
Edited by  

Karsten Becker and Antonella Lupetti

Published in  

Frontiers in Microbiology

MALDI-TOF MS in 
microbiological 
diagnostics: Future 
applications beyond 
identification

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/research-topics/19089/maldi-tof-ms-in-microbiological-diagnostics-future-applications-beyond-identification
https://www.frontiersin.org/research-topics/19089/maldi-tof-ms-in-microbiological-diagnostics-future-applications-beyond-identification
https://www.frontiersin.org/research-topics/19089/maldi-tof-ms-in-microbiological-diagnostics-future-applications-beyond-identification
https://www.frontiersin.org/research-topics/19089/maldi-tof-ms-in-microbiological-diagnostics-future-applications-beyond-identification
https://www.frontiersin.org/research-topics/19089/maldi-tof-ms-in-microbiological-diagnostics-future-applications-beyond-identification


May 2023

Frontiers in Microbiology 1 frontiersin.org

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public 

- and shape society; therefore, Frontiers only applies the most rigorous 

and unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-8325-2374-2 
DOI 10.3389/978-2-8325-2374-2

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


May 2023

Frontiers in Microbiology 2 frontiersin.org

MALDI-TOF MS in microbiological 
diagnostics: Future applications 
beyond identification

Topic editors

Karsten Becker — University Medicine Greifswald, Germany

Antonella Lupetti — University of Pisa, Italy

Citation

Becker, K., Lupetti, A., eds. (2023). MALDI-TOF MS in microbiological diagnostics: 

Future applications beyond identification. Lausanne: Frontiers Media SA. 

doi: 10.3389/978-2-8325-2374-2

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-2374-2


May 2023

Frontiers in Microbiology 3 frontiersin.org

05 Editorial: MALDI-TOF MS in microbiological 
diagnostics: future applications beyond identification
Karsten Becker and Antonella Lupetti

08 Detection of Colistin Resistance in Pseudomonas aeruginosa 
Using the MALDIxin Test on the Routine MALDI Biotyper 
Sirius Mass Spectrometer
Katy Jeannot, Katheryn Hagart, Laurent Dortet, Markus Kostrzewa, 
Alain Filloux, Patrick Plesiat and Gerald Larrouy-Maumus

15 Multicenter Performance Evaluation of MALDI-TOF MS for 
Rapid Detection of Carbapenemase Activity in 
Enterobacterales: The Future of Networking Data Analysis 
With Online Software
Eva Gato, Ahalieyah Anantharajah, Manuel J. Arroyo, 
María José Artacho, Juan de Dios Caballero, Ana Candela, 
Kateřina Chudějová, Ignacio Pedro Constanso, Cristina Elías, 
Javier Fernández, Jesús Jiménez, Pilar Lumbreras, Gema Méndez, 
Xavier Mulet, Patricia Pérez-Palacios, Belén Rodríguez-Sánchez, 
Rafael Cantón, Jaroslav Hrabák, Luis Mancera, 
Luis Martínez-Martínez, Antonio Oliver, Álvaro Pascual, 
Alexia Verroken, Germán Bou and Marina Oviaño

25 Combination of MALDI-TOF Mass Spectrometry and Machine 
Learning for Rapid Antimicrobial Resistance Screening: The 
Case of Campylobacter spp.
Maureen Feucherolles, Morgane Nennig, Sören L. Becker, 
Delphine Martiny, Serge Losch, Christian Penny, 
Henry-Michel Cauchie and Catherine Ragimbeau

41 Large-Scale Samples Based Rapid Detection of Ciprofloxacin 
Resistance in Klebsiella pneumoniae Using Machine Learning 
Methods
Chunxuan Wang, Zhuo Wang, Hsin-Yao Wang, Chia-Ru Chung, 
Jorng-Tzong Horng, Jang-Jih Lu and Tzong-Yi Lee

55 Rapid Antibiotic Resistance Serial Prediction in 
Staphylococcus aureus Based on Large-Scale MALDI-TOF 
Data by Applying XGBoost in Multi-Label Learning
Jiahong Zhang, Zhuo Wang, Hsin-Yao Wang, Chia-Ru Chung, 
Jorng-Tzong Horng, Jang-Jih Lu and Tzong-Yi Lee

65 Efficiently Predicting Vancomycin Resistance of 
Enterococcus Faecium From MALDI-TOF MS Spectra Using a 
Deep Learning-Based Approach
Hsin-Yao Wang, Tsung-Ting Hsieh, Chia-Ru Chung, 
Hung-Ching Chang, Jorng-Tzong Horng, Jang-Jih Lu and 
Jia-Hsin Huang

74 Parallel Reaction Monitoring Mass Spectrometry for Rapid 
and Accurate Identification of β-Lactamases Produced by 
Enterobacteriaceae
Yun Lu, Xinxin Hu, Jing Pang, Xiukun Wang, Guoqing Li, Congran Li, 
Xinyi Yang and Xuefu You

Table of
contents

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


May 2023

Frontiers in Microbiology 4 frontiersin.org

84 Performance evaluation of the FAST™ System and the 
FAST-PBC Prep™ cartridges for speeded-up positive blood 
culture testing
Alexia Verroken, Chaima Hajji, Florian Bressant, Jonathan Couvreur, 
Ahalieyah Anantharajah and Hector Rodriguez-Villalobos

94 Detection of carbapenemase-producing Enterobacterales by 
means of matrix-assisted laser desorption ionization 
time-of-flight mass spectrometry with ertapenem 
susceptibility-testing disks as source of carbapenem 
substrate
Elvira R. Shaidullina, Andrey V. Romanov, Elena Y. Skleenova, 
Eugene A. Sheck, Marina V. Sukhorukova, Roman S. Kozlov and 
Mikhail V. Edelstein

101 Genotype classification of Moraxella bovis using MALDI-TOF 
MS profiles
Hannah G. Olson, John Dustin Loy, Michael L. Clawson, 
Emily L. Wynn and Matthew M. Hille

107 “CORE” a new assay for rapid identification of 
Klebsiella pneumoniae COlistin REsistant strains by 
MALDI-TOF MS in positive-ion mode
Gianluca Foglietta, Elena De Carolis, Giordana Mattana, 
Manuela Onori, Marilena Agosta, Claudia Niccolai, Vincenzo Di Pilato, 
Gian Maria Rossolini, Maurizio Sanguinetti, Carlo Federico Perno and 
Paola Bernaschi

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


TYPE Editorial

PUBLISHED 25 April 2023

DOI 10.3389/fmicb.2023.1204452

OPEN ACCESS

EDITED AND REVIEWED BY

Rustam Aminov,

University of Aberdeen, United Kingdom

*CORRESPONDENCE

Karsten Becker

karsten.becker@med.uni-greifswald.de

RECEIVED 12 April 2023

ACCEPTED 12 April 2023

PUBLISHED 25 April 2023

CITATION

Becker K and Lupetti A (2023) Editorial:

MALDI-TOF MS in microbiological diagnostics:

future applications beyond identification.

Front. Microbiol. 14:1204452.

doi: 10.3389/fmicb.2023.1204452

COPYRIGHT

© 2023 Becker and Lupetti. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Editorial: MALDI-TOF MS in
microbiological diagnostics:
future applications beyond
identification

Karsten Becker1* and Antonella Lupetti2

1Friedrich Loe	er-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald,

Germany, 2Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia,

Università di Pisa, Pisa, Italy

KEYWORDS

antimicrobial resistance, diagnostics, mass spectrometry, MALDI-TOF, susceptibility

testing, nano LC-MS/MS

Editorial on the Research Topic

MALDI-TOF MS in microbiological diagnostics: future applications

beyond identification

Following a Research Topic on matrix-assisted laser desorption/ionization time-of-

flight (MALDI-TOF) mass spectrometry (MS) application for susceptibility testing of

microorganisms (Becker and Schubert, 2021), three main reasons prompted us to initiate

another one on future applications of MALDI-TOF and other MS approaches beyond

identification. Firstly, the silent pandemic of multi-drug resistant organisms (MDROs) as

designated by the WHO undoubtedly needs more attention. While the development of

new antibiotics is receiving due attention, the development of feasible tests for rapid and

reliable detection of antimicrobial resistance (AMR) is still passing under the radar of public

attention threshold (van Belkum et al., 2013, 2019; Idelevich and Becker, 2019). Beyond

the individual treatment, antibiotics could be considered “social” pharmaceuticals as they

may also have general effects. Similarly, diagnostic tests used for microbial identification

and antibiotic susceptibility testing (AST) deserve to be considered “social” diagnostics with

comparable attention and support as antibiotics, since incorrect or late test results can

negatively influence both the antibiotic treatment for the patient and MDRO prevention

measures, thus leading to avoidable MDRO transmission and increase selection pressure

through unnecessarily broad therapy.

The second reason regards sustainability and cost efficiency. MALDI-TOF MS

applications beyond identification may ideally expand the application possibilities of a

diagnostic device already placed in many routine laboratories (Clark et al., 2013; Schubert

and Kostrzewa, 2017; Welker et al., 2019). Not one method alone can meet all of

today’s requirements for a full, rapid, robust, little personnel-intensive, cost-effective,

high-throughput and routine-ready AMR diagnostic approach with excellent sensitivity

and specificity. MALDI-TOF MS has the advantage to represent a phenotypic approach,

allowing resistance mechanism-independent assays, as known from classical growth-based

AST. Besides specific resistance mechanism-based MALDI-TOF MS assays, e.g. addressing

enzyme-caused alterations of an antibiotic (Sparbier et al., 2012), universal approaches

have been already reported, as the direct-on-target microdroplet growth assay (DOT-MGA)

(Idelevich et al., 2018). Further MALDI-TOF MS advantages include rapidity and random

access opportunity.
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Thirdly, to consider novel MALDI-TOF MS developments

not related to identification and AST. The current main efforts

to expand the application profile of MALDI-TOF MS beyond

identification target its use for AST as reflected by most of the

original articles published in this Research Topic. However, they

do not refer to the further development and optimization of the

technical procedures for AST itself, but to support this process e.g.,

by machine learning (ML) software tools.

Nowadays, there is an increased effort to take advantage of

artificial intelligence (AI) algorithms to analyze the patterns of

MALDI-TOF MS peaks for microbial identification and AST

(Weis et al., 2020). By the example of the foodborne pathogens

Campylobacter coli and C. jejuni, Feucherolles et al. describe a

ML prediction approach as an AMR screening tool for seven

antimicrobial resistances. The aim of diagnostic tests is achieving

both high sensitivity and specificity. This study shows the potential

of this approach, but also the unsolved hurdles to reach the

necessary balance between sensitivity and specificity. Here, high

sensitivity was chosen as the most important parameter to adjust

the threshold score during the tuning part, which led to specificity

problems regarding some of the antibiotics tested. The authors

concluded that threshold adjustment is vital while elaborating ML

pipeline for routine use based onMALDI-TOFmass spectra. Wang

H-Y. et al. used ML approaches to construct a prediction model

for rapid detection of ciprofloxacin-resistant Klebsiella pneumoniae

strains based on identified significant biomarkers. However, as

with similar ML approaches, they realized that those models

cannot be generalized to other microbial species and antibiotics.

This limitation has been addressed by Zhang et al. on serial

antibiotic resistances prediction. They generated a multi-label

prediction model for clindamycin and oxacillin susceptibilities in

Staphylococcus aureus based on MALDI-TOF MS data. In this

context, multi-label learning targets the challenge where each case is

represented by a single instance while simultaneously related with

a set of labels (Zhang and Zhou, 2014). Wang C. et al. reported a

deep learning-based algorithm on a convolutional neural network

(CNN) for that a benchmarking study has recently shown that

it is able to outperform traditional machine learning methods

(Mortier et al., 2021). Here, utilizing the complete information of

MALDI-TOF mass spectra for detecting Enterococcus faecium, a

CNN model to rapidly and accurately predict clinical vancomycin-

resistant E. faecium (VREfm) was introduced.

Over the past decade, numerous efforts have been made for

direct identification and AST of microorganisms in positive blood

cultures (BCs). Verroken et al. evaluated the performances of a

commercially available system designed to isolate and concentrate

microbial cells directly from a positive BC bottle, the so-called

“liquid colony,” as equivalent of a overnight subcultured colony for

identification by MALDI-TOF MS and other purposes.

The polymyxin colistin, a polycationic peptide antimicrobial,

is still considered as last line of defense against carbapenemase-

producers. Determination of resistance by MS-based assessment

of the negatively charged lipopolysaccharide component lipid

A as cellular target of the polymyxins is favored by switching

the MALDI-TOF-MS device into the negative-ion mode (Dortet

et al., 2018). Jeannot et al. evaluated the MALDIxin test for

the detection of colistin-resistant Pseudomonas aeruginosa clinical

strains. All colistin-susceptible and most of the resistant strains

were detected in<1 h; the remaining resistant strains were detected

after 4-h colistin pre-exposure. However, this procedure needs a

spectrometer equipped with a respective switching modality and

it creates more effort, e.g., by additional calibration steps, because

the positive-ion mode is used for routine diagnostic purposes in

clinical microbiology. For this reason, Foglietta et al. developed a

MALDI-TOF MS test in positive-ion mode for rapid detection of

colistin-resistant K. pneumoniae after a 3-h incubation reaching

total agreement with the phenotypic reference method.

Gato et al. evaluated the performance of MALDI-TOF MS for

rapid detection of carbapenemase activity in Enterobacterales, with

a standardized procedure with online software for data analysis

using carbapenemase-producers and controls in a multicenter

study, followed by a 2-month period clinical evaluation. The

accuracy ranged from 83.3 to 100% among the eight international

centers. Shaidullina et al. evaluated disks containing ertapenem as

source of substrate inMALDI-TOFMS-based assay for detection of

carbapenemase-producing Enterobacterales and found a sensitive,

specific and cost-effective alternative. Lu et al. introduced a

nanoscale liquid chromatography coupled to tandem MS (nano

LC-MS/MS) workflow to detect enterobacterial carbapenemases

with a screening method based on peptide groups (14 peptides with

100% specificity, nine peptides with 95–100% sensitivity).

Olson et al. used MALDI-TOFMS to genotypeMoraxella bovis

strains based on two biomarker models to classify strains according

to genotype with an overall accuracy of 85.8–100%.

In summary, the main conclusion that can be drawn

from this Research Topic is that the development of non-

identification MALDI-TOF MS applications is worth continuing.

The overriding advantage is its special potential to obtain

a lot of information from one single protein spectrum

analysis, i.e., species identification, AST results, data of the

genetic diversity and, possibly, further information e.g., on

virulence factors.
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Colistin is frequently a last resort treatment for Pseudomonas aeruginosa infections caused 
by multidrug-resistant (MDR) and extensively drug resistant (XDR) strains, and detection 
of colistin resistance is essential for the management of infected patients. Therefore, 
we evaluated the recently developed MALDIxin test for the detection of colistin resistance 
in P. aeruginosa clinical strains using the routine matrix-assisted laser desorption ionization 
(MALDI) Biotyper Sirius system. The test is based on the detection by mass spectrometry 
of modified lipid A by the addition of 4-amino-l-arabinose (l-ara4N) molecules on one or 
two phosphate groups, in strains resistant to colistin. Overproduction of l-Ara4N molecules 
is mainly due to the constitutive activation of the histidine kinase (PmrB) or the response 
regulator (PmrA) following an amino-acid substitution in clinical strains. The performance 
of the test was determined on a panel of 14 colistin-susceptible and 14 colistin-resistant 
P. aeruginosa clinical strains, the reference strain PAO1 and positive control mutants PmrB 
(V28G), PmrB (D172), PhoQ (D240–247), and ParR (M59I). In comparison with the broth 
microdilution (BMD) method, all the susceptible strains (n = 14) and 8/14 colistin-resistant 
strains were detected in less than 1 h, directly on whole bacteria. The remaining resistant 
strains (n = 6) were all detected after a short pre-exposure (4 h) to colistin before sample 
preparation. Validation of the method on a larger panel of strains will be the next step 
before its use in diagnostics laboratories. Our data showed that the MALDIxin test offers 
rapid and efficient detection of colistin resistant P. aeruginosa and is thus a valuable 
diagnostics tool to control the spread of these emerging resistant strains.

Keywords: MALDI mass spectrometry, lipid A, colistin, Pseudomonas aeruginosa, clinical isolate
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INTRODUCTION

Pseudomonas aeruginosa is an opportunistic pathogen well-known 
for infections associated with intensive care units. It is one of 
the most frequent cause of acute pulmonary healthcare-associated 
infections, and severe infections particularly in 
immunocompromised patients (Vincent et al., 2009). Its intrinsic 
resistance to many antibiotics combined with its facility to 
accumulate a diversity of resistance mechanisms increasingly limits 
therapeutic options (Horcajada et  al., 2019). Thus, polymyxins 
(polymyxin B or colistin) are used as a last resort for the treatment 
of P. aeruginosa infections caused by multidrug-resistant (MDR) 
and extensively drug resistant (XDR) strains (Sader et  al., 2017; 
Doi, 2019; Walters et  al., 2019; Ahmadian et  al., 2020; Mirzaei 
et  al., 2020). Unfortunately, resistance to colistin has emerged. 
In P. aeruginosa, acquired resistance to colistin mostly results 
from the addition of one or two 4-amino-l-arabinose (l-Ara4N) 
molecules to the 1 and/or 4' phosphate groups on the lipid A, 
the anchor of the LPS in the outer membrane (Bhat et  al., 1990; 
Fernandez et al., 2013). While the P. aeruginosa genome contains 
an eptA like gene, the addition of phosphoethanolamine to lipid 
A or the LPS core has not been reported, unlike in Enterobacterales 
and Acinetobacter baumannii (Nowicki et al., 2015). The synthesis 
and the transport of l-Ara4N molecules is encoded by the large 
arnBCADTEF-UgD operon (simplified as arn), which is dependent 
on a complex regulatory network comprising at least 5 
two-component systems (PmrA/PmrB, PhoP/PhoQ, ParR/ParS, 
CprR/CprS, and ColR/ColS; Fernandez et al., 2010, 2012; Needham 
and Trent, 2013; Nowicki et  al., 2015). Furthermore, mutations 
in chromosomal genes encoding histidine kinase or response 
regulators of these two-component systems result in constitutive 
activation of the arn operon. However, in P. aeruginosa clinical 
strains, the genetic events most associated with colistin resistance 
are amino-acid substitutions leading to a gain of function of 
the PmrB protein (Barrow and Kwon, 2009; Schurek et al., 2009; 
Bolard et  al., 2019). Although, the mcr genes have been widely 
reported in Enterobacterales, they have not currently been identified 
in P. aeruginosa strains, except in the chromosome of one clinical 
isolate strain (mcr-5; Snesrud et  al., 2018).

Although, strains of P. aeruginosa resistant to polymyxins 
are still rare, their detection is one of the key issues to improve 
the treatment of patient infected with MDR and XDR 
P. aeruginosa strains (Diekema et  al., 2019). Unfortunately, the 
methods currently available in routine laboratories for the 
detection of resistance to colistin in P. aeruginosa, still rely 
on bacterial growth in the presence of polymyxins. These 
procedures require 16–20 h in culture, whether determining 
susceptibility to colistin minimal inhibitory concentration (MIC) 
using the broth microdilution method (BMD; reference method), 
or the colistin broth disk elution and colistin agar test methods 
recently accepted by the CLSI (2020). Only two test have 
reported the detection of colistin resistance strains in less than 
3 h (Sadek et  al., 2020; Sorensen et  al., 2020). The first is a 
biochemical test (Rapid Polymyxin/Pseudomonas NP test) based 
on the change in color of the bromocresol (yellow to purple/
violet) following the production of basic metabolites during 
the growth of the strain in the presence of colistin (Sadek 

et al., 2020), and a fast lipid analysis technique (FLAT) directly 
on a matrix-assisted laser desorption ionization (MALDI) plate. 
However, both approaches have issues: possible misinterpretation 
of the colorimetric test, and potential cross contamination with 
the on-target hydrolysis in the FLAT method.

Therefore, there is an urgent need to develop a fast and 
robust assay to detect colistin-resistant P. aeruginosa strains. 
Recently, we developed a rapid technique using matrix-assisted 
laser desorption ionization time-of-flight (MALDI-TOF) to 
rapidly detect colistin resistance using whole cells, the MALDIxin 
test (Dortet et  al., 2018a,b). The MALDIxin test has now 
been optimized for Escherichia coli, Klebsiella pneumoniae, 
A. baumannii, and Salmonella enterica (Dortet et  al., 2018a,b, 
2019, 2020; Furniss et  al., 2019). The aim of this study is to 
evaluate the performance of the optimized MALDIxin test 
using a routine MALDI mass spectrometer (in comparison to 
the BMD method), to detect colistin-resistant P. aeruginosa.

MATERIALS AND METHODS

Bacterial Strains
From the Pseudomonas collection of the French National 
Reference Centre for Antibiotic Resistance (Besançon, France), 
14 colistin susceptible (MIC ≤2 mg/L) and 14 colistin resistant 
clinical strains (MIC > 2 mg/L) were selected. All the strains 
were genotypically-unrelated, and isolated from 25 health 
institutions distributed throughout France. In addition, two 
pmrB mutants (AB8.2, AB16.2), one parR mutant (PAOW2), 
and one phoQ mutant (AB8.4) derivate form the P. aeruginosa 
reference strain PAO1 were included as positive controls (Table 1; 
Muller et  al., 2011; Bolard et  al., 2019). The wild-type strain 
PAO1 was used as negative control.

Susceptibility Testing
MICs were determined in triplicate by the BMD using colistin 
sulfate (Sigma Aldrich, Saint Quentin Fallavier, France) and 
cation-adjusted Mueller Hinton broth (MHB) from Becton 
Dickinson (Pont-de-Claix, France) according to the European 
Committee on Antimicrobial Susceptibility Testing (EUCAST) 
recommendations (EUCAST, 2019). Results were interpreted 
using EUCAST breakpoints (≤2 mg/L; >2 mg/L).

Whole Genome Sequencing
Four clinical strains (185345, 185374, 185819, and 196337) 
for which the mutation responsible for colistin resistance had 
not been identified and characterized were genome sequenced. 
From an overnight bacterial culture, total DNA was extracted 
using the PureLink Genomic DNA Mini kit (ThermoFischer 
Scientific). The library preparation using NextEra® XT DNA 
preparation kit (Illumina, San Diego, CA, United  States) and 
sequencing by Illumina NextSeq500 system (2 × 150-bp paired 
end reads) were performed by the “Plateforme de Microbiologie 
Mutualisée” (PibNet) at Institut Pasteur (Paris, France). Reads 
were assembled with Shovill-Spades v3.14.0. To identify mutations 
in genes associated with colistin resistance in P. aeruginosa 
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(cprR, cprS, colR, colS, parR, parS, phoP, phoQ, pmrA, and 
pmrB), sequences from clinical strains were mapped to sequences 
of reference strains PAO1, and P, A14, and a large collection 
of 77 clinical strains susceptible to colistin using the NRC 
bioinformatic pipelines based on SNIPPY v4.6.0.

Nucleotide Sequence Accession Number
The nucleotide sequences reported in this study and 
corresponding to the entire chromosome of strains 185345, 
185374, 185819, and 196337 have been deposited in the GenBank 
nucleotide database under accession no JAGJAGMWR000 
0000000, JAGMWQ0000000000, JAGMWP0000000000, and 
JAGMWO0000000000, respectively.

MALDIxin Test
Pseudomonas aeruginosa cells were exposed or not for 4-h to 
a subinhibitory (1/2 MIC) concentration of colistin. A 10  μl 
inoculation loop of bacteria, grown on Mueller-Hinton agar 
for 18–24 h, was resuspended in 200 μl of water. Mild-acid 
hydrolysis was performed on 100 μl of this suspension, by 
adding 100 μl of 2% v/v acetic acid and incubating the mixture 
at 98°C for 30 min. Hydrolyzed cells were centrifuged at 
17,000  × g for 2 min, the supernatant was discarded, and the 
pellet was washed three times with 300 μl of ultrapure water 
and resuspended to a density of McFarland 20 as measured 
using a McFarland Tube Densitometer. A volume of 0.4 μl of 
this suspension was loaded onto the MALDI target plate and 
immediately overlaid with 1.2 μl of Norharmane matrix (Sigma-
Aldrich) solubilized in chloroform/methanol (90:10 v/v) to a 
final concentration of 10 mg/ml. For external calibration, 0.5 μl 
of calibration peptide was loaded along with 0.5 μl of the given 
calibration matrix (peptide calibration standard II, Bruker 
Daltonik, Germany). The samples were loaded onto a disposable 
MSP  96 target polished steel BC (Bruker Part-No. 8280800).

The bacterial suspension and matrix were mixed directly 
on the target by pipetting then dried gently under a stream 
of air. The spectra were recorded in the linear negative-ion 
mode (laser intensity 95%, ion source 1 = 10.00 kV, ion source 
2 = 8.98 kV, lens = 3.00 kV, detector voltage = 2,652 V, pulsed ion 
extraction = 150 ns). Each spectrum corresponded to ion 
accumulation of 5,000 laser shots randomly distributed on the 
spot. The spectra obtained were processed with default parameters 
using FlexAnalysis v.3.4 software (Bruker Daltonik, Germany).

Data Analysis
The negative mass spectrum was scanned between m/z 1,300 
and m/z 2,000  in the negative linear ion mode. Manual peak 
picking at masses relevant to colistin resistance was performed 
on the obtained mass spectra and the corresponding signal 
intensities at these defined masses was determined. The percentage 
of modified lipid A was calculated by dividing the sum of 
the intensities of the lipid A peaks attributed to addition of 
l-Ara4N (m/z 1,577.9, m/z 1,593.9, m/z 1,708.9, and m/z 
1,724.9) by the intensity of the peaks corresponding to native 
lipid A (m/z 1,446.7 and m/z 1,462.7). All mass spectra were 
generated and analyzed in technical triplicate (i.e., measurements 
of each sample were repeated three times).

TABLE 1 | Characteristics and results of the MALDIxin test on P. aeruginosa 
strains.

Name of 
strain

MIC to 
colistin 
(mg/L)

Colistin 
resistance 
mechanism

PRR MALDIxin 
results

References

Reference strains

PAO1 1 – 0.00 ± 0.00/0.02 ± 0.01*
Tenover, 
2000

AB8.2 128
PmrB 
(V28G)

0.87 ± 0.25
Bolard et al., 
2019

AB16.2 128 PmrB (Δ172) 1.17 ± 0.22/2.12 ± 0.07* Bolard et al., 
2019

AB8.4 4
PhoQ 
(Δ240–247)

0.00 ± 0.00/0.44 ± 0.02* This study

PAOW2 4 ParR (M59I) 0.29 ± 0.05/0.28 ± 0.01* Muller et al., 
2011

Colistin susceptible clinical strains
185715 1 – 0.00 ± 0.00/0.00 ± 0.00* This study
185716 1 – 0.00 ± 0.00/0.00 ± 0.00* This study
218401 1 – 0.00 ± 0.00/0.00 ± 0.00* This study
218418 1 – 0.00 ± 0.00/0.00 ± 0.00* This study
218419 0.5 – 0.00 ± 0.00/0.00 ± 0.00* This study
218420 1 – 0.00 ± 0.00/0.00 ± 0.00* This study
218422 0.5 – 0.00 ± 0.00/0.00 ± 0.00* This study
218423 0.5 – 0.00 ± 0.00/0.00 ± 0.00* This study
218424 2 – 0.00 ± 0.00/0.07 ± 0.01* This study
218427 1 – 0.00 ± 0.00/0.00 ± 0.00* This study
218428 0.5 – 0.00 ± 0.00/0.00 ± 0.00* This study
218429 0.5 – 0.00 ± 0.00/0.00 ± 0.00* This study
218435 0.5 – 0.00 ± 0.00/0.00 ± 0.00* This study
218437 1 – 0.00 ± 0.00/0.03 ± 0.01* This study
Colistin resistant clinical strains

142243 128
PmrB, 
(Q105P)b

0.00 ± 0.00/0.22 ± 0.01* Bolard et al., 
2019

152739 16
PmrB 
(V264A)a

0.39 ± 0.04
Bolard et al., 
2019

153038 64
PmrB 
(D47N)b

0.67 ± 0.03
Bolard et al., 
2019

153091 128 PmrA (L21I) 0.86 ± 0.07
Bolard et al., 
2019

163795 128
PmrB 
(G188D)b

0.23 ± 0.01
Bolard et al., 
2019

174536 4
PmrB 
(V136E)b

0.00 ± 0.01/2.03 ± 0.13* Bolard et al., 
2019

174660 64
PmrB 
(G121P, 
V313A)b

0.60 ± 0.44
Bolard et al., 
2019

174782 4
PmrB 
(H33Y)a

0.98 ± 0.14
Bolard et al., 
2019

175058 4
PmrB 
(D45N, 
G362S)a

0.24 ± 0.01
Bolard et al., 
2019

175101 32
PmrB 
(R92H, 
G123S)b

0.19 ± 0.07
Bolard et al., 
2019

185345 4 – 0.00 ± 0.00/0.87 ± 0.07* This study
185374 4 – 0.00 ± 0.00/0.22 ± 0.01* This study

185819 128
PhoQ 
(R275X)

0.22 ± 0.06 This study

196337 4 – 0.00 ± 0.00/0.34 ± 0.03* This study

aMutation Y345H associated with polymorphism in the protein PmrB.
bMutations S2P, A4T, V6A, V15I, G68S, and Y345H associated with polymorphism in 
the protein PmrB.
–, no mutation has been identified in genes cprS, cprR, parS, parR, pmrA, pmrB, phoP, 
phoQ, colS, and colR. 
*PRR obtained after colistin induction of the strains.
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Statistical Analysis
All experiments were carried out in biological duplicates. Data 
were compared two-by-two using unpaired Welch’s t-test. Values 
of p < 0.05 were considered statistically different.

RESULTS AND DISCUSSION

To assess the ability of the MALDIxin test to detect colistin-
resistance in P. aeruginosa on a MALDI biotyper Sirius system, 
we  tested a panel of 33 P. aeruginosa strains, including four 
isogenic P. aeruginosa PAO1 mutants representing the most 
frequently mutated genes involved in colistin resistance in this 
species. These included the reference strain PAO1, 14 colistin-
resistant clinical strains (MIC from 4 to 128 mg/L), and 14 
colistin-susceptible clinical strains (MIC from 0.5 to 2 mg/L; 
Table 1). The mass spectrum of colistin susceptible P. aeruginosa 
reference strain PAO1 is dominated by two peaks assigned to 
penta-acyl bis-phosphorylated lipid A (Figure  1A). The peak at 
m/z 1,446.7 is assigned to penta-acyl bis-phosphorylated lipid 
A, which corresponds to the presence of one 3-OH-C10:0 fatty 
acyl chain, three C12:0 fatty acyl chain and one 2-OH C12:0 
fatty acyl chain. The lipid A structure at m/z 1,462.7 differs 
from that at m/z 1,446.7 only by the addition of one hydroxyl 
group at 3 position (3-OH) of one C12:0 fatty acyl chain. Both 
forms have frequently been reported in P. aeruginosa strains 
(Ernst et  al., 2006; Moskowitz et  al., 2012; Figure  1D). In 
comparison with the parental strain PAO1, four additional peaks 
at m/z 1,577.9, m/z 1,593.9, m/z 1,708.9, and m/z 1,724.9 were 
observed in the pmrB mutant (mutant AB8.2), which is resistant 

to colistin (Figure  1B). The signals at m/z 1,577.9, and m/z 
1,593.9, and at m/z 1,708.9 and m/z 1,724.9 correspond to the 
addition of one or two l-Ara4N molecules to the 4′- or/and 
1-phosphate groups of the penta-acylated form respectively, 
resulting in an increase of +131 m/z compared to the native 
lipid A peaks (Figures 1B,E,F). Since mutations in genes encoding 
the two-component systems PmrAB, ParRS, and PhoPQ lead 
to the addition of l-Ara4N molecules, we  did not observe any 
difference in mass spectra between the pmrB (AB8.2 and AB16.2), 
and parR (PAOW2) mutants, compared to the phoQ mutant 
(AB8.4). A similar spectrum is also observed for clinical isolates 
(Figures  1C,F). Based on the MALDIxin profile, we  attempted 
to determine the Polymyxin Resistance Ratio (PRR) of the sum 
of the intensities of the peaks associated with modified lipid A 
over the intensity of the peak of native lipid A allowing an 
accurate distinction between polymyxin-susceptible and polymyxin-
resistant isolates. Despite several attempts, no signal corresponding 
to a modified lipid A was detected. Although, the MIC of colistin 
was similar in pmrB mutants (128 mg/L), the intensity of peaks 
was clearly higher in pmrB mutant AB8.2 (PRR 87 ± 25%) than 
AB16.2 (PRR 2 ± 0%), indicating that the intensity of peaks is 
not correlated with resistance level to colistin. The same observation 
was previously reported for E. coli, Salmonella, K. pneumoniae, 
and A. baumannii (Dortet et  al., 2018b, 2019, 2020; Furniss 
et  al., 2019). As expected, the peaks observed in the 14 clinical 
strains susceptible to colistin did not differ from those obtained 
with the strain PAO1 (data not shown), and the percentage of 
modified lipid A was equal to zero (Table  1).

Interestingly, in clinical strains resistant to colistin (n = 14), 
the percentage of lipid A modified or PRR ranged from 0 to 

A D F

E

B

C

FIGURE 1 | Representative mass spectra of susceptible and modified Pseudomonas aeruginosa lipid A acquired using the linear negative-ion mode of a matrix-
assisted laser desorption ionization (MALDI) Biotyper Sirius system (Bruker Daltonics). (A) Susceptible P. aeruginosa PAO1 lipid A is detected as two major peaks at 
m/z 1,446.7 and m/z 1,462.7. (B) Lipid A from mutant pmrB (AB8.2) with additional peaks at m/z 1,577.9, m/z 1,593.9, m/z 1,708.9, and m/z 1,724.9 
corresponding to 4-amino-L-arabinose (L-Ara4N) addition on the penta-acylated lipid A (peaks at m/z m/z 1,446.7 and m/z 1,462.7). (C) Lipid A from colistin-
resistant P. aeruginosa clinical isolates is modified by L-Ara4N, which are detected as additional peaks at m/z 1,577.9, m/z 1,593.9. (D) Diagram of P. aeruginosa 
lipid A at m/z 1,446.7. (E) Diagram of P. aeruginosa lipid A at m/z 1,577.9. L-Ara4N residue is shown in red. (F) Diagram of P. aeruginosa lipid A at m/z 1,708.9. 
L-Ara4N residues are shown in red.
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90%. Although, five P. aeruginosa clinical strains and the phoQ 
mutant (mutant AB8.4) have a MIC higher than the breakpoint 
for colistin (>2 μg/ml) including one strain with a MIC ≥ 128 mg/L 
(163795), we  did not detect any modifications on the lipid A 
as reported by their null PRR (Table  1). Unlike for MIC 
determination, bacteria are not exposed to colistin when 
preparing bacteria for the MALDIxin test. It is likely that 
induction of the two-component systems PmrAB, CprRS, and 
ParRS is necessary to detect sufficient modification (beyond 
background) of lipid A in some strains (Moskowitz et al., 2004; 
Muller et  al., 2011; Fernandez et  al., 2012). Therefore, the 
strain PAO1, the phoQ mutant and the six strains were exposed 
to a sub-inhibitory concentration of colistin (½ MIC) for 4 h, 
before the MALDIxin test and determination of the percentage 
of modified lipid A (Table  1). While the colistin susceptible 
reference strain exhibited 2% modified lipid A after colistin 
exposure, the phoQ mutant and colistin resistant clinical strains 
had more than 20% (Table 1; Figure 2). All the strains resistant 
to colistin were detected after a short exposure (4 h) to colistin, 
confirming that for some strains, the sensitivity of the MALDIxin 
test can be  enhanced by the induction of colistin resistance 
(Figure  3).

Here, we  have demonstrated that resistance to colistin can 
be quickly and easily detected in clinical strains of P. aeruginosa 
using the MALDIxin assay. However, an adaptation of the 
protocol currently used will be  necessary before its use in 
routine laboratories. Unlike other species such as K. pneumoniae, 

A. baumannii, E. coli, and S. enterica, the signal intensity 
corresponding to the modified lipid A can be  masked in 
some strains resistant to colistin. The addition of colistin 

A C

B D

FIGURE 2 | Representative mass spectra of colistin induced susceptible and modified P. aeruginosa lipid A acquired using the linear negative-ion mode of a MALDI 
Biotyper Sirius system (Bruker Daltonics). (A) Susceptible P. aeruginosa PAO1 lipid A is detected as two major peaks at m/z 1,446.7 and m/z 1,462.7. (B) Colistin 
induced susceptible P. aeruginosa PAO1 lipid A with additional peaks at m/z 1,577.9, m/z 1,593.9 corresponding to L-Ara4N addition on the penta-acylated lipid A 
(peaks at m/z m/z 1,446.7 and m/z 1,462.7). (C) Lipid A from colistin-resistant P. aeruginosa clinical isolate 6,337 is detected as two major peaks at m/z 1,446.7 
and m/z 1,462.7. (D) Colistin induced colistin-resistant P. aeruginosa clinical isolate 6,337 lipid A with additional peaks at m/z 1,577.9, m/z 1,593.9, m/z 1,708.9, 
and m/z 1,724.9 corresponding to L-Ara4N addition on the penta-acylated lipid A (peaks at m/z m/z 1,446.7 and m/z 1,462.7).

FIGURE 3 | Distribution of the Polymyxin Resistance Ratios (PRRs) for the 
tested strains before and after induction with colistin for 4-h to a subinhibitory 
(1/2 MIC; ****p < 0.0001).
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during sample preparation phase improves the detection of 
P. aeruginosa strains resistant to colistin. Despite this additional 
step in sample preparation, the technique remains rapid (less 
than 5 h), comparing favorably to the BMD for determining 
the MIC of colistin. The MALDIxin method complements 
the panel of so-called rapid methods for detecting resistance 
to colistin in clinical strains of P. aeruginosa, including the 
Rapid Polymyxin/Pseudomonas NP test (Sadek et  al., 2020). 
MALDIxin is cost effective since it can be  coupled with 
bacterial identification using the norharmane matrix with 
the MALDI Biotyper Sirius. One of the limitations of the 
study resides in the low number of strains tested, and further 
validation with an expanded panel is required. However, the 
most frequent mechanism responsible for colistin resistance 
in P. aeruginosa clinical strains (pmrB mutants) are included 
in this study, which supports the use of MALDIxin as a 
diagnostic for hospitalized patients.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and 

accession number(s) can be  found in the article/
supplementary material.

AUTHOR CONTRIBUTIONS

GL-M, LD, and KJ conceived the study, participated in its 
design, and performed the experiments. KJ provided the clinical 
isolates. KJ, KH, LD, MK, AF, PP, and GL-M wrote the 
manuscript. All authors contributed to the article and approved 
the submitted version.

FUNDING

This study was supported by the MRC Confidence in Concept 
Fund and the ISSF Wellcome Trust Grant 105603/Z/14/Z (GL-M).

ACKNOWLEDGMENTS

We would like to thank Brian Robertson, Imperial College 
London for careful reading of the manuscript.

 

REFERENCES

Ahmadian, L., Haghshenas, M. R., Mirzaei, B., Norouzi Bazgir, Z., and Goli, H. R. 
(2020). Distribution and molecular characterization of resistance gene cassettes 
containing class 1 integrons in multi-drug resistant (MDR) clinical isolates 
of Pseudomonas aeruginosa. Infect. Drug Resist. 13, 2773–2781. doi: 10.2147/
IDR.S263759

Barrow, K., and Kwon, D. H. (2009). Alterations in two-component regulatory 
systems of phoPQ and pmrAB are associated with polymyxin B resistance 
in clinical isolates of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 
53, 5150–5154. doi: 10.1128/AAC.00893-09

Bhat, R., Marx, A., Galanos, C., and Conrad, R. S. (1990). Structural studies of 
lipid A from Pseudomonas aeruginosa PAO1: occurrence of 4-amino-4-
deoxyarabinose. J. Bacteriol. 172, 6631–6636. doi: 10.1128/jb.172.12.6631-6636.1990

Bolard, A., Schniederjans, M., Haussler, S., Triponney, P., Valot, B., Plesiat, P., 
et al. (2019). Production of norspermidine contributes to aminoglycoside 
resistance in pmrAB mutants of Pseudomonas aeruginosa. Antimicrob. Agents 
Chemother. 63:e01044-19. doi: 10.1128/AAC.01044-19

Diekema, D. J., Hsueh, P. R., Mendes, R. E., Pfaller, M. A., Rolston, K. V., 
Sader, H. S., et al. (2019). The microbiology of bloodstream infection: 20-
year trends from the SENTRY antimicrobial surveillance program. Antimicrob. 
Agents Chemother. 63:e00355-19. doi: 10.1128/AAC.00355-19

Doi, Y. (2019). Treatment options for carbapenem-resistant gram-negative 
bacterial infections. Clin. Infect. Dis. 69(Suppl. 7), S565–S575. doi: 10.1093/
cid/ciz830

Dortet, L., Bonnin, R. A., Le Hello, S., Fabre, L., Bonnet, R., Kostrzewa, M., 
et al. (2020). Detection of colistin resistance in Salmonella enterica using 
MALDIxin test on the routine MALDI Biotyper Sirius mass spectrometer. 
Front. Microbiol. 11:1141. doi: 10.3389/fmicb.2020.01141

Dortet, L., Bonnin, R. A., Pennisi, I., Gauthier, L., Jousset, A. B., Dabos, L., 
et al. (2018a). Rapid detection and discrimination of chromosome- and 
MCR-plasmid-mediated resistance to polymyxins by MALDI-TOF MS in 
Escherichia coli: the MALDIxin test. J. Antimicrob. Chemother. 73, 3359–3367. 
doi: 10.1093/jac/dky330

Dortet, L., Broda, A., Bernabeu, S., Glupczynski, Y., Bogaerts, P., Bonnin, R., 
et al. (2019). Optimization of the MALDIxin test for the rapid identification 
of colistin resistance in Klebsiella pneumoniae using MALDI-TOF MS. 
J. Antimicrob. Chemother. 75, 110–116. doi: 10.1093/jac/dkz405

Dortet, L., Potron, A., Bonnin, R. A., Plesiat, P., Naas, T., Filloux, A., et al. 
(2018b). Rapid detection of colistin resistance in Acinetobacter baumannii 
using MALDI-TOF-based lipidomics on intact bacteria. Sci. Rep. 8:16910. 
doi: 10.1038/s41598-018-35041-y

Ernst, R. K., Adams, K. N., Moskowitz, S. M., Kraig, G. M., Kawasaki, K., 
Stead, C. M., et al. (2006). The Pseudomonas aeruginosa lipid A deacylase: 
selection for expression and loss within the cystic fibrosis airway. J. Bacteriol. 
188, 191–201. doi: 10.1128/JB.188.1.191-201.2006

EUCAST (2019). The European Committee on antimicrobial susceptibility testing. 
Breakpoint tables for interpretation of MICs and zone diameters. Version 
9.0, 2019. Available at: https://eucast.org/clinical_breakpoints/

Fernandez, L., Alvarez-Ortega, C., Wiegand, I., Olivares, J., Kocincova, D., 
Lam, J. S., et al. (2013). Characterization of the polymyxin B resistome of 
Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 57, 110–119. doi: 
10.1128/AAC.01583-12

Fernandez, L., Gooderham, W. J., Bains, M., McPhee, J. B., Wiegand, I., and 
Hancock, R. E. (2010). Adaptive resistance to the “last hope” antibiotics 
polymyxin B and colistin in Pseudomonas aeruginosa is mediated by the 
novel two-component regulatory system ParR-ParS. Antimicrob. Agents 
Chemother. 54, 3372–3382. doi: 10.1128/AAC.00242-10

Fernandez, L., Jenssen, H., Bains, M., Wiegand, I., Gooderham, W. J., and 
Hancock, R. E. (2012). The two-component system CprRS senses cationic 
peptides and triggers adaptive resistance in Pseudomonas aeruginosa 
independently of ParRS. Antimicrob. Agents Chemother. 56, 6212–6222. doi: 
10.1128/AAC.01530-12

Furniss, R. C. D., Dortet, L., Bolland, W., Drews, O., Sparbier, K., Bonnin, R. A., 
et al. (2019). Detection of colistin resistance in Escherichia coli by use of 
the MALDI Biotyper Sirius mass spectrometry system. J. Clin. Microbiol. 
57:e01427-19. doi: 10.1128/JCM.01427-19

Horcajada, J. P., Montero, M., Oliver, A., Sorli, L., Luque, S., Gomez-Zorrilla, S., 
et al. (2019). Epidemiology and treatment of multidrug-resistant and extensively 
drug-resistant Pseudomonas aeruginosa infections. Clin. Microbiol. Rev. 
32:e00031-19. doi: 10.1128/CMR.00031-19

Mirzaei, B., Bazgir, Z. N., Goli, H. R., Iranpour, F., Mohammadi, F., and 
Babaei, R. (2020). Prevalence of multi-drug resistant (MDR) and extensively 
drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter 
baumannii isolated in clinical samples from northeast of Iran. BMC Res. 
Notes 13:380. doi: 10.1186/s13104-020-05224-w

121313

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://doi.org/10.2147/IDR.S263759
https://doi.org/10.2147/IDR.S263759
https://doi.org/10.1128/AAC.00893-09
https://doi.org/10.1128/jb.172.12.6631-6636.1990
https://doi.org/10.1128/AAC.01044-19
https://doi.org/10.1128/AAC.00355-19
https://doi.org/10.1093/cid/ciz830
https://doi.org/10.1093/cid/ciz830
https://doi.org/10.3389/fmicb.2020.01141
https://doi.org/10.1093/jac/dky330
https://doi.org/10.1093/jac/dkz405
https://doi.org/10.1038/s41598-018-35041-y
https://doi.org/10.1128/JB.188.1.191-201.2006
https://eucast.org/clinical_breakpoints/
https://doi.org/10.1128/AAC.01583-12
https://doi.org/10.1128/AAC.00242-10
https://doi.org/10.1128/AAC.01530-12
https://doi.org/10.1128/JCM.01427-19
https://doi.org/10.1128/CMR.00031-19
https://doi.org/10.1186/s13104-020-05224-w


Jeannot et al. Colistin Resistance Detection in Pseudomonas

Frontiers in Microbiology | www.frontiersin.org 7 August 2021 | Volume 12 | Article 725383

Moskowitz, S. M., Brannon, M. K., Dasgupta, N., Pier, M., Sgambati, N., 
Miller, A. K., et al. (2012). PmrB mutations promote polymyxin resistance 
of Pseudomonas aeruginosa isolated from colistin-treated cystic fibrosis 
patients. Antimicrob. Agents Chemother. 56, 1019–1030. doi: 10.1128/
AAC.05829-11

Moskowitz, S. M., Ernst, R. K., and Miller, S. I. (2004). PmrAB, a two-component 
regulatory system of Pseudomonas aeruginosa that modulates resistance to 
cationic antimicrobial peptides and addition of aminoarabinose to lipid A. 
J. Bacteriol. 186, 575–579. doi: 10.1128/JB.186.2.575-579.2004

Muller, C., Plesiat, P., and Jeannot, K. (2011). A two-component regulatory 
system interconnects resistance to polymyxins, aminoglycosides, 
fluoroquinolones, and beta-lactams in Pseudomonas aeruginosa. Antimicrob. 
Agents Chemother. 55, 1211–1221. doi: 10.1128/AAC.01252-10

Needham, B. D., and Trent, M. S. (2013). Fortifying the barrier: the impact 
of lipid A remodelling on bacterial pathogenesis. Nat. Rev. Microbiol. 11, 
467–481. doi: 10.1038/nrmicro3047

Nowicki, E. M., O’Brien, J. P., Brodbelt, J. S., and Trent, M. S. (2015). Extracellular 
zinc induces phosphoethanolamine addition to Pseudomonas aeruginosa lipid 
A via the ColRS two-component system. Mol. Microbiol. 97, 166–178. doi: 
10.1111/mmi.13018

Sadek, M., Tinguely, C., Poirel, L., and Nordmann, P. (2020). Rapid 
Polymyxin/pseudomonas NP test for rapid detection of polymyxin susceptibility/
resistance in Pseudomonas aeruginosa. Eur. J. Clin. Microbiol. Infect. Dis. 39, 
1657–1662. doi: 10.1007/s10096-020-03884-x

Sader, H. S., Huband, M. D., Castanheira, M., and Flamm, R. K. (2017). 
Pseudomonas aeruginosa antimicrobial susceptibility results from four years 
(2012 to 2015) of the international network for optimal resistance monitoring 
program in the United  States. Antimicrob. Agents Chemother. 61:e02252-16. 
doi: 10.1128/AAC.02252-16

Schurek, K. N., Sampaio, J. L., Kiffer, C. R., Sinto, S., Mendes, C. M., and 
Hancock, R. E. (2009). Involvement of pmrAB and phoPQ in polymyxin 
B adaptation and inducible resistance in non-cystic fibrosis clinical isolates 
of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 53, 4345–4351. 
doi: 10.1128/AAC.01267-08

Snesrud, E., Maybank, R., Kwak, Y. I., Jones, A. R., Hinkle, M. K., and McGann, P. 
(2018). Chromosomally encoded mcr-5 in colistin-nonsusceptible Pseudomonas 

aeruginosa. Antimicrob. Agents Chemother. 62:e00679-18. doi: 10.1128/
AAC.00679-18

Sorensen, M., Chandler, C. E., Gardner, F. M., Ramadan, S., Khot, P. D., 
Leung, L. M., et al. (2020). Rapid microbial identification and colistin 
resistance detection via MALDI-TOF MS using a novel on-target extraction 
of membrane lipids. Sci. Rep. 10:21536. doi: 10.1038/s41598-020-78401-3

Vincent, J. L., Rello, J., Marshall, J., Silva, E., Anzueto, A., Martin, C. D., et al. 
(2009). International study of the prevalence and outcomes of infection in 
intensive care units. JAMA 302, 2323–2329. doi: 10.1001/jama.2009.1754

Walters, M. S., Grass, J. E., Bulens, S. N., Hancock, E. B., Phipps, E. C., 
Muleta, D., et al. (2019). Carbapenem-resistant Pseudomonas aeruginosa at 
US emerging infections program sites, 2015. Emerg. Infect. Dis. 25, 1281–1288. 
doi: 10.3201/eid2507.181200

Conflict of Interest: LD, AF, and GL-M are co-inventors of the MALDIxin test 
for which a patent has been filed by Imperial Innovations (WO2018158573). 
MK is employee of Bruker, the manufacturer of the MALDI-TOF MS used in 
this study.

