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Editorial on the Research Topic

Neuronal ceroid lipofuscinosis: A multidisciplinary update

Eleven papers and fifty-one authors from seven countries have contributed to

the Research Topic Neuronal Ceroid Lipofuscinosis: a Multidisciplinary Update. Both

clinical and research issues have been addressed in this collection of articles. The

first paper provides a broad introduction and subsequent articles cover epidemiology

and genetics, diagnosis, natural history studies, treatment and ethical implications of

novel therapies, cardiac involvement in the later stages of disease and the underlying

pathological mechanisms.

The state-of-art in the field of childhood NCLs was described from a number of

perspectives in the first review paper of the series (Simonati and Williams). Following

a brief historical survey, a clinically-oriented approach was used to describe how

the early symptoms and signs represent topographical signatures of the underlying

brain dysfunction and may provide clues helping clinicians to reach a conclusive NCL

diagnosis rapidly. The paper goes on to document advances in NCL research and the

contributions of different experimental models to enhance knowledge of the pathogenic

mechanisms underlying cellular pathology in this group of diseases. Lastly, translation of

experimental data into novel therapeutic approaches and the importance of symptomatic

treatments, which remain the main available therapeutic approaches, were outlined.

The world-wide distribution of NCL was emphasized by the retrospective

epidemiological study from South America and the Caribbean region, in which

CLN2, CLN6, and CLN3 disorders were identified as the most common NCL types

in those regions (Guelbert et al.). The authors have stressed that synergy between

health providers, parent support organizations and the pharmaceutical industry have

accelerated the use of modern diagnostic procedures.

The significance of the advances in genetic studies in NCL was discussed in the

review article by Gardner and Mole which focuses on the genetic basis of phenotypic

Frontiers inNeurology 01 frontiersin.org
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heterogeneity (Gardner and Mole). Since the discovery of

the first causative genes, more than 530 mutations have

been identified across 13 NCL genes. Increasing numbers of

variant disease phenotypes are being described. Identification

of phenotypic heterogeneity combined with the genetic

background of each patient is necessary in order to facilitate

individually tailored precision medicine in order to modify

disease progression in the approaching genomic medicine era.

Based on their own direct experience, which led FDA

and EMA Regulatory Agencies to consider natural-history

controls valid for the evaluation of efficacy in experimental

therapies for CLN2 disease, Nickel and Schulz discuss the

importance of collecting natural history data in clinical

settings for different purposes, including to advance drug

development. The most important requirements of a

valid natural history disease registry compliant with data

protection and sharing policies, are described. The process

of providing high quality quantitative natural history data

in a cohort of longitudinally assessed CLN2 disease patients

is reported.

The focus of a mini review by Bartsch and Storch is

the deterioration and loss of vision caused by progressive

retinal degeneration. The therapeutic benefits of treating

retinal dystrophies with gene-based approaches (CLN3 and

CLN6 mouse models and CLN5 sheep model) and with

ocular enzyme replacement therapies (CLN2 and CLN10

mouse models), has led to a clinical trial enrolling CLN2

patients to test the efficacy of intravitreal ERT. The long-

term effects of these therapeutic interventions remain to

be evaluated.

Ethical issues in care and treatment are the topic of a

paper which reflects the long personal clinical experience

in the field of this author (Kohlschütter). He identifies

two main topics, the first relates to the care of individual

patients affected with dementia at a young age, the use

of life-prolonging measures and the planning for the end

of life, the second refers to new experimental treatments

and the awareness that such approaches carry the risk of

prolonged survival with poor quality of life. The paper

gives examples experienced by the author which offer

insights for the “critical thinking” of readers. The issues

encountered in caring for patients affected by NCL, but may

well be common to other rare neurodegenerative diseases

of childhood.

The importance of neurophysiological tools to describe

disease evolution and supporting early diagnosis of NCL

patients was reviewed through a careful analysis of their

characteristics in several NCL types (Trivisano et al.). Authors

outline how EEG and (to a less extent) evoked potentials

can promptclinicians to obtain a molecular diagnosis in

the early phase of any NCL form, which will help to

direct patients to appropriate targeted treatments (when

available) efficiently.

Reaching an early diagnosis was the aim of a nationwide

screening project in Spain amongst children whose early clinical

features were consistent with CLN2 (Rodrigues et al.). It

used an enzymatic assay of TPP1 activity in dry blood spots,

carried out through pediatricians. Authors describe the test

as easy to perform, inexpensive and reliable and conclude

that such a test may contribute to early delivery of ERT in

this condition.

The next two articles concern cardiac involvement in

CLN3 disease. In their report describing a case series of six,

Handrup et al. state that pacemaker implantation is safe and

positively impacts on quality of life of patients because of

the presence of early cardiac conduction disorders and later

left ventricular hypertrophy. The ethical implications of such

therapeutic option are also commented upon. In a single case

report the accuracy of comprehensive cardiac MRI findings

are reported in a CLN3 disease patient. Authors recommend

the advantages of cardiac MRI both for early diagnosis of

cardiac complications of NCL and its value in monitoring the

effects of emerging CLN3 therapies on themyocardium (Todiere

et al.).

In the only review article related to experimental models

of NCLs, Takahashi et al., describe the current knowledge on

the role of the different glia components (astrocytes, microglia,

oligodendrocytes) in brain homeostasis. They go on to focus

on the most up-to-date understanding of glial pathologies and

their contribution to the pathogenesis of NCLs: they highlight

some of the associated challenges that require further research

as obtained by their studies using genetically modified mouse

models. The emerging evidence of glial dysfunction questions

the traditional “neuron-centric” view of NCLs, and would

suggest that directly targeting glia in addition to neurons could

lead to better therapeutic outcomes.

In summary, this series of articles is drawn from world

experts in NCL. It brings together basic science and new clinical

knowledge, while considering the ethical implications of recent

progress on individual patients, families and their physicians

and clinicians.
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Ethical Issues in Care and Treatment
of Neuronal Ceroid Lipofuscinoses
(NCL)–A Personal View
Alfried Kohlschütter*

Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany

The management of Neuronal Ceroid Lipofuscinoses (NCL), a group of genetic

neurodegenerative disorders mainly affecting brain and retinas, raises difficult questions

for physicians and other professionals in research, pharmaceutical industry, and public

health. Ethical problems in medicine cannot be solved by rational deliberation or by

following formal rules. Two topics of ethical issues in the field of NCL are presented here.

One group relates to the care of individual patients and centers on a life with dementia

at a young age. Advanced care planning for the end of life and the use of life-prolonging

measures require challenging assumptions in the best interest of a patient. A second

group of questions relates to new treatments. Impressive novel putative causal therapies,

such as enzyme replacement for CLN2 disease, may be only disease-modifying and

carry the risk of changing a deadly disease of short duration into one with prolonged

survival and poor quality of life. The wish for better therapeutic interventions in life-limiting

diseases has to take such risks, but more experience is needed before definite

conclusions can be drawn. The appropriateness of presymptomatic screening for a

severe disease, e.g., must be carefully evaluated to avoid the disastrous experience

made with the rash start of newborn screening for Krabbe disease. The ethical issues

described and commented in the article reflect the personal experience of a pediatrician

who has studied clinical and research questions in NCL for four decades. They should

alert various professionals to the necessity of taking their own decisions in situations that

are caused by rare progressive brain diseases of young persons, as typified by the NCL.

Keywords: dementia, genetic, lysosomal storage disease, children, palliativemedicine, disease-modifying therapy,

newborn screening

INTRODUCTION

Ethical problems in medicine are questions that cannot be answered rationally or by following
standardized rules. Answers have to evolve on the basis of a personal attempt to come to terms
with an ethical dilemma. Neuronal Ceroid Lipofuscinoses (NCL), a group of genetic life-limiting
neurodegenerative disorders predominantly affecting the brain and retina of children, raise
questions that concern physicians involved in patient care as well as other professionals in research,
pharmaceutical industry, and public health.

This review reflects the personal experience of a pediatrician who has been dealing with NCL
families and research for four decades. Ethical issues encountered are presented in two sections:
questions related to the care of patients and more general questions with impact on other areas
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of healthcare. The article should allow readers to recognize
responsibilities of various professionals taking care of NCL and
show ways along which decisions can be reached.

ASPECTS OF A LIFE WITH DEMENTIA IN
THE YOUNG

The different NCL, named after their defects of the genes CLN1
to CLN14 (1), display a high clinical variability and can manifest
from birth to young adulthood (2). All forms of NCL lead to
dementia, helplessness and premature death. To understand the
personality and the psychosocial situation of a NCL patient, one
has to realize that the individual had been healthy and developed
normally before the onset of symptoms (with the exception of
congenital cases), that the clinical deterioration is inexorably
progressive, and that the patient and the family are repeatedly
confronted with terrifying and demanding situations.

The authorization of a physician to decide on ambiguous
ethical questions is derived from a thorough understanding of
a patient’s condition and from respecting the individuality of
the situation. Apart from these prerequisites and consideration
of the general principles of medical ethics [beneficence, non-
maleficence, autonomy, and justice (3)], little else is needed for
ethical deliberations of a responsibly acting physician.

Balancing Patient Autonomy and Dementia
A demented person unable to communicate verbally may still be
able to express a judgement on his or her own situation. The story
of a young man told in Box 1 illustrates this poignantly.

Comment. The ethical problem was deciding whether an
indication existed for starting artificial nutrition, an invasive
intervention that must have a treatment goal, must be supported
by scientific evidence, and requires patient consent (4). In this case,
indisputable evidence was absent, the patient’s will could only be
guessed from non-verbal signals, and a decision had to be made
together with parents on the basis of the personal judgment of a
physician familiar with the patient’s situation (“shared decision
making”) (5). In some countries, it is not legal to withdraw artificial
nutrition in terminally ill patients as it is not considered a medical
intervention but a component of basic care (4). In these countries,
it might be even more difficult to reach a balanced decision.

“Consensus with the nursing team”: For problems as described
in Box 1, multidisciplinary discussion and shared decision making
is usually advised. Consensus of the multiprofessional team is of
great importance for sustained patient care.While various involved
healthcare professionals may have different helpful arguments
and should be heard, the final responsibility should rest on a
single physician.

Vital Decisions in the Patient’s Best Interest
Choices of adults regarding the end of their lives are liberally
discussed at present, while legal frameworks remain controversial
(6, 7). Decision-making capacities of children and decisionally
vulnerable adults are even more delicate, but must not be
neglected (8, 9).

There is wide consensus that vital medical decisions should be
taken in the best interest of the patient. Defining this best interest

BOX 1 | A resolute personality.

Arthur (not his real name) was diagnosed with juvenile CLN3 disease as a

first grader after his vision had deteriorated. He was transferred to a school

for the visually handicapped. Gradually, he lost intellectual capacity and

developed seizures but remained a strong boy, good-humored when he

got his ways and fighting fiercely against everything he did not like. His

parents acquainted themselves with the dire prognosis and concluded that,

should their son become helpless, any measure to prolong life unnaturally

would appear to them entirely inappropriate. They asked if I, as the familiar

specialized pediatrician, would stand by them should such a situation arise.

I kept seeing Arthur from time to time.

Arthur ended up helpless, unable to converse verbally and being

cared for in an excellent nursing home. When he was 27, his parents, still

in custody, called me because he had started, without comprehensible

reason, to refuse feeding and reacted fiercely to any attempt of offering food.

Multidisciplinary examination did not reveal an organic explanation. When I

saw him, he was in good spirits and reacted in a friendly way. When offered a

spoonful of a favorite food, he vehemently turned away his head. His parents

assumed his behavior reflected that Arthur was “fed up” with life. I examined

him, observed him for a long time, and collected additional information from

persons who knew him. One of his teachers commented that he had always

reacted in such a way when something went against his will.

In the end, I concluded that the parents’ interpretation was probably

right and that the arguments for starting artificial nutrition were less weighty

than those for withholding it. Consensus of opinion with the nursing team

was reached and feeding was discontinued. Arthur’s mouth was kept

moist. He remained quiet without signs of discomfort. A few days later,

he developed fever and a cough, and subsequently pneumonia. When he

appeared to have difficulty breathing, he was given oxygen and eventually

morphine. Shortly afterwards, he died. Arthur’s death certificate read

“natural death.”

is difficult against the background of cognitive impairment and
in children. Substitutes must therefore form a proper idea of
a patient’s best interest. In children, the natural substitutes are
their parents. For them, this assignment can be a severe burden
that requires great emotional support and understanding of the
consequences of a decision. Supporting the parents, informing
and “educating” them appropriately (which typically requires
many repeated discussions) is a demanding job for the doctor
in charge.

Sometimes, accepting death as a consequence of a decision
may be in the best interest of the patient. A pediatrician will have
to make up his own mind about the patients’ wish and then try to
make the parents understandwhat is at stake.When the physician
succeeds with this, outside views coming from the family and
from their environment may further complicate the situation.
For a discussion of the best-interests-of-the-child framework, see
Engelhardt (10) and Zawati et al. (11).

Ideally, even parents as medical lay persons can appropriately
decide in difficult medical matters (see Box 1), provided they are
adequately informed and understand the consequences, not only
in respect to their child’s life but also in regard to their further
existence in their social world.

Advice can be given using differing attitudes, more
paternalistic or more objective, depending on the intellectual
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abilities and psychological circumstances. When consensus exists
between both parents and their physician, a vital decision can
be made without sharing responsibility with persons outside the
family. If this is not possible in exceptional cases, advice must be
sought from other sides, which may include institutional ethical
review boards. External advisers, however, should not give the
impression that they are taking a final decision. They should
rather facilitate discussion of arguments and help parents find a
decision they can live with. For further discussion, see Hain (12).

Comment: Measures or interventions to be taken or not
in critical situations to be expected must be discussed well in
advance. At an international workshop with participation of
patient families, it was concluded that decisions on life-prolonging
interventions in children with advanced NCL or other degenerative
brain diseases are highly individual but can be made in a rationally
and emotionally acceptable way (13).

Quality of Life
In the case of a helpless, non-communicative person with an
incurable life-limiting disease, speculations about the patient’s
quality of life are frequently expressed. Frommy own experience,
quality of life is an umbrella term covering a wide variety of
concepts. While an adult may declare that he would “rather
die than end up in a wheelchair,” the parent of a child in the
end stage of a progressive brain disease may say that there is
still sometimes a smile on the face of her child and therefore
the child’s quality of life is good. In many instances, the quality
of life of a severely incapacitated child fully depends on the
irreplaceable care, love, and health of parents. When these “quasi
inexhaustible resources” are lost due to the progress of time, when
a patient’s “child appeal” has disappeared or the parents have
died, a patient’s quality of life may strongly decrease.

Comment. Ethical decisions about a patient’s quality of life
should be considered as highly individual, which confers low
priority to “moral” considerations (moral referring to supra-
individual norms) from outside.

Families’ Quest for New Therapies
NCL are incurable diseases, but at present, several novel targeted
therapy approaches are emerging, and most parents of an
affected child express a strong desire to participate at a study
“at any price.” While eligibility of patients with rare diseases to
participate in a clinical trial is a complex matter, families must
understand some basic questions: the unpredictable outcome
and risks of a newly proposed procedure in general, and the
individual suitability of their child at the actual stage of the
progressive disease.

Comment. Advising a family in respect to a new treatment
requires much personal judgement. A study in families with
metachromatic leukodystroph (a progressive neurodegenerative
disease with similarities to NCL) showed that preservation of
speech or active communication, as well as a stop of disease
progression, had the highest parental priorities expected for new
treatments (14).

ASPECTS RELATED TO NOVEL
THERAPIES

Recently, clinical trials that were performed under rigidly
controlled circumstances have shown that enzyme replacement
therapy (ERT) in patients with CLN2 disease can significantly
slow down the progressive deterioration of neurological function
(15). Not surprisingly, this exciting achievement is fraught with
new challenging ethical questions.

Experimental Therapies Outside Clinical
Trials
Once a new treatment has been shown to be safe and efficacious
and has been approved by the regulatory authorities, it remains
experimental for some time for a variety of reasons. In the
case of ERT for CLN2 disease, which involves repeated complex
invasive procedures for drug delivery to the brain (15), one of
the remaining questions is how the results will look like when the
treatment is used under less strictly controlled conditions. Such
observations have been made in France (16) and in Colombia
(17) but do not suffice yet in this respect.

Comment. Once an experimental drug is selling well, the

producing company’s interest to critically follow late results of
treatment may fade away. Whose obligation is it then to take
over responsibility?

New Targeted Therapies—Are They Only
Disease-Modifying?
Another aspect of novel treatments in severe rare diseases causes
much greater concern. While enzyme replacement therapy for
CLN2 disease effectively slows neurological progression, there
are no long-term results yet (15). In the waiting time, we have
to make efforts to shift the time point of diagnosis to younger
ages, as an early start of treatment, ideally in pre-symptomatic
children, will most probably have an impact on the results.

In the meantime, clinicians and researchers have to live with
an uncomfortable risk. Untreated late infantile CLN2 disease
leads to loss of all human abilities and death at about 10 years of
age. Enzyme replacement treatment delays the losses of mental
and motor function (not that of vision) significantly but with
unknown psychomotor functions later in life. It may be that
treatment modifies a terrible disease with short life expectancy
into a long life with possibly poor quality of life (Figure 1).

Analogous problems have occurred with other
neurodegenerative disorders of childhood. Infantile Krabbe
disease is a lysosomal degenerative brain disease that leads
to death within the first 2 years of life. Hematological stem
cell transplantation can curb the progressive brain destruction
and leads, when performed shortly after birth, to prolonged
survival and achievement of more psychomotor abilities than
untreated patients can obtain. The overall results of treatment,
however, have been disappointing (18). Long before this became
recognizable and other important facts being also unknown,
newborn screening for Krabbe disease was enthusiastically
introduced in the state of New York in 2006. This project has
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FIGURE 1 | Scheme of the psychomotor development of children. The thick

straight line represents the development of a healthy child who steadily gains

abilities with increasing age. The thin curved line represents a child with

degenerative brain disease. When effective therapy is started after appearance

of symptoms (black dot), different deviations from the natural course of

disease are possible (broken lines A–D).

been associated with many false hopes and binding of enormous
resources (19).

Spinal muscular atrophy (SMA), a progressive neuromuscular
disorder, is caused by a gene defect leading to the dying off of
motoneurons. Infants with the SMA1 type mostly die within
the first 2 years of life or require ventilation >16 h per day.
Recently developed genetically targeted therapies drastically alter
the rapid progression of the disease in the 1st years of life; the later
course of disease remains uncertain (20) as longitudinal data are
outstanding. Extraordinarily high costs (drug prices, personnel
resources, etc.) in the context of limited available evidence are
calling for a just balance of interests of patients, healthcare
systems, pharmaceutical industry, and society (21).

Comment. Clinical research has to take risks to achieve
therapeutic progress but may contemporaneously create new
problems by disease-modifying therapies. We must continue to
analyze what we are doing and define responsibilities.

Newborn Screening
The principle of newborn screening for treatable rare diseases is
detecting them in a preclinical stage and preventing the outbreak
of symptoms by early intervention. Given the treatability of
CLN2 patients by enzyme replacement therapy (15), the disease
becomes an applicant for inclusion into routine newborn
screening. Feasibility and reliability of testing for the disease
in dried blood samples for use with screening have been
demonstrated (22).

The “classic” view of the appropriateness of newborn
screening for a disease is that it can be treated effectively.
Due to the lack of long-term data on enzyme replacement
therapy in CLN2 patients, this disease at present does not

qualify for newborn screening. Recently, a “non-classic” view
has argued that screening is appropriate even for diseases
without available treatment. Proponents of this view list as
values of such an expanded screening that it gives parents
diagnostic and prognostic information about their child, allows
them to make more informed reproductive decisions, improve
symptomatic therapies, and will stimulate research on poorly
understood diseases (23). Implementing an expanded screening
of this kind appears at present impossible in Europe, given
legal and other restrictions. Nevertheless, studies of newborn
screening for several lysosomal storage disorders (24), among
them for mucopolysaccharidoses (25, 26), have documented
their feasibility and have investigated ethical, political, and other
remaining obstacles for including these diseases into general
screening programs.

Comment. Amore liberal view of newborn screening that would
include diseases with questionable or even absent treatability bears
some attractivity. Among the obstacles of implementation are the
complexity of an imperative prenatal education (27) and respect
for a “right not to know” (28).

Public Health and General Research Issues
NCL belong to the thousands of diseases for which the fact
of their rarity adds to suffering of patients and hampers the
development of treatments. Rarity leads to insufficient knowledge
of the course of disease and of disease mechanisms and to too few
participants in clinical trials of proposed new therapies (29, 30).
Rarity creates a host of questions for stakeholders in the field:
affected patients with their families, patient organizations and
supporting foundations, healthcare providers (medical services
and pharmaceutical industry), insurance or other payments
systems, public health policymakers, and research institutions.

Clinical research faces the impact of a set of rare disease
characteristics that influence the methodology of completing
robust studies (29). A study of the perspectives of different
stakeholders on therapy-related research concluded that
stakeholders have divergent views on rare disease research but
share concerns about the risks vs. benefits of therapies when
making their decisions (31).

Development of drugs or procedures for rare diseases and
their pricing is causing much debate. An extreme situation
was reached when an individualized drug therapy with an
allele-specific oligonucleotide was developed for a single patient
suffering from a type of NCL caused by a specific rare mutation
of the CLN7 gene (32). A systematic review of ethical problems
linked to rare diseases and orphan drugs lists the following major
issues: the funding of research, the significance of non-economic
values like compassion and beneficence in decision-making, the
identification of limits to labeling diseases as rare, barriers to
supranational cooperation, and determining panels of decision-
makers (33). Rare disease policies and reimbursement systems for
orphan medicinal products and healthcare services differ greatly
between countries (34, 35).

In a process known as venture philanthropy, private
foundations obliged to specific diseases have formed partnerships
with industry and federal agencies to share the financial risk
of therapeutic development (36). For three lysosomal storage
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disorders, a charitable access program for patients in underserved
communities worldwide has been instituted (37). This program
could become a model for cooperation between industry,
patient organizations, and governmental and non-governmental
organizations in fighting rare diseases.

Comment. The rarity alone of a disease causes a multitude
of problems. As 3–6% of the world population are affected by
thousands of rare diseases (38), the potential load required by these
diseases for healthcare and research is astronomical.

Further Topics
In NCL, as in many genetic devastating diseases, professionals
will be confronted with further topics requiring difficult ethical
decisions: prenatal diagnosis, pre-implantation diagnosis, or
results of carrier screening as determinants of reproductive
choices (39). These are beyond the scope of this review.

DISCUSSION

Difficult questions related to NCL or similar diseases are
manifold and have been presented here as forming two major
groups. One group centers on the care of individual patients on
their way to dementia, complete helplessness, and early death.
Advanced care planning for the end of life and assumptions

on the best interest of a patient constitutes one of the most
challenging problems. A second group of problems mainly
concerns experimental, targeted therapies. New therapies, even
when astonishingly effective, carry the risk of being disease-
modifying with a potentially undesirable outcome. The sections
in the text on single problem areas are followed by short personal
comments that try to mark particularly hot spots of discussion
(printed in italics).

In conclusion, the ethical issues presented should make
physicians and other professionals, including researchers and
politicians, aware of having to take their own decisions in widely
different situations caused by progressive brain diseases of young
persons, as they typically occur in NCL.
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The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative

disorders that affect children and adults. They share some similar clinical features

and the accumulation of autofluorescent storage material. Since the discovery of the

first causative genes, more than 530 mutations have been identified across 13 genes

in cases diagnosed with NCL. These genes encode a variety of proteins whose

functions have not been fully defined; most are lysosomal enzymes, or transmembrane

proteins of the lysosome or other organelles. Many mutations in these genes are

associated with a typical NCL disease phenotype. However, increasing numbers of

variant disease phenotypes are being described, affecting age of onset, severity or

progression, and including some distinct clinical phenotypes. This data is collated by

the NCL Mutation Database which allows analysis from many perspectives. This article

will summarise and interpret current knowledge and understanding of their genetic basis

and phenotypic heterogeneity.

Keywords: neuronal ceroid lipofuscinosis, batten disease, NCL, CLN, mutation, gene, lysosomal disease

INTRODUCTION

The neuronal ceroid lipofuscinoses (NCL), also known as Batten disease, are a group of inherited
neurodegenerative life-limiting diseases that share some common clinical features including
epileptic seizures, progressive psychomotor decline, and visual failure, and the accumulation of
autofluorescent storage material. NCL usually begins in childhood, and most are inherited in an
autosomal recessive manner. More than a dozen genes have been linked to families diagnosed with
NCL (Table 1) (1). It is likely that most genes causing NCL have been identified.

This article summarises the genetic basis of NCL and discusses correlations with disease
phenotype. All mutation details can be found in the freely accessible NCL mutation
database (www.ucl.ac.uk/ncl-disease).

HISTORICAL PERSPECTIVE

The concept of NCL as a group of inherited diseases first emerged in the 1960s (2), leading to
classification into four broad ages of onset: infantile, late infantile, juvenile, and adult. At this time
it was assumed that each of these types was caused by mutations in a different gene, named in
advance asCLN1,CLN2,CLN3, andCLN4, respectively. The first genes to be identified, in the 1990s
(CLN1, CLN2, CLN3), were responsible for the most common paediatric types. However, these first
identified genes were not responsible for all childhood onset cases. For example, the genes CLN5,
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TABLE 1 | Summary of genotype and phenotype in NCL.

Gene Disease name(s) Protein and location Number of reported

mutations

Widespread common

mutations

Regional-specific

mutations

Genotype-phenotype

correlation

Age of onset Presenting and typical

clinical features

CLN1

PPT1

CLN1 disease Palmitoyl protein

thioesterase 1;

lysosome

71 c.364A >

T/p.(Arg122Trp);

c.451C >

T/p.(Arg151*)

c.223A > C/p.(Thr75Pro);

c.29T > A/p.(Leu10*) in

Scotland

Infantile

Late infantile

Juvenile

Adult

6–18 mo

2–4 y

5–10 y

>20 y

Speech and motor

development delay, Rett-like

hand movements, loss of

developmental gains

CLN2

TPP1

CLN2 disease tripeptidyl peptidase 1;

lysosome

155 c.509-1G >

C/p.(Val170Glyfs*29);

c.622C >

T/p.(Arg208*)

c.851G > T/p.(Glu284Val)

in Canada

Congenital/Infantile

Late infantile

Juvenile

Late juvenile/Protracted

Adult

SCAR7

0–18 mo

2–4 y

5–10 y

>11 y

>20 y

>4–11 y

Speech delay, seizures,

motor decline

CLN3 CLN3 disease CLN3; lysosome

membrane

78 c.461-280_677 +

382del (1-kb deletion)

1 kb intragenic deletion in

many countries; 2.8 kb

intragenic deletion

in Finland

Infantile

Juvenile

Protracted

Autophagic vacuolar

myopathy

Retinitis pigmentosa

Non-syndromic retinal

disease

Adult cone-rod dystrophy

0.4 y

5–10 y

>13->40 y

>20 y

Rapidly progressing loss of

vision, cognitive decline

CLN4

DNAJC5

CLN4 disease DnaJ homologue

subfamily C member

5/CSPα, Cysteine

string protein;

cytoplasm

3 c.346_348delCTC/

p.(Leu116del); c.344T >

G/p.(Leu115Arg)

Adult (autosomal

dominant)

>20 y Seizures, ataxia, behavioural

changes

CLN5 CLN5 disease CLN5; lysosome 37 c.1175_1176del

/p.(Tyr392*); c.225G >

A/p.(Trp75*) in Finland

Congenital

Infantile

Late infantile

Juvenile

Protracted

Teenage

Adult

1.5 y

2–4 y

5–10 y

17 y

>50 y

Slowing of psychomotor

development, visual failure

CLN6 CLN6 disease CLN6; endoplasmic

reticulum membrane

82 c.214G > T/p.(Glu72*) c.461_463del/p.(Ile154del)

in Portugal

Late infantile

Protracted

Teenage

Adult Kufs type A

Juvenile cerebellar ataxia

Progressive

myoclonus epilepsy

2–4 y

>16 y

>20->51 y

7–9 y

>15

Speech and motor

development delay, seizures

CLN7

MFSD8

CLN7 disease major facilitator

superfamily domain

8-containing protein;

lysosome membrane

46 c.881C > A/

p.(Thr294Lys)

c.881C > A/p.(Thr294Lys)

in Roma Gipsies;

c.754+2T>A in Eastern

Europe

Late infantile

Juvenile/late juvenile

Nonsyndromic retinal

disease

Adult macular dystrophy

Adult cone-rod dystrophy

2–4 y

5–11 y

>5 y

>29–>65 y

>27 y

Speech delay, motor

difficulties, seizures

(Continued)
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TABLE 1 | Continued

Gene Disease name(s) Protein and location Number of reported

mutations

Widespread common

mutations

Regional-specific

mutations

Genotype-phenotype

correlation

Age of onset Presenting and typical

clinical features

CLN8 CLN8 disease CLN8; endoplasmic

reticulum membrane

41 c.70C > G/p.(Arg24Gly) in

Finland causing EPMR;

c.610C > T/p.(Arg204Cys)

and c.789G >

C/p.(Trp263Cys) in Turkey

Late infantile

Juvenile

EPMR/Northern epilepsy

2–4 y

6 y

5–10 y

Language and learning

difficulties, motor difficulties,

seizures

CLN10

CTSD

CLN10 disease cathepsin D; lysosome 10 Congenital

Infantile

Juvenile, late juvenile

Teenage

0 y

0.5–1.5 y

5–11 y

14–15 y

Seizures, spasticity, central

sleep apnoea

CLN11

GRN

CLN11 disease Progranulin, cleaved

into granulins;

lysosome

3 Teenage, Adult

Frontotemporal lobar

dementia

(when heterozygous)

>20 y Rapidly progressive visual

failure, seizures

CLN13

CTSF

CLN13 disease cathepsin F; lysosome 11 Adult Kufs type B >20 y Tremor, ataxia, seizures

Phenotype bold = phenotype caused by complete loss of gene function.

Age of onset uses the same age range for each gene: congenital (0–0.5y), infantile (0.5–1.5y), late infantile (2–4 yr), juvenile (5–10 yr), late juvenile (11–12y), teenage (13–19y), adult (20+y).

italics–non-NCL disease phenotype that in some cases may be more typically associated with this gene.

CLN9 is not identified. Variations in further genes have been linked with NCL-like phenotypes, these are not included in this table: CLN12/ATP13A2, mutations usually cause Kufor-Rakeb syndrome; CLN14/KCTD7 in cases with infantile

and late infantile onset, all other known mutations cause a progressive myoclonic epilepsy or opsoclonus-myoclonus ataxia-like syndrome; SGSH in a case with adult onset, all other known mutations cause MPSIIIA; CLCN6, perhaps

modifying disease phenotype (1).

SCAR7, Spinocerebellar Ataxia, Autosomal Recessive 7; EPMR, Epilepsy, Progressive, With Mental Retardation.
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CLN6, CLN7, and CLN8 cause disease with onset in late infancy
like CLN2, the first gene identified causing onset at that age
(Table 1). CLN4 was not identified until 2011 (3).

A variety of experimental approaches reflecting the available
technology were used to identify NCL genes. The first genes
were identified using classic and time-consuming genetic
linkage approaches requiring large numbers of similarly affected
families followed by positional cloning of the genes [CLN1
(4) and CLN3 (5)]. A biochemical approach that detected a
missing mannose-6-phosphate tagged lysosomal enzyme in a
patient facilitated the identification of CLN2 (6), alongside
ongoing genetic linkage studies. Availability of the human
genome sequence meant that going forward fewer families
were required to provide sufficient power for genetic linkage
analysis, facilitating identification of CLN5 (7), CLN6 (8),
CLN7 (9), and CLN8 (10). Some genes were identified by
recognition of stretches of homozygosity in consanguineous
families that narrowed the interval that contained the candidate
gene. A gene first identified in an animal model led to
identification ofCLN10 (11, 12) in human disease. Improvements
in sequencing technology later allowed fast and massively
parallel sequencing of the whole exome in single families, and
facilitated identification of the remaining disease genes [CLN4
(3), CLN11 (13), CLN12 (14), CLN13 (15), CLN14 (16)]. The
few families suspected of carrying the putative CLN9 gene were
later found to carry mutations in previously identified NCL
genes (17, 18).

As monogenic disorders, each NCL is in effect a separate
disease entity. All identified NCL genes lie on autosomes.
Most cause disease though classic recessive inheritance, where
deleterious mutations are present in disease gene alleles inherited
from asymptomatic parents. However, adult onset CLN4 disease
is dominantly inherited in the few families described with this
disease (1, 3). There are three published reports of uniparental
disomy in the NCLs, one in which a patient has complete
isodisomy of chromosome 8, leading to homozygosity of a
maternally-inherited deletion in CLN8 (19), and two patients
for CLN1, both with paternal isodisomy of chromosome 1
(19, 20).

The majority of NCL genes encode proteins that
reside in the endo/lysosomal pathways (1, 21–23). Most
are lysosomal proteins—enzymes and soluble proteins
(CLN1/PPT1, CLN2/TPP1, CLN5, CLN10/CTSD, CLN13/CTSF,
CLN11/GRN,) or membrane proteins (CLN3, CLN7/MFSD8,
CLN12/ATP13A2). Two encode endoplasmic reticulum
membrane proteins (CLN6, CLN8). Other NCL proteins
are cytoplasmic (CLN4/DNAJC5, CLN14/KCTD7) that
peripherally associate with cellular membranes. The in
vivo substrates for the lysosomal enzymes are incompletely
defined, and much remains to be discovered around the
functions of the membrane proteins. Nevertheless, recognition
of the genetic basis of the NCLs enables the development
of targeted therapies even though the underlying disease
mechanism for each NCL is not yet fully delineated. It is
unlikely that further NCL genes will be identified unless they
cause disease in countries where little genetic analysis has
been undertaken.

GENOTYPE-PHENOTYPE OBSERVATIONS

NCL Classification
A gene-based classification system was codeveloped by

international experts in the NCLs (24) that takes into account
the full phenotypic consequences that have emerged over the

years, and which includes secondary reference to the age of

onset. This replaces the former age-based classification in

use since the 1960s. It better supports ongoing gene-based
therapeutic development.

There is a classic disease phenotype associated with complete
loss of function for most NCL genes, with a typical age of onset
and disease progression. The age at which first symptoms appear
can be used to guide toward which gene(s) may be mutated. For
example, clinically similar NCL disease arising frommutations in
more than one gene (e.g., what was originally known as variant
late infantile onset NCL) can be caused by loss-of-function
mutations in CLN5, CLN6, CLN7, or CLN8.

Broad Phenotypes
Most NCL genes actually have a wide age of onset and
varied disease courses determined by the underlying mutations
(Table 1). The increasing implementation of next generation
sequencing panels and exome sequencing in diagnosis is leading
to more diagnoses of patients with atypical NCL and recognition
of these broader phenotypes. These arise frommutations thought
or known to have “milder” effects on NCL protein function;
and these phenotypes can vary quite considerably. For example,
classic CLN6 disease begins in early childhood (late infancy)
(8, 25), but disease onset can be delayed as late as adulthood,
which also has no associated visual failure (26, 27). Conversely,
disease that presents in adulthood caused by mutations in CLN3
may have visual failure as its only or main sign, consistent with
this being the presenting symptom for classic juvenile CLN3
disease. Mutations in CLN7 have been identified in cases of
non-syndromic eye disease (28).

This broadening of phenotypes means that disease with a
certain age of onset may be caused by loss of function of an
NCL protein as well as milder mutations in a gene more usually
associated with a younger age of onset. For example, disease
beginning in the juvenile age range may be classic CLN3 disease
or be juvenile CLN1 disease, or juvenile CLN2, CLN5, CLN6,
CLN7, or CLN8 disease.

Distinct Mutation-Specific Phenotypes
Some mutations cause distinct and varied disease that differs
from the phenotypes arising from other mutations in the
same gene. For example, a single recessive missense mutation
in CLN8 [p.(Arg24Gly)] (10) causes the phenotype described
as progressive epilepsy with mental retardation (EPMR) or
Northern epilepsy that is found predominantly in Finland.
This disease is very different to typical NCL as it is an
intellectual developmental disorder that presents with seizures
in the juvenile age range that cease in adulthood, and life
expectancy is into late adulthood. It was the first genetic disease
to be recognised for CLN8, with mutations that cause a more
typical NCL described later. Similarly, a missense mutation in
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CLN2/TPP1 [p.(Val466Gly)] causes a phenotype first described
as spinocerebellar ataxia SCAR7. This is a slowly progressing but
not life-limiting disease with no ophthalmologic abnormalities
or epilepsy, and without typical ceroid/lipofuscin storage (29). A
single gain of function missense mutation in CLCN6 has recently
been shown to cause very severe disease in children (30) that
would not be classed as NCL, although the mouse model lacking
the function of the homologous gene causes mild lysosomal
storage disease and the CLCN6 gene was considered a candidate
gene for mild NCL disease (31).

There is evidence that the most common and very widespread
mutation in CLN3, a 1-kb deletion found worldwide accounting
for ∼ 90 percent of the affected alleles in CLN3 disease patients
(32) does not completely abolish CLN3 function, indeed it may
case a gain of function and therefore disease (33, 34). Due to
this deletion dominating reports of CLN3 disease, this led to the
suspicion that disease caused by complete loss of CLN3 function
may not have been described in humans (33). Other distinct
phenotypes have been associated with CLN3 mutations—these
include retinitis pigmentosa without other clinical symptoms,
even in mid-late adulthood (35) and a distinct disease described
as autophagic myopathy associated with heart failure (36). As
predicted (33) the phenotype of CLN3-associated disease maybe
considerably broader (1). There are reports of other families
with mutations in some NCL genes that also have predominantly
visual problems (28).

