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Editorial on the Research Topic

Plant Foods and Dietary Supplements: Building Solid Foundations for Clinical Trials

Clinical trials are the generally accepted gold standard for querying the safety and efficacy of
interventions, but they are time- and cost-intensive. Given their high price, it is critical that each
clinical trial advance our understanding to the greatest degree feasible. While it is to be expected
that many clinical trials will not reject the null hypothesis given the many differences between
preclinical models and humans, as well as between ethnobotanical or even epidemiological and
clinical contexts, too often when a clinical trial does not reject the null hypothesis myriad post-trial
concerns emerge that it would have been better to resolve pre-trial [e.g., whether a different version
of the intervention (dose, formulation, timing, etc.) might have been effective for a slightly different
outcome or population] and leave the outcome open to different interpretations. Thus, despite
the 2,269 papers on curcumin (or turmeric or curcuminoids) published (in English) in the year
ending onNovember 24, 2021 and the 355 “curcumin” clinical trials listed in clinicaltrials.gov (same
search terms, all years), the web site of the US National Institutes of Health’s National Center for
Complementary and Integrative Health says (https://www.nccih.nih.gov/health/turmeric): Much
research has been done on substances from turmeric, but their health effects remain uncertain.
Similarly large volumes of published research on many other natural products (NP) also shed
little light.

With the goals of increasing the yield of clear, evidence-based public health guidance from
preclinical, epidemiological and clinical research by increasing the application of good practices
to the foundational research as well as to its translation to clinical trials, and of addressing more of
those myriad concerns before rather than after the clinical trial, this special edition expands on a
2019 review (1). The papers collected here delve into ways to increase the replicability and clinical
relevance and thus also the public health-relevant yields from NP research across the spectrum
from chemical characterization to clinical trials.

Increased clarity on which components within a chemically complex NP participate in
modulating specific biological outcomes should increase the information gained from clinical
trials of these products. A related question is “how much of each key chemical reaches the in
vivo site of action?” Aspects of this include product stability and replicability, bioavailability and
metabolism. Optimization of methods for biochemical characterization and standardization of
chemically complex NP are described in this topic by Abraham and Kellogg, Coskun et al., Floyd et
al., and Lyu et al..

Interactions among the constituents of chemically complex products may contribute to their
biological activities, as highlighted by Seigler et al. Replicability thus requires that we ask “what
other, as yet unidentified chemicals may contribute to biological activities of this material?”.
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Abraham and Kellogg, Coskun et al., and Funk and Schneider
describe the utility of untargeted chemical characterization
in detecting such constituents. The foregoing highlight the
challenges, which Coskun et al. and Wright et al. note are
particularly critical for NP used in clinical or translational
research; they describe applications of orthogonal methods
(leveraging different scientific principles) to increase replicability.

Biologically active product constituents must reach their
targets at sufficient concentrations for activity. Lyu et al. describe
the importance and development of methods for testing the
disintegration and dissolution (D&D) of capsules to be used in
clinical trials, while Floyd et al. stress the importance of assessing
D&D in biorelevant media representing both fed and fasted
conditions; this may avoid the need to develop a novel dosage
form for clinical applications.

Floyd et al., Weaver and Hodges, and Wright et al. note
the challenge and importance of evaluating absorption
and pharmacokinetics for chemically complex products.
Heterogeneity—genetic, epigenetic, dietary, etc, among humans,
as well as between species—may alter product metabolic rates
and the formation of biologically active metabolites (2). Chilton
et al. demonstrate the application of several approaches to detect
human genetic variants which critically modify metabolic flux
and the health effects of food (or other NP), with implications for
optimizing clinical trial inclusionary criteria and interpretations.

Floyd et al. describe the challenges of designing pre-clinical
studies appropriately for translation to human studies. They
highlight the importance of selecting the optimal animal
models and dosing regimens for the outcomes of interest and
for relevance to the population(s) of interest, and note the
importance of considering potential sex differences. Weaver
and Hodges note that while stringent inclusionary criteria may
decrease the sample size required to provide a reasonable
likelihood of avoiding a false positive or false negative result,
greater inclusivity may allow greater generalizability. Floyd et
al. add that other factors such as circadian rhythm and diet
should be documented if not controlled, since they may strongly
modulate pharmacokinetics.

Moving further toward translation, issues of safety, optimal
dosing regimen, tolerability, ability to mask the intervention in
controlled trials, optimal trial population(s) and outcome(s), and
regulatory compliance are all critical. Clinical researchers must
consider the possibility of “floor effects” for ingredients present
in the diet (3), and of “drop in” for supplements available over
the counter.

Weaver and Hodges adapted general best practices guidelines
for human nutrition randomized controlled trials (4) specifically
to plant-based interventions. Both Funk and Schneider

and Weaver and Hodges note that while clinical trials
are the gold standard for testing efficacy and providing
evidence of causality, they should be undertaken only
where they address a novel question of substantial public
health significance.

Funk and Schneider note that clinical trials based on
traditional uses may be less likely to succeed where the effect of
interest ismore likely to respond to a placebo, and that translation
of ethnobotanical research may be complicated by cultural

differences in symptomatology as well as in other behaviors or
even pharmacogenetics.

Wright et al. provide a description of the development of a
clinical trial-ready botanical product which meets requirements
for toxic contaminants, is comparable in chemistry and dosing
to the preclinical research and traditional products, minimizes
participant burden (critical for recruitment, retention and
compliance), and provides a good match to the placebo control.

Weaver and Hodges note the importance of compliance with
regulatory requirements, including those for data integrity and
participant privacy and safety. Transparency must be ensured
through pre-study registration of the trial protocol including the
statistical analysis plan. A CONSORT [Consolidated Statement
on Reporting (Clinical) Trials] checklist provides guidance
for reporting herbal interventions (5). Equally essential for
transparency, these authors describe the importance of thorough
reporting and FAIR (Findable, Accessible, Interoperable,
Replicable) data for the advancement of knowledge, as well as for
compliance with requirements of funding agencies.

Full adoption of the best practices described by authors in
this topic will both increase the value of knowledge gained
from translational research using chemically complex NP and
increase the utility of NP clinical trial results for improving our
understanding of NP effects on human health. Adoption of these
practices will provide a more solid foundation for building the
evidence base for the use of NP for health.
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Methods for a dissolution study by ultra-high performance liquid chromatography/triple

quadrupole mass spectrometry (UHPLC-QqQ/MS) analysis of grape polyphenol dietary

supplements, namely, grape seed extract (GSE) and resveratrol (RSV) capsules, were

developed following the guidance of United States Pharmacopeia (USP) <2040>. Two

dissolution media, 0.1N hydrochloric acid (pH 1.2) and 0.05M acetate buffer (pH 4.6),

were evaluated with dissolution apparatus (USP 1), 100 rpm rotation speed, and 900ml

dissolution medium volume. Dissolution profiling was performed over 120min. Major

phenolic compounds of gallic acid, catechin, epicatechin, and procyanidin B2 were

quantitated to obtain the dissolution profile of GSE capsules, and trans-RSV was used

for RSV capsules. Results indicated that the released trans-RSV for RSV capsules in both

of the dissolution media meets the USP standards, and that for the GSE capsules, all the

four marker compounds passed the dissolution test in the HCl medium but did not reach

a 75% release within 60min in the acetate buffer. These promising results suggest that

the general USP dissolution protocols are adequate for the successful release of RSV

capsules in HCl medium and acetate buffer and GSE capsules (in HCl medium), but may

be inadequate for GSE capsules in acetate buffer. These results showed that under a

low pH of 1.2 (simulated stomach environment), bioactive compounds were released on

time from the GSE capsules and met the USP guidelines; however, under a higher pH

of 4.6 (simulated duodenum environment), the same biomarkers failed, suggesting the

need to further improve the dissolution of GSE over a wider range of pH environments

to enhance bioavailability and efficacy.

Keywords: grape seed extract, resveratrol, UHPLC-QQQ/MS, polyphenol, bioavailability
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INTRODUCTION

Grape (Vitis vinifera) is native to southern Europe and Western
Asia and is grown all over the world today. It has gained a
high level of interest from the public health sector because of its
numerous active components (1). Grapes are rich in polyphenols,
60–70% of which are found in grape seeds. These active
constituents are linked with a broad spectrum of pharmacological
and therapeutic benefits, namely, antioxidant, cardioprotective,
hepatoprotective, anticarcinogenic, antidiabetic, antimicrobial,
and antiviral (2–9). The major phenolic compounds in grape
that contribute to the described health benefits are gallic
acid, (+)-catechins, (–)-epicatechin, (–)-epicatechin-3-O-gallate,
procyanidin dimers (B1–B5), procyanidin C1, and procyanidin

B5-3
′
-gallate (1).

For active ingredients, the United States Pharmacopeia (USP)
has established performance standards to detect their release
from dosage forms in capsules and tablets that may occur
as a result of formulation design or manufacturing processes
in order to ensure safety and bioavailability (10, 11). While
several quality control tests of dietary supplements (DSs) in
the United States have been described in the USP, mandatory
testing has not yet been implemented, and the USP does not
have a guideline for resveratrol or grape seed extract, although
there is one for grape seeds oligomeric proanthocyanidins. The
vast majority of marketed DSs do not have USP-approved
testing protocols. Importantly, the release of bioactives can
be impacted by the manufactured product (e.g., nature of
material and composition of the capsule, as well as the
insert materials used in the manufacturing such as capsule,
cellulose and/or gelatin, commonly used materials, all meeting
FDA requirements but not all exhibiting uniform dissolution
and breakdown properties) (12). Although the USP general
chapter <20 40> describes a set of standardized test protocols
tailored for specific combinations of dosage form and ingredient

content category and dissolution protocols for vitamin/mineral
DSs, it does not specify a dissolution protocol for testing
grape-based DSs (10).

As part of the Consortium for Advancing Research on

Botanical and Other Natural Products (https://ods.od.nih.
gov/Research/Dietary_Supplement_Research_Centers.aspx)
Program, grape-derived DSs and the major polyphenols in

these products were investigated in support of an NIH-funded
U19 clinical trial to ensure that bioactive compounds would
be released at specific concentrations over time, thus bridging
the link between chemistry, product formulation, and delivery
with acceptable predictable release times to achieve a more
robust quality control. In this brief research report, methods
for dissolution study with UHPLC-QqQ/MS analysis on grape
polyphenol DSs, namely, grape seed extract (GSE) capsules
and resveratrol (RSV) capsules, were developed following the
guidance of the USP <2040>.

MATERIALS AND METHODS

Reagents and Materials
Chemical Reagents
Standard compounds, namely, trans-RSV, (+)-catechin, (-)-
epicatechin, and gallic acid were purchased from Sigma-Aldrich
Chemicals Co. (St. Louis, MO, United States). HPLC-grade water,
acetonitrile (ACN), and formic acid (FA) were obtained from
Thermo Fisher Scientific Co. (Fair Lawn, NJ, United States). ACS-
grade hydrochloric acid, glacial acetic acid, and sodium acetate
were also purchased from Thermo Fisher Scientific Co. (Fair
Lawn, NJ, United States).

Drug Material Sourcing and Manufacturing
Two kinds of grape-based dietary supplements were investigated.
MegaNatural R© Grape seed polyphenol extract (GSE) was
purchased from Polyphenolics Company (Madera, CA,
United States), which was produced from grapes that were
grown in California, United States, certified by Halal (IFANCA).
The final GSE product was processed by hot water extraction at
a ratio of 30–50:1 (dry seed: extract). Synthetic trans-resveratrol
(RSV) was purchased from BannerBio Nutraceuticals, Inc.
(Nanshan District, Shenzhen, China).

Original GSE and RSV materials were delivered to Eagle
Nutritionals (Carlstadt, NJ, United States) to prepare the
capsules. Briefly, for GSE capsules, 450mg GSE powder and
50mg silica were filled into #0 purple/white hard gelatin capsules.
For RSV capsules, 450mgRSV powder was encapsulated using #0
green capsules.

TABLE 1 | Dynamic multiple reaction monitoring (dMRM) parameters of biomarkers in grape seed extract (GSE) and resveratrol (RSV) capsules.

Compound Retention time

(min)

MS/MS transition (dMRM) Fragementor

voltage (V)

Collision energy

(V)

Precursor ion

(m/z)

Product ion (m/z)

(quantifier/qualifier)

GSE capsule gallic acid 1.28 169 125.0/79.1 86 12/24

catechin 2.05 289.1 245.2/123.1 120 12/36

procyanidin B2 2.21 577.1 289.0/407.0 145 25/25

epicatechin 2.34 289.1 245.2/203.1 134 12/20

RSV capsule trans-resveratrol 1.67 227.1 185.0/143.0 115 17/29
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FIGURE 1 | Dissolution profile of grape seed extract (GSE) capsules showing the four major components: catechin, epicatechin, gallic acid, and procyanidin B2. (A)

0.05M acetate buffer (pH 4.6). (B) 0.1N hydrochloric acid (pH 1.2).

Equipment
Analysis of Dissolution Samples
The instrument used for chemical analysis was an Agilent
1,290 Infinity II UHPLC (Agilent Technologies, Palo Alto, CA,
United States) coupled with a 6,470 (Agilent Technologies,
Santa Clara, CA, United States) triple quadrupole mass
spectrometer with electrospray ionization (ESI) source. Agilent
MassHunter Optimizer (version B.07.00) was used for standard
compound-related parameter optimization, and MassHunter
Workstation software Data Acquisition (version B.08.00) and
Quantitative Analysis (version B.07.01) were used for data
processing. The column used for compound separation was
a KinetexTM (Phenomenex Inc., CA, United States) C18
column; the particle size was 2.6µm, and the size was
100∗2.1 mm.

Dissolution Apparatus
All the dissolution testing reported in this study was performed in
a 708-DS, eight-spindle, eight-vessel USP dissolution apparatus
type I (basket), with automated online UV-Vis measurement
(Agilent Technologies, Palo Alto, CA, United States). This
apparatus consists of the following: a vessel, which is made of
a glass material; a motor; a metallic drive shaft; and a cylindric
basket. The vessel is cylindrical with a hemispherical bottom
and has a 1-L capacity. The device used has eight vessels and
is partially immersed in a water bath. The water bath keeps
the temperature inside the vessel at 37 +/−0.5◦C during the
test. To prevent evaporation, plastic covers on the top of each
vessel are used. A rotating shaft is placed in a position that
ensures its axis is not more than 2mm at any point from the
vertical axis of the vessel and rotates smoothly. The basket is
connected at the bottom of the rotating shaft. The shaft and
basket are made of stainless steel. The basket is positioned so
that the distance between the inside bottom of the vessel and the
bottom of the basket is kept at 25mm +/−2mm during the test
(10, 11).

Dissolution Testing
The GSE and RSV capsules were tested for dissolution based
on recommendations by the FDA and USP 39 general chapters
<2040> and <711> (10, 11). The dissolution apparatus was
USP type I (basket method). The capsules were immersed
and agitated in 900ml of an appropriate medium (0.1N
HCl medium, pH 1.2, or pH 4.6 acetate buffer) at 100
rpm rotation speed, and the temperature was 37 ± 0.5◦C.
The 0.1-N HCl medium was selected to model the pH of
the stomach (1.2) while 0.05M acetate was used to mimic
the pH of the duodenum (4.6). Because trans-RSV is light-
sensitive, the instrument was protected from light using tin
foil. Twelve samples were tested per case. Basket method
was preferred in this study, because it can prevent a capsule
from floating. During the test, 1ml of each solution was
withdrawn from the dissolution vessel at 5, 10, 20, 30, 45,
60, 90, and 120min using a syringe equipped with a cannula.
The cannula was then removed from the syringe, and a 0.45-
mm polytetrafluoroethylene (PTFE) filter was used to filter
each sample.

LC-MS Method
Preparation of Standard Solution
Gallic acid, catechin, procyanidin B2, and epicatechin were
chosen as markers, because they are important bioactive
polyphenols in GSE (1), and based on our previous study,
the amount of these four compounds are dominant in GSE.
To prepare the reference solution of marker compounds in
the GSE capsules (gallic acid, catechin, procyanidin B2, and
epicatechin), each standard was accurately weighed and diluted
serially using 70% methanol with 0.1% FA to make a 5,000
to ∼0.1 ng/ml reference solution. For the RSV capsules, trans-
RVS was accurately weighed and diluted serially using 70%
methanol with 0.1% FA to make a 5,000 to ∼0.1 ng/ml
reference solution.
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Calculation of Marker Compounds in GSE Capsules
To calculate the percentage of marker compounds in
each dissolution sample, each of the marker compounds
in GSE capsules dissolved in the two-dissolution media
(0.1N HCl medium and pH 4.6 acetate buffer) was
quantified. Briefly, one GSE capsule was extracted by
sonication for 30min using each of the dissolution
media. The extracted solvent was diluted ten times and
then analyzed using the LC-MS method mentioned
in Section GSE Capsule Dissolution Samples (LC-MS
Method). Three replicates were made in parallel for quality
control purposes.

GSE Capsule Dissolution Samples (LC-MS Method)
For LC parameters, mobile phase A was 0.1% formic acid (FA) in
water, andmobile phase B was 0.1% FA in ACN. The gradient was
2 to 10% B in 0.4min, and raised to 30% B from 0.4 to 3min, then
raised to 60% B in 0.5min and dropped to 2% B in 0.1min, with a
flow rate of 0.4 ml/min. The column was equilibrated with 2% B
for 0.4min between injections. The column was thermostatted at
30◦C, and the autosampler was set to 4◦C. The injection volume
was 1 µl.

For MS parameters, nitrogen was used as the nebulizing
and drying gas. The nebulizer was set to 35 psi and
the drying gas to 300◦C with a flow rate of 12 L/min.
The sheath gas was set to 250◦C with a flow rate of 12
L/min. The nitrogen used for MS electrospray ionization
was generated from a Parker Balston NitroFlow60NA
nitrogen generator.

Each GSE dissolution sample was diluted 10 times using
70% methanol acidified with 0.1% FA and centrifugated
at 12,000 rpm for 10min. The supernatant was directly
injected into UHPLC under dynamic multiple reaction
monitoring (dMRM) mode. The dMRM parameters are listed
in Table 1.

RSV Capsule Dissolution Samples (LC-MS Method)
For LC-MS parameters, mobile phase A was 0.1% FA in water,
and mobile phase B was 0.1% FA in can with a flow rate of 0.4
ml/min. The gradient was 25 to 60% B in 3min, and the column
was equilibrated with 25% B for 0.5min between injections.
The injection volume was 1 µl. The column was thermostatted
at 30◦C, and the autosampler was set to 4◦C. Nitrogen was
used as the nebulizing and drying gas. The nebulizer was
set to 35 psi and the drying gas to 300◦C with a flow rate
of 12 L/min, while the sheath gas was set to 250◦C with a
flow rate of 12 L/min. The nitrogen used for MS electrospray
ionization was generated from a Parker Balston NitroFlow60NA
nitrogen generator.

All the RSV dissolution samples were diluted using a solution
of 70% methanol acidified using 0.1% formic acid (1:100). The
prepared sample was centrifugated at 12,000 rpm for 10min.
The supernatant was directly injected into UHPLC. The scan
mode was dMRM. The parameters are presented in Table 1.
Brown Eppendorf tubes were used to protect the RSV dissolution
samples from light.

RESULTS

Calculation of GSE Marker Compounds
Dissolved
For all the tested GSE capsules, the percentage of four
marker compounds (gallic acid, catechin, epicatechin, and
procyanidin B2) released from GSE capsules was calculated
based on analytically measured amounts. The dissolution profile
is presented in Figure 1, and the detailed data are shown in
Supplementary Material. In general, the amount of four marker
compounds in both the dissolution media increased rapidly. For
the 0.1N HCl acid medium, the GSE capsules released 96.49,
89.09, 87.65, and 78.84% of gallic acid, catechin, procyanidin
B2, and epicatechinin, respectively, within 60min, meeting the
general chapter USP disintegration and dissolution standards.
However, for the acetate buffer with a pH of 4.6, the GSE capsules
released 73.09, 67.9, 71.06, and 59.75% of gallic acid, catechin,
procyanidin B2, and epicatechin, respectively, within 60min,
failing to meet the USP guidelines of 75% release within 60 min.

Calculation of RSV Marker Compounds
Dissolved
The percentage of trans-RSV released from the RSV capsules
was also calculated based on the LC-MS data. The dissolution
profile is illustrated in Figure 2, and detailed data are shown
in Supplementary Material. For this case, the amount of trans-
RSV in both dissolution media increased rapidly, and the release
was >75% within 60min, meeting the general chapter USP
disintegration and dissolution standards.

DISCUSSION

In this study, a novel dissolution test and LC/MS analysis were
developed to evaluate the performance of grape polyphenol
dietary supplements, namely, GSE and RSV capsules.

For the GSE capsules, the marker compounds released rapidly
in both media and under conditions found in the stomach (at
pH 1.2) met the USP dissolution guidelines. However, the same
GSE capsules failed to meet that USP guideline of a 75% release
within 60min in the acidic medium with a pH of 4.6.The reasons
for dissolution test failure can be broadly classified into two
categories: dissolution procedure and capsule quality (12). It is
possible that these marker compounds may be extracted less
efficiently with the dissolution media than with sonicated organic
solvent mixtures. Also, in this study, dissolution method type I
was used where the capsules were placed inside the basket with
a 40-mesh size. The openings of the 40-mesh size may be small
to allow the release of all dissolved products. Any coacervate,
which could result during the disintegration and dissolution
of GSE capsules in 0.1N hydrochloric acid (pH 1.2), cannot
pass into the bulk dissolution medium, as shown in Figure 3. If
capsule residues could not completely pass through the basket
into the dissolution medium, the percentage of dissolved GSE
components would be lower than expected and would finally
lead to incomplete release (<100%). It is worth noting that using
a spiral capsule sinker with large opening (10-mesh size) could
solve this problem. Moreover, a previous study has reported
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FIGURE 2 | Dissolution profile of resveratrol (RSV) capsules. (A) 0.1N hydrochloric acid (pH 1.2). (B) 0.05M acetate buffer (pH 4.6).

FIGURE 3 | GSE capsule residues within the dissolution basket after 2 h dissolution in 0.1N hydrochloric acid (pH 1.2) (as indicated by arrowheads).

that some products were sensitive to chosen test conditions,
namely, beaker size and the equipment used in dissolution study
(13). Because of the limitation of our laboratory and costs, we
did not optimize these parameters, and these aspects might be
further improved. The results also indicate that the bioactive
compounds may be not released properly from GSE capsules in
the 0.05M acetate buffer (pH 4.6), while these compounds
were successfully released from GSE capsules in 0.1N
hydrochloric acid (pH 1.2).

For the RSV capsules, trans-RSV released was more than
75% within 60min in both the dissolution media. However,
for the 0.1-N HCl acid medium, the amount of trans-RSV
dropped after 45min. Due to the stability and solubility of trans-
RSV being highly influenced by pH and temperature, trans-
RSV might be degraded during the experiment. Hence the
concentration obtained by UHPLC-QqQ was much lower than
the amount that was released. Photochemical and photocatalytic
degradation of trans-RSV is another possible reason for the
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reduction, owing to cis-isomerization, which occurs when the
trans-isomer is exposed to sunlight, or artificial or natural
UV radiation at a wavelength of 254 or 366 nm (14–18). In
this study, even though the dissolution apparatus was covered
with tin foil to protect RSV from light, and brown Eppendorf
tubes were used when preparing the RSV capsule samples,
light-sensitive trans-RSV may still be exposed to visible light
during the experiment. Hence, it is worthwhile to note that
special attention must be paid to trans-RSV dissolution testing.
These results demonstrate the need to improve the dissolution
apparatus for these light-sensitive compounds. Our findings
suggest that product formulation needs to be considered in
all such studies that examine the bioavailability of a botanical
product in animal or human trials and in as rigorous a manner
as botanical authentication and chemical profiling of the actual
product. That is, the material of the capsule itself and the
excipients used and blended into the actual botanicals need
to be subjected to such dissolution tests to ensure that the
correct concentrations needed in animal and human studies
are delivered.
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Botanical supplements with broad traditional and medicinal uses represent an area

of growing importance for American health management; 25% of U.S. adults use

dietary supplements daily and collectively spent over $9. 5 billion in 2019 in herbal and

botanical supplements alone. To understand how natural products benefit human health

and determine potential safety concerns, careful in vitro, in vivo, and clinical studies

are required. However, botanicals are innately complex systems, with complicated

compositions that defy many standard analytical approaches and fluctuate based upon

a plethora of factors, including genetics, growth conditions, and harvesting/processing

procedures. Robust studies rely upon accurate identification of the plant material, and

botanicals’ increasing economic and health importance demand reproducible sourcing,

as well as assessment of contamination or adulteration. These quality control needs for

botanical products remain a significant problem plaguing researchers in academia as

well as the supplement industry, thus posing a risk to consumers and possibly rendering

clinical data irreproducible and/or irrelevant. Chemometric approaches that analyze the

small molecule composition of materials provide a reliable and high-throughput avenue

for botanical authentication. This review emphasizes the need for consistent material

and provides insight into the roles of various modern chemometric analyses in evaluating

and authenticating botanicals, focusing on advanced methodologies, including targeted

and untargeted metabolite analysis, as well as the role of multivariate statistical modeling

and machine learning in phytochemical characterization. Furthermore, we will discuss

how chemometric approaches can be integrated with orthogonal techniques to provide

a more robust approach to authentication, and provide directions for future research.

Keywords: metabolomics, adulteration, multi-omics, dietary supplements, biochemometrics, chemometrics,

botanicals, authentication

INTRODUCTION

Botanical medicines and dietary supplements represent a growing facet of personal health and
medical care for Americans; the 2017 survey from the Council for Responsible Nutrition found
that botanicals make up ca. 39% of total dietary supplement usage for adults in the United States
(1), and US sales of herbal supplements totaled $9.6 billion in 2019, an annual increase of 8.6%
(2). The use of botanical medicines and dietary supplements has come to include patients receiving
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disease therapy, such as cancer (3) and chronic obstructive
pulmonary disease (COPD) (4). The increase in economic
and biomedical relevance of botanicals have led to a rise in
research interest surrounding their potential health benefits,
including support from the National Institutes of Health (5).
The US National Library of Medicine’s clinical trial tracker
(clinicaltrials.gov) had >140 active clinical trials involving
“herbal” or “botanical” preparations listed (accessed July 30,
2021) (6). However, the veracity of biomedical research, whether
it is in vitro studies or clinical trials, is predicated on the
authenticity and purity of the botanical(s) being studied.
Botanical products are inherently complex chemical mixtures
that can vary depending on abiotic and biotic factors during
growth and post-harvest processing. Complicating this is the
fact that products can be obtained from multiple producers
and growers, potentially with multiple sources of raw material
and processing techniques. Thus, to ensure the authenticity,
efficacy, and safety of botanical dietary supplements, complex
multi-faceted methods are required. This review focuses on
chemometric and orthogonal methods for profiling, analyzing,
and comparing botanical systems. We first provide opportunities
and limitations of traditional botanical product authentication,
followed by an overview of alternative chemometric approaches,
then delve into a plethora of multivariate statistical approaches
for botanical evaluation and present a workflow for how
researchers can rationally select an analytical model based on data
types and goals.

OPPORTUNITIES AND LIMITATIONS OF
TRADITIONAL APPROACHES

Morphology
Plant morphology is the traditional approach to botanical
product authentication, based on leaf shape and size and
arrangement, color, life cycle changes, and other phenotypic
factors. The combination of modern resources for plant
identification and expansive collections of medicinal plant
herbarium vouchers allows for fairly accurate morphological
characterization (7, 8). Although trained specialists provide the
most accurate identifications, guidebooks and phone applications
provide a simple, inexpensive avenue for authentication.
Increased accuracy results from micromorphology which allows
species-specific evaluations of pollen shape, pore size, and
other microscopic traits (9, 10). Recently, machine learning and
image processing software have led to high-thruput identification
of medicinal plants based on predefined characteristics and
extensive training datasets (11, 12).

Despite its strengths, morphology-based identification is
limited and often impractical, especially for rare plants. Similar
environments and evolution pathways can result in unrelated
plants with strong morphological resemblances but differing
medicinal properties. Furthermore, important morphological
information is lost when plants are dried or powdered, such
as leaf shape and texture. Morphology also varies between
plant parts, and recorded information for identifying plants
based on below ground parts rarely exists. While certain

root characteristics are useful, such as stone cells, auxiliary
root angle, and rhizome length, the literature for species
level identification is lacking and often contradictory between
labs (13–16). Taxonomic identification is further complicated
by vernacular names, which vary based on culture, location,
language, and subspecies (17, 18).

Genetics
Genetic approaches, namely DNA barcoding and genome
sequencing, are powerful tools for herbal product authentication.
DNA can be extracted from fresh or dried tissue and is
often effective with post-processed material (19). Primer-based
methods are the most straightforward approach to DNA based
identification: predefined primers for single genes (ITS2), a
combination of genes (matK and rbcL), or chloroplast genomes
(18, 20–23) amply specific fragments know to vary between
species and have potential to differentiate morphologically and
genetically similar species (24). Extensive sequence libraries exist
which simplifies species identification; rare and understudied
species are not thoroughly represented though (24). As
sequencing becomes increasingly advanced and affordable, the
applicability of genetic marker-based identification of a broad
range of botanicals will increase.

DNA barcoding, including random amplification of
polymorphic DNA (RAPD) (25) and inter-simple sequence
repeats (ISSR) (26), provides a robust evaluation of genome
diversity through examination of the presence/absence of more
than 20 random fragments of polymorphic DNA at a time.
Primer-based approaches amplify random segments of DNA
to compare polymorphic variations among species. Although
DNA barcoding is reliable, it is time consuming and requires
meticulous method optimization for each application. Further,
there is low resolution at the species or sub-species level (27).
Recent advances in metabarcoding, which combines next-
generation sequencing with bioinformatics, has greatly improved
the ability to detect adulteration and supplementation in herbal
products (28–30). Notably, the EU and other governing bodies
suggest metabarcoding to evaluate the identity and safety of
botanical products (31). For example, Seethapathy et al. used
metabarcoding to determine that over 24% of Ayurvedic herbal
products tested do not contain the botanical as labeled (28).
However, metabarcoding is expensive and requires a reference
DNA library and pre-defined genetic markers. So, for rare
species or those without sequenced genomes, metabarcoding is
ineffective as a quality control approach (32).

While genetic approaches have proven useful for botanical
product quality control, there are limitations. Plant tissue
is damaged and degraded during processing procedures,
hindering extractions of high-quality DNA (33). Since genetic
approaches do not provide quantitative data, there is limited
ability to determine relative abundances of different species
within a product. Thus, DNA barcoding does not allow trace
contamination, as from shared equipment, to be discerned
from intentional, large-scale adulteration of products. A final
limitation is the inability to evaluate medicinal properties
through barcoding based approaches. The medicinal value of a
product is largely based on its chemical constituents. Without
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detailed chemical analysis, the presence and relative abundance
of specific medicinal compounds is unknown. So, while genetics
may be able to detect adulteration, it cannot determine a products
actual medicinal value. Thus, chemical evaluation serves to both
authenticate botanicals and provide information of a product’s
bioactive potential.

TARGETED ANALYSIS OF BIOMARKERS

A simple and common approach to herbal product quality
control is the use of small-molecule based targeted analysis.
This approach uses individual and small groups of compounds
specific to the botanical in question. Using a targeted analysis
allows quick verification the product contains the plants as
advertised. This section outlines the targeted analysis workflow,
with examples and explanations of the pros and cons of
targeted approaches.

Single Biomarker Approach
The first step in using small molecule chemistry to serve
as biomarkers of quality and authenticity is to identify a
targeted metabolite or small set of metabolites specific to
the botanical in question. Since many commercially available
botanical medicines and dietary supplements are fairly well
characterized in scientific literature, the identification of
predominant metabolites (also known as ‘marker compounds’)
is fairly straightforward. These targeted compounds are analyzed
by a chemical methodology and compared against reference
standards and literature values; common analytical techniques
include charged aerosol detection (CAD), ultraviolet-visible
(UV/VIS) spectrophotometry, and mass spectrometry (MS),
often with chromatographic separation beforehand (liquid
chromatography, “LC”, or gas chromatography, “GC” being the
two primary forms). Nuclear magnetic resonance (NMR) is an
analytical technique that has become more quantitative recently
(qNMR) to facilitate comparisons between complex botanical
samples (34–36).

However, axiomatic to using a defined marker compound is
the knowledge of the chemistry of the system at hand and the
commercial availability (or the ability to isolate and conclusively
identify) of the targetmarker compounds.Whilemany botanicals
on themarket have well-developed chemical libraries and/or have
monographs detailing their chemical composition [including
the German Commission E (37), US Pharmacopeia (38), and
Tyler’s Herbs of Choice (39)], not every botanical, nor every
potential dietary supplement, is as thoroughly studied, and
gaps in the literature of even well-known botanicals still exist
today. The choice of marker compound also should, but doesn’t
necessarily, have relevance to the putative biological activity of
the botanical medicine or dietary supplement. Finally, standards
must be available to construct calibration curves; if they are
not commercially available, researchers face the daunting task
of isolating and elucidating the structure prior use as a marker
compound (40).

Furthermore, tying authenticity to a single compound
overlooks the broader chemical landscape present in the
botanical product, and can leave products susceptible to potential

adulteration. Single-point analyses can be confounded by spiking
with specific compounds or mixtures that might bypass quality
control procedures. One example is the discovery by Chandra
et al. of adulteration in ginkgo (Gingko biloba) extracts spiked
with either single isolated flavonoids or flavonoid-rich mixtures
(41). As the broad category “flavone glycosides” was chosen
by the gingko market as an authenticity marker, it was
prone to spiking by flavones (e.g., quercetin, kaempferol, and
isorhamnetin) to meet the quality criteria. In fact, three out
of eight products analyzed in the study that were labeled to
contain ginkgo extracts actually resembled those of commercial
extracts from Japanese sophora (Styphnolobium japonicum)
(41). In other cases, botanical dietary supplements have been
doped with dyes or other synthetic mixtures to deceive
single molecule quality control methods (42). Supplements
with alleged weight loss properties were spiked with alkaloid
derivatives, ephedra stimulants, or androgenic steroids (43,
44). Spiking and adulteration can also be used to bypass
negative controls searching for known contaminants/adulterants;
1,3-dimethylamylamine (1,3-DMAA) is one case study. The
United States Food and Drug Administration (FDA) had banned
1,3-DMAA in 2016 and pulled all products containing the
stimulant from shelves because of an increased incidence of ER
visits correlated with this stimulant, as well as failure to meet
regulatory conditions (45). However, investigations by Cohen
et al. revealed 1,3-DMAA analogs present in multiple weight loss
supplements (five out of six tested), illustrating how adulteration
can be used to sidestep regulatory authorities with potentially
toxic constituents (45).

Molecular “Fingerprints”
Beyond single molecules for targeted biomarker detection,
researchers can collect information on a range of molecules
or a “chemical fingerprint” that exemplifies a more robust and
nuanced representation of the botanical’s metabolite profile.
Using multiple components blunts the potential for metabolite
spiking (as seen with single marker compound approaches)
and can provide more selective and sensitive analysis for
distinguishing authentic material. Lv et al. (2016) developed an
HPLC-based fingerprint to differentiate species and geographical
origins of Rhizoma coptidis using six distinct alkaloids (46), while
eight organic acids were used to distinguish between Castanea
spp. Buds (47), and Parveen et al. validated an UHPLC-UV-
MSmethod incorporating 10 standard compounds to distinguish
closely related Tinospora species (48). Even AOAC’s official
method for some botanicals incorporates multiple compounds;
their method 2015.007 for investigating Ashwagandha (Withania
somnifera) employs 10 withanolide glycosides and aglycones
(49). However, multi-molecular chemical “fingerprints” are
more time- and labor-intensive approaches, as they require
the quantitation of multiple compounds with different linear
ranges and limits of detection and quantitation (LOD and LOQ,
respectively). This also does not circumvent the issue with single
biomarker approaches needing reliable, commercially available
standards in order to determine the overall fingerprint and
quantitation for the analysis.
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METABOLOMICS

The ‘metabolome’ is generally defined as the complete set
of small molecules produced by an organism or biological
sample at any given point in time. Metabolomics, therefore,
is the unbiased, holistic measurement of the metabolome
(though practically speaking there is no single analytical
approach capable of measuring all small molecules in one
experiment), and the relative areas or heights of signals within
the metabolome can be employed as a basis for comparison
between two or more samples. As such, metabolomics provides
a powerful tool for understanding the complete chemical
makeup of an herbal product, which can be used for efficient
and accurate quality control and authentication. Metabolomics
characterizes the chemical relationships that underlie variations
based upon genotype, origin (50), climate (51), or other
biotic or abiotic interactions (52–54). While a variety of
analytical inputs can be used to generate metabolome data
– including Fourier-Transformed infrared spectroscopy (FT-
IR), charged aerosol detection (CAD), ultraviolet-visible
(UV/VIS) spectrophotometry, mass spectrometry (MS), and
Nuclear Magnetic Resonance (NMR) spectroscopy – the two
primary analytical approaches employed for the majority of
metabolomics studies are liquid chromatography coupled
to mass spectrometry (LC-MS) and NMR spectroscopy.
These two provide incredible sensitivity and selectivity in
profiling a large fraction of the metabolome of a sample,
while also offering detailed structural information crucial
for metabolite annotation for the authentication of botanical
dietary supplements and medicines (55, 56). The advances
of metabolomics techniques is not the focus of this review,
the incredible innovation and progress that has been
achieved in metabolomics experiments have been discussed
elsewhere (57–59).

As relative comparisons are being made across a large dataset
(often hundreds to thousands of peaks in a single metabolome
data matrix), the chemical identification of the peaks is not
necessary at the outset of the experiment and analysis. Thus,
untargeted metabolomics studies can compare complex samples
with no a priori knowledge of their constituents (60) and do
not require the acquisition of analytical standards to complete
comparative analyses, a distinct advantage over the targeted or
fingerprinting approaches described above.

CHEMOMETRIC APPROACHES FOR
PATTERN RECOGNITION AND SIMILARITY
DETERMINATION

While a valuable tool for authentication of herbal products,
the innate complexity of metabolomic datasets can be daunting
when developing novel quality control approaches. One of
the major challenges facing metabolomic (or other molecular
fingerprinting approaches) is not the collection of the data,
but instead the processing, analysis, and interpretation of the
expansive datasets that are often generated. In metabolomics,
the data matrices often have more columns (independent
variables, such as m/z-retention time pairs or NMR signal
buckets) than rows (samples) and are known as “landscape”
matrices. “Chemometrics” refers to the application of statistical
methods to discover relevant analysis and maximize the
information obtained from the chemical datasets (61). For
the authentication of botanical materials, chemometric pattern
recognition approaches are the most prevalent. There are
a variety of multivariate mathematical–statistical methods
for prediction and pattern recognition (Figure 1), which
have disparate criteria for successful application to complex
chemical datasets.

FIGURE 1 | Pattern recognition methods. ANN, artificial neural networks; PCA, principal component analysis; PLS, partial least squares; SIMCA, soft independent

modeling of class analogy; SOM, self-organizing maps.
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Data Preparation for Chemometric
Analysis
In any statistical analysis, the robustness of the predictions
and inference is limited by the quality of the data that is
input into the model. For chemometric analysis, there are a
number of aspects of the dataset that will contribute to the
overall quality and reliability of the resulting model. One aspect
of note is the reproducibility of analytical data. Variations
in extraction protocol, sample handling as well as the mass
spectrometer detection itself (mass analyzer, detector, and even
the chromatography components) preclude facile comparisons
between labs. This can potentially lead to differing raw spectral
data, as well as variations in results obtained (62).

Raw spectral data, from any analytical source (LC-MS, GC-
MS, NMR, FT-IR, etc.) must be processed in order for the
statistics to be effective. For some spectral data (e.g., 1H-
NMR and FT-IR), the data is traditionally sliced into “bins”
that are then used as individual features in the dataset (63,
64). Mass spectrometry data is obtained as discreet features
(unique m/z-retention time pairs), yet still requires multi-step
“preprocessing” to identify peaks and align the data. There are
numerous methods and workflows to preprocess spectral data,
and have been examined and reviewed exhaustively elsewhere
(65–71). While most open access preprocessing software yields
similar performance in detection of actual peaks (“true” features)
from the data [as examined by Li et al. (68)], the abundance
of parameters needed to fine tune in order to develop a
robust final dataset can be challenging for researchers. The
subsequent scaling, centering, and normalization of the dataset
can also play a factor in the resulting statistical analysis (72, 73).
Thus, careful treatment of the raw data during preprocessing
is critical to downstream chemometric analyses in order to
obtain reproducible and reliable interpretations of the data.
The potential for variations in the processing of the data is a
persuasive argument in favor of the trend in metabolomics to
encourage open science by depositing the spectral data, as well
as metadata associated with the preprocessing parameters used,
in accordance with the FAIR (Findable, Accessible, Interoperable,
and Reusable) data principles (74).

Unsupervised Approaches
Unsupervised methods are the (relatively) simplest ways of
classifying large chemical datasets, designed to analyze data
that can only be arranged in one matrix. These methods are
“unsupervised” in the sense that no data classifications are known
before the analysis; instead data structures are revealed through
these pattern recognition methods. Researches should be aware
of the differences between hard and soft classification techniques.

Principal Component Analysis (PCA)
Principal component analysis (PCA) is an unsupervised
approach which projects multivariate data (with k
features/variables) onto a smaller dimensional space (<k-
1). As such, PCA is often referred to as a projection or
dimension reduction method. The metabolite profile is reduced
to uncorrelated principal components (PCs) which represent the
total variation present in the metabolome. The first principal

component accounts for the maximum percentage of the overall
variance, the second principal component (orthogonal to the
first) accounts for the second largest amount of variance, and
so on until all the variation in the data is accounted for or
the number of principal components reaches the limit (i.e.,
the number of features-1) (75). The principal components are
plotted in a pair-wise fashion (typically the first two, which
explain the most variation) on a 2-dimensional plane – known
as a “scores” plot – that demonstrates the spatial relationship
between different samples. Points which cluster together have
similar correlations in the PC variations, which translates to
similarities in their overall chemical profile. Likewise, dissimilar
samples are located further from one another in the two-
dimensional graph. A second corresponding graph associated
with PCA is the loadings plot, in which the features (variables)
are arranged in a two-dimensional plot using the same PCs
as the scores plot. The spatial representation of the loadings
mirrors that of the scores, thus enabling the determination of
which features are more prevalent in certain clusters of samples.
Zhang et al. (76) developed an approach to authenticate juices
from different berry fruits using untargeted metabolomics. Using
PCA generated from LC-QTOF-MS spectra, they were able to
discriminate between blueberry, cranberry, apple, and grape
juice (Figure 2). The corresponding loadings plot yielded 18
characteristic markers that were able to categorize the juices (76).
Additionally, Farag et al. differentiated ten cinnamon accessions
from the main cinnamon species using 1H-NMR metabolomics
combined with unsupervised chemometric approaches (77).
The scores plot (Figure 3) distinguished between Cinnamomum
cassia and C. verum, with PC1 and PC2 comprising 77%
of the variability in the model. The loadings plot suggested
nine key metabolites which could be used to differentiate
between cinnamon accessions, including cinnamaldehyde and
eugenol; the exclusive presence of eugenol in C. verum samples
suggested its potential as an authentication marker (77). Thus,
PCA represents a robust and potent chemometric tool in the
evaluation of different samples and their authenticity/purity.

However, while PCA can demonstrate clusters of samples
based upon their chemical profile, it is not able to provide
quantitative metrics around the degree of similarity between
samples, nor ranking how similar samples are to one another.
Furthermore, PCA relies on a subsection of the overall
principal component model to visually represent similarities
and differences between the samples; this is often an ad hoc
choice of PCA components which can mask outliers or shift
the overall spatial relationship between samples, leading to
the possibility of specious results and subsequent conclusions.
Integration of multiple PCs into a single quantitative comparison
may circumvent this. Termed the composite score, it has
potential to facilitate comparisons between multiple samples
using the entirety (or at minimum a significant subset) of
the principal component model to quantify similarity between
samples (78). This approach was used recently by Wallace et al.
to differentiate Hydrastis canadensis supplements from potential
adulterants (79).

Suggestions for future use: PCA is a powerful unsupervised
clustering tool with accessible computational resources to
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FIGURE 2 | Principal component analysis (PCA) scores (A) and loadings (B) plot demonstrating differentiation between fruit juices based upon untargeted

metabolomic analysis. Reproduced with permission from Zhang et al. (76). Copyright 2018, American Chemical Society.

FIGURE 3 | Principal component analysis (PCA) from Cinnamomum verum and C. cassia from different geographical origins, and representative commercial oil, using
1H-NMR (n = 3) metabolomics. The scores plot (A) demonstrates clusters at distinct spatial points in the PC1-PC2 scores plot, and loadings plot (B) highlights major

contributing molecules to the separation of the samples. Reproduced with permission from Farag et al. (77). Copyright 2018, Elsevier Ltd.
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simplify analysis, making it an ideal first step in any chemometric
analysis. PCA can be used prior to any supervised approach to
confirm expected clustering among samples, and that apparent
distinctions result from true variations in sample metabolomes,
not as a result of overfitting to predefined categories. Alone, PCA
can be used to determine if adulterated and pure samples differ
while simultaneously identifying biomarkers likely responsible
for any variation. Thus, PCA has potential for a quick and
easy approach to botanical authentication based on metabolite
profiles. Possible sample clustering that may be identified using
PCA is species proximity, cultivation procedures, or origin of
plant growth. For any authentication study requiring more
detailed information of how samples are related or identification
of unknown with a single model, other approaches should be
performed concurrently with PCA.

Hierarchical Cluster Analysis (HCA)
Hierarchical clustering analysis (HCA) uses distances between
sample groupings (clusters) to organize samples into taxonomies;
objects with the highest similarity cluster together, and generated
clusters are treated as a new, independent feature which are
clustered with the next most similar variable. Similarity is
calculated as distance between variables through a variety of
algorithms, including Euclidian, Mahalanobis, or city block
(Manhattan); similarly, there are various linkage rules for
amalgamating the cluster analysis, such as minimum or
maximum similarity between variables, group average (average
similarity between every possible pair of data points), or Ward’s
Method (sum of the squared distance between each pair of data
points). Proximity matrixes are used to compare the calculated
similarity of all groups. The shorter the distance, the more similar
the variable, and thus more likely to be related. However, since
the similarity (distance) and linkage can be calculated using
different combinations of rules, the results of cluster analysis
are difficult to compare between studies. In the case of sample
authentication, each botanical sample is treated as a variable
and clusters are formed based on similarity in peak heights (or
other metabolite features) so that the most chemically similar
samples group together. HCA has been used to distinguish
Cirrhosae bulbus from common adulterants using UPLC-ELSDA
fingerprinting (80). Zhou et al. demonstrated the use of HCA in
discriminating between two bitter melon (Momordica charantia)
chemotypes with different medicinal properties (81). While PCA
was able to distinguish the two chemotypes, HCA allowed
a deeper insight into how each variety differed within the
groups (81), and the combination of PCA and HCA predicted
biomarkers for easy chemotype distinction of unknown samples.
NMR chemical fingerprinting of Sarsaparilla species (Decalepis
hamiltonii, Hemidesmus indicus, Pteridium aquilinum, and
Smilax spp.) revealed four clear clusters, which were further
confirmed by patterns in the NMR spectra (Figure 4) (82).
In addition to detection of herbal adulteration, HCA provides
opportunity to detect contamination with pharmaceutical drugs;
Cebi et al. used HCA to classify coffee and tea blends adulterated
with sibutramine, an illegal weight-loss drug (83).

Suggestions for future use: HCA models share similar possible
directions as PCAs, with additional information of how samples

are related chemically within generated clusters. A potential
study may evaluate differences in chemotypic and genotypic
based hierarchical clustering for authentication. It is possible
genetic approaches may discover adulteration by non-target
species but miss contamination with synthetic compounds;
chemotypic approaches may simultaneously provide species
distinction and chemical authentication. Similarly, comparisons
of HCAs generated via multiple analytical techniques (H-NNR
vs. LC-MS) may provide a deeper understanding of sample
relationships though inclusion of additional compounds.

Self-Organizing Maps
Artificial neural networks (ANN) is a collective term for several
machine learning methods. The most common unsupervised
ANN approach is self-organizing maps (SOM). Section
5.2.3.4 provides an overview of supervised ANN in natural
product authentication.

Self-organizing maps (SOMs), sometimes referred to as
Kohonen maps or Kohonen networks, is a neural network-based
algorithm that reduces the input dimensionality to represent
sample patterns; SOM forms a 2-dimensional map where similar
samples are mapped closer together. The benefit of this approach
is that SOMs account for non-linear information in the data,
and each variable’s importance to the model can be derived from
the weights associated with each map “point” (84). Torrecilla
et al. (85) employed SOM to analyze extra virgin olive oils and
detect adulteration via the addition of other oils. Using random
and non-random noise to simulate adulteration, the SOM was
constructed which yielded a misclassification rate <1.3% (68).
Using previous research, Menezes et al. generated a library of
terpenes present in three tribes of Annonaceae species (521
molecules) for use in training a SOM (86). The model was able
to classify unknown samples into the three predefined tribes
with 80% average accuracy (86). Similar approaches have been
demonstrated using diterpenes to classify Lamiaceae spp. (87)
and flavonoids to classify Asteraceae spp. (88).

Suggestions for future use: Menezes et al. provide an SOM
method very applicable to natural product authentication (86).
Using previous metabolomics data to classify botanical samples,
despite variations in analytical and collection techniques,
provides an opportunity to create authentication models without
extensive benchwork. This approach should be applied to
commercial supplements with well-defined chemistry to develop
predictive models for existing products.

Supervised Approaches
Supervised statistical methods require the data matrix have
both independent and dependent variables, the latter of which
can be nominal (categorical) or numerical in nature. Nominal
dependent data are ideal for clustering data into pre-defined
classes, such as “pure” and “adulterated,” whereas numerical data
can allow for the ranking, quantifying, and comparing variables
against each another. Many machine learning approaches are
supervised models based on training datasets. Simply, a set
of samples with known dependent variables are used to train,
generate, and validate a model, which subsequently predicts the
classification of additional, unknown samples (or the remainder
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FIGURE 4 | Unsupervised clustering analysis of four species of Sarsaarilla using cheometric modeling of 1H NMR data. Peak patterns are also provided to illustrate

differences between four major species. Reproduced under a Creative Commons Attribution 4.0 license from Kesanakurti et al. (82).

of the data). However, as the numbers of samples in a
metabolomics data set are generally fewer than the number of
variables, supervised techniques are prone to overfitting the data
(89); even so far as to be able to fit a model to completely
random data (90). Therefore, model validation is critical before
any interpretation of the model is reliable, and often quality
criteria of the model are reported such as R2 (a measure of the
fit of the model) and Q2 (the ability of the model to predict
unknown samples) (91).

Partial Least Squares (PLS)
PLS is a dimension reduction tool similar to PCA. PLS
condenses complex data to simpler latent variables which
explain shared features between correlated samples, but with
a dependent variable to supervise the construction of the
model. The goals of PLS are akin to linear regression:
classification of dependent variables and understanding the
independent variables (metabolite features) that are predictors
of this classification. A PLS model plots the latent components
among the independent variables that best explain variations in
dependent variables, and samples are projected onto the model
space. The resulting scores plot allows simple visualization of
sample clustering based on the reduced variables; the loading plot

provides information about specific variables which contribute
the most covariance to the model. The two primary types of PLS
analyses- PLS-R and PLS-DA are defined by the nature of the
dependent variable.

PLS-R
Partial least squares-regressions model variations among the
independent variables to explain a numerical dependent variable.
While PLS-R is uncommon for quality control of botanical
products, it has been employed with biomarker identification,
biochemometrics, and detection of adulteration (92). For
example, PLS-R was employed to differentiate between Hydrastis
canadensis (goldenseal) and four common adulterants using FT-
NIR data (64). Following preprocessing and filtering the spectral
data, PLS-Rmodeling successfully clustered pure goldenseal from
non-target species, as well as differentiated between various
goldenseal parts (roots and shoots) (64). In this case, the plot
consisted of latent variables which reduced the spectral data as
guided by a gradient in contamination as the dependent variable.
This study also highlights the importance of preprocessing and
filtering data; unprocessed data was unable to distinguish species
using PLS-R (80). Partial least squares is also one of the primary
predictive chemometric approaches: when there are correlations
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are drawn between the dependent data set (often bioactivity
or other quantitative data) and the independent chemical data
from which the model is derived. This approach, known as
biochemometrics when using bioactivity data, is explained more
fully below.

Suggestions for future use: Some future applications of PLS-
R in herbal product authentication could include evaluating
products with known and specified variations in ingredients-
teas with varying percentages of Ilex paraguariensis (yerba mate)
and ashwagandha root for example. PLS-R may also be useful
for discovering biomarkers to quickly differentiate between
bioactive and inactive products though detailed bio-chemical
analysis of commercial supplements and subsequently screening
additional products for identifiedmarkers. This may bypass some
typical issues with single marker analysis, as described in section
Single Biomarker Approach, by using commercially available
products for biomarker discovery as opposed to predetermined
pure plants.

PLS-DA
Partial least squares-discriminate analysis (PLS-DA) models the
data similar to PLS-R, but with the caveat that the dependent
variable be a binary descriptor (e.g., “class1” vs. “class2”,
“authentic” vs. “adulterated”, etc.), which are coded as −1
and 1, or 0 and 1. The resulting scores plot is typically
able to discriminate between the two groups, as it is guided
by the classification of the samples. PLS-DA is one of the
most common chemometric tools applied to chemical data for
authentication and discrimination among botanical products.
The study by Ismail et al. demonstrates this approach by
differentiating between different grades of gaharu (agarwood,
Aquilaria malaccensis). Using 1H-NMR metabolomics, a PLS-
DA model was able to differentiate between “high grade” and
lower grades of gaharu (Figure 5), and the resulting loadings
plot also highlighted aquilarone derivatives that discriminated
the different quality classes (93). Windarsih et al. also employed
PLS-DA analysis to differentiate between authentic Cucuma
xanthorrhiza (“Java ginger”) and samples adulterated with C.
aeruginosa. PLS-DA yielded a robust model (R2 and Q2 of
0.993 and 0.986, respectively) which separated authentic from
adulterated samples (94).

One of the limitations of PLS-DA is that the categorization
is restricted to a binary class designation. If there are more than
two main categories, the discriminant analysis requires pair-wise
comparison, complicating the analysis and potentially limiting
the conclusions which can be drawn. This is exemplified by
Barbosa et al.’s study to differentiate and authenticate paprika
grown in three different areas (La Vera and Murcia in Spain
and the Czech Republic) (95). The PLS-DA classification plots
were done as iterations of one region vs. the other two, to
comprehensively demonstrate that the three regions were distinct
from one another (a classification rate of 100%) (Figure 6).

Suggestions for future use: PLS-DA has excellent potential in
herbal product quality control since binary categorical classes
can encompass multiple facets of plant differentiation. These
applications range from classifying samples based on geographic
origin, plant parts, species or subspecies, or adulteration status.

Although PLS-DA requires pre-determined classifications of
data, the loading plots can guide discovery of biomarkers for
quick screening of unclassified samples. An interesting study
would model one chemical dataset for multiple classifications
of the same samples to evaluate how clustering and model
validation (R2 and Q2) change to determine the most reliable
classifications for authentication.

Soft Independent Modeling of Class Analogies

(SIMCA)
SIMCA is a supervised expansion of PCA: samples are grouped
into predefined classes and PCA is performed on each class, so
that each group is projected onto a separate PC space. To detect
adulteration, there are only two classes: authentic or adulterated,
so one-class PCA’s for authentic or adulterated samples can
be generated (79). A new, unknown sample’s classification is
predicted by projecting it to the PC space and calculating
the Q statistic (or Q residual), quantifying the similarity of
the unknown PCA to the training set’s PCA (79). The Q-
statistic predicts if the new sample belongs in the authentic,
adulterated, both, or neither class. Thus, SIMCA distinguishes
similarities among samples and unknowns rather than defining
the differences between groups (96). Wallace et al. intentionally
adulterated Hydrastis canadenis with varying concentrations
of Copits chinesis and used untargeted metabolomics with
SIMCA analysis to differentiate between pure and tainted
samples. Using one-class modeling, the Q statistic of “unknown”
adulterated products was calculated and found to fall above
the 95% confidence interval for pure samples, successfully
identifying even the lowest percentage of contamination (5%)
and providing a higher resolution of differentiation than PCA
alone (Figure 7) (79).

Suggestions for future use: SIMCA is a powerful classification
tool with digestible graphic outputs. SIMCA can be used
for classification problems where the output for each sample
is already known, such as adulterated vs. pure. It is a
straightforward tool for analysis of binary classifications but
becomes more complicated as more categories are added. Thus,
it should be reserved for problems focused on identifying
contaminated samples when deep machine learning modeling is
not necessary. A suggested approach to botanical quality control
is to perform unsupervised PCA to identify and confirm a
binary clustering of samples followed by SIMCA to predict the
classification of unknown products.

Machine Learning Models
While easily interpretable, models such as SIMCA and PLS are
inherently linear algorithms, capable of modeling only linear
latent covariance. As biological data are often non-linear, it is
probable that the related chemical data also has a non-linear
latent structure. Thus, non-linear machine learning methods can
be uniquely suited to examine relationships frommetabolomic or
other chemical data.

Decision Trees
Decision trees are a machine learning approach that use
hierarchical decisions to determine sample classification based
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FIGURE 5 | PLS-DA analysis of gaharu (Aquilaria malaccensis) woods by 1H-NMR untargeted analysis. The PLS-DA scores plot (A) effectively discriminated between

lower grade products (“E” and “H”) and higher grades. And the corresponding loadings plot (B) demonstrated that the lower quality products contained higher levels

of aquilarone derivates. Reproduced under a Creative Commons CC BY 4.0 license from Ismail et al. (93).

FIGURE 6 | PLS-DA discrimination plots according to the geographical region of production of paprika. (A) La Vera PDO vs. other regions; (B) Murcia vs. the other

two; (C) Czech Republic vs. other classifications. The dashed red line indicates the classification boundary between the two designations. Open symbols represent

the training data; the solid symbols are the test data. Reproduced with permission from Barbosa et al. (95). Copyright 2020, American Chemical Society.

on training data. Trees are displayed upside down, with the
bulk data at the top being split based on features that best
distinguish the data at each step. These distinctions are typically
based on the presence or ratios of specific metabolites that
separate one classifier from another. The result is a tree split
into branches at decision nodes that end with leaves, or the
classification groups. Decision trees are commonly referred to as
classification and regression trees (CARTs) to encompass both
distinct variables (classification) and numerical or continuous
variables (regression). In the case of botanical product quality
control, samples are classified based on species, purity, or other
relevant factors. Classification trees were used to classify different
cultivars of avocados based on HPLC-CAD metabolomics (97).
Training data that comprised of spectra from 32 avocado
samples of three varieties generated a tree which guided
classification of unknown avocado oil samples into cultivar
classes or no class based on specific, model generated rules
(Figure 8) (97). A strength of decision trees is the ability to

classify an unknown sample into a “no class” group to avoid
overfitting or forcing a sample into a classification group. A
creative application of decision trees is to predict the need
of specific safety tests and evaluations for botanical products,
as demonstrated by Little et al. the group used an in silico
decision tree model to analyze the need for safety assessments of
botanical products based on UHPLC with UV, CAD, and HRMS
metabolomics, structure identification, consumer exposure, and
existing safety evaluations (98). The developed tree used chemical
data and previous records to determine if any tests are necessary
for consumer safety depending on the presence of certain
metabolites in the sample and database information of safety
data (98). This study highlights the versatility of decision
trees in quality control – they can not only identify botanical
adulteration, but they can also ensure safe practices while
developing botanical supplements.

Suggestions for future use: Decision trees have the appeal
of a visually appealing output for a complex machine
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FIGURE 7 | Use of SIMCA to determine adulteration of H. canadenis by C. chinesis. (A) SIMCA demonstrating that pure H. candenis samples (blue diamonds) are

below the 95% confidence interval and adulterated samples (orange squares) are above the 95% confidence interval. (B) The Q-residual of each adulterated sample.

The blue diamond represents the mean Q-residual for the unadulterated H. canadenis samples. Reproduced with permission from Wallace et al. (79). Copyright 2020,

Springer Nature.

learning model. They hold promise for discerning unknown
product identification, detecting adulteration of products with
known contaminants, and discovering biomarkers for various
classifications. Once the decision tree model is built with training
data, it is relatively straightforward to feed an unknown’s

chemical data through the model to predict its classification. This

is an exciting possibility for quality control, especially when the
most common adulterants are known to base relevant decision
trees around. It should be noted that the decision algorithms at
each node are based on separating the data available from the
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FIGURE 8 | Use of classification trees to identify unknown avocado oil

samples as a specific cultivar or as no class based on HPLC-CAD metabolite

profiles of a training set. Reproduced with permission from Martin-Torres et al.

(97). Copyright 2019, John Wiley and Sons.

previous split, but the split progressions may not actually be the
most reliable representations of divisions in the data. Random
forests (described below) increase the accuracy of node splits but
lose clear visual representation of the model.

Random Forests
Developed in 2001 by Breiman (99), random forest (RF) methods
build an ensemble of decision trees, each of which is trained
using the dependent variable(s). Each tree produces an outcome,
and the aggregate outcome from all the trees (aka the forest)
is reported as the outcome of the model. Random forest holds
several advantages over other methods. The multiple decision
trees produce more accurate classifications compared to a single
decision tree algorithm, and it is less prone to overfitting
than other supervised approaches (100). Additionally, one other
advantage of random forest is that it can be used for both
classification and regression problems. Deklerck et al. used
random forests to classify heartwood samples of Pericopsis elata,
a protected timber species. Using Direct Analysis in Real Time
ionization coupled to time-of-flight mass spectrometry (DART-
TofMS) on wood slivers, the random forest model using cross-
validation was able to correctly predict P. elata samples (101). To
analyze Zanthoxylum seed oils, Houet al. built a random forest
classification model that differentiated between the two main
species (Z. bungeanum and Z. armatum) with 100% accuracy
from cross-validation. Even simplifying the model to only the
most important chemical features, the cross-validated model still
maintained 100% accuracy (102). Random forests also have the
ability to be a predictive machine learning tool, and provide
correlative predictions between dependent variables and the
associated independent chemical dataset (103).