The remaining authors declare that the research was conducted in the absence 
of any commercial or financial relationships that could be construed as a potential 
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product that may 
be evaluated in this article, or claim that may be made by its manufacturer, is 
not guaranteed or endorsed by the publisher.

Copyright © 2021 Jeannot, Hagart, Dortet, Kostrzewa, Filloux, Plesiat and Larrouy-
Maumus. This is an open-access article distributed under the terms of the Creative 
Commons Attribution License (CC BY). The use, distribution or reproduction in 
other forums is permitted, provided the original author(s) and the copyright owner(s) 
are credited and that the original publication in this journal is cited, in accordance 
with accepted academic practice. No use, distribution or reproduction is permitted 
which does not comply with these terms.

131414

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://doi.org/10.1128/AAC.05829-11
https://doi.org/10.1128/AAC.05829-11
https://doi.org/10.1128/JB.186.2.575-579.2004
https://doi.org/10.1128/AAC.01252-10
https://doi.org/10.1038/nrmicro3047
https://doi.org/10.1111/mmi.13018
https://doi.org/10.1007/s10096-020-03884-x
https://doi.org/10.1128/AAC.02252-16
https://doi.org/10.1128/AAC.01267-08
https://doi.org/10.1128/AAC.00679-18
https://doi.org/10.1128/AAC.00679-18
https://doi.org/10.1038/s41598-020-78401-3
https://doi.org/10.1001/jama.2009.1754
https://doi.org/10.3201/eid2507.181200
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


fmicb-12-789731 January 27, 2022 Time: 15:31 # 1

ORIGINAL RESEARCH
published: 27 January 2022

doi: 10.3389/fmicb.2021.789731

Edited by:
Antonella Lupetti,

University of Pisa, Italy

Reviewed by:
Miriam Cordovana,

Bruker Daltonik GmbH, Germany
Dortet Laurent,

Bicêtre Hospital, France

*Correspondence:
Marina Oviaño

marina.oviano.garcia@sergas.es

†These authors have contributed
equally to this work and share first

authorship
‡These authors have contributed

equally to this work and share last
authorship

Specialty section:
This article was submitted to

Antimicrobials, Resistance
and Chemotherapy,

a section of the journal
Frontiers in Microbiology

Received: 05 October 2021
Accepted: 10 December 2021

Published: 27 January 2022

Citation:
Gato E, Anantharajah A,
Arroyo MJ, Artacho MJ,

Caballero JdD, Candela A,
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In this study, we evaluate the performance of matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOF MS) for rapid detection of
carbapenemase activity in Enterobacterales in clinical microbiology laboratories
during a multicenter networking validation study. The study was divided into three
different stages: “software design,” “intercenter evaluation,” and “clinical validation.”
First, a standardized procedure with an online software for data analysis was designed.
Carbapenem resistance was detected by measuring imipenem hydrolysis and the
results were automatically interpreted using the Clover MS data analysis software (Clover
BioSoft, Spain). Second, a series of 74 genotypically characterized Enterobacterales
(46 carbapenemase-producers and 28 non carbapenemase-producers) were analyzed
in 8 international centers to ensure the reproducibility of the method. Finally, the
methodology was evaluated independently in all centers during a 2-month period
and results were compared with the reference standard for carbapenemase detection
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used in each center. The overall agreement rate relative to the reference method for
carbapenemase resistance detection in clinical samples was 92.5%. The sensitivity was
93.9% and the specificity, 100%. Results were obtained within 60 min and accuracy
ranged from 83.3 to 100% among the different centers. Further, our results demonstrate
that MALDI-TOF MS is an outstanding tool for rapid detection of carbapenemase activity
in Enterobacterales in clinical microbiology laboratories. The use of a simple in-house
procedure with online software allows routine screening of carbapenemases in
diagnostics, thereby facilitating early and appropriate antimicrobial therapy.

Keywords: MALDI-TOF MS, carbapenemases enzymes, resistance detection, imipenem, clinical microbiology

INTRODUCTION

Carbapenemase-producing Enterobacterales (CPE) have been
recognized by a number of national and international health
organizations to represent a major threat to global health
(Rodríguez-Baño et al., 2018; U.S. Centers for Disease Control
and Prevention, 2019; European Center for Disease Prevention
and Control, 2020). Therefore, the search for new, rapid and
effective tools for detecting these bacteria in microbiology
laboratories is essential to enable early targeted antibiotic therapy.
Numerous phenotypic, lateral flow and DNA-based methods
have been used in the laboratory with the aim of detecting CPE
(Hrabák et al., 2014). The results of culture-based methods are
generally available within 24 h of isolation of the bacteria from
clinical samples, whereas more expensive genotypic test results
are available within hours. Moreover, DNA-based methods can
only detect a predefined range of carbapenem-encoding genes,
the presence of which does not guarantee expression (Decousser
et al., 2015; Dortet and Naas, 2017; Oueslati et al., 2019).

Since the introduction of MALDI-TOF in clinical
microbiology laboratories, approaches to detect carbapenemases
have been made by using MALDI-TOF MS-based measurement
of the hydrolysis of different antibiotics (Clark et al., 2013;
Papagiannitsis et al., 2015; Oviaño and Bou, 2018; Oviaño
et al., 2019). However, several in-house MALDI-TOF MS
assays that use different antibiotic combinations, buffers
and variable incubation times, ranging from 15 min to 4 h
(Burckhardt and Zimmermann, 2011; Hrabák et al., 2011;
Lasserre et al., 2015; Monteferrante et al., 2016; Carvalhaes
et al., 2018), have been described. In its guidelines for
detection of resistance mechanisms, version 2.0 of July
2017, the EUCAST committee commented on the detection
of carbapenem hydrolysis by MALDI-TOF MS. Although the
method was recommended for detection of carbapenemases
in Enterobacterales, the document highlighted the lack of
evaluation of the procedure in a multicenter study design or
in studies involving multiple individual centers as a limitation
to its use. Hence, standardization of the methodology is
required before universal application of MALDI-TOF for the
detection of carbapenemase activity based on hydrolysis of a
carbapenem antibiotic.

In line with the standardization and automation of the process,
the MBT STAR R©-Carba IVD kit (Bruker Daltonik, Germany)
and associated MBT STAR R©-BL IVD software have become

available for a fully developed workflow, with a benchmark
carbapenem antibiotic, in Bruker equipment (Anantharajah
et al., 2019; Cordovana et al., 2020). However, as a result of
the increasing need to share data among different laboratories
we have developed an online software for mass spectra data
analysis that is universally compatible with any mass spectra
format derived from any MALDI-TOF commercial brand, so
it is independent from suppliers other than the commercial
companies who distribute MALDI-TOF MS equipment.

The aim of this study was to conduct a multicenter evaluation
of the accuracy and applicability of MALDI-TOF MS for rapid
detection of CPE based on the hydrolysis of imipenem with
a standardized in-house procedure and subsequent automated
interpretation of the results with online mass spectra data
analysis software.

MATERIALS AND METHODS

Study Design
The study was divided into three different stages. The first
part, i.e., “software design,” was carried out to implement
online mass spectra data analysis software. To this end, the
imipenem hydrolysis assay conditions were the same as those
established by Oviaño et al. (2019), using a collection of 74
genotypically characterized CPE and data analysis with the
Clover MS data analysis software (Clover BioSoft, Spain)1. The
results were compared with those obtained with the MBT STAR R©-
Carba IVD Kit (Bruker Daltonik) and STAR R©-BL IVD software.
The principle of the assay is that imipenem is inactivated
due to hydrolysis of the β-lactam ring by bacteria expressing
carbapenemase-hydrolyzing enzymes. The hydrolysis reaction
modifies the structure of the antibiotic, so disappearance in the
native mass peaks (300 and 489 m/z) can be detected by MALDI-
TOF. Thus, a positive hydrolysis reaction denotes the presence of
a carbapenemase in bacteria. This first part of the study process
was accomplished by the Complejo Hospitalario Universitario A
Coruña (AC), A Coruña, considered the reference center.

The second part of the study, i.e., “intercenter evaluation,”
was designed to standardize the methodology and evaluate the
reproducibility among the different centers participating in the
survey with the proposed workflow. The same isolates used in

1https://platform.clovermsdataanalysis.com/login
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the first part of the study were analyzed in the eight participating
centers: the Hospital General Universitario Gregorio Marañón
(GM), Madrid; the Hospital Universitario Ramón y Cajal (RC),
Madrid; the Hospital Universitario Reina Sofía (RS), Córdoba;
the Hospital Universitario Virgen Macarena (VM), Seville; the
Hospital Universitario Son Espases (SE), Palma; the Hospital
Universitario Central de Asturias (CA), Oviedo; the University
Hospital Plzeň (PZ), Plzeň; and the Cliniques Universitaires
Saint-Luc (SL), Brussels. All reagents were provided by the
reference center and solutions were prepared in all centers
according to instructions. So, the centers were given a precise
protocol with the standardized procedure and an educational
video for software management (Supplementary Data Sheet
1 and Supplementary Video 1). Technical support regarding
the laboratory procedure and general attention together with
software management were available during the study. The results
of the MALDI-TOF assay were compared with those obtained by
molecular characterization of the isolates.

The last part of the study, i.e., “clinical validation,” was
designed to evaluate the proposed methodology and data analysis
in real clinical settings. During a 2 months period, all isolates
suspected by EUCAST screening criteria (i.e., with a meropenem
or ertapenem MIC > 0.125 mg/L) to be carrying a carbapenemase
enzyme (maximum 20) were evaluated in parallel in the
participating centers using the MALDI-TOF MS assay based
on imipenem hydrolysis. The results obtained were compared
with those yielded by the reference method used in each clinical
laboratory for CPE detection.

Bacterial Isolates
A representative collection of 76 non-duplicated clinical isolates
(retrospectively obtained from our own collection of isolates
belonging to AC) was used in the first and second parts of the
study. These included 74 isolates (46 CPE and 28 non-CPE)
and 2 control strains. The control strains used were a E. coli
ATCC 25922 (negative control) and a PCR-confirmed VIM-
producing Citrobacter freundii (positive control). The 74 test
species included in the study were 39 Klebsiella pneumoniae, 26
Escherichia coli, 8 Enterobacter cloacae complex, and 1 Klebsiella
oxytoca. The isolates were characterized by PCR and sequencing
(Oteo et al., 2013, 2016; Dortet et al., 2016; Oviaño et al.,
2017). The collection included 46 CPE isolates, being 10 blaKPC,
3 blaIMP, 5 blaNDM , 10 blaVIM and 18 blaOXA−48−like, and
28 non-CPE isolates: 1 blaCIT , 1 blaSHV , 2 blaCMY , 3 blaFOX ,
1 blaK−1, 14 blaCTX−M , and 6 fully susceptible isolates (see
Supplementary Table 1 for further details). All non-CPE isolates
have carbapenems MIC below the cut-off for screening according
to EUCAST criteria, excepting two isolates, one E. coli and 1
K. pneumoniae. Both were tested by PCR and sequencing and no
carbapenemase enzyme was found.

In the final part of the study, each center prospectively
evaluated (following EUCAST screening guidelines) suspected
CPE isolates that emerged in routine testing in clinical
microbiology laboratories, i.e., the number of isolates that
emerged during the 2 months period or up to 20 isolates. One
isolate per patient included. The isolates were derived from

different clinical samples. Results were compared with those
obtained with the reference method used in each laboratory.

MALDI-TOF MS Acquisition
Bacterial isolates were stored at−80◦C, in a small vial containing
glass cryopearls (Deltalab, Barcelona, Spain). On day 1, isolates
were thawed on a blood agar plate by removing one of the
pearls from the tube with a sterile loop and rolling it on the
plate. After incubation for 18 h, the isolates were subcultured
for another 18 h on a blood agar plate for analysis under
standard conditions. The samples were incubated in an aerobic
atmosphere at 37◦C. Briefly, bacteria filling a 1 µl inoculation
loop were suspended in 50 µl of solution (10 mM NH4CO3,
10 µg/ml ZnCl2, 0.001% SDS; pH 8) containing 0.5 mg/mL of
imipenem (Sigma-Aldrich, Germany) and incubated for 30 min
at 37◦C with slow agitation (300 rpm) (Oviaño et al., 2019). The
samples were then centrifuged at 14,000 rpm, and the supernatant
was applied to a MALDI-TOF MS target plate. Each sample was
spotted on the plate in duplicate. Once dried, 1 µl of matrix
[Matrix IVD HCCA-portioned (Bruker Daltonik) spiked with
1 ppm/µl of reserpine (Sigma-Aldrich, Germany)] was applied
to each spot. All runs were performed in the presence of the
positive and negative controls treated in the same way as the
samples. Because of the instability of imipenem, the antibiotic
solution must be prepared just before use, or freezed at−20◦C for
1 week or at−70◦C for a month. The negative control is useful to
evaluate spontaneous hydrolysis of the antibiotic.

The configuration of the equipment was the Research Use
Only version as the IVD version does not allow access to
the modification of parameters in the FlexControl software.
Appropriate calibration was conducted before each run using a
mixture of bradykinin [1-5] and [1-7] at 35 µM (Sigma-Aldrich).
The mixture was spotted and once dried 1 µl of matrix was
added on top of each spot. The spectra were acquired after the
mixture was dried.

The mass spectra were obtained using a MALDI Biotyper R©

Smart (Bruker Daltonik) system, with Flex Control 3.4
software. Three methods were created for spectral acquisition:
MBT_ATB.par, MBT_ATB_AutoX.axe and MBT_ATB.mcl. The
operational mass range was between 100 and 1,000 m/z in the
linear positive mode. The mass peaks were acquired in 40 shot
steps to produce 240 satisfactory shots, and the resolution of the
mass peaks selected was higher than 300. The movement of the
laser in the spot followed a large spiral.

The parameters considered in the calibration are listed in
Table 1.

MALDI-TOF MS Data Analysis
In the first part of the study, i.e., “software design,” the
results were analyzed in parallel, with our in-house imipenem
hydrolysis procedure and Clover MS data analysis software
(Clover BioSoft, Spain) and compared with those obtained with
the MBT STAR R©-Carba IVD Kit (Bruker Daltonik) and the
STAR R©-BL IVD software.

Instructions for using Clover MS data analysis software
(Clover BioSoft, Spain) in the Carbapenem Hydrolysis Detection
Analysis module are provided in Supplementary Data Sheet 1
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and Supplementary Video 1. The software automatically
performs the baseline subtraction and subsequently calculates the
ratio of hydrolysis (RH) of imipenem, based on the ratios of the
mass peaks of imipenem (300 m/z) and imipenem complexed
with the matrix (489 m/z) and the internal standard, i.e., reserpine
(607 m/z) (Figure 1). The mass peak at 300 m/z is usually less
intense than the 489 m/z as imipenem tends to stabilize forming
an adduct with the matriz (Oviaño and Bou, 2018). The results
were normalized according to the controls. Results are displayed
in a .pdf report (Supplementary Data Sheet 2).

RESULTS

Software Design
In the STAR R©-BL IVD software, (a) the cut-off values used were
those recommended by the manufacturer. In the Clover MS
data analysis software (Clover BioSoft), the RH was calculated in
two different ways: (b) by using the intensity of the imipenem
mass peaks and (c) by using the area under the curve (AUC)
of the peaks. A receiver operating characteristic (ROC) curve
was calculated for the three methods, yielding AUC values of
(a) 0.977 (0.939–1), (b) 0.994 (0.985–1), and (c) 0.990 (0.976–1),
with a 95% confidence interval. As the best results were yielded
by the analysis that integrated the mass peaks using intensity
(b), the spectra were then treated in this way in the rest of the
study. The cut-off values for the in-house developed assay were
determined using the ROC curve and the Youden index. The
cut-off value established for positivity in the imipenem hydrolysis
assay was RH values equal to or above 0.5. Values below 0.2 were
considered to indicate negative hydrolysis. A gray or intermediate
zone was established between 0.2 and 0.5, which required further
testing, including prolonged incubation times, or confirmation
by other techniques. The negative and positive controls were
each analyzed 20 times in the same run to ensure repeatability.
A minimum delta RH value between the positive and negative
control of three times the value of the standard deviation was
established. The value was established in 0.6. Thus, the positive
control should have values≥0.5, the negative control values <0.2
and the minimum delta RH value should be 0.6.

For comparing which technique yielded best results and if
these differences were statistically significant we analyzed the
ROC curve. As the AUC for the STAR R©-BL IVD software (a) was
0.977 and this value is out of the 95% confidence interval of the
AUC of our developed software (b), (0.985–1) we can conclude

TABLE 1 | MALDI-TOF MS calibration parameters.

Name m/z Resolution Intensity

[HCCA+H]+ 190.050 >300 >3000

[2HCCA+ H]+ 379.092 >500 >3000

[Bradykinin(1− 5)]+ 573.314 >700 >2000

[Reserpine]+ 607.680 >800 >3000

[Bradykinin(1− 7)]+ 757.400 >1000 >3000

The mass peaks considered for calibration, including the exact masses, resolutions
and intensities.

that the performance of our developed Clover MS data analysis
software (Clover BioSoft) is significantly better when using the
intensity of the mass peaks.

Continuous variables are presented as mean (95% confidence
interval). According to the cut-off values recommended by the
manufacturers, 95.06% of the isolates were correctly classified
in (a) the STAR R©-BL IVD software, with 92.00% (79.89–97.41)
sensitivity and 100% (86.27–99.71) specificity, whereas using (b)
the Clover MS data analysis software (Clover BioSoft), 96.30% of
the isolates were correctly classified, with 94.00% (82.46–98.44)
sensitivity and 100% (86.27–99.71) specificity. The correlation
between the two different procedures and data analysis was
calculated with the Spearman correlation coefficient, yielding a
ρ value of 0.971.

Intercenter Evaluation
In the second part of the study, the same isolates used in the first
part were analyzed by the eight international centers participating
in the study (Supplementary Table 2). Two isolates, i.e., OXA-
244-producing K. pneumoniae and OXA-232-producing E. coli
although being classified as CPE according to literature, both
enzymes have a low carbapenemase activity, even lower than
OXA-48 enzyme (Potron et al., 2013; Hoyos-Mallecot et al.,
2017; Pitout et al., 2019). Therefore, data on these isolates
were not included in the statistical, as were considered outliers.
However, the results were consistent with a low level of enzymatic
activity. Among the nine centers, one center provided an
intermediate result for the OXA-244-producing K. pneumoniae,
and three centers provided a negative hydrolysis result. In the
case of the OXA-232-producing E. coli, one center provided an
intermediate result and five centers provided negative results for
imipenem hydrolysis.

Once all of the results were obtained, the ROC curve was
recalculated with the data obtained in our center (CHUAC) plus
the 8 participating centers, to strengthen the statistical power
of the analysis. For statistical calculations, 1296 spectra were
analyzed from duplicate measurements of the 72 isolates included
in the study and measured in the nine centers. The cut-off value
for positivity was finally established for RH values ≥0.4; negative
hydrolysis values yielded RH < 0.2, and the gray zone, with
intermediate values, was established for values of RH between 0.2
and 0.4. Thus, only the positivity cut-off changed slightly. The
value of the positive control was adjusted to the new value. The
overall sensitivity of the procedure was 95.5% (92.9–97.1), with
100% (98.5–100) specificity. The positive predictive value was
100% (99.0–100) and the negative value, 93.3% (89.8–95.7).

For statistical calculations, full agreement was considered
when the MALDI-TOF assay provided an imipenem positive
hydrolysis result for CPE or a negative hydrolysis result for
non-CPE isolates. Three types of errors were also considered.
Errors were considered minor when the result of the MALDI-
TOF assay was in the intermediate category and the isolate was
either CPE or non-CPE. Errors were considered major when
the result of the MALDI-TOF assay was positive for imipenem
hydrolysis for a non-CPE isolate and very major errors were
considered when a negative hydrolysis result was obtained by
MALDI-TOF for a CPE. The overall agreement rate was 94.9%
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FIGURE 1 | Imipenem spectra. The hydrolyzed imipenem spectrum, in the first picture, represents no visible mass peaks for imipenem and only the internal standard,
reserpine, is observed at 607 m/z. The later spectrum corresponds to imipenem, with the mass peaks at 300 and 489 m/z and the internal standard at 607 m/z.

(92.9–96.4); with minor errors representing 3.5% (2.4–5.3) and
very major errors 1.5% (0.8–2.8) of the total. No major errors
were found. The detailed results for each center are shown in
Table 2. The best results were obtained in GM and in PZ,
with 98.6% agreement, and the worst results were obtained
in CA, with 88.9% agreement. Minor errors and very major
errors ranged between, respectively, 1.4 and 8.3% and 1.4 and

5.6%. Regarding exclusively carbapenemase-producing isolates,
the overall agreement rate was 95.5% (92.9–97.1, with minor
errors representing 2.0% (1.0–3.9) and very major errors 2.5%
(1.4–4.6) of the total.

The rates of agreement regarding the species are shown in
Table 3. Values range from 91.6% (87.2–94.5) for E. coli to
100.0% (70.1–100.0) for K. oxytoca. The rates of agreement in
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TABLE 2 | Agreement rates for each center in the intercenter evaluation.

Center1 Agreement rate2 (n = 76) Minor errors3 Very major errors4

GM 98.6% 1.4% 0%

RC 95.8% 1.4% 2.8%

RS 94.4% 4.2% 1.4%

VM 90.3% 8.3% 1.4%

SE 90.3% 8.3% 1.4%

CA 88.9% 8.3% 2.8%

AC 93.1% 6.9% 0%

PZ 98.6% 1.4% 0%

SL 91.7% 2.8% 5.6%

Total 94.9% 3.5% 1.5%

1The eight participating centers were Hospital General Universitario Gregorio
Marañón (GM), Madrid; Hospital Universitario Ramón y Cajal (RC), Madrid; Hospital
Universitario Reina Sofía (RS), Córdoba; Hospital Universitario Virgen Macarena
(VM), Seville; Hospital Universitario Son Espases (SE), Palma; Hospital Universitario
Central de Asturias (CA), Oviedo; University Hospital Plzeň (PZ), Plzeň and Cliniques
Universitaires Saint-Luc (SL), Brussels, along with the reference center Complejo
Hospitalario Universitario A Coruña (AC), A Coruña.
2Full agreement was considered when the MALDI-TOF assay provided
an imipenem positive hydrolysis result for CPE or a negative hydrolysis
result for non CPE.
3Minor errors were considered when the result of the MALDI-TOF assay was in the
intermediate category and the isolate was either CPE or non CPE.
4Very major errors were considered when the result of the MALDI-TOF assay was
negative for imipenem hydrolysis in CPE. No major errors were found in the study.

TABLE 3 | Agreement rates for different species in the intercenter evaluation for all
centers participating in the study.

Species Diagnosis N1 %2 CI 95%3

K. pneumoniae Agreement rate 329 96.2% 93.6–97.8%

Minor errors 9 2.6% 1.4–4.9%

Very major errors 4 1.2% 0.5–3.0%

E. coli Agreement rate 206 91.6% 87.2–94.5%

Minor errors 13 5.8% 3.4–9.6%

Very major errors 6 2.7% 1.2–5.7%

E. cloacae Agreement rate 71 98.6% 92.5–99.8%

Minor errors 1 1.4% 0.2–7.5%

Very major errors 0 0.0% 0.0–5.1%

K. oxytoca Agreement rate 9 100.0% 70.1–100.0%

Minor errors 0 0.0% 0.0–29.9%

Very major errors 0 0.0% 0.0–29.9%

1Number of isolates included in each category.
2Percentage of isolates from each species that fit in each diagnosis category.
3The calculations are performed for a 95% confidence interval (CI).

relation to the resistance mechanisms are shown in Table 4. The
rates of agreement ranged from 87.8% for VIM to 100% for K1.
Regarding the accuracy of the MALDI-TOF method for detection
of carbapenemases, the best classification rates were yielded for
KPC-producing bacteria, with 98.9% of agreement relative to
molecular methods.

Two isolates yielded most of the errors in the “intercenter
evaluation,” both are VIM-producing E. coli. The first one yielded
minor and very major errors in 3 and in 1 out of the 9 centers,
respectively. The second one yielded very major errors in 5 out
of the 9 centers.

TABLE 4 | Agreement rates regarding the resistance mechanism obtained in the
intercenter evaluation for all centers participating in the study.

Resistance mechanism Diagnosis N %

Susceptible Agreement rate 51 94.40%

Minor errors 3 5.60%

Very major errors 0 0.00%

CIT Agreement rate 8 88.90%

Minor errors 1 11.10%

Very major errors 0 0.00%

SHV Agreement rate 8 88.90%

Minor errors 1 11.10%

Very major errors 0 0.00%

CMY-2 Agreement rate 17 94.40%

Minor errors 1 5.60%

Very major errors 0 0.00%

FOX Agreement rate 24 88.90%

Minor errors 3 11.10%

Very major errors 0 0.00%

K-1 Agreement rate 9 100.00%

Minor errors 0 0.00%

Very major errors 0 0.00%

CTX-M Agreement rate 120 95.20%

Minor errors 6 4.80%

Very major errors 0 0.00%

KPC Agreement rate 89 98.90%

Minor errors 0 0.00%

Very major errors 1 1.10%

IMP Agreement rate 26 96.30%

Minor errors 1 3.70%

Very major errors 0 0.00%

NDM Agreement rate 43 95.60%

Minor errors 0 0.00%

Very major errors 2 4.40%

VIM Agreement rate 79 87.80%

Minor errors 4 4.40%

Very major errors 7 7.80%

OXA-48-like Agreement rate 141 97.90%

Minor errors 3 2.10%

Very major errors 0 0.00%

Clinical Validation
The participating centers GM, RC, RS, PZ, and SL analyzed
20 isolates in the 2-month period; CA analyzed 19 isolates,
SE analyzed 18 isolates and VM analyzed 10 isolates
(Supplementary Table 3). The 147 isolates included were
obtained from different clinical samples, urine (54), colonization
samples (51), blood (16), wounds (8), respiratory samples
(7), abscesses (5), catheter (4), and biopsies (2). Regarding
the reference methods for detection of resistance, GM, CA,
and SL used the O.K.N.V immunochromatographic test from
CORIS BioConcept (Belgium); RC, PZ, RS, and SE used
characterization by PCR and VM by WGS. The species most
frequently detected were K. pneumoniae (67), followed at
some distance by E. cloacae (Brackmann et al., 2020) and
E. coli (Pitout et al., 2019). The carbapenemase enzyme most

Frontiers in Microbiology | www.frontiersin.org 6 January 2022 | Volume 12 | Article 789731192020

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-789731 January 27, 2022 Time: 15:31 # 7

Gato et al. MALDI-TOF Detection of Carbapenemases

frequently detected was OXA-48-like (69), followed by VIM
(31), KPC (21), NDM (12), and IMP (5). The distribution of the
carbapenemase enzymes among the different centers is shown
in Table 5.

For statistical calculations, a total of 294 spectra were
analyzed for duplicate measurements of 147 isolates. The overall
agreement rate relative to the reference method for resistance
detection was 92.5% (87.1–95.8), with 4.1% minor errors (1.9–
8.6) and 3.4% very major errors (1.5–7.7) (Table 6). Thus,
the sensitivity of the MALDI-TOF assay for detecting CPE
was 93.9% (88.8–96.7). As no major errors were also found in
the clinical validation stage the specificity of the methodology
is 100% (70.1–100.0). The best results were obtained in VM
and in PZ, with 100% of agreement and the worst results
were obtained in SE, with 83.3% agreement. Minor and very
major errors ranged between 0 and 10.0% and between 0
and 10%, respectively. Regarding the detection of the different
carbapenemases enzymes, the agreements rates ranged from
88.4% for an OXA-48-like-producing isolate to 100% for
KPC, NDM, and IMP. Minor and very major errors ranged
between 0% (for VIM, KPC, NDM, and IMP) and 5.8%
(for OXA-48-like).

DISCUSSION

MALDI-TOF MS is a simple, rapid procedure for detecting
antimicrobial resistance that combines the universal advantages
of phenotypic assays with the rapidity and accuracy of
molecular assays. Different approaches have been developed for
antimicrobial resistance detection by MALDI-TOF, including
the quantitative growth assay (Idelevich et al., 2018) and the
peak profiling methodology (Josten et al., 2014; Lau et al., 2014;
Cordovana et al., 2018; Brackmann et al., 2020; Gato et al.,

TABLE 5 | Distribution of resistance mechanism in relation to the centers in the
clinical validation.

Center1 (N2) Resistance mechanism

OXA VIM KPC NDM IMP Non-
carbapenem
producers

GM (20) 20 0 0 0 0 0

RC (20) 9 7 4 0 0 0

RS (20) 6 4 6 0 4 0

VM (10) 5 2 2 0 1 0

SE (18) 1 10 0 0 0 7

CA (19) 16 2 0 0 0 1

PZ (20) 5 4 6 5 0 0

SL (20) 7 2 3 7 0 1

Total (147) 69 31 21 12 5 9

1Hospital General Universitario Gregorio Marañón (GM), Madrid; Hospital
Universitario Ramón y Cajal (RC), Madrid; Hospital Universitario Reina Sofía
(RS), Córdoba; Hospital Universitario Virgen Macarena (VM), Seville; Hospital Son
Espases (SE), Palma; Hospital Universitario Central de Asturias (CA), Oviedo; Plzeň
University Hospital (PZ), Plzeň and Cliniques Universitaires Saint-Luc (SL), Brussels.
2Number of strains used for clinical validation in each center.

TABLE 6 | greement rates for the different centers obtained in the clinical
validation stage.

Center
(N)1

Number of
CPE2

Reference
method3

Diagnosis

Agreement
rate

Minor
error

Very major
error

GM (20) 19 IC 85.0% 5.0% 10.0%

RC (20) 20 PCR 95.0% 5.0% 0.0%

RS (20) 20 PCR 90.0% 10.0% 0.0%

VM (10) 10 WGS 100.0% 0.0% 0.0%

SE (18) 11 PCR 83.3% 5.6% 10.0%

CA (19) 19 IC 94.7% 5.3% 0.0%

PZ (20) 20 PCR 100.0% 0.0% 0.0%

SL (20) 19 IC 95.0% 0.0% 5.0%

Total (147) 138 92.5% 4.1% 3.4%

1Number of strains used for clinical validation in each center.
2Number of CPE confirmed among all the isolates suspected of having a
carbapenemase enzyme by EUCAST screening criteria.
3The reference method used in each center for comparison with the
results obtained with MALDI-TOF is described here. IC stands for the
immunochromatographic test from CORIS BioConcept (Belgium), the rest of
techniques were molecular based methods, like PCR and WGS.

2021). However, none of these have been recommended by
the EUCAST committee. To our knowledge, this is the first
multicenter study evaluating the performance of MALDI-TOF
MS for detecting carbapenemase activity in Enterobacterales in
clinical microbiology laboratories. At the “software design” stage,
we realized that our in-house procedure with data analysis in the
Clover MS data analysis software (Clover BioSoft, Spain) yielded
stronger agreement relative to the results obtained with the MBT
STAR R©-Carba IVD Kit (Bruker Daltonik) in the STAR R©-BL IVD
software (96.30% versus 92.00%). Our procedure also provides
several other advantages. First, it is commercially independent
from the manufacturer of the MALDI-TOF instrument, so
that different spectra formats are compatible. In this study, all
collaborators used Bruker Daltonik equipment; however, the data
analysis can also be performed from mass spectra originated with
bioMérieux mass spectrometer devices (Marcy-l’Étoile, France)
an others, without the need for further modifications (data
not shown). The software automatically converts any mass
spectra format in a common format used for interpretation
of spectra without any previous knowledge from the user.
This is a particularly useful feature, as multiple instrument
platforms have emerged since the universal integration of
MALDI-TOF in microbiology laboratories. Furthermore, the
software is available online and the information generated
can thus be accessed anywhere at any time. This is a huge
advantage for clinical use, as MALDI-TOF instruments are
used for high-throughput screening in microbiology laboratories
for identification purposes, so the online application allows
access from any computer in the lab, releasing the MALDI-
TOF computer for identification and delaying the resistance
analysis to any suitable moment. The online application also
enables networking with colleagues in different centers, so that
information can be shared and advice can even be requested
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from reference centers, as it is currently very common for
hospitals to unify forces and work together as bigger working
areas that share patients and information. Besides, the software
includes the database of spectra introduced and saved by the
user, that can be shared upon permission with any other user
of the software. In the “intercenter evaluation” results obtained
by the different centers were compared with the molecular
characterization of the isolates. In the “clinical validation” results
were not compared to a unique standard, but to different and
independent validated techniques used in real clinical situations
for carbapenemase detection in Enterobacterales, facilitating
the user familiarization with the developed methodology In
the “intercenter evaluation,” we have demonstrated that the
procedure developed is highly reproducible, as agreements
rates above 90% were reached in all centers, except one,
with a range of values across centers of less than 10%. The
inexperience of the user plus a non-fully adjusted equipment
by an experienced technician could be the reasons of the lower
rates. Moreover, in the “clinical validation” stage, the levels
of agreement relative to the reference techniques applied in
each laboratory were very similar to those obtained in the
“intercenter evaluation,” i.e., 92.5% versus 94.9%, thus validating
the technique for use in clinical practice. Minor errors did
not exceed 5% and very major errors were less than 3.5% in
the real clinical setting, thus preventing further unnecessary
testing of isolates.

In the “intercenter evaluation,” study of the rates of agreement
regarding the species did not indicate any significant differences,
with a very similar level of accuracy for different bacteria.
Regarding the “clinical validation” stage, no statistical analysis
was possible, because of the small number of isolates of each
bacterial species.

Regarding the agreement rates in the “clinical validation”
stage for the different carbapenemase enzymes, detection of
OXA-48-like-producing isolates was slightly poorer than for
the other CPE isolates, i.e., 88.4% versus 100%. However,
in the “intercenter evaluation,” detection of VIM-producing
isolates was poorest, detected at a rate of 87.8%, with OXA-
48-like-producing isolates detected with an accuracy rate
of 97.9%. Possible reasons for these differences include
the presence of different copies of the resistance plasmid
and the isolates belonging to different, epidemiologically
unrelated sequence types expressing different degrees of
susceptibility to carbapenems. However, more extensive
evaluation should be performed in order to establish the reasons
for these differences.

Neither in the “intercenter evaluation” nor in the “clinical
validation” stage, major errors were produced, thus preventing
false-positive detection of AmpC or ESBL-producers, errors
commonly found in phenotypic methods of carbapenemase
detection (Hrabák et al., 2014; European Center for Disease
Prevention and Control, 2020).

Regarding the results bracket among the different centers,
88.9–198.6% in the “intercenter evaluation and 83.3–100% in
the “clinical validation” stages, the variance is higher in the
second part. This can be attributable to the biological differences
among isolates and also in the number of CPE confirmed. Not

all suspected isolates of having a carbapenemase by EUCAST
screening criteria, were confirmed by the reference method
used by the respective laboratory. For example, the center
having the lowest accuracy data, SE, had only 11 CPE, so
errors have higher impact in the final accuracy percentage,
than for example in RC, PZ, or SL with 20 CPE analyzed.
As only one center used as reference method WGS, false
positive results obtained by MALDI-TOF could be wrongly
attributable, really corresponding to true carbapenemase isolates
rarely detected as IMI, SME, and FRI. . . However, as all
participating laboratories have WGS tools (although not used
routinely), it is not likely to have happened, as repeated
isolates with reduced susceptibility to carbapenems with no
carbapenemase found by their routine diagnostics methodologies
would have been submitted to full sequencing, so no outbreak
should have been missed during the study. The common
slight variations can be allocated to differences in the level
of expertise of the users, previous or not experience using
MALDI-TOF, or even slight differences in the adjustments of
equipments. However, all users accomplished the task without
on site training, just with the information provided in this
paper, so we proved that this developed methodology is ready
to be performed in any microbiology laboratory with minimal
equipment and no previous knowledge. As a limitation in our
study, we must recognize the low number of clinical isolates
in the “clinical validation,” thus concluding that the method
is promising, but requires a more robust and comprehensive
clinical validation.

The MALDI-TOF hydrolysis assay has the advantage of
being able to detect carbapenemase activity regardless of the
enzyme produced, including novel enzymes emerging at any
given time which are not detected by predefined PCR tools
usually used in diagnostics (Yoon et al., 2020). In addition, false
positive results can also occur when PCR tools are used, due
to the appearance of novel variants which lack carbapenemase
activity, such as KPC-28 and OXA-163 (Dortet and Naas, 2017;
Oueslati et al., 2019), or with reduced carbapenemase activity,
such as OXA-232 and OXA-244 (Potron et al., 2013; Hoyos-
Mallecot et al., 2017). MALDI-TOF MS measures carbapenemase
activity, acting like a rapid phenotypic method. However,
additional techniques are required for precise identification of
the carbapenemase class. Recent publications have overcome
this issue, demonstrating the potential use of MALDI-TOF MS
for carbapenemase classification using different combinations of
β-lactamase inhibitors (Carvalhaes et al., 2018; Oviaño et al.,
2020). The requirement for testing the isolates from blood agar
cultures is a limitation of our study, as no other culture media
has been tested. However, in our experience the hydrolysis
assay by MALDI-TOF works very similarly using bacterial
colonies from other type of culture media as McConkey agar
or Mueller-Hinton agar (data not shown). Also, the need of
fresh controls could be observed as a limitation of the study,
however, most laboratories that have an antimicrobial resistance
detection section will have this controls ready to use for
different findings.

In comparison with biochemical assays, MALDI-TOF MS has
the advantage of overcoming the subjective visual interpretation,
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particularly in case of weak positive reactions as in OXA-48-
like enzymes, where the color change is not as evident. In
comparison with other in-house methods, the major advantage
of the method is the standardized processing, with no need to
establish a particular number of cells of the isolate for analysis
and no subsequent extraction (Hrabák et al., 2011; Monteferrante
et al., 2016). The excellent performance of the buffer enables
an all-in-one (Oviaño et al., 2016), simplified procedure, with
sensitivity and specificity values in the same range.

The use of our in-house procedure is more labor intensive
than with the MBT STAR R©-Carba IVD Kit (Bruker Daltonik),
as it requires preparation of specific reagents, like the antibiotic
solution, matrix and calibration standard, making in principle,
the introduction of the method in routine less straightforward.
This is why the working protocol with the standardized
procedure and educational video for software management is
so useful and helps in the familiarization of the methodology
(Supplementary Data Sheet 1 and Supplementary Video 1).
The different staff performing the assay were not dedicated
or expert personnel, but was the same person in each center
during the entire study. The preparation of reagents consists
in simple steps of weighing and dilution, techniques commonly
used in microbiology laboratories that take about 10–20 min to
accomplish, with an extra 30 min of incubation. Besides, in the
future automated machines can be programmed for preparation
of MALDI-TOF reagents in the users way, as there are different
protocols for DNA/RNA extraction and for PCR in molecular
techniques. Comparing the turnaround time for both techniques,
it is quite similar, with a short delay of for the preparation
of reagents in our developed in-house procedure, with the
additional advantages in the methodology developed herein of
a very low cost (∼ 1 euro) and the possibility of adjusting the
procedure for any antibiotic (Oviaño et al., 2017).

CONCLUSION

MALDI-TOF MS is an outstanding tool for the rapid detection
of carbapenemase activity in Enterobacterales in clinical
microbiology laboratories. The use of a simple in-house
procedure with online software allows results to be obtained
within 30–60 min, making MALDI-TOF a rapid phenotypic
technique suitable for routine screening of carbapenemases in
diagnostics and thus facilitating the early implementation of
appropriate antimicrobial therapy.
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While MALDI-TOF mass spectrometry (MS) is widely considered as the reference
method for the rapid and inexpensive identification of microorganisms in routine
laboratories, less attention has been addressed to its ability for detection of antimicrobial
resistance (AMR). Recently, some studies assessed its potential application together
with machine learning for the detection of AMR in clinical pathogens. The scope of
this study was to investigate MALDI-TOF MS protein mass spectra combined with
a prediction approach as an AMR screening tool for relevant foodborne pathogens,
such as Campylobacter coli and Campylobacter jejuni. A One-Health panel of 224
C. jejuni and 116 C. coli strains was phenotypically tested for seven antimicrobial
resistances, i.e., ciprofloxacin, erythromycin, tetracycline, gentamycin, kanamycin,
streptomycin, and ampicillin, independently, and were submitted, after an on- and
off-plate protein extraction, to MALDI Biotyper analysis, which yielded one average
spectra per isolate and type of extraction. Overall, high performance was observed
for classifiers detecting susceptible as well as ciprofloxacin- and tetracycline-resistant
isolates. A maximum sensitivity and a precision of 92.3 and 81.2%, respectively, were
reached. No significant prediction performance differences were observed between on-
and off-plate types of protein extractions. Finally, three putative AMR biomarkers for
fluoroquinolones, tetracyclines, and aminoglycosides were identified during the current
study. Combination of MALDI-TOF MS and machine learning could be an efficient and
inexpensive tool to swiftly screen certain AMR in foodborne pathogens, which may
enable a rapid initiation of a precise, targeted antibiotic treatment.

Keywords: MALDI-TOF MS, antimicrobial resistance screening, AMR, machine learning, Campylobacter,
diagnostics
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INTRODUCTION

Antimicrobial susceptibility testing (AST) is a key technology
in diagnostic microbiology and is essential for a targeted
treatment and to limit the widespread use of broad-spectrum
antibiotics. Over the past decades, many improvements have
helped to accelerate, standardize, and harmonize testing
facilities, e.g., through the implementation of automated
and semi-automated devices combining identification and
AST (e.g., Vitek 2 R©), using optical systems for measuring
changes in bacterial growth and determining antimicrobial
susceptibility, and using rapid diagnostic tests for same-day
AST results (Mitchell and Alby, 2017; Benkova et al., 2020;
Roth et al., 2021). In a concern for harmonization, disk-
diffusion and microdilution antibiograms, recommended
by the European committee on antimicrobial susceptibility
testing (EUCAST, human medicine) or the European
food safety authority (EFSA, veterinary medicine), are still
the reference methods for determination of antimicrobial
resistances (AMR). These tests are based on bacterial growth,
requiring between 16 and 24 h for rapid growing pathogens
and longer for fastidious pathogens (e.g., mycobacteria and
Helicobacter pylori) (Barlam et al., 2016; Arena et al., 2017).
Results are usually qualitative and classed into categories,
i.e., susceptible or resistant, depending on the breakpoint
calibrated by the EUCAST, or expressed as minimum inhibitory
concentration (MIC) (Benkova et al., 2020). While these
conventional methods are effective, they are cumbersome,
time-consuming, and do not enable the rapid choice of an
effective targeted anti-infective treatment. Yet, development
of “fast microbiology” technologies or rapid diagnostic tests,
including Matrix assisted laser desorption/ionization time of
flight mass spectrometry (MALDI-TOF MS), results in the
improvement of the antimicrobial stewardship by decreasing
the “patient–physician” workflow before treatment (Bookstaver
et al., 2017; Mangioni et al., 2019).

MALDI-TOF MS is a soft-ionized mass spectrometry method
developed as an analytical tool to identify and understand
the structure of unknown biomolecules (Gibson and Costello,
2000). In an evolving field, this automatic technique became
the reference method for identifying microorganisms such as
bacteria (Clark et al., 2013; Singhal et al., 2015), mycobacteria
(Rodriguez-Granger et al., 2018; Rotcheewaphan et al., 2019) and
fungi (Florio et al., 2018; Robert et al., 2021). The resolution
power of the system operates at the species level and even
at sub-species level for a number of pathogens in clinical
microbiology (Fall et al., 2015; Feucherolles et al., 2021). It is a
fast and cost-efficient process, with a positive impact on public
health analytical pipelines (Ge et al., 2017; Rodríguez-Sánchez
et al., 2019). Identification of other organisms, like protozoa
(Del Chierico et al., 2016), helminths (Bredtmann et al., 2017;
Feucherolles et al., 2019b; Sy et al., 2021; Wendel et al., 2021),
viruses (Iles et al., 2020; Rybicka et al., 2021), and arthropods
(Tahir et al., 2017; Boucheikhchoukh et al., 2018; Tandina et al.,
2018), is also feasible in a research context. However, only
the routine identification part of the diagnostics workflow is
currently carried out by MALDI-TOF MS.