Overlap With Other Syndromes
Some mutations in NCL genes cause disease that overlaps with
other recognised disease syndromes. This has been described for
other rare diseases and more common neurological disorders,
such as Niemann-Pick C disease with Alzheimer’s disease (37),
and type 1 Gaucher disease with Parkinson’s disease (38).

Mutations in GRN cause diseases with different types
of inheritance. A homozygous recessive (bi-allelic) mutation
associated with rectilinear profiles, leads to CLN11 disease,
whereas mutations present on one chromosome only cause
frontotemporal lobar degeneration with TDP-43 inclusions
(FTLD-TDP) (13), which is the second most common type of
early-onset dementia. The age of onset and neuropathology of
FTLD-TDP and NCL are markedly different, yet there are some
shared characteristics: there is autofluorescent, NCL-like storage
material in the retina, postmortem brain and lymphoblasts of
FTLD-TDP patients (39) and in induced pluripotent stem cells
from FTLD-TDP patients (40). Progranulin-deficient mice (13)
have features of both NCL and FTLP-TDP diseases (41–43).
Therefore, autosomal dominant GRN mutations in FTLD-TDP
patients cause disease through haploinsufficiency, and it is likely
that there are shared disease mechanisms underlying disease in
adult CLN11 and FTLD-TDP patients.

Some genes identified as causing NCL more commonly
cause inherited diseases given different diagnoses. Mutations in
CLN14/KCTD7 cause three different diseases (16, 44–46) classed
as progressive myoclonic epilepsy (PME) (47, 48), and in rarer
cases PME accompanied by vision loss and lysosomal storage and
termed an NCL (16, 49). Mutations in ATP13A2 typically cause
Kufor-Rakeb syndrome and also a late-onset autosomal recessive

spastic paraplegia 78 (SPG78) and juvenile onset amyotrophic
lateral sclerosis (ALS) (50–52), whereas one family was diagnosed
with CLN12 disease (14, 53, 54). Fibroblasts from some SPG78
patients have lysosomal pathology (50). Atp13a2 knockout mice
are reported to accumulate both NCL-type storage material
and α-synuclein, and late-onset impairment in sensorimotor
functioning. ATP13A2-related disease may therefore represent
a disorder with features overlapping both NCL and Parkinson’s
disease (55). Mutations in SGSH usually underlie late infantile
onset disease mucopolysaccharidosis type IIIA (MPSIIIA) (56),
whereas a mutation in SGSH was described in a single case
diagnosed with adult onset NCL. Thus, distinctions between
inherited disease phenotypes may not be as clear cut as
originally anticipated.

There are examples of disease including features of NCL. For
example, CLCN7 underlies a severe autosomal recessive disease
combining osteopetrosis, neurodegeneration and lysosomal
storage disease (57–59).

Autosomal Dominant Inherited NCL
The clear recessive nature of most NCL had always suggested that
mutation carriers are healthy. Given that disease arises in those
who are carriers or carrying compound heterozygous mutations
in CLN11/GRN, it may be that carriers ofmutations in other NCL
genes also have deficits. If so, these are likely to be extremely mild
or be very late onset and overlap with common features or ageing,
and so have not been linked, even anecdotally.

CLN4 disease (Parry disease) is considered autosomal
dominant, with disease manifesting in those carrying one of the
three mutations in CLN4 so far described. Disease in humans
caused by complete loss of CLN4 function is not known,
although the severity of phenotype in animal models with no
CLN4 function (60) would predict those carrying biallelic loss-
of-function mutations would have very severe and early onset
disease. Disease arising from mutations in CLN4/DNAJC5 may
therefore be inherited recessively or dominantly.

Multi-Gene Disease
There are a few reports of patients carrying changes in more
than one NCL gene. One that was later found to be compound
heterozygous for mutations in CLN5 also carries a single
mutation in the CLCN6 gene that causes recessive NCL in
animals (31). Another family is reported in which a single
mutation in CLCN6 is the only described variation; a second
heterozygous mutation may be present but not identified. In
these two families the CLCN6 carrier parents were healthy. Some
patients carry mutations in more than one gene that underlie
variant late infantile NCL (47) (i.e., the mutation database lists
changes in CLN5 that have been found alongside those in CLN6
or CLN7 or CLN8). These may be examples of a mutation or
specific allele of one gene enhancing or ameliorating the NCL
disease phenotype. In mouse NCL models, deletion of both
cathepsin B and cathepsin L causes disease, but deletion of either
gene alone does not (61).

A patient with disease that presented shortly after birth
was found to carry heterozygous mutations in CLN5, together
with a mutation in POLG1 that acts to maintain mitochondrial
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DNA integrity (62). Increased expression of CLN8 may act as
a modifier of Gaucher disease (63). There may be connexions
between the function of NCL genes; for example, GRN interacts
with CTSD (40), CLN3 affects trafficking of enzymes to the
lysosome (64); CLN5 interacts with CLN2 and CLN3 (65).

Human cancer cells acquire somatic mutations in
the NCL genes which may confer a growth advantage
(CLN1/PPT1, CLN2/TPP1, CLN3, CLN4/DNAJC5, CLN5,
CLN6, CLN7/MFSD8, CLN8, CLN10/CTSD, CLN11/GRN,
CLN12/ATP13A2, CLN13/CTSF, CLN14/KCTD7, as well as
SGSH, and CLCN6) (www.sanger.ac.uk/genetics/CGP/cosmic/)
(66). As more sequence variations are deposited through
large-scale genome sequencing projects) (e.g., Exome
Aggregation Consortium (ExAC): exac.broadinstitute.org/),
further correlations may be revealed.

INCIDENCE AND PREVALENCE

NCL are considered the most common inherited
neurodegenerative disorder of childhood. They occur worldwide,
with some forms first recognised in certain geographical regions.
Some types are enriched in or absent from certain regions due to
historical population (genetic) bottlenecks.

Incidence and prevalence rates are not available world-
wide. Incidence rates are probably more robust than estimated
prevalence rates, and generally reported between 1 in 14,000
(Iceland) up to 1 in 100,000 (67). The most common NCL in
Northern Europe and the UK are juvenile CLN3 disease and late
infantile CLN2 disease, but all types are present.

DIAGNOSTIC IMPLICATIONS

Laboratory Diagnosis
There is an urgency inmaking anNCL diagnosis now that disease
modifying treatments are available or in the pipeline. Biomarkers
that follow disease progression and allow the effectiveness of
therapies to be monitored are likely to emerge in the near future
(68, 69).

New comprehensive approaches are changing the order of
diagnostic tests and removing the need for former investigations.
Protocols for enzymatic and genetic testing are widely available,
making rapid genetic and biochemical diagnosis of most forms of
NCL increasingly straightforward (Table 2).

Enzyme testing can rapidly confirm deficiencies of CTSD,
PPT1, and TPP1 using saliva, blood samples and dried blood
spots (70). These enzyme assays should always be applied in cases
with an unusual presentation or later onset, and all diagnoses
should be supported by DNA sequencing and mutation analysis
where possible. For classic juvenile CLN3 disease, the vacuolated
lymphocytes which are a common feature, can be visualised by
blood film examination (71).

New DNA technologies now allow testing for many genes in a
single step regardless of the presentation (70). NCL genes are part
of panels designed to interrogate genes underlying a larger group
of syndromic and non-syndromic inherited epilepsies. Some
commonmutations may be screened by DNA-based testing. This
can speed earlier diagnosis of NCL before the appearance of other

symptoms and also provides a genetic diagnosis for clinically
milder or variant phenotypes. As DNA sequencing leads to the
description of multiple genetic variation, the genetic cause of
atypical disease for some cases will become clearer. Some patients
that previously may have been given a diagnosis of NCL may
be demonstrated to have atypical forms of other diseases, and
vice versa. Carrier detection is not possible by histology and
is unreliable by enzyme assay; it should always be based on
mutation analysis.

Ultrastructural examination of a skin biopsy or blood sample
may be helpful for confirmation of NCL disease for atypical forms
that are not enzyme deficiencies or do not receive a genetic
diagnosis (Table 1). Extracerebral storage is readily detected
in childhood NCLs but not necessarily in NCL presenting in
adulthood (27).

Prenatal Diagnosis
Prenatal diagnosis can be offered to families with a prior
history of NCL disease. Preimplantation genetic diagnosis (72)
or a combination of enzyme assay and mutational analysis,
perhaps with ultrastructural examination of chorionic villus
samples obtained at 12–15 weeks gestation, can provide a rapid
diagnosis (70).

NCL IN OTHER SPECIES

Some NCL genes are conserved in unicellular or simple
organisms, indicating their fundamental function within
eukaryotic cells (73). For example, yeasts contain homologous
genes to CLN1/PPT1, CLN3 CLN10/CTSD, CLN12/ATP13A2.
The slime mould Dictyostelium discoideum particularly expresses
further NCL gene homologues or members of gene families
(e.g., CLN2/TPP1, CLN4/DNAJC5, CLN5, CLN6, CLN7/MFSD8
family). NCL also occurs in animals (e.g., dogs, sheep, cows,
monkey). Cell and animal models carrying mutations in genes
equivalent to those causing humanNCL are well used in research.
These range from yeasts, up to rodents and other mammals
(for clinical development). Some of these models are naturally
occurring (e.g., mouse, dog, sheep), others are engineered
models (e.g., mouse, pig). Some animal NCL disease is caused
by mutations in genes not reported to cause similar disease in
humans [ARSG in dogs (74), CLCN6 engineered in mice (31),
CTSB/CTSL engineered in mice as double gene mutations (61)].

NCL MUTATION DATABASE

The NCL Mutation Database (www.ucl.ac.uk/ncl-disease) lists
known disease-causing mutations and sequence variations in
NCL genes by gene and by individual. Five hundred and thirty-
seventh NCL disease-causing mutations are currently listed
(Table 2) across >1,625 patients and >2,160 families. Where
possible the age of onset, ethnic background and current location,
are listed for each family. Data are gathered from case reports or
larger collections in clinical or scientific publications, or referred
directly, and updated periodically. These vary in detail according
to the report source, e.g., case reports usually have more specifics
than reports of large group genetic screens. Mutations are mostly
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TABLE 2 | Summary of NCL gene mutations, patients and families currently contained within the NCL Mutation Database.

Gene CLN1 CLN2 CLN3 CLN4 CLN5 CLN6 CLN7 CLN8 CLN10 CLN11 CLN12 CLN13 CLN14 Grand total

Mutations 71 155 78 3 37 82 46 41 10 3 1 11 1 (13) 537

No. of patients 230 460 442 12 103 145 109 87 18 4 4 15 3 (21) 1,625

No. of families 177 358 418 7 84 118 93 77 13 3 1 9 2 (15) 2,162

CLN12/ATP13A2: mutations usually cause Kufor-Rakeb syndrome, only those causing NCL are shown here; CLN14/KCTD7: mutations cause NCL with infantile and late infantile onset,

all other known mutations cause a progressive myoclonic epilepsy or opsoclonus-myoclonus ataxia-like syndrome. Numbers in brackets are mutations that cause a non-NCL phenotype;

they are not included in the overall totals.

described in single individuals or occasionally siblings from
the same family. Some mutations are more common in certain
populations due to local founder effects. Several NCL genes have
widespread distribution across several continents due to ancient
founder effects (Table 1).

An estimate of the proportion of cases caused by each
mutation can be made, although there is a considerable under-
representation of the occurrence of common mutations since the
emphasis is on the collation of novel and rare mutations. The
most prevalent mutations are the 1 kb deletion in CLN3 and two
mutations in CLN2 (1).

Correlations can be drawn between genotype, phenotype and
morphological changes in patients, and have been reviewed
previously (47, 75), for example for CLN2 disease (76). These
derived correlations can be used to predict the disease course in a
newly diagnosed family.

This database is important (1). The severity of mutations
has implications for treatment. It may be important to know
if residual protein or function remains. Treatments may be
developed that do not fully compensate for complete loss of
gene function and can reduce but not completely eliminate
the disease burden—these may be sufficient to improve health
in families carrying so-called mild mutations but not in
individuals lacking all gene function (2). The location of
mutations in the protein may highlight key residues and
functional or regulatory domains, aiding understanding of
protein function (3). The data reveals the relative frequency
of mutations; as ultra-rare, found only within certain ethnic
groups, or widespread (4). The data is freely available and
contained in excel tables that can be downloaded and used
by researchers. For example, there is increasing information
on frequency of mutations or disease in specific ethnic groups
(4). Efficacy of a new treatment may be demonstrated earlier
or more robustly if the mutations and their effects on disease
progression of the participants are understood. Going forward,
functional data for each mutation can begin to be incorporated,
as available.

Other databases exist through international cooperation,
enabling collection of natural history data for all NCL types
and genotype-phenotype data through databases DEM-CHILD
(www.dem-child.eu) (77, 78). There are disease rating scales
(79–81) to follow disease progression. This is increasing
understanding of the genetic spectrum of NCL disease as well
as provide necessary control data for use in future clinical
trials (77).

CONCLUSION

Most genes that cause NCL disease in humans are probably
identified. This, combined with the broader range of associated
phenotypes now described, has shown that the genetic picture
is considerably more complex than was first envisioned at the
start of the genetic era of the NCL. The functions of all NCL
genes and thereby disease mechanisms are not yet known. As
understanding increases overlap with other rare and common
diseases, such as retinal dystrophies may indicate shared disease
mechanisms (82).

The gene dosage or the specific mutations show correlation
with clinical phenotype. Some variation in clinical phenotype
is therefore explained by differing levels of residual protein
function. However, variation between families and even siblings
shows that co-inheritance of other genetic variations could
influence disease phenotype. It is still unclear whether the
underlying pathogenic mechanisms are partly shared between
classic NCL forms and the alternative disease forms.

The era of genomic medicine is approaching, where genomic
information will be used to design the best clinical care for
an individual. For the NCL, personalised treatment approaches
will be tailored to the underlying mutation and the genetic
background of each patient. An early example is the design and
delivery of an oligonucleotide therapy for a child with CLN7
disease (83).

Therapeutic development beyond current palliative
treatments is advancing slowly. This relies on continued
collection of natural history data for the broadening NCL
spectrum to provide a control cohort to aid design of future
clinical trials. The first approved treatment is for children with
classic late infantile CLN2 disease which delivers recombinant
protein directly into the brain at regular intervals. For the
best long-term clinical benefit for any NCL disease, treatment
must begin as early as possible, before any symptoms, which
requires rapid and earlier diagnosis using genotype. This may
be facilitated by advances in DNA-based approaches that allow
future newborn screening (84, 85).
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Conducting clinical trials in rare diseases is challenging. In trials that aim to use natural

history control cohorts for evaluation of efficacy, lack of data on natural history of

disease prolongs development of future therapies significantly. Therefore, collection of

valid natural history data in clinical settings is needed to advance drug development.

These data need to fulfill requirements on type of collection, quantifiable measures on

the course of disease, verification and monitoring as well as compliance to strict data

protection and sharing policies. Disease registries can be a source for patient data.

Late-infantile CLN2 disease is characterized by rapid psychomotor decline and epilepsy.

Natural-history data of 140 genotype-confirmed CLN2 patients from two independent,

international cohorts were analyzed in a natural history study. Both datasets included

quantitative ratings with disease-specific clinical scores. Among 41 patients for whom

longitudinal assessments spanning an extended disease course were available within

the DEM-CHILD DB (an international NCL disease patient database, NCT04613089), a

rapid loss of motor and language abilities was documented in quantitative detail. Data

showed that the course of disease in late-infantile CLN2 disease is highly predictable with

regard to the loss of language andmotor function and that the results were homogeneous

across multiple and international sites. These data were accepted by EMA and FDA

as valid natural-history controls for the evaluation of efficacy in experimental therapies

for CLN2 disease and led to an expedited approval of intracerebroventricular enzyme

replacement therapy with cerliponase alpha in May 2017.

Keywords: CLN2 disease, NCL, batten disease, natural history studies, rare disease (RD), drug development,

neuronal ceroid lipofuscinosis, childhood dementia
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INTRODUCTION

Degenerative brain diseases of childhood are a group of
rare, heterogeneous diseases including neuronal ceroid
lipofuscinoses (NCLs), some forms of mucopolysaccharidoses,
leukodystrophies and other rare diseases of inborn errors
of metabolism. The majority are relentlessly progressive,
incurable and lead to early death. Because they involve loss of
developmental skills and intellectual disability, many of them
meet the criteria of “childhood dementia” (1, 2). Collection
of valid natural history data in these diseases is challenging
due to small patient numbers, phenotype variability, missing
objective clinical outcome measures and limited disease specific
clinical rating scales. Lack of these data prolongs development
of future therapies significantly. Natural history of disease data
(precisely quantifying progression of disease symptoms and
their functional relevance) are therefore needed to advance
therapy development.

Overview of NCL Diseases
Neuronal ceroid lipofuscinoses are lysosomal storage disorders
characterized by abnormal accumulation of autofluorescent
material in lysosomes of the cells (3) and mainly affect retina
and gray matter of the cerebral cortex (4). NCL diseases are
monogenic diseases and – with one exception – inherited in
an autosomal recessive mode. To date, genetic variants in 13
different NCL genes have been described (https://www.ucl.ac.uk/
ncl-disease/mutation-and-patient-database). These genes code
for lysosomal enzymes, membrane proteins located in different
organelles, or other proteins (5). Exactly how deficiencies in these
different proteins lead to neurodegeneration and accumulation of
lysosomal storagematerial has not yet been clarified for any of the
known NCL diseases. Classification of NCL diseases is currently
based on the defective genes and age at first manifestation
of symptoms (congenital, infantile, late infantile, juvenile or
adult) (5–7). NCLs share common clinical features, in most
cases a combination of epilepsy, psychomotor regression with
cognitive decline and vision loss. Before onset of symptoms,
patients show a largely normal psychomotor development.
Most NCL gene defects are assigned a clearly recognizable
“classic” or “typical” disease phenotype, which is suggestive
of a complete loss of function of the affected protein. Apart
from these, a growing number of patients are being identified
with “atypical” phenotypes, caused by so-called “mild” genetic
variants, that do not lead to a complete loss of function of the
corresponding protein.

NCL diseases are diagnosed on the basis of clinical findings,
laboratory tests for disease-specific enzymes, cell-morphology
studies and genetic testing (4), aiming to identify the pathogenic
genetic variants in both alleles of the NCL gene. The increasing
use of Next Generation Sequencing Panels and exome sequencing
as tools for the diagnosis of rare diseases may lead to the
diagnosis of NCL in patients not previously suspected to have
the disease. Due to these advancements in genetic testing,
the number of atypical, often milder phenotypes described is
rapidly increasing especially in NCL forms where a lysosomal

enzyme is affected such as CLN2 disease (8–10). Electron-
microscopic demonstration of lysosomal storage material in
tissues or blood cells can be helpful for detecting an NCL disease.
In juvenile CLN3 disease, light microscopy of a blood smear
shows characteristic vacuolated lymphocytes. Enzyme testing is
a quick and inexpensive way to screen for CLN1 or CLN2
disease. The activity of lysosomal enzymes can be measured in
a dry blood spot sample (11). Lack of activity of the enzyme
palmitoyl peptidase 1 (PPT1) confirms the diagnosis of CLN1
disease, lack of activity of tripeptidyl peptidase 1 (TPP1) that of
CLN2 disease.

Late-Infantile CLN2 Disease
CLN2 disease is caused by genetic variants in the CLN2 gene
that encode for a lysosomal serine protease, tripeptidyl peptidase
1 (TPP1) (12). Loss of TPP1 activity leads to accumulation
of ceroid lipofuscin (13, 14). Although there is considerable
allelic heterogeneity, two CLN2 genetic variants are common to
more than half of known CLN2 cases in the Western Northern
Hemisphere: c.509-1G>A (splicing error) and c.622C>T (non-
sense mutation leading to an early stop codon) (5). There is a
high genotype-phenotype correlation regarding these variants,
leading to a predominantly late-infantile phenotype. Many rarer
CLN2 genetic variants have been reported whose influence on
phenotype and residual TPP1 activity is not well understood;
some genetic variants are thought to result in the delayed onset or
prolonged course of the disease (15). Atypical CLN2 phenotypes
are reported more frequently, with increased ability for genetic
testing from different regions in the world (8, 10, 15–22). In Latin
America 50% of cases show protracted course of disease with
later onset of symptoms and slightly different order of symptom
onset (9).

Late-infantile CLN2 disease (OMIM# 204500) globally
has been the most common phenotype in CLN2 disease.
It is characterized by a severe and rapidly progressive
neurodegenerative syndrome with onset most common in
children aged 2–4 years (23). Epileptic seizures, loss of language,
motor function and cognition, blindness and premature
death (14, 24) quickly follow the onset of first symptoms.
Photoparoxysmal response (PPR) on intermittent photic
stimulation at low stimulation frequencies of 1-3Hz can be
an early hallmark (25). CLN2 disease occurs worldwide, but
data on incidence and prevalence are scarce (26–28). Because
the first symptoms (language delay, epileptic seizures, delay
of psychomotor development and ataxia) are non-specific to
CLN2 and are sometimes found in children with epilepsy as side
effects of anti-seizure medications (ASMs), they are commonly
misinterpreted, and diagnosis is often delayed. Vision loss, a
characteristic clinical sign for NCL, occurs only in the late stages
of late-infantile CLN2 disease and therefore is not a clinical
hallmark for early diagnosis. The burden of CLN2 disease is
high, not only emotionally for affected families but also for
society at large. A missed diagnosis prevents parents from
receiving genetic counseling for future planned pregnancies
and may lead to their having subsequent children who are
also affected.
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TABLE 1 | Overview of types of data (static/retrospective, dynamic/prospective).

Static data (retrospective) Dynamic data (mainly prospective)

• Demographics

• Genetic Diagnosis

• Medical history (age at

diagnosis, onset of symptoms,

type of first symptoms)

• Age at achievement of

milestones of psychomotor

development

• Disease specific rating scales (see Table 2)

• MRI/OCT/EEG/other diagnostic

evaluations

• Clinical examinations (standardized

neurodevelopmental exams, etc.)

• QoL Questionnaires

NATURAL HISTORY DATA IN CLINICAL
TRIALS FOR RARE DISEASES

Regulatory Agency Recommendations on
Natural History Data Used in Clinical Trials
Since the number of rare diseases is rising, with advanced
diagnostic methods and genetic testing available, development of
new drugs for the unmet medical need of millions of patients
is needed. Natural history data can serve as control data in
clinical trials and therefore shorten time in drug development.
Therefore, regulatory agencies, such as FDA (29) and EMA (30),
have released guidelines to ensure high quality of natural history
data for drug development in rare diseases.

Key points of these guidelines are:

• DATA SUITABILITY: data collection, data storage, data
extraction and quality control processes need to fulfill the basic
rules of GCP (good clinical practice) guidelines for clinical
trials. Any source data need to be dated and signed and
digital records have to be traceable with audit trails. Most
importantly, informed consent processes for participation in
a scientific data collection and international data sharing need
to be in place, considering local ethical requirements as well as
privacy issues and governance-related issues.

• PATIENT POPULATION AND BIOMARKERS:
genotypic and/or phenotypic heterogeneity can affect the
characterization, progression, and physiological changes of
the disease. Therefore, such information is important for the
development of clinical biomarkers for diagnosis, prognosis of
disease progression, and prediction of treatment response. In
addition, it might guide patient and dose selection in clinical
trials. Disease specific centers of excellence should guide
these data.

• CLINICAL OUTCOME ASSESSMENTS: can assess both
safety and efficacy and may include observer-reported,
patient-reported, caregiver-reported, and performance
outcome measures. Natural history studies can combine
information from patient medical records and other existing
sources of disease-specific information. Longitudinal
retrospective and prospective (longitudinal) studies can help
fill critical gaps in knowledge of disease progression and set a
course for future analysis. In these studies data are collected
over time, making them more suitable for use as an external
control group. Cross-sectional studies collect patient data at a

specific time point offering a snapshot of disease and can be
used to support existing data.

EMA guidelines specifically focus on data collected in disease
registries, which is defined “as an organized system that collects
data and information on a group of people defined by a particular
disease or condition, and that serves a pre-determined scientific,
clinical and/or public health (policy) purpose”. In comparison,
FDA guidelines are kept more general in use of natural history
study data provided. Both guidelines share similar keypoints
though regarding quality and use of data and encourage the use
of clinically collected natural history data in rare diseases for use
in drug development.

Methods Established in Natural History
Data Collection for NCLs
Disease Specific Center of Excellence

For over 20 years, the Hamburg Specialty Center for NCL
and related childhood dementias has been established and is
treating around 170 patients annually with all types of NCL
diseases. The DEM-CHILD database, an NCL disease registry,
was founded in Hamburg as part of the EU-funded FP7
project DEM-CHILD (“A Treatment-Oriented Research Project
of NCL Disorders as a Major Cause of Dementia in Childhood”,
GAN◦281234, www.dem-child.eu). The DEM-CHILD project
focused on the main cause for childhood dementia in Europe,
the neuronal ceroid lipofuscinoses (NCLs). In order to advance
the development of treatment options for NCL diseases, the
DEM-CHILD project combined the expertise of (i) recognized
European research teams, both basic scientists and clinicians, (ii)
high-technology SMEs, (iii) experts in medical ethics, and (iv)
NCL patients and family associations. The project implemented
a novel network including the most prominent NCL researchers,
both basic scientists and clinicians, in Europe, collaborating
with Indian experts, to collect the world largest, clinically and
genetically best characterized set of NCL patients. One work
package was (i) to establish an NCL mutation and NCL patient
registry of long-lasting function to describe accurately and in
detail the clinical course and clinical spectrum, as well as
genotype-phenotype variability in different forms of NCL; and
(ii) to establish a tool for the evaluation of experimental therapy
studies in the NCLs.

The International DEM-CHILD Database

Only patients with a genetically verified diagnosis of an NCL
disease can be included in the data collection after signing an
informed consent for participation.

Following the successful application for an
international natural-history study for all NCL diseases
(www.clinicaltrials.gov, NCT04613089), the DEM-CHILD
database is nowadays able to collect data internationally.
For rare diseases, such global cooperation is desperately
needed for building robust datasets for future therapeutic
trials. Different types of data are collected within the DEM-
CHILD database, separated into “static” and “dynamic”
datasets. Static data do not change over time (e.g., genetic
diagnosis, age at first symptoms and timepoints of reached
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TABLE 2 | Overview of disease specific rating scales for NCLs.

Type of analysis possible

Clinical rating scale (CRS) NCL phenotype Clinical categories Retrospective Prospective No of patients

in original

publication

Reference

Hamburg INCL score infantile Mobility

Fine motor function

Expressive language

(add on categories:

communication/interaction, sleep,

agitation/irritability, seizures, feeding,

visual attention)

✓ ✓ 14 (31)

Hamburg LINCL score late-infantile Motor

Language

Seizures

Vision

✓ ✓ 22 (32)

Hamburg JNCL score juvenile Motor

Language

Epilepsy

Vision

Intellect

✓ ✓ 17 (33)

Weill-Cornell (WCMC) late-infantile Motor

Language

Gait

Feeding

X ✓ 18 (34)

CLN2 clinical rating scale ML

(CLN2-CRS ML)

late-infantile Motor

Language

X ✓ 24 (35)

Expanded CLN2 clinical rating

scale (CLN2-CRS MX-LX)

late-infantile Motor

Language

X ✓ 30 (36)

Unified batten disease rating

scale (UBDRS)

juvenile Physical

Seizures

Behavior

Capability

Clinical global impression

X ✓ 31, 82 (37, 38)

Opthalmologic: Weill-Cornell

LINCL opthalmic scale (WCBS)

late-infantile Color/fundus

OCT

Fluorescein/indocyanine green

angiogram (FA/ICGA)

✓* ✓ 25 (39)

Opthalmologic: Hamburg CLN3

opthalmic rating scale

juvenile Visual acuity/BCVA

Fundus score

OCT

✓* ✓ 21 (40)

Pain: battens observational pain

scale (BOPS)

not specified Pain X ✓ 35 (41)

*If images retrospectively have been collected for OCT, FA and ICGA.

milestones in psychomotor development as well as their
loss) whereas dynamic data are related to an exam date
and might change over time with progression of disease
(Table 1). Examples for dynamic data are clinical scoring
data on disease progression (e.g., disease specific clinical
rating scales (Table 2) and all examinations conducted
at a defined timepoint. The static data sets represent the
background for the analysis of the dynamic data. They
allow the interpretation of different disease progression rates
based on the genetic diagnosis and thereby lead to a better
understanding of the genotype-phenotype correlation. In
addition, detailed analysis of the retrospective static data
has led to the identification of early symptoms supporting
early diagnosis.

Clinical Rating Scales in NCL Diseases
The development of new therapies requires an exact
understanding of the clinical course of the disease needed to
treat, and its variability across a wide range of patients. Limited
quantifiable data make statistical analysis and extrapolation
difficult. To date, only a few reports have provided a quantitative
description of the clinical course of disease in NCLs. Disease
specific clinical rating scales have been developed for infantile,
late-infantile and juvenile phenotypes. Rating severity and
progression of key symptoms of disease, these can be applied
prospectively, retrospectively or combined, depending on the
specific scale (Table 2). In addition, novel ophthalmologic scales
also focus on rating progression of vision loss and changes in
retinal function and histology as presented in Table 2 below.

Frontiers in Neurology | www.frontiersin.org 4 February 2022 | Volume 13 | Article 78584127

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Nickel and Schulz Natural History Studies in NCL

Role of Natural History Data in Drug
Development for CLN2 Disease
Until recently, only palliative treatment had been available for
CLN2 patients.

Therefore, the aim of a collaborative natural history data
collection for CLN2 disease was to create a precise dataset on
disease progression which should ultimately serve as control data
for experimental therapy studies.

In an international natural history collection of 140 patients
with late-infantile CLN2 disease (42), 41 patients from the
DEM-CHILD DB from Hamburg could provide a longitudinal
quantitative core data set, with clinical ratings throughout
the long course of the disease. Patient cohorts from Italy
(Verona) and the US (Weill Cornell Medical College) provided
predominantly cross-sectional or short-time longitudinal data
sets in addition. Acquired in a multi-site international setting,
the findings demonstrated that the rate of disease progression
was homogeneous for all data sets and that, despite subjects being
located in different countries and being independently rated, the
results were highly reproducible across the cohorts.

These CLN2 natural history data have successfully been used
as natural-history controls in a clinical trial testing safety and
efficacy of intraventricular enzyme replacement therapy with
cerliponase alfa (43). Comparison of data from treated patients
with these natural history data showed that this treatment was
able to slow down disease progression. Subsequently, these data
were monitored and approved as part of the market approval
process of cerliponase alfa by EMA, FDA and PMDA.

DISCUSSION

Valid longitudinal and internationally collected natural history
data, that can quantify disease progression in rare diseases, are
urgently needed for evaluating the efficacy of current and future
therapies and to shorten time to approval of new therapeutic
options. Collection of these data face multiple challenges when
used as comparative cohorts for efficacy in clinical trials.
Nevertheless, these challenges are known and can be addressed
in order to internationally pool existing data and to give patients
the opportunity to contribute own data to achieve the overall
goal of trial readiness in a rare disease. For a majority of parents
and patients, the knowledge of helping to advance new therapies
for future effected families by providing own data on the course
of disease, helps in coping with these devastating progressive
diseases like NCL. The motivation of these families is therefore
high in order to help for a greater good and should be addressed
by making it possible that not only patients in excellent health
care systems are able to join via expert centers, but are able to
provide needed data by themselves that can be validated centrally
by experts in the field.

International data collection collaborations had been slowed
across all diseases by the new European Data Protection
Regulations (GDPR) that came into effect in May 2018. The
development of new guidelines on sharing data had to be
implemented, local ethic approvals renewed, and individual

patients had to be re-consented for international collaboration on

sharing of data. Subsequently this may have helped to streamline
the collaborative use of identical tools for evaluating the course
of disease and the type of data collected. In using the same tools,
these can be developed further and adapted to individual center
needs, moreover though, it makes comparison between centers
objective and evaluation of data sets uncomplicated.

In order to be able to use data acquired in clinical settings
for use in clinical trials, these need to meet the same quality
requirements as data collected in clinical trials (monitorable) in
order to be auditable and approved by health care authorities.
Written reports signed with date and digital records that have
audit trails implemented within the systems are standards that
need to be in place.

Evaluating rare diseases and quantifying progression of
disease nevertheless remains challenging and has its limitations
in use. One challenge is the limited sample size in such
diseases, another the mostly retrospective nature of longitudinal
data with varying timepoints of data collection and its
retrieval from medical charts and country dependent obligatory
childhood exams.

Nevertheless, these challenges can be overcome. The natural
history data collection in late-infantile CLN2 disease by Nickel
et al. (42), investigated the largest cohort so far for late-infantile
CLN2 disease of quantitative natural-history data, acquired in
a multi-site international setting. Before this collaboration, data
describing the natural history of late-infantile CLN2 disease
were very limited: previous studies either contained mostly
retrospectively collected data or were restricted to cross-sectional
data only. Moreover, these previous studies analyzed data sets
from one center only without providing evidence that the
data were representative across multiple study sites and in an
international setting. Thus, the data from this natural history
study represent an important milestone in quantifying the
progression of neurodegeneration in children with late-infantile
CLN2 disease according to an editorial comment by Mink in
2018 (44).

Data from this study have successfully served as natural-
history control data in completed experimental therapy trials on
intraventricular ERT for CLN2 disease (43) and are also being
used in ongoing experimental therapy trials on intraventricular
ERT (NCT01907087, NCT02485899, NCT02678689) and
intraparenchymal adeno-associated gene therapies [(45),
NCT00151216, NCT01161576, NCT01414985]. Intraventricular
ERT has recently been approved in the US, Europe and Japan
as treatment for CLN2 disease [(46–48), online] on the basis
of comparisons with these natural-history data. They will also
be valuable for any clinical trials looking at future treatment
developments for CLN2 disease such as other forms of gene
therapy or new pharmacological approaches.
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Neuronal ceroid lipofuscinoses (NCLs) are a heterogeneous group of neurodegenerative

diseases, characterized by progressive cerebral atrophy due to lysosomal storage

disorder. Common clinical features include epileptic seizures, progressive cognitive and

motor decline, and visual failure, which occur over different time courses according

to subtypes. During the latest years, many advances have been done in the field of

targeted treatments, and in the next future, gene therapies and enzyme replacement

treatments may be available for several NCL variants. Considering that there is rapid

disease progression in NCLs, an early diagnosis is crucial, and neurophysiological

features might have a key role for this purpose. Across the different subtypes of NCLs,

electroencephalogram (EEG) is characterized by a progressive deterioration of cerebral

activity with slowing of background activity and disappearance of spindles during sleep.

Some types of heterogeneous abnormalities, diffuse or focal, prevalent over temporal

and occipital regions, are described in many NCL variants. Photoparoxysmal response

to low-frequency intermittent photic stimulation (IPS) is a typical EEG finding, mostly

described in CLN2, CLN5, and CLN6 diseases. Visual evoked potentials (VEPs) allow to

monitor the visual functions, and the lack of response at electroretinogram (ERG) reflects

retinal neurodegeneration. Taken together, EEG, VEPs, and ERGmay represent essential

tools toward an early diagnosis of NCLs.

Keywords: neuronal ceroid lipofuscinoses, EEG, photoparoxysmal response, intermittent photic stimulation, visual

evoked potentials, electroretinogram, neurophysiological findings

INTRODUCTION

Neuronal ceroid lipofuscinoses (NCLs) are a heterogeneous group of autosomal recessive
neurodegenerative disorders, characterized by progressive cerebral atrophy due to widespread
accumulation of autofluorescent storage material within lysosomes (1–5). NCLs are caused by
defective lysosomal processing enzymes or receptors (3–8). So far, 14 variants of NCLs are reported;
they share some common clinical features including epileptic seizures, progressive cognitive and
motor decline, and visual failure; all those symptoms occur over different time courses according
to subtypes (9, 10).

Neuronal ceroid lipofuscinoses represent the most common cause of dementia in children
(5, 8, 11), and the incidence varies worldwide from 1:12,500 to 1:100,000 (9).

Neuronal ceroid lipofuscinoses can be oftenmisdiagnosed at the onset because of the appearance
of non-specific presenting symptoms; therefore, the diagnosis may be delayed (5).
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Clinical management is mostly palliative, although, in the
recent years, many efforts have been done to identify targeted
treatments, i.e., enzymatic replacement therapy (ERT) and
genetic therapy for each of NCL variants (7, 12–16). Nevertheless,
a targeted treatment with human recombinant enzyme is
currently available only for CLN2 disease (12).

Considering the rapid disease progression (17) and the
development of novel targeted treatments, early diagnosis
remains crucial. Early diagnosis is also useful for genetic
counseling to avoid family odyssey toward different hospitals
looking for diagnosis and to avoid repetition of useless
investigations (18). Next-generation sequencing techniques are
successful in the identification of genetic childhood epilepsies
and early detection of CLN2 disease (19). A recent study
supported the value of target re-sequencing in patients with
genetic childhood epilepsies, suggesting that this technique may
be successful in the early detection of patients with CLN2 (19).

In this context, neurophysiological data may have a key role in
the diagnosis of NCLs. Electroencephalogram (EEG) and evoked
potentials may be of particular importance for this purpose, since
they can provide critical information at a relatively early phase of
the disease and are easy to carry out in a short time and without
excessive costs.