Suggestions for future use: Random forests can be used for
the same purposes as decision trees where increased reliability
of decisions at each node is necessary. This includes instances
of fewer chemical data or a smaller number of training samples.
Since random forests combine multiple decision trees, the
computational input is much higher, so model building and
training takes longer. Thus, random forests are not the best
option when expecting a quick turn-around. However, there
is potential application in developing random forest models
for detection of adulteration of complex botanical products
and mixtures. The extent of random forests in detecting
contamination and purity of extremely complex samples in a
high-throughput manor should be explored.

Support Vector Machine
Support vector machines (SVMs) are another supervised
machine learning technique that can be employed for regression
or classification analyses. The objective of the SVM algorithm
is to find a plane in a k-dimensional space (k representing
the number of features) that distinctly classifies the data
points into groupings so that it has the maximum margin
(i.e., maximum distance) between data points of both classes.
Similar to other supervised machine learning or multivariate
approaches of chemometrics data (where the number of features
outstrips the number of samples), SVM can be prone to
overfitting, so training on a smaller subset of samples, followed
by cross-validation, is key to generating robust classification or
predictive models.

Martín-Torres et al. (97) used SVMs to differentiate between
the geographical origins as well as the botanical variety of
avocados. Samples from five different countries (on three
continents) representing seven avocado varieties were analyzed
using normal phase HPLC-UV/VIS, after which the data was
interpreted using two different multivariate approaches. The
authors found that PLS-DA and HCA were unable to resolve the
differences in geographical origin or between main groupings of
variety. However, a three-input class SVM classification model
(3iC) correlated the three different continents of origin (Africa,
Americas, and Europe), as well as between the three dominant
varieties (“Bacon”, “Fuerte”, and “Topa-Topa”); the latter having
100% correct assignments and precision and sensitivity of 1.00
(104). SVMs were also used to classify Paris polyphylla via fusion
of Fourier-transformed infrared spectroscopy (FTIR) and UV-
VIS spectroscopy data (105). Pan et al. used untargeted LC-
MS metabolomics to profile five different Uncaria species in
order to authenticate the source of Uncariae Rammulus Cum
Uncis (Gou-Teng). A SVM model correctly categorized both
training and test samples, and was used to classify 20 commercial
Gou-Teng (GT) samples (106). The model predicted 16 of the
samples were Uncaria rhynchophylla, while four did not match
any of the Uncaria species. These four samples exhibited LC-
MS chromatograms that were substantially different from the
others, and thus it was believed that these were other Uncaria
species or mixtures of Uncaria species. This represented a
significant advantage over other (un)supervised techniques for
discrimination purposes. And using data fusion techniques of
mid-infrared (MIR) (transmission and reflection mode) and
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FIGURE 9 | Support Vector Machine (SVM) model for differentiating between Dendrobrium species. Using a low-level fusion strategy of MIR and NIR spectral data

from 12 Dendrobrium sp. Reproduced under a Creative Commons Attribution License 4.0 from Wang et al. (107).

FIGURE 10 | Metabolomics workflow for ANN. Metabolite features are loaded as inputs (red circle), which are fed through hidden neuron networks (gray circles), and

categorized into output categories (blue circles). Each connection (gray line) has a weight, and each neuron has a bias, which are used for the activation functions.

Reproduced with permission from Pomyen et al. (112) Copyright 2020, Elsevier Ltd.

near-infrared (NIR) spectra followed by SVM analysis facilitated
the discrimination of 12 different Dendrobrium species (107).
SVM provided perfect discrimination (100% accuracy rates) for
both calibration and validation sets (Figure 9).

Suggestions for future use: SVMs have practical applications
for both classification of test data and prediction of unknown
samples origin, species, or cultivar. SVMs may prove useful
for distinction of genetically and chemically similar plants that
cannot be differentiated by other clustering models, either
supervised or unsupervised. For example, many sub-species of
herbs have overlapping genotypes due to crossbreeding and PCA
analysis can fail to separate the most closely related cultivars
using chemical data (108); SVMs may provide a deeper level
of distinction. This application can be applied to authentication
of products commonly adulterated with very similar species
that lack the promised medicinal output. Since SVM models
can automatically handle missing data, SVMs can be used

for metabolomes with variable metabolite profiles and lower
resolution analytical techniques.

Genetic Algorithms
Genetic algorithms (GA) are based on the processes of evolution,
including natural selection, reproduction, and mutations. These
processes take place over multiple generations of increasingly
accurate and simple solutions to a complex problem (109). In the
case of botanical authentication and quality control, the problem
may be product identification, detection of adulteration, or
biomarker discovery. The solutions are the subset of metabolites
and their ratios that best classify samples based on predefined
classes or distinctions. As a brief example, consider Gil et al.’s
study which used a GA to identify the region of rose wine
origin (110). At generation 0, every combination of the 79
polyphenols present in the samples as detected by UPLC-MS
were evaluated for their ability to distinguish between origin
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region. Solutions with the highest fitness, or its distinguishing
power as determined by linear discriminant analysis, were
selected for reproduction. During reproduction, two solutions
were mixed in a cross-over like process to create a new generation
of unique solutions with higher fitness than the previous. The
selection and reproduction processes were repeated for five
generations, and each of the final combinations of polyphenols
was tested for its accuracy in cross-validation tests. Those with
the highest accuracy were further evaluated for their ability
to discriminate wine origin regions in an unknown validation
sample set. The GA model was able to discover a set of 4
polyphenols that had 86.7% accuracy (110). GA also provides
the opportunity for simultaneous sample and variable selection
for improved speed and accuracy for unsupervised clustering
of samples and biomarker discovery (111). This bi-clustering
approach opens the door for high-throughput metabolomics
authentication of botanical materials.

Suggestions for future use: Potential for GA in botanical
product quality control ranges from geographic identification to
generation of a subset of biomarkers for subsequent analysis.
The speed of GA modeling is ideal for situations requiring
fast turn-around, so it is practical for developing authentication
schemes for new products or products with increasing rates
of adulteration. It should be noted, however, that GAs can be
difficult to interpret, since the steps the model takes to combine
data and reach a solution are not defined for the user and
models fed the same data often reach different solutions. Thus,
users should only use GA when the intermediate steps are not
necessary for model validation.

Artificial Neural Networks (ANN) With Known Outputs
ANN are the backbone of deep learning machine learning
models. Mimicking the human brain and neurons allows
computers to recognize complex patterns in sets of training
data and predict the classification of a new dataset using the
resulting model. There are three main sections of an ANN:
an input layer, an output layer, and hidden layers in between
(Figure 10) (112). Each metabolite from the complete set of
samples is treated as an individual input and connections are
generated randomly through multiple hidden layers to generate
an output response. Hidden layers are comprised of “neurons”
that connect metabolites with a random numeric weight and have
a randomly assigned bias (Figure 10) (112). Together the weights
and bias generate an activation function to determine if a neuron
will be activated for use in the next hidden layer. This process
of forward progression is repeated until the model predicts
an output (such as adulterated or pure). Typically, the first
prediction is incorrect since the weights and bias are random, so
the model uses backwards progression using the prediction error
to modulate weights and biases throughout the hidden layers.
Through multiple rounds of forward and backward progression
with a variety of inputs belonging to each output category, the
model can predict the output of new data by processing the
new inputs through the meticulously developed hidden layers
(112, 113). The history of ANN in metabolomics, as well as an
in-depth explanation of different ANN models for spectral data
is reviewed by Mendez et al. (113).

Binetti et al. used ANN with merceological, NIR, and H-
NMR data to classify olive oil cultivars (114). Using H-NMR
spectral data, ANNs were able to classify unknown samples with
>99% accuracy, despite variable environmental, harvesting, and
processing conditions (114). Additionally, ANN modeling of
headspace solid-phase microextraction (HS-SPME) coupled with
GC-TOF-MS of 374 honey samples over two years provided
94.5% accuracy in prediction of honey origin when data from
both collection years was combined (115). These studies are
promising for herbal product classification - botanical material
analysis is typically complicated by temporal, environmental,
and procedural variations. In addition to classification and
identification, ANN modeling has potential to predict the
chemical and medicinal properties of supplements without
extensive bioassays and robust chemical profiling (116). Using
species classification and extraction procedures as inputs, Tusek
et al. used an ANN to predict chemical features, including total
phenolic content and extraction yield, and antioxidant potential
of nine medicinal plants (116).

Suggestions for future use: ANNs hold immense potential
for herbal product authentication. Since training data
covers a range of environmental, temporal, and procedural
variables, the predictive nature of the resulting model has
very high accuracy. This is critical for commercial products
that have limited information about harvest and processing
procedures. An interesting study would determine if a single
ANN model built on samples with a range of preparations
(powdered, dried, capsules) and environmental factors can
successfully classify and authenticate various types of new
products. Additionally, prediction of medicinal properties
using ANN should be expanded to allow confirmation
of desired effects from commercial products quickly and
accurately. This will take authentication a step further from
identifying product constituents and increase efficacy of
botanicals on the market. Users should take caution when
using ANN to not over interpret their results. While ANNs
are powerful classification tools for large data sets, they
do not provide information on the chemical distinctions
on which the model is built. Thus, the model does not
allow interpretation about specific chemicals responsible for
classification of samples.

Precautions for Using Classification
Models
Each model describe above has benefits to the natural product
community, and there are examples highlighting their usefulness
in the literature. However, eachmodel also has pitfalls. It is crucial
for researchers to understand the dangers of overinterpreting
their outputs. One such downfall is overfitting data, or forcing
data points into a category due to the lack of a “unknown” output
option within the model. Almost all of the models described
in this review are prone to overfitting, but some models, like
decision trees and random forests, reduce this possibility by
including an unknown option or compiling the output of
multiple models into the output. It is important to validate each
model by withholding a sample’s data as a validation set with a
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known output, as well as reporting the Q2 and R2, as described in
section Unsupervised Approaches.

An additional warning is that not every model is applicable
in each situation. Despite a model seeming to fit a research
goal, it is possible the type, quantity, or quality of data is
not applicable to a given algorithm. Multivariate statistics and
metabolomics projects require careful planning prior to data
collection to ensure desired models can be used. For suggestion
of models to use in different situations, see section Conclusions
and Future Directions.

COMBINING ORTHOGONAL DATASETS

While modeling chemical data through chemometric approaches
can leverage the immense information contained therein to
investigated nuanced differences between samples, being able to
differentiate samples based on their geographic origin, taxonomic
relationship, or adulteration level, the chemical composition
represents only one facet of potential data to be analyzed.
Incorporating additional data sources, whether it is from
orthogonal chemical analyses, bioactivity/toxicity data, or genetic
data, has the potential to develop discriminatory models that are
even more robust in authenticating botanical products. Often,
combinational approaches can increase the efficacy and reliability
of natural product quality control, and should be implemented
when feasible.

Multiple Chemical Analyses Inputs
There is no single chemical analysis able to profile every
metabolite present in a complex sample; each approach has
some detractors. Ultra violet-visible spectroscopy (UV-VIS)
requires a chromophore that can absorb energy within these
wavelengths of light (often 180–800 nm); mass spectrometry
(MS) can only monitor structures that are ionizable; nuclear
magnetic resonance (NMR) is not as sensitive in detecting low-
abundance compounds (55, 117). Therefore, combining different
chemical investigations of a metabolome can better represent
the chemical diversity present in a sample, and consequently
allow for more precise modeling and differentiation between
samples. These ‘data fusion’ approaches have been used with
different botanical products to evaluate their authenticity and
detect adulteration. Spiteri et al. combined 1H-NMR with LC-
MS to discriminate between commercial honey. The PCA was
constructed considering each technique separately, and then
combining NMR and LC-MS together. The authors found
that the discriminating potential increased through data fusion,
allowing better separation of the four different floral origins
with no misclassification observed (118). NMR and LC-MS were
also combined to detect adulteration of a commercial botanical
dietary supplement which had resulted in the hypotensive
collapse of several consumers. The product was purported to
contain the species Crataegus oxyacantha, Olea europea, Capsella
bursa-pastoris, and Fumaria officinalis. However, the analysis
revealed the presence of indole alkaloids belonging to the
genus Rauwolfia, such as ajmaline, reserpine and yohimbine.
Subsequent quantitative analysis determined reserpine was
present in pharmacologically-relevant doses (119).

Chemometric analyses using multiple analytical inputs have
also been used to elevate and extract more information from
more common and less expensive analyses, such as infrared
analysis (IR) and ultraviolet-visible spectroscopy [UV-VIS, often
abbreviated as LC methods (HPLC or UPLC) or diode array
detectors (DAD)], to provide robust data and allow clear
discriminate model formation. Combining three different types
of detectors: diode-array detection, evaporative light scattering
detection and mass spectrometry, Deconinck et al. constructed
fingerprints for three common herbal products—Rhamnus
purshiana, Passiflora incarnata L. and Crataegus monogyna.
Using unsupervised projection chemometric analyses, the
researchers were able to detect the presence of these plants
in three different herbal matrices as well as in commercial
preparations containing multiple botanicals (120). Wu et al.
reported that fusing data obtained from polyphyllin content,
FTIR spectra, and UPLC chromatograms yielded correct
discrimination of Paridis Rhizome samples according to
botanical and geographical origins by PLS-DA modeling. The
authors reported that SVM and RF provided similar results (105).
Two-step fingerprints, built upon mid infrared spectroscopy
(MIR) and HPLC chromatograms, were analyzed by k-nearest
neighbors and SIMCA to screen for five regulated plants
used in commercial dietary supplements (121). And Zhou
et al. fused two different infrared technologies – Fourier
transform mid-infrared (FT-MIR) and near infrared (NIR) –
to detect the origin of 210 Panax notoginseng samples from
five cities in Yunnan Province, China. Random forest was
used to establish classification models, which resulted in a
classification accuracy of 95.6% (122). Data fusion of orthogonal
analytical approaches has the potential to cover complementary
facets of chemical space, and the subsequent modeling can
be seen to be more powerful in its ability to discriminate
between botanical samples as a means of authentication and
adulterant detection.

Biochemometrics
The ability to profile large swaths of a metabolome without
iterative methods of separation and purification means
metabolomics approaches have an advantage for screening for
bioactive metabolites (92, 123, 124). Integrating metabolomic
fingerprinting with biological activity data allows for supervised
methods to statistically model correlations between variations
in biological response with differences in chemical composition
across samples. These methods, collectively known as
“biochemometrics”, have become a driver for bioactive molecule
discovery. Several statistical methods have been utilized for this
purpose, including hierarchical clustering analysis (125), partial
least squares (92, 126, 127), and partial least squares-discriminate
analysis (128, 129). Of these, PLS and PLS-DA have emerged
as the foremost multivariate approaches for biochemometric
analysis. These approaches utilize different variable metrics
to ascribe correlation (and thus importance) to the chemical
signals with the variable importance in projection (VIP) plot,
the S-plot, and the selectivity ratio being among the leading
metrics (92, 130–132). Biochemometrics holds great promise for
botanical examination and authentication, as it could leverage
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relevant biological activity to determine a targeted fingerprinting
method which has relevance to the biological function of the
plant (as opposed to ad hoc choices of metabolites). Kim et al.
used a biochemometric method to evaluate 17 different species
of grape myrtle (Lagerstroemia spp.) based on their ability to
increase glucose uptake in vitro. From the PLS-DA model (using
the glucose update as the dependent variable), the Lagerstroemia
sp. were grouped into two clusters, and from the S-plot the
authors identified three main metabolites (myricetin-3-O-β-
D-rhamnoside, quercetin 3-O-β-D-rhamnoside, and corosolic
acid) that predicted glucose uptake activity and could be used as
a discriminatory model for identifying bioactive species from the
genus (Figure 11) (133). The integration of biological activity as
an orthogonal dataset, and as a continuous numeric dependent
variable in the dataset, allows for supervised chemometric
methods to provide greater interpretation of the discriminatory
model creation and identification of bioactive components. This
can lead to the development of fingerprinting or authentication
tools that correlate with the relevant biological effects of the
botanical in question.

Multi-Omics Integration for Botanical
Control
While metabolomic approaches provide ample opportunity for
accurate, robust, and time-efficient authentication of complex
botanical products, combining chemical data with other -
omics approaches may yield the most effective solutions. Most
commonly, metabolomics modeling is combined with genomics
data. As mentioned in section Genetics, DNA barcoding and
metabarcoding can lose accuracy at the species and subspecies
level. Similarly, clustering of metabolites can lose resolution
of chemically similar plants. Combining DNA barcoding
using rpoC1 and LC-MS metabolomic fingerprinting allowed
species-level distinction between nine Phyllanthus species (134).

Integration of genetics and metabolomics is easily the most
common approach to botanical product identification, as
outlined in Table 1. There are instances when metabolomics
and genetics in combination cannot differentiate between
species, so additional analytic approaches are employed, such as
electronic noise (141), microscopy (142, 143), high-resolution
melting analysis (144), Raman spectroscopy (145), or multiple
metabolomic approaches (146). Figure 12 demonstrates that
integrating multifaceted -omics approaches can be achieved
in a single study to increase the power of distinction and
authentication of herbal products (141).

Although genetics is most integrated with genetics,
there is potential to expand to lipidomics, proteomics, and
transcriptomics. Lipidomics, the study of the complete set of
lipids in an organism, is analytically similar to metabolomics;
different extraction and analytical instrument methods target
lipids. The same research lab could seamlessly transition from
metabolite to lipid analysis since the instrumentation is often
the same. On its own, lipidomics has been useful for detection
of adulteration of white rice – RF and SVMs were used to
discriminate pure and adulterated samples using LysoPCs
and lysoPEs as novel lipid biomarkers (147). Using the same
UPLC-MS instrument, Anagbogu et al. combined lipid and
metabolite analysis to identify 30 genotypes of coffee; joining
the two approaches increased species level resolution (148).
Proteomics also uses similar instruments as metabolomics,
but it has more variable methods that may complicate inter-
lab experimentation. Peptide analysis allowed differentiation
between mountain-cultivated ginseng and cultivated ginseng
with 52 variable peptides between the groups (149), and MALDI
TOF-TOF/MS yielded five proteins with potential to authenticate
Ophiocordyceps sinenis, a traditional fungal medicine (150).
Given the limited successful studies utilizing integrated -omics
approaches for botanical product authentication and evidence

FIGURE 11 | Partial least squares-discriminate analysis of Lagerstroemia samples. Scores plot (A) from the PLS-DA model accounted for 40.4% of model variability,

and demonstrated two distinct clusters of samples. The S-plots (B) revealed two flavonol glycosides (myricetin-3-O-β-D-rhamnoside and quercetin

3-O-β-D-rhamnoside) and corosolic acid as potential discriminatory biomarkers with activity in stimulating glucose uptake. Reproduced with permission from Kim

et al. (133). Copyright 2020, Elsevier Ltd.
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TABLE 1 | Orthogonal approaches to integrate genomics and metabolomics data analysis of botanicals.

Botanicals Product type Genetic approach Metabolomic approach Modeling Author Year (Ref.)

Qin jiao Dried root powder ITS2 barcoding Q-TOF-MS ANOVA Li et al. 2020 (135)

H-NMR PCA

OPLS-DA

Hypericum taxa Essential oil ITS2 barcoding GC-MS PCA Zeliou et al. 2020 (136)

Dried leaf ITS1 barcoding LC-HRMS Biplots

LC-DAD-MS Mantel test

HPLC-DAD

Salvia subg Perovskia fresh leaf and root trnH-psbA barcoding UHPLC-QTOF-MS PCA Bielecka et al. 2021 (137)

ITS2 barcoding

Hypericum spp. Cultured leaf ITS1 barcoding HPLC-DAD PCA Brunakova et al. 2021 (138)

ITS2 barcoding HCA

Chromosome number

genome size

Sarsaparilla Dried root rbcL barcoding H-NMR HCA Kesanakurti et al. 2020 (82)

matK barcoding

genome skimming

DNA probe

Glycyrrhiza spp. Dried root powder rbcL barcoding H-NMR PCA Simmler et al. 2015 (139)

Dried root stick matK barcoding UHPLC-UV SIMCA

Dried root capsule ITS barcoding CDA

trnH-psbA barcoding

Echinacea spp. Genome skimming HPLC-UV Handy et al. 2021 (140)

metabaroding

matK barcoding

rbcL barcoding

that each approach has potential to identify adulteration, there is
a gap in the botanical products community developing methods
and statistical approaches for combined datasets. This is not a
trivial undertaking; often the data sets generated for genomics,
proteomics, and metabolomics experiments are very different,
and their integration can be a challenge. The wide variety
of expertise required to generate high quality data is also a
factor in the wider implementation of a multi-omics approach
to botanical authentication; these disparate techniques have
different methodological proficiencies and even reagents and
laboratory setups, necessitating broad proficiency in a single lab
or a reliable collaboration between different laboratory groups.
For data integration, the R tool mixOmics (including PCA, PLS,
and PLS-DA tools) may prove useful for combined biomarker
discovery and species identification (Figure 13) (151).

WHEN TO USE WHAT

This review highlights the number of chemometric techniques
that can be applied to datasets in order to help authenticate
botanical materials or detect adulteration. However, the

diversity of approaches that are possible can be daunting
to researchers unfamiliar with chemometric analysis and
multivariate analysis/machine learning. While there is a bit of
trial and error in selecting a chemometric approach, there are
some points to consider in determining which technique to
employ in analyzing a dataset. The decisions and chemometric
options available to a researcher analyzing data are summarized
in the following workflow (Figure 14).

First, is there response data collected with the chemical
information? This could take the form of classification identifiers
(e.g., “pure” vs. “adulterated”), control or QC datasets, taxonomic
identification, quantitative data (e.g., temperature, geographic
coordinates, elevation), or bioactivity data (inhibitory studies,
cell studies, in vivo experiments, toxicological data, etc.). For
datasets which do not contain any dependent information
(only chemical input from FTIR, UV-VIS, MS, NMR, etc.),
unsupervised analyses are recommended to understand the shape
and relationships between samples without any guiding variables
or observations. For a hierarchical analysis, where the similarity
relationship between samples is ranked by distance, hierarchical
cluster analysis (HCA) is the foremost choice. For examining
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FIGURE 12 | Integration of metabolomics, DNA barcoding, and electronic noise increases accuracy of Citri Reticulatae Pericarpium cultivar distinction compared to

each method alone. Reproduced with permission from Li et al. (135) Copyright 2020, Springer Nature.

FIGURE 13 | Integration of multiple-omics datasets and potential outputs using the mixOmics R package. Reproduced under a Creative Commons CC BY 4.0

license from Rohart et al. (151).
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FIGURE 14 | A decision tree to establish which analysis is more appropriate to

analyzing complex chemical data. Based upon the presence of response data,

and how the overall analysis needs to be structured/interpreted. ANN, artificial

neural networks; DT, decision trees; GA, genomic algorithms; HCA,

hierarchical clustering analysis; PCA, principal component analysis; PLS,

partial least squares; PLS-DA, partial least squares-discriminate analysis; RF,

random forests; SIMCA, soft independent modeling of class analogies; SOM,

self-organized maps; SVM, support vector machines. Light green boxes

represent “soft” classification techniques. Dark green boxes represent “hard”

classification techniques.

similarities between samples without a hierarchy, principal
component analysis (PCA), self-organizing maps (SOMs), and
k-means clustering are viable options.

For experimental sets which contain dependent variables,
chemometric options include numerous supervised analyses,
which require response or dependent variables to train models.
Generally, an unsupervised approach (PCA) should be applied
to the metabolomics data set to ensure clustering occurs without
predefined categories before delving into supervised analysis.
Within the supervised approaches, the chemometric options

vary depending on whether the response data are categorical or
numerical in nature. Categorical dependent data, such as class
assignments (e.g., “authentic” and “unknown”) enable supervised
analysis to generate models that maximizes differences between
the two classes. When choosing a classification methodology,
one can consider whether the particular chemometric approach
is “soft” or “hard.” These designations relate to a method’s
rigidness in assigning an unknown to a particular class. A
“soft” classification rule estimates the probability associated with
each class and subsequently provides a class prediction based
on the largest estimated probability. In comparison, “hard”
classification delivers a final class prediction without probabilistic
reasoning behind the classification. Of the reviewed approaches,
SIMCA, PLS, random forest (RF), genomic algorithms (GA), and
artificial neural networks (ANN) are generally considered “soft”
computational approaches (Figure 14, light green boxes) (152),
while other techniques, such as PLS-DA, decision trees (DT), and
support vector machines (SVM) (153) are “hard” methodologies
(Figure 14, dark green boxes).

At this point, the last decision is the degree of interpretability
the model will have for the researcher. A highly interpretable
algorithm means that one can easily understand how any
individual predictor (variable) is associated with the response,
so it’s easier to relate the final classification structure back to
specific variables contributing to model responses. Techniques
like partial least squares-discriminant analysis (PLS-DA), support
vector machines (SVM), decision trees (DT), soft independent
modeling of class analogies (SIMCA), and random forests (RF)
are able to provide interpretable models. If interpretation is not
essential (a “black box” approach), and only the final classification
of the data is important, models like artificial neural networks
(ANN) or genetic algorithms (GA)are prime options.

Numeric dependent variables are frequently obtained from
biological activity experiments, and thus enable the use of
prediction algorithms to correlate the dependent variable with
variations in the chemical information. For the biochemometric
analysis of these orthogonal datasets, partial least squares
approaches (PLS, PLS-R) are most common in teasing out these
relationships (92). However, newermachine learning approaches,
such as SVM and RF, have the ability to provide predictive
capabilities and understand relationships with input variables.
As an example, Deng et al. employed random forests to provide
geographical classification of green teas (which outperformed
several other chemometric techniques), but also were able to
correlate the geography with several isotopic indicators (103).

As with data-collection, wheremultiple orthogonal techniques
facilitate a greater coverage of the overall chemical composition
of the samples, multiple data analysis techniques are often
utilized to gain a more comprehensive perspective of the data
structure and relationship between samples. It is common to
begin with unsupervised approaches (e.g., PCA) to glean a
preliminary understanding of how samples are relating to one
another, then followed up with supervised or machine learning
methods to further classify the samples and obtain information
about potential biomarkers or bioactive constituents. Zhang
et al., in authenticating berry juices, first used PCA to identify
clusters of juices by origin, then followed with PLS-DA to
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determine relevant biomarkers (76). PCA and HCA were
employed to reveal well-differentiated clusters for black peppers,
then followed by supervised PLS-DA for a prediction model for
additional unknown samples (154). Thus, merging chemometric
methods, when possible, offers researchers a potentially more
rigorous analysis of their botanical data, which is essential to
draw relevant and robust conclusions about authentication and
adulteration questions.

CONCLUSIONS AND FUTURE
DIRECTIONS

As the demand for botanical medicines and dietary supplements
grows, in terms of relevance to human health as well as economic
importance, ensuring reliable determination of starting materials
for research, safety, and production considerations remains a
challenge. Plant-based formulations pose a particularly unique
hurdle due to their inherent chemical complexity as well as their
variability. Non-targeted chemical fingerprinting techniques,
including metabolomics, hold immense potential for describing
the chemical composition of botanicals. However, organizing that
highly complex information and deducing relevant conclusions
from it can represent a major obstacle for researchers. This
review has sought to address this hurdle by presenting examples
of major chemometric techniques that can be employed to
distill complex chemical data into models for authentication and
classification of unknown samples. The adaptation of statistical
models to wrangle large, complex datasets represents a significant
advancement in modeling botanical chemical data. While the

chemometric analysis methods profiled in this review are the

most common, and some of the most powerful, approaches

in use for botanical authentication, it is by no means an
exhaustive list. Other variations of unsupervised and supervised
techniques have been reported, and there is considerable research
being undertaken to advance the capabilities of these statistical
and machine learning approaches. And the combination of
complementary methods (e.g., biological data andmetabolomics,
chemical profiling and genomics, or multi-omics techniques) has
the potential to provide even more efficient and robust tools to
advance authentication and discovery efforts.
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Flavonoids are a vast group of metabolites that are essential for vascular plant physiology

and, thus, occur ubiquitously in plant-based/-derived foods. The solitary designation of

thousands of known flavonoids hides the fact that their metabolomes are structurally

highly diverse, consist of disparate subgroups, yet undergo a certain degree of metabolic

interconversion. Unsurprisingly, flavonoids have been an important theme in nutrition

research. Already in the 1930s, it was discovered that the ability of synthetic Vitamin

C to treat scurvy was inferior to that of plant extracts containing Vitamin C. Subsequent

experimental evidence led to the proposal of Vitamin P (permeability) as an essential

phytochemical nutrient. However, attempts to isolate and characterize Vitamin P gave

confusing and sometimes irreproducible results, which today can be interpreted as

rooted in the unrecognized (residual) complexity of the intervention materials. Over the

years, primarily flavonoids (and some coumarins) were known as having Vitamin P-like

activity. More recently, in a NAPRALERT meta-analysis, essentially all of these Vitamin P

candidates were identified as IMPs (Invalid/Improbable/Interfering Metabolic Panaceas).

While the historic inability to define a single compound and specific mode of action led to

general skepticism about the Vitamin P proposition for “bioflavonoids,” the more logical

conclusion is that several abundant and metabolically labile plant constituents fill this

essential role in human nutrition at the interface of vitamins, cofactors, andmicronutrients.

Reviewing 100+ years of themultilingual Vitamin P and C literature provides the rationales

for this conclusion and new perspectives for future research.

Keywords: flavonoids, Vitamin P, Vitamin C, invalidmetabolic panaceas (IMPS), vitamins, micronutrients, cofactors

ORIGIN OF THIS STUDY

The original motivation for this study came from the recent proof of the existence of
invalid/improbable/interfering metabolic panaceas (IMPS) (1) as over-studied natural products
that have an implausible plethora of reported biological activities, making them panaceas—in
theory. At the same time IMPS are very commonly found in plant-derived food products, implying
that IMPS play potential roles in human nutrition. Following the premise that unrecognized life-
essential biological functions of molecules may potentially blur their experimentally observable in
vivo and in vitro effects, we sought to unravel the link between flavonoids and Vitamin P (VitP).
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The commonly used synonym, “bioflavonoids,” already hints at
the potentially blurred scientific standing of VitP. In contrast,
flavonoids are well-defined phytochemicals that are nearly
ubiquitous in plants and likely represent the most well-studied
class of plant constituents. Interestingly, yet not surprisingly,
flavonoids comprise the by far largest group in the top-38 known
IMPS (1).

MOTIVATION OF THIS STUDY

Building on more than a century of primary literature published
in English, French, and German, the present study compiles
existing evidence and presents an intriguing new view for the
connection between the existence of Vitamin P (VitP) as a
known, but difficult to identify, cofactor of vital body functions in
humans, and flavonoid dietary plant constituents that have been
designated as IMPS. The study develops a set of rationales for
the ability of flavonoids and some phenylpropanoids, structurally
and biogenetically closely related plant phenols, to possess
biological functions that are essential for healthy human life.
These functions involve peripheral collagenous, vascular tissue,
and include the permeability of vascular capillaries and cerebral
tissue. Accordingly, flavonoids and related compounds must
impact cardiovascular and general human health significantly.
Despite them being phenols, chemically, this study also brings
about new rationales why their categorization as “polyphenols”
has mostly confusing biochemical and biological implications
that make this term problematic.

The surprisingly elusive nature and lack of an assigned
single chemical entity of these, otherwise essential,
bioactive molecules that constitute VitP may well be
rationalized by the dietary omnipresence and metabolic
interconversion of the flavonoid species, as they have been
experimentally associated with both VitP and Vitamin C
(VitC) bioactivities. This directly leads into the metabolomic
complexity of plant phenols: Thousands of flavonoids and
a somewhat smaller number of coumarins exist with the
basic ring structure required for VitP activity. However,
the activity and quantity of various flavonoids varies
tremendously. The most commonly sold, rutin, has very
little activity, whereas epicatechin is reported to have much
greater activity.

OVERCOMING FACILE
STRUCTURE-BIOACTIVITY PARADIGMS

The observation that P is the last letter in the historic “vitamin
alphabet” (Table 1) which has not been linked to a triplet
of a strictly deficient diet, biochemical processes, and well-
defined chemistry indicates why the scientific community has
hesitated to assign VitP the role of a vitamin, cofactor, or
micronutrient. To achieve a new overall perspective, this study
took a two-fold approach by (A) collating existing knowledge

Abbreviations: IMPS, invalid/improbable/interfering metabolic panaceas; PAC,

proanthocyanidin; OPAC, oligomeric proanthocyanidin; VitC, Vitamin C; VitP,

Vitamin P.

via a comprehensive review of 100+ years of relevant literature;
and (B) evaluating the findings with respect to contemporary
knowledge in phytochemistry, biochemistry, and biology.

This strategy also allowed for the application of recent
insights from the authors’ long-term research on botanical
dietary supplements to the dietary role of flavonoids. Our
extended body of prior work (see go.uic.edu/botanicalcenter) for
an overview and list of 260+ relevant publications. This indicates
the importance of several factors contributing to bioactive
principles from plants: metabolomic diversity; biosynthetic
and metabolic relationships; static and dynamic residual
complexity of chemical composition; complexity of biochemical
pathways; the multi-layer nature of mechanisms of action;
polypharmacology and “synergistic” properties. Collectively, the
proven interplay of these factors challenges paradigms that
seek to connect, in the most facile manner, single chemical
species with well-defined biochemical processes and/or clear-cut
biological outcomes.

Accordingly, this study prioritized collecting evidence for the
role of VitP as an essential nutritional factor over the question of
whether VitP “truly” is a vitamin. The present work followed four
hypotheses and addresses three key questions:

(H1) Similar to therapeutic botanical interventions, nutrition
acts through multiple, often chemically closely related
components, which need to be considered jointly when
trying to understand biological effects.

(H2) As the abundance (concentration) and biological
significance of plant constituents are uncorrelated,
important contributing compounds can be (are
frequently?) overlooked when they are minor, difficult
to analyze, and/or when the preceding discovery of
high-abundance components discourages further or a
more in-depth search.

(H3) Common terminology obstructs the quintessential
structural differences of congeneric compounds (e.g.,
flavanonol vs. flavones vs. flavonols vs. chalcones) by using
facile common denominators to group chemical entities
(“phenol” and “polyphenol”) into inhomogeneous cohorts.

(H4) Combined with the equally common assignment of
broad bioactivity terms (“antioxidant”), oversimplifying
terminology precludes the ability to establish specific
correlations between chemical species and essential
biological functions.

(Q1) What is the relationship between flavonoids, VitP,
and VitC?

(Q2) Is VitP a single chemical entity or a “complex” of
related compounds?

(Q3) What is the role of metabolic, including microbial,
transformation in the action of VitP?

In line with these hypotheses and questions, the overarching
objective of the study was to compile the available evidence
to investigate whether VitP exists, which essential biological
role it may fulfill, and which natural compounds can be
reasonably associated with these activities. The ultimate
goal was to inspire and provide direction for future
experimental studies.
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TABLE 1 | The alphabet of vitamins, their chemical description, deficiency conditions or diseases, and basic discovery facts.

Vitamin Chemistry Deficiency Brief discovery facts

A Retinol Visual impairment

(among others)

Magendie 1816; Hopkins 1912 (Nobel Prize 1929) from milk, McColumn

and Davis and Mendel and Osborne 1913; chemical structure by Karrer

1913

B1 Thiamine Beriberi Kanehiro 1884 germ theory rejection, Williams 1934 structure elucidation;

mainly from rice bran

B2 Riboflavin Stomatitis (among

others)

Kuhn, György, and Wagner 1933–1939 from egg white and whey

B3 Niacin Pellagra Chemical discovery by Weidel 1873; Elvehjem 1937 extraction from liver

B5 Pantothenate Impaired energy

production

Essential yeast growth factor by Williams 1933, structure by Williams 1940;

Lipmann coenzyme A discover 1946 (Nobel Prize 1953)

B6 Pyridoxine Metabolic

disorders

Discovery György 1934, isolation Lepkovsky 1938

B7 Biotin Hair, nail, skin

disorders

Bateman 1916, Boas and Parsons 1927, Kögl and Tönnis 1936, among

others; consolidated structure by 1940

B9 Folate Anemia Anemia reversal with yeast by Wills 1941; isolation from spinach leaves [Lat.

sing. folium] by Mitchel, Snell, William 1941

B12 Cobalamins Anemia Recognition of pernicious anemia 1847 to 1887, liver concentrate treatment

by Whipple, Murphy, and Menot (Nobel Prize 1934), structure by Todd 1955

(Nobel Prize 1957) and via X-ray by Hodgkin (Nobel Prize 1964)

C Ascorbate Scurvy Citrus fruit effects known empirically for long; György, Svirbely, and King late

1920s to mid-1930s, see main text

D Calciferol Bone deficiencies Discovery from cod liver oil by McCollum and David 1914; connection with

steroids by Windaus (Nobel Prize 1928); isolation and elucidation by

Bourdillon, Rosenheim, King, Callow, and Windaus until mid-1930s

E Tocopherol/-trienol Neurological

deficiencies

Recognized 1922 and isolated from wheat germ 1936 by McLean Evans;

structure by Fernholz 1938

F Essential fatty

acids

General health

deficiencies

Discovery and recognition as fats rather than vitamins 1923–1930

G Now B2

H Now B7 György 1933–1939 (H [German] for Hair (Haar) and Skin (Haut))

I Not assigned

J Choline (or B2) General health

deficiencies

Choline isolation by Stricker 1849, elucidated by Baeyer 1957, vitamin J

effect proven by Best 1932

K Menaquinone (K2),

phylloquinone (K1),

menadione (K2)

Hemorrhages Recognized by Dam 1929, structure by Doisy 1932 (Nobel Prize 1939)

L Anthranilic acid General health

deficiencies

Discovery from indigo Fritzsche 1841, structure by Friedländer 1910

M Now B9 Named M after research done in monkeys

N Alpha-lipoic acid General health

deficiencies

Discovery Snell 1937, elucidation by Reed and Eli Lilly scientists 1950s

O Carnitine General health

deficiencies

Discovery 1905, structure until 1927, function until 1965, biochemistry

Fraenkel since 1950s

P “Bioflavonoids” Capillary fragility Recognition parallel to Vitamin C; see main text

Q-Z Not assigned

FLAVONOIDS AS IMPS AND FOOD
INGREDIENTS

Recently, a systematic meta-analysis of world literature on
bioactive natural products, encoded in NAPRALERT (2), led
to the discovery that certain plant-based metabolites (often
considered as “secondary metabolites”) have received massive,
but essentially non-productive, attention in the literature.
Termed as invalid metabolic panaceas (IMPS), these compounds

show bioactivity in virtually all known biological endpoints,
frequently due to bioassay “interference,” but despite major
research efforts they fail to succeed in their development
as drugs (“improbable leads”) or other effective intervention
agents such as dietary supplements. IMPS lack the essential
characteristics of highly specific leads such as well-defined
structure-activity relationships, stability, and other desirable
properties. Collectively, IMPS can undermine natural products
and nutritional discovery research (1).
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However, these findings do not preclude important biological
functions for these compounds. In fact, highly abundant
molecules may play crucial roles in biological systems—even if
their roles are “passive” (i.e., not involving a definable active
site, receptor, or analogous target) and not drug-like, but rather
function as essential components. While located at the “extreme
end” of such a concept, water could still serve as an example.
Focusing on phenolic compounds that belong to the group of
flavonoids (Supplementary Material 1), the possible existence
of un(der)recognized vital biological functions is illustrated in
studies of VitP, which was first co-discovered with VitC in the
1930s by Szent-Györgyi.

The close connection between VitP and flavonoids becomes
immediately evident when doing literature database searches
for “Vitamin P.” Performed with both PubMed and Scopus,
they yield in the range of ∼800 articles. A manual inspection
of all titles and abstracts reveals that almost all these articles
published since the mid-1950s use the term “Vitamin P” as
a synonym for rutin (vast majority of articles), hesperetin,
quercetin, or unidentified flavonoid mixtures (“flavonoids”). The
bulk of publications on VitP, however, has been published
between 1937 and 1964. Based on these and other insights from
database searches that included the refinement of search terms,
the present study did not rely as much on database searches,
but performed extensive manual back- and forward-tracing of
citations in order to generate an asmuch as possible unbiased and
comprehensive collection of reports of experimental outcomes
that are directly related to the character and existence of VitP.
Tracing evidence back particularly to the earlier VitP literature,
including in vivo experiments, also provided a means of assessing
whether the (over)simplification of “flavonoids” as “Vitamin P”
and the idea that rutin could be used as synonymous with VitP
were justified, and how these assumptionsmay have impacted the
understanding of VitP in the more recent literature. The authors
acknowledge that the manual tracking of literature involves a
certain degree of human bias and is limited by the effort that can
reasonably be spent. However, the results of database searches led
to many, but by far not all, articles cited in the present study. This
includes reports that are key to the understanding of VitP, but do
not appear in typical database searches, likely due to limitations
in their keywords and how the information of these earlier works
has been extracted for database purposes.

In order to understand the relationship of flavonoid IMPS and
VitP, it is necessary to place the discovery of vitamins and, in
particular, VitC into perspective.

FLAVONOIDS VS. POLYPHENOLS VS.
ANTIOXIDANTS

As workers in different fields have very differing concepts of
what constitutes a “polyphenol,” this term has caused much
confusion. This has recently been highlighted by a consortium
of scientists (3). Because the confounding effect of using
“polyphenol” is difficult to avoid even within a well-defined
context, the present work avoids the term altogether as it does

not add any useful meaning, but actually would introduce
more confusion, especially in a broader context. However,
one potential explanation and resolution is that the term
“polyphenol” was initially intended and used only for polymeric
(not polyhydroxylated) aromatic (“phenolic”) constituents, and
that its wider adoption beyond these clear definitions led to a
dangerous deviation from its original meaning.

The present focus on flavonoids as a chemical substance
class is justified by the available experimental evidence for
the existence of VitP. It is important to realize that many
flavonoids are not polyphenols as they are not polymeric and
only consist of a single flavonoid moiety. Proanthocyanidin
researchers typically propose to limit use of “polyphenols” to
these polymeric phenylpropanoids and hydrolyzable tannins.
In the context of most current uses, the term “polyphenol”
is meaningless, should be avoided, and be replaced with the
specific type of compound involved in a particular study.
This would also bode well on future discussions of DRIs
(see below).

Another source of confusion at the interface of chemical
structure and bioactivity arises from the fact that virtually
all phenols are antioxidants, as they possess unsubstituted
(free) phenolic hydroxyl. This suggests that there should
not be anything special about flavonoids as antioxidants
as an explanation for VitP activity. Interestingly, VitC
also is a (powerful) antioxidant, albeit by a very different
chemical mechanism. However, with regard to terminology,
it is important to emphasize that a present study is
neither about “polyphenols” nor about their alleged
“antioxidant” effects.

Notably, Health Canada has recently concluded that claims or
statements or claims about Oxygen Radical Absorbing Capacity
(ORAC) are unacceptable on foods as relationships between
ORAC scores and human health effects have not been established.
Underlining their strict requirements on antioxidant claims,
the authority stated that a specific antioxidant function can be
valid when linked to a well-substantiated physiological effect
in healthy subjects, as determined by controlled human clinical
trials (https://tinyurl.com/48w79wzy).

BRIEF HISTORY OF VITAMINS

Early in the twentieth century, the research of several
investigators indicated that a family of organic substances found
in foods were essential for human life. One of these early
investigators, Funk, recognized that small amounts of these
substances were essential, and that their absence was responsible
for many common diseases such as beriberi, pellagra, and
scurvy (4–6). Funk termed these substances vitamins, or “vital
amines,” based on the original discovery of thiamin, an amine
found to be involved in beriberi. In 1920, Drummond (7)
proposed that the term be shortened to “vitamin” as non-amine
essential compounds were discovered. He further proposed that
thiamine and riboflavin be called Vitamins A and B, respectively,
to contrast them from Funk’s anti-scurvy factor, which he
called Vitamin C (8). Eventually, a series of vitamins was
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discovered and labeled alphabetically in the order of discovery
(Table 1).

This alphabetic listing is primarily historic, because not
all vitamins have equally well-defined deficiency diseases,
levels of biological activity, and assignments to a single
chemical species. For example, the bioactivities of vitamins
A and D involve multiple carotenoid and steroidal species,
respectively, ranging from nutritionally necessary to actual
effector molecules. Furthermore, the B series exemplifies that
the vitamin originally designated under one category may turn
out to be multiple, in this case even chemically unrelated
groups of compounds. Collectively, this means that the historic
vitamin designation should be reinterpreted with today’s
knowledge of complex biochemical systems rather than with the
expectation that it is a single compound with a clearly defined
biological endpoint.

Although modern definitions differ somewhat, an essential
organic chemical compound (or set of related compounds)
is called a vitamin when it cannot be synthesized by the
organism at all nor in sufficient quantities and, therefore,
must be obtained through diet. Thus, the term vitamin
is conditional upon the circumstances and particular
organism. For example, VitC (ascorbic acid) is a vitamin
for humans and guinea pigs, but not for rats and most other
animals (9). The well-known Vitamins A, C, D, E, K, and
Vitamins of the B complex were among those subsequently
discovered in the early part of the twentieth century and later
accepted as vitamins (10). In contrast, the proposed VitP
was almost forgotten. Putting VitP into proper perspective
requires a review of VitC discovery and basic physiology,
as follows.

VITAMIN C AND SCURVY

By the mid-1700s, scurvy debilitated and killed those whose
diet was largely based on meat and starch and devoid of fresh
vegetables and fruits. Although the problem was widespread,
this was especially difficult for the British navy, as numerous
British sailors were afflicted with this disease (10, 11). Attempting
to ameliorate this situation, a Scottish physician, James Lind,
had observed the curative and preventive powers of citrus
fruits and wrote an essay (1757) recommending mandatory
consumption of citrus fruits and lemon juice by sailors in the
British Navy, eventually leading to their colloquial designation
as “limeys.” However, it would take a century for scientists
to understand why citrus fruits were so effective against
scurvy (10).

Commonly recognized symptoms of scurvy are loss of
weight; swollen, soft, spongy, or ulcerated gums; loose
carious teeth; hemorrhages; necrosis of the bones; swollen
joints; edema; hardening of the skin and often perifollicular
or petechial hemorrhages, sometimes bloody conjunctiva
and occasionally anemia (12). In the absence of VitC, the
development and maintenance of intercellular substances
degrades. This involves the collagen of all fibrous tissues and
of all non-epithelial cement substances, such as intracellular

material of the capillary wall, cartilage, dentin, and bone
matrices (12). It has been the prevailing view that scurvy
and the deficiency states of VitC are marked by unduly
fragile capillaries, despite a considerable body of evidence
that there is no direct association of capillary strength
and VitC in humans nor in guinea pigs [see (13) and
citations therein].

In 1907, two Norwegians, Holst and Fröhlich, reported the
existence of a substance that, based on observed biological effects,
had the ability to cure the symptoms of scurvy (14). Furthermore,
they were able to demonstrate that the absence of this substance
produced the symptoms of scurvy in guinea pigs, which are
unable to synthesize the substance endogenously. This work was
largely ignored because, at that time it was generally accepted that
only lipids, proteins, and carbohydrates were needed for growth
and development of animals.

In approximately 1924, the Hungarian scientist Szent-Györgyi
began to study animal, vegetable, and synthetic oxidizing systems
(15). By 1928, he had isolated and accumulated about 30 grams
of a strongly reducing substance, which he called hexuronic acid,
from adrenal tissue, citrus species, and cabbage. Further, Szent-
Györgyi also provided a sample of hexuronic acid to Haworth, an
eminent chemist who, in turn, passed the sample to colleagues
who determined the structure (16). Interestingly, in his early
studies, Szent-Györgyi did not carry out bioassays to establish
that his substance was the antiscorbutic compound, but provided
a sample to another investigator, Zilva, who, in 1932, declared
that Szent-Györgyi’s hexuronic acid was not VitC (17–20).

Perhaps slightly after Szent-Györgyi had begun his studies on
hexuronic acid in 1928, King at Pittsburgh began complementary
studies. King’s contribution involved the isolation of VitC from
lemon juice in 1931–1932 and study of its antiscorbutic activity
in guinea pigs (21, 22). The research groups of King and Szent-
Györgyi connected when a Hungarian-American, Svirbely, who
worked with King at the University of Pittsburgh until 1931,
returned to Hungary and worked with Szent-Györgyi. By early
1932, Svirbely had established that hexuronic acid was the
antiscorbutic factor identical to VitC (16, 23–25). Within 2 weeks
of each other in the spring of 1932, first Waugh and King (26),
King and Waugh (27), and then Svirbely and Szent-Györgyi (16)
published articles declaring that VitC and hexuronic acid were
the same compound, thus VitC was subsequently named ascorbic
acid (28, 29). Later work by Szent-Györgyi and his collaborators,
with the diet of Sherman et al. (30) for induction of scurvy
in guinea pigs, was the first to demonstrate VitC avitaminosis
(16, 24) and finally explained its link with the treatment and
prevention of scurvy (11).

Szent-Györgyi was awarded a Nobel Prize in Medicine in
1937 for his work with regard to VitC. However, controversy
remains over whether both Szent-Györgyi and King deserved
equal credit for the discovery of VitC. Szent-Györgyi’s further
accomplishments included the discovery of the role of adenosine
triphosphate and actin-myosin, elucidation of many phases of
the Krebs cycle, and studies on the influence of free radicals
in tumor formation (31, 32). Haworth received the 1937 Nobel
Prize in Chemistry for his investigations on the chemistry of
carbohydrates and VitC.
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VITAMIN P EMERGED FROM VITAMIN C
RESEARCH

Many biochemical processes involve VitC and its oxidized
counterpart, dehydroascorbate, as cofactors: hydroxylase
metabolism; (nor)adrenaline biosynthesis in the adrenal cortex;
formation of dopamine and noradrenaline (syn. norepinephrine)
in adrenergic synapses; and metabolism of aromatic amino
acids (Supplementary Material 5). The most characterized
function of VitC involves collagen biosynthesis, where it takes
part in the post-translational hydroxylation of prolyl and lysyl
residues in unfolded procollagen chains, which is essential for
folding collagen into triple helices prior to collagen secretion
by fibroblasts. Hydroxyproline residues contribute to the
stiffness of the collagen triple helix, and hydroxylysine residues
hydrogen bond with carbohydrates and form intramolecular
cross-links that give structural integrity to the collagen mass.
The under-hydroxylation of procollagen, which is degraded,
appears to be a major factor in the pathophysiology of scurvy.
VitC deficient subjects usually show reduced urinary excretion of
hydroxyproline (33).

From the collagen pathophysiology perspective, the VitC story
is quite satisfying. An avitaminosis condition could be treated
by a single biologically active compound, designated as VitC,
and chemically identified as ascorbic acid. Structure activity
relationships have been established (Supplementary Material 2)
and specific biological targets identified. However, the VitP story
emerges from the VitC narrative. Although Szent-Györgyi was
awarded the Nobel Prize for the discovery of VitC, according to
some, he was never fully satisfied, because his experiments with
VitC showed something was “missing” (22, 29). This is where
VitP enters the picture.

Early VitC studies were performed with natural product
extracts, which contained VitC along with other compounds
(impurities) that accounted for the residual complexity, i.e.,
minor chemical species in nature-derived agents that impact
biological test systems and bioactivity profiles of the assay
material (34). VitC became the focus of these studies as it was the
major component of the extracts. Moreover, the role of putative
impurities was obscured by the apparent success of VitC to
reverse most, but not all, biological effects of a scorbutic diet in
guinea pigs and humans.

EARLY EVIDENCE FOR VITAMIN P AS A
FLAVONOID

Although the structure of VitC was still unknown in the 1920s,
several investigators at the time provided evidence that VitC
interacted with a second factor of unknown composition (35–38).
Based on these reports and his own experiments, with isolated
and characterized VitC, Szent-Györgyi also believed that there
was an additional chemical factor that played a significant role
in curing scurvy (22, 29). He felt that this additional substance
was of similar importance and related activity with VitC. In
the dietary absence of both VitC and this unknown entity,
the symptoms of scurvy prevailed and concealed symptoms of

the deficiency of the second substance (39). Along with other
investigators, he found that in certain pathological conditions
characterized by an increased permeability or fragility of the
capillary wall, highly purified or synthetic VitC was ineffective
for reducing the permeability, whereas the condition was readily
cured by administration of extracts of Hungarian red pepper
(called “Vitapric”) or lemon juice. These extracts were effective
in cases of decreased resistance of the capillary wall toward
whole blood (vascular type of hemorrhagic purpura), as well as
in cases where the capillary wall showed increased permeability
toward plasma protein only, such as observed in various septic
conditions. As little as 40mg of this active fraction given daily
intravenously to a human restored normal capillary resistance
in 2 weeks. Spontaneous bleeding ceased, the capillary walls
lost their fragility toward pressure differences, and no more
plasma protein left the vascular system on increased venous
pressure (39).

In a second publication, Szent-Györgyi et al. demonstrated
that when guinea pigs were fed a diet that induced scurvy, those
that also received 1mg daily of the crystalline flavonoid fraction
of lemon juice (called citrin), survived much longer than those
that did not. Those animals not receiving citrin died in 28 days,
whereas those with citrin lived 44 days on average. Both groups
showed typical symptoms of scurvy, but the group that did not
receive citrin hadmajor increases in hemorrhages of several types
in comparison to group that received citrin (40, 41). The authors
argued that these results indicated that experimental scurvy, as
it is commonly known, is a deficiency disease caused by the
combined lack of VitC and other components of lemon extract.
Accordingly, they proposed the name “Vitamin P” (VitP) for the
substance responsible for the action on (vascular) permeability.
The decision to call this material a “vitamin” later proved to be a
source of controversy (31). Experimental difficulties in preparing
a strictly VitP deficient diet and, thereby, establishing a hard
biochemical link to a deficiency syndrome are one reason why
the scientific community has found it difficult to embrace VitP
as a vitamin. The intertwinement with VitC further obscures
the potential link between deficiency and disease. However, as
discussed below, evidence for VitP as an essential nutritional
factor should take precedence over the formal question of its
designation as a “true” vitamin vs., e.g., being a micronutrient.

Zacho investigated the impact of citrin (see
Supplementary Material 3 for a comprehensive description)
in capillary resistance in guinea-pigs (n = 36) fed with various
diets using the sucking-cup method adopted from the human
clinical use to the animal model (42). His findings confirmed
that citrin was effective in restoring normal capillary resistance
from scorbutogenic dietary conditions. Unfortunately, several
workers, notably Zilva (19, 43), were not able to duplicate
the effects of citrin and its interactions with VitC as claimed
by Moll (44), Lotze (45), and Parrot and Sevestre (46). Even
Szent-Györgyi was not always able to duplicate his own results
(47, 48). However, in other cases, the initial observations of
activity of citrin and other flavonoid fractions could be repeated
(13). Although the difficulty to repeat the original work may
have been for a variety of reasons, one major problem was that
the preparations used by Szent-Györgyi et al. were not consistent
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in composition (46, 47, 49–51). From today’s perspective, these
reported reproducibility issues could be interpreted as a form
of (chemical) residual complexity. Researchers attempted to
isolate the active component of citrin. Upon fractionation, the
active fraction from lemon juice was found to consist primarily
of flavonoid glycosides. The experimental description of the
production of citrin, the phytochemical methods available at
the time, and the incomplete compound purification (without
crystallization to constant m.p.) most likely yielded materials
with variable chemical composition.

Despite the fact that Armentano et al. (52) found that
use of lemon juice and preparations of paprika rich in VitC
produced favorable results in certain patients with bleeding
diseases, namely vascular purpura and protein permeability
of the capillaries, the same results were not observed with
purified VitC. From these studies, it appeared that purified
and synthetic VitC were less effective than unpurified VitC
from natural sources for treating thrombocytopenic purpura.
These observations reinforced the notion that bioactive minor
compounds, attributed to residual complexity, were present in
the VitC-rich extracts. Lavollay demonstrated that injection of
pure, synthetic VitC caused elevation of capillary resistance in
non-scorbutic guinea pigs (2mg per 400 g animal), whereas
injection of the flavanone, epicatechin (1 µg), was 10,000–20,000
times more effective than VitC. Others also have not detected
any increase in capillary resistance following administration of
VitC alone to apparently healthy persons on inadequate diets
or to persons with scurvy (45, 49, 52, 53). Interestingly, a very
recent meta-analysis of 17 qualifying clinical trials has associated
the flavonoid quercetin with lowered systolic blood pressure as a
clinical endpoint, in the absence of lipid and glucose metabolic
effects (40).

Even today, residual complexity plagues programs aimed
at natural product discovery. The ambiguities in the reported
interaction of flavonoid preparations such as citrin and VitC
foreshadowed the ongoing difficulties that have been experienced
with performing biological assays on nature-derived materials.
The intricacies of purity and the chemical integrity of assay
materials has recently been recognized as a persistent problem
in biological assays (54).

EXPANDING THE REPERTOIRE OF
VITAMIN P CANDIDATES

With the VitP hypothesis in hand, a search was undertaken
to identify a chemical principle that enhanced the activity of
VitC for treating the cause and symptoms of scurvy. A major
problem in the search for a specific compound that could be
identified as VitP proved to be that a series of structurally diverse
flavonoids from other sources also produced similar results. For
example, the glucosides of the flavonoid aglycones, hesperetin,
and eriodictyol, were both active. In comparison, the flavonoid
fractions of Citrus extracts contained heterosides of quercetin. In
some cases, comparative activities were measured, for example,
citrus fruit concentrates were reported to have 20 times the
activity of hesperidin (49, 51). In his publications, Szent-Györgyi

concluded that VitP should be a flavanone with exceptional
properties owing to its activity vis-à-vis oxidative agents (47).
However, Javillier and Lavollay noted that the activity was not
associated with specific flavonoid structures, but also with many
flavonoids including flavonols, flavanones, and their glycosides,
as well as catechins and their oligomeric proanthocyanidins
[Figure 1; (50)].

Catechins from cutch (Senegalia catechu [syn.Acacia catechu],
catechu) proved to be a source of VitP-like activity. Although
Lavollay et al. found the original crystalline (+)-catechin from
cutch to be inactive (55, 56), the mother liquor was quite
active. Notably, (–)-epicatechin, from the mother liquors was
500–1,000 times more active than the flavonoid fraction from
citrus extracts (55–57). This example of “dynamic” residual
complexity (54) plausibly had resulted from an epimerization
event that occurred during recrystallization of a compound
isolated by bioassay guided fractionation. Based on LC/MS and
LC/MS/MS analyses, it is now known that the major monomeric
catechins of cutch are (+)-catechin, (–)-epicatechin, epicatechin-
3-O-gallate, and epigallocatechin-3-O-gallate (58). Extracts of
gambier, Uncaria gambir (Rubiaceae), a source of the catechin
oligomers called proanthocyanidins, were also found to be active.
Gambier extracts contain primarily (+)-catechin and only small
amounts of (–)-epicatechin (59).

In subsequent studies, the French investigators found that
coumarin and the coumarin derivatives esculin and esculetin also
were quite active (60). A flavonoid dihydrochalcone, phloridzin,
even showed activity in microgram quantities (50). Coumarins
are widespread in nature, however, phloridzin is best known
as an apple skin component and is only occasionally found in
other plants.

In 1948, Masquelier founded a company that prepared
an extract of the bark from French maritime pine, Pinus
pinaster Aiton subsp. atlantica Villar, called Pycnogenol R©,
that had VitC-like properties [Supplementary Material 4; (61)].
Chemical identification studies showed that this extract is
primarily composed of proanthocyanidins that are biopolymers
of (+)-catechin and epicatechin with two or more flavonoid
subunits. The extract also contained monomeric (+)-catechin
and epicatechin.

Lavollay and Sevestre demonstrated that Bordeaux wine, from
which the ethanol was removed, possessed Vitamin P activity
when injected into guinea pigs and humans (62). Masquelier et al.
later discovered the presence of oligomeric proanthocyanidins
in red wines (63, 64). About 1970, it was discovered that grape
seeds were also rich in oligomeric proanthocyanidins. Early
research on the effects of grape seed extracts on the permeability
of vascular capillaries was designed to unravel the underlying
cellular and molecular mechanisms of action of oligomeric
proanthocyanidins and other flavonoids (65).

During the 1970’s, Masquelier began producing a grape
seed extract for medicinal uses as an alternative to the pine-
derived Pycnogenol R©. Grape seeds contain a similar, but
not identical complement of the oligomeric proanthocyanidins
(OPCs; syn OPACs) to pine bark. Masquelier’s product, called
“MASQUELIER’s R© Original OPCs,” was extracted from the seeds
of Vitis vinifera L. This product contained catechin, epicatechin,
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FIGURE 1 | Natural products featured in the Vitamin P story: Vitamin C (ascorbic acid); dehydroascorbate; dopamine, noradrenaline (norepinephrine), and adrenaline

(epinephrine); hesperetin and eriodictyol; (–)-epicatechin and (–)-epigallocatechin; quercetin and taxifolin; (+)-catechin; (–)-epicatechin-3-O-gallate and

(–)-epigallocatechin-3-O-gallate (EGCG); esculetin and esculin; phlorizin; catechol; pyrogallol; leucocyanidol; and proanthocyanidin B1 [epicatechin-(4β → 8)-catechin].

and OP(A)Cs (dimers to pentamers) (66). Detailed analyses have
established that the product is standardized to contain about 85%
(w/w) flavonoids, of which 50–60% (w/w) are monomeric and
dimeric catechins. The same product was evidently devoid of
OP(A)Cs (65, 67).

In vitro studies indicate that Pycnogenol R© constituents
demonstrate a high percentage of binding to collagen fibers,
promote synthesis of collagen and elastin, and inhibit their
proteolytic degradation (68). Masquelier’s OP(A)Cs have been
demonstrated to bind collagen and elastin in blood vessel walls,
promote collagen synthesis and polymerization, and inhibit
degradation of collagen and elastin in a study conducted in
guinea pigs (69). The OP(A)Cs of grape seed show strong
collagen protection. By binding to collagen, they also may
offer protection of elastin and collagen in vascular tissues from
degradation by elastase and collagenase, respectively (65).

Flavonoids such as (-)-epicatechin and dimeric procyanidins
in human diets can be absorbed and reach the bloodstream and
other organs (67, 70, 71). OP(A)Cs consisting of larger numbers
of monomeric units are poorly absorbed andmostly pass through
the digestive system unaltered. In this process, a portion of
certain OP(A)Cs bind to membranes of the gastrointestinal
tract. These substances have a key role in stabilizing membranes
by preventing their disruption via chemical and biological
agents, and regulating membrane-associated events. In many
instances, OP(A)Cs appear not to bind directly to degradative
enzymes, but to bind tomatrix macromolecules and prevent their
degradation by various factors such as temperature, oxidative
stress, inflammation, and proteinases (67, 70–74). The original
lemon and paprika extracts studied by Szent-Györgyi and others
are rich in VitC and a variety of flavanones, but essentially lack
catechin and proanthocyanidins (75–77).
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Fibrillar collagen is a strong and viscoelastic biomaterial
arranged into highly organized hierarchical structures. Type 1
collagen is the most abundant of all collagen types and is defined
as an interwoven coiled trimer, containing repeated sequences
of proline and hydroxyproline (78). The interaction of OP(A)Cs
and collagen is believed to be stabilized by hydrogen bonding
between the protein amide carbonyl and hydrophobic bonds.
The relatively great stability of OP(A)C-protein complexes
suggests structural specificity. Indeed, two new trimeric and
tetrameric A-type OP(A)Cs capable of strengthening the
micromolecular backbone of teeth via intermolecular and
intermicrofibrillar cross-linking have been reported (79). The
applications in dentistry include disease prevention (caries) and
partial tooth repair.