Over the last 5 years, machine learning (ML), a subset
of artificial intelligence, has gained interest in many areas of
research pertaining to an improved diagnosis of diseases (e.g.,
cancer detection, infectious diseases, etc.) (Caballé et al., 2020;
Goodswen et al., 2021; Nami et al., 2021). This popularity is
greatly explained by the current era, where large daily amounts
of data are being collected digitally, known as big data, which
are requiring new approaches to investigate it. Mass spectra are
routinely generated by MALDI-TOF MS and most of the time not
exploited for additional analysis beyond the sole identification
of microorganisms. Even if several reports highlighted successful
applications of MALDI-TOF MS for detection of bacterial AMR,
by the presence of specific biomarkers (Feucherolles et al., 2019a;
Oviaño and Bou, 2019; Yoon and Jeong, 2021) identified by
classical statistical methods, there is still a mine of information
encrypted in the mass spectra. More recently, a growing number
of reports combining MALDI-TOF mass spectrometry and ML
have shown promising results for clinical big data problems, such
as AMR screening (Weis et al., 2020a,b). The majority of these
studies used pathogens such as Staphylococcus aureus and the β-
lactam antibiotic family (Sogawa et al., 2017; Wang et al., 2018;
Tang et al., 2019). Therefore, there are very few published data
concerning other relevant clinical or foodborne pathogens or
antimicrobials such as the quinolones (e.g., ciprofloxacin) and
macrolides (e.g., erythromycin and azithromycin) (Sabença et al.,
2020; Sousa et al., 2020). However, macrolides and quinolones are
frontline antibiotics used to treat severe infectious gastroenteritis
and categorized by the World Health Organization (WHO) as
critically important in human medicine (WHO, 2019).

Campylobacteriosis, mainly caused by C. jejuni and C. coli,
is the main global cause of bacterial gastroenteritis in humans
(Chlebicz and Śliżewska, 2018). Likewise, 10.9 and 0.6% of
C. coli and C. jejuni, respectively, isolated from humans were
multi-resistant to ciprofloxacin, erythromycin, tetracycline, and
gentamycin in 2019 (EFSA and ECDC, 2021). In food-producing
animals, 26.9% of C. coli isolated from calves were resistant to
at least three of the previously cited antimicrobials. MALDI-
TOF MS already has been applied for proteo-typing of C. coli,
C. fetus, and more recently for C. concisus genomospecies
(Emele et al., 2019a,b; On et al., 2021). Also, its ability to
distinguish β-lactam-resistant strains from sensitive ones by pre-
processing mass spectra before analysis was reported (Penny
et al., 2016). However, there are no published reports concerning
the direct application of the mass spectrometry and ML for direct
prediction of AMR in Campylobacter spp.

Therefore, the aim of this study is to show that MALDI-TOF
MS combined with an ML approach could be a useful tool for a
fast and precise AMR screening of relevant foodborne pathogens,
such as C. coli and C. jejuni. While campylobacteriosis is mainly
self-limiting and do not require specific antibiotherapy, such a
combination strategy may aid to swiftly prescribe a definitive
antimicrobial therapy and therefore limit an empirical broad-
spectrum strategy for other pathogens. ML prediction based
on protein mass spectra will be investigated at the species-
specific and antibiotic resistance level. The impact of different
protein extraction methods, i.e., on- and off-plate extraction, on
resistance predictions will also be considered.
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MATERIALS AND METHODS

Campylobacter Collection
Strains
A One-Health collection of 224 C. jejuni and 116 C. coli isolates,
obtained from humans (n = 226), in environmental samples, i.e.,
surface water (n = 33), and animals including wild life: raccoons
(n = 8), wild birds (n = 17), and cattle, i.e., bovine (n = 20), pig
(n = 1), and poultry (n = 35), were used in the current study.

Antimicrobial resistances patterns were established by disk
diffusion antibiograms for fluroquinolones [ciprofloxacin (Cip,
5 µg)], macrolides [erythromycin (Ery, 15 µg)], tetracyclines
[tetracycline (Tet, 30 µg)], aminoglycosides [gentamycin (Gent,
10 µg), kanamycin (Kana, 30 µg), Streptomycin (Strep, 10 µg)],
and β-lactams [ampicillin (Amp, 10 µg)] following the French
Microbiology Society (SFM) and EUCAST recommendations
(Recommendations 2020 v1.1 April) resulting in patterns
addressed in Table 1. For antibiotics not described for
Campylobacter spp., i.e., kanamycin and streptomycin, EUCAST
recommendation for the Enterobacterales group was applied. The
latter was added to the study based on ResFinder analysis by
using Whole Genome Sequencing (WGS) data (Bortolaia et al.,
2020). The Lys43Arg mutation in the rspL gene as well as ant(6)
and aadE genes and conferring the streptomycin resistance were
detected (Olkkola et al., 2010; Fabre et al., 2018). Likewise,
the aph(3) gene conferring among other kanamycin resistance
was detected (Fabre et al., 2018). The phenotypic details of the
collection are described in Supplementary File 1.

Growth Conditions
All strains were inoculated on chocolate agar plates (Thermo
Scientific, Waltham, MA, United States) with -80◦C stock
suspension stored in FBP medium complemented with
Campylobacter growth supplement (Thermo Fisher Scientific),
and incubated for 48 ± 2 h at 42◦C under micro aerobic
conditions using CampyGen 2.5 L gas packs (Thermo
Fisher Scientific).

Matrix Assisted Laser
Desorption/Ionization Time of Flight
Mass Spectrometry Analysis
Sample Preparation
For every biological assay, an off- and on-plate extraction and a
direct deposit were performed. For the off-plate or also known
as ethanol/formic acid protein extraction (EtOH/ACN), bacteria
were suspended in 300 µl milliQ water and 900 µl absolute
ethanol (Merck, Darmstadt, Germany). The mix was centrifuged
for a further 2 min and the residual ethanol was discarded. A total
of 25 µl for both 70% (v/v) formic acid (Merck, Darmstadt,
Germany) and acetonitrile (Merck) were mixed up to the dry
pellet. A final centrifugation was performed, and then 1 µl of
supernatant was spotted onto a one-use MALDI Biotarget (96
targets; Bruker Daltonics GmbH, Bremen, Germany). For the
formic acid on-plate extraction (FA), a smear of a bacteria colony
is directly carried out on the biotarget and then overlayed with a
1 µl 70% formic acid. For the direct deposit, a bacteria colony is

directly streaked on the biotarget. For all deposits and extractions,
as soon as the sample was dried, the spot was overlaid with 1 µl
of portioned HCCA matrix solution (Bruker Daltonics GmbH)
prepared with standardized acetonitrile 50%, water 47.5%, and
trifluoroacetic acid 2.5% solution (Sigma-Aldrich, Saint Louis,
MO, United States). Bruker bacterial test standard (BTS) was
used for an external calibration of the apparatus.

For each method of extraction, three independent cultures
(biological replicates) on three different days (reproducibility)
were performed. Each biological replicate was spotted thrice
(technical replicates) on the same day (repeatability), resulting in
nine spectra per isolate.

Data Acquisition
MALDI-TOF MS analysis was performed using a Biotyper
Microflex LT/SH (Bruker Daltonics GmbH) by using the
AutoXecute acquisition method (MBT_AutoX) in FlexControl
software v3.4., with a 2–20 kDa mass-to-charge ratio (m/z) range
in a positive linear mode. Before measurement, the system was
calibrated using the automatic calibration feature with the BTS.
For each sample spot, an automatic acquisition with 240 laser
shots was performed.

Mass Spectra Analysis
All protein spectra were identified by using the BDAL Bruker
database (n = 8,468 MSPs), containing at least 3,000 different
bacterial and fungi species, through the MBT Compass Explorer
interface (v.4.1). The software attributed a log score value
between 0 and 3.00. A score between 0 and 1.69 was considered
as a not reliable identification. A score between 1.70 and 1.99
was considered as probable genus identification and scores from
2.00 to 2.29 as reliable genus identification and a probable species
identification. Finally, a score between 2.30 and 3.00 was deemed
as highly probable species identification.

Then, spectra were uploaded on FlexAnalysis v3.0 (Bruker
Daltonics GmbH) and an internal calibration was carried out on
the 4,365 m/z peak, identified as a 50 S ribosomal protein L36
by Zautner et al. (2016) in Campylobacter, which is shared by all
samples and the BTS. Mass spectra were converted into mzML
files and imported into BioNumerics v7.6 software platform
(BioMérieux, Craponne, France). Spectra were pre-processed
using the workflow described by Penny and collaborators [binned
baseline (size = 77), Kaiser Window (size = 33), Moving bar
(width = 129)], with a sound-to-noise ratio threshold of 10
(Penny et al., 2016). The peak detection parameters were the
following: Continuous wavelet transformation (CWT) ridges,
double peaks, and a relative intensity of 2%. Biological replicate
spectra were summarized to create an average spectrum, or Main
Spectra Profile (MSP), per isolate and extraction. Finally, a peak
matching was performed on MSPs, resulting in 91 peaks.

Machine Learning Analysis
Pre-processing
Tables including intensity values of the peak matching MSPs
for the three types of extraction were exported into csv
files (Supplementary File 2) for ML analysis using Python
programming language (v3.7.6) and Scikit-learn package
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TABLE 1 |

(A) Antimicrobial susceptibility patterns of Campylobacter isolates used in the present study.

Resistant isolates

Antibiotic classes Antibiotics C. jejuni (n = 224) C. coli (n = 116)

Susceptible (S)* 70 (31.2%) 25 (21.6%)

Fluroquinolones Ciprofloxacin (Cip) 123 (54.9%) 60 (51.7%)

Macrolides Erythromycin (Ery) 2 (0.9%) 31 (26.7%)

Tetracyclines Tetracycline (Tet) 90 (40.2%) 70 (60.3%)

Aminoglycosides Gentamycin (Gent) 1 (0.4%) 11 (9.5%)

Kanamycin (Kana) 18 (8.0%) 18 (15.5%)

Streptomycin (Strep) 11 (4.9%) 35 (30.2%)

Beta-Lactams Ampicillin (Amp) 90 (40.2%) 58 (50.0%)

(B) Diversity of antimicrobial resistance pattern in the collection.

*Susceptible to all tested antimicrobials.

(v0.22.1) in Jupyter NoteBook (v6.0.3). Then, MSPs were
grouped by their AMR profiles and eight distinct files have
been created according their AMR classes and susceptibility,
i.e., S, CipR, TetR, AmpR, EryR, GentR, StrepR, and KanaR
(Figure 1). Category names (e.g., S and R) were binarized, where
0 and 1 represented MSPs susceptible and resistant to the AMR
class studied, respectively. All peaks, here called features, were
transformed using a Min-Max scaler which transformed values
into the (0,1) range. Such a step is necessary to bring different
variables at the same level, as variables that are measured at
different scales may not contribute equally to the model fitting.

Feature’s Selection
Dataset with many features, which could be redundant or
irrelevant, may lead to an overcomplicated algorithm with low
prediction accuracy and long training time. Feature selection is
the process of choosing relevant features, to use in a classification
model construction, either to improve accuracy scores or to boost
performance. For this purpose, a meta-transformer based on a
Random Forest estimator, implemented into scikit-learn library,
was used to discard irrelevant features.

Model Selection
MSPs were randomly split into 70% training and 30% test
datasets, with a stratification based on their binarized AMR
profiles. The training dataset is implemented to build up a

prediction model, while the test dataset is used as an external
validation step of the trained model. For each studied AMR
classes, Random Forests (RF), Logistic Regression (LR), and
Naïve Bayes (NB) models were built, as they are common
algorithms used in microbiology (Goodswen et al., 2021). RF
is currently among the most used ML methods due to its
robustness. It is essentially a collection of independent decision
trees, where each tree could be different from the others, as
the algorithm will make completely different random choices to
make sure trees are distinct. Such algorithms make aggregated
predictions using a group of decision trees. LR is a linear
classifier, which predicts the probabilities of success and failure
event. It is easy to implement and interpret and efficient to
train. NB classifier assumes that the presence of a particular
feature is not related to the presence of another feature. It
is easy to interpret and is often applied for many medical
applications. The area under the precision recall curve (AUPRC)
was investigated to determine the most performant model
(data not shown).

Tuning
Upon selection of the best performing model, it was optimized
by looking for the best combination of hyper-parameters
according to the F1-score, described in the metrics section.
Hyper-parameters for each selected model were tuned by using
an instance which generates candidates from a grid of given
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FIGURE 1 | Schematic overview of the machine learning workflow.

parameter values, a grid search, with a 10-fold cross validation,
with a scoring method looking for the more optimized F1-score.
K-fold cross validation is a resampling method, which estimates
the performance of the ML model.

The 0.5 default probability score threshold may not represent
an optimal interpretation and can result in poor performance.
Therefore, a threshold adjustment was investigated to bring a

higher predictive performance (Weis et al., 2020a). A threshold
selection, for each classifier, based on their precision recall
curve (PRC) was applied, according to the best F1-score. In
the case of imbalance classes, like the current dataset, PRC can
suggest an optimal threshold (Saito and Rehmsmeier, 2015). In
this study, detection of resistant isolates (true positives) is the
key point of the study. PRC is based on true positive values,
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i.e., true positive and positive predictive values, among positive
prediction. Hence, PRC relies on positive classes regardless of
true negative value, making it a tool of choice for the study
threshold selection. In the end, values less than the custom
threshold are assigned to class 0, or susceptible, while value
greater than or equal to the custom threshold are assigned to class
1, or resistant.

Performance and Metrics
As a next step, performance of the selected classifier needed
to be assessed on data not yet seen by the model. For this,
an external validation has been carried out by using the test
dataset. Classification of spectra was summarized in a confusion
matrix. From it, several performance metrics, such as the
specificity, the recall, the precision or the positive predictive
value (PPV), the negative predictive value (NPV), and area
under the receiver operating characteristic curve (AUROC) and
PRC were calculated. The PPV tells us how much we can
trust the model when a resistant result is predicted, and in
the other way, the NPV tells us how much we can trust the
model when a sensitive result is predicted. The recall, also
called sensitivity, measures how the model can find all positive
units. The specificity refers to the model’s ability to give a
negative result when an isolate is susceptible. The ROC curve
is a graphical way to represent the performance of the classifier
for all threshold classifications, with the false-positive rate and
true-positive rate as axis. Therefore, the AUROC can be used
to measure the model’s discriminative ability. Usually, an AUC
of 0.5 is assimilated to a non-discriminative model, while 0.7–
0.8 is considered acceptable, 0.8–0.9 is excellent, and more than
0.9 is considered outstanding (Hosmer et al., 2013). Along the
same line, the PRC is a graphical visualization that combines
the precision and the recall. The higher curve on the y-axis,
the better the performance. Therefore, the AUPRC returns a
value between 0 and 1, where 0 is the worst and 1 is the best.
Finally, the F1-score is calculated from the precision and the
recall. It conveys balance between the precision (PPV) and the
recall (sensitivity).

Detailed information on ML analysis is shown in
Supplementary File 3.

Biomarker Identification
Features of importance, based on RF algorithm trained on
the whole dataset, were investigated to potentially identify
already known antimicrobial resistance mechanisms or new
antimicrobial targets. It rates how important each feature is
for the decision tree. A score based on between 0 and 1
for each feature is calculated, where 0 means “Not used”
and 1 highlighted a “perfect biomarker.” Score for features of
importance is computed as the mean and standard deviation
of accumulation of the impurity decrease within each tree.
Therefore, it describes the relevancy of a peak and, hence,
can help to understand the biological problem. The five first
features with the higher importance were checked in on Uniprot1

according their mass in Da. Average theoretical masses were

1https://www.uniprot.org/

calculated using the online Expasy portal tool2 based on Uniprot
amino acid sequence.

Statistical Analysis
Effects of extraction methods on AMR predictions were analyzed
based on analysis of variance (ANOVA) of the sum of AUPRCs
of the different antimicrobial classifiers. ANOVA assumptions
were verified with a Shapiro-Wilks and Levene tests. Shapiro-
Wilks test determines if your data are normally distributed. The
Leven test evaluates the equality of the variance. Differences were
considered significant at p < 0.05.

RESULTS

Spectra Quality and Reproducibility
A total of 9,180 mass spectra were generated. An average
identification log score of 2.0 was obtained for all spectra.
Outlines, flatlines, and spectra not identified at the
Campylobacter genus level were discarded for the analysis,
resulting into 9,173 spectra. The latter was transformed into
1,020 MSPs, including 672 and 348 MSPs for C. jejuni and
C. coli, respectively. Three different types of extractions, i.e.,
off-plate ethanol/acetonitrile extraction, direct deposit, and
on-plate acid formic extraction, were carried out for both
species. Hence, reproducibility was tested for the three biological
replicates. Average similarities in percentage between the type
of extraction and species are provided in Figure 2. For both
species, no significant differences were observed between off-
and on-plate extractions. Average similarity of means ranged
from 77.1 to 92.7% between biological replicates for C. jejuni and
C. coli, respectively.

Antimicrobial-Specific Screening
As a first step, different ML models, i.e., RF, LR, and NB,
were trained for specific antimicrobials from different classes,
regardless of the species identification to evaluate the potential of
fast AM-screening without knowing the microbial identification.
For this purpose, 1,020 MSPs, combining the three types of
extractions and the two species, were split into a training and a
validation set. The training set served to build the model, and
the test set, to evaluate the performance of the model. Seven
classifiers were built with RF and one with an LR algorithm.
ROC and PR curves were computed to investigate the model’s
performance for each antibiotic (Figure 3), as well as other
evaluation metrics such as sensitivity, specificity, PPV, and NPV
summarized in Table 2.

Among the eight antimicrobials tested, three models
performed better than the other considering both AUROC and
AUPR curves. The best-performing model was the classifier
allowing the distinction between resistant and completely
susceptible isolates, with an area of 0.80 and 0.89 under
the ROC and PR curves, respectively. The ciprofloxacin
and tetracycline classifiers were the two other performant
models according to their AUROC and the AUPR curves,

2http://web.expasy.org/compute_pi/
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FIGURE 2 | Biological reproducibility of MALDI-TOF mass spectra based on their protein extraction type and species level. Boxplots show the isolates average
similarities in percentage. Green triangle represented the mean. Direct, direct deposit; FA, formic acid extraction; EtOH, ethanol/acetonitrile extraction.

FIGURE 3 | (A) Receiver operating characteristic (ROC) curve and (B) recall–precision (PR) curves, and their related area under the curve, of specific antimicrobials
based on combined C. jejuni and C. coli MALDI-TOF main protein spectra profiles (MSPs) of the test set (30%, n = 306). RF, Random Forest algorithm; LR, Logistic
Regression algorithm; AUROC, Area Under the ROC Curve; AUPRC, Area Under the Precision Recall Curve.

an area of 0.87, 0.83, and 0.88, 0.80 under the AUROC
and AUPRC, respectively (Figure 3). While the specificity
was low for the three models, with a maximum of 63.8%,
a sensitivity ranging from 87.5 and 92.3% was obtained
(Table 2). Additionally, 74.6 and 85.7% of predicted values of
the ciprofloxacin classifier could be reliable for resistant and
susceptible values, respectively.

Remaining models had an AUROC of up to 0.92. However,
considering the precision and the recall, they performed poorly.
Indeed, the AUPR curve was between 0.34 and 0.69. Sensitivity

and specificity may be high, but PPVs were low, e.g., 80.0, 88.4,
and 42.8%, respectively, for the erythromycin model.

Species-Specific Screening
In a second phase, C. coli and C. jejuni MSPs were investigated
separately to look over potential differences between tested
antimicrobials. Previously, ROC and PR curves and their
respective area under the curve have been computed, based
on 202 and 105 MSPs, for the C. jejuni and C. coli test sets,
respectively (Figure 4). As well, performance metrics were

Frontiers in Microbiology | www.frontiersin.org 7 February 2022 | Volume 12 | Article 804484303131

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-804484 February 14, 2022 Time: 15:55 # 8

Feucherolles et al. MALDI-TOF MS for AMR Screening

TABLE 2 | Performance of retained machine learning classifier using combined C. jejuni and C. coli MALDI-TOF main protein spectra profiles (MSPs) of the test set
(30%, n = 306 MSPs), grouped by the resistance profile.

Species Antibiotics Sensitivity (%) Specificity (%) PPV (%) NPV (%)

C. jejuni and C. coli (n = 306 MSPs) Susceptible* (n = 86) 92.3 45.3 81.2 69.6

Ciprofloxacin (n = 165) 90.9 63.8 74.6 85.7

Erythromycin (n = 30) 80.0 88.4 42.8 97.6

Tetracycline (n = 144) 87.5 62.3 67.4 84.9

Ampicillin (n = 133) 90.2 47.4 56.9 86.3

Kanamycin (n = 32) 43.8 91.6 37.8 93.3

Streptomycin (n = 41) 78.0 87.2 48.5 96.3

Gentamycin (n = 11) 72.7 93.6 29.6 98.9

Threshold applied for metrics calculation is based on the best F1-scores. PPV, positive predictive value; NPV, negative predictive value. *Susceptible to all tested
antimicrobials.

FIGURE 4 | Receiver operating characteristic (ROC) curve and recall–precision (PR) curves, and their related area under the curve, of specific antimicrobials based
on 202 C. jejuni (A) and 105 C. coli (B) MALDI-TOF main protein spectra profiles (MSPs) of the test set (30%). RF, Random Forest algorithm; LR, Logistic regression
algorithm; AUROC, Area under the ROC curve; AUPRC, Area under the precision–recall curve.

calculated (Table 3). Due to few gentamycin- and erythromycin-
resistant isolates for C. jejuni in the initial collection (one and
two, respectively), no model was built for these two antibiotics.
RF and LR were once again fitting the best data. All six C. jejuni
models were based on RF algorithms. Four models were built
using LR and the remaining four were built using RF algorithms
for C. coli.

As described in the specific antimicrobial section, the
susceptible, ciprofloxacin, and tetracycline classifiers were the
three best-performing models in both species, with an AUROC

and AURP curve ranging from 0.80 to 0.89 and from 0.72
to 0.96, respectively (Figure 4). The susceptible classifier was
the more performant model in both C. jejuni and C. coli.
Tetracycline classifier was the second more effective model
for C. coli, with an AUROC of 0.87 and AUPRC of 0.90,
while it was the ciprofloxacin classifier for C. jejuni, with
an AUROC of 0.80 and AUPRC of 0.82. Overall, sensitivity
values up to 98.8% were obtained for these models. High
PPVs and NPVs were obtained for susceptible classifiers. C. coli
tetracycline classifier also performed well with a 79.2 and 92.9%
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TABLE 3 | Performance of retained machine learning classifier using C. jejuni (n = 202 MSPs) and C. coli (n = 105 MSPs) MALDI-TOF main protein spectra profiles
(MSPs) of the test set (30%), grouped by the resistance profile.

Species Antibiotics Sensitivity (%) Specificity (%) PPV (%) NPV (%)

C. jejuni (n = 202 MSPs) Susceptible* (n = 63) 92.8 55.6 82.2 77.8

Ciprofloxacin (n = 111) 96.4 41.8 66.9 90.5

Erythromycin (n = 2) NA NA NA NA

Tetracycline (n = 81) 92.6 47.1 53.9 90.5

Ampicillin (n = 81) 77.7 70.3 63.6 82.5

Kanamycin (n = 16) 62.5 97.9 71.4 96.8

Streptomycin (n = 10) 70.0 100.0 100.0 98.5

Gentamycin (n = 1) NA NA NA NA

C. coli (n = 105 MSPs) Susceptible* (n = 23) 98.8 60.9 90.0 93.3

Ciprofloxacin (n = 54) 98.2 45.1 65.4 95.8

Erythromycin (n = 28) 71.4 70.1 46.5 87.1

Tetracycline (n = 63) 96.8 61.9 79.2 92.9

Ampicillin (n = 52) 86.5 64.1 70.3 82.9

Kanamycin (n = 16) 62.5 86.5 45.5 92.7

Streptomycin (n = 32) 84.3 75.3 60.0 91.7

Gentamycin (n = 10) 70.0 93.7 53.8 96.7

Threshold applied for metrics calculation is based on the best F1-scores. PPV, positive predictive value; NPV, negative predictive value. *Susceptible to all tested
antimicrobials. NA, Not applicable due to few isolates in the category.

for PPV and NPV, respectively. Surprisingly, the ciprofloxacin
classifier was less efficient in both species. Indeed, a lower
PPV was obtained, i.e., 10% differences, in comparison with
previous results where the microbial identification was not
taken into consideration. For erythromycin, kanamycin, and
gentamycin classifiers, observations described in the previous
section could be assessed.

Differences were observed for the ampicillin and streptomycin
classifier for C. coli and C. jejuni. C. jejuni streptomycin’s
classifier performed more efficiently than the one of C. coli.
PPVs and NPVs of 100 and 98.5%, against 60.0 and 91.7%, were
calculated, respectively. C. coli ampicillin’s classifier was more
performant than that of C. jejuni, while similar AUROC and
AUPR curves were found. Indeed, PPVs and NPVs of 70.3 and
82.9% against 63.6 and 82.5% were calculated for C. coli and
C. jejuni, respectively (Table 3).

Protein Extraction Impact on Resistance
Predictions
Thirdly, methods of extraction, i.e., direct deposit, FA on-
plate, and EtOH/ACN off-plate extraction, were investigated to
check potential variation for specific antimicrobials. Thereby,
MSPs acquired for each extraction for both C. jejuni (n = 224
MSPs) and C. coli (n = 116 MSPs) were used to build a
specific ML model per antimicrobial. Models are compared in
Figure 5. The ANOVA resulted in 0.976 and 0.936 (p > 0.05)
values for C. jejuni and C. coli, respectively. Therefore, the
null hypothesis, i.e., there is no difference between extraction
methods, is retained.

Nevertheless, in the case of the C. coli gentamycin’s classifier,
while the performance is low for the EtOH/ACN extraction
(AUPRC = 0.23), the classifier for the direct deposit is more
efficient (AUPRC = 0.92). Features of extractions for both

classifiers were investigated. For the EtOH/ACN classifier,
2,356.29 Da was the more important feature. For the direct
deposit classifier, 10,323.79 Da was the more important feature.
While these features in a model were particularly important, they
were the less important features in the other model. The 10,323.79
Da peak was detected in both extractions, while softly shifting
for the EtOH/ACN, i.e., 10,333.67 Da. The 2,356.29 peak was not
detected in the direct deposit (Figure 6).

Biomarkers: Antimicrobial Resistance
Mechanisms
RF classifiers performing the best, i.e., susceptible, ciprofloxacin,
and tetracycline, while microbial species is not known, were used
to retrieve features of importance. Then, the Uniprot database
was investigated to potentially identify each feature according
their mass in Dalton, regardless post-translational modifications.
Table 4 summarizes the top five features for each classifier.
When several proteins had the same mass, proteins with the
most probable function linked to AMR were retained. No protein
for C. jejuni or C. coli was identified at 6,436.22 Da. The DNA
methyltransferase at 6,436 Da was in Helicobacter pylori, a closely
related genus of Campylobacter.

DISCUSSION

Several reports described MALDI-TOF MS as a more time-
and cost-effective alternative approach to current classic AST
methods (Hrabák et al., 2013; Oviaño and Bou, 2019). Being
combined with ML, such an approach may be even more relevant
for AST in routine diagnostics (Weis et al., 2020b). However, to
our knowledge, no study implying relevant foodborne pathogens
for AMR screening has been published yet. Therefore, the scope
of this study was to consider whether a mass spectrometry
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FIGURE 5 | Comparison of precision-recall curves for the three-extraction tested on (A) C. jejuni (n = 68 MSPs) and (B) C. coli (n = 35 MSPs) of the test set (30%).
EtOH/ACN: complete ethanol/acetonitrile-based proteins extraction. RF, Random Forest algorithm; LR, Logistic Regression algorithm; NB, Nave Bayes algorithm.

FIGURE 6 | Pseudogel view representation of mass spectra from C. coli from the direct deposit (direct, n = 8) and the ethanol/acetonitrile off-plate extraction
(EtOH/ACN, n = 8). The x-axis represents the mass-to-charge (m/z) ratio in Da. Strips intensities is function of the peak intensity. The red dashed lines represent the
observed peaks, i.e., 2,356.29 and 10,323.79 Da.

technique combined with an ML approach could be utilized for
a combined rapid species identification and AMR screening for
foodborne pathogens.

The main result of this study was to observe whether
mass spectra with 91 protein peaks selected by automatic
peak-matching could predict with a high average sensitivity

and precision the strains’ susceptibility and resistance to
ciprofloxacin and tetracycline, independent of the microbial
species identification. Therefore, these models were missing
very few resistant isolates. Similarly, Weis and colleagues,
computed an AUROC for 42 different antibiotics on a large
“real-world” clinical dataset by combining multiple species
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TABLE 4 | Top five ranking of Random Forest features of importance.

Classifier Rank Features (Da) Average theoretical mass (Da) Protein UniProt ID

Susceptible 1 8460.76 8460.07 Transcriptional regulator A0A1T1ZLP8

2 3257.41 3256.98 GNAT family N-acetyltransferase A0A6N3Q833

3 5867.81 5867.86 ATP-binding protein A0A2A5MAC7

4 2766.98 2767.13 Poly(A) polymerase A0A5T1K937

5 4365.25 4364.39 50 S ribosomal protein L36 A0A1E7P1M9

Ciprofloxacin 1 6436.22 6435.55 DNA methyltransferase* A0A438RVN3*

2 2766.98 2767.13 Poly(A) polymerase A0A5T1K937

3 2241.84 2241.67 Type II toxin-antitoxin system HicB family antitoxin A0A691V648

4 3257.41 3256.98 GNAT family N-acetyltransferase A0A6N3Q833

5 7083.30 7083.03 MmgE/PrpD family protein A0A4Y8C2R1

Tetracycline 1 4365.25 4364.39 50 S ribosomal protein L36 A0A1E7P1M9

2 2766.98 2767.13 Poly(A) polymerase A0A5T1K937

3 7083.30 7083.03 MmgE/PrpD family protein A0A4Y8C2R1

4 6436.22 6435.55 DNA methyltransferase* A0A438RVN3*

5 2713.95 2713.06 Superoxide dismutase A0A431FY74

Da, Dalton. *Identified in the closely related genus Helicobacter pylori (former Campylobacter pylori).

(Weis et al., 2020a). They pointed out that they reached
AUROC values above 0.90 for 23 of the tested antibiotics.
Such results support the idea that mass spectra could provide
far more than simple species information. Nevertheless, in
the literature, most of the publications focused on specific
species such as S. aureus, Escherichia coli, and Klebsiella
pneumoniae. Additionally, they mainly analyzed one type of
antimicrobial classes, e.g., glycopeptides such as vancomycin
(Mather et al., 2016; Asakura et al., 2018; Wang et al., 2018;
Candela et al., 2021). For example, Asakura et al. (2018)
obtained a sensitivity of 99.0% and a specificity of 88.0%
while comparing vancomycin-susceptible and heterogeneous
vancomycin intermediately resistant S. aureus.Wang et al. (2018)
obtained similar results with a 77.0 and 81.4% sensitivity
and specificity, respectively, for the same comparison. When
comparing C. jejuni and C. coli separately and for different
antimicrobials, we found that susceptible, ciprofloxacin, and
tetracycline classifiers were the three best-performing models
in both species, while the others performed less accurately.
Similarly to other studies, a sensitivity ranging from 92.6 to
98.8% was obtained for both species and the three performant
classifiers. Weis et al. (2020a) also looked at species-specific
antimicrobial resistance prediction for S. aureus, E. coli, and
K. pneumoniae. They reported an AUROC ranging from 0.77 to
0.81, and an AUPRC ranging from 0.52 to 0.70 for ciprofloxacin
predictions. In the current study, similar AUROC values were
found but a higher AUPRC was observed with 0.82 and 0.81
for C. jejuni and C. coli, respectively, meaning that the current
model may accurately predict ciprofloxacin-resistant isolates.
Considered as a critically important antimicrobial, ciprofloxacin
is widely used for the treatment of broad human bacterial
infections, including enteric ones (WHO, 2019). Therefore,
early screening of its resistance may play an essential role
for the administration of the definitive antimicrobial therapy.
Nevertheless, the comparison between the different studies is
intricate to perform due to the number of isolates, the genus

analyzed, the type of extraction, as well as the type of algorithm
used. In the current study, classifiers performing poorly, i.e.,
kanamycin, streptomycin, gentamycin, and erythromycin, were
subject to a highly imbalanced dataset, with an average of 10/90
resistant/susceptible ratio, instead of a close 50/50 ratio one (e.g.,
36 gentamycin-resistant MSPs for 984 gentamycin-susceptible
MSPs). Precision disparities were observed for the ciprofloxacin,
ampicillin, and streptomycin classifiers of both species, in
comparison to classifiers not considering the species level.
While such differences could be attributed to the unbalanced
number of resistant isolates for ampicillin and streptomycin,
the ciprofloxacin classifier was in contrast well balanced. The
ciprofloxacin classifier may be less effective for predictions, while
looking specifically at the species level. In the end, prediction
based on protein mass spectra grouped by AMR, regardless of
bacterial species, may be the best option for an efficient and
swift AMR-screening. Such observations might also be explained
by average similarity differences obtained between C. jejuni and
C. coli. Cuénod and Egli (2021), Cuénod et al. (2021) reported
that the preparation protocol used, the duration of incubation,
maintenance of the device, for example, could potentially impact
the quality of the spectra. Inevitably it may have influenced
the final prediction for both species. Hypothetically, such
observations may also show that AMR screening by MALDI-
TOF MS is going beyond the bacterial genus or species and
might be directly linked to the resistance mechanism and
protein/metabolite expression itself. To our knowledge, this is
the first study establishing that ML and MALDI-TOF MS could
be applied for AMR screening of foodborne pathogens, such as
Campylobacter spp.

Nevertheless, in the current study, the specificity was
not as high as the specificity described by the previously
mentioned studies. While creating the ML pipeline, sensitivity
was chosen as the most important parameter to adjust the
threshold score during the tuning part. Hence, the optimal
threshold was selected based on the F1-score, meaning the
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best compromise between higher sensitivity and precision,
specific to each classifier. Classifiers guiding antibiotic therapy
decision must have high sensitivity (Weis et al., 2020a).
On the one hand, assuming an isolate is susceptible, while
it is resistant, may lead to an ineffective treatment and
eventually have an important impact on patient management.
On the other hand, assuming an isolate is resistant, while
it is susceptible, may still lead to an effective treatment.
However, while seeking and picking to have high sensitivity,
it will inevitably decrease the specificity, by decreasing it. In
the previously cited reports, threshold adjustments were not
mentioned. Therefore, threshold adjustment may be a key step
while elaborating ML pipeline for routine laboratories based on
MALDI-TOF mass spectra.

The impact of protein extraction methods was also evaluated.
Indeed, the EtOH/ACN extraction is the most popular extraction
protocol when it comes to research investigations. However,
the direct deposit and the on-plate FA extractions are the
most straightforward methods used in routine laboratories. No
significant differences were observed between the direct deposit,
the FA on-plate, and the EtOH/ACN extraction. Therefore,
in order to rapidly obtain straightforward AMR assessment
information, the application of the direct deposit method could
be applied for species identification as well as AMR screening
in Campylobacter. Interestingly, C. coli gentamycin classifier
performance was different between EtOH/ACN extraction
and the direct deposit. Indeed, with a simple biological
smear on the MALDI-TOF target, gentamycin’s prediction
was more precise. Surprisingly, the absence of the 2,356.29
Da peak resulted in a higher AUPRC for the direct deposit
classifier. In the literature, the loss of a specific peak
between different types have already been described (Josten
et al., 2014). However, in their case, the loss of a protein
happened during the ethanol washing step of the EtOH/ACN
extraction. Thus, the peptide was only present during a direct
deposit measurement. However, to confirm our observation,
additional gentamycin-resistant isolates should be analyzed
as currently too few gentamycin isolates are present in the
current dataset.

Along the same line, putative biomarkers have been identified
for each class of studied antibiotics by looking into RF
algorithm features of importance. Majority of these proteins,
such as transcriptional regulator, ATP-binding, GCN5-related
N-acetyltransferase, DNA-methyltransferase, toxin-antitoxin
system, PrpD, and superoxide dismutase proteins had a direct
or indirect link with already known antibiotic resistance,
tolerance, or spread mechanisms in different genera of bacteria
(e.g., Salmonella, Enterococcus, Escherichia, Mycobacterium,
and Pseudomonas) (Draker and Wright, 2004; Yugendran and
Harish, 2016; Hicks et al., 2018; Kang et al., 2018; Martins
et al., 2018; Su et al., 2018; Shaheen et al., 2020). Nevertheless,
Campylobacter’s AMR mechanisms are either chromosomal
mutations, such as the single mutation C257T in the gyrA gene
or the A207G mutation in the 23 S rRNA gene for ciprofloxacin
and erythromycin, respectively, or acquired genes, such as
tet(O), blaOXA-61 and aph(3’)-III for tetracycline, ampicillin,
and gentamycin resistances, respectively (Payot et al., 2006;

Iovine, 2013). Overall, these mechanisms are working in synergy
with the cmeABC efflux pump or porines, such the Major-
Out-Membrane Porines (MOMP) (Lin et al., 2002). Over the
biomarkers identified as relevant by RF susceptible classifier,
the GCN5-related N-acetyltransferase and the 50 S ribosomal
protein L36 may be linked to already known aminoglycosides
or tetracyclines resistance mechanisms of Campylobacter,
respectively. On one hand, aminoglycoside-modifying enzymes,
such as acetyltransferase [e.g., aac(6′)-Ie–aph(2′′)-If2] were
already detected in gentamycin-resistant Campylobacter
isolates (Zhao et al., 2016). On the other hand, the Tet(O)
ribosomal protection protein is known to bind on both 30S
and 50S subunits, conferring tetracycline resistance (Li et al.,
2013). Interestingly, the L36 proteins were the first feature
of importance highlighted for the tetracycline classifier.
Identification of specific proteins directly implied to AMR
mechanisms, while using MALDI-TOF MS within the 2–20 kDa
range, could be problematic (Welker and Van Belkum, 2019).
Indeed, proteins responsible for resistances are large proteins
(e.g., GyrA = 96,974 Da). Therefore, in case an indicative
biomarker is identified, it may not be a necessary protein
conferring the resistance itself, but it may be a protein or
peptide co-coded on the plasmid of the protein responsible
of the resistance (Lau et al., 2014). Therefore, the 4,365.25
m/z peak may be a biosignature linked to the presence of
the tet(O) gene. In the literature, two protein biomarkers,
i.e., 3,665.79 m/z and 6,036.59 m/z, have been reported to be
a potential biomarker of the tetracycline resistance in other
bacterial genera (Sabença et al., 2020; Sousa et al., 2020).
However, these biomarkers were not observed here. Along
the same line, the 6,436.22 Da protein was considered as
the most important feature for the ciprofloxacin’s classifier.
The protein was identified as a DNA methylase in H. pylori,
formerly related to the Campylobacter genus. Yugendran and
Harish put in light the hypothesis that ciprofloxacin-resistance
in E. coli may be induced by DNA methylation, leading to
the possible involvement of some mechanism other than the
quinolone-resistance determining region (QRDR) capable of
inducing fluoroquinolone resistance (Yugendran and Harish,
2016). While the single point mutation in gyrA represents the
major fluoroquinolones resistance mechanism in Campylobacter,
such venue may be worth exploring in the future. Other
potential ciprofloxacin biomarkers, neighboring 6,300 Da,
were put recently in light for other E. coli (Sousa et al., 2020)
and Enterococcus (Sabença et al., 2020; Sousa et al., 2020).
Nevertheless, interpretation on the biological role of features
may be cautiously interpreted, and a peptide sequencing by
tandem mass spectrometry should be performed to assess the
real biological function of these biomarkers.

Little is known on the impact of such approaches as described
here on the health management potential cost savings in
clinical practice. Weis and colleagues affirmed in their study
that the application of such workflow provided a treatment
guidance 12–72 h earlier than classical approaches and to have
a significant impact on the physician–patient workflow (Weis
et al., 2020a). It is worth mentioning that the ML is intended
for supporting the decision making process. Therefore, it is a
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support giving guidance on possible resistance outcomes that
lead early antibiotherapy in a specific direction. ML may be
used as an AMR screening tool, displaying an alert message
on the MALDI-TOF MS microbial identification report, when
the isolate is classified as a positive category value. It is
already the case for several Bruker subtyping modules (e.g.,
MRSA, cfiA positive or blaKPC modules). Therefore, instead of
giving an empirical treatment until the AMR confirmation by
reference AST, the patient’s antibiotherapy may be defined faster
(e.g., 24 h earlier).

Phenotypic antibiogram should still follow up to establish
the AMR profile and, in case, reorient the antibiotherapy.
Additionally, 2025 AMR monitoring of food-producing isolates,
such as ESBL/AmpC/carbapenemase-producing E. coli, will be
done by WGS (Aerts et al., 2019). Therefore, a combination
of MALDI-TOF MS, ML, and WGS could be an interesting
monitoring tool with a relevant impact on the control of
the emergence of AMR in the European Union. As well,
the application of MALDI-TOF MS in microbiology for lipid
investigation has conceptualized several breakthroughs for AMR
screening (Bruker, 2019; Furniss et al., 2019; Dortet et al., 2020).
In case of the ability of such method to distinct microbial lipids
directly from body fluids such as serum, blood, and urine, there
will be no need of a culture step (Solntceva et al., 2021). So
far, only the last-line treatment for multidrug-resistant Gram-
negative bacteria, i.e., polymyxin, has been investigated without a
ML approach. Lipidomics combined to artificial intelligence may
be a new venue to explore AMR problem cases that proteomics
could not solve. However, there is still a stony way before the
long-term implementation of ML in routine laboratories for
AMR screening. Nevertheless, a single protein mass spectra may
be used in the future as an utmost “One-fits all” diagnostics tool
for: species identification, AMR screening, and genetic diversity
(Feucherolles et al., 2021).

Several limitations of our study are offered for consideration.
First, the employed dataset might be considered as relatively
small to train an ML algorithm properly. Indeed, lack of
data could lead a model to overfit or underfit the data.
Several models (e.g., gentamycin or kanamycin) were trained
on heavy unbalanced classes, which is not recommended
to build a robust and reliable tool for AMR predictions.
Therefore, extra isolates resistant to these antimicrobials should
be added to the current dataset. Additionally, only three ML
algorithms, i.e., RF, LR, and NB, were tested. The support vector
machine algorithm was not included in the study, while it is
also a widely used algorithm for AMR predictions. Another
limitation of the study is the use of disk-diffusion antibiograms,
which—while being a valid and highly reproducible method
to characterize an isolate as resistant or susceptible—do not
allow quantifying the minimal inhibitory concentration (MIC)
of a given antibiotic. Additionally, it would have been possible
to test for further antibiotics, e.g., carbapenems. The final
limitation of this study could be the fact that the RF model,
used for putative biomarkers identification, was trained on the
whole dataset. Indeed, under these settings, there is no proof
that these biomarkers could work in a given analysis. For
such investigations, the model should have been trained on a

split dataset, including a training and test set, with a 70/30%
ratio, respectively.

CONCLUSION

On the one hand, MALDI-TOF MS in combination with
supervised ML may be a powerful tool for the fast screening of
foodborne pathogens such as C. coli and C. jejuni, which might be
susceptible, ciprofloxacin, or tetracycline resistant. On the other
hand, other antimicrobials tested, i.e., ampicillin, gentamycin,
kanamycin, streptomycin, and erythromycin, did not provide
good results to reach a conclusion for its application under
clinical settings, due to unbalance datasets. Nonetheless, this
work could serve as a proof-of-concept, and future research
should include other important foodborne pathogens such as
Salmonella spp. Our approach has the potential to obtain the
following information from one single protein spectrum analysis:
species identification, antimicrobial susceptibility patterns, and
genetic diversity.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

MF carried out MALDI-TOF MS, machine learning, and data
analysis, and drafted the manuscript with MN and CR. MN
and CR isolated and performed the identification and AMR
characterization of the Campylobacter collection. SB and DM
supplied extra Campylobacter strains from their respective
clinical laboratories. CR, SB, and DM provided their expert
critical point of view on the current work. SL gave access to
his lab for all mass spectrometry analysis. H-MC supervised the
project. CP wrote the project proposal and obtained funding.
All authors contributed to the formal analysis, writing, review,
and editing of the manuscript, read and agreed to the published
version of the manuscript.

FUNDING

This research was supported by the Luxembourg National
Research Fund (FNR): MICROH-DTU FNR PRIDE
program (No. 11823097).

ACKNOWLEDGMENTS

We acknowledge Katleen Vranckx from BioMérieux for her
help in enabling straightforward pre-processing of the data
analysis with BioNumerics. We warmly thank Nathalie Geoders

Frontiers in Microbiology | www.frontiersin.org 13 February 2022 | Volume 12 | Article 804484363737

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-804484 February 14, 2022 Time: 15:55 # 14

Feucherolles et al. MALDI-TOF MS for AMR Screening

from the Luxembourg Institute of Science (LIST) and technology
and Aurélien Savart from the company Lemonads, Luxembourg,
for their machine learning expertise support. We acknowledge
as well Monique Perrin and Marie Meo from the Laboratoire
National de Santé, Luxembourg for selecting multi-drugs
resistant isolates from their national AMR surveillance activities.
We would also like to thank Fatù Djabi from the Laboratoire
National de Santé, Luxembourg, and Dominique Claude from
the Laboratoire de Médecine Vétérinaire de l’Etat, Luxembourg,
for their technical support throughout the project. We are also
thankful to Louise Hock from the LIST for critical reading as
layman in the field.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2021.804484/full#supplementary-material

Supplementary File 1 | Details of the Campylobacter spp. collection
used for the study.

Supplementary File 2 | C. jejuni and C. coli peak matching table for the
EtOH/ACN, FA extraction, and direct deposit.

Supplementary File 3 | Example of one of the supervised machine learning
Python workflows.

REFERENCES
Aerts, M., Battisti, A., Hendriksen, R., Kempf, I., Teale, C., Tenhagen, B. A., et al.