This review aims to provide neurophysiological findings
in NCLs, highlighting the neurophysiologic typical features of
NCLs as well as what may allow differential diagnosis with
developmental and epileptic encephalopathies (DEEs) due to
other etiologies.

Two authors (MT and AF) performed a search in PubMed
and EMBASE databases, from 1970 to 2021, using the following
keywords: “ceroid lipofuscinosis” and “photoparoxysmal
response,” “electroencephalogram”, “evoked potentials,” and
“electroretinogram.” They looked for experimental and clinical
studies and reviews. No meta-analyses were found.

NEUROPHYSIOLOGICAL STUDIES

Electroencephalogram
Epilepsy is one of the cardinal symptoms of NCLs (5). The
age at epilepsy onset may differ according to the NCLs variant,
starting from the first months of life to adulthood; both focal
and generalized seizures can be seen at onset (5). Epilepsy may
represent the presenting symptom, as it happens in CLN2 and
CLN6 diseases, or appear after visual loss or cognitive and motor
decline, as in CLN3 and CLN5 diseases (20).

In the classic form of CLN1 disease, symptoms begin during
infancy, and seizure onset is relatively early, typically between
the age of 14 and 36 months. Additional phenotypes have
been observed with late infantile, juvenile, and adult onset. In
the latter cases, epilepsy typically begins several years after the
initial symptom of visual impairment, following developmental
regression and behavioral changes (20). Few data are available
on EEG features in CLN1 disease (21, 22). It has been reported
that a slowing of background activity and loss of sleep spindles
is associated with high-voltage slow waves and spike and waves
abnormalities (22). Between 5 and 12 years of age, a progressive
flattening of cerebral activity consistent with the marked cortical

atrophy due to massive neuronal death is evident (21). In
summary, in CLN1 disease, changes of background activity have
been distinguished in three stages: (1) decreasing of reactivity of
the posterior rhythm to eye opening and closing; (2) decreasing
of sleep spindles and subsequent disappearance; and (3) slowing
and/or attenuation of EEG to inactivity, the so-called vanishing
EEG pattern (22, 23).

In CLN2 disease, a late-infantile neuronal ceroid
lipofuscinosis (LINCL), seizures often appear in an explosive
fashion (24). Seizures are resistant to common anti-seizure
medications (ASMs), and sodium channel blockers, such as
carbamazepine, can even worsen seizure frequency and may
increase myoclonus and ataxia (24).

The first EEG is usually performed within the fourth year of
life and shows a normal background activity, associated with focal
or diffuse abnormalities in 75% of the patients. High-voltage focal
slow waves are prevalent over the temporal and occipital regions
(25–28). Photoparoxysmal response (PPR) to intermittent photic
stimulation (IPS) delivered at a low frequency of stimulation is
typically seen in patients with CLN2 during the first stage of the
disease (27). With disease progression, the background activity
becomes slow and without reactivity to eye opening (29, 30). No
spindles are present during sleep recordings. Generalized, focal
and multifocal epileptiform discharges characterized by irregular
spikes and poly-spikes and waves become common; however, a
posterior predominance persists (24) (Figures 1A–E).

In CLN3 disease, the juvenile neuronal ceroid lipofuscinosis
(Spielmeyer–Vogt disease or Batten disease), the presenting
manifestation is a progressive visual loss starting around the age
of 6–8 years. Epilepsy usually starts at the age of 10 years. Seizures
at onset are usually bilateral tonic–clonic, whereas focal seizures
increase during adolescence, and they are mostly characterized
by clonic manifestations. Myoclonic seizures are rarely reported
in CLN3 disease. EEG, in the early stages of the disease, shows
focal epileptiform abnormalities (before 10 years of age), whereas
bilateral and multifocal epileptiform discharges are significantly
more prevalent in the later stages, along with a progressive
slowing of the background activity (31). PPR has not been
reported as a prominent feature in CLN3 disease (31).

The CLN6 disease may start both during infancy and
adulthood. In both cases, epilepsy is one of the presenting
symptoms (32). Background activity is poorly organized during
awake and sleep since the onset, associated with irregular
slow spike and waves discharges (at about 2.5Hz). PPR to
lower frequency is an early neurophysiological finding. During
the advanced stage of disease, the cerebral activity became
extremely slow, and low-voltage and spike and waves discharge
became rare, often replaced by single spikes with multifocal
distribution (32).

In adult patients affected by CLN6, the background activity is
almost preserved in the early stage of the disease. Epileptiform
abnormalities are the most prevalent over the posterior regions.
Myoclonus is typically induced by active movements or provoked
by IPS at a low frequency of stimulus. Abnormal PPR persists
until the advanced stages of the disease (32).

The CLN5 disease, also known as the Finnish variant,
starts between the age of 2 and 6 years with clumsiness and
mental decline (33, 34). Seizure occurs relatively late (median
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FIGURE 1 | Electroencephalogram (EEG) evolution in CLN2 disease. Awake EEG (A) at the age of 18 months (pre-symptomatic phase) shows a normal background

activity, with 8Hz rhythm over bilateral posterior regions. No epileptiform abnormalities are evident. Awake EEG (B) at the age of 7 years shows a slow background

activity and the lack of regional differentiation. There are diffuse and focal (mainly occipital) spikes and spike and waves abnormalities. During sleep (C), the EEG (age

of 10 years) shows the lack of sleep spindles and bursts of rapid spikes and poly-spikes, alternated with the suppression of cerebral activity. (D) Myoclonic status can

occur in the advanced phases of diseases (age of 11 years) and (E) A diffuse flattening of cerebral activity with an extremely slow and low-voltage cerebral activity is

typical of the latter stage. (F–H) Photoparoxysmal response in a 4-year-old girl affected by CLN2 disease. The flash-per-flash response is evident at the lower

frequency of intermittent photic stimulation, at 1, 2, and 3Hz (respectively F–H).

age of 8 years), and epilepsy has its major expression with
myoclonic seizures between the age of 7 and 11 years. In
addition, for this LINCL, it has been reported that a progressive
slowing of background activity is associated with multifocal
epileptiform discharges (spikes, multiple spikes, and spike and
wave complexes) (34) and the presence of posterior spikes
triggered by low-frequency IPS (33, 34).

Regarding CLN7 disease, in few published patients, it has been
reported that a progressive generalized slowing of background
activity is associated with diffuse or multifocal abnormalities with
occipital prevalence (Figures 2A–C). PPR has not been reported
(35, 36).

In patients with CLN8, it has been described as a progressively
slowing of background activity with focal and/or generalized
abnormalities since the onset. PPR has rarely been reported (37).

Few cases of CLN11 have been reported (38, 39). EEG is
characterized by a quite preserved background activity associated
with rare paroxysms of diffuse spikes and slow waves, prevalent
over bilateral parietal regions. PPR has not been detected in the
three cases reported so far (38, 39).

Limited data have been reported on EEG features
for the other NCL variants, from CLN9 to CLN14,
which are the more recently identified forms. More
cases need to be reported to understand their typical
neurophysiological findings.

Photoparoxysmal Response
Photoparoxysmal response in NCLs was firstly described in
1970 when it was reported in about 45% of patients (29).
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FIGURE 2 | EEG features in a 6-year-old boy affected by CLN7 disease. (A) EEG trace shows a generalized slowing of background activity associated with diffuse or

multifocal abnormalities. (B) Single myoclonic jerks involving the upper limbs with the EEG correlate of a diffuse single spike are evident. (C) During sleep, the cerebral

activity is markedly slow and is associated with multifocal spike and spike and waves abnormalities, prevalent over bilateral posterior regions.

Later, other studies confirmed the presence of this peculiar
neurophysiological finding (27, 32, 40, 41).

The susceptibility to PPR varies accordingly to the different
diseases which aremore prominent in the LINCLs, such as CLN2,
CLN5, and CLN6 (Figures 1F–H). In CLN2 disease, PPR has
been reported from 27 to 93% of patients (25, 27, 40, 41). This
wide range may be explained by the lack of a universal approach
of low frequency IPS in routine pediatric EEG recordings (24).
In fact, in NCLs, as well as in other progressive myoclonic
epilepsies, PPR is one of the earliest pieces of evidence of a
neurodegenerative disorder, even before the onset of cognitive
and motor regression (42). PPR to low-frequency stimulation has
also been reported to occur in Lafora disease and mitochondrial
diseases (43, 44).

In a recently reported series of 14 cases of CLN2, serial EEGs
revealed a PPR in 93% of patients (27). PPR was evident since
the first EEG, which was performed at 3.6 (3.1–4.0) years, in
43% of patients; it was documented at low (1–3Hz) frequencies
of stimulation in 69% of patients and has acquired the form
of a flash-per-flash response in 69% of patients (27). Moreover,
in the advanced stages of the disease, PPR was associated with
massive myoclonic jerks (27). In about half of patients (54%),
PPR disappears over time (25). PPR changes over time reflect the
gray matter changes due to the progression of neurodegenerative
disease (27).

The PPR seen in the NCLs is characterized by an occipital
spike and waves response to the photic stimuli. However, it
should also be highlighted that not in all NCL variants do patients
have the same susceptibility to PPR; it has been reported more
frequently in CLN2, CLN5, and CLN6 diseases (24, 27, 32, 33)
and seems to not be a prominent feature in CLN1, CLN3, CLN8,
and CLN11 diseases (21, 31, 37, 38). For the remaining NCLs, we
do not have sufficient data about PPR to find out conclusive data.

On the other hand, the lack of the characteristic IPS response
cannot rule out an NCL disease (45). The implementation of
IPS, including IPS at low frequencies of stimulation as part of
a standard EEG, may be useful as an early disease marker if
associated with other clinical findings (24, 45, 46).

Flash and Pattern-Reversal Visual Evoked
Potentials
Few data are available in the literature regarding visual evoked
potentials (VEPs) changes during the disease course in NCLs.
What is known is that with disease progression, the so-called
giant VEPs appear (Figures 3D,E). They are abnormally broad
and of high amplitude, and their presence is a marker of cortical
hyperexcitability, similar to PPR (32).

Abnormal VEPs have been found in about 75% of patients
with CLN2 at a median age of 4.5 years (25). Furthermore, a
more recent study on patients with CLN2 evidenced that most
patients (89%) had an early and high-amplitude pattern reversal
in VEPs, whereas few patients showed a bifid waveform, which is
associated with a central scotoma, indicative of maculopathy or
macular pathway dysfunction such as optic atrophy (47).

With further disease progression, the amplitude of VEP
decreases, as it happens in other neurodegenerative disorders
(48, 49).

The pattern-reversal VEP waveform is preferred to the flash
VEP waveform, which shows a wide inter-individual variability.
On the contrary, the pattern-reversal VEP has a relatively
constant single positive peak throughout life and is a strong index
of macular pathway function (47).

Variability of results may be due to the retrospective nature
of the studies and the different ages and phases of the disease in
which visual tests have been performed (25, 41, 47).

Electroretinogram
Vision-related problems are one of the cardinal signs of NCLs
and, as in CLN3, are often an early sign, appearing prior to motor
and mental deterioration (5). This is due to the accumulation
of storage material into the retina, leading to its degeneration
(50, 51).

Electroretinogram (ERG) represents the tool that allows to
monitor the involvement of retina, and its use progressively
disappears with disease progression (Figures 3A–C) at different
ages according to the NCL variants (50). ERG is currently used to
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FIGURE 3 | ERG and VEPs in CLN2 disease. (A–C) The ERG flash evolution in a patient affected with CLN2 at the ages of 3.5, 5.5, and 7 years. The response is

normal at the onset of disease at the age of 3.5 years (A), at the age of 5.5 years, there is a reduction of the amplitude of ERG (B), which turns to be absent at the age

of 7 years (C). (D,E) The presence of giant flash VEPs in the left and right eyes in a 4-year-old patient.

characterize the physiological changes in the degenerating retina
in patients affected by NCLs. It allows to identify the retinopathy,
which consists of symmetrical cone-rod dystrophy (47, 50).

In patients with CLN2, it has been demonstrated that changes
in ERG appear even before the macular disruption on optical
coherence tomography (OCT) from the age of 4 years and 10
months (47). Abnormal ERGhas been reported in 66% of patients
at a median age of 4.5 years (25). However, it is important to
underlie that the flattening of ERG does not necessarily imply
the total loss of retinal function, if some cortical VEP functions
persist (29).

In CLN5 disease, retinal degeneration has been confirmed
between the age of 6 and 10 years, when ERG has been found
abolished in most of the patients (33, 34).

The use of ERG might be implemented in the future
to evaluate the efficacy of experimental treatments with
intravitreal therapies.

Somatosensory Evoked Potentials
Somatosensory evoked potentials (SEPs) have been poorly
investigated in NCL diseases. There are sporadic cases, across
different forms of NCLs (21, 32, 33, 52), where it is highlighted
that the presence of high-amplitude evoked potential, giant SEPs,

which are the expressions of cortical hyperexcitability due to
neuronal degeneration (32).

Giant SEPs are also a typical and specific marker of patients
with cortical myoclonus, which is one of themain clinical features
of NCLs (38).

DIFFERENTIAL DIAGNOSIS

Neurophysiological investigations can also be useful to
differentiate NCLs from other DEEs. In detail, LINCLs
should be differentiated from those DEEs with epilepsy onset
between 2 and 6 years of age, mainly characterized by myoclonic
seizures. Among these, it is important to consider epilepsy
with myoclonic-atonic seizures (EMA) and Lennox–Gastaut
syndrome (LGS), which are characterized by epilepsy with
multiple types of seizures, intellectual disability, and drug
resistance (24).

The EEG is particularly useful for this purpose because, in
NCLs, there is a slowing of background activity with progressive
loss of differentiation and disappearance of spindles during
sleep, whereas in EMA, although with the presence of many
epileptiform abnormalities, the background activity is preserved
(53). Moreover, a poly-graphic study might highlight that, in
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FIGURE 4 | The common neurophysiological features of NCLs include EEG, visual evoked potentials (VEPs), somatosensory evoked potentials (SEPs), and

electroretinogram findings. They can vary according to the different subtypes of NCLs and the age of patients. Each neurophysiological finding (slowing background

activity, disappearance of sleep spindles, frontal high-voltage slow waves, occipital focal spikes, multifocal spikes, PPR, giant VEPs and SEP, and ERG absence) is the

expression of one of the three main symptoms of NCLs, which are epilepsy, visual deficit, and ataxia and allows to monitor their progression.

EMA, myoclonic events mainly involve proximal, axial muscles,
whereas, in NCLs, myoclonus involves mainly distal, segmental
muscles (38, 53).

The LGS is otherwise characterized by specific EEG
abnormalities, which are diffuse spike-and-slow wave complexes
at 2.5Hz during awake, and poly-spikes during sleep (54). In
both syndromes, PPR is rarely reported and, when described, it
is not induced by low-frequency IPS (53, 54).

On the other hand, PPR is reported in some epileptic
syndromes of infancy, and among these, The Dravet syndrome
(DS) is most frequent (55). Different from the majority of NCLs,
in DS, epilepsy starts within the first year of life. In addition, in
DS, PPR is not typically induced by low-frequency IPS and does
not have the no characteristics of the flash-per-flash PPR (55).

During the last decades, technological advances have driven
genetic discovery in epilepsy and increased the understanding
of the molecular mechanisms of many epileptic disorders,
in some cases providing targets for precision medicine
(19, 56). Nevertheless, phenotyping and neurophysiological
characterization are still critical for the diagnosis and better
management of neurological symptoms.

CONCLUSIONS

An appropriate definition of neurophysiological features of NCLs
is crucial for the possible role that they may have in the early

diagnosis of such diseases. There are some features (Figure 4)
that are common to different subtypes of NCLs, such as the
progressive slowing of background activity, the disappearance of
sleep spindles during sleep, and the presence of some type of
heterogeneous abnormalities, such as bursts of diffuse or focal
slow waves prevalent over temporal and occipital regions and
diffuse spike and wave paroxysmal discharges (25–27).

Sensitivity to low-frequency IPS is a hallmark of
neurodegenerative diseases such as NCLs and may be useful as
an early marker if associated with other clinical findings (27).
This peculiar EEG activation may be missed due to the lack of
standardization of the test, which should be implemented with
low-frequency stimulation, starting from 1 Hz (27).

The VEPs allow to monitor the visual pathway
function, and the lack of visual response at ERG reflects
retinal neurodegeneration.

Taken together, EEG, VEPs, and ERG may represent

essential tools that can address the clinicians toward an
early diagnosis of NCL disease. Although treatment remains
essentially symptomatic in NCLs, together with palliative,

supportive, and rehabilitative measures, in the near future,
ERT and gene therapies may be available and earlier diagnosis

will be mandatory. In this context, the use of NGS-based
approaches results important for the early identification of
patients with NCL, allowing a timely adoption of the most

accurate treatment strategies.
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It is well documented that deteriorating heart function due to deposition of ceroid

lipopigment is a significant co-morbidity in Juvenile Neuronal Ceroid Lipofuscinosis (CLN3

disease) although the exact disease mechanisms remain unknown in any NCL form. An

increasing frequency of cardiac conduction disorders including severe bradycardia and

sinus arrest is seen in the late teens, as is a left ventricular hypertrophy in the early 20s.

Only a few case reports of pacemaker implantation have been published, and so far, no

long-term follow-up study exists. As new treatment options emerge, more patients will

live longer and the need for pacemaker will likely increase, why knowledge of long-term

outcome is needed. In the present study, we present the course of six patients from

the original Danish CLN3-heart population study (n = 29) published in 2011 in whom

pacemaker implantation was indicated from a cardiac point of view. In two cases, the

families deselected pacemaker implantation. In four males, aged 19-29 years, all having a

good general condition, a dual-chamber pacemaker (St. JudeMedicalTM Accent/Assurity

MRITM) was implanted in general anesthesia without any complications. At follow-up 9

years later, three were still alive. According to the parents’ opinion they still have a good

quality of life, now 26, 30, and 36 years old. Pacemaker treatment is safe and may have

great impact on quality of life. However, the medical indication for pacemaker treatment is

relative and it is important that various aspects, including the patient’s general condition

and family preferences, are thoroughly discussed before making the final decision.

Keywords: Juvenile Neuronal Ceroid Lipofuscinosis, CLN3, neurodegenerative diseases, sick sinus syndrome,

pacemaker

INTRODUCTION

The Neuronal Ceroid Lipofuscinoses (NCL) is a group of hereditary diseases characterized by
dysfunction of the lysosomes. Over time, increasing deposition of ceroid lipopigment leads to
increasing degeneration and loss of function of the cells in question. There are today 14 different
subtypes that all but one debut in childhood.

The Juvenile Neuronal Ceroid Lipofuscinosis, also called CLN3 disease, is a fatal
neurodegenerative disease with an estimated incidence range from 0.2 to 7.0 per 100,000 (1). It
is an autosomal recessive disorder caused by a defect in the CLN3 gene, which in the majority of
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cases (>85%) is due to a homozygous deletion of exon 7/8
(2). The disease initially presents with visual impairments
and within a few years, decline of cognitive and motor
function, behavioral changes and epilepsy follow. As the disease
initially presents with degenerative changes of the nervous
system, therapeutics and research have mainly been concentrated
concerning pathology changes of the CNS, but in recent years
it has been well documented, that other organ systems, such
as the heart, are also affected (3–6). Accumulation of storage
material has been reported in CLN3 disease, but knowledge
of the exact disease mechanisms in any NCL form is still
lacking (3). In 2011, a Danish clinical cross-sectional and follow-
up study was published comprising 29 patients with CLN3
(7). In this study, progressive cardiac impairment including
repolarization disturbances, ventricular hypertrophy and sinus
node dysfunction leading to severe bradycardia and other
conduction abnormalities were reported. Inverted T waves were
present from 14 years of age and were associated with an
increased risk of early death. Bradycardia and left ventricular
hypertrophy were found in all patients > 20 years old, and in one
patient pacemaker treatment was indicated from a cardiologic
point of view and in question. So far, pacemaker implantation
in CLN3 disease has only been reported in case studies (4, 5),
and no long-term follow-up studies exist. As new treatment
options emerge, including gene therapy (8, 9), CLN3 patients
may live longer and the need for pacemaker will likely increase.
Thus, knowledge of long-term outcome following pacemaker
implantation is needed.

In the present follow-up study of the original Danish CLN3
heart population (7), we describe indications, reflections and
course of six patients having a severe reduction in heart rate,
long periods of sinus arrests and gradually accompanying clinical
symptoms of cardiac failure and/or sudden loss of consciousness
and muscular tone different from their habitual seizures.

MATERIALS AND METHODS

Participants
For more than 20 years, all Danish patients with CLN3 disease
have been regularly treated at one national site, i.e., Centre
for Rare Diseases, Aarhus University Hospital. The Centre
is tax financed and monitors patients of all types of NCL
from infancy until death, regardless of severity of disease and
socioeconomic background. In 2003-2010, 29 of 30 patients with
CLN3 in Denmark participated in a cross-sectional and follow-
up study where 24 h Holter examination, a 12-lead ECG and
echocardiography were performed every second year. The study
was published in 2011 (7). Since then, all patients < 18 years of
age having a reduced minimum heart rate (<40 beats per min)
or a reduced mean heart rate (<55 beats per min), and patients
above 18 years of age regardless of heart rate, have been offered a
yearly 24 h Holter examination. In the present study we included
those patients who were eligible for pacemaker implantation if
they fulfilled the following criteria:

1) Clinical symptoms of cardiac failure (shortness of breath,
severe fatigue, peripheral cyanosis and/or syncope/near-syncope)
and SA node dysfunction.

2) A 24 h Holter examination demonstrated severe
bradycardia and/or periods of prolonged sinus arrest, which
were considered abnormal and explanatory for the above
clinical symptoms.

In all patients an echocardiography was performed. In patients
who fulfilled the above criteria and where caregivers after
thorough information agreed to the procedure, a dual chamber
pacemaker (St. Jude MedicalTM Accent/Assurity MRITM) was
subsequently implanted in general anesthesia.

The present study was conducted as a follow-up study
based on both prospective and retrospective, descriptive
data. A medical chart review was performed, and data was
collected for each patient. The data included information
about genetics, demographic characteristics, sex, age and clinical
status at the time of assessment for 24 h Holter examination,
echocardiography, and pacemaker implantation. Patients were
followed until end of study period (August 2021) or death.

Standard 12-Lead ECG Recording
Below 12 years, negative T waves in lead V2 and V3 were
considered normal. Above 12 years, the standard criteria for
normality were applied. Abnormal findings included complete
right bundle branch block, left ventricular hypertrophy, flat or
deep negative T waves in V2–V6, pathologic Q waves in lead III,
grade I atrioventricular (AV) block, grade II type II AV block, and
permanent atrial fibrillation or permanent atrial flutter.

Twenty-Four-Hour Ambulatory ECG
Recording (Holter Examination)
To exclude periods with artifacts, each recording was analyzed
interactively by an experienced technician. Heart rate (HR) was
measured as HR per 1-min period [beats per minute (bpm)].
Maximum HR (HRmax,24h) and minimum HR (HRmin,24h) were
identified, and mean 24-h HR (HRmean,24h) was calculated. Based
on values for 95% confidence limits in healthy individuals normal
values for HRmin,24h and HRmean,24h were set as 40 and 55 bpm,
respectively (10).

Echocardiography
Reviewing the ECG’s and Holter investigations, and making
the assessment of whether or not a pacemaker implantation
was indicated, was performed by the same cardiologic specialist
(HM) in all the patients. Echocardiography was performed by
one of three senior experienced cardiologists on a Vingmed
Vivid 7 (GE Healthcare, Oslo, Norway) apparatus using a
standardized protocol for evaluation of morphology. Left
ventricular hypertrophy was defined as 11-mm wall thickness.

Statistical Analyses
The study was designed as a descriptive study and no statistical
analyses were performed.

RESULTS

Six patients (five males) fulfilled the criteria for pacemaker
implantation (Table 1). The patients were between 19 and 27
years old and all had a homozygous deletion of exon 7/8 in
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TABLE 1 | Clinical status at time of implantation and follow-up.

Clinical status at pacemaker inclusion

Patient number

(Sex)

Genotype Age at pacemaker

implantation

HR mean

(24h)

HR min ECG findings Echocardiography Cardiac-related

symptoms

Clinical function

1 (Male) CLN3 del (exon 7/8) 20 36 28 Sinus arrhythmia,

Sinus arrest

Normal Syncope

Cold hands and feet

Peripheral cyanosis

Walk independently

Talk in sentences

2 (Male) CLN3 del (exon 7/8) 19 54 32 AV block, type 2,

Sinus-arrest

Normal Dyspnea during activity Walk independently

Talk in sentences

3 (Male) CLN3 del (exon 7/8) 27 38 28 Sinus-arrest Ventricular hypertrophy Cold hands and feet

Peripheral cyanosis

Use of wheelchair

Use single words

No sentences

4 (Male) CLN3 del (exon 7/8) 21 45 30 Sinus arrest, 11 s Not available Tired

Dyspnea

Walk independently

Talk in sentences

5 (Male) CLN3 del (exon 7/8) Pacemaker

deselected by

parents 23 years of

age

37 24 Sinus arrest, 21 s Ventricular hypertrophy Many syncope’s

Very tired

Peripheral cyanosis

Use of wheelchair

Use single words

6 (Female) CLN3 del (exon 7/8) Pacemaker

deselected due to

severe general

condition 22 years

of age

53 20 Sinus arrest, 26 s Normal Many syncope’s

Very tired

Cold hands and feet

Peripheral cyanosis

Use of wheelchair

No words, only sounds

Clinical status at follow-up

Patient number

(Sex)

Genotype Age at follow-up Follow-up

(years)

Alive Course of death Echocardiography Cardiac-related

symptoms

Clinical function

1 (Male) CLN3 del (exon 7/8) 30 9 Yes NA Ventricular hypertrophy None Use of wheelchair

No words, only sounds

2 (Male) CLN3 del (exon 7/8) 26 6 Yes NA Ventricular hypertrophy None Use of wheelchair

Use single words

3 (Male) CLN3 del (exon 7/8) 36 8 Yes NA Ventricular hypertrophy None Use of wheelchair

No words, only sounds

4 (Male) CLN3 del (exon 7/8) passed away at the

age of 22

1 No pneumonia - - -

5 (Male) CLN3 del (exon 7/8) passed away at the

age of 25

2 No pneumonia - - -

6 (Female) CLN3 del (exon 7/8) passed away at the

age of 22

0.4 No pneumonia - - -
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CLN3. In two cases pacemaker implantation was omitted. In
one case, the procedure was refrained due to a severely affected
general condition of the patient and in the second case because
the parents were opposed to a possible life-prolonging treatment.
All patients had clinical symptoms at the time of the pacemaker
implantation. Two patients, who were still physical active,
complained shortness of breath and feeling extremely tired. In
the other patients, syncope and near-syncope was the primary
symptom. In all patients severe sinus bradycardia (Figure 1) was
demonstrated (HRmin,24h between 20 and 32 beats per min),
as were prolonged sinus arrests (Figure 2). Echocardiography
was initially performed in four out of six patients. In two
patients, aged 19 and 21 years, a normal examination was found.
In the two other patients, aged 23 and 27 years, ventricular
hypertrophy was demonstrated. Figure 3 shows 24 h heart rate
profiles before (A) and after (B) pacemaker implantation in one
of the treated patients. HRmin,24h has increases from 30 to 59 bpm
and HRmean,24h from 41 to 60 bpm.

The patients were followed for 9 years or until they deceased.
One patient died 1 year after the pacemaker implantation due
to pneumonia. The other three patients were still alive and,
respectively, 26, 30, and 36 years old at the end of the study
period. The patients’ caregivers have reported that complaints of
shortness of breath, when still physical active disappeared after
the pacemaker implantation, and there had been no episodes of

syncope in any of the patients. They all got warm extremities
following the implantation, and there were no pacemaker
related infections or need for re-implantation. At follow-up, all
surviving patients had ventricular hypertrophy demonstrated by
ultrasound of the heart.

In one case the pacemaker implantation was omitted due to
a severe general condition of the patient including intractable
epilepsy. The general condition of the patient further deteriorated
during the following months and the patient continued to
have multiple episodes of sinus arrest of up to 26 s leading
to multiple syncope fainting. Four months later the patient
died of pneumonia. In the case where pacemaker implantation
was omitted because the parents were opposed to a possible
life-prolonging treatment, the patients died 2 years later due
to pneumonia. In the meanwhile, the patient had recurrent
syncope fainting, and repeated ECG’s demonstrated multiple
episodes of sinus arrest with increasing duration up to 21 s.
Echocardiography demonstrated ventricular hypertrophy.

DISCUSSION

In CLN3, pronounced deposition of ceroid lipopigment has been
shown to occur in the sinus node of the heart, its autonomic
nerve supply, as well as in the atrioventricular node and in the

FIGURE 1 | ECG transcript of patient 5, aged (26 years of age) showing sinus bradycardia (24Hmin = 34).
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FIGURE 2 | ECG transcript of patient 5, aged (26 years of age) having recurrent sinus arrests, the one shown lasting 5.76 s.

bundle of His, and to a lesser extent inside the cardiomyocytes
of CLN3 patients (3, 7). Accordingly, an increasing frequency
of conduction disorders including sinus arrest is seen in these
patients in their late teens, along with left ventricular hypertrophy
in the early 20 s (7).

The experience of pacemaker treatment for CLN3 disease is
limited and only case reports have been published. In 2014, two
siblings with a specific, not previous described CLN3 mutation
both received a pacemaker due to severe bradycardia and sick
sinus syndrome (4). Although they later received an implantable
cardiac defibrillator, the cardiac function deteriorated to cardiac
failure. In a single patient reported by Dilaveris et al. (5),
pacemaker implantation resulted in a more alert patient, and
previous reported difficulties with dysphagia and choking during
mealtimes disappeared. In the present study, we describe
the clinical course of six adult patients in which pacemaker
implantation was indicated from a cardiac point of view. Four of
them ended up having a pacemaker. Three patients were still alive
9 years later, and in all patients the caregivers reported that they
have a better quality of life. Their activity levels were increased,
their temperature of the peripheral extremities remained normal,

and there had been no shortness of breath and no cardiac related
fainting. All three patients now showed ventricular hypertrophy,
and their motor and linguistic abilities continue to regress
following pacemaker implantation, indicating a further ongoing
progression of the underlying CLN disease.

Our follow-up cohort consists exclusively of males, which
might indicate a gender difference. It might be related to the
small number of participants. However, sex difference in CLN3
disease course has been reported in both a North American
and Danish study (11, 12) where females demonstrated earlier
loss of independent functions, had lower quality of life, and
died approximately 18 months earlier. In addition, females
demonstrate cardiac pathology earlier as do males (7), and as we
did not recommend pacemaker implantation in patients with a
severely affected general health condition, the apparent gender
difference might be real.

In our study we did not have an explicit definition of
what eventually should lead to pacemaker removal. One could
be concerned that having a pacemaker in a progressive and
ultimately lethal disease might lead to an unnecessary extended
course of the disease at the terminal phase. However, one patient
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FIGURE 3 | Twenty-four hour ECG transcripts of Patient 4 (21 years of age) before (A) and 3 months (B) following pacemaker implantation.

died due to pneumonia already 1 year following pacemaker
implantation. Thus, having a pacemaker seems not to affect
the real terminal phase, but we cannot exclude that pacemaker
implantation is a life-prolonging procedure, and we therefore
sincerely encourage to a thorough dialog with parents before
decision of a potential pacemaker implantation has to be
made. In two patients, both with long-lasting sinus arrests,
pacemaker implantation was deselected. They both were in
the terminal phase, and although it cannot be known with
certainty, pacemaker treatment would hardly have extended their
lives significantly.

The field of NCL research is currently evolving rapidly and
progress in gene therapy may be glimpsed in the horizon (8, 9).
Nevertheless, we know from the progress in CLN2 treatment that
therapy may only be effective in some organ systems (13). In
the close future we face gene therapy or other new treatment
regimens in patients with CLN3 disease, but whether these
treatments will also be effective outside the central nervous
system such as the heart, still remain to be elucidated.

Limitations
The study comprised a small number and although the
patients were followed consecutively by only one or two
different clinicians during follow-up, the follow-up study has
a retrospective design as well. Only CLN3 patients having the
common homozygous deletion of exon 7/8 in the CLN3 gene
participated, and a phenotypic variability in cardiac symptoms is
still to be expected. Additionally, related to our inclusion criteria
for pacemaker implantation, we might have a selected a group of
CLN3 patients with a relatively benign disease course.

CONCLUSIONS

Our study confirms that severe cardiac conduction disturbances,
which principally requires decision regarding pacemaker
treatment, is relatively common in patients with CLN3 and leads
to symptoms reducing quality of life, including syncope fainting.
A pacemaker implantation is a safe procedure in CLN3 patients,
and in the present case-series it improved their quality of life
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and prevented further episodes of syncope. We cannot exclude
that the procedure may be life-prolonging and will emphasize
the importance of a thorough information of parents/caregivers
when decision of a potential pacemaker implantation has to
be made.
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The main aim of this review is to summarize the current state-of-art in the field of

childhood Neuronal Ceroid Lipofuscinosis (NCL), a group of rare neurodegenerative

disorders. These are genetic diseases associated with the formation of toxic

endo-lysosomal storage. Following a brief historical review of the evolution of NCL

definition, a clinically-oriented approach is used describing how the early symptoms

and signs affecting motor, visual, cognitive domains, and including seizures, may

lead clinicians to a rapid molecular diagnosis, avoiding the long diagnostic odyssey

commonly observed. We go on to focus on recent advances in NCL research and

summarize contributions to knowledge of the pathogenic mechanisms underlying NCL.

We describe the large variety of experimental models which have aided this research,

as well as the most recent technological developments which have shed light on the

main mechanisms involved in the cellular pathology, such as apoptosis and autophagy.

The search for innovative therapies is described. Translation of experimental data into

therapeutic approaches is being established for several of the NCLs, and one drug

is now commercially available. Lastly, we show the importance of palliative care and

symptomatic treatments which are still the main therapeutic interventions.

Keywords: neuronal ceroid lipofuscinosis, NCL clinical features, NCL pathogenetic mechanisms, NCL treatments,

NCL review

INTRODUCTION: HISTORICAL NOTES

The Neuronal Ceroid Lipofuscinoses (NCL) are neurodegenerative disorders, mostly of childhood
onset. They form a heterogeneous group of lysosomal storage diseases (LSD) mainly affecting brain
and retina (1). They are genetic disorders, and the first description of putative juvenile NCL was
of four siblings in Norway with progressive visual loss, cognitive decline, seizures and premature
death. This report remained unnoticed until 150 years later (2).

Cases of progressive visual loss with cognitive decline of infantile and/or childhood onset and a
fatal outcome were grouped around the turn of the 19th century under the term “amaurotic familial
idiocy”, coined by the American neurologist Sachs (3), and included the ocular manifestations
described by the British ophthalmologist Tay (4). Several familial cases were described from
different European countries. The contribution of neuropathology further characterized this group
of diseases by describing the topography of brain abnormalities and the selective involvement of
the cerebral and cerebellar cortices and of subcortical gray nuclei (5–9). Adult onset cases were
reported by Kufs (10). The common appearance of swollen cerebral neurons (as well as retinal
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ganglion cells), whose topology was distorted because of the
cytoplasmic engulfment with granular materials with similar
staining properties was also described (11). Batten (12) and
Spielmeyer (8) went on to outline some differences in the features
and distribution of storage material between these entities,
allowing division of the amaurotic familial idiocies into different
clinical entities with different genetic backgrounds (13), specific
biochemical properties (14, 15), selected neuropathological
features (16), and eventually genetic markers toward the end of
the last century. This was the beginnings of the classification and
nosography of so-called storage diseases.

NCL are currently grouped under two major eponyms, Batten
disease and Kufs disease. Batten disease refers to childhood
NCLs, regardless the age of onset, whereas the term Kufs disease
is assigned to the two major phenotypes of adult onset NCL
[Kufs A and B (17)]. NCL definition relies on pathological
criteria: the presence of autofluorescent lipofuscin and the
characteristic cytosomes. Zeman and colleagues introduced
the term “Neuronal Ceroid Lipofuscinosis” based on the
histochemical and ultrastructural features (18). The identification
of suchmarkers allowed the NCLs to be further characterized and
distinguished from other “amaurotic familial idiocies”, such as
gangliosidoses (19).

Intracytoplasmic accumulation of autofluorescent material
is a pathogenetic hallmark of the NCLs, and it is ascribed
to the abnormal storage of ceroid, a pathologically derived
material, with similar biochemical properties to lipofuscin,
the “aging pigment” (20). The abnormal storage material is
embedded within lysosomes, and its ultrastructural features
probably reflect the chemical composition of the storage and
the related aggregates (16). The biochemical composition of
the storage is still only partially defined. A main component
(subunit c of the mitochondrial ATP synthase) accumulates in
the late infantile variants and in juvenile onset NCL; sphingolipid
activating proteins (Saposins A and D) are enriched in two
infantile onset forms (21, 22). Interestingly these components
are detected in CNS tissue only, and they are not present in
peripheral tissues, where the storage can be detected in several
cell types ultrastructurally.

The recognition of lysosomal involvement in the NCLs was
followed by a huge research effort aiming to disentangle the
pathogenetic mechanisms and to shed light on the cellular
pathways and processes which are affected (see Section The
Research Contribution to Knowledge).

