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Editorial on the Research Topic

Physiological and molecular perspectives of stress tolerance

in vegetables

Introduction

In 2021, the Intergovernmental Panel on Climate Change (IPCC, 2021) released

a recent report on the anthropogenic effects of current climate changes. Climate

changes such as persistent drought, increased soil salinity and frequent heat-waves, and

reductions in the quantity and quality of water resources pose serious threats to food

security for the coming generations, both from a qualitative and quantitative viewpoint

(Abdelrahman et al., 2020a,b,c, 2021). For these reasons, the development of climate-

resilient crops will play a significant part in revolutionizing farming systems to cope

with the projected extreme environmental fluctuations (Schiermeier, 2018; Abdelrahman

et al., 2019). To overcome these changes, crops have developed complex mechanisms

for stress tolerance, including stress perception, signal transduction, transcriptional

activation of stress-responsive target genes, synthesis of enzymatic and non-enzymatic

antioxidants, and production of osmoprotectants (Gupta and Huang, 2014; Resende

et al., 2020). Emerging technologies from multiple research areas including plant

genomics, crop breeding, plant physiology, omics-based techniques, and bioinformatics,

present opportunities to improve the efficiency of screening useful agronomic traits that

can enhance abiotic stress tolerance in vegetable crops. These interests have prompted

us to edit this Research Topic, collecting a total of 12 contributions (six reviews and six

original research articles) which cover different Physiological andMolecular Perspectives

of Stress Tolerance in Vegetables. In particular, the topics cover both abiotic and biotic

stress tolerance/resistance, as well as the potential molecular mechanisms involved. A

discussion of these articles is given below.
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Key remarks

The physiological and biochemical levels of two different

melon (Cucumis melo) cultivars were evaluated in response

to control, drought, or salt stress conditions (Chevilly et al.).

Authors reported distinctive traits for salt tolerance in

melon, including phenylalanine, histidine, proline, and the

Na+/K+ ratio. On the other hand, the characteristic traits for

drought tolerance were the hydric potential, isoleucine, glycine,

phenylalanine, tryptophan, serine, and asparagine (Chevilly

et al.). These obtained results can be useful markers for

breeding strategies or to predict which varieties are likely

to perform better under drought or salt stress. In another

study, Wang et al., functionally characterized the potential

role of pumpkin Regulator of chromosome condensation 1

(CmRCC1) gene involved in cold tolerance. Cold stress is

the main limiting factor of cucurbit crop cultivation as it

affects crop yield and quality; thus, identification of stress

responsive genes is a crucial aspect of pumpkin rootstock

breeding. Results indicated that CmRCC1 overexpression in

tobacco increased the gravitropic set-point angle in lateral roots,

as well as root volume and diameter under cold stress. In

addition, CmRCC1 overexpression maintained photosynthetic

activity under cold stress. Thus, this study highlights the

positive regulatory role of CmRCC1 in root architecture,

which can be utilized in the future for improving crop yield

and quality under cold stress. Song et al. investigated the

relationship between antioxidant capacity in leaves and storage

properties in different sweet potato (Pomoea batatas) cultivars,

demonstrating that cultivar ‘Xu 32’, which showed the best

storage property, had higher antioxidant enzyme activity and

lower lipoxygenase and malondialdehyde (MDA) contents. The

above results revealed that storage property is highly correlated

with antioxidant capacity in sweet potato leaves and negatively

correlated with α-amylase activity in tuberous roots, which

provides a convenient means for the screening of storage-

tolerant sweet potato cultivars (Song et al.). In another study, Yi

et al. investigated the biological function of radish Aquaporins

(Raphanus sativus, RsAQPs) genes under salt stress conditions.

Results indicated that seven RsAQP genes, such as RsPIP1-

3, 1-6, 2-1, 2-6, 2-10, 2-13, and 2-14, exhibited significant

upregulation in roots of salt-tolerant radish genotype (Yi

et al.). In addition, the overexpression of RsPIP2-6 enhanced

salt tolerance in transgenic radish hairy roots, which was

evident by improved growth of transgenic radish under salt

stress condition compared with wild-type (WT) plants (Yi

et al.). With respect to cluster bean (Cyamopsis tetragonoloba

L.) drought stress tolerance, RNA-seq analysis of drought-

stressed vs. well-watered cluster beans revealed the crucial role

of increased wax deposits on the leaf surface in combating

drought stress in cluster beans under drought stress condition

(Reddy et al.). Thus, further investigation about wax regulatory

genes could be important for improving crop drought stress.

Khandagale et al. explored the transcriptomic changes in onion

(Allium cepa) response to Alternaria porri, revealing distinctive

upregulation of GABA transporter1, ankyrin repeat domain-

containing protein, Xyloglucan endotransglucosylase/hydrolase,

and Pathogenesis-related protein 5 in resistant onion genotype.

Transcriptome profiling of onion response to Alternaria porri

infection will serve as an important resource for future

studies to elucidate the molecular mechanism of onion-A.

porri interaction and to improve disease resistance in onion.

Several review articles in this Research Topic summarized and

discussed the recent developments in crop stress tolerance.

For example, Kang et al. ummarized and discussed heat

stress-responsive genes including those encoding heat shock

factors and heat shock proteins, and their functional roles in

heat stress tolerance of vegetable crops. Likewise, Hoshikawa

et al., investigated the molecular mechanisms involved in heat

stress tolerance and the challenges of developing heat-tolerant

tomato varieties. Parvathi et al. discussed the progress made in

deciphering the multifactorial stress responses of cucurbits and

their multifactorial stress-specific traits/mechanisms/pathways

and their crosstalk associated traits, both individually and

in combination.

Conclusions and future prospects

This special edition brought together interesting studies

that reveal the importance of understanding molecular

and physiological mechanisms in vegetable crops’ response

to environmental stresses. Integrated metabolome and

transcriptome analysis will be essential components to

decipher stress tolerance mechanisms and to identify

stress-specific markers that can be utilized in breeding

programs to increase yield and productivity under current

and future climatic conditions. Although much is known

about how plants acclimate to individual stress, little is known

about how they respond to a combination of many stress

factors simultaneously. Thus, future studies addressing the

impact of multifactorial stress combination associated with

climate changes is needed to understand how such stress

combination is affecting crops. In addition, a proteomic

approach has been found to be very important as it helps

plant physiologists to understand what is going on in

the cell due to an external stimulus. Thus, future studies

using proteomics will gain much attention and might

provide novel and important information for developing

stress-resilient crops.
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Melon (Cucumis melo L.) is a crop with important agronomic interest worldwide.

Because of the increase of drought and salinity in many cultivation areas as a result

of anthropogenic global warming, the obtention of varieties tolerant to these conditions

is a major objective for agronomical improvement. The identification of the limiting

factors for stress tolerance could help to define the objectives and the traits which

could be improved by classical breeding or other techniques. With this objective, we

have characterized, at the physiological and biochemical levels, two different cultivars

(sensitive or tolerant) of two different melon varieties (Galia and Piel de Sapo) under

controlled drought or salt stress. We have performed physiological measurements,

a complete amino acid profile and we have determined the sodium, potassium and

hormone concentrations. This has allowed us to determine that the distinctive general

trait for salt tolerance in melon are the levels of phenylalanine, histidine, proline and the

Na+/K+ ratio, while the distinctive traits for drought tolerance are the hydric potential,

isoleucine, glycine, phenylalanine, tryptophan, serine, and asparagine. These could be

useful markers for breeding strategies or to predict which varieties are likely perform

better under drought or salt stress. Our study has also allowed us to identify which

metabolites and physiological traits are differentially regulated upon salt and drought

stress between different varieties.

Keywords: melon, Cucumis melo, salt stress, drought stress, amino acids, plant hormones, ion content

INTRODUCTION

Melon (Cucumis melo L.) is a major crop with great agronomic and economic interest, considered a
gourmet food in several markets and cultures. One of the main problems for melon farming is that
its cultivation demands a lot of water (Cabello et al., 2009). In the current context of anthropogenic
global warming and the subsequent climate change, aridity is increasing in traditional cultivation
areas, and thus, melon culture is subjected to increasing abiotic stress, which compromises the yield.
Specifically, drought stress is increasing, and salt stress is directly related to this water scarcity, given
that excessive irrigation increases the salt deposition in the soil and diminishes the phreatic level,
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thus enabling the infiltration of sea water. It is estimated that
20% of all arable land and almost half of the land with water
availability are affected by salts, significantly reducing yield below
the genetic potential of most crops (Botella et al., 2007; Chandna
et al., 2014). As a result of salinization, crop yields are declining
while arable land is being irreversibly lost (Nawaz et al., 2010).
High salinity levels also increase soil pH. In addition, saline
stress leads to deterioration of soil structure and prevents the
air-water balance, essential for biological processes occurring in
the roots (Galvan-Ampudia et al., 2013). Saline soils reduce the
biomass production of crops affecting important biochemical and
physiological processes in the plant (Serrano et al., 1999).

We have generated considerable knowledge at the biochemical
level and physiological level regarding how abiotic stress affects
basic physiological processes, the cellular function and even
the biochemical targets, but there are still large gaps in our
knowledge about the limiting factors for stress responses.
More specifically, we are lacking knowledge regarding which
traits could be improved by breeding or genetic engineering
that would have a major impact on plant growth and
development under stress conditions. This explains the low
success in breeding novel crops that are adapted to saline
soils or are able to maintain yield under drought stress
conditions (Ashraf et al., 2009). Proof of this scarcity of
results is that there are only two GMO cultivars on the
market whose trait is drought tolerance: the Droughtgard
maize from BASF and the HB4 soy from Agroceres (Wang
et al., 2015; Ribichich et al., 2020). To date, there are no
marketed biotechnological crops with enhanced yield under
saline conditions.

