were tagged with

the same label. Window sizes that were tried included 2, 4, 6, and
8 s, whereas the overlapping remaining 50%, which meant that
the 2-s window corresponded to 1-s step and the 8-s window
corresponded to 4-s step. The input data groups are shown in
Table 3.

The amount of data per segment of EEG noted as N was
calculated by the equation below.

N =
L−W

step
+ 1

where L indicates the length of one segment of the EEG, W
represents window size, and step is the overlapping length.

Regression Model
After all the 147 features from every second of data were extracted
and the mean value of each fragment was calculated, the results
were then put into different regression models. Eight models were
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FIGURE 7 | Self-rating scale of normal participants.

TABLE 4 | EEG features with significant variance.

Begin–end Pre–post Pre–end

Feature p Feature p Feature p Feature p

dsp_alpha_l2 0.03240 theta1/alpha_l1 0.00450 SE_theta3 0.00008 EE_theta1 0.01359

gamma3 0.03790 EE_delta2 0.01011 EE_theta2 0.00013 alpha1_h/gamma1 0.01521

gamma2 0.03956 delta1/alpha_l1 0.01133 EE_theta3 0.00016 alpha3_h/gamma3 0.02441

alpha_h3 0.03968 delta1/theta1 0.01970 SE_theta2 0.00021 delta2/theta2 0.02842

dsp_beta_h3 0.04018 EE_alpha_l1 0.02283 SE_alpha_h2 0.00079 alpha2_h/gamma2 0.03056

delta3 0.04132 delta2/alpha_l2 0.02962 SE_alpha_h1 0.00080 alpha_h1/beta_h1 0.03092

beta_l3 0.04230 EE_beta_h3 0.03087 SE_alpha_h3 0.00083 EE_alpha_h1 0.03184

SE_beta_l1 0.03722 alpha_h3/beta_l3 0.00152 alpha_h3/beta_h3 0.04503

SE_beta_h3 0.03838 alpha_h1/beta_l1 0.00170 delta1/beta_l1 0.04796

EE_delta3 0.03839 alpha_h2/beta_l2 0.00286 EE_alpha_h3 0.04892

EE_beta_h2 0.03896 SE_delta3 0.00916

SE_delta2 0.04095 SE_theta1 0.00949

EEG, electroencephalogram.

used for a comparison including linear regression (LR), support
vector machine (SVM), random forest regression (RFR), adaptive
boosting (AdaBoost), BootStrap aggregation (Bagging), gradient
boosting (GB), eXtreme GB (XGB), and light GB (LGBM).
Stacking regression was then used, which was first proposed by
Leo (1996). It was a method that could integrate the outputs of
multiple models to produce a new model to improve prediction
accuracy. The stacking model generally consists of two levels.
Several different high-prediction models with complementary
advantages and disadvantages were often used at the first level;
and at the second level, one simple model would be used. In this
study, four different types of base regression models including
RFR, AdaBoost, GB, and LGBM were used at the first level to
train the original dataset referring to the results of the eight
models training and previous studies (Kim et al., 2020). RFR and
boosting models are the most commonly used models at the first
level of stacking because these two models belong to the parallel

model and the serial model, which are quite different and have
generalization to the results. And at the second level, a simple
model such as LR or SVM will be used to integrate the results
of the models used at the first level to prevent overfitting (David,
1992; Bohdan, 2020). LOSO method was also used in the first level
so that 26-fold cross-validation would be done by each model
to get predicted labels. The predictions of each test fold were
then put into the second level as the training dataset, and the
average of the 26-fold predictions would be taken as test datasets
in the second level. Two simple models LR and SVM were tried
at the second level to make a comparison. The diagram of model
stacking in the regression work is shown in Figure 6.

Evaluation Index
Mean absolute error (MAE) and mean relative accuracy (ACC)
(Li et al., 2019) were used as indices to evaluate the results
of different model training. MAE calculated the absolute error
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FIGURE 8 | Summary of changes in electroencephalogram (EEG) characteristics of normal participants after watching the relaxation scenes.

between the predicted value and the true value. The formula is
illustrated below, where n indicates the number of the EEG data,
yi is the true value, and ŷi is the predicted value. The lower the
value, the better is the training model.

MAE =
1
n

n∑
k=0

|(yi − ŷi)|

The calculation formula of ACC is shown below with an index
ranging in value from 0 to 1. The closer the value is to 1, the better
is the training model. ACC reflected the relative error between the
predicted and true values, which would be more comparable than
MAE.

ACC = 1−
1
n

n∑
k=0

|(yi − ŷi)|

yi

RESULTS

Subjective Emotion Scale Result
The result of the subjective scale is shown in Figure 7. Since the
relaxation degree score greater than five indicated that the scene
had a relaxing effect, all the four relaxation scenes were effective
(National Park 7.18, Snow Mountain 6.06, the Great wall 6.71,
and Yunnan 7.53), in which Yunnan was the most relaxing VR
scene. Furthermore, the results also showed that with increase in
the relaxation degree, the value of valence also increased.

Electroencephalogram Feature Analysis
Result
The typically changed EEG features of the participants are shown
in Table 4 including energy features, energy ratio features, and SE
features of each band.

The results of pre EEG to end EEG, pre EEG to post EEG, and
begin EEG to end EEG were used as comparison groups. Ten
features were found from significantly changed features, as was
shown in Figure 8, to have consistency differences after watching
the VR relaxation scenes, which meant the EEG feature values of
all the 26 participants showed an increasing or a decreasing trend
after watching the VR scene for each participant. The significantly
changed features included E-delta/alpha_l, E-alpha_h/gamma,
E-alpha_l/beta_h-ASM, EE-beta_l, EE-beta_h, EE-gamma, EE-
theta, SE-alpha_h, SE-theta, and DASM-alpha_l. Moreover,
features E-delta/alpha_l, E-alpha_l/beta_h-ASM, and SE-theta
showed an increasing trend after watching the relaxation VR
scene. Features E-alpha_h/gamma, EE-beta_l, EE-beta_h, EE-
gamma, SE-alpha_h, SE-theta, and DASM-alpha_l showed a
decreasing trend.

Relaxation Regression Results
Table 5 shows the ACC results of the different training models
in each group. From the average accuracy results of the different
training models in each group, it could be observed that the
accuracy of XGB and LGBM reached above 80%, and LGBM
got the best result of 80.42% on average. While using LGBM
to train the model, Group 1 performed the best, with the
accuracy of 80.69%.

Mean absolute error result is shown in Table 6. It could be
found that in using LGBM to train Group 1, the lowest value
of 1.00494 was obtained. While comparing the results of each
group, it could be found that in general, using 30 s of EEG data
(Groups 1, 2, and 3) to train the model would get better results
than 60 s of EEG data (Groups 4, 5, 6, and 7). Furthermore,
the model stacking method was applied to train Group 1. The
result is shown in Table 7. It could be found that using stacking
increased the accuracy of the predictions by approximately 1%
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TABLE 5 | Relaxation model training ACC results.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 AVE

LR 0.79934 0.80281 0.79370 0.70145 0.63516 0.41623 0.34172 0.64149

SVM 0.78001 0.78299 0.78501 0.77675 0.78107 0.78072 0.781061 0.78102

RF 0.80029 0.79645 0.80021 0.80219 0.80079 0.79871 0.79849 0.79959

AdaBoost 0.78393 0.78701 0.78949 0.78143 0.78367 0.78859 0.79119 0.78647

Bagging 0.80111 0.80163 0.79669 0.80190 0.79709 0.80195 0.79637 0.79953

GB 0.79695 0.79989 0.80222 0.79602 0.79792 0.79721 0.79539 0.79794

XGB 0.80199 0.80354 0.80199 0.80317 0.80138 0.79588 0.79755 0.80079

LGBM 0.80692 0.80431 0.80253 0.80519 0.80538 0.80277 0.80237 0.80421

ACC, mean relative accuracy; LR, linear regression; SVM, support vector machine; RF, random forest; GB, gradient boosting; XGB, eXtreme gradient boosting; LGBM,
light gradient boosting. The bold values indicate the best experimental results.

TABLE 6 | Relaxation model training MAE results.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 AVE

LR 1.02831 1.02005 1.09353 1.65507 2.10446 3.56199 4.04282 2.07232

SVM 1.07132 1.06300 1.05260 1.08742 1.06601 1.06833 1.06866 1.06819

RF 1.03068 1.05419 1.04110 1.02747 1.03011 1.03923 1.05331 1.03944

AdaBoost 1.18253 1.12698 1.09482 1.20856 1.18663 1.12918 1.10883 1.14822

Bagging 1.02489 1.03342 1.06349 1.03192 1.04542 1.04085 1.07164 1.04452

GB 1.04648 1.03242 1.03109 1.05666 1.05017 1.05481 1.06062 1.04746

XGB 1.05373 1.06005 1.07795 1.04851 1.06283 1.09146 1.09887 1.07049

LGBM 1.00494 1.01620 1.03201 1.01564 1.01933 1.02982 1.03269 1.02152

MAE, mean absolute error; LR, linear regression; SVM, support vector machine; RF, random forest; GB, gradient boosting; XGB, eXtreme gradient boosting; LGBM, light
gradient boosting. The bold values indicate the best experimental results.

and decreased the MAE values by 1, which indicated that the
model was optimized. Moreover, using SVM at the second level
got better results than LR.

APPLICATION

The VR relaxation scenes were applied to assist in the treatment
of patients with depression in the Guangzhou First People’s
Hospital. Twenty-two patients with first-episode depression
including six men and 16 women (age ranging from 19 to
50 years) volunteered for the VR treatment. Each patient was
asked to watch only one VR scene, the Great Wall, to avoid
discomfort caused by watching VR for a long time. EEG was
also acquired during the procedure, and patients were asked to
verbally answer how they felt after watching. Figure 9 shows
the data collection settings for the patients, who were asked to
sit and watch the VR scene wearing the VR glasses in front
of a table on which there was a computer monitor and the
EEG acquisition device. Written consent was obtained from each
participant before the experiment.

Patients’ subjective answer results are shown in Table 8. It
could be seen that most patients with depression felt relaxed after
watching the VR scene except for two patients.

The EEG datasets of the depression patients were
preconditioned in the same manner as those of normal
college students. After preprocessing, the last 30-s EEG data
while watching the relaxation scene were put into the stacking

TABLE 7 | Stacking model results.

Second level model MAE ACC

LR 0.98942 0.81216

SVM 0.46846 0.81462

MAE, mean absolute error; ACC, mean relative accuracy; LR, linear regression;
SVM, support vector machine. The bold values indicate the best experimental
results.

regression model whose second layer was SVM to predict the
R-state to demonstrate the effectiveness of the VR relaxation
scene to depression patients. The method of EEG data progress
was the same as that of Group 1, of which the R-state prediction
result was the best. The predicted R-state results of disorder
patients are shown in Table 9, demonstrating that all the
prediction values were over 5, and the average of the predicted
R-state was 6.54, which was close to the subjective rating
value (6.71). These results confirmed that the VR relaxation
scene has a positive effect on the relaxation therapy of patients
with depression.

The EEG features of patients with depression were analyzed
in the same manner as those of normal participants. Five
features had significant consistency differences after watching the
VR relaxation scenes, including E-delta/beta_l, E-delta/beta_h,
E-alpha_l/gamma, E-alpha_h/gamma, and E-beta_l/gamma, as
shown in Figure 10. All of these changing features were on
a downward trend. Moreover, E-alpha_h/gamma had the same
trend as that of normal participants.
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FIGURE 9 | Data collection settings for patients with depression.

TABLE 8 | Relaxation model training MAE results.

Relaxation state Subject serial number Total number Male number Female number

Very relaxed Subject 1, 3, 4, 5–10, 15, 20, 22 12 1 11

A little relaxed Subject 2, 11, 13, 14, 17, 18, 19, 21 8 4 4

No relaxed Subject 12, 16 2 1 1

MAE, mean absolute error.

TABLE 9 | Predicted R-state of each patient.

Subject number Predicted R-state Subject number Predicted R-State

Subject 1 7.15 Subject 12 5.76

Subject 2 6.32 Subject 13 7.13

Subject 3 6.55 Subject 14 6.64

Subject 4 7.36 Subject 15 6.63

Subject 5 7.11 Subject 16 5.66

Subject 6 5.92 Subject 17 5.68

Subject 7 7.09 Subject 18 6.18

Subject 8 6.64 Subject 19 6.53

Subject 9 6.82 Subject 20 5.51

Subject 10 7.01 Subject 21 6.56

Subject 11 6.68 Subject 22 6.85

Average result 6.54

DISCUSSION

The subjective evaluations in the normal participants and
patients with depression demonstrated that the sightseeing-
relaxation VR scenes with new age music had relaxing effects.
However, it was hard to say whether the visual scene or the
auditory music had a greater effect on relaxation. Some studies
have found that auditory stimulations aroused emotions much
better than visual materials. Therefore, the impact of relaxation
VR scenes and relaxing background music must be explored.

Different data processing methods were used to analyze the
EEG datasets for R-state study in this study. The length of chosen
EEG was 30 s including sections during watching VR scenes
and during the 2-min relaxing period. In the previous study,
60 s of EEG data of one section before and after watching the
VR scenes were used (Zhu et al., 2019). However, since the
participant’s emotion was easily influenced by other psychological
activities during 2 min of relaxation before and after watching
the VR scene, the 60 s of EEG data was relatively long. While
training the R-state model, using 30 s of EEG data also showed
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FIGURE 10 | Summary of changes in electroencephalogram (EEG) characteristics of patients with depression after the relaxation scenes.

higher accuracy and lower MAE than that at 60 s, consistent with
Kumar’s research (Nitin et al., 2016).

From the EEG feature analysis results, it could be
found that most of the distinctive features were theta,
alpha, beta, and gamma waves, which were consistent
with Cahn’s research (Baruch et al., 2016). The appearance
of the beta wave was associated with mental tension
and emotional excitement. When people felt relaxed, the
energy and entropy of the beta wave should go down.
As a result, the feature values of EE-beta_h and EE-
beta_l went down. Moreover, since many studies have
found that meditation and relaxation could increase
gamma wave, the value of E-alpha_l/gamma and
E-alpha_h/gamma increased after watching relaxation
scenes. The significant variance in gamma-related features
also indicated that the relaxation effects of the sightseeing
scenes used in the experiment might be similar to
those of meditation.

Moreover, it could be easily detected from Figure 10
that all the features with significant differences among the
group of patients with depression were energy ratios, most
of which were beta- and gamma-related features. It was
probably because depression varied widely among individuals,
and the ratio-related features could neutralize some of the
individual differences (Kan and Lee, 2015). Moreover, since
patients with depression felt stressed more easily, beta wave,
which was associated more with anxiety, would more likely
to be affected by relaxation scenes. As per Smith’s theory,
reducing stress enhanced relaxation (Smith, 1988). Many
studies have proved that patients with depression had increased
alpha (Hosseinifard et al., 2013) and beta power (Clark
et al., 2016). The decreased features of E-alpha_l/gamma,
E-alpha_h/gamma, and E-beta_l/gamma might also have
confirmed the effectiveness of VR-relaxation therapy in treating
depression. When comparing the changes of EEG features
between normal people and patients with depression, it could
be found that there existed one feature, E-alpha_h/gamma,
having the same trend as that of normal participants. Related
studies have found that the gamma wave and alpha wave of

normal people and patients with depression are relatively
sensitive (Grey et al., 2010), which might cause the same
significant changes. Although the findings have not been
medically proven yet, these results have provided a reference
for future studies.

It could be found from Table 9 that all the EEG data
of depression patients predicted a level of R-state greater
than 5, which meant that the emotions of all the patients
were predicted to be relaxed. However, two patients were
not relaxed in their subjective assessment. This difference
might be due to the fact that the relaxation model was
based on EEG data from normal people. Since the R-state
model was built by datasets of normal people, and there
existed some differences between the EEG of normal individuals
and patients with depression (Davidson et al., 2002; Acharya
et al., 2015), using the R-state model to predict people with
depression might not be particularly accurate. However, one
feature with the same trend when watching the relaxation
scenes in these two groups was found, and the predicted
results of the R-state still have reference value. Therefore, it
is necessary to train the relaxation model using the EEG data
and relaxation label of patients with depression. In further
research, more experiments would be conducted covering
college students, patients with depression, and some other
groups of people, to verify the application scopes of the
relaxation model.

CONCLUSION

In this study, VR relaxation scenes were used to promote
the R-state for college students. Some EEG features were
found to have a consistent significant trend of variance among
different participants while watching the relaxation scenes,
including EE-gamma, E-alpha_h/gamma, and DASM. These
significantly changed features provide a reference for optimizing
the relaxation prediction model and relaxation interaction system
research based on EEG in the future. Eight machine learning
models including LR, SVM, and LGBM were conducted to train
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the R-state regression model, and the LOSO method for cross-
validation was used to evaluate the results. The mean accuracy
reached approximately 80.42% using the LGBM model. Model
stacking methods were then applied to optimize the model.
The mean accuracy of the framework achieved approximately
81.46%, which increased by approximately 1%. The VR relaxation
scenes were then used to help with the treatment of patients
with depression, which have received good results. This work
provides an objective index reference for the evaluation and
treatment of depression using VR relaxation scenes and also
explores the feasibility of VR relaxation scenes in the adjuvant
treatment of depression.
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Objective: We sought to effectively alleviate the emotion of individuals with anxiety

and depression, and explore the effects of aerobic exercise on their emotion

regulation. Functional near-infrared spectroscopy (fNIRS) brain imaging technology is

used to monitor and evaluate the process of aerobic exercise and imagination that

regulates emotion.

Approach: Thirty participants were scored by the state-trait anxiety inventory (STAI)

and profile of mood states (POMS), and fNIRS images were collected before, after, and

during aerobic exercise and motor imagery. Then, the oxygenated hemoglobin (HbO),

deoxygenated hemoglobin (HbR), and total hemoglobin (HbT) concentrations and their

average value were calculated, and the ratio of HbO concentration in the left and right

frontal lobes was determined. Spearman’s correlation coefficient was used to calculate

the correlation between variations in the average scores of the two scales and in blood

oxygen concentrations.

Results: In comparison with motor imagery, STAI, and POMS scores decreased after

20min of aerobic exercise. The prefrontal cortex had asymmetry and laterality (with the

left side being dominant in emotion regulation). The increase in hemoglobin concentration

recorded by fNIRS was negatively correlated with STAI and POMS scores. Aerobic

exercise has a good effect on emotion regulation.

Significance: The study showed that portable fNIRS could be effectively used for

monitoring and evaluating emotion regulation by aerobic exercise. This study is expected

to provide ideas for constructing fNIRS-based online real-time monitoring and evaluation

of emotion regulation by aerobic exercise.

Keywords: functional near-infrared spectroscopy, aerobic exercise, emotion regulation, motor imagery, state-trait

anxiety inventory, profile of mood states
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INTRODUCTION

The rapid development of society has placed a certain amount
of pressure on individuals or groups, which can trigger different
degrees of anxiety or depression. If individuals do not pay
attention to emotion regulation, physical, and mental illnesses
may occur, with severe ones capable of leading to mental
dysfunction or adverse social events (Veerapa et al., 2020).
Aerobic exercise is one option to improve the mood and promote
the generation of positive emotions (Brush et al., 2020) that can
be used by people with severe anxiety for emotion regulation
(Tempest and Parfitt, 2013). However, there is currently a lack
of monitoring and evaluation of aerobic exercise in mood
regulation. Meanwhile, the pleasant, comfortable, or energetic
experience of motor imagery may also further promote the
regulation of emotion (Tempest and Parfitt, 2013), but its
regulatory effect on motion is still unclear. Therefore, in
the study, functional near-infrared spectroscopy (fNIRS) brain
imaging was used to monitor and evaluate the effect of aerobic
exercise and motor imagery on emotion regulation (Jiang et al.,
2017; Veerapa et al., 2020).

Improving the emotional health of people with anxiety is very
important. We hypothesize that corresponding aerobic exercise
imagination may also help to improve the mood of individuals
with anxiety, just as the memory of a good experience can
enhance their mood. Motor imagery based on aerobic exercise
was designed to verify our hypothesis. In general, aerobic exercise
of an individual is familiar, easy, and can be carried out naturally,
habitually, and automatically. In this context, the brain does not
need to recruit too many nervous system resources. Therefore,
individuals can allocate certain psychological resources to carry
out aerobic exercise imagination when they perform aerobic
exercise automatically (Tempest and Parfitt, 2013). The present
study used fNIRS to monitor and evaluate emotion regulation by
aerobic exercise and motor imagery.

Sports medicine shows that aerobic exercise is a type of
physical exercise that can involve the full exchange of oxygen to
achieve physiological balance. At the same time, the heart rate
needs to reach 150 bpm before aerobic exercise; therefore, aerobic
exercise generally includes moderate- or high-intensity activities
(60–80% of the maximum heart rate), such as jogging, walking,
fast running, cycling, swimming, or rope skipping. These
exercises are considered aerobic exercise, which is conducive
to the health of the body (Cheng, 2007). Practice and sports
medicine studies also have suggested that aerobic exercise
can regulate emotion, alter mood, improve negative emotions,
and promote the production of positive emotions (Ekkekakis
et al., 2013; Tempest et al., 2014; Bernstein and McNally, 2015;
Bernstein and Mcnally, 2017; Edwards et al., 2017, 2018; Brush
et al., 2020). However, the changes of blood oxygenmetabolism in
brain tissue under aerobic exercise and the relationship between
these changes and emotional state need to be further discussed.

In comparison with electroencephalography (EEG), fNIRS
is less sensitive to motion artifacts, has a good ecological
effect, and can tolerate a certain degree of exercise interference
(Sitaram et al., 2007; Cui et al., 2011; Naseer and Hong, 2013).
Moreover, fNIRS can measure the blood oxygen metabolism

(HbO and HbR) of brain tissue during aerobic exercise, while
EEG measures the discharge activities of central neurons. The
spatial resolution and spatial positioning accuracy of fNIRS
are better than those of EEG. fNIRS is also non-invasive and
portable. Thus, relative to EEG, fNIRS may be more suitable
for monitoring and evaluating the emotion-regulation effects of
aerobic exercise. In addition, as compared with fNIRS, functional
magnetic resonance imaging and magnetoencephalography are
bulky, not portable, and expensive, and are not suitable for
monitoring and evaluating brain activity during aerobic exercise
emotion regulation (Weiskopf et al., 2004; Goldin et al., 2013).

Some research has examined the influence of aerobic exercise
on changes in the HbO concentration as measured by fNIRS
(Chen et al., 2017), but few investigators have evaluated its
impact on changes in HbR and HbT, as measured by fNIRS.
In the present study, three characteristics of fNIRS (HbO, HbR,
and HbT) were extracted to evaluate the concentration changes
that occurred between before and after exercise and the ratio of
HbO concentration changes between the left and right prefrontal
lobes before and after aerobic exercise, and motor imagery was
calculated to investigate the lateralization of the activation of
brain regions. Blackhart et al. used a questionnaire for pre- and
post-test assessments to verify that the degree of left frontal EEG
can predict the symptoms of anxiety and depression (Blackhart
et al., 2006), while Smith et al. used a model to calculate the risk
of anxiety and depression and revealed the correlation between
the degree of left frontal EEG and said risk (Smit et al., 2007),
which also supported the conclusions of Blackhart et al. At the
same time, patients with anxiety and depression also exhibit
decreased left frontal lobe activity. Therefore, the degree of left
lateralization of frontal EEG can be used as an indicator of anxiety
and depression to a certain extent and to predict the development
of symptoms. However, fNIRS has not been used to observe
frontal lobe asymmetry nor has it been applied to detect the
effects of aerobic exercise on emotion regulation. Therefore, we
chose to use fNIRS to observe these two brain regions and analyze
the relationship between the changes in neural mechanisms
and emotion regulation in these two brain regions to confirm
the hypothesis of this experiment, which is as follows: fNIRS
can be used as a means of monitoring and evaluating emotion
regulation. We present a three-dimensional topographic map of
the dynamic changes in HbO concentration that occur during
aerobic exercise. In addition, previous studies have used either
the profile of mood states (POMS) (Chen et al., 2017) or the
state-trait anxiety inventory (STAI) (Chen et al., 2019; Clemente-
Suárez, 2020) for assessing the emotion regulation of individuals
with state-trait anxiety. To more comprehensively evaluate the
effects of emotion regulation by aerobic exercise, POMS and
STAI were used in this study, and an ANOVA was used to
analyze aerobic exercise and motor imagery, focusing on the
significance of changes in the two scores between before and after
aerobic exercise.

In addition to the above-mentioned assessment of emotion
regulation by aerobic exercise, few people have studied whether
motor imagery can regulate emotion, and especially few people
have monitored and evaluated it using fNIRS. Francesca et al.
showed that motor imagery can promote or inhibit related neural
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FIGURE 1 | Schematic diagram of the study process.

activities and then regulate individual anxiety (Fardo et al., 2015).
Shafir et al. also reported that individuals can regulate their own
emotions by imagining aerobic exercise or by means conducive
to regulating their anxiety (Tal, 2016). In addition, until now, few
people have explored the correlation between STAI and POMS
scores and the changes in HbO, HbR, and HbT concentrations
based on fNIRS. In this study, Spearman’s correlation coefficient
was used to analyze the correlation between STAI and POMS
scores and changes in the HbO, HbR, and HbT concentrations.
The emotion subscale has a certain participantivity in the
evaluation of emotional changes (Knapen et al., 2009; Szabo
et al., 2015; Subramaniapillai et al., 2016; Bernstein and Mcnally,
2018). In addition to using STAI and the POMS emotion subscale
to monitor and evaluate emotional changes, fNIRS technology
was introduced to monitor and evaluate changes in cerebral
blood oxygen metabolism before, during, and after aerobic
exercise, which is expected to improve the objectivity of emotion
monitoring and evaluation. The present study is expected
to provide ideas for developing fNIRS-based online real-time

monitoring and evaluation of emotion regulation by aerobic
exercise and motor imagery, which can be used to monitor and
evaluate individual state-trait anxiety and mood states.

MATERIALS AND METHODS

Research Scheme
Figure 1 shows a schematic diagram of the scheme of this
study, which will be described in detail henceforth. In this
study, eligible subjects were randomly divided into an aerobic
exercise group and exercise imagination group, and then STAI
and POMS were evaluated, and fNIRS was collected before and
after aerobic exercise and exercise imagination tasks. Perform
fNIRS acquisition during the mission.

Study Participants
A total of 30 participants (21 men, average age: 23 ± 2.0 years,
age range: 21–26 years; nine women, average age: 23± 2.0 years)
were asked to complete STAI and POMS to evaluate whether
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they met the inclusion criteria (STAI score of 40–59 points and
POMS score of 110–140 points). The selected participants were
divided into two groups (n= 15 each), an aerobic exercise group
(S1–S15) and a motor imagery group (S16–S30), according to
their height, body shape, sex, age, and other factors; there was
no significant difference in these factors between the two groups.
All of the participants were undergraduates or graduate students,
were right-handed, had no history of mental, neurological, or
musculoskeletal disease or drug abuse, had normal or corrected
vision, and had no color blindness. All of the participants signed
the experimental informed consent form, and this study was
approved by the medical ethics committee of the Kunming
University of Science and Technology School of Medicine.

Participant Training
The aerobic exercise group performed warm-up exercises for
5min, and then aerobic exercise (Perini et al., 2016) (refer
to section Experimental Equipment and Data Collection for
exercise requirements) using a horizontal magnetic bicycle (the
resistance was adjusted to four levels of medium resistance) for
1min to adapt to the machine, then rested for 3min (walking
and relaxing), after which point a computer voice prompted
emotion regulation by aerobic exercise. The experiment began
and the participants performed aerobic exercise for 20min until
the end of the voice prompt experiment. Participants in the

motor imagery group first performed the aerobic exercise with
the horizontal magnetic bicycle (resistance adjusted to four
levels of medium resistance) for 1min to experience the actual
aerobic exercise process and then were asked to rehearse or feel
the aerobic exercise process from the first-person perspective—
but no actual movement occurred (i.e., kinesthetic imagery)
(Proske and Gandevia, 2018). Specifically, they repeated the
actual moving process for 1min and, at the same time, used
motor imagery to evoke the pleasure or comfort brought by
the movement, then rested for 3min before the computer voice
prompted the motor imagery experiment to begin and the
participants performed the motor imagery experiment for a
continued 20min until the end of the voice prompt experiment.
Before and after the experiment, the participants were required
to fill in the STAI and POMS questionnaires.

Aerobic exercise involves moderate- or high-intensity
exercise, so recumbent cycling can be divided into eight levels of
intensity, with level 4 representing moderate-intensity exercise;
thus, it is necessary for this study to ensure that exercise was
performed above this level. During the experiment, the heart
rate and exercise time of the participants were recorded by the
recumbent cycle. To accurately grasp the HRmax of the study
participants, before the beginning of the experiment, they were
asked to exercise continuously for 5min, performing recumbent
cycling at level 8 to measure the HRmax (Wallert and Madison,

FIGURE 2 | Diagrams of experimental timing: (A) timing of aerobic exercise; (B) timing of motor imagery.
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2014). The participants understood the whole process of the
experiment and performed preexperiment training.

Experimental Design and Process
The diagram for experiment timing is shown in Figure 2.
Figure 2A is a time diagram of the experiment of aerobic exercise
regulating emotion. During the T1 period, participants filled out
the STAI and POMS questionnaires for 10min; then, a computer
voice prompted them to stay awake and relaxed for 3min, which
is the T2 period. At the end of this rest, the voice prompted
the emotion regulation by aerobic exercise test to begin and
the participant performed aerobic exercise on the horizontal
magnetic bicycle for a continued 20min, which is the T3 time
period. Finally, after the end of the aerobic exercise period, the
voice prompts the participant to rest for 3min, then complete the
STAI and POMS questionnaires again.

Figure 2B is the timing diagram of the motor imagery
experiment. The participants filled in the STAI and POMS
questionnaires during the T4 time period for 10min; then, a
computer voice prompted them to stay at rest for 3min, which
is the T5 time period, before beginning the baseline period, in
which they were asked to stay awake and relax for 1min, without
performing any mental tasks. At the end of the baseline state,
a voice and picture prompted the start of the motor imagery
experiment, which lasts for 2 s, before the participant imagines
doing aerobic exercise with a horizontal magnetic bicycle for 30 s.
During this period, the computer screen was blank. After the
imagery task is over, the participant was asked to rest for 10 s; this
constitutes the end of a trial. A total of 30 trials, 20min in length,
composed the T6 time period. Then a voice and picture prompted
the participant to rest, asking them to stay awake and relaxed for
3min, and then fill out the STAI and POMS questionnaires again.
The timing of the experiment was implemented by MATLAB
Psychtoolbox-3 (R2018a; MathWorks, Natick, MA, USA).

Experimental Equipment and Data
Collection
The fNIRS device used in this experiment was a portable Nir
Smart [two wavelengths: 760 and 850 nm, 16 channels (eight
light sources and eight detectors); Danyang Huichuang Medical
Equipment Co., Ltd., Danyang, China]. According to the 10–20
international standard lead system, the fNIRS helmet was placed
on the head of the participant such that the light poles covered
the left and right prefrontal areas of the brain, including eight
channels of each of the left and right prefrontal lobes (3 × 4
array of emitter and detection light poles). The left and right
areas were symmetrical and the left and right prefrontal medial
channels were located at Fp1 and Fp2, respectively. The emission
and detection light poles were arranged as shown in Figure 3A.

The fNIRS sampling rate was 20Hz, the single wavelength
power of the light source was >20 mW, the time resolution
was 100Hz, the dynamic range was >110 dB, and the digital-
to-analog conversion accuracy was 24-bit. Data collection
was completed according to the experimental timing and
requirements in Figure 2A.

The aerobic exercise equipment used in the experiment
was a horizontal magnetic bicycle, model JTH-735RS-1

(size: 120∗50∗122CM; two 6-KG two-way rotating flywheels,
resistance: magnetic control eight-speed resistance adjustment,
foot distance: 56–72CM, load-bearing: 120 kg; Guangzhou
Jintong Fitness Equipment Co., Ltd., Guangzhou, China). The
equipment had a digital dashboard, which can display parameters
such as exercise time, speed, mileage, heart rate, and calories
burned. The real experimental scene is shown in Figure 3B.
There were 16 channels in total, of which channels one to eight
were located in the right prefrontal cortex (PFC) and channels
nine to 16 were located in the left PFC.

Before aerobic exercise, the average heart rate of 15
participants in the aerobic exercise group was 75 bpm. Heart rate
is the most direct indicator of the effect and intensity of aerobic
exercise (the appropriate heart rate for aerobic exercise is 120–
135 bpm, as determined by sports medicine) (Ekkekakis et al.,
2013). The aerobic exercise in the study was set at a moderate
exercise intensity (60–80% of the maximum heart rate). During
aerobic exercise, the average heart rate was 128 bpm, the average
number of calories burned was 101 kcal, and the average exercise
mileage was 3.39 kilometers.