In conclusion, while astute experimental observations
concerning the residual complexity of early VitC preparations
from natural sources led to the VitP hypothesis, the residual
complexity of VitP formulations (also prepared from natural
extracts) led to considerable confusion in identifying a “lead
compound” in the search for Vitamin P. It has not been
possible to attribute VitP activity to a specific food, preparation,
or compound. This problem, coupled with the difficulty in
attributing a deficiency disease that could clearly be linked
to Szent-Györgyi’s lemon extracts or to VitP might have led
scientists to abandon VitP as a useful hypothesis. Nonetheless,
despite the difficulties in understanding the relation of Vitamins
C and P, two things have been established: (i) the existence of
a distinct biological effect of VitP, i.e., the influence of a series
of naturally occurring flavonoids and coumarins (Figure 1 and
Supplementary Material 1) on vascular permeability; and (ii)
the influence of these natural products on the anti-scurvy VitC
effect (45, 49, 65).

EVIDENCE FOR VITAMIN P AVITAMINOSIS

One of the early objections to consideration of VitP as a true
vitamin lay in the difficulty of establishing disease symptoms
that were related to the identified series of compounds. This
shortcoming was addressed by later studies of Casley-Smith et al.
who worked mostly with rats, which have the ability to synthesize
VitC endogenously. When fed a diet lacking flavonoids, the
rats exhibited definite structural alterations in blood capillaries
and tissues. A diet of this type, for the time period employed,
produced considerable increases in capillary fragility. These fine
structural alterations were quite different from those reported
for VitC avitaminosis and implied a different deficiency (80, 81).
Other work demonstrated that lack of flavonoids gives rise to
cerebral edema due to the increased permeability of the blood-
brain barrier (82). In skin, a flavonoid-deficient diet greatly
increased capillary fragility, which was reversed by the addition
of flavonoids to the diet (80).

Medicinal preparations involving a semisynthetic flavonoid
compound, O-(β-hydroxyethyl)-rutoside, were developed about
1960 (83). The corresponding preparation, Venoruton R©, has
been widely used in Germany and Switzerland for the treatment
of edema and other vascular disorders. Oral administration

of Venoruton R© increased conjunctival capillary resistance in
rabbits. This preparation has few negative side effects and,
importantly, is soluble in water, whereas rutin and other
flavonoids with similar activity have limited water solubility.

Studies with guinea pigs and humans implied that natural
flavonoids and coumarins acted as vitamins in those animals,
and that VitC and VitP deficiency states are quite distinct. The
structural effects of VitC deficiency in both guinea pigs and
humans have been studied by a number of workers who noted
a significant reduction in the amount of collagen, with swelling
of the fibroblasts and endoplasmic reticulum. The basement
membranes of the blood capillaries (and associated lymphatics)
were often very tenuous and disrupted, although they sometimes
appeared thicker (80). In contrast, in VitP avitaminosis in rats,
the basic lesion consisted of the opening of some blood capillary
endothelial intercellular junctions. Unlike in VitC avitaminosis,
the endothelial cells were intact, without a pale, grossly swollen
cytoplasm (80). These effects were largely prevented by feeding
coumarins as well as flavonoids such as troxerutin (80, 83, 84).

The studies by Casley-Smith implied that the natural
flavonoids and coumarins were vitamins. VitC and VitP
deficiency states are sufficiently distinct to justify the assignment
of VitP as the underlying factor. It seems probable that some of
the changes in VitC deficiency observed in many studies were
due to a concomitant VitP deficiency. Whereas both conditions
had many open endothelial junctions and somewhat altered
basement membranes, all the gross distortions of the endothelial
cells observed in VitP avitaminosis were considerably lessened by
flavonoids and coumarins.

EARLY IDEAS ON THE MECHANISM OF
ACTION OF VITAMIN P

Probably because adrenal glands were an original source of
VitC, and due to the fact that adrenaline was a major factor in
capillary blood flow, much attention was focused on adrenalin
as a link to VitP activity (49, 62, 85). In vitro experiments
showed that adrenaline is readily oxidized by catechol oxidase,
the cytochrome system, amine oxidases, and peroxidases (86).
Javillier and Lavollay supposed that VitP slowed down oxidation
and, thereby, the resulting inactivation of adrenaline (50,
87–89); adrenaline can also be inactivated by non-oxidative
enzymes, such as catechol-O-methyltransferase. The ability of
many different types of flavonoids and coumarins to affect the
persistence of adrenaline was evaluated in a subsequent extensive
study (85).

It is likely adrenaline is involved in the action of VitP: it binds
to α-1 receptors that are involved with vasoconstriction, smooth
muscle contraction of the bladder neck, and glycogenesis.
Adrenaline also binds to α-2 receptors, which are involved
with vein constriction, central attenuation of the sympathetic
nervous system, inhibition of insulin release, and relaxation
of the intestine. Other interactions include β-1 receptors that
provide positive inotropic and positive chronotropic signals to
the heart, lipolysis, and renin release, as well as β-2 receptors,
providing bronchodilation, vasodilation, gluconeogenesis,
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relaxation of the uterus, and relaxation of the intestine. The
ubiquitin receptor (vascular dopamine) DA1 is involved with
vasodilation, whereas the DA2 receptor prevents presynaptic
noradrenaline release [http://www.urology-textbook.com/
adrenal-glands-catecholamins.html; (90)]. The plasma half-
life of adrenaline is ∼20 s. Inactivation depends mainly on
monoamine oxidase (MAO) and catechol-O-methyltransferase
(COMT) availability.

Early experiments with flavonoids examined their role in the
metabolism of adrenaline. Injection of quercitroside inhibited
decomposition of adrenaline in dogs and cats. In addition,
quercitroside extended the physiological action of adrenaline in
cats (46). In guinea pigs that were scorbutic, a number of other
substances were shown to inhibit oxidation of adrenaline in vitro,
however, most of them, e.g., catechol and pyrogallol, were not
substances that would normally be found in the diet or in animals
(56, 57).

Alternatively, other investigators concluded that the activity
of VitP consisted of inhibiting the oxidation of VitC. In
1947, Masquelier isolated a flavan-3,4-diol, leucocyanidin
(syn. leucocyanidol), from the seed coats of peanuts (91–
93). He found that extracts containing flavan-3,4-diols could
protect VitC from oxidation in vitro. He also demonstrated
that rutin, esculin, and proanthocyanidin B1 all inhibited in
vitro oxidation of VitC mediated by Cu2+ ions and ascorbic
acid oxidase. In subsequent work, Masquelier referred to
“leucocyanidol” as “OPCs” (oligomeric proanthocyanidins)
although in his 1951 papers, he refers to the tested substance
as a monomer (91–93). Later, Bate-Smith and Ribéreau-Gayon
confirmed that the original “leucocyanidol” isolated was
indeed a flavan-3,4-diol (94). Overall, Masquelier examined
the health benefits of probable mixtures of these compounds
and based on his subsequent studies, developed a vasculo-
protective medicine in 1950. However, the (somewhat
surprising) limited availability of peanut skins necessitated
examination of other plants sources of active antioxidant
substances (29).

At first sight, the role of VitP as an “antioxidant” in
biological systems might appear an attractive explanation for
many aspects of the biological role of flavonoids, because it
can easily be rationalized why so many diverse flavonoids
and related phenylpropanoids display VitP activity. However,
“antioxidant” bioactivity does not adequately explain the
apparent link between VitC and VitP activity, especially as
VitC could, presumably, act as its own antioxidant. Flavonoid
compounds such as flavan-3-ols, flavan-3,4-diols, and oligomeric
proanthocyanidins (including procyanidin B1) have radical
scavenging activity and, therefore, have been proposed to
serve as “antioxidants.” It is now known that vascular
function is strongly influenced by oxidative stress and that
diminishing oxidative stress also reduces inflammatory stress
(65). However, flavonoids and related compounds, as well
as extracts containing these compounds, may be involved in
a multitude of biological functions and may have multiple
(pleiotropic) effects that during evolution have not been selected
for a strong effect on a single well-defined target (65, 67), but
rather the opposite.

PLAUSIBILITY OF FLAVONOIDS AS
BIOACTIVE COMPOUNDS

The NAPRALERT Database (2) was consulted to investigate the
plausibility of flavonoids as bioactive compounds. Plant natural
products from 421 families, 3,714 genera, and 16,011 species are
represented in NAPRALERT. A much smaller number of plants
have been examined for biological activity. A NAPRALERT
search revealed that ∼50,000 biological experiments have
been published on flavonoids. About half of these are based
on commercially available materials. The other half included
flavonoids from about 1,700 species of living organisms,
primarily plants. Almost 7,000 compound names associated with
these experiments are represented. The qualitative activity, i.e.,
overall active to inactive activity, reported for these compounds
is 2:1 (3:1 in vivo) which means that 66-75% of flavonoids have
been reported as being bioactive in their respective assays.

Flavonoids also have been reported to have bioactivity
in a very broad variety of bioassays. They undoubtedly
interact with many different systems in mammals. These
pleiotropic interactions may be detrimental or beneficial. Note
that flavonoids and related phenolics often interfere with
bioassays and, therefore, are described as pan-assay interference
compounds (PAINS) (95). PAINS interfere with in vitro assays
through various mechanisms including fluorescence, redox, or
through generalized binding to enzymes. As a result, flavonoids
represent 10 of the 22 natural products that have been identified
as most likely being natural product invalid metabolic panaceas
(IMPS) (1).

ARE VITAMIN C AND VITAMIN P MUTUAL
CO-FACTORS?

One early experimental approach to explore this question used
guinea pigs, which like humans, lack the ability to synthesize
VitC. They were divided into five groups. A control group was
given VitC, whereas other groups received no or sub-optimal
levels of VitC, but were given various levels of OP(A)Cs. Even
though deprived of VitC, those that received an appropriate
amount of OP(A)Cs survived as long as those that got adequate
amounts of VitC. Lotze concluded that VitC and OP(A)Cs
have a marked “synergy” because flavonoid co-administration
of OP(A)Cs and VitC made it possible to decrease the dosage
of VitC (22, 45, 53, 96). Pleiotropic effects (multiple biological
effects from the same phytoconstituent) may also explain
bioactivity that cannot be rationalized by classical reductionist
models (67).

DOES METABOLIC TRANSFORMATION
CONTRIBUTE TO FLAVONOID
BIOACTIVITY?

When considering bioactivity research that is dominated by live
animal assays, it is necessary to consider the contribution of
the dynamic complexity of metabolites to the observed activity.
The stability and metabolism of catechins and other flavonoids
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under digestive conditions is relatively poorly understood.
However, several common food additives including VitC,
milk, and citrus juice enhance the stability of epicatechin,
epigallocatechin, epigallocatechin gallate, and epicatechin gallate,
when incorporated into tea beverages. From in vitro digestion
studies, without additives, <10% of epigallocatechin gallate and
epicatechin gallate were recovered. Addition of VitC increased
recovery to 54 and 74%, respectively, while epicatechin recovery
was 82%. Of all substances tested, juice preparations promoted
stability best. Epicatechin recovery was then between 86 and 95%.
Of the juices tested, lemon juice was most effective. Catechins are
most stable in aqueous solutions at about pH 4 (97, 98).

VitC and VitP may play a joint role in the biological activity
of VitC (99, 100). VitC reacts with p-hydroxybenzyl alcohol
to produce two epimeric forms 2-C-(para-hydroxybenzyl)-
3-keto-hexulosonic acid (99). These authors also indicated
that VitC can react with leucoanthocyanidins (flavan-3,4-
diols) and proanthocyanidins (such as proanthocyanidin B1) to
produce adducts. Both epi(gallo)catechin and epi(gallo)catechin-
3-O-gallate are very similar with regard to structure and
reactivity (100).

Metabol(om)ic relationships including xenobiotic
conversions, which exist between the flavonoid structures
and structurally distinct derivatives and/or reactive species may
be the actual carriers of the VitP effect. Recently evolving studies
provide compelling evidence for gut microbiota and microbiome
playing a key role in intestinal flavonoid metabolism. Recent
reviews and studies [see (101–103) and references therein]
have already summarized the impact of such processes on
flavonoid bioavailability, the deglycosylation and formation of
metabolites that unfold the actual effects at the site of action, the
inter-individual differences of health outcomes, and connections
with cardiovascular health.

In addition to the property of flavonoids to form a network
of readily interconverting congeners that primarily differ in
the degree of (un)saturation and oxidation of the pyran/C-
ring, flavonoids yield a common set of very small molecule
degradation products when exposed to gut microbes. Among
these microbial metabolites are hydroxybenzoic acids (HBAs),
including salicylates, and other small phenolic acids (104).
Considering the relatively high abundance of many flavonoids,
HBAs can be produced in physiologically relevant amounts.
Existing evidence regarding the catabolism of the flavan-3-ol
subgroup has been compiled and discussed in recent reviews
(105, 106).

CAN WE SHED LIGHT ON HISTORICAL
REPORTS?

Unambiguous data show that the activity of Vitamins C and P are
related. In a number of studies, guinea pigs on a scorbutogenic
diet developed symptoms of scurvy and the animals also
developed reduced capillary resistance. This latter effect was
reversed by addition of citrin, hesperidin, or other flavonoids
to the diet. Interpretation of data from different methods for
determination of capillary resistance and lack of experimental

details contributed to variation in the results of many of the
studies reviewed by Scarborough and Bacharach (49).

Other problems result from the composition of scorbutic diets
used to study the role of VitC and VitP in guinea pigs and rats.
Many early studies, including those of both King and Szent-
Györgyi, were based on a scorbutic diet that consisted mainly of
freshly ground oats (Avena sativa), dried milk powder, salt, and
butter fat. Notably, oats contain (–)-epicatechin, a compound
with pronounced VitP-like activity (107). The presence or
absence of (–)-epicatechin and related flavanols in the diets
employed, opens questions about the interpretation of the results
of many of these early studies, and/or the role of (–)-epicatechin
in VitP activity.

Nonetheless, we concur that VitP activity is real. At the
same time, the strict definition of a vitamin as a single
chemical entity (SCE), the absence of which generates a
disease (avitaminosis), does not apply because of the complex
composition and interrelated nature of the compounds that
can serve as VitP. In this respect, VitP resembles a complex
similar to Vitamin B. While the definition of Vitamins P1, P2,
P3, etc. is premature, they differ from the B-series by being
structurally related.

Much of the vast reported evidence suffers from being
chemically inconclusive, due to a lack of rigor in the chemical
characterization of the intervention materials. While this, in
part, reflects the progress in chemical and structural analysis
made since performing the biological assays that characterized
the vitamins, other potential explanations for the gap in
our current understanding of VitP may lie in the following
shortcomings: (a) a general trend toward bioassays that are
driven by reductionist hypotheses (single agent, single target) vs.
consideration of pleiotropic activity/targets (multiple biological
effects originating from the same phytoconstituent); (b) the
general lack of consideration ofmetabolic activation, in particular
the conversion of flavonoids with poor PK properties into
metabolites that can be absorbed; (c) a tendency to ignore
all forms of residual complexity, particularly the impurity of
the natural products used in bioassays (static RC), as well as
stability/conversion during bioassay and/or chemical processing
(e.g., heating during recrystallization, triggering epimerization
and other chemical reactions).

IS VITAMIN P A SINGLE CHEMICAL
ENTITY? IS IT A VITAMIN?

Considering the evidence available to date, VitP does not exist
as a single chemical entity, but consists of a group of analogous,
and often congeneric, compounds. The search for VitP will
unlikely lead to a single isolated compound. This challenges
existing paradigms built on more simplistic ligand/target models
and indicates that VitP function involves higher complexity on
both sides of biological action, i.e., the chemistry of the agents
and the biochemistry of the biological targets and networks.
As mentioned above, a number of flavonoids and flavonoid
glycosides have been considered to be VitP. However, these
compounds mostly have limited activity in comparison to certain
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coumarins (e.g. esculetin; Figure 1), as well as the flavonoids
phloridzin and epicatechin. Epicatechin and oligomeric catechins
(such as procyanidin B1) are widely distributed among plants and
are found in many food plants.

Whether the catechins and/or OP(A)Cs constitute a vitamin
(complex), related or unrelated to VitC, is, in part, a
question of definitions. Notably, it has not been demonstrated
unambiguously that VitC alone is adequate for resolving the
symptoms of scurvy (49). In the opinion of Masquelier,
flavan-3-ol oligomers (i.e., catechol oligomers or oligomeric
proanthocyanidins [OP(A)Cs]) are the only flavonoids that
have a justified claim to VitP activity (22). Furthermore, there
is significant evidence that coumarin derivatives, which share
a biogenetic and ADMET relationship with flavonoids, have
VitP activity and also interact in a powerful manner with
VitC (45, 53). Notably, while representing constituents present
in certain dietary plants, coumarins themselves are excluded
from becoming dietary supplements due to their approved
drug status.

Although VitP has not been widely accepted as a vitamin
by the scientific community, numerous commercial dietary
supplements are currently sold as “VitP,” sometimes using
synonymous terms such as “bioflavonoids.” The variety of
chemical structures associated with commercial products sold
with the label “VitP” is as diverse as all the structures shown in
this article (Figure 1), with the exception of the coumarins, and
always has a focus on flavonoids.

As detailed above, the designation of VitP as a vitamin has
historical roots and stems from the era of vitamin discovery
(ca. 1918–1948; Table 1), when nutrients present at relatively
low concentrations in certain foods were recognized as causing
deficiency symptoms or diseases and as being essential, and
were labeled in a more or less organized alphabetical order of
discovery. Compared to the well-established vitamins, VitP is
chemically elusive yet biologically relatively well-documented.
Reflecting the overall complexity of describing it chemically
and biologically, its status as a vitamin remains hypothetical.
Its “metabolic network chemistry” and interdependence on
other “co-factors,” particularly its established relationship with
Vitamin C, may eventually move its label from vitamin to the
broader micronutrient category. However, in the view of the
authors, the elusive and partially hypothetical nature as well
as its to-be-resolved classification tends to hide the importance
of VitP and certain “bioflavonoids” as an essential factor of
human health.

WHAT ABOUT DIETARY REFERENCE
INTAKES OF FLAVONOIDS?

Based on all available/reviewed data, it is currently not feasible
to define Dietary Reference Intakes (DRI) for VitP. Review of
recent references does not clarify how the DRI of flavonoid
substances can be accomplished. Several recent reports (108–111)
outline how DRIs can be approached for certain compounds.
Accordingly, DRIs are potentially feasible for the carotenoid
lutein (not to be confused with the flavonoid, luteolin), but

it is impossible to carry out the required steps for flavonoids.
Although a single compoundmay ultimately be shown to provide
most VitP activity, a number of congeners may be involved
in its interaction with VitC. Collectively, much additional
information will be required before determination of a VitP DRI
is possible.

POTENTIAL DIRECTIONS FOR ESSENTIAL
FLAVONOID RESEARCH

Flavonoids are apparently closely related, yet still form a
rather heterogeneous group of metabolically interchangeable
essential nutrients with poorly understood biological profiles.
The historic and ubiquitous nature of flavonoids in the
human diet suggests that they may have become essential
dietary nutrients at some point in the evolution of the
human species. In fact, it is difficult to devise a diet that is
completely deficient in these compounds as flavonoids cover
a wide range of chromatographic polarity. Moreover, the
highly generic nature of flavonoids as bioactive compounds
suggests that no single compound emerged as playing a decisive
role. This seems to indicate that a more generalized activity
might be at work, which is strikingly well-aligned with the
Screening Hypothesis by Firn and Jones (112) and Jones and
Firn (113).

At the same time, this does not rule out the possibility of
specific biological targets, which remain to be determined.
In fact, there may be multiple specific biological targets
that are impacted by various chemical members of the
VitP family (65, 67). The relevant literature associates
VitP activity with 12 flavonoids (Figure 1 and Table 2),
which belong to various subclasses (flavanones, flavan-3-
ols, flavans, flavanonols, chalcones, flavan-3,4-diols, and
proanthocyanidins), each of which has a large number of
closely related and relatively widely occurring congeners.
Thus, the total number of structural and metabolically related
flavonoids that contribute to the overall VitP activity could
be substantial. At the same time, some members of this
“flavonoid network” likely have more pronounced VitP
bioactivities than others. In the understanding of the authors,
based on the evidence summarized above, the flavan-3-ols
including the proanthocyanidins could potentially be such an
important subclass.

From a more general bioactivity perspective, the difficulty
in discerning a specific biological VitP activity for a specific
compound is a direct result of the behavior of many flavonoids
in bioactivity assays that makes them “Invalid Metabolic
Panaceas” (IMPs). Nevertheless, this apparent dilemma can
also be understood as an outline of opportunities for future
experiments that seek to connect a network of multiple
phytochemicals with the multitude of biological effects that
collectively constitute the VitP activity. The promiscuity and
questionable validity of the biological effects assigned to
highly prominent flavonoid IMPs has been recognized by
Ingólfsson et al. (114) and is also reflected in the human
protein-protein interactions that have recently been presented
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TABLE 2 | Description of the compounds shown in Figure 1 with an emphasis on their role in the vitamin P story.

Compound Class Origin Known or proposed interactions

Ascorbic acid γ-lactone Not biosynthesized in humans, but prevalent in many plant

and animal species

VitC and VitP work together

Dehydro-ascorbic acid γ-lactone Not biosynthesized in humans, but prevalent in many plant

and animal species

Dopamine Catechol

Phenylethylamine

Mammalian neurotransmitter VitP slows down oxidation of dopamine in vivo

Norepinephrine Catechol

Phenylethylamine

Mammalian neurotransmitter VitP slows down oxidation of norepinephrine in vivo

Epinephrine Catechol

Phenylethylamine

Mammalian neurotransmitter VitP slows down oxidation of epinephrine in vivo

Epigallocatechin Flavan-3-ol

Pyrogallol

Plant-derived natural product Likely present in plant extracts that show VitP activity

Epicatechin Flavan-3-ol

Catechol

Plant-derived natural product Present in plant extracts that show VitP activity. Shows VitP

activity as purified compound

Hesperetin Flavanone Plant-derived natural product Glucosides present in plant extracts that show VitP activity

Eriodictyol Flavanone

Catechol

Plant-derived natural product Glucosides present in plant extracts that show VitP activity

Quercetin Flavonol

Catechol

Plant-derived natural product Glucosides present in plant extracts that show VitP activity.

Studied as a purified compound for it biological benefits

Taxifolin Flavonol

Catechol

Plant-derived natural product Glucosides likely present in plant extracts that show VitP

activity

Phlorizin Dihydrochalcone Plant-derived natural product Likely present in plant extracts that show VitP activity

Catechin Flavan-3-ol

Catechol

Plant-derived natural product Present in plant extracts that show VitP activity

Epicatechin-3-O-

gallate

Flavan-3-ol

Catechol

Pyrogallol

Plant-derived natural product Present in plant extracts that show VitP activity

Epigallocatechin-3-O-

gallate

Flavan-3-ol

Pyrogallol

Plant-derived natural product Present in plant extracts that show VitP activity

Esculetin Coumarin

Catechol

Plant-derived natural product Present in plant extracts that show VitP activity. Shows VitP

activity as purified compound

Esculin Coumarin Plant-derived natural product Present in plant extracts that show VitP activity. Shows VitP

activity as purified compound

Catechol Catechol Degradation product of plant-derived natural products Shows VitP activity as purified compound

Pyrogallol Pyrogallol Degradation product of plant-derived natural products Shows VitP activity as purified compound

Leucocyanidol Flavan-3,4-diol

Catechol

Plant-derived natural product Present in plant extracts that show VitP activity

Procyanidin B1 Flavan-3-ol

Catechol

Plant-derived natural product Present in plant extracts that show VitP activity

by do Valle et al. (115): studying associations between 65
IMPs and closely related compounds vs. 299 diseases, yielded
1,525 known and 17,910 unknown associations within the
human interactome consisting of 17,651 proteins and 351,393
interactions. While the study recognized the known poor
PK properties of these compounds, the cited contemporary
approaches that use nanoparticles are not suitable to explain
for enhancement of bioavailability in the context of food and
vitamins/micronutrients contained therein.

In addition to seeking answers to the above pivotal
questions, more general insights were gained from the study
with regard to the overarching goals (see Motivation of This
Study). Reinterpretation of previously-documented outcomes
can inspire new directions for flavonoid/VitP/VitC research as
summarized by the following points.

• Newly developed research hypotheses should take into
account that multiple chemically related, yet distinct
constituents are required to unfold an essential biological role.

• Low-abundance (“micro”) components are more challenging
to work with, but fully valid as putative agents; they provide

important opportunities for discovery, even in the presence

of other known bioactive factors that might overshadow

such “micronutrients.”
• Specific and distinctive chemical and biological terminology

is essential, whereas blanket terminology (e.g., “antioxidant

polyphenols”) tends to oversimplify and prevent progress.

By highlighting previously unrecognized connections between

documented outcomes, naming known culprits, and outlining
recent advances as well as remaining challenges equally, this
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study hopes to inspire future interdisciplinary research that
ideally can clarify the nature of Vitamin P and advance it from
its resilient last place in the vitamin alphabet.

AUTHOR’S NOTE

In 1960, my [DS] personal interest in this topic originated in the
seminar class of Dr. Charles Schwartz of Southwestern Oklahoma
State University, Weatherford, OK, in which I wrote an assigned
report on vitamins. Obviously, that report and the attendant
presentation were much too broad for a single 50-min seminar
but provided an early introduction to the VitP literature.
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Plant-derived compounds, without doubt, can have significant medicinal effects since

many notable drugs in use today, such as morphine or taxol, were first isolated from

botanical sources. When an isolated and purified phytochemical is developed as a

pharmaceutical, the uniformity and appropriate use of the product are well defined.

Less clear are the benefits and best use of plant-based dietary supplements or other

formulations since these products, unlike traditional drugs, are chemically complex and

variable in composition, even if derived from a single plant source. This perspective will

summarize key points–including the premise of ethnobotanical and preclinical evidence,

pharmacokinetics, metabolism, and safety–inherent and unique to the study of botanical

dietary supplements to be considered when planning or evaluating botanical clinical

trials. Market forces and regulatory frameworks also affect clinical trial design since

in the United States, for example, botanical dietary supplements cannot be marketed

for disease treatment and submission of information on safety or efficacy is not

required. Specific challenges are thus readily apparent both for consumers comparing

available products for purchase, as well as for commercially sponsored vs. independent

researchers planning clinical trials to evaluate medicinal effects of botanicals. Turmeric

dietary supplements, a top selling botanical in the United States and focus of over 400

clinical trials to date, will be used throughout to illustrate both the promise and pitfalls

associated with the clinical evaluation of botanicals.

Keywords: botanical, clinical trial, curcumin, turmeric, curcuminoids, dietary supplement

INTRODUCTION

Research of plant-derived products (e.g., extracts and/or dried plant parts) stands at the complex
intersection of science, consumerism, industry, and federal regulation connecting stakeholders
with differing and only partly overlapping interests and expectations. Nowhere is this more
apparent than when examining the design and results of published botanical clinical trials and
their therapeutic impact (1). In contrast to FDA-approved drugs, the regulatory environment
for botanical dietary supplements in the United States (US), which only allows their sale under
the explicit provision that the products not be marketed for the treatment or prevention of
any specific disease, does not provide a strong commercial incentive for financing appropriately
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powered and designed (e.g., dose finding or equivalency) clinical
studies (2, 3). The often-lacking defined chemical composition of
botanical products, as well as their non-uniformity, adds a layer
of complexity for scientists, clinicians, and consumers alike when
attempting to understand the medical implications of published
trials (4). Thus, consumers often become the final arbiters of
information derived from trials of readily available botanicals,
and may use a product with a chemical composition distinct
from that studied to treat a medical condition for which definitive
efficacy and safety data are also lacking (5).

While approximately one third of the earth’s plants have been
used traditionally as medicines, often in combination, <10%
of traditional medicinal plants have been the focus of scientific
research (6). Despite this absence of scientific evaluation, a
majority of populations in developing nations continue to rely
on traditional remedies for disease treatment, while in developed
nations, such as the United States, over the counter botanical
sales continue to expand (7). How can we best marshal limited
commercial and government resources to improve the quality
and significance of information derived from botanical clinical
trials to better understand the benefits and limitations of plant-
derived products? Using turmeric as a test case, given its rich
history of ethnobotanical use (8), the impressive number (>400)
of modern clinical studies conducted to understand its best use
(9, 10), and its current rank as one of the top selling botanicals
in the United States (4, 11), we will summarize key points to be
considered when designing or evaluating results from botanical
clinical trials.

SCIENTIFIC PREMISE SUPPORTING

CLINICAL EVALUATION OF A BOTANICAL

Ethnobotanical Evidence
In contrast to pharmaceutical development, which usually
begins with a specific biological target and works backwards
to find a silver bullet, clinical evaluation of botanicals often
has its nidus in ethnobotanical evidence of therapeutic effects
of a particular plant, mechanism unknown (12). Indeed,
the majority of plant-derived compounds developed into
pharmaceuticals were identified following ethnobotanical leads
(6). For some plants, centuries of use by specific populations,
often supported by written texts, provides a compelling
source of information for disease-specific treatments despite
an absence of modern studies to confirm effects. Turmeric
is one such plant, having been used as an anti-inflammatory
in Ayurvedic medicine for thousands of years, up until the
present (8). Using modern scientific methods, turmeric clinical
trials have offered evidence in support of this traditional
anti-inflammatory use (9, 13). While likely not common in
antiquity, obesity-associated diseases, like insulin resistance
or non-alcoholic fatty liver disease, for which inflammation
is a key driver, have been the most studied conditions
in turmeric clinical trials, representing almost one third of
citations and yielding strong evidence of efficacy (13). Anti-
inflammatory effects of turmeric are also strongly supported
by studies related to musculoskeletal diseases, the second most

commonly studied condition, half of which have focused on
osteoarthritis, with the majority of studies reporting clinical
improvements (13).

Reliance on ethnobotanical evidence can have limitations,
however. For clinically silent disease processes, such as age-
related bone loss, ethnobotanical footprints do not exist.
In these cases, mechanistic pre-clinical studies in the same
or mechanistically similar conditions can sometimes provide
direction. For example, in the course of conducting pre-clinical
turmeric studies documenting remarkable in vivo anti-arthritic
efficacy, our laboratory identified direct and indirect inhibitory
effects of turmeric on the formation of bone resorbing osteoclasts
(14), key mediators of bone loss across all disease states (14–
16). Subsequent pre-clinical studies by our laboratory verified
anti-resorptive effects of turmeric in a model of menopausal
bone loss, a clinically silent disorder, that were subsequently
confirmed clinically (16, 17). For other biological processes, such
asmenopause, symptomatology can be culturally dependent (18),
and pharmacogenetic differences between populations can also
impact botanical responses (19), a caveat that should be kept
in mind when designing–and perhaps most importantly–when
interpreting clinical trial results. Similarly, for clinical endpoints
more responsive to placebo effects, ethnobotanical evidence
may also be less reliable. Menopause again provides a possible
example (20), as evidenced by the NIH-funded HALT trial
testing black cohosh effects onmenopausal vasomotor symptoms
where a clinically significant 30% reduction in symptoms was
documented in black cohosh—and in placebo—trial arms (21).
While placebo responsiveness was not necessarily the reason
that this trial did not identify an effect (e.g., criticism of the
product used and limited power of the study due to inclusion of
multiple arms have also been cited as possible explanations), this
caveat must again be considered when designing botanical trials,
particularly when estimating effect size to appropriately power
the clinical trial.

Pre-clinical Evidence
Even when ethnobotanical evidence of a medicinal effect
is strong, botanical clinical trials are vastly improved when
mechanistic data are available from appropriately designed
pre-clinical studies, particularly those performed in vivo (22).
In addition to strengthening scientific premise, mechanistic
information can also identify biomarkers for inclusion as
endpoints, thus improving assessment of pharmacodynamic
efficacy and pharmacokinetic sufficiency. For example, pre-
clinical data documenting specific, avid binding of turmeric-
derived curcumin to amyloid plaques in brains of Alzheimer’s
Disease (AD) mice has been leveraged, taking advantage of
curcumin’s natural fluorescence, to image these plaques non-
invasively in the retinas of ADmice (23). Subsequently, curcumin
has been used successfully to image retinal plaques in aging
patients suffering from cognitive decline (24), suggesting a
diagnostic tool for a disease where few currently exist. Since
curcumin is also reported to reduce amyloid plaques in AD mice
(25), an endpoint now accepted, albeit controversially, by the
FDA as ameasure of AD pharmaceutical clinical efficacy (26), this
pre-clinical discovery suggests that curcumin-visualized changes
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in retinal plaques could serve as a biomarker for clinical trials
assessing the efficacy of drugs–including curcumin–in slowing
AD progression.

Similarly, in vivo and in vitro pre-clinical studies from our
own laboratories have demonstrated in vivo inhibition of NF-κB
activation by curcumin (14), an effect likely attributable to adduct
formation between oxidative curcumin metabolites and IκB
kinase β (IKKß), the activating kinase upstream of NF-κB (14,
27–29). Furthermore, our laboratories have demonstrated that
in vivo inhibition of NF-κB activation in a pre-clinical arthritis
model is associated with decreased NF-κB-induced cytokines
or NF-κB-mediated tissue destructive processes (i.e., formation
of bone-resorbing osteoclasts) known to be closely linked with
adverse clinical outcome (Figure 1) (14–16). Consistent with
these pre-clinical findings, in clinical trials assessing curcumin
effects on diseases, such as arthritis, where NF-κB activation is
known to contribute to pathology, inhibitory effects of curcumin
on NF-κB activation and NF-κB downstream pathways have
also been reported, with these biomarkers lending credence
and mechanistic support to beneficial clinical outcomes (17,
30–33). Indeed, given the central role of NF-κB in mediating
inflammation and the significant contribution of inflammation
to many disease processes (34), it is perhaps not surprising
that benefits of turmeric have been reported in clinical trials
across disease types, consistent with its traditional use as an
anti-inflammatory (9).

CHOICE OF BOTANICAL PRODUCT FOR

STUDY

Botanical Product Composition
One fundamental feature of botanicals not always appreciated
by medical researchers is their chemical complexity and
variability, even for products derived from the same plant
(35). Most plant-derived medicinal compounds are so called

secondary metabolites lacking a function within the plant
itself, phytoestrogens being one excellent example (36).
Secondary metabolites are directed outward (e.g., polyphenolic
curcuminoids in turmeric rhizomes), often as a defensive
mechanism, protecting the plant from herbivores, insects,
or pathogens; thus, their biosynthesis is context-specific and
highly regulated but also variable (36, 37). However, even for
well-studied plants like turmeric, where curcuminoids have
been identified as a primary bioactive principle and are used
for extract standardization (4), so called entourage effects are
possible (38), with bioactivity resulting from additive and
synergistic effects of component parts. In the case of turmeric,
ground rhizome—containing polyphenols (3% curcuminoids
by weight), terpene-rich essential oils and polysaccharides—is
used both in cooking and for preparation of traditional medical
formulations (39), whereas the content of most US turmeric
dietary supplements is limited to curcuminoids only (98%
curcuminoids by weight) (4).

Given reports of enhanced curcuminoid bioavailability when
combined with turmeric’s essential oils (40), as well as
pre-clinical evidence from our laboratories of enhanced or
differential in vivo bioactivity of polyphenols derived from
turmeric (curcuminoids), or from the botanically-related plant
ginger (gingerols), when combined with essential oils and/or
polysaccharides, it is readily apparent that botanical extracts,
even when standardized to an active principle (e.g., curcuminoids
or gingerols) may have differential effects (8, 14, 41–46). For
example, in pre-clinical arthritis studies testing turmeric rhizome
extracts normalized for curcuminoid or essential oil content
(Figure 2), (14, 41, 42, 46) our laboratories have demonstrated
anti-arthritic effects for each type of secondary metabolites,
as well as additional effects of polar rhizome constituents.
However, when testing clinically-relevant, oral doses of purified
curcuminoids vs. essential oils, purified curcuminoids were
more potent with greater effects (41, 42, 47). In addition, it

FIGURE 1 | In a pre-clinical arthritis model, consistent with curcuminoid blockade of intraarticular NF-κB activation (not shown), curcuminoid (CURC) treatment

significantly altered (A) gene expression in arthritic joints, including suppression of over 40 NF-κB regulated genes, and (B) inhibited bone-resorbing osteoclast

formation in arthritic joints, which is also NF-κB mediated. ns, not significant or ***p < 0.001 vs. control (13).
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FIGURE 2 | Differential anti-arthritic effects of components extracted from

turmeric rhizome in a pre-clinical arthritis model. The anti-arthritic effects of

turmeric extracts of different chemical composition were assessed using an ip

dosing strategy given reports of altered oral curcuminoid bioavailability when

combined with essential oils. Each of turmeric’s secondary metabolites

[curcuminoids (orange triangles) and essential oils (blue squares)] had

significant anti-arthritic effects when administered separately. Interestingly,

differential effects were noted for a chemically complex curcuminoid extract

(brown triangles) devoid of essential oils but containing polar compounds,

such as polysaccharides. Anti-arthritic curcuminoid efficacy was confirmed

with oral dosing [50% inhibition; human equivalent dose (HED) of 1 g/d], while

protection from oral essential oils was much reduced (20%; HED of 5 g/d) (13).

was notable that in vivo anti-inflammatory effects of these
same extracts differed for joint vs. hepatic inflammation in the
same animals, and also did not necessarily correlate with in
vitro screening assays (14, 42). Thus, while high throughput
screening methods to identify target-specific bioactivity of
complex extracts are being developed (48), the utility of pre-
clinical data evaluating in vivo efficacy of normalized botanical
constituents administered alone or in combination can be
particularly helpful in choosing a product for clinical study.
In addition, entourage effects may also alter active principle
bioactivity. The availability of head-to-head pharmacokinetic
studies for botanical products normalized to an active principle
can serve as a gold standard in this regard. For example, turmeric
essential oils, while perhaps of limited anti-inflammatory efficacy
in clinically relevant doses, have been variably reported to
enhance curcuminoid bioavailability in human pharmacokinetic
studies (40, 47, 49). This raises interesting questions not only
about botanical product choice for clinical testing, but also
regarding assessment of ethnobotanical evidence. If true, the
western reductionist approach of using purified curcuminoids
rather than complex extracts may not only require higher
dosing, but also suggest a corollary question; can intake of lower
curcuminoid doses via dietary or traditional medicinal use of
essential oil- and curcuminoid-containing turmeric preparations
yield biological effects? While this question remains unanswered,
it is intriguing that a recent pharmacokinetic study by Mahale
et al. (39), examining a turmeric rhizome dose in food analogous
to estimated daily dietary intake in India, documented serum
curcuminoid levels similar to those reported for therapeutic doses
of purified curcuminoid dietary supplement formulated by other
means to enhance bioavailability (49–51).

Standardization of the entirety of a plant extract can be
difficult, however, because the exact chemical composition can
also be dependent not only on the plant and plant part used, but
also on growing conditions andmethod of preparation, including
possible fractionation and/or solvents used for extraction, which
can differ between products and manufacturers (4, 44, 46). For
example, residual levels of 7 different carcinogenic class 1 or toxic
class 2 solvents, while below USP limits, were documented by
our laboratories in the majority of turmeric dietary supplements
tested, suggesting differential modes of preparation, as well as the
potential for safety concerns (4). Even when bioactive content
is well documented, other aspects of product formulation can
confound comparisons of bioactivity in clinical trials andmust be
considered in clinical trial design. For example, our laboratories
have documented that more than half of commercial turmeric
dietary supplement sold in the US are enhanced bioavailability
formulations and/or include additional botanicals (4). Country-
specific regulatory environments can add another layer of
complexity to product standardization for botanical clinical trials
(3). Reports of botanical product mislabeling in terms of both
plant species and chemical content, deliberate adulteration with
drugs, or contamination are not uncommon (52). Even in well
studied proprietary botanical products, formulations can change
over time, possibly altering bioavailability and bioactivity of the
standardized active principle. For all of these reasons, besides
careful consideration and justification of botanical composition
to be tested in a clinical trial, it is absolutely critical that the
chemical composition of the specific product and lot(s) used are
documented independently by the clinical trial researchers and
reported as an integral part of the clinical trial results—evenwhen
commercial products are used—so that research can be replicated
and reasons for possible differences between studies can be more
rigorously assessed (53). For assay of some active principles,
such as curcuminoids (54), standardized methods have been
described. In all cases, methodology used to determine product
content should be included when reporting clinical trial results.

Botanical Product Dosing
As exemplified by the turmeric clinical trial literature (9), even
for diseases where botanical clinical efficacy is reported across
a majority of clinical trials (e.g., curcuminoid treatment of
diseases attributable to obesity-associated inflammation or joint-
inflammation) (13), definitive conclusions as to efficacy (e.g.,
from metanalyses) or informed clinical use by consumers are
often limited since botanical clinical trials often test only a
single dose, with the added complication of disparate products
being tested across trials for a given clinical condition. In the
case of turmeric dietary supplements, for example, because
many are formulated as enhanced bioavailability products (4),
curcuminoid dosing is difficult to compare across trials even
if product curcuminoid content is reported (9). Thus, neither
consumers nor biomedical researchers can easily extrapolate
information from a given study to support the rational
clinical use or clinical evaluation of a different product, unless
detailed information on product composition, dosing and
pharmacokinetics are all included in clinical trial design and
reported and discussed when publishing results. For example,
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FIGURE 3 | Metabolic conjugation of curcumin and deconjugation for quantitative analysis. Curcumin is consumed in its free (aglycone) form and undergoes rapid

phase II conjugation following intestinal absorption. The glucuronide conjugate accounts for about half of the circulating conjugates while sulfate and other, more

complex conjugates account for the rest. Free curcumin is low or undetectable in plasma samples. For quantification plasma samples are often deconjugated using

β-glucuronidase but this achieves only incomplete hydrolysis of sulfate and complex conjugates; more complete hydrolysis of all conjugates can be achieved using

sulfatase. Direct analysis of conjugates is preferred but hampered by the large number of conjugates, lack of standards, and technical challenges. Reduction of the

aliphatic double bonds, a significant route of metabolism in vivo, and other metabolic events are not illustrated.

while osteoarthritis (OA) is one of the most commonly studied
diseases in turmeric clinical trials (n = 35 unique citations),
yielding generally positive effects in studies that are primarily
double-blinded, placebo-controlled, and randomized (77%), the
OA clinical trials evaluated approximately 20 different, primarily
proprietary, curcuminoid-enriched products without any head to
head comparisons or inclusion of pharmacokinetic endpoints;
rarely included multiple dosing arms; and frequently omitted
information regarding curcuminoid content of the study drug
and/or rationalization of the single dosing choice (i.e., anticipated
bioequivalency of proprietary enhanced bioavailability products,
based on prior pharmacokinetic analyses) (13). Thus, both
clinical translation and validation of trial results can be improved
when dosing information is clearly stated, well justified, and
preferably supported by pharmacokinetic data. Both pre-
clinical (scaled for human equivalent dosing [HED]) or clinical
pharmacokinetic and pharmacodynamic data can be used to
optimize clinical trial dosing. For example, a least effective dose
of 4 mg/kg daily curcuminoids blocked joint swelling in a rat
arthritis model in our laboratory, yielding no greater effect at
a higher dose, with a similar inhibitory effect documented with
an oral HED of 1 g/d (Figure 2). As even oncologic drugs
are sometimes insufficiently studied to determine least effective
clinical dose (55), these types of pre-clinical data can help direct
botanical clinical trial design.

Pharmacokinetic Analyses
Inclusion of pharmacokinetic endpoints in clinical trial design
can help to overcome limitations attributable to the testing of
disparate products across trials, facilitating comparisons. This
is most particularly true for botanicals, such as curcuminoids,

where use of enhanced bioavailability products is common
and careful head to head pharmacokinetic comparisons of
formulations containing identical amounts of the bioactive are
required to determine actual bioequivalency (50). Even when
bioequivalency or bioavailability has been reported previously for
a product—and most definitely in cases where it has not—as a
minimum standard, rudimentary assessments of bioavailability
(e.g., assessment of Cmax, the maximum plasma concentration)
should be included in clinical trial design. For example, while
different approaches have been used to enhance curcuminoid
bioavailability, targeting absorption or secondary metabolism
(40, 49–51, 56), a rare head to head comparison of different
proprietary enhanced bioavailability curcuminoid products in
healthy adults did not support prior published pharmacokinetic
reports in all cases (49, 56). This demonstrates the importance
of documenting Cmax or other pharmacokinetic parameters in
clinical trials, particularly when testing botanical products in
disease-specific populations.

The design of pharmacokinetic endpoints in botanical clinical
trials also can present unique challenges since the in vivo
metabolic fate of plant-derived compounds can complicate
analyses. For example, we and others have demonstrated that
curcumin and many other plant-derived polyphenols primarily
circulate as glucuronide or sulfate conjugates (57–60), with
ingested aglycones being near undetectable (Figure 3). Indeed,
in the case of curcuminoids, these conjugates can persist
in the circulation for over 24 h (e.g., 10% of administered
curcuminoids, independent of dose) (61), due in part to
enterohepatic recirculation (Figure 4A) (60–65). For this reason,
and because glucuronide conjugates are difficult to analyze
(66), serum samples for curcuminoids and other botanicals
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FIGURE 4 | Pharmacokinetics of oral curcuminoids in mice. (A) Circulating

curcumin-glucuronide (CG) levels predominate and are sustained for up to 24 h

in mice following a single oral curcumin dose (HED 2.5 g), with sustained, albeit

lower, levels also documented in bone, where ß-glucuronidase-dependent GC

hydrolysis to form aglycone curcumin occurs, resulting in higher aglycone

concentrations than those perfusing bone. (B) Following curcumin ingestion in

mature ovariectomized (OVX) mice modeling menopausal bone loss (vs.

controls), the capacity of bone to deconjugate curcumin glucuronide

distributing to this site persists and is higher in OVX mice. Interestingly,

curcumin concentrations in mouse bones are also highest in trabecular bone

compartments where menopausal bone loss is most pronounced. Figures are

reproduced with permission from John Wiley and Sons (62).

are often pre-treated with deconjugating enzymes to liberate
the aglycone prior to pharmacokinetic analyses (51, 58).
This practice, however, is not always well documented or
characterized, nor are the clinical implications of low in vivo,
bioactive aglycones always considered (60, 67). For example,
data from our laboratories indicate that the common practice of
glucuronidase hydrolysis can underestimate curcumin exposure
due to incomplete hydrolysis of significant quantities of sulfated
or higher order conjugates and suggest the use of sulfatase
instead of glucuronidase since the former enzyme achieves
a more complete hydrolysis of conjugates (58). Some have
questioned the clinical relevance of such measures as conjugates
typically lack bioactivity (68). Others postulate that the prolonged
circulation of these conjugates provides a ready source ofmaterial
(e.g., polyphenols) that can be deconjugated locally, and most
particularly at sites of inflammation due to the presence of
glucuronidase-rich hematopoietic cells, to form the bioactive
aglycone (60, 69). Evidence for this later postulate has come from
recent studies in our own laboratories. Following oral curcumin
administration to mice, bone has the capacity to deconjugate
the majority of circulating curcumin glucuronides distributing
this site (Figure 4B), which has high levels of glucuronidase
due to resident hematopoietic marrow cells (60, 62, 67).
This deconjugation process is glucuronidase-dependent and

can yield local aglycone curcumin concentrations sufficient to
inhibit NF-κB-mediated formation of bone-resorbing osteoclasts
(60, 62, 67).

In vivo Botanical Metabolism
A further complication in assessing botanical exposure is
the possibility that botanicals, besides forming phase II
conjugates, may undergo further in vivo metabolism to create
additional bioactive moieties (28, 70, 71). This has been
extensively described for flavonoids (72–74), and curcumin is
also susceptible to reductive as well as enzymatic and non-
enzymatic oxidative metabolism (Figure 5) (66, 75). Again, in
the case of curcumin, our laboratories have demonstrated an
important role for oxidative metabolites of curcumin (70, 76) in
altering protein function via the formation of specific adducts
(27, 77–80).While evidence for protein adduction of curcumin in
vivo is yet lacking, in cell-based assays multiple proteins appear
to be targeted by reactive oxidative metabolites of curcumin
(28, 67, 77–83), consistent with curcumin’s reported pleiotropic
effects. Protein adduction appears specific and reproducible,
likely dictated by the susceptibility of specific proteins (e.g.,
regulatory site cysteine thiols) to reaction with the existing
enone electrophile of curcumin or with electrophilic moieties in
metabolites formed upon oxidative transformation (71, 83, 84).
For example, curcumin blockade of NF-κB, a transcription factor
that is a master regulator of inflammation, appears attributable to
adduct formation with the Cys179 residue of IKKβ, the upstream
kinase controlling NF-κB activation (85). This tendency to form
covalent protein adducts causes some plant-derived compounds,
such as curcumin or flavonoids (74, 76), to be “frequent
hitters” in screening assays, leading some to suggest that these
compounds should be avoided in drug discovery or, indeed,
biomedical research (86, 87). However, covalent modification
is a pharmacologic strategy employed by many FDA-approved
drugs (88, 89), most notably kinase inhibitors (90), or widely
used drugs like proton-pump inhibitors (91), anti-thrombotics
targeting the platelet P2Y12 receptor like clopidogrel (92),
and the cyclooxygenase inhibitor aspirin (93). Thus, it can
be argued that the clinical evaluation of botanicals, such as
curcuminoids, that specifically, albeit not exclusively, target
proteins physiologically relevant to their ethnobotanical use via
this mechanism (e.g., blockade of NF-κB via covalent kinase
inhibition), can be justified, particularly when the scientific
premise is further supported by pre-clinical evidence of in vivo
efficacy without “off target” toxicities (14, 16).

Given the major effect that in vivo metabolism of botanicals
can have on bioavailability and bioactivity, this not only
complicates the design and interpretation of relevant
pharmacokinetic assays, but also raises questions about
possible pharmacogenomic differences between subjects in
botanical clinical trials that could alter clinical outcomes. For
example, in the case of polyphenols, such as curcumin, that
rapidly undergo phase II metabolism, genetic variations in
endogenous conjugation (e.g., defective conjugation due to
UGT1A1 mutations [Gilbert Syndrome], affecting almost 10%
of adults) and/or deconjugation capacity may be important
determinants of botanical bioavailability, and thus bioactivity,
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FIGURE 5 | Metabolism of curcumin and the effect on biological activity. Curcumin is reduced and conjugated in vivo as shown by the detection of the corresponding

metabolites in plasma samples. Deconjugation of circulating and inactive curcumin-glucuronide by β-glucuronidase may contribute to a tissue- or disease-specific

effect. Oxidation of curcumin is prominent in buffer and in cultured cells but awaits to be proven in vivo. Adduction of curcumin to protein has been described, and at

least in part depends on oxidation of curcumin to a quinone methide or other electrophilic oxidation product, i.e., spiroepoxide, that target redox-sensitive cysteine

residues and soluble thiols like glutathione. The quinone methide radical and spiroepoxide are unstable intermediates in the oxidation of curcumin to the stable

end-product, bicyclopentadione. Curcumin also exerts biological effects through mechanisms not involving metabolic transformation.

which should be considered in clinical trial design (60, 62, 94–
96). Interestingly, separate reports suggest that gender may
also be an important determinant of clinical curcumin
responses, independent of bioavailability, and that gender
may also influence bioavailability, although differences in body
weight may have accounted for higher levels documented
in women. This finding remains clinically relevant since
curcuminoids in clinical trials–and clinical use–are rarely
dosed based on weight (50, 97, 98). In addition, for certain
botanicals, most notably phytoestrogens (99), but also possibly
curcuminoids (100), metabolism by the gut microbiome can also
affect bioavailability.

OTHER CRITICAL ELEMENTS AND

POTENTIAL BARRIERS TO HIGH QUALITY

BOTANICAL CLINICAL TRIAL DESIGN

Design elements driving the quality of any clinical trial are
obviously also applicable here, including appropriately powered,
controlled, randomized and double-blinded studies with pre-
specified analyses (101). However, often these elements are
overlooked in botanical clinical trials, or, indeed difficult to
achieve, whether due to funding limitations, or other issues
specific to a botanical. For example, it can be difficult to blind
studies, as is the case with curcumin, due to its unique vibrant
orange hue. Placebo composition is therefore an important
element of botanical study design (21). In our own experience,
optimization of placebo composition, particularly when the

botanical product is being obtained from a nutraceutical
company with fixed production lines, can be a time-consuming
issue that should be considered in planning timelines. Another
element to be considered in the US, even when testing an over-
the-counter product, is the need to prepare, file and undergo an
FDA review of an Investigational New Drug application (IND),
following botanical specific guidelines (102), if disease outcomes
(i.e., disease treatment) are an endpoint, as well as consideration
of whether clinical trial goals could be met with an alternative
design (103).

Funding is more limited for botanicals than for
pharmaceuticals, given their different marketing and approval
pathways. This often places limits on study size and duration
that impact clinical and statistical significance. For example,
the two published trials assessing curcumin in AD which were
only of 6-month duration and involved fewer than 30 treated
subjects, perhaps not surprisingly, yielded no significant effects,
an outcome attributed in part to low product bioavailability
(104, 105). In contrast, larger and longer (e.g., 12-month)
studies examining effects of enhanced bioavailability curcumin
products on cognitive decline in aged adults have all reported
benefits (106–111). In the US, industry-funded clinical trials
are disincentivized in general, since nutraceuticals can be
sold without evidence of efficacy and cannot be marketed for
disease treatment (3). Other market driven forces can impact
industry-supported study design in ways that are sometimes not
helpful to consumers or researchers. For example anti-arthritic
benefits have been reported in separate trials for two turmeric
products manufactured by the same company, a unique product
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combining curcuminoids with turmeric polysaccharides and
a curcuminoid-only product analogous to most commercial
turmeric supplements, without an assessment of bioactivity
attributable—or not—to polysaccharide content (112, 113).

PRIORITIZING PUBLIC HEALTH AND

SAFETY

Due to the large number of traditional medicinal plants, the
disparate composition of commercial products for a given
plant, and the paucity of botanical clinical trial funding, the
task of documenting medicinal benefits of every potentially
valuable botanical is daunting and likely not achievable. How
can available resources best be used? As previously discussed,
strong ethnobotanical and pre-clinical evidence of botanical
efficacy are important pillars supporting clinical trial design. The
study of lesser-known plants, particularly, for diseases lacking
effective treatments, can also yield clear benefits. However, in
these cases, considering all the intricacies associated with the
study of plant-based medicines as described here, strong pre-
clinical pharmacokinetic and pharmacodynamic evidence should
first be obtained to guide the appropriate design of subsequent
botanical clinical trials.

Prevalence of use is one additional factor to consider; public
health benefits can be greater in these cases, not only with respect
to efficacy, but also safety. Indeed, because some populations tend
to use botanicals for disease treatment even in the absence of
cultural traditions or evidence of efficacy, examination of safety
becomes a key concern. For example, in our recent observational
studies, current turmeric use was reported by one third of
individuals with rheumatoid arthritis or breast cancer in the
US despite a paucity of efficacy or safety data (11, 114, 115).
Botanical safety information is thus important for public health.
Consumers tend to falsely equate natural with safe, and, in the
US, may also incorrectly assume that the federal government
requires commercial botanical products to be vetted for efficacy
and safety (116, 117). Examination of possible pharmacogenetic
risk factors related to botanical metabolism and/or adverse
drug-botanical interactions can therefore be important elements
of botanical clinical trial design, particularly for government
funded studies (118, 119). This is particularly true when studying
populations at higher risk of adverse effects due to underlying
chronic disease and/or concurrent use of pharmaceuticals, as, for
example, has been reported for concurrent use of certain dietary
supplements with breast cancer chemotherapy (11, 120, 121).

One additional safety related concern, unique to botanicals
(vs. pharmaceuticals) and attributable to their variable content
and lack of regulatory oversight, is the risk of adverse effects
due to possible contaminants (2, 4). For example, isolated
case reports from our laboratories and others of turmeric-
or black cohosh-associated hepatitis highlight potential risks,
as well as difficulties in determining the etiology, of adverse
botanical effects outside the context of clinical trials (2, 122–
124). Thus, consideration of all available product- or plant-
specific safety data must guide product selection in order to
optimize botanical clinical trial design (4, 122). At the same

time, well-designed clinical trials are often the only source of
high-quality safety information for a given botanical product.
For example, a review of FDA MedWatch reports for turmeric
obtained by our laboratories under a Freedom of Information
Request in 2017 yielded 107 reports, with turmeric products
being equally listed as the possible suspected product (being used
in combination with other supplements in half of these cases)
vs. concurrent medication, making identification of turmeric
product-specific safety issues difficult. Lastly, for publicly funded
studies, selection of a product representative of those readily
available to consumers may also be a consideration (4).

CONCLUSION

Plants are a rich source of potential therapeutics, whether
developed as drugs, or used as complex botanical products.
However, the chemical complexity and differential regulation
of botanicals provide unique challenges when designing high
quality botanical clinical trials, with perhaps the largest public
health and medical benefits to be gained by prioritizing the
study of botanicals with a high prevalence of use and/or
likelihood of ameliorating diseases lacking effective treatments.
Turmeric is one such example, being a top selling botanical
already in widespread use with demonstrated promise in the
treatment of inflammatory conditions associated with obesity, a
major health problem worldwide. However, for many published
turmeric clinical trials, key clinical study design elements unique
to botanicals, as described here, have been lacking. Thus,
while turmeric may appear to be overstudied as compared
to other botanicals, because of its widespread prevalence of
use and the strength of existing ethnobotanical and scientific
evidence of medicinal effects, it can perhaps be best described
as ineffectively studied from the viewpoint of consumers and
healthcare providers. Improved botanical clinical trial designs,
making the best use of limited resources, are needed to realize
the full potential of turmeric and other medicinal botanicals,
complementing the experimental evidence of our ancestors with
the application of current best clinical research practices.
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During pregnancy and lactation, maternal bone mineral density (BMD) is reduced as

calcium is mobilized to support offspring bone development. In humans, BMD returns

to pre-pregnancy levels shortly after delivery, shifting from a high rate of bone resorption

during pregnancy and lactation, into a rapid phase of bone formation post-lactation.

This rapid change in bone turnover may provide an opportunity to stimulate a greater

gain in BMD and stronger trabecular and cortical structure than present pre-pregnancy.

Providing polyphenols present in red rooibos herbal tea may promote such an effect.

In vitro, red rooibos polyphenols stimulate osteoblast activity, reduce osteoclastic

resorption, and increase mineral production. The study objective was to determine if

consuming red rooibos from pre-pregnancy through to 4 months post-lactation resulted

in a higher BMD and improved trabecular and cortical bone structure in a commonly

used rat model. Female Sprague-Dawley rats (n = 42) were randomized to one of the

following groups: PREG TEA (pregnant, received supplemental level of red rooibos in

water: ∼2.6 g /kg body weight/day in water), PREG WATER (pregnant, received water),

or NONPREG CON (age-matched, non-pregnant control, received water) from 2 weeks

pre-pregnancy (age 8 weeks) through to 4months post-lactation. Rats were fed AIN-93G

(pre-pregnancy through to the end of lactation) and AIN-93M (post-lactation onwards).

BMD and trabecular structure (bone volume fraction, trabecular number, trabecular

separation) were improved (p < 0.05) by 1- or 2-months post-lactation when comparing

PREG TEA to PREG CON, though neither group recovered to the level of NONPREG

CON. Cortical outcomes (cortical area fraction, cortical thickness, tissue mineral density)

for PREG TEA and PREG CON were reduced (p < 0.05) following lactation but returned

to the level of NONPREG CON by 2-months post-lactation, with the exception of cortical

thickness. The lack of recovery of BMD and key outcomes of trabecular bone structure
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was unexpected. While consumption of red rooibos did not result in stronger bone

post-lactation, red rooibos did support the partial recovery of trabecular BMD and bone

structure following pregnancy and lactation. The findings also provide insight into the

timing and dose of polyphenols to study in future interventions.

Keywords: bone, red rooibos, polyphenols, pregnancy, lactation

INTRODUCTION

In humans, there is a decrease in BMDand trabecular and cortical
structure during pregnancy and lactation due to an increased
demand in mobilized calcium for offspring bone development
(1). Reductions in BMD during human pregnancy and lactation,
measured using dual energy X-ray absorptiometry (DXA), have
been reported to be 5–10% (1, 2) and it is believed that women
typically return to their pre-pregnancy BMD after delivery as
number of pregnancies and duration of breast-feeding is not
considered a risk for developing osteoporosis later in life (3–5).
More specifically, to meet the elevated calcium demand by the
fetus, intestinal calcium absorption is increased beginning in the
first trimester. In humans, intestinal calcium absorption returns
to pre-pregnancy levels during lactation (but stays elevated in
rodents) (2) while there is a concurrent increase in skeletal
resorption to provide calcium for offspring bone growth for both
humans and rodents (6). This results in an uncoupling of bone
turnover with elevated levels of bone resorption compared to
formation leading to reductions in BMD and trabecular and
cortical structure observed in both humans and rodents. Despite
the reduction in BMD following lactation, it is transient as an
uncoupling of bone turnover persists but it is reversed with
greater formation than resorption occurring (7–9). These high
rates of bone turnover observed during pregnancy, lactation, and
recovery may provide a “window of opportunity” to stimulate
a greater gain in BMD and stronger trabecular and cortical
structure than was present pre-pregnancy.

A key contributing factor to the promotion of bone health

is diet. Several nutrients, including calcium and vitamin D, as

well as various foods and food components have been studied

for their bone promoting or supporting effects (10–13). Tea
and its polyphenols–including some herbal teas such as red
rooibos (RR)-may promote bone health and mineral production
(14–17). Several epidemiological studies in different countries
including Australia, Britain, and Taiwan have also identified
positive associations between black or green tea consumption
and greater BMD later in life (18–20). To date, RR tea has not
been studied in vivo for potential bone promoting or supporting
effects. Also, in vitro, a wide variety of teas derived from Camellia
sinensis and herbal teas from other plants such as RR have been
shown to increase osteoblast activity and proliferation (16, 17);
while also having the capacity to decrease osteoclast activity
and proliferation (21, 22)–possibly by acting as antioxidants and
thereby reducing reactive oxygen species (ROS). ROS have been
shown to suppress mineralization and increase resorption in vitro
(23–25). Moreover, metabolism is elevated during pregnancy
and lactation, along with ROS, due to the requirements for

developing fetal tissues (26). Reduction of ROS by tea and
its respective polyphenols may counter these effects leading
to greater mineralization by osteoblasts and a reduction of
osteoclast resorption.