(2019). Technical specifications on harmonised monitoring of antimicrobial
resistance in zoonotic and indicator bacteria from food-producing animals and
food. EFSA J. 17:5709. doi: 10.2903/j.efsa.2019.5709

Arena, F., Giani, T., Pollini, S., Viaggi, B., Pecile, P., and Rossolini, G. M. (2017).
Molecular antibiogram in diagnostic clinical microbiology: advantages and
challenges. Future Microbiol. 12, 361–364. doi: 10.2217/fmb-2017-0019

Asakura, K., Azechi, T., Sasano, H., Matsui, H., Hanaki, H., Miyazaki, M., et al.
(2018). Rapid and easy detection of low-level resistance to vancomycin in
methicillin-resistant Staphylococcus aureus by matrix-assisted laser desorption
ionization time-of-flight mass spectrometry. PLoS One 13:e0194212. doi: 10.
1371/journal.pone.0194212

Barlam, T. F., Cosgrove, S. E., Abbo, L. M., Macdougall, C., Schuetz, A. N.,
Septimus, E. J., et al. (2016). Implementing an antibiotic stewardship program:
guidelines by the infectious diseases society of America and the society for
healthcare epidemiology of America. Clin. Infect. Dis. 62, e51–e77. doi: 10.1093/
cid/ciw118

Benkova, M., Soukup, O., and Marek, J. (2020). Antimicrobial susceptibility testing:
currently used methods and devices and the near future in clinical practice.
J. Appl. Microbiol. 129, 806–822. doi: 10.1111/jam.14704

Bookstaver, P. B., Nimmich, E. B., Smith, T. J., Justo, J. A., Kohn, J., Hammer,
K. L., et al. (2017). Cumulative effect of an antimicrobial stewardship and
rapid diagnostic testing bundle on early streamlining of antimicrobial therapy
in Gram-negative bloodstream infections. Antimicrob. Agents Chemother. 61,
1–10. doi: 10.1128/AAC.00189-17

Bortolaia, V., Kaas, R. S., Ruppe, E., Roberts, M. C., Schwarz, S., Cattoir, V.,
et al. (2020). ResFinder 4.0 for predictions of phenotypes from genotypes.
J. Antimicrob. Chemother. 75, 3491–3500. doi: 10.1093/jac/dkaa345

Boucheikhchoukh, M., Laroche, M., Aouadi, A., Dib, L., Benakhla, A., Raoult,
D., et al. (2018). MALDI-TOF MS identification of ticks of domestic and
wild animals in algeria and molecular detection of associated microorganisms.
Comput. Immunol. Microbiol. Infect. Dis. 57, 39–49. doi: 10.1016/j.cimid.2018.
05.002

Bredtmann, C. M., Krücken, J., Murugaiyan, J., Kuzmina, T., and von Samson-
Himmelstjerna, G. (2017). Nematode species identification—current status,
challenges and future perspectives for cyathostomins. Front. Cell Infect.
Microbiol. 7:1–8. doi: 10.3389/fcimb.2017.00283

Bruker (2019). Bruker Launches MALDI Biotyper Sirius at ASM Microbe
Conference. Available online at: www.asm.org (accessed July 8, 2019)

Caballé, N. C., Castillo-Sequera, J. L., Gómez-Pulido, J. A., Gómez-Pulido, J. M.,
and Polo-Luque, M. L. (2020). Machine learning applied to diagnosis of human
diseases: a systematic review. Appl. Sci. 10, 1–27. doi: 10.3390/app10155135

Candela, A., Arroyo, M. J., Mancera, L., Microbiology, C., General, H., Software,
C. B., et al. (2021). Rapid and reproducible MALDI-TOF-based method
for detection vancomycin- resistant Enterococcus faecium using classifying
algorithms. bioRxiv [preprint]. doi: 10.1101/2021.06.23.449689
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Klebsiella pneumoniae is one of the most common causes of hospital- and community-
acquired pneumoniae. Resistance to the extensively used quinolone antibiotic, such
as ciprofloxacin, has increased in Klebsiella pneumoniae, which leads to the increase
in the risk of initial antibiotic selection for Klebsiella pneumoniae treatment. Rapid
and precise identification of ciprofloxacin-resistant Klebsiella pneumoniae (CIRKP) is
essential for clinical therapy. Nowadays, matrix-assisted laser desorption ionization
time-of-flight mass spectrometry (MALDI-TOF MS) is another approach to discover
antibiotic-resistant bacteria due to its shorter inspection time and lower cost than other
current methods. Machine learning methods are introduced to assist in discovering
significant biomarkers from MALDI-TOF MS data and construct prediction models for
rapid antibiotic resistance identification. This study examined 16,997 samples taken
from June 2013 to February 2018 as part of a longitudinal investigation done by Change
Gung Memorial Hospitals (CGMH) at the Linkou branch. We applied traditional statistical
approaches to identify significant biomarkers, and then a comparison was made
between high-importance features in machine learning models and statistically selected
features. Large-scale data guaranteed the statistical power of selected biomarkers.
Besides, clustering analysis analyzed suspicious sub-strains to provide potential
information about their influences on antibiotic resistance identification performance.
For modeling, to simulate the real antibiotic resistance predicting challenges, we
included basic information about patients and the types of specimen carriers into the
model construction process and separated the training and testing sets by time. Final
performance reached an area under the receiver operating characteristic curve (AUC) of
0.89 for support vector machine (SVM) and extreme gradient boosting (XGB) models.
Also, logistic regression and random forest models both achieved AUC around 0.85.
In conclusion, models provide sensitive forecasts of CIRKP, which may aid in early

Frontiers in Microbiology | www.frontiersin.org 1 March 2022 | Volume 13 | Article 827451404141

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.827451
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2022.827451
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.827451&domain=pdf&date_stamp=2022-03-08
https://www.frontiersin.org/articles/10.3389/fmicb.2022.827451/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-827451 March 8, 2022 Time: 15:14 # 2

Wang et al. CIRKP Identification by Machine Learning

antibiotic selection against Klebsiella pneumoniae. The suspicious sub-strains could
affect the model performance. Further works could keep on searching for methods to
improve both the model accuracy and stability.

Keywords: antibiotic susceptibility test, MALDI-TOF MS, machine learning, Klebsiella pneumonia, ciprofloxacin
resistance

BACKGROUND AND INTRODUCTION

Klebsiella pneumoniae (K. pneumoniae) is one of the most
common hospital- and community-acquired bacterial infections
(Ashurst and Dawson, 2021). Extensively used quinolone
antibiotics, which include ciprofloxacin, play a significant role
in K. pneumoniae treatment. Increases in the proportion of
ciprofloxacin-resistant K. pneumoniae (CIRKP) and the long
inspection time of traditional antimicrobial susceptibility testing
(AST) could lead to incorrect initial antibiotic treatment that will
squander the essential treatment time of patients (Burckhardt
and Zimmermann, 2018). Methods for rapid and precise
identification of CIRKP are critical for clinical K. pneumoniae
infection treatment. With the assistance of matrix-assisted laser
desorption ionization time-of-flight mass spectrometry (MALDI-
TOF MS) technology, inspection time of AST, and strain typing
of infectious bacteria could decrease to less than 2 h after cell
culture (van Belkum et al., 2017; Florio et al., 2018). Introducing
machine learning methods to antibiotic resistance identification
could assist in further improving the inspection speed and
lowering the cost (Weis et al., 2020) and discovering potential
antibiotic markers from MALDI-TOF MS data. In this study,
prediction models for CIRKP in the Taiwan area are constructed
based on large-scale mass spectrum data and non-spectrometric
information of patients.

Although K. pneumoniae is normally harmless and can be
found in the human intestine, it can cause serious infections
in other parts of the body, such as pneumoniae, urinary
tract infection, sepsis, etc. Especially, multi-drug resistant and
carbapenem-resistant K. pneumoniae (CRKP) has become a
great threat to public health, whose overall 30-days mortality
rate has been reported to be greater than 40% due to the
limited antibiotic options after infection (Tumbarello et al.,
2012). Thus, most recent studies related to K. pneumoniae focus
on creating new identification methods and finding potential
resistant biomarkers. However, as a broad-spectrum quinolone
antibiotic, ciprofloxacin is one of the widely used antibiotics
for the treatments of infection caused by K. pneumoniae
in clinical therapy. The increasing reported CIRKP (Sanchez
et al., 2013; Zhou et al., 2016) could also be a severe
problem under clinical circumstances. Identification models
for different bacterial species and antibiotics are important
to validate the feasibility of the generalization of machine
learning-based antibiotic resistance detection using MALDI-
TOF MS data.

Clinical prescriptions usually heavily depend on the AST
result to guide the initial antibiotic selection and avoid inefficient
treatment. Traditional AST procedure usually requires 24 h
for plate culture and an additional 24 h for the antimicrobial

susceptibility testing (Kumar et al., 2009). The delay of efficient
antibiotic treatment will increase the mortality rate, and
especially if the patient is seriously infected. In recent years,
the polymerase chain reaction (PCR) method has been applied
to rapidly detect genes of K. pneumoniae related to quinolone
resistance, such as mutations on type II and type IV DNA
topoisomerase genes (Ruiz, 2003; Nordmann and Poirel, 2005).
Besides, abnormal expression of outer cytomembrane efflux
pump and plasmid-mediated resistance genes are also proved
to be quinolone resistance mechanisms and can be detected
by genomic and proteomic methods (Martínez-Martínez et al.,
1998). However, restriction to the current gene library, high
labor intensity, and excessive cost of the tests are still practical
problems for generalizing genome tests. Nowadays, utilizing the
MALDI-TOF MS could significantly shorten the testing time
and lower the inspection cost. Achievements have been made
in both identifying antibiotic-resistant bacteria from laboratory
plate cultures and directly from the specimens of patients
(Clark et al., 2013; Patel, 2015; Singhal et al., 2015; Angeletti,
2016; Arca-Suárez et al., 2017; Sandalakis et al., 2017; Tré-
Hardy et al., 2017). In 2016, spectrum peak at 11.109 m/z was
confirmed related to plasmid-mediated CRKP with gene (Gaibani
et al., 2016). Besides, polypeptide at 3,043 m/z is proved to
be a fragment of PBP2a, which participants in the methicillin
resistance process of Staphylococcus aureus (MRSA) (Sogawa
et al., 2017). Those study results demonstrate that MALDI-
TOF MS can find specific mass peaks with potential biological
meanings. It may also detect antibiotic resistance profiles of
large protein-involved mechanisms in a low mass-to-charge
ratio range. Thus, antibiotic-resistant biomarkers obtained from
MALDI-TOF MS data may not only serve as evidence for
bacterial type identification, but we may also even be able to find
resistant bacterial strains with unrevealed mechanisms.

Predicting models constructed by machine learning methods
has achieved high accuracy in identifying antibiotic bacterial
strains. Taking the identification of MRSA as an example,
the support vector machine (SVM) models show identification
accuracy of around 90% (Sogawa et al., 2017; Tang et al., 2019),
and the model in the study of Liu et al. (2021) shows the
area under the receiver operating characteristic (ROC) curve
(AUC) of 0.89 for SVM model and 0.87 for random forest
model (RF). Especially, according to Wang et al. (2021), a logistic
regression (LR) model is trained based on over 20,000 samples
and independently validated by another data set with more than
5,000 samples, and finally achieves a predicting AUC of 0.85.
Large samples used in their study and external validation highly
improve the reliability of the machine learning model. However,
most previous studies apply statistical analysis and construct
models only based on a small number of samples (usually the total
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samples are no more than 1,000), which could significantly limit
the statistical power of the analysis and the reliability of models.

This study performed an antibiotic resistance analysis and
modeling based on 16,697 samples collected from a longitudinal
study from June 2013 to February 2018 and AST results were
taken as references. Raw spectra data were first preprocessed
by peak smoothing and baseline correction. After that, peaks
with signal-to-noise ratio of 2 were selected for further analysis.
Since K. pneumoniae may cause serious infections in various
body parts, this study analyzed six common K. pneumoniae
specimen carriers, which include blood samples (B), body fluid
samples (F), wound samples (W), respiratory samples (R),
urinary samples (U), and other types (O). Besides, to simulate the
real clinical antibiotic resistance predicting problems, patients’
basic information, including gender and age, were also included
in model construction, coupling with separating training and
testing sets by time. Statistical tests were applied to select
significant features for modeling. Final performances achieved
predicting AUC of around 0.89 for SVM and extreme gradient
descent boosting (XGB) models and AUC 0.85 for LR and RF
models. Moreover, this study also included a clustering analysis
based on an unsupervised learning method to provide potential
information of different K. pneumoniae sub-strains in the data
set and quantified the influence of suspicious sub-strains on the
model performances.

MATERIALS AND METHODS

The modeling procedure of this research is shown in the
flow chart in Figure 1, which primarily contains five distinct
components. The process began with specimen collection and
mass spectral data processing, followed by data cleaning for
quality control. After that, data processing aimed to unify
the spectra’s dimensions and generated dummy variables for
categorical variables. Finally, the relevant variables selected in
the feature selection step were used to create binary classification
models with balancing methods.

Data Cleaning
The samples used in this study were collected from a longitudinal
study on ciprofloxacin that ran from June 2013 to February 2018
done by the Change Gung Memorial Hospitals (CGMH) at the
Linkou branch. The longitudinal research included specimens
of 16,697 participants in total. To guarantee the data quality,
915 samples labeled as intermediate and 4 incomplete samples
were eliminated. In total, 15,782 samples were selected for
further analysis, of which 11,354 were ciprofloxacin-susceptible
Klebsiella pneumoniae (CISKP) and 4,428 were CIRKP.

Specimen Preparation and Spectrum
Preparation Methods
All the specimen samples were collected as daily routine
examinations. Specimens with different carrier types were
cultured with the most appropriate methods. Blood specimens
were cultured in the trypticase soy broth (Becton Dickinson, MD)
and an automated detection system (BD BACTECTM FX; Becton

Dickinson) was utilized for detecting positive blood culture
results. After that, blood from positive blood culture bottles
was inoculated on blood plate (BP) agar for subculture. Fluid
specimens and respiratory specimens were inoculated on BP
agar, eosin methylene blue (EMB) agar, CNA agar, and chocolate
agar. Additionally, some of the fluid specimens were cultured on
thioglycolate broth. Specimens obtained from wounds were first
rinsed with 1.2 mL of 0.9% saline solution and then inoculated
on BP, EMB, CNA, and chocolate agars. For urine specimens,
only BP and EMB agars were utilized for the plate culture.
All the agars and broths used for specimen cultures were from
Becton Dickinson and they were incubated into a 37◦C CO2
incubator for 18–24 h. MALDI-TOF MS was performed using
selected single colonies. CIRKP specimens were identified from
CISKP specimens through the disk diffusion method under
the instruction of Clinical and Laboratory Standards Institute
guideline M100 (CLSI M100). CISKP samples and CIRKP
samples were determined by ATS breakpoints listed in CLSI
M100 (Clinical and Laboratory Standards Institute [CLSI], 2018).

The selected colonies were analyzed by MALDI-TOF MS
(Microflex LT MALDI-TOF System, Bruker Daltonik GmbH)
following the operating instructions created by the manufacturer.
First, cultivated colonies were smeared onto the MALDI steel
target plate with the addition of formic acid (1 µL, 70%) and
then dried at 25◦C degrees. Then, a matrix solution (α-cyano-4-
hydroxycinnamic acid, 100 mg/mL, 50% acetonitrile with 2.5%
trifluoroacetic acid) was added to the spots, and the samples
were dried at room temperature. Spectrum data with mass-to-
charge ratio (m/z) between 2,000 and 20,000 were then collected
using Microflex LT MALDI-TOF analyzer in a linear mode
(accelerating voltage, 20 kV; nitrogen laser frequency: 60 Hz; 240
laser shott). The raw spectrum data were first calibrated with
an external standard calibrator (Bruker Daltonics Bacterial Test
Standard), and then peak smoothing (Savitzky-Golay filter) and
baseline correction (Tof-hat filter) were applied. Finally, peaks
with signal-to-noise ratio 2 were selected for further analysis.

Spectrometric Data and
Non-spectrometric Data Processing
To unify the dimensions of spectrum data along with alleviating
the influence of peak shift, spectral data was grouped into
pseudo-ion vectors each with 900 pseudo-ions. Pseudo-ions were
calculated by first grouping the mass-to-charge ratio into bins
of width 20 m/z, and then selecting the peak with maximum
intensity ratio. Using the pseudo-ion peak k of the sample i as
an example:

Pik = Maxj

(
Rij · 1{(2000+20(k−1)) ≤ Mij < (2000+20k)

}) ,

k ∈ [1, 900] ∩ Z

where Mij and Rij represent the mass-to-charge ratio and the
intensity ratio of the jth peak of the sample i, respectively, 1{.} is
the indicator function. After that, pseudo-ion vectors were row-
bind together to form the spectral data matrix.

−→
Pk indicates the

pseudo-ion k (the kth column of the spectral matrix) and the
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FIGURE 1 | Flow chart of the whole study, including sample collection, data cleaning and processing, feature selection, unbalance problem treatment, and model
construction and comparison.

matrix was scaled as

−→

P
′

k =

−→
Pk−
−→
Pk

σ
(
−→
Pk

)
where

−→
Pk and σ

(
−→
Pk

)
denote the mean and standard deviation of

pseudo-ion k in order.
For non-spectrometric features, we grouped the specimen

carriers (SPC) into six major types, which included blood
sample (B), body fluid sample (F), wound sample (W),
respiratory sample (R), urinary sample (U), and other types
(O) (Supplementary Table 1). Continuous non-spectrometric
feature age was transformed into an ordinal feature with six age
groups for the convenience of statistical analysis (Supplementary
Table 2). Labels of SPC after grouping and gender were directly
used in statistical analysis. Besides, the modeling procedure
included dummy variables generated from SPC, gender, and the
scaled continuous feature age.

After data processing, the final feature matrix for modeling
was formed by dummy variables of SPC, gender, and scaled age,
and the pseudo-ion matrix.

Methods for Statistical Tests and Feature
Selection
The Chi-square test was used to determine the impact of non-
spectrometric characteristics on the CISKP and CIRKP groups.
Non-spectrometric features with p-values less than 0.05 were
considered as significant and would be included in the modeling.

The significance of pseudo-ions was mainly measured from
three perspectives, and all pseudo-ions were tested with their
intensity ratio before scaling: (1) the difference in mean values,
(2) the difference in standard deviation, and (3) association to
CIRKP. In the previous study, the t-test could be an option
for determining the significance of the mean difference of
log-transformed pseudo-ions (Wang et al., 2021). However,
t-test pre-request normally distributed samples which was
not the case in this study (Supplementary Figures 1, 2).
Therefore, the non-parametric Wilcoxon rank-sum test was used
instead, coupling with the fold change selection on average
intensity ratios to capture the information of mean shift of
pseudo-ions with few observations. In this study, features
with

∣∣log2
(
fc
)∣∣ ≥ 1 were considered as significant, where

fc is the fold change value of the average intensity ratio
between CIRKP and CISKP groups. As for the test of standard
deviation difference, the traditional F-test for the equivalence
of standard deviation was applied. Finally, the homogenous
sample distributions between CIRKP and CISKP were tested
by the Kolmogorov-Smirnov test (KS test) to directly measure
the association between pseudo-ions and CIRKP. The significant
level α = 0.05 was used for a decision. Moreover, features
were ranked by p-values (if the observation time of a feature
was insufficient for testing, a p-value equal to 1 was set for
that feature) of statistical tests, and features were also ranked
by the fold change of average intensity ratio in the fold
change selection.

The final ranks of pseudo-ions will overall consider all the
test results above and take the average ranks of pseudo-ions as
the final decision.
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Clustering Method
The clustering method was based on the single-cell clustering
approach, which was performed by R 4.1.1 with the assistance of
the package “Seurat.” We treat the intensity ratios over mass-to-
charge ratio values as the expression level of genes.

Balancing Methods
For the modeling process in this study, data were first separated
into training and testing sets by time, where the training set
contained samples from June 1, 2013 to June 31, 2017 (85%
of the total samples) and the remaining samples were used
for performance testing. The training set only contained 3,613
CIRKP samples, which could cause an unbalancing problem.

Two balancing methods applied in this study were Tomek
links (TKL) and Relocating Safe-Level SMOTE (RSLS). The TKL
pair is defined as two samples from separate groups that are
the closest neighbors (Tomek, 1976), which means there does
not exist the third sample that the distances between the third
sample and anyone of the TKL pairs are smaller than the distance
between the TKL pairs. TKL can balance the training set by
removing most class samples from TKL pairs. Besides, removing
the whole TKL pairs can also alleviate the invasion problem.

RSLS is a modification of the Safe-Level SMOTE algorithm,
which relocates the synthetic sample if the distance between the
synthetic sample and a sample from the major class is less than
the distance between that synthetic sample and its closest parent
sample (Siriseriwan and Sinapiromsaran, 2016). This method
considers the surroundings of synthetic samples and can provide
a safer oversampling outcome for model training.

This study first removed both samples from all TKL pairs
with Euclidean distance on the original feature space to
relieve the invasion problem. After that, RSLS was applied to
balance the CISKP and CIRKP classes. TKL was implemented
with R function “TomeKClassif ” in package “UBL,” and RSLS
balancing was implemented by calling function “RSLS” in
package “smotefamily.”

Machine Learning Models
Four popular machine learning models were tested in this study
including logistic regression (LR), SVM, random forest (RF),
and extreme gradient boosting (XGB). The general modeling
processing in this study included (1) selecting significant features
by multiple statistical methods and (2) constructing models with
balancing methods and fivefold cross-validation (except the RF
model). The final model included 480 features (472 pseudo-ions,
6 factors for SPC, 1 vector for age, and 1 factor for gender)
selected by statistical methods. L1-regularization was applied to
the LR model with log (λ) = −4.77 and finally 102 features
were selected in the LR model. The testing performance of the
SVM model was achieved by using radial kernel (“rbfdot” kernel
in “kernlab” package) with penalty parameter C = 1.5. There
were 1,000 trees each with the random sampling size equal to 500
built for the RF model, but the RF model still suffered a serious
overfitting problem. The XGB model was set to use “softmax”
mode with the max depth equal to 3 and 527 iterations. All
the models were implemented with R packages: “glmnet” for

LR, “kernlab” for SVM, “randomForest” for RF, and “xgboost”
for XGB. Predicting performances were measured by mean area
under the receiver operating characteristic curve (AUC) and the
accuracy rate of predicting CIRKP, and they are calculated with
the assistance of the package “ROCR.” Probability models allow
flexible selection of probability cutoff. The optimal probability
cutoffs (selected by balancing the specificity and sensitivity of
models) of training and testing sets were both shown in this
study. In addition, the predicting performance would be analyzed
with the optimal cutoff of the training set since the optimal
cutoff of the testing set was unobtainable in real antibiotic
resistance prediction.

RESULTS

Insights for Specimen Information
An increase in the proportion of CIRKP was observed from
25.52% in 2014 to 29.07% in 2017 (Figures 2A1,A4). In total
7,556 (47.87%) and 8,226 (52.12%) samples were obtained
from female and male patients. A total of 1,838 (41.51%)
female samples and 2,590 (58.49%) male samples comprised
the CIRKP group, whereas both female and male samples
accounted for around 50% of the CISKP group, suggesting
that men were probably more likely to be infected with
CIRKP than women (Figure 2A6). Additionally, CIRKP was
more likely to be diagnosed in people over the age of
60. The CIRKP group’s average age was 11.15 years older
than that of the CISKP group (Figures 2A2,A3). In the
case of SPC, more than 60% of samples were collected
from respiratory (R) or urinary (U) carriers. Additionally,
respiratory (R) and other (O) samples accounted for a greater
percentage of samples in the CIRKP group than in the CISKP
group (Figure 2A5).

Spectrum data analyzed in this study were collected over
the mass-to-charge ratio range from 2,000 to 20,000 m/z. To
avoid the problems of magnitudes, the intensity ratio was used
for analysis instead of the original intensity in this study. By
comparing the average spectrum intensity ratio plot of the CISKP
and CIRKP, CRSKP samples were found to have a lower intensity
ratio over the lower region of the mass-to-charge ratio (2,000–
3,000 m/z) and have a generally higher intensity ratio over the
3,000–7,000 m/z (Figure 2B1). However, no unique spectrum
profile or spectrum peak could be observed directly from the
average spectrum intensity plot. Moreover, the profiles of the
average spectrum intensity ratio of both CISKP and CIRKP were
shifting along with the time (Figure 2C). The intensity ratio of
peaks at 2,069 m/z decreased from more than 4% to less than
2%. In contrast, peaks at 4,367, 5,382, and 6,291 m/z increased
to more than 5% in the first 2 months of 2018. In addition,
the numbers of spectrum peaks varied a lot among samples
(Figure 2B2). Only 49 peaks were detected from the sample
which is the minimum peak number. However, samples with over
900 peaks were also detected. Over 70% of samples contained
peaks from 100 to 250. Both the spectrum profile shift and the
wide range of peak numbers could indicate that specimens of
different sub-strains of K. pneumoniae are collected, and their
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FIGURE 2 | Demographic of statistical information of the data. (A1,A4) Proportion of CIRKP samples in each year; (A2,A3) age information of samples; (A5,A6)
number of samples of each SPC and gender in CIRKP and CISKP; (B1) overall average spectrum plot of CIRKP and CISKP; (B2) distribution of peak numbers.
(C1–C6) average spectrum plots of CIRKP and CISKP by years.
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FIGURE 3 | Data visualization of clustering results. (A1) Distribution of 8 clusters; (A2,A3) distribution of CIRKP and CISKP samples in each cluster; (B) proportion of
cluster in each year; (C) average spectrum plot of each cluster.

proportions were changing along with time. That was the main
reason for the clustering analysis done in the following study.

Clustering Analysis
Due to the absence of standard MALDI-TOF MS spectrum plots
for K. pneumoniae sub-strains, it was difficult to determine the
true data composition. The clustering approach used in this

study aimed at offering information about the composition of
the samples under the assumption that bacteria from the same
sub-strain have similar spectrum profile.

By setting the resolution parameter equal to 0.3, eight
suspicious sub-strains were detected in this study. The cluster
distributions and the distributions of CISKP and CIRKP
samples under two-dimensional UMAP reduction are shown
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TABLE 1 | Significance of non-spectrometry covariates.

Sample population

CISKP CIRKP Total number P-value

Total numbers 9,201 3,424 12,625

Gender (ratio %) < 2.2 × 10−16

Male 4,581 (49.7) 2,030 (59.3) 6,611

Female 4,620 (50.3) 1,394 (40.7) 6,014

Age (ratio %) < 2.2 × 10−16

Infant 856 (9.3) 41 (1.2) 897

Children 50 (0.5) 12 (0.4) 62

Teenager 62 (0.7) 14 (0.4) 76

Youth 1,201 (13.1) 272 (7.9) 1,473

Middle-aged 3,715 (40.4) 1,167 (34.1) 4,882

Senium 3,317 (36.0) 1,918 (56.0) 5,235

Specimen type (ratio %) < 2.2 × 10−16

B 1,330 (14.5) 400 (11.7) 1,730

F 351 (3.8) 133 (3.9) 484

W 1,490 (16.2) 373 (10.9) 1,863

R 2,081 (22.6) 1,148 (33.5) 3,229

U 3,610 (39.2) 1,276 (37.3) 4,886

O 339 (3.7) 94 (2.7) 433

TABLE 2 | Top 15 significant pseudo-ions selected by statistical methods.

Rank Pseudo-ion m/z Mean difference of
peak intensity ratio

(10−4)

log2(fc) Wilcoxon rank sum test F-test KS test Observation times

1 Pseudo-ion 136 (4,700, 4,720) 10.22 0.88 1.24 × 10−38
≤ 0.01 ≤ 0.01 3,200

2 Pseudo-ion 5 (2,080, 2,100) −50.75 −0.43 1.02 × 10−51
≤ 0.01 ≤ 0.01 12,528

3 Pseudo-ion 27 (2,520, 2,540) −13.63 −0.41 1.73 × 10−64
≤ 0.01 ≤ 0.01 10,704

4 Pseudo-ion 95 (3,880, 3,900) −3.51 −0.61 2.40 × 10−10
≤ 0.01 ≤ 0.01 3,358

5 Pseudo-ion 353 (9,040, 9,060) −1.03 −0.77 5.60 × 10−05
≤ 0.01 ≤ 0.01 478

6 Pseudo-ion 1 (2,000, 2,020) −13.52 −0.40 1.72 × 10−41
≤ 0.01 ≤ 0.01 10,727

7 Pseudo-ion 32 (2,620, 2,640) −13.09 −0.40 1.01 × 10−34
≤ 0.01 ≤ 0.01 10,453

8 Pseudo-ion 293 (7,840, 7,860) −0.26 −0.67 3.20 × 10−07
≤ 0.01 ≤ 0.01 406

9 Pseudo-ion 284 (7,660, 7,680) −4.76 −0.72 1.87 × 10−03
≤ 0.01 ≤ 0.01 2,873

10 Pseudo-ion 11 (2,200, 2,220) −13.45 −0.37 6.23 × 10−42
≤ 0.01 ≤ 0.01 10,405

11 Pseudo-ion 2 (2,020, 2,040) −20.51 −0.38 9.96 × 10−34
≤ 0.01 ≤ 0.01 11,433

12 Pseudo-ion 4 (2,060, 2,080) −97.53 −0.39 2.46 × 10−23
≤ 0.01 ≤ 0.01 12,318

13 Pseudo-ion 367 (9,320, 9,340) 0.01 1.11 3.86 × 10−04
≤ 0.01 0.01 285

14 Pseudo-ion 50 (2,980, 3,000) −12.41 −0.35 6.23 × 10−33
≤ 0.01 0.01 10,574

15 Pseudo-ion 163 (3,240, 3,260) −3.71 −0.84 2.46 × 10−09
≤ 0.01 0.01 768

Mean difference is calculated by CIRKP-CISKP;fc represents the fold change value; fold change is calculated by CIRKP/CSIKP; total number of training samples: 13,414.
Bold type values means the statistical quality of these pseudo-ions are relatively lower than other pseudo-ions since less samples are observed.

in Figures 3A1,A2. Intuitively speaking, clusters 2 and 6
are CISKP-dominant clusters with relatively lower CIRKP
proportions compared to other clusters (Figure 3A3). Besides,
CIRKP in clusters 2, 5, and 7 seems to be more separable
from the CISKP sample than other clusters. But CIRKP and
CISKP samples are highly mixed in the other clusters under
two-dimensional UMAP reduction. However, no cluster shows
a strong relation to the CIRKP or the CISKP group.

The trend of spectrum profile shifts is found from June
2013 to February 2018. It is worth mentioning that cluster

1 has grown from the fifth cluster in 2013 to the biggest
cluster in 2018. Combined with the average spectrum plot of
cluster 1, we can preliminarily conclude that the increase in
the proportion of cluster 1 is the primary cause for the rise
in the average intensity ratio of peaks at 4,367, 5,382, and
6,291 m/z (Figures 3B,C). At the same time, the proportion
of cluster 0 first significantly increases from 2013 to 2015 and
then gradually decreases to the same proportion level of 2013
in 2018. The proportion of cluster 2 keeps decreasing from
about 25% of the whole year sample to 15%. As the result
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FIGURE 4 | Performance of models. (A1,A2) Training and testing ROC plots of four models; (B–E) optimal probability cutoff of training and testing set for four
models.

TABLE 3 | Top 15 significant features selected by models.

Features (observed sample number)

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9 Rank 10 Rank
11

Rank
12

Rank
13

Rank 14 Rank 15

LR AGE
(13,414)

GEN
(13,414)

U (5,218) PI138
(9,756)

R (3,408) PI172
(6,666)

PI307
(4,831)

PI228
(1,694)

PI158
(13,137)

PI495
(1,358)

PI103
(3,940)

PI203
(551)

PI290
(2,367)

PI287
(4,403)

PI92
(8,767)

SVM PI154
(3,324)

AGE
(13,414)

PI36
(3,200)

PI226
(5,434)

PI494
(2,858)

PI171
(9,543)

PI127
(1,739)

PI306
(5,431)

PI273 (606) PI103
(3,940)

PI1495
(1,358)

PI230
(7,252)

PI367
(285)

PI198
(4,580)

PI52
(10,181)

RF AGE
(13,414)

PI171
(9,543)

R (3,408) PI154
(3,324)

GEN
(13,414)

PI136
(3,200)

PI208
(5,405)

PI91
(8,789)

PI288
(12,122)

PI165
(9,641)

PI316
(9,601)

PI226
(5,434)

PI108
(9,883)

PI286
(12,699)

PI306
(5,431)

XGB R (3,945) AGE
(13,414)

GEN
(13,414)

PI171
(9,543)

PI136
(3,200)

PI54
(3,324)

PI208
(5,405)

PI91
(8,789)

PI226
(5,434)

PI306
(5,431)

PI31
(9,619)

PI165
(9,641)

PI266
(5,375)

PI316
(9,601)

PI288
(12,112)

PI, pseudo-ion; GEN, gender; R, SPC-R; U, SPC-U.

of proportion changes of clusters 0, 1, and 2, spectrum peak
at 2,069 m/z significantly decreases from 2013 to 2015, then
increases a little bit in 2016, and sharply drops to less than
2% in 2018. Moreover, the proportion cluster 5 is found to be
abnormally high only in 2017. The majority of cluster 5 are
those with abnormally high number of spectrum peaks (peak
number 250). Besides, most of the samples with abnormally
low peak numbers (peak number 100) are found in cluster
1 (Supplementary Figure 3). For the other clusters, their
proportions do not change significantly during the time of
specimen collection.

After clustering analysis, it is normal to create classification
models for each cluster. However, models trained by samples
from all clusters were finally selected rather than models for each
cluster. The reasons for this decision include:

1. The clusters in this study only represent suspicious sub-strains
of K. pneumoniae without any additional support materials,
implying that they are unreliable for modeling.

2. Not all cluster-based models outperform the overall model.
3. Most importantly, cluster-based models are unable to handle

new samples from unknown clusters.

Feature Selection
For feature selection, statistical methods were applied on the
training set to select associated non-spectrometric features and
rank the significance of pseudo-ions.

The Chi-square test was used to determine the statistical
significance of non-spectrometric variables using the original
gender data as well as the age and SPC data after grouping
(Table 1). The results of the tests indicated that CIRKP is
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TABLE 4 | In cluster performance of the general model.

Training (AUC %) Testing (AUC %)

Clusters LR SVM RF XGB LR SVM RF XGB

Overall 89.69 97.61 100.00 98.50 85.58 88.86 85.44 89.08

0 90.61 98.00 100.00 98.84 82.89 85.70 84.27 85.95

1 90.56 97.58 100.00 98.82 84.82 87.70 86.34 89.80

2 89.25 97.55 100.00 98.24 92.16 93.72 90.74 91.03

3 89.14 97.47 100.00 98.41 80.05 84.12 79.41 83.15

4 89.01 97.45 100.00 98.28 80.84 87.31 81.43 86.70

5 88.26 96.73 100.00 98.55 88.95 91.44 87.94 91.31

6 87.10 96.70 100.00 97.22 50.00 92.59 74.07 57.41

7 91.15 97.63 100.00 98.73 85.30 88.67 87.98 93.81

Bold type AUC value of cluster 0–7 shows poor performances of machine learning
models on those clusters.

associated with all non-spectrometric features. As a result, all
dummy variables created from gender and SPC, and the actual
age data, would be included in modeling.

After the construction of pseudo-ions, significance testing
was performed using pseudo-ion vectors. Generally speaking, 18
pseudo-ions and 66 pseudo-ions are found uniquely in CIRKP
and CISKP samples. However, only pseudo-ion 434 has been
observed 12 times uniquely in CIRKP groups; the other unique
pseudo-ions are all observed less than 5 times. Thus, the statistical
power of those unique observed pseudo-ions is not guaranteed,
and they will not be considered as highly significant features.
Wilcoxon rank-sum test and average fold change selection were
served for the significance check of mean values. The majority
of the 209 pseudo-ions selected by the Wilcoxon rank-sum
test concentrate at relatively low-intensity regions with high
observation times, but the fold changes of those pseudo-ions are
usually insignificant. In contrast, fold change selection selected
pseudo-ions of highly different average intensity ratios, usually
with lower observation times compared to pseudo-ions selected
by the Wilcoxon rank-sum test. F-test and KS-test selected
303 and 208 pseudo-ions, respectively, and these pseudo-ions
are highly overlapping with the pseudo-ions selected by the
Wilcoxon rank-sum test. In conclusion, only pseudo-ions 367
and 407 passed all the selection criteria, and 154 pseudo-ions pass
all tests except fold change selection.

The ranks of pseudo-ions were calculated by their average
ranks of each selection criterion. The top 15 significant pseudo-
ions selected by multiple statistical methods are shown in Table 2.
Pseudo-ions that pass one of the four selection criteria were
considered significant for modeling and would be used for
model construction.

Classification Result
All four models showed high accuracy in detecting antibiotic
resistance of patients. Both SVM and XGB have high AUC values
of 0.89 on the testing set with specificities and sensitivities of 0.80
under the optimal probability cutoff of the testing set (Figure 4).
Under the optimal cutoff of the training set, XGB and SVM
could achieve accuracies of 0.82 [95% CI: (0.80, 0.83)] and 0.83

TABLE 5 | Confusion matrix of each model with optimal probability cutoff
of training set.

Real predicted Cluster 0 Cluster 1 Cluster 2 Cluster 3

CIRKP CISKP CIRKP CISKP CIRKP CISKP CIRKP CISKP

LR CIRKP 127 62 166 97 15 6 38 35

CISKP 41 206 29 167 5 91 24 140

SVM CIRKP 117 36 156 49 16 2 36 18

CISKP 51 232 39 215 4 95 26 157

RF CIRKP 160 160 192 209 17 19 49 69

CISKP 8 108 3 55 3 78 13 106

XGB CIRKP 105 37 161 57 14 5 35 22

CISKP 63 231 34 207 6 92 27 153

Cluster 4 Cluster 5 Cluster 6 Cluster 7

CIRKP CISKP CIRKP CISKP CIRKP CISKP CIRKP CISKP

LR CIRKP 91 46 159 57 0 3 28 20

CISKP 22 103 61 413 1 51 8 55

SVM CIRKP 85 27 156 37 0 2 30 21

CISKP 28 122 64 433 1 52 6 54

RF CIRKP 111 129 202 187 0 11 36 49

CISKP 2 20 18 283 1 43 0 26

XGB CIRKP 93 36 169 50 0 2 34 20

CISKP 20 113 51 420 1 52 2 55

LR SVM RF XGB

REF CIRKP CISKP CIRKP CISKP CIRKP CISKP CIRKP CISKP

CIRKP 624 326 596 192 767 825 611 229

CISKP 191 1,226 219 1,360 48 727 204 1,323

RF model is severely overfitted to CIRKP group. The in-cluster performance of
cluster 6 is acceptable but low AUC value is caused by insufficient positive test
samples.

[95% CI: (0.81, 0.84)] of predicting CIRKP and CISKP samples
in the testing set. The testing AUC of LR and RF is around 0.86
and 0.85, respectively. However, due to the severe overfitting
problem of RF, the predicting performance under the optimal
probability cutoff of the training set is highly unbalanced, which
achieves an extremely high sensitivity of over 0.94 but low overall
accuracy of 0.63 and unacceptable specificity of 0.47. Compared
to RF, LR performs more stably. The gap between optimal cutoff
of training and testing sets for LR is 0.02, which means LR is
the only one of four models that could achieve both predicting
sensitivity and specificity around 0.76 under the optimal cutoff of
the training set time. However, since SVM and XGB could also
achieve sensitivities of 0.73 and 0.75 and specificity of 0.88 and
0.85 simultaneously, they are considered slightly better model
choices than LR.

Four models perform well on identifying CIRKP. We were
interested in the differences between significant features selected
by models and statistical methods (Table 3). The absolute value
of coefficients directly ranked the feature significance of LR. The
mean of decreasing in the Gini index was used to rank features
that construct RF. The feature ranks for SVM and XGB models
were created by constructing new models without target features

Frontiers in Microbiology | www.frontiersin.org 10 March 2022 | Volume 13 | Article 827451495050

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-827451 March 8, 2022 Time: 15:14 # 11

Wang et al. CIRKP Identification by Machine Learning

FIGURE 5 | Time influence on the performance of four models.

and calculating the decrease in testing AUC. For the results, only
pseudo-ions 136 and 367 are considered the top 15 significant
pseudo-ions by both models and statistical methods. Pseudo-
ion 171 is also considered as one of the top 15 features by
three models except for LR. Meanwhile, both LR and statistical
method ranked pseudo-ion 171 at about 70th. Considering the 49
amino acids protein AcrZ subunit of AcrAB efflux pump whose
expression change is proved to be one of the mechanisms of
ciprofloxacin resistance, pseudo-ion 171 may be a representation
of the expression level of AcrZ (Pakzad et al., 2013; UniProt
Consortium et al., 2021). The statistical rank for features is
very different from their real contribution in models. Statistical
methods and each model select less than 10 identical top 100
features, respectively. However, feature contributions in RF and
XGB models are highly consistent. Sixty-two identical features
are found among their top 100 features. This observation could
indicate that a better selection method or feature ranking system
may help improve the classification outcome.

As for the non-spectrometric features, age is the most
significant feature selected by models, constantly ranked as the
top 2 significant features. Besides, gender is another highly
significant feature ranked in the top 3 by LR, RF, and XGB
models. These results show that patients’ basic information may
also contribute a lot to the real antibiotic resistance identification
problems. Among all SPC types, only respiratory SPC (SPC-R)
is considered one of the top 5 features of all models except SVM.
Urinary SPC (SPC-U) is the third critical feature in LR, and it also
ranked in the top 100 in the other models. Excluding SPC-U and
SPC-R, other SPC types are not incredibly important for models.

Besides, categorical variables are less popular for SVM compared
to the other three models.

DISCUSSION

Analysis of In-Cluster Performance
Instead of constructing cluster-based models, four overall models
constructed in this study utilized data from all clusters as
training and testing samples. The overall performance of models
showed high accuracy, and we wondered whether these models
were competent for predicting antibiotic resistance for multiple
suspicious sub-strains of K. pneumoniae (Table 4).

Four models can manage the in-cluster predicting task with
acceptable performance most of the time. All four models exhibit
high testing performance on predicting CIRKP in clusters 2,
5, and 7. This observation is consistent with the clustering
analysis that these three clusters are more separable than other
clusters. Furthermore, the outstanding performance on cluster 5
indicates that samples with abnormally high peak numbers are
separable, and it is unnecessary to remove those samples from
analysis. Compared to the other three models, SVM shows high
stability in handling classification tasks on different clusters with
the lowest AUC value of 0.84. Nevertheless, poor performances
could also be found in predicting CIRKP on clusters 3 and 6.
The predicting AUC value of LR and XGB are only 0.50 and
0.57 on cluster 6, but the training AUC achieves 0.87 and 0.97,
respectively, which seems that both LR and XGB cannot perform
the classification task better than a model performs random
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selection. The predicting AUC of RF on cluster 6 also significantly
drops 0.74. However, the low AUC values on cluster 6 are not due
to the failure of models. By looking into the confusion matrixes
under the optimal probability cutoff of the training set for each
cluster (Table 5), only 1 CRIKP sample is found in the testing set
of cluster 6. That means the AUC value of cluster 6 is unreliable.
All models could achieve overall accuracy of over 0.92 except
RF. As for model performances on cluster 3, LR, SVM, and XGB
all show high specificity but low sensitivity. Even for RF, which
achieves an overall sensitivity of 0.94, it cannot excellently classify
CIRKP samples in cluster 3. The relatively inferior performance
on cluster 3 provides evidence for the potential influence of
sub-strains on the model.

In conclusion, four overall models constructed in this study
can manage the classification task of CIRKP for most suspicious
sub-strains, but the potential risk of sub-strain effect still exists.
Determining the antibiotic resistance results by the optimal cutoff
of each suspicious sub-strain instead of using the overall optimal
cutoff of the training set may alleviate effect. However, a rigorous
sub-strains identification process and solution to managing newly
observed sub-strains should be set up.

Time Influence
Time influence on the predicting performance was considered by
analyzing the fluctuation of the AUC value as the testing time
period got far away from the last training samples. The first
2,300 samples in the testing sets were grouped into 23 groups by
time, with 100 samples in each group. After that, the predicting
AUC of each testing group is calculated and plotted in Figure 5.
The expected decreasing trend in model performance along with
time is not observed. Moreover, the same trend of the AUC
changes is found among four models, which means the predicting
performance of models is highly related to the separability of
current samples. That emphasizes that even machine learning
models with high classification accuracy in the past may fail in
the current antibiotic resistance identification task. Reasons for
the time effect could also include that the overall model cannot
perform well on all the potential sub-strains, but the sample
composition varies along with time.

Four models constructed in this study show high accuracy
in identifying CIRKP. Especially SVM and XGB, which perform
stably on all clusters and exhibit AUC greater than 0.8 for all the
testing time periods. However, the stability against time effect
could also be an essential criterion for clinically used antibiotic
resistance predicting models.

IMPORTANCE AND CONCLUSION

The rising prevalence of CIRKP has increased the risk of
incorrect selection of initial antibiotic treatment. The purpose
of this study is to develop machine learning-based models for
identifying antibiotic resistance of CIRKP using data from a
longitudinal study done from June 2013 to February 2018.
The use of large-scale data ensured the statistical quality of
the selected biomarkers. Significant differences between the
CISKP and CIRKP of a few pseudo-ions in the high mass-
to-charge range were also detected, but their observation

times were insufficient to draw a firm conclusion. Both
statistical approaches and modeling algorithms recommended
expanding the training set to conduct reliable statistical
results for all the pseudo-ions. That indicated the need
for a systematic and comprehensive MALTOF-MS database.
Additionally, models were trained and evaluated in this work
utilizing spectrum data from June 2013 to June 2017 and
extra non-spectrometric information. Future samples were
used to replicate the real-world antibiotic resistance prediction
issue. Clustering analysis and the effect of time on model
performance were implemented to provide potential information
of suspicious sub-strains and demonstrate overall models’
problems. While the model’s performance does not meet the
clinical standard, the findings of this investigation confirm the
potential usefulness of the machine learning-based approach for
antibiotic identification.

Limitations of this study include two main points, which
are (1) the models may not be able to generalize to other
bacterial species and antibiotics, and (2) the absence of biological
validations. Protein analysis may be used to confirm the
biological importance of selected features, and thorough real
strain analysis, rather than the suspect sub-strain analysis used
in this work, would give more helpful information. However,
it is challenging to verify accurate sub-strains information in
this study due to the data limitations. Additionally, other
advanced machine learning techniques, such as deep learning
and integrated prediction of multiple models, may enhance
prediction accuracy.
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Multidrug resistance has become a phenotype that commonly exists among
Staphylococcus aureus and is a serious concern for infection treatment. Nowadays,
to detect the antibiotic susceptibility, antibiotic testing is generated based on the
level of genomic for cure decision consuming huge of time and labor, while matrix-
assisted laser desorption-ionization (MALDI) time-of-flight mass spectrometry (TOF/MS)
shows its possibility in high-speed and effective detection on the level of proteomic.
In this study, on the basis of MALDI-TOF spectra data of discovery cohort with
26,852 samples and replication cohort with 4,963 samples from Taiwan area and
their corresponding susceptibilities to oxacillin and clindamycin, a multi-label prediction
model against double resistance using Lowest Power set ensemble with XGBoost is
constructed for rapid susceptibility prediction. With the output of serial susceptibility
prediction, the model performance can realize 77% of accuracy for the serial prediction,
the area under the receiver characteristic curve of 0.93 for oxacillin susceptibility
prediction, and the area under the receiver characteristic curve of 0.89 for clindamycin
susceptibility prediction. The generated multi-label prediction model provides serial
antibiotic resistance, such as the susceptibilities of oxacillin and clindamycin in this study,
for S. aureus-infected patients based on MALDI-TOF, which will provide guidance in
antibiotic usage during the treatment taking the advantage of speed and efficiency.
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INTRODUCTION

The multidrug resistance phenotype that occurred within
Staphylococcus aureus is considered as one of the most
intractable pathogenic features in the history of antibiotic
chemotherapy (Hiramatsu et al., 2014). This feature refers
to Staphylococcus aureus, which shows resistance to a set of
antibiotics. oxacillin-resistant S. aureus (ORSA) has been
increasing in importance as a leading cause of both nosocomial
and community-acquired infections (Bell and Turnidge, 2002).
Similar to penicillin and methicillin, oxacillin belongs to β-lactam
drugs. The initial discovery on the mechanism of β-lactam drugs
is the existence of penicillin-binding-proteins (PBPs), which
are transpeptidases responsible for partial peptidoglycan
construction on cell walls. The binding between penicillin
and PBPs blocks the function of PBPs and creates the entry
for penicillin. Gene blaZ was induced in bacteria encoding a
β-lactamase enzyme, which opens up the β-lactam ring at the
core of penicillin, preventing the binding to PBPs. Oxacillin
resistance results from a new PBP, decreasing the affinity for
oxacillin, though the β-lactam ring within the drug has been
modified and stabilized. Clindamycin-resistant Staphylococcus
aureus (CRSA) is free of the suppression in the virulence
factors expression, which is originally regulated by clindamycin
(Hodille et al., 2018). The mechanism of clindamycin is
binding to the ribosome and inhibiting protein synthesis
(Kehrenberg et al., 2005). Correspondingly, clindamycin
resistance results from conformation change of ribosome
induced by enzymes, which leads to the affinity decreasing
(Reygaert, 2013).