Data Processing
NIRS Data Preprocessing and Feature Extraction
The fNIRS signal collected in the experiment was the original
light-intensity signal, which needed to be converted using
the improved Lambert-Beer law to discern HbO and HbR
concentrations, which are denoted by the relative change values
of 1Oxy-Hb and 1Deoxy-Hb (Cui et al., 2010).

After the fNIRS data were Butterworth band-pass filtered and
corrected for baseline drift, the HbO, HbR, and HbT signals were
extracted, respectively, and the means of the three signals across
all participants and the average concentration changes before and
after aerobic exercise, and motor imagery were calculated.

The study also calculated the ratio of HbO concentration in
the left and right prefrontal lobes before and after aerobic exercise
and motor imagery.

Evaluation of STAI and POMS Scores
State–trait anxiety inventory was compiled by Charles
Spielberger in 1977 (X version) and revised in 1983 (Y
version) (Spielberger et al., 1970; Spielberger, 1983). This scale
is characterized by simplicity, high validity, and easy analysis.
It can intuitively reflect the participative feelings of anxious
individuals, especially the current S-AI with T-AI differentiation.
Each item of STAI has four (1–4) grades. The grading standards
of S-AI are as follows: 1 = not at all, 2 = some, 3 = moderate,
4 = very obvious, while the grading standard of T-AI are: 1 =

almost none, 2 = some, 3 = often, 4 = almost always. Positive
emotion items (1, 2, 5, 8, 10, 11, 15, 16, 19, 20, 21, 23, 24, 26, 27,
30, 33, 34, 36, and 39; items are scored with a single superscript
∗) are reverse scored—, that is, they are rated as four, three, two,
and one point(s) in the above order and negative emotions are
scored positively. The minimum score of the two scales is 20
points and the maximum is 80 points; the higher the score, the
higher the degree of anxiety. The degree of anxiety is divided
into four levels: no anxiety (≤ 20 points), mild anxiety (21–39),
moderate anxiety (40–59), and severe anxiety (60–80).
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FIGURE 3 | Experimental setup. (A) The arrangement of the light source and detector probe. S and D denote the light source probe and the detector probe,

respectively. The connecting line between the light source probe and the detector probe denotes the channel, and the number (1–16) denotes the channel identifier.

(B) Real experiment scene with horizontal magnetic bicycle and fNIRS collection system.
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TABLE 1 | Changes in STAI and POMS scores before and after aerobic exercise and motor imagery*.

Pre-AE Post-AE F p Pre-MI Post-MI F p

STAI (M ± SD) 43.27 ± 2.49 36 ± 1.90 75.47 p < 0.01 43.87 ± 5.67 42.87 ± 5.80 0.80 0.38

POMS (M ± SD) 123.67 ± 4.54 96.67 ± 3.52 309.48 p < 0.01 123.40 ± 4.63 121.73 ± 3.70 1.11 0.30

*Two-way ANOVA test showed significant results.

AE, aerobic exercise; M ± SD, mean ± standard deviation; MI, motor imagery; POMS, Profile of Mood States; STAI, State-Trait Anxiety Inventory.

Profile of mood states is a scale for the evaluation of positive
and negative emotion (Curran et al., 1995), which consists of 40
adjectives (corresponding to 40 items), and is rated from zero
(not at all) to four (very) points according to the feelings of the
participant (Grove and Prapavessis, 1992; Zhu, 1995). The 40
items of the scale correspond to the scores of seven subscales:
tension (n = 6 items), anger (n = 7 items), fatigue (n = 5 items),
depression (n = 6 items), energy (n = 6 items), panic (n = 5
items), and self-esteem (n= 5 items). The total mood disturbance
(TMD) score = (tension score + anger score + fatigue score +
depression score+ confusion score) – (energy score+ emotional
score related to self-esteem) + 100 (Andrykowski et al., 1990,
1993). Higher TMD scores indicate that the emotional state of
the participants is negative.

An STAI score of 40–59 points indicates that an individual
has moderate anxiety, while a POMS score of 110–140 points
indicates that an individual is in a negative mood. These
two scales were limited to these score intervals to screen the
participants who are in line with the experiment.

Calculation of Spearman’s Correlation Coefficient

Between Changes in the Average STAI and POMS

Scores Before and After Emotion Regulation and

Changes in Blood Oxygen Concentration
To gain a more accurate grasp of the emotion regulation of
the study participants before and after aerobic exercise and
motor imagination, the change of HbO signal was selected as the
judgment standard, and the three stages before, during, and after
aerobic exercise and motor imagination were selected to draw a
real-time dynamic diagram of HbO.

In this study, Spearman’s correlation coefficient (Fieller
and Pearson, 1961) was used to measure the dependence
of the two variables. The correlation coefficient was defined
as Pearson’s correlation coefficient. The correlation coefficient
is used to calculate the correlation between changes in
the average STAI and POMS scores and changes in the
HbO, HbR, and HbT concentrations before and after aerobic
exercise and motor imagery emotion regulation. In this study,
MATLAB_2018a (MathWorks) was used to calculate Spearman’s
correlation coefficient.

RESULTS

STAI and POMS Evaluation and fNIRS Data
Used Two-Way ANOVA Results
Statistics in Tables 1, 2 revealed that two-way ANOVA was used
to test the group factors (aerobic exercise group and motor
imagery group) and intervention factors (pretest and posttest) of
the participants, respectively. In the pretest and posttest factor

TABLE 2 | Mean and standard deviation values of HbO concentration changes in

the left and right prefrontal areas before and after aerobic exercise and motor

imagery*.

Pre (M ± SD) Post (M ± SD) Degrees of

freedom

F P

Aerobic

exercise group

Left prefrontal

cortex

−0.032 ± 0.308 0.100 ± 1.025 1.8 25.67 p < 0.01

Right prefrontal

cortex

−0.048 ± 0.373 −0.142 ± 1.089 5.16 0.04

HbO activation

concentration

ratio

1.404

Motor imagery

group

Left prefrontal

cortex

−0.039 ± 0.365 0.016 ± 0.391 1.8 4.5 0.06

Right prefrontal

cortex

−0.034 ± 0.379 −0.011 ± 0.405 3.7 0.07

HbO activation

concentration

ratio

2.391

*Two-way ANOVA test showed significant results.

M ± SD, mean ± standard deviation.

analysis (p < 0.01), posttest anxiety was significantly lower than
pretest anxiety. Among the groups (p < 0.01), the anxiety degree
of the aerobic group was significantly lower than that of the
motor imagery group. The laterality ratio was the left and right
PFC fNIRS concentration ratio, similar to the laterality score
gleaned when using EEG to assess PFC asymmetry (Palmiero and
Piccardi, 2017).

Table 3 presents the mean and standard deviation values
of the HbO, HbR, and HbT concentration changes in the
prefrontal area between before and after aerobic exercise and
motor imagery. The average changes in the concentrations of
HbO, HbR, and HbT in the prefrontal lobe area increased after
aerobic exercise; meanwhile, considering the prefrontal lobe area
after motor imagery, the average changes in HbO, HbR, and HbT
concentrations also increased to a certain extent, but the range
was small.

Results of Spearman’s Correlation
Coefficient Analysis
Table 4 presents the Spearman correlation coefficients calculated
using the average changes of the STAI and POMS scores between
before and after aerobic exercise and the changes in HbO, HbR,
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and HbT concentrations. The results showed that the average
STAI and POMS scores before and after aerobic exercise were
negatively correlated with the concentrations of HbO, HbR,
and HbT.

Change in HbO Concentration
For the convenience of discussion, the start time of aerobic
exercise was specified as t = 0min (t = −1 means 1min before
aerobic exercise, t = 10 means 10min after the start of aerobic
exercise, t = 20 means the end time of aerobic exercise, and t =
21 means 1min after the end of aerobic exercise). We selected
four time periods (−1 to 0min, 0–10min, 10–20min, and 20–
21min) and calculated and the HbO concentration change in the
corresponding period, as shown in Figures 4A–D.

A minute before the start of aerobic exercise, the change in
HbO concentration tends to be flat, without a prominent peak
signal, and the participant may still be in a state of depression
and anxiety. Ten minutes after the start of aerobic exercise, the
HbO concentration has a peak signal, with a largely positive
change, and the depression and anxiety mood of the patient may
transform into a positive mood. Twenty minutes after the start
of aerobic exercise, the positive change in HbO concentration
has increased compared relative to during the previous 10min,
and the depression and anxiety mood of the participant may
continue to transform into a positive mood. Finally, 1min after
the end of aerobic exercise, the HbO concentration evolves to its
peak, and the effect of aerobic exercise on improving negative
emotion continues.

TABLE 3 | The mean and standard deviation of HbO, HbR, and HbT

concentration changes in the prefrontal area before and after aerobic exercise and

motor imagery.

Aerobic exercise group Motor imagery group

HbO HbR HbT HbO HbR HbT

Before aerobic exercise −0.039 −0.03 −0.01 −0.036 −0.002 −0.013

or motor imagery,

M ± SD

± 1.141 ± 0.562 ± 1.643 ± 0.414 ± 0.134 ± 0.26

After aerobic exercise 0.121 0.047 0.168 0.013 0.002 −0.012

or

motor imagery, M ± SD

± 1.058 ± 0.514 ± 1.502 ± 0.398 ± 0.136 ± 0.266

M ± SD, mean ± standard deviation.

For the convenience of discussion, the start time of motion
imagery was specified as t = 0min (t = −1 means 1min before
motion imagery, t = 10 means 10min after the start of aerobic
exercise, t = 20 means the end time of aerobic exercise, and t =
21 means 1min after the end of aerobic exercise). We selected
four time periods (−1 to 0min, 0–10min, 10–20min, and 20–
21min) and calculated and the HbO concentration change in the
corresponding period, as shown in Figure 5.

A minute before the start of the motor imagery, the HbO
concentration change tends to be flat, without a prominent peak
signal, and the mood of the participant may still be in a state
of depression and anxiety. Ten minutes after the start of the
motor imagery, the HbO concentration changes little, yet the
overall trend is still flat, although depression and anxiety may
show a small conversion to positive emotion. Twenty minutes
after the start of motor imagery, the HbO concentration changes
little relative to in the first 10min and still tends to be flat. The
depression and anxiety of the participants may still experience a
small conversion to positive emotion. Finally, 1min after the end
of motor imagery, the HbO concentration changes with a small
peak, and the effect of motor imagery on improving negative
emotion continue, but the improvement may be small.

DISCUSSION

To further verify the above results, ANOVA was used to analyze
the changes in STAI and POMS scores before and after aerobic
exercise and motor imagery. The results showed that the scores
of the two scales changed significantly between before and after
emotion regulation by aerobic exercise, and depression and
anxiety emotions transformed into positive emotions. Before and
after motor imagery emotion regulation, the scores of the two
scales changed, but not significantly, and the transformation of
depression and anxiety into positive emotion was not significant.

To reveal the relationship between changes in the blood
oxygen concentration (Hb) and changes in the STAI and POMS
scores, Spearman’s correlation coefficient analysis revealed that
the changes in the average STAI and POMS scores before and
after aerobic exercise and motor imagery emotion regulated
the changes in HbO, HbR, and HbT concentrations in a
negatively correlatedmanner, which indicates that the decrease in
average STAI and POMS scores before and after aerobic exercise
and motor imagery emotion regulation decrease (due to the
conversion of negative emotion to positive emotion) corresponds
to an increase in HbO, HbR, and HbT concentrations.

TABLE 4 | Spearman correlation coefficients of changes in the average scores of STAI and POMS scales before and after aerobic exercise and changes in HbO, HbR,

and HbT concentrations.

STAI and POMS scores Aerobic exercise group

STAI POMS HbO HbR HbT

Before aerobic exercise 43.27 ± 2.49 123.67 ± 4.54 −0.039 ± 1.141 −0.03 ± 0.562 −0.01 ± 1.643

After aerobic exercise 36 ± 1.90 96.67 ± 3.52 0.121 ± 1.058 0.047 ± 0.514 0.168 ± 1.502

Spearman’s correlation coefficient calculation −1 −1 −1
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FIGURE 4 | HbO concentration changes before, during, and after aerobic exercise. (A) HbO concentration change during −1 to 0min, (B) HbO concentration change

during 0–10min, (C) HbO concentration change during 10–20min, and (D) HbO concentration change during 20–21min. T = 0 corresponds to the start time of

aerobic exercise.

Table 5 shows the comparison between this study and
other related research. Bernstein et al. (Bernstein and Mcnally,
2018) concluded that, as compared with a stretching exercise
group, a bicycle exercise group attained a more significant
effect on emotion regulation. Meanwhile, Subramaniapillai et al.
(Subramaniapillai et al., 2016) reported that adolescents with
bipolar disorder would also feel the positive emotional benefits
brought about by exercise. Szabo et al. (2015) concluded that,
after aerobic exercise, positive emotions increased, and negative
emotions decreased. Knapen et al. (2009) showed that the state of
anxiety and negative emotions are not affected by aerobic exercise
type. When study participants chose their exercise intensity, they
influenced the happiness and fatigue changes brought about by
exercise in positive and negative ways. The results of Zhang
et al. (2018) showed that short-term aerobic exercise significantly
improved the executive function and emotional regulation ability
of female college students with anxiety, where the lower the

level of aerobic adaptability, the better the improvement effect of
short-term aerobic exercise on unconscious cognition.

Compared with the above-mentioned studies, the present
study uses relatively new fNIRS brain function imaging
technology to quantitatively monitor and evaluate changes in
brain tissue blood oxygen concentrations (HbO, HbR, and
HbT) during emotion regulation by aerobic exercise and
motor imagery. Here, participants’ emotions were regulated
by horizontal magnetic bicycle and motor imagination, and
STAI and POMS scores were used to evaluate the emotional
changes in participants before and after aerobic exercise and
motor imagery. The results showed that, during the period
of aerobic exercise emotion regulation, HbO can represent
the metabolic activity of oxyhemoglobin in brain tissue and
indirectly reflect the activity of the neuron group according to
the neurovascular coupling relationship. Previous studies have
found that when individuals evolve from negative emotion to
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FIGURE 5 | HbO concentration changes before, during, and after motor imagery. The top left is HbO concentration change during −1 to 0min. The top right is HbO

concentration change during 0–10min. The bottom left is HbO concentration change during 10–20min, and the bottom right is HbO concentration change during

20–21min. T = 0 corresponds to the start time of motor imagery.

positive emotion, the concentration of HbO in the left PFC
increases, while that in the right PFC decreases (Ochsner et al.,
2004; Kim and Hamann, 2007). Two-way ANOVA was used
to test the group factors (aerobic exercise group and motor
imagery group) and intervention factors (pretest and posttest)
of the participants, respectively. Considering the pretest and
posttest factors (p < 0.01), posttest anxiety was significantly
lower than pretest anxiety. Considering group factors (p < 0.01),
the anxiety degree of the aerobic group was significantly lower
than that of the motor imagery group. The increase in the
left PFC HbO concentration and functional activation and the
decrease in the right PFC HbO concentration and functional
deactivation may be related to the reduction in STAI and POMS
scores. Furthermore, Spearman’s correlation coefficient of the
STAI and POMS scores and HbO concentration were calculated,
and the result was −1, indicating that they were completely
negatively correlated.

The above results show that fNIRS can be effectively applied to
the monitoring and evaluation of emotion regulation by aerobic
exercise. In comparison with aerobic exercise, motor imagery has

no significant effect on state-trait anxiety and mood state, but it
may play an auxiliary role in regulating emotion.

The disadvantage of this study is that single-mode fNIRS
brain imaging technology records single brain activity, and
its spatial and temporal resolutions are limited. Emotion
regulation is a medium- and long-term change process, but this
study involved just 20min of aerobic exercise. Future research
should incorporate long-term tracking of aerobic exercise to
regulate emotion.

CONCLUSION

This study showed that the portable fNIRS could be effectively
used for monitoring and evaluating emotion regulation by
aerobic exercise on a horizontal magnetic bicycle. The effects
of aerobic exercise on emotion regulation were more significant
than those of motor imagery, and the effect of motor imagery
on emotion regulation was limited, although carrying out motor
imagery on the basis of aerobic exercise may be beneficial to
enhance the effect of emotion regulation. This study was expected
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TABLE 5 | Comparison of this and other related studies.

Study Exercise manner Scale Features extracted Analytical method(s)

Bernstein and Mcnally

(2018)

Bicycle exercise

Stretching exercises

SES

DAS

Heart rate

SES score

DAS score

Independent-samples

t-test, linear regression, maximum

likelihood estimation

Subramaniapillai et al.

(2016)

Bicycle

Dynamometer

EFI

RPE

EFI score

RPE score

Independent-samples

t-test

Szabo et al. (2015) Exercise bicycle PANAS Heart rate

PANAS mean and standard deviation

values

Wilcoxon signed-rank test

Knapen et al. (2009) Electronic brake

bicycle force gauge

STAI

SEES

Heart rate

STAI score

SEES score

SAS program, mixed repeated

measurement variance analysis

Zhang et al. (2018) International affective

picture system,

power bicycle

PANAS

SAS

PANAS score

SAS score

Independent-samples

t-test, repeated measures

ANOVA

This study Horizontal magnetic bicycle,

motor imagery

STAI

POMS

Heart rate

STAI score

POMS score

Before and after aerobic exercise and

motor imagery; HbO, HbR, and HbT

mean concentrations

ANOVA,

Spearman’s

correlation coefficient,

fNIRS analysis

to provide ideas for constructing fNIRS-based online real-time
monitoring and the evaluation of emotion regulation by aerobic
exercise and motor imagery, which could be used to monitor and
evaluate individual state–trait anxiety and mood states.
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APPENDIX

Changes of HBO concentration in each channel before and after aerobic exercise and motor imagery.

Channel number 1 2 3 4 5 6 7 8

Pre-AE 0.003 ± 0.39 −0.016 ± 0.25 −0.014 ± 0.34 −0.043 ± 0.32 −0.052 ± 0.32 −0.096 ± 0.45 −0.042 ± 0.34 −0.119 ± 0.50

Post–AE 0.067 ± 0.37 0.171 ± 0.33 0.129 ± 0.43 0.210 ± 0.41 0.337 ± 0.39 0.055 ± 0.32 0.115 ± 0.36 0.050 ± 0.42

Pre–MI −0.036 ± 0.32 −0.034 ± 0.36 −0.044 ± 0.33 −0.039 ± 0.35 −0.033 ± 0.39 −0.024 ± 0.35 −0.022 ± 0.38 −0.040 ± 0.41

Post-MI 0.018 ± 0.29 0.005 ± 0.19 −0.007 ± 0.28 0.017 ± 0.31 0.013 ± 0.35 0.046 ± 0.27 −0.004 ± 0.24 −0.003 ± 0.21

Channel number 9 10 11 12 13 14 15 16

Pre–AE −0.031 ± 0.42 −0.087 ± 0.28 −0.062 ± 0.32 −0.023 ± 0.37 −0.058 ± 0.28 −0.023 ± 0.23 0.007 ± 0.31 0.025 ± 0.17

Post–AE 0.156 ± 0.45 0.127 ± 0.38 0.324 ± 0.33 0.071 ± 0.51 0.171 ± 0.43 0.021 ± 0.33 0.182 ± 0.35 0.210 ± 0.31

Pre–MI −0.035 ± 0.42 −0.008 ± 0.33 −0.039 ± 0.36 −0.063 ± 0.32 −0.027 ± 0.36 −0.036 ± 0.32 −0.066 ± 0.35 −0.036 ± 0.43

Post-MI 0.010 ± 0.36 −0.012 ± 0.34 0.020 ± 0.28 0.040 ± 0.23 −0.005 ± 0.37 0.011 ± 0.32 0.051 ± 0.29 0.013 ± 0.22
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Anxiety disorder is a mental illness that involves extreme fear or worry, which can alter
the balance of chemicals in the brain. This change and evaluation of anxiety state
are accompanied by a comprehensive treatment procedure. It is well-known that the
treatment of anxiety is chiefly based on psychotherapy and drug therapy, and there
is no objective standard evaluation. In this paper, the proposed method focuses on
examining neural changes to explore the effect of mindfulness regulation in accordance
with neurofeedback in patients with anxiety. We designed a closed neurofeedback
experiment that includes three stages to adjust the psychological state of the subjects.
A total of 34 subjects, 17 with anxiety disorder and 17 healthy, participated in this
experiment. Through the three stages of the experiment, electroencephalography (EEG)
resting state signal and mindfulness-based EEG signal were recorded. Power spectral
density was selected as the evaluation index through the regulation of neurofeedback
mindfulness, and repeated analysis of variance (ANOVA) method was used for statistical
analysis. The findings of this study reveal that the proposed method has a positive effect
on both types of subjects. After mindfulness adjustment, the power map exhibited an
upward trend. The increase in the average power of gamma wave indicates the relief
of anxiety. The enhancement of the wave power represents an improvement in the
subjects’ mindfulness ability. At the same time, the results of ANOVA showed that
P < 0.05, i.e., the difference was significant. From the aspect of neurophysiological
signals, we objectively evaluated the ability of our experiment to relieve anxiety. The
neurofeedback mindfulness regulation can effect on the brain activity pattern of anxiety
disorder patients.

Keywords: neurofeedback, anxiety disorder, EEG signal, anxiety assessment, efficacy evaluation

INTRODUCTION

Anxiety is an emotional response to a potential future threat or danger that, depending on intensity
and duration, can cause symptoms of negative emotional, physical, behavioral, and cognitive
components. While “normal” anxiety is adaptive to make the body alert and prepare it for potential
threats, it is considered pathological when it becomes maladaptive, permanent, and out of control.
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Furthermore, it is associated with serious social and
occupational harm, other comorbidities, and an increased
risk of suicide (Nepon et al., 2010). The classification of
anxiety disorders has a long history (Crocq, 2015). According
to the International Statistical Classification of Diseases and
Related Health Problems (ICD-10), anxiety disorders are
classified into generalized anxiety disorder, phobias, social
anxiety disorder, post-traumatic stress disorder (PTSD),
panic disorder with/without agoraphobia, and obsessive–
compulsive disorder (OCD) (Kogan et al., 2016; Reed et al.,
2019). Vulnerability to the development of anxiety disorders
(Otowa et al., 2016; Gottschalk and Domschke, 2018) usually
begins in childhood or adolescence (Kalin, 2017) and becomes
a chronic condition that persists into adulthood (Bandelow
and Michaelis, 2015; Craske et al., 2017). In the western
world, the lifetime prevalence of these diseases in the general
population is about 20–30%, making it the most common
neuropsychiatric disorder, with women more susceptible
than men (Revicki et al., 2012; Remes et al., 2016; GBD 2017
DALYs and Hale Collaborators, 2018). In summary, anxiety
disorders impose a staggering burden on public health and
global economy, highlighting the dire need to develop a more
comprehensive understanding of the underlying mechanisms
(Mokdad et al., 2018).

Current treatment options are mainly on psychotherapy and
medication, which has proven effective in anxiety disorders
(Carpenter et al., 2018). Psychological therapy is time-consuming
and requires extensive training of therapists. Non-compliance,
non-response, or incomplete response, and relapse are still
major issues in patients receiving treatment (Taylor et al.,
2012; Roy-Byrne, 2015). Currently available drug treatments
for anxiety include selective serotonin reuptake inhibitors
and serotonin and norepinephrine reuptake inhibitors, and
benzodiazepines are most suitable for short-term and adjuvant
antianxiety therapy. Traditional Chinese medicine injections
and oral contraceptives are effective, but tolerance-related
problems restrict their usage. It is encouraging that new
mechanical compounds targeting glutamate, neuropeptides, and
the endocannabinoid system are also being developed; however,
there is insufficient information regarding the role of the
glutamate system in the pathogenesis and persistence of anxiety
disorders (Bandelow et al., 2016), and cannabis itself increases
the risk of anxiety attacks (Grunberg et al., 2015; Mammen
et al., 2018). In addition to the compounds covered in the
current review, other potentially promising areas for future
research include components of the neurotrophic signaling,
renin–angiotensin, acetylcholine, and even the opioid system
(Morrison and Ressler, 2014). In conclusion, there is still
an urgent need to develop novel methods to treat anxiety
disorders and related diseases (Griebel and Holmes, 2013). In a
recent review, Markiewcz (2017) showed that neurofeedback is
effective in many psychiatric disorders that affect psychological
variables such as stress and anxiety. To avoid the side effects
of drugs, from the perspective of anxiety-reducing technology
(Pintado and Llamazares, 2014), neurofeedback therapy is a
promising new method with stable and lasting therapeutic effects
no side effects.

A number of studies in the extant literature have affirmed
that in the treatment of anxiety disorders, neurofeedback focuses
on the central nervous system and the brain (Fovet et al.,
2015) to improve neuroregulation and stability. Among them,
the regulation of brain activity can affect behavioral changes
(Marzbani et al., 2016; Van der Kolk et al., 2016). Neurofeedback
uses computer technology to train patients to improve poorly
regulated brain wave patterns (Micoulaud-Franchi et al., 2015).
Current imaging modes of neurofeedback include real-time
magnetic resonance imaging (RT-MRI), functional near-infrared
spectroscopy (fNIRS), and electroencephalography (EEG). For
example, Lori-Ann et al. (2013) explored frontal lobe asymmetry
using fNIRS. To assess the prefrontal asymmetry of female college
students with the highest and lowest percentile scores in the
high and low anxiety groups on social challenge tasks in vivo,
the results showed that the high anxiety group exhibited a non-
significant trend toward greater right frontal activity than the
low anxiety group but only to assess the prefrontal cortex. For
example, Morgenroth et al. (2020) assigned 32 participants with
high trait anxiety to either an experimental group to undergo
RT-MRI or a control group to receive a false feedback. The
results showed that RT-fMRI neurofeedback training led to a
reduction in anxiety levels and the feasibility of altering activation
in the wider network. However, there was no group difference in
Stroop’s task performance. In studies such as Sachs et al. (2004)
using quantitative EEG to compare participants with a healthy
control group in a state of rest and alertness (the participants
would sound an alarm if drowsiness occurred), Sachs and his
colleagues observed population differences in beta frequencies in
the frontal lobe and right central region. Although no statistical
analysis of hemispheric data was performed, the beta acceleration
appeared to be predominantly in the right hemisphere. Subjects
with high or low trait anxiety used alpha feedback to increase and
decrease their EEG alpha activity. Changes in alpha were strongly
associated with changes in anxiety but only in subjects with a
high level of anxiety (for whom anxiety decreased linearly with an
increase in alpha and increased linearly with an increase in alpha
inhibition). These results suggest that long-term alpha feedback
training (at least 5 h) may be helpful in anxiety management.

This study is based on an evaluation of the efficacy of an
anxious state classification described in Chao et al. (2021), where
in EEG signals were used to study neural changes, and the
results showed that the support vector machine classifier was
able to classify and recognize two psychological states (anxiety
and no anxiety) using power spectral density as a model.
In this paper, we design a neurofeedback system based on
the alpha band oscillation (frequency power) of EEG signals.
Subjects with anxiety disorders and healthy subjects were
recruited to participate in the experiment where EEG signals
were recorded and analyzed. The findings revealed that the
activity of alpha, theta, and gamma waves of anxious subjects
increased significantly. After the adjustment of mindfulness,
the observation power graph showed an increasing trend. At
the same time, the analysis of variance (ANOVA) showed that
P < 0.05, i.e., the difference was significant, and the anxiety
symptoms of the subjects could be relieved from the perspective
of neurophysiology.
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MATERIALS AND METHODS

Subjects
In this study, a total of 34 subjects, 17 with anxiety disorder
(37 ± 7.61 years old) and 17 healthy (24.41 ± 1.49 years old)
participated in this experiment. All the subjects had normal
hearing and never received mindfulness recording therapy or
training. These anxiety disorders were judged by professional
psychiatrists from Beijing Anding Hospital affiliated with
Capital Medical University. All procedures performed in studies
involving human participants were in accordance with the ethical
standards of ethics committee of Beijing Anding Hospital, Capital
Medical University (ZYLX201607). Healthy subjects are graduate
students. Prior to the experiment, the subjects were instructed to
read and sign the informed consent form and detailed personal
information. The subjects were classified as healthy or anxious.
The anxiety targets were pure anxiety patients. All the subjects
participated in this experiment in a psychiatric hospital with
consent. The selection criteria were decided by professional
psychiatrists to appraise the subjects’ eligibility to participate in
this experiment.

Experiment Paradigm and Data
Recording
The subjects were asked to sit in a chair facing the desktop
computer. As shown in Figure 1, the example includes three
stages. In the first stage, the subjects were asked to remain
emotionally stable for 5 min. The mindfulness recording was
played in the second stage; the subjects followed the mindfulness
(Schwartz et al., 2003; Sever et al., 2003) recording and gave
an 8 min voice prompt to adjust their mental state. Finally, the
subjects continued to return to a static state for 5 min. In this
experiment, all subjects were required to keep their eyes open. In
three small experimental phases, they needed to complete a self-
assessment of anxiety. Each subject was required to fill in a visual
analog scale comprising a scale axes marked with numbers 0–10.
The number from 0 to 4 are defined as non-anxious, from 5 to 7
as moderate anxiety, and 8 to 10 as severe anxiety.

During the experiment, a 32-channel EEG signal was recorded
from the subjects’ scalp (Brain Products, Germany). According to
the International 10–20 system, the EEG signals were recorded
through 19 electrodes, namely Fp1, Fp2, F7, F3, F4, F8, T7,
C3, C4, T8, P7, P3, Pz, P4, P8, O1, O2, Fz, and Cz as
shown in Figure 2. The electrode Cz were chosen as reference
electrodes. During data recording, the impedance of each
electrode was kept below 5 K�. The EEG data were collected at a
sampling rate of 500 Hz.

Throughout this experiment, the alpha band power of the
electrodes in the left and right frontal lobes (Harmon-Jones and
Allen, 1997) was calculated in real time and displayed as feedback
to establish a neurofeedback system. The energy of the signal is
shown as red and green bars to depict the energy asymmetry
in the frontal lobe. The red and green bar graphs represent the
energy values of the alpha wave on the left and right sides of
the frontal lobe, respectively. Subjects can see the changes in the
visual bar and try to adjust their mental state during mindfulness

training. As shown in Figure 3, prior to the mindfulness training,
the left and right strengths are different, while subsequent to the
training, the strength difference of some subjects decreased.

Electroencephalography Data
Processing
Because there are many noise artifacts in EEG signals, such as
electrocardiogram (ECG), electromyography (EMG), and power
frequency interference, it is necessary to preprocess the original
EEG signal to obtain a relatively pure brain signal. In this study,
independent component analysis (Arnaud, 2004) was used to
eliminate eye movement artifacts. Our preprocessed EEG data
took 4 s as the step size, calculated the power spectral density
(Ahani et al., 2014; Cai et al., 2018), and obtained the alpha,
theta, and gamma wave power values. A total of 4 min of data
were calculated. Periodogram method is a method to estimate
the power spectral density directly by Fourier transform of the
sampled data X(n) of the signal. It is assumed that the finite length
random signal sequence is x(n). Its Fourier transform and power
spectral density have the following relationship:

S̃x
(
f
)
=

1
N

∣∣x (
f
)∣∣2 (1)

where N is the length of the random signal sequence x(n). At
discrete frequency points f = k1f. There are:

S̃x
(
k
)
=

1
N

∣∣X (
k
)∣∣2
=

1
N
|FFT [x (n)]|2 k = 0, 1 · · · , N − 1

(2)
where, FFT [x (n)] is Fast Fourier Transform of the sequence
x(n). Because the period of FFT [x (n)] is N, the power spectrum
estimation obtained took N as the period.

Finally, the average power of each electrode was calculated.
For statistical analysis, 16 electrodes were selected to be divided
into the following 10 brain regions: right occiput (O2), left
occiput (O1), right parietal (P8, P4), left parietal (P7, P3), right
central (C4), left center (C3), right frontal lobe (F8, F4, and Fp2),
left frontal lobe (F7, F3, and Fp1), right temporal lobe (T8), and
left temporal lobe (T7). Under each zone, the power values of the
constituent electrodes are averaged, and the process is repeated
for the alpha, theta, and gamma frequency bands.

EXPERIMENTAL RESULTS

To verify the impact of mindfulness adjustment on the
EEG signals of the subjects, we conducted ANOVA using
Statistical Package for the Social Sciences (SPSS) software
(Wang et al., 2015). ANOVA (Harne and Hiwale, 2018)
included the influence of mindfulness adjustment on frequency
bands and the influence of different frequency bands in
different brain regions. In neurofeedback, the changes in
alpha, theta, and gamma waves are usually used as evaluation
indicators, and corresponding improvement and treatment are
executed by strengthening these waves. These are rhythmic
waveforms produced by the brain during some activities. The
characteristics of alpha wave are: it is easy to observe when
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FIGURE 1 | Experimental paradigm of the proposed affective brain–computer interface.
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FIGURE 2 | Electroencephalography electrode placement based on the international 10–20 system. Scalp potential and reference point distribution of left and right
frontal lobes.

people are in a relaxed, calm but awake state; Theta wave
is characterized by its low frequency when people are sleepy;
Gamma wave is characterized by: when the brain is engaged
in a cognitive task, it connects neurons that have not been
connected before to create a new working loop – popular
understanding is that when creative thinking, creativity, and
ideas suddenly appear at this time, gamma waves can be
observed. Furthermore, related research shows that the main
EEG indicators that are sensitive to mindfulness are alpha, theta,
and gamma waves. Combining with previous research, the EEG
indicators we chose while performing ANOVA were alpha, theta,
and gamma waves.