Commonly consumed teas, such as green and black teas, are
known to contain caffeine and thus would not be recommended
for pregnant women while red rooibos (RR) tea does not
contain caffeine. RR herbal tea originates from the Aspalathus
linearis plant. It is fully oxidized and has a unique profile of
polyphenols-including aspalathin, aspalalinin, and nothofagin-
that are not present in other teas. Previously our lab has shown
RR to have the capacity in vitro to increase mineralization
by osteoblasts (Saos-2 cells) in a dose-dependent manner (16)
using levels that can be achieved by consuming several cups
of RR tea a day through to supplementation. Improved cell
activity was also observed. With respect to bone resorption, RR
has been shown to reduce osteoclast formation and activity in
vitro using RAW264.7 cells, and displayed oxidant scavenging
activity without any cytotoxic effects (27). Although it is likely
that these polyphenols will be altered upon absorption and
digestion it is possible that their metabolized forms may also
have positive effects on bone. Taken together, an increase in
mineralization and concurrent reduction in resorption would
lead to an increase in bone formation which may support the
acquisition of greater BMD and structure following pregnancy
and lactation.

The objective of this study was to determine if continuous
consumption of RR tea from pre-pregnancy through to 4 months
post-lactation resulted in higher BMD and improved structure
of trabecular and cortical bone in the tibia compared to a water
control. It was hypothesized that consumption of RR tea during
pregnancy, lactation, and recovery would result in greater BMD
and improved structure of the tibia compared to consumption of
only water.

MATERIALS AND METHODS

Animals and Diets
Forty-two female and fourteen male Sprague-Dawley rats (5
weeks of age) were purchased from Charles Rivers Laboratories
(St. Constant, QC, Canada). Rats were singly housed under
a controlled environment (20◦C, and 12 h light and dark
cycles) and supplied with water and diet (AIN-93G, Envigo;
Indianapolis, IN, USA) ad libitum. Each rat had access to physical
enrichment in their cage including crinkle nest and a red rat
retreat to provide shelter and lower stress. Body weight was
measured weekly while diet and water intake was measured
bi-weekly using an electronic scale.
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Experimental Design
Several methodological aspects were considered in planning
and conducting the study to help ensure reproducibility
(Supplementary Material 1). Following 1 week of
acclimatization to handling and the environment of the
animal facility, female rats were randomly assigned to one of
three groups (n = 14/group): a pregnancy and lactation group
receiving RR tea prepared in water (PREG TEA), a pregnancy
and lactation group receiving only water (PREG CON) or an age
matched control group that was not mated (NONPREG CON).
An a priori sample size analysis was conducted using findings
from previous literature that assessed the effects of green tea
polyphenols on bone in response to LPS induced chronic bone
inflammation and bone loss with a primary outcome of tibial
BV/TV used (28)-a sample size of 6 was calculated to be necessary
for the study (Supplementary Material 2). An additional 8 rats
per group were included if pregnancy was not achieved in
all rats, a healthy litter with a minimum of 10 pups was not
delivered, or if there were complications with longitudinal
scans (i.e., death due to anesthetic). As well, pregnancy does
not exert as much systematic stress on the skeletal system as
LPS induced inflammation so it was anticipated that differences
between intervention groups and control could be attenuated
compared to this previously published trial. Rats in the PREG
CON and NONPREG CON groups had ad libitum access to
AIN-93G diet and water, while those in the PREG TEA group
received AIN-93G diet and RR tea ad libitum (concentration
of approximately 2.6 g of RR/kg of body weight per day). This
concentration is comparable to consuming approximately 12
cups of RR tea daily and was calculated through the conversion
of a human equivalent dose (HED) to an animal equivalent dose
(AED) (29) (Supplementary Material 3). This concentration
was chosen based on previous research demonstrating greater
concentrations of RR tea eliciting greater levels of mineralization
in vitro (16). For the following 2 weeks, rats were further
acclimatized to the facility and their respective group while
water intake was measured to ensure rats in PREG TEA did
not have an aversion to the taste. After a 3 week period of
acclimatization to diet and environment, half of the rats from
each of the PREG TEA and PREG CON groups were mated one
to one with males of the same age. The remaining rats from each
of these groups were mated 2 weeks later with the same group of
males to ensure any potential paternal differences were equally
distributed between groups (Supplementary Material 4). The
staggered mating also helped with time management, allowing
for the longitudinal in vivo scans throughout the study. The time
involved with in vivo scanning would have made it challenging
to study rats as one cohort. Of the initial 14 rats randomized to
the PREG CON group, one rat did not become pregnant after
2 estrous cycles and was removed from the study and one rat
did not recover from anesthesia following their post-lactation
scan (missing values were replaced by mean imputation). This
resulted in the following sample sizes (n): PREG TEA = 14,
PREG CON= 13, and NONPREG CON= 14. At postnatal day 3
(PND 3), litters were culled to 5 male and 5 females to normalize
milk production among dams. Pups were selected to be culled
based on their weight in comparison with the average weight of

their litter–with pups that had the greatest deviation from the
group mean being culled. Litter weight and average pup weight
was measured at PND 3 (prior to culling), and post-culling at
PND 7, 14, and 21. Pups were weaned at PND 21. From the end
of lactation through 4 months post-lactation, dams were fed
AIN-93M (Envigo; Indianapolis, IN, USA). Due to the lack of
a litter in rats from NONPREG CON and the need to protect
the RR tea from light by wrapping drinking bottles in aluminum
foil, experimenters were not blinded to groups during the in vivo
portion of the trial. The protocol (#18-03-02) was approved by
the Animal Care Committee at Brock University.

Preparation of Red Rooibos Herbal Tea and

Measurement of Total Polyphenol Content
Loose leaf RR tea was prepared twice weekly (every 3 or 4
days) following manufacturer’s recommended steeping time and
temperature. RR tea was weighed to the appropriate amount and
transferred to tea bags (∼5g of tea/bag) to mimic what would
normally be consumed in humans. Tea bags were then placed
in glass beakers and steeped for 5min in water that was 96◦C at
the onset of steeping. Following 5min of steeping, tea bags were
removed and the resulting RR was cooled to room temperature.
Once cooled, all beakers of RR were combined to ensure a
homogenous mixture. To ensure rats received approximately
2.6 g of RR/kg of body weight, the concentration of RR tea
was constantly adjusted depending on both average body weight
and water intake from the previous week’s measurements. This
allowed a consistent intake of RR tea relative to body weight
throughout the study despite any changes in water intake
while also allowing rats ad libitum access. An example scenario
and calculation is shown in Supplementary Material 5. Total
polyphenol content (TPC) of RR tea was measured throughout
the study using Folin-Ciocalteau’s reagent and gallic acid as a
standard according to ISO 14502-1 as previously reported (30).

In vivo µCT Scanning of Tibia
The right tibia of rats were scanned at 6 time points using
high resolution in vivo micro computed tomography (µCT)
(SkyScan 1176, Bruker microCT, Belgium): prior to mating (5–
7 days before the initiation of mating), immediately following
the end of lactation (within 48 h), and at 1, 2, 3, and 4 months
post-lactation (denoted as Pre, PL, 1PL, 2PL, 3PL, and 4PL,
respectively, or at an identical age for NONPREG CON group).
Prior to scanning, rats were anesthetized with isoflurane. Rats
were placed in an induction chamber with a steady flow rate
of approximately 2% isoflurane and anesthesia was confirmed
by the absence of a response to a toe pinch. Rats were then
transferred and placed in supine position on the scanning bed
and isoflurane was given by nose cone to ensure adequate
anesthesia to help prevent movement during the scan (31). All
scans were performed with parameters that have previously been
shown by our lab to be safe for longitudinal measurements–
both in terms of the recovery of the rat from anesthetic between
scans and without causing radiation damage to bone structure
(18µm voxel size, 1mm aluminum filter, 700ms exposure
time, 60 kV of voltage, 200 uA of amperage, a rotation step of
0.5◦ over a 360◦ scanning frame) (31, 32). Monthly, in vivo
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FIGURE 1 | Study design. Female Sprague-Dawley rats arrived at 5 weeks of age and were randomized to either a PREG TEA, PREG CON, or NONPREG CON

group (n = 14) following 1 week of acclimatization. Rats were then further acclimatized for another 2 weeks to their respective groups. Following acclimatization,

females were mated for a duration of 2 estrous cycles (5 days per cycle). In vivo scans for measurement of bone structure and quantity of the right proximal tibia using

µCT are denoted by an asterisk (*) and were completed at pre-pregnancy (Pre), immediately after lactation (PL), and 1, 2, 3, and 4 months post-lactation (1PL, 2PL,

3PL, 4 PL). Rats from NONPREG CON were scanned at the same time points to provide an age-matched control. Necropsy and organ collection occurred

approximately 1 week following the 4PL scan.

scans of rat tibias using the same machine have previously
shown no detrimental effects of repeated irradiation to BMD
or bone structure (32). At each time-point, scanning order was
determined by alternating intervention groups until all scans
were complete to minimize the potential for any variability in
the X-ray source when scanning. Following the 4PL scan (or
age matched equivalent) rats were anesthetized with isoflurane
in an induction chamber and euthanized by CO2 asphyxiation.
Tibias were collected, weighed by digital scale, and stored.
Organ weights were measured as a preliminary sign of the
possibility of any toxicological effects. Study design is shown in
Figure 1.

Image Reconstruction and Analysis
Following acquisition of all scans, images were reconstructed
using a Gaussian filter under the same parameters to ensure
accurate comparisons. The region of interest (ROI) for analysis
of trabecular bone began 150 slices (2.64mm) distal from
the point where the growth plate and the metaphysis of the
tibia met and spanned 75 slices (3.96mm) distally. The ROI
for cortical bone began 400 slices (7.04mm) distal from the
point where the growth plate and the metaphysis of the tibia
met and spanned 100 slices (8.80mm) distally. Within each
ROI, the distinction between trabecular and cortical bone
was performed manually by the same individual (MDM) and
saved as a distinct ROI for analysis. Images were first binarized
using global thresholding (trabecular bone: 42–255, cortical
bone: 63–255). Following binarization, images underwent
several morphological operations to ensure that only bone
tissue was being analyzed. Trabecular bone was analyzed
for the following structure outcomes: bone volume fraction
(BV/TV), trabecular thickness (Tb.Th), trabecular spacing
(Tb.Sp), trabecular number (Tb.N), and bone mineral density
(BMD). Cortical bone was analyzed for the following structure
outcomes: cortical area fraction (Ct.Ar/Tt.Ar) periosteal
perimeter (Ps.Pm), cortical thickness (Ct.Th), endocortical
perimeter (Ec.Pm), marrow area (Ma.Ar), and tissue mineral
density (TMD). Specific task lists for analysis of trabecular
and cortical bone are shown in Supplementary Materials 6,
7, respectively.

Statistical Analysis
The effect of group (three levels: PREG TEA, PREG CON, and
NONPREG CON), time, and the interaction on food and water
intake, body weight, and bone outcomes were evaluated through
a mixed ANOVAwith repeated measures using SPSS Statistics (v.
26, IBM). Differences between means were deemed significantly
different if p< 0.05.When a significant interaction was identified
a Bonferroni post-hoc was performed to test the main effects
between PREG TEA, PREG CON, and NONPREG CON at each
time point. In the case of missing values (µCT data for rat which
did not recover from anesthesia following post-lactation scan),
series mean imputation was performed. Potential differences in
litter characteristics were assessed by T-tests using GraphPad
PrismTM V5 (La Jolla, CA, USA).

RESULTS

Food and Water Intake, Body and Organ

Weights, and Litter Characteristics
A significant interaction (p< 0.001) was observed for food intake
with a significant increase during pregnancy and lactation for
PREG TEA and PREG CON (Figure 2A). There was a significant
interaction (p < 0.001) and main effects for time (p < 0.001)
and group (p < 0.001) for water intake (Figure 2B). At weeks 4
and 6 through 10 of the study there was a significant increase in
water intake for PREG TEA and PREG CON when compared to
NONPREG CON. The average intake of RR was calculated to be
2.66 g/kg of body weight per day for rats in the PREG TEA group
and the measured TPC of RR tea was determined to be 12.20 ±

0.69mg gallic acid equivalents/g of tea (n= 25). For body weight
there was a significant interaction (p < 0.001) and main effect of
time (p< 0.001). Significant increases in body weight occurred at
weeks 5 and 6 (during lactation) and a significant reduction was
observed at week 9 (following delivery) (Figure 2C). There were
no significant differences in kidney weight (left or right) or liver
weight between the two groups at endpoint when normalized to
body weight (Table 1). For litter characteristics, there were no
differences in litter sizes, the proportion of males and females
within each litter, and average pup weights at 3, 7, 14, and 21 days
of age (Table 1).
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FIGURE 2 | Group daily food and water intake and average body weights; (A)

mean daily food intake, (B) mean daily water intake, and (C) body weight of

female Sprague-Dawley Values are mean ± SEM, n = 13 (PREG CON) or

14/group (PREG TEA and NONPREG CON). Significant differences (p < 0.05)

between pregnancy and lactation groups (PREG TEA and PREG CON) and

NONPREG CON within a time point are denoted by *. The arrow above data

points represents the onset of pregnancy. Pre, pre-pregnancy; PL,

post-lactation; 1PL, 1 month post-lactation; 2PL, 2 months post-lactation;

3PL, 3 months post-lactation; and 4PL, 4 months post-lactation.

In vivo Measurements of Tibia Trabecular

BMD and Structure
There was a significant interaction (p < 0.05) for all trabecular
outcomes measured (Figures 3, 4). As a result of pregnancy and
lactation, BV/TV was significantly reduced (p < 0.05) in both
PREG TEA and PREG CON groups for the remainder of the
study compared to NONPREG CON; while at 2PL and 4PL
rats in PREG TEA had significantly greater (p < 0.05) BV/TV
than PREG CON (Figure 4A). Tb.Th was significantly (p < 0.05)
reduced in PREG TEA and PREG CON following pregnancy and
lactation but had recovered to the levels of NONPREG CON
by 2PL, with PREG TEA recovering more rapidly (Figure 4B).
Trabecular separation (Tb.Sp.) was significantly (p < 0.05)
increased post-lactation in PREG TEA and PREG CON which
persisted till the end of the study. Tb.Sp was significantly lower
in PREG TEA than PREG CON at 1, 3, and 4PL (Figure 4C).
Trabecular number (Tb.N.) was reduced (p< 0.05) in PREGTEA

TABLE 1 | Litter characteristics and maternal organ weights at 4 months

post-lactation.

PREG TEA PREG CON p-value

Litter Size (n)‡ 13 ±2 15 ± 2 0.114

# of males (% of total) 7 ±2(54) 7 ± 2(47) 0.854

# of females (% of total) 6 ±2(46) 8 ± 2(53) 0.086

Average Pup Weight−3 Days Old (g) 13.09 ±0.49 12.71 ± 0.35 0.539

Average Pup Weight−7 Days Old (g) 23.74 ±0.75 22.64 ± 0.66 0.284

Average Pup Weight−14 Days Old (g) 41.41 ±1.24 41.83 ± 1.34 0.819

Average Pup Weight−21 Days Old (g) 65.37 ±1.62 66.95 ± 1.97 0.540

L. Kidney Weight (mg/g of body weight) 2.90 ±0.22 2.84 ± 0.27 0.477

R. Kidney Weight (mg/g of body weight) 2.95 ±0.27 2.89 ± 0.26 0.559

Liver Weight (mg/g of body weight) 32.21 ±1.92 34.18 ± 3.34 0.072

‡ Litter size at delivery.

and PREG CON following lactation compared to NONPREG
CON and only partially recovered by the end of the study; while
PREG TEA was significantly (p < 0.05) greater than PREG CON
at 2 and 4PL (Figure 4D). BMD was significantly (p < 0.05)
reduced in PREG TEA and PREG CON beginning at PL and
persisted for the remainder of the study, while BMD for PREG
TEA was significantly (p < 0.05) greater than PREG CON at 1, 3,
and 4PL (Figure 4E).

In vivo Measurements of Tibia Cortical

Tissue Mineral Density (TMD) and

Structure
Ps.Pm, Ec.Pm, and M.Ar were similar between all groups
at all time points (Figures 5, 6A,B,E). However, there were
significant (p < 0.05) reductions in Ct.Th, Ct.Ar/Tt.Ar, and
TMD in PREG TEA and PREG CON following pregnancy and
lactation (Figures 6C,D,F). More specifically, Ct.Ar/Tt.Ar and
TMD recovered to levels of NONPREG CON by 2PL while Ct.Th
remained reduced (p < 0.05) in PREG TEA and PREG CON for
the remainder of the study.

Discussion
There were two key findings from this study. The first was that
reductions in BMD and structure of trabecular bone following
pregnancy and lactation remained at 4 months post-lactation.
This finding was unexpected as the majority of rodent studies
have reported a complete recovery of BMD following pregnancy
and lactation within 4 weeks (1, 33, 34). The few studies that
have shown an incomplete recovery in terms of trabecular bone
structure measured rats for a shorter recovery period post-
lactation (6 weeks) (35, 36) and scanned the tibia weekly -
prior to mating through 6 weeks post-lactation–with similar
findings to the present study in which BV/TV, Tb.N, and Tb.Sp
did not fully recover when compared to non-pregnant control
rats (35). The other key finding was that consumption of RR
tea consumption supported the recovery of trabecular BMD
and structure following pregnancy and lactation though not
to the level of non-pregnant control group, but significant
improvements in trabecular BMD and structure (BV/TV, Tb.N,
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FIGURE 3 | Representative 3D images of trabecular bone from right proximal tibia in female Sprague-Dawley rats pre-pregnancy, post-lactation, and 1, 2, 3, and 4

months post-lactation. Representative scans for each group are of the same rat at each time point and images were chosen by selecting the rat with the closest value

for BV/TV to the group mean. Pre, pre-pregnancy; PL, post-lactation; 1PL, 1 month post-lactation; 2PL, 2 months post-lactation; 3PL, 3 months post-lactation; and

4PL, 4 months post-lactation. The white bar under each scan represents a length of 1mm.

and Tb.Sp) were evident by 1 or 2-months post-lactation when
comparing PREG TEA to PREG CON. However, our hypothesis
that RR tea intervention would result in higher BMD and
improved bone structure post-lactation was not proven.

There are several potential reasons why the present findings
differ from earlier studies in terms of recovery of trabecular
bone. One potential reason is the differing imaging techniques
used between the current study and the majority of previous
studies. DXA and bone ash weights were formerly the primary
methods used which include assessment of the entire bone-both
cortical and trabecular portions (37). As well, ash weight is an
endpoint measure making it impossible to observe longitudinal
changes in bone. The present study usedµCT that allowed for the
separate analysis of trabecular and cortical bone. As trabecular
bone represents approximately 20% of the total skeleton (with
cortical bone comprising the remaining 80%) it is possible
that significant reductions in trabecular bone will be masked if
whole bone BMD is measured. Evidence for this explanation
includes similar findings of permanently reduced trabecular bone
structure following lactation for other studies in older rats which
have also measured bone structure using µCT without reliance
on DXA or ash weights to determine BMD or bone mineral
content, respectively (35, 36). Another potential reason for the
finding of an incomplete recovery of trabecular bone could be
the age at which the rats underwent pregnancy and lactation.
In the current study, mating began at 8 or 10 weeks (56 or 70
days) of age, which is likely comparable to early adulthood (38).
Our findings demonstrated that non-mated rats had increased
trabecular BMD and cortical TMD at the PL scan at 15 or 17
weeks of age (compared to their PRE scan at 8 or 10 weeks

of age) demonstrating that they were still growing during this
period. However, no significant increases in trabecular BMD or
cortical TMD occurred after this scan suggesting that maximal
mineral content (BMD, TMD) had been reached between the
PRE (8 or 10 weeks of age) and PL (15 or 17 weeks of age) scans.
Rats may have been challenged in terms of recovery as lactation-
induced resorption may have been simultaneously occurring
with growth, leading to greater reductions in bone quantity and
structure than may have occurred if the rats were older and had
reached maximal mineral content. Previously, our lab measured
trabecular BMD and cortical TMD by in vivo µCT starting at 13
weeks of age through to 25 weeks of age (at 4 week intervals) in
female Sprague-Dawley rats and no differences in BMD or TMD
were detected between any of the 4 weeks intervals indicating that
maximal mineral content (BMD, TMD) had been reached and
occurred prior to 13 weeks of age (32). The age at mating (8 or
10 weeks old) in our study was selected as it reflected the age that
rats are often bred at commercial and research facilities.

RR tea consumption stimulated a greater recovery of
trabecular BMD and bone structure outcomes (BV/TV, Tb.N, and
Tb.Sp) by 1 or 2PL, and for most of these outcomes this benefit
persisted compared to the group not receiving tea. Though, it is
important to consider that outcomes remained lower than the
growth control and disproved the original hypothesis. Previously,
RR herbal tea has been shown to contain a large quantity of
unique polyphenols (aspalathin, aspalalinin, nothofagin) with
antioxidant capacity (30, 39). Antioxidants have been shown
to decrease ROS supporting osteoblast proliferation, preventing
osteocyte apoptosis and inhibiting osteoclast activity (25, 40, 41).
This increased quantity of antioxidants provided by polyphenols
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FIGURE 4 | Comparisons of trabecular outcomes for PREG TEA, PREG CON, and NONPREG CON; (A) BV/TV, (B) Tb. Th, (C) Tb. Sp, (D) Tb. N, and (E) BMD.

Values are mean ± SEM, n = 13 or 14/group. Differing letters denote a significant difference among groups within a time point. Pre, pre-pregnancy; PL, post-lactation;

1PL, 1 month post-lactation; 2PL, 2 months post-lactation; 3PL, 3 months post-lactation; and 4PL, 4 months post-lactation.

within RR herbal tea may be able to attenuate the rise in ROS
which occurs as a result of pregnancy and lactation leading
to greater rates of bone formation, reduced rates of osteoclast
resorption, and an overall improved recovery in bone structure
and quantity. Although no mechanisms were investigated in this
study, previous in vitro studies have demonstrated significantly
reduced osteopontin gene and protein expression by osteoblasts
in response to RR tea which may increase mineralization (16, 17).
There were no significant differences in the timing of recovery
of cortical outcomes between PREG TEA and PREG CON.
This discrepancy is likely due to trabecular bone being more
metabolically active making it responsive to acute alterations
while cortical bone is less metabolically active and more resilient
to acute changes. In a recent study, researchers measured
trabecular structure of two distinct sites (tibia and vertebrae) in
Sprague-Dawley rats prior to mating through to post-weaning
and related trabecular structural outcomes to the proportion of
a typical load (36). Trabecular structure (BV/TV, Tb.N, Tb.Sp)
in the tibia were greatly reduced but was also found to be
responsible for bearing a significantly lowermechanical load than

the vertebrae which did not have as large a reduction in BMD
and trabecular structure. As well, the researchers observed no
difference in compressive properties (peak load, stiffness, and
energy to failure) of lumbar vertebrae between rats who did not
undergo pregnancy and lactation and rats whowere 6 weeks post-
lactation, signifying a complete recovery of mechanical strength.
The authors propose that these findings may support and explain
findings of decreased BMD without any alterations in fracture
risk as areas which are more mechanically loaded do not have as
severe bone loss and are able to retain their mechanical properties
whereas much of the bone loss is localized to areas that are not as
mechanically loaded (i.e., tibia).

Despite the need for the tea to be highly concentrated to
reach levels which would be comparable to a human drinking
approximately 12 cups a day there was no aversion to the taste
as ad libitum water intake was similar between PREG TEA
and PREG CON groups. Organ weight is frequently used as an
indicator of overall organ health and safety (42)–and the liver
and kidney weights–did not differ between PREGTEA and PREG
CON. Moreover, pup weights were similar between PREG TEA
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FIGURE 5 | Representative 3D images of cortical bone from right proximal tibia in female Sprague-Dawley rats pre-pregnancy, post-lactation, and 1, 2, 3, and 4

months post-lactation. Representative scans for each group are of the same rat at each time point and images were chosen by selecting the rat with the closest value

for Ct.Ar/Tt.Ar to the group mean. Pre: pre-pregnancy, PL, post-lactation; 1PL, 1 month post-lactation; 2PL, 2 months post-lactation; 3PL, 3 months post-lactation;

and 4PL, 4 months post-lactation. The white bar under each scan represents a length of 1mm.

and PREG CON during lactation at 3, 7, 14, and 21 days of age.
These findings suggest that the intake of RR at the level studied
was safe though more detailed analyses would be needed before
making a definitive conclusion about safety.

Sprague-Dawley rats are cost effective (compared to clinical
models), easily accessible, and provide a good model for
initial in vivo studies (43). However, there are some key
similarities and differences between the current preclinical model
implemented and humans which should be stated. Rat litters
contain significantly more pups and as a result the demand
for calcium is also substantially increased (44). While humans
lose 5–10% of their BMD following pregnancy and lactation,
rats commonly lose 25–35% (1). Although this does not directly
represent the human situation the greater magnitude of change
provides an exaggerated model in which potential interventions
can be tested. As well, during pregnancy and lactation there
are extensive physiological adaptations to provide calcium to
offspring and these adaptations are largely similar between
humans and rats with the exception of intestinal absorption of
calcium during lactation. In humans, skeletal resorption is able
to provide enough calcium for their offspring during lactation
but due to the greater demand placed on rats by larger litter sizes,
intestinal calcium absorption stays elevated during lactation (2,
45).

Strengths of this study include specific methodological
aspects which are summarized in Supplementary Material 1.
For example, having the same males equally represented in
both pregnancy groups, aided in controlling for the influence
of paternal genetics. This is important as previous research has
demonstrated that the paternal genetics can influence the amount
of mineral accrual in utero making it an important aspect to
be controlled for (46, 47). Furthermore, every dam in each

group was mated with a different male reducing the genetic
contribution that any one male may have within a group to
give a more diverse and realistic group of litters. Additionally,
longitudinal in vivo measurements within the same rat provided
greater statistical power for the study as it controls for many
of the variables between subjects. Longitudinal measures can
also identify when the ideal timing of an intervention (i.e.,
consumption of RR tea) may be to elicit the greatest effects.
As well, the relatively long duration of the study allowed for
statistically significant differences to be observed between the
two groups in terms of trabecular recovery. Another strength
of this study was the mating strategy used. By staggering the
mating, we were able to perform scans at precise times around
pregnancy and lactation. For the delivery of tea, we adjusted
the concentration on a weekly basis in relation to body weight
and intake to allow for ad libitum access while still ensuring rats
received the appropriate concentration daily to mimic a real-life
scenario more closely. Other methodological strengths included
culling litters to ensure normalized calcium demand and milk
production by dams as well as scanning rats in alternating group
order to ensure that if there were any inconsistencies in X-ray
transmissions that it would be evenly spread among the groups.

There are also limitations of the present study. Rats were
mated at a time in which they were continuing to accumulate
mineral and thus may have been particularly challenged in terms
of recovery with the lactation-induced resorption occurring
simultaneously with growth. Another limitation to this study is
that only one concentration of RR tea was used, and that the level
administered would require supplementation. Consuming RR tea
and/or polyphenols in the form of a supplement would alter
its food matrix and may affect their digestion and absorption,
changing the compounds which are interacting with bone.
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FIGURE 6 | Comparison of cortical bone outcomes between PREG TEA, PREG CON, and NONPREG CON; (A) Ps.Pm, (B) Ec.Pm, (C) Ct.Th, (D) Ct.Ar/Tt.Ar, (E)

M.Ar, and (F) TMD. Values are mean ± SEM, n = 13 or 14/group. Differing letters denote a significant difference among groups within a time point. Pre:

pre-pregnancy, PL, post-lactation; 1PL, 1 month post-lactation; 2PL, 2 months post-lactation; 3PL, 3 months post-lactation; and 4PL, 4 months post-lactation.

However, new techniques are also being developed to increase
the bioavailability of polyphenols from supplements including
encapsulation of polyphenols within a shell of polysaccharides,
cellulose, starch, or proteins to increase bioavailability and
possibly their efficacy (48). Although a beneficial effect of
consumption was observed at the concentration studied, future
studies should assess other concentrations of RR tea to determine
if higher concentrations would elicit greater benefits or what the
lowest effective concentration would be.

In conclusion, findings from this study demonstrate that
consumption of RR tea supported the ability of bone to recover
post-lactation in a rat model but did not result in greater
BMD and improved structure as hypothesized. Moreover, our
unexpected finding that significant reductions in trabecular BMD
and structure persisted at 4 months post-lactation provides a
basis for more fully understanding the rat model of pregnancy
and lactation in terms of bone formation and resorption and
should be evaluated further in other rodent models as well as
other ages of Sprague-Dawley rats.
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Insufficient assessment of the identity and chemical composition of complex natural

products, including botanicals, herbal remedies, and dietary supplements, hinders

reproducible research and limits understanding mechanism(s) of action and health

outcomes, which in turn impede improvements in clinical practice and advances in public

health. This review describes available analytical resources and good methodological

practices that support natural product characterization and strengthen the knowledge

gained for designing and interpreting safety and efficacy investigations. The practice of

validating analytical methods demonstrates that measurements of constituents of interest

are reproducible and appropriate for the sample (e.g., plant material, phytochemical

extract, and biological specimen). In particular, the utilization of matrix-based reference

materials enables researchers to assess the accuracy, precision, and sensitivity of

analytical measurements of natural product constituents, including dietary ingredients

and their metabolites. Select case studies are presented where the careful application of

these resources and practices has enhanced experimental rigor and benefited research

on dietary supplement health effects.

Keywords: dietary supplement (DS) analysis, reference material (RM), method validation, chemical

characterization, natural product (NP)

INTRODUCTION

Dietary supplements (DS) and other natural products (NPs) are repeatedly investigated in cellular
systems, observational studies, and randomized controlled trials due to their prevalent use for
potential health benefits (1–3). However, outcomes from clinical studies on botanical-derived NP
efficacy for health maintenance and disease risk reduction often yield mixed results, driven in
part by the varying composition of the experimental interventions investigated (4). Clinical trials
studying the effect of Echinacea species in respiratory infections, for example, investigate varying
doses and different species and plant parts (5–7). Since the early 2000’s, seminal papers have
described the need for sufficient reporting in clinical research on botanicals, dietary supplements,
and traditional medicines, including elaborations on the Consolidated Standards of Reporting
Trials (CONSORT) guidelines (8–11). However, even though recent studies have found an overall
improved reporting quality in studies of certain NPs, there is still an indication that insufficient
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reporting details on methodology and characterization continue
to be an issue. For example, an assessment of randomized
trials of Asian ginseng (Panax ginseng C.A. Meyer) and
North American ginseng (Panax quinquefolius L.) deemed
that <40% of trials conducted from 1980 to 2019 adequately
addressed CONSORT criteria for methodology reporting, and
<15% provided sufficient details on intervention composition
to allow for experimental replication (12). Such insufficient
characterization of an investigational DS or NP chemical
composition reduces the capability for data analysis, limits
research reproducibility, and impedes the continuity of scientific
progress (4, 13, 14).

Analytical characterization of DS and NP interventions is
essential for rigorous basic and clinical research on their
health effects. Detailed chemical characterization improves
research reproducibility, as investigators’ ability to replicate
and build upon studies is substantially increased the more
that is known about an intervention’s composition. Sufficient
characterization also facilitates more meaningful comparisons
of experimental design and data interpretation across studies,
as it can be difficult, if not impossible, to interpret the
public health relevance of a study on NP efficacy using a
preparation with poorly understood composition (15). The
insight gained from investigations of a NP’s mechanism(s)
of action, pharmacokinetics, or herb/drug interactions are
significantly expanded through a better understanding of its
chemical composition. In addition to better understanding the
basis for positive health effects, NP chemical characterization
is necessary for adequate safety assessment, a prerequisite
for any clinical investigation, and particularly important for
botanical-derived interventions where adulteration of source
materials is a known issue (16, 17). This review describes
the importance of utilizing reference materials and validated
methods to address these analytical challenges and enhance
natural product research rigor and reproducibility. A discussion
of important considerations in method validation, an assessment
of available certified reference materials, and case studies provide
guidance and good practices for advancing research on the
health effects of DS and other NPs. Comprehensive tables index
examples where reference material use has facilitated innovative
method development and/or supported novel research.

KEY CONSIDERATIONS FOR DS AND NP
CHARACTERIZATION

The major characterization parameters for complex NPs
such as DS include confirmation of identity/authenticity,
quantification of known or putative bioactive constituents or
marker compounds, an assessment of purity/composition, and
safety evaluation (4, 18). For certain vitamins and minerals,
it is important for investigators to consider whether the
isoforms or chelation states are appropriate to the research
hypothesis and experimental design. For example, vitamin E
comprises a group of eight chemical isoforms that have varying
biological activities, while chelates of trace minerals may alter
bioavailability. For botanicals, it is essential to verify plant species

identity and authenticity, confirm the correct plant parts were
used, and test for the presence of harmful compounds, microbes,
pesticides, toxins, and toxic elements (e.g., cadmium, mercury,
lead, and arsenic). Batch-to-batch reproducibility and stability
of experimental NP interventions should also be confirmed.
Investigators should assess these key characterization parameters
to the extent practicable to best support advances in NP
biomedical research.

Well-designed research must control as many variables
as possible to support replicable results. Exploratory and
molecular/cellular studies should characterize NP interventions
to the extent feasible to increase the potential for gaining
insight into underlying biological mechanisms. Animal models
and clinical studies of DS and other NPs should utilize test
materials that have been standardized to the extent possible.
For botanical-derived DS, standardization starts with species
verification and continues through chemical identification and
quantification of specific compounds which are known or
hypothesized to produce a biological activity. Often the particular
compound or compounds responsible for an activity are not
known, and marker compounds must instead be chosen for
standardization. The interpretation of pre-clinical investigations
of metabolic pathways and safety, critical to assess before moving
to translational research in human subjects, also rests on accurate
compositional characterization (19).

Throughout all these considerations, accurate, precise, and
reliable analytical measurements are needed to assess the
consistency and quality of NPs obtained from various suppliers,
confirm the repeatability of product preparation schemes, and
assure safety by detecting toxic constituents. DS products
are prepared in numerous formulations, including powders,
liquids, tablets, capsules, and chewable gels (“gummies”),
which adds unique analytical challenges to homogenization,
extraction, and reproducible quantification. A limited number
of contract research organizations and independent laboratories
have the capability and experience to analyze DS (20).
Therefore, it is incumbent upon biomedical researchers to
assess in-house controls and demonstrate the accuracy of their
analytical methods.

BENEFITS OF METHOD VALIDATION AND
RMs IN NP BIOMEDICAL RESEARCH

The requisite level of characterization and standardization for
DS and other NP research is facilitated by using validated
analytical methods and matrix-matched reference materials for
accurate quantification of nutrients, minerals, phytochemicals,
metabolites, and toxic analytes. Analytical methods employed
in NP authentication and characterization must be carefully
selected and controlled to ensure the accuracy and precision
of quantitative measurements for phytochemicals, nutrients,
and possible contaminants (21). Methods should be fit for
purpose, meaning the measurements are sufficiently reliable
and appropriate for the sample matrix (e.g., ground plant
part, liquid extract, and capsule formulation). Formal validation
studies of analytical methods are the means to demonstrate
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fitness for purpose and reliability through the determination
of measurement performance parameters, including precision,
accuracy, selectivity, specificity, limit of detection, limit of
quantitation, and reproducibility. Therefore, utilizing a validated
method is an optimal approach for demonstrating unbiased
and reliable measurements, transferring projects or analyses
to new lab members, and comparing research results across
multiple labs.

Through the processes of method development and
validation, it is paramount that researchers confirm their
methods are generating the correct answers for analyte
quantification or material authentication, and this is where
reference materials play a vital role. The use of reference
materials to assure the quality of analytical measurements is well-
defined in analytical chemistry, particularly in environmental,
clinical, and food analyses. A review by Ulberth summarizes
the international terminology for the types of reference
materials and their use (22). A reference material (RM) is
a “material, sufficiently homogeneous and stable for one or
more specified properties, which has been established to be fit
for its intended use in a measurement process.”1 A certified
reference material (CRM) is defined as a “RM characterized
by a metrologically valid procedure for one or more specified
properties, accompanied by an RM certificate that provides
the value of the specified property, its associated uncertainty,
and a statement of metrological traceability” (see text footnote
1). For example, a St. John’s Wort (Hypericum perforatum L.)
CRM could comprise a homogenized powder prepared from
authenticated aerial parts, with quantified values for hypericin.
CRMs of known quantities of analytes in solution are intended
for use as calibration solutions, as described later.

The inherent complexity of natural product preparations
and the resulting analytical challenges, such as accounting
for extraction efficiency and interfering compounds, are best
addressed by matrix-based reference materials. Compared to
the myriad NPs and botanicals used worldwide there is a
comparatively small number of matrix based RMs available.
However, it is important for analysts and researchers to consider
that RMs are often not intended to be representative of every
possible matrix, nor are they intended to represent a “gold
standard” for an ingredient or formulated product. Rather,
RMs are meant to be representative of the analytical challenges
encountered with similar matrices, e.g., isoflavone extraction
from a leafmaterial. Depending on the purpose of the RM and the
analytical question being asked, an exact matrix-matched RM is
not necessarily required for method development and validation
or NP characterization in research. As such, the limited number
of currently available matrix based RMs can be applicable to
the characterization of a much larger number of matrices, and
they should be used wherever possible when quantification of
marker compounds and/or toxic metal contaminants is required.
CRMs can be used as quality control (QC) materials to determine
bioactive/marker compound content, detect contamination, or
assign values to verify in-house QC materials. Researchers

1ISO/Guide 30:2015 - Reference Materials: https://www.iso.org/obp/ui/#iso:std:

iso:guide:30:ed-3:v1:en.

using botanical supplements in clinical studies can, and
wherever possible should, verify the accuracy of any chemical
characterization of the experimental intervention by using CRMs
as QC materials.

GOOD PRACTICES IN ANALYTICAL
METHOD VALIDATION

Standard-setting organizations and regulatory agencies have
provided detailed guidance and workflow schema on how
to conduct formal validation studies of analytical methods
specifically for NPs and dietary ingredients2,3,4. These validation
guidance documents define parameters that should be assessed
for qualitative or quantitative methods and outline procedures
for establishing a measurement’s linearity range and reliability.
While there is not a consensus agreement of which analytical
parameters must be assessed to constitute a formal validation,
there are commonalities across the guidelines of different
organizations. A quantitative method’s selectivity and specificity,
accuracy, precision, recovery, limit of detection, limit of
quantification, repeatability, and reproducibility are key
parameters that should be assessed in a formal validation. A
qualitative method, for example one that is intended for botanical
identity or authenticity, should also assess specificity, selectivity,
and limit of detection, as well as false positive/negative rates.
Validation guidelines specific to identification methods also
describe a statistical modeling procedure, termed the probability
of identification, as a key parameter to assess a qualitative
method’s reliability (23).

Validated methods for DS ingredients and products can be
leveraged in both industry and academic settings to enhance
measurement confidence and reproducibility. Biomedical
researchers focused on delineating the connections between
dietary ingredients, their metabolism, mechanisms of action, and
health outcomes have used validation to establish the accuracy
and reproducibility of their measurements. As examples,
published validation studies of a liquid chromatography—mass
spectrometry (LC-MS) quantification of soy sphingadienes
under investigation for chemopreventive activity (24), a gas
chromatography (GC)-MS characterization of a complex grape
seed flavanol mixture studied in models of stress resilience (25),
a high performance liquid chromatography (HPLC)-tandem
mass spectrometry (MS/MS) determination of cholecalciferol
in clinical serum and plasma samples (26), and an ultra-
high performance liquid chromatography (UHPLC)-MS/MS
quantification of red clover isoflavones and milk thistle
flavonolignans in supplements and human serum (27) all
contribute significantly to experimental rigor in subsequent

2AOAC International Official Methods of Analysis, Appendix K: http://www.

eoma.aoac.org/app_k.pdf.
3FDA Bioanalytical Method Validation Guidance for Industry: https://www.fda.

gov/media/70858/download.
4FDA Guidelines for the Validation of Analytical Methods for Nucleic Acid

Sequence-Based Analysis of Food, Feed, Cosmetics and Veterinary Products:

https://www.fda.gov/media/121751/download.
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FIGURE 1 | Control chart for the NIST determination of 25(OH)D3 in SRM 972a for DEQAS exercises from July 2013 to January 2017. Error bars are ± SD for

duplicate analyses of SRM 972a. Solid line is the certified value and dashed line is the uncertainty of the certified value. Burdette et al. (35), adapted by permission of

AOAC International (aoac.org).

hypothesis-driven investigations and help build confidence in
translational NP research.

GOOD PRACTICES IN THE USE OF
MATRIX REFERENCE MATERIALS

There are three types of CRMs with different complexity and
uses (22, 28): (1) pure substance (neat chemical), (2) calibration
solution/mixture containing one or more constituents, and (3)
natural matrix materials. Pure substance CRMs and solution
CRMs are closely related in that the pure substances are generally
intended as primary standards (of known purity) for use in
preparing calibration solutions, and solution CRMs are typically
intended for use directly as a calibration solution, i.e., eliminating
the step of the analyst preparing a solution from a pure substance.
These solution CRMs are typically used to calibrate analytical
instruments and, in the case where chromatographic separations
are involved, confirm retention times and determine detector
response for the analytes of interest. Natural matrix CRMs,
which ideally should be compositionally similar to the real-
world samples analyzed, are used to evaluate the complete
analytical measurement process, including dissolution or solvent
extraction of the matrix, clean-up of the extract, isolation
and/or enrichment of the constituents of interest, and the final
instrumental analysis including chromatographic separation,
detection, and quantification. Matrix RMs play a critical role
in validating the complete analytical method and assessing
the accuracy and comparability of results among different
laboratories over time.

Matrix CRMs are intended for the following applications: (1)
analytical method development and method validation, i.e., to
assess accuracy or trueness of measurement results, (2) to serve
as QC materials, (3) to assign values for in-house QC materials,
and (4) to provide metrological traceability of measurement
results. Practical guides to the use of CRMs are provided by
several European Reference Materials Application Notes (29,
30) and by Sharpless et al. (31). Matrix CRMs should not,
however, be used for the calibration of analytical instruments.
The use of matrix CRMs that are similar in matrix to the actual
samples analyzed is critical in new method development and
validation for assessing the accuracy of the complete analytical
measurement process, e.g., extraction and dissolution, clean-up,
and finally, chromatographic separation and detection. Several
excellent studies from the environmental measurement area have
been reported that illustrate the value of using a CRM to evaluate
the efficacy of solvent extraction techniques (32–34). CRMs can
be used as QC materials during routine measurements through
their inclusion in each batch of actual samples to assess the
accuracy or trueness of the results and by preparing control
charts to monitor the quality of the measurements over time.
An example of using a CRM in a control chart is illustrated in
Figure 1, where a CRM for 25-hydroxyvitamin D3 in human
serumwas analyzed quarterly over a period of 5 years as part of an
international external quality assurance program, i.e., Vitamin D
External Quality Assessment Scheme (DEQAS) (35). Due to the
cost of CRMs, laboratories may prepare in-house QC materials
and analyze the CRM with the in-house QC materials to assign
values (i.e., traceability) and then use the in-house QC material
for routine measurements (31).

Frontiers in Nutrition | www.frontiersin.org 4 December 2021 | Volume 8 | Article 78626181

https://aoac.org
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Hosbas Coskun et al. Dietary Supplement Characterization Needs and Resources

Finally, CRMs have proven useful in novel, exploratory
and hypothesis-driven research because they are homogeneous
and stable materials that are widely available to the research
community, characteristics which also facilitate collaboration
and comparison of results. For instance, if researchers
characterize different ginseng materials as part of a study
to identify new marker compounds (i.e., not the constituents
with values assigned by the CRM producer), ginseng CRMs
can be included as part of the study and the published results
for the content of these novel marker compounds in the CRM
can be referenced and compared to other laboratory analyses
in the future. An excellent example of researchers analyzing
CRMs for the determination of new analytes is work by Zhu
and Hites, where they used a newly-developed method for the
determination of the emerging environmental contaminant
polybrominated diphenyl ethers (PBDEs) in several existing
National Institute of Standards and Technology (NIST) marine
and freshwater tissue matrix CRMs (36). Zhu and Hites
published the first report of concentrations of PBDEs in these
CRMs and stated, “Given the availability and homogeneity of
the NIST SRMs, we suggest that these materials can be used
for the interlaboratory calibration of PBDE concentrations”
(36). Years later, NIST assigned certified values for selected
PBDE congeners in these SRMs (37), further increasing their
analytical utility.

CURRENT AVAILABILITY OF REFERENCE
MATERIALS FOR DIETARY SUPPLEMENTS

Within the dietary supplement industry, the term reference
material typically refers to “authentic reference standards” for
compounds and/or ingredients found in supplement products.
In the early 2000’s a limited number of reference standards for
botanicals or other DS ingredients were commercially available.
However, they typically had limited information on the purity
of the material, and quantitative information on the chemical
content of natural matrix RMs for botanical dietary supplement
ingredients was intended for testing against a limited number of
compendial standards (38). In 2002 the U.S. National Institutes of
Health Office of Dietary Supplements (NIH-ODS) established the
AnalyticalMethods and ReferenceMaterials (AMRM) Program,5

with a mission to enhance rigorous dietary supplement research
support and quantitative analysis (39). To meet industry and
research needs for quantitative reference materials that were
not tied to compendial testing, NIH-ODS collaborated with
NIST to develop CRMs for dietary ingredients and supplement
products.6 CRMs issued by NIST are called Standard Reference
Materials (SRMs), the majority of which are characterized for
chemical composition. NIST is the national metrology institute
(NMI) within the U.S.; while most matrix CRMs for chemical
content are produced by NMIs in their respective countries, they

5NIH-ODS Analytical Methods and Reference Materials Program: https://ods.od.

nih.gov/Research/AMRMProgramWebsite.aspx.
6NIST Measurements and Standards for Botanical Dietary Supplements: https://

www.nist.gov/programs-projects/measurements-and-standards-botanical-

dietary-supplements.

are often distributed worldwide. Commercial suppliers, such as
Cerilliant/MilliporeSigma,7 may also produce CRMs and RMs
for certain constituents of dietary supplements.

In addition to utilizing CRMs, which are the major
focus of this review, DS and NP researchers can also take
advantage of available standards from multiple sources to aid
in botanical identification and authentication. The United States
Pharmacopeia (USP) develops pure chemical and matrix-based
reference standards for use in conjunction with their formal
documentary standards (monographs) for the characterization
and quality assessment of therapeutics, foods, and DS. These
USP analytical tools are intended to aid the verification
of identity and composition of ingredients used in drug
formulations and DS products, and their catalog of reference
standards includes vitamins, minerals, phytochemicals, and
complex botanical preparations (40, 41). The American Herbal
Pharmacopeia produces qualitative monographs and matching
authenticated reference standards with a focus on botanicals
and herbal medicines.8 Some commercial reagent suppliers, such
as ChromaDex,9 PhytoLab,10 Alkemist,11 and Extrasynthese12

also produce nutrient, phytochemical and/or plant material
reference standards which can be used to support method
development and chemical characterizations of raw materials
or experimental interventions. While these types of reference
standards and vouchered specimens may not offer the same level
of quantitative values for specified bioactive constituents or other
properties, their use can play a significant role in providing a
well-characterized control material that can readily be used to
benefit a research collaboration, compare results across studies,
and support experimental replication.

NIH-ODS/NIST Supported Development of
Reference Materials
Initial efforts of the NIH-ODS/NIST collaboration focused on
the development of authentic botanical ingredient-containing
SRMs and RMs with values assigned for the content of active
and/or marker compounds for use in verification of content
and manufacturing quality control, particularly to address safety
concerns related to contaminants such as toxic elements (42–
44). Within the dietary supplement industry, chemical analyses
are typically performed on raw materials (plants and extracts
of plants) and finished products (e.g., tablets). Thus, NIST
SRMs were designed wherever possible to comprise a “suite”
of materials for each botanical dietary supplement ingredient
consisting of authentic plant material, an extract of the plant
material, and the finished product. The intent was to provide

7Cerilliant Corp Analytical Reference Standards: https://www.cerilliant.com/

products/catalog.aspx.
8AHP-Verified Botanical Reference Materials: https://herbal-ahp.org/botanical-

reference-materials/.
9ChromaDex Reference Standards: https://www.chromadex.com/standards-

overview/.
10PhytoLab Reference Substances: https://www.phytolab.com/en/our-services/

reference-substances-phyproof/.
11Alkemist Labs Reference Materials: https://www.alkemist.com/reference-

materials/.
12Extrasynthese Botanical Materials and Quantified Reference Extracts: https://

www.extrasynthese.com/.
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TABLE 1 | Currently available botanical dietary supplement matrix CRMs.

Source CRM No. CRM description Certified values Reference values Total values

NIST 3246 Ginkgo (Ginkgo biloba) leaves Flavonoids (4); ginkgolides (1); toxic

elements (3); DNA sequence

(identity)

Flavonoids (4); ginkgolides (4); bilobalide

(1)

18

NIST 3247 Ginkgo (Ginkgo biloba) extract Flavonoids (4); ginkgolides and

bilobalide (6); toxic elements (1)

Toxic elements (2) 13

NIST 3248 Ginkgo-containing SODF Flavonoids (4); ginkgolides (3); toxic

elements (1)

Ginkgolides (2); bilobalide (1); toxic

elements (3)

14

NIST 3250 Saw palmetto (Serenoa repens)

Fruit

Phytosterols (3), fatty acids (14) Phytosterols (3), fatty acids (4), free fatty

acids (16)

40

NIST 3251 Saw palmetto (Serenoa repens)

Extract

Phytosterols (3); fatty acids (17);

carotenoids (1); vitamins (1)

Phytosterols (3); fatty acids (3); free fatty

acids (17); tocopherol (1); carotenoids

(2); cycloartenol

48

NIST 3274 Botanical Oils Containing

Omega-3 and Omega-6 Fatty

Acids

Fatty acids (35) Fatty acids (33) 68

NIST 3274-1 Borage oil (Borago officinalis) Fatty acids (9) Fatty acids (8) 17

NIST 3274-2 Evening Primrose oil (Oenothera

biennis)

Fatty acids (10) Fatty acids (8) 18

NIST 3274-3 Flax (Linium usitatissimum) Seed Fatty acids (9) Fatty acids (7) 16

NIST 3274-4 Perilla (Perilla frutescens) Fatty acids (7) Fatty acids (10) 17

NIST 3281 Cranberry (Vaccinium

macrocarpon) Fruit

Organic acids (1); elements (9) Proximates (5); sugars (3); elements (2);

anthocyanidins (3)

25

NIST 3282 Low-Calorie Cranberry Juice

Cocktail

Organic acids (3); elements (6) Organic acids (6); anions (2); sugars (3);

elements (2)

22

NIST 3283 Cranberry (Vaccinium

macrocarpon) Extract

Organic acids (3) Organic acids (6); anions (2) 14

NIST 3284 Cranberry-Containing SODF Organic acids (3) Organic acids (4); anions (2) 12

NIST 3285 Mixed Berry-Containing SODF Organic acids (2) Organic acids (6); anions (2) 12

NIST 3287 Blueberry (Vaccinium

corymbosum) Fruit

Organic acids (1); vitamins (4);

elements (8)

Organic acids (5); proximates (6) and

fiber; sugars (3): elements (1); amino

acids (16); anions (2)

50

NIST 3291 Bilberry extract (Vaccinium

myrtillus) Extract

Organic acids (3) Organic acids (3); anions (2) 11

NIST 3254 Green tea (Camellia sinesis) leaves Catechins (5); caffeine and

theobromine; toxic elements (4);

DNA sequence (identity)

Catechins (2), gallic acid, L-theanine,

elements (5)

21

NIST 3255 Green tea (Camellia sinesis)

extract

Catechins (7); caffeine and

theobromine; toxic elements (2)

Catechins (2), gallic acid, L-theanine,

theophylline, elements (5)

21

NIST 3256 Green tea-containing SODF Catechins (6); caffeine and

theobromine; gallic acid; toxic

elements (4)

Catechins (1), L-theanine, theophylline 16

NIST 3234 Soy Flour Elements (8); vitamins (2) Elements (1); isoflavones (5); proximates

(5) and fiber; amino acids (18)

39

NIST 3235 Soy Milk Elements (8); vitamins (5) Elements (1); vitamins (4); proximates (6),

sugars (1); fatty acids (11); amino acids

(16)

52

NIST 3236 Soy Protein Isolate Isoflavones (6) 6

NIST 3237 Soy Protein Concentrate Isoflavones (1) Isoflavones (2) 3

NIST 3238 Soy-Containing SODF Isoflavones (5) Isoflavones (1) 6

NIST 3262 St John’s Wort (Hypericum

perforatum) Aerial Parts

Toxic elements (3); DNA sequence

(identity)

Flavonoids/naphthodianthrones (5);

chlorogenic acid; toxic elements (1)

10

NIST 3232 Kelp (Thallus laminariae) Powder Elements (15) including toxic

elements (4) and iodine

Elements (5), arsenic species (2),

arsenosugars (3), vitamin K1 (3),

proximates (5)

33

NRCC GINX-1 North American Ginseng (Panax

quinquefolius) Root Extract

Ginsenosides (7); elements (9) Elements (9)a 25

(Continued)
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TABLE 1 | Continued

Source CRM No. CRM description Certified values Reference values Total values

NIST 3253 Yerba Mate (Ilex paraguariensis)

Leaves

Polycyclic aromatic hydrocarbons

(PAHs) (5)

PAHs (13); proximates 23

NIST 3299 Turmeric (Curcuma longa)

Rhizome

Curcuminoids (3); toxic elements (3) - 6

NIST 3300 Curcumin Extract of Turmeric

(Curcuma longa) Rhizome

Curcuminoids (3) - 3

NIST 3398 Ginger (Zingiber officinale)

Rhizome

Toxic elements (3) Gingerols (3) and shogaols (3); arsenic

species (3)

12

NIST 3399 Ginger (Zingiber officinale)

Rhizome Extract

Toxic elements (3) Gingerols (3) and shogaols (3); 9

NIST 8650 Kudzu (Pueraria Montana var.

lobata) Rhizome

- Isoflavones (3); toxic elements (3); DNA

sequence (identity)

6

NIST 3268 Kudzu (Pueraria Montana var.

lobata) Rhizome Extract

Toxic elements (3); nutritional

element (1)

Isoflavones (3) 7

NIST 3269 Kudzu-Containing SODF - Isoflavones (3) 3

NIST 3384 Asian Ginseng (Panax ginseng)

Rhizome

Toxic elements (2) Ginsenosides (7); toxic elements (1) 10

NIST 3385 Asian Ginseng (Panax ginseng)

Rhizome Extract

Ginsenosides (6); DNA sequence

(identity)

Ginsenosides (1); toxic elements (3) 10

a Information values for four elements.

TABLE 2 | Currently available non-botanical dietary supplement matrix CRMs.

Source CRM No. CRM description Certified values Reference values Total values

NIST 3280 Multivitamin/multielement tablets Vitamins and carotenoids (13);

elements (18)

Vitamins and carotenoids (4); elements

(9)

43

NIST 3278 Tocopherols in edible oils Tocopherols (4) 4

NIST 3275 Omega-3 and omega-6 fatty

acids in fish oil

Fatty acids (31) Fatty acids (23) 54

NIST 3275-1 Concentrate high in DHA Fatty acids (9) Fatty acids (7) 16

NIST 3275-2 Anchovy oil (high in DHA and EPA) Fatty acids (11) Fatty acids (7) 18

NIST 3275-3 Concentrate containing 60% long

chain omega-3 fatty acids

Fatty acids (11) Fatty acids (9) 20

NIST 3530 Iodized salt (Iodide) Iodine (as iodide) - 1

NRCC VITA-1 Low-level multivitamin Elements and element species (16);

vitamins (1)

Elements (5)a; vitamins (7)a 29

NRCC VITB-1 Elevated-level multivitamin Elements and element species (16);

vitamins (1)

Elements (5)a; vitamins (7)a 29

NIST 3279 Chromium-Containing Solid Oral

Dosage Form

chromium vanadium 2

NIST 8037 Krill Oil - fatty acids (22) 22

a Informational values available for three elements and seven vitamins.

the various matrices encountered in the market and used
in research that may yield distinct analytical challenges, e.g.,
different concentrations of constituents of interest, differences
in extractability of constituents from the matrix, and various
potential interferences.

Certified reference materials for ephedra was the first high
priority of the NIH-ODS/NIST collaboration and a suite of SRMs
was developed, including aerial plant parts, extracts, solid oral
dosage form (SODF), and ephedra-containing protein powder.
Despite the discontinuation of this SRM suite following the
U.S. Food and Drug Administration (FDA)’s ban of ephedra,

the experience provided the model for the botanical matrix
SRMs that have been developed subsequently (45). Botanical
dietary supplement matrix CRMs, almost all of which are
SRMs developed by NIST in collaboration with NIH-ODS
during the past 20 years, are summarized in Table 1. In 2009,
the portfolio of dietary supplement SRMs expanded to non-
botanical supplements with the development of SRM 3280
Multielement/Multivitamin Tablets (46) as shown in Table 2 and
later included tocopherols in oil, chromium-containing SODF,
and iodized salt. Several botanical dietary supplement NIST
SRMs that are currently in development are listed in Table 3.
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TABLE 3 | Selected in-development dietary supplement NIST materials.

Candidate SRM description Proposed constituents for

value assignment

Yohimbe (Pausinystalia johimbe)

containing SODF

Yohimbine

Black Cohosh (Actaea racemosa)

rhizome

Triterpene glycosides and toxic

elements

Black Cohosh (Actaea racemosa)

rhizome extract

Triterpene glycosides and toxic

elements

Eluethero (Eleutherococcus

senticosus) root

Eleutherosides and toxic

elements

Eleuthero (Eleutherococcus

senticosus) root extract

Eleutherosides and toxic

elements

Ashwagandha (Withania

somnifera) root

Withanosides and withanolides

Ashwagandha (Withania

somnifera) root extract

Withanosides and withanolides

Kava (Piper methysticum) Kava lactones

While the primary focus of the NIH-ODS/NIST collaboration
has been to provide matrix SRMs for the dietary supplement
community, several calibration solution SRMs were also
developed by NIST between 2011 and 2016 for catechins,
hypericin, organic acids, and isoflavones. Currently, the
only botanical dietary supplement ingredient calibration
solution available from NIST is SRM 3389 Ginsenosides
Calibration Solution (47). Another calibration solution
CRM for ginsenosides is also available from the National
Research Council of Canada (the NMI for Canada) as well
as three pure reference standards for constituents associated
with plants used as ingredients in dietary supplements13

(see Table 4). In an effort to expand the availability of
calibration CRMs for botanical dietary supplement ingredient
markers, the AMRM Program engaged the private sector
to produce these analytical resources, with CRMs for key
constituents of kava (Piper methysticum G. Forst.) and
ginger (Zingiber officinale Roscoe) recently available from
Cerilliant/MilliporeSigma (48). Table 4 summarizes currently
available, select calibration solution and pure chemical CRMs
from NMIs and commercial sources, including those developed
with support from NIH-ODS.

ANALYTICAL PRINCIPLES FOR CHEMICAL
COMPOSITION VALUE ASSIGNMENT

To provide true values for chemical content, CRM producers
typically use orthogonal analytical methods, meaning the
methods are based on different measurement principles, an
approach that NP researchers can apply for greater confidence
in their chemical characterizations. The assignment of certified
values for the chemical composition of CRMs at NIST is
based primarily on the agreement of results from multiple

13NRC Canada CRMs: https://nrc.canada.ca/en/certifications-evaluations-

standards/certified-reference-materials.

TABLE 4 | Currently available pure material and calibration solution CRMs for

botanical dietary supplement marker compounds.

Source CRM No. CRM name Certified values

NIST SRM 3389 Ginsenosides calibration

solutiona
Ginsenosides (6)

NRCC MIGS-1 Multi-component

ginsenoside calibration

solution

Ginsenosides (7)

NRCC BERB-1 Berberine chlorideb Berberine and berberine

chloride purityc

NRCC CANA-1 Canadined Canadinec

NRCC HYDR-1 Hydrastineb Hydrastine

Cerilliant G-013 Ginkgo biloba terpene

lactones mix

Ginkgolides (4) and

bilobalide

Cerilliant G-014 Ginkgo biloba flavonoids

mix

Flavonoids (3)

Cerilliant G-015 Ginseng ginsenosides

mix

Ginsenosides (8)

Cerilliant G-016 Green tea catechin mix Catechins (7); caffeine

Cerilliant G-027 Ginger gingerols and

shogaols mixa
Gingerols (3); shogaols (3)

Cerilliant K-007 Kava kavalactone mixa Kavalactones (9)

aDeveloped in collaboration with NIH-ODS.
bBerberine and hydrastine are naturally occurring isoquinoine alkaloids in several plant

dietary supplement ingredients, including goldenseal.
c Information values for trace impurities.
dCanadine is a benzylisoquinoline alkaloid present in plants from the family Papaveraceae.

independent analytical methods. The development of the
multiple independent methods concept for assigning certified
values for trace elements in matrix SRMs has been described,
along with a discussion of the importance of independence in
the physical principle upon which the measurement is based
and in sample preparation, standards, and calibration (49). For
the determination of elements in matrix SRMs, the concept of
using multiple independent methods is relatively straightforward
because there are a variety of analytical techniques that are based
on different measurement principles [e.g., inductively coupled
plasma-optical emission spectroscopy (ICP-OES), ICP-MS,
neutron activation analysis] and different sample preparation
approaches are available (e.g., direct analysis of a solid sample
or dissolve the matrix and analyze the resulting solution). For
the determination of trace organic constituents, independence
in the analytical method is achieved in the sample preparation
(i.e., extraction, clean-up, and isolation of the compounds of
interest) and the final chromatographic separation and detection
(e.g., GC vs. LC and UV/fluorescence detection vs. MS orMS/MS
detection) (28, 50). Independence is also incorporated in the
quantification approaches used, including the use of isotopically
labeled internal standards [i.e., isotope dilution (ID) approach]
for both elements and organic constituents. If the results from
the multiple independent methods agree, the possibility of
undetected bias in the resulting certified value is minimized.
Epstein summarized the historical development of the multiple
independent methods approach for trace element determination
(49), and Wise et al. have discussed the application of this
approach for trace organic constituents (28, 50). In 2000 NIST
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TABLE 5 | Examples of reported use of SRM 3280 multivitamin/multielement tablets.