The identification of lipopigment storage ultrastructurally
became the main diagnostic tool for NCL, and cerebral biopsies
represented the favored diagnostic approach. Evidence that
storage material could be detected in readily accessible extra-
neural tissues (such as skin, blood lymphocytes, skeletal muscle)
led to an important shift from CNS to peripheral biopsies, a safer
and more rapid pathway to diagnosis (23). Peripheral neurons,
such as intramural ganglionic neurons of rectal mucosa, were
also utilized for diagnostic purposes (24, 25). The impaired
function of these cells was associated with gastrointestinal
problems, including abdominal pain, constipation, and altered
bowel motility in NCL patients. The involvement of the enteric
nervous system was recently investigated in three NCL mouse

models, which showed both impaired enteric functions and
histological and ultrastructural findings consistent with neuronal
loss and storage accumulation (26).

Based on clinical and pathological criteria, the NCLs were
classified according to age of clinical onset and the ultrastructural
features of the cytosomes. Their nomenclature was modified
over time to include newly recognized variants [for example,
infantile and early juvenile] and the adult form (16, 27, 28). Such
classification has been valid for about four decades, and it is
still useful in a clinical setting (Table 1). It has helped to target
molecular genetic diagnostic investigations. The identification of
cytosomes in the peripheral tissues of unusual cases, where the
clinical phenotypes is not entirely consistent with known NCL
genetic types, may lead to molecular analysis using NCL panels,
sometimes obtaining diagnostic confirmation at molecular level
(29). Major steps in NCL history are summarized in Figure 1.

An axial classification system was proposed, including seven
axes, to obtain information necessary to better categorize
each NCL form, according to the specific items which
characterize them (30) and represents a useful diagnostic tool for
research purposes.

GENERAL CLINICAL ISSUES

Advances in Genetics
NCL are genetic diseases (13). All childhood and most adult
NCLs are inherited as autosomal recessive diseases. There is
only one dominantly transmitted adult-onset form, Parry disease,
associated with mutations in CLN4.

A new age in the NCL history started during the last decade
of the 20th century. The first human NCL genes, CLN1 and
CLN3, were identified in 1995 by positional cloning (31, 32). The
identification of the remaining elevenNCL genes occurred within
the following decade, making use also of naturally occurring
animal disease models. The pathogenicity of identified mutations
was proven by different approaches in vivo (eg. using knock-out
invertebrate and mammalian models) and/or in vitro.

The consequences of the genetic advances are multifaceted.
From a clinical perspective it allowed a new gene-based
classification and NCL nomenclature (33), provided a powerful
tool for diagnosis, and helped clinicians recognize both
phenotypic variability and heterogeneity within most NCL
genetic disease types (34). The classical phenotypes are generally
associated with the most common mutations in each gene,
whereas variant forms may arise from “private” mutations.
Phenotypic variability can be observed evenwithin some families,
which, for example, may lead to differences in survival among
siblings. Advances in NCL genetics also gave the opportunity to
re-evaluate NCL epidemiology and to recognize the worldwide
distribution of this group of diseases (see below Section
Epidemiology and Registries). The identification of the NCL
genes and their related products helped to begin to identify
altered cellular processes and patho-mechanisms leading to cell
death and progressive neurodegeneration which characterizes
all NCLs. The cross-talk between different cell compartments
(eg lysosomes and endoplasmic reticulum, lysosomes and
mitochondria) has been described in some NCL forms (35–38)
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TABLE 1 | NCL of childhood onset: clinical classification and major diagnostic procedure.

Clinical form Age of onset Disease Gene Diagnosis Major symptoms at onset

Congenital Birth CLN10 CLN10/CTSD NGS

Enzymatic assay

Microcephaly, dysmorphic features, seizures, hyperkinetic movements;

Infantile 6–18 months CLN1 CLN1/PPT1 NGS

enzymatic assay

Decreased head growth, neuro-developmental regression, seizures;

CLN10 CLN10/CTSD NGS

enzymatic assay

Decreased head growth, neuro-developmental regression;

CLN14 CLN14/KCDT7 NGS Decreased head growth, seizures (myoclonus);

Late infantile

Classical 2–4 yrs CLN2 TPP1 NGS

enzymatic assay

Seizures, ataxia, visual loss, delayed language development;

Variant 2–5 yrs CLN1 CLN1/PPT1 NGS

enzymatic assay

Seizures, neuro-developmental regression, behavioral disturbances;

CLN5 CLN5 NGS Impaired learning and cognition;

CLN6 CLN6 NGS Seizures, ataxia, delayed language development;

CLN7 CLN7/MFSD8 NGS Seizures, visual loss, motor and cognitive regression;

CLN8 CLN8 NGS Seizures, visual loss, motor and cognitive regression;

Juvenile

Classical 3–5 yrs CLN3 CLN3 NGS Visual loss, behavioral problems, cognitive decline

5–7 yrs CLN5 CLN5 NGS Motor and cognitive regression, behavioral problems;

5–7 yrs CLN1 CLN1/PPT1 NGS

enzymatic assay

Visual loss, cognitive decline;

Late 8–12 yrs CLN6

CLN10

CLN6

CLN10/CTSD

NGS

NGS

enzymatic assay

Myoclonic seizures, cognitive decline; ataxia, cognitive decline, visual loss;

13–16 yrs CLN12 ATP13A2 NGS Rigidity, hypokinesia

FIGURE 1 | Major steps and achievements during nearly two centuries of Neuronal Ceroid Lipofuscinoses history are outlined, starting from the earliest clinical

description to the present research which led to the first FDA/EMA approved treatment.

and has helped to shed light on some clinical features which
cannot be ascribed to the mutated NCL protein only. Animal and
cellular models have been generated to expand our knowledge of
the pathology, and so the first disease modifying and therapeutic
agents are now becoming available for clinical trials (39). The
first such agent was approved for clinical use in 2017 following
a pivotal phase I/II clinical trial.

As shown in Table 2, allelic adult-onset variants are observed
in several childhood forms (40). In most however, the adult
phenotype shows clinical features which are consistent with the

classical childhood form and are differentiated only by the age
of onset. The well-defined adult onset NCLs are still named
by classical eponyms [Kufs A, Kufs B and Parry diseases].
They are associated with pathogenic mutations of CLN6 [Kufs
A disease, (41)] and with three other genes (CLN4, CLN11,
CLN13) whose mutations give rise exclusively to adult-onset
phenotypes (42–45).

The identification of childhoodNCL genes is also contributing
to the identification of potential genetic signatures for
neurodegeneration in adulthood. A number of NCL genes
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TABLE 2 | Characterization of adult onset NCL.

Form MIM Inheritance Chromosome Gene Gene product Onset (decade) Symptoms at onset

KD-A/CLN6 #204300 AR 15q23 CLN6 CLN6: transmembrane protein

(ER)

2nd-5th Seizures, action myoclonus, ataxia,

cognitive decline

KD-B/CLN13 #615362 AR 11q13.2 CLN13/CTSF CTSF (soluble protein):

lysosomal enzyme

2nd-7th Seizures, myoclonus, cerebellar

tremor, cognitive decline, depression,

anxiety

Parry/CLN4 #162350 AD 20q13.33 CLN4/DNAJC5 CSPα (soluble protein): cytosol

(vesicular membrane)

3rd-5th Seizures, action myoclonus, visual

failure

CLN11 #614706 AR 17q21.31 CLN11/GRN Progranulin (soluble protein) 3rd Seizures, visual failure

CLN1 #256730 AR 1p34.2 CLN1/PPT1 PPT1 (soluble protein): enzyme

(lysosome and

extra-lysosomal compartments)

3rd-4th Cognitive decline, psychiatric

symptoms

CLN5 #256731 AR 13q22.3 CLN5 CLN5: lysosomal membrane

(other cell compartments)

6th Unsteady gait

KD, Kufs disease; ER, endoplasmic reticulum.

share mutations or are allelic with mutations contributing
to common adulthood neurodegenerative disease, such as
Alzheimer’s Disease, Fronto-Temporal Dementia, Parkinson’s
Disease (46–48). Moreover, lysosomal dysfunction and
dysregulated autophagy which are observed in CLN3 and CLN6
disease (49, 50) are also seen in most forms of late-adulthood
neurodegeneration (51, 52).

Advances in NCL genetics were accompanied by new
opportunities to establish diagnosis at a biochemical level;
enzymatic assays became available for four lysosomal enzymes:
CTSD, CTSF, PPT1, and TPP1 (53–55). The gold standard
for diagnosis is to require genetic confirmation by detecting
both disease causing alleles. Therefore, when detection of the
common disease causing mutations is not confirmed in the
presence of a biochemical impairment, the diagnostic search for
changes in cryptic gene regions (introns, untranslated regions,
etc.) is extended. The requirement to establish a molecular
diagnosis is of a primary importance for families helping to
inform prognostic counseling, for antenatal diagnosis and, more
recently, to judge suitability for “innovative” treatments where
they are available. The recent availability of NGS technology
has changed the clinical approach to NCL diagnosis, which
relies on a straightforward molecular approach, leaving the
neuropathological and ultrastructural investigations to cases
which remain unsettled, even after molecular analysis (Figure 2).

Epidemiology and Registries
NCL are rare diseases which are distributed world-wide.
The higher prevalence of selected NCL forms in restricted
geographical areas has some historical relevance and may
also reflect the early progress in molecular diagnosis in some
countries (31, 56, 57). Epidemiological data indicate an incidence
of 1–3/100.000 and a prevalence of about 2–4/1.000.000 (58–
62). These figures refer to Western countries where access to
molecular diagnosis has become standard of care over the last
10–15 years. More detailed epidemiological study is necessary
to improve awareness of these diseases, the efficacy of genetic
counseling, to plan appropriate services, and to facilitate access to

“new” treatments. In Western countries CLN3 disease (juvenile
NCL) is the most common form, followed by the classical late
infantile form, CLN2 disease which is more frequent in Southern
Europe and the Mediterranean region. Ultrarare childhood
NCL are CLN10, CLN12, CLN14. A major contribution to
the dissemination of knowledge comes from disease registries
and databases. The independent International NCL Database
(led by Dr A Schulz in Hamburg, Germany; Clinical trials
identifier NCT04613089, an extension of former NCL DEM-
CHILD patient database) is collecting static and dynamic clinical
data of NCL patients from 19 countries from Europe, North
and South America and Asia. The UCL based NCL Mutation
Database (established in 1998 by prof S.E. Mole; http://ucl.ac.uk/
ncl-disease/) lists all published and reported NCL patients as well
as mutations.

The Current Nosography
The impressive amount of data collected over the last two
decades has allowed the NCL community to generate a
new nomenclature of NCL based on genetic variations (33),
followed by comprehensive reviews which have described the
clinical features, the cell localization and functions of the
mutated gene products, as well as the historical markers which
characterize NCL among other progressive neurological diseases
with endo-lysosomal storage. For a systematic review of the
clinical and diagnostic features of each NCL disease (including
the phenotypic heterogeneity), readers are referred to recent
publications (1, 63–69). A comprehensive classification of NCL
is given in Table 3.

SELECTED CLINICAL FEATURES

As mentioned in the introduction, the NCLs were grouped as
amaurotic idiocies around the end of the 19th century, along
with other diseases which were recognized as different disorders
later. “Idiocy”, progressive blindness, and seizures, remain the
cardinal symptoms of the NCLs. The NCLs are themost common
neurodegenerative diseases in childhood, and they are one of
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FIGURE 2 | Diagnostic work up for neuronal ceroid lipofuscinosis of childhood onset.

the main causes of childhood dementia worldwide. They are
progressive with severe physical decline, and an early death.
Infantile and late infantile onset NCLs show the most rapid
rate of disease progression. Most patients are bedridden by their
second decade, and death occurs during the late second-early
third decade. A less rapid course is seen in patients affected
with CLN3 disease. Staging systems based on severity scores of
selected clinical manifestations have been developed to monitor
the disease evolution quantitatively. These tools are helpful in
describing the natural history of a disease and are of particular
relevance when the efficacy of “new” treatments is tested (70–72).

Cognitive decline, ataxia, amaurosis, and early seizures are
the clinical manifestations at onset in most cases. They become
evident sequentially over a short time frame (6–24 months) in
infantile and late-infantile NCLs; spasticity follows leading to loss
of motor function, dependence on carers for all activities of daily
living within 5–8 years of symptom onset.

In this review we will discuss the clinical symptoms
which characterize the NCLs in more detail, and are shared
between the forms, focusing on their temporal evolution at
onset and during the early stages of the disease course.
Seizures, motor deterioration (including ataxia, movement
disorders, spasticity), cognitive decline, progressive blindness,
and behavioral problems are the major clinical features of infancy
and childhood onset NCLs. The identification of the clinical
markers and their relationship with patients’ age at onset may
help to drive diagnostic procedures toward a specific NCL
type, which can be confirmed molecularly. Such an approach
reflects the clinical experience of the authors in the field of
childhood neurodegeneration.

Epilepsy and Seizures
Epilepsy is common to almost all NCL forms. Several seizure
types are seen in the NCLs. The severity of epilepsy (in
terms of age of onset, seizure semiology, seizure burden and
response to anti-seizure medications) is not shared uniformly.
Seizures tend to start earlier and semiology is more varied
in infantile and late-infantile onset NCLs. With time seizures
tend to become less frequent, except for myoclonus (either
spontaneous or evoked) which remains the only paroxysmal
manifestation in the late stages of the disease. The background
EEG progressively deteriorates leading to a nearly isoelectric
pattern, as an expression of progressive cortical atrophy and
degeneration of the “generators” of cortical electric activity.

Frequent perinatal convulsions (or even status epilepticus)
associated with severe cortical and cerebellar atrophy are
observed in the ultrarare congenital NCL, which leads to death
within the first weeks of life and are usually associated with
mutations in CTSD (73).

Generalized seizures, including myoclonus, starting 2 to 6
months after the earliest clinical manifestations, characterize
infantile onset NCL (infantile CLN1 and CLN10 diseases).
Before the onset of clinical seizures, EEG abnormalities can be
detected, which evolve over time into a characteristic pattern,
the “vanishing EEG”, observed also in the late infantile variant
of CLN1 disease (74–76).

Generalized motor seizures, absences, and myoclonus
(including negative myoclonus) are the main seizure types
observed in classical CLN2 disease. They are also seen in
CLN6, CLN7 and CLN8 late infantile variants. In these forms
seizures can be present at disease onset, or appear within
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TABLE 3 | NCL: genetic, biochemical and ultrastructural features of each form.

NCL

disease

MIM Gene

locus

Mutated gene Gene product Cellular compartment Function Ultrastructural

features

CLN1 #256730 1p34.2 CLN1/PPT1 PPT1

(soluble protein)

Lysosomal matrix (acidic

ph); extralysosomal vesicles

(not acidic pH);

Enzyme

(s-acylated protein

thioesterase)

GROD

CLN2 #204500 11p15.5 CLN2/TPP1 TPP1

(soluble protein)

Lysosomal matrix Enzyme

(serine protease)

CVB (FPP)

CLN3 #204200 16p11.2 CLN3 CLN3

(membrane protein)

TMD (late endosomes,

lysosomes, presynatic

vesicles, axons)

Multiple functions in several

cell processes

FPP, vacuoles

CLN4 #162350 20q13.33 CLN4/DNAJC5 DNAJC5

(soluble protein)

Cytosol (vesicular

membrane)

Co-chaperone

(endo/exocytosis)

GROD

CLN5 #256731 13q22.3 CLN5 CLN5

(soluble protein)

Lysosomal membrane and

matrix, ER, neurites

Endocellular trafficking

between cell compartments

Mixed pattern (CVB,

FPP, RLP)

CLN6 #601780 15q21-23 CLN6 CLN6

(membrane protein)

TMD (ER) Mediates ER exit of new

lysosome enzymes (?)

FPP

CLN7 #610951 4q28.2 CLN7/MFSD8 MFSD8

(membrane protein)

TMD (lysosomes, late

endosomes; photoreceptor

vesicles)

Transporter? Mixed pattern (CVB,

FPP, RLP)

CLN8 #610003 and

#600143

8p23.3 CLN8 CLN8

(membrane protein)

TMD (ER/ERGIC) (cargo

receptor)

Lysosome biogenesis

regulator

Mixed pattern (CVB,

FPP, RLP)

CLN10 #610127 11p15.4 CLN10/CTSD Cathepsin D

(soluble protein)

Lysosomal matrix Enzyme

(aspartyl-endopeptidase)

GROD

CLN11 #614706 17q21.31 CLN11/GRN Progranulin

(soluble protein)

Extracellular matrix Not known FPP

CLN12 1p36.13 CLN12/ATP13A2 CLN12

(membrane protein)

TMD (lysosomes) Enzyme

(P-type ATPase)

FPP

CLN13 #615362 11q13.2 CLN13/CTSF Cathepsin F

(soluble protein)

Lysosomal matrix Enzyme

(cysteine protease)

FPP

CLN14 #611725 7q11.21 CLN14/KCTD7 Potassium Channel

Tetramerization

Domain-containing

Protein 7

(soluble protein)

TMD (plasma membrane) Voltage-gated potassium

channel complex

Mixed pattern (CVB,

FPP, RLP)

TMD, transmembrane domain; ER, endoplasmic reticulum; ER/ERGIC, endoplasmic reticulum/endoplasmic reticulum-Golgi intermediate compartment; GROD, granular osmiophilic

deposits; CVB, curvilinear bodies; FPP, finger print profiles; RLP, rectilinear profiles.

1–2 years. A characteristic EEG feature is the paroxysmal
spike-wave response, which is evoked by low-frequency (1–3Hz)
intermittent photic stimulation which is observed in CLN2 and
CLN6 (late infantile variant) patients during the early stages of
the disease (77, 78).

A prevalent myoclonic epilepsy with progressive features
characterizes the late juvenile (teen age) onset CLN6 disease
and its allelic adult Kufs A disease. Both forms present with
progressive myoclonic epilepsy at onset gradually increasing
in frequency and intensity, and less frequent bilateral tonic-
clonic seizures. A low-frequency (1–5Hz) photo-paroxysmal
response is present in the vast majority of cases (79). The
disease has a slowly progressive course, and patients become
wheel-chair bound within few years due to the relentless
myoclonus and progressive ataxia (80). Progressive myoclonus
epilepsy associated with rapidly progressive dementia is also
the clinical hallmark of the dominantly inherited NCL (Parry
disease) (42).

Bilateral tonic-clonic seizures (even with focal onset) and
absences are the most frequent seizure type in CLN3 disease,

rarely occurring as presenting symptoms; myoclonus is less
frequent than in other NCLs (81, 82).

Major Neurological Symptoms
Motor Deterioration
Ataxia, weakness, loss of acquired motor abilities and spasticity
are the most common motor symptoms in NCL patients. The
consequence is the loss of motor autonomy and increasing
dependence on caregivers. Signs and symptoms of motor
impairment become evident in children who had normal motor
development previously.

Ataxia is the most frequent clinical symptom of CLN2,
CLN7, CLN8 disease and of the rarer late-infantile variant of
CLN1 disease whose age of onset is between 2 and 5 years. It
is also evident in CLN6 disease but onset is 1–2 years later.
Ataxia in the NCLs is secondary to spino-cerebellar involvement.
Purkinje cells and neurons of the deep cerebellar nuclei are
severely affected and undergo early death. Cerebellar atrophy
is an early neuro-radiological sign, preceding the enlargement
of cortical sulci and of the lateral ventricles. Sometimes the
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term “ataxia” is incorrect, and the transient spells of motor
instability which a child shows should be considered as clinical
expression of “negative myoclonus”, which is commonly present
in these forms.

Motor weakness affecting limbs, eye muscles (strabismus) and
deglutitory muscles (dysphagia) is likely to occur because of
impaired cortico-descending connectivity due to the involvement
of motor cortex and the neurons of motor nuclei. The progressive
degeneration of motor pathways is followed by spasticity
which represents further disease progression. Changes in gait
phenotypes in different forms of Batten disease has been recently
considered as a “marker of disease progression” (83).

The progressive involvement of cortical neurons also leads to
a progressive loss of motor skills, motor initiative, motor planning
and strategies, which represent the “cognitive foundation” of
motor function. This same process also leads to dementia.
Decliningmotor function is observed in all NCL forms, leading to
loss of independent ambulation, subsequent loss of all voluntary
movement and posture control, the rate of decline dependent
on the NCL type. Children with the infantile and late infantile
NCL types become wheel-chair bound at 6–12 years of age
(according to the severity of the form) before becoming “bed-
ridden” (early teens in late infantile forms, early-mid second
decade in CLN3 patients).

Extrapyramidal symptoms, such as tremor and rigidity, are
known to occur in NCL, being particularly relevant in CLN3
disease. They are responsive to available treatments, such
as anti-cholinergic drugs, Dopamine. Dystonia and chorea
can be recognized at different stages of NCL disease course
(84, 85). The reasons why basal ganglia structures and/or
neuronal connections underlying these clinical manifestations
are relatively spared in NCLs is a matter which requires
further investigation.

Cognitive Decline and Impaired Language

Development
Cognitive decline is hallmark of the NCLs. In younger children
the loss of cognitive abilities related to school-learning occurs
rapidly, whereas the relatively slow pace of disease evolution
observed in “juvenile” patients allows them often to attend
mainstream school whilst continuing to learn new facts and skills
into their teenage years. From this perspective two major issues
should be considered, which further differentiate early onset NCL
from juvenile forms.

Cognitive decline occurs as a two-phase problem. Early in the
disease, children’s developmental trajectory slows, they acquire
new learning more slowly than their peers but often remain
within the normal range for some time before professionals
become concerned. They go on to plateau and then begin to
lose the cognitive competences they have acquired during the
earliest months and/or years of their life. This is often the time
at which diagnostic investigations are triggered. In CLN2 disease
however many children show a delayed acquisition of cognitive
skills at a very early stage and their profile is characteristically
uneven with delays more evident in the domain of expressive
language compared with motor skills. This has been reported in
recent years and is of huge importance for driving early diagnosis.

Nickel et al. (86) reported that about 40% of a cohort of CLN2
patients presented early with delayed language acquisition. It
raises the potential to consider language delay as an early warning
sign, leading to careful clinical examination of such children, in
order to detect any additional concerning features which would
justify a deeper diagnostic workup including genetic screening.
The atypical early developmental profiles of affected children
may also give some clues about the molecular basis of language
development, and the role that cellular pathways involved in the
development of this complex function may play. There are no
studies available for NCL late infantile variants, but it is tempting
to hypothesize similar findings in some NCL types at least,
e.g. CLN7 and CLN8 disease. Delayed language development in
CLN2 disease children does not seem to be related to any specific
CLN2 genotype.

Different clinical issues are related to the decline of cognition
in CLN3 disease, which can be considered as the prototype of
amaurotic idiocy. The rate of disease progression is commonly
slow and children can attend school, with support for the
intellectual, visual and sometimes behavioral difficulties. There
is no evidence to date of an uneven developmental profile early
in life and before the onset of visual impairment. The scores of
the neuropsychological function tend to diverge from typically-
developing peers, reflecting the failure to achieve the expected
achievements, but a marked drop in their cognitive abilities
occurs during mid-adolescence, at around the same time as rapid
neurological decline (87).

Behavioral Problems
Behavioral problems at onset characterize CLN3 and CLN5
diseases, and to a less extent atypical CLN2 disease, three NCLs
where first symptoms occur in school age children. There are well
described and differentiated disease natural history, and which
are caused by mutations in three different nuclear genes whose
products have different functions and are located in different
cell compartments.

CLN3 disease is the most prevalent NCL in Northern Europe
and USA. It has a juvenile (school age) onset with visual
impairment and behavioral problems, followed by cognitive
decline. Motor impairment and epilepsy occur later. Behavioral
problems include anxiety, depressed mood, bursts of aggressive
behavior and psychotic manifestations. These symptoms tend to
remain stable or even worsen during the early years after disease
onset, and then become less significant as the disease advances
and functional and cognitive abilities are lost. Behavioral
problems represent a major challenge to the quality of life for
those patients (and their families and carers) where a slow disease
course and longer survival is expected (87, 88), and seems also
to be unrelated to the genotype (89). The disease evolution is
much slower than in other forms, and death may occur in the
fourth or even sixth decade, unless cardiac involvement results
in premature death (see below). There is a relevant phenotypic
homogeneity (possibly related to a common mutation which is
observed in the vast majority of cases). Some gender differences
have been reported, the female patients presenting a more severe
clinical course (90).
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Behavioral manifestations and impaired language are the early
clinical manifestations of a late infantile “variant”, of pre-school
age onset, CLN5 disease. Seizures and visual impairment occur
3–4 years after disease onset, followed by progressive motor
impairment with spasticity with loss of ambulation by 11–
12 years of age. The predicted survival is about 15–20 years
after disease onset. In this disease there is some evidence that
phenotypic variation (as far as the rapidity of neurological decline
and survival) is related to the severity of mutations (91, 92).

Behavioral disorders (along with seizures and, language
abnormalities) at onset were also reported in a large South
American cohort of children with atypical CLN2 disease (93).

Blindness
Progressive visual impairment is one of the classical symptoms
of NCL of childhood onset. It affects all forms, and in the large
majority of cases it occurs as one of the early clinical signs. Retinal
structures, visual pathways and visual cortices are affected. Both
ganglionic neurons and receptor cells (cones and rods) are
involved. Impaired retinal response is visualized by ERG. Optical
Computerized Tomography allowsmonitoring of the progressive
retinal degeneration. Most published evidence relates to CLN3
and CLN2 diseases (94, 95), and to less extent to CLN1 disease
(96). A spectrum of retinal disturbances was described in CLN7
disease and related to the severity of mutations (97). Whether
maculopathy precedes cognitive impairment in CLN3 disease,
or if both visual impairment and mild cognitive failure occur
at around the same time (98) is still the subject of discussion.
Biallelic variants of the MFSD8 gene may be associated with
isolated juvenile maculopathy, evolving into a slowly progressive
encephalopathy with protracted course (99). Conversely, late
visual impairment, or even long lasting preservation of visual
function can occur in CLN5 and CLN6 diseases (92, 100).
Notably, in the allelic Kufs A disease the retina is not affected
and vision is normal. Recently, patients affected with isolated
retinal degeneration (including retinitis pigmentosa) have been
identified harboring biallelic CLN3 and CLN10 pathogenic
variants (101, 102).

Therapeutic trials are in progress aiming to prevent retinal
degeneration in animal models using intravitreal gene or
enzyme therapy (103, 104). These approaches represent powerful
therapeutic systems suitable for translation into NCL patients.
A major question arises regarding the contribution of central
nervous system pathology to functional vision, which is unlikely
to be corrected by a retinal only approach.

Sleep Disturbances
Sleep disturbances are common in all NCL types. There
are few studies on this issue (105–107) but the importance
of sleep management has been outlined in two recent
consensus papers (108, 109). Poor sleep quality and sleep
pattern disturbance will impact adversely on the quality
of life of affected children and their families directly
and indirectly through worsening of seizure control and
behavior. Supportive measures (such as respite care) and
behavioral strategies (such as sleep hygiene) are necessary
given the lack of consistent benefit from commonly used

medical interventions, such as Melatonin (110). Anti-seizure
medications, often prescribed, may help falling asleep, but side
effects (e.g. morning drowsiness) impair the restorative function
of sleep.

Atypical Cases
It has been known for several years that phenotypic
heterogeneity is a feature of genetic diseases (including
NCL), and some patients were considered as atypical
cases. The origin of clinical variation is commonly
ascribed to the genetic background of patients as well to
the severity of the mutations. Recently polymorphisms
or mutations of unrelated genes have been considered
as modifiers of gene expression, and the interactions
between mutated genes and modifiers may lead to clinical
variations and to the observed phenotypic heterogeneity. In
addition non-genetic confounding factors may also affect
clinical phenotype.

An “atypical case” has been described in a child affected with
a congenital form of CLN5 disease (which usually presents with
a late infantile onset, with relatively slow disease progression
after onset): he was a compound heterozygote in CLN5 and
was also carrying an incompletely penetrant variant in POLG1,
a nuclear gene coding for mitochondrial polymerase (111).
No evidence was provided of how the co-inherited POLG1
variant may have enhanced the putative pathogenetic effect
of the CLN5 mutations. However, the interactions between
lysosomal and mitochondrial compartments may be implicated,
further affecting the physiology and viability of cells hampered
by the presence of pathogenic CLN5 mutations. Another
atypical case is related to CTSD, commonly associated with
congenital or late infantile NCL (CLN10). In a patient with
juvenile ataxia associated pigmentary retinopathy and cognitive
decline, the evidence of granular osmiophilic deposits (an
ultrastructural marker of CLN1, CLN4 and CLN10 disease)
in angular atrophic fibers following a muscle biopsy led to
the final diagnosis (29). Unusual phenotypes associated with
mutations in CLN2/TPP1 with residual leukocyte enzymatic
activity raise the issue of the phenotypic heterogeneity,
regardless the severity ofmutations. A prevailing spino-cerebellar
involvement was detected in an adult lady who was suffering
from ataxia since adolescence. She was carrying a missense
and a splice site variant in CLN2/TPP1 (112). A juvenile
onset, progressive and protracted form of cognitive decline with
myoclonus, dystonia, bradykinesia and ataxia was reported in
three siblings and associated with compound heterozygosity in
CLN2/TPP1, leading to stop codon formation and an aminoacid
substitution (113).

It is evident from these “atypical cases”, that the detection
of a mutated gene represents the starting point to explore the
complex mechanisms which ultimately lead to the phenotypic
expression, taking into account the unique genetic background
which each of us has inherited. Improving our knowledge in this
field of “personalized medicine” will help to prevent unexpected
and potentially serious adverse events, which might arise when
using conventional and novel replacement therapies.
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Cardiac Involvement
NCL are considered as LSD. However, they do not show the
characteristic multi-organ involvement typical of many LSDs
(114), and they predominantly affect the central nervous system.
Progressive cardiac involvement is observed in some patients
affected with CLN3 disease with repolarization disturbances,
ventricular hypertrophy, and sinus node dysfunction (115).
Cardiac pace-maker implantation has been used in a small
number of patients to improve symptoms of syncopy and
extreme bradycardia but is not in widespread use. Twenty
four hour ECG recordings have been recommended for
annual surveillance in young people age 16–18 years and
older. Degenerative changes of the myocardial wall along the
deposition of lipopigment and cytosomes can be detected
histologically (116).

Heart involvement has also been reported in CLN2 disease
[progressive conduction defect; (117)] and hypertrophic
cardiomyopathy was described in patients with CLN10 disease
(29, 76).

Care and Survival
Reports on life expectancy and mortality in NCL are scarce (118).
This issue is assuming particular relevance in natural history
studies when assessing the efficacy of “orphan drugs”.

The ultra-rare congenital form of NCL has the most dramatic
course, the very few reported cases having died within two weeks
of birth (119). Ongoing studies confirm that infantile-onset
NCL (due to mutated CLN1 and CLN10 genes) and classical
CLN2 disease have the next most rapidly severe course and
shortest survival. Variability within each form does not allow
accurate predictions of life expectancy in individual patients
According to the Italian NCL database CLNet, death in the
majority of CLN2 patients has been around nine years of age,
but prolonged survival is reported in a number of patients
affected with the classical form, up to the early third decade,
regardless the predicted severity of the mutations they were
carrying. Intra-familial variability is also reported. Little is known
for the remaining NCLs with infantile and late infantile onset. As
mentioned before, the longest survival (up to 4th-6th decade) is
observed in CLN3 patients.

Over the last two decades overall longer survival has been
observed in patients of many NCL forms, regardless the severity
of mutations. Such findings may be ascribed in large part to the
improved availability of supportive tools for home care which
guarantee appropriate feeding (e.g. percutaneous gastrostomy),
respiratory support, as well as the improved quality of skin and
general care (e.g. prevention of bed sores), the availability of
new anti-epileptic drugs, and the overall improved awareness of
caregivers to provide care in order to enhance the length and
quality of life of those affected (120, 121).

THE RESEARCH CONTRIBUTION TO
KNOWLEDGE

The NCLs are progressive neurodegenerative diseases associated
with endolysosomal storage. No cure is available, and major

efforts aim to provide the best care to patients. Recently,
disease modifying agents have become available or are under
investigation for some NCLs (122), by replacing a missing
enzyme, the mutated gene, or by reducing the substrate involved
in abnormal storage formation. Such approaches reflect the
ongoing lack of understanding of the basic disease mechanisms
specific to each form, as well as of the shared pathways which
characterize the whole group of NCL diseases, despite extensive
research efforts.

Experimental paradigms and innovative methodologies have
provided major breakthroughs over the last two decades on the
knowledge of pathological mechanisms underlying the NCLs
(123). In this paragraph we summarize the most relevant data
resulting from the current research under different experimental
settings, which may contribute to better understanding the
rationale of the research toward appropriate strategies to generate
new, safe and effective treatments.

Recent studies of outcome on a relatively large population of
CLN2 patients are revealing a meaningful slowing down of the
rate of disease progression, following the availability of the first
“new treatment” (recombinant pTPP1 delivered intrathecally
into the ventricular system). Great expectations have risen from
the recent announcements of forthcoming treatments whose aim
is to both increase the survival and ameliorate the quality of life
of the affected children.

Experimental Models
Naturally Occurring Animal Models
Several naturally occurring animal models of NCLs have been
discovered and investigated, including non-human primates,
ovines, felines, dogs and rodents. The use of relatively large
mammals, with convoluted gyral brains represents a powerful
tool to examine disease evolution over time (from the early
stages until death) and monitor brain pathology using in
vivo techniques (head imaging, neurophysiology etc) which
are currently in clinical use (124–126). In addition, multiple
techniques can be utilized to investigate post-mortem brains (and
eye) from different perspectives. Along with classical descriptive
neuropathology, methodologies are now available which can
help to disentangle the complex network of interacting events
accompanying the disruptive effects of the intra-neuronal storage
in complex mammalian brains. They include the use of immuno-
histochemical probes, which allow the detection of selected
neuronal and glial populations, to evaluate the distribution and
topography of the storage, to check the expression of markers
related to pathological processes (such as autophagy), and more
recently omics techniques (see below) which allow exploration of
expression at the metabolic, protein or even nucleic acid levels of
selected biochemical pathways and/or genetic markers (127).

Moreover, these animals are essential in the evaluation
of “new” treatments, testing safety, efficacy and putative
effects, before progressing to human clinical trials [(39,
128); see Section Pathology and Pathogenetic Mechanisms].
In Supplementary Table 1 some examples of selected animal
models contributing to our understanding of diseasemechanisms
(and treatment) related to specific human NCL forms are listed.
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Engineered Animal Models
Most of the present knowledge of the patho-mechanisms of
NCL comes from experimental studies using mouse models
which were modified in syntenic NCL genes. A number of
labs in Finland, UK, USA, and Germany have generated mouse
models of NCL diseases (CLN1, CLN2, CLN3, CLN5, CLN6,
CLN7, CLN8, CLN10). Gene targeting technology has allowed
selected mutations within a gene to be engineered, offering
an experimental background more alike to that in human
disease. Generally large numbers of experimental animals can
be created, and survival is long enough for a high number of
experiments to be carried out. This is the major advantage as
compared to spontaneously occurring large mammals, where
the number of animals carrying homozygous mutations for a
selected gene is relatively low and experiments need to gather
as much information as possible from each animal. Advances in
technology allow engineered mice to be investigated according to
the same methodologies described for large mammalian brains
(for example imaging and neurophysiological studies).

Simple Cellular Systems
The availability of miniaturized technology has allowed the
use of high throughput systems including invertebrate such
as Zebrafish, Drosophila, the social amoeba Dictyostelium,
yeast, in vitro cell systems, such as SH-SY5Y Neuroblastoma
cells, and from human patient fibroblasts (obtained from skin
biopsies). The use of these simple cellular models make them
suitable to address selected questions and obtain results from
targeted experiments which are easily repeatable and provide
high statistical power (129).

Human Fibroblasts and Derived Cells
A major advantage of using human fibroblasts is the ability to
transform them into neuronal cells through a complex process
in vitro of diversion from the primary cell lineage, regression
of the cells into induced pluripotent stem cells (iPSCs) and
transformation into neurons using ad-hoc enriched media. Such
studies are already in progress: neuronal cells, derived from
fibroblasts of CLN5 patients, showed features consistent with
a NCL phenotype (130), and transformed neurons, derived
from fibroblasts of CLN2 and CLN3 patients, showed impaired
activities of the lysosomal-mediated pathways (131).

A major limitation of this technology, however, is that
fibroblasts carry the genetic background of the affected patient,
so that direct comparisons between the phenotypic variations of
a specific mutation among cell lines from different patients and
inferences about the functional implications of specificmutations
are challenging. This difficulty can be addressed by combining the
CRISPR/Cas9 genome editing technology to generate targeted
mutations in mammals as well as in healthy human iPSCs
or in human embryonic stem cells (132, 133), without the
bias of the potential effect of the mutated gene on the native
genetic background.

A further development in the in vitro technology, using
human cells to investigate the functional effects of individual
mutations, is the generation from iPSCs of cerebral organoids
(134). Such an approach allows investigation of the effects of

a mutated gene not only on the mature cells, but also to
evaluate its putative involvement in general neurodevelopmental
mechanisms. The available technology makes it possible to test
hypotheses multi-Omically, and therefore obtain information
about the main pathways and functions modified by the mutated
gene during the mini-brain development (135).

The Omics Approach: Aspects and
Significance
Omics approaches represent recently developed technologies
which provide high-throughput data related to the genome
(DNA) the transcriptome (RNA) the proteome (protein), and the
metabolome (metabolic products). The integrated study of data
derived from Omics investigations represents the foundation of
system biology, and it has been applied to investigate disease
mechanisms, particularly the identification of affected biological
pathways, which may become therapeutic targets as well as
potential biomarkers (127). The new knowledge acquired from
these methodologies is predicted to contribute to significant
advances in the field of NCL research. The use of Omics
technologies to NCLs is relatively recent; several issues have been
addressed in both human and experimental animal models of
several NCL forms. Major studies performed on tissues from
patients affected with different NCL forms are summarized in
(Supplementary Table 2).