First, we analyzed the change characteristics of the average
power values of the alpha, theta, and gamma waves in the three
stages of the experiment for anxious subjects and healthy subjects.
It can be seen from Figures 4–6 that anxious subjects exhibited a
characteristic that the power of alpha, theta, and gamma waves
was generally very low prior to mindfulness adjustment, and the
power gradually increased with this adjustment. This trend of

change is consistent on each electrode, and the magnitude of
the change is obvious. Mindfulness adjustment activates higher
alpha, theta, and gamma waves. For healthy subjects, although
the alpha wave also changed during the three stages of the
experiment, this change is not evident in Figure 7, and not all
electrodes show the same changes as the anxious subjects. For P8
and O2, the electrode changes can be seen as flat. Figures 8, 9 also
show similar features to Figure 7.

Through the comparison between Figures 4–9, we can also
see that the power value of the alpha wave of each lead of
anxious subjects is lower than the power value of the alpha wave
of healthy subjects. For theta and gamma waves, an analogous
pattern was observed.

To assess the connection between the mindfulness regulation
hemisphere, region, and condition, the wave bands were
divided into hemispheres (left and right), regions (frontal,
central, parietal, occipital, and temporal lobe), and condition
(before and after mindfulness adjustment) as factors for three-
way repeated ANOVA.
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FIGURE 3 | Subject neurofeedback presentation using energy change
diagram of left and right frontal lobes.
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FIGURE 4 | The characteristics of alpha wave power changes in whole brain
regions of anxious subjects in the three experimental stages.

In Tables 1, 2, alpha, theta, and gamma waves were analyzed
under anxiety and health conditions experimental results. Under
the main effect, the number of treatment groups (k = 2), the
number of samples (n = 390), the degree of freedom between
groups was k − 1, and the degree of freedom within each group
was n − k. In Table 1, F(1,338) = 127.65, which means that the
degree of freedom of components is 1. The degree of freedom
within the group is 338, and P = 2.50× 10−25 0.05, which means
that the difference between groups is significant. In condition ×
region interaction effect, it is divided into regions (frontal lobe,
central lobe, parietal lobe, occipital lobe, and temporal lobe),
number of treatment groups (k = 5), number of samples (n = 390),
degree of freedom between groups is k − 1, degree of freedom
within group is n(k − 1), F(4,339) = 20.52 in Table 1, indicating
that the degree of freedom of component is 1, and degree of
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FIGURE 5 | The characteristics of theta wave power changes in whole brain
regions of healthy subjects in the three experimental stages.
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FIGURE 6 | The characteristics of alpha wave power changes in whole brain
regions of healthy subjects in the three experimental stages.
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FIGURE 7 | The characteristics of gamma wave power changes in whole
brain regions of anxious subjects in the three experimental stages.

freedom within group is 339. P = 4.55× 10− 15 0.05, indicating a
significant difference between groups. In condition×hemispheric
interaction effect, it is divided into hemispheres (left and right),
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FIGURE 8 | The characteristics of theta wave power changes in whole brain
regions of anxious subjects in the three experimental stages.
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FIGURE 9 | The characteristics of gamma wave power changes in whole
brain area of healthy subjects in the three experimental stages.

number of processing groups (k = 2), number of samples
(n = 390), degree of freedom between groups is k− 1, and degree
of freedom within group is n (k− 1). In Table 1, F(1,339) = 14.62,
indicating that the degree of freedom between groups is 1, and
the degree of freedom within group is 339. Similarly, P < 0.05,
i.e., the difference between groups was significant, which was
statistically significant.

The repeated ANOVA results in Tables 1, 2 indicated that
both healthy and anxious subjects have significant main effects
under the conditions of alpha, theta, and gamma zones. However,
this main effect is more prominent in the latter. We can thus
say that the analysis of our experimental results shows that
neurofeedback can alleviate the anxiety of the subjects, and the
alleviating effect on anxious subjects is evidently stronger than
that on healthy subjects.

The interaction effects (hemisphere × region × condition,
region × condition, and hemisphere × condition) are also
obvious for alpha, theta, and gamma bands, and this significant
effect is more intense in healthy subjects. To analyze the
interaction between hemispheres, regions, and conditions in
more detail, we performed a paired t-test on the alpha, theta, and
gamma power before and after each region condition.

We made a significant analysis of the changes in the average
power of alpha, theta, and gamma waves of EEG before and
after the mindfulness adjustment of anxious subjects and healthy
subjects in five brain regions. It can be seen from Tables 3–
8 that regardless of subject, the average power of alpha,
theta, and gamma waves in the five brain regions show very
significant changes before and after mindfulness. In addition, in
healthy subjects, there were observed higher significant changes
than anxious subjects. It can be concluded that mindfulness
adjustment made the brain’s electrical alpha, theta, and gamma
waves of different subjects become more active, and this change
was more significant among healthy subjects.

As shown in Figures 4–6 for anxious subjects, the average
power of the EEG biomarkers alpha, theta, and gamma
waves of the subjects before and after the neurofeedback
mindfulness adjustment increased significantly, indicating that
our experiment activated higher alpha, theta, and gamma
activities of the subjects, and this change is significant in each
brain area. Tables 1, 3–5 can illustrate this significance. Healthy
subjects did not manifest any tendency toward anxiety. They
appeared to be in control throughout the experiment. Figures 7–
9 depict that although healthy subjects were tested before and
after neurofeedback mindfulness adjustment, the changes in
average power of the EEG biomarkers alpha, theta, and gamma
waves are not as large as that of anxious subjects. However,
they also show a trend of power increase, indicating that our
experiment also provided a certain relief to healthy subjects’
mood, the role of auxiliary regulation. Tables 2, 6–8 show that
this subtle change is also significant.

DISCUSSION

In previous studies, the assessment of anxiety relief chiefly relied
on some anxiety scales (Zafeiri et al., 2019). Whether it is before
or after adjustment, anxiety is relieved and is too one-sided based
on the scores of a single scale. Subjects are often not aware of
their own situation. For some subjects, the anxiety scale is obscure
and difficult to understand, and they appear anxious or even
fidgeting during evaluation. It is unclear what such evaluation
results can indicate. Although the participant’s scale score can
explain the relief of anxiety symptoms, the subjectivity of the scale
evaluation is still too strong, and thus it needs to be evaluated
from an objective perspective to reflect the true state of the
participant, and the scale evaluation can be used as an auxiliary
evaluation means.

This study was aimed to assess the relieving effect of
neurofeedback mindfulness regulation on subjects’ anxiety,
and to objectively evaluate this relieving effect through
neurophysiological signals. The effect on anxiety relief was
judged by analyzing the change characteristics of the average
power of alpha, theta, and gamma waves of the brain’s electrical
signal 4 min before and after the subject’s neurofeedback
mindfulness adjustment.

The alpha, theta, and gamma band power were evaluated
before and after neurofeedback mindfulness regulation. For
anxiety disorder patients, the average alpha, theta, and gamma
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TABLE 1 | The average power variance analysis results of the two hemispheres, five regions, and two conditions in the alpha, theta, and gamma bands for anxious
subjects before and after the experiment.

Frequency band Condition main effect Condition × region
interaction effect

Condition × hemisphere
interaction effect

Condition × region ×

hemisphere interaction effect

Alpha F (1,338) = 127.65
P = 2.50 10− 25

F (4,339) = 20.52
P = 4.55 × 10− 15

F (1,339) = 14.62
P = 1.50 × 10− 4

F (4,339) = 18.42
P = 1.21 × 10− 13

Theta F (1,338) = 110.84
P = 1.31 × 10− 22

F (4,339) = 19.87
P = 1.26 × 10− 14

F (1,339) = 16.86
P = 5.10 × 10− 5

F (4,339) = 18.75
P = 7.20 × 10− 14

Gamma F (1,338) = 633.73
P = 1.66 × 10− 79

F (4,339) = 6.51
P = 4.70 × 10− 5

F (1,339) = 3.74
P = 0.0439

F (4,339) = 5.65
P = 2.08 × 10− 4

Significant (P < 0.0439).

TABLE 2 | The average power variance analysis results of the two hemispheres, five regions, and two conditions in the alpha, theta, and gamma bands for healthy
subjects before and after the experiment.

Frequency band Condition main effect Condition × region
interaction effect

Condition × hemisphere
interaction effect

Condition × region ×

hemisphere interaction effect

Alpha F (1,338) = 9.93
P = 0.0017

F (4,339) = 37.97
P = 5.33 × 10− 26

F (1,339) = 50.00
P = 9.69 × 10− 12

F (4,339) = 48.24
P = 9.89 × 10− 32

Theta F (1,338) = 9.78
P = 0.0019

F (4,339) = 43.24
P = 4.25 × 10− 29

F (1,339) = 56.34
P = 6.08 × 10− 13

F (4,339) = 18.42
P = 6.86 × 10− 25

Gamma F (1,338) = 77.13
P = 8.13 × 10− 17

F (4,339) = 41.26
P = 6.95 × 10− 28

F (1,339) = 113.49
P = 6.95 × 10− 23

F (4,339) = 36.62
P = 3.31 × 10− 25

Significant (P < 0.0017).

TABLE 3 | The results of paired t-test for average alpha power before and after each regional condition for anxious subjects.

Hemisphere Region Conditions Paired differences

Mean ± SD SE mean 95% confidence interval of the difference

Lower Upper P

Left Occipital Before–after −7.69 ± 3.09 0.75 −9.28 −6.10 1.94 × 10− 8

Parietal Before–after −7.57 ± 3.22 0.78 −9.22 −5.91 4.28 × 10− 8

Central Before–after −5.77 ± 4.05 0.98 −7.85 −3.69 2.30 × 10− 5

Frontal Before–after −6.40 ± 3.65 0.88 −8.28 −4.52 2.00 × 10− 6

Temporal Before–after −8.89 ± 2.90 0.70 −10.38 −7.39 9.83 × 10− 10

Right Occipital Before–after −26.51 ± 14.09 3.41 −33.75 −19.26 8.23 × 10− 7

Parietal Before–after −6.41 ± 1.65 0.40 −7.26 −5.56 2.91 × 10− 11

Central Before–after −5.93 ± 4.13 1.00 −8.10 −3.85 2.00 × 10− 5

Frontal Before–after −7.90 ± 3.25 0.78 −9.58 −6.23 2.64 × 10− 8

Temporal Before–after −6.83 ± 3.62 0.87 −8.69 −4.96 2.12 × 10− 7

power is generally very low before the regulation of mindfulness,
and gradually increases with the regulation of mindfulness. For
healthy subjects, it can be observed that the power of alpha,
theta, and gamma bands increased not obviously, compared
with anxiety disorder patients. Additionally, the power of
each band of patients was lower than healthy subjects. The
statics analysis showed the significant effect of brain activities
after neurofeedback.

In the past, neurofeedback has been used to regulate brain
activity and reduce alpha asymmetry to improve anxiety in
patients with depression and anxiety. However, different types
of intervention are required for different patients with different

duration of training, and the sample size is too small. The data
used in the evaluation process is relatively simple, and there
are incorrect experimental data, which will affect the results
of the experiment. For example, Dias divided 87 patients with
major depressive disorder and anxiety into alpha-asymmetry
neurofeedback (ALAY), high-beta down-training, or control
groups. Both neurofeedback groups received 10 sessions of
neurofeedback (Dias and van Deusen, 2011) and had reduced
symptoms of depression and anxiety. Compared with the other
groups, the BETA group was more effective at reducing the
high beta power in the parietal cortex, but it may take more
than 10 repetitions of training to reach the neurofeedback
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TABLE 4 | The results of paired t-test for average theta power before and after each regional condition for anxious subjects.

Hemisphere Region Conditions Paired differences

Mean ± SD SE mean 95% confidence interval of the difference

Lower Upper P

Left Occipital Before–after −7.15 ± 3.32 0.80 −8.86 −5.45 1.37 × 10− 7

Parietal Before–after −7.38 ± 3.37 0.81 −9.12 −5.65 1.11 × 10− 7

Central Before–after −5.75 ± 4.08 0.99 −7.85 −3.65 2.70 × 10−5

Frontal Before–after −6.24 ± 3.79 0.92 −8.19 −4.29 4.00 × 10− 6

Temporal Before–after −8.03 ± 2.94 0.71 −9.54 −6.52 5.11 × 10− 9

Right Occipital Before–after −27.09 ± 14.45 3.50 −34.53 −19.66 8.64 × 10− 7

Parietal Before–after −6.19 ± 1.75 0.42 −7.09 −5.28 1.20 × 10− 10

Central Before–after −5.97 ± 4.21 1.02 −8.14 −3.81 2.40 × 10− 5

Frontal Before–after −7.78 ± 3.47 0.84 −9.57 −6.00 8.15 × 10− 8

Temporal Before–after −6.75 ± 3.74 0.90 −8.67 −4.82 1.00 × 10− 6

TABLE 5 | The results of paired t-test for average gamma power before and after each regional condition for anxious subjects.

Hemisphere Region Condition Paired differences

Mean ± SD SE mean 95% confidence interval of the difference

Lower Upper P

Left Occipital Before–after −8.56 ± 2.16 0.52 −9.68 −7.45 2.11 × 10− 11

Parietal Before–after −8.46 ± 3.13 0.76 −10.07 −6.85 6.05 × 10− 9

Central Before–after −7.19 ± 2.55 0.62 −8.50 −5.87 3.39 × 10− 9

Frontal Before–after −7.86 ± 2.42 0.58 −9.10 −6.61 4.21 × 10− 10

Temporal Before–after −9.41 ± 2.34 0.56 −10.62 −8.20 1.77 × 10− 11

Right Occipital Before–after −14.80 ± 7.35 1.78 −18.58 −11.02 3.41 × 10− 7

Parietal Before–after −7.89 ± 1.48 0.36 −8.66 −7.13 2.39 × 10− 13

Central Before–after −8.01 ± 2.68 0.65 −9.39 −6.63 1.40 × 10− 9

Frontal Before–after −8.46 ± 2.25 0.54 −9.62 −7.30 4.69 × 10− 11

Temporal Before–after −7.82 ± 2.84 0.68 −9.28 −6.36 4.52 × 10− 9

TABLE 6 | The results of paired t-test for average alpha power before and after each regional condition for healthy subjects.

Hemisphere Region Conditions Paired differences

Mean ± SD SE mean 95% confidence interval of the difference

Lower Upper P

Left Occipital Before–after −2.54 ± 0.33 0.08 −2.71 −2.36 1.08 × 10− 15

Parietal Before–after −2.35 ± 0.27 0.06 −2.49 −2.21 1.25 × 10− 16

Central Before–after −2.06 ± 0.28 0.06 −2.21 −1.92 1.51 × 10− 15

Frontal Before–after −2.29 ± 0.26 0.06 −2.43 −2.15 1.36 × 10− 16

Temporal Before–after −2.48 ± 0.35 0.08 −2.66 −2.29 3.53 × 10− 15

Right Occipital Before–after −0.01 ± 0.001 0.0003 −0.02 −0.01 4.07 × 10− 20

Parietal Before–after −1.32 ± 0.09 0.02 −1.37 −1.27 7.60 × 10− 20

Central Before–after −2.22 ± 0.34 0.08 −2.39 −2.04 9.19 × 10− 15

Frontal Before–after −2.30 ± 0.31 0.07 −2.47 −2.14 1.86 × 10− 15

Temporal Before–after −3.04 ± 0.39 0.09 −3.24 −2.83 5.81 × 10− 16

goal. In addition, Cheon et al. (2015) modified the 8-week
ALAY neurofeedback regimen to increase the beta power of
the left frontal cortex (F3) and decrease the alpha power, while

increasing the theta (alpha/theta ratio) of the parietal cortex in
depressed patients. The results demonstrated that within 8 weeks,
depression and anxiety symptoms were significantly reduced, as
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TABLE 7 | The results of paired t-test for average theta power before and after each regional condition for healthy subjects.

Hemisphere Region Conditions Paired differences

Mean ± SD SE mean 95% confidence interval of the difference

Lower Upper P

Left Occipital Before–after −2.58 ± 0.47 0.11 −2.82 −2.33 1.84 × 10− 13

Parietal Before–after −2.39 ± 0.32 0.07 −2.55 −2.22 1.13 × 10− 16

Central Before–after −2.11 ± 0.29 0.07 −2.26 −1.96 1.85 × 10− 15

Frontal Before–after −2.32 ± 0.29 0.07 −2.47 −2.17 5.24 × 10− 16

Temporal Before–after −2.98 ± 0.58 0.14 −3.28 −2.68 4.03 × 10− 13

Right Occipital Before–after −0.01 ± 0.001 0.0004 −0.01 −0.01 3.18 × 10− 17

Parietal Before–after −1.31 ± 0.12 0.03 −1.38 −1.25 6.14 × 10− 18

Central Before–after −2.26 ± 0.35 0.08 −2.44 −2.08 1.13 × 10− 14

Frontal Before–after −2.34 ± 0.38 0.09 −2.54 −2.14 3.38 × 10− 14

Temporal Before–after −3.15 ± 0.41 0.10 −3.36 −2.29 8.00 × 10− 16

TABLE 8 | The results of paired t-test for average gamma power before and after each regional condition for healthy subjects.

Hemisphere Region Conditions Paired differences

Mean ± SD SE mean 95% confidence interval of the difference

Lower Upper P

Left Occipital Before–after −1.99 ± 0.07 0.02 −2.03 −1.96 8.98 × 10− 25

Parietal Before–after −2.39 ± 0.33 0.08 −2.57 −2.22 1.94 × 10− 15

Central Before–after −2.40 ± 0.22 0.05 −2.51 −2.29 3.40 × 10− 18

Frontal Before–after −2.26 ± 0.13 0.03 −2.33 −2.19 4.61 × 10− 21

Temporal Before–after −1.61 ± 0.05 0.01 −1.63 −1.58 1.39 × 10− 25

Right Occipital Before–after −0.28 ± 0.003 0.0008 −0.28 −0.27 6.31 × 10− 32

Parietal Before–after −1.48 ± 0.02 0.007 −1.50 −1.47 5.71 × 10− 29

Central Before–after −1.97 ± 0.12 0.03 −2.04 −1.91 1.26 × 10− 20

Frontal Before–after −1.86 ± 0.09 0.02 −1.91 −1.82 2.35 × 10− 22

Temporal Before–after −2.00 ± 0.09 0.02 −2.05 −1.95 1.31 × 10− 22

was the clinical severity of psychiatric symptoms. The 15 patients
in the feedback group were given the neurofeedback training of
alpha enhancement, theta enhancement, and beta3 reduction,
three times a week for 4 weeks. The fake feedback group did
not give real feedback, but simply played back previous training
data from other people for the same amount of time as the
neurofeedback group. Patients in both groups were treated with
the same drug (duloxetine hydrochloride 60 mg once daily).
Results After training, the alpha and theta amplitude of the
feedback group were significantly higher than that of the false
feedback group, and the beta3 amplitude had a downward trend;
however, there was no statistical difference (P-value was 0.004,
0.038, and 0.818, alpha, theta, and beta3, respectively). However,
the feedback group had the function of helping to improve the
anxiety of patients with generalized anxiety disorder.

This experiment has made some progress in the evaluation of
anxiety state, which is only a small step forward, and there is still
a lot of room for improvement in the accuracy of the evaluation.
Due to the limited research time and small sample size, there may
be many methods that can be applied to the assessment of anxiety
state, and the future research prospects are broad. In the near

future, we will need to optimize our experiments to improve the
relief level of anxiety symptoms of anxiety subjects to the level of
healthy subjects.

To sum up, the nervous feedback can effectively control
the brain wave patterns and achieve cure, and possesses
the advantages of non-invasive, less adverse reaction, the
characteristics of being simple, safe, and convenient (Vernon
et al., 2003). Through the analysis of neurophysiological signals,
it can be concluded that our experiment can alleviate the anxiety
symptoms of the subjects. In the current period of new crown
epidemic most people suffer from anxiety, whether it is healthy
people or patients with anxiety disorders. We hope that our
experiment can provide people with relief from their anxiety.
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Inspired by the neuroscience research results that the human brain can produce
dynamic responses to different emotions, a new electroencephalogram (EEG)-based
human emotion classification model was proposed, named R2G-ST-BiLSTM, which
uses a hierarchical neural network model to learn more discriminative spatiotemporal
EEG features from local to global brain regions. First, the bidirectional long- and short-
term memory (BiLSTM) network is used to obtain the internal spatial relationship of
EEG signals on different channels within and between regions of the brain. Considering
the different effects of various cerebral regions on emotions, the regional attention
mechanism is introduced in the R2G-ST-BiLSTM model to determine the weight of
different brain regions, which could enhance or weaken the contribution of each brain
area to emotion recognition. Then a hierarchical BiLSTM network is again used to learn
the spatiotemporal EEG features from regional to global brain areas, which are then
input into an emotion classifier. Especially, we introduce a domain discriminator to work
together with the classifier to reduce the domain offset between the training and testing
data. Finally, we make experiments on the EEG data of the DEAP and SEED datasets to
test and compare the performance of the models. It is proven that our method achieves
higher accuracy than those of the state-of-the-art methods. Our method provides a
good way to develop affective brain–computer interface applications.

Keywords: EEG, emotion recognition, spatiotemporal features, attention, antagonism neural network, BiLSTM

INTRODUCTION

Emotion plays an important role in human life (Picard and Picard, 1997). Positive emotions may
help improve the efficiency of our daily work, while negative emotions may affect our decision
making, attention, and even health (Picard and Picard, 1997). Although it is easier for us to
recognize emotions of other people from their facial expression or voice, it is still difficult for
machines to do that (Li et al., 2019). In the past few years, emotion recognition by computer has
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attracted more and more researchers, and it has become a hot
research topic in the field of affective computing and pattern
recognition (Purnamasari et al., 2017). The emotion recognition
methods can be based on speech signals, facial expression
images, and physiological signals (Chen et al., 2019a). In recent
years, EEG-based emotion recognition algorithms have been
increasingly focused on by researchers.

While researching emotion recognition with EEG, we usually
face two difficulties. One is how to obtain a discriminative
feature representation method from original EEG signals, and the
other is how to build an effective model to better improve the
performance of emotion classification. Technically, EEG features
can be extracted from the time domain, frequency domain,
and time–frequency domain (Jenke et al., 2014). For example,
Zhang and Lee (2010) regarded the amplitude difference of
symmetric electrodes in the time domain as the EEG feature of
emotion recognition. Lin et al. (2010) studied the relationship
between emotional state and brain activity, and extracted power
spectral density, differential asymmetric power, and reasonable
asymmetric power separately as features of EEG signals. Duan
et al. (2013) extracted features by calculating the correlation
coefficient between the features of each frequency band and their
emotional labels. In the aspect of models, Garcia-Martinez et al.
(2019) summarized the research results of applying nonlinear
methods to EEG signal analysis in recent years. Li et al. (2018b)
proposed a graph-regularized sparse linear regression model
to make emotion classification and achieved better recognition
performance. Zheng and Lu (2015) studied the key frequency
bands and key brain regions of EEG signals, and proposed to
use group sparse canonical correlation analysis algorithm (Zheng,
2017) for multichannel EEG-based emotion recognition.

With the development of artificial intelligence, deep learning
has become very popular, and emotion classification based on
deep learning has also continuously improved the performance
of emotion recognition and, thus, has gradually become the
dominant method. Alhagry et al. (2017) proposed an end-to-
end LSTM-RNN network to learn the time dependence of EEG
signals. Li et al. (2018a) considered the area shift of EEG data
and used deep neural network to learn the difference between left
and right hemispheres to narrow the distribution shift. Song et al.
(2018) established a graph relationship based on multichannel
EEG data, adjacency matrix to build the internal relationship
between different EEG channels, and then used dynamical
graph convolution network to extract features for emotion
classification. Salama et al. (2018) used a three-dimensional
convolutional neural network (3D-CNN) to recognize emotions
from multichannel EEG data. The author of this paper has also
proposed a deep CNN model (Chen et al., 2019c) to learn high-
level discriminative feature representations from the combined
features of the EEG signal in the time-frequency domain. In Chen
et al. (2019b), a hierarchical bidirectional LSTM model based on
attention mechanism was proposed to reduce the influence of
long-term instability of EEG sequences on emotion recognition.

Although many EEG emotion recognition methods have
emerged recently, there are still some problems that needs to be
further studied. One of the problems is how to obtain effective
high-level features from the original EEG signals automatically.

Most researchers often extract some time or frequency statistical
EEG features manually combined with classic machine learning
algorithms to make emotion classification. However, feature
engineering needs to consume a lot of computation resources
and time. It is expected to automatically learn more prominent
spatiotemporal features with less feature engineering. The second
question is which brain area contributes more to human emotion
recognition, and how to use the distribution information of
different brain areas to improve recognition performance. The
latest researches (Etkin et al., 2011; Lindquist and Barrett, 2012)
have shown that human emotions are closely related to multiple
areas of the cerebral cortex, such as the orbitofrontal cortex,
ventromedial prefrontal cortex, amygdala, and so on. Therefore,
the contribution of EEG signals associated with each brain area
is different. If the spatial information of different brain regions
can be used, it is expected to provide help in understanding
human emotions (Heller and Nitscke, 1997; Davidson, 2000;
Lindquist et al., 2012). The third question is how to enhance
the emotion recognition performance by using time series
information in each brain area, as EEG signals are dynamic time
series carrying important emotion dynamics, which is effective to
identify human emotions.

Literature (Lin et al., 2010; Zhang and Lee, 2010; Duan
et al., 2013; Zheng and Lu, 2015; Zheng, 2017; Li et al., 2018b;
Garcia-Martinez et al., 2019) has proven that EEG signals in
different brain regions have different contributions to emotion
recognition. Literature (Alhagry et al., 2017; Li et al., 2018a;
Salama et al., 2018; Song et al., 2018; Chen et al., 2019b) found
that either deep CNN model or the bidirectional long- and
short-term memory (BiLSTM) model combined with attention
mechanism could hierarchically extract deep temporal and spatial
context of EEG signals. Inspired by these two aspects and
neuroscience research basis (Heller and Nitscke, 1997; Davidson,
2000; Etkin et al., 2011; Lindquist and Barrett, 2012; Lindquist
et al., 2012), this paper proposes a new emotion computing model
called R2G-ST-BiLSTM, which is used to solve the above three
main problems. Its core idea is to extract the EEG spatial temporal
dynamics associated with human emotions from local and global
brain areas. Specifically, the R2G-ST-BiLSTM model contains
two two-layer neural networks, in space and time domain,
respectively, and features are learned hierarchically from region
to global (R2G) to grasp more discriminative spatiotemporal
EEG features related to human emotions. The proposed R2G-ST-
BiLSTM model consists of three parts:

(1) Feature learning module. It uses the bidirectional long-
and short-term memory (BiLSTM) network to learn the
hierarchical spatiotemporal EEG characteristics within and
between each brain region. In order to better judge the
effect of different brain regions on emotion recognition,
this paper introduces the regional attention mechanism to
learn a set of weights, which represent the contributions of
different brain regions.

(2) Emotion classifier. The purpose of this module is to predict
emotion category based on EEG spatiotemporal features
obtained by feature learning module. At the same time,
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it also guides the whole neural network to learn more
discriminative EEG features for emotion classification.

(3) Domain discriminator. This module aims to decrease the
domain offset between the training EEG data and the testing
EEG data through introducing a discriminator, so that
the hierarchical feature learning module can produce EEG
features with more emotional discrimination and stronger
domain adaptability.

Through collaborative work of the above three modules,
the R2G-ST-BiLSTM model can learn EEG features with better
discrimination ability and domain robustness simultaneously,
thus, further improving human emotion recognition
performance. Overall, there are three main contributions in
our work:

• Inspired by neuroscience, we propose a new hierarchical
spatiotemporal EEG feature learning model, which obtains
spatiotemporal emotional information from EEG data
within and between each cerebral region.
• Proposes an attention weighted model to estimate the

contribution of each cerebral region to the different
affections of humans. The influence of the most dependent
cerebral region is enhanced by the learned weight, and the
impact of the less dependent region was reduced as well.
• Proposes a domain discriminator to work on antagonism

with the classifier to improve the adaptability of the R2G-
ST-BiLSTM model.

METHOD BASED ON THE
R2G-ST-BiLSTM MODEL

Traditional one-way LSTM network (Hochreiter and
Schmidhuber, 1997) has a special structure that is different
from the simple recurrent neural network (RNN) (Graves
et al., 2013) and is more capable of dealing with the frequent
dependence of the sample sequence. Its special “gate” structures
enable LSTM to retain significant data information and forget
unnecessary redundant information (Yan et al., 2017). However,
one disadvantage of this network is that it only uses the
context-related information that happened before. The BiLSTM
network can process data by using separate hidden layers in two
directions (Bottou, 2010). Because the BiLSTM network can
obtain long-term contextual information in both forward and
backward orientation, it is better than the traditional one-way
LSTM network for modeling time series. Because EEG data
related to each channel in each brain region are in time series
with the same dimension, therefore, BiLSTM can be used to
extract the deep spatiotemporal context features of EEG data
from the local brain regions to the global brain.

In this section, we will introduce the framework of the R2G-
ST-BiLSTM model in detail and explain the specific application
of EEG signals for emotion recognition methods and procedures.
Figure 1 shows the framework of the R2G-ST-BiLSTM model.
It consists of three main modules, which are feature extractors,
classifiers, and discriminators.

Spatial Feature Extraction
First, we divide the EEG sequence into several equal-length
segments. Then a set of manual features is extracted from the
EEG segments corresponding to each electrode. For example,
the differential entropy feature (DE feature) is extracted
from δ(1∼4 hz), θ(5∼8 hz), α(9∼14 hz), β(15∼3 0hz), and
γ(31∼50 hz) (Zheng and Lu, 2015). In addition, to capture
dynamic time information from input EEG sequence, every five
adjacent EEG segments make up one EEG sample, and each EEG
sample is represented by a tensor of its manual feature.

Let S = [s1, s2, , sT−1, sT]εRd × n × T represent an EEG
sample, where si represents the feature data extracted from the
divided i-th segment of EEG, shown in the bottom blue rectangle
of Figure 1, d is the number of EEG features per channel, n is the
number of channels, and T is the number of segments per EEG
sample. Figure 1 shows that when extracting spatial features, each
sample includes a regional feature extraction layer and a global
feature extraction layer to gradually learn high-level semantic
features from local to global.

Figure 2 shows the specific feature learning process of the
EEG data si. At first, the channels of si are grouped into different
areas according to the spatial position of the brain electrodes.
The number of electrodes in each brain area varies due to the
different functions of each brain area, thereby generating a set
of regional manual feature vectors in each brain region. Then
these manual feature vectors are input into the equal number
of BiLSTM networks to learn the local abstract features of each
region. After learning the regional deep features, the region
attention mechanism is introduced to learn a set of weights that
represent the significance of each region. Finally, at the top of
Figure 1, the extracted weighted feature of each region is input
into another set of BiLSTM networks to further extract the global
emotional semantic features.

(1) Regional feature extraction layer. Let xij represent
the manual feature vector of the j-th EEG channel, so
si = [xi1, xi2, . . . , xin]εRd × n. Then according to the related
electrodes, n channels of si are divided into different groups: each
group of channels belongs to a cerebral area, and each area is
expressed as: brain area 1: R1

i = [x
1
i1, x1

i2, . . . , x1
in1
], brain area 2:

R2
i = [x

2
i1, x2

i2, . . . , x2
in2
], brain area n: RN

i = [x
N
i1, xN

i2, . . . , xN
inN
],

where N is the quantity of cerebral areas, nj is the quantity
of the j-th cerebral area of the channels, and n1 ++nN = n.
Furthermore, we adjust the column order of si, which is
represented as a new matrix ŝi = [R1

i , . . . ,RN
i ]. The submatrix

Rj
i(j = 1, . . . ,N) represents cerebral area j, and per column of

Rj
i corresponds to an EEG channel of this area. The spatial

relationship of the brain area can be modeled by a BiLSTM
working on the Rj

i matrix to extract the advanced features of each
region, which process is expressed as:

F(R1
i ) = [h̃

1
i1, h̃1

i2, . . . , h̃1
in1
]εR2dr × n1 , (1)

F(RN
i ) = [h̃

N
i1, h̃N

i2, . . . , h̃N
inN
]εR2dr × nN , (2)

whereF(·) represents the BiLSTM operation, h̃j
ikεR

2dr represents
hidden vectors output by the kth forward and backward hidden
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FIGURE 1 | The model of the R2G-ST-BiLSTM network. Feature learning is processing from regional brain to global brain, respectively, in the spatial and temporal
flows. Spatial flow learns the relationship between brain regions in different layers, while temporal flow learns the emotion-related EEG dynamic from the time series
of each brain region.

units of the BiLSTM, and dr represents the dimensions of the
output state vectors of each hidden unit in the BiLSTM. At last,
the state vector outputs by the last hidden unit of each BiLSTM
are connected as the local deep features of all regions, which are
expressed as follows:

H̃r
i = [h̃

1
in1
, h̃1

in2
, . . . , h̃N

inN
]εR2dr × N . (3)

For simplicity, each BiLSTM model in this part is
initialized and fit jointly, and the hyperparameters are shared
with each other.