References Uses Comments

Method

dev./valid.

QC Novel

Research

Roseland et al. (20) X Used as QC material to evaluate laboratory capabilities and measurement performance

Chen et al. (53) X Single-laboratory validation of HPLC-DAD method for water soluble vitamins in multivitamin tablets;

SRM 3280 used for reproducibility assessment

Avula et al. (54) X Validation of ICP/MS method for 21 elements in dietary supplements; results for SRM 320 reported

Avula et al. (55) X Analyzed as control for determination of 16 elements in multivitamin supplements using ICP/MS

Bhandari and Van

Berkel (56)

X Validation of flow-injection MS/MS method for high-throughput determination of B vitamins in

supplements

Matsumoto et al. (57) X Validation of LC-UV/visible method for vitamin B12 in MVM

Sullivan and Zywicki

(58)

X Results for the determination of iodine in SRM 3280

Bhandari et al. (59) X Validation of flow-injection MS/MS method for ascorbic and folic acid in multivitamin tablets; results

compared with SRM 3280

Christopher and

Thompson (60)

X Determination of cadmium using ID-ICP/MS

Murphy and Vetter (61) X Determination of cadmium in dietary supplements

Raju et al. (62) X Method development for vitamin B12 using IC-ICP/MS

Yilmaz et al. (63) X Validation of solid phase extraction of Cu ions from high salt matrices prior to determination by

flame atomic absorption spectrometry (FAAS); no results reported

Andrews et al. (64) X Investigated variability of vitamin D content in MVM products

Wolle et al. (65) X Extraction method development for determination of arsenic in dietary supplements using

IC-ICP/MS

Kakitani et al. (66) X Validation of LC-MS/MS method for water soluble vitamins in dietary supplements and beverages;

results reported for comparison

Pehrsson et al. (67) X Used for QC for determination of iodine content in food and dietary supplements

Qiu et al. (68),

Novakova et al. (69)

X Validation for flow-injection TiO2-mediated UV-photochemical volatile species generation atomic

absorption spectroscopy (AAS) method for determination of selenium in supplements; comparison

results reported

D’Ulivo et al. (70) X Validation of ID-LC-MS/MS method for determination of cyanocobalamin (vitamin B12)

Andrews et al. (14) X Used as QC material for analyses used to provide data for the Dietary Supplement Ingredient

Database

White et al. (71) X Method development for cadmium in multivitamin supplements using ID-ICP/MS with

coprecipitation schemes

Qiu et al. (68) X Single-laboratory validation study for vitamin B12 (cobalamin) using RPLC with DAD; results

reported and compared

Begu et al. (72) X Validation of ICP/MS method for determination of arsenic and cadmium in salt matrix of multivitamin

supplements using sequential coprecipitation

Crighton et al. (73) X Investigated the application of Direct Sample Analysis (DSA)-TOF for screening adulterated dietary

supplements

Uses include method development and/or validation and quality control (QC).

formalized the approaches, or modes, for assigning values and
established a hierarchy of values (denoted as certified, reference,
and information) and associated confidence in their accuracy
based on the various approaches used (51). This document
was recently updated with numerous examples illustrating the
implementation of various certification modes (52).

CASE STUDIES OF RESEARCH USING
DIETARY SUPPLEMENT MATRIX CRMs

A number of research studies investigating the composition
and health effects of dietary supplements have utilized RMs
and CRMs to support measurement rigor and reproducibility.
The case studies and figures described below describe selected

examples of where the utilization of specific RMs facilitated
innovative method development or empowered investigations
by playing a key role in generating and interpreting novel
research data.

Method Development and Population
Studies for Assessing DS Content and
Exposure
NIST SRM 3280 Multivitamin/Multielement Tablet has been
extensively used for method development applications and
measurement verification of nutrient exposure assessments since
its initial 2010 availability (Table 5). Van Berkel and coworkers
used SRM 3280 in method development/validation studies for
rapid and high-throughput determination of vitamins B1, B2,
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TABLE 6 | Values for vitamin B12 in SRM 3280 from different method development studies.

References Method Value (mg/kg) na Comments

Chen et al. (74) LC/UV 6.02 ± 0.05 15 Part of single laboratory validation study for method

precision

Sander et al. (46) Microbiological

assays

4.9 ± 1.9 3,2 Value assignment based on two interlaboratory

studies of 3 and 2 laboratories using microbiological

assays

Wise and Phillips (75) LC-ICP/MS 4.51 ± 0.38 10 Results used to update certified value

COA updated 2011 4.8 ± 1.0 Combined microbiological assay and LC-ICP/MS

results for updated certified value

Matsumoto et al. (57) LC-Visible 4.64 ± 0.11 24

Raju et al. (62) LC-ICP/MS 4.38 ± 0.05 2

D’Ulivo et al. (70) ID-LC-MS/MS 5.41 ± 0.18 4 Method used to certify two new MVM CRMs

Qiu et al. (68) HPLC-DAD 4.28 ± 0.06 4 Single-laboratory validation study for vitamin B12

method

an = number of replicate measurements used to determine the value.

B3, B5, and B6 (56) and ascorbic acid and folic acid (59) using
flow injection MS/MS without chromatographic separation and
demonstrated good agreement with the certified values. Kakitani
et al. validated an LC-MS/MS method for 15 water-soluble
vitamins in dietary supplements and beverages by comparing
results from the analysis of SRM 3280 (66). Chen et al. developed
a single-laboratory validated method using LC with three
different detection modes, i.e., diode array detection (DAD),
fluorescence detection (FLD), and MS for the determination of
seven B vitamins. SRM 3280 was used in the validation of the
repeatability and ruggedness of the method; however, since this
study preceded certification of the values for the vitamins, the
method’s accuracy was not assessed (53).

The development of non-microbiological assays to determine
vitamin B12 (cyanocobalamin) in foods andDS has been the focus
of several studies that utilized SRM 3280 to verify measurement
accuracy. Chen et al. developed an LC-UV/Visible method
to determine vitamin B12 in multivitamin/multielement DS
(MVM) with improved efficiency through on-line sample clean-
up, and they assessed accuracy, precision, recovery, limit of
detection, and limit of quantification using SRM 3280 (74).
Subsequent method development and validation by Matsumoto
et al. analyzed SRM 3280 along with samples representative
of multivitamin DS with or without elements and other NP
ingredients like coenzyme Q10 to assess the accuracy and
uncertainty range of their HPLC-UV detection method (57).
D’Ulivo et al. developed a novel ID method for cyanocobalamin
using an isotopically enriched 13C15N cyanocobalamin as the
internal standard and validated the LC-MS/MS method using
SRM 3280 (70). The validated ID-LC-MS/MS method was then
employed to certify the content of cyanocobalamin in two
multivitamin CRMs recently issued by the National Research
Center of Canada (NRCC), i.e., VITA-1 and VITB-1. Qiu et al.
utilized SRM 3280 in a single-laboratory validation study to
demonstrate their HPLC-DAD method for determination of
cobalamin in dietary ingredients and DS products (i.e., tablets,
capsules, and chewable gels) achieved AOAC International
Standard Method Performance Requirements (68). All of these

method validation studies to determine vitamin B12 in SRM
3280 have provided valuable information toward assessing the
true value, as shown in Table 6. The value for vitamin B12 in
SRM 3280 was initially assigned using only results from two
interlaboratory studies using microbiological assays and denoted
as a reference value with a relatively large associated uncertainty
(39%). However, this value was revised to 4.8 ± 1.0 mg/kg and
upgraded to a certified value based on the combination of results
from a NIST LC-ICP/MS method (4.51 ± 0.38 mg/kg). In the
fivemethod development studies inTable 6, the value for vitamin
B12 ranged from 4.28 mg/kg to 6.02 mg/kg, with all methods
reporting low Relative Standard Deviations (RSD). These results
illustrate the analytical challenge associated with vitamin B12
measurements in MVM and emphasize the need to use a CRM
to assess the accuracy of the analytical method.

The use of SRM 3280 for the determination of minerals
and toxic elements (As, Cd) for both method development and
validation has been reported by several researchers using ICP/MS
(54, 55, 60, 71, 72) and AAS (63, 69). Wolle et al. used SRM
3280 for extraction method development in the determination of
arsenic in dietary supplements (65). Sullivan and Zywicki used
SRM 3280 in a single-laboratory validation study for an ICP/MS
method for the determination of total iodine in various foods
and DS (58). To assess precision and accuracy, they reported
the individual measurements for 20 replicates ranging from 86
to 102% recovery resulting in a mean result of 125 ± 11 µg/kg
(95% confidence interval) compared with the certified value
of 132.7 ± 6.6 µg/kg; ruggedness was assessed by comparing
results from a second analyst for six replicates [mean of 137
µg/kg (RSD = 3.8%)], and combined results were 128 µg/kg
(RSD= 5.9%, n= 26).

The consumption of DS contributes significantly to vitamin
and mineral intake in U.S. populations, and clinical studies
of dietary interventions should take this baseline exposure
into account when designing trials and interpreting results.
The Dietary Supplement Ingredient Database (DSID), a
collaborative effort between NIH-ODS and U.S. Department
of Agriculture (USDA), supports research on DS health effects
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by providing analytically determined estimates for the nutrient
and phytochemical content of representative DS products
marketed to certain populations, such as MVMs for adults or
children or prenatal supplement products. DSID investigations
routinely use NIST SRMs to verify laboratory measurements
of vitamins, minerals, fatty acids, toxic elements, and botanical
phytochemicals. DSID studies have found wide ranges of
ingredient content variability compared to DS product label
claims and trends of concentration overages (14, 64, 76), and
have investigated if certain constituents, such as caffeine, may
reach levels of concern (77). By using CRMs, DSID researchers
thus established measurement confidence in their conclusions
on whether exposures from DS may approach Tolerable Upper
Intake Levels for nutrients or otherwise cause safety concerns for
NP constituents.

Vitamin D and 25-Hydroxyvitamin D3
A USDA-coordinated study to assess the measurement
capabilities for vitamin D3 and its primary metabolite, 25-
hydroxyvitamin D3 [25(OH)D3], in food and dietary supplement
matrices (78) provides an excellent example of using existing
matrix RMs to assess analytical methods for analytes that do
not already have value assignments. Vitamin D3 and vitamin
D2 are metabolized in animals to 25(OH)D3 and 25(OH)D2,
respectively, which may be present in animal tissues along with
unmetabolized vitamin D3 and vitamin D2. Studies suggest that
25(OH)D3 may be more potent than vitamin D in elevating
serum levels of total 25(OH)D, which is the sum of 25(OH)D3

and 25(OH)D2 and the common clinical marker for vitamin
D status (78). Therefore, accurate measurement of 25(OH)D
in food and dietary supplements is critical to provide reliable
estimates of vitamin D intakes. The goal of the USDA study
was to assess the capabilities of selected laboratories to measure
25(OH)D in food and dietary supplement matrices and the
potential use of these materials as reference materials [i.e., assign
values for vitamin D and 25(OH)D]. Although no DS matrix
RMs were included in the study, three existing food matrix SRMs
that did not have values assigned for vitamin D or 25(OH)D were
included, namely bovine liver (SRM 1577c), whole egg powder
(SRM 1845a), and meat homogenate (SRM 1546a). Results from
this study were later used by NIST, in conjunction with results
from an ID-LC-MS/MS method at NIST, to assign values for
vitamin D3 and 25(OH)D3 in these food matrix SRMs, the first
CRMs with values assigned for 25(OH)D3 (79).

Green Tea SRMs in Metabolomic Studies
Excellent examples of the use of CRMs in botanical research
studies are found in recent studies leveraging metabolomics
in characterizing Camellia sinensis (L.) Kuntze preparations
and assessing variability among products. Punyasiri et al.
(80) used NIST SRM 3254 (C. sinensis) Green Tea Leaves
to aid their development of optimized sample preparation
approaches for metabolic profiling that mitigated degradation
of key flavonoids; the matrix SRM’s certified values for major
catechins enabled confirmation of their measurement accuracy
and precision. Kellogg et al. (81) used SRM 3254 in a study
comparing conventional solvent maceration vs. accelerated

solvent extraction for metabolomic characterization; however,
rather than comparing their measurements to certified values,
they instead used the SRM as one of four samples to evaluate
differential catechin extraction by the two different methods.
In a study by Tian et al., SRM 3254 was included as one
of five green tea samples to demonstrate the feasibility of a
biochemometric approach that combined metabolic profiling
with a bio-fractionation assay to identify intestinal UDP-
glucuronosyltransferase inhibitors in green tea, and the results
for the SRM were found to be qualitatively similar to the
other samples (82).

In a study that compared metabolomic approaches to
evaluate phytochemical variability, Kellogg et al. used three
NIST green tea SRMs (leaves, extract, and SODF) as “positive
controls” as part of their evaluation of untargeted UPLC-MS,
targeted quantitative UPLC, and untargeted 1H nuclear magnetic
resonance spectroscopy (NMR) to assess chemical similarity and
variability among 34 different commercial green tea products
(83). Additionally, SRM 3254 was used to demonstrate catechin
extraction reproducibility and evaluate hot water vs. methanol
extraction efficiency. All three green tea SRMs were analyzed as
part of the sample set to determine a set of 16 targeted marker
compounds. Principal component analyses (PCA) of the three
metabolic approaches found that the various green tea samples
clustered with the respective matrix-matched SRMs (Figure 2)
and demonstrated that the untargeted MS-based metabolomics
was more effective in discriminating among the classes of green
tea products than either untargeted UPLC-MS or 1HNMR
metabolomics. Another key finding was that had they relied on
PCA analysis based solely using targeted marker compounds,
which represent only a subset of the chemical diversity of the
various green tea samples, they might have overlooked the actual
chemical dissimilarity of the various products. Leveraging the
full NIST suite of green tea SRMs, which represented the three
categories of products (ground leaf, extract, and SODF), was
instrumental in confirming this conclusion.

In a follow-up study from Cech and colleagues, Clark et al.
employed the same green tea commercial samples and SRMs to
conduct an interlaboratory comparison of untargeted MS data
sets to investigate underlying causes for measurement variability
(84). To determine if there was experimental value in performing
replicate extractions and replicate injections of the same
botanical extract, the authors extracted metabolites from SRM
3254, and the samples were analyzed in two different laboratories
using the same LC column, LC gradient, and mass spectrometer
acquisition parameters but on different mass spectrometer
platforms. The study showed that a significant portion of the
features detectable in single replicate measurements are not
observed in two out of the three replicates, suggesting that there is
little value to conducting replicate injections of replicate extracts
if features that appear only once are omitted from analyses. Clark
et al. hypothesized that variations in the generated composition
feature lists between the two instruments were driven by
differences in feature formation for the same molecule sets. To
address this, they expanded their study to the larger sample set of
37 green tea samples, including the three NIST green tea SRMs.
The results are summarized in Figure 3with a Venn diagram and

Frontiers in Nutrition | www.frontiersin.org 11 December 2021 | Volume 8 | Article 78626188

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Hosbas Coskun et al. Dietary Supplement Characterization Needs and Resources

FIGURE 2 | Principal component analysis (PCA) score plots of green tea

samples drawn with Hotelling’s 95% confidence ellipse for (A) untargeted

UPLC-MS, (B) targeted quantitative UPLC-MS, and (C) Untargeted 1HNMR.

Data points representing triplicate green tea samples were closely clustered,

and distinct clusters were observed between green tea supplements (denoted

as Suppl), green teas (leaf and powder), and the negative control

(turmeric-ginger T23 denoted as non-green tea). Representative samples are

highlighted, including NIST SRM 3254 (T26), SRM 3255 (T27), and SRM 3256

(T37), to demonstrate the reproducibility of the extraction and analytical

protocol. Adapted with permission from Kellogg et al. (83); further permissions

related to this excerpted material should be directed to the American Chemical

Society.

PCA score plots. As in the previous study, the PCA score plots
were successful in discriminating among the three sample types
with each of the three SRMs in the expected matrix category. The

FIGURE 3 | Comparison of MS features derived from untargeted MS analyses

by two independent labs for green tea [C. sinsensis (L.) Kuntze] samples and

unknowns, including 27 leaf or powder ingredients, seven supplement

products, a non-green tea turmeric-ginger tea (non-gt), and three NIST green

tea SRMs (SRM 3254 leaf, SRM 3255 extract, and SRM 3256 SODF). (A)

Venn diagram of unique feature list counts and shared features between

laboratories A (blue) and B (green). (B) Principal component analysis (PCA)

score plots drawn with Hotelling’s 95% confidence ellipse from Laboratory A

(left) and Laboratory B (right). Top plots are PC1 vs. PC2; bottom plots are

PC2 vs. PC3. Green tea ingredients (leaves and powders) were qualitatively

separated from DS products, and NIST SRMs (gray dots, highlighted with

purple arrows) were plotted within matrix matched clusters. Reprinted

(adapted) with permission from Clark et al. (84). American Chemical Society.

study of Clark et al. emphasizes that “untargeted metabolomics
feature lists are not a description of the chemical composition of
the sample, but rather an instrument-specific snapshot of how
the chemical entities in the sample respond to the analysis by the
particular mass spectrometer” (84). This conclusion supports the
need for metabolomic researchers to use commonly available and
well-characterized samples, such as the NIST SRMs, to facilitate
the comparison of results among laboratories.

Fish and Botanical Oil SRMs for
Determination of Fatty Acids
The determination of fatty acids using GC with flame ionization
detection (FID) and GC-MS are relatively mature measurement
techniques in food and dietary supplement analysis, and as a
result, matrix-based CRMs to support these analyses have been
available since the late 1990’s (75). With the importance of
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fatty acids in nutrition studies, particularly omega-3 and omega-
6 compounds, SRM 3274 Botanical Oils Containing Omega-
3 and Omega-6 Fatty Acids and SRM 3275 Omega-3 and
Omega-6 Fatty Acids in Fish Oil were developed as suites of
four and three different mixtures of botanical and fish oils,
respectively, to provide different levels and different ratios of
the individual fatty acids. A krill oil material, which represents
a different matrix used as dietary supplements and has mass
fractions of fatty acids a factor of 1,000 greater than the fish
oil materials, was issued in 2020 as RM 8037. The relative mass
fractions of the botanical and marine oil SRMs and RM are
shown in Figure 4 (85).

SRM 3275 has found wide use to validate methods and
serve as a QC material as demonstrated by Srigley and
coworkers (86–89) at the FDA reporting several studies using

SRM 3275 for validation of methods. In a study to evaluate

the overall fatty acid composition of 46 marine oil omega-3

supplements, Srigley and Rader analyzed SRM 3275 (all three
levels) using GC-FID on a novel ionic liquid phase column
(90). In addition to comparisons of their results for 21 fatty

acids to the assigned values in SRM 3275, with excellent
agreement, the authors also showed GC-FID chromatograms for

SRM 3275 on this novel GC stationary phase, thus providing
valuable information for comparison with separations on other
stationary phases and with other researchers. Li and Srigley (87)
later validated a novel method for the quantification of long-
chain omega-3 polyunsaturated fatty acids in gummy dietary
supplements using SRM 3275 and compared their results for
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)

with the certified SRM values with agreement in all three

levels within 5%. Karunathilaka et al. used the fish oil SRM
to validate a method for rapid classification and quantification
of marine oil omega-3 supplements using Attenuated total

reflection—Fourier transform infrared spectroscopy (ATR-
FTIR), Fourier transform—near infrared spectroscopy (FT-
NIR), and chemometrics (86, 88). In an evaluation of four
ionic liquid columns for rapid analysis or the improved
resolution of long-chain methyl and ethyl esters of omega-3,
omega-6, and additional positional isomeric and stereoisomeric
blends, Weatherly et al. used SRM 3275 for method validation
(91). Khoomrung et al. compared results from a new fast
preparation of fatty acid methyl esters by microwave-assisted
derivatization with the certified values from SRM 3275-2 for
method validation (92).

Ahn et al. from the Korea Research Institute of Standards and
Science used SRM 3274 to validate their ID-GC-MS candidate
reference method for the determination of three essential fatty
acids (linoleic, α- and γ-linolenic acid) in supplement oil
products (93). The results for the three fatty acids in the borage,
evening primrose, and flax oil were in excellent agreement with
the SRM certified values. Although not intended specifically
for fatty acid determinations, two saw palmetto [Serenoa repens
(W. Bartman) Small] matrix SRMs have been available for over
a decade (SRM 3250 Saw Palmetto Fruit and SRM 3251 Saw
Palmetto Extract) with values assigned for phytosterols and fatty
acids (94, 95). As an oil extract, SRM 3251 has been used for QC

in the determination of both phytosterols and fatty acids in saw
palmetto supplements (96) and in virgin olive oil (97).

Authentication of Black Cohosh
The value of matrix RMs in the development of novel methods
for botanical characterization and identification is demonstrated
in studies using chemical fingerprinting approaches for
the authentication of black cohosh (Actaea racemosa L.).
Investigations led by the USDA Methods and Application of
Food Composition Laboratory utilized authenticated reference
materials from multiple sources, including NIST candidate
SRMs, for A. racemosa and four related species (A. dahurica, A.
pachypoda, A. podocarpa, and A. foetida) in the development of
methodological approaches for authentication that used chemical
analyses such as LC, MS, or NMR combined with PCA and soft
independent modeling of class analogy (SIMCA) (98–100).
These data demonstrated an effective approach to differentiate A.
racemosa roots and rhizomes from those of other related species
and possible contaminants using statistical models built from
the characterization of the authenticated RMs (98). Detailed
assessments of the chemical fingerprints lead to the identification
of ester and amide derivatives of hydroxycinnamic acids as novel
marker compounds for authentication (99, 100). Therefore,
using authenticated plant material RMs in these innovative
statistical models supported rigorous non-targeted examinations
of commercially available Actaea ingredients. These models
for Actaea species discrimination by hydroxycinnamic acids
provided good sensitivity and accuracy for plant materials.
Notably, using these models for authenticity predictions for
finished supplement products required targeted profiling of
stable marker compounds, since processing into final dosage
forms introduces additional chemical variation. Furthermore,
while the related Actaea species could be differentiated from one
another, analyses of the different RMs for A. racemosa rhizomes
did not result in a single cluster in the PCA modeling. Instead,
several factors such as growing location, harvest conditions,
handling, or post-harvesting processing or storage conditions
were suggested to result in sufficient chemical variation even
among authenticated RMs. These studies serve to illustrate
important points. First, where possible, employing orthoganol
methods is a powerful approach for botanical authentication.
Second, phytochemical variation is to be expected in botanical
preparations and must be accounted for by any model that
attempts to establish authenticity. Third, an authenticated RM
or standard that is broadly available to the research community
can help validate techniques that identify the genus and species
or plant part. Researchers should be mindful, however, that
any given single RM does not represent all possible inherent
biological, environmental, and processing variability.

Assessing Botanical Variability, Product
Composition, and Formulation
Performance
In addition to the identification and authentication of NPs,
matrix-matched RMs are also valuable in validating quality
control measurements and the detection of adulteration
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FIGURE 4 | Bar graphs of the distribution of mass fractions of selected fatty acids (as triglycerides) in marine and botanical oil SRMs and RMs. Note the logarithmic

scale for the mass fractions, and for NIST RM 8037 Krill Oil the units are mg/g (as free fatty acids). Error bars are the expanded uncertainties of the certified and

reference values with 95% confidence. Adapted and reprinted with permission from Springer, Anal. Bioanal.Chem., Wise and Phillips (75).

or contamination, essential considerations when designing
intervention studies of dietary supplement health effects.
Chromatographic profiling of phytochemicals, whether LC or
high-performance thin-layer chromatography (HPTLC), is a
well-established approach to querying the quality of botanical
preparations, and RMs are routinely employed as comparators
to experimental samples with an unknown provenance and/or

quality. For example, pharmacopeial standards and CRMs were
used as references in an investigation of Ginkgo biloba L. leaf and
extract products that found the majority of samples contained
elevated levels of quercetin and/or rutin, or low levels of marker
metabolites when compared with chemically well-characterized
reference standards (101). Importantly, the ability to match G.
biloba leaf products to a leaf CRM and the extract products
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to an extract CRM fostered a higher level of confidence in the
phytochemical profile comparisons.

Recently there has been an increased push for the application
of more non-targeted and orthogonal methods in natural
product quality control since assessments focusing on a limited
number of chemical constituents or based on insufficiently
distinct profiles can be prone to false conclusions. Here again,
matrix-based CRMs offer valuable benefits to researchers.
Beyond their role in confirming the presence and appropriate
amounts of known compounds, RMs can support the systematic
establishment of distinct chromatographic profiles for specific
botanical preparations. For example, Napolitano et al. utilized
NIST SRM 3255 (Green Tea Extract) to evaluate a novel
quantitative 1H NMR (qHNMR) method and an orthogonal
traditional LC-MS/MS method for multi-targeted determination
of major catechins (102). Comparison via the SRM demonstrated
agreement of the two methods for catechin measurements, and
overall the study highlighted potential benefits of incorporating
qHNMR analyses into natural product authentication and
characterization. In another example, Harnly and colleagues
used pharmacopeial standards and CRMs in their determination
of chromatographic profiles of G. biloba leaves and processed
materials that included over 40 flavonoids and terpene lactones,
more than 20 of which were newly identified as G. biloba
constituents (103). In a subsequent study, CRMs were included
among authenticated samples to create a one-class SIMCA
modeling approach that could easily detect adulteration
with isolated phytochemicals like rutin and quercetin (104).
Furthermore, these studies illustrated how the content of
certain G. biloba phytochemicals, specifically biflavones, is
differentially affected by processing during extraction and
product manufacture and how excipients in formulations can
prohibit the detection of adulterants by some analytical methods.

DSID studies used the suite of NIST green tea SRMs
as analytical quality control materials to assure rigor and
reproducibility in measurements of 32 different commercial
products that determined percent differences between labeled
and actual catechin content (105). DSID studies also leveraged
the certified values for catechins in NIST green tea SRMs
as measurement controls in experiments that quantified the
extent to which different dosage forms disintegrated and how
they affected catechin dissolution (106). These DSID studies
highlight the importance of assessing formulation performance
and considering the bioavailablity of the constituents when
designing clinical intervention studies of dietary supplements.

Dietary Supplement Laboratory Quality
Assurance Program
In conjunction with the NIH-ODS, NIST established a Dietary
Supplement Laboratory Quality Assurance Program (DSQAP)14

in 2007 to assist laboratories in improving measurements
of active and marker compounds, nutritional elements, toxic
elements, organic nutrients (e.g., vitamins and carotenoids),
and contaminants in DS and food matrices. In the DSQAP,

14NIST DSQAP: https://www.nist.gov/programs-projects/dietary-supplement-

laboratory-quality-assurance-program.

participating laboratories analyze unknown DS and food
samples provided by NIST, and the results are then compared
with either NIST assigned target values or a laboratory
consensus value from the study (107, 108). NIST conducted
15 exercises from 2007 through 2017, typically consisting of
five or six studies each, and thus covered over 90 different
analyte/matrix combinations. In 2017, DSQAP was incorporated
into a restructured Health Assessment Measurements Quality
Assurance Program (HAMQAP)15, which expanded focus to
include analysis of samples representative of both human intake
(i.e., food and dietary supplements) and output (i.e., blood,
serum, urine). From 2017 through 2021, HAMQAP conducted
six exercises which have included ∼34 studies that have
increased emphasis on analyte/DS matrix combinations relevant
to emerging research on DS metabolism and health effects.
By participating in the DSQAP and HAMQAP, laboratories
can demonstrate and assess their measurement capabilities
and accuracy by comparison with NIST assigned or study
consensus results.

In the majority of the QAP studies, NIST SRMs or candidate
SRMs (i.e., an SRM currently in progress that may or may not
have values assigned) are distributed for analysis as unknown
or known samples. When a candidate SRM is used, the results
from the interlaboratory study may be used in combination with
NIST measurements to assign the certified values. Several DS
matrix SRMs have been used numerous times in these studies,
including the multivitamin/multielement tablets, green tea, and
fish and botanical oil materials (e.g., see NISTIR16 7997, 8203,
and 8308). Studies for the determination of toxic elements
(arsenic, cadmium, lead, and mercury) in DS, particularly
botanical matrices, have high levels of participation with 20–
30 laboratories typically submitting results, in part because
such analyses are routinely required to verify the safety of
raw materials intended for use in the manufacture of dietary
supplements. Representative results from a DSQAP study for
the determination of arsenic in ginger rhizome (SRM 3398) are
illustrated in Figure 5 with laboratory results presented from
lowest to highest with color-coding to denote the different
analytical techniques used (the majority use ICP/MS) with the
consensus value with tolerance limits indicated.

A similar plot is shown in Figure 6 for the determination
of curcumin in turmeric extract (SRM 3300) and demonstrates
excellent agreement of the study consensus value (820± 22mg/g)
and the NIST target value (822± 22 mg/g). The determination of
curcuminoids in turmeric samples was the focus of two studies
in DSQAP Exercise M (109) and Exercise O (110), with SRMs
3299 and SRM 3300 analyzed in both exercises. The second
study for curcuminoids in turmeric was conducted with the
intent of providing reproducibility and accuracy data to support
moving the method for quantification of curcuminoids to final
action status for AOAC Official Method of Analysis (OMA).
A total of eight participants used the AOAC OMA 2016.16

15NIST HAMQAP: https://www.nist.gov/programs-projects/health-assessment-

measurements-quality-assurance-program.
16NIST Interagency/Internal Reports: https://www.nist.gov/nist-pub-series/nist-

interagencyinternal-report-nistir.
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FIGURE 5 | Total arsenic (ng/g) in NIST SRM 3398 Ginger (Z. officinale Roscoe) Rhizome. Individual laboratory data are plotted (circles) with standard deviation (n = 3,

rectangle) in order of increasing magnitude. The color of the data rectangle indicates the analytical method employed. The solid black line is the consensus mean, and

the green shaded region represents the consensus mean bounded by twice the consensus standard error. The black dashed lines represent the consensus range of

tolerance calculated as the values above and below the consensus mean that result in an acceptable Z’comm score. The red shaded region represents the NIST range

of tolerance, which encompasses the NIST-determined value bounded by twice its uncertainty and represents the range that results in an acceptable Z’NIST score. For

a detailed discussion of the statistical treatment of the results, see Phillips et al. (109). Adapted with permission from Phillips et al., NISTIR 8203, 2018.

HPLC-DADmethod for the quantification of curcuminoids (blue
data rectangles in Figure 6), and these DSQAP results were
reported by Mudge et al. as part of a multi-lab method validation
study (111). The results for the two curcuminoid exercises
are summarized in Table 7 and demonstrate the significant
improvement in the overall performance of the laboratories
as indicated by standard deviations of the consensus values
decreasing from 17–20% to 3.6–5.7% for the turmeric rhizome
and from 11–34% to 1.9–3.4% for the turmeric extract. A similar
improvement is also observed for the results from two studies
of the measurement of catechins in the green tea extract (SRM
3254) (see Table 7), with improvements from 10 to 72% in the
2012 study (DSQAP Exercise I) to 1–11% in the 2020 study
(HAMQAP Exercise 5). In particular, results for the participant
labs’ measurement of epigallocatechin gallate (EGCG) improved
more than 10-fold, as indicated by the reduction in the standard
deviation of the consensus means between the two studies.

The QAP exercises provide valuable information regarding
the current state of measurement capabilities of laboratories and
the need for CRMs for specific analyte/matrix combinations. In
addition, laboratories participating in the QAP are introduced
to the availability of dietary supplement matrix SRMs and
the benefit of using them as part of their laboratory quality
control procedures.

Botanical Product Safety Assessments
Perhaps the most direct application of natural product
reference materials to public health research is their use in

safety evaluations. Whether an experimental natural product
preparation will be used in in vitro cellular models or
administered to animals or human subjects, it is incumbent upon
researchers to assess the test article for known contaminants.
First and foremost, when used as controls, reference materials
enable researchers to confirm that their methods are fit for
purpose for the detection of known toxins such as toxic
metals, pesticides, or certain microbes and phytochemicals or
secondary metabolites. Second, reference materials have been
used as comparators for chemical composition in investigations
of natural product preparations with putative health risks or
unknown hazard profiles.

Analyses for known toxic constituents, whether from natural
plant sources (e.g., pyrrolizidine alkaloids) or those incurred
from the environment or industrial processing (e.g., mercury or
lead), often must be performed quantitatively to assure safety
through compliance with regulatory limits. In this context,
the use of an appropriate CRM offers a clear advantage over
less characterized qualitative standards. Investigations for the
presence of toxic elements in NPs are routinely published
in the peer-review scientific literature, and the utilization of
CRMs with value assignment(s) for the toxin(s) of interest
supports increased experimental rigor. A survey on the presence
or absence of hazardous constituents in commercial dietary
supplement products or traditional medicine preparations, and
its subsequent implications on safety, has a higher level of
confidence when CRMs are used to confirm measurement
accuracy and reliability (112–114).
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FIGURE 6 | (A) Curcumin (ng/g) in NIST SRM 3300 Turmeric (C. longa L.) Rhizome Extract. Individual laboratory data are plotted (circles) with standard deviation (n =

3, rectangle) in order of increasing magnitude. The color of the data rectangle indicates the analytical method employed. The solid blue line is the consensus mean,

and the green shaded region represents the 95% confidence interval for the consensus mean. The solid red lines represent the consensus range of tolerance

calculated as the values above and below the consensus mean that result in an acceptable Z’comm score. The red shaded region represents the NIST range of

tolerance, which encompasses the NIST-determined value bounded by twice its uncertainty and represents the range that results in an acceptable Z’NIST score. (B)

Laboratory means for curcumin in NIST SRM 3299 Turmeric Rhizome and SRM 3300. The laboratory mean for the turmeric rhizome is compared to the mean of the

extract for each laboratory. The solid red box represents the NIST range of tolerance for the two turmeric SRMs, rhizome (x-axis) and extract (y-axis), as the dotted

blue box represents the consensus range of tolerance described for (A). For a detailed discussion of the statistical treatment of the results, see Barber et al. (110).

Adapted with permission from Barber et al., NISTIR 8266, 2019.

Beyond the presence of known toxic constituents, questions
of safety for a complex natural product may arise, such as
whether consumption of a particular botanical species or extract
thereof has long-term deleterious effects. Matrix-based CRMs

have been leveraged in safety investigations in evaluating the
identity and composition, and thus experimental relevance,
of test articles. For example, safety studies conducted by
the U.S. National Toxicology Program (NTP) attempt to
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TABLE 7 | Results for determinations of curcuminoids in turmeric and catechins in green tea in multiple QAP exercises.

Curcuminoids Target DSQAP exercise M (n = 17–23) DSQAP exercise O (n = 22–25)

SRM 3299 SRM 3300 SRM 3299 SRM 3300 SRM 3299 SRM 3300

Bisdesmethoxycurcumin 3.390 ± 0.054 18.25 ± 0.49 3.23 ± 0.66 (20) 16.2 ± 5.5 (34) 3.16 ± 0.16 (5.7) 17.3 ± 0.58 (3.4)

Desmethoxycurcumin 3.634 ± 0.64 117.1 ± 1.2 3.26 ± 0.54 (17) 116 ± 13 (11) 3.63 ± 0.13 (3.6) 117 ± 2.2 (1.9)

Curcumin 11.17 ± 0.21 822 ± 11 11.6 ± 2.1 (18) 801 ± 123 (15) 11.20 ± 0.43 (3.8) 822 ± 22 (2.7)

Catechins Target DSQAP exercise I (n = 17–28) HAMQAP exercise 5 (n = 6–12)

SRM 3255

Catechin 8.88 ± 0.90 9.84 ± 2.37 (24) 7.95 ± 0.88 (11)

Epicatechin 45.8 ± 6.5 43.2 ± 5.8 (13) 38.3 ± 2.1 (5.5)

Epicatechin gallate 97.2 ± 7.6 95.1 ± 13.4 (14) 94.9 ± 3.5 (3.7)

Epigallocatechin 79.2 ± 6.3 62.9 ± 34.8 (55) 82.4 ± 6.6 (8.0)

Epigallocatechin gallate 409 ± 18 408 ± 39 (10) 406 ± 2.5 (0.6)

Gallocatechin 21.3 ± 1.6 28.0 ± 20.2 (72) 19.8 ± 1.9 (9.6)

Gallocatechin gallate 37.8 ± 1.9 43.1 ± 10.6 (25) 42.8 ± 1.5 (3.5)

Target (NIST-assigned) values and participant consensus (QAP exercise) values are listed for distributed SRMs. The range for the number of labs which reported data for individual

analytes is noted (n); the uncertainty for each result is the standard deviation; the percent RSDs of the consensus values for each analyte are indicated in parentheses.

FIGURE 7 | (A) Overlay of NMR spectra analyses of NIST SRM 3247 Ginkgo (G. biloba L.) extract (black trace) vs. a product obtained from the market purported to

be Ginkgo extract (green line). Differences in peak frequencies and intensities were noted in the aromatic and aliphatic regions (6–8 and 1–3 ppm, respectively); green

asterisks indicate rutin peaks. (B) Dendrogram analysis of the hierarchical clustering resulting from unsupervised analyses of NMR spectra of various Ginkgo products.

Non-targeted NMR profiling of Ginkgo extracts (GbE) was conducted on NTP test articles (1, 1A, 1F), products procured from the U.S. market claimed as containing

Ginkgo (A-T), NIST SRM 3247 Ginkgo extract (U), and NIST SRM 3248 Ginkgo SODF (V). Samples with spectra characteristic of Ginkgo clustered together (red),

including NIST SRMs (black box), while samples with very low levels of flavonols and terpene trilactones were clustered separately (green and blue). Adapted with

permission from Collins et al. (116), under Creative Commons license (https://creativecommons.org/licenses/by/4.0/legalcode).

identify potential harm of short- and long-term exposure to
certain botanicals.17 NTP safety studies are designed to test

17NTP Botanical Dietary Supplements: https://ntp.niehs.nih.gov/whatwestudy/

topics/botanical/index.html.

botanical preparations that represent what the general public
will be exposed to via the dietary supplement market. NTP
researchers use authenticated reference materials in quantitative
measurements of key bioactive or marker compounds as
well as in qualitative non-targeted profiling to thoroughly
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TABLE 8 | Examples of reported uses of NIST botanical matrix SRMs.

SRM References Uses Comments

Method

dev./ valid.

QC Novel

research

Ephedra

3243

3244

Andrews et al. (77) X SRMs analyzed as controls for the determination of caffeine

Green tea

3254

3255

3256

Castro et al. (122) X Method development for quantification of caffeine and catechins using

LC-particle beam/electron ionization MS

3255 Napolitano et al. (102) X Compared qNMR and LC-MS/MS methods for quantification of catechins

using SRM for assessment of accuracy

3254 Punyasiri et al. (80) X SRM used to validate a new sample preparation method involving freeze

drying of the samples prior to extraction and analysis

3254

3255

3256

Andrews et al. (105) X Used as QC material to evaluate laboratory capabilities and measurement

performance for catechins and caffeine

3254 Kellogg et al. (81) X Comparison of conventional and accelerated-solvent extraction for

catechins from green tea; SRM used as one of four samples evaluated; not

compared to certified values

3254

3255

3256

Kellogg et al. (83) X Comparison of metabolomic approaches for assessing variability of

botanical green tea preparations including SRMs as reference samples

3254 Tian et al. (82) X SRM used in studies of intestinal UDP-glucuronosyltransferase inhibitors in

green tea using a biochemometric approach

3254

3248

Crighton et al. (73) X Investigating application of DSA-TOF for screening adulterated dietary

supplements

3254

3255

3256

Gusev et al. (106) X Used in a disintegration and dissolution testing study for green tea dietary

supplements to evaluate formulation performance

3254

3255

3256

Clark et al. (84) X SRMs used as sample for interlaboratory comparison of untargeted MS to

assess variability in metabolomic studies

Ginkgo biloba

3246 Castro et al. (123) X Validation of sample preparation and detection of elements by ICP-OES

3246

3248

Booker et al. (101) X SRMs included in study of adulteration of Ginkgo biloba products; HPTLC

analysis shown in paper includes SRMs

3247

3248

Catlin et al. (117) X SRMs used to determine chemical and biological similarity of Ginkgo biloba

extracts

3247 Collins et al. (116) X SRMs used in non-targeted and targeted chromatographic and

spectrophotometric studies of 24 commercially available Ginkgo biloba

extracts

Saw palmetto

3251 Srigley et al. (97) X Used in the analysis of virgin olive oil for determination of desmethlsterols,

campesterol, stigmasterol, and β-sitosterol.

3251 Penugonda and

Lindshield (96)

X Used for the determination of fatty acids and phytosterols in commercial

saw palmetto supplements

Botanical oils

3274 Ahn et al. (93) X Validation of GC-MS method for fatty acids in food supplement oil products;

comparison with certified values

Fish oils

3275 Khoomrung et al. (92) X Validation of sample preparation method for fatty acid methyl esters using

microwave-assisted derivation

3275 Srigley and Rader

(90)

X Determination of fatty acids in various fish oil supplements; chromatograms

for analysis of SRM 3275 and comparison to certified values using a novel

ionic liquid stationary phase for method validation

(Continued)
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TABLE 8 | Continued

SRM References Uses Comments

Method

dev./ valid.

QC Novel

research

3275 Weatherly et al. (91) X Evaluated ionic liquid GC phases for separation of fatty acids; compared

results for three fatty acids

3275 Karunathilaka et al.

(86)

X Validation of portable FTIR Device for prediction of fatty acid content in

marine oil omega-3 dietary supplements

3275 Karunathilaka et al.

(88)

X SRMs used to validate ATR-FTIR and FT-NIR chemometric method for

quantification of fatty acids

3275 Trbovic et al. (124) X Used for QC in GC-FID method for fatty acids in fish tissue and feed

3275 Li and Srigley (87) X Validation of GC-FID method for log chain omega-3 polyunsaturated fatty

acids in chewable gel dietary supplements

Soy

3238 Zhang et al. (125) X Development and validation of LC-particle beam/electron ionization MS for

determination of isoflavones

3234 Kambhampati et al.

(126)

X Method development for protein quantification via determination of amino

acids

Turmeric

3299

3300

Mudge et al. (111) X Used in multi-laboratory study for determination of curcuminoids in turmeric

dietary supplements by HPLC-DAD

Uses include method development and/or validation, quality control (QC), and novel research investigations.

determine the composition of candidate test articles to
the extent practicable (115). This approach has been used
following the NTP studies of G. biloba (Figure 7) (116–
118), and in advance of studies on A. racemose—(119) and
Echinacea purpurea (L.) Moench (119, 120). Importantly,
these characterizations are reported openly, enabling improved
research reproducibility and allowing a critical review of
the composition of the specific test article chosen for each
NTP study. In this way, the merits of botanical safety
studies can be assessed in part based on how well the
selected test article was representative of products on the
market, authenticated reference materials (when available), and
consensus quality standards (121).

Notably, these assessments of the chemical similarities
and differences between reference materials, commercial
ingredients/products, and experimental preparations by
NTP researchers underscore how the inherent complexity
and variability of NPs can confound research on their
safety. For example, investigation of more than a dozen
preparations of E. purpurea and A. racemosa demonstrated
how samples could match characteristics of authentic material
in orthogonal targeted and non-targeted chemical profile
screening and yet yield different or even opposing bioactivities
in CYP450 gene expression assays (119). Furthermore, the
influence of sample preparation techniques is highlighted
by the observation that hydrolyzing glycosides to the
corresponding aglycones resulted in a decreased ability to
chemically differentiate between authenticated and characteristic
G. biloba materials and those samples that had been deemed
as uncharacteristic (116). When certified reference materials
are available, as was the case for G. biloba extract, their use
can be vital to identifying and confidently addressing these
analytical challenges.

DISCUSSION

As described in the above case studies, the use of reference
materials and validated analytical methods in NP biomedical
research promote accurate and reliable measurements of dietary
constituents and their metabolites (Table 8). Unsurprisingly, the
DS matrix CRMs with the highest prevalence of reported use
are those that have been available for nearly a decade (i.e.,
multivitamin/multielement, fish and botanical oils, Ginkgo, and
green tea). However, several important botanical matrix CRMs
have been released in recent years or are near completion
that significantly broaden the library of available materials.
These CRMs, which are listed in Table 1, include kelp (Thallus
laminariae), yerba mate (Ilex paraguariensis A.St.-Hil.) leaves,
turmeric (Curcuma longa L.), ginger (Z. officinale), kudzu
[Pueraria montana var. lobata (Willd.) Maesen and S.M. Almeida
ex Sanjappa and Predeep], and Asian ginseng (P. ginseng). These
newly available CRMs should find extensive use in not only
method development/validation and quality control applications
but also in novel research applications. In addition, several
more botanical-derived DS ingredients are currently under
development by NIH-ODS/NIST as candidate matrix SRMs,
including black cohosh (A. racemosa), yohimbe [Pausinystalia
johimbe (K. Schum.) Pierre ex Beille], eleuthero [Eleutherococcus
senticosus (Rupr. and Maxim.) Maxim.], and ashwagandha
[Withania somnifera (L.) Dunal] (Table 3). Although still under
development, in certain circumstances these candidate DS
SRMs may be made available to researchers who are initiating
studies involving the use and/or characterization of interventions
derived from these botanicals18.

18NIH-ODS AMRM Program RMs for DS Analysis: https://ods.od.nih.gov/

Research/AMRMReferenceMaterials.asp
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CONCLUSION

Scientists conducting NP research are encouraged to utilize the
approaches for analytical method validation and the growing
number of RM resources described herein to improve the
overall quality of chemical measurements and to expand the
knowledge base on the chemical characterization of NPs and
DS. The enhanced analytical capacity that comes from leveraging
reference materials and validated methods, in turn, optimizes the
evidence base for dietary guidelines and healthcare practice as it
relates to the use of dietary interventions to help maintain health
and reduce illness.
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Bioactive dietary polyphenols in grape (Vitis vinifera) have been used in Dietary

Supplements (DSs) with the aim to prevent numerous diseases, including cardiovascular

and neurodegenerative diseases, and to reduce depression and anxiety. Given prior

recognition that DSs can be quality challenged from the purity, authentication,

adulteration, and actual concentration of targeted bioactives, to ensure consumer health

protection as well as the quality and safety of grape polyphenol-based DSs, the present

investigation was aimed at establishing a comprehensive quality control (QC) approach

for grape polyphenol-based DSs in support of a human clinical study. In this study,

the manufactured grape seed polyphenol extract (GSPE) and trans-resveratrol (RSV)

capsules and Concord Grape Juice (CGJ) along with the corresponding original drug

materials were analyzed using the developed different liquid chromatography/UV-visible

spectroscopy/mass spectrometry (LC/UV-Vis/MS) methods. The weight variation of

GSPE and RSV capsules was also evaluated according to the US Pharmacopeia

(USP) tests. The results indicate that the total identified polyphenol content in each

grape seed extract (GSE) capsule/CGJ is very similar and all GSE/RSV capsules pass

the content/weight uniformity test. Given the complexity of these and many botanical

products from the issues of purity, quality, adulteration, consistency, and their coupling to

the complex chemistry in each grape-derived botanical, quality assurance and the steps

needed to ensure grape-derived DSs being well homogeneous and stable and containing

the known and expected bioactives at specific concentration ranges are fundamental to
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any research study and in particular to a clinical trial. Each of these issues is essential to

provide a solid foundation uponwhich clinical trials with botanicals can be conductedwith

the goal of realizing measurable mental health outcomes such as reducing depression

and anxiety as well as understanding of their underlying biological mechanisms.

Keywords: botanicals, quality control, grape seed extract (GSE), resveratrol, grape juice, LC/UV-Vis/MS, product

quality, authentication

INTRODUCTION

Consumer interest in the use of botanical dietary supplements
(DSs) continues to increase. The global DS marketplace was
valued at USD 132.8 billion in 2016 and expected to reach USD
220.3 billion in 2022 (1). In particular, the US ranks as the leading
country in botanical DS consumption. It is estimated that 77%
of US adults consume DSs on a regular basis (2). The consumer
demand and growth in the DS industry reinforce the importance
of ensuring safe and high-quality DS products.

Vitis vinifera (grape) is one of the most widely cultivated fruit
species in the world, and the total production of grapes
worldwide is ∼60 million tons (3). Grape and grape-
derived products contain a unique mixture of bioactive
dietary polyphenols, which have long been reported to
have antioxidant and positive health promoting effects
and associated with the prevention of numerous diseases,
including cardiovascular and neurodegenerative diseases
as well as several forms of cancers (4–6). Previous studies
have investigated the disease preventative effect of some
specific grape polyphenol forms, including resveratrol
(RSV), proanthocyanidins, and anthocyanins (7–9). Thus,
grapes and their byproducts are the ideal candidates
for DSs.

Most grape polyphenols can be found in grape juice after an
extraction through pressing, and Concord Grape Juice (CGJ) is
one of the main processed products of grapes. Grape seed is also
one of the major industrial byproduct of the winemaking process,
and more than 70% of grape phenolics can be retained in skins
and seeds (10). Therefore, grape seed extract (GSE) is a popular
and widely used DS in the USA. Trans-RSV (systematically
termed as trans-3,5,4′-trihydroxystilbene), which is produced by
grape berries of Vitis varieties in response to UV irradiation, is
an antioxidant compound found in the skin of grapes (11). The
potential role of RSV in health promotion, such as the prevention
and treatment of diabetes, cancer, obesity, pain, inflammation,
tissue damage, and even “aging,” has made it increasingly popular
in recent years as a DS (12).

However, the adulteration of grape-derived botanical products
can also be a significant problem. In a study, using liquid
chromatography–mass spectrometry (LC-MS) and thin layer
chromatography (TLC), researchers found that of 21 commercial
GSE products 6 were adulterated and might contain allergens,
notably peanut skins (13). Because consumers rely on label
claims and other information that are provided directly from
the supplier, the adulteration of those DSs, especially with a
common allergen, represents a considerable risk to public safety.

Therefore, more sophisticated and proper analytical tests are
needed to detect such adulteration.

Chemistry, Manufacturing, and Controls (CMC) is an
integral part of any pharmaceutical product application to
FDA. There is an intrinsic link between the CMC attributes
of a pharmaceutical product and the safety and efficacy
of clinical therapy (14). The US Pharmacopeia (USP) and
the National Formulary (NF) drug substance and excipient
monographs, as well as general tests and procedures, are
frequently cited in New Drug Applications (NDA) (15), and
a summary of pharmaceutical test scheme for pharmaceuticals
and DSs is presented in Table 1. Because of the coupling
of CMC to the recognition that some commercial botanical
products on the marketplace were quality challenged, to
ensure consumer health protection as well as the quality and
safety of grape-based DSs, the present research was aimed at
establishing a clear and comprehensive quality control (QC)
approach for the grape-based DS that would be used for
clinical trials. In this study, GSE and RSV capsules and CGJ
were analyzed using our optimized high-performance liquid
chromatography coupled with UV coupled with electrospray
ionization tandem mass spectrometry (HPLC-UV/Vis-MS) and
ultra-high-performance liquid chromatography coupled to triple
quadrupole mass spectrometry (UHPLC-QQQ/MS) methods.
The weight variation of GSE and RSV capsules was also evaluated
according to the USP tests.

MATERIALS AND METHODS

Chemical Reagents
US Pharmacopeia reference standard compounds, including
trans-RSV, (+)-catechin, (–)-epicatechin, gallic acid, 3-
hydroxytyrosol, isochlorogenic acid, 3, 4-dihydroxyphenylacetic
acid, 4-methyl gallic acid, 3, 4-dihydroxyphenylacetic acid,
3-hydroxybenzoic acid, caffeic acid, 4-hydroxybenzoic acid,
vanillic acid, dihydromyricetin, syringic acid, resveratrol-3-
glucoside, dihydroferulic acid, sinapic acid, taxifolin, ferulic
acid, 3-hydrocinnamic acid, phenylacetic acid, and trans-2-
hydrocinnamic acid, were purchased from Sigma Chemical
Co. (St. Louis, MO, USA). Primary analytical standard (Grade
P) compounds, including procyanidin B2, procyanidin C1,
quercetin, and cyanidin-3-glucoside, were purchased from
ChromaDex (Irvine, CA, USA). The HPLC grade water,
acetonitrile (ACN), methanol (MeOH), formic acid (FA), and
trifluoroacetic acid (TFA) were obtained from Fisher Scientific
Co. (Fair Lawn, NJ, USA).
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TABLE 1 | Pharmaceutical test scheme for pharmaceuticals and dietary supplements (DSs).

Pharmaceuticals Dietary supplements

<301> Acid-neutralizing capacity <1216> Tablet friability

<701> Disintegration <2040> Disintegration and dissolution of dietary supplements

<711> Dissolution <2091> Weight variation of dietary supplements

<724> Drug release <2750> Manufacturing practices of dietary supplements

<785> Osmolarity

<905> Uniformity of dosage forms

<1087> Apparent intrinsic dissolution—dissolution testing procedures for rotating disk and stationary disk

<1088> In vitro and in vivo dissolution evaluation of dosage forms

<1090> Assessment of drug product performance—bioavailability, bioequivalence, and dissolution

<1216> Tablet friability

Note: Numbers in angular brackets refer to chapter numbers in the General Chapters section from US Pharmacopeia (USP) 41 and National Formulary (NF) 36.

Drug Material Sourcing
Three kinds of grape-based DSs were analyzed.

MegaNatural R© grape seed polyphenol extract (GSPE) was
purchased from Polyphenolics Company (Madera, CA, USA).
The grapes were grown in California, USA and certified by Halal
(IFANCA), and the final GSPE product was processed using hot
water extraction at a ratio of 30:1 or−50:1 (dry seed: extract).

Synthetic trans-RSV was purchased from BannerBio
Nutraceuticals, Inc. (Nanshan District, Shenzhen, China).

The CGJ concentrate was provided by Welch Foods, Inc.
(Westfield, NY, USA). The CGJ concentrate was squeezed from
Concord grapes grown and harvested in the Eastern USA
growing region and processed in Westfield, NY, USA, within
8 h of harvest, and were pasteurized to achieve a 5-log pathogen
reduction and commercial sterility.

Manufacturing of GSPE and RSV Capsules
and CGJ
Original GSPE and RSV materials were delivered to Eagle
Nutritionals (Carlstadt, NJ, USA) to manufacture the final
products using encapsulation at specific concentrations required
for planned clinical trials in a NIH-funded U19 study. Briefly,
for GSPE capsules, 450mg of GSPE powders and 50mg of silica
were filled into #0 purple/white hard gelatin capsules. For RSV
capsules, three different weight levels (150, 300, and 450mg) of
RSV powders were encapsuled using #0 green capsules.

Concord Grape Juice is reconstituted from the CGJ
concentrate to single strength 100% CGJ. The general process
flow was shown in Figure 1. Briefly, 129.8 kg of distilled water
was transferred into a 50-gallon batch tank and warmed up to
room temperature, and 50.2 kg of the CGJ concentrate was added
to the tank. The mixer was warmed to 30◦C and gently mixed
for 10–15min to ensure proper mixing. A mixer sample was
analyzed for pH and adjusted with remaining water as needed
to achieve the target of 16.1◦brix and to achieve and confirm
the final pH of 3.5–3.7. The final product was transferred to an
original product holding tank in a thermalization room adjacent
to the Microthermics. Finally, the CGJ was hot filled into 8
oz PET bottles, and following cooling to <40◦C bottles it was
removed from a bath, dried, and inspected.

QC of Original Drug Materials of GSPE,
RSV, and CGJ Concentrate
QC of Original GSPE Materials
The container and inside package of the GSPE original
material product were opened and from five distinctly different
physical locations subsampled for chemical profiling in Eagle
Nutritionals using standard industry subsampling procedures.
The five subsamples were carefully placed into ziplock plastic
bags, labeled, and then transported to Rutgers University for
chemical analysis in our lab. For each of the five subsamples,
three replicates were made in parallel for the QC process.
Approximately 30mg of GSPE original material was accurately
weighted and prepared in 10ml 70% MeOH with 1% FA,
vigorously vortexed, and sonicated for 10min. An aliquot of
200 µl of the extract was diluted by mixing with 0.8ml 70%
MeOH with 1% FA and centrifuged at 16,000 rpm for 10min,
and then the supernatant was injected for the LC-UV/Vis-
MS analysis.

For the preparation of reference solutions of gallic acid, (+)-
catechin, (–)-epicatechin, procyanidin B2, and procyanidin C1,
ca. 5mg of each standard was accurately weighed and diluted
to 10ml using 70% MeOH with 1% FA. Each standard stock
solution was sonicated for 10min, and was allowed to cool down
to room temperature. Next, 2ml of each standard stock solution
was allowed to combined together with each other and sonicated
for 10min to mix well to form a standard mixture of gallic acid,
(+)-catechin, (–)-epicatechin, procyanidin B2, and procyanidin
C1. Further serial dilutions up to 100∼0.1µg/ml were made
using the same solvent.

An Agilent 1290 Infinity II UHPLC (Agilent Technology, Palo
Alto, CA, USA) equipped with a diode array detector (DAD) and
6546 quadrupole time-of-flight (Q-TOF) MS with electrospray
ionization source (ESI) (Santa Clara, CA, USA) was used for
chromatographic separation. Nitrogen generated from the Parker
Balston NitroFlow60NA nitrogen generator was used for MS
electrospray ionization. MassHunter Workstation software Data
Acquisition (version B.08.00) was used for data processing. An
Agilent Polaris Amide-C18 (250 × 4.6mm, 3µm) column was
used for compound separation. For the LC part, the mobile phase
A was water with 0.1% FA, and mobile phase B was ACN with
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FIGURE 1 | Concord Grape Juice (CGJ) processing flow.

0.1% FA. The gradient was 2% B at 0min and held for 3min,
raised to 15% B at 15min and held until 25min, then raised to
35% B at 50min, 60% B at 51min, and held until 55min. The
column was equilibrated with 2% B for 3min between injections.
The flow rate was 0.8 ml/min. The column was set at 40◦C, and
an autosampler was maintained at 4◦C. The injection volume was
2.5 µl. A diode array detector (DAD) was set at 280 nm, with
the bandwidth at 4 nm. The reference wavelength was 400 nm,
with the reference bandwidth at 10 nm. For the MS condition,
the gas was dried at 300◦C with a flow rate of 12 L/min. Sheath
gas was dried at 250◦Cwith a flow rate of 12 L/min. The nebulizer
pressure was 30 psi. The VCap was 4,000V, and the nozzle voltage
was 500V. Fragmentor voltage was set at 180V, skimmer was
65V, and Oct 1 RF Vpp was 750V. The scan ranged from 150
to 1,700 m/z. Acquisition rate was 6 spectra/s.

Gallic acid, catechin, and epicatechin were quantified with
the calibration curve of corresponding reference standards.
Procyanidin dimers (P2) were quantified based on the calibration
curve of procyanidin B2, and procyanidin trimers (P3) were
quantified based on the calibration curve of procyanidin C1 as
shown in Supplementary Table S1.

QC of Original RSV Materials
The container and inside package of the RSV original material
product were opened and from three different physical locations
subsampled for chemical profiling in Eagle Nutritionals.
Reference standard and RSV samples were prepared under dark
conditions, and opaque Falcon R© tubes and brown Eppendorf R©

tubes were used. For each of the three subsamples, three replicates
were made in parallel for the QC process. ca. 50mg was
accurately weighed and dissolved in 10ml 70% MeOH with 1%

FA. An aliquot of 100 µl of the extract was diluted by mixing
with 9.9ml 70% MeOH with 1% FA, and then 100 µl of each
diluted sample was further diluted to 1ml with the same solvent.
The solution was centrifuged at 12,000 rpm for 5min, and then
an aliquot of 2.5 µl of the supernatant was injected into UHPLC
for analysis.

For the preparation of reference solutions of trans-RSV, ca.
5mg of the standard was accurately weighed and diluted to 10ml
using 70% MeOH with 1% FA. The stock solution was sonicated
for 10min and was allowed to cool down to room temperature.
Further serial dilutions up to 200∼0.1µg/ml weremade using the
same solvent.

Agilent 1290 Infinity II UHPLC equipped with DAD and
6546 Q-TOF MS with ESI were used for chromatographic
separation. The column used for the RSV QC test was KinetexTM

(Torrance, CA 90501-1430 USA) C18 column (CO, USA), the
particle size was 2.6µm, and the size was 100 × 2.1mm. For
the LC condition, water with 0.1% FA was used as mobile
phase A, and ACN with 0.1% FA was used as mobile phase
B. The gradient was 25% B at 0min, then raised to 60%
B at 4min, held until 4.5min, then dropped to 25% B at
5min. The flow rate was 0.35 ml/min, and the column was
equilibrated with 25% B for 1min between injections. The
column was set at 40◦C, and an autosampler was maintained
at 4◦C. The injection volume was 2.5 µl. The DAD was
set at 210 nm (as the wavelength for general impurities),
280 nm (as the absorption maximum of trans-RSV), and 305 nm
(for the possible degradation product cis-RSV). Trans-RSV
in the RSV capsule was quantified based on the reference
standard calibration curve under 280 nm. The calibration curve
parameters are presented in Supplementary Table S1.
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QC of CGJ Concentrate

Determination of Anthocyanidins and Flavonols

Using LC-UV/Vis-MS
Three replicates of the CGJ concentrate were made in parallel for
the QC process. To prepare the CGJ concentrate, 2.5ml of the
CGJ concentrate was diluted in 7.5ml water. All samples were
centrifugated at 12,000 rpm for 10min, and the supernatant was
directly injected into UHPLC. For the preparation of reference
solutions of cyanidin-3-glucoside and quercetin, ca. 10mg of
each standard was accurately weighed and diluted up to 10ml
using 70%MeOH with 1% FA. Then, the standard stock solution
was sonicated for 10min and allowed to cool down up to room
temperature. Afterward, 0.5ml of all standard stock solutions
were combined together and sonicated for 10min to mix well to
form a standard mixture. An aliquot of 200 µl stock solution was
then spiked into 0.8ml 70% MeOH with 1% FA to make the first
working solution. Further serial dilutions of 100∼0.1µg/ml were
made using the same solvent.