Pathology and Pathogenetic Mechanisms
Neuronal death is the disease hallmark shared among all NCL
forms: it affects CNS neurons, ganglionic neuronal cells of the
retina and even ganglionic neurons of intramural ganglia of the
bowel wall. All gray regions of the brain are affected by neuronal
death, showing however differential patterns in the topography
of neuronal loss, the rate of progression and the secondary
involvement of the white matter. Selective neurodegeneration,
targeting specific regions and particular cell populations, can
be observed during the early stages of the disease, and the
patterns of disease evolution can be monitored by neuroimaging
studies (136–140). Whether these features reflect the genetic
heterogeneity of the NCL is a matter to be investigated further.
As clearly indicated by the clinical symptoms at onset and
by the patterns of disease progression, cerebral and cerebellar
cortices are the most affected brain regions in humans. Selective
hippocampal pathology has also been described in different NCL
(141). In some forms, particularly in CLN2 disease, the rate
of atrophy of the cerebellar cortex is faster than observed in
the telencephalic cortex. Less marked is the involvement of the
basal ganglia in the early stages of the disease, but eventually
generalized atrophy of all gray structures is observed in all
childhood NCLs. The neuronal loss leads also to progressive
atrophy of the centra semi-ovale, due to the lack of axonal
projections from and to the cortex, which is accompanied by
progressive enlargement of the ventricular system. Traditional
human neuropathological studies have shown that neurons of the
spinal cord are also affected in many NCL forms (1, 27, 142).
These findings emphasize further the generalized susceptibility
of all neuronal cells to this condition.
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Cell Pathology
Most information concerning the selective involvement of gray
structures and the neuronal loss in the NCL brain come
from elegant studies carried out using mouse models, which
allowed descriptions of the temporal evolution of neuronal
loss, established the role of both astroglia and microglia in the
brain pathology (143), dissected out the most vulnerable cell
compartments involved in neuronal degeneration and proposed
hypotheses regarding the cellular mechanisms and pathways
underlying the progressive neuronal loss seen in the NCLs.

Topography of the Lesions
A gradient of neuronal degeneration is commonly observed,
affecting the cortex, the cerebellum and the thalami. Thalamic
gliosis seems to precede the onset of cortical involvement
(neuronal loss) in both CLN1 and CLN10 mouse models (144)
and early thalamic involvement is considered as a radiological
marker of LSD (145). A reverse pattern of degeneration is
observed in CLN5-/- mice (146). Recently, neuronal loss has
also been described in in a mouse model of the disease in the
spinal cord, preceding the neuronal loss of the remaining brain
regions (147).

Such gradients of evolution are less evident in human post-
mortem studies, in which all the brain structures are severely
affected in a similar manner: neuropathological examinations are
performed several years after the disease onset.

Selected Involvement of Neuronal Cell Structures
Neuronal death represents the end point of a complex process
to which several processes contribute. However, some groups of
neuronal cells seem to be more vulnerable to the pathological
condition, as shown by some elegant experimental studies.

Axons are affected: early axonal breakdown was shown in
the CLN1 KO mouse model (144); impaired elongation and
branching, giving origin to a stunted growth was observed
in vitro, in a neuronal-like cell system, overexpressing CLN1 gene
(148).

Several aspects of synaptic pathology were also reported.
Loss of synaptic proteins was reported in both mouse (CLN1)
and ovine (CLN5) models of diseases (144, 149), as well as
impaired synaptic vesicles recycling (150). Impaired NMDA-
R development was described by Koster et al. (151). Recently,
a reduction of functional voltage-gated Calcium channel, in
differentiated SH-SY5Y cells, overexpressing CLN1/PPT1 gene
was reported (152).

Results from different experimental techniques provide
evidence that neuronal connectivity is affected in several NCL
models. Impaired cellular function due to the distorted topology
of the neuronal cells because of the intra-lysosomal storage is
amplified by the impaired neuron-to-neuron communication,
strongly contributing to neuronal dysfunction and subsequently
cell death.

Pathogenetic Mechanisms
The molecular mechanisms leading to endo-lysosomal storage
formation have not so far been fully elucidated. It should be noted

that a primary defect of lysosomal proteolytic activity is present
in only four NCL forms, whereas in the remaining NCLs, storage
accumulation is associated with impaired cellular degradation
of large molecules by means of a complex pathway, in which
lysosomal hydrolytic enzymes are a major, but not exclusive,
component. Likewise, which mechanisms link the formation
of the endo-lysosomal storage and death of the neuronal cells
remains unknown (38).

Apoptosis
Apoptosis was considered to be the main mechanism leading
to cell death following the detection of targeted markers in
canine, ovine and human brains and photoreceptors (153,
154). Subsequently, the role of autophagy was investigated in
the NCLs, possibly because of the evidence of a temporal
link between autophagy and apoptosis (155). Activation of
unfolded protein response and apoptosis was shown in the
brain of an early mouse model of CLN1 disease (156). The
presence of apoptotic cells and expression of apoptosis markers
along with lysosomal dysfunction and autophagic stress were
also detected in the CNS of a mouse model of Cathepsin D
deficiency (157).

Autophagy
The evidence of lysosomal accumulation of subunit c of the
mitochondrial ATPase F0 complex suggested this occurred
secondarily to impaired degradation pathways. Cao et al.
(49) showed that autophagy was severely affected in a mouse
model of CLN3 disease. Moreover, the detection of cell death
following inhibition of autophagy suggested that activated
autophagy represents a pro-survival response of the cell to the
disease process.

Recently impaired autophagy was demonstrated to occur in
different experimental models of a number of NCL forms and
supported the increasing evidence that dysregulated autophagy is
commonly detected in the LSDs (158).

Fibroblasts of patients mutated in KCTD7 (associated
with NCL14) had impaired autophagy (159). Impaired
autophagy was also detected in a KO mouse model for
CLN1 disease, which is associated to mutated palmitoyl-protein
thioesterase-1 (PPT1), a lysosomal enzyme that catalyzes the
deacylation of S-palmitoylated proteins. Such a defect was
associated with impaired palmitoylation of a protein (Rab7),
crucial for autophagosome-lysosome fusion, and therefore
leading to impaired degradative function along the autophagic
pathway (160).

A role for CLN5 in dysregulating autophagy was recently
suggested by studies in patient fibroblasts and CLN5-deficient
HeLa cells which showed increased autophagy flux (161).
Likewise aberrant development was reported in Dictyostelium
deleted in cln5, homologous to human CLN5 gene in which
autophagy seems to play a regulatory role in terminal
differentiation of the amoeba (162).

Interestingly, none of the recently described four experimental
conditions, related tomutations in genes associated with different
NCL, and associated with impaired autophagy, are associated
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with genes belonging to the autophagy degradation pathway.
That implies that inhibited and/or dysregulated autophagy is
the endpoint of a complex network of molecular interactions
occurring in NCL neurons, whose outcome is the death of
neuronal cells.

Oxidative Stress and the Mitochondrial Machinery
Along with investigations directed to the basic mechanism of
cell death (such as apoptosis and autophagy), a large amount of
data has been obtained over the last two decades from studies
aimed at understanding more about the cell physiology in NCL,
and other mechanisms which might hamper cell viability and
therefore contribute to the cell death process.

Oxidative stress was investigated early, as it was also suggested
by the clinical anecdotal observations of transient, worsening of
the general wellbeing of affected children under energy-requiring
circumstances (e.g. fever, general anesthesia).

Impaired activities of OxPhos enzymes were reported in
CLN1 fibroblasts and its putative role on triggering apoptotic
cascade was well established (163, 164). Moreover, structural
abnormalities of the mitochondrial reticulum as well as abnormal
ROS production were described in human fibroblasts (165,
166). More recently, a quantitative proteomic study showed
impaired mitochondrial function in different human cells
(knocked out in CLN5) models and in Cln5–/– mouse cerebral
cortex. Impaired autophagy machinery coupled with mitophagy
activation processes were observed linking the CLN5 protein to
the process of neuronal death (37).

The involvement of the mitochondrial machinery is not
surprising in neurodegeneration (as either primary or secondary
event) because of the high dependance of neurons on energy
supplied by the oxidative metabolism. These findings, however,
reinforce the recent evidence of cross-talk between different
cell compartments (including lysosomes and mitochondria, as
well as endoplasmic reticulum) which seem to be affected
differentially in the NCLs. Greater understanding of the
molecular relationships of such intracellular “dialogues” might
provide clues toward targeted treatments for specific NCL
forms (35).

Immunomodulation and the Inflammatory Response
As in several neurodegenerative disorders (including Alzheimer’s
disease), inflammatory changes of the neuropil are significant
in PPT-1 deficient mice, including the increased production
of pro-cytokines, recruitment of inflammatory cells, microglia
activation (167–169). The inflammatory response has therefore
been considered a powerful amplifier of the NCL disease
pathology. Such findings led to several trials using selected
immunomodulatory drugs, which alleviated neurological
symptoms in the affected animals, but were more effective if
applied before the onset of symptomatology (170). The same
rationale lead to a clinical trial for juvenile NCL patients (CLN3
disease), using mychophenolate, an immunosuppressant used
off label for autoimmune neurological conditions. The drug was
tolerated, but there is no evidence so far for a positive effect on
clinical disease progression (171).

TREATMENT: THE STATE OF ART

General Issues
The medical management of children and young adults affected
by one of the NCLs continues to be mainly symptomatic,
delivered through a multidisciplinary and multiagency approach,
working closely with family members and carers. Medical care
should follow internationally agreed standards and guidelines for
individual symptoms and organ systems (for example epilepsy,
respiratory, orthopedic and gut) and be delivered in line with
the holistic values of palliative care. These approaches with
particular reference to the NCLs have been described in a number
of publications in recent years (108, 109, 120). Experts in rare
diseases should be cognisant of advances in these areas or at
least be able to signpost families and carers to appropriate
expertise. Some advances have been mentioned in previous
sections of this review. In particular, advances in management
of chest symptoms in children with complex neurodisability
and dependence, including for example use of cough assist
devices and non-invasive ventilation, together with cardiac
pacing suggest sick sinus syndrome. Newer tone management
and anti-seizure treatment modalities (including drugs, dietary
therapies and stimulation techniques) should be considered and
discussed openly when considering the goals of care and potential
medical interventions with families.

Epilepsy and Tone/Movement Disorder
Management
Perhaps the most troubling clinical symptoms are seizures
throughout the disease course and tone/movement disorder
management in the later stages.

These are widely reported by parents to be the most
worrying and by professionals as the most challenging. Many
NCL forms of early childhood onset are characterized by a
progressive myoclonic epilepsy syndrome whereas in CLN3
disease with juvenile onset generalized motor and absence
seizures predominate. Clinical experience suggests that anti-
seizure medications considered best for generalized genetic
epilepsies are most effective in these disorders whereas those
which are known to exacerbate myoclonus are best avoided.
Themost commonly used anti-seizure medications are valproate,
levetiracetam and the benzodiazepines in varying combinations.
Carbamazepine is avoided. Lamotrigine is reported to be helpful
in combination with valproate in the later stages of CLN2 disease
and is very effective at high doses in older children and young
adults with CLN3 disease. Experience of international clinical
experts varies but there is consensus that medications for epilepsy
are used to alleviate seizure burden rather than with the goal of
complete seizure freedom and that drug combinations are usually
necessary. In some patients the seizure burden is less at the late
stages of the disease and medication can be reduced. Ketogenic
diet is not contraindicated, is often very well tolerated and may
also be helpful.

Movement disorders are increasingly recognized in the NCLs.
In several NCL forms with onset in the preschool or early school
years (CLN2, CLN5, CLN6, CLN7, CLN8) a choreo-athetosis
or mixed movement disorder with dystonia becomes evident a
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TABLE 4 | Selected therapeutic trials (completed and on-going).

Disease Therapy Study Via Vector/Product Clinical trial code#

CLN2 ERT* Phase 1/2 open label

Safety and efficacy

i.c.v. Recombinant protein NCT01907087

CLN2 ERT* Open label

Long term efficacy

i.c.v. Recombinant protein NCT02485899

CLN2 GRT* Safety i.c. AAVrh.10CUhCLN2 NCT01161576

CLN3 GRT Phase 1/2 open-label i.t. AT-GTX-502 NCT03770572

CLN6 GRT Phase 1/2 open-label i.t. AT-GTX-501 NCT02725580

CLN6 GRT Long term efficacy None AT-GTX-501-01 NCT04273243

CLN7 GRT Phase 1 open-label i.t. AAV9/CLN7 NCT04737460

CLN3 SRT Phase 1/2 os BBDF 101 None

ERT, Enzyme Replacement Therapy; GRT, Gene Replacement Therapy; SRT, Substrate Reduction Therapy; i.c.v., intracerebralventricular injection; i.c., intracerebral (burr holes) injection;

i.t., intrathecal injection. *completed studies. #ClinicalTrials.gov.

few years after symptom onset. Determining which involuntary
movements are ictal and which are movement disorder can
be challenging and EEG video telemetry with event capture
can be very helpful. The movement disorder progresses to
spasticity in the late stages of all NCL forms, complicated by
spinal scoliosis and joint contractures. Baclofen, trihexyphenidyl,
clonidine and botulinum toxin injections are used extensively
and in combination.

Gabapentin has proven very useful for irritability and distress
in the rapidly deteriorating phase of CLN2 disease.

Orphan Drugs and New Treatments
We are beginning to recognize new clinical phenotypes for the
few NCL types now amenable to disease modifying therapies
such as enzyme replacement and gene therapy. These treatment
approaches are new and the full range of implications on
symptoms and quality of life as well as survival and longevity
is yet to be established. It may well be that there should be a
shift from a mainly palliative approach for symptom control to
more aggressive intervention with the expectation of complete
symptom control (for example seizure freedom) in treated
individuals. Close working with the patients themselves, families,
caregivers and family representative organizations will be crucial
as we go forward to define what standard care should look like.

In LSD and more recently in NCL therapeutic strategies have
emerged with the aim of preventing abnormal storage formation
and/or to deplete the abnormal endo-lysosomal accumulation,
with the ultimate goal to reduce and/or stop the disease
progression (122, 172). Several challenges must be overcome,
for example the route of drug delivery to the CNS, safety,
outcomes and how best to measure efficacy, and above all the still
incomplete knowledge of the patho-mechanisms underlying each
NCL form. This is still the age of a “gross” therapeutic approach,
using replacement therapies (the mutated gene or the missing
enzyme), whereas more classical pharmacological treatments
targeting crucial steps of the important metabolic pathways still
lag behind. It is likely that a combined approach will be necessary
to achieve the good therapeutic outcomes patients, families and
professionals would like to see.

Complementation Therapy
Complementation therapies (either as gene replacement therapy
or enzyme replacement therapy, ERT) are becoming available for
some NCL forms (Table 4). ERT became available as part of a
clinical trial almost a decade ago for CLN2 disease. Following
the decision of the regulatory agencies (FDA and EMA), the
recombinant lysosomal enzyme, cerliponase alpha, replacing
the ineffective gene product has been commercially available
since 2017 (Brineura©). The enzyme is administered directly
to the CNS via an intra cerebro-ventricular catheter every 2
weeks. The safety of this approach is well documented by the
most expert group with this procedure (173). As for its efficacy
there is good evidence that disease progression is slowed down
over a 4 year period, as compared with historical untreated
controls (174, 175). Likewise, slowed disease progression was
observed in a small cohort of CLN2 children (assessed for a
shorter period of time), who received intracerebral injection
of adenovirus expressing CLN2 (176). Even more interesting
results were reported in a very small group of pre-school
children who underwent treatment before or a few months
after clinical onset of the disease, with delayed onset of
disease symptoms as well as maintenance of early cognitive
skills (177, 178).

There are ongoing phase 1/2 open label studies to evaluate the
safety and efficacy of gene therapy administered intrathecally for
CLN3 disease, CLN6 disease and CLN7 disease. These studies
have not yet been completed, and the final results are not available
(Table 4).

Substrate Reduction Therapy
Some preliminary data indicate lysosomal glycosphingolipid
accumulation in CLN3 and CLN5 disease. Such findings
have suggested an approach using prevention of abnormal
lysosomal storage, by interfering with glucosylceramide and
ganglioside production using Miglustat a glucosylceramide
synthase inhibitor, which is currently used in Niemann-Pick type
C disease. This drug is authorized in Europe (but not in USA) for
the disease, and beneficial effects of this treatment on juvenile-
or adult-onset N-PC were reported on a large cohort of patients
(179). Recently it was also shown that trehalose (a disaccharide)
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promotes lysosomal clearance in storage disease by activation
of TFEB, a transcription factor involved in lysosome biogenesis
and recruitment (180). By combining the potential benefits of
Miglustat and the physiological role of Trehalose a phase 1/2
study is planned using a small number of CLN3 patients using
a new recently FDA approved drug (BBDF 101) which contains
both components.

Storage Dissolution
There was only one study so far, aiming to deplete the
endo-lysosomal storage in CLN1 disease by the combined
action of phosphocystemaine (which cleaves thioester linkage
in palmitoylated protein and N-acetylcysteine a strong anti-
oxidant which also cleaves thiosterer linkage). The long term
outcome showed only minor subjective benefits for patients,
along with some improvements related to EEG pattern and
storage dissolution (181).

CONCLUDING REMARKS

NCL are rare, genetically determined, progressive diseases
affecting several mammalian species. In humans they affect pre-
school and school aged children (or more rarely they start
in adulthood) and are defined by clinical criteria supported
by pathological features. Amaurosis, seizures, ataxia, behavioral
problems, cognitive decline are the major symptoms leading
within a relatively short time span to dementia, loss of
motor autonomy, blindness and dependence on caregivers.
Autofluorescence and selected ultrastructural features of endo-
lysosomal storage are the pathological markers detectable both in
central and autonomic neurons as well as in several peripheral
cells following skin biopsy. Modern diagnosis relies mainly
on biochemical (for the NCLs caused by lysosomal enzyme
deficiencies) and genetic studies.

Over last two decades dramatic advances in the knowledge
of the molecular basis of NCL has been achieved in both
humans and several experimental models, but the precise patho-
mechanisms leading to cell pathology and neuronal death have
not yet been fully elucidated. Nevertheless, a few targeted
treatments for the NCLs have become available for human study
recently, including enzyme replacement and gene therapies,
although only one product is commercially available at present.
New pharmacological approaches are foreseen in the near
future. The safety and efficacy of such novel treatments are
still under scrutiny; there is a conscious effort to ascertain

whether new clinical phenotypes may arise as a consequence of
these innovative treatments, as recently described in SMA type
1 (182). International collaborations are necessary, recruiting
larger cohorts of patients, to generate robust natural history
studies to support the regulatory approval process for new drugs
(92, 183) and to inform health service delivery.

There is an urgent need to find safe and effective treatments
for rare neurodegenerative diseases, such as the NCLs, and
mutual agreements between patients, families and advocacy
groups, the Health Systems and the pharmaceutical companies
are mandatory. With such endeavors, challenges have become
evident and will need to be overcome. Examples include
ownership and sharing of personal data (natural history data
and pre-marketing clinical data), the costs of treatment, the
health benefit/cost ratio. These issues are particularly relevant in
Europe, where publically funded health systems have to protect
and guarantee the privacy of clinical data and, at the same time,
have to balance the costs of novel treatments for rare diseases
against wider health targets and to guarantee equitable access
without discrimination.
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Introduction: Neuronal Ceroid Lipofuscinosis (NCL) comprises a clinically and

genetically heterogeneous group of 13 neurodegenerative lysosomal storage disorders.

Neuronal Ceroid lipofuscinosis type 2 disease (NCL2), caused by the deficient lysosomal

enzyme tripeptidyl peptidase 1 (TPP1), is the only one with an approved enzyme

replacement treatment (ERT). Early initiation of ERT appears to modify significantly the

natural history of the disease. We aimed to shorten the time to diagnosis of NCL2.

Methods: In March 2017, we started per first time in Spain a selective screening

program, the LINCE project, in pediatric patients with clinical symptoms compatible

with NCL2 disease. The program covered the whole country. We distributed kits to

pediatricians with the necessary material to assess patients. All samples in this study

were receivedwithin one week of collection. Enzymatic activity determined on dried blood

spots was the main method used to screen for TPP1 and palmitoyl protein thioesterase

1 (PPT1) for the differential diagnosis with neuronal ceroid lipofuscinosis type 1 (NCL1).

Results: Over a period of three years, we received 71 samples. The analysis was

minimally invasive, relatively cheap and fast-executing. Three cases identified as a

direct result of the selective screening strategy were confirmed by genetic study of

NCL2 disease with a median age of 4.5 years. Our screening method has a specificity

of 100%, and, with the absence to date of false negatives. We did not detect any

NCL1-positive cases.

Conclusions: LINCE proved to be a simple, useful, and reliable tool for the diagnosis

of NCL2, enabling clinicians to diagnose NCL2 faster. The presence of NCL2-positive

cases in our population and availability of treatment may facilitate the inclusion of NCL2

in neonatal screening programs for early diagnosis.
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INTRODUCTION

Neuronal Ceroid Lipofuscinoses (NCLs, otherwise known as
Batten disease) comprise a group of progressive encephalopathies
that typically present during childhood and are characterized by
intralysosomal accumulation of an autofluorescent lipopigment,
lipofuscin, in various tissues. All except one (NCL4B) have an
autosomal recessive inheritance pattern. Although NCLs are the
most common cause of neurodegeneration during infancy and
childhood, they are rare even as a combined group.

Since they were first described in 1903 by the British
pediatrician and neurologist Frederick Batten, NCLs were
originally classified according to the age of onset of clinical
symptoms into four categories: infantile (NCL1), late infantile
(NCL2), juvenile (NCL3), and adult (NCL4) (1).

NCLs are currently classified numerically according to their
gene defect, and 13 different forms have been described
(Table 1), with an incidence that varies between 0.6 and
14/100,000 newborns in different populations (2). Most forms are
characterized by progressivemotor and intellectual deterioration,
seizures, blindness, and early death.

NCL2 (Jansky-Bielschowsky disease; MIM #204500) is one of
the most frequent NCLs and is caused by autosomal recessive
mutations in the TPP1 gene resulting in a deficiency of
the lysosomal enzyme tripeptidyl peptidase 1 (TPP1). Clinical
manifestations start between 2 and 4 years of age, with epilepsy
that becomes resistant to multiple antiepileptic drugs, myoclonic
ataxia, pyramidal signs, and developmental regression (3–5).
The disease progresses rapidly in most patients between the
ages of ∼3 and 6 years and in very quick successive stages
after the onset of symptoms. Life expectancy does not go
beyond adolescence. Biochemically, a defect in TPP1 (6–8), a
pepstatin-insensitive protease (9) leads to an accumulation of
undegraded lipofuscin causing massive neuronal cell atrophy

TABLE 1 | Classification of neuronal ceroid lipofuscinoses (according to the MIM database).

Disease Phenotype MIM Gene Location Inheritance Protein product Age at onset

NCL1 256730 PPT1 1p34.2 AR PPT1 (soluble lysosomal protein) Variable (Infantile)

NCL2 204500 TPP1 11p15.4 AR TPP1 (soluble lysosomal protein) Variable (Late Infantile)

NCL3 204200 CLN3 16p12.1 AR Lysosomal membrane protein Juvenile

NCL4A 204300 CLN6 15q23 AR ER membrane protein Adult

NCL4B 162350 DNAJC5 20q13.33 AD Cytosolic, associated with vesicular membranes Adult

NCL5 256731 CLN5 13q22.3 AR Soluble lysosomal protein Variable (Late Infantile)

NCL6 601780 CLN6 15q23 AR ER membrane protein Variable (Late Infantile)

NCL7 610951 MFSD8 4q28.2 AR Lysosomal membrane protein Variable (Late Infantile/Juvenile)

NCL8 600143 CLN8 8p23.3 AR ER membrane protein Variable (Late Infantile/Juvenile)

610003*

NCL10 610127 CTSD 11p15.5 AR CtsD (soluble lysosomal protein) Congenital

NCL11 614706 GRN 17q21.31 AR Soluble lysosomal protein Adult

NCL13 615362 CTSF 11q13.2 AR CtsF (soluble lysosomal protein) Adult

NCL14 611726 KCTD7 7q11.21 AR Cytosolic, partially associated with membranes Infantile

Available enzyme assays are shown in bold.

*Northern epilepsy variant; NCL9 (609055)—not molecularly characterized.

PPT1, palmitoyl protein thioesterase 1; TPP1, tripeptidyl peptidase 1; Cts, cathepsin; AR, autosomic recessive; AD, autosomic dominant; ER, endoplasmic reticulum.

and death (10) and resulting in brain and retinal degeneration.
Historically, diagnosis of NCLs was based on clinical features and
the presence of ultrastructural lysosomal inclusions of various
types (3, 11, 12). Nowadays, diagnosis relies on biochemical and
molecular analysis.

Prompt diagnosis is critical for optimal disease management
and appropriate genetic counseling because of rapid disease
progression after the onset of the first symptoms (13, 14).
However, early detection is very challenging owing to poor
awareness of the disease and the unspecific nature of the initial
symptoms, which include language delay, motor difficulties,
and epilepsy (15, 16), which can be associated with other
diseases such as mucopolysaccharidoses, gangliosidoses,
mucolipidoses, peroxisomal disorders, mitochondrial disorders
and leukodystrophies (13). In fact, the delay between the onset
of symptoms and the definitive diagnosis may span from 2 to 3
years (16).

Medical management has relied on symptomatic treatment
and supportive and palliative care. Fortunately, since 2017,
intraventricular enzyme replacement therapy (ERT) with
cerliponase alfa has been approved in the USA by the Food and
Drug Administration and in Europe by the European Medical
Agency for the treatment of NCL2 (17–19). Early administration
of cerliponase alfa has led to a significant reduction in the rate
of decline of motor and language functions (20), thus delaying
disease progression. Prompt diagnosis is mandatory prior to
irreversible brain damage. Here, we present a screening strategy
to facilitate rapid and reliable diagnosis of NCL2.

METHODS

Study Design
In March 2017, the Unit for the Diagnosis and Treatment
of Congenital Metabolic Diseases at our Center started the
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FIGURE 1 | Diagnostic algorithm of the LINCE project.

LINCE project with the endorsement of the Spanish Federation
for Rare Diseases (FEDER) and the Spanish Society of
Pediatric Neurology (SENEP) to identify possible cases of
NCL2 throughout Spain. This study has been approved by
the Territorial Research Ethics Committee with the register
number 2017/185.

LINCE is a selective screening program aimed at pediatric
patients (0–15 years) with clinical signs and symptoms
compatible with NCL2 disease. Specific kits were designed with
the necessary material, as follows: WhatmanTM 903 analytical
paper for the collection of dried blood spots (DBS), an informed
consent form to be signed by the parents of the participating
children, a guide with indications on how to collect the samples,
a contact telephone number, a contact e-mail address, and a
clinical guide showing the signs and symptoms to be considered
(Supplementary Figure 1).

Pediatricians interested in participating contacted us via email
in order to obtain the LINCE kit. After reception, the enzymatic
activities of TPP1 and palmitoyl protein thioesterase 1 (PPT1)
were measured (Figure 1).

Phenotype
This nationwide selective screening project targeted an at-risk
pediatric population, defined as patients whose pediatricians
observed clinical signs and/or symptoms compatible with a
diagnosis of NCL2. The alert to the main symptoms was
taken into account, including: early language delay, other
developmental delays as motor difficulties or ataxia; seizures
including generalized tonic-clonic, absence, myoclonic, atonic,
clonic and tonic, febrile seizures; myoclonic seizures, both
epileptic and non-epileptic; dramatic loss of previously attained
skills as loss of voluntary movements and ability to walk and
language regression; movement disorders such as myoclonus,
spasticity, dystonia and chorea; visual deterioration, blindness.
Samples were received with a brief description of the patient’s

symptoms. All probands were phenotyped using human
phenotype ontology (HPO) terms extracted from the records of
the medical history sent.

Reagents
4-Methylumbelliferone sodium salt (4-MU), 7-amino-4-
methylcoumarin (4-MC), 4-MU-β-D-galactoside, dimethyl
sulfoxide, Triton X-100, DL-dithiothreitol, sodium azide,
β-glucosidase, pepstatin A, E64 (trans-epoxysuccinyl-L-
leucylamido (4-guanidino) butane), and ethylenediamine
were purchased from Sigma-Aldrich Corp. (St. Louis, MO.
USA). 4-MU-6-thio-palmitate-β-D-glucopyranoside was
purchased from Carbosynth (United Kingdom). Ala-Ala-
Phe-7-amido-4-methylcoumarin was purchased from Bachem
(United Kingdom). Sodium carbonate, glycine, sodium
hydroxide, acetic acid, sodium acetate, citric acid, sodium
phosphate, sodium chloride, chloroform, and methanol were
from Merck (Darmstadt, Germany). Bovine serum albumin
(BSA) was purchased from ICN Biomedicals (Aurora, OH,
USA). Ethylenediaminetetraacetic acid (EDTA) was purchased
from Panreac (Barcelona).

Enzymatic Tests
As main screening method, enzymatic activity was determined
on DBS for TPP1 (EC 3.4.14.9) and PPT1 (EC 3.1.2.22)
for the differential diagnosis with NCL1. Beta-galactosidase
(EC 3.2.1.23) was also measured as a sample quality control.
Metabolomics has demonstrated that DBS are stable where
collected and transported within 28 days at room temperature
(21). All samples in this study were received within one week
of collection.

We adapted the methods of van Diggelen et al. (22, 23) and
Ho and O’Brien (24) to evaluate the enzymatic activity of PPT1,
TPP1, and β-galactosidase, respectively. Briefly, for the TPP1
measurement in DBS, a 3.2-mm punch was incubated for 20 h at
37◦C with 40 µL of substrate comprising Ala-Ala-Phe-7-amido-
4-MC 0.5mM and 20 µL of sodium chloride 0.85%. The reaction
was stopped with 200 µL of ethylenediamine. Substrate was
added to the blanks after addition of the stopping buffer. For
the PPT1 measurement, a 3.2-mm punch was incubated for 5 h
at 37◦C with 40 µL of substrate 4-MU-6-thio-palmitate-β-D-
glucopyranoside 0.64mM. The reaction was stopped with 300µL
of ethylenediamine.

For the biochemical confirmatory test, leukocytes were
isolated from blood in EDTA tubes using the Wizard R©Genomic
DNA Purification Kit (Promega) and stored at −20◦C until
use. The leukocyte samples were diluted in 0.9 % sodium
chloride solution and sonicated in an Ultrasonic Sonicator
Processor (Bandelin Sonopuls HD 2070). The Bradford method
was used to quantify protein in leukocytes (25). For the TPP1
measurement, 10 µg of protein was incubated for 2 h at 37◦C
with 20 µL of substrate comprising Ala-Ala-Phe-7-amido-4-
MC 0.5mM and 40 µL of 0.425% sodium chloride solution.
The reaction was stopped with 300 µL of ethylenediamine.
In the case of PPT1, 15 µg of protein was incubated for 1 h

Frontiers in Pediatrics | www.frontiersin.org 3 March 2022 | Volume 10 | Article 87668867

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Rodrigues et al. Selective Screening for NCL2 Disease

TABLE 2 | Clinical signs reported from patients with suspected NCL2.

Signs and symptoms Number %

Language delay 24 15.5

Psychomotor delay 21 13.5

Epilepsy (refractory) 21 (8) 13.5

Myoclonic epilepsy 9 5.8

Myoclonic seizure 8 5.2

Regression 8 5.2

Visual deficit 8 5.2

Gait alteration/absence 8 5.2

Ataxia 7 4.5

Seizures 6 3.9

Encephalopathy 6 3.9

Cerebellar atrophy 4 2.6

Microcephaly 4 2.6

Hypotonia 4 2.6

Spasticity 3 1.9

Cortical atrophy 2 1.3

Aggressiveness 2 1.3

Stereotypies 1 0.6

at 37◦C with 20 µL of substrate 4-MU-6-thio-palmitate-β-D-
glucopyranoside 0.64mM. The reaction was stopped with 300µL
of ethylenediamine.

Fluorescence (excitation, 355 nm; emission, 460 nm) was
measured on a BMG Labtech spectrofluorometer (FluoStar
Optima). The readings were corrected for blanks and compared
with 4-MU calibrators in the case of PPT1 and β-galactosidase,
and with 7-amino-4-MC calibrators for TPP1. Enzyme activities
were expressed in micromoles of 4-MU or 4-MC of product
formed per h/L of blood (DBS samples) or nanomole per h/mg
of protein (leukocytes) for PPT1 and TPP1, respectively.

RESULTS

A total of 143 kits were distributed between March 1, 2017
and May 1, 2020. Samples from 71 patients (age range: 2.5
months−15 years, 27 females, and 44 males) were received from
21 of the 17 regions of Spain. Madrid accounted for 24.4% and
Valencia 13.4%. It is a minimally invasive test with a total cost per
sample of around e50, compared to e80 to e100 for leukocytes
and e300 for fibroblasts.

The main manifestations reported were language delay
(15.5%), psychomotor delay (13.5%), and epilepsy (13.5%)
(Table 2).

Analysis of the DBS enzyme enabled identification of
three patients with absent activity in TPP1 but normal PPT1
activity (Supplementary Table 1; Table 3). In patient 3, we also
confirmed leukocyte deficiency. All cases were confirmed by
genetic analysis, and three known pathogenic variants were
identified (Table 3); variant c.622C>T was present in all three
patients, in one patient in homozygosity, and in two patients
in compound heterozygosity with variants c.509-1G>C and
c.1094G>A, respectively. We only had samples from both
parents for patient 3 and were able to confirm the inheritance

pattern in trans in the TPP1 gene. These three cases identified
as a direct result of the selective screening strategy were
counted as true positives. In all samples, DBS and/or leukocytes,
determination of β-galactosidase revealed normal values (data
not shown).

All patients had similar ages at diagnosis (Table 3), ranging
from four to five years, and shared common features such as
epileptic seizures and motor decline. Ataxia and language decline
were also recorded in two patients.

Patient 1, a male whose symptoms first manifested at 12
months of age as language delay followed by full stagnation
of development at 15 months and cognitive deterioration at
four years of age, as reported by the parents. His motor
development was reported as normal. He experienced his first
seizure at 3.5 years, followed by refractory epilepsy at age five
despite treatment with valproate, clobazam, and levetiracetam.
He presented tonic, atonic, tonic-clonic, and myoclonic seizures,
together with myoclonic and atonic absences. He showed
myoclonus (3.5 years), spasticity, and dystonia (4–4.5 years)
with motor regression and total loss of gait at the age of five.
Visual impairment was observed at 3.5 years, progressing to total
blindness at five. Intraventricular ERT was not started after the
diagnosis, as the child did not meet the inclusion criteria because
of the severity of his disease. He died at the age of 6 years old.

Patient 2, a female whose symptoms first manifested at
12 months of age as language delay followed by cognitive
deterioration starting at 2.5 years of age and coinciding with
the first seizures. She experienced absences and right focal
tonic-clonic seizures, requiring three antiepileptic drugs due to
refractory epilepsy. She also had axial tremor, myoclonus, oro-
facial dyskinesias, and oculomotor apraxia. No visual deficit was
recorded. ERT was initiated at the age of diagnosis (five years and
six months), although it was interrupted after six months due to
lack of response and deterioration.

Patient 3, a male who showed the first symptoms of the disease
at 3.5 years of age, namely, mild language delay and clumsiness.
Cognitive decline was observed at four years of age, coinciding
with the onset of epilepsy. He experienced his first seizure at three
years and 11 months of age, followed by refractory epilepsy at age
five. He currently requires treatment with three anticonvulsants:
valproate, clobazam, and levetiracetam. His seizures are tonic,
atonic, tonic-clonic, and myoclonic, together with absences. He
also has myoclonus and spasticity, together with ataxia, tremor,
and choreic movements of the upper extremities. He has needed
a wheelchair since the age of five years, although he is able to
crawl. Visual deficit has not been evidenced. Intraventricular ERT
was started at the age of diagnosis (five years). He remains stable
after one year on therapy. Currently, at six years of age he has
a comprehensive language, and although expressive language is
mostly unintelligible, he tries to communicate and says some
words with meaning.

DISCUSSION

Clinician awareness and regional differences in availability
of TPP1 testing may affect prompt diagnosis. Furthermore,
ensuring that clinicians are aware of NCL2 during the differential
diagnosis may facilitate early treatment with ERT. LINCE is
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TABLE 3 | Characterization of CLN2 patients diagnosed in the LINCE project.