Several strategies have been developed to identify the limiting
factors for stress tolerance. Evaluating the physiological and
biochemical response of stress tolerant and stress sensitive
plants is a well-established strategy to discover differential traits
for abiotic stress tolerance (Taibi et al., 2017, 2018; Chevilly
et al., 2021). All these analyses have been performed testing
different cultivars from the same variety and a single stress. We
have further developed this concept by evaluating, in the same
analysis, different stresses and different cultivars of two different
varieties to find limiting factors which are not particular to a
specific variety or stress. In this report, we have applied this
strategy to a pivotal horticultural crop for the economy in the
Mediterranean area. There are several reports evaluating Galia
melon performance under salt stress in field conditions (Akrami
and Arzani, 2018; Akrami et al., 2019), but so far, there are
no studies evaluating the plant response at the initial stages of
development under controlled conditions. This work has been
designed to determine the differences at the physiological and
biochemical levels between different melon genotypes under
two different abiotic stresses. These varieties had previously
been characterized as sensitive or tolerant to abiotic stress. We
have subjected these varieties to controlled drought or salinity
stress, and have monitored different physiological or biochemical
parameters, in order to find changes that are relevant among
varieties or treatments. This will allow us to identify the limiting
factors in abiotic stress tolerance and will help to define novel
breeding strategies.

MATERIALS AND METHODS

Plant Material
The four varieties of pre-commercial melon (Cucumis melo L.)
seeds used were provided by Enza Zaden and referred to as Cv. 1,
Cv. 2, Cv. 3, and Cv. 4. Cv. 1 is a Galia melon (Cucumis melo
Cv. reticulatus) tolerant to abiotic stress, Cv. 2 is a Galia type
melon sensitive to abiotic stress; Cv. 3 melon is a Piel de Sapo
(a.k.a. Santa ClausMelon;Cucumis meloCv. inodorus) tolerant to
abiotic stress; and Cv. 4 is a Piel de Sapo sensitive to abiotic stress.

Experimental Design
For different experiments, 20 seeds of each variety were
germinated in a Petri dish with moist sterile Whatmann filter
paper. After 5 days, seedlings were transferred to a substrate
(50% kekkila peat, 25% perlite, 25% vermiculite) in individual
plant pots 12 cm diameter × 8 cm height. The experimental
design consisted of an aleatory placement where each block
was composed by 4 pots per tray and one plant per pot.
Each experiment consisted in 5 individuals × 4 varieties
× 3 treatments (60 total plants). Plants were watered with
Hoagland solution. After 3 weeks, when plants reached the four-
leaf phase, irrigation was maintained (control plants), limited
(drought stress) or watered with Hoagland solution plus 220mM
NaCl (salt stress). Samples were taken or measurements were
performed after 6 days of stress treatment (salt stress) or when
the total weight (plant and container) was reduced to 60% of
their initial weight (drought stress), at about 9 days. In all cases,
the number of samples per experiment (n) refers to biological
replicates from different plants (between 3 and 5). All samples
for each treatment were collected at the same time. Plants were
grown in a phytotron at 25 ± 2◦C, humidity of 50–60% and
a photoperiod of 16 h light/8 h darkness (200 µmol m−2 s−1

of light intensity). All experiments were replicated to check the
reproducibility of the results.

Physiological Measurements
The water potential (9w, MPa) was measured with a Schölander
pressure pump (model PMS-1000, PMS Instruments, Corvallis,
OR, United States). Stomatal conductance (gs, mmol H2O
m−2s−1), the sub-stomatal concentration of CO2 (Ci),
photosynthetic rate (A, µmol CO2 m−2s−1), transpiration
(E, mmol H2O m−2s−1), water use efficiency (WUE, µmol
CO2 mmol−1H2O) and leaf temperature through infrared
Thermometry (Tleaf, ◦C), were determined with a CIRAS-3
portable photosynthesis system (PP Systems, Amesbury MA).
The measurements were recorded under saturating light
conditions (1,500 µmol quanta m−2 s−1), with a temperature of
25◦C, and ambient CO2 concentration of 400 mol−1 CO2 and
a relative humidity of ∼55%. Chlorophyll fluorescence indices
(i.e., Fv/Fm and Quantum yield) were measured with a portable
pulse-amplitude modulated chlorophyll fluorometer (PAM-
2100, Heinz Walz, Effeltrich, Germany). These measurements
of the photosystem II efficiency were performed once the plants
were adapted to darkness for 30min, on the same leaves where
stomatal conductance and photosynthesis were determined. All

Frontiers in Plant Science | www.frontiersin.org 2 November 2021 | Volume 12 | Article 7770609

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Chevilly et al. Abiotic Stress Markers in Melon

measures were performed on the third youngest full-developed
leaf of each plant, analyzing a total of five plants per variety.

Amino Acid Analysis
One gram of the third youngest leaf was taken, lyophilized
and ground with a mortar and pestle in the presence of liquid
nitrogen. The resulting powder was homogenized for 30 s with
2mL of 2% citrate buffer pH 2 (Mulet et al., 2004) and centrifuged
for 5min at 13,000 g. The supernatant was filtered through
a 25-micrometer pore-size non-sterile filter. 1/10 dilutions of
these extracts were injected into an automatic Beckman Gold
amino acid analyzer. The analysis was carried out according to
the protocol supplied by the manufacturer, using a system of
ninhydrin and sodium citrate for detection. Measurements were
normalized to dry weight.

Hormone Quantification
Plant hormones were determined following the method of
Durgbanshi (Durgbanshi et al., 2005). Briefly, lyophilized
samples were ground to powder in the presence of liquid
nitrogen. Two hundred milligram per replicate were purified
with solid phase extraction columns (SPE; reverse phase and
ion exchange), using internal deuterated standards. The analysis
was carried out using UPLC-mass spectrometry (Acquity SDS,
Waters Corp., Milford, MA). Measurements were normalized to
dry weight.

Ion Content Determination
Ions were determined as described (Gisbert et al., 2020). Briefly,
samples of the third youngest leaf from 1-month-old plants
(about 1 g) were dried at 70◦C for 4 days. Dry weight was
determined, and ions were extracted by a 30min incubation
in 1mL of 0.1M HNO3 at room temperature. Then samples
were centrifuged, and the supernatant was diluted with 4mL of
milliQ water and filtered (22µM). Sodium and potassium were
measured in a plasma emission spectrophotometer (Shimadzu),
as described (Rios et al., 2012). Measurements were normalized
to dry weight.

Statistical Analysis
The ANOVA was performed by using the SPSS software v.25.0
statistical package (IBM SPSS Statistics for Windows, Armonk,
NY, USA; IBM Corp.). The means were considered to be
significantly different at p < 0.05 after Duncan’s new multiple
range test (MRT) (Duncan, 1955).

RESULTS

Physiological Determinations
Several responses of plants to abiotic stress occur at the
physiological level. We investigated whether we could identify
differential responses among varieties or cultivars. As expected,
the water potential increased upon stress between 1.12 and 1.25
for salt stress and 1.3 and 2.67 for drought stress (expressed
as –MPa; Figure 1A), thus validating our experimental design.
The tolerant cultivars presented higher values. The salinity
treatment had a negative effect on stomatal conductance (gs),

while the drought stress had a more modest effect on this
parameter, observing minor differences when compared to
the corresponding control (Figure 1B). A similar pattern was
found with transpiration (E) and photosynthesis (A), which
was stable upon drought stress, but decreased upon salt stress.
Interestingly A also decreased upon drought stress in the
tolerant Galia cultivar (Figures 1C,D). Maximum efficiency
of photosystem II (determined as Fv/Fm) and quantum
yield presented minor, but in some cases significant changes
(Figures 1E,F).Water Use efficiency, intrinsic and instantaneous,
decreased under drought stress and increased upon salt stress
in Galia plants, but was stable in Piel de Sapo (Cv. 3;
Figures 1G,H).

We also determined the leaf temperature and found
a differential response among varieties. In Galia, the leaf
temperature decreased in the tolerant variety upon drought stress
about 4%, and in the Piel de Sapo the leaf temperature increased
in the tolerant variety about 0,3% (Figure 1I). We observed
minor effects on the sub-stomatical CO2 concentration (Ci)
(Figure 1J).

Amino Acid Measurements
Once we had studied the response of the selected varieties and
cultivars at the physiological level, we further investigated the
level of amino acids. First, we focused on the hydrophobic
amino acids (Figure 2). In most cases, there was no distinctive
pattern. However, for leucine (Leu), the concentration increased
under salt stress (between 40 and 115%), and to a minor
extent, under drought stress (between 0 and 67%) (Figure 2B).
Glycine (Gly) can act as an osmolyte and is a precursor
of antioxidant molecules, such as the tripeptide glutathione.
Its concentration under stress conditions correlated with
tolerance to stress, but only for the Piel the Sapo variety
(Figure 2E). Similarly, phenylalanine (Phe) concentrations under
drought stress correlated with sensitivity (Figure 2F). Finally, we
observed a 7 fold increase in Tryptophan (Trp) concentration in
Piel de Sapo sensitive cultivar under drought stress conditions
(Figure 2G).