(2) Attention-based brain region weighting layer.
Neuroscience-related research shows that different brain

areas respond to different types of emotions. Therefore, EEG
signals from diverse brain areas have different contributions to
emotion classification. To emphasize the role of the different
brain area electrodes in EEG emotion recognition, we introduce
a weighting layer based on attention mechanism. Expressed by
W = {wij}, it can characterize the significance of channels in
different areas. After that, the local deep features of all areas are
expressed by Ĥr

i as follows:

Ĥr
i = H̃r

i W, (4)

W = (U tanh(VH̃r
i + breT))

T
, (5)
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wij =
exp (wij)∑N

k = 1 exp (wik)
, (6)

where U and V are learnable transpositional matrices, br

represents the deviation, and e represents an N-dimensional
vector whose elements are 1, that is, e = [1, 1, . . . , 1]T . The
matrix W is normalized across the columns, so that its values
are limited to non-negative by formula (6). The larger the wij
value obtained, the more important the j-th brain area is for
emotion recognition.

(3) Global feature extraction layer. To further capture the
potential global structural information on the basis of the learned
local deep feature Ĥr

i , we use another BiLSTM network with N

hidden units to extract global spatial features.

F
(

Ĥr
i

)
= [h̃g

i1, h̃g
i2, . . . , h̃g

iN]εR
2dg × N, (7)

where, h̃g
ik represents the hidden vector output by the k-th

forward and backward hidden unit of the BiLSTM network, and
dg is the dimension of the output state vector of each hidden unit.
Next, input the vector sequence h̃g

i1,. . .,h̃g
iN into a fully connected

layer to learn a new compressed feature vector with the following
formulas:

ĥg
jK = σ

 N∑
j = 1

Pg
jkh̃g

ij + bg

 , k = 1, 2, . . . ,K, (8)
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FIGURE 3 | The 32 electrodes are divided into 12 clusters, among which the
electrodes of the same color belong to the same brain area.

Ĥg
i = [ĥ

g
i1, ĥg

i2, . . . , ĥg
iK], (9)

where Pg
= [Pg

jK]N =× K
denotes a projection matrix, bg denotes

deviation, K denotes the length of the compressed sequence, and
σ(·) is a nonlinear function. Thus, the global deep feature Ĥg

i
related to the manual feature matrix si of the i-th EEG segment
is finally obtained.

Temporal Feature Extraction
Let h̃j

i(j = 1, . . . ,N) represent the state vector output by the j-th
brain region of the i-th EEG manual feature matrix si through the
last hidden unit of the BiLSTM network, then the time series of
each brain region feature can be expressed as:

H̃r1 , [h̃1
1, h̃1

2, . . . , h̃1
T], (10)

H̃rN , [h̃N
1 , h̃N

2 , . . . , h̃N
T ] (11)

In this way, the columns of the feature matrix
H̃rj(j = 1, . . . ,N) constitute the time series of the feature
vectors related to the j-th brain region. Therefore, a BiLSTM
network can be applied again to learn the temporal context
between these eigenvector sequence:

Zrt
=

[
F
(
H̃r1) , . . . ,F (

H̃rN)]
=

[(
zrt

11, . . . , zrt
1T
)
, . . . ,

(
zrt

N1, . . . , zrt
NT
)]

= [
(
zrt

1 , . . . , zrt
N
)
], (12)

where Zrt
j = [z

rt
j1, . . . , zrt

jT]εR
2drt = T represents the regional

temporal feature matrix related to the j-th brain region, and drt
is the dimension of each hidden unit state vector in the regional

temporal BiLSTM network. Take the output zrt
jT of the last hidden

unit of the BiLSTM network in each brain area as the learned
temporal feature of this brain area, and then get the final temporal
feature zrt of all brain areas, which is expressed as:

zrt
=

[(
zrt

1T
)T
,
(
zrt

2T
)T
, . . . ,

(
zrt

NT
)T
]
. (13)

In addition, to explore the time context on the basis of matrix
Ĥg

i , we convert the columns of Ĥg
i to a new sequence, which is

represented by ĥg
i :

ĥg
i = [

(
ĥg

i1

)T
,
(

ĥg
i2

)T
, . . . , (ĥg

iK)
T
]

T
. (14)

Set up Zg
= [ĥg

1, . . . , ĥg
T]. Then a BiLSTM network with T

hidden units is used to learn the global temporal feature Zgt :

Zgt
= F(Zg) = [zgt

1 , . . . , zgt
T ]εR

2dgt × T, (15)

where dgt denotes the size of the hidden state vector of the global
temporal BiLSTM network, and the output zgt

T of the last hidden
unit is taken as the learned global temporal feature. Finally, by
concatenating zrt with zgt

T , the optimal feature vector zrg of the
EEG sample S (composed of T EEG fragments) is obtained,
which contains complex temporal context information, and its
expression is:

zrg
= [

(
zrt

1T
)T
,
(
zrt

2T
)T
, . . . ,

(
zrt

NT
)T
, (zgt

T )
T
]

T
. (16)

Classifier and Discriminator
For the final eigenvector zrg input to this layer, a simple linear
transformation method can be used to recognize the human
emotional type of the input EEG data S as the following formula:

Y = Qzrg
+ bc = [y1, y2, . . . , yc], (17)

where Q and bc, respectively, denotes the projection matrix and
deviation. C is number of emotional categories. The element of
the transformation result Y is input into a softmax function to
predict the emotion category:

P (c | S) = max

{
exp

(
yk
)∑C

i = 1 exp
(
yi
) |k = 1, . . . ,C

}
, (18)

where P (c | X) represents the probability the input EEG data S is
predicted to be the emotion of type c.

Supposing the training set of the model is composed of M EEG
data, which is expressed by matrix SS

i (i = 1, . . . ,M). The loss
function of the emotion classifier can be expressed as:

Lc
(
SS

1 . . . , SS
M; θf , θc

)
=

M∑
i = 1

C∑
c = 1

−ϕ(li, c) × log P(c|SS
i )

(19)
where li represents the real label of the SS

i sample, and θf and θc
represent the learning parameters. ϕ(li, c) is expressed as:

ϕ
(
li, c

)
=

{
1, if li = c,
0, otherwise.

(20)
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TABLE 1 | Electroencephalogram electrodes and data size associated with each brain area.

Brain region DEAP dataset SEED dataset

Electrode name Data size (d × nj ) Electrode name Data size (d × nj )

Pre-frontal FP1, FP2, AF3, AF4 4 × 4 AF3, FP1, FPZ, FP2, AF4 4 × 5

Frontal F3, FZ, F4 4 × 3 F3, F1, FZ, F2, F4 4 × 5

Bilateral frontal F7, F8 4 × 2 F7, F5, F6, F8 4 × 4

Left temporal FC5, T7, CP5 4 × 3 FT7, FC5, T7, C5, TP7, CP5 4 × 6

Right temporal FC6, T8, CP6 4 × 3 FT8, FC6, T8, C6, TP8, CP6 4 × 6

Frontal central FC1, FC2 4 × 2 FC3, FC1, FCZ, FC2, FC4 4 × 5

Central C3, CZ, C4 4 × 3 C3, C1, CZ, C2, C4 4 × 5

Central parietal CP1, CP2 4 × 2 CP3, CP1, CPZ, CP2, CP4 4 × 5

Bilateral parietal P7, P8 4 × 2 P7, P5, P6, P8 4 × 4

Parietal P3, PZ, P4 4 × 3 P3, P1, PZ, P2, P4 4 × 5

Parietal occipital PO3, PO4 4 × 2 PO5, PO3, POZ, PO4, PO6 4 × 5

Occipital O1, OZ, O2 4 × 3 CB1, O1, OZ, O2, CB2 4 × 5

From formulas (19) and (20), it can be concluded that
by minimizing the loss function Lc

(
SS

1, SS
2, . . . , SS

M; θf , θc
)
, the

emotion category of each training sample can be correctly
predicted to the maximum extent.

Let Stest represent a test sample, and the emotion label of Stest
is determined by the formula:

ltest = argmax
c
{P(c|Stest)|c = 1, . . . ,C}, (21)

where ltest represents the predicted label of the test sample Stest .
When performing prediction, the EEG samples for the

training and testing data may be from various subjects and
even different experiments. Based on this, the recognition
model learned by using the training data may not have a
high recognition accuracy for the test data. To optimize
the generalization ability of the model, a discriminator
is introduced to work collaboratively with the classifier
to learn features with strong emotion discrimination and
domain invariance.

Specifically, suppose that DS
= {SS

1, . . . , SS
M1
} denotes the

dataset of the source domain, and DT
= {ST

1 , . . . , ST
M2
} denotes

the dataset of the target domain, where M1 and M2 are their
sample number. To alleviate the domain difference, the loss
function of the discriminator is defined as:

Ld

(
SS

i , ST
j ; θf , θd

)
= −

M1∑
i = 1

logP
(
0
∣∣ SS

i
)
−

M2∑
j = 1

logP
(

1
∣∣∣ ST

j

)
. (22)

Here, P
(
0
∣∣ SS

i
)

is the probability that EEG sample SS
i is classified

into the source domain, P(1|ST
j ) is the probability that EEG

sample ST
j is classified into the target domain, and θd is the

parameter. The discriminator enables this model to learn the
domain-invariant features gradually.

Optimization of the Bidirectional Long-
and Short-Term Memory Neural Network
From Region to Global Brain Model
The previous description indicates that through minimizing
formula (19) and maximizing formula (22), domain difference

can be reduced and better domain invariant characteristics can
be learned. Therefore, we redefine the total loss function of
R2G-ST-BiLSTM model as:

L
(

SS, ST
|θf , θc, θd

)
= Lc

(
SS
; θf , θc

)
−Ld

(
SS, ST

; θf , θd

)
. (23)

To optimize our model, we need to find the best parameters
that minimize the new loss function L

(
SS, ST

|θf , θc, θd
)
. By

minimizing Lc
(
SS
; θf , θc

)
and maximizing Ld

(
SS, ST

; θf , θd
)

synchronously and iteratively, the optimal parameters of
L
(
SS, ST

|θf , θc, θd
)

can be obtained. Specifically, the stochastic
gradient descent (SGD) algorithm (Yu et al., 2015) is used to find
the optimal model parameters:

(̂
θf , θ̂c

)
| = arg min

θf ,θc
Lc(SS,

(
θf , θc

)
, θ̂d), (24)

θ̂d = arg max
θd

Ld(SS, ST (̂θf , θ̂c), θd), (25)

The feature extractor can learn to obtain emotional
discriminative features by minimizing the loss function Lc.
Meanwhile, it extracts domain invariant features by maximizing
the loss function Ld. When obtaining the optimal parameters
of the R2G-ST-BiLSTM model, we also introduced a gradient
reverse layer (GRL) (Ganin et al., 2016), which performs gradient
sign reversal when performing backward propagation operation
and enables the discriminator to transform the maximization
problem into a minimization problem, so that SGD can be used
for parameter optimization. The parameter updating can be
expressed as:

θd ← θd − α
∂Ld

∂θd
, θf ← θf + α

∂Ld

∂θf
, (26)

where α is the learning rate.
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TABLE 2 | Implementation details of 10 benchmark models.

Benchmark models Input data size Implementation details

DEAP dataset SEED dataset

Support vector machine (SVM)
(Suykens and Vandewalle, 1999)

[32 × 5, sample_size] [Features, sample_size] Kernel = ‘rbf’, gamma = 8, c = 0.05

Bagging tree (BT) (Chuang et al.,
2012)

[32 × 5, sample_size] [64 × 5, sample_size] Method: bag, nLearn:100, weak learner: tree, type:
classification

Random forest (RF) (Breiman,
2001)

[32 × 5, sample_size] [64 × 5, sample_size] n_estimators = 50, max_depth = 10, max_features = 8,
min_samples_split = 20, min_samples_leaf = 10,
oob_score = true, random_sate = 10

Deep confidence network (DBN)
(Zheng and Lu, 2015)

[Batch_size, feature_size]:
[60, 32 × 5]

[Batch_size, feature_size]:
[60, 64 × 5]

hidden_layers = 3, hidden_size = 64, batch_size = 60,
learning_rate = 0.04, dropout = 0.5, epochs = 200

Long- and short-term memory
(LSTM) (Alhagry et al., 2017)

[Batch_size, seq_len, channels]:
[120, 5, 32]

[Batch_size, seq_len,
channels]: [120, 5, 64]

hidden_layers = 2, hidden_size = 64, seq_len = 5,
batch_size = 120, learning_rate = 0.03, dropout = 0.5,
num_directions = 2, epochs = 100 ×

Two-dimensional convolutional
neural network (2D-CNN) (Chen
et al., 2019c)

[Batch_size, seq_len × band_size,
channels]:
[60, 5 × 4, 32]

[Batch_size,
seq_len × band_size,
channels]:
[60, 5 × 4, 64]

conv_layers = 2, max_pool_layers = 2, full_conn_layers = 2
(hidden_size = 128), conv_kernels = [32, 64],
kernel_zize = [5 × 5, 3 × 3], pool_size = (2,2),
batch_size = 60, learning_rate = 0.05, dropout = 0.7,
epochs = 300, padding = 0, stride = 1

Three-dimensional convolutional
neural network (3D-CNN)
(Salama et al., 2018)

[Batch_size, band_size, seq_len,
channels]:
[80, 4, 5, 32]

[Batch_size, band_size,
seq_len, channels]:
[80, 4, 5, 64]

conv_layers = 2, max_pool_layers = 1, full_conn_layers = 1
(hidden_size = 128), conv_kernels = [8, 16],
kernel_zize = [3 × 3 × 7, 2 × 2 × 5], pool_size = (2,2),
batch_size = 80, learning_rate = 0.01, dropout = 0.6,
epochs = 200, padding = 0, stride = 1

Hierarchical bidirectional GRU
network based on attention
mechanism (H-ATT-BGRU) (Chen
et al., 2019b)

[Batch_size, band_size, seq_len,
channels]:
[60, 4, 5, 32]

[Batch_size, band_size,
seq_len, channels]:
[60, 4, 5, 64]

hidden_layers = 2, hidden_size = 64, seq_len = 5,
batch_size = 60, learning_rate = 0.06, dropout = 0.4,
num_directions = 2, epochs = 400

Domain adaptive neural network
(DANN) (Ganin et al., 2016)

[Batch_size, feature_size]:
[30, 32 × 5]

[Batch_size, feature_size]:
[30, 64 × 5]

hidden_layers = 2, hidden_size = 128, batch_size = 30,
L2-weight-regularization = 0.003, learning_rate = 0.02,
dropout = 0.5, epochs = 500, momentum = 0.05, MMD
regularization constant γ = 10e3

convolutional recurrent neural
network (Casc-CNN-LSTM)
(Chen et al., 2020)

[Batch_size, seq_len × band_size,
channels]:
[80, 5 × 4, 32]

[Batch_size,
seq_len × band_size,
channels]:
[80, 5 × 4, 64]

CNN: conv_layers = 3, max_pool_layers = 3,
full_conn_layers = 2 (hidden_size = 256),
conv_kernels = [32, 64, 128], kernel_zize = [3 × 3, 3 × 3,
3 × 3], pool_size = (2,2), batch_size = 80,
learning_rate = 0.05, dropout = 0.5, epochs = 500,
padding = 0, stride = 1
LSTM: hidden_layers = 2, hidden_size = 128,
seq_len = 256, batch_size = 80, learning_rate = 0.05,
dropout = 0.5, num_directions = 2, epochs = 500

Configuration and Training of
Bidirectional Long- and Short-Term
Memory Neural Network From Region to
Global Brain Model
The proposed model is implemented in TensorFlow framework
on a NVIDIA Titan × Pascal GPU-equipped work station
and trained from scratch in a fully supervised manner. When
training the whole model, we define a search space to find
the optimal model parameters. The search space includes
the hidden_layers (one to three layers), hidden_size (32, 64,
128, and 256), batch_size (30, 60, 80, and 120), learning_rate
(0.1, 0.01, 0.001, and 0.0001), dropout (0.5, 0.6, and 0.7),
and epochs (100, 200, 300, and 500). The search space was
defined to balance the trade-off between a deeper architecture
and limited training samples. For simplicity, each BiLSTM

model is initialized and fit jointly, their hyperparameters
are shared with each other, the hidden_size of the single-
layer perception network used to learn the attention weight
of each brain region is 128, the hidden_size of the full
connection layer for learning the compressed global brain
feature is 64, all hidden layers use ReLU activation function
for faster approximation, all BiLSTM models are trained using
SGD with AdaGrad optimizer, and the maximum training
iteration was set to be 10,000. For searching each hyper
parameter, we only adjust one hyperparameter in a defined
search space and fix others each time. When observing that
there is no growth trend of the accuracy on training and
validation sets, we can judge to stop the training process
in advance, as shown in Figures 4, 6. Finally, we select
the best model that produces the highest accuracy on the
validation dataset.
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Through this fine-tuning process, the selected best
hidden_layers is 2, the hidden_size of dr , dg , drt , and dgt is
consistently 64, learning rate is 0.001, batch-size is 120, and
epochs is 200. All parameters and offsets are initialized with
randomly assigned nonzero regularization float. For cross-
subject experiment on DEAP dataset, the total number of
parameters in the whole model is about 50,156, which is larger
than the total number of training samples. To prevent the
overfitting of the model, a dropout layer is added after the
first full connection layer of each BiLSTM, and the selected
optimal dropout is 0.7.

EXPERIMENTS AND RESULTS

Dataset and Preprocessing
To evaluate the proposed method, we make extensive
experiments on the DEAP (Koelstra et al., 2012) dataset,
which come from the Queen Mary University of London
and is publicly and freely available for research on emotion
recognition. This dataset records EEG, EMG, ECG, and other
types of physiological signals induced by 32 subjects watching
40 music videos with different emotional tendencies. The
emotion labels are evaluated with 1–9 consecutive values in
four emotional dimensions of arousal, valence, preference,
and dominance. In our research, we just take the EEG
signals of each subject in 32 channels and 60 s from the
DEAP dataset for study. The electrodes are positioned
according to the 10–20 system. The sampling frequency
is reduced to 128 Hz. For other artifacts, a 4- to 45-Hz
bandpass filter is used for data filtering, and then blind
source separation is used to remove the electro-oculogram
(EOG) interference.

According to the spatial distribution of EEG electrodes, 32
electrodes are divided into 12 regions, that is, the number of
brain regions N is 12, and each region contains at least two
electrodes. We divided the 32 electrodes into 12 clusters or
brain regions, where the electrodes of the same color belong
to the same region, as shown in Figure 3. The electrodes
contained in each brain region and the size of the corresponding
manual feature set are listed in Table 1. In the DEAP
database, there are 32 subjects, and each subject takes a 40-
trial EEG data acquisition experiment. Each experiment collects
60 × 128 = 7,680 EEG records and emotional labels induced by
watching videos for 60 s.

To balance the samples of three kinds of emotion labels
in DEAP, the values 4 and 7 are used as the threshold to
distinguish the positive, neutral, and negative emotion labels.
As a result, for the total 32 subjects of the DEAP dataset,
the number of positive, neutral, and negative trials are 373,
540, and 367, respectively. The proportion of samples in
positive, neutral, and negative class is about 29%, 42%, and
29%, respectively. In this way, 40 trials were collected for each
subject including 2,400-s EEG records, which is segmented
according to 1 s, including 2,400 EEG segments. Each segment
corresponds to three types of emotional labels: positive, neutral,
and negative, of which there are about 800 segments of each

FIGURE 4 | Learning process of R2G-ST-BiLSTM model in within-subject
experiment on DEAP dataset.

type of emotional label. In this way, each subject has a total
of 40 trials × 60 s = 2,400 s of EEG records, which were
segmented by 1 s and contained a total of 2,400 EEG segments.
Each segment corresponds to three types of emotions: positive,
neutral, or negative tags. Then all segments are divided into
480 EEG samples according to T = 5. That means each
sample contains five EEG segments, and DE features of four
bands are extracted from 32 electrodes of each segment, so
that each EEG sample is expressed by a manual feature
tensor of 4 × 32 × 5, and the size of each EEG dataset is
480 × 4 × 32 × 5. The size of the 32-subject EEG dataset is
15,360× 4× 32× 5.

To further prove the performance of our proposed model
and make the conclusion more convincing, we also conducted
serial comparison experiments on the SEED dataset (Zheng
and Lu, 2017). The dataset collected EEG records related
to emotional stimulation from 64 channels of 15 subjects
(7 men and 8 women). The emotional labels fed back by
the subjects were divided into positive, neutral, and negative.
The dataset has been preprocessed, and DE features for
each subject were extracted. On the SEED dataset, we also
used trial-wise randomization method to construct cross
validation sets for within-subject experiments and used the
same leave-one-subject-out (LOSO) method as that used on
the DEAP dataset to construct cross validation sets for cross-
subject experiments. As for brain area division, to facilitate
comparison, we removed the PO7 and PO8 electrodes and
divided the remaining 62 electrodes into 12 brain areas. Table 1
shows the detailed brain area division method on the DEAP
and SEED datasets.

Benchmark Methods
For comparison, we use the following benchmark methods to
perform within-subject and cross-subject emotion classification
experiments on the same dataset.
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TABLE 3 | The results of within-subject experiment on the DEAP dataset.

Method SVM (Suykens
and Vandewalle,

1999)

BT (Chuang et al.,
2012)

RF (Breiman,
2001)

DBN (Zheng and
Lu, 2015)

LSTM (Alhagry
et al., 2017)

2D-CNN (Chen
et al., 2019c)

Average classification accuracy
(ACC)(%)/standard deviation
(STD)

80.72/7.67 84.65/8.93 78.87/11.32 82.83/9.54 84.51/10.06 85.63/8.72

p-Value 0.0005 0.0004 0.0006 0.0008 0.0023 0.0019

Method 3D-CNN (Salama
et al., 2018)

H-ATT-BGRU
(Chen et al., 2019b)

DANN (Ganin et al.,
2016)

Casc-CNN-LSTM
(Chen et al., 2020)

R2G-ST-BiLSTM

ACC (%)/STD 87.21/10.57 87.89/8.94 88.54/9.26 93.95/7.88 94.69/9.81

p-Value 0.0052 0.0066 0.0074 0.0089

TABLE 4 | The results of within-subject experiment on the SEED dataset.

Method SVM (Suykens and
Vandewalle, 1999)

BT (Chuang et al.,
2012)

RF (Breiman,
2001)

DBN (Zheng and
Lu, 2015)

LSTM (Alhagry
et al., 2017)

2D-CNN (Chen
et al., 2019c)

ACC (%)/STD 80.14/9.27 83.72/8.68 77.95/9.32 82.58/11.26 83.92/9.44 84.64/7.98

p-Value 0.0006 0.0002 0.0004 0.0007 0.0009 0.0008

Method 3D-CNN (Salama et al.,
2018)

H-ATT-GRU (Chen
et al., 2019b)

DANN (Ganin et al.,
2016)

Casc-CNN-LSTM
(Chen et al., 2020)

R2G-ST-BiLSTM

ACC/STD 87.31/11.14 86.38/9.56 88.96/10.45 92.72/9.33 93.57/8.52

p-Value 0.0021 0.0035 0.0052 0.0098

The three traditional learning methods are the following:
support vector machine (SVM) (Suykens and Vandewalle, 1999),
bagging tree (BT) (Chuang et al., 2012), and random forest (RF)
(Breiman, 2001).

The Seven deep learning methods are the following: deep
confidence network (DBN) (Zheng and Lu, 2015), deep
LSTM recurrent neural network (Alhagry et al., 2017), 2D-
CNN (Chen et al., 2019c), 3D-CNN (Salama et al., 2018),
hierarchical bidirectional GRU network based on attention
mechanism (H-ATT-BGRU) (Chen et al., 2019b), domain
adaptive neural network (DANN) (Ganin et al., 2016), and
cascaded convolutional recurrent neural network (Casc-CNN-
LSTM) (Chen et al.).

In order to horizontally compare the advantages of the
proposed model, the input features of the benchmark models
are also DE features extracted from four bands of EEG data
in the DEAP and SEED datasets, which are consistent with
those of our proposed model. The feature extraction method
is the same as that stated in the experiment part of section
“Within-Subject Experiment of Electroencephalogram Emotion
Recognition.” Classifier and discriminator. However, the specific
format of the input EEG features needs to be reshaped according
to the interface of each model. Some key implementation
details of these 10 benchmark models are listed in Table 2.
The selection of model hyperparameters is also the result of
fine-tuning experiments in the same search space mentioned
in section “Discussion About Several Variants of the Proposed
Model.” Configuration and training of the bidirectional long- and
short-term memory neural network from region to global brain
model of part II.

FIGURE 5 | Confusion matrix of R2G-ST-BiLSTM model for within-subject
experiment on DEAP dataset.

Within-Subject Experiment of
Electroencephalogram Emotion
Recognition
We apply within-subject EEG emotion recognition method like
that in literature (Li et al., 2018a) to evaluate our proposed model.
To make the experiment result convincing, we use trial-wise
randomization to construct the validation dataset. Specifically,
we first picked out the subjects with a relatively balanced number
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TABLE 5 | The results of four frequency bands in within-subject experiment.

Methods The results of ACC (%) (STD)

DEAP SEED

θ α β γ θ α β γ

SVM (Suykens and Vandewalle, 1999) 60.90
(8.76)

62.16
(10.49)

72.75
(7.87)

74.28
(11.13)

57.64
(9.93)

63.19
(7.55)

76.85
(10.19)

72.26
(12.31)

BT (Chuang et al., 2012) 65.44
(7.82)

67.31
(9.65)

77.52
(10.04)

76.06
(8.28)

61.65
(11.42)

62.74
(8.16)

75.58
(9.37)

78.83
(6.96)

RF (Breiman, 2001) 62.38
(12.52)

64.54
(7.39)

72.06
(9.77)

71.87
(10.45)

62.79
(7.58)

62.85
(12.32)

69.10
(11.14)

71.72
(10.56)

DBN (Zheng and Lu, 2015) 61.19
(8.97)

62.74
(11.25)

73.73
(6.80)

75.05
(7.74)

58.32
(9.44)

62.56
(10.28)

70.47
(13.51)

74.29
(8.84)

LSTM (Alhagry et al., 2017) 64.98
(9.15)

77.66
(10.57)

79.13
(7.22)

80.29
(8.83)

60.57
(11.89)

70.14
(12.67)

76.35
(10.23)

78.81
(9.50)

2D-CNN (Chen et al., 2019c) 65.73
(8.89)

68.45
(6.35)

79.96
(9.84)

81.42
(10.77)

67.22
(6.73)

69.36
(8.65)

77.24
(11.38)

80.58
(12.72)

3D-CNN (Salama et al., 2018) 65.26
(7.34)

70.17
(9.89)

82.51
(11.43)

83.68
(12.05)

64.54
(7.42)

71.09
(12.16)

78.67
(9.93)

82.11
(10.64)

H-ATT-BiGRU (Chen et al., 2019b) 66.27
(8.11)

68.58
(6.92)

81.96
(11.15)

84.25
(9.32)

65.03
(9.19)

67.15
(11.54)

81.58
(10.26)

85.34
(8.81)

DANN (Ganin et al., 2016) 68.39
(12.56)

70.87
(10.75)

85.73
(11.62)

86.92
(9.19)

67.56
(11.04)

72.42
(7.75)

79.96
(8.42)

85.47
(9.73)

Casc-CNN-LSTM (Chen et al., 2020) 70.07
(7.44)

73.25
(8.81)

88.54
(9.69)

89.18
(11.23)

69.21
(8.12)

75.88
(9.93)

85.25
(10.36)

89.53
(7.39)

R2G-ST-BiLSTM 71.46
(10.73)

75.82
(9.55)

90.57
(7.36)

91.38
(8.92)

71.35
(8.28)

87.14
(6.67)

86.72
(9.81)

90.86
(11.92)

Bold values represent the better results obtained by the proposed method, highlighting the comparison.

TABLE 6 | The results of cross-subject experiment on the DEAP dataset.

Method SVM (Suykens and
Vandewalle, 1999)

BT (Chuang et al.,
2012)

RF (Breiman,
2001)

DBN (Zheng and
Lu, 2015)

LSTM (Alhagry
et al., 2017)

2D-CNN (Chen
et al., 2019c)

ACC/STD 56.32/10.25 58.49/8.76 51.74/11.13 59.01/7.88 64.66/11.40 65.25/9.37

Method 3D-CNN (Salama et al.,
2018)

H-ATT-BGRU
(Chen et al., 2019b)

DANN (Ganin et al.,
2016)

Casc-CNN-LSTM
(Chen et al., 2020)

R2G-ST-BiLSTM

ACC/STD 68.13/14.07 77.82/10.12 75.24/8.59 82.36/7.15 84.51/9.26

TABLE 7 | The results of cross-subject experiment on the SEED dataset.

Method CM (Suykens and
Vandewalle, 1999)

BT (Chuang et al.,
2012)

RF (Breiman,
2001)

DBN (Zheng and
Lu, 2015)

LSTM (Alhagry
et al., 2017)

2D-CNN (Chen
et al., 2019c)

ACC/STD 56.73/16.29 51.23/14.82 69.00/10.89 61.28/14.62 63.54/15.47 71.31/14.09

Method 3D-CNN (Salama et al.,
2018)

H-ATT-BGRU
(Chen et al., 2019b)

DANN (Ganin et al.,
2016)

Casc-CNN-LSTM
(Chen et al., 2020)

R2G-ST-BiLSTM

ACC/STD 69.13/13.07 76.31/15.89 79.95/9.02 83.28/9.60 85.49/7.96

of three types of trials. These 13 selected subjects include sub05,
sub10, sub12, sub13, sub15, sub21, sub22, sub24, sub25, sub26,
sub28, sub29, sub32. For each of these selected subjects, we
randomly selected all segments of about 10% of the trials from
each type as the test set, then randomly selected all segments of
about another 10% of the trials from the rest of each type as the
validation set, and at last take all segments of the remaining 80%
of the trials as the training set. In this division process, we will
make sure all segments belonging to one trial is allocated either as
the training set, test set, or validation set to avoid “data leakage.”

Then the proposed R2G-ST-BiLSTM model is used for feature
learning and emotion classification. The learning process on the
DEAP dataset is shown in Figure 4.

We use the average classification accuracy (ACC) and
standard deviation (STD) of all subjects to evaluate the model
performance. For comparison, we also use the abovementioned
benchmark methods to make experiments on the equal dataset.
We use paired t-test against the benchmark methods to show
the difference between them. T-test is a test method for
the difference between two mean values of small samples
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(sample size less than 30). It uses t-distribution theory to
infer the probability of difference, to judge whether the
difference is significant. The significance of the classification
performance of the proposed method against each benchmark
method is calculated with paired t-test. For all the paired
t-tests, we used Bonferroni criteria (Genovese et al., 2002)
and the implementation method (Weisstein, 2004) to make
p-value correction for multiple hypothesis testing to limit
false discovery rate (FDR). The results of within-subject
experiment on the DEAP and SEED datasets are shown,
respectively, in Tables 3, 4. The p-Value indicates the corrected
results of paired t-test. A value of p < 0.05 means the
difference is significant.

It can be seen from Tables 3, 4 that the average accuracy
of the R2G-ST-BiLSTM method achieves 94.69% on DEAP and
93.57% on SEED, which is best among the above methods. From
a statistical point of view, the performance of the proposed model
is significantly better than the benchmark models. This result
is largely because our R2G-ST-BiLSTM model explores both
temporal and spatial context information of the different brain
regions of EEG signals.

According to the experimental result of our proposed model
on DEAP, we draw a confusion matrix for the three categories
of emotions in Figure 5. It is found that compared with
neutral emotions, positive and negative affections are less
likely to be confused.

We also used a method-like reference (Zheng, 2017) to
conduct some additional experiments to test the classification
performance of different frequency bands of EEG data.
Specifically, the DE features are extracted from four frequency
bands θ, α, β, and γ related to the original signal, and
then the EEG emotion recognition experiment is performed
based on these DE features of the four bands. We can see
the experimental results on DEAP and SEED datasets in
Table 5, which indicate that on both datasets, the recognition
performance in the higher frequency bands of β and γ is better
than those in the lower frequency bands of θ and α. This result
is consistent with the neurophysiology research in literature
(Mauss and Robinson, 2009).

Cross-Subject Experiment of
Electroencephalogram Emotion
Recognition
In this section, we use the cross-subject and the leave-one-
subject-out (LOSO) cross-validation strategy similar to that
in Zheng and Lu (2016); Li et al. (2018a) to evaluate the
proposed method, in which the training and testing data are
selected from different subjects. The EEG data of one subject
is selected as test data, and the EEG data of all the rest of
the subjects are used as training data. After each subject is
rounded, the average prediction accuracy and standard deviation
are calculated as the results. To better compare the performance
of the proposed method, we use the abovementioned methods
as benchmark. The comparison results of various methods on
DEAP and SEED are illustrated in Tables 6, 7, respectively.
On both datasets, our R2G-ST-BiLSTM model also performs

FIGURE 6 | Learning process of R2G-ST-BiLSTM model in cross-subject
experiment on DEAP dataset.