The Agilent 1290 Infinity II UHPLC equipped with DAD was
used for chromatographic separation, and the column Agilent
Polaris Amide-C18 (250 × 4.6mm) was used for compound
separation. The mobile phase A was water with 0.4% TFA, and
B was ACN with 0.4% TFA. The flow rate was 0.8 ml/min. The
gradient was 10–20% B from 0 to 20min; 20–30% B from 20 to
35min; isocratic elution at 30% B from 35 to 40min; 30–60%
from 40 to 50min; and kept 60% from 50 to 55min, then dropped
to 10% B in 0.5min. The column was equilibrated with 10% B for
2min between injections. The column was set at 40◦C, and an
autosampler was maintained at 4◦C. The injection volume was
2.5 µl. The DAD was set at 370 nm (as the absorption maximum
of most flavonols) and 520 nm (as the absorption maximum
of most anthocyanidins) with the bandwidth of 4 nm, and the
reference wavelengths were set at 500 and 360 nm, respectively,
with the reference bandwidth at 10 nm.

Anthocyanidins were quantified based on the calibration
curve of cyanidin-3-glucoside at 520 nm, and the quantity was
further adjusted based on the molecular weight ratio. Flavonols
were quantified based on the calibration curve of quercetin at
370 nm, with a further adjustment of the quantity based on
the corresponding molecular weight ratio. The calibration curve
parameters are shown in Supplementary Table S1.

Determination of Other Phenolic Compounds

Using UHPLC-QQQ/MS
To prepare the CGJ concentrate, 2.5ml of the CGJ concentrate
was diluted in 7.5ml water. Then, the diluted CGJ concentrate
samples were further diluted using 1% FA acidified 70% MeOH
solution (1:10). The prepared samples were centrifugated at
12,000 rpm for 10min, and the supernatant was directly injected
into UHPLC. Three replicates were made in parallel for the
QC process.

For the preparation of reference solutions of 3-hydroxytyrosol
isochlorogenic acid, 3,4-dihydroxybenzoic acid, 4-methyl gallic
acid, catechin, procyanidin B2, epicatechin, 3-hydroxybenzoic
acid, caffeic acid, 4-hydroxybenzoic acid, vanillic acid,
dihydromyricetin, syringic acid, resveratrol-3-glycoside,
dihydroferulic acid, 3-hydroxycinnamic acid, taxifolin,

sinapic acid, ferulic acid, phenylacetic acid, and trans-2-
hydroxycinnamic acid, ca. 10mg of each standard was accurately
weighed and diluted to 10ml using 70% MeOH with 1% FA.
Each standard stock solution was sonicated for 10min, and was
allowed to cool down to room temperature. About 0.5ml of each
standard stock solution was combined together with each other
and sonicated for 10min to mix well to form a standard mixture.
An aliquot of 100 µl stock solution was spiked into 10ml 70%
MeOH with 1% FA to make the first work solution. Further
serial dilutions up to 5,000∼0.1 ng/ml were made using the same
solvent. For the preparation of samples, nine replicates were
made in parallel for the QC process. All samples were diluted
using 1% FA acidified 70% MeOH solution (1:10). The prepared
samples were centrifugated at 16,000 rpm for 10min, and the
supernatant was directly injected into UHPLC.

The instrument used for chemical analysis was an Agilent
1290 Infinity II UHPLC (Agilent Technology, Palo Alto, CA,
USA) hyphenated with 6470 triple quadrupole MS with ESI
(Santa Clara, CA, USA). Agilent MassHunter Optimizer (version
B.07.00) for standard compound-related parameter optimization
andMassHunterWorkstation software Data Acquisition (version
B.08.00) and Quantitative Analysis (version B.07.01) for data
processing were used. The column used for this section
separation was an Agilent SB-AQ RRHD UHPLC column, the
particle size was 1.8µm, and the size was 150 × 2.1mm with an
SB-AQ guard column (2.1× 5mm, 1.8µm). Nitrogen generated
from Parker Balston NitroFlow60NA nitrogen generator was
used for MS electrospray ionization. For the LC parameters,
the mobile phase A was 0.1% FA in water, and mobile phase B
was 0.1% FA in ACN. The flow rate was 0.2 ml/min, and the
injection volume was 2.5 µl. The gradient was 4% B to 40% B
in 6min, and raised to 60% B from 6 to 10min, then held at
60% B for 0.5min, and dropped to 4% B in 0.5min. The column
was equilibrated with 4% B for 1min between injections. The
column was thermostatted at 30◦C, and an autosampler was set
to 4◦C. Nitrogen was used as the nebulizing and drying gas.
The nebulizer was set to 30 psi and the drying gas was set to
300◦C with a flow rate of 13 L/min. The sheath gas was set to
250◦C with a flow rate of 12 L/min. In the scan mode, dynamic
multiple reactions of monitoring (dMRM) were optimized using
MassHunter Optimizer as priorly reported, with the parameters
presented in Table 2.

All calibration curves based on 8–15 points and the calibration
curve parameters, coefficient of determination (r2), linear
range, lower limit of detection (LLOD), and lower limit of
quantification (LLOQ) of all target analytes are shown in
Supplementary Table S2.

QC of GSPE, RSV Capsules, and CGJ
Determination of Weight Uniformity of RSV and GSE

Capsules
The mass uniformity of the individual unit dosages contained
in each RSV and GSE capsule was performed according to USP,
2091 (19). The calibration of the balance was confirmed prior
to the start of the study and at the conclusion of the study.
Briefly, 20 intact capsules of each kind of DSs were individually
weighed using an electronic balance, and themass of each capsule
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TABLE 2 | The information for dynamic multiple reactions of monitoring (dMRM) parameters.

Compound Retention time

(min)

MS/MS transition (dMRM) Fragementor

voltage (V)

Collision energy (V)

Presursor ion (m/z) Production (m/z) (quantifier/qualifier)

3-hydroxytyrosol 4.95 153.1 122.4/123.1 95 23/15

isochlorogenic acid 5.14 353.1 191.0/179.0 105 16/16

3,4-dihydroxybenzoic acid 5.34 153.0 109.0/108.1 86 12/28

4-methyl gallic acid 5.67 183.0 168.0/124.1 90 8/16

Catechin 5.94 289.1 245.2/123.1 120 12/36

procyanidin B2 5.97 579.2 127.0/287.1 120 33/37

Epicatechin 6.25 289.1 245.2/203.1 134 12/20

3-hydroxybenzoic acid 6.40 137.0 93.1/N.D. 88 8/N.D.a

caffeic acid 6.56 179.0 135.1/89.1 88 16/36

4-hydroxybenzoic acid 6.64 137.0 93.1/65.2 76 16/36

vanillic acid 6.66 167.0 152.0/108.1 80 12/16

Dihydromyricetin 6.75 319.0 193.0/301.0 100 4/8

syringic acid 6.78 197.0 182.0/167.0 90 13/17

resveratrol-3-glycoside 7.03 389.1 227.0/185.0 140 13/37

dihydroferulic acid 7.26 195.1 136.1/121.1 100 11/27

sinapic acid 7.73 223.1 208.0/193.0 90 9/21

Taxifolin 7.73 303.0 285.0/177.0 110 9/9

ferulic acid 7.75 193.1 134.1/N.D. 88 16/N.D.

3-hydroxycinnamic acid 7.82 163.0 119.1/91.1 94 12/28

phenylacetic acid 8.13 135.0 91.2/N.D. 50 4/N.D.

trans-2-hydroxycinnamic acid 8.18 163.0 119.1/117.0 80 12/36

N.Da, not detected.

content was recorded to 1/10 of a milligram (0.1mg). After
that, the average mass and its SD were calculated. Moreover,
the requirements are met if the individual weights lie within the
range of 90.0–110.0% of the average weight, and the relative SD
(RSD) is ≤6.0%.

For any capsules falling within the aforementioned limits, the
contents of each capsule should be removed and the emptied
shells need to be weighed individually. The net weight could
be calculated by subtracting the weight of the shell from the
respective gross weight, and the average net content could be
determined from the sum of the individual net weights. After
that, the difference between each individual net content and the
average net content should be determined. The requirements are
met if no more than two differences are >10% of the average net
content, and in any case the difference does not exceed 25%.

Determination of Content Uniformity of the GSPE

Capsule
For the preparation of GSE capsules, nine replicates were made
in parallel for the QC process. The contents of each capsule were
removed with the aid of a small brush or pledget of cotton and
dissolved in 50ml 70% MeOH with 1% FA, vigorously vortexed,
and sonicated for 10min. An aliquot of 100 µl of the extract was
diluted bymixing with 0.9ml 70%MeOHwith 1% FA centrifuged
at 16,000 rpm for 10min, and then the supernatant was injected
for the LC-UV/Vis-MS analysis.

For reference solutions of RSV capsules, ca. 10mg of trans-
RSV standard was accurately weighed and diluted to 10ml using

70% MeOH with 1% FA. The standard stock solution was then
sonicated for 10min and was allowed to cool down to room
temperature. An aliquot of 100 µl stock solution was spiked into
0.9ml 70%MeOHwith 1% FA tomake the first working solution.
Further serial dilutions up to 100∼0.1µg/ml were made using
the same solvent. The LC-MS conditions might be the same as
mentioned in section QC of Original GSPE Materials.

Determination of RSV Capsule Purity and Content

Uniformity
For the preparation of RSV capsule samples, nine replicates
were made in parallel for the QC process. The contents of
each capsule were removed with the aid of a small brush or
pledget of cotton and dissolved in 50ml 70% MeOH with 1%
FA. The solution was vigorously vortexed and sonicated for
10min. An aliquot of 100 µl of the extract was diluted by mixing
with 0.9ml 1% FA in 70% MeOH solution. The solution was
centrifuged at 16,000 rpm for 10min, and then the supernatant
was injected for the LC-UV/Vis-MS analysis. The reference
standard solution preparation and LC-MS conditions might be
the same as described in section QC of Original RSV Materials.

Determination of Content Uniformity of CGJ

Determination of Anthocyanidins and Flavonols

Using LC-UV/Vis-MS
For each of the samples, nine replicates were made in parallel
for the QC process. All samples were analyzed without dilution
and centrifugated at 12,000 rpm for 10min. The supernatant was
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directly injected into UHPLC. All other experimental conditions
might be the same as described in section Determination of
Anthocyanidins and Flavonols Using LC-UV/Vis-MS.

Determination of Other Phenolic Compounds

Using UHPLC-QQQ/MS
For the preparation of samples, nine replicates were made in
parallel for the QC process. All samples were diluted using 1%
FA acidified 70% MeOH solution (1:10). The prepared samples
were then centrifugated at 16,000 rpm for 10min, and the
supernatant was directly injected into UHPLC. The reference
standard solution preparation and LC-MS conditions might be
the same as described in sectionDetermination of Other Phenolic
Compounds Using UHPLC-QQQ/MS.

Preliminary Stability Study of CGJ
Concord Grape Juice and CGJ placebo bottles were stored in a
refrigerator cooler, Heat Craft Unit—Compressor Model #CDT-
501H2, Model #CHL 450, with the average storage temperature
maintained between 0.6 and 2.22◦C at the FDA-approved Rutgers
Food Innovation Center, Bridgeton, NJ, USA. From the 36 bottles
of CGJ, 3 CGJ samples were randomly selected at each time
point as shown in Supplementary Table S10, and for each of
the samples, three replicates were made in parallel for the QC
process. About 5ml of CGJ sample was mixed with 5ml MeOH,
vortex for 10 s. Aliquots of 1ml were transferred to Eppendorf
tubes, stored in a paper box, and put it into a−20-degree freezer.
While this study was originally designed as a longer-term stability
study, for this work described here all the samples were analyzed
at themonth 6 time point as described in section CGJ Preliminary
Stability Study at Month 6 Time Point.

Dissolution Study of GSPE and RSV
Capsules
Grape seed extract and RSV capsules were tested for dissolution
based on the recommendations of the FDA and USP 39
general chapters <2040> and <711> (16, 17). Briefly, the two
dissolution media, 0.1N hydrochloric acid (pH 1.2) and 0.05M
acetate buffer (pH 4.6), were evaluated withUSPApparatus 2, 100
rpm rotation speed, and 900ml dissolution medium. Dissolution
profiles were generated over 120min. Gallic acid, catechin,
procyanidin B2, and epicatechin were the marker compounds for
GSE capsules, and trans-RSV was a marker compound for RSV
capsules. Each of these marker compounds was quantified using
UHPLC-QQQ/MS. A detailed experiment and the results will be
described in a separate report (18).

Statistical Analysis
Raw UV and MS data were processed using MassHunter
Workstation software Data Acquisition (version B.08.00) and
Quantitative Analysis (version B.07.01). Data analysis and the
production of graphs were performed using R software (version
4.0.5), R studio (version 1.3.959), and Microsoft R© Excel for Mac
(version 16.49).

RESULTS AND DISCUSSION

Weight Uniformity Test
The primary purpose of the USP is to provide guidelines
for pharmaceutical dosage forms through a series of QC
tests, such as identification, dissolution, uniformity of dosage
units, assay, moisture, and heavy metal determinations to
confirm the products’ identity, content, and purity as well
as various other chemical, physical, and biological properties.
The term “uniformity of dosage unit” is defined as the degree
of uniformity in the amount of the drug substance among
dosage units (19). Mass uniformity results are presented in
Supplementary Table S3, and the GSE capsule weight ranges
from 593.70 to 607.90mg, and for the RSV capsule, the weight
range is 551.20–637.20mg. From the results, all of the observed
GSE and RSV capsules within the range of 90.0–110.0% of the
average weight had an RSD of 0.56 and 5.30%, respectively, which
satisfies the guidelines of the USP<2091> (19).

RSV Purity and Content Uniformity
Method Validation
Numerous studies have reported interesting properties of RSV
such as the prevention and treatment of diabetes, cancer, obesity,
pain, inflammation, tissue damage, and even aging (7, 12, 20,
21). However, during storage, photochemical and photocatalytic
degradation of trans-RSV become a problem largely due to
the cis-isomerization, which occurs when the trans-isomer is
exposed to sunlight or to artificial or natural UV radiation at
the wavelengths of 254 or 366 nm (22–26). Moreover, RSV exists
naturally as both cis- and trans-isomers in nature foods and plants
(26). Many reports and data indicate that cis- and trans-RSV
may have different biological effects (21, 27–29). Therefore, we
contend that it is necessary to determine the presence and/or
absence of cis-isomers in RSV capsules. Although HPLC is a
popular method to identify and quantify pure compounds, due
to the difficulties of isomer separation on the HPLC column,
conventional HPLC-UV/Vis method is often not adequate. Thus,
a preliminary study was performed to validate the HPLC-UV/Vis
method and to prove the cis- and trans-isomers peaks that were
not overlapped and could be clearly separated.

To prepare cis-RSV, the photochemical degradation
experiment was performed in our lab based on previous
studies (26, 30). Briefly, 2ml of ca. 1 mg/ml trans-RSV standard
stock solution was stored in a colorless glass vial. The vial was
then kept under the sun for the whole day because trans-RSV is
more easily degraded when irradiated using the entire spectral
range rather than using UV and near-UV to visible light (30).
The solution from the glass vial (solution A) and the freshly
prepared trans-RSV standard solution (solution B) both were
injected into the HPLC separately, and the chromatographs
are presented in Figure 2A. As shown in Figure 2, two major
peaks appeared in solution A under 280 and 305 nm, while
only one peak (peak b) appeared in solution B, which was the
trans-RSV peak. The second peak in solution A shares the
same retention time and same MS, suggesting that it was also
trans-RSV. The first peak (peak a) has similar MS, and has the
optimum absorbencies at 286 nm, indicating that the new peak
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FIGURE 2 | UV chromatographs of (A) trans- and cis-resveratrol (RSV); (B) RSV capsules. Peak a, cis-RSV, Peak b, trans-RSV. (A)-(1) UV chromatographs of solution

A as described in section RSV Purity and Content Uniformity: Method Validation under 305 and 280 nm; (A)-(2) UV chromatographs of solution B under 305 and

280 nm; (B) UV chromatographs of the RSV original material under 305, 280, and 210 nm; and (C) UV chromatographs of the RSV capsule under 305, 280, and

210 nm.
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FIGURE 3 | (A) UV chromatographs of the Grape Seed Extract (GSE) capsule under 280 nm and the tentative identifies and (B) the content of proanthocyanidin

trimer, proanthocyanidin dimer, epicatechin, catechin, and gallic acid in the GSE capsule using the optimized extraction method.

is cis-RSV. Therefore, this preliminary experiment indicated that
our HPLC-UV/Vis is able to separate trans- and cis-RSV.

Purity and Content Uniformity of RSV Original

Materials and Capsules
Using our rapid and validated HPLC-UV/Vmethod, our analysis
shows that all RSV original materials and capsules were free
of cis-RSV as well as other impurities and the chromatographs
(see Figures 2B,C). The trans-RSV content in the RSV capsule
is between 97.77 and 102.83% of the average, with a RSD of
1.50%. While we analyzed with the three dosages of 150, 300,
and 450mg; we present only the data with the highest dosage of
450mg as similar results were obtained for the other two lower
dosages. The average content of trans-RSV in RSV capsules was
453.71mg, which is 0.8% excess of the labeled content (450mg).
The data are presented in detail in Supplementary Table S4.

GSPE Content Uniformity
Grape seed is a byproduct in the winery and grape juice
industry, and contains lipids, proteins, carbohydrates, and
5–8% polyphenols (31). Phenolic compounds in grapes and
grape-derived products can be divided into two groups: (a)

phenolic acids and related compounds and (b) flavonoids.
The most abundant phenolic substances in grape seeds are
catechins (catechins, epicatechin, and proanthocyanidins) and
their polymers (32). The antioxidant capacities of grape seed
proanthocyanidins and natural secondary products have been
exhaustively studied. Several reports indicated that grape seed
proanthocyanidins have a wide array of positive health effects,
including antioxidant, antimicrobial, antiobesity, antidiabetic,
anti-neurodegenerative, anti-osteoarthritis, anticancer, and
cardio- and eye-protective properties (33). For this reason,
almost all GSE DSs on the market claim to have a specific
“dosage” of proanthocyanidins. Hence, in this study, the total
polyphenol content in the GSPE capsule was first tested, and
then a HPLC-UV/Vis-MS method was developed and used to
tentatively identify and quantify proanthocyanidin compounds
in GSPE capsules.

Extracting Solvent Optimization
Phenolic compounds, including polyphenols and
proanthocyanidins, vary between the extracts obtained by
different solvents. Therefore, a pre-experiment was first
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performed to compare the extraction efficiency of water and
MeOH. Briefly, the content of one GSE capsule was dissolved
with 1 L 70% MeOH acidified by 1% FA, and 1 L water acidified
by 1% FA. The solvent was sonicated for 30min. An aliquot
of 1,000 µl of the extraction solvent was then centrifugated at
16,000 rpm for 10min, and the supernatant was directly injected
into HPLC. Three replicates were made in parallel for obtaining
more accurate results. Gallic acid, epicatechin, procyanidin B2,
and epicatechin were quantified using our abovementioned
method, and the results are shown in Supplementary Figure S1.
For all the four marker compounds, 70% MeOH with 1% FA was
more efficient than water with 1% FA. This might be possible
because the solubility of those phenolic compounds in water
is fairly low, and more water-soluble polysaccharides or other
components are extracted as well (34). Hence, 70% MeOH
acidified with 1% FA was used to prepare all grape DS products
(including RSV and GSE capsules and CGJs) as well as the
reference solution. Using this specific solvent to prepare and
dilute the standard solution, a high coefficient of determination
(r2) for all the standards was achieved.

Content Uniformity and Proanthocyanidin Content in

GSPE Original Materials and Capsules
The major polyphenols in the GSPE include gallic acid and
proanthocyanidins, with monomers of catechin and epicatechin
and oligomers, were detected under UV 280 nm. The tentative
identification of proanthocyanidin compounds in GSPE was
done based on the MS data and published work (6). Figure 3A
shows a representative UV chromatogram of the GSPE capsule
at 280 nm. The tentative identities and retention times for
individual compounds are also listed in Figure 3A. Based on
the analysis of MS and UV data and their comparison with
the authenticated standards and reported data (6), a total
of 13 compounds were simultaneously identified, including
gallic acid, catechin, epicatechin, 4 proanthocyanidin trimers,
and 6 proanthocyanidin dimers. All tentatively identified
proanthocyanidin compound values in the GSPE are reported in
Supplementary Table S5 and illustrated in Figure 3B.

For the GSPE original material, the results show that the
total identified polyphenols together with gallic acid content
in the five subsamples are very similar, with a mean value of
33.37% and a RSD of 3.24%. These results suggest that the
GSPE original material was well-homogenous. For the GSPE
capsules, the results show that the content of total identified
proanthocyanidin compounds together with gallic acid in each
capsule is also very close, with a mean value of 182.75 ± 4.07mg
and an RSD of 1.43%. Moreover, catechin and epicatechin are
the major proanthocyanidin compounds in the GSPE capsules.
Each capsule contains 65.07 ± 2.01mg catechin and 61.05 ±

1.76mg epicatechin, as well as 166.45± 3.70mg of all tentatively
identified proanthocyanidin compounds, which ensured the
daily taking of 95mg of proanthocyanidins (35). All these results
suggest that GSPE capsules show high quality and homogeneity.

CGJ Content Uniformity
Concord Grape Juice contains a variety of phenolic compounds,
including anthocyanins and proanthocyanidins and relatively

high levels of total phenolics (10). Anthocyanins include red,
blue, or purple plant pigments (9). Many in vitro and in
vivo studies have indicated that grape anthocyanins appear to
exert health benefit effects, including the prevention of various
diseases, such as neuronal and cardiovascular illnesses, cancer,
and diabetes, in which reactive radical species are integral to
disease development and progression (4–6). Therefore, the total
polyphenol content in CGJ was tested, a HPLC-UV/Vis method
was used to tentatively identify and quantify the anthocyanidin
and flavanol, and a UHPLC-QQQ/MS methodology was used to
quantify phenolic compounds in CGJ.

Content of Anthocyanins, Flavonols in CGJ
The representative UV chromatograms at 520 nm (for
anthocyanins) and 370 nm (for flavonols) of CGJ are illustrated
in Figures 4A,C. The identification is done based on the UV
data and published report (6), and a total of 13 anthocyanins
(delphinidin glucoside, cyanidin glucoside, petunidin glucoside,
malvidin glucoside, peonidin glucoside, petunidin acetyl
glucoside, delphinidin coumaroyl diglucoside, malvidin
coumaroyl diglucoside, delphinidin coumaroyl glucoside,
petunidin coumaroyl glucoside, cyanidin coumaroyl glucoside,
malvidin coumaroyl glucoside, and peonidin coumaroyl
glucoside), and 5 flavonols (rutin, myricetin glucoside, quercetin
glucuronoyl, and quercetin) were tentatively identified. The
content of all identified anthocyanins and flavonols in CGJ
samples is presented in Figures 4B,D, and the details of data are
provided in Supplementary Tables S7, S8. From these results,
the total concentration of the identified anthocyanins was 177.39
± 6.67µg/ml with an RSD of 3.91%, for the flavonols, the
value was 69.82 ± 4.66µg/ml with an RSD of 5.49%. These
data suggest that CGJ is a rich source of grape anthocyanins
and flavonols, and that CGJ is well-homogeneous. Among
all the identified compounds, rutin is the most abundant
one in CGJ, with a content of 32.34–43.90µg/ml. Rutin is a
common dietary flavonoid and has been reported to possess
diverse pharmacological activities, including antioxidant,
anti-inflammatory, anticancer, antidiabetic, antimicrobial, and
neuroprotection effects (36). However, due to the low aqueous
solubility, poor stability and limited membrane permeability,
bioavailability of rutin is very poor, and the observed effects in
vitro do not always translate into clinical outcomes (36, 37).
Hence, those observations and connections indicate a need to
improve CGJ DSs to enhance the bioavailability of rutin and
other flavonoids.

Content of Other Phenolic Compounds in CGJ
Even though HPLC-UV/Vis is generally used for the
identification and quantification of phenolic compounds
from grapes and their products, some compounds are difficult
to be effectively separated and accurately identified using the
methodology due to their insufficient peak capacity and the
accumulation of analytes (38). UHPLC coupled with triple
quadrupole MS (UHPLC-QQQ-MS/MS) based on HPLC using
a small particle diameter column and mass spectrometer allows
rapid screening of a large number of phytochemicals using the
information on the characteristics of molecular ions (38, 39).
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FIGURE 4 | (A) UV chromatographs of CGJ under 520 nm and the tentative identification; (B) the content of detected anthocyanins in CGJ; (C) UV chromatographs

of CGJ under 370 nm and the tentative identification; and (D) the content of the detected flavonols in CGJ. Dp, delphinidin; Cy, cyanidin; Pt, petunidin; Mv, malvidin;

Pn, peonidin; Pt, petunidin; My, myricetin; Q, quercetin; G, glucoside or other hexoside; Ac, acetyl; Co, coumaroyl; GR, glucuronoyl.

Multiple-reaction monitoring (MRM) mode of QQQ-MS/MS is
a highly specific and sensitive MS technique that can selectively
quantify the compounds within complex mixtures. It selects
specific analytes and absolute quantitation of proteins, peptides,
metabolites, and lipids in the fields of biochemistry, drug
metabolism, and plant studies (39, 40, 44). In contrast to
the UV chromatograms of GSE capsules, the CGJs are more
complicated. In part, this may be due to the loss of some phenolic
compounds because of the solubility during the extraction
process, while the removal of extraction solvents may meanwhile
destroy the thermal-labile compounds. Taking into account that
the sensitivity of this methodology is higher than that of the
UV/Vis detector, and the complexity of CGJ, the MRM mode of
UPLC-QQQ-MS/MS was next used to analyze all CGJ samples.

Due to highly priced commercial phenolic compound
standards, we first screened the CGJ using our published
UHPLC-QQQ-MS/MS method (41), and identified 21
phenolic compounds in CGJ DS samples, including 3-
hydroxytyrosol isochlorogenic acid, 3,4-dihydroxybenzoic
acid, 4-methyl gallic acid, catechin, procyanidin B2, epicatechin,
3-hydroxybenzoic acid, caffeic acid, 4-hydroxybenzoic acid,
vanillic acid, dihydromyricetin, syringic acid, resveratrol-
3-glycoside, dihydroferulic acid, 3-hydroxycinnamic acid,
taxifolin, sinapic acid, ferulic acid, phenylacetic acid, and
trans-2-hydroxycinnamic acid. Then, the UHPLC-QQQ-MS/MS
method was optimized based on 21 phenolic compounds. A
well-separated peak for each compound standard was achieved
as shown in Figure 5A. Standard curve linearity, detection limits,
precision, and recovery of phenolic compounds are shown in
Supplementary Table S1.

Determination of the contents of each of the targeted phenolic
compounds in the CGJ and CGJ concentrate and the results
are presented in Supplementary Table S9, Figure 5B. Among
the 21 phenolic compounds, the most abundant compound in
CGJ is trans-2-hydroxycinnamic acid, with a concentration of

10.46 ± 0.50µg/ml. Moreover, the CGJ DS also has a high
concentration of caffeic acid and 3-hydroxycinnamic acid, with
the values of 8.90 ± 0.24 and 7.72 ± 0.25µg/ml. All three
compounds belong to the hydroxycinnamic acid, which is an
important class of polyphenolic compounds originated from
the Mevolanate-Shikimate biosynthesis pathways in plants and
possess potent antioxidant and anti-inflammatory properties
(42). Recent publications and data have confirmed the important
role of those kinds of hydroxycinnamic acid class compounds in
the prevention and treatment of obesity, diabetes, and associated
disorders (43). The total content of all the identified phenolic
compounds using our optimized UHPLC-QQQ-MS/MS was
42.21 ± 1.28µg/ml with an RSD of 2.10%. Overall, our results
clearly revealed that the CGJ DS is a rich source of phenolic
compounds and CGJ is well-homogeneous, suggesting that the
manufacturing system meets the USP standardization.

CGJ Preliminary Stability Study at Month 6 Time Point
While this part of experiment with CGJ is still in progress,
the data in detail are presented in Supplementary Table S11.
For CGJ, we found that under proper cold storage conditions
(4◦C), with the bottled product kept in the packaged and
shipping cartons and in absence resulted in a stable shelf-
life for anthocyanidins, flavanols, and phenols up to month
6, at which time these compounds decreased to 85.70, 95.52,
and 94.98%, respectively, of their original contents. The total
concentration of all the identified compounds also decreased
to 89.20%. Taking into account that anthocyanidins are more
unstable than flavanols and phenols, the degradation rate of
anthocyanidins was higher as expected than the others. More
research is needed to fully understand the degradation profile of
CGJ and to identify the strategies to further extend its shelf-life in
storage. Our data show that under our experimental conditions
the CGJ DS is stable until month 6 after which a new batch
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FIGURE 5 | (A) Mass spectrometry (MS) chromatographs of CGJ and (B) the content of targeted compounds in CGJ.
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with the same needed chemical profile should the clinical trial
continue beyond that time point.

CONCLUSION

In the present study, we extensively analyzed three V. vinifera-
(grape-) based DSs, including GSE and RSV capsules, and CGJ,
using our optimized LC-UV/Vis-MS and UHPLC-QQQ/MS
methods. The weight variation of GSE and RSV capsules was
also evaluated according to the USP tests. The total polyphenol
content in the three products was also tested. From the results,
all RSV and GSE capsules satisfy or meet the guidelines of
the USP<2091> (19). Moreover, GSE capsules and CGJ both
possessed a high polyphenol content according to the total
polyphenol content test. All RSV capsules were free of cis-RSV
as well as other impurities from our optimized HPLC-UV/Vis-
MS, and the average content of trans-RSV in RSV capsules
only exceeded the labeled content by 0.8%. Meanwhile, the
chemical fingerprinting using the HPLC-UV/Vis-MS method
displayed that the content of total identified proanthocyanidin
compounds together with gallic acid in each GSE capsule is
very similar, and the GSE capsule is a good resource of catechin
and epicatechin, with 65.07 ± 2.01mg and 61.05 ± 1.76mg per
capsule, respectively. Thirteen anthocyanins and five flavonols
were identified and quantified using the HPLC-UV/Vis-MS
methodology, with the total concentration of the identified
anthocyanins and flavonols being 177.39± 6.67µg/ml and 69.82
± 4.66µg/ml. Finally, the optimized UHPLC-QQQ/MS method
was used to quantify 21 phenolic compounds in CGJ, and this
DS showed a high concentration of trans-2-hydroxycinnamic
acid, caffeic acid, and 3-hydroxycinnamic acid. The present study
provides a comprehensive overall QC for grape-derived DSs,
and the results show that a careful strategic approach to the
authentication of each botanical ingredient to be used in clinical
trials needs to follow the NIH guidelines on natural product
integrity to avoid the issues of adulteration (13). Given the
complexity of these and most botanical products from the issues
of purity, quality, adulteration, consistency, and coupled to the
complex chemistry found in grape-derived botanicals, such an
approach is required to ensure that each of the materials used
is homogeneous and stable and contain specific concentrations
and profiles of bioactives to provide the needed solid foundation
upon which clinical trials are conducted with the goal of
realizing measurable mental health outcomes such as reducing
depression and anxiety and understanding of their underlying
biological mechanisms.
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Best practices for designing, conducting, documenting, and reporting human nutrition

randomized controlled trials were developed and published in Advances in Nutrition.

Through an example of the randomized clinical trial on blueberries and bone health

funded by the National Institutes of Health, this paper will illustrate the elements of

those best practices that apply specifically to plant-based intervention clinical trials.

Unique study design considerations for human feeding interventions with bioactive plant

compounds include the difficulty of blinding the intervention, background nutritional

status of participants, carry-over effects of the intervention, benefits of a run-in

period, lack of safety/tolerability data, and nutrition-specific regulatory policies. Human

nutrition randomized controlled trials are the gold standard for establishing causal

relations between an intervention and health outcome measures. Rigorous studies and

documentation define the quality of the evidence-base to inform public health guidelines

and to establish personalized dietary recommendations for the health-promoting

plant components.

Keywords: best practices, human nutrition, clinical trials, plant-derived interventions, study design

INTRODUCTION

A comprehensive resource on best practices for designing, conducting, documenting, and reporting
human nutrition randomized controlled trials (RCT) for everyone involved in the clinical trials
research enterprise was published as a series of manuscripts in the American Society for Nutrition
journal, Advances in Nutrition (1–5). A two-part training workshop on these articles was offered
by the American Society for Nutrition in July 2021 with plans for future repeat offerings of the
workshop. The National Institutes of Health (NIH) Clinical Trials Award (CTSA) program and
the American Society for Nutrition appointed members of a working group called Nutrition
InteRvention ReSearcH (NURISH) to develop best practices and train researchers, institutional
representatives, research sponsors, and regulators to improve rigor of human nutrition research
that provides the evidence-base for making policy decisions regarding diet with the ultimate goal
of improving human health.

The articles that described best practices for human nutrition RCTs cover general
considerations unique to nutrition interventions such as the difficulty of blinding the intervention,
baseline nutritional status of participants, carry-over effects, run-in periods, and safety of the
intervention. The aim of this perspective is to discuss these best practices in the context
of human plant-derived interventions. Key concepts are illustrated with examples from an
NIH-funded RCT of the dose-response effects of freeze-dried blueberry powder on bone calcium
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retention in postmenopausal women (NIH/NICCH grant: R01
AT008754; ClinicalTrials.gov ID: NCT02630797). This RCT
employed novel bone labeling technology and was conducted
in healthy participants, thus, results are more generalizable
compared with trials in patient populations. The trial required
careful monitoring of participant well-being to avoid attrition
and presented many considerations relevant to the design and
conduct of plant-derived interventions. Although our primary
outcome of net bone calcium retention in postmenopausal
women is a specific outcome, the methodologies described
herein are relevant to other aging and chronic disease related
outcomes including cardiovascular, cardiometabolic, cognitive,
inflammatory, and gastrointestinal outcomes.

DESIGN OF RANDOMIZED CONTROLLED
TRIALS

Identifying a research question that is important, novel, and
feasible to address with the available methods informs the study
aims, hypotheses, design, and procedures. RCTs are considered
to provide the most reliable evidence on the effectiveness of
interventions, because they minimize the risk of confounding by
other factors, and thus, help to establish causal relations between
the exposure and health outcome measures.

Plant-derived interventions have unique challenges. For
example, bioactive components such as polyphenols are not
under the same homeostatic control mechanisms as nutrients.
Bioavailability studies of these bioactive compounds show that
absorption is limited, but we know little about their metabolism,
distribution, and excretion. They undergo extensive metabolism
by the gut microbiota, which complicates the causal pathway.
Their concentration in plasma is usually low and they may
be unstable; thus, their quantification requires highly sensitive
and selective analytical techniques (i.e., high-performance liquid
chromatography and mass spectrometry).

The characteristics of the example study on blueberries and
bone are presented in the format of the CONsolidated Standards
Of Reporting Trials (CONSORT) guidelines (6) (Table 1), which
were published in 2010 with the aim of improving quality of
clinical trial reports. The blueberry and bone RCT used the gold
standard of a randomized, crossover trial design as illustrated in
Figure 1 and investigated changes in net bone calcium retention
(a measure of bone loss and our primary outcome) in response
to a dietary intervention with freeze-dried blueberry powder.
Changes in net bone calcium retention were quantified with
the use of a rare, long-lived radiotracer, 41Ca, measured in
urine by accelerator mass spectrometry (AMS) (7). The use
of this ultra-sensitive measurement method and the ability to
make within-subject comparison of treatment vs. control over
time greatly increased the power to assess the efficacy of our
intervention, thereby decreasing sample size and intervention
duration compared with trials using the traditional bone density
measurement approach. The AMS method also allows for a
relatively more rapid screening of several interventions than is
feasible with bone mineral density or fracture outcomes. The
equilibration period, which is necessary to allow bone to be

labeled with the rare isotope, also serves as a run-in period
to determine participant commitment to the protocol. In the
blueberry and bone RCT described in Table 1 and Figure 1, we
tested three doses of blueberry powder in 13 participants over
1.5 years compared to a typical parallel arm study in two groups
of >60 each requiring up to 4 years to establish intervention-
related changes in bone mineral density using densitometry. The
multiple studies conducted to validate our study design were
described by Weaver et al. (7).

A limitation of the crossover design is a potential carry-
over effect from one intervention period to the next. In our
previous studies of bone health, only the intervention with
bisphosphonates (osteoporosis treatment drug that is retained in
the skeleton) precluded urinary 41Ca:Ca ratios from returning to
baseline after a 50-day washout period (8). Thereafter, positive
control long-acting drugs were given as the last intervention
rather than in a randomized order. Our protocol is most feasible
for small efficacy studies with limited generalizability compared
to effectiveness studies. Effectiveness studies in a “real world
setting with a more generalized population” typically follow an
efficacy study before policy is developed.

PARTICIPANTS

General participant considerations were discussed in
Lichtenstein et al. (2). The choice of study population influences
the generalizability of the study results. The more diverse
the population, the more generalizable the results, although
responses to a plant-derived intervention are likely to vary
even in a relatively uniform sample due to mediating factors,
which are difficult to control even in an RCT (e.g., background
diet, physical activity, gut microbiota). The likelihood of high
variability requires a larger sample size, which imposes a higher
cost of the study. Patients with a specific disorder of interest
may be more responsive to the intervention than a generally
healthy population. However, recruitment of patients requires
careful screening of medical histories to exclude participants
with medications or conditions potentially confounding to the
outcome of interest. Participants in our blueberry and bone
RCT were healthy women stable to menopause. Postmenopausal
women are most vulnerable to bone loss, and therefore, most
likely to benefit from dietary interventions that would ameliorate
bone loss due to estrogen deficiency. We selected women at
least 4 years menopausal because rapid and inconsistent bone
loss during the perimenopausal period would shift urinary
41Ca:Ca ratios independent of diet effects. To control fluctuation
of two nutrients known to influence bone loss, we provided
calcium and vitamin D supplements throughout the study. We
also monitored serum 25(OH)D to ensure that status did not
change throughout the study. Vitamin D status can also affect
immune function, and thus indirectly the health outcome. Sex
differences were not determined in our RCT, but preclinical
studies of blueberries showed important sex differences of bone
in response to blueberry feeding (9). Determining sex differences
should be part of the study design for plant-derived interventions
whenever possible.

Frontiers in Nutrition | www.frontiersin.org 2 December 2021 | Volume 8 | Article 782703118

https://ClinicalTrials.gov
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Weaver and Hodges Best Practices for Intervention Trials

TABLE 1 | CONSORT guidelines applied to Blueberries and Bone randomized controlled trial.

Section/topic Guideline

Title Dose-response effect of blueberries on net bone calcium retention in postmenopausal women: a randomized

controlled trial

Abstract Structured summary of trial design, methods, results and conclusions

Introduction

Background Preclinical studies have shown a benefit of blueberry consumption on bones.

Objective To evaluate the dose response effects of blueberry consumption on bone calcium retention in humans

Hypothesis Increasing dose of freeze dried whole blueberry powder will decrease 41Ca excretion from bone in

postmenopausal women.

Methods

Trial design Randomized, crossover; changes to trial design: intervention periods reduced from 50 to 42 d

Participants Healthy postmenopausal women (>4 years postmenopause) aged 45–70 years, not on osteoporosis treatment

medication or other medicines that influence bone loss for >6 months prior to study initiation, not osteopenic or

with a history of bone fractures, and willing to discontinue self-selected natural products

Study settings Free living with clinical visits at the University Clinical Research Center

Intervention Three doses of freeze-dried whole blueberry powder, i.e., low (17.5 g equivalent to 0.75 cup fresh berries),

medium (35 g equivalent to 1.5 cups fresh berries), and high (70 g equivalent to 3 cups fresh berries)

Outcomes The primary outcome measure was urinary 41Ca excretion from pre-labeled bone (equilibrated for >150 days post

dose for soft tissue 41Ca to be excreted) expressed as % net bone Ca retention compared to non-treatment

periods of baseline and washout. Secondary outcomes included diet analysis, polyphenolic content of blood and

urine, and bone turnover biomarkers.

Changes to outcomes None

Sample size Eighteen participants were enrolled, 16 initiated the study, and 13 completed the entire study giving us 80%

power to detect a 0.9% improvement in 41Ca retention based on effect size and retention in previous similar

studies conducted by our research group.

Interim analyses and stopping guidelines Our a priori rules were to stop the intervention if adverse events or new information raised safety concerns or if

recruitment failed.

Randomization The dose sequence was generated by a random generator program by the study statistician. The products were

coded according to dose by the Clinical Research Center kitchen staff. The Study Coordinator recruited

participants, managed the clinical visits, and supervised sample preparation for analysis.

Blinding Products were prepared by kitchen staff to vary only the dose of blueberries. Research staff and participants were

blind to the product codes according to dose.

Results

Participant flow Of the 16 participants who enrolled and began the study, 13 completed the entire study and constituted the

sample for analysis.

Losses and exclusions Seventeen were found ineligible on screening, three dropped out before the first intervention, and one completed

two of the three phases before she moved out of the area.

Reason for stopping trial The IRB suspended the trial for 2 months because of an adverse event.

Baseline data Baseline and clinical characteristics were collected for the participants.

Outcomes Will be reported elsewhere.

Discussion Limitations and interpretation will be reported elsewhere.

Generalizability This was an efficacy, not an effectiveness trial, in a small group of reasonably similar postmenopausal women.

INTERVENTION, BACKGROUND DIET,
RANDOMIZATION, AND ADHERENCE

A plant-derived intervention can be provided in the form
of a food, an ingredient, a supplement, or an extract.
When selecting the intervention, form and dose level, safety,
acceptability, and practicality are key considerations. Testing
several doses within the safety limit is useful when the
dose-response relationship is not established, as is the case
for many plant bioactives. Single vs. repeated dosing can
also alter bioavailability and pharmacokinetic response to
polyphenols (10).

In our blueberry and bone RCT, the intervention consisted of
three dose levels (low: 17.5 g/d, medium: 35 g/d, and high: 70
g/d) of freeze-dried whole blueberry powder incorporated into
three products: a drink, a spread, and granola bites (cubic bars)
consumed as part of a self-selected diet. Considerable product
development efforts were undertaken to formulate products that
did not require heat for preparation (high temperatures may
degrade certain bioactive constituents), were palatable at the
provided doses of blueberry powder (equivalent to 0, 1.5, and 3
cups of whole blueberries), and practical for consumer use with
minimal preparation and storage requirements. Importantly, we
also verified stability of the polyphenol profile in the freeze-dried
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FIGURE 1 | Randomized crossover study design for blueberries and bone RCT.

blueberry powder and the intervention products throughout
the study. The concentration of total polyphenols in freeze-
dried powder was 35.2 ± 0.6 mg/g, which was consistent with
data provided by the manufacturer. The concentration of total
polyphenols in the intervention products ranged from 522 to
613mg per each low-dose serving indicating that processing
lowered the concentration by <20%. Participants taste tested
all products prior to study initiation and selected two products
to consume daily, one in the morning and one in the evening.
Our choice of a self-selected diet is more generalizable than
the use of a controlled diet. Moreover, when we compared an
intervention of a prebiotic as part of a controlled diet (11) vs. a
self-selected diet (12) on calcium absorption efficiency in a cross-
over study in adolescents, results did not differ. However, the
self-selected diet could introduce potential confounding effects
of nutrient and bioactive compound intakes that blunt the effect
of the intervention.

Formulating a comparator control or placebo can be
challenging in plant-derived human intervention trials, especially
if the intervention is rich in pigment, as with blueberries. Both
participants and researchers may be able to infer treatment
and/or dose by color if the products are compared side
by side. The choice of comparator product or placebo is
further complicated by the potential interaction of plant-derived
compounds with other product components (e.g., proteins) or
the interaction of placebo components (e.g., fibers) with gut
microbiota. In a prior trial of prebiotic fibers (11), we have
used maltodextrin as the comparator, but there is some concern
that maltodextrin alters the gut microbiome, which acts as the
mediator for health outcomes.

In our blueberry and bone RCT, double blinding was
implemented by coding of products by research kitchen staff
prior to dispensing them to the study coordinator who delivered
them to participants. Minimally, single blinding can usually be
accomplished if sample analysis is performed by researchers
blinded to the intervention.

In crossover trials, the use of comparator or placebo may be
substituted by adding a control period, during which participants
undergo the same procedures as during the experimental period

without consuming the intervention product. In our blueberry
and bone RCT, multiple untreated periods (baseline, washout,
and recovery periods) served as the control periods.We opted not
to use a placebo based on our previous RCT of hesperidin using
the same protocol, which demonstrated that results of the placebo
period were indistinguishable from those of the untreated periods
(13). Eliminating the placebo also reduced participant burden by
shortening the study by one placebo period and the subsequent
washout (∼100 days).

The randomized schedule for the sequence of interventions
was provided by our statistician. More complex studies that
assign participants to different groups may randomize by
blocks or clusters to minimize bias, ensure that groups have
similar baseline characteristics, orminimize contamination of the
intervention as discussed in Lichtenstein et al. (2).

A common approach to monitor adherence and limit
confounding by other nutrients/dietary bioactives is to provide
participants with a list of polyphenol-rich foods to avoid and/or
limit. In the blueberry and bone RCT, we instructed participants
to limit the consumption of polyphenol-rich foods and collected
diet records to quantify polyphenol intake. In addition to the
self-reported diet records, the study coordinator kept a record of
returned uneaten foods (<2% returned) and spot and 24-h urine
samples were analyzed for polyphenols. To minimize attrition, e-
mail reminders and calendars with all study visits were sent to
participants on a weekly basis. A run-in period is also useful to
determine participant commitment to the study protocol, but it
may alter baseline measures (2).

OUTCOME MEASURES

When selecting outcome measures, biomarkers for outcomes
of interest should be on the causal pathway and validated for
predicting the end condition. In the blueberry and bone RCT,
changes in the primary outcome, i.e., urinary 41Ca:Ca, have been
validated against changes in bone mineral density (14). Bone
mineral density is also a biomarker for fracture risk, the health
outcome of interest, and is one of several biomarkers approved by
the FDA. Other FDA approved qualified biomarkers for specific
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chronic diseases include serum cholesterol and blood pressure
for cardiovascular disease, adenomatous colon polyps for colon
cancer, and elevated blood glucose and insulin resistance for
diabetes (15). An active area of research is identification of
validated biomarkers of exposure and predictors of health
outcomes. In nutrition intervention studies, the exposure is
often estimated by self-reported dietary assessmentmethods. Best
practices for this approach have been reported (16), but more
objective approaches are desirable. Davy and Davy (17) make a
strong case for controlled feeding studies to reduce variability
of exposure. Genetics, metabolomics, and microbiome profiles
are some of the approaches being investigated to identify good
biomarkers of both exposure and outcomes and to account for
potential confounders. In our trial, we measured phylogenetic
diversity of bacterial communities using 16S rRNA sequencing.
The statistical analyses of microbial taxa, alpha and beta diversity,
and correlations with polyphenol metabolites and bone health
outcomes are ongoing.

Few studies using plant-derived interventions consider the
timing of sample collection relative to the ingestion of
intervention for monitoring exposure. Most studies default
to collecting fasting urine and/or blood, although serum
concentrations of plant-derived bioactives tend to be more
variable than in urine. Because the half-life of bioactives is usually
short (<12 h), a fasting sample could miss their appearance if
consumed the day before. Furthermore, there is more natural
variation in urinary excretion of bioactives than para-amino
benzoic acid, which frequently serves as a marker of urine
collection completeness due to its 100% excretion in urine. In
our blueberry and bone RCT, we used 24-h urine samples for
both the primary outcome and polyphenol outcomes, as well
as for monitoring adherence. The most abundant metabolites
recovered from 24-h urine included anthocyanin metabolite
delphinidin-3-glucuronide and two phenolic acids, hippuric
acid and caffeic acid sulfate. Continuing efforts are focused on
estimating the interindividual variation in blueberry polyphenol
metabolite excretion as well as the changes due dosage.

Timing of ingestion of the bioactives can influence not
only adherence measures but also the outcome measures
directly or indirectly by altering mechanisms that influence
health outcomes. A study of the effect of morning vs. evening
consumption of chocolate showed that, compared to evening
consumption, morning consumption decreased ad libidum
energy consumption, fasting glucose, and waist circumference,
increased lipid oxidation, sleep onset variability and temperature
rhythms, and altered microbiota composition and function (18).

DOCUMENTATION AND REGULATION

The importance of documentation and meeting regulatory
requirements for human nutrition RCTs was described in
detail by Weaver et al. (3). A plant-derived intervention may
require pre-approval by the Food and Drug Administration
(FDA), even if it is a commonly consumed food ingredient or
product. For our trial, we assessed multiple varieties of wild
and cultivated blueberries using a principal component analysis

and selected 6 with the most divergent phenolic profiles. These
varieties were then tested for polyphenol bioavailability in a
preceding animal study. The material of choice for the human
trial was a composite of several low-bush varieties (Vaccinium
angustifolium) sourced from a number of growing regions
including Quebec, Newfoundland, Maine, and Nova Scotia.
The composite was prepared by Wild Blueberry Association of
North America and freeze-dried by FutureCeuticals, Momence,
IL. The powder was packed in multilaminate foil pouches and
stored at 4◦C. The powder was accompanied by a certificate
of analysis to ensure that it passed the safety test, and is also
available commercially.

Prior to initiating our blueberry and bone RCT, we obtained
a waiver decision by the FDA that an Investigative New Drug
(IND) application was not required for trial initiation. An IND
is required if the RCT is evaluating diagnosis, cure, mitigation,
treatment, or prevention of a disease. This can be off-putting to
a commercial supplier of a product who does not wish to have a
public record that the FDA is evaluating their product as a drug
when they are marketing it as a dietary supplement.

Aside from FDA, the sponsor, safety, and ethical committees
may require certain characteristics of the test substance to be
reported prior to trial initiation. These may include absorption,
distribution, metabolism, and excretion determined in preclinical
studies. In our RCT, the funding agency required an analysis of
the blueberry polyphenolics, the hypothesized bioactives.

Ensuring participant safety and data integrity in a plant-
derived intervention trial may require the oversight of multiple
ethics and regulatory committees. An Institutional Review
Board (IRB) at the research institution or a commercially
contracted IRB reviews the study application. A Data Safety
and Monitoring Board (DSMB) or Investigational Monitoring
Committee (IMC) may be appointed by the funding agency
or the Principal Investigator. The DSMB committee is RCT-
specific and its members must have scientific expertise in the
topic of investigation and experience conducting similar studies.
For our blueberry and bone RCT, an IMC and Data Safety
and Monitoring Plan (DSMP) (Table 2) were required. The
DSMP included safety of the 41Ca method, data protection,
integrity, and confidentiality. Although consumption of freeze-
dried blueberry powder was not expected to have any adverse
effects, a standard process for reporting any adverse events was
also included.

During the trial, a participant reported that the blueberry
drink irritated a mouth sore, which was resolved by diluting
the drink. The IRB suspended the study until we modified
the consent form to include a statement that consumption of
products with blueberry powder may cause oral irritation and
re-consented all participants. The IRB also requested input from
the IMC, which subsequently reported that it considered oral
irritation to be a minor event and recommended that the study
be permitted to resume. The suspension caused extra participant
burden for those who were in the middle of an intervention when
the study was suspended. Permission to repeat or extend a phase
also required IRB approval.

The reporting of the suspension of the RCT by the IRB to the
funding agency prompted an external audit by the sponsor. The
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TABLE 2 | Data safety and monitoring plan for blueberries and bone RCT.

I. Study identification number

A. NIH/NCCIH study number: R01 AT008754; ClinicalTrials.gov ID: NCT02630797

B. Study title: Blue Berries and Bone

C. Name of Principal Investigator (PI): Connie Weaver, PhD

D. Name and role of Co-Is: Gorge McCabe, PhD-statistician; Munro Peacock, MD-study physician

II. Study overview

A. Brief description of the purpose of the Study: The overall goal of this study is to evaluate the dose response effects of continuous blueberry consumption

over a 50 day period on net bone calcium retention in healthy-post menopausal women.

B. Adherence statement: The Data Safety and Monitoring Plan (DSMP) outlined below for RO1 AT0087541 will adhere to the protocol approved by the Indiana

Clinical and Translational Science Institute (CTSI) Research Review Committee and the Purdue University Institutional Review Board (IRB).

III. Confidentiality

A. Protection of subject privacy

During the study, all records associated with each person’s participation in the study will be managed using the usual confidentiality standards applicable to

medical records. All of the materials collected are for research purposes only, and data will be kept in strict confidence. No information will be given to anyone

without permission from the subject. The consent form includes the informed consent statements required by Purdue University. Confidentiality will be ensured by

use of identification codes. All data, whether generated in the laboratory or at a clinical visit, will be identified with a randomly generated identification code unique

to the subject.

B. Database protection

The database will be secured with password protection. Electronic communication with outside collaborators will involve only unidentifiable information. All paper

source documents from all enrolled participants, including lab reports and subject study binders, will be stored in a locked cabinet in a locked storage facility,

which is only available to the study staff. Electronic data will be stored in a password protected account.

C. Confidentiality during Adverse Event (AE) reporting

AE reports and annual summaries will not include subject or group identifiable material. Each report will only include the identification code.

IV. Adverse event information

A. Definition

An adverse event (AE) is any untoward medical occurrence in a subject during participation in the clinical study. An adverse finding can include a sign, symptom,

abnormal assessment including laboratory test value, vital signs or any combination of these.

A serious adverse event (SAE) is any AE that results in one or more of the following outcomes:

• Death

• A life-threatening event

• Inpatient hospitalization or prolongation of existing hospitalization

• A persistent or significant disability/incapacity

• A congenital anomaly or birth defect

• An important medical event based upon appropriate medical judgment

B. Classification of AE Severity

AE’s will be labeled according to severity, which is based on their impact on the subject. An Ae will be termed “mild” if it does not have a major impact on the

subject, “moderate” if it causes the subject some minor inconvenience, and “severe” if it causes a substantial disruption to the subject’s well-being.

C. AE attribution scale

AE’s will be categorized according to the likelihood that they are related to the study intervention. Specifically they will be labeled definitely unrelated, definitely

related, probably related, or possible related to the study intervention.

D. Expected risks

Expected risks to the subject are as follows:

• Radioisotope dose: the lifelong radiation exposure associate with receiving Ca-41 is <1/100,000th of a set of dental x-rays.

• Blood collection: The health risks involved in this study include drawing blood which can lead to bruising and infection. Precautions will be taken to minimize

this risk by using sterile technique and applying pressure to the site after the needle is withdrawn. Professional trained staff will be present at all study visits at

the Purdue University site to ensure necessary interventions in the event of adverse events. Trained staff at Indiana University School of Medicine (IUSM) will

administer the 41Ca.

• Dual energy x-ray absorptiometry: The average absorbed dose of radiation from the bone measurement is 1.424 mRem. In comparison the average exposure

from a set of dental x-rays is 1 mRem and from a chest x-ray is 6 mRem.

• We know of no risks associated with consumption of blueberries. However, project personnel will contact each subject at least once during the intervention

phases to inquire about such events. The occurrence of adverse events will also be queried during each clinical visit.

E. AE reporting and follow-up

Adverse Event Report Forms are to be completed at each clinical visit.

Individual data will be summarized and reported every 6 months to the Data Safety and Monitoring Committee (DSMC), IRB and other oversight organizations

when necessary.

(Continued)
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TABLE 2 | Continued

F. SAE reporting

SAEs that are unanticipated, serious, and possibly related to the study intervention will be reported to the DSMC, IRB, Indiana CTSI, FDA, and NCCIH in

accordance with requirements.

• Unexpected fatal or life-threatening AEs related to the intervention will be reported to the NCCIH Program Officer within 7 days. Other serious and unexpected

AE’s related to the intervention will be reported to the NCCIH Program Official within 15 days.

• Anticipated or unrelated SAEs will be handled in a less urgent manner but will be reported to the DSMC, Indiana CTSI, NCCIH, and other oversight organization

in accordance with their requirements. In the annual AE summary, the DSMC Report will state that they have reviewed all AE reports.

V. Data quality and safety review plan and monitoring

A. Data quality and management

1. Description of plan for data quality and management

The study staff will review all data collection forms on an ongoing basis for data completeness and accuracy as well as protocol compliance. Someone other than

the study staff will enter data into the password protected spread sheets. A summary of the data review will be reported to the DSMC.

2. Frequency of data review

Data will be reviewed by the PI and/or Study Director every 6 months.

B. Subject accrual and compliance

1. Recruitment of subjects and compliance with inclusion/exclusion criteria

During the initial recruitment period the PI will review rate of enrollment and compliance with inclusion and exclusion criteria monthly until enrollment goals are met.

2. Reporting of compliance to intervention

Products to be consumed will be delivered bi-weekly to the participants. Any products that have not been consumed will be returned and the numbers will be

recorded on an appropriate spread sheet. Participants will be provided with a calendar that is designed to report the date and time of consumption of the

products. The PI and Director will review these records monthly and report to the DSMC if compliance falls below 50%.

C. Justification of sample size

We will use the same 41Ca methodology that we have used in several other studies to evaluate the effects of interventions on net calcium retention. The response

variable is the log of the ratio of 41Ca to total Ca in urine samples. Specifically, for each subject a simple linear regression is constructed using all control and

recovery periods. This line is then used to estimate values for the treatment periods. Differences between the estimates using the control data and the actual

treatment values are averaged for each subject and then combined across subjects. Results are back transformed to obtain estimates of net calcium retention for

each treatment. The crossover design is particularly efficient for these studies because the same control information can be used for each of the treatments.

Based on our previous data, we will have 80% power to detect a 0.9% improvement in net calcium retention with 13 subjects.

D. Stopping rules

This study will be stopped prior to its completion if: (1) the intervention is associated with adverse effects that call into question the safety of the intervention, (2)

difficulty in recruitment or retention that may impact appropriate evaluation of endpoints, (3) any new information becomes available during the trial that

necessitates stopping the trial.

E. Designation of a monitoring committee

The PI will designate a DSMC to perform a review of ongoing study progress and safety. The members will not be associated with this research project.

F. Safety review plan

Study progress and safety will be reviewed quarterly. Progress reports will be provided to the DSMC. A summary of details of subject recruitment, retention and

AE’s will be included. An annual report will include evaluation of recruitment and retention as well as continuation of the study.

G. Study report outline

The study team will develop a plan for writing a study report that will include the following topics:

Study status including issues or problems, a study description including projected timetable, recruitment status, enrollment data, as well as summary of AE’s and

safety assessment.

VI. Informed consent

Written informed consent will be obtained from each participant before the screening process. A member of the study team will summarize the procedures

involved in the study and answer any questions that the subject might have.

The participant will acknowledge their willingness to participate in the study by signing the consent form in the presence of the study staff member.

VII. Reporting changes in study status

Any disruption in the study status as a result of decisions made by FDA, IRB, or one of the study investigators will be reported to the funding agency (NICCH)

within one business day.

external audit was conducted over 3 days and involved a review
of regulatory documents, consent forms, source documentation,
intervention preparation and dispensing records, study data,
and a summary meeting with the Principal Investigator and the
study staff. The same review standards and assessment criteria
were applied as are used in monitoring pharmaceutical trials of

substances with unknown and potentially serious side effects.
The monitoring visit culminated with a report stating that no
corrective action was necessary; however, 13 recommendations
were provided for creating additional documents to track
compliance with regulations and data integrity, e.g., delegation
of authority log, concomitant medication use log, specimen
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FIGURE 2 | Berries and bone treatment week 6 flowsheet.

tracking log, and internal quality assurance log. Assembling and
maintaining such level of documentation may be a challenge in
human nutrition trials, which do not usually have the support
of multiple clinical research associates and data managers, but is
nevertheless recommended by external auditing agencies.

STANDARD OPERATING PROCEDURES

Specific procedures need to be established to estimate and
monitor exposures, adherence, safety, and efficacy of the
intervention. A standard operating procedure (SOP) for each
should be in place prior to trial initiation to assure data quality
and improve reproducibility, especially if the trial is a multi-
center study. In the blueberry and bone RCT, we used flowsheets
outlining the steps of each participant visit (Figure 2) to
standardize data collection procedures and monitor participant
safety during the study. We also developed an SOP of good

documentation practice (Table 3) to ensure that all study aspects
are properly recorded.

STATISTICAL ANALYSIS PLAN

A statistical analysis plan developed a priori as part of the
planning of the whole RCT is critical to the success of the study
(5). The statistical analysis plan has many of the components
of the DSMP described in Table 2 for the blueberries and bone
RCT; i.e., (1) Study descriptor information, (2) Background and
rationale for the study, and (3) Study methods and sample
population. It also includes a plan for selecting the sample for
final analysis (intent-to-treat, per protocol, completers, safety),
testable hypothesis with consideration for the primary and
secondary outcomes, and specific approach to be used for
statistical analysis. In the blueberry and bone RCT, all data
were included for participants who completed at least two out
of three intervention periods. No provision for populating the
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TABLE 3 | Weaver laboratory good documentation practice standard operating procedures.

1. Original source documents regarding study procedures and subject health (questionnaires, flowsheets, screening lab results, etc.) will be reviewed and filed

before subjects move from one phase of a study to another. These documents will be retained after data entry for all studies and stored securely in a locked

cabinet.

2. The source of data (whether by self-report or by data collector) will be captured on all data collection forms. Source documents that require handwriting and

that are completed by study staff will be filled-out legibly. A signature log will maintained in the regulatory binder, such that the data originator can be easily

identified.

3. Details of all communications with subjects regarding symptoms and study-related events will be documented in questionnaires completed by subjects and

in clinical visit flowsheets. A Concomitant Medication Log will be used for subjects participating in clinical trials.

4. All e-mails that contain any instructions or clarifications regarding study procedures, clinical visits, questions from subjects, information about concomitant

medication use, adverse events and health problems, postponed and missed appointments, consultations with study physician, consultations with the

principal investigator, and other study-related information will be filed on an ongoing basis in individual subject folders entitled “Subject (ID#) Correspondence.”

5. Instructions given to subjects either in-person or by e-mail will be transcribed and stored together with other study documents on the university

password-protected storage network.

6. Blank questionnaire items will be reviewed with subjects at the time of study completion to ensure that they were not omitted by mistake. If entries were left

blank on purpose, they will be marked with ø symbol, the reviewer initials, and the date of review.

7. Both Human Subject Protections and Good Clinical Practice training certifications will be on file prior to a staff member’s involvement in a clinical trial.

8. Study-specific Training Logs and meeting minutes will be maintained in the regulatory binder.

9. Specimen Tracking Logs will be used for the collection, processing, storage, and disposal of all specimens collected from subjects.

10. Study documents will be updated at the time of each amendment submitted to the IRB.

11. All pertinent communications with the sponsor will be maintained in the regulatory binder.

Source documents - All information in original records and certified copies of original records or clinical findings, observations, or other activities in a clinical trial necessary for the

reconstruction and evaluation of the trial.