Nowadays, to test antibiotic susceptibility, the workflow takes
24–72 h including disk diffusion. Basically, in the case of the
low-efficiency treatment, patients infected by ORSA or CRSA are
asked to do the test and wait for the detection result (Swenson
et al., 2001), which causes a delay for the concise and precise
treatment individually ranging from 24 to 72 h, though broad-
spectrum empirical treatment would be conducted. Besides, long-
time testing is not suitable for urgent patients and leaves the time
lag for the probability of mutation.

In recent years, a huge number of arrays or kits emerged
and be applied in clinical detection such as Velogene
and MRSA-Screen, improving the detection time within
4 h (Louie et al., 2000). For instance, Velogene uses a
chimeric probe aiming at the mecA gene within 90 min.
Nevertheless, the high cost of detection kits and limited
labor capacity, privacy policy restricts the application of
genome detection. Proteomic of the resistant S. aureus is
also a focus of identification based on the ion types and
expression intensity generated by the spectra. Current
antibiotic susceptibility tests have shortened the detection
time within several hours besides S. aureus isolation and
culture. Nevertheless, the time lag still exists the chance for
resistance induction, which is calling for rapid detection and
proteomic-based tests with statistics and computational
algorithms. Specifically, with the availability of matrix-
assisted laser desorption-ionization (MALDI)-time-of-flight
mass spectrometry (TOF/MS), its fast generation speed and

accurate fragmentation detection are the advantages as well as
cross-species processing, which are longed for a long time to
solve resistance detection.

Matrix-assisted laser desorption-ionization-time-of-flight
mass spectrometry is a special kind of mass spectrometry
technique that requires protein samples crystallized within the
matrix for further ionization and detection, which can be applied
to grasp the resistant characters besides antibiotic susceptibility
testing (Lay, 2001; Croxatto et al., 2012). Each run of detection
through MALDI-TOF only causes low cost within a few dollars
within 5 min. Scientists have tried to combine the statistical
analysis, computational method, even machine learning with
the spectra information such as mass-to-charge (m/z) ratio and
peptide intensity from the MALDI-TOF to differentiate sensitive
and resistant S. aureus for several types of antibiotics (Wang
et al., 2020). Through the combination of MALDI-TOF and
machine learning, the classification model could be a guide to
provide insight information into drug susceptibility during the
clinical treatment and even show the potential of saving the
antibiotic test in the ideal case.

The crucial consideration from both patients and doctors
is that the computational model on the basis of the cohort
representation and assumption lacks quality guarantee for
individuals, which can be solved and ensured largely in the
antibiotics susceptibility test. Specifically, the consideration is
getting mitigated with a novel resistance information database
called DRIAMS with huge-scale data, which collects at least
300,000 mass spectra with more than 750,000 antimicrobial
resistances (Weis et al., 2022). Another limitation is that each
existing classification model only refers to a specific type
of antibiotic, which is not suitable and applicable for the
multidrug-resistant S. aureus with the widespread multidrug-
resistant phenotype, referring to being resistant to at least
three classes of antibiotic mechanisms or three antibiotics based
on the gene level (Schwarz et al., 2010). Thereby, to relieve
the dilemma in cohort representation and size, this study
recruited 26,852 patients infected by S. aureus in the Chang
Gung Memorial Hospitals (CGMH) at the Linkou branch from
2013 to 2019. Antibiotic susceptibility tests on oxacillin and
clindamycin had been conducted for the samples, and their
S. aureus susceptibility status was mapped with their MALDI-
TOF results as the labels. Besides, for the reproducibility, from
2015 to 2017, this study also recruited 4,963 patients as the
validation test for the constructed model at the Kaohsiung
branch. In our dataset, information, such as specimen type,
sex, age, m/z, and peak intensity, is included for each sample.
Two drug susceptibilities are combined in the form of a
tuple as the label data. We aimed to construct a prediction
model using the high-dimension and large-scale MALDI-TOF
data to indicate the resistance for oxacillin and clindamycin
in patients, which is not the typical case for multiresistance
but breaking model mode for single susceptibility prediction.
Meantime, this study applies the XGBoost algorithm in multi-
label learning for fast and accurate serial resistance prediction.
Over the long haul, the model could improve resistance detection,
provide medication guidance, and be extended to serial antibiotic
susceptibility tests.
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MATERIALS AND METHODS

Overview of the Study
This study consists of sample data generation and prediction
model construction (as shown in Figure 1). During the first step,
the clinical specimen from recruited patients is cultured, and a
single pathogen colony after isolation and incubation was treated
with the MALDI-TOF MS spectra. During the second step, the
mass spectra data generated by the MALDI-TOF from different
samples went through the preprocessing and were used for the
modeling of serial-drug resistance prediction. Figure 1 presents
the overlook of this study including the basic flow of the MALDI-
TOF MS spectra and the process of model construction. Study
details are introduced in the following sections.

Experiment Cohorts’ Information,
MALDI-TOF Preparation, and Processing
Two cohorts, Linkou and Kaohsiung, are used as the discovery
and replication population, respectively, which is independent
of each cohort. The Linkou cohort focused on the oxacillin
and clindamycin resistance of S. aureus lasting from 2013 to
2019. We collected wound (W) swab specimens, respiratory
tract (RT), sterile body fluid (SBF), blood (B), and urinary
tract (UT) from patients from different departments during
the data tracking. For those samples that showed resistance
in the AST, CGMH cultured the clinical specimens, isolated
bacterial pathogens from the samples, and did the antibiotic
resistance profiling. Table 1 presents the label information of
the Linkou cohort, which is prepared for the discovery part
(Table 2). Notably, 26,852 samples in total are marked with two
labels after the antibiotic susceptibility testing to the oxacillin
and clindamycin. One of the labels can be categorized as
ORSA or oxacillin-sensitive Staphylococcus aureus (OSSA). The
other one can be presented as CRSA or clindamycin-sensitive
Staphylococcus aureus (CSSA). Meanwhile, more information,
such as age and sex, was collected from each participant.
In the Kaohsiung cohorts (Table 2), 4,963 samples were

TABLE 1 | Susceptibility information for clindamycin and oxacillin in
the Linkou cohort.

XXXXXXXXClindamycin
Oxacillin

Susceptible Resistant Total

Susceptible 11,453 3,761 15,214

Resistant 1,539 10,099 11,638

Total 12,992 13,860 26,852

TABLE 2 | Susceptibility information for clindamycin and oxacillin in the
Kaohsiung cohort.

XXXXXXXXClindamycin
Oxacillin

Susceptible Resistant Total

Susceptible 2,303 800 3,103

Resistant 288 1,572 1,860

Total 2,591 2,372 4,963

collected from 2015 to 2017 as another independent cohort
and treated with the consistent processing procedures as
the Linkou cohort.

Besides the label information, more basic information for
samples including specimen types, gender, and age is shown
in Figure 2. In each subgraph, the sample composition
under each category is presented. For Figures 2A,B, the
subgraphs in both mainly share the same composition situation
corresponding to the same horizontal coordinate (specimen
types, gender, and age).

Specimens are treated individually and separately with
corresponding methods for sample culture. Notably, 1.2 ml of
0.9% saline solution is added to rinse the W swab specimens.
Following, transfer equivalently onto four kinds of culture media
including blood plate agar, eosin methylene blue agar, Columbia
nalidixic acid, and chocolate agar. As for blood, we used a blood
culture kit (BD BACTECTM FX), which is for commercial use
and from Becton, Dickinson and Company, to isolate pathogens.
Following the positive blood culture bottle, we inoculated it
on blood plate agar to regain single colonies. Sharing a similar

FIGURE 1 | Overview of the study. The flowchart mainly contains sample collection, matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry
(MALDI-TOF) process, and multi-label model construction and evaluation.
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FIGURE 2 | Data composition information in isolated Staphylococcus aureus for Linkou cohort in subgraph (A) (discovery population) and Kaohsiung cohort in (B)
(replication population). The turtle in the graph stands for clindamycin susceptibility and oxacillin susceptibility. R is for resistant, and S is for susceptible.
(A) Specimen types, gender, and age map to multi-labels in the discovery population. (B) Specimen types, gender, and age map to multi-labels in replication
population.

protocol, such as W swab specimens, sterile body fluid is
added onto the four agars, same as the W swab specimens,
and rinsed by liquid thioglycolate for microorganisms’ isolation.
After getting the culture prepared, agars and media were put
into a 37◦C CO2 incubator for 18–24 h. After the culture, we
selected single colonies on the agar plate for the analysis of
MALDI-TOF mass spectrometry. The isolates were collected
consecutively. One isolate was generally for one patient. If
there were multiple isolates of the same species, the first
isolate was used. With the identification of the S. aureus from
the colonies, oxacillin and clindamycin susceptibility tests are
applied to label the two susceptibilities to the colonies. The
technique and reagents are originated from the cefoxitin disk
(Clinical and Laboratory Standards Institute guideline)1 for
non-sterile specimens. For the sterile specimens including B
specimens, the broth microdilution method is used as the
resistance test.

Our cohorts were analyzed under MALDI-TOF MS (Microflex
LT MALDI-TOF System, Bruker Daltonik GmbH). The
operation requirement and processes were run under the
manufacturer’s guidance. Each step is as follows. (1) prepare a
MALDI steel target plate, smear the colonies after culture with
a thin film adding formic acid (1 µl, 70%), and get dried at
25◦C, (2) prepare the matrix solution based on the guidance and
kit (1% α-cyano-4-hydroxycinnamic acid in 50% acetonitrile
containing 2.5% trifluoroacetic acid), (3) add the matrix solution
to the film and get dried under room temperature, and (4)
microflex LT MALDI-TOF analyzer was operated to analyze the
samples (linear ionization mode; accelerating voltage, 20 kV;
nitrogen laser frequency: 60 Hz; 240 laser shots). In the end, we

1www.clsi.org

generated the raw MALDI-TOF data, whose m/z ratio ranged
from 2,000 to 20,000 Da.

MALDI-TOF Data Preprocessing and
Pseudo-Ion Peak Intensity Matrix
Generation
In the part of raw data preprocessing, three techniques were
used to treat the data by order. An external calibration (Bruker
Daltonics Bacterial Test Standard) was applied as the first step.
Later, peak smoothing was performed using the Savitzky–Golay
filter, and baseline correction was performed using the Top-hat
filter. Peaks with a signal-to-noise ratio were set larger or equal to
2 for further analysis.

The preprocessed data based on the raw data consist of two
categories of the variable for each sample: m/z and peak intensity.
For the further preprocess, first, filter the unqualified mass spectra
that the number of peaks is lower than 100 or larger than 200.
Subsequently, by considering the sparsity of MS data when the
m/z ratio is larger than 8,000 Da and signal regarding phenol-
soluble modulin (PSM)-mec was studied earlier, which is a
peptide with 2,415 m/z encoded by resistance gene, mecA (Josten
et al., 2014), the MS data are extracted for each sample based on
the range of m/z from 2,000 to 8,000 Da. Meanwhile, to minimize
the impact of peak shift caused by different fragmentation results
due to the initial point, the window size of 20 Da is considered
to modify the data and transfer the m/z ratio into pseudo-ions.
Specifically, the first pseudo-ion includes the intensity for the m/z
ratio ranges from 2,000 to 2,010 Da as same as the last pseudo-
ion. Other pseudo-ions between them stand for an interval lasting
for 20 Da. In the end, a total of 301 pseudo-ions are generated,
and the intensity corresponding to a pseudo-ion is the intensity
sum within the interval. The intensity of the ith (i = 1,. . .,301)
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pseudo-ion for one sample can be calculated as follows:

intensity′(i) =
interval (i)∑

j=1

intensity(j)

where in one sample, intensity
′

(i) stands for the intensity
corresponding to ith pseudo-ion. Interval (i) refers to the m/z
ratios within the interval, and intensity(j) is the intensity for a
specific m/z ratio.

Multi-Label Classification
Multi-label learning studies the problem where each example is
represented by a single instance while associated with a set of
labels simultaneously (Zhang and Zhou, 2014). In this study,
the pseudo-ion-intensity data are the observation data, and the
results of the susceptibility test for oxacillin and clindamycin are
assigned as the label data. All the multi-label learning algorithms
are from scikit-multilearn 0.2.0 (Szymański and Kajdanowicz,
2017), a library for multi-label classification built on top of the
scikit-learn ecosystem, using Python 3.68.

Binary Relevance
Binary relevance is the most intuitive idea to deal with multi-
label prediction. It treats the multi-label separately by considering
multiple independent binary classifications for each label instead
of viewing it as a group of labels. Like in this study, for the binary
relevance, it needs to train two models, and the output is the
union of two separated predictions.

Classifier Chain
Classifier chain is the improved transformer of binary relevance
by the construction of a Bayesian conditioned chain. Similar to
the binary relevance, the classifier chain treats each label as a
separated classier but not independent. Although the first classier
is only trained using the input data (observation), the classifiers
after are trained on the input space and all previous classifiers in
the chain based on the Bayesian chain rule by order.

Lowest Power Set
Unlike the previous two methods, the lowest power set is to
transform a multi-label problem into a multi-class problem. Like
this study, for 2 labels totally, it will eventually transform into a
4-class classifier.

Quality Measures for Multi-Label Model
Two measurements are applied to evaluate the multi-label model
in this study. The first measures are the hamming loss, which
stands for the proportion of the incorrect prediction for all
labels among the whole samples. The other measurement is
the accuracy score. It means the fraction of samples for those
prediction sets that exactly match the real label sets.

Logistic Regression
Inside the multi-label algorithm, the classifier needs to be defined.
Logistic regression is a common classifier to predict the resistance
in the biological field (Moradigaravand et al., 2018). In this

study, the discovery samples, the Linkou cohort, are used in
the model training, while the Kaohsiung cohort is responsible
for the independent test. The logistic regression (LR) model
is realized using the Python package sklearn. Grid search is
applied for the parameter tuning based on the criteria of the
area under the receiver operating characteristic (ROC) curve by
the adjustment of parameters including the penalty, C-value, and
solver. Each model during the tuning is evaluated by the 5-fold
cross-validation. For the tuned model, using L1 normalization
as the penalty, 1 for the C-value, and liblinear, a library for
large linear classification, as the solver is the tuned parameters.
The area under the curve (AUC) will be applied to evaluate the
training model in the replication cohort. The model training and
parameter tuning are achieved in the Python package, scikit learn.
The presentation of the ROC curve is generated from the Python
package, Matplotlib.

XGBoost
XGBoost is a scalable machine learning system for the tree
boost, offering parallel tree boosting (Chen and Guestrin, 2016).
Choosing XGBoost as the classifier in the multi-label model, such
as the LR above, the Linkou cohort is treated as the training
data, and the Kaohsiung cohort is used for the independent test
by orders. Package xgboost from Python is applied to realized
XGBoost model. Parameters shown in Table 3 were tuned
through grid search. The result evaluation of the model is the
same procedure as the LR.

Permutation Importance
Permutation importance is a technique used to generate the
feature importance for the trained model. It is defined as the
decrease of significance P-values for each feature when the value
is randomly shuffled (Altmann et al., 2010).

TABLE 3 | Parameters tuned for XGBoost under multi-label learning.

Parameter Function Tuned result

max_depth Maximum depth of a tree 3

min_child_weight Minimum sum of weight for a child 1

Gamma Minimum loss requirement for node partition 0

subsample Subsample ratio within the training samples 0.6

colsample_bytree Subsample ratio of columns when constructing
each tree

0.6

TABLE 4 | Model evaluation in multi-label ensembles using LR and XGBoost
correspondingly.

XXXXXXXCriteria
Ensembles

BinaryRelevance
LR (XGBoost)

ClassifierChain
LR (XGBoost)

Lowest Power
set LR (XGBoost)

Hamming loss 0.2023 (0.1622) 0.2015 (0.1628) 0.2044 (0.1524)

Accuracy score 0.6863 (0.7334) 0.6885 (0.7553) 0.7119 (0.7717)

Jaccard score 0.6019 (0.6677) 0.6038 (0.6676) 0.6033 (0.6839)

Hamming loss, accuracy score, and Jaccard score are used to evaluate the multi-
label model primarily. Hamming loss refers to the average fraction of the wrong
prediction of each sublabel. The accuracy score is based on the accuracy of the
serial label prediction. Jaccard score measures the proportion of prediction for a
sample to its true label. Bold values refer to better performance based on each
criterion.
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TABLE 5 | Evaluation of partial susceptibility prediction in discovery and replication
cohort.

Precision Recall Precision Recall

Discovery OSSA 0.81 (0.88) 0.85 (0.90) CSSA 0.82 (0.87) 0.88 (0.93)

Linkou ORSA 0.86 (0.91) 0.81 (0.89) CRSA 0.82 (0.89) 0.75 (0.82)

Cohort Accuracy 0.83 (0.89) 0.82 (0.88)

Replication OSSA 0.78 (0.82) 0.83 (0.88) CSSA 0.83 (0.84) 0.86 (0.90)

Kaohsiung ORSA 0.80 (0.86) 0.74 (0.79) CRSA 0.75 (0.82) 0.71 (0.72)

Cohort Accuracy 0.79 (0.84) 0.80 (0.83)

The data outside the bracket are generated by the Lowest Power set ensemble
with logistic regression. The data within the bracket are generated by the Lowest
Power set ensemble with XGBoost. Bold values refer to better performance based
on each criterion.

RESULTS

Performance of Multi-Label Prediction
Learning Using Logistic Regression and
XGBoost
To realize the goal of serial antibiotic resistances prediction, the
study adopted three multi-learning ensembles provided by scikit-
multilearn 0.2.0, including BinaryRelevance, ClassifierChain, and

Lowest Power set. For each ensemble, the study applied LR and
XGBoost as the classifier, respectively. Based on the ensembles
and classifiers, the prediction model could provide prediction
to the susceptibilities of oxacillin and clindamycin within one-
step training among the Linkou cohort for each sample. The
primary model evaluation among the Kaohsiung cohort is shown
in Table 4.

From the evaluation criteria shown in Table 4, when applying
XGBoost as the classifier in all of three multi-label ensembles, the
performance in serial label prediction (Accuracy score) or partial
label within the prediction (Hamming loss and Jaccard score)
both indicated an improved model than using LR as the classifier.
Based on the accuracy score, approximately 6% of improvement
using XGBoost could be observed from 0.69 on average to 0.75
on average, which presents a refinement that exists in multi-label
prediction for antibiotic susceptibility.

Besides the evaluation for the multi-label prediction, analysis
that was related to partial or single susceptibility is conducted
by dividing the serial label prediction for each sample
into susceptibility prediction for oxacillin and clindamycin
correspondingly. Herein, the ensemble Lowest Power set with LR
and XGBoost is adopted to evaluate the partial performance for
its best serial performance in Table 4. The evaluation information

FIGURE 3 | Receiver operating characteristic curve for the oxacillin and clindamycin susceptibility prediction under replication cohort in multi-label learning model,
respectively. The area under the curve (AUC) is noted in the curve. (A) Receiver operating characteristic (ROC) for the oxacillin susceptibility prediction in replication
cohort using Lowest Power set with logistic regression (LR); (B) ROC for the oxacillin susceptibility prediction in replication cohort using Lowest Power set with
XGBoost; (C) ROC for the clindamycin susceptibility prediction in replication cohort using Lowest Power set with LR; and (D) ROC for the clindamycin susceptibility
prediction in replication cohort using Lowest Power set with XGBoost.
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FIGURE 4 | Significant permutation importance comparison between LR and
XGBoost under Lowest Power set ensemble.

including precision and recall in each class and total accuracy
among discovery and replication cohort is presented in Table 5.
Both from the discovery and replication cohort, the ensemble that
is applied with XGBoost shows more reliable performance than

the ensemble that is applied with LR in oxacillin and clindamycin.
The discovery accuracy gets increased from 0.83 (oxacillin) and
0.82 (clindamycin) to 0.89 and 0.88. The replication accuracy
gets increased from 0.79 (oxacillin) and 0.80 (clindamycin)
to 0.84 and 0.83.

Meanwhile, with the consideration of specificity and
sensitivity of prediction models, the area under the ROC curve
was used to measure the model performance. The AUC of
oxacillin and clindamycin prediction using LR or XGBoost
as the classifier in the multi-label learning model is shown in
Figure 3. The AUC for oxacillin susceptibility prediction under
XGBoost is 0.93, while it is only 0.86 for the model applying
LR. The performance for oxacillin resistance prediction got
improved compared with the AUC of 0.80 from DRIAMS
(Weis et al., 2022) as well. Meanwhile, the AUC of clindamycin
susceptibility prediction gets increased from 0.85 to 0.89 by
turning LR into XGBoost.

To visualize and identify the performance improvement,
permutation importance of features under Lowest Power
set using LR and XGBoost is conducted, respectively. After
calculating the permutation importance in each model, each

FIGURE 5 | Receiver operating characteristic curve for the oxacillin and clindamycin susceptibility prediction under replication cohort in multi-label learning model,
respectively. The AUC is noted in the curve. (A) ROC for the oxacillin susceptibility prediction in replication cohort using XGBoost; (B) ROC for the oxacillin
susceptibility prediction in replication cohort using Lowest Power set with XGBoost; (C) ROC for the clindamycin susceptibility prediction in replication cohort using
XGBoost; and (D) ROC for the clindamycin susceptibility prediction in replication cohort using L Lowest Power set with XGBoost.
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feature is assigned with an importance value ranging from 1
to −1, which indicates the feature contribution to the model
performance. The whole permutation importance is shown
in the Supplementary Material. To analyze the main feature
importance between LR and XGBoost under Lowest Power set,
features that contribute higher than 0.01 permutation importance
in either LR or XGBoost model are extracted for comparison
(Figure 4). Based on permutation importance comparison, the
multi-label prediction model using Lowest Power set with LR
mainly focuses on pseudo-ion with low and high m/z-ratio-
relatively-in-the-MALDI-TOF-data-(pseudo-ions 10, 15, 27, 32,
44, 176, 230, and 242). For instance, the multi-label model using
LR assigns high permutation importance to pseudo ion 15, which
stands for protein fragments from 2,310 to 2,330 m/z, and pseudo
ion 242, which stands for protein fragments from 6,850 to 6,870
m/z. Although the multi-label prediction model using XGBoost
shown in Figure 4 indicates some shared important features, such
as pseudo ions 21 and 230, it presents a focus on the medial
features, such as pseudo ions 64 and 132. On the whole, the over-
refinement between applying LR or XGBoost as the classier in the
multi-label prediction model reflects on the relief of permutation
importance in the protein fragments with low or high m/z ratio
and a new focus on the medial pseudo ions.

Performance of Multi-Label Prediction
Learning and Single Label Prediction
Learning
With the hypothesis that whether the model is trained under a
single label or multi labels has an influence on the prediction
performance, this study constructs two models for oxacillin
susceptibility and clindamycin susceptibility, respectively, and
separately using XGBoost. Precisely, it refers to using only
one susceptibility label from the discovery cohort to train the
XGBoost model for the prediction in the replication cohort.
During the model training process, RandomOverSampler is
adopted to balance the class size from the Python package,
Imbalanced-learn (Lemaître et al., 2017). The multi-label
prediction model, in this study, still applied XGBoost in the
Lowest Power set ensemble.

The ROC and AUC for performance comparison among the
multi-label prediction model and single label prediction model
are shown in Figure 5. Initially, considering due to the multi-label
learning, the boundary conditions or hyperplanes for the model
may need to be relaxed relatively compared with the single label
prediction. However, the model performance using XGBoost as
the classier in the multi-label prediction model actually presents
approaches to the single susceptibility prediction model and even
better to the single one.

To visualize the refinement reflection, permutation
importance provides insights to model construction. The
full permutation importance of pseudo ion is attached to the
Supplementary Document. The pseudo ions with permutation
importance larger than 0.01 were used for comparison (Figure 6).
For the oxacillin susceptibility prediction, within the multi-label
prediction model, it shows a diverse focus among pseudo ions
with different m/z ratios. For instance, the model assigned more

FIGURE 6 | Significant permutation importance comparison between
multi-label learning model and single label learning model. (A) Permutation
importance comparison for oxacillin susceptibility prediction and (B)
permutation importance comparison for clindamycin susceptibility prediction.

significant permutation importance to pseudo ion 21 with its
m/z ratio from 2,410 to 2,430, ion 50 with its m/z ratio from
3,010 to 3,030, ion 64 with its m/z ratio from 3,290 to 3,310,
ion 132 with its m/z ratio from 4,650 to 4,670 and ion 230
with its m/z ratio from 6,610 to 6,630. In terms of clindamycin
susceptibility prediction, the multi-label prediction model shows
a consensus that it majorly focuses on pseudo ion with the
m/z ratio from 3,000 to 4,000, determining higher permutation
importance on pseudo ions 64, 125, 132, 140, and 176 than
the single label model. Besides, compared with the single label
prediction model for oxacillin and clindamycin susceptibility
together, the multi-label learning model addresses pseudo ions
21, 64, 125, 132, and 230.

DISCUSSION AND CONCLUSION

To deal with potential consideration for the efficiency and
accuracy of detection, efforts during the whole experiment are
conducted for the realization of a practical model. First, in our
study, five kinds of specimens with oxacillin and clindamycin
susceptibility labels were used to convince the model. In the
future, more kinds of specimens could be used to strengthen
our model. Second, the large size of the discovery cohort and
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the offer of replication cohort largely support the machine
learning model. The size of 26,852 for the discovery cohort from
2013 to 2019 from the Linkou, Taiwan area, is fundamental
to train the model solidly. Meanwhile, the replication cohort
with 4,963 samples from Kaohsiung served as the validation
set. Third, instead of constructing a machine learning model
for only one antibiotic susceptibility, our study uses the Lowest
Power set ensemble and applies XGBoost as the classifier to
build up a multi-label prediction model, which could predict
the susceptibilities of the oxacillin and clindamycin at the same
time with only one-step training. From the model performance,
the multi-label model combined with XGBoost shows better
performance (AUC and accuracy) than choosing LR as the
classifier, which is commonly used for susceptibility prediction in
previous studies (Moradigaravand et al., 2018; Wang et al., 2020).
In terms of the output type, the multi-label prediction model
performs better than the single label model with only one training
process. Furthermore, feature importance was used to analyze the
improvement between models, and several potential biological
insights were generated.

Based on the prediction performances between single
label prediction model and multi-label prediction model and
permutation importance results, feature contribution analysis
was conducted. For the oxacillin susceptibility prediction, the
dominant importance increase of pseudo ions 21 and 50,
referring to 2,410–2,430 Da and 2,990–3,010 Da, respectively,
matches with the research of Josten et al. (2014). Their study
regarded the fragment with an m/z ratio of 2,413 Da as a
marker for the presence of phenol-soluble modulin (PSM)-
mec, which is a small excreted peptide encoded by the mec
gene. Besides, the PSM-mec is excreted by agr-positive strains,
where it presents with the delta-toxin with an m/z ratio of
3,007 Da. For the clindamycin susceptibility prediction, fragment
around pseudo ion 64, the m/z ratio of 3,270 Da–3,290 Da is
present to show the expression of Cfr. Gene Cfr induces the
resistance to clindamycin. Beyond pseudo ion 64, ions 50 and
52 could be potential entry for biological insight analysis for
their high permutation importance on clindamycin susceptibility
prediction. The synergy importance increase occurred on pseudo
ions 64, 132, and 230, covering m/z of 3,270–3,290 Da, 4,630–
4,650 Da, and 6,590–6,610 Da. The hypothesis of synergy effect
between the susceptibility of oxacillin and clindamycin or even
among multidrug resistance could likely be tested by considering
the three ions above.

There are several limitations and restrictions in our study.
First, the discovery and replication cohorts are actually based
on the local part in the Taiwan area, and the model needs
more samples worldwide to become a practical susceptibility
prediction model at a global level. Second, in our study, we
only possessed and considered the susceptibilities of oxacillin
and clindamycin, the simplest case of the multi-label prediction.
There is a simple correlation analysis between two susceptibilities.
In the future, during the sample recruitment, information
about more than three kinds of susceptibilities could be tested
and collected to realize more complex serial label predictions.
Meanwhile, the statistical methods for isolate selection for
MALDI-TOF need to be improved. Previous study has concluded

that single isolate selection in MALDI-TOF may generate
biased results if missed to identify the diversity among isolates
(Pinar-Méndez et al., 2021). Considering the variation among
isolates, the MALDI-TOF result from one isolate for each
patient is not representative enough as the input data for
susceptibility prediction. Optimized statistical methods are
needed, such as multi-isolate selection or MS data integration
from multi isolates, which could be conducted in the future
study for a comprehensive prediction model. In addition, future
studies can adopt a novel ensemble method that considers
the relation among labels or susceptibilities instead of Lowest
Power set in this study for better serial prediction performance.
A platform or database combining resistance information, such
as prediction or tendency with large sample size and diverse drug
susceptibilities, could be continuous for future study. During
the permutation importance analysis, some pseudo ions were
pointed out to respond for the model refinement. These ions
could be considered as the potential biomarker or functional
segments and needed to analyze in the laboratory. Although
the AUC for oxacillin and clindamycin susceptibility prediction
indicates good performances, the accuracy for serial susceptibility
prediction still does not satisfy the clinical requirements.
However, our model presents the possibility of a proteomic-
based model with a machine learning algorithm for rapid serial
susceptibility prediction.

To summarize our study, we successfully constructed a multi-
label prediction model applying XGBoost in Lowest Power
set for oxacillin and clindamycin susceptibilities based on the
MALDI-TOF MS data with the output of serial labels. Multidrug
resistance is a threat to disturb treatment effects and usually
tested by AST, which is limited by the labor and facility
resource. Under large-scale size in the discovery cohort and
replication cohort, our model could realize serial susceptibility
prediction solidly, which ideally help patients and doctor with
clinical guidance and insights to the antibiotic usage efficiently
and accurately. In a nutshell, combing MALDI-TOF MS and
machine learning algorithm will widely spread a proteomic-
based antibiotic susceptibility test clinically taking advantage of
speed and accuracy and saving the resources that originally are
consumed for the costing and inefficient AST.
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Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass

spectrometry (MS) has recently become a useful analytical approach for microbial

identification. The presence and absence of specific peaks on MS spectra are

commonly used to identify the bacterial species and predict antibiotic-resistant strains.

However, the conventional approach using few single peaks would result in insufficient

prediction power without using complete information of whole MS spectra. In the past

few years, machine learning algorithms have been successfully applied to analyze the

MALDI-TOF MS peaks pattern for rapid strain typing. In this study, we developed a

convolutional neural network (CNN) method to deal with the complete information of

MALDI-TOF MS spectra for detecting Enterococcus faecium, which is one of the leading

pathogens in the world. We developed a CNN model to rapidly and accurately predict

vancomycin-resistant Enterococcus faecium (VREfm) samples from the whole mass

spectra profiles of clinical samples. The CNN models demonstrated good classification

performances with the average area under the receiver operating characteristic curve

(AUROC) of 0.887 when using external validation data independently. Additionally, we

employed the score-class activation mapping (CAM) method to identify the important

features of our CNN models and found some discriminative signals that can substantially

contribute to detecting the ion of resistance. This study not only utilized the complete

information of MALTI-TOF MS data directly but also provided a practical means for rapid

detection of VREfm using a deep learning algorithm.

Keywords: vancomycin-resistant Enterococcus faecium (VREfm), antibacterial drug resistance, MALDI-TOF MS,

convolutional neural network (CNN), rapid detection
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INTRODUCTION

Matrix-assisted laser desorption ionization time-of-flight
(MALDI-TOF) mass spectrometry (MS) has become a promising
analytical technique in many clinical microbiology laboratories
in identifying bacterial species. However, applying MALDI-TOF
MS in determining antibiotic susceptibility test (AST) has not
been widely developed. The traditional approach utilized the
presence or absence of several peaks on MS spectra to predict
the AST (Wolters et al., 2011; Lasch et al., 2014). However, the
predictive performance based on the traditional approach is
discrepant from each other, hindering the application in clinical
settings. The discrepancy in predictive performance would have
resulted from the insufficient number of peaks used in these
studies. Moreover, single peaks’ presence or absence rather than
the whole pattern of the peaks were used for classifying AST.
In the past few years, some studies have harnessed artificial
intelligence (AI) algorithms to analyze the MALDI-TOF MS
peaks pattern for classifying specific bacterial strains (Wang
et al., 2019, 2020b; Weis et al., 2022). Most of the works studied
Staphylococcus aureus (Weis et al., 2022), group B Streptococcus
(Wang et al., 2019), and Enterobacteriaceae (Weis et al., 2022).
By contrast, Enterococcus faecium is also a superbug with rising
clinical importance (Ahmed and Baptiste, 2018), only a few
studies have been reported for rapid detection of vancomycin-
resistant Enterococcus faecium (VREfm) by using MALDI-TOF
MS and machine learning approaches (Griffin et al., 2012; Wang
et al., 2021). Rapid detection of VREfm would result in favorable
clinical outcomes, including reduced mortality rate and reduced
use of broad-spectrum antibiotics for severe VREfm infection.

A recent benchmark study has demonstrated that a one-
dimensional convolutional neural network (CNN) outperformed
traditional machine learning methods for the bacterial species
identification based on the MALDI-TOF MS data (Mortier
et al., 2021). Deep learning methods, such as CNNs and
recurrent neural networks (RNNs), have been repeatedly proved
to outperform the classical machine-learning algorithms for large
datasets with high-dimensional data. A CNN applies filters in
the form of a convolution operation to extract features from the
data. The advantage of a CNN is that it reduces the parameters
compared to other neural networks by sharing them as multiple
filters (Lecun et al., 1998). The convolution method, which is
coupled with a small grid of input signals into local receptive
features, could be a solution to solve the peak shift among
samples to apply raw data directly. Furthermore, the convolution
filters share the parameters independent of position; thus, we can
reduce the number of used parameters. This parameter sharing
of the convolutional filters and the local connections of the nodes
increases the performance in handling sparsely connected data.

In this study, we aim to propose a CNN algorithm for
practical extraction and analysis of multidimensional MS spectral
data for VREfm prediction. By using the consecutively collected
MALDI-TOF MS data from large clinical isolates from two
tertiary medical centers (Chang Gung Memorial Hospital
[CGMH], Linkou branch, and Kaohsiung branch) in Taiwan
(Wang et al., 2021), we coupled with the respective laboratory-
confirmed antibiotic resistance profile to build CNN models for

antimicrobial resistance prediction. We first demonstrated the
efficacy of our CNN architectures for discrimination of VREfm
from vancomycin-susceptible Enterococcus faecium (VSEfm)
isolates in reporting the area under the receiver operating
characteristic (AUROC) value over 0.800. Next, a full CNN
model trained with data from the Linkou branch achieved good
performance with an average AUROC of 0.887 in predicting
VREfm in the independent data from the Kaohsiung branch.
Finally, we applied the Score-CAM method and statistical
analysis to examine the important features that the CNN models
used to predict VREfm isolates. Of note, some essential features
of the CNN model were reported in the literature and many m/z
ranges were novel features, showing significant differences in m/z
intensities of the MALDI-TOF MS spectra in the VREfm from
clinical susceptible isolates. Furthermore, since mass spectra
can be generated rapidly from colonies following an overnight
culture, we provide an efficient CNN framework to build a
prediction model for antimicrobial resistance based on the
complete MALDI-TOFMS profiles directly and, therefore, could
help the clinical management of patients with infectious diseases.

MATERIALS AND METHODS

Data Sources
Matrix-assisted laser desorption ionization time-of-flight MS
spectra of VREfm were used as the input features, while the
susceptibility test to vancomycin was used as the label of
interest. MALDI-TOF MS (Bruker Daltonik GmbH, Bremen,
Germany) spectra of VREfm were consecutively collected
between 2013 and 2017 in Chang Gung Memorial Hospital,
Linkou, and Kaohsiung branches. Themanufacturer’s instruction
was followed, and default settings were used to identify E.
faecium (Wang et al., 2018a). Biotyper 3.1 software (Bruker,
Germany) was used for species identification of E. faecium.
Regarding labeling, the susceptibility to vancomycin was
determined by using the paper disc method based on the
CLSI M100 guideline (CLSI, 2020). Accordingly, the detailed
specimen distribution of VREfm and VSEfm clinical isolates
is summarized in Supplementary Figures 1A,B in the Linkou
and Kaohsiung branches, respectively. The MALDI-TOF spectra
were preprocessed by using Flexanalysis (Bruker, Germany).
The relative intensity threshold was set as zero. The signal-to-
noise ratio (S/N ratio) of two was used to filter out signals
whose S/N ratio was lower than two. Baseline subtraction of the
raw spectra was done by using the top-hat algorithm. Savitzky-
Golay algorithm was adopted to smooth the spectra. MS spectra
preprocessed by the above methods were used as the input data
for the subsequent modeling.

CNN Model
In this study, we used one-dimensional CNNs to classify the E.
faecium strain with vancomycin resistance (VREfm) according
to the raw MS data. Herein, the MS raw data represent the
input data and the goal is to predict whether the given sample
is VREfm (class label 1) or not (VSEfm, class label 0). In total,
7997 E. faecium cases were identified and included from the
Linkou and Kaohsiung branches of CGMH, while 4,017 cases
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FIGURE 1 | Illustration of convolutional neural network (CNN) model architecture. C denotes different channels, and the dropout rate was 0.5.

were VREfm (50.23%) and 3,980 cases were VSEfm (49.77%)
cases, respectively.

Figure 1 shows a CNN model architecture used in this study.
Because the whole m/z signals of raw MS data represented
a vector consisting of 18,000 values, an average pooling (avg
pooling) layer is used for the summation of raw signals from the
nearby m/z peaks, which are sometimes shifted among samples.
A CNNmodel can learn local m/z signal patterns, which are good
discriminators between positive and negative instances in the
training dataset. We added three convolutional layers to learn the
information across the patterns of m/z peaks. The information
of adjacent m/z signals is embedded in the entries of kernels
(filters) used in the first convolution layer. Additional CNN layers
can learn higher-order interactions between signals at different
m/z regions. A convolution layer comprises four units, including
convolution filter or kernel, batch normalization, activation
function, and pooling. After the convolution, a flattened layer
was applied to conjugate the high-level information of m/z
peak patterns.

In this study, we tried several versions of CNN models
including preserving the average pooling layer (on or off),
different activation functions using tanh or rectified linear units
(ReLu), and a varying number of channels in the convolution
layers (32, 64, 128), and the dropout rate (0 or 0.5) in the final
fully connected layer. The output layer contained a single neuron
with the Sigmoid activation function, which learns the mapping
from the hidden (fully connected) layer to the output class labels
[0, 1]. The final output is a probability indicating whether an
input is a vancomycin-resistant E. faecium strain.

Training and Testing
To develop a robust CNN model, we applied 10-fold cross-
validation in the data from the CGMH Linkou branch to evaluate
the model performance for the optimal CNN architecture.
Next, the whole data from the CGMH Linkou branch were
used as the training set to develop the final CNN model; the
data from the CGMH Kaohsiung branch served as the unseen
independent testing set for the external validation. In making a
performance comparison on the testing set, we also applied two
commonly used machine learning (ML) algorithms, i.e., random
forest (RF) (Breiman, 2001) and extreme gradient boosting
(XGBoost) (Chen and Guestrin, 2016), to build the VREfm
predictionmodels. For theML-basedmodels, the input attributes
of the important peaks were selected by the feature selection
method used in the previous study (Wang et al., 2021). The
primary parameters of the two ML models were summarized in
Supplementary Table 1. In addition, we developed those models
using ten different random seeds for performance evaluation and
feature selection.

Performance Measurement of Predictive
Models
The VREfm prediction models trained using CNN algorithms
were evaluated via 10-fold cross-validation (CV) using the data
from the Linkou branches of CGMH. In the 10-fold CV, all the
data from Linkou branches of CGMH were randomly divided
into ten subgroups with approximately equal data sizes. Each
fold of subgroups was used as the independent testing data to
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evaluate the performance of the model trained on the other
dataset. To evaluate the model performance, accuracy (ACC) and
the area under the receiver operating characteristic (AUROC)
were considered as the primary metrics for the performance
comparison. After obtaining the CNN model architecture with
better performance, all data from the Linkou branches of
CGMH were used to train a full model. The data from the
Kaohsiung branch of CGMH served as the unseen independent
testing data for external validation, method comparison, and
feature selection.

Feature Selection Procedures
We selected the top and last 500 samples from the CGMH
Kaohsiung branch data according to the prediction scores from
the best CNN models. In order to see where the CNN model
learned from the MS peak patterns, we applied the selected
samples to verify the important weight of each m/z peak of
the CNN models using the Score-CAM technique (Wang et al.,
2020a). First, we ranked the Score-CAM scores of each m/z peak,
chose the highest 1% of peaks and conjugated the adjacent m/z
peaks into a range. Then, the informative features were identified
if the m/z peak ranges were selected at least eight times among
ten independent CNN models.

We further investigated the peak intensities of the informative
features and box plots were adopted to display their distributions.
For each m/z peak, the intensity values of all samples from
the CGMH Kaohsiung branch were normalized by the Z-score
transformation. Then, the normalized Z-scores of the given m/z
peaks within the informative features were averaged for every
sample. Of note, for a given informative feature, a few isolates
were removed from statistical comparison when the intensity for
the feature was zero.

Statistics
Statistical analysis was performed by using R software version
4. The differences of multiple groups were analyzed by one-way
ANOVA and followed by the Tukey post hoc test. In addition, the
differences in the normalized intensity of the informative features
between VREfm and VSEfm isolates were calculated byWilcoxon
rank-sum test and the significant level was controlled formultiple
testing using the q-valuemethod (Storey et al., 2020).

Code Availability
The computer codes that support the findings of this study were
deposited to the GitHub repository and are available at https://
github.com/p568912/CNN_MALDI-TOF_VREfm.

RESULTS

Development of Deep Learning-Based
VREfm Prediction Models
We aimed to develop a robust deep learning-based VREfm
prediction model using the complex MALDI-TOF m/z spectra
without predictive peak selection in the data preprocessing as
shown in the previous study (Wang et al., 2021). We used
the cases from the CGMH Linkou branch to evaluate the

architectures and parameters of the CNN models with a 10-
fold cross-validation approach. Next, we compared CNN model
performance with the other two machine learning algorithms
using the cases from the CGMHKaohsiung branch as the unseen
independent testing dataset. Finally, we trained ten CNN models
independently by setting different seeds for model initiation
and examining the prediction performance with two matrices
including ACC and AUROC.

We first tested different CNN architectures with the pooling
techniques on the input data and different activation functions.
As the pooling layer provides an approach to summarize the
MS peak intensities across the nearby region, the slight shift of
MS peaks across samples is expected to be solved. Indeed, the
variation of accuracies across 10-fold CV was much reduced
when the presence of a pooling layer (Figure 2A). When ReLu as
the non-linear activation function was used in the neurons, the
model performance with a prior pooling layer yielded the best
performance in the models (Figure 2B).

Next, we tried to decrease or increase the channel sizes to
32 and 128, respectively, for each convolution layer and added
dropout, which could avoid the overfitting problem. Without
dropout function, the ACC and AUROC of those models with
lower (32) or higher (128) channels were generally lower than
the models with a channel size of 64 (Figure 3A). However,
we observed that the proceeding dropout during training could
significantly improve the performance in prediction by showing
better AUROC values (Figure 3B).

Comparison Between Machine Learning
Models and CNN Models
The previous study applied a decision tree-based algorithm
named RF to predict the VREfm based on the selected m/z peaks
from manual alignment and statistical tests (Wang et al., 2021).
Accordingly, we constructed RF-based classifiers and XGBoost-
based classifiers with the selected m/z peaks and compared them
to our CNN models using whole MS spectra. In this study, the
MALDI-TOF MS spectra obtained from the CGMH Kaohsiung
branch were regarded as the independent testing dataset. To
evaluate the performance fairly, the training dataset was from
the Linkou branch and the cases from the Kaohsiung branch
was set as unseen testing dataset. The results showed in Figure 4.
CNN models attained higher performance in predicting VREfm
(average accuracy = 0.796) than RF and XGBoost (average
ACC = 0.762 and 0.772, respectively). Furthermore, the average
AUROC of the CNN algorithm achieved a better performance
of 0.887 than the other RF and XGBoost algorithms (average
AUROC= 0.845 and 0.855, respectively) (Figure 4B).

CNN Models Capture Important Features
to Predict VREfm
We applied the Score-CAM (Wang et al., 2020a) to examine
the importance of m/z signals as informative features to affect
the prediction performance of the best model for the top 500
VREfm and VSEfm prediction scores, respectively. Score-CAM
was introduced to visually explain how the CNNmodels classified
the MALDI-TOF MS signal patterns into two groups. According
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FIGURE 2 | Comparison of average pooling in terms of accuracy (A) and AUC (B) for input mass spectrometry (MS) raw data and rectified linear units (ReLu) as

activation function. Multiple comparison tests on the different units were applied in the models using one-way ANOVA, following the post-hoc Tukey honest significant

difference (HSD) test for paired difference with a p-value < 0.05. Different letters indicate a significant difference.

FIGURE 3 | Comparison of model performance in terms of accuracy (A) and AUC (B) for with different channel sizes and dropouts. Multiple comparison tests on the

different units were applied in the models using one-way ANOVA, following the post-hoc Tukey HSD test for paired difference with a p-value < 0.05. Different letters

indicate a significant difference.

to the Score-CAM scores and selection procedures (see Materials
andMethods), the informative features as the predictivem/z peak
ranges for making the final categorization decision as VREfm
or VSEfm were shown in Figures 5A,B, respectively. First, the
informative features for classifying respective VREfm and VSEfm
were mostly overlapped. That is, the CNNmodels could evaluate
the patterns of the mass peak ranges to distinguish VREfm and
VSEfm consistently. Second, many m/z peak signatures, have
been reported to identify the vancomycin-resistant E. faecium. in
the previous works of literature (Lasch et al., 2014; Wei et al.,
2014; Wang et al., 2021), were included in the ranges of our
informative features. For example, six out of ten most critical

predictive peaks for VREfm prediction in our previous work
(Wang et al., 2021) have been identified as the important feature
ranges of the CNN models. Third, several informative features
were specific to classify VREfm such as 3,301–3,304 Da, 5,114–
5,118 Da, 5,197–5,200 Da, 5,247–5,253 Da, and 6,602–6,608 Da.
In comparison with the statistical method to extract crucial peaks
in our previous study (Wang et al., 2021), the occurrence of two
peaks of m/z 3,302 andm/z 6,603 were concordantly found in the
current CNN model.

We selected the 30 informative features based on the Score-
CAM results and further illustrated the differences in intensities
of spectra between VREfm and VSEfm (Figure 5C). Notably,
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FIGURE 4 | Comparison of prediction performance in terms of accuracy (A) and AUC (B) using different models. Multiple comparison tests on the different units were

applied in the models using one-way ANOVA, following the post-hoc Tukey HSD test for paired difference with a p-value < 0.05. Different letters indicate a significant

difference.