We further investigated the polar amino acids. Serine (Ser)
concentrations increased, between 2.3- to 4-fold, under salt stress
(Figure 3A) and similar results were obtained for asparagine
(Asn). For other amino acids, such as threonine (Thr), cysteine
(Cys), proline (Pro), or glutamine (Gln), we did not find a
distinctive pattern (Figure 3).

We also studied the charged amino acids and found that
an increase in the levels of lysine (Lys) correlate with salt
tolerance, but for drought tolerance only in the case of the Galia
cultivar (Figure 4A). Also, an approximate 4-fold increase of
histidine (His) concentration was observed under drought stress
conditions for Galia cultivars (Figure 4C). Aspartic acid (Asp)
levels behaved in disparate manners: in Galia they increased
under salt stress in the sensitive cultivar (Cv. 2), while in Piel de
Sapo, they increased in the tolerant cultivar (Cv. 3; Figure 4D).
Glutamic acid (Glu) levels increased under salt and drought stress
with respect to the control only in Piel de Sapo (Figure 4E). We
did not find a distinctive pattern for GSH (Figure 4F).
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FIGURE 1 | Physiological measurements. Water potential (9w) (A); stomatal conductance (gs) (B); transpiration (E) (C); Net photosynthesis (A) (D); Quantum efficiency

of photosystem II (Fv/Fm) (E); Quantum yield (F); intrinsic water use efficiency (WUEintr) (G); instantaneous water use efficiency (WUEinst) (H); Leaf temperature (Tleaf)

(I) and sub-stomatal CO2 concentration (Ci) (J) of Galia tolerant genotype (Cv. 1), Galia sensitive genotype (Cv. 2), Piel de Sapo tolerant genotype (Cv. 3) or Piel de

Sapo sensitive genotype (Cv. 4) under control (white bars), salt stress (gray bars) and drought stress (black bars) conditions. Data with different letters differ

significantly (p < 0.05), as determined by Duncan’s MRT test (n = 5). Scale bars are the mean ± standard error (SE). Experiment was replicated with similar results.
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FIGURE 2 | Hydrophobic amino acids. Alanine (Ala) (A); leucine (Leu) (B); isoleucine (Ile) (C); valine (Val) (D); glycine (Gly) (E); phenylalanine (Phe) (F); tryptophan (Trp)

(G); and methionine (Met) (H) of Galia tolerant genotype (Cv. 1), Galia sensitive genotype (Cv. 2), Piel de Sapo tolerant genotype (Cv. 3) or Piel de Sapo sensitive

genotype (Cv. 4) under control (white bars), salt stress (gray bars) and drought stress (black bars) conditions. Data with different letters differ significantly (p < 0.05), as

determined by Duncan’s MRT test (n = 3). Scale bars are mean ± SE. Experiment was replicated with similar results.
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FIGURE 3 | Polar amino acids. Serine (Ser) (A); threonine (Thr) (B); cysteine (Cys) (C); proline (Pro) (D); asparagine (Asn) (E); and glutamine (Gln) (F) of Galia tolerant

genotype (Cv. 1), Galia sensitive genotype (Cv. 2), Piel de Sapo tolerant genotype (Cv. 3), or Piel de Sapo sensitive genotype (Cv. 4) under control (white bars), salt

stress (gray bars), and drought stress (black bars) conditions. Data with different letters differ significantly (p < 0.05), as determined by Duncan’s MRT test (n = 3).

Scale bars are mean ± SE. Experiment was replicated with similar results.

Sodium and Potassium Content
We determined the ion content of the investigated varieties and
cultivars under control and stress conditions. As expected, the
potassium concentration decreased under salt stress conditions

(between 5 and 40%), as sodium competes with potassium. Under
drought stress, the potassium concentration also decreased about
10%. Potassium has been described to act as an osmolyte,
but according to our results, that is not its main role in the
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FIGURE 4 | Charged amino acids. Lysine (Lys) (A); arginine (Arg) (B); histidine (His) (C); aspartic acid (Asp) (D); glutamic acid (Glu) (E); and glutathione (GSH) (F)

concentrations of Galia tolerant genotype (Cv. 1), Galia sensitive genotype (Cv. 2), Piel de Sapo tolerant genotype (Cv. 3), or Piel de Sapo sensitive genotype (Cv. 4)

under control (white bars), salt stress (gray bars), and drought stress (black bars) conditions. Data with different letters differ significantly (p < 0.05), as determined by

Duncan’s MRT test (n = 3). Scale bars are mean ± SE. Experiment was replicated with similar results.

investigated plants (Figure 5A). Sodium concentrations behaved
differently depending on the variety. Sodium levels were higher
in the tolerant cultivar in Galia plants, while the levels were
lower in tolerant cultivars in Piel de Sapo plants (Figure 5B).
In all cases, the Na+/K+ ratio was higher for tolerant cultivars
(Figure 5C).

Hormone Determination
One of the most determinant aspects of stress tolerance is the
hormonal response. Hormones, such as abscisic acid (ABA) or
salicylic acid (SA), are directly involved in the response to abiotic
stress, while other hormones, such as indolacetic acid (IAA) or
jasmonic acid (JA) are mainly related to growth, but indirectly
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FIGURE 5 | Ion content determination. Potassium content (K+) (A), sodium

content (Na+) (B), and the Na+/K+ ratio (C) of the tolerant Galia genotype (Cv.

1), sensitive Galia genotype (Cv. 2), tolerant Piel de Sapo genotype (Cv. 3), or

(Continued)

FIGURE 5 | sensitive Piel de Sapo genotype (Cv. 4) under control (white bars),

salt stress (gray bars), and drought stress (black bars) conditions. Data with

different letter differ significantly (p < 0.05), as determined by Duncan’s MRT

test (n = 5). Scale bars are mean ± SE. Experiment was replicated with similar

results.

may affect the response to abiotic stress.We determined the levels
of different hormones under control and stress conditions. IAA
concentrations increased 17-fold under salt stress in the tolerant
cultivar of the Piel de Sapo variety (Figure 6A). Levels of JA
decreased upon stress in the tolerant Galia cultivar (70% for salt
stress and 43% in drought stress) and increased (1.91-fold for
salt stress and 3.53-fold drought stress) in the sensitive cultivar
(Figure 6B). As expected, ABA levels increased upon stress, but
the increase was more pronounced in Piel de Sapo plants under
salt stress (between 8 and 11 fold) (Figure 6C). SA levels also
increased upon stress but, again, only in Piel de Sapo plants
(Figure 6D).

DISCUSSION

The main objective of this study is to compare physiological
and biochemical responses of two cultivars of two different
varieties, to both salt and drought stress, in order to find
common patterns among different varieties. We included stress
tolerant and sensitive cultivars as well to gain further insight into
differential responses within varieties. Through the relativization
of data (i.e., the ratio of the value under stress with respect
to the value under control conditions) we have found that,
irrespectively of the variety, tolerance to salt stress correlates with
higher ratios (stress/control) for His (3.4 and 1.42 for tolerant vs.
0.92 and 1.18 for sensitive) and Na+/K+ (11, 0.37, and 91.3 for
tolerant vs. 31.4 and 47.6 for sensitive) and lower Phe (0.93 and
1.06 for tolerant vs. 1.45 and 2.0 for sensitive) and Pro ratios (0.71
and 0.75 for tolerant vs. 1.41 and 0.83 for sensitive). In the case
of drought stress, tolerance correlates with increased ratios of Ile
(1.87 and 1.1 for tolerant vs. 0.78 and 0.5 for sensitive), Gly (5.68
and 1.12 for tolerant vs. 0.85 and 0.5 for sensitive), Ser (2.72 and
1.17 for tolerant vs. 0.75 and 0.46 for sensitive) and Asn (2.12
and 1.38 for tolerant vs. 0.79 and 0.32 for sensitive), and decrease
ratios of Hydric potential (1.63 and 1.33 for tolerant vs. 2.67 and
1.84 for sensitive) and Phe (1.26 and 1.03 for tolerant vs. 2.0 and
1.69 for sensitive) and Trp (1.08 and 1.79 for tolerant vs. 2.0 and
7.61 for sensitive) (Figure 7A, Supplementary Table 1). All the
results are summarized in the form of a heat map in Figure 7B.
The numerical data of the ratios of the Stress/control for all values
are presented in Supplementary Table 1.

One interesting aspect of our results is that, among varieties,
physiological parameters are not a distinctive trait for abiotic
stress tolerance. Several previous studies have determined the
effect of stress on melon physiology (Zhang et al., 2021). In
a recent study on muskmelon genotypes under drought stress,
the net photosynthetic rate, stomatal conductance (Gs), and
the transpiration (E) rate decreased (Ansari et al., 2019). Other
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FIGURE 6 | Hormone concentrations. Indolacetic acid (IAA) (A); jasmonic acid (JA) (B); abscisic acid (ABA) (C), and salicylic acid (SA) (D) concentrations of Galia

tolerant genotype (Cv. 1), Galia sensitive genotype (Cv. 2), Piel de Sapo tolerant genotype (Cv. 3), or Piel de Sapo sensitive genotype (Cv. 4) under control (white bars),

salt stress (gray bars), and drought stress (black bars) conditions. Data with different letters differ significantly (p < 0.05), as determined by Duncan’s MRT test (n = 5).