Age at

diagnosis

TPP1 DBS

(µmol/L/h)

(2.0–11.0)

PPT1

DBS

(µmol/L/h)

(5.4–40.1)

TPP1

leukocytes

(nmol/h/mg)

(24–68)

PPT1

leukocytes

(nmol/h/mg)

(1.9–25.4)

CLN2

Genotype

Clinical signs reported

at diagnosis

Patient 1 4 years 6

months

Undetectable 9.1 Nd Nd c.622C>T/

c.622C>T

Delayed speech and

language development

Mental deterioration and

motor deterioration

Cerebellar atrophy by MRI

Ataxia

Epilepsy

Patient 2 5 years 6

months

Undetectable 13.2 Nd Nd c.509-

1G>C/c.622C>T

Loss of speech

Loss of gait

Epileptic crisis

Patient 3 5 years Undetectable 8.8 Undetectable 27.8 c.622C>T/c.1094G>A Cognitive and motor

decline

Cerebellar atrophy by MRI

Ataxia

Epilepsy

an acronym for Spanish Neuronal Ceroidea Lipofuscinosis.
Our goal is not only to speed up the diagnosis of NCL2
disease for physicians who suspect a NCL, but also to create
awareness of these dramatic, debilitating diseases. In this study,
we demonstrated that diagnosis of NCL2 is possible using a
simple, selective screening method. The use of DBS as a first-
tier sample is very convenient, since it is easy to collect and
remains stable at room temperature; therefore, it can be sent by
ordinarymail (26–28). It is also very cost-effective compared with
leukocyte or fibroblast samples (13, 29), which can be particularly
sensitive to temperature variations and shipping delays, thus
ultimately reducing assay reliability (13). The diagnostic method
is based on fluorometric enzyme analysis for both DBS and
leukocyte samples, and no residual activity was found in any
sample from NCL2 patients. No false-negative results have been
reported to date, and no NCL1 patients have been identified.
More recently, tandem mass spectrometry (MSMS) assays for
the determination of TPP1, PPT1 and cathepsin D activity in
DBS have become available (30–34). AlthoughMSMS assays yield
higher analytical ranges than fluorometric assays (34), one of the
advantages of our method is that it can measure PPT1 in only 5 h
and TPP1 in 20 h, as opposed to the 45-h incubation reported by
Lukacs et al. (26) and similar to LC-MS/MSmultiplex assays (34).
Efforts are currently being made in our laboratory to measure
both TPP1 and PPT1 in the shortest time possible using mass
spectrometry, because are the most commons.

Unfortunately, since NCL2 and NCL1 are among the few

NCLs with lysosomal soluble proteins that can be measured to

support a diagnosis, genetic analysis is the only diagnostic option

for the remaining NCLs. Two of the patients in the present
series were compound heterozygous, the first was homozygous,
and the variants had already been described and classified as
pathogenic (35). Of the 131 known NCL2 variants (34), c.509-
1G>C and c.622C>T were found in all three patients. These
variants are the two most frequent and account for 50% of

disease-associated alleles (89% in Europe). Both variants have
been associated with classic late-infantile and atypical NCL2 (8%
juvenile, 3% spinocerebellar ataxia, and <1% spastic paraplegia
or congenital disease), suggesting that additional genetic factors
are likely to contribute to earlier disease onset. The other variant,
c.1094G>A, represents 2% of disease associated alleles and may
be associated with an increased probability of classic late-infantile
NCL2. However, specific disease genotypes do not consistently
correlate with phenotypes (36).

Several therapeutic approaches for NCLs are currently
under investigation, including gene therapy, neuronal stem
cell therapy, immunomodulation, small molecule therapy, and
ERT (37–41), which is the only approved treatment for NCL2.
Cerliponase alfa, a recombinant proenzyme form of human
TPP1, was granted regulatory approval in the USA and
Europe for the treatment of NCL2 disease (specifically for
slowing the loss of ambulation in symptomatic children aged
≥3 years in the USA). It is administered by intraventricular
infusion every 2 weeks and has demonstrated less decline in
motor and language function than in historical controls. The
maximum benefit from ERT can be obtained if diagnosis is
made as early as possible in order to avoid the irreversible
neurodegeneration often present when diagnosis is made at
around five years of age, and also because the disease progresses
very rapidly immediately after onset of the initial symptoms.
As can be seen from the most common signs (Table 2),
language delay and/or psychomotor delay are often associated
with unexplained seizures, which should raise the suspicion
of NCL2.

Limitations
The study has been carried out in patients with symptoms and
with voluntary participation, because of this does not reflect the
real incidence.
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CONCLUSIONS

In summary, the LINCE project is a simple, useful, not very
expensive, and novel tool that speeds up the diagnosis of
NCL2. All positive cases experienced a rapid decline in their
medical condition, which is characteristic of NCL2 patients.
An early diagnosis is key to accessing treatment, but diagnosis
is challenging because of similarities with other disorders
and limited awareness of NCL2 disease because of its rarity.
Since therapy is now available, screening for NCL2 should be
implemented in neonatal screening programs for early detection,
ultimately leading to better outcomes.
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While significant efforts have been made in developing pre-clinical treatments for the

neuronal ceroid lipofuscinoses (NCLs), many challenges still remain to bring children

with NCLs a cure. Devising effective therapeutic strategies for the NCLs will require a

better understanding of pathophysiology, but little is known about the mechanisms by

which loss of lysosomal proteins causes such devastating neurodegeneration. Research

into glial cells including astrocytes, microglia, and oligodendrocytes have revealed

many of their critical functions in brain homeostasis and potential contributions to

neurodegenerative diseases. Genetically modified mouse models have served as a

useful platform to define the disease progression in the central nervous system across

NCL subtypes, revealing a wide range of glial responses to disease. The emerging

evidence of glial dysfunction questions the traditional “neuron-centric” view of NCLs,

and would suggest that directly targeting glia in addition to neurons could lead to better

therapeutic outcomes. This review summarizes the most up-to-date understanding of

glial pathologies and their contribution to the pathogenesis of NCLs, and highlights some

of the associated challenges that require further research.

Keywords: Batten disease, neuronal ceroid lipofuscinosis, astrocyte, microglia, oligodendrocyte

INTRODUCTION

Lysosomal storage disorders (LSDs) are a group of more than 70 monogenetic diseases
characterized by defects in lysosomal metabolism and subsequent accumulation of substrates.
Most LSDs present with a broad phenotypic spectrum in multiple organs. This is consistent
with the fact that nearly all lysosomal enzymes are ubiquitously expressed and their
deficiency will therefore affect many tissue types (1). The neuronal ceroid lipofuscinoses
(NCLs or Batten disease) are a group of fatal neurodegenerative LSDs affecting children
and young adults. In contrast to other non-neuronopathic LSDs, the NCLs primarily affect
the central nervous system (CNS), usually including the retina. The NCLs are remarkably
heterogeneous diseases, with studies in both humans and animal models showing that each
of 13 subtypes is caused by mutations in different individual genes and have different
ages of onset, clinical symptoms, and rate of disease progression (2, 3) (Table 1). As
comprehensively reviewed elsewhere (2, 3), a mutation (or mutations) in a different NCL
gene causes each form of NCL. Some of these mutations are in soluble lysosomal enzymes
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(e.g., CLN1, CLN2, CLN10, CLN13), others are in
transmembrane proteins within the lysosome (e.g., CLN3,
CLN7) or elsewhere in the cell (e.g., CLN6, CLN8), or a range
of proteins that vary widely in their nature and location (e.g.,
CLN4, CLN5, CLN11, CLN12, CLN14).

Research into treatments for most LSDs has primarily focused
on the replacement of the missing gene product responsible
for each disease. Enzyme replacement therapy (ERT) for several
soluble enzyme-deficient forms of NCL including CLN1 and
CLN2 diseases has been studied (11, 34–38), which led to the
recent FDA approval of cerliponase alfa for CLN2 disease (39).
However, ERT is only disease-modifying, and several longer-term
challenges regarding whether efficacy will be maintained, the
delivery systems used and potential immune responses remain
(36, 37, 40). Furthermore, ERT is not an option for those
subtypes of NCL caused by defects in transmembrane proteins
such as CLN3 disease, which is the most common form of NCL
(2). Viral vector-mediated gene therapy has been intensively
explored as an alternative therapeutic strategy for the NCLs. This
approach theoretically has the advantage that a single one-time
administration of viral vector should restore deficient lysosomal
proteins to transduced cells (41, 42). Preclinical studies of gene
therapy in animal models of CLN1, CLN2, CLN3, CLN6, CLN7,
and CLN10 diseases have shown promising results (4, 23, 34, 43–
47). However, clinical studies in children with CLN2 disease
treated with gene therapy showed considerably less efficacy (48,
49), highlighting the difficulty of translating advances from mice
directly into human patients (50). Indeed, none of the therapies
that are currently available or being tested clinically are curative.
Therefore, devising optimal therapeutic strategies for the NCLs
will certainly require a better understanding of pathophysiology
in each form of NCL.

Neuropathology in the NCLs was initially characterized
in human autopsy studies, revealing marked neuron
loss accompanied by intra-lysosomal accumulation of
autofluorescent storage material (AFSM), whose major protein
component is subunit C of mitochondrial ATP synthase
(SCMAS), in addition to astrogliosis, and microglial activation
(51, 52). With the limited availability of genetically validated
human autopsy samples, many longitudinal studies in animal
models have been performed, in order to understand the staging
of neuropathological processes from the earliest events to
the end-stage of disease. Interestingly, AFSM accumulation,
astrogliosis, microglial activation and neuron loss in animal
models of NCL are remarkably selective in their early stages,
becoming more widespread with disease progression (53).
This suggests that despite the ubiquitous expression of these
proteins, such selective vulnerability may be due to them
playing physiological roles of greater importance in some cell
populations than others.

A significant finding made in multiple mouse models across
subtypes of NCL is the profound loss of thalamic neurons, which
typically precedes neuron loss in the corresponding region of
the cortex to which these thalamic neurons relay (5, 14, 16, 17,
20, 28, 30, 54). Strikingly, these studies in mouse models also
revealed that localized astrocytic andmicroglial activation, which
both occur early in disease progression, accurately predict where

subsequent selective neuron loss occurs in mouse models of a
majority of NCL subtypes. Such findings cast doubt on traditional
perspectives of the NCLs as predominantly “neuronal” diseases,
and lead to the hypothesis that abnormalities in glial cells may
contribute to the neurodegeneration associated with the NCLs.

In the “neuron-centric” past of neuroscience, glial cells
were often relegated to being considered as undefined passive
structural elements, and in the diseased state glial activation was
often considered a secondary response to neuron dysfunction
or damage. Over recent decades, this traditional neuron-centric
conception of the CNS has been challenged by a large body
of research aiming to provide a better understanding of glial
function, revealing that glial cells including astrocytes, microglia,
and oligodendrocytes have more active roles in both neuronal
homeostasis and neurodegeneration (55–57). Notably, recent
technological advancements have enabled us to study the
heterogeneity of each glial cell type, and have revealed their
bimodal or multimodal roles in neurodegenerative diseases (58,
59). This review aims to summarize the recent progress in our
understanding of glial pathologies and their contribution to NCL
pathogenesis and examines where NCL research currently stands
in the field of glial biology. This review focusses primarily upon
CLN1, CLN2 and CLN3 diseases as the three most common
forms of NCL, in which a consideration of glial dysfunction
or the contribution to pathogenesis has been undertaken or is
underway. However, where available, the extent of astrogliosis
and microglial activation or oligodendrocyte pathology is listed
inmousemodels of other forms of NCL in (Table 1). As discussed
below, these immunohistochemically detectable changes may be
due to dysfunction of glial cell types (which is largely unexplored
in most NCLs), or reflect their response to ongoing neuronal
dysfunction or loss.

GLIAL DYSFUNCTION IN THE NCLs

Astrocytes
Neuroimmune responses mediated by both astrocytes and
microglia have crucial roles in all CNS insults including brain
injury, infection, and neurodegenerative diseases (60, 61). In
response to these insults, astrocytes and microglia become
“activated” or “reactive” by altering their morphology, protein
expression, and secretion profile. The fact that astrocytes and
microglia typically both become activated in concert has made
it difficult to distinguish the relative contributions of astrocytes
to neurodegeneration, and whether these are distinct from those
of microglia. Nonetheless, understanding their distinct patterns
of activation in disease states is very important.

Upregulation of intermediate filaments, most notably glial
fibrillary acidic protein (GFAP), is a classic marker for astrogliosis
in mammalian models, and the expression level of GFAP or
immunohistochemical detection of this marker has proved a
useful tool to assess the extent of astrogliosis (62). As summarized
in Table 1, GFAP-positive astrogliosis has been documented in
all characterized mouse models of NCL. Although astrogliosis
is observed in multiple CNS regions toward the end stage of
disease, typical astrogliosis in the NCLs is characterized by
its regional specificity and timing; astrogliosis especially occurs
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TABLE 1 | Summary of glial changes in mouse models of neuronal ceroids lipofuscinoses.

Subtype Gene Mouse

model

Astrocyte activation Microglial activation Oligodendrocytic pathology References

CLN1 CLN1/PPT1 Ppt1−/− GFAP+ astrogliosis within spinal

cords at 2 months, M1, S1BF,

VPM/VPL, LGNd, MGN, CM,

and Rt at 3 months, and

hippocampus at 7 months.

CD68+ activation within spinal

cords at 1 months, F4/80+

activation within M1, S1BF, V1,

VPM/VPL, LGNd, and MGN at 5

months and hippocampus at 7

months

Decreased white matter volume

in spinal cords at 2–3 months;

increased immunoreactivity in

Olig2, NG2, and MBP within

spinal cords at 1–2 months

(4), (5) (6), (7)

Ppt11ex4 GFAP+ astrogliosis within cortex

at 3 months

F80+ activation within thalamus

at 3 months

N/A (8)

Ppt1R151X GFAP+ astrogliosis within cortex CD68+ activation within cortex N/A (9)

Cln1R151X GFAP+ astrogliosis within cortex,

thalamus, and hippocampus

CD68+ activation within cortex,

thalamus, and hippocampus

N/A (10)

CLN2 CLN2/ TPP1 Tpp1−/− GFAP+ astrogliosis within M1 at

2 months and striatum and

hippocampus at 3 months

Increase in Iba1 immunoreactivity

whithin striatum at 3 months

N/A (11), (12)

Cln2R207X GFAP+ astrogliosis within cortex

at 3 months

No change in Iba1

immunoreactivity at 3 months

N/A (13)

CLN3 CLN3 Cln31ex1−6 GFAP+ astrogliosis whithin visual

cortex, hippocampus, striatum,

and cerebellum at 5 months and

somatosensory cortex at 7

months

F4/80+ activation within cortex,

hippocampus, striatum, and

cerebellum at 5 months

N/A (14), (15)

Cln31ex7−8 GFAP+ astrogliosis within

cortex, striatum, VPM/VPL, and

cerebellum at 12 months

F4/80+ astivation within cortex,

striatum, VPM/VPL, and

cerebellum at 12 months

N/A (16), (17)

Cln3Q352X GFAP+ astrogliosis within S1BF

and VPM/VPL at 6 months

CD68+ activation within S1BF

and VPM/VPL at 6 months

N/A (18)

CLN4 CLN4/

DNAJC5/CSP

Csp−/− N/A mice die at 2–4 weeks old N/A mice die at 2–4 weeks old N/A mice die at 2–4 weeks old (19)

CLN5 CLN5 Cln5−/− GFAP+ astrogliosis within S1BF,

V1, and VPM/VPL at 1 months

and LGNd at 12 months

F4/80+ activation within S1BF,

V1, VPM/VPL, and LGNd at 12

months

Reduced MBP+ fibers in S1BF

at 1–3 months

(20), (21)

Cln51ex3 Upregulation of GFAP mRNA in

cerebrams at 4.5 months

N/A Downregulation of MBP and

MOG mRNA at 3 months, MAG

and PLP mRNA at 4.5 months

(22)

CLN6 CLN6 Cln6nclf GFAP+ astrogliosis within V1,

LGNd, and SC at 12 weeks,

VPM/VPL and striatum at 21

weeks, and cerebellum at 54

weeks

CD68+ activation within V1,

LGNd, and SC at 12 weeks,

VPL/VPM, hippocampus, and

cerebellum at 54 weeks

N/A (23), (24)

CLN7 CLN7/MFSD8 Mfsd8tm1a/tm1a GFAP+ astrogliosis within

cerebellar white matter at 10

months

CD68+ activation within

cerebellum, spinal cord and

thalamus at 10 months

N/A (25)

Cln7−/− GFAP+ astrogliosis within

cortex, hippocampus, thalamus,

medulla, erebellum, and spinal

cord at 5 months

CD68+ activation within cortex,

hippocampus, thalamus,

medulla, and cerebellum at 7

months

N/A (26), (27)

CLN8 CLN8 Cln8mnd GFAP+ astrogliosis within

VPM/VPL, S1BF, and V1 at 5

months and within LGNd at 8

months

CD68+ activation whithin

VPM/VPL, S1BF, V1, and LGNd

at 5 months

Decreased white matter volume

in corpus callosum and internal

capsule at 1–3 months;

decreased expression level of

MBP and PLP at 1 month;

increased G-ration in corpus

callosum at 1–4 months

(28), (29)

CLN10 CTSD Ctsd−/− Widespread GFAP+ astrogliosis,

particularly prominent whithin

thalamus and cortex laminae

IV-VI at 24 days

CD68+ activation whithin

thalamus and substantia nigra at

24 days

N/A (30)

(Continued)
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TABLE 1 | Continued

Subtype Gene Mouse

model

Astrocyte activation Microglial activation Oligodendrocytic pathology References

CLN11 GRN Grn−/− GFAP+ astrogliosis within

hippocampus, cortex, and

thalamus at 24 months

Increased Iba-1 immunoreactivity

within hippocampus, cortex, and

thalamus at 24 months

N/A (31)

CLN12 ATP13A2 Atp13a2−/− GFAP+ astrogliosis within cortex

at 1 month, cerebellum,

hippocampus, and midbrain at

18 months

N/A N/A (32)

CLN13 CTSF Ctsf−/− GFAP+ astrogliosis in

thalamocortical system at 12

months

F4/80+ microglial activation in

thalamocortical system at 12

months

N/A (33)

CLN14 KCTD7 N/A N/A N/A N/A N/A

CLN15

(proposed)

TBCK N/A N/A N/A N/A N/A

M1, primary motor cortex; S1BF, somatosensory cortex barrel field; V1, primary visual cortex; VPM/VPL, medial and lateral ventral posterior nuclei; LGNd, dorsal lateral geniculate

nucleus; MGN, medical geniculate; MD, mediodorsal nucleus; CM, central medial thalamic nucleus; Rt, reticular nucleus of thalamus; SC, superior colliculus; GFAP, glial fibrillary

associated protein; MBP, myelin basic protein; MOG, myelin oligodendrocyte glycoprotein; MAG, myelin-associate glycoprotein; PLP, proteolipid protein.

early and is pronounced in thalamocortical pathways where
considerable subsequent neuron loss occurs (reviewed in 26,
see individual references in Table 1). This is in contrast to
many other neuropathic LSDs such as mucopolysaccharidosis
(MPS), in which astrogliosis tends to be more generalized across
the CNS throughout disease progression (63, 64). Interestingly,
the extent of GFAP reactivity and morphological alteration in
astrocytes varies across the NCLs. For example, hypertrophy
of astrocyte cell bodies and processes and GFAP upregulation
in Cln3−/− mice appears to be more subtle or perhaps
attenuated compared to astrocytes observed in Ppt1−/− mice
(14), implying that CLN1 and CLN3 diseases differ in the
extent to which astrocytes are intrinsically dysfunctional and/or
respond to extracellular stimuli. These differences in astrogliosis
in CLN1 and CLN3 diseases are also recapitulated by in vitro
experiments using primary astrocytes derived from the relevant
mouse models; Ppt1−/− astrocytes exhibit a more activated
morphology and higher expression levels of GFAP, and enhanced
secretion of cytokine and chemokine compared with the wild-
type astrocytes (65). In contrast, Cln3−/− astrocytes showed
attenuated changes in morphology and GFAP expression in
response to pharmacological stimulation with reduced secretion
of a range of neuroprotective factors, mitogens, cytokines, and
chemokines (66). It will therefore be important to further
investigate the nature of astrocytic dysfunction using similar
tissue culture methods for other forms of NCL such as
CLN2 disease.

Recently, it has been demonstrated that GFAP
depalmitoylation is regulated by PPT1, and blocking
palmitoylation by the unique palmitoylated residue in
GFAP attenuates both astrogliosis and the concurrent
neurodegenerative pathology in CLN1 mice (67). This is the
first evidence suggesting that loss of NCL proteins in astrocytes
directly impacts an intrinsic astrocyte response rather than
“reactive astrogliosis” occurring solely in response to ongoing
neuronal damage. However, these findings appear somewhat
contradictory to previous evidence showing that prevention of

GFAP upregulation by knocking out both GFAP and Vimentin
in Ppt1−/− mice (Gfap−/−; Vimentin−/−; Ppt1−/−) exacerbates
disease pathology, which had been interpreted as evidence for
a protective role of GFAP upregulation in CLN1 disease (68).
Not only do such findings imply multi-dimensional roles of
astrogliosis, which will be discussed shortly, but also potentially
different pathological impacts depending on NCL subtype,
affected brain regions and staging of disease progression.

Recent efforts have focused on gene expression profiling of
activated astrocytes both in vitro and in vivo to decipher their
functional properties in the context of neurodegeneration. The
paradigm of neurotoxic “A1” astrocytes and neuroprotective
“A2” astrocytes is now a generally recognized concept (62, 69).
Astrocytes resembling “A1” or neurotoxic status have been
reported in more common neurodegenerative diseases
such as Alzheimer’s disease (AD) (70), amyotrophic lateral
sclerosis (ALS) (71), and Parkinson’s disease (72). Similarly,
the pronounced typical A1-specific molecular signature
has been recently reported in the forebrains of Ppt1−/−

mice (73), suggesting a neurotoxic function of astrocytes
in CLN1 disease. However, caution is needed in using the
current A1/A2 classifications to interpret pathological roles
of astrocytes, because such a binary A1/A2 paradigm may be
an oversimplification of potentially more wide-ranging and
heterogeneous states of astrogliosis (74). Indeed, the recent
RNA sequencing data of Tpp1−/− mice have shown changes
in the expression of a restricted subset of A1- or A2-specific
genes, which does not match the typical A1/A2 classification
(75). A lack of clear A1/A2 signature has also been reported in
other diseases including Huntington disease (76), highlighting
that astrocyte heterogeneity may convolute A1/A2 boundaries.
Nevertheless, there is a potential that these widely accepted
A1/A2 markers can still be useful for both investigating
the pathological contribution of astrogliosis, comparing
astrocyte phenotypes in the NCLs to other neurodegenerative
conditions and assessing the efficacy of therapeutic approaches
for NCLs.
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Astrocytes also exert pathological influences on neuronal
health through multiple non-inflammatory functions such as
neurotransmitter recycling, ion buffering, and the release of
growth factors (77, 78). In addition, the role of phagocytosis by
astrocytes in synaptic connectivity is now in the spotlight but
has been relatively understudied in neurodegenerative diseases
(79). Considering their close relationship with lysosomal calcium
signaling and lysosomal exocytosis, it is plausibly speculated
that the loss of NCL proteins could affect many of these non-
inflammatory functions of astrocytes. Impaired calcium signaling
in primary astrocytes derived from Ppt1−/− and Cln3−/− mice
has been documented (65, 66). Therefore, it will be important to
decipher the molecular bases of possibly more diverse forms of
astrocytic dysfunction in the NCLs rather than solely focusing
on astrogliosis to better understand the pathological role of
astrocytes in NCL pathogenesis.

Microglia
Microglia, the CNS tissue resident macrophage population,
also become “activated” or “reactive” by changing their
gene expression, morphology, motility, migration, metabolism,
secretome, phagocytosis, proliferation, and death in response
to CNS pathology (61). Microglial-astrocyte crosstalk via the
release of diverse signaling molecules is particularly thought to
mediate neurodegeneration (80), with recent studies suggesting
that neurotoxic A1 astrocytes are triggered by fragmented
mitochondria released from microglia to propagate and trigger
neuronal death (81, 82).

Classically, immunoreactivity of several molecular markers
including CD68, MHC antigen class II, F4/80, and Iba1 have
been widely used to define the activated state of microglia
(83, 84). Longitudinal studies using several of these markers
have confirmed that where examined microglial activation is
invariably present in the CNS of NCL mouse models, and
anatomical distribution and onset of microglial activation largely
overlap those of astrogliosis (Table 1). Although comprehensive
profiling of multiple microglial markers is still underway, data
so far suggest that the nature of microglial activation appears
to be different in each NCL. This subtype-dependent nature of
microglial activation is buttressed by in vitro primary culture
experiments in CLN1 and CLN3 disease; Ppt1−/− microglia
are morphologically more activated with increased secretion
of IL-1β (65), whereas Cln3−/− microglia exhibit attenuated
morphological responses to pharmacological stimulation with
reduced secretion of several chemokines (66). Notably, when
Ppt1−/− astrocytes and microglia were co-cultured, they
appeared to cross-prime one another to exacerbate neuron loss
(65), implicating the involvement of astrocyte-microglia crosstalk
in CLN1 disease pathophysiology.

Recent research has been delineating the complex and
heterogeneous state of activated microglia, a topic that is still
under debate. The classification of pro-inflammatory “M1”
microglia vs. anti-inflammatory “M2” microglia using the
expression of particular cell surface markers and cytokines had
been long recognized (57, 84), despite the validity of such
a classification still being under scrutiny. M1 polarization of
microglia with upregulation of CD16/32 and CD86 has been

reported in Ppt1−/− and Cln3−/− mice, and knocking out of
the inflammation-related cell adhesion molecule sialoadhesin
in those mice attenuated numbers of M1-polarized microglia,
levels of pro-inflammatory cytokines, and altered disease
phenotype (85). However, given criticism that the M1/M2
dichotomy provides an oversimplified perspective (86, 87), a
new pathological classification that incorporates the concept
of disease-associated microglia (DAM) has recently been put
forth (58, 88). DAM are molecularly characterized by the
expression of typical microglial genes such as Iba1, Cst3, and
Hexb, coincident with downregulation of homeostatic microglial
genes including P2ry12, P2ry13, Cx3cr1, CD33, and Tmem119
(89). DAM further display upregulation of genes involved in
lysosomal, phagocytic, and lipid metabolism pathways such as
Apoe, Ctsd, Lpl, Tyrobp, and Trem2, which perhaps makes
the DAM classification particularly pertinent to LSDs. RNA
sequencing data has revealed the existence of both TREM2-
independent and TREM2-dependent DAM in Tpp1−/− mice,
suggesting the pro-inflammatory and neurotoxic role of activated
microglia in CLN2 disease (75, 90). However, the pathological
role of DAM still remains debatable; several recent studies
have shown neuroprotective effects of TREM2-dependent DAM
in mouse models of AD and GRN haploinsufficiency-causing
frontotemporal lobar degeneration (GRN-FTLD) (91, 92),
suggesting the pathological contribution of DAM may well be
disease-dependent. Interestingly, complete deficiency of Grn−/−

is known to cause CLN11 disease (31), suggesting a similar
phenotype may exist in some forms of NCL. Therefore, caution
should be exercised in overinterpreting data for the expression of,
or staining for, DAMmarkers and it will be wise not to solely rely
on such findings when interpreting pathological roles of activated
microglia in NCL pathogenesis in future studies.

The secretion of cytokines and chemokines is of paramount
importance for both astrocytes and microglia to exert pro- and
anti-inflammatory effects on the process of neurodegeneration
(93). The progressive elevation of multiple cytokines and
chemokines has been confirmed by whole transcriptomics and/or
proteomics in the forebrains and cerebella of Tpp1−/− mice
(75, 90) and forebrains and spinal cords of Ppt1−/− mice (68,
94, 95). Such evidence for the region- and subtype-specific nature
of neuroinflammatory changes in CLN1 and CLN2 diseases
correlates with the previously shown region- and subtype-specific
immunoreactivity of astrogliosis and microglial activation
markers. Pharmacological modulation of neuroinflammation is
an emerging therapeutic strategy for neurodegenerative diseases
(96). Until now, only a few anti-inflammatory drugs have
been preclinically tested for NCLs: fingolimod, teriflunomide,
and MW151 in Ppt1−/− mice (97, 98) and ibuprofen and
mycophenolate motefil in Cln3−/− deficient mice (99, 100) and
provide only partial phenotypic rescue. While modulation of
neuroinflammation may provide additional therapeutic benefit,
especially when used in combination with other therapies such
as ERT or gene therapy, these preclinical results suggest that
alteration of central pro-inflammatory cascades in NCL mice
might be a non-specific downstream consequence.

Other non-immune-related properties of microglia also have
a significant impact on neuronal health. Microglial-mediated
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phagocytosis is critical in maintaining CNS homeostasis by
pruning synapses or phagocytizing dysfunctional, dying or
the debris of deceased neurons and other cell types (57,
101). It has been shown that impaired microglial phagocytic
function promotes the development of several neurological
diseases such as Rett syndrome (102) and tuberous sclerosis
complex (103). Since phagocytosis requires focal exocytosis of
lysosomes (104), it is plausible to speculate that lysosomal
dysfunction due to NCL protein deficiency could also impair
phagocytosis in these cells. While there have been several
pieces of evidence from RNA sequencing or proteomics analysis
suggesting altered phagocytosis in the brains of Ppt1−/−

and Tpp1−/− mice (75, 94), microglial-specific alteration of
phagocytosis is yet to be elucidated. A better understanding of
the nature of such dysfunctional phagocytosis by microglia and
its contribution to NCL pathogenesis may therefore inform us of
new therapeutic targets.

Oligodendrocytes and Schwann Cells
Demyelination is another pathological change widely seen in
multiple neurodegenerative diseases. Consistent with recent
evidence suggesting the regulatory roles of lysosomal exocytosis
in myelination, abnormal myelination is commonly seen in
many LSDs including Niemann-Pick disease, Gaucher disease,
metachromatic leukodystrophy, multiple sulfatase deficiency,
and Krabbe disease (105–107). In contrast, pathological evidence
of either dysmyelination or demyelination in the NCLs has been
investigated only in mouse models of CLN1, CLN5, and CLN8
diseases with limited depth of characterization (Table 1). A key
question is whether overt demyelination occurs at all in these
disorders, or whether any changes in myelin composition occur
secondary to loss of axons, as a result of neuron loss. Certainly,
changes in white matter volume are evident in both animal
models and human autopsy specimens (6, 21, 29), but its basis
is poorly understood. Of course, any consideration of myelin
must necessarily include Schwann cells in the peripheral nervous
system (PNS), which serve a similar, but not identical role to
oligodendrocytes in the CNS. However, the pathological impact
of the NCLs upon the PNS is largely underappreciated, but is
currently of renewed interest.

CONTRIBUTION OF GLIA TO NCL
PATHOGENESIS

A key question that remains to be answered is whether or not
the loss of NCL proteins from glial cells confers any direct cell-
autonomous effects on these glial cells themselves and/or non-
cell-autonomous effects on other cell types including neurons
in either a harmful or protective manner. In in vitro studies
using primary astrocytes, neuron-glial co-culture experiments
showed that both Ppt1−/− and Cln3−/− glia are detrimental
to the survival of both wild-type and mutant neurons (65,
66). Such data raise the possibility that mutant astrocytes
and microglia may actively trigger the neurodegenerative
changes seen in CLN1 and CLN3 diseases. Such in vitro
models are a crucial component in unraveling cell-type-specific

contributions to disease pathogenesis and lend themselves to
high throughput screening to detect novel phenotypes and
assess potential therapeutic interventions (108–110). Using
this approach has highlighted disease-modifying pathways in
a number of neurodegenerative diseases that may provide
valuable therapeutic targets. Furthermore, the advent of induced
pluripotent stem cell (iPSC)models allows the close physiological
representation of disease-affected cells on a species-specific
genetic background. iPSC models have only been used to a
limited extent in the NCLs to date and have so far not been used
to generate glial cells despite the availability of well-established
differentiation protocols (111–113). For the NCLs, it will be vital
to further investigate glial phenotypes in vitro and to validate
those findings by generating cell-type-specific mutant mice to
explore these issues in vivo.

Microglial depletion using CSF-1R inhibitors has enabled us
to study the direct effect of microglia on the CNS disease process
in mammalian models (114). With this technique, it has been
shown that microglial depletion in Ppt1−/− mice attenuated
optic nerve pathologies and several behavioral abnormalities
(115). Although such findings might be confounded by the
fact that completely abolishing microglia is likely to negatively
impact CNS homeostasis, such studies still provide a degree
of mechanistic insight into microglial contributions to CLN1
disease progression. Since the effectiveness and safety of some
CSF-1R inhibitors have been proven in humans (114) and as new
andmore specific CSF-1R inhibitors become available, microglial
depletion may be a clinically relevant approach.

The Cre-LoxP system in mice has proved a powerful
tool to investigate the effect of cell-type-specific genetic
mutation on neurodegeneration and applied to a wide range
of diseases including LSDs in vivo. For example, it has been
shown that astrocytic-specific deletion of Sulfatase Modifying
Factor 1 (SUMF1) (Sumf1flox/flox; GFAP-Cre) was sufficient to
induce neuron loss in a mouse model of multiple sulfatase
deficiency (MSD) (116). Also, microglial-specific deletion of
NPC1 (Npc1flox/−; Cx3cr1-Cre) has been shown to enhance
microglial phagocytotic uptake and impaired lipid trafficking,
resulting in impaired myelin turnover in a mouse model of
Niemann-Pick type C (NPC) disease (117), caused by a deficiency
in the NPC1 protein. In contrast, it has also been shown that
astrocytic-specific deletion of NPC1 (Npc1flox/−; GFAP-CreER)
does not cause neurodegeneration, but neuron-specific knockout
(Npc1flox/−; Syn1-Cre) does in the NPC mouse model (118).
Such data suggest that the nature of the glial contribution
to pathogenesis is likely to differ between LSDs. However, no
study has yet investigated the effect of astrocyte-, microglial-, or
oligodendrocyte-specific deletion of NCL genes in vivo has been
reported, indicating that NCL research regarding glial pathology
is admittedly lagging behind other LSDs. Perhaps this is in part
because of the sheer body of work this would entail given the
number of NCL subtypes, as well as the fact that several of the
genes that are deficient in the NCLs are lysosomal enzymes that
are normally secreted and can be taken up by neighboring cells
via a variety of receptor subtypes (42). This process of “cross-
correction” naturally confounds and complicates any attempts
to generate cell-type-specific PPT1 or TPP-1 deficient mice.
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However, recent work in creating chimeric “tethered” versions
of enzymes might indeed enable the creation of conditional
cell-type-specific models (119).

CONCLUSIONS AND FUTURE
DIRECTIONS

Our relatively poor understanding of the pathomechanisms that
operate in the NCLs has certainly hampered the generation
of more effective therapeutic strategies. Until recently, glial
cells across various neurodegenerative diseases have often been
considered as poorly defined passive structural elements. The
underappreciated consideration of glial involvement in the
NCLs is no exception, which is perhaps reflected by the re-
naming of these disorders in the 1960s as “neuronal ceroid
lipofuscinoses” (120) to distinguish them from other childhood
encephalopathies. The rapidly expanding body of research into
normal glial biology and their responses to disease has facilitated
a reassessment that glia are not just passive bystanders of
pathology in the CNS, but instead are active determinants
of neurodegeneration. As summarized in this review, there is
substantial evidence suggesting such glial involvement in NCL
pathophysiology, and changes in glial activation are frequently
used to evaluate therapeutic efficacy in preclinical studies (4,
11, 15, 23, 26, 34, 43–47, 97). Of necessity, this review focusses
primarily upon the three most common forms of NCL, CLN1
disease, CLN2 disease and CLN3 disease, in which the issue
of glial contribution to pathogenesis has been considered.
Nevertheless, as detailed in Table 1, glial activation is present
in all forms of NCL and is consistently present before neuron
loss occurs. As such, we might anticipate that glia may also
be involved in the pathogenesis of these other forms of NCL.
However, given the pronounced difference between even CLN1,
CLN2 and CLN3 disease that are discussed in this review, it
could be expected that the extent and nature of glial involvement
may also vary markedly between types of NCL. Nevertheless,
although the glial contribution to disease progression has been
intensively studied in other neurodegenerative diseases, relatively
little is known about whether glia contribute mechanistically
to the profoundly neurodegenerative phenotype of most forms
of NCL.

There are several remaining issues that still need addressing
in order to clarify the contribution of glial pathology in
the NCLs. First, all of the many of subcellular alterations
known to be associated with NCLs and other LSDs such
as impaired autophagy, lysosomal trafficking, and alterations
in the mTOR and TFEB signaling pathways have primarily
been studied in neurons or fibroblasts, but not specifically in
glial cells of any variety (27, 104, 121–126). Indeed, there is
considerable potential that studying these pathways in NCL
glia will yield valuable mechanistic information about cell-type-
specific impacts of disease-causingmutations. Second, while NCL
research has predominantly relied on mouse models, recent
evidence has suggested species-dependent differences in the
functional properties of astrocytes, questioning the translational
relevance of information mouse astrocytes (127). As this issue
almost certainly applies to microglia and oligodendrocytes as

well, the implementation of glia differentiated from human
NCL-patient-derived iPSCs is likely to be of considerable
benefit (113). Third, as already discussed, studying the cell-
autonomous effects of soluble enzyme deficiency in vivo is
hampered by “cross-correction,” a phenomenon via which
mannose 6-phosphate receptor-mediated endocytosis facilitates
extracellularly delivered lysosomal enzymes to be taken up by
recipient cells. As a previous example of the way to overcome this
challenge, the chimeric GALC enzyme tethered to the lysosomal
membrane has been engineered in the Krabbe disease mouse
model so the cell-autonomous effect of oligodendrocyte-specific
GALC deficiency could be studied (119). It will be important to
extend such methodology to PPT1 and TPP1 in order to address
the cellular autonomy of CLN1 and CLN2 diseases, respectively.