FIGURE 7 | Confusion matrix of R2G-ST-BiLSTM model for cross-subject
experiment on DEAP dataset.

better. The learning process on the DEAP dataset is shown in
Figure 6.

We also draw a confusion matrix in Figure 7 according to
the results of our model on the DEAP dataset, which shows that
positive emotion is easier to be recognized than the negative and
neutral emotions.

We also compared the influence of the different frequency
bands on cross-subject emotion recognition. The experimental
results on DEAP and SEED datasets are shown in Table 8, from
which it can be seen that, on both datasets, the classification
performance in the higher frequency bands of β and γ are better
than those in the lower frequency bands of θ and α, and the R2G-
ST-BiLSTM method achieves the best performance on the four
frequency bands.

To prove the influence of the different brain regions on
emotion recognition, we visualize the weight distribution of
brain regions based on the weighting matrix W defined in
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TABLE 8 | The results of four frequency bands in cross-subject experiment.

Methods The results (%) of ACC (STD)

DEAP SEED

θ α β γ θ α β γ

SVM (Suykens and Vandewalle, 1999) 41.91
(8.39)

44.73
(7.56)

48.66
(10.21)

51.32
(9.08)

40.62
(9.83)

42.05
(12.65)

47.97
(12.47)

50.06
(10.48)

BT (Chuang et al., 2012) 45.17
(9.38)

48.29
(14.77)

53.95
(8.54)

54.48
(7.43)

45.98
(9.70)

48.63
(10.28)

49.79
(12.41)

54.07
(6.87)

RF (Breiman, 2001) 41.50
(8.57)

41.86
(4.52)

47.31
(12.02)

47.72
(10.05)

40.07
(6.50)

42.09
(13.34)

48.29
(12.77)

48.98
(12.82)

DBN (Zheng and Lu, 2015) 44.36
(11.82)

46.15
(8.98)

55.94
(6.01)

56.81
(9.27)

45.76
(10.98)

48.43
(9.75)

56.66
(6.58)

56.62
(6.84)

LSTM (Alhagry et al., 2017) 47.92
(6.45)

48.69
(10.40)

59.02
(7.83)

59.16
(11.62)

48.63
(10.29)

51.59
(11.83)

62.13
(7.73)

59.37
(10.75)

2D-CNN (Chen et al., 2019c) 48.33
(7.61)

49.74
(13.26)

62.18
(9.90)

62.09
(11.31)

48.36
(10.31)

50.60
(8.30)

62.04
(6.74)

62.19
(7.62)

3D-CNN (Salama et al., 2018) 51.81
(9.79)

53.46
(9.84)

65.15
(11.32)

64.97
(8.46)

52.60
(11.84)

54.95
(10.45)

64.47
(13.69)

64.47
(14.69)

H-ATT-BiGRU (Chen et al., 2019b) 63.44
(12.50)

61.52
(7.07)

70.39
(12.14)

72.63
(5.28)

64.47
(14.96)

59,81
(12.43)

71.03
(10.48)

73.55
(8.80)

DANN (Ganin et al., 2016) 56.98
(5.33)

58.06
(11.80)

67.70
(8.65)

70.46
(12.17)

55.47
(9.80)

56.72
(10.79)

67.14
(7.17)

71.03
(10.14)

Casc-CNN-LSTM (Chen et al., 2020) 61.27
(8.02)

62.83
(6.56)

73.59
(10.54)

73.55
(8.69)

62.04
(6.64)

63.31
(11.96)

73.25
(9,12)

74.29
(7.98)

R2G-ST-BiLSTM 64.03
(14.41)

66.26
(5.99)

74.64
(9.38)

75.02
(10.10)

66.14
(8.10)

67.14
(7.05)

74.85
(8.02)

75.89
(8.15)

Bold values represent the better results obtained by the proposed method, highlighting the comparison.

formula (5) and learned in our cross-subject experiment on
DEAP, where the sum of each row of W matrix represents
the contribution of corresponding brain region. Figure 8 shows
the weighted map of the brain areas, where the darker the
color of the region, the more significant contribution of the
corresponding brain region. It can be seen from Figure 6 that
EEG signals in the frontal lobe are very important for human
emotion recognition, which is consistent with the results of the
cognitive observations of biological psychology in the literature
(Coan and Allen, 2004).

Discussion About Several Variants of the
Proposed Model
Various experiments on the DEAP dataset demonstrates that
the proposed R2G-ST-BILSM model is more effective than the
other methods, which is largely due to our R2G-ST-BiLSM model
utilizing both regional weighting layer and regional to global
time layer. In order to confirm that, we obtained the following
three simplified models by removing some layers from the R2G-
ST-BiLSTM network, and use them to make within-subject and
cross-subject experiments on the DEAP dataset. These three
simplified models are described as follows:

(1) R2G-ST-BiLSTM-V1—removes the dynamic regional
weighting layer and regional temporal feature learning
layers;

(2) R2G-ST-BiLSTM-V2—only uses global temporal feature as
the final input feature to classify;

(3) R2G-ST-BiLSTM-V3—does not change the original
structure of the R2G-ST-BiLSTM, except that the weight of
each brain region is set to 1, which means all brain regions
are of the same importance to emotion classification.

Table 9 demonstrates the comparison outcome of the above
four variant models. The comparison relationship is as follows:

R2G-ST-BiLSTM-V1 < R2G-ST-BiLSTM-V2 < R2G-ST-
BiLSTM-V3< R2G-ST-BiLSTM, (27)

The significance of the regional weighting layer and the
regional temporal feature learning layer has been proven by
the above comparisons, which shows that these two parts play
important roles in enhancing the capability of our R2G-ST-
BiLSTM model.

To further discuss whether the different components of
R2G-ST-BiLSTM are necessary to outperform other models, we
modified it according to the following methods to obtain its
several variants:

(1) R2G-ST-CNN-V1: replaces all BiLSTM modules used for
learning spatial and temporal features of local and global
brain regions with two-layer 2D-CNN modules.

(2) R2G-ST-CNN-V2: only the BiLSTM modules used for
learning temporal features of local and global brain regions
are replaced with two-layer 2D-CNN modules.

(3) R2G-ST-CNN-V3: only the BiLSTM modules used for
learning spatial features of local and global brain regions
are replaced with two-layer 2D-CNN modules.
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FIGURE 8 | Weighted map of brain areas.

(4) R2G-ST-BiLSTM-V4: only remove the domain
discriminator from the proposed model.

The structure and parameter configuration of the 2D-CNN
here are consistent with those in literature (Chen et al., 2019c).
These four variant models are used to make within-subject and
cross-subject emotion classification experiments on DEAP. The
comparison results are shown in Table 10.

It can be seen from Table 10 that the classification
performance of the proposed model is significantly better than
that of the four variant models. Specifically, the proposed model
outperforms the R2G-ST-CNN-V2, which indicates that the
BiLSTM components can extract more discriminative time-
context features from EEG sequences than 2D-CNN. The
performance of our proposed model is better than that of
R2G-ST-CNN-V3, which shows that BiLSTM components can
better cooperate with the attention mechanism of brain regions
and extract more spatial context-dependent features than 2D-
CNN. The proposed model significantly outperforms R2G-
ST-CNN-V1, which further proves that BiLSTM has obvious
advantages over 2D-CNN in learning deep temporal and spatial
features in our proposed hierarchical framework. The proposed
model significantly outperforms R2G-ST-CNN-V4, especially
in cross-subject experiment, which illustrates that the domain
discriminator is indeed helpful to extract more discriminative
EEG features with small differences between subjects and,
therefore, improve the adaptability of the model. In general, the
components of BiLSTM and the domain discriminator play very
important roles on the whole performance of the proposed model
and are necessary to outperform other models.

DISCUSSION

Although the proposed model has achieved high classification
accuracy, there are still some limitations to study and
overcome in the future.

At first, the model is complex and lacks interpretability.
The model proposed in this paper is a combined hierarchical
deep neural network composed of multiple bidirectional LSTM

TABLE 9 | Comparison results of four models on the DEAP dataset.

Methods Within-subject experiment Cross-subject experiment

ACC (%) ACC (%)

R2G-ST-BiLSTM-V1 90.43 80.32

R2G-ST-BiLSTM-V2 91.58 81.15

R2G-ST-BiLSTM-V3 93.72 83.96

R2G-ST-BiLSTM 94.69 84.51

Bold values represent the better results obtained by the proposed method,
highlighting the comparison.

TABLE 10 | Comparison results of five models on the DEAP dataset.

Methods Within-subject experiment Cross-subject experiment

ACC (%) ACC (%)

R2G-ST-CNN-V1 85.26 75.64

R2G-ST-CNN-V2 88.75 80.72

R2G-ST-CNN-V3 90.83 81.47

R2G-ST-BiLSTM 94.69 84.51

R2G-ST-BiLSTM-V4 92.14 78.39

Bold values represent the better results obtained by the proposed method,
highlighting the comparison.

models with attention mechanism. Although the principle and
learning process of the model is clear, the decision making
and intermediate process made by the model are difficult to
understand and interpreted. It is hard to explain the correlation
and the interaction among input data, learned features, and
output class. At present, researchers have put forward some
specific deep model interpretation methods including activation
maximization, gradient-based interpretation, class activation
mapping (CAM), and so on. The interpretation result of the
activation maximization is more accurate and can help people
understand the internal working logic of DNN, but the data
containing some noise generated in the optimization process
makes it difficult to interpret the input (Dong et al., 2017). The
gradient-based interpretation methods include deconvolution,
guided backpropagation, integrated gradients, and smooth
gradients, which aim to use backpropagation to calculate
the gradient of specific output relative to input to derive
feature importance. This gradient information can only be
used to locate important features, but not to quantify the
contribution of each feature to the classification results. The
CAM method (Jorg, 2019) can locate the objects from the
learned features by the excellent ability of the last convolution
layer in CNN, which could only provide coarse-grained
interpretation results for various CNN models. Additionally,
there are some model-agnostic (MA) explanations, such as
LIME and knowledge distillation, and causal interpretable
method. Although many methods have been proposed in
the interpretability research for deep models, there are still
many problems to be solved, such as the lack of unified
indicators for evaluating interpretation methods, the balance
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between model accuracy and interpretability, and the balance
between data privacy protection and model interpretability,
which will be one of our future research directions to improve
the performance of the model.

Second, the complex model and limited amount of data
make the model prone to overfitting. We use the EEG data
of the DEAP and SEED datasets, which include 32 and 15
subjects, respectively, to make our experiments. In cross-subject
experiments on the DEAP dataset, the number of the model
parameters reaches about 50,156, which exceeds the number of
training samples at 15,360. Compared with the complexity of
the model, the training dataset is small, which makes the model
prone to overfitting. At present, researchers usually use methods
such as expanding dataset, removing features, regularization, and
terminating training in advance to prevent model overfitting
(Sanjar et al., 2020). Data enhancement is a way to increase
training data, which can be realized by flipping, translation,
rotation, scaling, and generation methods. Removing features is
to reduce the complexity of the model by removing some layers
or some neurons from it. Through monitoring the performance
of each training iteration and when the loss on the verification set
tends to increase, we could stop the training process to prevent
the model from overfitting. The regularization method reduces
the complexity of the model by punishing the loss function with
L1 or L2 paradigm. In our work, we use L2 regularization and
dropout method to suppress the overfitting problem, but we
still face the challenge of insufficient data. In the future, we will
design experiments or ask some medical institutions or hospitals
to collect more EEG data for the study. We will also explore to
use the generated antagonism network (GAN) to generate a large
number of artificial EEG data to make up for this deficiency.

Third, the proposed model is so complex that it needs to
consume a lot of computation resources and time to train the
model, and it is hard to quickly verify and improve the model,
as well as make real-time prediction. In the future, we will try to
further simplify the structure of the model without changing its
performance, and make deep research on accelerating the speed
of model training and real-time application.

CONCLUSION

Based on the discovery of neuroscience that each region of
the human brain can produce different dynamic responses
to emotions, we suggest a new hierarchical EEG feature
learning method by using attention mechanism and bidirectional
LSTM neural network from region to global brain. A large
number of experiments and verification are carried out on the
DEAP and SEED datasets. The results show that the proposed
R2G-ST-BiLSTM model achieves the best performance in
subject-dependent and subject-independent EEG-based emotion
recognition. Through experiments on several variants of the
model, we compare and analyze the impact of different
components of the model on its overall performance, and
summarize the following advantages of the proposed model:

(1) The BiLSTM networks are used to hierarchically learn
the deep spatial correlation features within and cross
each brain region. The attention mechanism is combined
to weigh the contribution of each brain region to the
emotion classification, which could enhance the influence
of the brain region with more contribution and reduce the
influence of the brain region with less contribution.

(2) The BiLSTM networks are used to hierarchically learn the
deep temporal correlation features from the EEG time
sequence of each local brain region and global brain. The
learned deep temporal and spatial features are connected to
make the features more discriminative.

(3) By introducing the domain discriminator, the feature
difference between different subjects is reduced, and the
robustness and adaptability of the model are improved.

Although the proposed model shows some advantages, there
are still some problems to be solved. For example, the model
is more complicated, which costs much time and computing
resource for training. The whole proposed model still works as
a black box, and it is difficult to explain the physical meaning
represented by the learned abstract features. The complex model
and limited amount of data make the model prone to overfitting.
Therefore, in the future, we will further study how to improve
the interpretability of the proposed model, simplify the structure
of the model, and further improve the robustness and domain
adaptability of the model.
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The goal of this study was to investigate the effect of audio listened to through
headphones on subjectively reported human focus levels, and to identify through
objective measures the properties that contribute most to increasing and decreasing
focus in people within their regular, everyday environment. Participants (N = 62, 18–
65 years) performed various tasks on a tablet computer while listening to either no
audio (silence), popular audio playlists designed to increase focus (pre-recorded music
arranged in a particular sequence of songs), or engineered soundscapes that were
personalized to individual listeners (digital audio composed in real-time based on input
parameters such as heart rate, time of day, location, etc.). Audio stimuli were delivered
to participants through headphones while their brain signals were simultaneously
recorded by a portable electroencephalography headband. Participants completed four
1-h long sessions at home during which different audio played continuously in the
background. Using brain-computer interface technology for brain decoding and based
on an individual’s self-report of their focus, we obtained individual focus levels over time
and used this data to analyze the effects of various properties of the sounds contained
in the audio content. We found that while participants were working, personalized
soundscapes increased their focus significantly above silence (p = 0.008), while music
playlists did not have a significant effect. For the young adult demographic (18–36 years),
all audio tested was significantly better than silence at producing focus (p = 0.001–
0.009). Personalized soundscapes increased focus the most relative to silence, but
playlists of pre-recorded songs also increased focus significantly during specific time
intervals. Ultimately we found it is possible to accurately predict human focus levels
a priori based on physical properties of audio content. We then applied this finding
to compare between music genres and revealed that classical music, engineered
soundscapes, and natural sounds were the best genres for increasing focus, while pop
and hip-hop were the worst. These insights can enable human and artificial intelligence
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composers to produce increases or decreases in listener focus with high temporal
(millisecond) precision. Future research will include real-time adaptation of audio for
other functional objectives beyond affecting focus, such as affecting listener enjoyment,
drowsiness, stress and memory.

Keywords: artificial intelligence, audio, brain-computer interface, focus, human

INTRODUCTION

The Effect of Sound on Human
Experience
Sounds are all around us, from natural sounds like the wind, to
engineered sounds like music. It is well-established that sounds
have a major influence on the human brain and consequently,
human experience (Levitin, 2006; Sacks, 2010). Sounds can
reduce stress (Davis and Thaut, 1989), support learning and
memory formation (Hallam et al., 2002), improve mood (Chanda
and Levitin, 2013), and increase motivation (Salimpoor et al.,
2015). Sounds can also do the opposite and create aversive
experiences (Schreiber and Kahneman, 2000; Zald and Pardo,
2002; Kumar et al., 2012). One of the most significant effects of
sounds is to impact focus. Focus is commonly demanded by tasks
of daily living and work, and in these areas sounds experienced
as audio through headphones, earbuds or speakers offer a
safe way to increase focus levels and productivity. However,
sounds can be both beneficial or distracting and previous
results have been inconclusive in determining the reasons why
(de la Mora Velasco and Hirumi, 2020).

For example, it has been found that listening to music with
lyrics while reading or working can decrease concentration or
cognitive performance (Shih et al., 2012; Liu et al., 2021), while
several studies have shown oppositely that natural-occurring
sounds such as white noise, or highly composed sound such
as classical music, can be beneficial for increasing focus and
can even improve learning outcomes (Davies, 2000; Chou, 2010;
Angwin et al., 2017; Gao et al., 2020). Therefore, one interesting
question that emerges is: what are the specific properties of
an audio experience that affect human focus levels the most?
Additionally, studies have shown that the effect of audio is often
subjective, where whether one likes a given sound or not is a key
factor in its effect on their experience (Cassidy and Macdonald,
2009; Huang and Shih, 2011; Mori et al., 2014). Although this
finding about the subjectivity of experience of audio reappears
across many studies, psychophysical thresholds are known to
exist and there are clearly natural laws governing much of the
way humans hear and experience sound (Levitin et al., 2012; Nia
et al., 2015; Washburne, 2020).

The potential of audio alone to increase focus, and the
consumer demand for non-pharmaceutical tools that enable
individuals to enhance their own ability to focus has recently
led several companies (including Focus@Will, Endel, Brain.fm,
Mubert, Enophone, Melodia, AIVA, and others) to develop
audio content that is dedicated to increasing focus “on-
demand.” These new audio forms include elements of white
noise, music, and other sonic properties that are functionally

combined to increase a listener’s focus and maintain high
levels of focus over a long duration of time. One of the
challenges in this field is to figure out the physical properties
of sound that contribute to human experience the most
so that design principles can be defined correctly to create
audio that reliably achieves the goal of increasing focus,
opposed to the inverse of causing distractions and impairing
an individual’s ability to focus. Insights about audio properties
therefore have been sought by commercial groups alongside
academic groups in order to learn how to optimally enhance
human focus.

Many scientific studies have explored this question and
looked for the relationship between sound, music, and human
experience using objective measures that empirically assess
properties of audio and their emotional correlates. For example,
Cheung et al. (2019) found that pleasure from music depends on
states of expectation, such as a skipped rhythmic beat, which can
either be pleasurable or discomforting depending on the listener’s
specific circumstance. Sweet Anticipation (Huron, 2006) similarly
maps how music evokes emotions within a theory of expectation
and describes psychological mechanisms that are responsible for
many people’s mixed responses to audio of various types. Other
studies used machine learning methods to map from features of
audio signals to emotions (Yang et al., 2008; Vempala and Russo,
2012; Brotzer et al., 2019; Cunningham et al., 2020; Hizlisoy et al.,
2021). These machine learning studies to date have, however, only
aimed to predict emotions based on the limited valence-arousal
circumplex model, and as far as we know, no attempts have been
made to predict human focus levels exclusively based on audio
signal analysis.

One persistent obstacle to the field’s understanding has been
studies that rely on data with a low temporal resolution. Since
audio content and emotions can change fast, on the order of
tens of milliseconds, the current lack of modeling tools capable
of capturing quick, transient changes in human experience
that accompany changes in sound is a major hindrance to
progress (Larsen and Diener, 1992; Cowen and Keltner, 2017).
Commonly, for example, reports are based on data where there is
a single emotional label per song, while the song lasts 2–3 min
and throughout it there are emotional dynamics that change
dramatically. This mismatch of data can lead to conclusions being
drawn from inadequately small amounts of samples, and worse
than that, inaccurate emotional labels.

Attention and Emotion Decoding From
Brain Signal
Brain decoding technology offers an exceptional opportunity to
solve this issue, since it enables an estimation for the experience
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dynamics at the same time resolution as focus phenomena occur.
Using electroencephalogram (EEG) sensor data, which contains
electrical brain activity measured from the scalp (non-invasive)
on the order of hundreds of measurements per second, many
studies have established that it is possible to capture fast changes
in human emotions and experience, such as stress (Perez-Valero
et al., 2021), arousal (Faller et al., 2019), fatigue (Hu and Yang,
2017), and happiness (Lin et al., 2017). Several studies have
similarly shown the ability to capture focus and attentional state
changes, affirming that this information is present in EEG sensor
data (Jung et al., 1997; Hamadicharef et al., 2009; Micoulaud-
Franchi et al., 2014; Tuckute et al., 2021). While brain decoding
technology has been applied widely to study the effects of
different types of stimuli (e.g., visual, tactile, and auditory) on
human experience within a laboratory environment (Bhatti et al.,
2016; Shahabi and Moghimi, 2016; Asif et al., 2019), as far as
we know, it has not been applied to study the joint effects
of audio and focus at the high temporal resolution needed
to explain both phenomena as they occur in people’s natural,
everyday environments.

In recent years, progress in the development of consumer
brain-computer interface wearable technology such as non-
clinical, non-invasive EEG sensors (such as Muse, NeuroSky,
Emotiv, Bitbrain, etc.), which are intended for personal use,
has led to new research paradigms. Now it is possible to
use comfortable, affordable, wireless, and easy-to-use at-home
measurement devices to collect neuroscientific data “in-the-wild”
at a large scale, which opens up for the first time the opportunity
to measure brain responses from diverse audiences within their
natural habitats. Many of the wearable brain-computer interface
devices offer real-time decoding outputs that are derived from
the raw electrophysiological sensor data. These “off-the-shelf ”
decoding outputs include attention, relaxation, and other states
(Rebolledo-Mendez et al., 2009; Liu et al., 2013; González et al.,
2015; Abiri et al., 2019; Bird et al., 2019). It is important to
note, however, that although decoder algorithms have existed in
the market for consumer uses for several years, verifying their
reliability to accurately capture attention, valence, arousal, stress,
and other attributes of human experience at a high temporal
resolution, advanced research quality has remained a challenge.

Combining Brain–Computer Interface
Technology With Audio Tests to Decode
Focus
In the current study, we used a brain-computer interface
algorithm package, NeuosTM Software Development Kit (Neuos
SDK from Arctop Inc.), for processing data from portable
fabric EEG headbands (Muse-S from Interaxon Inc.) in order
to measure human focus levels in individuals performing tasks
at home while they listened to different audio content through
headphones. The ground truth focus levels we used were based
on each individual’s subjective, self-report. Since the Neuos SDK
product is a relatively new technology, we first evaluated the
validity of the focus outputs within the experimental conditions.
Then, once the algorithm outputs were found to be reliable and
accurate in this context, we use the focus data to compare effects

of different sound stimuli on individuals as they carried out
different tasks.

Next, we exploited the high temporal resolution of the
decoded data to map between raw audio signals and the focus
dynamics. Based on this mapping, we built a model that takes as
an input an audio file and predicts from the properties of sound in
the audio the corresponding focus levels that human listeners will
experience. This high resolution modeling enables us to compare
between new songs, various sounds, and between genres to gain
additional insights about the nature of audio stimuli that drive
human focus the most. These insights can help produce optimal
playlists to increase focus for general audiences, improve design
of custom soundscapes for work and learning environments, and
even adapt audio in real-time based on an individual’s focus levels
to allow them precise influence over their own mental state.

MATERIALS AND METHODS

Participants
Sixty-two participants (40 males, 22 females, 18−65 years),
completed four sessions over a single week at their own home.
All participants were recruited from an opt-in screening panel
and were distributed approximately evenly across the five major
regions of the continental United States (Northeast, Southwest,
West, Southeast, and Midwest). Only participants who reported
normal hearing, normal vision, or vision that was corrected
to normal with contact lenses, were included. We excluded
volunteers who reported using medication that might influence
the experiment and who reported neurological or psychiatric
conditions that could influence results. Participants were native
English speakers and a written informed consent was obtained
from each participant prior to their participation. Participants
received compensation for their time.

Paradigm
Tasks
Participants performed various tasks within a mobile Android
app (“Neuos Central” by Arctop Inc.) while listening to one
of three types of audio and wearing a brain signal measuring
headband (four-channel EEG Muse-S device by Interaxon Inc.).
Each participant received a kit at their home by mail that included
all the equipment needed to participate, including over-ear (Sony
Group Corporation) headphones, headband (Interaxon Inc.) and
tablet computer (Samsung Electronics Co., Ltd.) with the mobile
app installed. Participants recorded four 1 h long sessions, while
listening to different audio types. Sessions included 30 min of a
“Preferred Task” – a task chosen by the participant – followed
by short tasks (“calibration tasks”). These short tasks included
video games (Tetris), math problems (Arithmetics), and word
problems (Creativity) that were used to calibrate the sensors to
the individual. Participants were assigned to groups according to
a pseudorandom schedule that controlled for potential sequence
effects of the tasks and different audio types (Figure 1). The
short tasks calibrated the Neuos SDK decoding algorithms to a
validated performance level for each participant and afterwards
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FIGURE 1 | Schematic illustration of the paradigm in each recording session. Each session started with 30 minutes of a task selected by the participant (“Preferred
Task”), followed by 3 min of arithmetics exercises, 3 min of a creativity task, and two levels of Tetris the video game (each level lasted 1 min regardless of
performance). After each task, participants answered a survey where they reported on aspects of their experience (e.g., focus, enjoyment, and stress) using linear
scale sliders from “Not at all” (0) to “Very” (1). The short tasks were used as calibration tasks and the “Preferred Task” was the test task.

the individually validated model was used to measure each
participant’s focus level across the Preferred Task.

Participants were instructed to choose a Preferred Task that
they could perform in a seated position while listening to audio
through the headphones, and which they would be happy to
repeat in all four sessions. For example, Preferred Tasks that
were chosen included working, reading, knitting and solving
Sudoku puzzles. At the end of each task the participants self-
reported their experience through a survey in the app which used
linearly scaled slider buttons to quantify experience along several
dimensions (e.g., focus level, enjoyment, stress, motivation, etc.).
For the Preferred Task, the survey included reporting on their
focus level during the first and second half of the task separately,
resulting in six self-reported quantitative focus labels per session
(Preferred Task: two labels, arithmetics: one label, creativity: one
label, tetris: two labels).

Audio Stimuli
Each participant experienced four audio conditions over the
4 days of the study: two music playlists by leading digital service
providers Spotify and Apple (downloaded September 2020), one
personalized soundscape engineered by Endel, and silence (no
audible sounds). We selected Spotify’s “Focus Flow” playlist and
Apple Music’s “Pure Focus” playlist to represent the category
of pre-recorded audio designed to increase listener focus. For
soundscapes we selected the mobile app Endel to represent the
category of real-time, engineered audio that contains a mixture of
noise and musical properties. The Endel app “Focus” soundscape
was used by each participant on their own mobile device. All
audio conditions were instrumental and did not include singing
or any audible lyrics. For the condition of silence, participants
wore headphones exactly as they did in the audio conditions but

no music or audible sounds of any kind were played and no
soundscape was generated – participants simply completed the
session in a quiet environment.

Data Processing
Data Acquisition
While participants were listening to audio stimuli and engaging
in the experimental tasks, their electrical brain activity was
recorded using a fabric electroencephalograph (EEG) headband
that was wireless and weighed 41 g (Muse-S device by Interaxon
Inc.). The headband included four dry EEG sensors (sampling
rate: 256 Hz), photoplethysmography (PPG) sensors (for heart
rate) and motion sensors (gyroscope, accelerometer). The brain-
measuring EEG sensors were located on the scalp at two frontal
channels (AF7 and AF8) and two temporal channels (TP9
and TP10), with the reference channel at Fpz. The headbands
were put on by participants themselves with the assistance of
a quality control screen in the app that started each session
by giving participants real-time feedback on the signal quality
of their headband and made it easy for them to adjust the
headband appropriately to acquire the optimal signal (Figure 2).
No technicians or other support staff assisted in the placement
of the headbands – the process was completely automated by
the in-app prompts within the “Neuos Central” app, freeing
the participants to complete sessions at any time or place
of their choosing.

Brain Based Models of Focus
Brain decoding algorithms designed for real-time brain-
computer interfacing (Neuos SDK) was used to transform raw
sensor data into predicted focus dynamics with a time resolution
of 5 Hz (Figure 2). The short tasks (games, word and math
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FIGURE 2 | Schematic illustration of the data processing pipeline. Data acquisition included at-home recordings of four sessions, each with a different background
sound type. Arctop’s Neuos SDK brain decoding technology package was used to predict the focus dynamics at a rate of 5 Hz. Obtaining the brain decoded focus
dynamics synchronously with the sound content enables comparison of focus levels correlated with different physical properties of sound.

problems) were used for calibration of the sensors to the
focus dynamics of each individual, and then a calibrated model
per participant was applied on the Preferred Task data across
all days. The full analysis procedure included data exclusion,
preprocessing, feature extraction, and applying machine learning
models to transform raw data features to decoded focus dynamics
is explained below.

Data Exclusion
Since brain activity and survey data was collected in participants’
own homes, as a quality control step before preprocessing we
first validated the data with respect to headband positioning
(to confirm it was correctly placed), survey responses (to make
sure participants followed the instructions properly) and internet
issues (which occasionally resulted in missing measurements).
This procedure led to 11 participants data being excluded from
further analysis due to the following reasons:

1. Three participants were excluded due to misplacement
of the headband which caused excessive noise in
their recorded data. To identify the misplacement
we simply extracted the standard deviation of the
raw signal (SD > 500 reflects a misplaced channel).
Supplementary Figure 1 shows three examples of the
raw data of problematic participants vs. three examples of
valid participants.

2. Two participants were excluded for not following the
instructions correctly during the Preferred Task.

3. Six participants were excluded due to persistent internet
issues which caused missing or disrupted data.

After data exclusion, a total of 51 participants (mean age = 36,
SD = 8, 17 females and 34 males) were included in the
experimental analysis.

Preprocessing
A band-pass filter (0.5–70 Hz) was applied to each channel
together with a notch filter (60 Hz) to remove line noise. During
the performed tasks, 5 s of EEG data segments were extracted
from the filtered signal using a sliding window with a stride of
200 ms (96% overlap) to obtain a time resolution of 5 Hz of
accurate focus measurements reliably across each task. Headband
motion sensor (gyroscope) data were used to detect the motion
state of each segment (static, medium or high movement) and
segments with substantial movements (medium or high) during
the short calibration tasks were automatically excluded. During
the Preferred Tasks, all segments were included regardless of
movement state in order to obtain continuous dynamics for
the full 30 min.

To validate that the differences in responses to each audio
stream were not due to differences in movement patterns evoked
by the audio, we compared the motion statistics between audio
types. Supplementary Figure 2C shows that during the Preferred
Task, participants were stationary 91% of the time and similarly
for all audio types (Supplementary Figure 2D). To address eye
blinks, which are a normal human function that can corrupt EEG
data, we calculated the number of blinks in each EEG segment.
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Supplementary Figure 2A shows the histogram of the blink
rate across participants (average blinks per minute = 16 ± 6).
Supplementary Figure 2B shows similar rates of eye blinks for
all audio streams, ruling out the possibility that the differences in
the effects of audio were due to differences in eye blink patterns
which may have introduced artifacts to the decoded data.

Feature Extraction
From each EEG segment (epoch) a total of 124 features were
extracted, then to handle outliers and avoid extreme values each
feature underwent a programmatic trimming procedure that
denoised high and low values (extreme values were defined as
above or below 2 SD from the mean). The following features were
used:

a. Average power spectrum features – each segment was
transformed to the frequency domain using Welch
method, and for each channel, the average power in
different frequency bands was calculated (0.5–4, 4–8, 8–
12.5, 12.5–30, 30–47, 52–70, and 30–70 Hz) – a total of 4
channels× 7 bands = 28 features.

b. Ratios between average power for spatial symmetric
channels (frontal: AF7

AF8 and temporal: TP9
TP10 ) – a total of 2

pairs× 7 bands = 14 features.
c. Power spectrum interactions – the power spectrum ratio

between bands ( alpha
delta , beta

theta , theta
alpha (Barachant, 2017) and

engagement index ( beta
alpha+theta ) (Pope et al., 1995) – a total

of 4 channels× 4 interactions = 16 features.
d. Pairwise Pearson correlations between channels in the

above frequency bands – 6 pairs× 7 bands = 42 features.
e. Time domain features – for each channel, the first four

moments (average, standard deviation, skewness, and
kurtosis), entropy and number of zero-crossing points –
total of 4 channels× 6 types = 24 features.

Machine Learning Models
Average features were calculated across each short task (games,
word and math problems) for all valid participants and from all
days, resulting in 816 focus-ranked tasks (51 participants × 4
sessions × 4 ranked subtasks per session). Then, in a cross
validation procedure, multiple random forest regression models
provided by the Neuos SDK software package were trained on
random subsets of participants (80%) to predict the self-reported
focus based on the computed features. For each participant,
from the subset of models for which their data were not part of
training, the single best model was selected based on the Pearson
correlation between the model prediction and the self-reported
focus by that participant during the short calibration tasks. The
selected regression model was then applied to EEG segment data
during their Preferred Task 30 min recordings to get a continuous
brain-decoded gradient of focus dynamics that was accurate.