Scale bars are mean ± SE. Experiment was replicated with similar results.

reports described similar decreases in stomatal conductance in
genotypes different from the ones that we have used in this study
(Kusvuran, 2012; Wang et al., 2016). There are reports indicating
that during drought stress in melon, there was a significant
increase in water use efficiency in drought tolerant genotypes
(Akhoundnejad and Dasgan, 2019). In our case, under drought
conditions, we did not observe any significant differences with
the control values, that is, efficiency is maintained, although in
this report plants were grown in field conditions and measures
were taken in older plants.

We have also calculated the differential traits between
Galia and Piel de Sapo irrespectively of their stress tolerance
(Supplementary Figure 1). In this case, the Piel de Sapo
variety showed higher Stress/control ratio for E, A, WUEintr
and WUEinst under salt stress (Supplementary Figure 1). In
agreement with our results, it has been previously described that

under salt stress in muskmelon there is a significant increase
in WUEintr and WUEinst with respect to control conditions
(Ansari et al., 2018). Our data under saline stress conditions
showed no changes for Galia plants, but we confirmed the
increase in our conditions for Piel de Sapo cultivars. The fact that
most of the differences observed in the physiological traits are
variety dependent and not stress dependent may be explained by
the differences in the leaf morphology.

There is no description available in the literature regarding
the behavior of the free amino acid pools under salt and drought
stress inCucumismelo comparing stress and different varieties, so
here we have investigated the complete free amino acid profile in
our plants under the studied conditions. Salt tolerance correlated
with higher levels of His in tolerant plants. His has been related to
tolerance against heavy metals as it can chelate them, but its role
in salt stress tolerance has not been described. Proline it is known
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FIGURE 7 | Summary of the main findings of this study. (A) Radial diagrams of the ratio between stress/control concentration under salt stress (left) or stress/control

concentration under drought stress (right). The tolerant cultivars are shown in shades of blue and the sensitive cultivars in shades of red. The values are represented in

a decimal logarithmic scale. (B) Heat map of all the results obtained in the present study. Green indicates higher stress/control values, yellow average stress/control

values while red indicates lower stress/control values in a decimal logarithmic scale.
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to act as and osmolyte, but we have found that tolerant plants
have less stress/control ratio than the sensitive ones, pointing out
that the increases observed upon salt stress are not determinant
for salt stress tolerance. In the case of drought stress, Ile, Gly, Ser
and Asn were higher in tolerant varieties. Glycine can act as an
osmolyte and also is a component of the tripeptide glutathione.
Serine is also a precursor of cysteine and other stress-related
molecules. On the other hand, high stress/control ratios of Phe
correlated with sensitivity to stress, and it is the only molecule
that decreased under conditions of both drought and salt stress.
Phe is a precursor of several molecules, among them lignin, a
pivotal molecule for cell wall biosynthesis. The accumulation of
Phe in sensitive cultivars, irrespectively of the varieties, may be a
symptom that basic plant processes like cell wall biosynthesis are
more affected by stress than in tolerant cultivars.

Potassium is the major ion in the cytoplasm and thus is largely
responsible for the intracellular ionic environment. Sodium is
toxic for melon plants and must be extruded from the cell, or
accumulated in the vacuole. Regarding ion accumulation, our
results suggest that the limiting factor for stress response is the
ability to accumulate sodium (Serrano et al., 1999; Rodríguez-
Navarro, 2000). Under salt stress, plants can extrude sodium
from the root, or take it up, transport it to the aerial part
and accumulate it in the vacuoles (Arzani and Ashraf, 2016).
The higher Na+ and Na+/K+ ratio of a salt-tolerant variety in
our study may be explained by the vacuolar accumulation of
sodium in the leaf tissues. Similar results regarding the Na+/K+

ratio and water use efficiency were observed in a field trial
with Cucumis melo cv. Huanghemi (Tedeschi et al., 2017) so
the trend is the same, even when we compare field/greenhouse
conditions and early development/late develompment. Here we
demonstrate that the ability to accumulate sodium and maintain
a high Na+/K+ ratio is a distinctive trait for tolerant cultivars.
We did not find any distinctive pattern with the potassium levels
under drought stress. Therefore, the role of potassium as an
osmolyte is not a limiting factor for drought tolerance in these
melon cultivars.

Melon is a climacteric fruit, so its hormonal levels are
subjected to drastic changes (Dunlap et al., 1996). There are
several descriptions in the literature of the hormonal levels in
cucurbit plants under abiotic stress. For instance, exogenous
application of SA increases drought tolerance in muskmelon
(Korkmaz et al., 2007), similar to what is observed in other
cultivated plants (Souana et al., 2020). In addition, SA and JA
levels increase upon spermidine addition and increase tolerance
to salt stress (Radhakrishnan and Lee, 2013). Also, JA levels
tend to increase in cucumber plants subjected to drought stress
(Llanes et al., 2016). It has also been described that under mild
or moderate water stress, IAA concentrations tend to increase
(Huang et al., 2018). ABA is the main player in the abiotic stress
response in plants, and it has also been described to increase
upon abiotic stress in melon (Sun et al., 2013). When we studied
the phytohormone levels, we did not find any common pattern
among the sensitive or tolerant varieties and cultivars studied,
although the concentrations of SA and IAA were higher in Piel
de Sapo cultivars (between 3- and 7-fold for SA and 4- to 17-fold
for IAA).

Taken together, we have performed a complete study of
two different melon varieties comparing sensitive and tolerant
cultivars and applied statistical tools to the results to find
common patterns in salt or drought stress responses that could
be useful to predict the behavior of uncharacterized varieties
and cultivars and to design novel classical or biotechnological
breeding strategies. Varieties or cultivars with increased His
content and/or the ability to accumulate sodium (likely in the
vacuoles) may display improved tolerance to salt stress, while
novel varieties with enhanced levels of Ile, Gly, Ser, and Asn could
show better performance under drought stress conditions. High
levels of Phe seem correlate with diminished tolerance to abiotic
stress. Thus, our results have provided a useful framework for
future studies which will examine the ability of these parameters
to predict stress tolerance performance in additional melon
varieties and cultivars.
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Storage Property Is Positively
Correlated With Antioxidant Capacity
in Different Sweet Potato Cultivars
Hui-Hui Song1†, Zhi-Lin Zhou2†, Dong-Lan Zhao2†, Jun Tang2, Yan-Hong Li1, Zhuo Han1,
Xiao-Yan Chen1, Kang-Di Hu1* , Gai-Fang Yao1* and Hua Zhang1*

1 School of Food and Biological Engineering, Hefei University of Technology, Hefei, China, 2 Xuzhou Institute of Agricultural
Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, China

Sweet potato decays easily due to its high respiration rate and reactive oxygen
species (ROS) accumulation during postharvest storage. In this study, we explored the
relationship between antioxidant capacity in leaves and storage properties in different
sweet potato cultivars, the tuberous roots of 10 sweet potato cultivars were used as
the experimental materials to analyze the storage property during storage at 11–15◦C.
According to the decay percentage after 290 days of storage, Xu 32 was defined as
a storage-tolerant cultivar (rot percentage less than 25%); Xu 55-2, Z 15-1, Shangshu
19, Yushu, and Zhezi 3 as above-moderate storage-tolerant cultivars (rot percentage
ranging from 25 to 50%); Sushu 16, Yanshu 5, and Hanzi as medium-storable cultivars
(rot percentage 50–75%); and Yan 25 as a storage-sensitive cultivar (rot percentage
greater than 75%). Meanwhile, analysis of the α-amylase activity in root tubers of
the 10 sweet potato cultivars during storage indicated that α-amylase activity was
lowest in the storage-tolerant cultivar Xu 32 and highest in the storage-sensitive cultivar
Yan 25. Evaluation of antioxidant enzyme activities and ROS content in the leaves of
these 10 cultivars demonstrated that cultivar Xu 32, which showed the best storage
property, had higher antioxidant enzyme activity [superoxide dismutase (SOD), catalase
(CAT), ascorbate peroxidase (APX), and peroxidase (POD)] but lower lipoxygenase
(LOX) activity, hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents, and
superoxide anion radical (O2·

−) production rates compared with those of the storage-
sensitive cultivar Yan 25 and the medium-storability cultivars Hanzi, Yanshu 5, and
Sushu 16. Additionally, principal component analysis (PCA) suggested that sweet potato
cultivars with different storage properties were clustered separately. Correlation and heat
map analysis further indicated that CAT, APX, POD, and SOD activities were negatively
correlated with α-amylase activity, while LOX activity and MDA and H2O2 contents
were negatively correlated with the storage property of sweet potato. Combined, our
findings revealed that storage property is highly correlated with antioxidant capacity
in sweet potato leaves and negatively correlated with α-amylase activity in tuberous
roots, which provides a convenient means for the screening of storage-tolerant sweet
potato cultivars.