FIGURE 5 | Feature selection is based on the Score-CAM. Each row of m/z peaks represents the important features with top 1% weights in the different models. The

important features of our CNN models for the classification of vancomycin-resistant E. faecium (VREfm) (A) and vancomycin-susceptible E. faecium (VSEfm) (B) in the

last and top 500 testing cases, respectively. Rectangles represent the important features of m/z ranges selected by at least 8 independent CNN models using

Score-CAM. Triangles indicate that the important markers at m/z signals for discrimination of VREfm strain have been identified in the literature. Blue is identified by

Wei et al. (2014), black is identified by Lasch et al. (2014), and orange is identified by Wang et al. (2020b). (C) The intensity distribution of informative features with the

normalized intensities of 500 resistant and 500 susceptible isolates. The star (*) indicates a statistical difference in the feature intensities between resistant and

susceptible isolates. Wilcoxon-rank sum test was applied to test the difference between the two groups. * q-value < 0.05, ** q-value < 0.01, ***, q-value < 0.001.

25 out of 30 informative features in terms of their average
m/z peak intensities showed a significant difference between
the resistant and susceptible isolates (q-value < 0.05, Wilcoxon
rank-sum test). The important features in the Score-CAM
were apparently in accordance with the observed results of
the MALDI-TOF signal profiles (Supplementary Figure 3). This

investigation implied that the Score-CAM method successfully
captured the critical signals to distinguish the VREfm and
VSEfm isolates by the CNN model. More importantly, the
results provide an explanation that our CNN models could
automatically detect the important features to obtain high
performance reasonably.
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DISCUSSION

This study focused on the classification of resistance strain typing
of E. faecium based on the MALDI-TOF MS utilizing CNN
algorithm method directly. Specifically, the complete raw spectra
data did not need to undergo the time-consuming preprocessing
steps such as peak alignment of individual samples and statistical
analysis to filter out crucial peaks. Instead, we utilized the
average pooling method to solve the problem of peak shift across
samples and the deep learning technique to learn the complex
interaction between m/z peaks related to the resistant and
susceptible E. faecium strain typing. The rapid identification of
VREfm strain types will facilitate the speed in the identification of
suspicious infections and provide suitable treatment to patients
for rapid infection control. Additionally, we further explore
the discriminative features in the CNN model, which was
considered a black box, and will allow the identification of each
corresponding peptide with further biological experiments as
the followings. Such findings should provide clinically valuable
information pertaining to the different subtypes of E. faecium and
other resistant bacterial strains.

In order to handle the issue of peak shifting, alternative
approaches were used including “type templates” for each
susceptible type based on the incidence of specific peaks in their
MALDI-TOFMS spectra (Wang et al., 2018a,b), recursive search
based on the statistical analysis and performance of classifiers
(Chung et al., 2019) and the embedded feature-selection method
(Wang et al., 2021). Different approaches were designed to deal
with the peak shift problem of using spectral data with particular
procedures. In contrast, we here use the average pooling, which
is a straightforward approach, to consider the peak shift problem
to tolerant the difference across the spectra data. Although the
average pooling might compromise the crucial peak values by the
nearby unrelated peaks, the convolutional neural networks were
applied to extract the important information among features with
fully connected layers in each convolution unit (Figure 1). In
addition, many peak values in the whole spectra data were zero.
The introduction of the ReLu function overcame the vanishing
gradient problem better than the sigmoid function as suggested
for the image classification problems (Krizhevsky et al., 2017)
in Figure 2. Therefore, the CNN architecture could be an easy
and suitable solution for the classification of VREfm and VSEfm
isolates using whole MS spectra data.

Directly input of whole MS spectra data in the convolutional
neural network could be suffered by the exploration of
parameters and thus causes the overfitting problem in such
networks. It has been demonstrated that dropout techniques
are robust to prevent neural networks from overfitting (Hinton
et al., 2012; Srivastava et al., 2014). We, therefore, applied the
dropout in the later layers of CNN model architecture and
yielded significantly better AUROC performance (Figure 3B).
With a detailed examination of the CNN model architecture, the
proposed CNN model in this study remarkably outperformed
other ML models, which were developed in our previous works
(Wang et al., 2021), for clinical application (Figure 4).

Although identification of crucial predictive peaks in VREfm
strains may not be essential in clinical application, interpreting

CNN models is important to build people’s confidence in the
system and to facilitate future studies in the exploration of
molecular mechanisms behind the resistance. The parameters
of deep neural networks are usually large and difficult to be
interpreted. However, several techniques such as saliency map
(Hong et al., 2015) and Score-CAM (Wang et al., 2020a) have
been developed to explain the crucial features in the deep neural
networks successfully. In the feature selection section, most of
the informative features have been reproducibly identified among
10 CNN models with randomly assigned initial values. That
is, our proposed CNN models were robust enough to reach a
globally optimal solution to predict VREfm isolates persistently.
In this study, many informative features were identified in the
ranges from 3,000 to 4,000 Da, which overlapped with those
crucial m/z peaks reported in several previous studies (Lasch
et al., 2014; Wei et al., 2014; Wang et al., 2021). Moreover,
some informative features were present in the VREfm or VSEfm
isolates, respectively. The findings of VREfm-specific features in
6,602–6,608 Da has been reported that the peak m/z 6,603 is
specific for vanB-positive VREfm (Griffin et al., 2012). These
VREfm-specific features are worthy of further characterization in
further investigations.

Indeed, the VREfm prediction model may detect specific
resistant clones instead of the resistant mechanisms. Although
the investigation into the resistant mechanism of VREfm is a
thoughtful question that we cannot totally figure out in the
current stage, we conducted strain typing for the VREfm isolates
to illustrate the basic molecular composition. We randomly
selected 455 VREfm isolates from blood cultures collected in
the institutes over time (2002–2015). In the 455 isolates, only
4 isolates (0.88%) were vanB, vanA was predominant (> 99%).
Then, we examined the clones by using a multi-locus sequence
for the 455 VREfm isolates. The results showed that a total of 24
ST types were identified (Supplementary Figure 2). For testing
algorithm on isogenic strains of E. faecium, we focused on ST17
as the representative strain and tested ML model performance
on discriminating ST17 with van gene and ST17 without van
gene. The ML model attained sensitivity 0.89, specificity 0.8, and
AUROC 0.9 in discriminating VSEfm ST17 from VREfm ST17.
Moreover, the high diverse clone composition for the VREfm
isolates has implied that there are some resistance-conferring
peptides/proteins in common among various ST types. Given
the high diversity of the clones over time, the VREfm prediction
model could actually detect the pattern of peaks associated with
vancomycin resistance. A total understanding of the underlying
mechanism depends on comprehensive identifications of the tens
of the informative peaks. Identification of the discriminating
peaks would be a tough task that necessaries efforts from the
scientific community. In the study, we aimed to develop and
validate a novel data preprocessing method that can dig out
the implicit information from existing MALDI-TOF spectra
for predicting the AST of vancomycin. Meanwhile, the CNN
models also provided a list of informative features that are
worthy of further molecular investigation to fully understand the
underlying mechanism of drug resistance.

There are some limitations to this study. First, the bacterial
strains vary according to the environments and locations.
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Because our data were collected from two tertiary different
medical centers in Taiwan, our trained CNN models may not be
universally suitable to predict the VREfm strains in other areas
or countries. However, the CNN model algorithm is believed to
be a powerful method for classifying VREfm strains in clinical
applications. Second, our primary goal was to develop and
validate a practical and ready-to-use CNN model in clinical
practice using whole MALDI-TOF MS spectra. As mentioned
earlier we reported some crucial informative peak features for
VREfm, however, it is worthy of further confirmation in the
identities for these specific peaks corresponding to which peptide
products experimentally.

In conclusion, the CNN model was designed to be used in
clinical practice. Based on the design, the input is a whole-cell
MALDI-TOF MS spectrum that is routinely used for species
identification in the clinical microbiology laboratory. Thus, no
additional experiment is needed by clinical microbiologists. Once
an isolate is identified as E. faecium, the raw MALDI-TOF
MS spectrum will be transferred to the CNN model directly.
Susceptible or resistant to vancomycin will be predicted in
seconds and can be provided to clinical physicians.
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The increasing spread of drug-resistant bacterial strains presents great challenges to
clinical antibacterial treatment and public health, particularly with regard to β-lactamase-
producing Enterobacteriaceae. A rapid and accurate detection method that can
expedite precise clinical diagnostics and rational administration of antibiotics is urgently
needed. Targeted proteomics, a technique involving selected reaction monitoring or
multiple reaction monitoring, has been developed for detecting specific peptides.
In the present study, a rapid single-colony-processing procedure combined with an
improved parallel reaction monitoring (PRM) workflow based on HRAM Orbitrap MS was
developed to detect carbapenemases (Klebsiella pneumoniae carbapenemase, KPC;
imipenemase, IMP; Verona integron-encoded metallo-β-lactamase, VIM; New Delhi
metallo-β-lactamase, NDM; and oxacillinase, OXA), extended spectrum β-lactamases
(TEM and CTX-M), and AmpC (CMY-2) produced by Enterobacteriaceae. Specific
peptides were selected and validated, and their coefficients of variation and stability
were evaluated. In total, 188 Enterobacteriaceae strains were screened using the
workflow. Fourteen out of total 19 peptides have 100% specificity; three peptides have
specificity >95% and two peptides have specificity ranged from 74∼85%. On the
sensitivity, only nine peptides have 95∼100% sensitivity. The other 10 peptides have
sensitivity ranged from 27∼94%. Thus, a screening method based on peptide groups
was developed for the first time. Taken together, this study described a rapid extraction
and detection workflow for widespread β-lactamases, including KPC, IMP, VIM, NDM,
OXA, CMY, CTX-M, and TEM, using single colonies of Enterobacteriaceae strains.
PRM-targeted proteomics was proven to be a promising approach for the detection
of drug-resistant enzymes.

Keywords: Enterobacteriaceae, β-lactamases, specific peptides, detection, PRM

INTRODUCTION

With the extensive clinical use of carbapenems and β-lactam antibacterial drugs, the incidences
of antibiotic resistance have increased. The increasing population of multi-drug resistant (MDR)
and extensively drug-resistant strains accompanied with the rapid spread of antibiotic-resistance
genes have posed great challenges to clinical anti-bacterial treatment and public health. In the
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list of bacteria for which new antibiotics are urgently needed
released by the World Health Organization in 2017, carbapenem-
resistant Enterobacteriaceae (CRE) and extended-spectrum
β-lactamase (ESBL)-producing Enterobacteriaceae, were
included in the Critical group (Priority 1) (WHO, 2017).
β-lactamases are a group of bacterial enzymes that can inactivate
β-lactam antibiotics, resulting in the loss of antibacterial activity
(Eliopoulos and Karen, 2001). β-lactamases are currently divided
into four classes: A, B, C, and D according to the Ambler
classification, based on their primary structure (Bush and Jacoby,
2010). Carbapenems are generally regarded as the last treatment
choice for serious bacterial infections. Carbapenemases are
β-lactamases with versatile hydrolytic capacities: the A and
D class carbapenemases are serine-type hydrolases, such as
Klebsiella pneumoniae carbapenemase (KPC), and oxacillinase
(OXA). The B class carbapenemases are metallo-hydrolases, such
as New Delhi metallo-β-lactamase (NDM), imipenemase (IMP),
and Verona integron-encoded metallo-β-lactamase (VIM).
ESBLs belong to the class A and D β-lactamases. ESBLs such
as the TEM (ampicillin resistance) and CTX-M (cefotaxime
resistance) groups belong to class A β-lactamases (Pitout et al.,
2005). AmpC β-lactamases such as CMY-2 belong to class C
of carbapenemases (Philippon et al., 2002). Enterobacteriaceae,
including Escherichia coli, K. pneumoniae, and Enterobacter
cloacae, which carry several types of β-lactamases, represent
a great challenge to the clinical diagnostics and treatment of
various infections (Duin, 2017).

Early diagnosis and effective drug treatment are key strategies
to deal with the antibiotic-resistance problem (Rodríguez-Baño
et al., 2018). Thus, rapid and accurate detection methods
are urgently needed in clinical practice. A short testing time
and accurate diagnosis will assist in providing an appropriate
antibiotic treatment in time. For the last few decades, traditional
approaches for the detection of β-lactamases, such as standard
disk-diffusion procedure, broth microdilution, and agar dilution,
have been used, which are time-consuming and can only
determine the drug-resistance property but not the β-lactamase
type. Synergy testing is accurate and allow to identify the
carbapenemase classes, which is the info needed for therapeutic
choices. Polymerase chain reaction (PCR) are very sensitive and
fast and can be used also from primary samples (Dallenne et al.,
2010). Whole genome sequencing, which can accurately identify
the genotypes of β-lactamases, is still not practical for usual
clinical application because of the high price. However, since
drug-resistant enzymes are the products of regulated expression,
the detection of a gene may not be correlated with the successful
expression of the β-lactamases. Carba NP test based on the
detection of enzyme activity (Vasoo et al., 2013) are rapid but not
specific for a single type of carbapenemase. The mCIM and eCIM,
phenotypic detection methods based on carbapenem inactivation
methods, can detect carbapenemases in Enterobacteriaceae
and Pseudomonas aeruginosa and differentiate metallo-beta-
lactamases from serine carbapenemases in Enterobacteriaceae
(Tsai et al., 2020).

The direct detection and quantification of β-lactamases
have become easier with the development of protein detection
and quantitation techniques in recent years. Lateral flow

immunoassay methods based on antigen-antibody reaction
(Boutal et al., 2017) are limited to the types of antibodies,
but actually they cover the vast majority of carbapenemases
found in clinical microbiology routine, beyond being extremely
fast. For the past few decades, liquid chromatography with
tandem mass spectrometry (LC-MS/MS) has been widely used
in various fields of protein analysis, biochemical analysis, natural
product analysis, and drug and food analysis among other
areas (Suh et al., 2017). LC-MS/MS has gradually become
one of the most popular analytical tools for protein detection.
Shotgun proteomics has been used to identify wild-type and
resistant strains of the pathogen Acinetobacter baumannii
(Chang et al., 2013). Additionally, a capillary electrophoresis-
electrospray ionization-tandem mass spectrometry bottom-up
proteomics workflow has been established for the identification
of OXA-48 and KPC (Fleurbaaij et al., 2014). MALDI-TOF
MS has been used to identify for carbepanemase detection
with different analytical approaches (Hleba et al., 2021).
Additionally, the bottom-up proteomics approach has also
been applied to identify CTX-M ESBLs (Fleurbaaij et al.,
2017). Recently, targeted LC-MS/MS based on selected reaction
monitoring (SRM) and multiple reaction monitoring (MRM)
using triple quadrupole mass analyzer, and parallel reaction
monitoring (PRM) techniques using on high resolution/accurate
mass has been used in β-lactamase testing. Specific peptides
of A. baumannii identified via LC-MS/MS profiling have
been used to classify clinical isolates (Honghui et al., 2016).
Targeted high-resolution MS assays have been developed for
the detection of KPC, OXA-48, NDM, and VIM enzymes
(Wang et al., 2017, 2019; Foudraine et al., 2019; Strich et al.,
2019). However, there are still many β-lactamases that have
not been detected by targeted proteomics. Traditional SRM-
MS on a triple quadrupole mass spectrometer is limited in
the complex sample analysis due to the mass filtering and low
resolution quadrupole, and more method development time
is needed to define transitions (precursor/product ion pairs).
In our study, a system comprising a rapid sample-processing
procedure combined with improved PRM using HRAM (High
resolution accurate mass) Orbitrap MS was developed to detect
carbapenemases (KPC, IMP, VIM, NDM, and OXA), ESBLs
(TEM and CTX-M), and AmpC (CMY-2) using a single colony
of Enterobacteriaceae strains.

MATERIALS AND METHODS

Strains and Culture Conditions
A total of identified and subcultured 192 Enterobacteriaceae
strains were used in this study (Supplementary Table 3),
including K. pneumoniae American Type Culture Collection
(ATCC) BAA-2146 and 191 clinically isolated strains. The
selected strains comprised 73 E. coli, 83 K. pneumoniae, 25
E. cloacae strains, five Klebsiella oxytoca, and six Citrobacter
freundii. Four of these isolates were used for the test development
process, and 188 were used for the test validation phase. All
the strains were cultured in Luria-Bertani agar plates at 37◦C
overnight. All the strains were stored in the Collection Center
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of Pathogen Microorganism of Chinese Academy of Medical
Sciences in China.

Peptide Preparation
Single colonies (diameter >2 mm) were picked using a
micropipette tip or a 10 µL loop, and resuspended in 200 µL of
50 mM ammonium bicarbonate (MS grade; Merck, Germany),
sonicated for 1 min (3 s of sonication, 6 s of rest), centrifuged at
12,000 × g for 2 min and heated at 95◦C for 5 min, after which
the buffer was removed using 10K Nanosep centrifugal device
with Omega membrane (Pall Corporation, Port Washington,
NY, United States). Ammonium bicarbonate buffer (50 mM)
was added along with sequencing grade trypsin (Promega
Corporation, Madison, WI, United States), and the solution was
microwaved in a water bath followed by heat treatment at 55◦C.
The peptide concentration was measured using the PierceTM

Quantitative Colorimetric Peptide Assay kit (Thermo Fisher
Scientific, Waltham, MA, United States).

Nano LC-MS/MS
Data-dependent analysis was performed on the Thermo Scientific
Orbitrap Fusion Lumos platform coupled with an EASY-nLC
1200 system (Thermo Fisher Scientific, San Jose, CA, United
States) to build a spectral library. The digests were separated by
the trap column [ReproSil-Pur 120 C18-AQ (3 µm, Dr. Maisch
GmbH, Ammerbuch, Germany); 20 × 0.05 mm] followed by
a C18 column [ReproSil-Pur 120 C18 (1.9 µm, Dr. Maisch
GmbH, Ammerbuch, Germany); 120 × 0.15 mm] at a flow
rate of 600 µL/min. The solvent buffer A comprised water with
0.1% formic acid, and solvent B comprised 80% acetonitrile
with 0.1% formic acid. After sample loading, the gradient was
initiated with 11% of buffer B, and then increased from 11
to 13% of buffer B for 2 min. The gradient increased up
to 32% of buffer B in 16 min, and then to 42% in 7 min.
Finally, the gradient was increased to 95% of buffer B in 1 min
and was maintained for 4 min. The MS parameters were as
follows: MS1 (Orbitrap analysis; mass range, approximately
350–1,550 m/z; resolution, 120,000; AGC target, 5 × 105; RF
lens, 50%; maximum injection time, 50 ms), MS2 [high-energy
collisional dissociation (HCD) collision energy, 32%; maximum
injection time, 22 ms; AGC, 5 × 104; isolation window, 1.6 Da;
Orbitrap solution, 15,000]. For database analyses, these raw
data were searched against a combined bacterial antimicrobial
resistance database downloaded from the National Center for
Biotechnology Information (NCBI; National Institutes of Health,
Bethesda, MD, United States) using the Thermo ScientificTM

Proteome DiscovererTM version 2.2 (PD2.2) software. Trypsin
was specified for protein digestion with two missed cleavages
allowed for each peptide. The search parameters were set as
previously described (Espadas et al., 2017).

Peptide Selection
The protein sequences of KPC, VIM, IMP, NDM, OXA, TEM,
CMY, and CTX-M were downloaded from the NCBI database1

to build an amino acid sequence library. Tryptic peptides were

1https://www.ncbi.nlm.nih.gov/pathogens/refgene/

searched and aligned using the protein basic local alignment
search tool (BLAST2) to ensure uniqueness. The peptides
with missed-cleaved, two neighboring basic amino acids at
either cleavage site (KK, RR, KR, and RK), and W and M
residues were excluded.

Targeted Proteomics and Data Analysis
Targeted proteomics was performed on the Thermo Scientific
Orbitrap Fusion Lumos platform coupled with an EASY-nLC
1200 platform. QQDLVDYSPVSEK and VDAGDEQLER served
as internal reference. The columns used and elution gradient were
the same as mentioned above. PRM parameters: MS1 spectrum
(Orbitrap analysis; resolution, 60,000; mass range, approximately
350–2000 m/z; RF lens, 30%; AGC target, 2.0 × 105; maximum
injection time, 50 ms) and MS2 analysis (HCD; collision energy,
30%; AGC, 5.0× 104; maximum injection time, 54 ms for specific
peptides or 22 ms for synthetic isotope labeled (SIL) peptides;
Orbitrap resolution, 30,000 for specific peptides or 7,500 for
SIL; isolation window, 1.4 Da). Data on the peptides [retention
time (RT), m/z, and charge] were imported into the MS method.
For data analysis, the acquired data were analyzed using Skyline
20.1.0.155 (MacCoss Lab Software, University of Washington,
Seattle, WA, United States) (MacLean et al., 2010). The amino
acid sequences of the drug-resistant enzymes downloaded from
the NCBI were imported as the background library. Data-
dependent acquisition (DDA) raw data were imported to build
the spectra database. After the amino acid sequences of specific
and SIL were inserted, the PRM data were imported and for
each targeted peptide, the ratio between the peak area of the
endogenous peptide and that of the SIL was calculated, and the
relative concentration of targeted peptides was calculated based
on the SIL with fixed quantity. Whether the CRE/ESBL enzymes
were defined as positive or negative depended on the peptide
when the following criteria were met: an RT similar to that of
the SIL, library dot product (dotp) > 0.8 and ratio dot products
(rdotp) > 0.95. Coefficients of variation (CV) were calculated,
and stability of the peptides was evaluated by performing three
freeze-thaw cycles of the peptides and storage of the peptides for
0, 1, 3, and 4 days in the sample holder (10◦C).

Detection of Drug-Resistant Genotypes
via Polymerase Chain Reaction
Multi-drug resistant genes were analyzed via PCR
(Dallenne et al., 2010) using the GoTaq Green Master Mix
(Promega). The primers and parameters used are listed in
Supplementary Table 1.

RESULTS

Selection of Unique Peptides
Amino acid sequences of the enzymes were downloaded
from the NCBI,3 and potential peptides were evaluated using

2https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=
BlastSearch&LINK_LOC=blasthome
3https://www.ncbi.nlm.nih.gov/protein/
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PeptideCutter.4 In view of the varying responses of peptides
analyzed via MS, four strains (Table 1) were used to evaluate the
ionization capabilities of peptides via DDA, and the specificity
of the peptides was assessed by performing BLASTp searches.
Unique peptides with high signal stability, appropriate RT, and
relatively stable amino acid residues were chosen as peptides
markers for KPC, IMP, VIM, NDM, OXA, CMY, CTX-M, and
TEM. Val (13C5, 15N), Gly (15N), and Ala (13C3, 15N) were used
to label the peptides (Table 2). Other candidate peptides detected
are listed in Supplementary Table 2. The data are deposited in
the PRIDE repository, accession number PXD028791.

Parallel Reaction Monitoring Assay
Development
To develop a rapid method for peptide detection, a 30-min Nano
LC-MS/MS method was developed, with parameters for peptide
markers as shown in Table 2. Different Orbitrap resolutions
for specific and SIL were used to improve identification speed,
quantity and quality (Stopfer et al., 2021). Figure 1 shows the
workflow of the rapid detection method for β-lactamases. The
raw data were analyzed using Skyline, and the library dotp, rdotp,
and R ratio values were exported. According to the library dotp,
rdotp, and R ratio values obtained from the strains, the following
rules were set: library dotp > 0.8, rdotp > 0.95, and RT similar
to that of SIL (Figure 2). A wash procedure for 30 min was
performed after each sample to avoid false-positive results caused
by the carryover effect.

Optimization of Rapid Digestion
Conditions
To obtain high-quality spectra while reducing the digestion
time, protein solutions with trypsin were microwaved for 5,
10, and 15 min, as well as heated in a water bath at 55◦C
for 15, 30, and 45 min after being microwaved for 2 min
separately. Peptides were collected and analyzed via Nano LC-
MS/MS. The total processing time was <1 h. As shown in
Supplementary Figure 1, the peptides could be detected for all
digestion conditions even after being microwaved for 5 min.
For most peptides, an increase in digestion time led to an
increase in abundance; however, the digestion conditions had
no effect on the peptides LAEAEGNEIPTHSLEGLSSSGDAVR,
VQATNSFSGVNYWLVK, IINHNLPVK, and NSFGGVNYW
LVK. To ensure that all peptides were identified under optimal

4https://web.expasy.org/peptide_cutter/

conditions, microwave treatment for 2 min combined with heat
treatment using a 55◦C water bath for 30 min was performed in
subsequent experiments.

Reproducibility and Stability Tests
The reproducibility of applications of the peptide markers was
evaluated using four strains that were positive for KPC, IMP,
VIM, NDM, OXA, CMY, CTX-M, and TEM based on the CV of
six replicates in 1 day and in 3 different days (Table 3). The CVs of
endogenous contents were determined using SIL (Table 2). The
CVs of 16 peptides were <30%. While the CV of IINHNLPVK
wasn’t acquired as signal miss in some of the samples. No carry-
over effects were observed for any of the selected peptides.

Stability is an important property that should be evaluated
in method development. The SIL were added to the peptide
solutions of E. coli DH5α that did not contain β-lactamases. The
peptide stability after three freeze-thaw cycles and stability in
the sample holder were measured separately. Six replicates were
performed for all experiments. As shown in Supplementary
Figure 2, the contents of DGDELLLIDTAWGAK and
VGYIELDLNSGK decreased significantly after three freeze-thaw
cycles (<80%), whereas the contents of LIAQLGGPGGVTAFAR
and APLILVTYFTQPQPK decreased slightly (approximately
80–90%). These results suggest that repeated freezing and
thawing of these four peptides should be avoided during
use. Regarding stability in the sample holder for 0, 1, 3, and
4 days, the content of DGDELLLIDTAWGAK decreased
significantly (70%) in 1 day, and down to 6% on the fourth day
(Supplementary Figure 3). The content of VGYIELDLNSGK
decreased significantly (64%) on the third day, whereas the
content of APLILVTYFTQPQPK reduced to approximately 82%
on the fourth day. The results suggest that these peptides should
be held for short durations in the sample holder.

Method Validation
After the preliminary evaluation of the rapid detection
method, blinded testing of 188 clinical strains was
conducted. Strains of E. coli, K. pneumoniae, E. cloacae
strains, K. oxytoca, and C. freundii were included in the
assays. As shown in Table 4, all the β-lactamases tested
were detected both via LC-MS/MS and PCR. Most of the
peptide markers for the β-lactamases showed 100% specificity
except for LDEGVYVHTSFEEVNGWGVVPK(IMP, 85%),
TEPTLNTAIPGDPR(CTX-M-1 group and 9 group, 97%), APLIL
VTYFTQPQPK(CTX-M-1 group, 99%), SDLVNYNPIAEK

TABLE 1 | β-lactamase information of isolates used in method development.

Name KPC NDM VIM IMP OXA TEM CMY CTX-M

Klebsiella pneumoniae ATCC BAA-2146 (Kwon et al., 2016) – + – – + + + +

Klebsiella pneumoniae 1705a + + – – + + – +

Klebsiella pneumoniae 17-R66a – – – + – + – +

Klebsiella pneumoniae 17-R42a – – + + – + – –

aMeasured by PCR and DNA sequencing.
KPC, Klebsiella pneumoniae carbapenemase; IMP, imipenemase; VIM, Verona integron-encoded metallo-β-lactamase; NDM, New Delhi metallo-β-lactamase; OXA,
oxacillinase; CTX-M, β-lactamase against cefotaxime.
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TABLE 2 | Selected target peptides for the rapid detection of multi-drug resistance enzymes.

Peptide Enzyme Genotypea Labeled site Charge m/z
(unlabeled)

RT (min)

AAVPADWAVGDK KPC 1∼95 GLY(15N) 2 600.3064 15.4

SQQQAGLLDTPIR KPC 1∼95 except for 13, 45, 59 GLY(15N) 2 713.8861 16.7

LVVPSHSEVGDASLLK IMP-1 1, 5, 7, 10, 28, 30, 34, 40, 42,
43, 52, 55, 60, 61, 66, 70, 73,

76, 77, 79, 81, 85, 88

GLY(15N) 2 825.9567 16.1

VQATNSFSGVNYWLVK IMP-1 1, 3, 6, 10, 25, 30, 34, 40, 42,
52, 55, 60, 61, 66, 70, 76∼80,

88

GLY(15N) 2 906.9676 22.9

NSFGGVNYWLVK IMP-4 4, 26, 38, 59, 89 GLY(15N) 2 692.3564 22.6

LDEGVYVHTSFEEVNGWGVVPK IMP 1, 3, 4, 5, 6, 7, 15, 25, 28, 29,
34, 38, 51, 52, 60, 61, 62, 59,

70, 79, 81, 82, 85

GLY(15N) 3 821.0727 22.2

LAEAEGNEIPTHSLEGLSSSGDAVR VIM 1, 4, 5, etc. GLY(15N) 3 847.0805 16.33

DGDELLLIDTAWGAK VIM All except for 7, 13, 47, 61, 69 GLY(15N) 2 808.9120 26.71

AFGAAFPK NDM 1∼31 GLY(15N) 2 404.7212 14.6

NNGLTEAWLESSLK OXA-1 family 1, 4, 31, 47, 224, 320, 392,
534, 675(oxa-1 family)

GLY(15N) 2 781.3965 22.3

IINHNLPVK OXA-1 family 1, 4, 31, 47, 224, 320, 392,
534, 675(oxa-1 family)

VAL (13C5,
15N)

3 349.8818 8.8

ADIANNHPVTQQTLFELGSVSK CMY-2 family 2, 4, 5, 6, 7, etc. GLY(15N) 2 1185.108 19.5

TLQQGIALAQSR CMY-2 family 2, 4, 5, 6, 7, etc. GLY(15N) 3 429.2454 14.2

QLTLGHALGETQR CTX-M-9 group 9, 13, 14, 17, 21, 19, 24, 65,
81, etc.

GLY(15N) 3 475.2599 13.3

TEPTLNTAIPGDPR CTX-M All ctx-m genotypes except for
4, 6, 7, 19, 23, 35, 42, 52, 54,
58, 62, 74, 87, 93, 99, 117,

126, 144, 147, 151, 155, 157,
168, 204, 219, 212, 221

GLY(15N) 2 741.3834 15.1

LIAQLGGPGGVTAFAR CTX-M-9 group 9, 13, 14, 16, 21, 17, 19, 81,
etc.

GLY(15N) 2 764.4357 20.8

APLILVTYFTQPQPK CTX-M-1 group 1, 3, 10, 12, 15, etc. Ala (13C3,15N) 2 858.4902 26.8

SDLVNYNPIAEK CTX-M-1 group 1, 2, 5, 12, 15, etc. Ala (13C3,15N) 2 681.8486 16.1

VGYIELDLNSGK TEM All except for 60, 139, 178, 210 GLY(15N) 2 654.3457 19.56

aAll the genotype-matching results are based on data obtained from the NCBI ANTIMICROBIAL RESISTANCE GENE database. With an increase in data, the results will
change. m/z, mass to charge ratio; RT, retention time.

FIGURE 1 | Workflow for the detection of β-lactamases.

(CTX-M-1 group, 95%), and VGYIELDLNSGK(TEM,
74%). Peptide markers for KPC(AAVPADWAVGDK),
IMP-1, VIM-1, and NDM showed 100% sensitivity.
However, the positive sensitivities for SQQQAGL

LDTPIR(KPC), NSFGGVNYWLVK(IMP-4), LDEGVYVHTS
FEEVNGWGVVPK(IMP), NNGLTEAWLESSLK(OXA-1), II
NHNLPVK(OXA-1), ADIANNHPVTQQTLFELGSVSK(CMY-
2), TLQQGIALAQSR(CMY-2), QLTLGHALGETQR(CTX-M-9

Frontiers in Microbiology | www.frontiersin.org 5 June 2022 | Volume 13 | Article 784628777878

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-784628 June 14, 2022 Time: 15:44 # 6

Lu et al. PRM-MS for β-Lactamase Detection

FIGURE 2 | LC-MS/MS chromatograms of the peptides (TLQQGIALAQSR, AAVPADWAVGDK, LVVPSHSEVGDASLLK, and LAEAEGNEIPTHSLEGLSSSGDAVR) in
Skyline. Different colors represent different fragment ions.

group), LIAQLGGPGGVTAFAR(CTX-M-9 group), TEPTLN
TAIPGDPR(CTX-M-9 group, CTX-M-1 group partial),
APLILVTYFTQPQPK(CTX-M-1 group), SDLVNYNPIAEK
(CTX-M-1 group partial), and VGYIELDLNSGK(TEM) were
98% (49/50), 58% (14/24), 92% (24/26), 78% (14/18), 78%
(14/18), 27% (6/22), 82% (18/22), 39% (27/70), 81% (57/70),
98% (116/118), 98% (57/58), 76% (44/58), and 74% (67/90),
respectively. Peptide values were calculated using the labeled
peptides that are listed in Table 4.

DISCUSSION

For the past few decades, β-lactam antibiotics have been one
of the first-choice drugs for the treatment of several serious
infectious diseases caused by Gram-negative bacteria (Bush and
Bradford, 2016). However, the increasing rate of drug-resistance
in bacteria has far exceeded the rate of development of new
antibiotics at present. The spread of β-lactamases is mainly
attributed to the presence of β-lactamase genes on plasmids,
and the unreasonable use of antibiotics. Therefore, a timely
detection of the type of β-lactamases will promote appropriate
clinical antibiotic choice and inhibit the spread of drug-resistant
genes (Iovleva and Doi, 2017). With the development of
HRAM Orbitrap MS and supporting quantitative methods, the

application of detection approaches based on specific peptides
has gradually received attention. Initially, shotgun proteomics
was used for β-lactamase detection and the proteins were detected
in a single run; however, this depends on the database and
results in a poor accuracy (Fleurbaaij et al., 2017). Subsequently,
quantitative proteomics methods such as SRM and MRM have
been applied to β-lactamases analysis, and detection based
on specific peptides has proved to be feasible (Wang et al.,
2017). Using LC-MS/MS to detect β-lactamases is a more direct
approach than using PCR or disk-diffusion methods, and it is
less hindered by multiple problems such as false-positive results.
However, for peptide detection, the preparation procedure of
peptides must be optimized to reduce the time taken.

In our study, we developed a rapid preparation procedure
based on a single colony, thereby omitting the amplification
process. Isolating bacteria using agar plates is the first step for
isolating organisms from all types of clinical samples. As long as
colonies are acquired, the identification process may be initiated.
The procedures involving the reduction and alkylation of
sulfhydryl groups were also removed as they do not significantly
affect the digestion of targeted peptides. Moreover, a simplified
Filter-aided sample preparation (FASP) method was used to
ensure digestion efficiency. Previous studies have confirmed that
microwave treatment for short periods can effectively digest the
targeted peptides (Strich et al., 2019). In our study, we tested
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TABLE 3 | Intensity ratios and coefficients of variation of peptides.

Enzyme Peptide CV (%) in
1 day

CV (%) in 3
different day

KPC AAVPADWAVGDK 23 25

KPC SQQQAGLLDTPIR 12 12

IMP-1 LVVPSHSEVGDASLLK 8 11

IMP-1 VQATNSFSGVNYWLVK 10 12

IMP-4 NSFGGVNYWLVK 9 20

IMP LDEGVYVHTSFEEVNGWGVVPK 9/14 9/20

VIM LAEAEGNEIPTHSLEGLSSSGDAVR 5 8

VIM DGDELLLIDTAWGAK 1 2

NDM AFGAAFPK 14/27 23/10

OXA-1 family NNGLTEAWLESSLK 6/21 5/17

OXA-1 family IINHNLPVK * *

CMY-2 family ADIANNHPVTQQTLFELGSVSK 15 17

CMY-2 family TLQQGIALAQSR 13 14

CTX-M-9 group QLTLGHALGETQR 11 15

CTX-M TEPTLNTAIPGDPR 6/6/17 9/13/9

CTX-M-9 group LIAQLGGPGGVTAFAR 15/16 14/24

CTX-M-1 group APLILVTYFTQPQPK 37/72 33/57

CTX-M-1 group SDLVNYNPIAEK 36/42 32/36

TEM VGYIELDLNSGK 3/6/13 11/5/4

CV, coefficient of variation; *IINHNLPVK was not detected in both samples.

different digestion conditions for our selected peptides. Results
showed that all the targeted peptides could be detected even
after microwave treatment for only 5 min, which can greatly
reduce the digestion time. For the LC-MS/MS procedure, a
30 min LC method combined with a PRM targeted method was

used to identify the peptides. PRM can enable identification of
multiple peptides in a high resolution and high mass accuracy
mode (Navin, 2015). In contrast with a previous PRM detection
method, we used a lower resolution for labeled peptides and
higher resolution for targeted peptides to reduce the scanning
time and improve the MS/MS quality as the concentration of
SIL was high (Stopfer et al., 2021). By optimizing the detection
methods, we have obtained a series of peptides with varying
properties. Overall, a 30∼60 min preparation procedure, a
30 min LC-MS/MS procedure and a 10 min data processing were
determined for the detection of β-lactamases.

For KPC, AAVPADWAVGDK and SQQQAGLLDTPIR were
selected as peptides markers (Table 2 and Supplementary
Table 2); LALEGLGVNGQ, LTLGSALAAPQR, and
APIVLAVYTR were previously analyzed using Agilent
6540 Q-TOF (Wang et al., 2017). NALVPWSPISEK was
detected for the first time but was not selected as a marker
owing to its low dotp values. Both of the sensitivity and
specificity of AAVPADWAVGDK was 100% as it exists in all
the genotypes of blaKPC, indicating the possibility of becoming
a peptide marker for KPC. But for SQQQAGLLDTPIR,
the sensitivity was lower as the absence of blaKPC−13,
blaKPC−45, and blaKPC−59. This study shows the first successful
detection of IMP via LC-MS/MS. The results proved that
LVVPSHSEVGDASLLK, VQATNSFSGVNYWLVK, and
NSFGGVNYWLVK could effectively be used to identify
IMP and distinguish the subtypes of blaIMP−1 and blaIMP−4.
LDEGVYVHTSFEEVNGWGVVPK showed lower specificity for
IMP detection. And for NSFGGVNYWLVK, it is inexplicable
that the discrepant results were verified to be blaIMP−4 positive,

TABLE 4 | Results of parallel reaction monitoring compared to those of polymerase chain reaction (PCR) in a validation set.

Enzyme Peptide Sensitivity%, CI%, (n
MS positive/n PCR

positive)

Specificity%, CI%, (n
MS negative/n PCR

negative)

Sensitivity%, CI%, (n
MS positive/n PCR

positive) group

Specificity%, CI%, (n
MS negative/n PCR

negative) group

KPC AAVPADWAVGDK 100, 91–100 (50/50) 100, 97–100 (138/138) 100, 91–100 (50/50) 100, 97–100 (138/138)

KPC SQQQAGLLDTPIR 98, 88–100 (49/50) 100, 97–100 (138/138)

IMP-1 LVVPSHSEVGDASLLK 100, 60–100 (8/8) 100, 97–100 (180/180) 100, 60–100 (8/8) 100, 97–100 (180/180)

IMP-1 VQATNSFSGVNYWLVK 100, 60–100 (8/8) 100, 97–100 (180/180)

IMP-4 NSFGGVNYWLVK 58, 37–77 (14/24) 100, 97–100 (164/164) 58, 37–77 (14/24) 100, 97–100 (164/164)

IMP LDEGVYVHTSFEEVNGWGVVPK 92, 73–99 (24/26) 85, 79–90 (138/162) 92, 73–99 (24/26) 85, 79–90 (138/162)

VIM-1 LAEAEGNEIPTHSLEGLSSSGDAVR 100, 20–100 (2/2) 100, 97–100 (186/186) 100, 20–100 (2/2) 100, 97–100 (186/186)

VIM-1 DGDELLLIDTAWGAK 100, 20–100 (2/2) 100, 97–100 (186/186)

NDM AFGAAFPK 100, 80–100 (20/20) 100, 97–100 (168/168) 100, 80–100 (20/20) 100, 97–100 (168/168)

OXA-1 NNGLTEAWLESSLK 78, 52–93 (14/18) 100, 97–100 (170/170) 94, 71–100 (17/18) 100, 97–100 (170/170)

OXA-1 IINHNLPVK 78, 52–93 (14/18) 100, 97–100 (170/170)

CMY-2 ADIANNHPVTQQTLFELGSVSK 27, 12–50 (6/22) 100, 97–100 (166/166) 86, 64–96 (19/22) 100, 97–100 (166/166)

CMY-2 TLQQGIALAQSR 82, 59–94 (18/22) 100, 97–100 (166/166)

CTX-M-9 group QLTLGHALGETQR 39, 27–51 (27/70) 100, 96–100 (118/118) 81, 70–89 (57/70) 100, 96–100 (118/118)

CTX-M-9 group LIAQLGGPGGVTAFAR 81, 70–89 (57/70) 100, 96–100 (118/118)

CTX-M TEPTLNTAIPGDPR 98, 93–100 (116/118) 97, 89–100 (68/70) 98, 93–100 (116/118) 97, 89–100 (68/70)

CTX-M-1 group APLILVTYFTQPQPK 98, 89–100 (57/58) 99, 95–100 (129/130) 98, 90–100 (57/58) 94, 88–97 (122/130)

CTX-M-1 group partial SDLVNYNPIAEK 76, 83–86 (44/58) 95, 89–98 (123/130)

TEM VGYIELDLNSGK 91, 83–96 (89/98) 74, 64–83 (67/90) 91, 83–96 (89/98) 74, 64–83 (67/90)

PCR, polymerase chain reaction; MS, mass spectrometry.
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while the Skyline map fragments irons of the discrepant
results was different from the positive ones. This is the
first time this phenomenon has been observed, and it may
be related to the fragmentation of the peptide. Notably,
LVVPSHSEAGDASLLK (IMP-4), whose A was replaced by V in
IMP-1 (114Da), was also detected and could be separated via
high-resolution MS. LAEAEGNEIPTHSLEGLSSSGDAVR and
DGDELLLIDTAWGAK were used to detect VIM-1, and both
of them showed a better subtype coverage. However, as the lack
of blaVIM−1 strains collected, only 2 blaVIM−1 positive strains
were identified in 188 strains. With the continuous collection of
blaVIM−1 positive strains, the effectiveness of detection by peptide
markers can be better verified in the future. AFGAAFPK was
selected as the marker as it exists in all NDM subtypes currently
listed by the NCBI, and was also detected via the MRM targeted
method (Wang et al., 2019). blaOXA is widely distributed in
Enterobacteriaceae. Regarding the blaOXA−1 family, four peptides
were detected, and NNGLTEAWLESSLK and IINHNLPVK,
which were specific for the blaOXA−1 family were used for
screening. However, according to the reproducibility results,
the LC-MS/MS signal of IINHNLPVK was not stable in
the detection process. blaCMY is an AmpC type ESBL gene.
ADIANNHPVTQQTLFELGSVSK and TLQQGIALAQSR
showed 27 and 82% sensitivity for the strains used in this study.
However, for TEM (including TEM-1, TEM-2, and variants listed
on the NCBI ANTIMICROBIAL RESISTANCE GENE database),
LLTGELLTLASR, SALPAGWFIADK, IHYSQNDLVEYSPVTEK,
QIAEIGASLIK, VDAGQEQLGR, VDAGQEQLGRR, and
VGYIELDLNSGK were identified in DDA experiments
(Supplementary Table 2). QIAEIGASLIK and VGYIELDLNSGK
were choose as peptides markers, and QIAEIGASLIK was
removed for its poor spectrum. For the 188 strains detected,
VGYIELDLNSGK showed 91% sensitivity with lower specificity
as 74% (67/90). Overall, this is the first study to use a PRM-
based LC-MS/MS system to detect OXA, CMY, and TEM.
blaCTX−M ESBL is a large group of ESBLs with an increasing
number of subtypes. According to genetic structure, blaCTX−M
enzymes are divided into four groups (CTX-M-1, CTX-M-2,
CTX-M-9, and CTX-M-25) (Canton et al., 2012). Among them,
the CTX-M-15 (CTX-M-1 group) and CTX-M-14 (CTX-M-9
group) are by far the most prevalent enzymes. In our study, only
APLILVTYFTQPQPK showed 98% sensitivity for the CTX-M-1
group. QLTLGHALGETQR and LIAQLGGPGGVTAFAR only
existed in certain strains of the CTX-M-9 group, whereas
SDLVNYNPIAEK showed 76% sensitivity for the CTX-M-1
group. Additionally, TEPTLNTAIPGDPR could identify 98%
of the strains containing CTX-M-1 or CTX-M-9 groups. The
reason for the relatively lower sensitivity may be that the peptides
are not the representative peptides for the entire genotype group,
but only for the partial group due to the complexity of the
variants. It may not be possible to use single peptide to achieve
100% sensitivity. As the overall detection sensitivity for each drug
resistant enzyme is more important than the detection sensitivity
of individual peptide, to overcome this complexity of huge
number of variants, sensitivity and specificity based on peptides
groups were calculated as shown in Table 4. The sensitivity of
KPC, OXA, CMY-2, CTX-M-9 group, and CTX-M-1 peptides

groups raised to 100, 94, 76, 81, and 98%. In addition, much
more peptide markers need to be effectively detected and added
for the group detection in the future study. In addition, several
variants were observed for the peptides of blaCTX−M, such
as LGVALIDTADNTQVLYR, LGVALINTADNTQTLYR, and
LGVALINTADNSQILYR, which are similar in terms of m/z and
RT, representing great challenges to detection via MS. Therefore,
to improve the sensitivity of detection via LC-MS/MS, an overall
analysis is suggested using all the peptides in one method.
Further studies are required to identify specific peptides for one
group or the entire blaCTX−M group.

The dotp is a measure of similarity between the fragment
ratio of the endogenous and library peptide. The rdotp is
a measure of similarity between the fragment ratio of the
endogenous and SIL peptide. The criterium for judging
positivity by a previous study was rdotp value > 0.95 (Foudraine
et al., 2019). When we re-analyzed the results of the targeted
proteomics experiment, we found that unified screening
rules might not have been suitable for all peptides. For many
peptides such as LDEGVYVHTSFEEVNGWGVVPK (IMP),
DGDELLLIDTAWGAK (VIM-1), and TEPTLNTAIPGDPR
(CTX-M-1 group partial), a rdotp value > 0.95 is not enough to
screen for positive strains; therefore, library dotp values > 0.8
are required. For QLTLGHALGETQR (CTX-M-9), 100%
(70/70) strains were positive for library dotp > 0.8 compared
to PCR results; however, only 39% (27/70) strain was positive
based on values of rdotp > 0.95 and library dotp > 0.8. For
LIAQLGGPGGVTAFAR (CTX-M-9), 100% (70/70) strains
were positive for library dotp > 0.8 compared to PCR results;
however, only 81% (57/70) strains were positive based on values
of rdotp > 0.95 and library dotp > 0.8. This phenomenon is
partly due to the existence of variants.

Overall, directly identifying peptides via LC-MS/MS provides
a new approach to detect β-lactamases. Our results showed
the great potential of the rapid extraction and detection
method in the detection of β-lactamases. Started by picking
the colony, peptides were obtained by rapid ultrasonic lysis
and rapid digestion (even in a microwave oven for 5 min),
and then results were acquired by rapid LC-MS/MS analysis
(30 min) and data processing. The application of targeted
proteomics using single bacterial colonies and even blood
samples in the future, will enable early clinical diagnostics
and early treatment. However, there are several problems
that need to be addressed. For example, at present, drug-
resistant enzymes are named and classified based on gene
sequence; however, the protein sequence is more decisive in
determining function. Additionally, there is a lack of protein
subtypes and classification based on amino acid sequences.
Therefore, it is difficult to identify specific peptides for one
group or one subtype. Variants are ubiquitous in β-lactamase
enzymes such as blaCTX−M. The separation of variants with
a similar m/z and RT through regular LC-MS/MS remains a
large challenge.