Modern “omics technologies have greatly contributed to a
better understanding of the complex physiological nature of
glial pathologies in the NCLs and other LSDs (128, 129). RNA
sequencing has been widely used in the field of NCLs now that
its cost is substantially reduced, but there are a number of caveats
concerning the validity of RNA sequencing results. For example,
RNA sequencing of a bulk tissue cannot distinguish molecular
events in different cell types. As such distinct molecular changes
that occur in specific glial cell populations such as microglia and
oligodendrocytes, which comprise a relatively small proportion
of the total cells present in these samples, might be masked. The
application of the single-cell or single-nucleus RNA sequencing
technology can theoretically overcome this issue (101), and is
likely to reveal new insights into the broad range of effects upon
glia in the NCLs. Another issue, which is perhaps unique in
LSD research, is that lysosomal proteins play a crucial role in
post-translational modification and intracellular trafficking (104,
130), which transcriptomics analyses cannot address. Proteomics
analysis instead is more suitable in this case, but again,
proteomic data obtained from bulk tissue cannot distinguish
between different cell types. Most recently, single-cell proteomics
technologies have been invented (131), and it may be predicted
that this approach will be widely used to study glial biology in
near future.

Notably, glia also exist outside the CNS in different forms
depending on the anatomical region. Schwann cells are the
myelinating cells in the peripheral nervous system (PNS) and
are involved in maintaining ionic balance and providing support
to axons (132). There are also non-myelinating Schwann cells
called terminal Schwann cells, residing at the neuromuscular
junction (133). Satellite glial cells are found in peripheral ganglia
and potentially have similar functions to astrocytes in the
CNS (134). There is also a unique population of astrocyte-
like cells called enteric glial cells, involved in the regulation of
the intestinal epithelial barrier and in regulating the function
of neurons within the enteric nervous system (ENS) (135).
Given the accumulated evidence for glial abnormalities across
multiple forms of NCL, it will be important to investigate the
impact of disease upon these “non-CNS glial cells” that are key
components of the PNS and ENS. Thesemay represent important
cellular targets to obtain better therapeutic outcomes in patients
with NCLs.

To conclude, much like the different types of musicians
in a band that need to coordinate together with its singer
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to produce harmonious music, different glial cells provide
coordinated support for neuronal health. As in a band it only
takes one member to perform sub-optimally for the music to
be compromised, and it is very likely that the dysfunction
of any one type (or types) of glia similarly contribute to
neurodegeneration. With recent technical advances, we are now
entering an exciting time for expanding our knowledge of glial
dysfunction and its contribution to the pathogenesis of the
NCLs. This knowledge will almost certainly help us design more
effective and appropriately targeted therapeutic strategies for
these disorders.
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The neuronal ceroid lipofuscinoses (NCLs) are a group of childhood-onset

neurodegenerative lysosomal storage disorders mainly affecting the brain and the

retina. In the NCLs, disease-causing mutations in 13 different ceroid lipofuscinoses

genes (CLN) have been identified. The clinical symptoms include seizures, progressive

neurological decline, deterioration of motor and language skills, and dementia resulting in

premature death. In addition, the deterioration and loss of vision caused by progressive

retinal degeneration is another major hallmark of NCLs. To date, there is no curative

therapy for the treatment of retinal degeneration and vision loss in patients with NCL.

In this review, the key findings of different experimental approaches in NCL animal

models aimed at attenuating progressive retinal degeneration and the decline in

retinal function are discussed. Different approaches, including experimental enzyme

replacement therapy, gene therapy, cell-based therapy, and immunomodulation therapy

were evaluated and showed encouraging therapeutic benefits. Recent experimental

ocular gene therapies in NCL animal models with soluble lysosomal enzyme deficiencies

and transmembrane protein deficiencies have shown the strong potential of gene-based

approaches to treat retinal dystrophies in NCLs. In CLN3 and CLN6 mouse models, an

adeno-associated virus (AAV) vector-mediated delivery of CLN3 and CLN6 to bipolar

cells has been shown to attenuate the retinal dysfunction. Therapeutic benefits of ocular

enzyme replacement therapies were evaluated in CLN2 and CLN10 animal models.

Since brain-targeted gene or enzyme replacement therapies will most likely not attenuate

retinal neurodegeneration, there is an unmet need for treatment options additionally

targeting the retina in patients with NCL. The long-term benefits of these therapeutic

interventions aimed at attenuating retinal degeneration and vision loss in patients with

NCL remain to be investigated in future clinical studies.

Keywords: neuronal ceroid lipofuscinoses, NCL, Batten disease, retinal degeneration, enzyme replacement

therapy, gene therapy, lysosomal storage disorder
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INTRODUCTION

This review focuses on experimental approaches aimed at
attenuating the progression of retinal degeneration in the
different animal models of neuronal ceroid lipofuscinoses
(NCLs). The NCLs are caused by defects in 13 different genes
(CLN1–CLN8, CLN10–CLN14) encoding soluble lysosomal
proteins (CLN1, CLN2, CLN5, CLN10, CLN11, and CLN13),
membrane proteins located in the ER (CLN6 and CLN8), ER-
Golgi intermediate compartment (CLN8) or lysosomes (CLN3,

CLN7, and CLN12), and cytosolic proteins associated with
synaptic vesicles (CLN4) or the plasma membrane (CLN14,
Table 1) (1). The majority of affected gene products play
important roles for lysosomal biogenesis and function: soluble
lysosomal enzymes involved in lysosomal protein degradation
(palmitoyl-protein thioesterase 1/PPT1, tripeptidyl-peptidase
1/TPP1, cathepsin D, and cathepsin F), soluble lysosomal
proteins with unknown function (CLN5), and polytopic
lysosomal membrane proteins (CLN3, CLN7, and CLN12).

The primary function of the lysosomal membrane protein
CLN3 is unclear (2). CLN7 was recently shown to function
as an endolysosomal chloride channel (3). CLN6 and CLN8
form a complex in the endoplasmic reticulum (ER) which is

required for the biosynthetic transport of a subset of newly
synthesized soluble lysosomal proteins from the ER to the
Golgi apparatus (4, 5). Biochemically, defects in NCL genes
lead to lysosomal and autophagic dysfunction and subsequent
accumulation of autofluorescent ceroid lipopigments. Based on
the age of patients at the onset of first symptoms, the NCLs
have been classified into congenital, infantile, late infantile,
juvenile, and adult NCL phenotypes (6, 7). The clinical
symptoms include seizures, progressive neurological decline,
deterioration of motor and language skills, and dementia
resulting in premature death (8). All disease-causing mutations
and sequence variations in the CLN genes are summarized in the
NCLmutation database (https://www.ucl.ac.uk/ncl-disease), and
genotype-phenotype correlations are discussed in a recent review
(9). With the exception of CLN4, CLN12, and CLN13 disease,
deterioration and loss of vision is another major hallmark of
NCLs (Table 1) (10). However, the deterioration of vision does
not always appear as the first symptom in different NCLs (11).
In rare cases, patients with CLN3 and CLN7 disease present with
non-syndromic retina degeneration (12–14). To date, there are
no curative therapies for the treatment of neurodegeneration
in the brain and the retina, and patients rely on palliative
treatment (15). An enzyme replacement therapy (ERT) using
the intracerebroventricular infusions of recombinant TPP1
(cerliponase alfa) every 2 weeks has been shown to decelerate the
disease progression and was recently approved for the treatment
of patients with CLN2 disease (16).

Naturally occurring and gene-targeted mouse models and
large animal models, such as dogs, sheep, and macaques,
allowed the age-dependent morphological, biochemical, and
functional analyses of retinal pathologies in NCL (17, 18). The
pathomechanisms leading to the degeneration of neuronal cells
in different retinal cell layers and the loss of retinal function
are not well understood. CLN3 has been suggested to be

required for the phagocytosis of photoreceptor outer segments
by retinal pigment epithelial (RPE) cells (19). In line with this
notion, lysosomal storage and increased numbers of mature
autophagosomes and basal phagolysosomes were found in the
retinal pigment epithelium of Cln31ex1−6 mice, a CLN3 mouse
model (20).

Preclinical studies targeting the brain of NCL animal models
using ERT and gene therapy demonstrated a delayed onset
and an attenuated progression of neuroinflammation and
neurodegeneration (21). However, intracerebroventricular ERT
and brain-targeted gene therapies are unlikely to prevent or
attenuate neurodegeneration in the retina (15, 22). Therefore a
combination of the brain- and eye-directed therapy might be
required to prevent neurodegeneration in both the brain and the
retina (23).

GENE THERAPY

Gene therapies for lysosomal storage disorders and NCLs are
designed to correct the primary genetic defect (21). Experimental
adeno-associated virus (AAV) vector-based brain-targeted gene
therapies have been evaluated in animal models for CLN1,
CLN2, CLN3, CLN5, CLN6, CLN7, CLN8, CLN10, and CLN11
disease (21, 24, 25). Based on the promising results of the
preclinical studies, some of these brain-targeted gene therapies
are currently being tested in clinical trials in CLN2, CLN3,
and CLN6 patients (21). Ocular gene therapy is an emerging
field. In general, gene therapies for soluble lysosomal enzyme
deficiencies involve the cross-correction of non-transduced cells,
and therapeutic benefits might thus be achieved with a relatively
low number of successfully transduced cells. Gene therapies
for membrane protein deficiencies, in comparison, will most
likely require higher numbers of transduced cells to achieve
therapeutic benefits (23). The most widely used viral vectors
for ocular gene therapy are based on AAVs since they mediate
stable, long-term transgene expression, and produce only minor
immune responses (26). Preclinical ocular gene therapy studies in
NCL animal models have mainly used intravitreally administered
AAV vectors with different serotypes prior to the onset of
the retinal pathology (27). Ocular gene therapy studies have
been performed in animal models targeting soluble lysosomal
protein deficiencies (CLN1, CLN5, CLN10, and CLN11) but also
transmembrane protein defects (CLN3 and CLN6) (Table 2) and
showed encouraging results. To date, the long-term therapeutic
benefits of ocular gene therapy in human patients with NCL
are unknown since no clinical trials are ongoing or have been
completed (21).

CLN1 DISEASE

The CLN1 mouse model is characterized by the progressive
loss of photoreceptors starting at 3 months of age and
decreased retinal functions compared with wild type mice
as measured by electroretinogram (ERG) recordings (28).
Intravitreal administration of an AAV2 vector carrying human
PPT1 cDNA led to a five-fold increase in PPT1 enzymatic
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TABLE 1 | Summary of NCL forms, localization and function of gene products and retinal pathology in human patients.

NCL form Protein Localization and function Clinical phenotypes Retinal pathology

CLN1 Palmitoyl-protein

thioesterase 1 (PPT1)

Lysosomal enzyme

Long-chain fatty acyl hydrolase

Infantile*

Late infantile

Juvenile Adult

Loss of vision, progressive retina atrophy,

optic nerve atrophy

CLN2 Tripeptidyl-peptidase 1

(TPP1)

Lysosomal enzyme

Serine protease

Late infantile*

Juvenile

Loss of vision, optic nerve atrophy

CLN3 CLN3 Lysosomal membrane protein

Unknown

Juvenile*

Retinitis pigmentosa

Adult

Cone-rod dystrophy

Loss of vision is leading symptom,

macular degeneration, optic nerve atrophy

CLN4 Cysteine string protein

α

Cytoplasmic protein-associated with

synaptic vesicles

Regulation of neurotransmitter release,

Exocytosis/endocytosis coupling

Adult*

(Autosomal-dominant, Parry disease)

Not known

CLN5 CLN5 Lysosomal protein

Unknown

Late infantile*

Juvenile Adult

Retinal degeneration, loss of vision

CLN6 CLN6 ER membrane protein

Biosynthetic transport from ER to Golgi

Late infantile *

Adult

Loss of vision

CLN7 CLN7 Lysosomal membrane protein

Chloride channel

Late infantile*

Juvenile Adult Macular dystrophy

Cone-rod dystrophy

Loss of vision as later symptom

CLN8 CLN8 ER/ER-Golgi intermediate compartment

membrane protein

Biosynthetic transport from ER to Golgi

Late infantile*

Juvenile

Retinopathy and loss of vision, optic nerve

atrophy

CLN10 Cathepsin D (CTSD) Lysosomal enzyme

Aspartic endoprotease

Congenital*

Late infantile Juvenile Adult

Congenital: unclear

Retinopathy and loss of vision for later

onset forms

CLN11 Progranulin (PGRN) Lysosomal enzyme chaperone

Neuronal survival and axonal growth factor

Adult*

Frontotemporal lobar dementia

(heterozygous mutation)

Retinopathy and loss of vision

CLN12 ATP13A2 Lysosomal membrane protein

Polyamine-transporting ATPase

Juvenile* Not known

CLN13 Cathepsin F (CTSF) Lysosomal enzyme

Cysteine protease

Adult* (Kufs disease) Not known

CLN14 BTB/POZ

domain-containing

protein KCTD7

(KCTD7)

Cytoplasmic protein-partially associated

with plasma membrane

Unknown

Infantile

Late infantile

Loss of vision, optic nerve atrophy

*Phenotypes present in patients with a complete loss of protein function.

TABLE 2 | Preclinical ocular-targeted gene therapies for NCLs.

NCL type Animal model Viral vector Delivery route Age of intervention References

CLN1 Ppt1 knockout mouse AAV2 Intravitreal P18–21 or 8 weeks (28)

CLN3 Cln31ex7/8 knock-in mouse AAV7m8 Intravitreal P5 or P6 (29)

AAV2/8 Subretinal P14 (29)

CLN5 CLN5-deficient Borderdale

sheep

AAV9 Intravitreal 3 months (30)

CLN6 Cln6/nclf mouse AAV7m8 Intravitreal P5 or P6 (31)

CLN6-deficient South

Hampshire sheep

AAV9 Intravitreal 3 months (30)

CLN10 CtsD knockout mouse AAVshH10 Intravitreal P5 (32)

CLN11 Pgrn knockout mouse AAV2.7m8 Intravitreal 1, 6, and 12 months (33)

AAV9.2YF Systemic P3 or P4
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activities compared with age-matched wild type mice (28).
Although a better organization of the photoreceptor layer and
improved retinal function as measured by ERG recordings
were detected in AAV2-PPT1 treated mutant mice, the
progression of the retinal dystrophy was only retarded but not
completely prevented.

CLN2 DISEASE

A naturally occurring TPP1-deficient Dachshund model
recapitulates the key features of human CLN2 disease, including
ataxia, tremor, progressive brain atrophy, loss of vision, and
a reduced life span (34). For CLN2 disease, there are no
reports on the efficacy of experimental ocular gene therapies
in animal models. A single pre-symptomatic intraventricular
injection of an AAV2 vector harboring canine TPP1 (cTPP1)
cDNA into the CLN2 Dachshund model led to the reduced
storage of autofluorescent material and decreased astrocytosis
in the brain, and delayed onset of cognitive deficits and
extended lifespan of the mutant dogs (35). However, TPP1
was not detected in photoreceptors and retinal pigment
epithelial cells. In the treated CLN2 mutant dogs, the retinal
degeneration and reduction of ERG b-wave amplitudes were not
prevented by the brain-directed administration of AAV2-cTPP1
compared with untreated dogs (36). These data suggest that
AAV-mediated brain-targeted gene therapy is not sufficient
to treat the retinal degeneration and loss of vision in CLN2
dog models.

CLN3 DISEASE

The Cln3 knock-in mouse model (Cln31ex7/8) genetically
recapitulates the 1Kb deletion mutation of exons 7 and 8 found
in 85% of human patients with CLN3 disease (37). Retinal
degeneration in Cln31ex7/8 mice is relatively mild leading to
the loss of bipolar cells and a progressive reduction of the
b-wave amplitudes beginning from 12 months of age (29,
38). These data demonstrate a progressive reduction of inner
retinal function in the retinas of mutant mice. An ocular gene
therapy using the intravitreal injections of an AAV7m8 vector
harboring human CLN3 in postnatal Cln31ex7/8 mice led to the
improved survival of bipolar cells and retinal function (29). In
contrast, a subretinal injection using an AAV2/8-mCln3 vector
targeting photoreceptors and retinal pigment epithelial cells
did not attenuate the loss of bipolar cells and the decline in
inner retinal function suggesting that the expression of CLN3
in photoreceptors was not therapeutic in the mutant mice.
Of note, the Cln31ex7/8 mice do not fully recapitulate the
retinal phenotype observed in patients with CLN3 disease. The
number of photoreceptors was unchanged in the 15-month-
old Cln31ex7/8 mice whereas photoreceptors in the retinal
postmortem tissues of patients with CLN3 disease are almost
completely lost (7).

CLN5 DISEASE

Murray and colleagues reported on the first successful intravitreal
gene therapy in a large NCL animal model (30). They used
the naturally occurring CLN5-deficient Borderdale sheep which
recapitulates the key features of human CLN5 disease, such as
motor and cognitive decline, progressive neurodegeneration in
the brain and the retina, and loss of vision (39). The sheep eye
represents a good model for the human eye because of its similar
morphology and size. CLN5-deficient Borderdale sheep received
a single intravitreal injection of an AAV9 vector harboring ovine
CLN5 cDNA at 3 months of age and were analyzed at 18 months
of age (30). AAV9-CLN5-treated eyes showed minor lysosomal
storage and neuroinflammation and intact retinal layers with
a thickness comparable to that of the control sheep (30). In
addition, the measurements of retinal functions in treated eyes
showed ERG amplitudes nearly comparable with amplitudes in
wild type control sheep (30).

CLN6 DISEASE

The Cln6 nclf mouse is a naturally occurring mouse model
of CLN6 disease (40). The main pathological features in the
retina of Cln6 nclf mice include the loss of photoreceptors, early-
onset reactive gliosis, accumulation of lysosomal storage material
in multiple retinal cell layers, and the increased expression of
soluble lysosomal enzymes (41). Surprisingly, an AAV2/8 vector-
mediated gene transfer of human ormouseCLN6 did not prevent
the loss of photoreceptors and did not preserve photoreceptor
functions in Cln6 nclf mice. In contrast, an AAV2.7m8 vector-
mediated bipolar cell-specific expression of CLN6 prevented
the loss of photoreceptors and preserved their function (31).
Data indicated that Cln6 deficiency in bipolar cells is the cause
of photoreceptor degeneration in the Cln6 nclf mouse. White
and colleagues reported for the first time that brain-targeted
gene therapy in Cln6 nclf mice attenuated retinal pathology.
Intracerebroventricular gene therapy in Cln6 nclf mice reduced
the pathology in visual centers of the brain and in the retina
(42). The intracerebroventricular injection of an AAV9-CBV-
CLN6 vector into postnatal day 1 (P1) Cln6 nclf mice reduced the
degeneration of photoreceptors in 3-, 6-, and 9-month-old mice
compared with untreated controls. In striking contrast, a brain-
directed AAV-mediated expression of cathepsin D in a CLN10
mouse model prevented the accumulation of ceroid lipofuscin,
the activation of microglia, and neurodegeneration in brain
tissues, but not the rapidly progressing retinal degeneration (43).
Intravitreal injection of an AAV9 vector encoding CLN6 into
a naturally occurring CLN6-deficient South Hampshire sheep
model led to a minor reduction of lysosomal storage and retinal
atrophy and had no beneficial effects on retinal function as
indicated by unaltered ERG amplitudes compared with untreated
contralateral eyes (30).

CLN10 DISEASE

The CLN10 mouse deficient in the lysosomal protease cathepsin
D (CTSD) is a model for the most severe NCL form, congenital
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NCL. Cathepsin D knockout (Ctsd ko) mice are characterized
by an early-onset loss of photoreceptor cells and a subsequent
loss of all other retinal nerve cell types, the accumulation of
storagematerial, lysosomal dysfunction, reduced autophagic flux,
reactive astrogliosis and microgliosis, and a shortened lifespan
with premature death at P26 (44, 45). The Ctsd ko mouse is
a valuable model to study the efficacy of experimental ocular
therapies due to the early-onset and most rapid progression of
retinal degeneration in all NCL forms. Intravitreal administration
of an AAVsh10 vector harboring mouse Ctsd transduced retinal
glial cells and RPE cells (32). Biochemical and morphological
analyses of the AAV-treated retinas revealed a restoration of
CTSD enzymatic activities close to wild type levels, a complete
reduction of lysosomal storage material, the absence of lysosomal
hypertrophy, and the preservation of photoreceptor and rod
bipolar cells. However, this gene therapy study was unable to
clarify whether the retinal function was preserved due to ethical
issues related to experiments on severely affected animals at the
end stage of the disease.

CLN11 DISEASE

In a mouse model for CLN11 disease, the progranulin knockout
(Pgrn ko) mouse, autofluorescent storage material accumulation,
and the degeneration of photoreceptors and retinal ganglion cells
become apparent in 12-month-old mutant mice (46). In a recent
study, the therapeutic benefits of intravenous administration of
an AAV9.2YF-Pgrn vector were compared with the intravitreal
delivery of an AAV2.7m8-Pgrn vector into Pgrn ko mice
(33). Systemically administered AAV9 vectors cross the blood-
retina- and blood-brain-barriers until 7 days of age. Intravenous
delivery of an AAV9.2YF vector encoding murine PGRN into
P3 or P4 Pgrn ko mice led to a reduction of autofluorescent
ceroid lipopigments and attenuated the thinning of the outer
nuclear layer and the total retina in 12-month-old mutant
mice (33). Interestingly, intravitreal injection of an AAV2.7m8-
Pgrn vector into 1- or 6-month-old Pgrn ko mice reduced
lipofuscin lipopigments, decreased microglial infiltration, but did
not attenuate retinal neurodegeneration. These data suggest that
both the route and time of AAV administration are crucial to
achieving therapeutic benefits in the retina of Pgrn ko mice.

ENZYME REPLACEMENT THERAPY

Ocular enzyme replacement therapies (ERTs) rely on the
intravitreal administration of a recombinant soluble lysosomal
enzyme and its uptake via mannose 6-phosphate receptors,
delivery to lysosomes, and cross-correction (47). Therapeutic
benefits of ocular ERTs have been tested in animal models for
CLN2 and CLN10 diseases (15).

Periodic intravitreal injections of recombinant TPP1 starting
at 12 weeks of age into the CLN2 Dachshund dog model led
to decreased neurodegeneration in the inner nuclear layer and
inhibited declines in ERG amplitudes (48). Intravitreal TPP1
administration also prevented focal retinal detachments in the
mutant dogs. A single intravitreal injection of recombinant

CTSD into P7 and P14 CLN10 mutant mice partially attenuated
lysosomal dysfunction and reduced reactive microgliosis but
failed to prevent the photoreceptor loss and retinal degeneration
(49). The data suggest that the regular intravitreal administration
of a recombinant lysosomal enzyme may be a therapeutic
option to treat retinal degeneration and vision loss at least
in some NCL forms. A new clinical trial (Clinical Trial gov
Identifier: NCT05152914) is currently enrolling patients to test
the therapeutic efficacy of intravitreal ERT (Cerliponase alfa) in
CLN2 disease.

CELL-BASED THERAPY

Therapeutic benefits of cell-based ERTs were evaluated in NCL
animal models (15). Cell transplantation into the retina of
NCL models deficient in soluble lysosomal proteins is based
on the rationale that the grafted cells secrete the missing
lysosomal proteins (donor cells) followed by their internalization
via mannose 6-phosphate receptors by surrounding defective
acceptor cells (47). The lysosomal enzyme-mannose 6-phosphate
receptor complexes are internalized and lysosomal enzymes
are finally targeted to lysosomes where they are proteolytically
activated. Preclinical experiments evaluated the benefits of
transplanted stem cells overexpressing the missing lysosomal
enzyme. Stem cells transduced with an AAV2-vector carrying the
human PPT1 cDNAwere intravitreally implanted at early disease
stages into the CLN2 Dachshund model (50). A single injection
of these modified stem cells inhibited the pathological changes
in retinal morphology and retinal function suggesting that
genetically modified stem cells might serve as useful vehicles for
a long-term intraocular administration of the soluble lysosomal
protein in NCLs. In another approach, neural stem cells that
were transduced ex vivowith a lentiviral vector harboring murine
Ctsd cDNA were intravitreally implanted into the CLN10 mouse
model of the CLN10 mouse model (32). In treated retinas,
the restoration of CTSD enzymatic activities to 44% of wild
type levels, a partial decrease of lysosomal storage material, and
reduced microgliosis and astrocytosis compared with untreated
Ctsd knockout retinas were detected. However, the degeneration
of different retinal cell types was not prevented by the implanted
stem cells. In summary, the data suggest that intravitreal injection
of genetically modified stem cells may be an encouraging
approach to attenuate retinal degeneration for some NCL forms
with soluble lysosomal enzyme deficiencies.

IMMUNOMODULATION

Previous studies showed that the genetic inhibition of the
adaptive or innate immune system led to disease-ameliorating
effects in the CNS of Ppt1 ko/Cln31ex1−6 ko and Ppt1 ko mice,
respectively (51, 52). In line with these findings, the treatment of
Ppt1 ko or Cln31ex1−6 ko mice with immunosuppressive drugs
showed therapeutic benefits (53, 54). Oral administration of
the immunomodulators fingolimod and teriflunomide prevented
retinal thinning in Ppt1 ko mice and attenuated retinal
thinning in Cln31ex1−6 ko mice (55). In a genetically modified
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Cln31ex7/8 knock-in mouse susceptible to light damage, light
exposure resulted in pathological changes, including retinal
neurodegeneration, activation of microglia, and accumulation
of autofluorescent storage material (56). Treatment of the
mutant mice with the antibiotic and anti-inflammatory drug
minocycline prior to light stress led to reduced photoreceptor
loss and decreased amounts of autofluorescent storage material
(56). Based on the strong reactive gliosis present in Cln6
nclf retinas, mutant mice were treated with the natural
immunomodulators curcumin and docosahexanoic acid [DHA,
(57)]. In the curcumin- and DHA-treated Cln6 nclf mice, reactive
gliosis was attenuated and the decline in visual acuity and
ERG amplitudes was delayed when compared with untreated
mutant mice.

DISCUSSION

Retinal degeneration and loss of vision are among the major
hallmarks of NCLs of NCLs. With the exception of one study
on Cln6 nclf mice, brain-targeted therapies in NCL animal
models had no therapeutic impact on retinal degeneration
and loss of retinal function. Therefore, there is an unmet
need to design novel eye-targeted therapies. The therapeutic
efficacy of eye-targeted experimental therapies in NCL animal
models, including gene therapy, enzyme replacement therapy,
cell-based therapy, and immunomodulation, were evaluated
in the past. Recent experimental ocular gene therapies on
animal models with soluble lysosomal enzyme deficiencies
(CLN1, CLN5, CLN10, and CLN11) and transmembrane protein
deficiencies (CLN3 and CLN6) have shown the strong potential
of gene therapeutic approaches to effectively treat NCL-related
retinopathies. A major breakthrough in the experimental gene
therapy approaches was the identification of the specific cell
types that have to be targeted to achieve therapeutic benefit.
In the CLN3 and CLN6 mouse models, the AAV-mediated
bipolar cell-specific delivery of CLN3 and CLN6 was successful

in preventing the loss of photoreceptors and bipolar cells,
respectively, and to partly preserve retinal function. Furthermore,
the intravitreal injection of an AAV9-CLN5 vector into a CLN5
sheep model largely prevented retinal degeneration and loss of
retinal function. Finally, results from a recent study suggest that
an AAV-mediated CTSD expression in the retina of a CLN10
mouse model is more potent in preventing retinal degeneration
than intravitreal ERT mediated by the injections of recombinant
CTSD or by transplantation of neural stem cells overexpressing
CTSD. While the results of the eye-targeted therapies are
encouraging, most studies have started the treatment prior to
the onset of the retinal pathology. Future work thus needs to
evaluate whether the treatment strategies are still effective when
they are started at the initial or advanced stages of the retinal
dystrophy. For clinical applications, gene therapies have the
advantage of single dosing compared with enzyme replacement
therapies which require repeated administration. Combined
therapies targeting the brain and the retina separately may
attenuate neurological symptoms and additionally vision loss in
patients with NCL. The long-term benefits of these experimental
ocular treatment options have to be evaluated in patients with
NCL in future clinical studies.
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region: An epidemiological
overview
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Ines Adriana Cismondi1,5, Adriana Becerra1,2,

Juan Carlos Vazquez6, Elmer Andrés Fernández6,

Ana Lucía De Paul3,4, Norberto Guelbert1,7, Ines Noher1,8*† and

Favio Pesaola1,9*†
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Enfermedades Infecciosas, Universidad Católica de Córdoba, Consejo Nacional de Investigaciones

Científicas y Técnicas, Córdoba, Argentina, 7Servicio de Enfermedades Metabólicas Hereditarias,

Clínica Universitaria “Reina Fabiola”, Córdoba, Argentina, 8Universidad Nacional de Córdoba,

Córdoba, Argentina, 9Department of Pediatrics, Washington University in Saint Louis School of

Medicine, St. Louis, MO, United States

Neuronal ceroid lipofuscinoses (NCLs) comprise 13 hereditary

neurodegenerative pathologies of very low frequency that a�ect individuals

of all ages around the world. All NCLs share a set of symptoms that are

similar to other diseases. The exhaustive collection of data from diverse

sources (clinical, genetic, neurology, ophthalmology, etc.) would allow being

able in the future to define this group with greater precision for a more

e�cient diagnostic and therapeutic approach. Despite the large amount of

information worldwide, a detailed study of the characteristics of the NCLs in

South America and the Caribbean region (SA&C) has not yet been done. Here,

we aim to present and analyse the multidisciplinary evidence from all the

SA&C with qualitative weighting and biostatistical evaluation of the casuistry.

Seventy-one publications from seven countries were reviewed, and data

from 261 individuals (including 44 individuals from the Cordoba cohort) were

collected. Each NCL disease, as well as phenotypical and genetic data were

described and discussed in the whole group. The CLN2, CLN6, and CLN3

disorders are the most frequent in the region. Eighty-seven percent of the

individuals were 10 years old or less at the onset of symptoms. Seizures were

the most common symptom, both at onset (51%) and throughout the disease

course, followed by language (16%),motor (15%), and visual impairments (11%).

Although symptoms were similar in all NCLs, some chronological di�erences

could be observed. Sixty DNA variants were described, ranging from single

nucleotide variants to large chromosomal deletions. The diagnostic odyssey

was probably substantially decreased after medical education activities
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promoted by the pharmaceutical industry and parent organizations in some

SA&C countries. There is a statistical deviation in the data probably due to the

approval of the enzyme replacement therapy for CLN2 disease, which has led

to a greater interest among the medical community for the early description

of this pathology. As a general conclusion, it became clear in this work that

the combined bibliographical/retrospective evaluation approach allowed a

general overview of themultidisciplinary components and the epidemiological

tendencies of NCLs in the SA&C region.

KEYWORDS

neuronal ceroid lipofuscinoses (NCL), South America-Caribbean, epidemiology,

genotype, phenotype

Introduction

Neuronal ceroid lipofuscinoses (NCLs) are rare inherited

neurodegenerative disorders of all ages, clinically characterized

by progressive loss of speech, vision, cognitive and motor

skills, with refractory seizures and early death. Taken together,

they are the most common cause of neurodegeneration in

childhood (1), although adulthood phenotype has also been

described (2). Morphologically, NCLs are characterized by the

accumulation of undegraded lipoprotein lipofuscin-likematerial

within lysosomes (1), which includes them in the group of

lysosomal storage disorders. To date, thirteen NCL diseases have

been described, named according to the affected gene (CLN1-

CLN14 diseases, CLN9 disease was suggested and later removed)

(3). All the proteins encoded by these genes were defined;

however, the specific role of some of them, and how they lead

to the lysosomal pathology, remain to be fully elucidated.

Individuals affected by an NCL have been described and

studied throughout the world, especially in the Northern

Hemisphere where most of the “classical” (CLN1, CLN2, CLN3,

CLN4, and CLN10 diseases), as well as the “variant” NCLs

(CLN5, CLN6, CLN7, CLN8, CLN11, CLN12, CLN13, and

CLN14 diseases), were identified for the first time. For example,

CLN5 and CLN8 were first described in Finland (4, 5), CLN6

among the Romany population, and in a big Costa Rican family

(6–9), and CLN7 was found in a cohort of Turkish children (10).

The information of these individuals was subsequently collected

in massive repositories to support the growing number of cases,

either specific for NCLs (such as the NCL Resource https://

www.ucl.ac.uk/ncl-disease/, supported by the University College

London and curated by Dr Sara Mole; and the DEM-CHILD

registry, led by Dr Angela Schulz), or for diverse disorders (such

as Orphanet https://www.orpha.net/consor/cgi-bin/index.php,

and LOVD https://www.lovd.nl). This information is then used,

for example, for delineating the natural history of a particular

NCL disease, the mutation spectrum, the population level, etc.

Later, these results can finally be used as controls or reference

points to compare future cases (11–13), and for epidemiological

purposes (12).

There is a relative imbalance between the Northern and

Southern Hemisphere countries of NCL cases registered in

public databases. This might be due to differences in the number

of referral centers and research facilities, the development of

a robust and efficient national health system, the possibility

and time to get a precise diagnosis (“diagnostic odyssey”), the

knowledge of the diseases and the registries by the treating

physicians, among others. The knowledge of a disease can

in turn be increased by some other factors, such as available

therapies, the degree of medical education, advocacy activities

of family organizations, and other socio-economic factors.

Thus, the South American and the Caribbean (hereinafter,

SA&C) populations, for example, appear underrepresented in

the databases. In the present review, we seek to carry out

a multidisciplinary and epidemiological update of the NCL

information in SA&C, collecting published information from

different medical specialities (neurology, pediatrics, radiology,

medical genetics, morphology, enzymology, electrophysiology,

etc.) to build a baseline for regional medical use, avoid

the registration of repeated cases and find out the regional

specificities. Ultimately, we expect to feed regional and

international databases and overcome the diagnostic odyssey,

misdiagnosis, and underdiagnosis of various countries in this

ethnically heterogeneous region (14).

Analysis methodology

A comprehensive bibliographic search was made in

the four principal databases of scientific articles (PubMed

https://pubmed.ncbi.nlm.nih.gov/, ScienceDirect https://www.

sciencedirect.com/, Google Scholar https://scholar.google.

com/, and SciELO https://www.scielo.org/), using as keywords

“Neuronal ceroid lipofuscinosis,” the HGNC approved symbol

for each NCL gene (e.g., PPT1), its most common alias (e.g.,
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CLN1, INCL), and the name of each SA&C country. All articles

matching the keywords and including at least one author with

a SA&C affiliation were collected. From the first compilation,

only those articles with references to affected individuals (such

as clinical, biochemical, genetic, morphological studies, etc.)

were retrieved and subsequently analyzed. The individuals

corresponding to the Cordoba cohort (15), whether or not

published, who have a precise diagnosis and complete clinical

data, were also included. In these cases, each individual or

caregiver signed an informed consent approved by the local

ethical board [Inter-institutional Committee of Ethics in Health

Research (CIEIS—Polo Hospitalario)] authorizing not only

the extraction, manipulation, and analysis of their samples for

diagnostic purposes but also the dissemination of clinical data

ensuring the total anonymity of the individuals. Those subjects

with precise references to previous reports were tracked to

avoid or reduce the number of duplications. All the information

available (clinical, biochemical, genetic, morphological) was

collected and analyzed using an Excel datasheet.

Bibliographical evidence

Seventy-one articles published between 1995 and 2022 were

collected from the four main literature databases (PubMed,

Google Scholar, ScienceDirect, and SciELO), including

original articles, reviews, case reports, short communications,

and published conference abstracts (a complete list of this

bibliography can be found in Supplementary Table 1). It should

be noted that an attempt has been made to collect all the

information published in public and massive bibliographic

portals. Articles published in regional or local journals,

conference presentations, or other non-print materials may

have been omitted. It is important to highlight the importance of

freely sharing clinical cases of rare diseases in public databases

for a better understanding of these diseases. The number

of publications has had “ups and downs” throughout the

period considered with a significant increase in the last decade

(Figure 1A). The first publication was by Taratuto et al. (16), in

which they presented a group of late infantile NCL (LINCL) and

juvenile NCL (JNCL) cases in Argentina. In 2005, a symposium

book published by the National University Cordoba (Cordoba,

Argentina), and edited by members of the recently formed

NCL Program (established at the Children’s Hospital of the

Province of Cordoba in 2003), conducted an update of the NCL

information derived mainly from research groups in SA&C.

Individuals from different SA&C countries coursing with any

NCL disease were described there, causing the publications peak

observed in Figure 1A.

Authors from seven countries (Argentina, Brazil, Chile,

Colombia, Mexico, Paraguay, and Venezuela) have collaborated

in the publications reviewed (Figure 1B). Moreover, 77% of the

articles were led by authors from SA&C. Individuals affected by

an NCL were described in Argentina, Brazil, Chile, Colombia,

Costa Rica, Mexico, Paraguay, Peru, and Venezuela (Figure 1C).

Argentina (n = 38 articles) and Brazil (n = 17 articles) were the

most represented countries, considering both the publications

and the individuals described, reflecting the awareness of rare

disease studies in the reference centers of these countries in

the region.

The SA&C cohort

Phenotypic, genetic, and demographic
distribution of cases

Two hundred sixty-one subjects affected by CLN1, CLN2,

CLN3, CLN5, CLN6, CLN7, CLN8, CLN11, or CLN12 diseases

were described in the literature and incorporated in this

review, including some non-published cases of the Cordoba

cohort (a complete list of these individuals and their associated

medical information is presented in Supplementary Tables 2, 3).