A Gaussian filter was used to smooth the dynamics of the
brain-decoded focus gradient and all of the presented results and
statistical analysis in this paper are projections of the Gaussian
filtered model outputs on the Preferred Task which was not
part of the training and selection process for each participant.
Figure 3 shows the resulting brain decoded focus levels of two

representative participants across all four sessions during the
Preferred Task period. Model performance was evaluated using
Pearson correlation coefficient between the self-reported focus
and the brain decoded focus values after thresholding the values,
with the area under the ROC curve for binary classification of
low/high focus (Figure 5).

Electroencephalogram signals are non-stationary and can
change dramatically over time (Haartsen et al., 2020; Padilla-
Buritica et al., 2020; Yang et al., 2021). To validate that the
obtained focus dynamics were not influenced by the non-
stationarity of the EEG signal or other forms of signal drift
that can occur with electrophysiological measures, we compared
the averaged focus levels across all sessions during the first
15 min of the Preferred Task to the last 15 min (Supplementary
Figure 3). We found there was no significant difference between
the segments and concluded that the signal processing methods
were robust to this form of signal artifact.

Statistical Methods
For comparisons between average focus levels in response to
the different audio streams, we calculated for each participant
(N = 51) the median focus level while performing the Preferred
Task and conducted a one-way repeated measures ANOVA
(analysis of variance) test. Then, if p < 0.05, paired t-tests
were applied post hoc to compare between pairs of audio
streams using the Holm–Bonferroni correction. Time series
statistical tests were applied to compare focus level dynamics
and discover specific time periods where there was significant
difference. A paired t-test was applied to each second between
focus levels of two audio streams and the p-values were then
corrected for multiple comparisons by setting a threshold for
a minimum significant sequential time-samples. The threshold
was determined by random permutations (1000 iterations)
of participants’ conditions and repeating the statistical test,
resulting in a distribution of significant sequential time samples.
The threshold was set as the 95% percentile of the resultant
distribution (Broday-Dvir et al., 2018).

Audio Signal Decomposition and Feature Extraction
The pre-recorded music playlist conditions (Apple and Spotify)
provided raw audio data that we used to obtain sound property
dynamics in the time and frequency domain. These dynamics
could then be correlated with the obtained focus dynamics
as averaged across participants. Soundscape audio content and
silence conditions were not used in this analysis because
the soundscapes were produced in real-time personally for
each participant, which limited the ability to apply sound
property analysis appropriately across the data set, and the
silent condition yielded no sound features (no microphones
were used during the session from which miscellaneous
sounds might have otherwise been extracted). The audio
features were calculated for each playlist using Python’s library
pyAudioAnalysis (Giannakopoulos, 2015), for example, the
sound signal energy, spectral entropy, and chroma coefficients
were extracted. The features were calculated in short-time
windows of 50 ms with a sliding window of 25 ms. Basic statistics
were then calculated over the sound features in windows of 30 s
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FIGURE 3 | Brain data based focus model dynamics of two representative participants during the Preferred Task performed at each of the four sessions. Each row
represents a session with a different sound stream playing in the background as participants perform their chosen task. Each session included 30 min (x-axis = time
in minutes) of a “Preferred Task” over which their focus level (y-axis = decoded focus) was measured. Participant 29 (A) was reading while Participant 45 (B) was
working.

(e.g., mean and SD), resulting in 136 sound properties (link to
full list). To enable mapping of audio features to the brain model,
the brain decoded focus levels were averaged across participants
and averaged in corresponding 30 s windows (Figure 4) to obtain
a singular collective dynamic that could be used to predict focus
from audio content with the same number of samples as the audio
feature properties.

Obtaining the Sound Decoded Focus Model
To map the relationship between properties of the audio
heard and focus levels measured directly from the brain, we
applied principal component analysis (PCA) to reduce the
dimensionality of the audio features (using 33 dimensions
ultimately, which explained 95% of the data variance). We
then trained a linear regression model to map between the
transformed audio features and the averaged brain decoded
focus levels. The training was done using backward features
elimination where in each iteration the component with the
smallest weight on average was eliminated. To evaluate model
performance, training was done with a stratified cross validation
procedure in which we divided the data set to training
and validation according to the songs played (to avoid time

dependency issues between the sound features). A total of 18
different songs were played during the pre-recorded playlists
(8 songs for Apple, 10 songs for Spotify). In each iteration, 14
songs were used in training and 4 as validation (77/23%). For
each sample and song, the audio decoded score is the average
model predictions calculated across the models it was part of in
the validation set.

RESULTS

Brain-Measured Focus Levels Accurately
Reflect Self-Reported Focus Levels
After calibration tasks established an initial model for each
participant, and before comparing focus levels elicited by the
different audio types, we validated that the underlying brain
decoding technology was accurate and correctly calibrated by
comparing between the brain-based focus predictions and the
self-reported focus values during the test task (the “Preferred
Task”). Figure 5A shows a histogram of the model performance
per participant. The model is evaluated based on the AUC
score (of the ROC curve) for prediction of self-reported focus
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FIGURE 4 | Diagram demonstrating the framework for correlation of time-series focus values with sound properties. (A) Example of a recorded brain data in
microvolts (single channel of EEG) segment, which after applying the preprocessing and trained models on 30 min of recordings, transforms to the brain decoded
focus dynamics [top (C)]. (B) Examples of a sound segment in decibels taken from one of the songs. [Bottom (C)] The sound features (y-axis) dynamics during
30 min of recordings (x-axis).

FIGURE 5 | Validation of focus measurements derived from brain data. (A) Histogram of focus models performance on the test task per participant (N = 51),
evaluated using the area under the ROC curve (AUC-ROC). Black dashed line marks chance level (0.5). (B) Average focus levels per preferred task events vs.
self-reported focus resulted in Pearson correlation of 0.6. Inset shows ROC curves for different values of self-report threshold. (C) Confusion matrix after thresholding
the focus score predictions and self-report. Classification scores for two-classes (low focus vs. high focus) are AUC = 0.87 (area under ROC curve), accuracy = 0.8.
(D) Average brain decoded focus levels vs. average self-reported focus across the four sound types.
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TABLE 1 | Results of a one-way repeated measures ANOVA performed on each
subgroup, comparing the average brain decoded focus levels of each sound
stream during the Preferred Task.

Group N F p

All 51 4.28 (3,150) 0.006

Working 26 3.74 (3,75) 0.014

Not working 25 1.91 (3,72) 0.14

Age >36 26 1.81 (3,75) 0.15

Age <36 25 6.97 (3,72) <0.001

Sound most significantly affected those below 36 years old.

during the Preferred Task (low-high focus) where the chance
guessing level is 0.5 (black dashed line). The average result across
participants obtained was <auc> = 0.83 (N = 51, SD = 0.19), a
strong validation of the brain-measured focus accuracy.

When aggregating tasks from all participants, the Pearson
correlation between the brain decoded focus model and the self-
reported focus was Corr(414) = 0.6, p < 10−4 (Figure 5B). The
inset in Figure 5B shows the ROC curves for different values of
self-reported threshold and the confusion matrix for one of these
thresholds (0.4) resulted in an accuracy score of 0.8 (Figure 5C).
Figure 5D shows the average brain decoded focus level for each
audio type vs. the average self-reported score.

Soundscapes Induce Higher Focus
Levels Compared to Silence
Using the validated focus models which output five
measurements per second (5 Hz), we then compared between
the average focus levels elicited by the audio listed to during the
Preferred Task. The background audio condition was found to
have a significant effect (top row in Table 1, F(3,150) = 4.28,
p = 0.006, statistical methods for details) on the elicited focus level
and the post hoc tests [Holm–Bonferroni correction] revealed
that streaming soundscapes (Endel app) were significantly higher
compared to silence [Figure 6A1 and Supplementary Table 1;
M = 0.090, SE = 0.027, t(50) =−3.38, p = 0.008], while streaming
music using Apple or Spotify did not have an effect [Apple:
t(50) =−2.37, p = 0.11, Spotify: t(50) =−1.24, p = 0.65].

For 35.3% of participants the soundscape session produced
their highest focus level, while for 27.5% of participants the
Apple playlist produced their personal highest focus level. For
19.6% of participants Spotify was best for producing focus and
for 17.6% silence was (Figure 6A2, the details sorted focus levels
per participant are shown in Supplementary Figure 4). To gain
a better understanding of the conditions where audio affected
focus, we next split the participants into subgroups of interest and
repeated the statistical analysis. We first asked whether the focus
level difference is task dependent. During the Preferred Task,
51% of the participants (26) chose to work, while the remainder
(49%) read a book (29.4%), played games (9.8%), or performed
other various tasks (e.g., knitting, 9.8%). To assess the effect of
audio on focus levels during these different tasks, we split the
participants to the ones who worked and those that did other
tasks. We found that for the “working” group, the focus level
elicited by Endel soundscapes was higher compared to silence

[Figure 6B; M = 0.12, SE = 0.04, t(25) = 3.26, p = 0.017], while
for the “not-working” group there was no difference [Figure 6C
and Supplementary Table 1; M = 0.06, SE = 0.04, t(24) = 1.552,
p = 0.447]. These results suggest that the focus level differences
between Endel and Silence are task-dependent, where audio
was particularly beneficial for specific types of tasks, namely,
“working.”

We next split the participants into two age groups according
to the median age (36 years). We found that for the younger
participants (age < 36, N = 25), all audio types were superior
to silence for producing elevated focus levels [Figure 6E and
Supplementary Table 1; M = 0.14, 0.13, 0.12, SE = 0.04, 0.03,
0.03, t(24) = 3.79, 4.49, 3.67, p = 0.004, 0.001, 0.005 for Endel,
Apple, and Spotify, respectively] while for the older participants
(Figure 6D; age > 36, N = 26), there was no difference between
audio and silence. The focus level differences were therefore
found to also be age-dependent.

Time Series Analysis of Focus Dynamics
Reveal Differences Between Audio and
Silence
Exploiting the high temporal resolution of the focus
measurements, we compared the focus dynamics to each
audio stream that played during the 30 min of the Preferred Task
(Figure 7 and Table 2). When comparing Endel’s soundscapes
vs. Silence (Figure 7A), we found that the focus level elicited
by Endel’s soundscape was higher 87% of the time, a separation
whose significance started after 2.5 min of listening. In addition,
although on average there was not a significant difference, the
focus level elicited by Apple’s playlist was higher than Silence
60% of the time, starting at 12.5 min (Figure 7C), and the focus
level elicited by Spotify’s playlist was higher than Silence 27% of
the time, starting at 17 min (Figure 7B). Focus elicited by Endel’s
soundscape was higher than Spotify’s playlist in 37% of the time,
starting at 6 min (Figure 7D).

Focus Levels Can Be Predicted by
Properties of Audio
Seeing that background sound had an effect on focus levels, we go
further and ask whether music and soundscapes can be composed
according to a formula to increase focus levels. Meaning, can we
understand which audio properties drive focus well enough to
predict focus levels from exclusively an analysis of the properties
of the sounds within the audio content?

Leveraging the high temporal resolution of the brain
measurements, we generated a prediction model which predicts
the brain-based focus level from features extracted from the audio
signal alone. Raw audio files containing the Apple and Spotify
sessions were used to extract different sound properties with a
running sliding window of 30 s. The personalized soundscape
session (Endel) was not used in this analysis because the real-
time streaming did not allow saving the raw audio files that
were consistent across participants. We combined multiple audio
features to generate an audio data based model that predicts focus
levels (see section “Materials and Methods”).
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FIGURE 6 | Comparison of the brain decoded focus during the Preferred Task while listening to different sounds. (Top row) Average focus levels for each sound
stream during the Preferred Task for each group of interest, including statistical results. Error bars are standard errors. (Bottom row) Distribution of the best session
(highest focus on average) for each participant per group. The groups of interest are: (A) all participants (51), (B) participants who were working during the Preferred
Task (26), (C) participants who were not working (25-reading, knitting, playing, etc.). (D) Participants above 36 (26). (E) Participants below 36 (25).

FIGURE 7 | Comparing brain decoded focus dynamics during the 30 min of the Preferred Task. Each subfigure shows a comparison between two sound streams,
while the gray areas are the timings with a significant difference (p < 0.05 corrected, see statistical methods for details).
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TABLE 2 | Summary of focus time dynamics comparison, showing for each pair
the percentage of time and time segments with significant difference (where
100% = 30 min).

Pair Significant
difference (%

session)

Significant
segments
(minutes)

Endel-Silence 87 2.5−28

Apple-Silence 60 12.5−30

Spotify-Silence 27 17.5−25.5

Endel-Apple 0

Endel-Spotify 37 6−17

Spotify-Apple 0

Figure 8 shows the audio model performance in predicting
the brain decoded focus levels. As explained in section “Materials
and Methods,” Figure 8A shows the validation correlation
and the training correlation for the backward elimination
procedure, showing the best correlation on the validation set
(<corr> = 0.72) is with four PCA components (PC1, PC2, PC9,
and PC16). In addition, using only a single component (PC1)
yielded a very close result (<Corr> = 0.71). The distribution
of these correlations can be seen in Figure 8B. Comparing the
brain decoded focus scores to the average predicted scores of
each sample (across models the sample was part of the validation
set), yielded a correlation coefficient of Corr(274) = 0.68, p < 1e-
5, and Corr(16) = 0.79, p < 1e-4 when averaging the samples
within each song (black points, Figure 8C). Using the songs
scores, one can apply these prediction models to assemble more
successful playlists for enhancing focus based on existing songs.
Figure 8D shows that if we threshold the sample scores to output
a binary prediction (low/high focus), the audio model reaches
87% accuracy in predicting the brain based focus (area under
ROC curve = 0.91).

For visualization of the decoded dynamics during the 30 min
of the Preferred Task, we next trained the audio model using all 18
songs (without cross validation) and the four PCA components
as features and projected it on the Apple (Figure 9A) and Spotify
(Figure 9B) sessions.

Analysis of Audio Properties Can Be
Used to Understand Song Performance
To gain additional insights about the effects that different audio
types have on human focus, we used the trained audio model to
infer focus values for songs and sounds which were not played
during the brain recording experiment. Meaning, we obtained
a focus score and dynamics for chosen songs based solely on
the properties of the sounds they contained. Here we selected
audio examples that challenged the validity of the audio model
based on their categorical exclusion from the brain recording
experiment. A future approach can include these different
genres as controls for further brain measurement validation
studies. For example, soundscapes which are not personalized
(taken from the playlist: “Focus: Calm Clear Morning”), natural
sounds which are commonly used for increasing focus (such
as white noise, waves, rain, taken from: https://mc2method.

org/white-noise/), and popular songs from other music genres
(classical music, electronic, pop, rock, jazz, and hip-hop)
were used.

Figure 10A shows the predicted focus score based on the
audio model which took into account only the properties of the
audio itself. Songs are sorted from the highest focus evoking song
(Endel – Three No Paradoxes) to the lowest (Dr. Dre – What’s
The Difference). The top two songs are Endel soundscapes which
are not personalized, a finding which strengthens our main result
since it implies that the high focus scores elicited by Endel’s
soundscape were not solely a byproduct of personalization
but also related to the core audio content the personalized
compositions were created from. Figure 10B shows the sorted
focus scores averaged across genres, where notably sounds from
classical music and natural sounds contained properties that
predicted the highest focus levels. In contrast, pop and hip-
hop songs predicted relatively low focus scores. Although we
do not have ground truth focus labels for these songs based
on real human brain data, given the relatively high scores of
the audio which were known to have generated increased focus
objectively in the experimental data, we can conclude that there
is a consistent validity to the model. Future research can gather
ground truth labels for these songs and evaluate the model
mathematically in this context.

Analyzing the average within-song variance across different
genres revealed that the model predicts the largest variance on
average for electronic sounds (Figure 10C), while the lowest
variance was found for natural sounds. The variance can be
interpreted as a range of focus dynamics, where the focus
dynamics of the electronic sounds are observed to change
dramatically during a given song (Supplementary Figure 5),
confirming the preference for a tool which outputs dynamics with
a high temporal resolution when studying such audio content
and not the oversimplification of post-song surveys or other low
resolution methods. Figures 10D,E show the focus dynamics for
the song with the lowest focus evoking score and the highest. The
dynamics for all songs can be seen in Supplementary Figure 5.

DISCUSSION

“The soundscape of the world is changing. Modern man is
beginning to inhabit a world with an acoustical environment
radically different from any he has hitherto known” said the
composer R. Murray Schafer, presaging the time we live in now
when the sounds available to us continue to multiply by the
day. As we have an increasing number of options to modulate
our auditory lives by, a handful of take-aways from this study
standout:

Objective, Brain-Based Measurement of
Focus Is Possible in Everyday
Environments
Although the effects of audio on the human brain can be subtle
in measured brain signals when judging by the changes produced
in raw electromagnetic currents, they are robust and highly
quantifiable with effectively trained algorithms, as shown here.
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FIGURE 8 | Results of predicting brain decoded focus from audio features. (A) Training and validation correlations vs. number of PCA components used as audio
features, using backward elimination in each iteration the component with the smallest weight was eliminated. (B) Histogram of the validation correlations using four
PCA components (PC1, PC2, PC9, and PC16). The average validation score is 0.72. (C) Brain decoded focus (y-axis) vs. audio decoded focus (x-axis) for all
samples and average per song. The audio decoded scores were calculated across iterations they were part of the validation songs. (D) Confusion matrix after
thresholding the focus predictions to classify between low and high focus. Classification accuracy obtained: 88% (area under ROC curve: 0.91).

FIGURE 9 | Comparison of focus model dynamics. Smoothed dynamics of brain decoded focus (dark blue) and audio decoded focus (light blue), during 30 min of
the Preferred Task for Apple (A) and Spotify (B). The audio decoded dynamics here was obtained using a model trained on all data (all songs).

Classifying emotional and attentional responses is particularly
useful when done at the sub-second temporal resolution since
it allows one to track dynamics continuously over time at the
same timescale as the brain functions that impact perception
and behavior. Furthermore, sub-second resolution into reactions
that occur within ecologically valid conditions, like a participant’s
home, model the real world in an everyday manner that is missing

from experiments that take place within laboratories or other
controlled test locations.

In this study we demonstrated that brain decoding algorithms
processing data from a non-invasive, consumer brain-computer
interface device, are able to deliver sub-second temporal
resolution with a high degree of accuracy (approximately
80% match to self-report, Figure 5C) at people’s own homes.
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FIGURE 10 | Projecting new songs into the trained audio model. (A) Sorted focus scores per song obtained by the audio model, colored by genre. (B) Average
focus score per genre, sorted from the genre with the lowest score (hip-hop) to the highest (classical). (C) Average focus variance per genre, sorted from the genre
with the lowest variance (natural) to highest (electronic). Focus dynamics for the song with the lowest focus score (D) and the highest (E).

Since there are inherent biases in subjective self-reporting for
experience (Kahneman et al., 1999; Mauss and Robinson, 2009),
when mapping physiological signals to self-reported experiences,
as done here, there is an upper boundary for accuracy beyond
which any model must be deemed to over fit self-reported
values and incorrectly represent the information observed in
physiological signals. According to a recent review (Larradet
et al., 2020) which summarizes multiple peer-reviewed studies
that predict self-reported emotions from physiological signals,
the average accuracy reported was∼82%. Given this average and
the experimental conditions here – a small number of sensors,
at home recordings, simple self-report scales – the achieved
accuracy was satisfactory for drawing deeper conclusions on
properties of audio since it aligns with state-of-the-art emotion
recognition accuracies in the context of audio as a stimulus
used elsewhere in controlled laboratory environments (Tripathi

et al., 2017, 81.41 and 73.35% for two classes of Valence and
Arousal, respectively).

A key benefit of the current approach is that this method of
high temporal resolution brain measurement can be performed
reliably outside of traditional laboratories. In this current study
not a single laboratory or facility was used for data acquisition.
Instead, 18–65 years olds across the United States received
a kit in the mail that included a head-wearable device, and
they experienced music playlists and personalized soundscapes
while they recorded their own brain signals in the comfort
of their own home at the times of their choosing. In other
words, all participants were in their natural habitat, wearing
headphones and a headband that did not interfere with their
experience, and they went through the study at their own pace,
factors which altogether lend the research a rare degree of
ecological validity.
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Focus Is Increased Most by Personalized
Soundscapes
Within the at-home environment of this study, personalized,
engineered soundscapes were found to be the best at increasing
participant focus levels (Figure 6A). After 2.5 min, on
average, listeners of the personalized soundscapes experienced
a meaningful increase in their focus level, while for music
playlists it took approximately 15 min to gain a similarly
appreciable increase (Figure 7). The audio effect on focus levels
was found to be task dependent, where soundscapes increased
focus levels most in participants who were working (Figure 6B).
For participants who were not working, no significant difference
was found. This result suggests that willful orientation of
attention toward work tasks may have created a brain context
especially suited to modification by audio. While engaged in
work, participants may also have been more prone to distraction
and thus more impacted by the positive uplift of audio compared
to when engrossed in reading or playing a game which may have
contained more intrinsic motivation to stay focused on.

One limitation of this current study is that it did not allow
us to disentangle the effects of personalization of sounds on
the listener, since pre-recorded soundscapes were not tested.
Equivalently, a comparison of personalized soundscapes to
personalized music playlists, where audiences either made
their own playlist for focus or were allowed to skip songs
whenever they wanted, will likely contribute to a more complete
understanding of how audio properties correlate with emotion
and attention changes. Follow-up research will incorporate these
variables. An additional limitation was the inability to reach
conclusions regarding gender-dependent effects which was at
least partially due to this study’s slightly imbalanced data set.
Despite efforts to recruit a balanced group of participants, which
included even outreach to all genders, enrollment was done on
a rolling basis as necessitated by the data collection timeline for
the research and ultimately the female subgroup was statistically
underpowered in the analysis.

In future research, especially for closed loop, real-time
testing, balanced participant sets will be important for reaching
more detailed conclusions. Future research should also address
whether any effects were introduced by the current study design’s
sequence of tasks, since here we did not randomize the order
of Preferred Task and validation tasks. The Preferred Task was
always first and validation tasks after it intentionally, in order to
allow for randomization of the background sound stimuli during
the Preferred Task session which was done across four groups
in this study. In future research it will be helpful to randomize
the task order also to compare how different audio affects focus
levels on different tasks according to a given task’s place within a
sequence of tasks.

Audio Preferences and Focus Effects
Vary Between People
It is important to emphasize that the results reported here are
audio effects on the average focus levels across a United States
based population, and that there was a large variance in this
effect between participants. Evidence for this large variance can

be seen in Supplementary Figure 4 and in the age dependency
effect (Figures 6D,E), where for the younger audience, all sounds
increased focus while for the older audience, the sounds did not
have any effect. These results are consistent with other studies
showing personal preferences are critical for the improvements
possible by audio (Cassidy and Macdonald, 2009; Huang and
Shih, 2011; Mori et al., 2014). Due to this variety observed
together with the highest focus being elicited by the personalized
soundscapes, a next step will include closed-loop selections
of sounds, where iterative sound testing is used per person
to identify the significant parameters for maximizing focus
for that person.

Personalized soundscapes specifically, and personalized audio
in general, should be investigated further for their capacity to
increase productivity, creativity and well-being as these attributes
of human experience are associated with one’s ability to focus. For
clinical populations as well, for example children with ADHD,
the tailoring of sounds for this purpose of increased focus can be
particularly impactful. It is possible that the seamlessness of the
personalized soundscapes tested here, which played continuously
without gaps in the sound like the music playlists had between
songs, was also critical part of the observed effect on focus. At
every juncture of the experience there is more to be learned, but
at a high level, a main finding of this study is that there is a strong
need for personalization of audio in order to most effectively
achieve functional goals like increasing focus.

Brain Decoded Focus Data Enabled a
New Predictive Model Based on Audio
Data Alone
Leveraging the high temporal resolution of the brain decoded
dynamics, a focus prediction model based on the physical
properties of audio was successfully trained, resulting in an
accuracy score of 88% in predicting the brain decoded focus
score from an audio decomposition that assessed 136 different
properties of sounds as unique features (Figure 8). This model
enabled a further examination of how sounds and different genres
effects focus and allowed testing additional conditions, such
as pre-recorded soundscapes and commonly used background
sounds (e.g., white noise), as well as other genres (pop, rock,
jazz, etc.). We found that the model predicted the highest focus
scores for classical music, followed by engineered soundscapes
and natural sounds. These results complement previous studies
which showed natural sounds and classical music to be beneficial
for learning and concentration (Davies, 2000; DeLoach et al.,
2015; Angwin et al., 2017; Liu et al., 2021).

In contrast, the models predicted that genres such as pop and
hip-hop produce lower focus levels (Figures 10A,B). It is possible
that these sounds contain more distractors that attract attention
away from other objects of attention, or that they contain types
of sounds that the brain requires more resources to process
(depending on familiar patterns, surprises, and more), leading to
less resources available to perform other tasks. Sounds in these
genres may also activate the reward system differently (Salimpoor
et al., 2015; Gold et al., 2019), which can increase motivation to
listen intently to the songs themselves rather than orient toward
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other tasks. Understanding the brain mechanisms that underlay
the modified focus from these genres is beyond the scope of
this current research, but the mapping found here can provide
fruitful avenues for future brain imaging experiments that may
be equipped to answer these questions.

The analysis here demonstrates a process in which we utilize
the temporal resolution of brain-computer interface technology
to generate a product where the neurotechnology is eventually
out of the loop, resulting in a stand alone audio model which
takes as an input a raw audio file and outputs a predicted
focus score. This model can be used independently to generate
focus playlists or to compose optimal soundscapes, and can
further be improved by expanding to populations outside the
United States and different age groups. In this way, the current
research hearkens back to Pythagoras, who first identified the
mathematical connection between a string’s length and it is
pitch and believed the whole cosmos was a form of musical
composition (James, 1995). We too see the rich mathematical
models obtained in this study, by mapping audio properties to
human experience, as a glimpse into the natural laws governing
how we feel and think. The better these laws can be understood,
the more empowered individuals will be to modulate their
environments to suit their goals and states of mind. There
remains much to figure out: while we as a species continue to
cause a “shift in the sensorium,” we simultaneously experience
that shift all over daily life and it is not clear where we as a species
are headed. This study showed that audio has a distinct effect on
our focus levels, and paves the way for designing sounds to help
us focus better in the future.

CONCLUSION

We studied the effects of audio on human focus levels
using noninvasive brain decoding technology to gain a better
understanding of the optimal audio properties for increasing
focus levels in listeners. We combined a custom app (“Neuos
Central”), portable fabric EEG-measuring headbands, and brain
decoding technology (Neuos SDK) to enable us to obtain high
temporal resolution focus dynamics from participants at home.
Using the brain decoded focus dynamics, we then analyzed
how various properties of audio impacted focus levels in
different tasks.

We found that while performing a self-paced task for a long
period of time (such as working), personalized soundscapes
increased focus the most relative to silence. Curated playlists
of pre-recorded songs by Apple and Spotify also increased
focus during specific time intervals, especially for the youngest
audience demographic. Large variance in response profiles across
participants, together with task and age dependent effects, suggest
that personalizing audio content in real-time may be the best
strategy for producing focus in a given listener.

Finally, we generated an audio property based focus model
which successfully predicts brain decoded focus scores from
audio file alone as an input. Using this model, we extracted
predicted focus scores from new songs based on audio
decomposition and performed a genre analysis to develop new

intuitions about the experimental findings and the sources of
focus-producing audio content. We found that based on our
model, engineered soundscapes and classical music are the best
for increasing focus, while pop and hip-hop music are the worst.

The approach taken here can be adapted to include other
emotions (e.g., enjoyment, anxiety, happiness, etc.), attentional
parameters (“Flow state,” memory formation, etc.) and can be
used to assess additional content as well (e.g., visual, ambient,
olfactory, etc.), including interactive gaming and e-learning
experiences where personalization and high temporal resolution
measures of brain responses may be especially beneficial.
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Initial romantic attraction (IRA) refers to a series of positive reactions toward potential
ideal partners based on individual preferences; its evolutionary value lies in facilitating
mate selection. Although the EEG activities associated with IRA have been preliminarily
understood; however, it remains unclear whether IRA can be recognized based on EEG
activity. To clarify this, we simulated a dating platform similar to Tinder. Participants
were asked to imagine that they were using the simulated dating platform to choose
the ideal potential partner. Their brain electrical signals were recorded as they viewed
photos of each potential partner and simultaneously assessed their initial romantic
attraction in that potential partner through self-reported scale responses. Thereafter, the
preprocessed EEG signals were decomposed into power-related features of different
frequency bands using a wavelet transform approach. In addition to the power spectral
features, feature extraction also accounted for the physiological parameters related to
hemispheric asymmetries. Classification was performed by employing a random forest
classifier, and the signals were divided into two categories: IRA engendered and IRA un-
engendered. Based on the results of the 10-fold cross-validation, the best classification
accuracy 85.2% (SD = 0.02) was achieved using feature vectors, mainly including the
asymmetry features in alpha (8–13 Hz), beta (13–30 Hz), and theta (4–8 Hz) rhythms. The
results of this study provide early evidence for EEG-based mate preference recognition
and pave the way for the development of EEG-based romantic-matching systems.

Keywords: aesthetic preference, mate choice, physiological signals, frequency band, hemispheric asymmetries

INTRODUCTION

Finding an ideal partner is a prerequisite for achieving high-quality romantic relationships.
However, finding an ideal partner in real life can be extremely challenging (Spielmann et al., 2013;
Joel et al., 2017). Because mate selection is not only a multivariate process involving the integration
and trade-offs of multiple preferences but is also influenced by many factors, such as gender, culture,
and personal experience (Buston and Emlen, 2003; Thomas et al., 2020). However, opportunities

Frontiers in Neuroscience | www.frontiersin.org 1 February 2022 | Volume 16 | Article 830820123

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.830820
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2022.830820
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.830820&domain=pdf&date_stamp=2022-02-11
https://www.frontiersin.org/articles/10.3389/fnins.2022.830820/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-830820 February 7, 2022 Time: 15:44 # 2

Yuan et al. Mate Preference Is Recognizable

always coexist with these challenges. This is precisely because of
the challenge of this task, which has created a huge economic
market for matchmaking services (Joel et al., 2017). In this
market, matchmaking agencies strive to provide customers with
“tailored” romantic matching services and earn huge returns
on this. The success of such a business model hinges on
finding key features from appropriate signals that can effectively
identify a user’s initial romantic interest toward a potential
partner, as this largely determines the effectiveness of a matching
service and consequently whether a user is willing to pay for it
(Joel et al., 2017).

The current mainstream approach taken by matchmaking
companies is that when users register for romantic matching
services, they are required to fill in a series of questionnaires
about their own characteristics and preferences based on their
subjective feelings; these answers will then be fed into the
matching algorithm as features to match suitable potential
partners for users. Many matchmaking companies claim that
effective romantic pairing can be achieved in this manner (Joel
et al., 2017). However, Joel et al. (2017) demonstrated that
it was impossible to predict initial romantic desire using any
combination of traits and preferences reported prior to dating.
In other words, effective romantic pairing cannot be achieved
using this method. For matchmaking companies that take this
as the core selling point, this conclusion is undoubtedly very
destructive. However, from the perspective of psychology, this
conclusion is undoubtedly reasonable, because the self-reported
data are easily affected by subjective consciousness and the
surrounding environment, which makes many characteristics
of the input matching algorithm invalid, thereby invalidating
the matching algorithm (Lin et al., 2010; Alarcao and Fonseca,
2019).

The essence of initial romantic attraction (IRA) is a series
of positive responses to potential ideal partners based on
individual preferences, including positive emotional responses
(such as feelings of exhilaration and craving for emotional
union) (Fisher, 1998; Fisher et al., 2002, 2005; Gerlach and
Reinhard, 2018; Yuan and Liu, 2021; Yuan et al., 2021). An
individual’s internal emotional reaction can be revealed not
only through subjective self-reports but also through internal
expression (i.e., physiological signals) (Gunes et al., 2011;
Alarcao and Fonseca, 2019). Moreover, physiological signals
have many advantages over self-reported data, one of which
is that they are less susceptible to subjective consciousness
and environmental factors (Lin et al., 2010; Alarcao and
Fonseca, 2019). Thus, these signals open up new possibilities
for identifying users’ emotional responses and preferences for
potential partners. For instance, Zhang et al. (2021) successfully
identified participants’ initial romantic interest to potential
partners based on the features extracted from electrocardiogram
signals, while Lu et al. (2020) successfully detected participants’
initial romantic desire to potential romantic partners based on
the information extracted from photoplethysmogram signals.
These results demonstrate that IRA, as an important part
of human emotion, can be recognized on the basis of
periphery physiological signals (Lu et al., 2020; Zhang et al.,
2021).