In conclusion, the rapid and accurate identification of
β-lactamases is of great significance to clinical diagnostics and
treatment. This study describes a rapid extraction and detection
workflow for widespread β-lactamases, including KPC, IMP,
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VIM, NDM, OXA, CMY, CTX-M, and TEM using single colonies
of Enterobacteriaceae strains. PRM targeted proteomics was
proven to be a promising approach for the detection of drug-
resistant enzymes.
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Performance evaluation of the
FASTTM System and the
FAST-PBC PrepTM cartridges for
speeded-up positive blood
culture testing
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Jonathan Couvreur, Ahalieyah Anantharajah and
Hector Rodriguez-Villalobos

Department of Microbiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain,
Brussels, Belgium

Objectives: As time to appropriate antimicrobial therapy is major to reduce

sepsis mortality, there is great interest in the development of tools for direct

identification (ID) and antimicrobial susceptibility testing (AST) of positive

blood cultures (PBC). Very recently, the FASTTM System (Qvella) has been

developed to isolate and concentrate microorganisms directly from PBCs,

resulting in the recovery of a Liquid ColonyTM (LC) within 30 min. The LC can

be used as equivalent of an overnight subcultured colony for downstream

testing. We aimed to evaluate the performances of the FASTTM System and

FAST-PBC PrepTM cartridges by testing the resulting LC for direct ID, AST and

rapid resistance detection.

Materials and methods: Prospectively, FASTTM System testing was carried

out on each patient’s first PBC with a monomicrobial Gram-stain result. In

the second arm of the study, FASTTM System testing was carried out on

blood cultures spiked with multidrug-resistant bacteria. Downstream testing

using the LC included MALDI-TOF MS ID with the Bruker Biotyper R© smart

system, rapid resistance detection testing including the Abbott Diagnostics

ClearviewTM PBP2a SA Culture Colony Test (PBP2a) and the Bio-Rad

βLACTATM Test (βLT). AST was performed using the Becton Dickinson

PhoenixTM System or by Bio-Rad disk diffusion using filter paper disk following

EUCAST 2020 breakpoint criteria.

Results: FASTTM System testing was completed on 198 prospective PBCs

and 80 spiked blood cultures. After exclusion of polymicrobial blood

cultures, performance evaluation compared with standard of care results

was carried out on 266 PBCs. Concordant, erroneous and no ID results

included 238/266 (89.5%), 1/266 (0.4%), 27/266 (10.2%) PBCs, respectively.

Sensitivity and specificity for PBP2a were 100% (10/10) and 75% (15/20),

respectively. Sensitivity and specificity for βLT were 95.8% (23/24) and

100% (42/42), respectively. Categorical agreement for all 160 tested strains
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was 98% (2299/2346) with 1.2% (8/657) very major errors and 0.7%

(10/1347) major errors.

Conclusion: FASTTM System testing is a reliable approach for direct

downstream testing of PBCs including MALDI-TOF MS ID, BD PhoenixTM and

Bio-Rad disk diffusion AST as well as rapid resistance testing assays. Next steps

include optimal integration of the FASTTM System in the PBC workflow with a

view toward clinical studies.

KEYWORDS

Qvella, FASTTM System, positive blood cultures, direct MALDI-TOF MS, bacteremia,
direct antimicrobial susceptibility testing, rapid resistance detection testing

Introduction

Sepsis remains a worldwide cause of morbidity and
mortality with a reported 49 million cases and an approximately
11 million avoidable deaths per year (World Health
Organization, 2020). As time to appropriate antimicrobial
therapy is a major factor to reduce sepsis mortality, there is a
great interest in the development of tools for rapid identification
(ID) and antimicrobial susceptibility testing (AST) of positive
blood cultures (PBCs).

Direct ID from a PBC bottle is commonly applied in
clinical microbiology laboratories either by matrix-assisted
laser desorption ionization time-of-flight mass spectrometry
(MALDI-TOF MS) or by molecular techniques. These
approaches result in satisfactory analytical performances with
a time saving of more than 24 h compared with overnight
subculture ID results (Payne et al., 2018; Ruiz-Aragón et al.,
2018). However, in this current era of increasing multi-drug
resistance, ID results are frequently insufficient to decide
on an optimal antimicrobial treatment and the use of rapid
AST approaches remains more than ever essential. Manual
methods, including cleaning, washing and concentrating
microorganisms directly from the PBC to obtain a pellet for
direct AST, have been used historically and studies have shown
an overall categorical agreement above 90% providing results
one day earlier compared to AST from subculture (Maelegheer
and Nulens, 2017; Hogan et al., 2019; Infante et al., 2021).
Furthermore, several commercial rapid AST systems relying
on cellular imaging or turbidity measurements at consecutive
points of time, have been developed and provide AST results
for defined antibiotic within 5–7 h. Overall agreement with
standard of care (SOC) AST has been reported between 88 and
98.7% for Gram-positive cocci and between 89.5 and 94.2% for
Gram-negative bacilli (Charnot-Katsikas et al., 2017; Boland
et al., 2019; Grohs et al., 2021).

Very recently, a novel approach has been developed called
the FASTTM System (Qvella, Richmond Hill, Canada) designed

to isolate and concentrate microorganisms directly from a PBC
bottle, resulting in the recovery of a liquid colony (LC) within
30 min. Ultimately, the LC can be used as an equivalent of
a solid subcultured colony, enabling use of downstream ID
and AST systems available in the local clinical microbiology
laboratory today. The objective of this study was to evaluate
the performances of the RUO FASTTM System and the FAST-
PBC PrepTM cartridges-generated LC for MALDI-TOF MS ID,
manual and automated AST and rapid resistance detection
testing. The study also evaluated the advantages and drawbacks
of this approach in comparison with other conventional and
rapid techniques currently available for the routine laboratory
management of PBCs.

Materials and methods

The study was conducted at the microbiology laboratory
of the Cliniques universitaires Saint-Luc – UCL, a 960-bed
tertiary hospital in Brussels, Belgium. Blood specimens from
patients with a suspected bloodstream infection were inoculated
into blood culture bottles (BD BactecTM Plus Aerobic, Peds
Plus and Lytic Anaerobic media, Becton Dickinson, Franklin
Lanes, NJ, USA) and incubated 24 h a day, 7 days a week in
BD BactecTM FX devices (BD Diagnostic Systems, Sparks, MD,
USA) for a standard 5-day period. SOC management of PBCs
was performed during laboratory working hours (7 AM–0 AM,
7 days per week) and detailed as the “modified workflow” in
a previous publication (Verroken et al., 2016). Downstream
testing was performed either on an early subculture for blood
cultures detected positive between 0 and 10 AM, either directly
on the PBC for blood cultures detected positive between 10
AM and 3 PM, either on an overnight subculture for blood
cultures detected positive between 3 PM and 0 AM. The
MALDI Biotyper R© smart system (Bruker Daltonik GmbH,
Bremen, Germany) was used for MALDI-TOF MS ID. Rapid
resistance detection tests included the ClearviewTM PBP2a SA
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Culture Colony Test (PBP2a; Abbott Diagnostics, Scarborough,
ME, USA) performed on all Staphylococcus aureus and the
βLACTATM Test (βLT; Bio-Rad, Marnes-la-Coquette, France)
performed on all Enterobacterales (EB) excluding chromosomal
AmpC producers. AST for staphylococci, enterococci and
EB was performed using the BD Phoenix SystemTM (Becton
Dickinson, Franklin Lakes, NJ, USA) and AST of other bacteria
(streptococci and Pseudomonas aeruginosa) was performed by
disk diffusion using filter paper disks (Bio-Rad, Marnes-la-
Coquette, France). All AST results were interpretated according
to the breakpoint tables for interpretation of MICs and zone
diameters of The European Committee on Antimicrobial
Susceptibility Testing (EUCAST) version 10.0 (valid from
2020.01.01) (The European Committee on Antimicrobial
Susceptibility Testing, 2020). Detection of extended-spectrum-
β-lactamases (ESBL) and derepressed AmpC β-lactamases in
EB relied on combination disk testing (ESBL + AmpC Screen
Kit, Rosco diagnostic, Taastrup, Denmark). Carbapenemase
resistance was characterized with immunochromatographic
testing using the Resist-5 OOKNV and IMP K-SeT (Coris,
BioConcept, Gembloux, Belgium) enabling the detection of the
OXA-163, OXA-48, KPC, NDM, VIM and IMP genes.

Study design

The study was conducted in two arms. In the initial
prospective arm going over a 3-month period, FASTTM System
testing was performed on the first positive-detected blood
culture bottle of each patient with a monomicrobial Gram-stain
result. In the second arm of the study, FASTTM System testing
was performed on blood culture bottles spiked with multidrug-
resistant bacteria selected from a patient strain bank stored at
minus 20◦C. Microorganisms and resistance profiles selected
for the second arm are detailed in Table 1. Following three
successive subcultures of the initially frozen strain, the spiking
process consisted of inoculating the bottles (BD BactecTM

Plus Aerobic, Peds Plus and Lytic Anaerobic) with 10 ml of
human blood from healthy volunteers and 10 µl of a 1,000-
times dilution of a 0.5McF suspension from a fresh overnight
subcultured isolate. Blood culture bottles were incubated in a BD
BactecTM FX device until they flagged positive.

FASTTM System

The FASTTM System testing flowchart is presented in
Figure 1. Following the availability of a monomicrobial Gram-
stain result, 2 ml of the PBC was sampled into a FAST-PBC
PrepTM cartridge which was loaded into the FASTTM System.
Upon a 30-min automated lysis/centrifugation process, a LC
constituted of pure viable bacteria was obtained. According
to the manufacturer’s requirements, processing had to be

performed within 16 h of blood culture positivity. Following the
recovery of the LC, 1 µl was plated on a non-selective blood agar
in order to verify purity on the next day. Then 1 µl was double-
spotted with 1 µl of formic acid and 1 µl of matrix on a target for
MALDI-TOF MS ID. Depending on the identified strain, rapid
resistance detection testing was subsequently performed using
2 µl of the LC and following manufacturers’ recommendations.
Ultimately AST was performed requiring a variable LC volume
to obtain a standardized 0.5McF suspension. Rapid resistance
detection tests and AST approaches were identically applied as
in SOC management. In the prospective arm, AST from LC
was exclusively performed if also done through SOC workflow.
AST performances of FASTTM System testing were exclusively
evaluated on staphylococci, enterococci, streptococci, EB and
P. aeruginosa. AST on other microorganisms were not assessed
in this study as the number of positive samples was too small to
produce valuable data.

Performance evaluation

All results obtained following FASTTM System testing were
compared to SOC results considered as the reference. ID
and AST discordances were verified through repeated testing
from LC subculture and SOC overnight subculture. Discordant
PBP2a and βLT results were evaluated upon the following day
with AST results.

Identification

MALDI-TOF MS ID results from the LC were interpreted
according to a defined cut-off score of 1.7 for acceptable
ID to the species level. A score under cut-off led to a
single repetition of LC spotting and MALDI-TOF MS testing
within the same day.

Rapid resistance detection testing

Rapid resistance detection testing performances were
evaluated by calculating sensitivity and specificity.

Antimicrobial susceptibility testing

AST comparison was performed in accordance with
Cumitech 31A recommendations for the verification and
validation of procedures in the clinical microbiology laboratory
(Clark et al., 2009). AST results comparison between FASTTM

System testing and SOC was expressed in categorical agreement
(CA) percentage (total categorical matches/total antibiotics
tested × 100). Discordances were classified into very major
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TABLE 1 Microorganisms and resistance profiles selected for FASTTM System testing evaluation in the second arm of the study.

Gram-positive bacteria n Oxacilline R

Staphylococci

Staphylococcus aureus 15 8

Staphylococcus epidermidis 7 4

Staphylococcus haemolyticus 2 2

Staphylococcus hominis 1 1

Gram-negative bacteria n Derepressed AmpC ESBL Carbapenemase Chromosomic carbapenem R

Enterobacterales

Citrobacter freundii 1 1 0 0 0

Enterobacter cloacae complex 5 0 2 2 NDM, 1 OXA-48 0

Escherichia coli 13 2 10 1 NDM 0

Enterobacter aerogenes 2 2 0 0 0

Klebsiella pneumoniae 9 0 7 0 1

Proteus mirabilis 2 0 1 0 0

Proteus vulgaris 1 0 0 0 0

Non fermenters

Pseudomonas aeruginosa 22 0 0 5 VIM 4

ESBL, extended-spectrum beta-lactamase; R, resistance.

FIGURE 1

FASTTM System testing flowchart. AST, antimicrobial susceptibility testing; ID, identification; LC, liquid colony; PBC, positive blood culture;
PBP2a, ClearviewTM PBP2a SA Culture Colony Test; βLT, βLACTA Test.

errors (VME: false susceptibility with AST performed on LC),
major errors (ME: false resistance with AST performed on LC)
and minor errors (MinE: reference test result susceptible at
increased exposure or in the area of technical uncertainty while
AST performed on LC susceptible or resistant, or vice versa).
The VME rate was calculated by dividing the number of VME

by the number of resistant bacteria (reference method) × 100
and The ME rate was calculated by dividing the number of ME
by the number of susceptible bacteria (reference method) × 100.
MinE rate was calculated by dividing the number of MinE by the
total number of strains tested × 100. Acceptable performance
rates for CA should be ≥90%, whereas acceptable performance

Frontiers in Microbiology 04 frontiersin.org

868787

https://doi.org/10.3389/fmicb.2022.982650
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-982650 September 10, 2022 Time: 16:6 # 5

Verroken et al. 10.3389/fmicb.2022.982650

FIGURE 2

MALDI-TOF MS identification performances from a liquid colony following FASTTM System testing on positive blood cultures in both study arms.
ID, identification; MALDI-TOF MS, matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

for the VME rate should be ≤3%. The ME rate should be ≤3%.
For ME and MinE combined, the error rate should be combined
≤7%.

Results

In the prospective arm, FASTTM System testing was
performed on 198 patient PBCs. Ten samples were excluded
from analysis because they were polymicrobial on the purity
control plate on day one, 1 sample was discarded due to an
instrument error and 1 sample did not have a final SOC ID.
In the second arm of the study FASTTM System testing was
performed on 80 spiked PBC.

Identification results

Complete data are presented in Figure 2. Overall
concordant ID was observed in 238/266 (89.5%) PBC with

a mean MALDI-TOF MS score from LC testing of 2.1. Gram-
positive bacteria, Gram-negative bacteria and yeast reached
concordant ID results of respectively, 118/140 (84.3%), 118/124
(95.2%) and 2/2 (100%). An insufficient score resulting in the
absence of ID was observed in 27/266 (10.2%) PBC. Among
the non-identified PBC, 21 concerned Gram-positive bacteria
including 8 Staphylococcus epidermidis, 4 Staphylococcus
hominis, 3 streptococci, 1 enterococcus and 5 other strains most
of the time considered as blood culture bottle contaminants. Six
concerned Gram-negative bacteria including 5 P. aeruginosa
and 1 Haemophilus influenza. Ultimately 1/266 (0.4%) PBC
ID led to a discordant result. A Staphylococcus petrasii
was erroneously identified as Staphylococcus capitis with
MALDI-TOF MS from the LC with an ID score of 1.93.

Rapid resistance detection test results

PBP2a was evaluated on a total of 30 S. aureus including
10 methicillin-resistant S. aureus. Sensitivity and specificity
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of PBP2a testing from a LC compared to SOC PBP2a were,
respectively, 100% (10/10) and 75% (15/20). βLT was performed
on 66 EB including 22 ESBL strains, one NDM-producing
Escherichia coli and one ESBL Klebsiella pneumoniae with a
chromosomic carbapenem resistance. Sensitivity and specificity
of βLT testing from a LC compared to SOC βLT were,
respectively, 95.8% (23/24) and 100% (42/42). A false negative
LC βLT result on the NDM-producing E. coli was observed.

Antimicrobial susceptibility testing
results

Automated AST was performed through both SOC testing
and from a LC on a total of 127 PBC counting 54 Gram-positive
strains and 73 EB. In addition, disk diffusion AST was compared
between SOC testing and from a LC on 8 streptococci and 25
P. aeruginosa. Importantly, AST testing from LC could not be
performed on 13/173 (7.5%) PBC pathogens due to insufficient
LC biomass to obtain a 0.5 McF concentration.

Table 2 illustrates result comparison of automated AST on
staphylococci and enterococci including 26 S. aureus, 15 S.
coagulase negative, 8 Enterococcus faecium and 5 E. faecalis. CA,
VME, ME and MinE rates were, respectively, 97.7% (650/665),
1.4% (2/144), 1.9% (9/486) and 1.3% (4/300). Moxifloxacin
and tobramycin were false susceptible using the LC for 2
distinct S. aureus isolates. The majority of ME were found with
Tobramycin 5/28 (17.9%).

Table 3 shows data comparison of automated AST on 73 EB
including 42 E. coli, 13 K. pneumoniae, 6 Enterobacter cloacae
complex, 6 Klebsiella aerogenes, 2 Citrobacter freundii, 2 Proteus
mirabilis, 1 Klebsiella oxytoca and 1 Proteus vulgaris. CA, VME,
ME and MinE rates were 97.8% (1311/1340), 1.4% (6/427), 0.1%
(1/771) and 2.8% (22/788) respectively. VME were observed in
6 distinct EB strains and 5 different antibiotics. The single ME
was seen with gentamicin and P. vulgaris.

Disk diffusion AST performances using the LC colony were
evaluated on 8 streptococci including 3 Streptococcus agalactiae,
2 Streptococcus dysgalactiae and 3 Streptococcus mitis group. CA
reached 100% with a total of 41 antibiotic combinations tested
as presented in Table 4.

Ultimately AST was assessed on 25 P. aeruginosa resulting in
a CA of 99% (297/300), no VME, no ME and 3/250 (1.2%) MinE
as detailed in Table 5. Altogether AST using the LC resulted in
acceptable rates according to Cumitech criteria for all evaluated
automated and manual AST approaches.

Discussion

For many years, numerous laboratories have developed
their own manual, in-house techniques to concentrate
microorganisms from PBCs aiming to perform direct

downstream testing. Throughout time, automated AST
systems were evaluated for their combined performances of ID
and AST directly from a PBC. In 2012, Gherardi et al. performed
a comparative evaluation of the VitekTM (bioMérieux, Marcy
l’Etoile, France) and BD PhoenixTM systems for rapid ID and
AST, from a standardized bacterial pellet obtained through
various centrifugation steps of the PBC (Gherardi et al., 2012).
Altogether, 100 and 92.3% of the Gram-negative isolates and 75
and 43.75% of the Gram-positive isolates showed concordant
ID between the direct and standard methods with VitekTM

and BD PhoenixTM, respectively. Additionally, AST CA of
98.7 and 99% in Gram-negative and of 96.2 and 99.5% in
Gram-positive isolates with VitekTM and BD PhoenixTM,
respectively, were observed. Historically multiple laboratories
have performed similar evaluations yet with reduced hands-
on time of pellet preparation steps. Reported performances
of direct MALDI-TOF MS ID for Gram-negative bacteria
exceeded 95%. However, a much lower SOC concordance rate
of 79% was reached for Gram-positive bacteria (Maelegheer
and Nulens, 2017; Hogan et al., 2019; Infante et al., 2021). In
addition, these studies reported a CA that varied according
to the evaluated AST automate between 92.9 and 98.9% using
the PBC-derived pellet. FASTTM System testing results from
our study were at least equal or surpassed the latter with an ID

TABLE 2 Results from automated AST (BD PhoenixTM System) of 54
staphylococci and enterococci from a liquid colony following FASTTM

System testing on positive blood cultures in both
study arms combined.

Staphylococci and enterococci n = 54

Antibiotic CA (%) VME (%) ME (%) MinE (%)

Amikacin 40/41 (97.6) 0/7 (0) 1/34 (2.9) 0/41 (0)

Ampicillin 13/13 (100) 0/8 (0) 0/5 (0) 0/13 (0)

Cefoxitin 26/26 (100) 0/9 (0) 0/17 (0) NA

Ciprofloxacin 41/41 (100) 0/12 (0) 0/0 0/41 (0)

Clindamycin 41/41 (100) 0/12 (0) 0/29 (0) 0/41 (0)

Erythromycin 41/41 (100) 0/21 (0) 0/20 (0) 0/41 (0)

Gentamicin 39/41 (95.1) 0/8 (0) 2/33 (6.1) NA

Gentamicin (HLR) 13/13 (100) 0/4 (0) 0/9 (0) NA

Linezolid 54/54 (100) 0/0 0/54 (0) NA

Moxifloxacin 40/41 (97.6) 1/12 (8.3) 0/29 (0) NA

Oxacillin 41/41 (100) 0/18 (0) 0/23 (0) NA

Rifampicin 41/41 (100) 0/3 (0) 0/38 (0) 0/41 (0)

Teicoplanin 54/54 (100) 0/0 0/54 (0) NA

Tetracycline 38/41 (92.7) 0/6 (0) 0/30 (0) 3/41 (7.3)

Trimethoprim-
sulfamethoxazole

39/41 (95.1) 0/11 (0) 1/29 (3.4) 1/41 (2.4)

Tobramycin 35/41 (85.4) 1/13 (8.0) 5/28 (17.9) NA

Vancomycin 54/54 (100) 0/0 0/54 (0) NA

Total 650/665 (97.7) 2/144 (1.4) 9/486 (1.9) 4/300 (1.3)

CA, categorical agreement; VME, very major error; ME, major error; MinE, minor error;
NA, not applicable.
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SOC concordance reaching 84.3 and 95.2% for Gram-positive
and Gram-negative bacteria, respectively. Considering Gram-
positive bacteria, failure of ID principally concerned strains that

TABLE 3 Results from automated AST (BD PhoenixTM System) of 73
Enterobacterales from a liquid colony following FASTTM System
testing on positive blood cultures in both study arms combined.

Enterobacterales n = 73

Antibiotic CA (%) VME (%) ME (%) MinE (%)

Amikacin 73/73 (100) 0/7 (0) 0/66 (0) NA

Amoxicillin-
clavulanic
acid

72/73 (98.6) 1/43 (2.3) 0/30 (0) NA

Ampicillin 73/73 (100) 0/59 (0) 0/14 (0) NA

Cefepime 70/73 (95.9) 0/24 (0) 0/43 3/73 (4.1)

Ceftriaxone 69/73 (94.5) 2/35 (5.7) 0/37 (0) 2/73 (2.7)

Ceftazidime 73/73 (100) 0/28 (0) 0/40 (0) 0/73 (0)

Cefuroxime iv 58/58 (100) 0/27 (0) 0/0 0/58 (0)

Ciprofloxacin 67/73 (91.8) 0/29 (0) 0/37 6/73 (8.2)

Ertapenem 73/73 (100) 0/10 (0) 0/63 (0) NA

Gentamicin 71/73 (97.3) 1/14 (7.1) 1/59 (1.7) NA

Imipenem 71/73 (97.3) 0/3 (0) 0/66 (0) 2/73 (2.7)

Levofloxacin 71/73 (97.3) 0/28 (0) 0/39 (0) 2/73 (2.7)

Meropenem 73/73 (100) 0/3 (0) 0/67 (0) 0/73 (0)

Piperacillin 72/73 (98.6) 0/50 (0) 0/22 (0) 1/73 (1.4)

Piperacillin-
tazobactam

67/73 (91.8) 1/19 (5.3) 0/50 (0) 5/73 (6.8)

Tigecycline 41/41 (100) 0/0 0/41 (0) NA

Trimethoprim-
sulfamethoxazole

71/73 (97.3) 1/30 (3.3) 0/42 (0) 1/73 (1.4)

Tobramycin 73/73 (100) 0/18 (0) 0/55 (0) NA

Total 1311/1340 (97.8) 6/427 (1.4) 1/771 (0.1) 22/788 (2.8)

CA, categorical agreement; VME, very major error; ME, major error; MinE, minor error;
NA, not applicable.

TABLE 4 Results from disk difffusion AST (filter paper disks, Bio-Rad)
of 8 streptococci from a liquid colony following FASTTM System
testing on positive blood cultures in both study arms combined.

Streptococci n = 8

Antibiotic CA (%) VME (%) ME (%) MinE (%)

Benzylpenicillin 8/8 (100) 0/2 (0) 0/6 (0) 0/8 (0)

Clindamycin 8/8 (100) 0/2 (0) 0/6 (0) 0/8 (0)

Erythromycin 5/5 (100) 0/2 (0) 0/3 (0) 0/5 (0)

Minocycline 5/5 (100) 0/3 (0) 0/2 (0) 0/5 (0)

Moxifloxacin 5/5 (100) 0/1 (0) 0/4 (0) NA

Rifampicin 5/5 (100) 0/0 0/5 (0) 0/5 (0)

Trimethoprim-
sulfamethoxazole

5/5 (100) 0/0 0/5 (0) 0/5 (0)

Total 41/41 (100) 0/10 (0) 0/31 (0) 0/36 (0)

CA, categorical agreement; VME, very major error; ME, major error; MinE, minor error;
NA, not applicable.

are often considered as contaminants in PBCs. The S. capitis
erroneously identified as S. petrasii was a contaminant and
repeated testing from LC subculture ultimately identified a
S. capitis. It could be supposed that the PBC was most probably
a polymicrobial blood culture. The absence of ID among Gram-
negative bacteria principally concerned P. aeruginosa strains
all originating from the spiked blood culture bottles from the
second arm of the study. The conservation and spiking process
might have altered the quality of the strains and hereby reduced
the MALDI-TOF MS ID performances from LC. No other
bacteria showed similar lower ID performances in the second
arm of the study versus the prospective arm. AST analysis
involving disk diffusion and BD PhoenixTM testing, showed
excellent performances substantially outperforming Cumitech
requirements for all groups of bacteria frequently identified in
PBC (Clark et al., 2009). Completing the prospective arm of
the study with FASTTM System testing on spiked blood cultures
aimed to broaden AST evaluation on multidrug-resistant
bacteria and did not increase VME rates. The sporadic VME
involved different antibiotics tested on distinct bacteria allowing
us to conclude that no specific trend was present. Nine of the
10 ME in our study were with aminoglycosides, however, their
limited use as a targeted treatment of bacteriemia downplays
the clinical impact of this observation. Performance data on the
FASTTM System generated LC are very scarce as the approach
has only been marketed very recently. Similar analysis using the
FASTTM System testing-generated LC reported MALDI-TOF
MS ID concordances of 94% and CA with VitekTM 2 for

TABLE 5 Results from disk difffusion AST (filter paper disks, Bio-Rad)
of 25 Pseudomonas aeruginosa from a liquid colony following FASTTM

System testing on positive blood cultures in both
study arms combined.

P. aeruginosa n = 25

Antibiotic CA (%) VME (%) ME (%) MinE (%)

Amikacin 25/25 (100) 0/4 (0) 0/21 (0) NA

Aztreonam 23/25 (92) 0/2 (0) 0/0 2/25 (8)

Cefepime 24/25 (96) 0/6 (0) 0/0 1/25 (4)

Ceftazidime 25/25 (100) 0/7 (0) 0/0 0/25 (0)

Ciprofloxacin 25/25 (100) 0/7 (0) 0/0 0/25 (0)

Imipenem 25/25 (100) 0/8 (0) 0/0 0/25 (0)

Meropenem 25/25 (100) 0/7 (0) 0/17 (0) 0/25 (0)

Piperacillin 25/25 (100) 0/8 (0) 0/0 0/25 (0)

Piperacillin-
tazobactam

25/25 (100) 0/8 (0) 0/0 0/25 (0)

Ticarcillin 25/25 (100) 0/7 (0) 0/0 0/25 (0)

Ticarcillin-clavulanic
avid

25/25 (100) 0/8 (0) 0/0 0/25 (0)

Tobramycin 25/25 (100) 0/4 (0) 0/21 (0) NA

Total 297/300 (99) 0/76 (0) 0/59 (0) 3/250 (1.2)

CA, categorical agreement; VME, very major error; ME, major error; MinE, minor error;
NA, not applicable.
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Gram-positive and Gram-negative bacteria of 97.4 and 98.5%,
respectively (Grinberg et al., 2022).

An added value of this study was the evaluation of rapid
resistance detection testing performed on the LC. PBP2a testing
using the LC showed suboptimal results as 5/20 methicillin-
susceptible S. aureus (MSSA) PBC were erroneously tested
positive. Initially observed in the prospective arm with 3 false
positive PBP2a results on a total of 14 MSSA strains, the issue
was confirmed in the second arm of the study with 2 false
positive PBP2a results among 7 MSSA. All PBP2a testing results
in the SOC workflow were in concordance with AST results.
To our knowledge, similar observations were not reported
by others. Satisfying sensitivity and specificity performances
were reported by Kolesnik-Goldmann et al. who evaluated
PBP2A testing on 4–6 h S. aureus subcultures (Kolesnik-
Goldmann et al., 2021). Similarly, Defourny et al. reported a
100% sensitivity and specificity of PBP2A directly performed
on a home-made PBC pellet (Defourny et al., 2014). A likely
hypothesis that could explain the poor specificity results of this
study is a cross-reaction of one of the reagents included in the
FAST-PBC PrepTM cartridge with the recombinant monoclonal
antibody fragments of the test membrane. While awaiting
the conclusions of additional analyses currently performed at
Qvella’s, extreme vigilance is recommended in the interpretation
of negative PBP2a results obtained from a LC. On the contrary,
βLT study results showed very satisfying performances and
hereby confirmed previous results on EB excluding AmpC
chromosomal producers (Prod’hom et al., 2015).

Despite a monomicrobial Gram stain, 10 PBC of the
prospective arm were ultimately excluded from data analysis as
they led to a polymicrobial growth on the subcultured purity
control plate on day 1. Nevertheless, when used in routine
FASTTM system test results would have already been made
available prior to the polymicrobial detection. Considering the
10 PBC, 3 PBC tested with the FASTTM system did not lead
to any ID results and 7 PBC enabled ID of 1 out of the
2 strains. There were no erroneous IDs. The lack of ability
of MALDI-TOF MS to detect all micro-organisms in mixed
cultures through direct ID is well-known and reported in
various publications (Verroken et al., 2015). Culturing a purity
plate remains therefore essential.

While awaiting the availability of innovative sepsis
diagnostic tools skipping blood incubation, a plethora of
methods to speed up results from PBCs are existing (Dubourg
et al., 2018; Peker et al., 2018). The FASTTM System using a
LC belongs to the category of techniques aiming at the rapid
production of a “microorganism pellet or suspension” with
the same characteristics as an overnight subcultured colony
allowing immediate downstream testing. This distinct approach
combines several advantages. First of all, ID can be performed
with MALDI-TOF MS enabling access to a nearly “universal”
bank of bacterial fingerprints in contrast with direct molecular
methods giving access to a restricted panel of strain IDs with

previous publications reporting 85.2–89.1% coverage of PBC
organisms (Verroken et al., 2019; Ullberg and Özneci, 2020).
Additionally, no sacrifices have to be made on the selection
of tested antibiotics for AST. Recent commercial AST tools
designed for direct testing on PBC use a restricted number of
antibiotics and don’t allow the selection of a panel in accordance
with the local resistance strain epidemiology of each medical
center (Charnot-Katsikas et al., 2017; Boland et al., 2019;
Grohs et al., 2021). FASTTM System testing enables the use of
SOC well-known largely validated antimicrobial approaches
including disk diffusion or automated AST, initiated from
a standardized inoculum hereby enhancing the accuracy of
the AST analytical performances. A procedural benefit of the
FASTTM System is the complete automation of the approach
with human intervention being limited to the sampling of 2 ml
PBC into a cartridge and minimal run start time. Maximum
number of samples that can be run at once are 2 PBC tests.
The short 30-min turn-around-time for the creation of the LC
enables a testing flow of approximately 20 PBC/day knowing
that only the first PBC of an episode ultimately requires
speeded-up testing. In a clinical microbiology laboratory
that does not have a night shift, FASTTM System testing
could be performed on blood cultures detected positive until
approximately 5 PM ensuring ID on the same day and AST
results the following day. Eventually the use of a commercial
approach for SOC microbiology testing facilitates the process
toward accreditation as only a method verification is required
in contrast to usually fastidious and broad method validations
for in-house approaches.

Originally the design of our study was not thought
to integrate time-to-result measurements compared to SOC.
FASTTM System testing was performed throughout the workday
right upon PBC detection yet depending on the availability
of the device. Subsequently, downstream testing was done in
batches in the late morning and late afternoon. We can therefore
affirm that ID and rapid resistance detection test results were
available on the day the blood culture flagged positive within
a maximum time period of 5 h following FASTTM System
testing while the first AST results were available in the late
evening or during the night. These turn-around-times are
aligned and even beyond targeted SOC timeframe objectives
of PBC management in clinical microbiology laboratories.
How the FASTTM System can be integrated in the SOC
PBC workflow to optimize its time-saving advantage will
definitely vary from one laboratory to another depending on
laboratories’ working hours, currently-used downstream tests
but also the existing interactions with clinicians as well as
ongoing antimicrobial stewardship programs. Important to note
is the recent overview presented by Lamy et al. illustrating
that progress in PBC management should be based on a
bundle approach joining rapid diagnostics with pre-analytical
improvements, optimized microbiologistics and customized
result communication (Lamy et al., 2020).
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Eventually a new technology is only fully effective upon the
demonstration of its clinical impact. In a recent review, Banerjee
et al. concluded that rapid AST methods on PBC can shorten
time to optimal treatment and improve antibiotic stewardship,
however, they did not demonstrate significant reductions in
mortality, length of stay or adverse effects (Banerjee and
Humphries, 2021). It is therefore essential to set up well-
designed clinical randomized controlled trials targeting specific
patient populations and promoting clinicians’ interactions to
value the real impact of FASTTM System testing.

In conclusion, our results show that generating a LC through
FASTTM System testing is a reliable approach to speed up
downstream testing of a PBC with satisfying performances
considering MALDI-TOF MS ID, disk diffusion and BD
PhoenixTM AST. Next steps include its optimal integration into
SOC PBC routine workflow and the set-up of effective clinical
and economical studies.
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Detection of 
carbapenemase-producing 
Enterobacterales by means of 
matrix-assisted laser desorption 
ionization time-of-flight mass 
spectrometry with ertapenem 
susceptibility-testing disks as 
source of carbapenem substrate
Elvira R. Shaidullina *, Andrey V. Romanov , Elena Y. Skleenova , 
Eugene A. Sheck , Marina V. Sukhorukova , Roman S. Kozlov  
and Mikhail V. Edelstein 

Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, Smolensk, Russia

MALDI-TOF mass spectrometry has become widely used in clinical 

microbiology and has proved highly accurate for detection of carbapenemases 

in Gram-negative bacteria. However, the use of carbapenem-hydrolysis assays 

in routine diagnostics is hampered by the need for antibiotic substances 

and for making their fresh solutions each time an assay is conducted. Here, 

we evaluated the use of commercial antibiotic susceptibility-testing disks as 

source of ertapenem substrate in MALDI-TOF MS-based assay for detection of 

carbapenemase-producing Enterobacterales (CPE). The assay was validated 

on 48 CPE isolates of 8 different species expressing NDM-, VIM-, KPC- and 

OXA-48-type carbapenemases and exhibiting various levels of resistance to 

carbapenems (MIC range: 0.25– > 32 mg/l), as well as on 48 carbapenemase-

non-producing isolates. The assay conditions were optimized as follows: 

10-μl loopful of bacterial colonies was suspended in 150 μl 0.01 M Na-PBS 

buffer, pH 7.4, a 10 μg ertapenem susceptibility-testing disk was immersed 

in the suspension and incubated 3 h at 35°C, after which supernatant was 

obtained by centrifugation and applied on a target plate with alpha-cyano-

4-hydroxycinnamic acid matrix. Mass spectra were analyzed between 440 

and 560 m/z. Carbapenemase activity was detected in all tested CPE isolates 

by the appearance of m/z peaks corresponding to ertapenem hydrolysis 

products: [Mh + H]+:494.2, [Mh + Na]+:516.2, [Mh + 2Na]+:538.2, [Mh/d + H]+:450.2, 

[Mh/d + Na]+:472.2, and simultaneous decrease or loss of peaks of intact 

antibiotic: [M + H]+:476.2, [M + Na]+:498.1, [M + 2Na]+:520.1. No hydrolysis peaks 

or loss of intact ertapenem peaks were observed for carbapenemase-negative 

strains. We therefore report the development of a sensitive, specific and cost-

effective MALDI-TOF MS-based assay for detection of CPE, which makes use 

of antibiotic disks readily available in most laboratories.
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Introduction

Global spread of carbapenemase-producing Enterobacterales 
(CPE) is one of the greatest antimicrobial resistance threats to 
modern healthcare (Marchaim et  al., 2012; Doi and Paterson, 
2015; Lee et al., 2016; Potter et al., 2016; Hsu et al., 2017). Effective 
detection of carbapenemases is important for infection control 
and antibiotic treatment of CPE infections and requires fast and 
accurate tests. A number of such tests have been developed for use 
in the clinical microbiology laboratories, including molecular and 
immunochromatographic tests that enable rapid targeted 
identification of the known carbapenemases and phenotypic 
carbapenem hydrolysis tests that provide alternative and 
complementary means of detecting any carbapenem-inactivating 
enzymes (Nordmann et al., 2012; van der Zwaluw et al., 2015; 
Kieffer et al., 2019; Feng et al., 2021). Hydrolysis tests have become 
widely used after the introduction of the Carba NP test in 2012 
(Nordmann et al., 2012). Three years later, van der Zwaluw et al. 
(2015) proposed an alternative simple and low-cost Carbapenem 
Inactivation Method (CIM) making use of common susceptibility 
testing disks and indicator Escherichia coli strain for detecting 
hydrolysis of meropenem, which later on received several 
modifications and became extremely practical for routine use 
(Pierce et al., 2017; Jing et al., 2018; Muntean et al., 2018).

Matrix-assisted laser desorption ionization time-of-flight 
mass spectrometry (MALDI-TOF MS) has revolutionized 
modern microbiology and has found many applications not only 
in species identification of bacteria and fungi but also in 
detecting resistance mechanisms to antimicrobials (Claydon 
et  al., 1996; Holland et  al., 1996; Oviaño and Rodríguez-
Sánchez, 2021; Torres-Sangiao et  al., 2021; Yoon and Jeong, 
2021). Lately, MALDI-TOF MS has been successfully applied to 
the detection of various β-lactamases, in particular 
carbapenemases (Burckhardt and Zimmermann, 2011; Hrabák 
et al., 2011). Unlike other phenotypic assays, which rely upon 
the use of various indirect indicators of β-lactamase-mediated 
hydrolysis of β-lactams, MALDI-TOF MS allows direct 
visualization of mass-peaks corresponding to intact β-lactam 
substrates and their degradation products released upon 
hydrolysis and, therefore, may be  considered as a reference 
method for detecting β-lactamase activity. However, most 
MALDI-TOF MS-based assays for carbapenemase detection 
described up to date required preparation of fresh solutions of 
carbapenems either from chemical substances or therapeutic 
formulations, which made them less suitable for routine 
diagnostics (Hrabák et al., 2011; Hoyos-Mallecot et al., 2014; 
Knox et al., 2014; Papagiannitsis et al., 2015; Ghebremedhin 

et  al., 2016; Sakarikou et  al., 2017). Recently, M. Oho et  al. 
reported on the development of MALDI-TOF MS assay with 
imipenem susceptibility disk and zinc sulfate solution for 
detection of CPE (Oho et al., 2021).

Herein, we  describe the development of a modified 
MALDI-TOF MS assay that makes use of commercial antibiotic 
susceptibility-testing disks with ertapenem for highly sensitive 
and specific detection of CPE.

Materials and methods

Bacterial isolates

A representative collection of 96 non-duplicate clinical isolates 
from IAC collection was used. These isolates were retrospectively 
collected from the national sentinel surveillance program and 
were previously extensively characterized for susceptibility to 
carbapenem antibiotics using broth microdilution method, and 
for carbapenemase gene content using PCR and sequencing 
(Kuzmenkov et  al., 2021). Phenotypic expression of 
carbapenemases was preliminary assessed using CIM test. The 
isolates belonged to 11 species: Klebsiella pneumoniae (n = 65), 
Escherichia coli (n = 10), Enterobacter cloacae (n = 5), Proteus 
mirabilis (n = 5), Serratia marcescens (n = 3), Citrobacter freundii 
(n = 2), Klebsiella oxytoca (n = 2), Enterobacter aerogenes (n = 1), 
Enterobacter asburiae (n = 1), Morganella morganii (n = 1), and 
Proteus vulgaris (n = 1). The test collection included 48 isolates 
producing OXA-48-like (n = 30), NDM (n = 13), VIM (n = 2), KPC 
(n = 1), and combination of OXA-48-like and NDM (n = 2) 
carbapenemases, which exhibited various levels of resistance to 
carbapenems (MIC range: 0.25– > 32 mg/l), and 48 
carbapenemase-negative isolates (Supplementary Table S1).

Matrix-assisted laser desorption 
ionization time-of-flight mass 
spectrometry assay

Several modifications of assay conditions were tested (data not 
shown). These included: (i) subcultivation of test isolates on 
Mueller-Hinton agar with or without supplementation with 
10 mM zinc sulfate; (ii) preparing suspension of test cultures in 
pure deionized water, 0.9% non-buffered saline solution, or 
sodium phosphate buffered saline (Na-PBS) with or without 
addition of 5% propanol-2, (iii) use of susceptibility testing disks 
with imipenem, 10 μg, meropenem, 10 μg, doripenem, 10 μg, or 

949595

https://doi.org/10.3389/fmicb.2022.1059104
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Shaidullina et al. 10.3389/fmicb.2022.1059104

Frontiers in Microbiology 03 frontiersin.org

ertapenem, 10 μg (Bio-Rad Laboratories, Marnes-la-Coquette, 
France); (iv) use of different incubation time (from 0.5 to 4 h).

The final optimized assay conditions were as follows: Bacterial 
isolates were recovered from storage at −70°C in glycerol-
supplemented brain-heart infusion broth and subcultured for 18 h 
at 35°C on Mueller–Hinton agar (BBL MH II; Becton Dickinson, 
Sparks, MD). A10-μl loopful of bacterial colonies was suspended 
in 150 μl 0.01 M Na-PBS, pH 7.4, a 10 μg ertapenem susceptibility-
testing disk (Bio-Rad Laboratories) was immersed in the 
suspension and incubated 3 h at 35°C. The suspension was then 
centrifuged at 14,000 rpm for 2 min. One microliter of supernatant 
was applied on a steel target plate on top of the pre-dried layer of 
MALDI matrix (1 μl of 2.5 μg/ml alpha-cyano-4-hydroxycinnamic 
acid; HCCA, Bruker Daltonik, Bremen, Germany) in 50% 
acetonitrile, 0.1% trifluoroacetic acid dried and overlaid with the 
second layer of the same matrix.

Antibiotic Calibration Standard (ACS, Bruker Daltonik) was 
used for external instrument calibration. Mass spectra were 
acquired between 440–560 m/z on a Microflex LT spectrometer 
with flexControl software, v3.4 (Bruker Daltonik). The acquisition 
parameters were set as follows: ion source 1, 18.98 kV; ion source 
2, 16.25 kV; lens, 0.01 kV; laser frequency, 60 Hz; digitizer trigger 
level, 2,500 mV; laser attenuator offset, 28%; laser attenuator range, 
30%; and laser range, 15–45%. Each spot was measured using 240 
laser shots in groups of 40 shots per sampling area. The MS spectra 
were measured automatically in at least 3 repetitions and analyzed 
manually by flexAnalysis software, v3.4 (Bruker Daltonik) to 
identify intact vs. hydrolyzed ertapenem peaks (Table 1).

Results and discussion

In the initial stage of the study, we  tested different assay 
conditions (as briefly described in Materials and methods) and use 
of common susceptibility disks with ertapenem, meropenem, 
doripenem, and imipenem as source carbapenem substrate in 
MALDI-TOF MS-based hydrolysis assay. Spontaneous 
degradation of all three carbapenems was assessed under assay 
conditions at different time intervals (1 h, 2 h, 3 h, and 4 h) without 
bacterial culture and with carbapenemase-negative control strain 
of E. coli ATCC25922. Imipenem showed spontaneous 
degradation, as was revealed by appearance of detectable MS 

peaks of hydrolysis products after ≥3 h incubation 
(Supplementary materials; Figure S3A). On the other hand, 
meropenem, doripenem and ertapenem were notably more stable. 
However, the mass-peaks of intact meropenem and doripenem 
and their degradation products were barely detectable or 
not detectable.

In contrast, ertapenem yielded readily visible MS peaks of 
intact molecule ions with high signal-to-noise ratios at a 
concentration of 66.6 μg/ml (0.14 mM) generated from 10-μg disk 
in 150 μl volume of test solution. Besides, the MS peaks of 
ertapenem degradation products obtained after hydrolysis were 
also easily detectable and distinguishable from each other and 
from non-specific peaks (Figures 1, 2), making ertapenem the 
most suitable substrate for detection of carbapenemases by means 
of MALDI-TOF MS. Notably, other reports (Hoyos-Mallecot 
et  al., 2014; Sakarikou et  al., 2017) have also demonstrated 
suitability of ertapenem as substrate for MALDI-TOF MS-based 
carbapenemase detection.

Using the final optimized assay conditions and incubation of 
bacterial cultures with ertapenem disk for up to 3 h, we detected 
ertapenem hydrolysis by all 48 isolates producing carbapenemases 
of OXA-48, KPC, NDM, and VIM groups, and exhibiting variable 
resistance levels to carbapenems, even with MICs below the 
clinical resistance breakpoints indicating weak carbapenemase 
expression. This was evidenced by complete or partial 
disappearance of MS peaks at m/z 476.2, 498.1, 520.1 and 542.1, 
corresponding, respectively, to intact ertapenem [M + H]+ and its 
mono- [M + Na]+, di- [M + 2Na]+, and trisodium [M + 3Na]+ 
adducts, and by simultaneous appearance of the peak at m/z 
472.2 m/z corresponding to major degradation product, a 
monosodium adduct of hydrolyzed and decarboxylated 
ertapenem molecule [Mh/d + Na]+. In addition, the peaks at 
494.2 m/z, 516.2 m/z and 538.2 m/z, corresponding, respectively, 
to the intermediate product (hydrolyzed ertapenem [Mh + H]+ 
and its, mono- [Mh + Na]+ and disodium [Mh + 2Na]+ ion forms) 
were observed for most CPE isolates (Figure  1; 
Supplementary Table S1).

Though a very small peak at 450.2 m/z likely corresponding to 
spontaneously hydrolyzed and decarboxylated ertapenem 
[Mh/d + H]+ was present in mass spectra of carbapenemase-
negative isolates, its relative intensity was significantly smaller as 
compared to CPE isolates. No major hydrolysis peaks or loss of 
intact ertapenem peaks were observed for any of the 
carbapenemase-negative isolates (Figure 2). The different MS peak 
patterns derived from CPE and non-CPE isolates allowed their 
unambiguous discrimination. Therefore, the sensitivity and 
specificity of the developed assay reached 100% for the studied 
panel of isolates.

Unlike the previous study (Oho et al., 2021), we did not find 
supplementation of culture media with zinc sulfate to improve the 
detection of metallo-β-lactamases (MBLs) of NDM- and 
VIM-type (data not show). This may be explained by the use in 
our study of ertapenem instead of imipenem disks or by the 
cultivation of isolates on Mueller-Hinton agar which contains zinc 

TABLE 1 Expected molecular masses of ionic forms of intact 
ertapenem and its hydrolysis products.