Keywords: sweet potato, storage property, antioxidant capacity, reactive oxygen species (ROS), correlation
analysis
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INTRODUCTION

Sweet potato (Ipomoea batatas L.), which was domesticated in
tropical America, is gradually becoming one of the main food
crops worldwide (Mwanga et al., 2017). According to the Food
and Agriculture Organization (FAO) of the United Nations,
global sweet potato production exceeded 140 million tons in
2019, with China accounting for the largest plantation area (FAO,
2019). Sweet potatoes are rich in many nutrients such as vitamins,
dietary fiber, and minerals, as well as other ingredients that are
beneficial to human health, including flavonoids, carotenoids,
and anthocyanins (Wang et al., 2016; Kang et al., 2017).
Additionally, starch is the major component of the storage root
of sweet potato, accounting for 50–80% of its dry matter (Zhang
et al., 2017). Amylase activity has been reported to change in
sweet potato roots during storage (Takahata et al., 1995; Zhang
et al., 2002). Sweet potato tubers are relatively difficult to store
long-term due to their high moisture content and respiration
rate, as well as the deterioration of the quality of its flesh during
postharvest (Sugri et al., 2017). During postharvest storage,
endogenous α-amylase and β-amylase enzyme activities influence
the starch structure and reduce the starch content, which greatly
affects the commodity value of this tuberous root (Lu et al., 2020).
Sweet potato is also susceptible to chilling injury owing to its
tropical origins (Li et al., 2018). Combined, these observations
are indicative of the importance of postharvest storage for the
industrial application of sweet potatoes.

Postharvest senescence includes the loss of texture, membrane
injury, and decay (Ali et al., 2020). During postharvest storage,
many crops produce reactive oxygen species (ROS), such as
hydrogen peroxide (H2O2), hydroxyl radicals (·OH), superoxide
anion radicals (O2·

−), and singlet oxygen, which contribute
to deteriorative changes, such as lipid peroxidation, DNA
mutation, enzyme inactivation, and protein denaturation (Tian
et al., 2013). Consequently, ROS generation is considered
the main reason for the progression of senescence (Mittler,
2002). To resist ROS-mediated damage, plants have evolved a
system that maintains a balance between ROS production and
elimination involving enzymatic [superoxide dismutase (SOD;
EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase
(APX; EC 1.11.1.11), and peroxidase (POD; EC 1.11.1.7)] and
non-enzymatic antioxidants (Miśkiewicz et al., 2000). Despite
this, ROS accumulation may exceed the antioxidant capacity,
leading to membrane lipid peroxidation and impaired cellular
functions (Lurie et al., 1991). Several studies have demonstrated
that some plants can delay senescence by eliminating excessive
ROS through enhanced antioxidant systems (Zimmermann et al.,
2006; Qin et al., 2009). For instance, ultrasonic treatment was
shown to effectively decrease the activities of PPO and POD
and increase total antioxidant capacity, which help to inhibit
the browning of fresh-cut sweet potato, thereby prolonging
its postharvest shelf life (Pan et al., 2020). This indicates that
antioxidant enzyme capacity is positively correlated with delayed
senescence in postharvest fruits and vegetables, which can help
prolong their shelf life.

Several studies have investigated the optimization of storage
conditions during postharvest sweet potato storage; however,

the nature of the endogenous factors that influence the storage
characteristics of different sweet potato cultivars remains unclear
(Fan et al., 2015; Ji et al., 2017). de Araujo et al. (2021)
reported that cold-tolerant sweet potato cultivars have stronger
antioxidant enzyme activities compared with those of cold-
sensitive cultivars, suggestive of the important role of the
antioxidant system in eliminating excessive ROS induced by low
temperature. Additionally, under optimal storage temperatures,
the activities of antioxidant enzymes increase in nectarines
and broccoli, thereby prolonging the postharvest storage period
(Zhang Z. et al., 2009; Zhao et al., 2018), while greater antioxidant
enzyme activity is also associated with better storage performance
in sweet potato cultivars (Tang et al., 2019). However, relatively
few studies have systematically evaluated the correlation between
the antioxidant system and storage property. Moreover, the
screening of storage-tolerant sweet potato cultivars based on
the storage property of sweet potato tubers is time-consuming
and requires specific storage conditions. In this study, 10
sweet potato cultivars were selected to assess the relationship
between the storage property of root tubers and the antioxidant
capacity of the leaves. The sweet potato root tubers were
stored at 11–15◦C for 290 days, following which the rot
percentage, weight loss, and α-amylase activity of the different
cultivars were assessed, as were differences in antioxidant enzyme
activities and ROS-related indexes in the leaves. Furthermore,
the relationship between the storage property of the root tubers
and the antioxidant capacity of the leaves was investigated by
principal component analysis (PCA) and correlation analysis.
Combination of this study provides a new method for the
rapid screening of sweet potato tuber storability that involves
analyzing the biochemical and physiological parameters of
sweet potato leaves.

MATERIALS AND METHODS

Plant Materials and Sample Preparation
In this study, 10 sweet potato cultivars—Xu 32, Xu 55-2, Z 15-1,
Shangshu 19, Sushu 16, Yanshu 5, Hanzi, Yushu, Zhezi 3, and Yan
25—were selected from the National Sweet Potato Improvement
Center (Xuzhou, Jiangsu Province, China). Undamaged root
tubers of each cultivar (three replicates of 100 ± 10 tubers) were
harvested in the autumn of 2013–2015 and stored for 290 days
at 11–15◦C. The storage property of the sweet potato cultivars
was defined according to the decay percentage of the root tubers.
Sweet potato cultivars with a rot percentage of less than 25% were
classified as storage-tolerant; those with a rot percentage ranging
from 25 to 50% were classified as above-medium storage-tolerant;
those with a rot percentage between 50 and 75% were classified
as medium-storable; and those with a rot percentage higher
than 75% were classified as storage-sensitive (Zhang and Fang,
2006). Each cultivar was assigned a storability score based on the
rot percentage. Additionally, the weight loss percentage of the
sweet potato tubers was also recorded by determining the tuber
weight before and after storage. Tuberous roots without pests,
disease, or mechanical damage were selected for the experiment.
The stem cuttings of 10 sweet potato cultivars were obtained
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from the National Sweet Potato Improvement Center in May
2016 and planted in the greenhouse at the Hefei University of
Technology in Hefei, China, at 24◦C under a 16/8-h light/dark
cycle. After 2 months of growth, the mature leaves (from the
second-to-top to the fifth-to-top) of 10 seedlings from each
cultivar were sampled, immediately frozen in liquid nitrogen,
and ground to a powder. The powder was stored at −80◦C for
subsequent analysis.

Determination of α-Amylase Activity in
Sweet Potato Roots
The α-amylase activity in the tuberous roots of the sweet potato
cultivars was determined at 0, 30, 60, 90, 120, 150, 180, 210, 240,
270, and 290 days after storage (DAS) as described by Zhang
et al. (2009). Sweet potato root samples (2.0 ± 0.05 g) were
homogenized in 4 ml of 0.1 M NaAc (including 6 M CaCl2, pH
5.0) and centrifuged at 20,000 × g for 20 min. Then, 0.3 ml of
the supernatant was mixed with 0.5 ml of β-limit dextrin and
0.2 ml of 10 mM NaAc and incubated at 30◦C. After incubation,
5 ml of 0.01% I2-KI and 0.4 ml of H2O were added to 0.1 ml
of the reaction solution, and the absorbance was determined at
560 nm. One unit of α-amylase activity was defined as the amount
of enzyme needed to degrade 1 mg of β-limit dextrin per minute
and was represented as U/g fresh weight (FW).

Determination of Antioxidant Enzymes
(i.e., Peroxidase, Catalase, Ascorbate
Peroxidase, and Superoxide Dismutase)
in Sweet Potato Leaves
The POD, CAT, APX, and SOD activities were determined
following the method described by Garcìa-Limones et al.
(2002). Sweet potato leaves (2.0 ± 0.05 g) were homogenized
in 3 ml of enzyme extract buffer (50 mM K2PO4 pH 7.5,
1 mM ethylenediaminetetraacetic acid (EDTA), 1 mM
phenylmethanesulfonyl fluoride (PMSF), 5 mM ascorbic
acid (ASA), and 5% polyvinylpyrrolidone (PVP)) at 4◦C
and centrifuged at 12,000 × g for 30 min at 4◦C. After
centrifugation, the obtained supernatant was considered the
crude enzyme solution.

The SOD activity was determined by the photochemical
reduction of nitroblue tetrazolium (NBT) in the presence of
riboflavin. One unit of SOD activity was defined as the amount of
enzyme that inhibited the reduction of NBT by 50%; SOD activity
was expressed as U/g FW. The determination of POD activity was
based on the increase in absorbance at 470 nm resulting from
the oxidation of guaiacol in the presence of H2O2. CAT activity
was determined as the rate of decrease in absorbance at 240 nm
using H2O2 as the substrate. APX activity was determined by
measuring the changes in absorbance at 290 nm. The reaction
system (3 ml total volume) included 50 mM phosphate buffer at
pH 7.0, 15 mM ascorbic acid, 15 mM H2O2, and the appropriate
amount of crude enzyme solution. One unit of POD, CAT, or
APX activity was defined as an increase or decrease of 0.01 in the
absorbance value per minute and was represented as U/g FW.