In addition to periphery physiological signals, signals captured
from the central nervous system, such as EEG, functional
magnetic resonance imaging, or positron emission tomography,
have also been proved to provide informative information for
emotion recognition (Lin et al., 2010; Alarcao and Fonseca, 2019).
Furthermore, among the many biosignals recorded over the
brain, EEG is considered to a preferred method in studying the
brain’s response to emotional stimuli due to its characters of high
temporal resolution, non-invasive, inexpensive and convenient
(Niemic, 2004; Alarcao and Fonseca, 2019). Therefore, in the
field of neurophysiology, some studies have begun to investigate
brain activities associated with IRA based on EEG signals. For
instance, using event-related potential source analysis, Yuan
et al. (2021) found that the arousal of IRA will significantly
enhance the activation intensity of emotional processing-related
areas, including the orbital frontal cortex and insula; attention
control-related areas, including the frontal eye field and cingulate
cortex; visual processing-related areas; and social evaluation-
related areas, including the left dorsolateral prefrontal cortex.
In another study, Yuan and Liu (2021) used time–frequency
(TF) decomposition technology and found that processing of
individual face preferences that triggered IRA was associated with
a decrease in power in the alpha and lower beta bands over the
lateral occipital complex and vertex areas; they hypothesized that
changes in alpha and beta power may reflect cortical activation
related to emotional stimulus significance (Schubring and
Schupp, 2019, 2021). In addition, numerous neuropsychological
studies have demonstrated that the asymmetry between the
two hemispheres of the frequency band (FB) (especially the
alpha and beta bands) was correlated with emotional activities
and preferences (Balconi and Mazza, 2009; Liu et al., 2011;
Hadjidimitriou and Hadjileontiadis, 2012; Huang et al., 2012;
Jatupaiboon et al., 2013; Alarcao and Fonseca, 2019).

In the field of neuroeconomics, although EEG signals have not
been used to identify users’ emotional responses and preferences
toward potential partners, they have been widely used to identify
users’ emotional responses and preferences to other stimuli
(Aldayel et al., 2020a,b,c, 2021; Khurana et al., 2021; Naser and
Saha, 2021; Zheng et al., 2021). Among previous studies, many
researchers have used frequency bands (FBs) as features (Aldayel
et al., 2020c, 2021; Khurana et al., 2021; Naser and Saha, 2021;
Zheng et al., 2021). For example, Chew et al. (2016) measured the
preference of virtual three-dimensional shapes using band power
as a feature for two preference categories and obtained accuracies
of up to 80%. Aldayel et al. (2020b) measured the preference
of consumer using frequency bands features as the feature for
two preference categories and obtained accuracies of up to 93%.
Meanwhile, several studies on preference also used hemispheric
asymmetry scores (ASs) as input features (Aldayel et al.,
2020a,b; Naser and Saha, 2021). For instance, Hadjidimitriou
and Hadjileontiadis (2013) measured the preference of music
using band power and hemispheric ASs as features for two
preference categories using the k-nearest neighbors to obtain
accuracies of up to 86.52%. Moon measured the preference of
visual stimuli using band power and hemispheric ASs as features
for four preference categories, achieving accuracies of up to
97.39% (Moon, 2013; Chew et al., 2016).

Frontiers in Neuroscience | www.frontiersin.org 2 February 2022 | Volume 16 | Article 830820124

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-830820 February 7, 2022 Time: 15:44 # 3

Yuan et al. Mate Preference Is Recognizable

Although EEG signals have been widely used to identify
users’ emotional responses and preferences to other stimuli, and
EEG activities associated with IRA have also been preliminarily
understood, whether users’ emotional responses and preferences
toward potential partners can be identified on the basis of EEG
signals remains unclear. To clarify this, we simulated a mate
selection platform similar to Tinder. Participants were asked to
imagine that they used the platform to select potentially desirable
partners. Their EEG signals were recorded when they viewed
and rated the photographs of each potential partner according to
their preferences. Specifically, during the EEG recording task, the
heterosexual participants were asked to rate photos of opposite-
sex potential partners on two dimensions: an four-point IRA
rating scale (based on the question “How much would you like
to date this person?”; response: “not at all,” “a little,” “somewhat,”
or “very much”) as well as a three-point zero-acquaintance
rating scale (based on the question “Have you ever seen the
person in the photo before?”; responses: “no,” “not sure,” or
“yes”) (Yuan and Liu, 2021; Yuan et al., 2021). The IRA scale
was used to assess the romantic interest of participants toward
potential romantic partners, because the desire for emotional
union with potential partner is one of the main characteristics of
initial romantic attraction arousal. The zero acquaintance scale
was used to ensure that participants were at the same level of
familiarity with the stimulus material. Numerous studies have
demonstrated that the random forest classifier (RFC) performs
well in preference classification tasks based on EEG signals;
therefore, in this study, the RFC was used to classify and detect
the users’ IRA toward potential partners based on features
obtained through TF analyses.

MATERIALS AND METHODS

Both the auxiliary experiment and the main experiment
were approved by the Ethical Review Committee of
Southwest University.

Auxiliary Experiment
Participants
Sixty student volunteers participated in the auxiliary experiment
(30 women and 30 men; age: 21.4 ± 2.6 years). All participants
reported normal or corrected-to-normal visual acuity and had no
history of psychiatric or neurological disorders, as confirmed via
a screening interview.

Experimental Procedure
The induction rate of IRA has been reported to be quite low (only
a few percent) (Zsok et al., 2017), the IRA induction rate should
be increased to obtain enough data to train the model (Yuan and
Liu, 2021; Yuan et al., 2021). Numerous studies have shown that
physical attractiveness is a good predictor of a an individual’s
popularity (i.e., probability of being selected by the opposite sex)
with the opposite sex (Asendorpf et al., 2011; Olderbak et al.,
2017; Gerlach and Reinhard, 2018; Yuan et al., 2021). Therefore,
in this study, we planned to increase the average induction rate

of IRA by increasing the proportion of stimuli with high physical
attractiveness (Yuan and Liu, 2021; Yuan et al., 2021).

To achieve this goal, we first assessed the attractiveness level of
each stimulus. To assess the attractiveness level, we first focused
on downloading thousands of high-resolution personal portrait
photographs from a high-definition copyright commercial
photograph library (i.e., Hummingbird1) and standardized them
(face and hair only; size, 839 × 1,080 pixels). To control
the interference factors, we then selected 1,600 photographs
from the standardized portrait photograph library; the criteria
for screening the photographs were similar orientation and
expression of the face and comparable background complexity.
Thereafter, the physical attractiveness level of each face
was assessed using a nine-point Likert scale. Notably, the
male participants rated only female faces, while the female
participants rated only male faces. We then calculated the
average attractiveness level of each face by averaging the ratings
of the same face from 30 participants of the opposite sex.
Finally, according to the average attractiveness level, these
faces were divided into three categories: high attractiveness
[mean = 6.9, standard deviation (SD) = 0.33], medium
attractiveness (mean = 5.2, SD = 0.25), and low attractiveness
(mean = 3.9, SD = 0.31).

In the natural environment, the proportion of individuals
with high, medium, and low attractiveness should conform to
the normal distribution. However, in this study, we deliberately
increased the proportion of individuals with high attractiveness,
reduced the proportion of stimuli with low attractiveness, and
adjusted the ratio of high, medium, and low attractiveness to
0.25:0.6:0.15 to increase the average induction rate of IRA. The
number of times each participant would need to be exposed
to different stimuli was determined to be between 300 and 400
after the comprehensive trade-offs of induction efficiency and
participant burden. Ultimately, 360 photographs were selected as
the stimulus material for the main experiment for each sex from
among 800 photographs of women and 800 photographs of men
(Yuan and Liu, 2021; Yuan et al., 2021).

Main Experiment
Participants
Fifty student volunteers participated in the main experiment
(all single; 25 women and 25 men; age: 21.2 ± 2.4 years).
All participants reported normal or corrected-to-normal visual
acuity and had no history of psychiatric or neurological disorders,
as confirmed via a screening interview.

Experimental Procedure
The number of stimuli used in the main experiment was
significantly reduced by the aforementioned strategy; however,
processing of 360 stimuli was still a high-load task for the
participants. Specifically, when the participants were asked to
complete the task over a short period, they were more likely
to experience aesthetic fatigue, which may interfere with the
experimental effect. Therefore, to minimize the probability of
or delay aesthetic fatigue, we first divided 360 photographs

1http://bbs.fengniao.com/
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FIGURE 1 | Experimental protocol and trial structure. (A) Experimental protocol. (B) Trial structure.

of women (or men) equally into two sessions based on their
attractiveness level and stipulated that the interval between
completing the two parts of the experiment should be at least
1 day (Figure 1A). Thereafter, the 180 photographs from each
session were divided equally into three runs using the same rules,
and a 5–6-min break was provided between every two runs.
During the rest period, the participants viewed serene landscapes
while listening to soothing music. Notably, the experiment
was conducted in a dark and quiet environment to keep the
participants focused on the stimulus.

For each session, the trial structure of the EEG recording
task is shown in Figure 1B. A black fixation cross appeared in
the center of a white computer screen for 1,000 ms, followed
by a photograph appearing for 3,000 ms. The participants were
then asked to assess their romantic interest toward the potential
partner based on the question, “How much would you like
to date this person?” on a four-point rating scale (0 = not at
all; 1 = little; 2 = somewhat; 4 = very much) (Finkel et al.,
2007; Cooper et al., 2012; Gerlach and Reinhard, 2018; Yuan
and Liu, 2021; Yuan et al., 2021). Thereafter, they were asked,
“Have you ever seen the person in the photograph before?”
(0 = no; 1 = not sure; 2 = yes). Finally, there was a 2,000-
ms blank screen.

Data Acquisition and Processing
The EEG signals were recorded using the 128-channel BioSemi
ActiveTwo system (BioSemi Inc., Heerlen, Netherlands) with
a 24-bit analog-to-digital conversion. The 128 electrodes were
equally spaced on an electrode cap and customized with
an integrated primary amplifier (Figure 2). The data were
filtered online at a 0.16–100-Hz band-pass filter and sampled
at 512 Hz (Yuan and Liu, 2021; Yuan et al., 2021). After the
completion of data acquisition, the continuous EEG signals

were re-referenced offline to the average of all channels after
rejecting bad segments and interpolating bad traces; the bandpass
filter ranged from 0.1 to 50 Hz. An independent component
analysis was used to correct electrooculography artifacts from
eye movements and blinks. The preprocessed EEG signals were
split into epochs from 200 ms before the presentation of the
stimulus to 2,000 ms after the onset of the stimulus. EEG data
analysis was conducted using the open-source MATLAB signal
processing toolbox FieldTrip and in-house functions in MATLAB
(Oostenveld et al., 2011).

According to the score for “How much would you like
to date this person?,” the EEG epochs were divided into IRA
engendered and IRA un-engendered (Fisher et al., 2005; Gerlach
and Reinhard, 2018; Yuan and Liu, 2021; Yuan et al., 2021).
The IRA engendered category comprised the epochs in which
the participants rated their IRA for the potential partners as 3
(very much) or 2 (somewhat). The IRA un-engendered category
comprised the epochs in which the participants rated their
IRA for the potential partners as 0 (not at all). To minimize
ambiguity, we excluded epochs with a rating score of 1. The
number of acceptable epochs under the IRA engendered category
was 1439, while the number of all acceptable data segments
in the IRA un-engendered category was 15298. To solve the
problem of serious mismatch in the number of samples between
the two preference categories, we randomly selected a number
of accepted samples under the IRA un-engendered category
to match the number of accepted samples under the IRA
engendered category.

Feature Extraction
To recognize the users’ discrete preferences, we used the wavelet
transform (WT) with a sliding time-window approach for TF
feature extraction based on the TF analysis (Lindsen et al., 2010;
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FIGURE 2 | Electrode positions for the BioSemi activeTwo system.

De Cesarei and Codispoti, 2011; Kang et al., 2015; Yuan and
Liu, 2021). Specifically, the time–frequency representation (TFR)
was obtained through a five-cycle complex Morlet WT. The
sliding windows were advanced in 12-ms and 1-Hz increments
to estimate the changes in power over time and frequency in the
five FBs: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta
(13–30 Hz), and gamma (30–49 Hz). The TF features of the EEG
activities were calculated according to event-related oscillations
(Pfurtscheller and Lopes da Silva, 1999; Hadjidimitriou and
Hadjileontiadis, 2013; Liu et al., 2018; Yuan and Liu, 2021). In
this study, two types of TF features were extracted: the power
spectral feature (PSF) and the AS (i.e., difference in spectral
power between the left and right hemispheres). For each epoch
j and channel i, each PSF was computed as follows:

PSF =
V− B

B
(1)

where V represents the quantity estimated during the photograph
viewing (PV) period, and B represents the quantity estimated
during the baseline state (BS) period. To obtain the quantity V,
we averaged the TFR during the PV period over the constituent

frequencies and time (2). Similarly, B was computed in the same
manner as in PV, as shown in (3).

Vfb
w
(
i, j
)
=

1
Nw

∑
t

(
1

Nfb

∑
f

TFRPV
i, j
[
t, f
])

(2)

Bfb
w
(
i, j
)
=

1
Nw

∑
t

(
1

Nfb

∑
f

TFRBS
i, j
[
t, f
])

(3)

where [t, f] represents the discrete (time and frequency) points
in the TF plane; TFRPV represents the obtained TFR during
the PV period (Figure 3); and Nw, Nfb denote the number of
sample points in the time window of 0–2 s and the number of
frequency bins in each FB, respectively (Yuan and Liu, 2021).
Similarly, TFRBS represents the obtained TFR during the BS
period (Figure 3), and Nw, Nfb denote the number of sample
points in the time window of −0.2–0 s and the number of
frequency bins in each FB, respectively. Herein, a TFRBS was used
to correct the emotional baseline of the TFRPV to exclude the
confounding effects of other factors.
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FIGURE 3 | Time–frequency plane segmentation for the quantity estimation of B and V, from the TFP of the EEG signal corresponding to channel i and segment j.
EEG, electroencephalogram. TFP, time–frequency representation.

FIGURE 4 | Nested cross-validation architecture used for feature selection and model assessment.

In addition to the PSFs, the ASs of all 55 symmetrical pairs of
electrodes on the left and right hemispheres in the five FBs were
extracted to measure the possible lateralization of brain activity

that might be caused by emotional stimuli (Liu et al., 2018; Yuan
and Liu, 2021). In general, a total of 915 (640 PSFs and 275 ASs)
EEG features were extracted.
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FIGURE 5 | Classification accuracy using the RFC with different numbers of features. RFC, random forest classifier.

Preference Recognition With Feature Selection
Nine hundred and fifteen features were extracted from the
EEG signals on 128 electrodes, which is undoubtedly a
high-dimensional dataset. To effectively analyze the data and

TABLE 1 | Confusion matrix of each test data set.

True label Predicted
label

IRA
engendered

IRA un-
engendered

Test data set 1 IRA engendered 144 27

IRA un-engendered 20 179

Test data set 2 IRA engendered 163 23

IRA un-engendered 41 141

Test data set 3 IRA engendered 123 19

IRA un-engendered 20 130

Test data set 4 IRA engendered 139 25

IRA un-engendered 25 125

Test data set 5 IRA engendered 117 16

IRA un-engendered 17 116

Test data set 6 IRA engendered 118 23

IRA un-engendered 18 100

Test data set 7 IRA engendered 137 25

IRA un-engendered 26 107

Test data set 8 IRA engendered 110 22

IRA un-engendered 14 105

Test data set 9 IRA engendered 98 21

IRA un-engendered 17 101

Test data set 10 IRA engendered 80 14

IRA un-engendered 13 119

save computational resources, we conducted necessary feature
selection before classification (Lu et al., 2020; Zhang et al., 2021).
The paired sample t-test was used to screen out the feature
subsets with significant differences between the IRA engendered
and IRA un-engendered categories. A total of 188 features with
significant differences (p < 0.05) were identified. On this basis,
the recursive feature elimination with cross-validation sequential
forward feature selector (RFECV) was applied to conduct further
feature selection.

To use the entire dataset to train and test the classifier,
we used a nested 10-fold cross-validations to obtain reliable
model estimates for feature selection and model training
(Pourmohammadi and Maleki, 2020; Zhang et al., 2021).

TABLE 2 | The results of each test data set.

Metrics PAM CA SE SP AUC JI FM

Test data set 1 0.72 0.8730 0.8780 0.8689 0.87 0.7539 0.8597

Test data set 2 0.66 0.8261 0.7990 0.8598 0.83 0.7181 0.8539

Test data set 3 0.72 0.8664 0.8601 0.8725 0.87 0.7593 0.8632

Test data set 4 0.68 0.8408 0.8476 0.8333 0.84 0.7354 0.8476

Test data set 5 0.74 0.8579 0.8731 0.8788 0.88 0.7800 0.8764

Test data set 6 0.68 0.8417 0.8676 0.8130 0.84 0.7241 0.8520

Test data set 7 0.74 0.8271 0.8405 0.8106 0.83 0.7287 0.8431

Test data set 8 0.71 0.8566 0.8871 0.8268 0.86 0.7534 0.8594

Test data set 9 0.67 0.8397 0.8522 0.8279 0.84 0.7206 0.8376

Test data set 10 0.73 0.8805 0.8602 0.8947 0.88 0.7477 0.8556

Mean 0.6990 0.8528 0.8566 0.8486 0.8540 0.7439 0.8530
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FIGURE 6 | Optimal feature subsets of the RFC. Red, blue, and orange present the asymmetry features of the alpha, beta, and theta bands, respectively. Green
represents the alpha band PSF. RFC, random forest classifier.

Specifically, the inner loop was responsible for selecting the
optimal subset of features (Figure 4). In the outer loop and using
the selected subset of features, the RFC was evaluated by unseen
test data set via a subject-wise 10-fold cross-validation (Saeb et al.,
2017). Thereafter, the confusion matrix was formed based on
the true and predicted labels of sample in the each unseen test
data set. Then, based on the confusion matrix, common metrics
are calculated to assess performance of machine learning system,
including classification accuracy (CA), sensitivity (SE), specificity

(SP), area under curve (AUC), Jaccard index (JI), F-measure
(FM), and polygon area metric (PAM) (Aydemir, 2020). The
mathematical definitions are, respectively, given as follows:

CA =
TP + TN

TP + TN + FP + FN
(4)

SE =
TP

TP + FN
(5)
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SP =
TN

TN + FP
(6)

JI =
TP

TP + FP + FN
(7)

FM =
2TP

2TP + FP + FN
(8)

AUC =
1
∫
0

f (x)dx (9)

Where TP is the number of actual positive samples that were
predicted to be positive, FN is the number of actual positive
samples that were predicted to be negative, TN is the number of
actual negative samples that were predicted to be negative, and
FP is the number of actual negative samples that were predicted
to be positive (Aydemir, 2020). The classifier selected in this study
is a widely used classifier with good performance, namely, the
RFC (Aldayel et al., 2020a,b). For the RFC, the Gini impurity was
used as a function to measure the quality of a split; the maximum
depth of the tree was set to 30; and the other super parameters
were set to default.

RESULTS AND DISCUSSION

The classification performance of the proposed EEG-based mate
preference recognition algorithm was verified using a total
of 2878 EEG samples (including 1439 samples of the IRA
engendered category and 1439 samples of the IRA un-engendered
category) collected from 50 participants. To obtain an optimal
feature subset from 188 features with significant differences
(p < 0.05) between the two categories, we used a nested 10-fold
cross-validation scheme based on the RFECV-RFC algorithm for
feature selection. The number of features varied from 1 to 188,
and the best feature subset was selected in each step. Figure 5
displays the mean classification accuracies on the validation sets
of each inner loop when selecting different numbers of features.
As can be seen from Figure 5, the number of features of the
optimal feature subset selected by each internal cycle is roughly
the same (about 17, SD = 0.57). The performance of the model
is evaluated on the corresponding test set based on the optimal
feature subset selected in each inner loop. The results are shown
in Tables 1, 2. It can be seen from Table 2 that the best mean
CA value, mean PAM value, mean se value, mean SP value, mean
AUC value, mean Ji value and mean FM value are 0.8528, 0.6990,
0.8566, 0.8486, 0.8540, 0.7439, and 0.8530, respectively.

Figure 6 shows the union of the optimal feature subsets
selected by each inner loop and the distribution of each feature.
Based on the results shown in Figure 6, we found that the
asymmetric features over the frontal and parietal lobes play an
extremely important role in recognizing initial romantic interest
because 15 of the 20 most discriminating features originated from
these two regions. Moreover, 14 of these 15 features belonged to
the alpha and beta bands. Previous studies have demonstrated
that the frontal and parietal lobes are the most informative

regions of emotional states, while the alpha and beta waves appear
to be the most discriminative (Alarcao and Fonseca, 2019; Zheng
et al., 2020). Yuan and Liu (2021) found that the changes in alpha
and beta power on the sensors over the anterior regions play
an important role in the generation and evaluation of IRA. In
addition, numerous studies have demonstrated that frontal and
parietal asymmetries in the alpha and beta FBs are observable for
valence and arousal recognition (Cacioppo, 2004; Huang et al.,
2012; Alarcao and Fonseca, 2019). In particular, Aldayel et al.
(2020a,b) showed that the asymmetric features in alpha and beta
frequencies over the frontal and parietal regions can effectively
identify users’ emotional responses and preferences to market
stimuli (Touchette and Lee, 2016; Liu et al., 2018; Ramsoy et al.,
2018). In addition, Naser et al. showed that asymmetric features
of alpha frequency on the frontal and parietal lobe regions could
effectively identify users’ preference for music (Naser and Saha,
2021). We also found that the asymmetric features in the alpha,
beta, and theta bands over the lateral occipital complex and
the asymmetric features in the theta bands over the frontal
and parietotemporal regions were sensitive in recognizing IRA.
Previous studies have observed that the generation of IRA leads to
desynchronization of alpha and beta bands in the lateral occipital
complex region (Yuan and Liu, 2021). The theta FB over the
frontal and parietotemporal areas was also considered to be an
effective feature for identifying emotional states (Aftanas et al.,
2001; Cartier et al., 2012).

Taken together, these findings demonstrate that users’
preferences for potential romantic partners can be determined
on the basis of EEG signals. Furthermore, the TF features from
channels over the frontal, parietal, and occipital regions are
informative and suitable for the identification of IRA toward
potential partners.

CONCLUSION

The purpose of this experiment was to determine the possibility
of using EEG signals to identify users’ aesthetic preferences for
potential romantic partners. In this study, our system achieved
a best accuracy of 85.2% (SD = 0.03) in recognizing the initial
romantic interest. This result demonstrated that based on the
information provided by users’ EEG signals, we can determine
whether they are romantically interested in a potential partner.
In addition, the best accuracy 85.2% (SD = 0.03) in this study
was obtained mainly using the asymmetry features of the alpha,
beta, and theta FBs on the sensors over the frontal lobe, parietal
lobe, and lateral occipital complex. These results suggest that
the TF features from channels over the frontal, parietal, and
occipital regions are suitable for identifying human preferences
for potential romantic partners. Therefore, in future work, we
plan to extract features from different dimensions, such as
the time domain and source domain, and explore how to use
the minimum channels to optimize the classification accuracy
through multi-dimensional feature integration.

In addition, as an exploratory study, this study used portrait
photos rather than real people as stimuli to induce IRA based
on feasibility considerations. The advantage of this approach is
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that by increasing the amount of stimulus, it can effectively solve
the problem of insufficient trials in which IRA was successfully
induced due to the low average induction rate. However, in
real social scenes, initial romantic interest usually occurs in
the environment that allows some meaningful interaction, but
the types of stimuli used in the present study did not allow
participants to interact effectively with potential partners in the
photos (Yuan and Liu, 2021; Yuan et al., 2021). This is a problem
that needs to be paid attention to and solved in the follow-up
research. It is believed that in the near future, mate preference
recognition and matching systems based on EEG signals will be
applied to online or offline dating scenarios to assist individuals
in finding their ideal partners.
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Affective studies provide essential insights to address emotion recognition and tracking.

In traditional open-loop structures, a lack of knowledge about the internal emotional

state makes the system incapable of adjusting stimuli parameters and automatically

responding to changes in the brain. To address this issue, we propose to use facial

electromyogram measurements as biomarkers to infer the internal hidden brain state

as feedback to close the loop. In this research, we develop a systematic way to track

and control emotional valence, which codes emotions as being pleasant or obstructive.

Hence, we conduct a simulation study by modeling and tracking the subject’s emotional

valence dynamics using state-space approaches. We employ Bayesian filtering to

estimate the person-specific model parameters along with the hidden valence state,

using continuous and binary features extracted from experimental electromyogram

measurements. Moreover, we utilize a mixed-filter estimator to infer the secluded brain

state in a real-time simulation environment. We close the loop with a fuzzy logic controller

in two categories of regulation: inhibition and excitation. By designing a control action,

we aim to automatically reflect any required adjustments within the simulation and

reach the desired emotional state levels. Final results demonstrate that, by making use

of physiological data, the proposed controller could effectively regulate the estimated

valence state. Ultimately, we envision future outcomes of this research to support

alternative forms of self-therapy by using wearable machine interface architectures

capable of mitigating periods of pervasive emotions and maintaining daily well-being

and welfare.

Keywords: closed-loop, control, brain, emotion, valence, electromyogram (EMG), wearable, state-space

1. INTRODUCTION

Emotions directly influence the way we think and interact with others in different situations,
especially when it interferes with rationality in our decision-making or perception (Dolan, 2002).
Thus, having a solid grasp of the dynamics of emotions is critical to provide any therapeutic
solutions to maintain welfare (Couette et al., 2020). Moreover, deciphering emotions has been
an ongoing task among researchers, dictating joint efforts from behavioral, physiological, and
computational angles (Scherer, 2005). According to the James A. Russell’s circumplex model of
affect, emotion can be divided into two perpendicular axes, viz. valence—reflecting the spectrum

134

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2022.747735
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2022.747735&domain=pdf&date_stamp=2022-03-25
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:rfaghih@nyu.edu
https://doi.org/10.3389/fncom.2022.747735
https://www.frontiersin.org/articles/10.3389/fncom.2022.747735/full


Branco et al. Closed-Loop Regulation of Valence State

of negative to positive emotions—and arousal, accounting for the
intensity characteristics (Russell, 1980). In this study, we focus
on improving comprehension of emotional valence regulation
by proposing an architecture to track and regulate the internal
hidden valence state using physiological signals collected via
wearable devices. The use of wearable devices to gain insight to
the internal brain state provides a good alternative to study the
brain dynamics, as usually the procedures either rely on invasive
techniques, e.g., extracting bloodstream samples, performing
surgery, or require large and expensive equipment for imaging
purposes (Villanueva-Meyer et al., 2017; Wickramasuriya et al.,
2019a,b).

Affective computing is defined by an interdisciplinary field of
research that incorporates both sentiment analysis and emotion
recognition (Poria et al., 2017). Scholars have posited the
importance of affective computing to endow machines with the
means to recognize, interpret or convey emotions and sentiments
(Poria et al., 2017; Burzagli and Naldini, 2020). These capabilities
allow the development and enhancement of personal care
systems that interact better with humans, potentially improving a
personal health and daily well-being (Burzagli andNaldini, 2020).
Previous attempts in the development of affective computing
have focused on emotion feature extraction and classification
through human-robot interactions (Azuar et al., 2019; Rudovic
et al., 2019; Yu and Tapus, 2019; Filippini et al., 2020; Rosula
Reyes et al., 2020; Val-Calvo et al., 2020), facial expressions
(Chronaki et al., 2015; rong Mao et al., 2015; Yang et al., 2018a;
Zeng et al., 2018), and vocal responses (Wang et al., 2015; Fayek
et al., 2017; Noroozi et al., 2017; Anuja and Sanjeev, 2020).
The objective of this research is to take this one step further
and introduce a tracking and closed-loop control framework to
regulate specific emotions.

Within a closed-loop approach, biomarkers are collected
in real-time as feedback, which grants the possibility of
automatically adjusting brain stimulation levels according to
the current emotional state (Wickramasuriya et al., 2019a,b;
Thenaisie et al., 2021). Previous studies have shown that this
strategy can increase treatment efficacy and decrease the extent
of stimulation side-effects, compared to just employing an open-
loop stimulation (Price et al., 2020). The benefits of closed-
loop neurostimulation have been well reported in addressing
conventional-therapy-resistant patients with Parkinson’s disease
(Little et al., 2016; Weiss and Massano, 2018). However, fewer
studies have explored closed-loop therapies for non-motor
neuropathologies such as post-traumatic stress disorder or
depression (Tegeler et al., 2017; Mertens et al., 2018), even
though there is already relevant evidence of improvements with
open-loop therapies (Conway et al., 2018; Starnes et al., 2019;
Freire et al., 2020). Conversely with the conventional open-loop
approach, brain stimulation is manually tuned during in-clinic
visits, delivering pre-determined quantities and incurring over or
under stimulation of the brain (Wickramasuriya et al., 2019a,b;
Price et al., 2020).

To properly regulate the emotional brain state in a closed-
loop manner, a suitable biomarker that relates to the internal
emotional valence needs to be identified. Prior research has based
emotion classification on facial or voice expressions, which not

only requires heavy data acquisition, but also runs into ambiguity
issues (Tan et al., 2012). Facial and vocal expressions can
vary significantly between person to person, making it difficult
to draw any accurate inference about the person’s emotional
state. Moreover, facial and vocal expressions (e.g., smiling) can
be seen as externalized emotions and can be altered at will,
confounding the accuracy of such classification approaches, and
thus hindering any tracking and control efforts as the true
emotional state would not be clear (Cai et al., 2018). In response,
our proposed strategy aims to remove this ambiguity by using a
more reliable metric: physiological signals (Cacioppo et al., 2000).
Physiological signals or biomarkers are involuntary responses
initiated by the human’s central and autonomic nervous systems,
whereas facial and vocal lineaments can voluntarily be hidden to
reject certain emotional displays (Cannon, 1927; Cacioppo et al.,
2000; Lin et al., 2018; Amin and Faghih, 2020; Wilson et al.,
2020). Although overall facial expression can be made to mask
certain emotions, several studies have linked electromyogram
activity of specific facial muscles to states of affection in varying
valence levels, such as happiness, stress and anger (Nakasone
et al., 2005; Kulic and Croft, 2007; Gruebler and Suzuki, 2010;
Tan et al., 2012; Amin et al., 2016; Cai et al., 2018). Cacioppo
et al. described that the somatic effectors of the face are tied
to changes in connective tissue rather than skeletal complexes
(Cacioppo et al., 1986). Researchers in Cacioppo et al. (1986)
posited facial electromyogram could provide insight into valence
state recognition even when there is no apparent change in facial
expressions. Moreso, the work of Ekman et al. (1980) and Brown
and Schwartz (Brown and Schwartz, 1980) are two of the few
who showed that using facial electromyogram measurements of
the zygomaticus muscle (zEMG) gave the most distinct indicator
of valence compared to other facial muscles involved in the act
of smiling. Multiple studies have suggested the relation between
emotional states and facial electromyogram activity (Van Boxtel,
2010; Tan et al., 2011; Koelstra et al., 2012; Künecke et al., 2014;
Kordsachia et al., 2018; Kayser et al., 2021; Shiva et al., 2021).
Golland et al. (2018) also showcased a consistent relationship
between the emotional media viewed and the changes seen in
the components of the facial electromyogram signal. We focus
on zEMG to build our model and track the hidden valence state.
Then, we design a control strategy to automatically regulate the
internal emotional valence state in real-time.

It should be noted that electromyogram is not the only
physiological metric that has shown promise for valence
recognition. Emotional valence can also be represented by many
different physiological signals or a combination of them (Egger
et al., 2019), such as using electroencephalography (Bozhkov
et al., 2017; Wu et al., 2017; Soroush et al., 2019; Feradov
et al., 2020), respiration (Zhang et al., 2017; Wickramasuriya
et al., 2019a,b), electrocardiography (ECG) (Das et al., 2016;
Goshvarpour et al., 2017; Harper and Southern, 2020), blood
volume pulse (Das et al., 2016) or heart rate variability
(Ravindran et al., 2019). Egger et al. investigated the accuracy of
different physiological signals in classifying emotive states such
as stress periods, calmness, despair, discontent, erotica, interest,
boredom, or elation (Egger et al., 2019). Naji and collaborators
displayed the disparity betweenmultimodal and individual signal
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measurements regarding emotion classification via ECG and
forehead biosignals (Naji et al., 2014).

Previous studies have also investigated different ways of
estimating and tracking internal brain states (Sakkalis, 2011).
Brain dynamics during resting states have been studied with
measurements from functional magnetic resonance imaging
(fMRI), using linear and non-linear models, and more recently,
employing a tensor based approach (Honey et al., 2009;
Abdelnour et al., 2014; Al-Sharoa et al., 2018). The transition
of brain states has been examined with machine learning
methods and eigenvalue decomposition, by using data from
fMRI, electroencephalogram (EEG) or magnetoencephalography
(Pfurtscheller et al., 1998; Guimaraes et al., 2007; LaConte et al.,
2007; Maheshwari et al., 2020). Moreover, EEG measurements
were also employed withmachine learning techniques to estimate
stress levels (Al-Shargie et al., 2015), and affection (Nie et al.,
2011). The method introduced by Yadav et al. uses a state-space
formulation to track and classify emotional valence based on two
simultaneous assessments of brain activity (Yadav et al., 2019).
In the present work, we use a similar approach to estimate and
track the hidden valence state, with the help of Bayesian filtering
as a powerful statistical tool to improve state estimation under
measurement uncertainties (Prerau et al., 2009; Ahmadi et al.,
2019; Wickramasuriya and Faghih, 2020). Another contribution
of the present work is the use of real measurements from
wearable devices to develop a virtual subject environment as a
simulation framework for concealed emotional levels. This is the
first step to empower the implementation and testing of closed-
loop controllers that could track and regulate the internal valence
state. In a similar fashion to other control studies, providing
a reliable closed-loop simulation framework can pave the way
for safe experimentation of brain-related control algorithms here
and in future studies (Santaniello et al., 2010; Dunn and Lowery,
2013; Yang et al., 2018b; Wei et al., 2020; Ionescu et al., 2021).