Intact ertapenem Ertapenem hydrolysis products

MW, g/mol 475.2 [Mh + H]+ 494.2

[M + H]+ 476.2 [Mh + Na]+ 516.2

[M + Na]+ 498.1 [Mh + 2Na]+ 538.2

[M + 2Na]+ 520.1 [Mh/d + H]+ 450.2

[M + 3Na]+ 542.1 [Mh/d + Na]+ 472.2

M, intact molecule; Mh, hydrolyzed molecule; Mh/d, hydrolyzed and decarboxylated 
molecule.
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ions in concentrations sufficient for MBLs to exert their hydrolytic 
activity (Asempa et al., 2021). Our study, however, did not include 
IMP-type MBLs that were lacking in our collection, which may 

be considered as a limitation of the study. Further experiments 
may be needed to evaluate the applicability of our assay for the 
detection of IMP-type carbapenemases.

A

B

C

D

FIGURE 1

Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectra showing ertapenem hydrolysis by carbapenemase-producing 
Enterobacterales. (A) Mass spectrum of ertapenem disk after 3 h-incubation in 0.01 M PBS, pH 7.4 (negative control). (B–D) Mass spectra showing 
ertapenem hydrolysis by KPC-3, NDM-1, and OXA-48 carbapenemases. Peaks corresponding to hydrolyzed forms of ertapenem are indicated with 
arrows. Units on the Y axes represent relative intensity.
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FIGURE 2

Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectra of carbapenemase-non-producing isolates. (A) Mass 
spectrum of ertapenem disk after 3 h-incubation in 0.01 M PBS, pH 7.4 (negative control). (B–D) Mass spectra of ertapenem after incubation with 
carbapenemase-non-producing isolates of different species. Peaks corresponding to non-hydrolyzed form of ertapenem are indicated with 
arrows. Units on the Y axes represent relative intensity.
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Conclusion

This study describes the development of sensitive and 
specific MALDI-TOF MS-based assay for detection of CPE, 
which makes use of materials and reagents readily available in 
most laboratories, such as ertapenem disks used for disk-
diffusion antibiotic susceptibility testing and HCCA used as 
MALDI matrix for species identification of bacteria and fungi. 
The assay does not require highly skilled personnel, and may 
be  used in any laboratory equipped with a MALDI-TOF 
mass spectrometer.
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Genotype classification of 
Moraxella bovis using 
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Moraxella bovis (M. bovis) is regarded as a causative agent of infectious bovine 

keratoconjunctivitis (IBK), the most common ocular disease of cattle. Recently, 

whole genome sequencing identified the presence of two distinct genotypes 

within M. bovis that differ in chromosome content, potential virulence factors, 

as well as prophage and plasmid profiles. It is unclear if the genotypes equally 

associate with IBK or if one is more likely to be  isolated from IBK lesions. 

We  utilized 39 strains of M. bovis that had previously undergone whole 

genome sequencing and genotype classification to determine the utility of 

matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 

(MALDI-TOF) to accurately genotype M. bovis strains. We  successfully 

developed two biomarker models that accurately classified strains according 

to genotype with an overall accuracy of 85.8–100% depending upon the 

model and sample preparation method used. These models provide a practical 

tool to enable studies of genotype associations with disease, allow for 

epidemiological studies at the sub-species level, and can be used to enhance 

disease prevention strategies.

KEYWORDS

Moraxella bovis, MALDI-TOF MS, infectious bovine keratoconjunctivitis, bovine 
pinkeye, genotype

Introduction

Infectious bovine keratoconjunctivitis (IBK) is the most common ocular disease of cattle 
(Brown et al., 1998; Kneipp, 2021). IBK clinically presents as a herd-level disease that is often 
seasonal and can occur with high morbidity (Kneipp, 2021). Clinical signs of IBK include 
corneal ulceration, lacrimation, conjunctivitis, blepharospasm and potential blindness in severe 
cases (Kneipp, 2021). Moraxella bovis (M. bovis) is regarded as the most strongly associated 
causal agent of IBK, as the disease can be reproduced experimentally in calves by inoculating 
the cornea with M. bovis (Rogers et al., 1987; Beard and Moore, 1994). Other infectious agents 
such as Moraxella bovoculi (M. bovoculi), Mycoplasma bovoculi, and bovine herpesvirus – type 
1 are often recovered from lesions or are found associated with ocular disease, but thus far 
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experimental inoculation of calves with these agents has not 
produced clinical signs consistent with IBK (Rosenbusch and Ostle, 
1986; George et  al., 1988; Angelos et  al., 2007; Angelos, 2010). 
Additional environmental factors such as face flies, ultraviolet light, 
dusty conditions, and tall grasses are also thought to play a role in 
IBK development (Hughes et al., 1965, 1968; Gerhardt et al., 1982; 
Hall, 1984; Kopecky et al., 1986; Smith, 2012; Maier et al., 2021a). A 
precise and current estimate of the economic cost of IBK is lacking, 
but previous studies have estimated the impact to be between $150–
$226 million dollars in the United States alone (Killinger et al., 1977; 
Hansen, 2001; Dennis and Kneipp, 2021). The economic losses 
associated with IBK are due to the costs of treatment as well as 
decreased average daily gain in affected calves (Thrift and 
Overfield, 1974).

Prevention of IBK is often focused on vaccination and 
minimizing fly load (Sheedy et al., 2021). There are a number of 
fully licensed M. bovis vaccines, a single conditionally approved 
M. bovoculi vaccine, and autogenous vaccine formulations 
available from different manufacturers in the United States. Under 
experimental fields conditions, these vaccine formulations have all 
had mixed results in terms of preventing IBK regardless of the 
formulation, route of administration, or antigen makeup (Smith 
et al., 1990; Davidson and Stokka, 2003; O'Connor et al., 2011; 
Cullen et al., 2017; Hille et al., 2022).

In the United States, tetracycline and tulathromycin are the 
only antibiotics with label indications for IBK whereas 
florfenicol also has a label indication for IBK in Canada 
(Bio-Mycin 200 (oxytetracline) [package insert]. Duluth, GA; 
Boehringer Ingelheim Animal Health United States Inc. 2019, 
Draxxin (tulathromycin) [package insert] Kalamazoo, MI: 
Zoetis Inc. 2018, Nuflor (florfenicol) [package insert] Kirkland, 
Quebec, Canada, Merck Animal Health Intervet Canada Corp. 
2019). The use of eye patches as an aid in treatment was recently 
shown to promote healing of corneal ulcers associated with IBK 
(Maier et al., 2021b).

A secreted repeats-in-toxin (RTX) exotoxin and a type IV 
pilus protein are the two main virulence factors possessed by 
M. bovis required for IBK development (Jayappa and Lehr, 1986; 
Clinkenbeard and Thiessen, 1991; Ruehl et al., 1993; Beard and 
Moore, 1994). Recently, two distinct genotypes of M. bovis were 
characterized that shared a core of 2,015 genes with an additional 
121 genes specific to genotype 1 and 186 genes specific to genotype 
2 (Wynn et al., 2022). The genotypes possess different sequence 
variants of RTX and different plasmid profiles. Specifically, only 
one genotype possessed plasmids containing filamentous 
hemagglutinin, a known virulence factor in other pathogens. 
These differences suggest the two genotypes may not be equally 
associated with IBK although this has not been proven.

Matrix-assisted laser desorption/ionization time-of-flight 
mass spectrometry (MALDI-TOF MS) is a commonly used 
method in diagnostic and research laboratories for the 
identification of bacteria (Seng et  al., 2009; Clark et  al., 2013; 
Sandalakis et al., 2017). Within Moraxella spp., MALDI-TOF MS 
has previously been used to accurately distinguish between 
M. bovis and M. bovoculi species, as well as distinguish genotypes 

within M. bovoculi (Robbins et  al., 2018; Hille et  al., 2020).  
Given the recent characterization of genotypes 1 and 2 of M. bovis, 
we hypothesized that MALDI-TOF MS may provide a timely and 
accurate method of genotype classification within this species as 
well. A rapid method to characterize strains of M. bovis according 
to genotype would allow for classification of a large number of 
disease associated strains to determine potential associations with 
disease in real-time as part of the bacterial identification process.

Materials and methods

Bacterial strains and culture conditions

Thirty seven of the 39 strains of M. bovis used for this study had 
previously undergone bacterial identification, whole genome 
sequencing and assembly into closed, circular chromosomes, and 
were classified according to genotype (Wynn et al., 2022). An 
additional two strains were genotyped from Illumina libraries using 
two methods: First, Illumina library fastq files were converted to 
fasta BLAST databases (Camacho et  al., 2009) and previously 
identified genotype 1 and 2 specific genes (Wynn et al., 2022) were 
used as BLAST queries to find genotype specific gene sequence in 
the Illumina libraries. The strains consisted of ten genotype 1 and 
29 genotype 2 strains. The strains primarily originated from 
diagnostic case submission samples from cattle with IBK that were 
submitted to the Nebraska Veterinary Diagnostic Center. The state 
of origin for each strain is shown in Table 1.

Frozen stocks of the strains were plated onto tryptic soy agar 
(TSA) with 5% sheep blood (Remel, Lenexa, KS) and incubated at 
37°C for 24 h in 5% CO2. The strains were then passed onto fresh 
blood agar plates incubated for another 24–48 h in the same 
conditions, and then pure colony growth was subjected to analysis 
by MALDI-TOF MS.

MALDI-TOF MS

MALDI TOF MS spectra was obtained for each of the strains 
per the manufacturer’s recommendations using two methods, the 
smear method and the extraction method (Khot et al., 2012). To 
perform the smear method, a single colony was transferred onto 
the steel target plate using a wooden applicator and allowed to air 
dry before applying 1 μl of α-cyano-4-hydroxycinnamic acid 
(Bruker Daltonics, Billerica, MA). The wells were allowed to dry, 
and crystallization occurred. Analysis involved using MALDI 
Bioytyper system (Bruker Daltonik) in a positive linear mode with 
a mass range of 2–20 kDa m/z with laser frequency of 60 Hz and 
calibration using a Bacterial Test Standard (Bruker Daltonik). The 
first ion source had a voltage of 20,000 kV, and the second had a 
voltage of 18.10 kV with an additional lens voltage of 6.05 kV and 
a pulsed extraction time of 170 ns.

The extraction method involved using 2–3 colonies from solid 
media that were incubated for 24–48 h in 5% CO2 at 37°C. After 
incubation, 300 μl of HPLC grade water and the colonies were 
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vortexed until a homogenous mixture formed. Next, 900 μl of 100% 
ethanol was added and then centrifuged for 2 min at 16,000 xg. The 
supernatant was removed, and the pellet was allowed to air dry. 
Then, 25 μl of 70% formic acid and 25 μl of acetonitrile were 
combined with the pellet and centrifuged as mentioned above. 
Next, 1 μl of the supernatant was placed onto a well and allowed to 
air dry. The same 1 μl of matrix solution (α-cyano-4-
hydroxycinnamic acid) was then added to each well before 
MALDI-TOF was performed. For each strain, eight wells were 
prepared using the extraction method, and each well was analyzed 
three times resulting in a total of 24 spectra. For the smear method, 
three wells were prepared and analyzed three times for a total of 
nine spectra. The spectra profiles were examined, and flat or 
inconsistent spectra were removed from the analysis.

Model generation and accuracy

Strains from each genotype were randomly assigned to either 
a biomarker model generation group or validation group (Table 1). 

ClinProTools 3.0 software (Bruker Daltonik) was used to develop 
a biomarker model from the known genotypes within the model 
generation groups. Two classification algorithms were used to 
develop the models including genetic algorithm (GA) and quick 
classifier (QC). After the biomarker models were obtained, their 
accuracy was manually calculated according to the resulting 
classifications for each of the strains within the validation groups. 
The models were developed using spectra obtained via the 
extraction sample preparation method, and the accuracy of the 
models was assessed using spectra from both the extraction and 
smear sample preparation method. Any spectrum classified as 
“Null Spectrum” by the models was excluded from accuracy 
calculations. A two sample t-test assuming unequal variance was 
used to compare the classification accuracy between sample 
preparation methods and a two sample t-test assuming equal 
variance was used to compare classification accuracy between the 
models. The significance of genotype discrimination of individual 
peaks was determined using the “peak statistic” function within 
ClinProTools 3.0 after loading all spectra from each genotype.

A main spectrum profile (MSP) was created for each strain using 
24 spectra from eight technical replicates using MBT Compass 
Explorer software (Bruker Daltonik). The MSP peak list function was 
used to determine the presence or absence of peaks included in the 
biomarker model for each strain. When present, the magnitude of 
each peak used in the biomarker model was recorded.

Results

The peaks included in the biomarker models for this study and 
the classification accuracies are summarized in Table 2. The GA 
biomarker model included five peaks and correctly classified 100% 
(110/110) and 100% (307/307) of validation group spectra obtained 
using the extraction method for genotype 1 and 2 strains, respectively. 
Therefore, the overall classification accuracy for extraction method 
spectra was 100% (417/417). When the smear method spectra were 
classified, the GA model correctly classified 81.3% (26/32) and 99.8% 

TABLE 1 State of origin and model groups assigned to the 39 strains 
used in this study.

Genotype Model Group Location

1 Generation Nebraska (4)

Florida (1)

1 Validation Nebraska (2)

Indiana (1)

Saskatchewan, Canada (1)

Wisconsin (1)

2 Generation Kansas (4)

Oregon (1)

Minnesota (1)

Nebraska (2)

North Carolina (1)

West Virginia (1)

Montana (1)

South Dakota (1)

Iowa (1)

Saskatchewan, Canada (1)

Pennsylvania (1)

2 Validation Nebraska (2)

Kansas (1)

Iowa (2)

California (1)

Texas (1)

Illinois (1)

Wisconsin (1)

Florida (1)

Illinois (1)

Oregon (1)

Oklahoma (1)

West Virginia (1

The model group assignment was the same for developing both the GA and QC 
biomarker models.

TABLE 2 Biomarker model characteristics and accuracy results for 
both the GA and QC biomarker models.

Model GA QC

Peaks used (m/z) 6,839 6,854

6,854

7,301

8,769

9,103

Extraction method

Recognition Capability 100% 98.56%

Cross Validation 99.79% 98.21%

Classification genotype 1 100% (110/110) 100% (110/110)

Classification genotype 2 100% (307/307) 97.4% (299/307)

Smear method

Classification genotype 1 81.3% (26/32) 100% (32/32)

Classification genotype 2 99.8% (122/123) 82.1% (101/123)
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(122/123) of the genotype 1 and 2 validation spectra, respectively, for 
an overall accuracy of 95.5% (146/155) which was significantly lower 
than the extraction method accuracy (p = < 0.05).

The QC biomarker model incorporated a single peak at 
6854 m/z and correctly classified 100% (110/110) and 97.4% 
(299/307) of the genotype 1 and 2 extraction method 
validation spectra, respectively. The resulting overall 
classification accuracy for the extraction spectra was 98.1% 
(409/417). When classifying spectra obtained using the smear 
method, the QC model correctly classified 100% (32/32) and 
82.1% (101/123) of genotype 1 and 2 spectra, respectively. 
The overall accuracy for smear spectra was therefore 85.8% 
(133/155) which was significantly lower than the extraction 
method accuracy (p = < 0.05). The accuracy of the GA model 
was statistically superior to the QC model using both the 
extraction method (p = < 0.05) and the smear method (p = < 
0.05) of sample preparation. The highest weighted peak in the 
GA model was peak 6,854 m/z, which is the same peak used 
in the QC model. While the GA model showed superior 
accuracy, the QC model is still highly accurate and is 
appealing from a practical standpoint since it only uses a 
single peak. Highlighting the discriminatory power of this 
single peak would be  especially useful if spectra were to 
be manually evaluated instead of using the ClinProTools 3.0 
software. For this reason, we chose to focus on peak 6,854 m/z 
to examine the presence or absence, as well as the relative 
magnitude in the MSP profiles of all strains. Peak 6,854 m/z 
was highly significant between the two genotypes (p = < 
0.000001) according to the Peak Statistic function within 
ClinProTools 3.0. This peak was present in all 14 genotype 2 
validation MSPs with an average intensity of 24.16 arbitrary 
units (a.u.) and only present in 1/5 genotype 1 MSPs, and 
with a substantially lower intensity of only 3.01 a.u. (Table 3). 
Figure 1 displays the average spectra from each genotype at 
6854 m/z as well as the distribution of each individual spectra.

Discussion

We successfully developed two MALDI-TOF MS biomarker 
models that accurately classified strains of M. bovis according to 
genotype. The GA model was significantly more accurate than the 

QC model using both the extraction and smear method. The 
accuracy of the smear method was significantly less than the 
extraction method for both models. However, the accuracy of the 
models using the smear method (95.5% for GA, 85.8% for QC) is 
likely sufficient given the ease of sample preparation compared to 
the extraction method. Regardless of the sample preparation 
method used, replication should be  included to increase the 
discriminatory resolution of peak 6,854 m/z to account for 
individual profile variation of this peak, particularly when using 
the smear method. When the MSP of the strains were examined, 
determining the presence or absence of peak 6,854 m/z, in 
conjunction with the intensity, was sufficient to differentiate 
between the two genotypes. Therefore, manual observation of the 
MSP or individual spectrum profile of an unknown strain for a 
peak at 6854 m/z can allow for accurate genotype determination 
without the need for the biomarker model, if ClinProTools 3.0 
software is not available.

One limitation for this study is that the collection of M. bovis 
strains with known genotypes is limited since they have only been 
recently described, and further study of the application of this 
model to strains more diverse in space and time is warranted. As 
there is not a standard number of strains or spectra required to 
generate MALDI-TOF biomarker models, we included 24 spectra 
from each strain in the model generation portion of this study to 
capture variability both between and within individual strain 
spectra. The classification accuracy of the models indicates 
consistent differences between the genotypes and indicates that 
these models are a valuable tool to genotype uncharacterized 
strains with a high degree of accuracy.

MALDI-TOF delivers several benefits over both whole genome 
sequencing and PCR. While the initial investment in MALDI-TOF 
capabilities is substantial, the reagents are fewer and costs associated 
with testing an individual strain is more cost effective and results 
are available more quickly. Additionally, MALDI-TOF has proven 
more accurate in identifying members of the genus Moraxella to 
the species level when compared to PCR (Robbins et al., 2018). 
Additionally, the raw data generated from the instrument as part of 
the species identification run can be  used directly to identify 
genotypes, providing added value to existing data.

Additional work to determine the relative abundance of each 
genotype within healthy and IBK affected eyes using MALDI-TOF 
MS profiles will allow us to determine if either of the genotypes is 
more likely to be associated with disease. If it is determined that a 
specific genotype is more likely to be disease-associated, it may 
be beneficial to preferentially include such strains in future vaccine 
formulations, particularly for autogenous vaccines. Beyond disease 
association, the M. bovis genotyping models will help determine 
any geographic or seasonal differences in the abundance of the 
genotypes as well. Any differences determined in either geographic 
or seasonal distribution of the genotypes may provide another 
method for vaccine formulation customization. If both genotypes 
are represented equally among diseased eyes, the genotype 
classification will still prove useful in any efforts to decipher any 
potential differences in the mechanics of pathogenesis and/or the 

TABLE 3 The presence and intensity of peak 6,854 m/z used in the QC 
model for each of the validation group strains.

Peak (m/z) 6,854 (Range 
6844.26–6864.35)

Average intensity 
(arbitrary units)

Extraction Method

Genotype 1 1/5 3.01

Genotype 2 14/14 24.16

Smear Method

Genotype 1 0/5 0.0

Genotype 2 14/14 38.38
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utilization of certain virulence factors. The.XML files for both the 
GA and QC models developed in this study are available upon 
request by contacting the corresponding author.
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FIGURE 1

Average genotype 1 (red) vs. genotype 2 (green) spectra focused on the area of peak 6,854 m/z included in the QC biomarker model. The 
differential expression and magnitude of peaks allows for differentiation of the respective genotypes.
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Due to the global spread of pan resistant organisms, colistin is actually considered 
as one of the last resort antibiotics against MDR and XDR bacterial infections. The 
emergence of colistin resistant strains has been observed worldwide in Gram-
negative bacteria, such as Enterobacteriaceae and especially in K. pneumoniae, 
in association with increased morbidity and mortality. This landscape implies the 
exploration of novel assays able to target colistin resistant strains rapidly.

In this study, we developed and evaluated a new MALDI-TOF MS assay in positive-
ion mode that allows quantitative or qualitative discrimination between colistin 
susceptible (18) or resistant (32) K. pneumoniae strains in 3 h by using the “Autof 
MS 1000” mass spectrometer. The proposed assay, if integrated in the diagnostic 
workflow, may be of help for the antimicrobial stewardship and the control of the 
spread of K. pneumoniae colistin resistant isolates in hospital settings.

KEYWORDS

colistin resistance detection, Klebsiella pneumoniae, positive-ion mode, MALDI-TOF MS, 
rapid assay

Introduction

In the last decades, the global spread of carbapenemase-producing Enterobacterales (CPE), 
primarily Klebsiella pneumoniae producing KPC-type carbapenemase (KPC-Kp), posed urgent 
threats on public health (Tzouvelekis et al., 2012; Murray et al., 2022), accounting for difficult-
to-treat infections associated with high mortality rates (Cassini et al., 2019).

Owing to the significant burden of disease and limited treatment options, Centers for 
Disease Control and Prevention (CDC) (2019) and World Health Organization (WHO) (2017) 
ranked CPE as ‘critical-priority’ pathogens to which address the development of novel 
antimicrobial compounds.

OPEN ACCESS

EDITED BY

Karsten Becker,  
University Medicine Greifswald,  
Germany

REVIEWED BY

Xiaogang Xu,  
Fudan University,  
China
Antonella Lupetti,  
University of Pisa,  
Italy

*CORRESPONDENCE

Elena De Carolis  
 elena.decarolis@policlinicogemelli.it

†These authors have contributed equally to this 
work and share first authorship

SPECIALTY SECTION

This article was submitted to  
Antimicrobials, Resistance and Chemotherapy,  
a section of the journal  
Frontiers in Microbiology

RECEIVED 15 September 2022
ACCEPTED 01 February 2023
PUBLISHED 22 February 2023

CITATION

Foglietta G, De Carolis E, Mattana G, Onori M, 
Agosta M, Niccolai C, Di Pilato V, Rossolini GM, 
Sanguinetti M, Perno CF and Bernaschi P (2023) 
“CORE” a new assay for rapid identification of 
Klebsiella pneumoniae COlistin REsistant 
strains by MALDI-TOF MS in positive-ion mode.
Front. Microbiol. 14:1045289.
doi: 10.3389/fmicb.2023.1045289

COPYRIGHT

© 2023 Foglietta, De Carolis, Mattana, Onori, 
Agosta, Niccolai, Di Pilato, Rossolini, 
Sanguinetti, Perno and Bernaschi. This is an 
open-access article distributed under the terms 
of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted which 
does not comply with these terms.

TYPE Original Research
PUBLISHED 22 February 2023
DOI 10.3389/fmicb.2023.1045289

106107107

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2023.1045289&domain=pdf&date_stamp=2023-02-22
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1045289/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1045289/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1045289/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1045289/full
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1045289/full
mailto:elena.decarolis@policlinicogemelli.it
https://doi.org/10.3389/fmicb.2023.1045289
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2023.1045289


Foglietta et al. 10.3389/fmicb.2023.1045289

Frontiers in Microbiology 02 frontiersin.org

Although several new antimicrobial agents active against CPE 
have been recently approved and marketed, including the novel 
β-lactam/β-lactamase inhibitor combinations, older molecules as 
colistin still hold a place in the antibiotic armamentarium as salvage 
therapy for patients infected with multi-drug resistant (MDR) or 
extensively drug-resistant (XDR) organisms (Jean et al., 2019).

Colistin is a positive charged polypeptide antibiotic, belonging 
to the polymyxin class, which targets the lipopolysaccharide (LPS) 
moiety on the outer membrane gram negatives, inducing a 
displacement of cations by electrostatic interaction and thus 
causing the disruption and loss of cell membrane integrity. To 
counteract these effects, bacteria have evolved multiple adaptative 
strategies including chromosomal mutations in the genes 
associated with the modification pathways of the lipid A, use of 
efflux pumps or capsule and the horizontal transfer of the plasmid-
carried gene mcr-1 (Granata and Petrosillo, 2017; Wang et al., 2018; 
Hamel et al., 2021).

To date, the main mechanism of resistance is the modification of 
the lipid A.

In K. pneumoniae, alterations involving the mgrB gene, along 
with mutations in pmrAB and phoPQ loci, have been reported as 
the most common mechanisms of colistin resistance accounting 
for modification of LPS (Pragasam et al., 2017; Giordano et al., 
2018), by addition of phosphoethanolamine (PEtN) and 4-amino-
4-deoxy-L-arabinose (L-Ara4N) residues to the phosphate groups 
of lipid A (Cannatelli et  al., 2014; Poirel et  al., 2015), while 
horizontal acquisition of mcr-like genes was observed 
less frequently.

Nowadays, broth microdilution (BMD) is considered as the 
reference method for antimicrobial susceptibility testing (AST) of 
colistin by Clinical and laboratory standard institute (CLSI) and 
European committee on antimicrobial susceptibility testing 
(EUCAST) join subcommittee (2016). However, these phenotypic 
methods do not match with the need of a timely detection of colistin 
resistance for patient’s isolates as they imply turnaround times of 
16–24 h. On the other hand, PCR-based molecular methods, although 
rapid, only provide information on the presence/absence of the genes 
involved in the resistance mechanisms, which not always correlates to 
the isolate’s phenotype.

Very recently, a novel MALDI-TOF based method (i.e., the 
MALDIxin test) able to detect colistin resistance in about 15–30 min, 
thanks to a shift of the mass unit of the native lipid A present in the 
resistant bacterial strains, has been developed and validated for E. coli, 
A. baumannii (Dortet et  al., 2018) and K. pneumoniae (Dortet 
et al., 2020).

Anyway, these assays require switching the MALDI-TOF MS 
machine to the negative ion mode, not the modality routinely used for 
bacterial identification. Besides the availability of such a technology 
(actually still rare in the majority of the microbiology labs), the assay 
needs pre and post switching additional calibrations.

Here, we aimed to develop and validate the “CORE” assay, a new 
MALDI-TOF-based test in positive ion mode for rapid prediction of 
colistin resistance in K. pneumoniae, relying on the detection of a mass 
spectrum profile with an identification score lower or ≥ 6 by using the 
Autof MS 1000 mass spectrometer (Autobio). The assay was evaluated 
both as a method for MIC prediction and as a screening tool for 
colistin resistance (quantitative and qualitative AST respectively) by 
comparison with BMD AST results.

Materials and methods

Strains collection

The study collection included 50 colistin-resistant (n = 32) 
and-susceptible (n = 18) K. pneumoniae isolates, cultured from blood 
(n = 33), urine (n = 4), rectal swabs (n = 8), tracheal broncho-aspirates 
(n = 3), cerebrospinal fluid (n = 1) and wound swab (n = 1). The 
isolates, collected within the 2016–2021 period, were part of national 
surveys (n = 21; Di Pilato et al., 2021), of previously published studies 
(n = 9; Cannatelli et al., 2014; Arena et al., 2016; Boncompagni et al., 
2022) or of a local collection available at the University of Florence 
(Florence, Italy) (n = 14).

Determination of the colistin resistance 
mechanisms

Within the study collection, 32 out of 50 K. pneumoniae isolates 
were previously characterized by whole-genome sequencing 
(WGS), and genetic alterations associated with colistin resistance 
were formerly investigated (Cannatelli et al., 2014; Di Pilato et al., 
2021; Boncompagni et al., 2022). The remaining colistin resistant 
isolates (n = 18) were screened for the presence of the most 
common mcr gene variants by Real-time PCR, including mcr-1 and 
mcr-2, and additional mcr genes using specific primer/probes 
combinations (Coppi et al., 2018; Yang et al., 2018) (Table 1).

Colistin susceptibility testing

Colistin susceptibility testing of the clinical isolates for the CORE 
assay was performed using the BMD method by Liofilchem™ 
ComASP™ Colistin Test Panel (Liofilchem, Roseto degli Abruzzi, Te, 
Italy) containing the dried up antibiotic in 27-fold dilutions 
(0.25–16 mg/L) following the manufacturer instructions. MIC results 
were interpreted according to EUCAST Clinical Breakpoints 
(v12.0, 2022).

CORE assay

In order to obtain a fast and accurate qualitative and quantitative 
AST for colistin of the 50 K. pneumoniae strains included in the study, 
CORE assay and colistin BMD susceptibility testing were performed 
in parallel including three biological and two technical replicates for 
each tested isolate. To optimize the CORE assay inoculum 
concentration, the time of the test incubation and to develop a 
classifying algorithm, preliminary experiments were performed on 10 
well-characterized K. pneumoniae, 5 colistin resistant (colR) and 5 
colistin susceptible (colS) strains (reported in bold in Table 2).

The CORE assay protocol was performed according to the steps 
reported in Figure 1.

Briefly, all the K. pneumoniae strains were sub-cultured on 
MacConkey agar plates (bioMérieux) at 37° C for 24 h; a 0.5 McF 
suspension was made from grown colonies. Except for the inoculum 
size, ComASP (Compact Antimicrobial Susceptibility Panel) Colistin 
test was performed following the standard procedures.
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After 3 h of incubation at 37°C, an aliquot of 1 μL of the bacterial 
suspension from each well was spotted in duplicate on the 
MALDI-TOF target plate (96 wells steel target slide, Autobio 
Diagnostics) by direct deposition with the addition of 1 μL of Autobio 
sample pretreatment reagent lysate 1 (formic acid). After drying, the 
spot was overlaid with 1 μL of Cyano 4 Hydroxycinnamic Acid CHCA 
AUTOF MS matrix (Autobio Diagnostics, CO., LTD, China) 
solubilized in lysate 2 (acetonitrile) and buffer (trifluoroacetic acid) 
as recommended.

The spectra acquisition was performed on an Autof 1,000 MS 
(Autobio Diagnostics, Zhengzhou, China) mass spectrometer in 
positive linear mode, at a laser frequency of 60 Hz, in the mass range 
2–20 kDa, using the “microbe” automatic acquisition mode with an 
overall 240 laser-shot acquired by 40 shot steps for each spot. The mass 
spectrometer was calibrated with Autobio calibrating agent consisting 
of nine calibrating proteins, according to manufacturer’s instructions.

The protein spectra were analyzed using the Autof Acquirer 
version 1.0.55 software and the library v2.0.61 was used for the peaks 
matching. The identification results were interpreted according to the 
manufacturer criteria as following: Identification scores ≥9 were 
considered positive at the species level, scores between 6 and 9 as 

positive at the genus level, and scores <6 were defined as unreliable 
(no identification).

CORE assay data analysis

For the qualitative assay, only the spectra acquired by the plate 
well without the colistin agent and those acquired by the 2 mg/L plate 
well (ComASP® Colistin, Liofilchem, Te, Italy) were used as growth 
control and test breakpoint concentration (BP) respectively. An 
algorithm was developed to provide a rapid and accurate detection as 
colistin susceptible (colS) or resistant (colR) for the 50 K. pneumoniae 
strains. In particular, a test sample was classified as colR or colS on the 
following parameters: growth control spectra score ≥ 6 and 2 mg/L 
spectra score > 6 or 2 mg/L spectra score < 6, respectively.

On the contrary, for the quantitative assay all the spectra acquired 
in the range 0.25–16 mg/L were included in the analysis along with the 
growth control spectra. The MIC value was determined as the lowest 
drug dilution at which the spectra score was <6. The geometric mean 
(G MEAN) and the modal MIC calculated from the replicates was 
reported for all the samples (Table 2). In the case the 16 mg/L spectra 

TABLE 1 Sequence of primers and probes used to evaluate the presence of mcr-type genes.

Target genes Primer name Sequence 5’-3’ References

mcr-1 like mcr-1-rt-fwd ATCAGCCAAACCTATCCCATC

mcr-1-rt-rev ACACAGGCTTTAGCACATAGC Giani et al. (2013)

mcr-1-rt-p CY5-GACAATCTCGGCTTTGTGCTGACGATC-BHQ-3

mcr-2 like mcr-2-rt-fwd AGCGATGGCGGTCTATCCTG

mcr-2-rt-rev CAAAAAACGCCAAATTCATCAAGTC Giani et al. (2013)

mcr-2-rt-p HEX-TGATGGGTGCTATGCTACTGATTGTCG-BHQ-1

mcr-3 like mcr-3-rt-fwd CCAATCAAAATGAGGCGTTAGC

mcr-3-rt-rev CACTATAAGTGATGCAAACATCG This study

mcr-3-rt-p ROX-GGGCACGAGTTAGAATCCCTTTGAACC-BHQ-2

mcr-4 like mcr-4-rt-fwd CAATTACCAATCTACTGCTGACTG

mcr-4-rt-rev GTAACGCCTTAACTCACTGTTG This study

mcr-4-rt-p FAM-CTGCTAATGTTCGTTGGCATTGGGATAG-BHQ-1

mcr-5 like mcr-5-rt-fwd GCTGCCTGGATGAAATTCTGC

mcr-5-rt-rev GTGTTCACCAAGGCTTCATGC This study

mcr-5-rt-p CY5.5-CAGATGGGTGGTGTCGCAGGTTG-BBQ650

mcr-6 like mcr-6-rt-fwd ACACAGCATAGTCCTTGGTAC

mcr-6-rt-rev AACAGCACAGTAATCAATAGCATC This study

mcr-6-rt-p FAM-CACCAATACTTATCCGATGGCACAAAAC-BHQ-1

mcr-7 like mcr-7-rt-fwd TGGAGACCAACAACAGTGAG

mcr-7-rt-rev CACGAACAGCAGCGAGAAGG This study

mcr-7-rt-p HEX-TCGTGCTCTGGTTCCTGCTGAC-BHQ-1

mcr-8 like mcr-8-rt-fwd CATCATACTTATCCGTTCCTTTTC

mcr-8-rt-rev CCACAATTCAATTCTAAAAGCTCC This study

mcr-8-rt-p ROX-GTACCAGCAATTATCCTGGCGTTGC-BHQ-2

mcr-9 like mcr-9-rt-fwd ACGACTAAAGTGCCTTTCCAG

mcr-9-rt-rev GATTCATATTCGAGAACATGCAC This study

mcr-9-rt-p CY5-CTGGTAAAGGCATTGGTATCACGC-BHQ-3
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TABLE 2 Characteristics and results of the MALDI-TOF CORE assay on Klebsiella pneumoniae isolates included in the study (n = 38).

Isolatesa Specimen Mechanisms 
of colistin 
resistance

Acquired 
resistance to 
β-lactams

Phenotipic 
evaluation

MALDI-TOF “CORE” assay

MIC 

(mg/L)

Categoryb [BP]c 

Score

MIC Categoryd

GMean Modal

1300073725 Urine – – > 16 R > 6.0 > 16 >16 R

7001452909 Urine PmrB (P95L) OXA-1,CTX-M-

15,KPC-3, SHV-28

> 16 R > 6.0 > 16 > 16 R

7013697707 Tracheo aspirate PmrA (A41T) TEM 1D,CTX-M-

15,KPC-3, SHV-28

> 16 R > 6.0 > 16 > 16 R

7014248502 Blood ΔmgrB – > 16 R > 6.0 > 16 > 16 R

7014832004 Tracheo aspirate – – 4 R > 6.0 7.13 4 R

7028826801 Tracheo aspirate – – > 16 R > 6.0 > 16 > 16 R

7029218302 Tracheo aspirate – – 16 R > 6.0 > 16 > 16 R

7035291107 Tracheo aspirate – – 8 R > 6.0 12.7 16 R

7042734501 Broncho aspirate – – 8 R > 6.0 8.98 16 R

7042770204 Broncho aspirate – – 8 R > 6.0 10.08 8 R

7048020202 Tracheo aspirate – – 16 R > 6.0 > 16 > 16 R

7048595202 Tracheo aspirate – – 16 R > 6.0 > 16 > 16 R

7050590801 Urine ΔmgrB KPC-3 16 R > 6.0 16 16 R

7070100801 Blood – – 4 R > 6.0 4.76 16 R

7066530202 Blood ΔmgrB KPC-3 > 16 R > 6.0 > 16 > 16 R

7055043403 Broncho aspirate – – 16 R > 6.0 > 16 > 16 R

7071493102 Blood – – 16 R > 6.0 > 16 > 16 R

7078248702 Central venous 

catheter

ΔmgrB TEM-1D, KPC-3 16 R > 6.0 8.98 8 R

7079499102 Pharyngeal swab – – 16 R > 6.0 12.7 16 R

KP348 Urine ΔmgrB KPC-3 16 R > 6.0 > 16 > 16 R

KP350 Blood – – 16 R > 6.0 12.7 16 R

KP338 Blood – – 8 R > 6.0 10.37 16 R

KP369 Blood – – 16 R > 6.0 16 16 R

B2 Blood – KPC-3 4 R > 6.0 16 16 R

KP207-2 Blood ΔmgrB KPC-3 16 R > 6.0 12.7 16 R

KP366 Blood ΔmgrB KPC-3 > 16 R > 6.0 > 16 > 16 R

KP321 Blood – KPC-3 > 16 R > 6.0 > 16 > 16 R

KP331 Blood ΔmgrB KPC-3 >16 R > 6.0 > 16 > 16 R

KP292 Blood ΔmgrB KPC-3 > 16 R > 6.0 > 16 > 16 R

KP295 Blood ΔmgrB KPC-3 > 16 R > 6.0 > 16 > 16 R

KP260 Blood ΔmgrB KPC-3 > 16 R > 6.0 > 16 > 16 R

KP266 Blood ΔmgrB KPC-3 > 16 R > 6.0 > 16 > 16 R

KP377 Blood – KPC-2 0.25 S < 6.0 0.56 0.5 S

KP290 Tracheo aspirate – – 0.5 S < 6.0 0.65 0.5 S

KP291 Tracheo aspirate – – 0.5 S < 6.0 0.63 0.5 S

KP317 Blood – KPC-2 1 S < 6.0 1 1 S

KP330 Blood ΔmgrB, pmrA 

(A217V), pmrB 

(G256R)

KPC-3,SHV1 < 0.25 S < 6.0 0.79 0.5 S

(Continued)
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score was >6, a MIC value >16 mg/L was reported and the test sample 
classified as colR. On the contrary, in the case the 0.25 mg/L spectra 
score was <6, a MIC value <0.25 mg/L was reported and the sample 
categorized as colS.

Thus, each strain was classified according to the above mentioned 
algorithms for the qualitative or quantitative CORE assay.

The results were compared with those obtained by the 
conventional BMD test, following interpretation with the EUCAST 
Clinical Breakpoints (v12.0, 2022) for colistin.

According to the modal MIC value, a MIC value agreement 
within ±1 dilution against BMD (essential agreement, EA) was 
considered acceptable (Clinical laboratory testing and in vitro 
diagnostic test systems ISO 20776-2:2021) for the new assay evaluation.

Divergence degree in distribution between BMD and CORE assay 
MIC values, potentially leading to resistance state misclassification, 
has been statistically evaluated with a non parametric Wilcoxon Test 
(R statistics stats library) performed in a paired manner and with a 
value of p continuity correction.

TABLE 2 (Continued)

Isolatesa Specimen Mechanisms 
of colistin 
resistance

Acquired 
resistance to 
β-lactams

Phenotipic 
evaluation

MALDI-TOF “CORE” assay

KP310 Blood ΔmgrB KPC-3 0.5 S < 6.0 1 1 S

KP311 Blood ΔmgrB KPC-3 0.25 S < 6.0 0.5 1 S

KP313 Blood – KPC-3 1 S < 6.0 1.19 1 S

KP264 Blood – KPC-3 0.5 S < 6.0 1.26 1 S

1300073725 Cerebral spinal fluid – KPC-3 0.25 S < 6.0 0.35 0.25 S

7001452909 Blood – KPC-3 0.5 S < 6.0 0.79 1 S

7013697707 Blood – KPC-3 < 0.25 S < 6.0 1 1 S

7014248502 Blood – KPC-3 0.5 S < 6.0 0.35 0.25 S

7014832004 Blood – KPC-3 0.5 S < 6.0 1.19 1 S

7028826801 Blood ΔmgrB KPC-3 0.5 S < 6.0 0.5 0.5 S

B1 Blood – KPC-3 < 0.25 S < 6.0 < 0.25 < 0.25 S

KP207-1 Blood – KPC-2 < 0.25 S < 6.0 < 0.25 < 0.25 S

KP293 Blood – KPC-3 0.5 S < 6.0 0.5 0.5 S

Alterations of genes known to be involved in colistin resistance were reported for isolates previously characterized by WGS. 
aIn bold the selected colS and colR K. pneumoniae strains used for the preliminary experiments.
bCategory were assigned according to EUCAST clinical breakpoints ver.12.02022 (S < 4, R ≥ 4 mg/L).
cBreakpoint concentration MALDI-TOF MS score.
dCategory were assessed at the breakpoint concentration according to the proposed algorithm: MALDI-TOF MS score < 6.0 = S, ≥ 6.0 = R.

FIGURE 1

Laboratory workflow illustrating the CORE assay for the rapid detection of qualitative and quantitative colistin resistance in K. pneumoniae isolates.
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Results and discussion

The preliminary validation of the CORE assay carried out on 10 
selected well-characterized strains of K. pneumoniae (i.e., including 
five colistine susceptible and five resistant strains, reported in bold in 
the Table 2), allow to correctly classifying them as colistin susceptible 
or resistant by the proposed algorithm.

The spectra of a colistin resistant and a colistin susceptible 
K. pneumoniae selected strains acquired by the Autof MS 1000 mass 
spectrometer using the CORE assay protocol are shown in Figure 2. 
The correspondent results obtained by the automatic matching of the 
acquired mass spectra against the Autobio library v2.0.61 for the 
growth control (no drug), BP and maximum concentration of colistin 
are reported at each profile side.

As exemplified, in the case of a susceptible K. pneumoniae isolate 
(Figure 2A), a matching score result <6.0 is obtained for all the tested 
replicates, both at the breakpoint (2 mg/L) and at the maximum 
concentration (16 mg/L), which takes into account the reduction or 
absence of the mass peaks in the respective MALDI-TOF MS profiles, 
in comparison with the growth control.

Conversely, for a resistant K. pneumoniae isolate (Figure 2B), the 
matching score results are above 6.0 both for the BP and maximum 
concentration, thus indicating the presence of a colistin resistant 
organism associated with the persistence of the mass spectra profiles 
at the given concentrations.

Thus, the CORE assay was applied on the 50 clinical isolates of 
K. pneumoniae included in the study. Genomic data revealed that 

multiple alterations in genes known to be  involved in colistin 
resistance (i.e., mgrB, pmrB) were present in sequenced isolates 
(n = 32), regardless of the colistin resistance phenotype (Table 2), while 
no acquired mcr-like genes were detected in the whole 
isolate collection.

The CORE assay results for the qualitative or quantitative assay 
were compared with those obtained by the BMD quantitative test; 
the overall results are shown in Table  2. As reported all 
K. pneumoniae, 32 colR and 18 colS isolates, were correctly classified 
in 3 h as resistant or susceptible by the CORE assay, respectively. 
For what concerns the quantitative CORE assay, 30 out of 32 colR 
K. pneumoniae agreed against BMD MIC values within ±1 dilution 
according to the modal MIC results, whilst 7070100801 and B2 
isolates obtained a MIC value 2 dilution higher (16 vs. 4 mg/L) 
using the quantitative CORE assay. Overall, an EA of 93.7% 
(30/32 K. pneumoniae resistant isolates) was reported following the 
3 h incubation of the quantitative CORE assay.

Regarding the 18 colS K. pneumoniae, an EA of 83.3% was 
calculated; in particular, 15 out of 18 isolates resulted concordant 
against the BMD assay within ±1 dilution. However, KP338 MIC 
value was <0.25 mg/L instead of 0.5, KP377 obtained a MIC value 2 
dilution higher and KP310 MIC value was <0.25 mg/L instead of 1 
by comparison of quantitative CORE assay and BMD MIC results, 
respectively. Interestingly, all colistin susceptible isolates carrying 
genetic alterations previously associated with colistin resistance 
(i.e., ΔmgrB, pmrAA217V, pmrBG256R) were classified as colS by the 
“CORE” assay, a result consistent with the reference BMD (Table 2), 

A B

FIGURE 2

Representative MALDI-TOF mass spectra of two K. pneumoniae organisms detected as colistin susceptible (A) and colistin resistant (B), respectively, by 
the CORE assay. Score value of the replicates spectra acquired at the selected drug concentrations are reported at the respective image side.
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suggesting that colistin susceptibility could be  more accurately 
predicted by the MALDI-TOF based approach than genetic data in 
these isolates.

The distribution divergence between BMD MIC values and 
CORE assay ones, quantitatively tested by mean of a paired 
Wilcoxon Test, estimated it as statistically significant since resulting 
value of p was 4.108e-05. This result indicates an overall agreement 
between mentioned approaches while considering MIC 
divergence degree.

In summary, following a three-hour samples incubation, by a 
simple algorithm for MALDI-TOF MS analysis (MALDI-TOF MS 
score < 6.0 = S or ≥ 6.0 = R), we obtained a total agreement between the 
qualitative CORE assay and the phenotypic method results. Moreover, 
an EA of 93.7 and 83.3% was achieved in the case of the quantitative 
CORE assay for the colR and colS isolates, respectively.

The MALDI-TOF MS based CORE assay in positive-ion mode 
that allows in 3 h of incubation the detection of colistin resistant or 
colistin susceptible K. pneumoniae isolates can provide rapid results 
to clinicians without the need to wait the 16–24 h necessary for the 
conventional BMD assays. Furthermore, the possibility to obtain 
colistin resistance detection using MALDI-TOF spectrometry 
instrument at the same polarity, the positive one, without switching 
to the negative ion mode and thus avoiding the calibration steps, 
makes the proposed algorithm suitable for a combination with the 
current routine MALDI-TOF MS identification workflow.

The simple algorithm here proposed for the CORE assay avoids 
statistical analysis based on the absence or presence of specific mass 
peaks and is independent from the mechanism of resistance, it relies 
on the growth of the microorganism and thus on the MALDI-TOF 
identification score matching value. Moreover, the test, can be suitable 
also for laboratories that cannot afford the costs of a new spectrometer 
equipped with the positive–negative ion mode switching modality as 
requested by the assays based on colistin resistance-related 
modifications to lipid A, thus consisting in a novelty in the landscape 
of polymixin resistance detection assays based on mass spectrometry.

One limitation of the qualitative CORE assay is that the time to 
result is higher with respect to the MALDI-TOF tests based on 
lipidomics. On the contrary, the quantitative CORE assay has the 
advantage to provide good results (EA of 93.7 and 83.3% for colR or 
colS K. pneumoniae isolates) earlier than conventional BMD methods 
(3 vs. 16–24 h).

Overall, the CORE assay, although studies are still needed to 
implement the number of samples tested, might be  of extreme 
importance in the detection of colistin resistant isolates. The 
emergence of colistin resistant K. pneumoniae isolates can have a huge 
impact on the patient outcome representing a pressing health-care 
problem from both a management and economic point of view. The 
use of rapid and cost-effective new technologies applied to the 
resistance landscape, might offer the possibility to overcoming the 

non-appropriate use of colistin and at the same time can be of help in 
the struggle against the spread of antibiotic-resistance.
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