Determination of Superoxide Anion
Radical Production, Hydrogen Peroxide,
and Malondialdehyde Content in Sweet
Potato Leaves
The H2O2 content and O2·

− production were determined
according to the methods described by Ge et al. (2017). For
the determination of O2·

− production, 2 g of leaf powder
was homogenized in 0.1 mM phosphate buffer, pH 7.8, and
centrifuged at 12,000 × g for 30 min at 4◦C; the supernatant
was used for O2·

− determination. Each sample was divided
into an experimental group and a control group. Notably,
1 ml each of the supernatant, H3PO4 buffer, and 1 mM
HONH3Cl was mixed in a test tube and incubated at 25◦C
for 1 h. Then, 17 mM p-aminobenzenesulfonic acid and 7 mM
α-naphthylamine were added and mixed, followed by incubation
for an additional 20 min. Absorbance was determined at 530 nm.
The O2·

− production rate was calculated on an FW basis in
µmol·g−1

·s−1. For the determination of the H2O2 content,
2 g of sweet potato leaf powder was homogenized in 3 ml of
precooled acetone and centrifuged at 12,000 × g for 30 min.
The H2O2 content was measured by determining the absorbance
at 508 nm. The content of malondialdehyde (MDA), which is
considered to be an indicator of the degree of plant oxidative
stress, was determined according to the method described by
Chen et al. (2018), with slight modifications. Sweet potato
samples (2 g) were homogenized in 10 ml of 5% trichloroacetic
acid and centrifuged at 12,000 × g for 30 min at 4◦C. The
absorbance of the resulting supernatant was measured at 600,
532, and 450 nm. The MDA content was calculated using the
equation: MDA content (nmol/g) = [6.45 × (A532 − A600) −
0.56 × A450] × V1 × V3/(V2 × W), where V1, V2, and V3
indicate the total volume of the solution obtained after the
reaction (ml), the volume of the extract solution used for the
reaction (ml), and the volume of the extract solution (ml),
respectively; W indicates the mass of the sample (g).

Determination of Lipoxygenase Activity
in Sweet Potato Leaves
Lipoxygenase (LOX) activity was determined by the procedure
described by Surrey (1964). Sweet potato leaf powder (2 g)
was homogenized in 5 ml of 0.1 M H3PO4 buffer, pH 6.8 [4%
PVPP (polyvinylpolypyrrolidone) and 1% Triton X-100] and
centrifuged at 12,000 × g for 30 min at 4◦C. The obtained
supernatant was considered the crude enzyme solution. The
reaction solution contained 0.1 M NaAc buffer, pH 5.5, 0.01 M
sodium linoleate, and the appropriate amount of crude enzyme
solution. Absorbance was measured at 234 nm. One unit of LOX
was defined as a decrease of 0.01 optical density (OD) value in
absorbance per minute, and the results were expressed as U/g FW.

Data Analysis
The physiological parameters of the sweet potatoes were analyzed
using IBM SPSS 22.0 (IBM Corp., Armonk, NY, United States).
The correlation among antioxidant enzyme activities, LOX
activity, ROS-related indexes, and storage property of the
different sweet potato cultivars, the heat map of the physiological
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parameters, and the PCA were assessed using the tools on the
OmicShare platform1 (Gene Denovo, Guangzhou, China).

RESULTS

Determination of the Storage Property of
the 10 Sweet Potato Tubers
Decay percentage is one of the basic indexes used to evaluate
the storage properties of sweet potatoes. In this study, 10 sweet
potato cultivars (i.e., Xu 32, Xu 55-2, Z 15-1, Shangshu 19,
Sushu 16, Yanshu 5, Hanzi, Yushu, Zhezi 3, and Yan 25) were
selected to evaluate the decay percentage during storage. The
storage properties of the different sweet potato cultivars are
shown in Table 1. Xu 32 was found to be a storage-tolerant
cultivar; Xu 55-2, Z 15-1, Shangshu 19, Yushu, and Zhezi 3
above-medium storage-tolerant cultivars; Sushu 16, Yanshu 5,
and Hanzi medium-storable cultivars; and Yan 25 a storage-
sensitive cultivar. Each sweet potato cultivar was assigned a
storability score ranging from 1 (storage-sensitive) to 4 (storage-
tolerant). The weight loss percentage of the tubers after 290 days
of storage was also determined. The lowest weight loss percentage
(18.1%) was observed in Xu 55-2 and highest (67.1%) in Sushu
16; however, no correlation was found between weight loss and
storage property (Table 1).

1https://www.omicshare.com/

Changes in α-Amylase Activity in the
Roots of the 10 Sweet Potato Cultivars
During Storage
Amylase activity is responsible for starch degradation during
the postharvest storage of sweet potatoes. To evaluate the
correlation between α-amylase activity and storage property
of the different cultivars, α-amylase activity in sweet potato
tubers was determined at 30-day intervals during the 290-day
storage period. As shown in Figure 1A, before storage, the
lowest α-amylase activity was observed in the storage-tolerant
cultivar Xu 32, while the highest was found in the storage-
sensitive cultivar Yan 25. With increasing storage time, the
α-amylase activity of the 10 sweet potato root tubers showed
an increasing trend, peaking at 290 DAS (Figure 1B). During
storage, α-amylase activity was lowest in the storage-tolerant
cultivar Xu 32 and highest in the storage-sensitive cultivar Yan
25. Between days 30 and 90 of storage, the α-amylase activity of
the storage-tolerant and above-medium storage-tolerant cultivars
was stable and remained at a low level, whereas that of the
storage-sensitive cultivar Yan 25 showed a significant increase
during this storage period. These results demonstrated that
α-amylase activity was lower in the storage-tolerant cultivar
than in the storage-sensitive cultivar at all storage periods
evaluated, and further suggested that α-amylase activity is an
important indicator of the storage property of the different sweet
potato cultivars.

TABLE 1 | Storage property evaluation of 10 sweet potato cultivars, including Xu 32, Xu 55-2, Z 15-1, Shangshu 19, Sushu 16, Yanshu 5, Hanzi, Yushu,
Zhezi 3, and Yan 25.

Variety Xu 32 Xu 55-2 Z 15-1 Shangshu 19 Yushu Zhezi 3 Sushu 16 Yanshu 5 Hanzi Yan 25

Decay
percentage

<25% 25–50% 25–50% 25–50% 25–50% 25–50% 50–75% 50–75% 50–75% >75%

Weight loss 33.5 ± 3.2%
E

18.1 ± 2.0%
F

19.2 ± 3.4%
F

42.5 ± 2.5% C 34.6 ± 2.7%
E

37.9 ± 6.0%
D

67.1 ± 4.1%
A

37.6 ± 2.1%
D

33.7 ± 6.2%
E

51.7 ± 2.4%
B

Storage
level

Storage-
tolerant

Above-
moderate

Above-
moderate

Above-moderate Above-
moderate

Above-
moderate

Medium Medium Medium Storage-
sensitive

Storability
score

4 3 3 3 3 3 2 2 2 1

FIGURE 1 | α-amylase activity in the tuberous roots of 10 sweet potato cultivars (i.e., Xu 32, Xu 55-2, Z 15-1, Shangshu 19, Sushu 16, Yanshu 5, Hanzi, Yushu,
Zhezi 3, and Yan 25). (A) α-amylase activity in the tuberous roots of 10 sweet potato cultivars before storage and (B) at 30-day intervals during 290 days of
postharvest storage. FW, fresh weight; d, days. Different letters above the columns in this figure and following figures stand for significant difference between two
values (p < 0.05).
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FIGURE 2 | The activities of (A) superoxide dismutase (SOD), (B) peroxidase (POD), (C) catalase (CAT), and (D) ascorbate peroxidase (APX) in the leaves of 10
sweet potato cultivars (i.e., Xu 32, Xu 55-2, Z 15-1, Shangshu 19, Sushu 16, Yanshu 5, Hanzi, Yushu, Zhezi 3, and Yan 25). Data are presented as means ± SD
(n = 3). FW, fresh weight.

FIGURE 3 | (A) H2O2 content, (B) O2·
− production rate, (C) malondialdehyde (MDA) content, and (D) lipoxygenase (LOX) activity in the leaves of the 10 sweet

potato cultivars. Data are presented as means ± SD (n = 3). FW, fresh weight.

Frontiers in Plant Science | www.frontiersin.org 5 November 2021 | Volume 12 | Article 69614225

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-696142 November 17, 2021 Time: 14:16 # 6

Song et al. Storage Is Correlated with Antioxidation

FIGURE 4 | Principal component analysis based on antioxidant-related enzyme activities and reactive oxygen species (ROS) contents in 10 sweet potato cultivars
(i.e., Xu 32, Xu 55-2, Z 15-1, Shangshu 19, Sushu 16, Yanshu 5, Hanzi, Yushu, Zhezi 3, and Yan 25).

Analysis of the Activities of Antioxidant
Enzymes in the Leaves of the 10 Sweet
Potato Cultivars
The activities of antioxidant enzymes are required for ROS
scavenging during sweet potato storage. Accordingly, we sought
to determine whether a correlation existed between antioxidant
enzyme activity in the leaves and tuber storage property. The
results showed that SOD activity was highest in the storage-
tolerant cultivar Xu 32 and lowest in Yan 25 (Figure 2A). SOD
activity was 3.1-fold higher in Xu 32 than in the storage-sensitive
cultivar Yan 25. As shown in Figure 2B, POD enzyme activity
was generally consistent with the trend for SOD activity across
the 10 sweet potato cultivars, with Yan 25 showing the lowest
activity and Z 15-1 the highest (2.73-fold higher compared with
that of Yan 25). The activities of CAT and APX in the 10
cultivars are shown in Figures 2C,D, respectively. CAT and APX
activities were higher in the cultivars that showed better storage
property (Xu 32, Z 15-1, Xu 55-2, Shangshu 19, Yushu, and
Zhezi 3 vs. Sushu 16, Yanshu 5, Hanzi, and Yan 25). The Xu
55-2 cultivar displayed the highest CAT activity and Yan 25 the
lowest. Meanwhile, APX activity was highest in Xu 32 and lowest

in Yan 25. The above results indicated that the better the storage
property, the higher the activities of antioxidant-related enzymes.