Source data - All data contained in source documents (original records or certified copies).

database with missing data or use of covariates were planned.
The primary outcome variable, i.e., natural logarithm of urinary
41Ca:Ca ratio, was analyzed with a modified general linear
model that included terms for participant, time, the participant
× time interaction, and the intervention period. This model
allows the intervention effects to be estimated from the difference
between the intervention period and the non-intervention
periods. Exponentiating the differences captures the treatment
effect. Standard errors for significance tests were calculated using
asymptotic methods and bootstrap procedures. SAS software
was used for computations. The statistical model, bootstrap
procedure, and sample data are available at http://www.stat.
purdue.edu/~mccabe/ca41. A P-value was considered significant
at<0.05. In our blueberry and bone RCT, no interim analysis was
planned. However, advances in clinical trial designs with ability to
alter sample sizes and analytical approaches are being explored to
conserve resources and minimize subject burden. A special issue
of Contemporary Clinical Trials featured examples of innovative
and adaptive designs (19).

Best practices for reporting clinical trial progress and results
were previously outlined in the paper by Petersen et al.
(5). The CONSORT checklist provided in Table 1 covers the
fundamental elements of the RCT trial design and statistical
analysis plan that need to be reported. A working group
convened by the Federation of European Nutrition Societies
(FENS) is developing a nutrition extension for the CONSORT
checklist to include elements specific to the human nutrition
trials (20). Some particular issues that have plagued plant-derived
RCTs include not knowing the bioactive constituents or their
mechanisms of action, use of biomarkers that do not reflect

the health condition of interest, and an enormous placebo
effect. In our blueberry RCT, we assumed that the bioactive
component responsible for the observed changes in bone
turnover were the polyphenols. However, blueberries with
different polyphenol profiles have different effects on bone
in preclinical studies (9). The bone effect mediated by the
endogenous antioxidant and inflammatory pathway was also
shown to vary by sex (9). The in vitro antioxidant activity of
plant compounds does not reflect their physiological activity
as previously thought. Thus, both in vitro and in vivo
approaches have been developed to assess the endogenous
antioxidant effects (9, 21). Physiological actions could also
be mediated by the gut microbiota. Shifts in microbiota
suggest that the fiber in the plant material, which serves
as a substrate for bacterial metabolism, may also be the
bioactive. In a preclinical study of blueberries, a dose-response
effect of whole blueberries on the diversity and structure
of the gut microbiota was observed; however, there were
no significant differences in microbial diversity after feeding
blueberry extract (without fiber) (22). Moreover, there were
interactions between polyphenol metabolites and shifts in gut
microbiota. These potential confounding/mediating factors are
important to address in the study protocol and the statistical
analysis plan.

Some plant-derived intervention trials have been unsuccessful
because of larger than expected placebo effects. This is especially
true when the outcome is subjective, as the perception of pain. In
a large, multi-center RCT of chondroitin sulfate with and without
glucosamine on knee pain, justified by several positive smaller
trials, the placebo effect was as large as 60% (23). With such a
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large placebo effect, it is nearly impossible to quantify the benefit
of a bioactive over a comparator.

OPEN DATA SHARING

The NIH expects researchers and institutions to develop plans
for data management and sharing as part of grant applications
under a policy effective January 25, 2003 (24). Open sharing
of data promotes secondary analyses that advance science and
extend the impact of the investment in research including
participant efforts. Open data sharing also allows for corrections
to the databases thereby increasing the quality of evidence. It is
hoped that all funded clinical trial research will adopt open data
sharing practices.

Depositing data in a quality data repository generally
improves FAIR (findable, accessible, interoperable, and
reuseableness) attributes. Multiple data repositories exist
for different types of data, with the 20 most frequently
mentioned in literature identified by Federer et al. (25). For
the blueberry and bone RCT, a National Science Foundation
funded platform, Digital Environment for Enabling Data-
Driven Science (DEEDS) was used to preserve, document,
support, and publish data as online, discoverable datasets
(26). To facilitate data sharing and re-use, it would be
advantageous to develop one clinical trial repository available to
all researchers.

IMPLICATIONS AND RECOMMENDATIONS
FOR NUTRITION RESEARCH AND POLICY

Adoption of best practice guidelines for plant-derived
interventions in human nutrition RCTs described in this
article will increase the rigor of the evidence-base for
determining dietary bioactive intake recommendations.
Although few countries have attempted to develop dietary
guidance for bioactives, a process for using an evidence-based
approach for policy makers to establish dietary bioactive
intake recommendations based on safety and beneficial health
outcomes has recently been published (27). Dietary guidance is

only as strong as the strength of the evidence-base. A consistent
and transparent evidence-base can facilitate development of
robust dietary guidelines for plant-derived compounds, foods,
and beverages.

CONCLUSIONS

This paper outlines best practice guidelines for design and
conduct of human nutrition RCTs involving plant-derived
interventions. These guidelines are intended to promote rigor
and transparency of the evidence-base used to establish dietary
recommendations for health-promoting plant bioactives.
Rigorous and transparent RCTs are needed to allow for
causal interpretation of data in diverse populations, across
the lifespan, race/ethnicity, and health status variables,
and to address the limitations of the current literature for
plant bioactives including lack of understanding of the
mechanisms, effective and safe doses, and unanticipated
effects (28).
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Botanical products are frequently sold as dietary supplements and their use by the

public is increasing in popularity. However, scientific evaluation of their medicinal benefits

presents unique challenges due to their chemical complexity, inherent variability, and the

involvement of multiple active components and biological targets. Translation away from

preclinical models, and developing an optimized, reproducible botanical product for use

in clinical trials, presents particular challenges for phytotherapeutic agents compared to

single chemical entities. Common deficiencies noted in clinical trials of botanical products

include limited characterization of the product tested, inadequate placebo control, and

lack of rationale for the type of product tested, dose used, outcome measures or

even the study population. Our group has focused on the botanical Centella asiatica

due to its reputation for enhancing cognition in Eastern traditional medicine systems.

Our preclinical studies on a Centella asiatica water extract (CAW) and its bioactive

components strongly support its potential as a phytotherapeutic agent for cognitive

decline in aging and Alzheimer’s disease through influences on antioxidant response,

mitochondrial activity, and synaptic density. Here we describe our robust, scientific

approach toward developing a rational phytotherapeutic product based on Centella

asiatica for human investigation, addressing multiple factors to optimize its valid clinical

evaluation. Specific aspects covered include approaches to identifying an optimal dose

range for clinical assessment, design and composition of a dosage form and matching

placebo, sourcing appropriate botanical raw material for product manufacture (including

the evaluation of active compounds and contaminants), and up-scaling of laboratory

extraction methods to available current Good Manufacturing Practice (cGMP) certified

industrial facilities. We also address the process of obtaining regulatory approvals to

proceed with clinical trials. Our study highlights the complexity of translational research

on botanicals and the importance of identifying active compounds and developing
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sound analytical and bioanalytical methods for their determination in botanical materials

and biological samples. Recent Phase I pharmacokinetic studies of our Centella

asiatica product in humans (NCT03929250, NCT03937908) have highlighted additional

challenges associated with designing botanical bioavailability studies, including specific

dietary considerations that need to be considered.

Keywords: placebo, translation, Centella asiatica, botanical, dietary supplement, reproducible, clinical trials

INTRODUCTION

Botanical products are widely used by the public for their reputed
health care benefits. Consumers in the United States (US) spent
over $10 billion on herbal supplements in 2020, a record-
breaking 17.3% increase from 2019 (1). The popularity of these
products arises from familiarity with their folk medicine uses,
vigorous commercial advertising, and their ready availability
for self-selection through retail outlets. The US Food and
Drug Administration (FDA) allows the marketing of botanical
products as “dietary supplements” under the 1994 Dietary
Supplements Health and Education Act (DSHEA). Notably,
under DSHEA botanical products may be marketed without
proof of efficacy, but must comply with labeling requirements
limiting and qualifying the claims that are made. Nevertheless,
consumers take these products with an expectation of a particular
pharmacological effect or health benefit. At the same time, the
FDA does provide for the development and registration of herbal
products as “botanical drugs” for which proof of efficacy is a
requirement (2).

While there is a significant body of literature on preclinical
studies performed on botanicals, relatively few of these
materials have been evaluated in formal, rigorous clinical trials.
Additionally, several recent large-scale trials have failed to
demonstrate a clinical effect of the botanical product under study
(3). Recent articles led by authors at the National Institutes
of Health (NIH) Office of Dietary Supplements (ODS) and
National Center for Complementary and Integrative Health
(NCCIH) have highlighted the particular challenges involved in
the clinical evaluation of botanical supplements (3–5). Significant
factors include the natural variation in plant materials and the
multiplicity of available products of a given botanical. Similar
challenges, and the need for standardization, have been noted for
translational studies and clinical evaluation of plant foods that
may promote health (6–8).

Important guidelines for the conduct of valid clinical
evaluation of botanicals have been outlined (3–5). For the
product these include: using a preparation method that closely
matches traditional use or one that was used in supporting
preclinical studies, confirmation that the active compounds of
the botanical are present and remain stable throughout the
trial period, selecting a dose expected to deliver therapeutic
levels of the active compounds, formulating a product that
is palatable and acceptable to study participants, and creating
a matching placebo for successful blinding. The participants,
treatment duration, and study end points selected must also be
appropriate for the expected effects. It is now recommended

that prior to performing costly efficacy trials, initial studies
confirming bioavailability of the active compounds from the trial
product, as well as identifying biological signatures in response
to the intervention demonstrating relevant, mechanism-related
target engagement are needed (3). Ultimately the health benefits
of a botanical intervention need to be verified experimentally
in efficacy trials (7). Given the inherent variability in raw
botanicals and their products, it is acknowledged that it will not
be possible to ensure total consistency between products tested
in different trials. However, the provision of sufficient chemical
analytical information and deposition of voucher samples would
allow for comparison between the products used in separate
studies (4, 5).

Here we present the process of designing a product made
from Centella asiatica (L.) Urban (family Apiaceae), following
the guidelines described above, for use in clinical trials relating
to its potential use in the amelioration of cognitive decline.
Centella asiatica (CA) is a small, perennial, creeper that
grows in swampy areas of tropical and subtropical regions
of Asia and Africa including Madagascar and Seychelles (9–
11). The medicinal uses of CA can be traced from early
documentation by the Indian physician Sushruta (ca. 1200
BC), to present worldwide use in commercial topical and oral
products for skin and gastrointestinal conditions (12–14). Of
particular relevance to our group’s work is CA’s importance
in Ayurvedic medicine as a “medhya-rasayana” herb (i.e., one
that has rejuvenating effects, boosts memory, prevents cognitive
deficits, and improves brain function) (15–17). In the West,
CA and CA dietary supplements sold under its Sri Lankan
name “gotu kola” are marketed for its reputed benefits on brain
and nerve function. Common preparations include tinctures
(hydroethanolic extracts) or capsules containing powdered CA
herb or a dried CA extract. A search for “Centella asiatica” and
“gotu kola” on the NIH ODS labels database yields 657 and
1,476 hits, respectively (18), suggesting that there are around
1,500 dietary supplements containing CA currently available in
the US.

The neurotropic and neuroprotective effects of CA have been
widely studied and documented (14, 19). The vast majority of
studies in the literature report data from preclinical models;
however several small clinical studies also report CA’s ability
to improve memory, mood, or brain function in different
population groups, including children (20), young adults (21, 22),
middle-aged adults (23), or older adults (24–28). A meta-analysis
failed to find a positive effect of CA on cognition (29); but
as noted previously, the trials reviewed varied widely in the
CA product tested, the level of product details provided, the
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subject population, the end points examined, and the quality of
the methodology (19, 30) making direct comparisons between
studies difficult.

Our group has been studying the mechanisms and active
compounds associated with the cognitive effects of a hot water
extract of CA, “CAW.” We have reported that CAW at doses
of 200 to 1,000 mg/kg/day administered in the drinking water
improves cognitive function in the Tg2576 (31) and 5xFAD
(32, 33) mouse models of Alzheimer’s Disease (AD), and also in
aged wild-type (WT) mice (34–36). These effects are associated
with improved antioxidant responses, mitochondrial activity,
and synaptic density in the mouse brain (32, 34, 36, 37) and in
vitro in neuroblastoma cells (38) and/or mouse primary neurons
(39, 40).

CA’s biological activity has classically been ascribed to its
characteristic triterpene (TT) compounds (Figure 1), chiefly
asiatic acid (AA) and madecassic acid (MA), and their glycosides
asiaticoside (AS) and madecassoside (MS), respectively (12). The
International Union of Pure and Applied Chemistry’s (IUPAC)
names for these compounds are available on PubChem (41). The
neurotropic and neuroprotective effects of these TT compounds,
particularly AA and AS, are well-documented (19); however,
in our preclinical studies, we have found that another group
of specialized compounds in CA, mono- and di-caffeoylquinic
acids (mono- and di-CQAs), also contribute to CA’s neurological
effects (19). The nomenclature of these compounds in the
literature is inconsistent and IUPAC names are provided in
a recent review (42). CAW and equivalent concentrations of
di-CQAs (but not TTs) were found to protect neuroblastoma
cells from beta amyloid (Aβ) toxicity in vitro (43) and improve
antioxidant andmitochondrial gene expression in these cells (38).
A CAW-equivalent mixture of mono and di-CQAs improved
cognition in vivo in the 5xFAD mouse model of AD (44).
CAW, as well as some TT and CQA compounds in isolation,
reverse Aβ related loss of dendritic arborization and spines in
mouse primary hippocampal neurons (40). These data led us to
conclude that both TT and CQA content would be important to
evaluate, optimize, and document for any future clinical trial CA
interventional products.

Based on these preclinical studies, CAW appeared to be a
good candidate for development as a “botanical drug” for the
treatment of cognitive decline, in both normal and pathological
aging, notably AD. Since CAW elicits cognitive improvement in
aged, but not young, wild-type mice (34), and in mouse models
of AD (31–33), an appropriate target population for a botanical
drug made from CAW was deemed to be older subjects (age
65 years and over) experiencing cognitive decline in normal or
pathological aging.

Due to the unavailability of a commercially prepared product
that matched the composition of CAW used in our preclinical
trials, and a company willing to comply with FDA reporting
requirements, we elected to develop a custom product containing
CAW for use in clinical trials. This product will be referred to as
Centella asiatica product (CAP).

Here we describe our approach to developing CAP including
how we encountered and addressed the challenges that arose, in
particular those typically associated with botanical products.

MATERIALS AND METHODS

Product Manufacture
Dosage Calculation and Delivery Method
Human doses equivalent to the mouse doses used in our
preclinical studies (200–1,000 mg/kg/d) were estimated by
interspecies (allometric) scaling (45). An oral delivery method
was selected to mimic the preclinical studies. Additional
consideration was placed on long-term compliance and
convenience of consuming the dosage form in the target
population selected.

Raw Material Selection: Identification, Chemical

Characterization, and Evaluation of Contaminants

Sourcing of Material
To produce ample investigational product for the translational
studies, including stability, bioavailability, safety, and biological
signature evaluation, a source of a large quantity of single-batch
raw CA herb material was identified. The form of the plant used
in traditional herbal medicine (and our preclinical studies) is
the dried aerial tops of CA, usually obtained from cultivated
sources, so focus was placed on sources of aerial material
to maintain ethnobotanical relevance and clinical applicability.
Efforts were made to obtain organic material if possible (to
minimize exposure to environmental toxins) and plant material
that had been dried but had not undergone any other known
processing apart from milling. Trade samples (80 g) of six
different commercial sources of dried CA aerial parts, raw
material (designated CA-1, CA-2, CA-3, CA-6, CA-7 and CA-
8) were obtained through the dietary supplements company
Oregon’s Wild Harvest (Redmond, OR) and underwent quality
control (QC) and chemical fingerprinting prior to purchasing a
large quantity of raw material for product manufacture.

Identity Tests
First, organoleptic tests to confirm characteristic features (visual
appearance, plant part, smell, and taste) and Fourier-transform
infrared spectroscopy (FTIR) were performed on each of the
six trade samples by the quality control laboratory at the
Oregon’s Wild Harvest. For organoleptic analysis, focus was
placed on confirming the following characteristics: greenish-
brown color with tan pieces, leafy, sour, a bit mint-like flavor, and
a leafy aroma. FTIR spectroscopy is an established chemometric
method for the identification of botanical powders where the
spectrum of obtained samples is compared to a composite
spectrum of multiple previous batches of the same botanical
(46, 47). These crucial cost-effective analyses eliminated false or
grossly adulterated products before proceeding with more costly
chemical characterization and product manufacture.

To confirm identity of the botanical materials as CA,
ethanolic (CAE) and aqueous (CAW) extracts were prepared
from each trade sample using previously described methods
(48). Extracts were analyzed using thin layer chromatography
(TLC) alongside extracts prepared from CA materials used
in our preclinical studies (CA-4 and CA-5) and commercial
reference standards (Chromadex, Irvine, CA; Sigma Aldrich, St
Louis, MO; TransMIT, Gießen, Germany) of the TT and CQA
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FIGURE 1 | Chemical structures of triterpenes and caffeoylquinic acids found in Centella asiatica. Structures were obtained from Chemspider.

compounds shown in Figure 1. For TLC, 25 µL of each CAW
(10 mg/mL) or CAE (10 mg/mL) extract was spotted onto a silica
gel stationary phase (200µm) plate with fluorescence indicator
(particle size 20µm) on aluminum backing (Lot #3110; Sigma
Aldrich Z193291) alongside reference standards (1mg /mL, 25
µL). The mobile phases used were ethylacetate: formic acid:
glacial acetic acid: water (100:5:5:5) for separating the CQA’s,
chloroform: methanol: glacial acetic acid (90:10:5) to separate the
TT aglycones (AA and MA), and chloroform: methanol: glacial
acetic acid (75:25:5) to separate the TT glycosides (AS and MS).
Visualization of zones was achieved using ultraviolet light (254
and 365 nm) for the CQAs or 1% vanillin/sulfuric acid spray
followed by heating for the TTs (49).

Chemical Characterization
For chemical characterization, high-pressure liquid
chromatography coupled to high-resolution mass spectrometry
(LC-HRMS) (50) was performed on the trade samples and the
CA materials used in preclinical studies to identify and quantify

the TT and CQA compounds of interest. Untargeted LC-HRMS
of the raw plant materials was also performed. Analytical data on
mass, retention time, and peak area of all components detected
using both positive and negative electrospray ionization (ESI)
were recorded as “fingerprints” of the CA extracts to create an
archival record of each material.

Evaluation of Contaminants
To assess the presence of contaminants, the Safe Quality Food
Institute (SQFI)-certified quality control laboratories of Oregon’s
Wild Harvest performed impurity analysis of the sourced CA
trade materials. Microbial content (aerobic plate count, yeast,
mold, Escherichia coli, total coliforms, and Salmonella) was
determined using the company’s standard plating methods
(Binary Detection Technology; BDT, AOAC 2005.03 and AOAC
2013.01). Aflatoxin analysis was not required due to the absence
of mold in any of the samples. Heavy metal content (lead, arsenic,
cadmium) was determined at Oregon’s Wild Harvest using
atomic absorption spectroscopy, while mercury and pesticide
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analyses were performed by a third-party contract laboratory
(Columbia Food Laboratories, Portland, OR) using inductively
coupled plasma mass spectrometry and gas chromatography
coupled to mass spectrometry, respectively. In addition to the
raw plant material, heavy metal and pesticide content was
also determined in water extracts prepared from these plant
materials, as the levels could either be enhanced (for water soluble
contaminants) or reduced (for water insoluble contaminants) by
water extraction.

Evaluation of Bulk Materials Selected for Manufacture
Identity tests and contaminant evaluation were repeated at
Oregon’s Wild Harvest on the bulk samples chosen for use
in product manufacture, with attention to the use of standard
Oregon’s Wild Harvest sampling procedures (United States
Pharmacopeia (USP) #40; Part 561; Articles of Botanical
Origin). In addition, analysis of aflatoxins was performed out
of an abundance of caution, even in the absence of mold.
Aflatoxin analysis was performed either at Oregon’s Wild
Harvest (Agri-Screen, Neogen Co.; United States Department
of Agriculture (USDA)-Grain Inspection, Packers and Stockards
Administration (GIPSA) 2010-006) or by a third-party contract
laboratory (Romer Labs, Union, MO) using high-performance
liquid chromatography (HPLC). Chemical characterization by
LC-HRMS (as in section Chemical Characterization) was also
performed on these bulk materials.

Selection of Manufacturing Facilities and Formulation

Development

Identification of Certified Facilities
It was essential to perform the product manufacture in facilities
with Current GoodManufacturing Practice (cGMP) certification.
In addition, such facilities needed to be capable of large-
scale water extraction of CA and drying of the extract.
Written communications were sent to numerous cGMP certified
facilities followed up by phone calls which identified one
suitable facility (Ashland Laboratories, previously Pharmachem
Laboratories (PCL); Kearny, NJ). Additional facilities were
identified (Oregon’s Wild Harvest) that could complete product
manufacture including blending of the dried extract with
excipients and final product labeling and packaging.

Formulation of the Clinical Trial Product and

Matching Placebo
In designing the clinical trial product formulation, delivery
method, palatability and placebo matching were considered.
Due to the oral delivery method selected for the target
population, the sticky, hygroscopic nature of the dried CAW,
and available facilities for mass manufacture, it was decided
to dry the CAW extract onto a suitable matrix to optimize
further blending and packaging steps, and aid its efficient
dispersion in water for consumption by trial participants. The
percent loading of CAW onto the matrix was determined
based upon the final product’s properties and the amount of
matrix determined to be safe for consumption (51). Essentially
different ratios of CAW and matrix were mixed in water, dried

by lyophilization, and examined for homogeneity, texture, and
water dispersibility.

Additional excipients were identified to improve palatability
and color matching for a placebo. The recommended maximum
daily intake, normal amount or percentage in food, normal
daily intake, caloric content, and median lethal dose (LD50) of
each excipient were used to identify potential excipients and
determine safety and dosing. This information was found using
the FDA Code of Federal Regulations, the National Library
of Medicine ToxNet Toxicology Data Network, the Global
Safety Management, Inc. Safety Data Sheet, the USDA and
United States Department of Health and Human Services 2015-
2020 Dietary Guidelines for Americans, the certificate of analysis
and data sheet provided by the supplier of each excipient, and
available journal articles discussing safety and tolerability of each
specific excipient.

Each potential excipient evaluated was analyzed
independently by the investigators at the Oregon
Health & Science University’s Bioanalytical Shared
Resource/Pharmacokinetics Core Lab (Portland, OR) for
TT and CQA content using HPLC-tandem mass spectrometry
(HPLC-MS/MS) and excluded from consideration if any TT
or CQA were identified as present. For the detection of TTs,
selected reaction monitoring was performed on an Applied
Biosystems Q-Trap 4000 LC-MS instrument (Framingham,
MA). Chromatographic separation was achieved using a
Poroshell 120 EC18 column (3mm id× 50mm; 2.7µ), Poroshell
ultra high-performance liquid chromatography (UHPLC) guard
column, and a methanol:ammonium acetate gradient (Santa
Clara, CA). Triterpenes were detected as their ammonium
adducts with positive ion mode electrospray ionization using
the following MS/MS transitions (m/z): AA (506/453), MA
(522/451), AS (976/453; 976/635), MS (992/487; 992/451). Two
internal standards were used with chrysin being detected as
the molecular ion (255/255) and ursolic acid as its ammonium
adduct (474/411; 474/191). For the detection of CQAs and
their associated metabolites, HPLC-MS/MS was performed on
an Applied Biosystems 5500 QTRAP HPLC-MS instrument
(Framingham, MA) using an analytical method modified
from that described by Nair et al. (52). Chromatographic
separation was achieved using a C8 reversed-phase column
(Agilent Zorbax Eclipse plus C8 Rapid resolution 4.6 ×

150mm 3.5µ; Santa Clara, CA), an Agilent Zorbax Eclipse
plus C8 Rapid resolution guard column (4.6 × 12.5mm 5µ;
Santa Clara, CA), and an acidified acetonitrile:water gradient.
CQAs, their metabolites, and internal standards were detected
using negative ion mode electrospray ionization and the
following MS/MS transitions (m/z): mono-CQAs (353/191);
di-CQAs (515/353; 515/191); caffeic acid (179/135); ferulic acid
and isoferulic acid (193/134); dihydrocaffeic acid (181/109);
13C9-caffeic acid (188/143); 13C3-ferulic acid (196/136);
d3-isoferulic acid (196/134); and d3-dihydro-isoferulic acid
(192/135).

Excipients with any reported neurological activity were
eliminated from consideration. A total of 19 excipients were
evaluated (14 for palatability, 3 for coloring, and 2 as a carrier
matrix for dispersability).
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Manufacturing Process, Analysis of Intermediates,

and Final Product

Extraction and Drying
Selected CA herb batches (CA-3 and CA-6) were purchased
in bulk by Oregon’s Wild Harvest and shipped from the two
original suppliers directly to the identified extraction and drying
facility (Ashland Laboratories). Using one of three stainless steel
jacketed reactors with stainless steel agitators each with water-
cooled condensers and receivers (2 at 500-gallon capacity, 1 at
750-gallon capacity) and an evaporator pfaudler (3’ diameter x
8’ high; glass lined), CA dried herb was extracted using distilled
water under reflux (160 g herb: 2 L water to match the laboratory
scale method used in our preclinical studies). The hot extract was
cooled from 212 to 150◦F, filtered through a 200 mesh screen,
then filtered through filter paper to remove particulates, and a
3 L aliquot (free of spray drying carrier matrix) was removed
and sent to OHSU for lyophilization. This sample was used for
phytochemical and percent loading analyses.

The remainder of the filtered extract was spray dried onto
a carrier matrix at a target 66% loading capacity using a Type
III A-No. 7 304 gas fired stainless steel APV anhydro spray
dryer with centrifugal atomizer, Gaulin Homogenizer feed pump,
with Clean in Place (CIP) system. Due to size limitations of the
extraction equipment, two separate extractions were performed
to obtain the required total amount of dried extract. In the first
process, a mixture of CA-3 (14.50 kg) and CA-6 (30.5 kg) was
extracted with 562.5 L of hot water and spray dried onto a carrier
matrix (Batch 1). In the second extraction, CA-6 (45 kg) was
extracted with 562.5 L of hot water and spray dried onto the same
carrier matrix (Batch 2). A 200 g sample of spray dried CAW
from each batch was sent to Oregon State University for analysis,
while the bulk of the spray dried product was shipped to Oregon’s
Wild Harvest for quality control, blending into the drug product,
packaging, and storage.

Analysis of Intermediates
Intermediates in the manufacturing process were evaluated for
CAW content based on the concentrations of TTs and CQAs.
LC-HRMS data was used to calculate the amount of CAW loaded
onto the carrier matrix by comparing relative concentrations of
the active compounds (mg/g material) in the Batch 1 and Batch 2
lyophilized samples and their respective spray dried counterparts.
For this, the mean loading was calculated from values for all the
individual TT and CQA compounds except for AA and MA. The
data suggested that AA and MA levels were disproportionately
skewed by possible hydrolysis of the more abundant glycosides,
AS and MS, during spray drying.

Product Blending and Packaging
Based upon the amount of TTs and CQAs determined to be
present in each batch of spray dried material, and the quantity
of spray dried product (here referred to as “Gotu Kola Extract
Preblend”) needed for QC, stability studies, and the proposed
trials, Batch 1 spray driedmaterial was blendedwith Batch 2 spray
dried material. The quantity from each batch used in the blend
were determined using the desired phytochemical content of the
final product.

Because the weights of “Gotu Kola Extract Preblend”
corresponding to the different doses of intervention and the
placebo would contain different amounts of matrix, additional
matrix material was added to the placebo and to the lower
CAW dose to equalize the matrix content across all 3 doses.
All other excipients (for color and flavor) were added in equal
amounts to each dose. The required excipients/additional matrix
for each dose of CAP were blended in bulk in quantities sufficient
for 200 individual dose sachets per dose. The correct weight
and composition of blended excipients for a single dose of
CAP was weighed into individual sachets (stand-up metalized
barrier pouches, Item 183-60, Associated Bag Company, Sparks,
NV) at Oregon’s Wild Harvest. The required weight of “Gotu
Kola Extract Preblend” was hand weighed and added to each
individual sachet, to give the required dose of CAW. The filled
sachets were heat sealed. All sachets were stored in the freezer
(−20◦C) until their use for quality control, stability tests, or
dispensing for use in the proposed clinical studies.

Quality Control
All final CAP doses including the placebo were analyzed using
TLC to confirm TLC zone profiles characteristic of CAW and to
confirm the presence of TTs and CQAs in CAP containing CAW
2 g or 4 g but their absence in placebo. LC-HRMS was used to
quantify TT andCQA inCAP 2 g and 4 g and to be able to identify
those peaks in the untargeted fingerprint of CAP that belong to
the excipients rather than CAW. All products were also analyzed
for microbial, pesticide and heavy metal content. Uniformity of
weight of the sachets was checked by weighing each sachet to
confirm the correct weight for that dose and minimal variation
between packages of a given dose.

Product Stability
To comply with regulatory requirements for obtaining
Investigational New Drug (IND) status for a manufactured
botanical product, an accelerated stability study was conducted
in collaboration with the Food Innovation Center (FIC; Oregon
State University, Portland, OR). Multiple sachets of each dose of
CAP were placed at two different accelerated storage conditions
(25± 2◦C/60%± 5% relative humidity and 40± 2◦C/75%± 5%
relative humidity) for 32 days. In addition, to compare routine,
commonly available storage conditions, sachets were placed at
−20◦C (freezer), 4◦C (refrigerator), and ambient temperature
(benchtop) for the same duration. All samples were transferred
to −20◦C after 32 days until analysis by LC-HRMS (n = 6
replicates of each dose for −20◦C; and n = 3 replicates of each
dose for other temperatures). The placebo was not assessed for
stability since the end point was analysis of levels of TT and
CQAs. For each known bioactive compound, the mean level
in the samples stored for 32 days under the other 4 conditions
were compared to the level seen in the samples stored at −20◦C
(deemed to be the most stable) to determine degradation. Visual
and olfactory inspections were also performed on all samples.

Bioassay to Confirm Biological Activity
An in vivo bioassay appropriate to the antioxidant and cognitive
enhancing effects of CAW was used to confirm biological
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activity of the final formulated product. Drosophila melanogaster
fruit flies with a mutation in the sniffer gene sni1 allele were
determined to be an appropriate model due to an impaired
locomotion phenotype consistent with neurodegeneration from
oxidative stress (53). Study vials (35mL, 24.5 × 95mm) were
prepared using standard Drosophila food with the addition
of CAW (10 mg/mL), CAP (equivalent to 10 mg/mL CAW),
excipients alone (equivalent to those in CAP), or deionized
water (control). Flies (males and females) were placed in vials
containing either control food or experimental food for 7
days before testing. Fast phototaxis assays were conducted as
a measure of locomotion and cognitive function as previously
described (54, 55) using a countercurrent apparatus (56) and a
single light source. Data was analyzed using GraphPad (v.5 for
Windows, SanDiego, CA) and one-wayANOVAwith aDunnett’s
post-test to determine significance to the untreated control or to
flies treated with the excipients alone.

Regulatory Considerations
Early in the planning of the proposed translational work,
exploration was conducted into the necessity of Investigational
New Drug (IND) status from the FDA. Written communication
was sent to a member of the FDA’s Botanical Review Team
and, subsequently, an enquiry to the Food, Dietary Supplements
and Cosmetics IND Jurisdiction Team (FIJT) was submitted.
Following a recommended pre-IND consultation, an IND
application including a detailed Chemical and Manufacturing
Controls (CMC) document was submitted as per the FDA’s
published guidance document (2). For documentation of prior
human use and human safety, online databases such as the ODS
Labels Database (18), and the FDA and CFSAN Adverse Event
Reporting System (FAERS and CAERS) databases were used to
illustrate widespread use of CA preparations with minimum
toxicity. Several previous clinical trials that had been done
without notable adverse effects were included; and the use of
CA as an edible plant, and its safety when brewed into a
tea (similar to CAW preparation), were highlighted. Published
animal toxicity studies of CA preparations were also included.
Additional approvals for proposed studies were obtained from
the clinical trial sponsor (NCCIH) and the OHSU Institutional
Review Board (IRB) following receipt of IND status.

RESULTS

Product Manufacture
Dosage Calculation and Delivery Method
Human doses equivalent to the mouse doses (200–1,000
mg/kg/d) used in our preclinical studies were estimated to be 2–
10 g CAW per day using interspecies scaling (45). Since robust
cognitive improvements in mice had previously been observed
at doses of 200 mg/kg/d (31, 32, 34, 36) and 500 mg/kg/d (33),
a 10 g/day dose in humans was determined to be unnecessary.
For the planned Phase I studies, the dose range was adjusted
to 2 g and 4 g of CAW per day based on the highest reported,
well-tolerated, human dose of CA triterpenes (240 mg/day) (57).
The standard maximum content of a capsule or tablet is 500mg.
Daily doses of 2 g and 4 g CAW translated to 4–8 capsules per

day, which was considered unsustainable and inconvenient for an
elderly population. Therefore, it was decided to provide the CAW
as a powder to be dispersed in one glass (10–12 ounces) of water
and consumed orally, closely mimicking the administration of
CAW in the preclinical studies. This delivery format required the
design of a new formulation with the addition of excipients to
improve dispersion and palatability, and coloring agents to mask
the placebo.

Raw Material Selection: Identification, Chemical

Characterization, and Evaluation of Contaminants

Sourcing of Material
It was challenging to identify sources of a single batch of CA
material that was available in the required large quantity (90 kg).
All suppliers were willing to provide a trade sample but could
not guarantee that the larger amount would still be available
after preliminary evaluations had been completed. There was
variability in the form of bulk raw materials available including
powder, finely milled “tea cut,” coarsely milled “cut and sift,” and
dried whole plant materials.

Identity Tests
Most of the available plant material was a cut or milled version
of the dried herb, making formal identification and verification
of authenticity through examination against botanical keys not
possible. However, all the trade materials evaluated passed
organoleptic, FTIR and TLC criteria for identification as CA.
Specifically, FTIR provided acceptable matches to prior database
spectra and TLC confirmed the presence of TTs and CQAs
characteristic of CA (data not presented). The TLC zone
profiles were essentially similar, qualitatively, to the preclinical
study voucher samples, although quantitative variations in band
intensity between the materials were noted.

Chemical Characterization
Targeted analysis was used to evaluate the content of TTs and
CQAs in the trade samples, with the goal of identifying material
containing within ±10% of active compounds found in CA-4
and CA-5 that had shown biological activity in prior preclinical
studies (31–34, 36, 38–40, 43). There was high variability between
CA accessions in the content (% w/w in CAW) of total TTs
(0.5–11%), total mono-CQAs (0.1–0.4%) and total di-CQAs (0.1–
1.4%), as well as in individual members of each class, identified by
LC-HRMS (50). Interestingly, the TTs and CQAs did not vary in
the same way (i.e., plant materials that had higher levels of TTs
did not necessarily also have higher levels of CQAs). No single
CA trade sample matched CA-4 or CA-5 (50). Validation of the
LC-HRMS method, results of targeted analysis of TTs and CQAs
in samples CA-1 to CA-8 and a comparison of their fingerprints
using principal component analysis have been published (50).
Detailed LC-HRMS data from untargeted analysis of the eight
samples has been archived.

Evaluation of Contaminants
All trade materials passed the following acceptance criteria for
microbial content established at Oregon’s Wild Harvest for their
raw materials and products: aerobic plate count <10,000,000
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TABLE 1 | Heavy metal and pesticide content of five CA trade samples acquired for possible use in preparing CAP, and their water extracts.

Source Cadmium (ppm) Lead (ppm) Arsenic (ppm) # Pesticide residues Highest pesticide residue (mg/kg)

CA-1 Raw <0.1 1.8 <0.5 Not measured Not measured

CA-2 Raw 0.3 0.3 <0.5 11 2.5 (Chlorpyifos)

CA-2 Extract <0.1 <0.2 <0.5 5 1.2 (Quizalofop)

CA-3 Raw 1.2 1.6 <0.5 4 0.059 (Propiconazole)

CA-3 Extract 0.435 0.455 <0.5 1 0.018 (Propiconazole)

CA-6 Raw 0.6 2.5 <0.5 6 0.049 (2,4-D)

CA-6 Extract 0.233 0.358 <0.5 2 0.064 (2,4-D)

CA-7 Raw 5.9 4.3 <0.5 8 0.044 (Carbendazim)

CA-7 Extract 2.444 0.766 <0.5 1 0.073 (2,4-D)

CA-8 Raw 1 4.1 <0.5 None detected None detected

TABLE 2 | Contaminant content of bulk CA samples selected for mass

manufacture.

Plant

materials

Microbial levels Heavy metals (ppm) Pesticides (mg/kg)

CA-3 Conforms to

Oregon’s Wild

Harvest

specifications

Lead (2.088)

Arsenic (<0.5)

Cadmium 1.13

Diphenylamine (0.028)

Propiconazole (0.038)

CA-6 Conforms to

Oregon’s Wild

Harvest

specifications

Lead (2.434)

Arsenic (<0.5)

Cadmium 0.537

Cypermethrin (0.018)

2,4-D (0.039)

Hexachlorobenzene (0.010)

Permethrin (0.033)

colony forming units (cfu)/g; mold or yeast <100,000 cfu/g;
coliforms report cfu/g; E. coli <10 most probable number
(mpn)/g; Salmonella absent in 25 g (Supplementary Table 1).
Other analyses revealed that even those trade samples that had
been certified “organic,” had detectable levels of pesticides, and
most also contained heavy metals (Table 1). Generally, heavy
metal and pesticide concentrations were lower in the extracts
than the starting material, but two pesticides (quizalofop and
2,4-D) appeared more prominently in the extracts than the raw
materials from which the extracts originated.

Evaluation of Bulk Materials Selected for Manufacture
Based upon their phytochemical profile (50) and relatively low
contaminant content, CA-3 and CA-6 were selected for the
manufacture of CAP. Interestingly, CA-3 was certified organic
while CA-6 was not but was listed as not genetically modified
(non-GMO). CA-6 had unusually high levels, and CA-3 had
unusually low levels, of AS compared to CA-4 and CA-5. The
decision was made to mix the two plant materials to yield an
extract with TT levels closer to those found CA-4 and CA-5.
Bulk quantities of these materials were purchased and analyzed
for potential impurities (Table 2) and phytochemical profile to
confirm that they matched their respective trade samples. Both
CA-3 and CA-6 raw materials passed the standards for microbial
content (Supplementary Table 1) and aflatoxins (absent) and
had phytochemical profiles matching their trade sample.

For heavy metals, tolerances were obtained from the United
States Pharmacopoeia (USP). The USP #40; Part 561; Articles of
Botanical Origin suggests the following guidelines for residual
levels of heavy metals: cadmium 0.5µg/g, lead 5µg/g, arsenic
2µg/g. Although the CA-3 material did not conform to this
specification, the levels of cadmium reduced following water
extraction (Table 1), allowing for the continued progression
with using this material. When evaluating the acceptability of
the pesticide residue levels, measured levels were compared to
maximum residue limits (MRL) available in the USP #40; Part
561; Articles of Botanical Origin and the European Pharmacopeia
8.2 (Ph.Eur; section 2.8.13). Cypermethrin, hexachlorobenzene
and permethrin were below the USP and Ph.Eur limits of 1,
0.1 and 1 mg/kg, respectively, however MRL values were not
available for diphenylamine, 2,4-D, and propiconazole.

Selection of Manufacturing Facilities and Formulation

Development

Identification of Certified Facilities
Three facilities with current Good Manufacturing Practice
certification (cGMP) were identified that were capable of large-
scale water extraction of CA and/or drying the large volume
of extract to be generated. Most companies identified in initial
searches performed hydroalcoholic but not aqueous extractions
and were thus eliminated. Only one facility identified had both
capabilities (Ashland Laboratories); however, the method for
drying offered was spray drying onto a matrix and not freeze-
drying. A trial batch did not show appreciable degradation of
TT and CQA following spray drying compared to a lyophilized
counterpart (data not shown), so it was decided to contract
out the CAW production and drying to Ashland Laboratories.
cGMP and SQFI-certified facilities at Oregon’sWildHarvest were
identified to be used for final product manufacture (blending of
the dried extract and excipients) and packaging.

Formulation of the Clinical Trial Product and

Matching Placebo
The three doses of CAP were designed to differ only in CAW
content, i.e., 0 g (placebo) or 2 g and 4 g of CAW, but contain
identical amounts of excipients, including the spray drying
matrix substance. This would ensure any measured biological
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activity in a placebo-controlled study is solely attributable to
CAW. It was determined that the spray dried product could
contain up to 66% CAW (i.e., a 2:1 ratio of CAW to matrix) and
this was the target loading aimed for during manufacture, based
on the theoretical weight of CAW extracted.

Of the 19 excipients evaluated for taste, color, neurological
activity, and phytochemical content, six were eliminated due to
TT and/or CQA content and two were reported to have cognitive
enhancing properties. Six other excipients were eliminated due
to challenges with color matching (Figure 2A). In the end, five
excipients were selected with one being a food grade colorant,
three for palatability, and one as the carrier matrix. The identities
of these excipients are not disclosed in this publication due to
intellectual property considerations but can be provided under
agreement. The three doses of CAP, when reconstituted in water,
are shown in Figure 2B and were not readily distinguishable by
color, smell, or taste.

Manufacturing Process, Analysis of Intermediates,

and Final Product

Extraction and Drying
CA-3 and CA-6 were extracted and dried in two separate
batches. Batch 1 (CA-3 plus CA-6) was expected to have a
lower concentration of AS than Batch 2 (CA-6 only) due to
the presence of CA-3 plant material which had low levels of
this compound (50). The spray dried product from Batch 1
(10.85 kg) was blended with spray dried product from Batch 2
(6.40 kg) at Oregon’s Wild Harvest to yield “Gotu Kola Extract
Preblend” (17.25 kg). The quantities were based on the calculated
total amount of material needed for QC, stability studies and
the proposed clinical trials, and utilized the maximum amount
of Batch 1 available to ensure a lower AS level similar to CA-4
and CA-5.

Analysis of Intermediates
Prior to incorporation into the drug product, further quality
control tests were performed on “Gotu Kola Extract Preblend.”
Samples of the lyophilized extract aliquots (without matrix
materials) from the two batches were compared by TLC with
their spray dried counterparts, “Gotu Kola Extract Preblend,”
and CA-4. The compounds typical of CA in the test materials
were identified in each of the samples. CA’s TT and CQA
compounds were analyzed in each manufacturing intermediate
using LC-HRMS. Using untargeted LC-HRMS in negative and
positive ionization mode, the retention time, peak area and high-
resolution mass of “Gotu Kola Extract Preblend” was recorded as
a fingerprint (data archived).

Despite the targeted loading value of 66%, the actual percent
loading of CAW onto the matrix was below this value and
differed between the two extraction batches. Batch 1 was
calculated to have ∼51% loading of CAW onto the matrix, while
Batch 2 had just over 34% loading. By calculation from CAW
content in the two spray dried batches, “Gotu Kola Extract
Preblend” was estimated to have 7.73 kg CAW in 17.25 kg of
material (about 45% loading). Based on this, the amounts of
“Gotu Kola Extract Preblend” required for CAP 2 g CAW and
CAP 4 g CAW were calculated as 4.4 g and 8.8 g, respectively.

Product Blending and Packaging
Individual sachets containing single doses of 0, 2, or 4 g of CAW
and equal amounts of all the excipients (including the carrier
matrix) were made and packaged as described in section Product
Blending and Packaging.

Quality Control
Product sachets passed Oregon’s Wild Harvest criteria for
uniformity of weight. Analysis of TT and CQA content of
samples of the final CAP products, in comparison to the parent
CAW extract, confirmed that the correct levels of CAW had
been included in CAP 2 g and 4 g and that these compounds
were absent in CAP 0 g (placebo). TT and CQA content in
CAP 0, 2, and 4 g are shown in Figure 3. When contaminants
were assessed, all three products remained within the limits
for microbial levels (Supplementary Table 1). Heavy metal and
pesticide content of all CAP doses are shown in Table 3.
Cadmium and lead were detected at levels above the limit
of quantitation in at least one of the CAP products. Of the
various pesticides seen in the starting materials (CA-3 and CA-
6) (Table 2), only two of them (diphenylamine and 2,4-D) were
detected in the CAP (Table 3).

Product Stability
Visual and olfactory inspection of the samples stored at different
temperatures during stability analyses showed no obvious
changes at lower temperatures; however, the samples stored in
the 40◦C accelerated condition showed some clumping. There
was no difference in the levels of TTs and CQAs between
the different storage conditions demonstrating stability under
all conditions tested (Figure 4); however, principal component
analysis (PCA) of all LC-HRMS peaks did show a temperature
dependent separation of samples stored at the two accelerated
storage conditions from those stored at−20◦C, 4◦C, and ambient
temperature (Figure 5). Based on this data, it appears that CAP
2 g and CAP 4 g will be stable for at least 1 month if stored at
−20◦C, 4◦C, or ambient temperature. While some changes were
observed under accelerated storage conditions using PCA, the
main active compounds appeared unaffected (Figure 4).

Bioassay to Confirm Biological Activity
Using the fast phototaxis assay, there was no significant
difference in transitions toward the light between the control
and excipients-treated sniffer flies (Figure 6). CAW-treated flies
showed significantly (p < 0.001) greater transitions toward
light than control and excipients-treated flies. CAP treatment
also significantly (p < 0.05) increased transitions toward light
compared to control and excipients treatment. CAP and CAW
treatment were not significantly different from each other. These
data suggests that the formulated CAP product has similar
neurological activity to the active component, CAW, and the
excipients selected do not have appreciable neurological effects as
measured in this model. This bioassay appears to be suitable for
use in evaluating CAP biological activity in future studies where
additional product manufacture will be necessary.
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FIGURE 2 | Coloring excipient test and final CAP matching evaluation. (A) Three different coloring agents were dissolved in 8 oz. of water and compared against one

another for color matching with CAW. (B) 0, 2, and 4 g CAP, containing the selected coloring agent and additional excipients for flavor matching, dissolved in 8 oz. of

warm water.

FIGURE 3 | Concentration of triterpenes and caffeoylquinic acids found in 0, 2, and 4 g Centella asiatica product as determined by LC-HRMS. Sachets of the Centella

asiatica water extract products (CAP; n = 5 per dose) were extracted with methanol and analyzed for the content of active compounds (triterpenes and caffeoylquinic

acids) using LC-HRMS in positive and negative ion mode against commercial reference standards. The content of triterpenes and caffeoylquinic acids per gram of

Centella asiatica extract was identical for the 2 g and 4 g doses of CAP and showed low variability indicating successful and uniform manufacture of the two doses.

None of the specific analytes were detected in the 0 g dose, confirming their absence at detectable levels in the placebo which was comprised solely of the excipients

used.

Regulatory Considerations
The FIJT determined that an IND was required for two reasons
(a) because the goal of our clinical studies was to develop CAW

to mitigate a disease (cognitive decline) bringing it under the
category of a drug rather than a dietary supplement, and (b)
because CAW was not a currently lawfully marketed drug. After
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TABLE 3 | Heavy metal and pesticide residue content in CAP 0, 2, and 4 g.

Heavy metal or pesticide CAP 0 g CAP 2 g CAP 4 g

Ppm (µg/g) Amount per sachet (µg) Ppm (µg/g) Amount per sachet (µg) Ppm (µg/g) Amount per sachet (µg)

Cadmium <0.1 loq (<1.1) <0.1 loq (<1.3) 0.26 3.81

Lead <0.2 loq (<2.2) 0.27 3.43 0.69 10.15

Arsenic <0.5 loq (<5.4) <0.5 loq (<6.4) <0.5 loq (<7.7)

Mercury <0.01 loq (<0.11) <0.01 loq (<0.13) <0.01 loq (<0.15)

Diphenylamine <0.01 loq (<0.11) 0.014 0.179 0.035 0.516

2,4-D <0.01 loq (<0.11) 0.024 0.306 0.024 0.354

loq, limit of quantitation.

FIGURE 4 | A 32-day stability test of CAP 2g and 4 g showing unchanged levels of triterpene and caffeoylquinic acid components at all temperatures as determined

by LC-HRMS. Storage conditions: 25 ± 2◦C/60% ± 5% relative humidity, accelerated 40 ± 2◦C/75% ± 5% relative humidity, fridge (4◦C), ambient temperature (RT),

and freezer (−20◦C) (n = 3–6 per condition).

a few amendments to the initial submission, IND status for CAP
was awarded. The success of the FDA IND applicationwas pivotal
to moving forward with the clinical study; both the study sponsor
(NCCIH) and OHSU’s IRB required IND status to be obtained
before granting their respective approvals for clinical protocols.

DISCUSSION

Chemical Variability and the Importance of
Analytical Methods
Our experience with custom manufacture of a CA product
for a clinical trial confirmed several of the earlier known
challenges relating to botanical research. The first among these
is the inherent chemical variability within a single botanical
species. Levels of the bioactive TT compounds are reported to
vary considerably between accessions of CA (19) and this was
confirmed for both TTs and CQAs in the present study (50).

Identification of active compounds in a botanical, followed by
chemical fingerprinting and quantification of known bioactives
using validated methodology and authenticated reference
standards, is an imperative step for rigorous translational studies.
Such methods, as we have developed for CA; (50), can be used
to identify (1) the material with the closest matching active
compound profile to those used in preclinical studies showing
biological activity, (2) variability between accessions from the
same plant material, and (3) adulterated products. While it is
valuable to apply targeted techniques to measure and control the
content of known active compounds, plant raw materials and
extracts also contain a vast number of other compounds, whose
identity and/or contribution to the overall activity of the product
may as yet be unknown. Therefore, the use of untargeted analysis
to document a comprehensive range of analytical features (e.g.,
chromatographic retention time and mass spectral information)
of both known and additional components is invaluable in
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FIGURE 5 | Principal Component Analysis (PCA) of 32-day stability test of CAP 2g and CAP 4g. Samples were stored in special chambers held at 25 ± 2◦C/60% ±

5% relative humidity or accelerated 40 ± 2◦C/75% ± 5% relative humidity, at ambient temperature (RT), in a refrigerator (4◦C), or in a freezer (−20◦C) (n = 3–6 per

condition). Chemical fingerprinting analysis of CAP storage stability samples by untargeted data dependent acquisition was performed using LC-HRMS as described

earlier (50). The content of each sachet was suspended in 70% v/v methanol (100mL) containing formic acid (0.1% v/v). Samples were sonicated for 2 hrs with strong

shaking every 30min at room temperature. The suspension (1mL) was centrifuged (15,000 rpm, 10min) and diluted 100 times before injection. QC samples were

obtained by pooling equal aliquots of each sample. Principal component analysis was performed in Progenesis QI software (V 2.4). All m/z-signals that triggered MS2

experiments (5,849) were used after log-transformation and Pareto scaling. The first principal component represents the maximum variation through the data. Next,

another axis representing the next highest variation within the data is added orthogonal to the first one, and is designed as the second principal component. Each

marker represents a sample; identically colored markers are replicate samples (n = 6, −20C; n = 5, QC; and n = 3 for all other groups). The PCA plot shows that

samples that have a high degree of similarity in their chemical fingerprints cluster closely together. Clustering of the QC samples in the center of the plot confirms

LC-MS platform stability. The shift from the left bottom quadrant to the upper left quadrant (4 g sachets) and from right bottom quadrant to right upper quadrant (2 g

sachets) indicates that the chemical fingerprints are sensitive to storage temperature. Targeted analyses of the CAP stability samples conducted in parallel (Figure 4)

indicated CQA and TT levels were unaffected by storage temperature; thus the observed shifts hint that either excipients or other components of CAW were sensitive

to storage temperature.

preserving a complete picture of the chemical profile of a
botanical product. The overall profile of different materials can
be compared using principal component analysis for example
(50). These analyses can, and should, be performed on the
raw herb, prepared extracts, manufacturing intermediates, the
final product(s) upon completion of manufacture, and the final
product(s) during storage and use (e.g., in a clinical trial). We
have taken this approach for our study.

The identification of sufficient, chemically similar raw
material for all the planned studies is an important aspect
in botanical translational medicine studies to ensure limited
variability in phytochemical content and impurity profile. Ideally,
a reliable, reproducible source of plant material with desirable
and minimally variable chemical profile should be identified.

Contaminants in Plant Materials
There are several unique environmental contaminants of concern
when sourcing raw plant material for use in clinical trials.
These include heavy metals, pesticides, microbes, mycotoxins,

and polyaromatic hydrocarbons (PAH) (8, 58–60). While several
pesticides are banned (57), it is more common that an upper limit
of content is specified by regulatory authorities or pharmacopeias
for specific pesticide residues, as well as for heavy metals,
microbes, and mycotoxins. Limits for PAH content, while
established formany food commodities, are still being considered
for botanical products (60).

To assess the acceptability of the heavy metal content in
the final CAP products (Table 3), we compared the content
to published maximum daily intake recommendations. The
American Herbal Products Association (AHPA) Guidance Policy
(2012; current at the time of product manufacture) recommends
the following maximum intakes: cadmium 4.1 µg/day, lead
6 µg/day, inorganic arsenic 10 µg/day, and methyl mercury
2 µg/day. The International Council for Harmonization of
Technical Requirements for Pharmaceuticals for Human USE
(ICH) Harmonized Guideline for elemental impurities (Q3D;
2014) lists the following values for permitted daily exposure
(PDE) by the oral route: cadmium 5 µg/day, lead 5 µg/day,
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FIGURE 6 | Percentage transitions toward light for sniffer flies treated with

Centella asiatica water extract, Centella asiatica water extract product,

excipients used in the manufacture of CAP or control food. Drosophila

melanogaster fruit flies with a mutation in the sniffer gene sni1 allele were fed

standard food (control) or standard food supplemented with either Centella

asiatica water extract (CAW; 10 mg/mL), Centella asiatica water extract

product (CAP; equivalent to CAW 10 mg/mL), or the matching placebo for

CAP containing only excipients (Ex; equivalent to the amount in CAP) for 7

days. Fast phototaxis was performed with flies (data from both sexes

combined) and compared to either control or Ex treatment. The number of

tested flies is given above the bars and the SEM is indicated. *p < 0.05,

***p < 0.001.

arsenic 15 µg/day, and mercury 30 µg/day. The amounts of
cadmium, mercury, and arsenic, delivered per dose of CAP
were less than the lower of the two recommended maximum
values. However, the lead content in 4 g CAP (10.15 µg; Table 3)
was higher than daily maximum intake of 5 µg/day for this
metal recommended by both AHPA and the ICH. While this
was concerning, the ICH guidelines (Q3D, section Bioassay to
Confirm Biological Activity) mention that intermittent or short-
term (30 days or less) dosing may be justification for allowing
impurity levels higher than the established PDE. The FDA has
allowed use of this product for a pharmacokinetic (PK) study
where each participant only receives a single dose of CAP
4 g. However, a new batch of product with a more acceptable
heavy metal profile may be needed for studies involving longer
term dosing.

The Code of Federal Regulations (CFR; Part 180) lists
maximum recommended level (MRL) values for pesticide
residues in several food commodities. For example, for
diphenylamine (CFR part 180.190) the tolerances in pears and
apples range from 5 to 30 ppm. For 2,4-D (CFR part 180.142), the
tolerances in various agricultural commodities range from 0.05 to
50 ppm. However, most botanicals used in dietary supplements
are not included in these commodity lists. Information on
allowable levels of these contaminants may be found in the
USP and Dietary Supplements Compendium (DSC) sections on
articles of botanical origin, and the European Pharmacopeia
(Ph.Eur.), or guidelines from the ICH or World Health
Organization (WHO) and Food and Agriculture Organization

(FAO). Some limitations to finding permitted levels of pesticide
residues in particular, are that not all pesticides are listed in
the pharmacopeias. For example, maximum recommended level
(MRL) values were not available in the USP, DSC or Ph.Eur. for
diphenylamine and 2,4-D. Hence, it may be more relevant to
consult documentation, where available, on maximum allowed
daily intake rather than MRL. The FAO and WHO’s Codex
Alimentarus online pesticide database cites allowable daily
intakes (ADI) of up to 0.08 and 0.01 mg/kg body weight for
diphenylamine and 2,4-D, respectively, corresponding to 4.8 and
0.6mg per day for a 60 kg adult. TheNational Science Foundation
(NSF) International Standard/American National Standard
organization has published maximum allowable levels per day
(MAL) values for many pesticides (61). For diphenylamine, this
value at 700 µg/day, is considerably lower than the FAO/WHO
value, and at the time of our study, no MAL value was given
for the pesticide 2,4-D. Both the residual levels (ppm) and the
amount (µg) of diphenylamine and 2,4-D delivered by a single
dose of CAP 2 g and CAP 4 g appear well below the availableMRL
(food commodities), ADI, and MAL values.

Designing Botanical Interventions and
Placebos for a Human Trial
The principal factors to consider in designing the product for our
clinical trial were similarity to the material showing biological
activity in preclinical studies, translation of the mouse doses
to human studies, and the development of a suitable dosage
form to deliver human doses along with a matching placebo.
Our preclinical studies had examined a hot water extract of
CA (CAW) that is produced by boiling CA in water under
reflux for 2 h followed by filtration, freezing and lyophilization
(31–38, 40, 42–44, 48). We were unable to find a commercial
product that had been prepared in this way for use in the
proposed human trials. We also considered using products
made by a different extraction method (e.g., using ethanol), but
which may have had similar levels of TT and CQAs. However,
some companies that had such products expressed reluctance
to provide information on their product to the FDA for an
IND application. Consequently, we decided to use a custom-
made hot water extract, and, with some difficulty, found a cGMP
facility able to perform the extraction and drying. However, they
were only able to provide a product spray-dried onto a carrier
matrix rather than a lyophilized dried extract. This resulted in
additional analytical studies to ensure the TT and CQA were
not adversely affected by this process before proceeding with
manufacture of CAP. In addition, it was observed that the
percentage loading onto the carrier matrix during spray drying
was significantly different from the target value of 66% and
varied between batches (51 and 34%) despite efforts to maintain
batch consistency. This introduces a need for further analytical
measurements after drying of every batch to determine actual
loading prior to final formulation and blending with excipients.
Variability in loading must be monitored and controlled, if
possible, to maintain consistent excipient levels between CAP
batches. Otherwise, variations would need to be accounted for
using batch specific placebo controls.
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The human doses of CAW for our proposed study were
selected by interspecies scaling (45, 62) and reference to earlier
human studies (19) to limit the potential for toxicity at higher
doses. The doses calculated were larger than the dose of CA or CA
extract provided by most commercial CA products (around 500
mg/capsule). The larger dose (4 g) required that the product be
administered as a liquid drink rather than swallowed as a capsule.
We therefore had to formulate a product that was palatable
and dispersed easily in water. This raised the issue of making
a matching placebo, and some considerable effort was required
to design one that had a similar taste and color to the CAW-
containing product. It was also essential that any agents added to
produce CAP were devoid of TT and CQA, safe for human use,
and not known to have any neurological effects. It was important
to make the placebo and CAW containing products identical
in all respects except for CAW content, so that any differences
in biological effects between CAW and placebo-treated groups
could truly be ascribed to CAW.

Regulatory Aspects
FDA IND status was required for CAW for the reasons
mentioned earlier (section Regulatory Considerations). Although
we were not required to provide extensive toxicology data on
CA for the IND application, we did have to provide evidence
of its likely safety. We cited widespread human use of CA as
a dietary supplement and edible plant with limited reports of
human toxicity, organ toxicity studies in animals, and the relative
absence of adverse effects in clinical trials of CA. However, the
relevance of this evidence to CAW was complicated by the large
variability in the type of CA preparations that are used in dietary
supplements, as well as in those used in earlier preclinical and
clinical studies (19). For example, although previous studies had
examined the effects of CA extracts on CYP drug metabolizing
enzymes (63–67), the FDA recommended that we examine and
report the drug interaction potential of our CAW water extract
specifically (68). Also, since earlier preclinical studies on organ
toxicity had been performed using other types of CA extracts
(69–72), we obtained organ toxicity data from mice treated
with CAW that could be used in the IND application. A point
of caution regarding several reports of CA hepatotoxicity in
humans (notably in review articles) (73–75)—an examination
of the original papers cited showed that some preparations
involved were multi-herbal products including CA where direct
association could not be established.

Looking Ahead to Clinical Studies
We have embarked on a series of translational studies with the
ultimate goal of performing a Phase II trial examining the efficacy
of CAW in ameliorating cognitive decline in humans. Important
steps to optimize this future Phase II study would be to:

I. identify or develop a CAW product that matches the one
used in our preclinical studies and contains an appropriate
dose of TTs and CQAs likely to have a biological effect
in humans;

II. confirm bioavailability of CA’s active compounds by
performing a plasma pharmacokinetics (PK) study following
acute oral dosing of the CAW product;

III. determine safety and tolerability of the CAW product; and
IV. demonstrate target engagement by evaluating changes in

specific biological signatures related to CAW’s mechanisms
of action that had been observed in preclinical studies.

In the present report, we describe our experience with Step I
above. Steps II to IV would need to be performed in the selected
target population (older adults of both sexes). Recently, CAP
2 g and 4 g have been used in two pharmacokinetic studies in
older adults (NCT03929250, NCT03937908). The multiplicity
of active compounds (TTs and CQAs) in CAW has required
the development and validation of sensitive bioanalytical
methodology to measure these CAW compounds in human
plasma and urine at much lower concentrations than found
in the plant extracts. For bioavailability studies from botanical
extracts it is important to consider potential biotransformation
of the phytochemicals during their transportation through
the body. For example, in humans the TT glycosides of
CA (AS and MS) appear to be hydrolyzed in the gut such
that only the aglycones (AA and MA) appear in the plasma
(57, 76–78). Similarly, the CQAs undergo extensive gut, Phase
I and Phase II metabolism to metabolites such as caffeic acid,
dihydrocaffeic acid, dihydroferulic acid, ferulic acid, isoferulic
acid, dihydroisoferulic acid and hydroxyphenylpropionic
acids, and their glucuronide and sulfate conjugates (79). The
biodistribution of any these compounds may be relevant to the
biological activity of CA and must therefore be evaluated.

The pharmacokinetic studies also required participants to
observe a strict low phytochemical diet for 48-h prior to dosing
and for 12 h post dosing. This is because of the ubiquitous
distribution of CQAs in common foodstuffs and beverages, as
well as the potential to obtain TTs from food sources, although
the TTs have a more limited distribution in plants. Participants
were instructed to avoid fruits, vegetables, nuts, spices, coffee,
tea, whole grains, and whole wheat products for 48 hours
prior to the pharmacokinetic studies. They were placed on an
identical low phytochemical diet during each study visit to reduce
dietary variability. They were asked to fast for 10 h prior to
each visit and were not provided food for the first 2 h following
CAP administration to account for differences in gastrointestinal
transit time and dietary interference. While this may not be
practical for studies involving prolonged consumption of CA,
it is clearly needed for a pharmacokinetic study. Based on our
preclinical in vivo studies reviewed earlier, we expect that 4–6
weeks of continuous administration of CAP will be needed to
see evidence of target engagement in humans e.g., a reduction in
oxidative stress markers or evidence of improved mitochondrial
function and neuronal viability from brain imaging studies.
Several months of CAP administration may be required to
demonstrate a change in the rate of cognitive decline.