In older publications (16–23) the individuals were recorded

according to clinical and/or morphological data [presence

of intracellular bodies observed by transmission electron

microscopy (TEM)], resulting in clinical definitions (e.g.,

Santavuori-Haltia disease or Jansky-Bielschowsky disease, later

redefined as CLN1 and CLN2 diseases, respectively; infantile

NCL [INCL], LINCL, JNCL). As genetic testing increased, these

clinical definitions were correlated with genetic variants. Thus,

individuals with an INCL phenotype were mostly diagnosed

with CLN1, LINCL cases mostly with CLN2, and JNCL cases

mostly with CLN3 disease. However, the genotype/phenotype

correlation is not bidirectional (3). The current nomenclature

and classification of NCLs was agreed by an international panel

of experts in the clinical, genetic, biological, and morphological

fields, and formally established in 2012 (24). It establishes

the diagnostic definition of a case taking into account 7

axes (gene, genetic variant, biochemical phenotype, clinical

phenotype, ultrastructural phenotype, functionality and other

characteristics), which allows a precise definition in light of the

heterogeneity of this group of pathologies. Because molecular

confirmation was not performed in these old cases, the precise

genetic variants affecting these children were not defined, so they

were classified in this review as separated entities (NCL, INCL,

LINCL, and JNCL in Supplementary Tables 2 , 3).

Ninety-one individuals (35%) of the SA&C cohort are

female, 77 are male (29%), and 93 (36%) were not identified.

As expected, these values do not differ substantially from the

estimated percentages of both genders in SA&C (males: 49.4%,

females: 50.6%: Countrymeters https://countrymeters.info/es/

South_America,revisedJune26,2022 ; Supplementary Table 3).

In addition, 87% of the affected individuals were 10 years old or

less at the onset of symptoms (Figure 2). Only those individuals

affected by CLN11 or CLN12 disorders were older than 10 years
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FIGURE 1

The SA&C publications. Graphs showing (A) the publications per year and (B) per country, and (C) the number of individuals described per SA&C

country. All types of publications in public databases were collected. The country mentioned in a�liations was taken, even if the author from

SA&C was not leading the article. An increasing number of publications (mainly on CLN2) was observed in the last few years. Argentina and

Brazil are the most represented regarding the number of publications and individuals described, probably due to the increasing number of

professionals and centers specialized in these pathologies.

old at the onset of symptoms. However, one individual affected

by CLN12 disease was reported as having developmental delay

since birth, although associated with perinatal hypoxia (25).

CLN2 disease is the most represented NCL in the region

(n = 91), followed by CLN6 (n = 25) and CLN3 (n =

17). Likewise, LINCL (n = 77) and JNCL (n = 25) were

the most abundant phenotypes. Unlike CLN2 cases, which

were described along the subcontinent, other variants were

observed as local concentrations. For example, an important

cluster of CLN6 disease was described in Costa Rica (8, 26),

two CLN8 cases in Argentina (27, 28), one CLN11 case in

Brazil (29), and one and seven CLN12 cases in Brazil and

Chile, respectively (Supplementary Table 2) (25, 30, 31). The

CLN11 and CLN12 cases were not directly linked to an NCL.

Instead, they were mostly referred to as frontotemporal lobar

degeneration (caused by variants in the GRN/CLN11 gene) or a

Parkinson-like neurodegenerative syndrome caused by variants

in the ATP13A2/CLN12 gene. These genetic forms (as well as

CLN13 and CLN14) were officially included in the NCL group

in 2012, after confirming the presence of lipofuscin-like bodies

in the cells of affected individuals (24). However, it is still

very common to find them in the literature with the names of

their clinical forms, referring to their association with NCLs as

an annexe.
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FIGURE 2

Diagnostic odyssey in the SA&C cohort. Bar graph showing the age of onset (mean ± SEM, blue bars) and time to diagnosis (mean ± SEM,

orange bars) in the SA&C population analyzed. The age of onset could be recorded for 240 individuals, while the age at diagnosis could only be

defined for 89 individuals. The table below the graph indicates de number of individuals included in each analyzed group.

The diagnostic odyssey

The time from the onset of the symptoms to the precise

diagnosis did not vary significantly among the confirmed

disorders (CLN1-CLN12; Figure 2). The average time to a

precise diagnosis was 5.2 ± 1.0 years (mean ± SEM, ranging

from 0 to 13 years). Some individuals were diagnosed in a short

time because of either a genetic examination or having affected

siblings. On the other hand, a prolonged time to diagnosis could

be attributed to poor knowledge of these kinds of disorders,

particularly before the availability of reliable genetic tests. In

some cases (such as in CLN12), the diagnosis was made post-

mortem (25).

Clinical features

It is widely known that all NCLs share several clinical

symptoms, such as seizures, psychomotor decline, and visual

failure, which are also present in many other disorders (32).

However, the chronological order in which they appear is

usually considered at the time of differential diagnosis. The

age of onset of different symptoms (seizures, ataxia, motor

and cognitive deterioration, behavioral changes, and language

and visual failure) was collected and analyzed for the entire

SA&C cohort (Figure 3). The most common symptom at

onset were seizures (51% of individuals) followed by language

disorder (16%), motor impairment (15%), and visual failure

(11%; Supplementary Figure 1). It should be noted that many

times seizures are the symptom that leads to the first medical

consultation, but not the first of the disorder. For example,

some cognitive decline could be evident from an early age

but attributed to other factors and dismissed. Seizures were

also the most common symptom among all NCLs (12/13

groups), followed by pyramidal signs (11/13), cognitive decline

(11/13), and language difficulties (10/13). The CLN6 and

CLN7 disorders show a very rapid progression of symptoms,

with very little variability between cases. Something similar

occurs in CLN2 disease, although a greater variability in

the onset of swallowing difficulties, behavioral changes and

ocular abnormalities has been observed. It should be noted

that in this review no discrimination has been made between

those known as “classical” and “atypical” phenotypes. Thus, it

should be considered that among the CLN2 cases there are

“protracted” forms, with a slower symptomatic progression.

On the other hand, we have observed a greater chronological

dispersion of the symptoms in CLN3 cases (as in JNCL,

although we cannot guarantee that they are all from the same

genotype). Myoclonus has been observed at later ages in the

CLN5, CLN7, CLN8, and CLN12 diseases. Vision loss occurs

earlier in the CLN3 and CLN7 disorders. Language difficulties

were described as appearing earlier in the CLN2 and CLN6

diseases. Finally, considering the ages of onset of symptoms, the

reported cases of CLN1 in the SA&C region could be attributed

Frontiers inNeurology 05 frontiersin.org

96

https://doi.org/10.3389/fneur.2022.920421
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Guelbert et al. 10.3389/fneur.2022.920421

FIGURE 3

Disease evolution of all NCL variants in the SA&C cohort. Graphs showing the age of onset (mean ± SEM) of some symptoms for each NCL

genotype and phenotype in the SA&C cohort. Values were obtained directly from clinical records or publications or estimated from the

information available in the bibliography. The set of symptoms collected was adapted from Lourenço et al. (11). The number of individuals

analyzed for each NCL variant is shown next to the graph titles. Values of the X-axis are expressed in years.

more to a “protracted” than to a “classic” infantile phenotype

(Figure 3).

All NCLs are characterized by the presence of lipofuscin-

like intralysosomal bodies in all cells. These accumulations are

observed by TEM in the form of defined patterns: granular

osmiophilic deposits (GROD), curvilinear (CB), fingerprint

(FP), or rectilinear bodies (RB), and can occur either alone or

mixed (1). For a long time, the examination of tissue biopsies by

TEM served as themethod for the diagnosis of NCLs, leaving the

genetic study for the definition of the particular disease.With the
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advent of new generation sequencing technologies, the genetic

study is usually suggested within the main tests for diagnosis,

reserving the morphological study only for challenging cases.

More than half of the individuals in the SA&C cohort were

analyzed by TEM (n = 159, 59%). The CB pattern was the most

abundant among the individuals (n= 92, 35%), occurring more

frequently in the LINCL (n = 59) and CLN2 groups (n = 20).

On the other hand, the RB pattern has not been observed in the

analyzed population (Supplementary Figure 2).

The genetic background of the SA&C
cohort

Sixty DNA variants have been described in 119 individuals

of the SA&C population (Table 1; Supplementary Figure 3).

One individual was reported to have a heterozygous variant

in the CLN6 gene without specifying it (39), and another

with a positive linkage analysis pointing to chromosome

15, suggesting a variant in the CLN6 gene (7). Seventy-

seven percent have been variations in the coding sequence

of the protein involved, mostly causing missense changes

(42%). The intronic changes found (n = 13) correspond to

splicing regions, having been their pathogenicity confirmed

for the most frequent variant in the TPP1/CLN2 gene,

I7 c.887-10A>G, p.Pro295_Gly296insGluAsnPro (40) and

the variant I13 c.1306+5G>A, p.Gly398_Leu435del in

the ATP13A2/CLN12 gene (25). Five deletions have been

described, spanning few nucleotides [e.g., E9 c.1107_1108delTG,

p.Gly370Lysfs∗32 in the TPP1/CLN2 gene (Cordoba cohort)],

large intragenic deletions (such as the most frequent variant

of CLN3 disease, 1.02 kb deletion, c.462_677del) (36, 41),

or large chromosomal deletions (such as the deletion in the

8p23 region including the CLN8 gene) (28). The pathogenicity

of the variants has only been defined in 37% of cases. It

should be noted that the pathogenicity of the variants found

in the patients described is frequently not defined, or it is

only bioinformatically. Experimental validation should be

particularly necessary for changes whose effect on the protein is

less obvious, such as missense changes or deep intronic variants

in splicing regions. Although, on the other hand, the American

College of Medical Genetics (ACMG) has proposed guidelines

for the interpretation of variants that are currently widely

used (42).

When a rare genetic disorder with autosomal recessive

inheritance is diagnosed, consanguinity between the parents is

usually suspected. The consanguinity could only be confirmed

in 10% (n = 25) of the population analyzed. However, it

could not be defined in more than half of the individuals

(57%), suggesting that a higher percentage might be observed

(Supplementary Table 3).

Over time, the increase in the number of sequencing

performed and their inclusion in the databases lead to an update

of the consensus sequences. For example, the update of the

human genome sequence toward version GRCh38.p14 (latest

to date) was released on February 3, 2022. Although these

updates do not usually cause major changes in the nomenclature

of the variants described, it would be advisable to include

in the publications the data of the version of the database

used to identify and validate the variant (for example, the

transcript identifier).

Enzymatic tests in the SA&C region

Enzyme activity assays for PPT1 and TPP1 (also for CTSD,

although its application is less common) are widely used as

a rapid screening method for the CLN1 and CLN2 (and

CLN10) diseases, respectively (43–45). However, other NCLs

(such as CLN5, CLN6, CLN7, and CLN8) can also show reduced

enzymatic values (and not only PPT1 and TPP1 but also

all the lysosomal enzymes), thus providing data to guide the

diagnosis (27, 46–49). For example, the proteins CLN6 and

CLN8, present in the membrane of the endoplasmic reticulum,

make up the EGRESS complex responsible for transporting

soluble lysosomal enzymes to the Golgi apparatus. It has been

shown that the deficiency of any of these proteins causes a

decrease in the amount of soluble enzymes that reach the

lysosome, thus generating a generalized lysosomal deficiency

(46, 49). In the SA&C cohort, only 20% of individuals had

PPT1 or TPP1 enzyme activity studied in any of the tissues

used [leukocyte pellet, dried blood spot (DBS), or saliva;

Supplementary Figure 4]. The most common assay has been

the measurement of TPP1 activity in leukocyte pellets (20%)

followed by the TPP1 activity assay in DBS (19%). There is

a bias in these values toward the analysis of CLN2 disease in

these samples. First, enzymatic analysis in leukocyte pellet is

considered the “gold standard” for the diagnosis of both CLN1

and CLN2 diseases; therefore, it tends to be more frequently

reported in publications (if these tests are performed in several

tissues). On the other hand, DBS analysis is the most widespread

worldwide, due to the practicality of sending samples over

long distances with a minimum of deterioration. PPT1 and

TPP1 activity assays in saliva were first described by Kohan

et al. in 2005 (43). Despite being minimally invasive and with

quantitative robustness like that obtained with the leukocyte

pellet (50), its use has not reached the extent of other samples.

Lastly, enzyme assays are not always the first option for NCL

screening. When performing a genetic test and observing DNA

variants in genes other than PPT1/CLN1 or TPP1/CLN2 (or

CTSD/CLN10), enzymatic assays are not performed, and quite

sensibly. In addition, results “within the reference interval” (i.e.,

within the range of control values) may be usually disregarded

for final publication.
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TABLE 1 List of DNA variants described in the SA&C cohort.

Gene Variant Total alleles Allelic frequency Publications

CLN1 E5 c.451C>T, p.Arg151* (P) 1 0.0019 Cordoba cohort

I3 c.363-3T>G, p.? (U) 1 0.0019 Cordoba cohort

CLN2 E11 c.1424C>T, p.Ser475Leu (PP) 4 0.0077 Cordoba cohort, (11)

E4 c.311T>A, p.Leu104* (P) 3 0.0057 Cordoba cohort

I2 c.89+5G>C, p.? (U) 2 0.0038 Cordoba cohort

E8 c.1048C>T, p.Arg350Trp (PP) 8 0.0153 Cordoba cohort, (11)

I7 c.887-10A>G, p.Pro295_Gly296insGluAsnPro (P) 20 0.0383 Cordoba cohort, (11, 33)

E7 c.827A>T, p.Asp276Val (P) 21 0.0402 Cordoba cohort, (11)

I1 c.17+3G>T, p.? (U) 1 0.0019 Cordoba cohort

E6 c.622C>T, p.Arg208* (P) 11 0.0211 Cordoba cohort, (11, 33)

E8 c.1016G>A, p.Arg339Gln (PP) 2 0.0038 Cordoba cohort

E3 c.196C>T, p.Gln66* (P) 5 0.0096 Cordoba cohort, (11)

E11 c.1340G>A, p.Arg447His (PP) 6 0.0115 Cordoba cohort, (11, 34)

E7 c.225G>A, p.Gln75Gln (P) 1 0.0019 (35)

E11 c.1266G>C, p.Gln422His (PP) 1 0.0019 (11)

E12 c.1438G>A, p.Val480Met (U) 6 0.0115 (11, 33)

I8 c.1076-2A>T, p.? (PP) 10 0.0192 (11, 33)

E11 c.1358C>T, p.Ala453Val (PP) 1 0.0019 Cordoba cohort

E11 c.1358C>A, p.Ala453Asp (PP) 2 0.0038 Cordoba cohort

E13 c.1603G>C, p.Gly535Arg (PP) 4 0.0077 Cordoba cohort, (11)

E9 c.1107_1108delTG, p.Gly370Lysfs*32 (PP) 1 0.0019 Cordoba cohort

I5 c.509-1G>C, p.? (PP) 1 0.0019 Cordoba cohort

I12 c.1552-1G>A, p.? (PP) 2 0.0038 (11, 34)

E6 c.503_504insTGGA, p.Phe169Glyfs*20 (P) 1 0.0019 (35)

E12 c.1439T>G, p.Val480Gly (PP) 1 0.0019 (11)

E11 c.1343C>A, p.Ala448Asp (PP) 1 0.0019 (11)

E6 c.616C>T, p.Arg206Cys (P) 2 0.0038 (33)

E5 c.471C>A, p.Tyr157* (PP) 1 0.0019 (33)

CLN3 E14 c.1195G>T, p.Glu399* (PP) 1 0.0019 Cordoba cohort

1.02 kb deletion (c.462_677del) 10 0.0192 Cordoba cohort, (36)

E6 c.400T>C, p.Cys134Arg (PP) 1 0.0019 Cordoba cohort

E13 c.1000C>T, p.Arg334Cys (PP) 1 0.0019 Cordoba cohort

CLN5 E1 c.291_292insC, p.Ser98Leufs*13 (PP) 2 0.0038 Cordoba cohort

E2 c.335G>A, p.Arg112His (P) 4 0.0077 (37)

CLN6 I4 c.486+8C>T, p.? (U) 1 0.0019 Cordoba cohort

E4 c.307C>T, p.Arg103Trp (PP) 1 0.0019 Cordoba cohort

E4 c.461_463delTCA, p.Ile153del (P) 1 0.0019 Cordoba cohort

E6 c.662A>C, p.Tyr221Ser (PP) 2 0.0038 (8)

E3 c.214G>T, p.Glu72* (P) 23 0.0441 (8, 26)

E6 c.552_552delC, p.Phe185Serfs*21 (PP) 2 0.0038 (38)

E5 c.510_512delCTA, p.Tyr171del (PP) 2 0.0038 (8)

E7 c.755G>A, p.Arg252His (PP) 1 0.0019 Cordoba cohort

E6 c.555_556insC, p.Phe186Leufs*16 (PP) 1 0.0019 Cordoba cohort

E3 c.250T>A, p.Tyr84Asn (PP) 1 0.0019 Cordoba cohort

E4 c.368G>A, p.Gly123Asp (P) 7 0.0134 (8)

E7 c.722T>C, p.Met241Thr (P) 7 0.0134 (8)

E3 c.244G>C, p.Gly82Arg (PP) 2 0.0038 (38)

I2 c.198+104T>C (U) 16 0.0307 (26)

(Continued)
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TABLE 1 Continued

Gene Variant Total alleles Allelic frequency Publications

CLN7 I2 c.63-4delC, p.? (U) 2 0.0038 Cordoba cohort

E3 c.103C>T, p.Arg35* (P) 5 0.0096 Cordoba cohort

E12 c.1444C>T, p.Arg482* (P) 1 0.0019 Cordoba cohort

I9 c.863+1G>A, p.? (PP) 1 0.0019 Cordoba cohort

CLN8 E2 c.1A>G, p.? (PP) 1 0.0019 Cordoba cohort

Deletion of 378.6 kb in 8p23 region 2 0.0038 (28)

E3 c.792C>G, p.Asn264Lys (P) 1 0.0019 Cordoba cohort

CLN11 E8 c.767_768insCC, p.Gln257Profs*27 (P) 2 0.0038 (29)

CLN12 E15 c.1510G>C, p.Gly504Arg (PP) 2 0.0038 (30)

I22 c.2529+1G>A, p.? (P) 2 0.0038 (31)

E26 c.3057_3057delC, p.Tyr1020Thrfs*3 (P) 7 0.0134 (25, 31)

I13 c.1306+5G>A, p.Gly398_Leu435del (P) 5 0.0096 (25)

The allelic frequency was calculated based on all the individuals in the SA&C cohort. P, pathogenic; PP, probably pathogenic; U, uncertain significance.

Neuroimaging and electrophysiology
studies

Certain features common to all NCLs were noted in the

results of neurophysiological and imaging studies. Magnetic

resonance images and computed tomography studies showed,

to a greater or lesser extent, some degree of cerebral and/or

cerebellar atrophy, with signal hyperintensity in periventricular

regions also being very common. Electroencephalography

studies generally showed slowing of basal rhythms, with focal

or generalized epileptic paroxysms, with generalized polyspike

or spike-wave phenomena. Electroretinogram and visual evoked

potentials studies were performed mostly in those cases showing

some degree of visual loss, observing optic nerve atrophy,

retinitis pigmentosa, pale pupils, and thinning of retinal

capillaries, among others. Supplementary Table 3 shows detailed

information on the results of the studies performed on all

patients in the SA&C cohort.

Concluding remarks

Neuronal ceroid lipofuscinoses are a heterogeneous group

of rare disorders sharing a handful of symptoms that, in turn,

are common in other neurodegenerative pathologies. However,

particular symptoms, as well as the sequential combination

of them, can be recognized in NCLs, helping in some way

to guide the diagnosis. To improve this, it is important to

collect and study the set and sequence of phenotypic features

of each precisely diagnosed NCL through its manifestation

in each individual. The study of the SA&C population of

affected individuals is in this sense a “black pearl” to delineate

the clinical assessment of new cases. Although many subjects

have been reported as coursing a “classical” natural history,

many others have broken the “classical” forms introducing

“atypical” symptoms or disease evolution to the spectrum of

NCL phenotypes. Such are the cases of CLN2 (the “atypical”

or “protracted” variant described in the Cordoba cohort) (51),

CLN6 (Costa Rica’s variant) (8, 26, 52, 53), and CLN8 diseases

(the congenital variant) (27). This heterogeneity may be due

to the ethnic and genetic diversity imprinted on the SA&C

population, as suggested by some authors (50).

This review brings with it a series of limitations: the

literature included was only that available in public databases;

many relevant clinical data have not been reported in the

publications, either due to omission, ignorance or were simply

out of the scope of the work; the criteria for defining a

non-obvious symptom may vary between different clinicians,

leading sometimes to a late description of its onset: despite

our efforts, some individuals were likely counted more than

once in our analysis due to inefficient identification in the

literature; and on the other hand, those cases that have not

been published have been left out of this work (except for

the cases of our research center). However, the complexity

and quantity of the information collected allow us to address

some points: (1) the multidisciplinary approach allowed us to

describe and compare the evolution of each NCL in the region

and to recognize some of the peculiarities of each genotype.

Despite the phenotypic similarities between NCLs with each

other and with other pathologies, there are certain variations

(mainly chronological) that may guide medical diagnosis.

Similarly, a multidisciplinary study (clinical, genetic, enzymatic,

radiological, ophthalmological, etc.) of each particular case is

always necessary; (2) Certain NCLs are more studied worldwide

than others, such as CLN2 and CLN3. In principle, this may

be since they are the most abundant NCLs, and therefore, the

most important for the prompt search for effective treatments.

However, the commercial availability of enzyme replacement
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therapy for CLN2 in 2017 has aroused medical interest in

the early diagnosis of this pathology, and scientific interest in

studying the results of its application. This led to an increase

in published articles on this pathology, both worldwide and

in SA&C; (3) The less prevalent phenotypes may still be

underdiagnosed in many countries. Medical and technological

advances promote awareness of some diseases, as happened

with therapy for CLN2. This can pose two future scenarios:

that the search for a “better known” disease leads to the

diagnosis of another “less known,” or that the “less known” are

underdiagnosed. Despite this, since NCLs are still little known to

many health professionals, underdiagnosis may be generalized

for all of them; (4) Knowledge about these rare diseases was

increased in countries such as Argentina, Brazil, and Chile as an

indicator of the impact of genomic technology, new therapeutic

interventions based on enzyme replacement technology and

gene therapy, medical education, and family advocacy; (5) The

diagnostic odyssey gradually decreased (mainly in the most

advanced countries of the region), probably as the diseases

became better known by the local medical community after

the appearance of new therapeutic solutions on the immediate

horizon, as well as the earlier implementation of specific (panels

of genes) or generalized genetic studies (genomic or exomic

studies); (6) Diagnosis through TEMhas been gradually replaced

by genetic studies. Currently, the wide availability of genetic

tests, as well as the minimal intervention on the patient (blood

sample vs. tissue biopsy) has promoted this transition. However,

since the accumulation of intralysosomal compounds is the

pathognomonic feature of NCLs, this practice is suggested in

cases where the clinic and genetics do not allow arriving at the

same diagnosis.

In summary, an exhaustive search of the public literature

on NCLs by SA&C authors, as well as referring to affected

individuals in the same region, has been performed for this

review. In the same way, the clinical information of 44

individuals included in the Cordoba cohort since 2003 has been

compiled. Altogether, 71 scientific articles and 261 individuals

affected by any NCL have been analyzed, becoming the largest

compilation to date of clinical and bibliographic information on

NCLs for SA&C. This work aims to promote the creation and/or

improvement of public databases for the region, strengthen the

information network on NCLs, lay the foundations for rigorous

criteria for clinical data collection and help diagnose these

challenging pathologies.
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SUPPLEMENTARY FIGURE 1

Onset symptoms in the SA&C cohort. Graph showing the symptoms (or

set of them) and percentage of total individuals that showed them at the

onset of the disorder. In the cases of individuals that showed more than

one symptom at onset, they were added to each group. Seizures are

significantly the most common symptom at onset (possibly

overestimated) followed by language disorders, motor impairment and

visual failure. The NA group represents those individuals with data not

available.

SUPPLEMENTARY FIGURE 2

Lipofuscin-like accumulation in the SA&C cohort of individuals. Bar

graph showing the percentage of individuals a�ected by each NCL

disorder that showed any kind of lipofuscin-like accumulation observed

by TEM. The total number of individuals in each NCL disease is shown

on the X-axis. Curvilinear bodies (CB) are significantly the most

represented pattern observed in most of the NCLs, followed by granular

osmiophilic deposits (GROD) and fingerprints (FP). Rectilinear bodies

(RB) were not observed in any of the individuals analyzed. Those

individuals that showed more than one pattern (mixed) were added to all

the corresponding groups.

SUPPLEMENTARY FIGURE 3

Summary of the DNA variants information in the SA&C cohort. Graphs

showing information about the (A) position, (B) protein e�ect and (C)

predicted consequence of all DNA variants described in the SA&C

cohort. In those cases where the pathogenicity of the DNA variant was

not defined in the publication, it was predicted bioinformatically by

using Mutation Taster (https://www.mutationtaster.org/).

SUPPLEMENTARY FIGURE 4

Enzymatic analyzes in SA&C. Bar graphs showing the number of

individuals analyzed enzymatically for each type of sample and NCL

disorder. TPP1 was significantly more analyzed than PPT1 in all samples

and NCLs. In addition, leukocytes and dried blood spots (DBS) are

significantly more used than saliva. In turn, it is observed that the largest

number of tests were performed for individuals a�ected by CLN2

disease, as expected. Likely, there is a bias mainly toward CLN2 disease

on the total number of tests performed, due to the lack of information

on enzyme assays in other NCLs. N, the total number of individuals

analyzed for each NCL disorder. If an individual was analyzed for more

than one tissue and/or enzyme, it was added to all the corresponding

groups.
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Giancarlo Todiere1, Stefania Della Vecchia2,

Maria Aurora Morales3, Andrea Barison1, Ivana Ricca2,
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Cardiac magnetic resonance imaging (MRI) is an essential tool for the

study of hypertrophic cardiomyopathies (HCM) and for di�erentiating HCM

from conditions with increased ventricular wall thickness, such as cardiac

storage diseases. Although cardiac MRI is already used for the diagnosis and

characterization of some forms of storage diseases involving the myocardium,

it has not yet been used to study myocardial involvement in neuronal ceroid

lipofuscinosis (NCL). Here, we describe comprehensive cardiac MRI findings

in a patient with the CLN3 form of NCL showing basal inferior interventricular

septal hypertrophy with maintained indexed LV mass within reference values

and low T1-native values. MRI findings support a finding of abnormal storage

material within the myocardium in CLN3 disease. We recommend the possible

routine use of cardiac MRI for early diagnosis of cardiac involvement in CLN3

disease (also termed juvenile NCL) and to monitor the e�ects of emerging

CLN3 therapies on the myocardium as well.

KEYWORDS

neuronal ceroid lipofuscinosis, batten disease, CLN3, cardiac pathology, cardiac

magnetic resonance

Introduction

Cardiac magnetic resonance imaging (MRI) is an essential tool for studying

hypertrophic cardiomyopathies (HCM) and to differentiate HCM from conditions

presenting with an increase in ventricular wall thickness, such as cardiac deposit diseases

(1). Late gadolinium enhancement (LGE) represents the standard for non-invasive

imaging of replacement fibrosis (2). Additionally, native T1 mapping without contrast

administration improves our diagnostic power also in subjects with contraindications

to gadolinium (3). Briefly, high values of native T1 can be obtained in the presence

of myocardial fibrosis and edema (4), while low values can be a consequence of

the accumulation of iron or fat (4). Cardiac MRI is also used in the diagnosis

of Anderson-Fabry disease (AFD) cardiomyopathy, a lysosomal storage disease

(LSD) characterized by intracellular accumulation of glycosphingolipids (5). Cardiac

involvement in AFD includes left ventricle (LV) hypertrophy, valvular thickening, and
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conduction disturbances, followed by heart failure due to

myocardial fibrosis induced by glycosphingolipid accumulation

(6). Typical LGE pattern suggesting that AFD diagnosis is the

late myocardial enhancement localized at the infero-postero-

lateral region with the unaffected endocardium. Furthermore,

another finding is a low myocardial non-contrast T1 that could

be used as a marker to detect myocardial glycosphingolipid

storage (7).

Because of these properties, the role of cardiac MRI

can be justified for tissue characterization of other forms of

storage diseases involving the myocardium. Neuronal ceroid

lipofuscinoses (NCL) is a group of autosomal recessive forms

of LSD that can present with a combination of epilepsy,

psychomotor decline, dementia, and blindness (8). Interestingly,

CLN3/juvenile NCL can be complicated by cardiac involvement

in the late stages (9). Anecdotal cases reported changes in

myocardial function and storage material accumulation in

cardiomyocytes of CLN3 patients, among the commonest NCL

(10). A study involving 29 CLN3 children reported progressive

cardiac involvement with repolarization disturbances at ECG,

ventricular hypertrophy, and sinus node dysfunction, and

showed an association between inverted T waves and increased

risk of death (11). Results from another study involving

42 CLN3 patients evaluated every 6 months by ECG and

echocardiography reported hypertrophy and bradycardia as

the most common cardiac abnormalities (9). Histopathological

analyses on human biopsies showed cytoplasm vacuolization

and auto-fluorescent storage material in the cardiomyocytes,

especially in the conduction system (12–14) with fibrosis

(13), fatty infiltration (13), and calcifications (12). Electron

microscopy showed curvilinear bodies, fingerprint patterns, and

lipofuscin deposits in cardiomyocytes (15). Here, we describe for

the first-time cardiac involvement in a patient with CLN3 disease

focusing on features observed on cardiac MRI.

Case description

Patient

A 16-year-old boy with the juvenile phenotype of CLN3

disease underwent a contrast-enhanced cardiac MRI including a

native T1 mapping assessment. Informed consent was obtained

from the patient’s parents. He had an unremarkable prenatal

and perinatal history. He could sit unassisted at 6 months,

walk unsupported at 18 months, and speak first words at 12

months. Progressive visual impairment began at 5 years with

a diagnosis of retinal dystrophy. The first generalized tonic-

clonic seizures appeared at 7 years. Epilepsy was partially

controlled with valproate (900 mg/die). At that age, brain

MRI was reportedly normal. Shortly afterward, progressive

psychomotor regression, irregular sleep-wake rhythm, and

behavioral disturbances started. ECG and echocardiogram

performed annually from the age of 7 were always normal.

DNA studies revealed biallelic mutations in CLN3, the

c.558_559delAG inherited from the father and the c.461-1G>C

on the maternal allele (Figure 1). At the latest neurological

exam, the patient walked a few steps with support, presenting

severe spastic tetraparesis with dystonic postures and cerebellar

ataxia. We also recorded blindness, dysphagia, severe cognitive

decline, and dysarthria with the production of a few poorly

intelligible words. Brain MRI documented mild diffuse and

symmetrical hyperintensity in T2-weighted images involving

cerebral and cerebellar white matter, thinning of the corpus

callosum, and of the optic chiasm, global supra- and sub-

tentorial atrophy. EEG detected slow background activity

and paroxysmal abnormalities involving mainly the parietal,

temporal, and occipital regions bilaterally. At 16 years, ECG

showed sinus rhythm with normal atrioventricular conduction,

and negative T waves in DIII, V5, V6 leads, and normalized QT

interval in the reference range. Two-dimensional transthoracic

echocardiography detected mild LV hypertrophy (end-diastolic

interventricular septum wall thickness 12mm) and normal LV

ejection fraction (EF 66%, Simpson rule).

Cardiac MRI acquisition and analysis

Cardiac MRI, using a 1.5 Tesla system (GE Healthcare

SIGNAArtist) confirmed normal indexed biventricular volumes

for age and BSA, and systolic function (EF 69%), with

hypertrophy of basal inferior interventricular septum (12mm)

but maintaining indexed LV mass in reference values (74 g/m2)

(Figure 2). Before the administration of the contrast agent, a

sequence MOLLI SSFP for native T1 mapping was performed.

Native T1 values were calculated by dedicated postprocessing

software (Circle Cardiovascular Imaging, Alberta, Canada) and

significantly shortened than normal values of the Laboratory

were obtained (global T1 of LV was 885ms, normal value

≥ 928ms) (Figure 3) (16). No areas of LGE (defined as

hyperintense areas after administration of gadoteric acid ≥ 6

standard deviations than a region of interest in the background)

were detected in the myocardium, covering the entire left

ventricle from the mitral valve plane to the apex (Figure 4).

Discussion

We presented comprehensive cardiac MRI findings in

a patient with CLN3 disease. We found basal inferior

interventricular septal hypertrophy with maintained indexed LV

mass within reference values and low T1-native values. Our

findings in this case of CLN3 disease confirm that some types

of NCL are characterized by cardiac involvement with excess

storage of ceroid and lipofuscin-likematerials in cardiomyocytes

(12–14). As in patients with AFD, low myocardial non-contrast
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FIGURE 1

Sanger sequencing analysis performed in our patient (black square) revealed a two-base deletion (c.558_559delAG) in exon 8 of the CLN3 gene

[(A) red arrow] and a splice-site mutation (c.461-1G>C) upstream exon 7 [(B) red arrow]. Segregation analysis showed that the father (empty

square) carries the c.558_559delAG mutation (A) and a wild-type allele (C) whereas the mother (empty circle) has the splice-site mutation (B)

and a wild-type allele (C). Base positions are referred to as the NM_000086 reference sequence (Ensembl genome browser, https://www.

ensembl.org/).

FIGURE 2

Concentric left ventricular hypertrophy of basal and mid segments on cine images.

T1 observed in our patient could be used as a surrogate marker

to detect myocardial storage also in CLN3 disease (7). While

cardiac function in CLN3 patients has so far been assessed

mainly by ECG and echocardiogram, the clinical use of cardiac

MRI should be considered as a tool to directly and non-

invasively characterize myocardial structure in the early stages
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FIGURE 3

Segmental and global low native T1 mapping at MOLLI images. On the bottom right square, AHA segmentation with T1 native values of each

segment. Areas of low native T1 are highlighted in blue.

of CLN3 disease, even before life-threatening events, such as

advanced conduction disturbances. It is tempting to suggest the

routine use of cardiac MRI for the early diagnosis of cardiac

involvement in CLN3 disease and to monitor the effects of

emerging therapies for CLN3 disease on themyocardium as well.

However, it should be noted that a limitation in the routine

use of cardiac MRI in CLN3 may be the need for sedation in

pediatric patients or patients with advanced dementia.

It should be noted that our patient’s genotype does not

include themore frequent 1 kb founder deletion, which accounts

for approximately 90% of the affected alleles in CLN3 patients

(74% homozygous and 22% heterozygous) (17, 18) and leads

to the formation of a protein lacking exons 7 and 8, located

in the second of the four luminal loops of the protein (19).

On the contrary, our patient has an unusual CLN3 genotype

with a deletion (c.558_559delAG) in exon 8 and a splice-

site mutation (c.461-1G > C) upstream exon 7 of the CLN3

gene. Both mutations present in our patient have already been

described; the 2bp deletion results in a frameshift at the protein

level (p.Gly187Aspfs∗48) (17), while the second is a mutation

in intron 6 that is predicted to result in defective splicing

(17). Many compound heterozygous mutations, including the

one described here, fall within the same loop involved by 1 kb

deletion, suggesting that this domain is critical for protein
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FIGURE 4

Late gadolinium enhancement (LGE) images without hyperintense myocardial areas at the left ventricle.

structure and function (17). Although milder phenotypes with

slower progression have been observed, like some missense

mutations (19), genotype–phenotype correlation is not well

understood, neither regarding the severity of the clinical

phenotype (19) nor regarding cardiac involvement. In this

regard, one study established that genotype does not predict the

severity of behavioral phenotype in CLN3 disease (20). Although

there is a need to study cardiac MRI features even in patients

with the more frequent 1 kb deletion, it is worth noting that one

of the largest studies on cardiac involvement in CLN3 disease

showed a high frequency of cardiac ventricular hypertrophy in

their 3rd decade of life (11), a finding also confirmed in another

cohort of CLN3 patients (9), suggesting that our findings are not

attributable to our patient-specific mutation.

Furthermore, our patient obtained subjective benefits from

the administration of Trehalose–a sugar being tested in several

neurodegenerative diseases, such as NCLs (ClinicalTrials.gov.

Available online: https://clinicaltrials.gov/ct2/results?cond=

trehalose&term=&cntry=&state=&city=&dist=; accessed 19

June 2022) for its neuroprotective actions (21) and its ability

to stimulate autophagy (22). In fact, an alteration of the

autophagy-lysosome system has been found in many of these

conditions. This is also the case with CLN3 disease. Research

in various model organisms has highlighted the importance

of CLN3 protein function in autophagy, indicating that it

influences the expression and activity of lysosomal enzymes

and modulates vesicular trafficking and autophagic degradation

(23). It is not known whether Trehalose administration may

also have a benefit on cardiac function. However, a new MRI

study on treated patients is warranted to define any positive

effects on the heart as well.

In the present study, cardiac biomarkers were not

assessed when cardiac imaging was performed. Troponin

and NTproBNP are suggestive of infiltration in subjects with

suspected disease and normal left ventricular ejection fraction

(LVEF). When cardiac abnormalities are detected by imaging

techniques (either ultrasounds or cardiac MRI), their role

becomes relevant during follow-up, to assess the progression of

the disease and the possible effect of treatment.

Being a case report, the results are limited to a single

case with an unusual genotype, thus firm conclusions

cannot be drawn. Presentation of cardiac MRI results on

a single patient and the absence of a baseline cardiac MRI

examination are the main weak points, though the study

brings original information worth exploring further. The

strength is that, to our best knowledge, this is the first

study of NCL-associated heart disease by cardiac MRI.
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