Changes in Superoxide Anion Radical,
Hydrogen Peroxide, and
Malondialdehyde Contents and
Lipoxygenase Enzyme Activity in the
Leaves of the Different Sweet Potato
Cultivars
The changes in H2O2 content in the leaves of the sweet potatoes
are shown in Figure 3A. The H2O2 content was lowest in the Xu
32, Xu 55-2, Z 15-1, and Shangshu 19 cultivars and highest in Yan
25. The H2O2 content in Yan 25 was 2.89-fold higher than that of
Shangshu19. The H2O2 content in Xu 32, Xu 55-2, and Z 15-1,
the cultivars with stronger storage performance, was significantly
lower than that of Sushu 16, Yanshu 5, Hanzi, Yushu, and Zhezi
3, cultivars with reduced storage property. O2·

− production and
MDA content showed a pattern similar to that for the H2O2
content (Figures 3B,C). The rate of O2·

− production was lowest
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in the storage-tolerant cultivar Xu 32 and highest in the storage-
sensitive cultivar Yan 25 (1.72-fold that of Xu 32). The MDA
content showed a gradual increase with decreasing the storage
property of sweet potato. Yan 25 exhibited the highest MDA
content, which was 1.6-fold that of Shangshu 19, the cultivar that
displayed the lowest MDA content. As shown in Figure 3D, LOX
activity was generally low in the leaves of the Xu 32, Xu 55-2, Z 15-
1, and Shangshu19 cultivars and was lowest in Xu 55-2. Overall,
LOX activity was higher in the leaves of the Yan 25, Sushu 16,
and Yanshu 5 cultivars than in those of Zhezi 3, Sushu 16, and
Hanzi. LOX activity in Yanshu 5 and Yan 25 was 2.79- and 2.62-
fold, respectively, that of Xu 55-2. These findings indicated that
the cultivars with better storability had lower O2·

−, H2O2, and
MDA contents, as well as lower LOX enzyme activity.

Principal Component Analysis of
Antioxidant Enzyme Activities and
Reactive Oxygen Species Metabolites in
the Leaves of the Different Sweet Potato
Cultivars
The PCA showed that PC1 and PC2 accounted for 78.2 and 8.2%,
respectively, of the variability in the data (Figure 4). Storage-
tolerant and storage-sensitive cultivars were clearly clustered in
PC1. Yanshu 5, Hanzi, and Sushu 16 were clustered together,
as were Xu 32, Xu 55-2, Z 15-1, and Shangshu 19, Yushu,
and Zhezi 3. The variety showing the highest positive loading
on PC1 was Yan 25, and the variety that showed the lowest
loading on PC2 was Yanshu 5. These observations suggested that
a positive correlation exists between antioxidant capacity and
storage property among the different sweet potato cultivars.

Analysis of the Correlation Between
Physiological Indexes and Storage
Property in the Different Sweet Potato
Cultivars
Then, the correlation among storage properties (i.e., α-amylase
activity and rot percentage) of sweet potato roots and leaf
parameters [i.e., ROS production (H2O2, O2·

−, and MDA)
and antioxidant enzyme activities (i.e., POD, APX, SOD, CAT,
and LOX)] was analyzed (Figure 5). A positive correlation
was found among storage property and POD, APX, SOD,
and CAT activities, as well as among α-amylase activity, LOX
activity, and O2·

−, H2O2, and MDA contents. In addition, SOD,
POD, CAT, and APX activities and storage properties were
negatively correlated with LOX, α-amylase activities and O2·

−,
H2O2, and MDA contents. SOD activity was significantly and
positively correlated with APX activity (r = 0.948) and highly
and negatively correlated with H2O2 contents (r = −0.841).
POD activity was highly and positively correlated with SOD
activity (r = 0.764) and highly and negatively correlated with
H2O2 levels (r = −0.767). CAT activity was highly and positively
correlated with APX activity (r = 0.799) and negatively correlated
with LOX activity (r = −0.850). LOX activity showed a negative
correlation with APX activity (r = −0.853) and a positive
correlation with the H2O2 content (r = 0.877). A negative

correlation was found between H2O2 content and SOD activity
(r = −0.841). Besides, there was a significant and negative
correlation between α-amylase activity and storage property
(r = −0.915) and a positive correlation between α-amylase
activity and MDA content (r = 0.777). Overall, the correlation
analysis indicated that the storage property of sweet potato
roots is positively associated with antioxidative enzyme activity
and negatively correlated with ROS metabolites in sweet potato
leaves. The positive correlation detected among the activities of
the antioxidant enzymes suggested that they are activated and
cooperated in scavenging ROS.

Heat Map Analysis of
Antioxidant-Related Indexes and Cluster
Analysis of the Relationship Among the
Different Sweet Potato Cultivars
To further verify the relationship between the antioxidant
capacity and storage property of the different sweet potato
cultivars, we generated a heat map of the antioxidant enzyme-
and ROS-related indexes in the sweet potato leaves and the
storage property of sweet potato (α-amylase activity). As shown
in Figure 6, the sweet potato cultivars (i.e., Xu 32, Xu 55-2,
Shangshu 19, and Z 15-1) with better storability were clustered
together and showed higher activities of antioxidant related
enzymes (i.e., POD, SOD, APX, and CAT), but significantly lower
LOX and α-amylase activities, O2·

− production rates, and H2O2
and MDA contents relative to the storage-sensitive cultivars (i.e.,
Sushu 16, Yanshu 5, Hanzi, Yan 25, Yushu, and Zhezi 3). Xu
32, the cultivar with the best storage property, had the lowest
α-amylase activity, while the storage-sensitive cultivar, Yan 25,
had the highest.

DISCUSSION

Owing to its tropical origins, the tuberous roots of the sweet
potato are susceptible to chilling stress (Li et al., 2018).
Moreover, sweet potato decays easily during storage due to its
high water content (Sugri et al., 2017). Even at appropriate
storage temperatures, crops still undergo deteriorative changes
resulting from the activity of internal factors, such as ROS, a
key contributor to postharvest senescence (Wang et al., 2019;
Guo et al., 2021). ROS can be produced in plants during
many metabolic reactions, but particularly in chloroplasts and
mitochondria during senescence. Throughout this process, the
antioxidant defense system, comprising both enzymatic and non-
enzymatic antioxidants, is activated to scavenge excessive ROS,
thereby preventing cellular damage (Nie et al., 2020). Antioxidant
capacity was reported to be related to the storage properties
of different sweet potato cultivars (de Araujo et al., 2021), while
increased antioxidant enzyme activity was found to be positively
correlated with sweet potato storability (Tang et al., 2019).
However, whether a correlation exists between antioxidant
enzyme activity in sweet potato leaves and the storage properties
of the tubers has not been determined. To address this, in
this study, we evaluated whether the antioxidant capacity of
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FIGURE 5 | Correlation analysis among SOD, POD, APX, CAT, and LOX activities, superoxide anion (O2·
−) production, and MDA and H2O2 contents in the leaves

and storage property and α-amylase in the roots of 10 sweet potato cultivars (i.e., Xu 32, Xu 55-2, Z15-1, Shangshu 19, Sushu 16, Yanshu 5, Hanzi, Yushu, Zhezi 3,
and Yan 25).

sweet potato leaves is positively correlated with the storage
property of sweet potato using 10 sweet potato cultivars as the
experimental material.

The storability of the 10 cultivars was first determined based
on decay percentage at 290 DAS. We found that Xu 32 is a
storage-tolerant cultivar; Yan 25 is a storage-sensitive cultivar; Xu
55-2, Z 15-1, Shangshu 19, Yushu, and Zhezi 3 are above-medium
storage-tolerant cultivars; and Sushu 16, Yanshu 5, and Hanzi are
medium-storable cultivars. We also determined the weight loss
percentage of the tubers at 290 DAS but found no association
between weight loss and decay percentage. Accordingly, only the
latter was used to categorize the storage property of sweet potato
tubers. Starch constitutes an important carbohydrate reserve in

tuberous roots of sweet potatoes, and amylase activity is required
for starch degradation during storage (Lu et al., 2020). In this
study, we found that α-amylase activity was lowest in the storage-
tolerant cultivar Xu 32 and highest in the storage-sensitive
cultivar Yan 25. A significant increase in α-amylase activity was
observed in tubers during storage, especially in the more storage-
sensitive cultivars, suggesting that a correlation exists between
α-amylase activity and storage property of tubers (Figure 1),
which was consistent with the results of Lu et al. (2020).
We further found that sweet potato tuber storability is highly
correlated with the antioxidant capacity of the sweet potato
leaves, which provides a convenient means for the screening of
storage-tolerant sweet potato cultivars.
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FIGURE 6 | Heat map analysis of antioxidant enzyme (i.e., SOD, POD, APX, CAT), α-amylase, and LOX activities and ROS-related indexes (i.e., O2·
−, H2O2, and

MDA) in 10 sweet potato cultivars (i.e., Xu 32, Xu 55-2, Z15-1, Shangshu 19, Sushu 16, Yanshu 5, Hanzi, Yushu, Zhezi 3, and Yan 25).