Some additional challenges are anticipated in upcoming dose
escalation and safety studies. For the product, the success of
blinding to placebo, and tolerability and acceptability of the
product when consumed daily for extended periods of time
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are important parameters to evaluate. It is also important to
monitor the stability of the product for the duration of the clinical
trial whether stored by the investigators, research pharmacy, or
the participants.

Here we present an example of a rigorous science-based
approach to translating preclinical botanical studies to
clinical trials. Matching the clinical trial material as closely
as possible to that used in preclinical studies is important,
as well as choosing a dose range for the product based
on sound rationale (e.g., interspecies scaling). A valid,
matched placebo must also be produced for comparison if
appropriate to the study, and attention paid to the possible
presence of confounding phytochemicals in the placebo
materials or the diet of participants. Good botanical raw
materials will contain adequate levels of active compounds
and minimal contaminants. Sufficient material of this
quality must be secured for the duration of the study to
minimize variability in the test material throughout the study.
Validated analytical methods specific to the botanical extract
under consideration are essential and key to a successful
clinical trial, from guiding the selection of raw materials,
through product manufacture and validation of product
stability during the trial. With the inherent variability
of plant materials, the data from even the most carefully
performed trial remains product specific. However, the careful
documentation of product chemical characteristics will facilitate
reproducibility between studies, as well as comparison of data
from different trials.

Significance of CAP Clinical Trials to the
Use of CA in Traditional Medicines and
Food
As well as its use as a traditional medicine, CA is an
edible plant consumed regularly in the diet as a vegetable,
juice, or tea in several Asian countries (80–84) and in South
Africa (85, 86). Indeed CA’s popularity in foods is increasing
due to growing awareness of its health benefits (81). A
question may arise regarding the relevance of clinical trials
of CAP to the health benefits of traditional medicines or
foods containing CA. Aside from the complicating issue of
inherent variability of plant materials, the answer largely depends
on how closely the product tested matches the preparation
method, and amount of CA consumed. For cognitive benefits,
in Ayurvedic medicine CA herb is reportedly prepared as
the fresh juice “swarasam,” mixed in clarified butter as a
“gritham,” or given in milk (15). In our preclinical studies,
and in CAP, we used a hot water extract of CA (CAW). This
extraction method was based, not on traditional preparation
methods, but on earlier published studies demonstrating superior
cognitive enhancing properties in rats of CA aqueous extract
compared to extracts made with other solvents (87, 88). It
would be interesting to compare the composition of extracts
made using traditional preparation methods to CAW. In the

US, as in Asian countries (81, 89, 90), CA is a popular
component of herbal teas prepared by extracting dried CA
herb with hot water. This extraction process closely mirrors
the preparation of CAW and would be expected to yield
similar components, although comparative dosing would need to
be evaluated.
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A successful randomized clinical trial of the effect of dietary supplements on a chosen

endpoint begins with developing supporting data in preclinical studies while paying

attention to easily overlooked details when planning the related clinical trial. In this

perspective, we draw on our experience studying the effect of an ethanolic extract from

Artemisia dracunculus L. (termed PMI-5011) on glucose homeostasis as a potential

therapeutic option in providing resilience to metabolic syndrome (MetS). Decisions on

experimental design related to issues ranging from choice of mouse model to dosing

levels and route of administration in the preclinical studies will be discussed in terms of

translation to the eventual human studies. The more complex considerations in planning

the clinical studies present different challenges as these studies progress from testing

the safety of the dietary supplement to assessing the effect of the dietary supplement

on a predetermined clinical outcome. From the vantage point of hindsight, we will outline

potential pitfalls when translating preclinical studies to clinical studies and point out details

to address when designing clinical studies of dietary supplements.

Keywords: botanical, natural products, dietary supplements, Artemisia dracunculus, clinical trial

INTRODUCTION

Over one-half of all adults in the United States report using a dietary supplement to improve their
health (1). This trend coincides with increasing interest in the health benefits of plant-based natural
products and a burgeoning number of preclinical studies investigating the therapeutic properties
of extracts derived from botanical sources. While animal model-based pre-clinical studies are
expected before moving to clinical studies, there is ample data showing these pre-clinical models
often do not translate in terms of efficacy or safety to human studies (2). Our view is that reliable
information about the safety and efficacy of botanically-based dietary supplements in humans
requires clinical studies that build on well-designed preclinical results that are relevant to the
targeted human population. To accomplish this goal, the eventual clinical trial should be kept in
mind when designing the preclinical study. Our experience studying the metabolic effect of an
ethanol extract from Artemisia dracunculus L. (termed PMI-5011) points out the myriad details
that have a substantial impact on the ability to translate preclinical findings to the clinical setting
and the additional details that must be considered when designing the related clinical study. In this
perspective, we offer some hard-won advice based on our stumbles and successes with investigating
how dietary supplementation with PMI-5011 impacts obesity-induced insulin resistance.
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DESIGNING THE PRECLINICAL STUDY:
THINK AHEAD TO THE CLINICAL TRIAL

The ability to translate preclinical studies of dietary
supplementation with botanical extracts fundamentally begins
with quality control of the plant material. Plants grown for
preclinical studies of botanical extracts should be cultivated
under uniform conditions in a controlled growth environment to
yield consistent plant material over time. The growth conditions
should be pesticide-free as a safety consideration for eventual
human consumption (3). Bioactivity-guided fractionation (4) or
DESIGNER (Deplete and Enrich Select Ingredients to Generate
Normalized Extract Resources) (5) approaches can be used to
define the active fraction and provide a biomarker for evaluating
each batch of the plant material to ensure quality control.
Our experience is that batch-to-batch variation in the selected
biomarker will occur even with quality control practices in place
and may be traced back to seed lot, disruptions in the growth
conditions, storage conditions, or variability in the extraction
method. In addition, the stability of identified bioactives may
change over time with fractionation of the complex mixture of
phytochemicals when compared to the parent extract. In each
case, having a reliable biomarker of the biological endpoint of
interest is essential for extract content analysis, interpreting
experimental results, and carrying out pharmacokinetic studies
in animal models or clinical trials.

Our research with Artemisia dracunculus L. provides an
example of identifying an extract-derived biomarker that is
strongly associated with the biological endpoint of interest.
Our studies focus on the ability of botanical extracts to impart
resilience to developing risk factors for type 2 diabetes associated
with obesity. The metabolic syndrome (MetS) is a prediabetic
state characterized by insulin resistance and elevated blood
glucose along with elevated triglycerides, reduced high-density
lipoprotein (HDL) cholesterol, elevated blood pressure, and
abdominal obesity (6). Clinically, MetS is defined by the presence
of at least three of the five risk factors. This illustrates the
need to determine the important endpoints that are feasible to
assay in preclinical studies and are clinically translatable. In our
example, a focus on insulin responsiveness during screening and
the subsequent activity-guided fractionation experiments offered
the best opportunity to capture a preclinical effect (e.g., signaling
responses to insulin in skeletal muscle cells in vitro and in
vivo; blood glucose and insulin levels in vivo) that is commonly
measured in the clinical setting (blood glucose and insulin
levels) to evaluate the risk of developing type 2 diabetes. Using
these endpoints, bioactivity-guided fractionation of an ethanolic
extract of plant shoots obtained from A. dracunculus during
the flowering stage (termed PMI-5011) identified a fraction
containing four potential bioactive compounds (4, 5, 7–9). 4-
O-methyldavidigenin was subsequently identified as a reliable
extract biomarker for the biological activity of interest in vitro,
including cell culture of human skeletal muscle cells, which
reflect in vivo biology (10–13).

Moving from cell-based studies to animal models brings
another layer of issues to consider. Choice of an animal model
has to be made with the human target population in mind. Our

interest in obesity-related insulin resistance and type 2 diabetes
prompted us to use the KK-Ay genetic model of hyperglycemia
in the initial in vivo experiments (9, 14). Although the KK-Ay

mouse is a robust model to test our supplement, a genetic model
of hyperglycemia does not capture the early phases of obesity-
related changes in insulin sensitivity that predict developing type
2 diabetes. To better align with the clinical picture of MetS, later
preclinical experiments were carried out in a rodent model of
obesity-induced insulin resistance (15, 16). However, the insulin
resistance phenotype in the C57BL/6 mouse model of obesity-
induced insulin resistance occurs in obese male, but not female
mice when fed a defined high fat diet (17).

Subsequent studies using both male and female mice
show striking sex-dependent differences in response to dietary
supplementation (17, 18). Given the evidence that dietary
supplements are often consumed by women across the age
and health spectrum (1), this points out the importance of
using both sexes in pre-clinical rodent studies unless the target
population is only men or women. Experimental variability is
not greater in fertile female mice compared to male mice (19).
This alleviates much of the concern about including female mice
in pre-clinical studies, but our experience indicates the two sexes
should be studied initially as independent cohorts. Inclusion of
female mice also highlights the importance of determining the
age of the target population. Metabolic syndrome is becoming
more prevalent in younger women due to increasing obesity or
changing dietary patterns (20, 21). With that in mind, our studies
are carried out in fertile female mice rather than simulating
the onset of MetS by ovariectomizing young mice or aging a
colony of female mice for up to 2 years. An excellent guide for
designing pre-clinical studies of sex differences is provided by
Mauvais-Jarvis et al. (22).

Formulation of the botanical dietary supplement will also be
an issue. Oral administration is a given, but capsules or pills
cannot be given to a mouse, so the supplement is typically
formulated in the diet. This points out the importance of
establishing bioavailability in the pre-clinical animal model.
While dietary supplementation with a botanical extract can be
incorporated into a rodent diet at a wide range of concentrations,
this will not be feasible in clinical trials with humans. Even
if the supplement is ultimately administered to humans in
gel or capsule form, low bioavailability in the pre-clinical
phase may signal that an excessive number of capsules will be
required in the clinical trial. Thus, the pre-clinical studies offer
an excellent opportunity to optimize bioavailability based on
the identified biomarker. When determining bioavailability in
rodents, keep in mind the food intake patterns of nocturnal
animals. If bioavailability in a fasted state is important, food
should be withdrawn for 4–6 h prior to the test. The time of
day should also be noted to account for any circadian effects on
bioavailability (23, 24).

Diet composition is another important variable. We typically
use a defined 45% kcal high fat diet that contains 17% kcal sucrose
(Research Diets) as the standard diet for studies of obesity-
related metabolic disease. This has the advantage of increased
bioavailability of the lipid-soluble bioactives, but more recent
studies use high fat (45% kcal), high sucrose (30% kcal) diets
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that more closely mirror the typical Western diet associatedMetS
(18). While our interest in obesity-induced insulin resistance
requires following the extract’s effect as obesity develops, the
extract may be given in preclinical studies over a short time
to determine acute effects or to carry out pharmacokinetic
studies. In our studies, we observe that botanical extract
efficacy varies with the length of time administered (unpublished
observation). An effect present after 2 months consuming the
dietary supplement may not be present after 3 months or
longer consuming the same diet and dietary supplement even
if the supplement composition is unchanged over time. The
pre-clinical stage allows for evaluation of whether the dietary
supplement should be taken chronically or will be more effective
when taken over shorter periods. If the dietary supplement
is given for a short period, it is tempting to administer the
supplement using gavage. However, this is stressful for the mouse
and adaptation to gavage should be carried out using vehicle only
prior to initiating supplementation.

An essential part of pre-clinical studies is evaluating the
safety of the chosen botanical dietary supplement. This should
include measuring body weight, food intake, activity level,
tissue weights, mortality rate, liver morphology at necropsy, and
clinical evaluation of hepatic function using albumin, bilirubin,
alanine aminotransferase (ALT), and aspartate aminotransferase
(AST) serum levels. These findings can be correlated with
the bioavailability of the botanical extract. Depending on
the disease model of interest, more specific safety questions
should also be addressed. Our experience indicating PMI-5011
supplementation with a 45% high fat diet may have adverse
effects in female, but not male mice (17) further highlights the
need to consider supplement safety in both sexes of the chosen
pre-clinical model.

THE CLINICAL STUDY: THE NITTY-GRITTY
DETAILS

Clinical trials assessing the impact of nutrition on human
health face unique challenges when designing, interpreting, and
reporting the study results (25–29). The complexity of botanical
extracts increases the challenge of designing clinical studies of
dietary supplements, but the ability to build on strong pre-clinical
data increases the likelihood of an outcome that provides reliable
clinical data. Thus, the first step when considering a clinical trial
of the dietary supplement is to ask if there is good evidence
from the preclinical studies for moving forward with a clinical
study. To answer this question there should be clear evidence
of preclinical safety as well as a convincing demonstration of
efficacy before transitioning into the clinic. While there are often
significant species differences in physiology and pharmacology,
any concerns regarding pre-clinical acute and/or chronic toxicity
will preclude moving forward to first-time-dosing in humans.
Despite a promising ethnopharmacological track record as either
a food or natural medicine, pre-clinical botanical safety studies
conducted with a well-characterized extract are necessary to allay
any concerns when the extract is formulated and administered as
a dietary supplement to human subjects.

Start With Safety, Tolerability, and
Bioavailability
Central to assessing the safety and efficacy of a botanical dietary
supplement in humans is determining the bioavailability
of marker compounds that appear key to pre-clinical
effectiveness. Unfortunately, for many phytochemicals, poor
oral bioavailability is the rule, not the exception (30–33).
This stems from two major factors: human physiology and
phytochemical physico-chemistry. From an evolutionary
perspective, the ingestion of plants has significantly impacted
human development, such that, as a species, we readily
biotransform phytochemicals, either through enzymatic
metabolism in the gut or liver parenchyma, or via gut microflora
(30). Many phytochemicals are also substrates for various
efflux transporters expressed on the apical surface of intestinal
enterocytes, which can preclude their uptake from the gut
lumen. Collectively, actions of these enzymes and transporters
reduce phytochemical exposure. On the other hand, many
phytochemicals are lipophilic, having insufficient water
solubility to become bioaccessible. Combined, extensive pre-
systemic metabolism and poor bioaccessibility (efflux transport,
lipophilicity) render many seemingly “active” phytochemicals
inadequately bioavailable.

Formulation of the Product
Most botanical dietary supplements on today’s market are gelatin
or cellulosic capsules filled with dried extract. Whether the
extract was derived using an aqueous or non-aqueous procedure
can have a significant impact on the “performance” of the
dosage form. Non-aqueous extracts (e.g., hexane, ethylacetate,
etc.) will recover more highly lipophilic phytochemicals, while
aqueous or ethanolic extracts will recover more hydrophilic
components. Lipophilic marker compounds will oftentimes
have poorer bioavailability due to inadequate solubility in
gastrointestinal fluid, especially if taken on an empty stomach.
An assessment of dietary supplement dosage form performance
is critical before conducting a clinical study, as poor performance
will undoubtedly lead to questionable clinical outcomes.
Dosage form performance assessment can be accomplished by
conducting a disintegration/dissolution study. An overview
of dissolution/disintegration guidelines and recommended
equipment can be found in the United States Pharmacopeia (34).

Briefly, dosage form performance investigates whether
a tablet, capsule or liquid gel capsule can disintegrate and
release its contents into gastrointestinal fluids in a timely
manner. Dosage forms that quickly disintegrate and readily
release their active components generally exhibit better
bioavailability than those with inferior performance traits. In
effect, this process is an in vitro means of gauging the rate
and extent of phytochemical release into simulated gastric or
intestinal fluids using standardized conditions and equipment
(35). Even capsule composition (i.e., gelatin vs. cellulosic)
can impact dosage form performance. Old or outdated
gelatin capsules may bleb and not adequately disintegrate,
whereas certain phytochemicals may induce cross-linking
of polysaccharide chains in hydroxypropylmethylcellulose
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capsules which can compromise disintegration and
dissolution (36).

It may also be prudent to incorporate biorelevant media
into dissolution studies (37, 38). Biorelevant media are designed
to simulate fasted and fed states, two conditions that better
emulate the gastrointestinal environment phytochemicals may
experience in vivo. For lipophilic phytochemicals, dissolution
media mimicking fed conditions facilitate micelle formation and
enhance solubility, whereas those simulating fasted conditions
may yield less favorable results. For other phytochemicals,
the presence of food may impair absorption. Incorporation
of biorelevant media, therefore, can aid in clinical study
design; that is, provide guidance as to whether the supplement
should be taken with or without food. The simple task of
taking the supplement formulation with food, especially a
fatty meal, may preclude the need for developing a novel
dosage form specifically designed to improve phytochemical
bioavailability (e.g., phytosome, nanoemulsion, etc.) (31). If
suitable bioavailability was achieved in pre-clinical studies when
the extract was incorporated into the diet, then meals served
in the clinical setting should try to reasonably match the
carbohydrate, fat, and protein percentages within the animal
chow. A word of caution, however, regarding vegetables in
meals, for clinical studies is that the potential for phytochemical–
phytochemical interactions always exists between the supplement
and any plant-based food (39).

Choosing the Study Population
When selecting participants for a supplement-based clinical
study, it is ideal to recruit those representative of the product’s
intended target population. If the product is designed for
women, athletes, elderly, etc., then individuals representing
those groups should be targeted; otherwise, healthy volunteers
of both sexes covering a range of ages are typically utilized.
Exclusion criteria generally include acute and chronic disease,
prescription medications (an exception is sometimes made for
oral contraceptives, unless there is evidence the metabolism
of select marker compounds may be affected), and dietary
supplement use.

Dosing and Timing of Administration
Doses for first-time administration to humans of a botanical
extract not currently on the market (i.e., PMI-5011) can
be extrapolated from those evaluated in pre-clinical animal
studies using allometric scaling. Allometric scaling incorporates
appropriate power functions that correlate body surface area
and/or weight to various physiological parameters across animal
species in order to estimate human equivalent doses (HED).
While there is much debate within the scientific literature
regarding the best exponent for use in exponential allometry
calculations, U.S. Food and Drug Administration (FDA)
recommends the following approach: HED = animal NOAEL
× (Wanimal/Whuman)

(1−b), where NOAEL is the “no observed
adverse effect level” for the pre-clinical, animal dose scaling
study, W is weight in kg, and b is the allometric exponent equal
to 0.67. Utilizing this approach, Table 1 is useful in converting
animal doses to HED.

TABLE 1 | Converting preclinical supplement doses to human equivalent doses

(HED).

Species To convert animal dose in mg/kg to HED in mg/kg, either:

Divide animal dose by: Multiply animal dose by:

Mouse 12.3 0.08

Hamster 7.4 0.13

Rat 6.2 0.16

Guinea pig 4.6 0.22

Rabbit 3.1 0.32

Dog 1.8 0.54

Rhesus monkey 3.1 0.32

Mini-pig 1.1 0.95

As an example, the HED for a 50 mg/kg extract dose
(NOAEL) in a 0.02 kg mouse would be 50 × 0.08 = 4 mg/kg,
or 280mg in a 70 kg adult human. It should be noted that
these FDA guidelines were developed to determine themaximum
recommended starting dose (MRSD) of experimental drugs in
humans. It must be emphasized that an HED is simply a
starting point, it may or may not need to be adjusted depending
upon the drug/phytochemical and its specific biotransformation
pathways. Incorporating additional safety factors, however, are
often recommended prior to administering an HED derived
from animal NOAEL data. Further reducing an MRSD by a
factor of 10 or even 100 may be prudent for first-time-use in a
clinical safety study. Additional discussions of dose conversion
methods for botanical extracts based upon allometric scaling and
safety factors can be found in Wojcikowski and Gobe (40) and
Schilter et al. (41).

Planning a Pharmacokinetic (PK) Study
The first-time-in-human dose for a botanical extract should
be aimed at determining PK parameters for one or more
biologically relevant marker phytochemicals. These parameters
include “area under the concentration-time curve” (AUC0−∞),
maximum blood/plasma concentration (Cmax), time to reach
Cmax (Tmax), elimination half-life (t1/2), and if possible, apparent
clearance (CLapp). To generate these parameters, it is important
to collect a sufficient number of blood levels over a defined
period to best characterize the AUC and t1/2. These time points
often mirror those used for the animal study, although subject
inconvenience may preclude certain timepoints (i.e., 18 h post-
dose). Blood collection times of 0.0, 0.5, 1, 2, 4, 6, 8, 12, 24,
and 48 h are fairly common, although these can be modified for
subject convenience. To be as efficient and practical as possible,
a single dose of extract is administered in the morning (with or
without food) and blood sampling will span at least 12 h the first
day, with subsequent blood draws at 24 and perhaps 48 h. Given
that most phytochemicals have fairly short elimination half-lives
in humans, samples obtained after 24 h may not be necessary
(30, 32). A clearly defined biomarker as determined by pre-
clinical studies is essential for the clinical PK study. Once there
is evidence that the marker compound(s) is bioavailable and a
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half-life can be determined, a multi-dose administration scheme
can be devised to assess PK parameters at “steady state.” Marker
compound half-lives <6 h will mean that the extract should be
dosed at least 3–4 times daily for at least 3–5 days to reach steady
state. Longer half-lives will require less frequent dosing but a
longer period of administration to achieve steady state.

Dietary Influences
Diet and concomitant drug use may affect phytochemical PK.
Prescription drug and botanical dietary supplement (e.g., St.
John’s wort, goldenseal, licorice, multi-ingredient supplements,
etc.) use are often exclusion criteria, while non-prescription
drug use is strongly discouraged. Dietary factors (i.e., vegan
diet) and certain dietary restrictions should also be considered,
as certain fruits and vegetables can modulate exogenously
administered phytochemical metabolism. Cruciferous vegetables
(e.g., broccoli, brussel sprouts, asparagus, water cress, etc.) and
certain citrus fruits and fruit juices (i.e., grapefruit, pomelo,
orange) should be avoided (42). Food diaries are highly
recommended for use in multi-dose PK or efficacy studies so that
any unanticipated dietary influences can be accounted for (42).

Given that many phytochemicals undergo extensive pre-
systemic metabolism, especially glucuronidation, it is plausible
that phytochemical metabolites may contribute to a botanical
extract’s efficacy. In fact, active glucuronide metabolites
have been identified for many phytochemicals (43–45).
While parent phytochemicals may be below detection limits
for some analytical assays, their glucuronides—or indirect
evidence of glucuronides when samples are treated with β-
glucuronidase—may be quantifiable in plasma or urine. Thus,
urine collection should also be considered when conducting
both phytochemical marker PK and efficacy studies. Urine
collection intervals of 0–4, 4–8, 8–12, and 12–24 h are frequently
used to characterize the contribution of renal elimination to
phytochemical PK and for active metabolite identification
and quantification.

Regulatory Considerations
From a regulatory perspective, one must consider the study’s
ultimate goal. An Investigational New Drug (IND) application
may need to be filed with the U.S. FDA if the study’s aim is to
investigate whether the supplement may be used to “diagnose,

treat, cure, or prevent any disease.” This verbiage is from the
FDA’s definition of a drug, which is quite different from the
legal definition of a dietary supplement. If, however, the study’s
goal is to simply characterize the pharmacodynamics (i.e., blood
pressure measurement) or pharmacokinetics (i.e., rate and extent
of oral absorption) of a phytochemical marker compound(s),
then an IND is typically not required. To best determine whether
an IND may be needed for a particular study involving a dietary
supplement, investigators are encouraged to contact the FDA
in advance.

CONCLUSION

Clinical studies of dietary supplements based on botanical
extracts are particularly challenging due to the complex nature of
the extracts. Ensuring the design of the clinical study accurately
tests the experimental question will depend on keeping the
clinically relevant endpoints in mind when planning the pre-
clinical studies and careful attention to the seemingly minor
details that will ultimately determine the success of translating
preclinical studies to the clinical setting.
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Human diets in developed countries such as the US have changed dramatically over

the past 75 years, leading to increased obesity, inflammation, and cardiometabolic

dysfunction. Evidence over the past decade indicates that the interaction of genetic

variation with changes in the intake of 18-carbon essential dietary omega-6 (n-6) and

omega-3 (n-3) polyunsaturated fatty acids (PUFA), linoleic acid (LA) and α-linolenic

acid (ALA), respectively, has impacted numerous molecular and clinical phenotypes.

Interactions are particularly relevant with the FADS1 and FADS2 genes, which encode

key fatty acid desaturases in the pathway that converts LA and ALA to their long chain

(≥20 carbons), highly unsaturated fatty acid (HUFA) counterparts. These gene by nutrient

interactions affect the levels and balance of n-6 and n-3 HUFA that in turn are converted

to a wide array of lipids with signaling roles, including eicosanoids, docosanoids,

other oxylipins and endocannabinoids. With few exceptions, n-6 HUFA are precursors

of pro-inflammatory/pro-thrombotic signaling lipids, and n-3 HUFA are generally anti-

inflammatory/anti-thrombotic. We and others have demonstrated that African ancestry

populations have much higher frequencies (vs. European-, Asian- or indigenous

Americas-ancestry populations) of a FADS “derived” haplotype that is associated

with the efficient conversion of high levels of dietary n-6 PUFA to pro-inflammatory

n-6 HUFA. By contrast, an “ancestral” haplotype, carrying alleles associated with

a limited capacity to synthesize HUFA, which can lead to n-3 HUFA deficiency, is

found at high frequency in certain Hispanic populations and is nearly fixed in several
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indigenous populations from the Americas. Based on these observations, a focused

secondary subgroup analysis of the VITAL n-3 HUFA supplementation trial stratifying the

data based on self-reported ancestry revealed that African Americans may benefit from

n-3 HUFA supplementation, and both ancestry and FADS variability should be factored

into future clinical trials design.

Keywords: polyunsaturated fatty acid, fatty acid desaturase, gene-diet interaction, oxylipins, endocannabinoid,

omega-3 supplements, ancestry, omega-3 deficiency syndrome

BACKGROUND

Highly unsaturated fatty acids (HUFA)—polyunsaturated fatty
acids (PUFA) with ≥20 carbons and ≥3 double bonds—and
signaling metabolites derived from them play key roles in

inflammation and thrombosis that contribute to numerous
medical conditions including cardiovascular disease (CVD),

Alzheimer’s disease (AD), type 2 diabetes, autoimmunity, cancer,

hypersensitivity disorders, skin and digestive disorders, and
infectious disease such as COVID-19 (1, 2). More specifically,

the ratios of circulating and cellular levels of omega-3 (n-3)
and omega-6 (n-6) HUFA dictate the balance of inflammatory
and thrombotic signaling molecules such as eicosanoids and
other oxylipins. The proportions of oxylipins, such as eicosanoids
and docosanoids, modulate a wide variety of physiological
and pathophysiological functions via their capacity to mediate
numerous biological processes including inflammation and
blood clotting (3–5).

The 18-carbon n-3 and n-6 dietary PUFA, alpha linolenic acid
(ALA) and linolenic acid (LA) are essential nutrients throughout
the animal kingdom. ALA is generated in plants utilizing a
methyl-end desaturase 1-15 desaturase (ω3 desaturase) that
adds a double bond to LA between the n-6 double bond and
the methyl end of the hydrocarbon chain (6). Once formed
and ingested by humans, ALA can be converted to n-3 HUFA,
including eicosapentaenoic acid (EPA), docosapentaenoic acid
(DPA), and docosahexaenoic acid (DHA), utilizing several
desaturation and elongation steps (Figure 1) (2). Similarly,
a second series of n-6 HUFA including dihomo gamma
linolenic acid (DGLA), arachidonic acid (ARA), and adrenic
acid (ADA) can be formed by the same biosynthetic pathway
and compete with the corresponding n-3 species for the
same enzymes. With few exceptions, ARA is a precursor to
pro-inflammatory/pro-thrombotic signaling molecules, and n-
3 HUFA are generally metabolized to anti-inflammatory/anti-
thrombotic products (3–5).

In 1961, the American Heart Association recommended that
dietary PUFA be substituted for saturated fats “as a possible
means of preventing atherosclerosis and decreasing the risk of
heart attacks and strokes” (7). This recommendation was largely
based on data showing that this substitution of predominately the
n-6 PUFA, LA, lowered serum total and LDL cholesterol (8, 9). As
a result, increased ingestion of LA-containing vegetable oils and
processed foods has increased dietary LA dramatically (to 6–9%
of daily energy) and has increased the ratio of dietary n-6/n-3
PUFA to >10:1 (10, 11). Concerns have arisen over the rapid

increases in dietary LA levels and the resulting imbalance in n-
6 to n-3 PUFA, and intense controversy remains over the health
and disease implications of these levels of dietary LA (11–20).

For example, studies are consistent that replacing saturated
fats with vegetable oils high in LA reduces serum cholesterol.
Further, the traditional diet-heart hypothesis would predict
that this would lead to lower deposition of cholesterol in
arterial walls, attenuation of atherosclerosis resulting in reduced
coronary artery events and all-cause mortality. However, not all
studies show this replacement reduces coronary heart disease
and all-cause deaths (12, 13, 20, 21). In fact, Ramsden et al.
demonstrated in analysis of data from the Sidney Diet Heart
Study (a single blinded, parallel group, randomized controlled
trial, n = 458) that selectively increasing LA (to ∼15% of food
energy) from safflower oils and safflower margarine increased
risk of cardiovascular risk and all cause mortality by 35%
and 29%, respectively, compared to diets enriched in saturated
fats (to ∼10% of food energy) (20). Similar results were
observed in the Minnesota Coronary Experiment, a double
blind randomized controlled trial designed to test replacement
of saturated fat with vegetable oil rich in linoleic acid (13).
In contrast, multivariable-adjusted associations of circulating or
adipose tissue LA demonstrate that higher levels of LA (expressed
as % of total fatty acids) are significantly associated with lower
risks of cardiovascular mortality and all-cause mortality (22, 23).

Collectively, these studies have raised important questions
as to why these results are so inconsistent especially as it
relates to such a vital health question. In a meta-analysis of
randomized clinical trials (RCTs), Ramsden et al. showed that
mixed n-3 ALA/n-6 LA vs. n-6 specific LA interventions have
significantly different effects on coronary heart disease (CHD)
risk with mixed interventions reducing the risk of non-fatal
myocardial infarction (MI) and non-fatal MI+CHD death, while
specific LA diets increased risk of all coronary heart disease
endpoints (12). We have demonstrated that the method used to
express levels of PUFA and HUFA can affect the magnitude and
direction of associations with blood lipids (24), and it remains
to be seen whether this impacts CHD endpoints or mortality
risk. Importantly for the purpose of this review, there are no
studies on the impact of dietary LA in the context of ancestry,
which is a critical missing gap given our knowledge of the
role of ancestry-driven genetic variation in HUFA metabolism
summarized below.

Up until a century ago, LA in the diet was limited (2, 25–
28). Human diets were largely limited to plants, naturally grazing
animals, and fish, which all had much lower levels of LA and
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FIGURE 1 | Biosynthesis of n-3 and n-6 Highly Unsaturated Fatty Acids and Lipid Signaling Products. N-6 and n-3 HUFA are synthesized from dietary intake of

essential fatty acids ALA and LA, respectively, through a series of enzymatic desaturation (FADS2 and FADS1) and elongation (ELOVL2 and ELOVL5) steps. This

pathway gives rise to primary n-3 HUFA and n-6 HUFA such as EPA, DPA, DHA and ARA. These LC-PUFA (as free fatty acids or complex lipids) and lipid signaling

metabolites impact a wide range of physiologic and pathophysiologic processes. FADS 1/2, fatty acid desaturase 1/2; ELOVL 2/5, fatty acid elongase 2/5; ALA,

α-linolenic acid; SDA, stearidonic acid; EtSA, eicosatetraenoic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic acid; LA,

linoleic acid; GLA, γ-linolenic acid; DGLA, dihomo-γ-linolenic acid; ARA, arachidonic acid; ADA, adrenic acid; PG, prostaglandin; TX, thromboxane; LT, leukotriene;

HEPE, hydroxyeicosapentaenoic acid; HETrE, hydroxyeicosatrienoic acid, HETE, hydroxyeicosatetraenoic acid; DiHETE, dihydroxyeicosatetraenoic acid; EET,

epoxyeicosatetraenoic acid; 2AG, 2-arachidonoylglycerol; AEA, arachidonoyl ethanolamide/anandamide.

an overall dietary ratio of LA to ALA of ∼2:1, as opposed
to the >10:1 observed today (10). Available data suggests that
dietary LA provided 2 to 3 % of daily energy at most until the
late nineteenth and twentieth centuries (27, 29). Additionally,
up until that time, the diet contained much more balanced
levels of n-3 and n-6 HUFA. LA was dramatically increased in
the food supply of western countries as the result of several
technological events and dietary recommendations (2). There
was the commercial refining of LA-rich seed oils, the invention
of hydrogenation that enabled seed oils to be solidified in
shortenings and margarines, and the substitution of animal fats
with LA enriched oils. These taken together with several dietary
recommendations that PUFA (particularly LA) be substituted for
saturated fats (8, 9) dramatically increased LA levels an estimated
four-fold and markedly increased ratios of LA to ALA and n-6 to
n-3 HUFA by reducing n-3 HUFA by an estimated 40% (10).

The effects of this increase in LA have been debated, with one
systematic review finding that large changes in LA intake resulted
in little to no changes in tissue ARA levels (30). However, given
the shared enzymatic steps involved in the metabolism of LA and
ALA (Figure 1), these PUFA and their intermediates compete in

the liver and other tissues for enzymatic reactions that produce
biologically active HUFA. Consequently, a marked increase in
LA reciprocally deceases levels of all major n-3 HUFA including
EPA, DPA and DHA (31–35), while a reduction in LA increases
these n-3 HUFA. Additionally, the conversion of PUFA to HUFA
reaches a saturation point at which additional PUFA have no
effect on HUFA levels (36). Recent studies from our lab reveal
that this saturation occurs at the FADS1 (1-5 desaturase) step in
the biosynthetic pathway (37–39) and flux through this step is
markedly altered by genetics as described in detail below.

Another concern with increased ratios of LA to ALA is
related to oxylipins (including eicosanoids and docosanoids) and
other signaling molecules that are synthesized from n-6 and n-3
HUFA. ARA-derived eicosanoids compared to EPA and DHA-
derived eicosanoids, docosanoids, and specialized pro-resolving
lipid mediators typically have opposing biological effects (3–
5), and a precise HUFA balance is therefore critical to avoid
hyperinflammatory and hypercoagulopathy events in numerous
human conditions (1). While the effects of increasing tissue ARA
are not completely clear (40), the importance of this balance
was demonstrated 20 years ago when selective cyclooxygenase
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2 inhibitors were removed from the market after an increase
in the number of thrombotic events. This was attributed to an
enhanced production of thromboxane A2 via the cyclooxygenase
1 enzyme coupled with a reduction in levels of prostacyclin (41).
This lack of a “balanced HUFA milieu” has also recently been
proposed to be important for the avoidance of the cytokine storm
and excess clotting associated with COVID-19 (1). However,
it is important to point out that there are a large number of
oxylipins derived from n-6 and n-3 PUFA and HUFA that can
be produced enzymatically and by autooxidation, and this results
in an immense complexity of physiological effects that are not yet
fully understood (42).

In summary, the production and human consumption of
LA has risen dramatically over the past 100 years (2), and LA
now represents over 90% of total PUFA + HUFA intake in
Western diets (10). Nutrient deficiencies or imbalances have
historically occurred as a result of inadequate food consumption;
however, in this case, the amount of PUFA entering the
HUFA biosynthetic pathway has been immensely changed by
manipulation of food supplies, increases in processed foods,
and dietary recommendations. Moreover, in countries such as
the US, LA-containing food and oils are being consumed by
highly diverse populations representing numerous ancestries
and evolutionary histories. The purpose of this review is first
to describe the potential impact of PUFA-based gene-diet
interactions that lead to ancestry- and gene variation imbalances
in n-6 HUFA to n-3 HUFA levels. Second, we will provide a
rationale for how these can provide metabolic underpinnings for
much of the observed clinical trial heterogeneity with n-3 HUFA
supplementation trials. Finally, we describe how precise dietary
and supplementation strategies with n-3 HUFA could rebalance
HUFA to prevent and manage human diseases especially in
certain human populations.

THE BIOCHEMISTRY AND GENETICS OF
N-6 AND N-3 HUFA FORMATION

Early studies carried out in European ancestry populations
showed that humans had the capacity to convert only a small
proportion (3–4% of calories/kilojoules) of ingested LA and
ALA into n-6 and n-3 HUFA (36, 43). It was also recognized
that this was largely due to the desaturase steps (16 and
15), encoded by two genes (FADS2 and FADS1) in the FADS
cluster on chromosome 11 (chr11q12-13.1) (44). Based on these
assumptions, theoretically, recommendations to increase dietary
LA to 6–8% of energy should not fundamentally impact HUFA
levels, because atmost, only 4% of LA could be converted to ARA.
Thus, the impact of high dietary LA on ARA signaling products
such as oxylipins (including eicosanoids) and endocannabinoids
was thought to be limited by the efficiency of conversion
of LA to ARA, and this was assumed to be similar across
human populations.

Around 2006, candidate gene studies and genome-wide
association studies (GWAS) began to show that genetic variation
in the fatty acid desaturase cluster, which includes FADS1,
FADS2, and FADS3, and also in the fatty acid elongase genes,

which include ELOVL5 and ELOVL2, was highly associated
with tissue and circulating levels of PUFA and HUFA (45–52).
These initial studies, conducted mostly in European-ancestry
individuals, revealed variability in the genes associated with
HUFA biosynthesis and also demonstrated that this genetic
variability impacted the efficiency of the HUFA biosynthetic
pathway. Importantly the same variants found in HUFA
association studies were also reported in relation to several
human diseases including CVD, metabolic syndrome, obesity,
atopic dermatitis, and major depressive disorders (1, 44, 53, 54).

In particular, an early study by Martinelli et al. showed that a
higher ratio of ARA to LA in individuals with the FADS haplotype
for efficient conversion of LA to ARA was an independent risk
factor for coronary artery disease (55). Additionally, levels of
high-sensitivity c-reactive protein, which is an inflammatory
marker associated with risk of CVD, increased progressively
with the haplotype-dependent ratio of AA to LA. The authors
concluded that in a Western diet, “subjects carrying FADS
haplotypes that are associated with higher desaturase activitymay
be prone to a proinflammatory response favoring atherosclerotic
vascular damage.” This study and similar ones began to raise the
alarm that “one size fits all” recommendations related to high
dietary LA may actually harm certain individuals in a highly
diverse population such as the US.

Recently, in a study that combined metabolomic and GWAS
analyses, we examined the capacity of FADS variants to impact
the balance of pro- vs. anti-inflammatory or thrombotic HUFA
metabolite balance (38). This study was designed to examine not
only the rate-limiting step of HUFA biosynthesis but also regions
of the genome that exert genetic control over a large number
the HUFA-containing complex lipids and signaling molecules.
We examined associations between levels of 247 lipid metabolites
(including four major classes of HUFA-containing molecules and
signaling molecules) and common and low-frequency genetic
variants throughout the genome. Genetic variation within the
FADS locus was strongly associated with 52 HUFA-containing
lipids and signaling molecules, including free fatty acids,
phospholipids, lyso-phospholipids, and an endocannabinoid (2-
arachidonyl glycerol). The HUFA within these lipids were largely
a precursor (such as dihomo gammalinolenic acid [DGLA]) or
a product (such as ARA) of the 15 desaturase (FADS1) step.
Perhaps most surprisingly, for over 80% of the FADS-associated
lipids, there were no significant genetic associations outside the
FADS locus, offering further evidence of the impact of this single
genetic locus. This was unanticipated as many of these HUFA-
containing lipids were synthesized by up to five biochemical steps
past the FADS1 desaturation step. These data suggest that FADS
variation is the critical “control point” in the formation and levels
of numerous biologically important, HUFA-containing lipids and
signaling molecules, many of which are related to health and
human disease outcomes.

Given the role of the FADS1 step as a central control point
of so many biologically important lipids, it is important to
also consider the effect of genetic variation on the precursor-
product flux across the FADS1 desaturation step. In particular,
it was important to understand the effect of genetic variation on
levels of the precursor of the FADS1 desaturation step, DGLA,
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which is converted to anti-inflammatory, anti-thrombotic, and
vasodilatory signaling molecules and the product of this step,
ARA, which is the precursor to largely pro-inflammatory, pro-
thrombotic, and vasoconstricting products. Kothapalli et al.
recently modeled the DGLA to ARA flux across the FADS1 step
to be altered by 84% between the DD and II genotype of the FADS
insertion/deletion variant (indel) rs66698963 (1, 56). We found a
similar impact on flux of 82% measuring DGLA and ARA levels
when comparing the GG and the TT genotypes for the variant
rs174537 (37) near FADS1/2. When this relationship is further
modeled using LA quantities in Western diets, not only does the
ratio of ARA to DGLA shift dramatically between genotypes but
the ratio of ARA to the sum of all n-3 HUFA is projected to
increase by 47% (1). As highlighted in the section on ancestry
below, this becomes highly relevant when population frequencies
differ dramatically, and haplotypes in many populations are fixed
with almost all individuals harboring the higher flux genotypes.

The importance of circulating and red blood cell levels of
n-3 HUFA to human health has been demonstrated in several
studies and meta-analyses (57–59). In general, these studies show
that higher levels of n-3 HUFA are associated with lower risk of
coronary heart disease and all-cause mortality. A recent meta-
analysis from 17 prospective studies with a median of 16 years
of follow up in 42,466 individuals showed a 15–18% reduction
in all-cause mortality when comparing the highest and lowest
quintiles (57). An important limitation of these studies is they
have not included ancestry-based subgroup analyses that, based
on the discussion below, are likely to be very important.

The degree to which such HUFA imbalances affect human
disease is unknown, but these studies certainly raise concerns
as to whether interactions between the homozygous efficient
converter, FADS genotypes and current levels of LA in Western
diets place certain individuals at greater risk for disease due
to elevated n-6 HUFA levels and n-6 HUFA to n-3 HUFA
ratios. The above-mentioned analyses also raise the question of
whether stratifying individuals by FADS genotypes/haplotypes
may represent an important opportunity for rebalancing n-
6 to n-3 HUFA ratios with n-3 HUFA supplementation. We
provide evidence to support this hypothesis in the last section of
this paper.

IMPACT OF ANCESTRY AND ASSOCIATED
FADS GENETIC VARIATION ON HUFA
LEVELS AND HUMAN DISEASE

African Ancestry
In 2012, it was discovered by our group that African American
(AfAm) and European American (EuAm) populations in the
US had dramatic differences in both levels of HUFA and the
frequency of more efficient FADS variants (60, 61). It was also
reported that the substantially higher levels of HUFA found in
AfAm vs. the EuAm could be explained in part by significant
differences in frequency of FADS alleles associated with efficient
HUFA biosynthesis in the two populations; notably the effect
sizes were similar across populations but the frequencies were
not. More specifically, only ∼45% of EuAm were homozygous

FIGURE 2 | Presence and absence of the derived allele (G) at rs174537 in 80

globally diverse populations. The Y axis illustrates the proportion of the derived

allele (G) at rs174537 and the X axis shows global populations. AFR, African;

AdAFR, Ad Mixed African; SAS, South Asian; EUR, European; EAS, East

Asian; AMR, Ad Mixed American; NatAm, Native American.

for the efficient allele for the variant rs174537 vs.∼80% of AfAm.
At about the same time, Ameur et al. identified a set of 28
SNPs in a primary haplotype block that clearly distinguished
what was called the “ancestral” and “derived” haplotypes with
the derived haplotype having enhanced HUFA biosynthetic
capacity (62). Evidence was then provided that these pathway
efficient alleles that reside on the derived haplotype in the
FADS gene cluster were driven to fixation on the African
continent ∼85 thousand years ago (kya) by positive selection
(63). This in turn would have facilitated the production of
circulating and tissue HUFA from plant-based PUFA. As HUFA
are critical to brain development/function and innate immunity,
this study proposed that the selection event played a key role
in “allowing African populations obligatorily tethered to marine
sources for HUFA in isolated geographic regions, to rapidly
expand throughout the African continent 60–80 kya” (63). It
also explained the high frequency of pathway efficient alleles in
African ancestry populations.

Figure 2 illustrates the dramatic differences in the frequencies
of the derived allele at rs174537 in modern global populations.
Looking at 80 globally diverse populations separated broadly
by continent of origin, we find a near absence of the ancestral
allele in Africa, with various levels of polymorphisms elsewhere.
The other exception to this is in the Americas, where we have
shown previously an absence of the derived haplotype in many
populations (64). Overall, this demonstrates a pattern of repeated
natural selection on both the ancestral and derived variants at
different times and places across the globe (65).

Frontiers in Nutrition | www.frontiersin.org 5 February 2022 | Volume 8 | Article 808054157

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Chilton et al. Ancestry and FADS Impact Omega-3

With regard to African ancestry populations, data from
the studies raised questions as to the impact of a Western
diet (containing 6–8% LA and a LA to ALA ratio >10:1)
on these populations, which have a high frequency of alleles
associated with efficient HUFA biosynthesis. Both observational
genetic association studies suggesting potential interactions
(genetic allele frequencies do not completely explain population
differences), and recent clinical trials (offering empirical evidence
of gene-nutrient interactions) suggest that this gene-diet
interaction would lead to a marked increase in the production of
ARA relative to DGLA as well as reducing n-3 HUFA including
EPA, DPA and DHA by about 50% in AfAm and other African-
ancestry populations (1, 37, 66, 67).

Figure 3 shows the relationship between n-6 and n-3 HUFA
levels and global proportions of African and Amerind ancestry
in AfAm and Hispanic American participants from the Multi-
Ethnic Study of Atherosclerosis (MESA) cohort. Figure 3E

illustrates the impact of African ancestry on ARA levels in
circulating phospholipids. Total ARA levels (expressed as % of
total fatty acids) increased as a function of African ancestry by
∼30%. Figures 3A,C show that n-3 HUFA, EPA and DHA also
increased by ∼30 and ∼50%, respectively. These data reveal the
impact of African ancestry in AfAm MESA participants on n-6
and n-3 HUFA levels. Figures 3B,D,E (described in detail below)
show the inverse impact of Amerind (AI) ancestry on HUFA
levels in circulating phospholipids.

Importantly, as discussed above, combined genetic and
metabolomic analyses reveal that this shift is not only seen
in the HUFA themselves but also HUFA-containing complex
lipids and signaling molecules. Additionally, a separate study
revealed an association between FADS genotype and the ratio
ARA/DGLA as well as the biosynthesis of 5-lipoxygenase
products produced in whole blood (68). Collectively, these
studies show that elevated levels of LA combined with FADS
(particularly FADS1) genetic variability create different mixtures
of HUFA that serve as the precursors of critical signaling
lipids (oxylipins including eicosanoids and endocannabinoids).
These data would lead to the conclusion that African ancestry
populations consuming a Western diet with high LA could
be impacted more by gene-diet interactions that lead to a
HUFA balance predicted to move toward proinflammatory and
prothrombotic signaling molecules potentially contributing to
disease severity and disease disparities.

Figure 4 (Right Side) illustrates the potential impact of
two alleles of derived, pathway efficient variants combined
with current levels of LA on levels of n-6 and n-3 HUFA.
Here, the biosynthetic efficiency through the FADS (and
particularly through the FADS1 [D5 desaturase]) enzymatic
step is maximized and produces high, excess levels of n-6
HUFA as well as their signaling metabolites. Under these same
circumstances, n-3 HUFA levels and signaling products are
measurable but not sufficient to balance the excess quantities
of n-6 HUFA synthesized from high quantities of dietary LA
entering the highly efficient pathway. With FADS variants
associated with the derived haplotype, the n-6 HUFA to n-3
HUFA ratio more closely reflects the >10:1 LA/ALA entering
the pathway. The mixture of n-6 HUFA to n-3 HUFA serving as

substrates for the biosynthesis of signaling molecules is critical as
these are typically competitive enzymatic reactions.

European and Asian Ancestry
Approximately 44% of the European ancestry population in the
US have two FADS alleles associated with the derived haplotype
(60, 61). By comparing FADS sequencing data from present-day
and Bronze Age (5–3k years ago), Mathieson et al. and Buckley
et.al showed that selective patterns observed in Europeans were
likely driven by a change in the dietary composition of PUFA
following the transition to agriculture (75, 76). This transition
gave rise to high intake of LA and ALA and lower ingestion of
HUFA thus driving the need for more efficient biosynthesis of
HUFA. Figure 2 shows a great deal of variability in the frequency
of ancestral and derived variants in Asian populations, with the
derived haplotype proportion ranging from∼0.4 in east Asian to
∼0.8 in south Asian to populations. In south Asia, Kothapalli et
al. showed positive selection for an insertion-deletion mutation
(rs66698963) in FADS2 leading to more efficient biosynthesis of
HUFA and proposed this too may have been an adaptation to a
more vegetarian diet (56).

Amerind Ancestry
In contrast to African ancestry populations, in AI-ancestry
Hispanic populations the ancestral haplotype that harbors
FADS variants associated with limited biosynthetic efficiency
is found at high frequency and the alleles are nearly fixed
in many Native American populations (Figure 2). Fumagalli
et al. first found strong signals for the ancestral haplotype
in the FADS cluster when examining natural selection to
cold adaptations in an indigenous Greenland Inuit population
(77). The identified variants were also strongly associated with
body weight and height, and these findings were replicated
in European populations. We confirmed that the ancestral
haplotype is fixed in Indigenous Americans in Peru and provided
evidence that positive selection possibly continued after the
founding of the Americas (64). Our study also demonstrated
that the ancestral haplotype is at higher proportions in more
northern regions of Siberia, independent of European admixture.
Mathieson et al. suggest that the current distribution of the
haplotype indicates that Indigenous Americans retained it from
Paleolithic Eurasians (65).

The positive selection toward the ancestral haplotype is
puzzling given the potential detrimental health effects of a
reduced capacity to synthesize HUFA given their role in brain
function/development and innate immunity. However, HUFA
and particularly n-3 HUFA from cold water marine sources
would have likely been the major food source for early Siberian
and indigenous American ancestors that remained isolated,
possibly in Beringia (78). There is evidence that the ancestral
haplotype provided a cold adaptation advantage, but it is
not apparent how. As discussed above, it is worth noting
that a recent combined genetics and metabolomics study has
shown that the FADS locus (mainly FADS1) is a central
control point for signaling lipids such as endocannabinoids, and
endocannabinoids are known to impact anthropomorphic and

Frontiers in Nutrition | www.frontiersin.org 6 February 2022 | Volume 8 | Article 808054158

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Chilton et al. Ancestry and FADS Impact Omega-3

FIGURE 3 | Impact of ancestral and derived FADS haplotypes combined with n-6 and n-3 PUFA from western diets on producing n-3 HUFA deficient (Left Side) and

n-6 HUFA excess (Right Side) molecular phenotypes. The top of the illustration shows quantities and ratios of dietary PUFA entering the lower efficiency “ancestral”

pathway or the higher efficiency “derived” pathway. The lower shows n-6 and n-3 HUFA levels, metabolites and imbalances produced by these gene-diet interactions.

other phenotypic characteristics that could have been critical to
cold adaptation (38, 79).

These genetic observations raise questions as to the
biochemical and clinical ramifications of the ancestral haplotype
for modern populations and particularly those that find
themselves ingesting Western diets. In 1997, Okuyama and
colleagues made a compelling case that excess LA, generating
a dramatic increase in the dietary LA to ALA ratio, would
lead to n-3 HUFA deficiency in certain populations and this
in turn would increase the risk of CVD, western-type cancers,
cerebrovascular diseases, and mental health disorders (80).
Regarding our current understanding of the impact of FADS
haplotype variants, populations with high frequencies of two
FADS alleles associated with the ancestral haplotype would
be expected to have a limited capacity to synthesize HUFA. A
gene-diet interaction then would be predicted to produce low
(perhaps deficient) levels of n-3 HUFA given a ratio of LA to
ALA of 10:1 and restricted flux through the pathway.

We recently tested this hypothesis in Hispanic American
participants originating from Central America, South America,
Mexico, Dominican Republic, Cuba, and Puerto Rico in the US-
based MESA cohort (39). Not surprising, global proportions of
genetic ancestry differedmarkedly, with Central American, South
American, and Mexican populations having high AI ancestry
compared to those of Dominican, Cuban, or Puerto Rican
origin (which have higher African and European ancestry). This
was mirrored by a higher frequency of the ancestral haplotype

FADS alleles in high AI populations vs. low AI populations.
Populations from Central America, South America, and Mexico
had ancestral allele frequencies ranging from 0.56 to 0.59, while
populations from the Dominican Republic, Cuba and Puerto
Rico had ancestral allele frequencies ranging from 0.27 to
0.40. The primary hypothesis of this study was that the levels
and ratios of LA and ALA found in western diets would be
metabolized through a less efficient pathway in a high proportion
of AI individuals due to the elevated frequency of two alleles
associated with the ancestral haplotype. This in turn would be
proposed to produce adequate levels of ARA, but because of the
competition between LA and ALA and their intermediates under
conditions of limited metabolism, low (inadequate) levels of n-
3 HUFA (EPA, DPA and DHA) would be expected as shown
in Figure 4 (Left Side). Without adequate n-3 HUFA and in
the presence of the imbalance of n-6 to n-3 HUFA, the anti-
inflammatory and lipid lowering functions needed to protect
against obesity, CVD, and cardiometabolic disease would be
reduced. Such data would once again reveal that “one size fits
all” dietary interventions are unlikely to be clinically effective
for all populations, given the dramatic differences in FADS
variant frequencies that impact circulating and tissue levels of
n-3 HUFA.

Figures 3B,D,F shows that in MESA, AI ancestry was
associated with lower levels of n-6 and n-3 HUFA in
Hispanic individuals (39). When comparing participants with
the highest AI ancestry to those with the lowest AI ancestry,
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FIGURE 4 | Impact of African and Amerind ancestry on n-6 and n-3 HUFA Biosynthesis. This plot shows HUFA levels for self-reported African American (n = 1,505)

and Hispanic (n = 1,102) participants from MESA (69). Fatty acids were measured using the methods described in Cao et al. (70) and outliers were winsorized to the

value of median +/– 3.5 * median absolute deviation (MAD) (39). Proportions of African and Amerind ancestry were estimated using ADMIXTURE (71) using selected

Amerind (39) and all African reference samples from the 1,000 Genomes (72) and the HGDP6 (73, 74). (A,C,E) illustrate circulating phospholipid levels containing EPA,

DHA, and ARA, respectively, as a function of African Ancestry. (B,D,F) illustrate circulating phospholipid levels containing EPA, DHA, and ARA, respectively, as a

function of Amerind Ancestry. EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; ARA, arachidonic acid.

there was a 60, 47 and 31% reduction in EPA, DHA
and ARA, respectively, in circulating phospholipids. These
declines gave rise to predicted levels among individuals with
100% AI ancestry of ∼0.3 and ∼2% of total fatty acids
for EPA and DHA, respectively, compared to ∼8.6 % for
ARA. While it is not possible to determine the levels n-3
HUFA where a deficiency with pathophysiologic impact would
occur, these are quantitatively very low concentrations of n-3
HUFA.

The observed inverse relations with AI ancestry and n-
3 HUFA levels are to be expected given that the substrate
saturation point in the pathway is reduced due to genetic
variation associated with the ancestral haplotype. Together, these
data reveal that combinations of LA to ALA found in Western
diets combined with carrying two alleles associated with the
ancestral haplotype and low consumption of preformed dietary
n-3 HUFA have the capacity to give rise to Omega-3 Deficiency

Syndrome, as proposed by both Okuyama et al. and Lands et al.
three decades ago (80, 81).

The potential ramifications of AI ancestry, the presence
of the ancestral haplotype, and low levels of n-3 HUFA on
critical cardiometabolic and inflammatory risk factors were
next examined. AI ancestry is positively associated with levels
of circulating triglycerides (TGs) and much of this effect was
explained by variation in the FADS locus (39, 82–91). The
high frequency of the ancestral FADS alleles together with
their effect size in AI-Ancestry Hispanic populations suggest
that FADS variation is particularly relevant to TG levels in
this population. The liver is important in TG synthesis and
deficiencies of n-3 HUFA and imbalances of n-6 relative to
n-3 PUFA and HUFA have been associated with elevated TGs
and non-alcoholic fatty liver disease (NAFLD) (92). A strong
association between the FADS variant rs174537 and E-selectin
was also observed in Hispanic populations, with higher levels
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FIGURE 5 | Kaplan-Meier survival curves comparing n-3 HUFA supplementation and placebo from a subgroup analysis of (A) White and (B) African American

Subjects. The plots have been divided by fish intake (at least 1.5× per week) and the number of cardiovascular disease (CVD) risk factors. The plotted lines show the

probability of surviving (i.e., not experiencing a myocardial infarction) over time. The lighter shaded regions surrounding the plot lines show 95% confidence regions.

The greatest difference is observed in African Americans who did not eat fish and had >1 CVD risk factors, such that those receiving n-3 supplements had many

fewer myocardial infarction events over the study period.

in individuals carrying copies of the ancestral T allele (39).
Circulating levels of E-Selectin (CD-62E) are elevated in many
diseases involving chronic inflammation including obesity (93),
cardiovascular disease (94), bronchial asthma (95), and cancer
(96, 97).

The original observation by Fumagalli et al. that strong
signals for the ancestral haplotype in the FADS cluster
are associated with anthropometric characteristics such as
body weight and height are curious (57). We also examined
the effect of rs174537 and rs174557 on the same set of
phenotypes and found them to be significantly associated
with higher waist-hip circumference ratio, as well as
lower height and weight. The rs174537 allele T further
demonstrated an association with reduced height and weight
in the large Hispanic Community Health Study/Study of
Latinos (HCHS/SOL) cohort (n = 12,333) (39). The capacity
of this region of the genome to impact anthropometric
characteristics likely played a key evolutionary role in cold
adaptation for early Siberian and indigenous American
populations. Additionally, it may also be vital in impacting
key CVD risk factors in modern AI ancestry Hispanic and
Native American population. While it is unclear which
signaling molecules from FADS derived steps are responsible
for the anthropometric changes, our recent combined
genetic and metabolomic analyses showed the FADS locus
is a central control point for biologically active HUFA-
containing complex lipids that act as signaling molecules.
The endocannabinoid, 2-AG, and such endocannabinoids
are known to impact anthropometric and other phenotypic
characteristics (38).

POST HOC SUBGROUP ANALYSIS OF THE
VITAL TRIAL

Imbalance of n-6 to n-3 HUFA could likely be attenuated by n-3
HUFA enriched diets or supplementation thereby preventing or
improving serious disease outcomes; however, this relationship
needs to be evaluated in the context of FADS genetic variants
and/or ancestry. Results from randomized clinical trials with EPA
and DHA (mostly with European ancestry participants) have
shown conflicting results, and thus their efficacy for reducing
CVD and cancer remain controversial. The 2019 Vitamin D
and Omega-3 Trial (VITAL) is of particular interest here,
as it included n = 5,106 African American participants out
of n = 25,871 total participants. Overall, they reported that
supplementation with either n−3 HUFA (EPA+DHA, provided
as ethyl esters) at a dose of 1 g/day or vitamin D3 at a dose
of 2,000 IU/day was ineffective for primary prevention of CVD
(composite endpoint) or cancer events among their entire study
cohort of healthy middle-aged men and women over 5 years
of follow-up (98). However, in line with the FADS hypothesis
outlined above, for African American participants they reported
(in the supplemental material) an overall reduction inmyocardial
infarction of 77% (vs. placebo), and a marked reduction in
coronary revascularization and total coronary heart disease with
EPA and DHA supplementation.

Using the VITAL study data, we performed additional
subgroup comparisons based on the FADS framework.
Figure 5 compares the Kaplan-Meier survival curves for
the myocardial infarction endpoint, faceted by fish consumption
and the number of cardiovascular risk factors, for both
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White and African American subjects. These data show the
largest impact of n-3 HUFA supplementation on African
American subjects who do not consume fish and have existing
cardiovascular risk factors, suggesting that this group in
particular could benefit from n-3 HUFA supplementation. In
line with our expectations based on the mixed distribution
of FADS haplotypes in European-ancestry populations, we
do not see such a response to n-3 HUFA supplementation
in the White subjects. These results come with all the usual
caveats for post-hoc re-analyses of clinical trial data and
there is always a risk of finding false positive associations.
However, in this case, the pattern of subgroup results agrees
with predictions based on FADS genetics and resulting
HUFA metabolism.

CONCLUSIONS

The human consumption of LA has risen dramatically over
the past 100 years (2), due largely to manipulation of
food supplies, increases in processed foods, and dietary
recommendations. LA-containing food and oils are currently
being consumed by highly diverse populations in countries
such as the US whose populations represent numerous
ancestries and evolutionary histories. Ancestry-influenced
FADS variability together with current levels of LA in
Western diets likely place certain individuals and populations
at greater risk for disease due to elevated n-6 HUFA or
markedly reduced n-3 HUFA levels and concomitant
alterations in n-6 HUFA to n-3 HUFA ratios. These
imbalances manifest themselves as alterations in levels of
lipid signaling metabolites that impact inflammatory and
thrombotic conditions.

Data from the studies of African ancestry populations raise
concerns as to the impact of a Western diet (containing 6–8% LA
and a LA to ALA ratio >10:1) combined with a high frequency
of alleles associated with efficient HUFA biosynthesis. Recent
clinical trials (offering empirical evidence of gene-nutrient
interactions) suggest that this gene-diet interaction would lead
to a marked increase in the production of ARA relative to DGLA
as well as reducing n-3 HUFA (1, 37, 66, 67).

Our findings with African Americans in the VITAL
trial further highlight the urgent need to consider genetic
ancestry (or race as proxy) and/or FADS genotypes in n-3
HUFA supplementation trials and dietary recommendations. By

focusing on a one-size-fits-all outcome (i.e., all subjects), the
impact of FADS variation gets obscured, and subgroups who
could benefit miss out. In this case, many African Americans who
may have benefited from n-3 HUFA supplementation likely did

not receive a recommendation or prescription due to reporting
of the overall negative result.

This will continue as long as HUFA metabolism and n-3
HUFA supplementation are viewed through a single lens for
all people. Instead, future work should expect this diversity
of responses and focus on those groups for which placing
preformed n-3 HUFA into the diet would be the most helpful.
Ultimately, considering individual genotypes at FADS and
other loci will likely lead to personalized supplementation and
dietary recommendations.
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