To investigate the validity of regulating emotions through a
closed-loop control architecture, we design a simulation system
using experimental data. Specifically, in this in silico study, we
employ features extracted from zEMG data and design a fuzzy
logic controller to regulate the emotional valence state in a
closed-loopmanner.We propose to implement fuzzy logic as this
knowledge-based controller works with a set of predetermined
fuzzy rules and weights responsible to gauge the degree in
which the input variables are classified into output membership
functions (Klir and Yuan, 1995; Qi et al., 2019). This process
is particularly useful for controlling complex biological systems,
as it provides a simple yet effective way of interacting with
the uncertainties and impreciseness of these challenging systems
(Lilly, 2011). In the literature, previous research have explored
the use of a fuzzy logic controller in a simulation environment to
control cognitive stress or regulate energy levels of patients with
clinical hypercortisolism (Azgomi and Faghih, 2019; Azgomi
et al., 2019). A fuzzy controller was also combined with a
classical Proportional Integral Derivative (PID) controller to aid
the movement of a knee prosthesis leg (Wiem et al., 2018), and to
regulate movement of the elbow joint of an exoskeleton during
post-stroke rehabilitation (Tageldeen et al., 2016). Scholars have
shown fuzzy logic controllers to outperform PID controllers in

the regulation of mean arterial pressure (Sharma et al., 2020), and
to improve the anesthetic levels of patients undergoing general
anesthesia (Mendez et al., 2018). In light of what is presented, in
this in silico study, we develop a virtual subject environment to
evaluate the efficiency of our proposed architecture.

The remainder of this research is organized as follows.
In Section 2 we describe the methods used in this research.
Specifically, in Section 2.1 we describe the virtual subject
environment and the steps taken toward its development (i.e., the
models used, the features extracted, the valence state estimation
and the modeling of the environmental stimuli). Next, in Section
2.2 we explain the controller design and the steps taken during
implementation. Then, we present our results in Section 3,
followed by a discussion of those in Section 4.

2. METHODS

2.1. Virtual Subject Environment
An overview of the proposed system is presented in Figure 1. As
depicted in Figure 1, to construct the virtual subject environment
we first take the zEMG measurements and preprocess the
collected data for our further analysis. From the zEMG data we
extract binary and continuous features that will be used both to
build the state-space model and to estimate hidden emotional
levels. This is possible after the establishment of the continuous
and binary observation models associated with the state-space
representation of emotional valence. Since the emotional valence
progression of the subject is not measurable directly, we use
the two simultaneous features and an expectation maximization
(EM) algorithm, to model and drive the environmental stimuli
within the virtual subject environment. The environmental
stimuli are used to recreate, in real-time, different subject-specific
emotional valence state-related responses into the simulated
brain model. Similarly to the non-real-time case, output from
the brain model will then have binary and continuous features
extracted before reaching the mixed-filter. The mixed-filter
estimates the hidden valence state to supply it to the control
method selected of either excitatory or inhibitory control. With
these two classes of closed-loop regulation we can analyze the
performance of the proposed approach. Finally, the control
algorithm determines the control effort necessary and provides
it to the brain model, closing the loop. All the simulations of this
research were performed using SIMULINK from MATLAB (The
Math Works, Inc., Natick, MA) version 2020b.

2.1.1. Dataset
In this research, we develop human brain models using
the publicly available Database for Emotion Analysis using
Physiological Signals (DEAP) (Koelstra et al., 2012), in which
the authors investigated the connection between physiological
signals and an associated emotional tag, based on a valence
scale. In the DEAP dataset, 32 subjects (16-females and 16-
males, mean age 26.9) were asked to watch 1 min segments of
40 different music videos. These videos were selected so that they
would capture every aspect of both arousal and valence levels.
At the end of each video trial, the researchers gathered each
subject’s self-assessment regarding emotional valence, on a 1–9
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FIGURE 1 | Overview of proposed closed-loop solution. Within data from a publicly available dataset, the subject is wearing wearable electromyogram sensors that

collect facial muscle activity. From the electromyogram measurements, binary and continuous features are extracted and used to infer the hidden emotional valence

state of the subject, which cannot be measured directly. This is performed using state-space modeling and via an expectation maximization algorithm. The estimated

valence state is then used to model an environmental stimuli, recreating the subject’s surrounding input inside the virtual subject environment. Within this virtual

environment, different emotional conditions are recreated into the brain model. By extracting binary and continuous features and using a mixed filter, the subject’s

hidden emotional valence state is estimated and further regulated as desired (excitation or inhibition modes) by means of a fuzzy logic controller.

scale. During the experiment, various physiological signals were
collected, such as the facial zEMG response at 512 Hz. For our
study, the self-assessed emotional valence information is taken as
ground truth.

2.1.2. State-Space Model
We model the valence state progression by forming stochastic
state-space models.

2.1.2.1. State Equation
Similar to Prerau et al. (2009), we use a first order autoregressive
state-space model,

xk+1 = xk + ǫk + sk + uk , (1)

where xk is the hidden valence state at time step k for k = 1, ...,K
and K is the entire experiment duration. The model also includes
the process noise as a Gaussian zero-mean random variable ǫk ∼

N (0, σ 2
ǫ
), sk as a surrogate for any environmental stimuli that

influenced the brain at the time of data collection, and uk as the
input from the controller.

2.1.2.2. Observation Models
We include two observation models that capture the evolution
of the zEMG signals binary and continuous features so that we
can observe the valence state progression in Equation (1). By
using two features simultaneously in the model, we achieve a
more accurate (i.e., narrower confidence intervals) and more
precise emotional state estimation (Prerau et al., 2008). The
binary observations nk = {0, 1}, are modeled as a Bernoulli
distribution (McCullagh andNelder, 1989;Wickramasuriya et al.,
2019a,b),

P(nk|xk) = p
nk
k
(1− pk)

1−nk , (2)

pk =
eγ+xk

1+ eγ+xk
, (3)

where pk is the probability of observing a spike given the current
valence state amplitude via sigmoidal link function (Equation 3),
which has shown to depict frequency or counting datasets well
(Wickramasuriya et al., 2019a,b). The continuous observations
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zk ∈ R are modeled as,

zk = α + βxk + ωk , (4)

where α is a coefficient representing the baseline power of the
continuous feature, β is the rate of change in the continuous
feature’s power, and ωk is a normally distributed zero mean
Gaussian random variable ωk ∼ N (0, σ 2

ω
). Both the continuous

and binary observations are stated as functions of the valence
state xk.

2.1.3. zEMG Feature Extraction
To perform the estimation process and obtain the hidden valence
state, we utilize the zEMG data and extract the binary and
continuous features presented in the observation models.

2.1.3.1. Data Preprocessing
We use a third order butterworth bandpass filter between 10
and 250 Hz to remove motion artifacts and other unwanted high
frequency noise. Additionally, we use notch filters at 50 Hz and
next four harmonics to remove any electrical line interference.
Finally, the filtered zEMG signal, yk, is segmented into 0.5 second
bins with no overlapping.

2.1.3.2. Binary Feature Extraction of Filtered zEMG
As suggested by previous scholars the binary features extracted
from the zEMG signal may be associated with the underlying
neural spiking activity (Prerau et al., 2008; Amin and Faghih,
2020; Azgomi et al., 2021a). Thus, we estimate the neural spiking
pertinent to emotional valence by extracting binary features from
the zEMG data. Firstly, the bins of the filtered zEMG signal yk
are rectified by taking their absolute values and then smoothed
with a Gaussian kernel. Similarly to Azgomi et al. (2019) and
Yadav et al. (2019), the binary features nk are obtained with the
Bernoulli distribution,

P(nk|yk) = q
nk
k
(1− qk)

1−nk , (5)

qk = a yk , (6)

where a is a scaling coefficient, chosen heuristically to be 0.5,
and qk is a zEMG amplitude dependent probability function of
observing a spike in bin k, given yk.

2.1.4. Continuous Feature Extraction of Filtered EMG
Using the filtered zEMG signal yk, we also extract the continuous
features employing the Welch power spectral density (PSD) of
each 0.5 s bin, with a 75% window overlap. Afterwards, for each
bin, we compute the bandpower of the PSD result from 10 to
250 Hz, before taking the logarithm. Finally, we normalize the
entire signal on a 0–1 scale, to provide insight of the relative
band power of the zygomaticus major muscle activity, across all
40 1-min trials.

2.1.5. Hidden Valence State Estimation
To estimate the emotional valence fluctuations within the
experimental data, we employ the state-space representation
shown in Equation (1) without the control effort and

environmental stimuli, since at this time, there is no control
signal and the stimuli is inherent in the data. The hidden valence
state process is defined by

xk+1 = xk + ǫk . (7)

Given the complete values for both extracted binary N1 :K =

{n1, ..., nK} and continuous Z1 :K = {z1, ..., zK} features, we
use the EM algorithm to estimate the model parameters θ =

[α,β , σǫ , σω] and the hidden valence state xk. The EM algorithm
provides a way to jointly estimate the latent state and parameters
of the state-space models. Composed of two steps, namely,
Expectation step (E-step) and Maximization step (M-step), the
EM algorithm: (1) finds the expected value of the complete data
log-likelihood, and (2) maximizes the parameters corresponding
to this data log-likelihood. The algorithm iterates between these
two steps until convergence (Wickramasuriya et al., 2019a,b;
Yadav et al., 2019). The following equations show how at iteration
(i + 1) values are recursively predicted with estimates and

parameters from iteration i (e.g., x
(i)
0 , σ

2(i)
ǫ ).

2.1.5.1. E-Step
2.1.5.1.1. Kalman-Based Mixed-Filter (Forward-Filter).

xk|k−1 = xk−1|k−1 (8)

σ
2
k|k−1 = σ

2
k−1|k−1 + σ

2(i)
ǫ

(9)

Ck =

(

β
(i)2

σ
2
k|k−1 + σ

2(i)
ω

)−1
σ
2
k|k−1 (10)

x̂k = xk|k = xk|k−1 + Ck

[

β
(i)

(

zk − α
(i)

− β
(i)xk|k−1

)

+ σ
2(i)
ω

(

nk − pk|k
)

] (11)

σ̂
2
k = σ

2
k|k =

[

(σ 2
k|k−1)

−1
+ pk|k(1− pk|k)

+ (σ 2(i)
ω

)−1
β
(i)2

]−1 (12)

where k = 1, ...,K; x̂k is the estimated valence state; and σ̂
2
k

constitute the corresponding standard deviation.

2.1.5.1.2. Fixed-Interval Smoothing Algorithm (Backward-Filter).

Ak = σ
2
k|k

(

σ
2
k+1|k

)−1
(13)

xk|K = xk|k + Ak

(

xk+1|K − xk+1|k

)

(14)

σ
2
k|K = σ

2
k|k + A2

k

(

σ
2
k+1|k − σ

2
k+1|K

)

(15)
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2.1.5.1.3. State-Space Covariance Algorithm.

σk,u|k = Akσk+1,u|k (16)

Wk|K = σ
2
k|K + x2k|K (17)

Wk−1,k|K = σk−1|K + xk−1|Kxk|K (18)

for 1 ≤ k ≤ u ≤ K.

2.1.5.2. M-Step

x
(i+1)
0 = x1|k (19)

σ
2(i+1)
ω

= K−1
K

∑

k=1

z2k + Kα
2(i+1)

+ β
2(i+1)

K
∑

k=1

Wk|K − 2α(i+1)
K

∑

k=1

zk

− 2β(i+1)
K

∑

k=1

xk|Kzk

+ 2α(i+1)
β
(i+1)

K
∑

k=1

xk|K

(20)

[

α
(i+1)

β
(i+1)

]

=

[

K
∑K

k=1 xk|K
∑K

k=1 xk|K
∑K

k=1Wk|K

]−1

×

[ ∑K
k=1 zk

∑K
k=1 xk|Kzk

]

(21)

σ
2(i+1)
ǫ

= K−1
K

∑

k=1

[

Wk|K − 2Wk−1,k|K +Wk−1|K

]

(22)

2.1.6. Environmental Stimuli Model
Wemodel the environmental stimuli referred to in Eqouation (1)
as a way to capture and recreate the subject’s response to high
or low valence trials. This allows for the simulation of subject-
specific HV and LV conditions. The environmental stimuli are
calculated by finding the difference between adjacent elements of
the estimated valence state x̂k, as in

s
k
= x̂k+1 − x̂k (23)

for k = 1, ...,K − 1. Then, we assume a sinusoidal harmonic
formulation to model the environmental stimuli in either HV or
LV trials,

s
k
=

100
∑

j=1

ρjsin(ζjk+ φj) (24)

Through inspection across all subjects, we notice that HV trials
tend to have a higher mean and standard deviation compared

to LV ones. Thus, to avoid fitting outliers to the harmonic
model depicted in Equation (24), we select the six trials with
highest mean and standard deviation of estimated valence levels
for fitting sk to HV, and the six trials with the lowest mean
and standard deviation to model LV periods. Additionally, we
consider a transition period between each different valence state,
as approximated by a linear relationship of 0.5 s in duration.
This is done separately for each subject to ensure personalized
models. Data from an exemplary subject is depicted in Figure 2,
in which every step of the process is illustrated separately, i.e.,
raw zEMG to extracted features and valence state and finally
obtaining a corresponding environmental stimuli. In addition,
in Figure 3, the estimated emotional valence state for the same
exemplary subject is presented with 95% confidence intervals.
Of the 23 subjects available in the dataset, we excluded five
participants due to a lack of emotional response found when
comparing between LV and HV periods, that is, both emotional
periods have shown equivalent outcomes regarding both features
and estimated valence state.

2.2. Closed-Loop Control Design
With the virtual subject environment in place, we explore the
regulation of emotional valence. Similar to the feature extraction
process, we simulate the binary and continuous responses
simultaneously from the internal brain state. In other words,
we use Equations (2)–(4) to recreate within the virtual subject
environment what would be inherent to the zEMG data in the
real world. Then, these two features are fed to a Kalman-based
mixed-filter to estimate the hidden valence state in an online
fashion. The estimated state is averaged out in a 10-s window to
smooth any abrupt changes before reaching the fuzzy controller,
which then derives the control effort uk in real-time. A diagram
of the closed-loop is depicted in Figure 4. As the hidden valence
state cannot be measured directly, we use the recursive, Kalman-
based mixed-filter to estimate the latent valence state inherent
to the brain model as detailed in Equations (8)–(12). As shown
in Figure 4, this filter takes in both binary and continuous
observations to compute the prior distribution using a Chapman-
Kolmogrov equation, then finds the measurement likelihood via
Bayes theorem, which can be summarized with, respectively,

p(xk|nk−1, zk−1) , (25)

and

p(xk|nk, zk) . (26)

2.2.1. Fuzzy Control
We use a Mamdani-type fuzzy logic controller with the fuzzy
rules shown in Table 1 to regulate the subject’s emotional valence
to a more desired level, i.e., during inhibitory mode of control
action, the goal is to achieve and remain in the same valence
level characterized by the LV period—and vice-versa for the
excitatory controller. As it can be observed in Figures 1, 4 and
Table 1, the input signal for the controller is the estimated
valence state and not a prediction error as it is more common
in control studies. After analyzing the open-loop response of
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FIGURE 2 | zEMG data, corresponding features, estimated valence state, and environmental stimuli of subject 18. Trials characterized as high valence (HV) are

shaded in gray, whilst unshaded ones as representative of low valence (LV). The raw zEMG collected is presented in (A) in orange, while (B,C) show the extracted

features, binary (red) and continuous (pink), respectively. (D) illustrates the hidden valence state (green) attained with the EM algorithm by employing both features

shown in (B,C). The last (E) shows the environmental stimuli (black) obtained from the valence state progression in (D).

FIGURE 3 | Detail of estimated emotional valence state for subject 18 with 95% confidence intervals. The white background depicts LV periods while the gray-shaded

areas show HV results. The solid green line shows the estimated valence state while the green region around it is a 95% confidence interval.

all subjects we designed a set of membership functions capable
of directly regulating the emotional valence without subtracting
it from a target reference. With this, we could employ more
intuitive membership functions as depicted in Figure 5. Similarly
to previous authors (Azgomi et al., 2021b), the fuzzy output can

be obtained with,

µmamdani(k) = µm(k) = max
j

(

min(µvalence(v))
)

(27)
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FIGURE 4 | Overview of the closed-loop solution. The environmental stimuli sk
is added to the control signal uk to form an input of the state-space brain

model. The internal emotional valence state xk is governed by the state

equation and by employing the observation equations, binary and continuous

features are extracted and taken in by the recursive mixed-filter. The filter

estimates and tracks the hidden brain state x̂k , supplying this signal for the

controller. Finally, the controller takes the current estimated valence state and

generates a control signal uk back to the brain model, thus closing the loop.

This control signal is responsible for changing the valence state in the desired

direction, i.e., increasing if excitatory or decreasing if inhibitory action.

TABLE 1 | Fuzzy controller rule base.

Input (IF):

valence levels

Inhibitory

Output (THEN):

control action

Excitatory

Output (THEN):

control action

Low valence Neutral Excitation

High valence Inhibition Neutral

FIGURE 5 | Excitatory and inhibitory fuzzy membership functions. The left side

shows membership functions of the controller’s input, whilst the right side

display the ones for the output. The top and bottom row depict, respectively,

membership functions of the inhibitory and excitatory controllers. In all four

graphs the y axis depicts the degree of membership for every case, in which

the lowest value is zero association with that function and the highest value is

total association.

where j designate the active rule at each time step k and µvalence

is the fuzzified valence input v. The crisp output of the fuzzy
controller, i.e., the control signal uk, is attained using the centroid
method as follows,

uk =

∫

µm(k).k dk
∫

µm(k) dk
. (28)

With a fuzzy logic controller, crisp input values are transformed
to degrees of membership of certain functions calledmembership

functions in the fuzzification process. Then, using the pre-
determined fuzzy rules the fuzzy inference process takes place,
in which a connection between all fuzzified inputs is made.
This results in degrees of membership of a set of output
membership functions, which are then defuzzified to produce a
final representative crisp value (Qi et al., 2019). This fuzzy logic
process is convenient when dealing with complex systems, such
as those biological in nature, since it allows for the emergence of
complex control behaviors using relatively simple constructions
(Lilly, 2011).

3. RESULTS

In this section, we present the results obtained for subject 7 in
three different simulation scenaria: open-loop, inhibitory closed-
loop, and excitatory closed-loop. The results associated with
other subjects are also available in the Supplementary Material.
We simulate with an environmental stimulus that is either half LV
then half HV or vice versa. During the first minute, the controller
is suspended to let the mixed-filter converge. The results are
presented in Figure 6. As depicted in sub-panel (a) of I and II
in Figure 6, all three scenarios for one particular subject have the
same environmental stimuli in common, either starting with LV
or with HV.

Scenario 1 - Open-Loop: Since in the open-loop scenario
there is no control effort (uk = 0), it can be omitted and the
results are shown within the spike activity, depicted in sub-panel
(b), and the corresponding estimated internal state depicted in
sub-panel (c) and in dashed lines in both (f) and (i) sub-panels. It
is observed, in sub-figure I of Figure 6, that the estimated valence
state increases from the period of LV in the first half to HV in the
second half, and so does the frequency of spikes. In contrast, sub-
figure II of Figure 6 shows valence levels and number of spikes
declining from the first half (HV) to the second half (LV).

Scenario 2 - Inhibitory Closed-Loop: The inhibitory results
are observed in sub-panels (d, e, f) of both I and II in
Figure 6. The control signal is zero during the LV periods of
the simulations (i.e., during the first half in I and for the second
half in II). It is not until the controller detects a HV period that
the control effort takes a negative value (uk < 0) to inhibit
the emotional valence, effectively lowering the number of spikes
shown in sub-panel (e) and the estimated valence state depicted
in sub-panel (f), as compared to the open-loop case.

Scenario 3 - Excitatory Closed-Loop: The last 3 sub-panels
(g, h, i) from both I and II of Figure 6 depict the results of the
excitatory controller. From sub-panel (g), we can see there is no
control effort in periods of HV; both in the second half of I and
first half of II. Once the controller detects a low valence state, it
outputs a positive control effort (uk > 0), which increases the
number of spikes and estimated valence level in sub-panels (h)
and (i), as compared to the open-loop.

4. DISCUSSION AND CONCLUSIONS

In this study, we use experimental data to build a virtual subject
environment, allowing us to simulate and regulate emotional
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FIGURE 6 | Simulation results of open-loop, inhibitory closed-loop and excitatory closed-loop scenarios for subject 7. In sub-figure I the external stimulus is comprised

of half LV, then half HV, with sub-figure II being the opposite. In both (I,II), LV, and HV periods are represented with unshaded and gray-shaded areas, respectively. (a)

depicts environmental stimulus (black) used in all three simulation scenarios. The (b,c) show spike activity (red) and estimated valence state (green, dashed) during the

open-loop, respectively. (d–f) display inhibitory closed-loop results, with (d) showing control effort (blue), (e) the corresponding binary signal (red) and (f) the comparison

between open-loop (green, dashed) and closed-loop (green, solid) valence state. In a similar fashion, (g–i) exhibit the excitatory closed-loop outcome.
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valence levels using a state-space brain model and a fuzzy
logic feedback controller. To the best of our knowledge, in
this in silico feasibility study, we present the first closed-
loop control framework for emotional valence state using
biofeedback from facial muscles. We use two simultaneous
observation models, one binary and one continuous, to relate
zEMG measurements to the hidden emotional valence state.
The valence state is assumed to be governed by a state-space
formulation and is converted from a 1 to 9 valence scale
obtained from the self-assessment of subjects from the dataset,
to the high (above 5) or low valence level used in this study.
These valence labels were previously used by scholars as ground
truth and were also employed here to determine subject-specific
simulation parameters (Yadav et al., 2019). This was done by
selecting specific LV and HV trials for modeling based on a
trend in the mean and standard deviation of the estimated
valence state between the two categories. To capture the
surrounding stimuli influencing the affective levels of the subject
and incorporate them into simulation, we use the estimated
emotional valence progression and a high-order harmonic
formulation. This modeling and simulation of the environmental
stimuli is currently necessary to evoke representative subject-
specific emotional valence responses within the simulated brain
model. Thus, modern control techniques can be systematically
investigated in silico, allowing for the development of this
research field without risking harm to any patients.

In the current stage of this research on closed-loop emotional
valence regulation, we focus our contributions on developing
the closed-loop simulated framework and opted for using a
fuzzy logic controller to regulate the estimated valence state
in simulated profiles. While the accuracy of the classification
method is paramount for the success of our method, we
employed the same methodology for classifying between low
valence and high valence states which reported a 89% accuracy
in previous works (Yadav et al., 2019). This value is on par with
other state-of-the-art methods however, relying on physiological
measurements and estimation of the brain state, instead of
externalized facial or vocal expressions.

Using the proposed knowledge-based controller we
successfully verify the in silico feasibility of the presented
methods. By employing a set of simple logic rules the fuzzy
system is capable of producing complex regulating behaviors
(Lilly, 2011). This is extremely valuable since insight about the
system can come in many ways, such as from doctors, other
researchers, or the individual itself. Moreover, the fuzzy structure
allows for an uncomplicated expandability feature which means
other physiological signals could be simply incorporated while
designing the control systems (Azgomi et al., 2021a,b). This
could further enhance the approach for valence regulation.

In previous research for closed-loop regulation of human-
related dynamics, scholars have developed simulators to
explore controller designs for Parkinson’s disease, cognitive
stress, depression and other neurological and neuropsychiatric
disorders, as well as for anesthetic delivery, hemodynamic
stability, and mechanical ventilation (Boayue et al., 2018; Yang
et al., 2018b; Azgomi et al., 2019; Parvinian et al., 2019; Fleming
et al., 2020; Ionescu et al., 2021). Here, the proposed architectures

set initial steps for a future wearable machine interface
(WMI) implementation, as we achieved simulation of emotional
valence controllers for both inhibitory and excitatory goals,
demonstrating great potential in helping individuals maintain
daily mental well-being (Azgomi and Faghih, 2019). While no
commercial wearable solution for facial EMG measurement is
available yet, the potential for this non-invasive procedure to
regulate mental states encourages future efforts.

During excitatory action, we observe an increase in number
of spikes and overall emotional valence state when needed
and, for inhibition, our approach obtained less spikes and a
lower valence level as the need arose. However, the amount
of response varied with each subject due to a few reasons.
One factor can be attributed to the use of a single mono-
objective fuzzy controller design, in which the controller can
act locally in the first half of the experiment, correctly adjusting
the mental state, without considering that the environmental
stimuli are going to further push the subject’s valence level in
the second half. This architecture also does not account for
each individual peculiarities, i.e., lack or abundance of emotional
engagement throughout the experiment. Further research needs
to explore the optimization of fuzzy membership functions, to
adapt for different persons and variations in time. Because the
performance of fuzzy logic controllers are highly dependent on
their parameters and structure, optimization algorithms could
also improve the overall results as the parameters would not rely
on pre-determined knowledge of the system (Qi et al., 2019).

In the exemplary subject depicted in Figure 6 we can
observe an inhibitory action taking place in the HV periods
of inhibition simulation and lowering of the number of
spikes and estimated valence level as compared to the open-
loop. Similarly, we can observe the excitatory controller
acting in LV periods and increasing the spike frequency
and valence levels, accordingly. Overall, subjects 3–5, 8,
11, and 17 (Supplementary Figures S4–S6, S9, S12, S18)
showed similar results to the exemplary subject depicted
in Figure 6, accomplishing reasonable regulation
across all scenarios. Of the remaining 10 subjects,
7 had good performance in all inhibitory scenarios
(Supplementary Figures S2, S3, S10, S11, S13, S16, S17)
while 4 out of 10 had good performance in at least one excitatory
scenario (Supplementary Figures S10, S14-S16). This could
suggest that HV regulation is more challenging possibly due to
the high variability nature of this mental state.

In addition to the subject exemplified in Figure 6, t-test
analysis between the open- and closed-loop simulations with
17 out of 23 subjects was performed, as detailed in Table 2.
Additionally, Figure 7 displays the distribution of data used
during the t-test for the case of LV then HV order of
environmental stimuli. The HV then LV order is also included
in the Supplementary Material and presents a similar analysis.
As seen both in Figure 7 and Table 2, the results show LV
periods to be significantly different during excitatory action and
HV trials to be significantly different throughout inhibition,
regarding both the average valence level and number of spikes.
This can be an indicative that the proposed controller was able
to perform as desired and alter the emotional state of various
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TABLE 2 | Statistical analysis-p-values.

LV then HV HV then LV

Number of

spikes

Average

valence

Number of

spikes

Average

valence

Inhib.
LV 0.1689 0.1947 2× 10−6 6× 10−6

HV 2× 10−5 5× 10−7 3× 10−4 1× 10−5

Excit.
LV 7× 10−6 8× 10−6 3× 10−5 3× 10−5

HV 4× 10−5 5× 10−6 0.0554 0.0398

Bold values are significant p-values.

subjects when required. In a similar manner, LV periods were not
significantly different during inhibitory regulation if the LV was
at the beginning of simulation (both in spike count, and mean
valence levels). Comparing HV periods throughout excitation,
the number of spikes was not significantly different when the
HV period happen before LV. These results are indicative that
the controller is able to detect when changes to the brain state
are not required. The reason the affective state is significantly
different in the second half of the experiment in cases it was not
necessary (LV inhibition andHV excitation) is due to the fact that
the proposed controller is not multi-objective and a regulation
goal is selected beforehand | either to excite or to inhibit. Thus,
after properly adjusting the brain state in the first half of the
simulation, the second half will be different in comparison to
the open-loop baseline and the mono-objective nature of this
approach is incapable of addressing the matter. Further research
is still required.

A few subjects (4, 11, 12, 20, 21, and 23) had poor emotional
valence state estimation and were discarded from the statistical
analysis which also show directions for improving the proposed
approach. These participants showed similar number of spikes
and valence levels, during both LV and HV periods, within the
open-loop scenario. Thus, when taken to a closed-loop solution,
the fuzzy controller is impaired from distinguishing high and low
valence levels and leads to unsatisfactory results. However, this
poor valence estimation could be due to many factors such as
the person not being emotionally engaged during the original
data collection or distracted during the experiment (Chaouachi
and Frasson, 2010). Similarly to previous scholars (Yadav
et al., 2019), we investigate the performance of the emotional
valence estimation with a 95% confidence intervals metric, as
depicted in Figure 3. As it can be observed in Figure 3, the
confidence intervals reside close to the actual recovered state and
further validate the proposed state-space estimation procedure.
Moreover, it is possible that these discarded subjects required
additional physiological measurements (e.g., electrocardiogram,
skin conductance, pupil size) to improve the estimation of the
internal brain state. As mentioned above, the flexibility of the
proposed state-space and fuzzy logic controller framework could
easily incorporate additional physiological signals.

The present study has a few limitations. The dataset used
had conflicting metadata on 9 of the 32 subjects, resulting in
an impossibility of recovering the position of all 40 trials and

FIGURE 7 | Statistical analysis with boxplot (N = 17) visualization of LV then

HV environmental stimuli order. The left column of sub-panels shows the

number of spikes in a given period, while the right column of sub-panels

depicts the average valence state. The top row of sub-panels show results

from the inhibitory controller and the bottom one for the excitatory one. Within

each sub-plot, the white background depicts LV periods while the

gray-shaded areas show HV results. Each pair of data (i.e., baseline and

closed-loop) was used during the t-tests analysis. Comparing the open-loop

baseline and closed-loop results of number of spikes and average valence

levels, HV periods are statistically significant both in inhibition and excitation (all

sub-panels, gray background). For LV periods, results are statistically

significant only for inhibition (bottom-row, white background).

thus, these subjects had to be discarded. Additionally, in real-
world scenarios as in the dataset used, emotional valence has a
spectrum of levels, but we assume only two possible states of
high and low valence. This decision also reflects in the controller
design in which we experiment with only two classes of closed-
loop regulation, i.e., excitation and inhibition. Even with this
limitation, it should be noted that both the mixed-filter and
designed control provide continuous estimation and control
objectives allowing for a finer regulation within this spectrum of
emotions. This can be addressed in future research. Moreover,
this simulation study does not incorporate the controller
dynamics and real-world actuators. To implement the proposed
architectures in real-world scenarios, it is paramount to consider
how valence needs to be modulated, not only in terms of which
actuators to use but also how frequent should interventions
take place. These are challenging to address, especially when
dealing with such a complex organ as the human brain, and
require further investigation. In that sense, future human subject
experiments shall be designed to explore the dynamics of possible
actuation methods to regulate valence states. Previous scholars
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have observed emotional brain responses from changes in
lighting or music (Schubert, 2007; Vandewalle et al., 2010; Droit-
Volet et al., 2013). These would be interesting to investigate since
they are also non-invasive procedures and could be incorporated
in a practical system. Future research into using adaptive and
predictive control strategies would also be beneficial to address
some of the biological intrinsic variations of an individual.
Similarly, the applicability of the proposed approach in the real
world depends on the real-time estimation of mental states.
At this time, we illustrate the feasibility of the approach by
incorporating a simulation of brain responses on a per individual
basis. Once implemented, this simulation is no longer required.
However, a “training" session might be necessary to calibrate
the system for each subject’s peculiarities. In addition, robust
state estimation or robust control design can be of tremendous
importance for a real-world application. Lastly, we extracted
features from LV and HV trials from EMG signal of the
Zygomaticus major facial muscle, which has been depicted as a
good indicator of valence (Brown and Schwartz, 1980; Ekman
et al., 1980; Tan et al., 2012). As a future direction of this research,
an investigation to quantify the performance in detecting fake
emotional expressions via the zEMG signal would be beneficial
to further enhance the proposed approach to be implemented in
real life.

Using the proposed architecture, we were able to regulate
one’s emotional state, specifically emotional valence levels, by
implementing a fuzzy controller that acted on a state-spacemodel
of the human brain. With a similar approach, a WMI could, in
the future, be used to recommend a specific music track for a
person feeling down, advise a change in lighting for someone
in a bad mental state, or even offer a cup of green tea if the
user wants to maintain a desired level of well-being (Athavale
and Krishnan, 2017; Cannard et al., 2020). While we used
experimental data to design a closed-loop system for regulating
an internal valence state in a simulation study, a future direction
of this research would be designing human subject experiments

to close the loop in real-world settings. In our future work, we

plan to validate the valence state estimator in real-time and close
the loop accordingly. For example, we plan to incorporate safe
actuators such as music or visual stimulation to close the loop.
More research is needed but this suggests an important new
step toward new clinical applications and the self-management
of mental health.
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