Numerous studies have shown that ROS accumulates in fruit
and vegetable during storage. For instance, ROS accumulation in
longan postharvest leads to a gradual increase in cell membrane
permeability and the destruction of cell membrane structure
(Lin et al., 2005). Additionally, hydrogen sulfide treatment
can increase the antioxidant capacity of strawberry, thereby
prolonging its shelf life (Hu et al., 2012). Combined, these
observations suggest that antioxidant capacity is intrinsic to
a specific cultivar and is a key determinant of postharvest

senescence. However, the relationship between the storage
property of different sweet potato cultivars and the antioxidant
capacity of sweet potato leaves still needs further investigation. In
this study, we found that antioxidant enzyme (i.e., CAT, POD,
APX, and SOD) activity in the leaves of the storage-tolerant
cultivars Xu 32, Xu 55-2, and Z 15-1 remained at higher levels
compared with those of the storage-sensitive cultivars Yan 25,
Sushu 16, Yanshu 5, and Hanzi, whereas the opposite was seen for
LOX activity. Besides, the storage-tolerant cultivar Xu 32 and the

Frontiers in Plant Science | www.frontiersin.org 9 November 2021 | Volume 12 | Article 69614229

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-696142 November 17, 2021 Time: 14:16 # 10

Song et al. Storage Is Correlated with Antioxidation

FIGURE 7 | Schematic diagram showing that ROS and MDA levels; LOX, SOD, POD, APX, and CAT activities in sweet potato leaves are highly associated with the
storage property of different sweet potato tubers.

above-moderate storage-tolerant cultivars Xu 55-2 and Shangshu
19 contained lower levels of ROS metabolites when compared
with those of the storage-sensitive cultivar Yan 25, all of which
suggested that antioxidant capacity is positively correlated with
sweet potato storability.

Furthermore, correlation and heat map analysis showed that
there was a prominent association between the antioxidant
capacity of sweet potato leaves and the storage property of sweet
potato tubers, while antioxidant enzyme activity was negatively
correlated with the levels of ROS metabolites and positively
correlated with storage property. Moreover, α-amylase activity
was found to be negatively correlated with storage property,
suggesting that α-amylase activity is also a valuable index for
evaluating the storage potential of sweet potato tubers. PCA
indicated that sweet potato cultivars with similar antioxidant
enzyme activities, such as Xu 32, Xu 55-2, Z 15-1, and Shangshu
19, were clustered together, as were Yanshu 5, Hanzi, and Sushu
16 (Figure 3). Overall, these results were consistent with the
storage properties of the different cultivars and sweet potato
varieties with similar antioxidant enzyme activities. The growth
environment, soil, fertilizer and water management, temperature,
light, and other external conditions can all affect the storage
performance of sweet potato, while the ecological environment
can significantly affect sweet potato quality (Yan et al., 2017).

Rosenthal and Jansky (2008) reported that antioxidant activity
in potato growing in a high-yield production environment was
usually the highest and increased during storage, indicative of
the importance of antioxidant enzymes for potato storability.
Additionally, ultrasound treatment can inhibit the browning of
fresh-cut sweet potatoes by reducing PPO and POD activities
while improving total antioxidant capacity (Pan et al., 2020).
Moreover, low-temperature conditioning at 10◦C can induce
antioxidant enzyme activity in tuberous roots and protect tubers
from chilling injury when subjected to subsequent cold storage
at 4◦C (Li et al., 2018). Together, these findings suggest that
the antioxidative enzyme system is critical for protecting the
sweet potato from postharvest senescence and decay. As shown
in Figure 7, antioxidant enzymes are required for maintaining
ROS metabolic balance, while accumulated ROS may negatively
influence the storage property of sweet potato tubers.

Overall, this study provides strong evidence that the
antioxidant capacity of leaves in different sweet potato cultivars is
positively correlated with their storability. We further found that
α-amylase activity in sweet potato tubers is negatively correlated
with storage property, suggesting that α-amylase activity may
represent a valuable index for evaluating the storage potential
of sweet potato tubers. Finally, given that the characterization
of storage property in different sweet potato cultivars is a
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time-consuming process, this study provides a convenient means
for evaluating the storage properties of sweet potatoes by
measuring the antioxidant capacity in sweet potato leaves.
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Low-temperature stress is the main limiting factor of cucurbit crop cultivation as it affects 
crop yield and quality. The identification of genes involved in cold tolerance is a crucial 
aspect of pumpkin rootstock breeding. Here, we examined the function of a pumpkin 
Regulator of Chromosome Condensation 1 (CmRCC1) gene in the root development and 
cold stress responses of tobacco (Nicotiana benthamiana). CmRCC1 expression was 
differentially induced in pumpkin root, stem, and leaf under cold stress. Transient 
transformation showed that CmRCC1 is located in the nucleus. CmRCC1 overexpression 
in tobacco increased the gravitropic set-point angle in lateral roots, as well as root diameter 
and volume. The expression of auxin polar transport factors, PIN1 and PIN3, decreased 
and increased in CmRCC1-overexpressed plants, respectively. Yeast two-hybrid verification 
and luciferase complementation imaging assay showed that CmRCC1 interacts with 
CmLAZY1. Furthermore, the decreases in maximum quantum yield of PS II, the effective 
quantum yield of PS II, and electron transfer rate and the increases in quantum yield of 
nonregulated energy dissipation and malondialdehyde content were compromised in 
transgenic plants compared with wild-type plants under cold stress. The results suggest 
that CmRCC1 plays an important role in the regulation of root architecture and positively 
modulates cold tolerance.

Keywords: CmRCC1, cold stress, root architecture, photosynthesis, pumpkin

INTRODUCTION

The Regulator of Chromosome Condensation 1 (RCC1) superfamily of proteins is characterized 
by 350–500 residue domain, known as the RCC1-like domain (RLD), which was first reported 
in human RCC1  in 1987 (Ohtsubo et  al., 1987). RCC1 consists of seven homologous repeats 
of 51–68 amino acid residues. It combines with chromatin and a nuclear Ras-like G protein, 
Ran, to establish a RanGTP concentration gradient, which affects the formation and function 
of the nuclear envelope, spindle formation, nuclear transport, and the cell cycle during 
tumorigenesis (Ren et  al., 2020). Since the initial identification of RCC1, a number of proteins 
that contain one or more RLDs have been discovered. In human cells, these RCC1 superfamily 
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proteins can be  subdivided into five subgroups based on 
structural criteria (Hadjebi et  al., 2008).

Recent studies have been reported the functions of RCC1 
superfamily proteins in plants. Arabidopsis thaliana contains 
24 RCC1 family proteins, among which UV RESISTANCE 
LOCUS 8 (UVR8), a UV-B photoreceptor, has been studied 
the most (Rizzini et  al., 2011; Christie et  al., 2012; Wu et  al., 
2012; Jenkins, 2014). UV-B absorption induces the instant 
monomerization of UV-B RESISTANCE 8 (UVR8) and 
interaction with CONSTITUTIVELY PHOTOMORPHOGENIC 
1, the central regulator of light signaling, to secure plant 
acclimation and promote survival in sunlight (Rizzini et  al., 
2011). RCC1/UVR8/GEF-like 3 (RUG3), another RCC1 family 
protein, interacts with ataxia telangiectasia-mutated protein in 
the mitochondria of Arabidopsis to synergistically regulate nad2 
mRNA splicing and complex I  biogenesis (Kühn et  al., 2011). 
As an upstream regulatory element of reactive oxygen species 
(ROS) homeostasis, RUG3-mediated mitochondrial retrograde 
signaling plays an important role in DNA damage repair and 
mitochondrial function restoration in the root apical meristem 
(Su et al., 2017). The Tolerant to Chilling and Freezing 1 (TCF1) 
gene in Arabidopsis encodes a protein containing six predicted 
tandem RCC1 repeats that show a similarity to yeast and 
human RCC1 (Ohtsubo et  al., 1989; Renault et  al., 1998). 
TCF1 regulates cold acclimation and freezing tolerance by 
modulating Blue-Copper-Binding gene (BCB) to adjust lignin 
accumulation and consequently cell wall remodeling (Ji et  al., 
2015). Sensitive to ABA 1 (SAB1) encodes a RCC1 family 
protein and physically interacts with ABI5, which results in 
reduced ABI5 phosphorylation and protein stability, decreased 
ABI5 DNA-binding activity, and increased the H3K27m2 
methylation of ABI5 promoter in Arabidopsis (Ji et  al., 2019). 
Four out of eight RLD proteins in Arabidopsis were identified 
as LAZY1/LAZY1-LIKE (LZY) interactors, and RLDs regulate 
PIN-dependent auxin transport in various developmental 
processes, including gravitropic set-point angle (GSA) control 
(Furutani et al., 2020). A newly discovered RCC1 family protein, 
PLASTICITY OF ROSETTE TO NITROGEN 1, confers the 
plasticity of rosette diameter in response to changes in nitrogen 
availability in Arabidopsis (Duarte et  al., 2021). Additionally, 
56 RCC1 genes have been identified in upland cotton (Gossypium 
hirsutum), among which Gh_A05G3028 and Gh_D10G2310, 
the homologous genes of AtTCF1 and AtUVR8, were dramatically 
induced under salt treatment, and the silencing of these two 
genes exhibited a salt-sensitive phenotype (Liu et  al., 2019).

As the most important environmental stress, low temperature 
can limit the growth of plants and affect the distribution and 
yield of crops (Stitt and Hurry, 2002; Zhang et  al., 2004). 
Low-temperature stress negatively affects plant growth 
morphology, physiology, and biochemistry by limiting cell 
survival, cell division, photosynthetic efficiency, and water 
transport (Beck et  al., 2007; Sanghera et  al., 2011). In recent 
years, extreme weather occurs frequently around the world 
and further increases the risk of low-temperature damage to 
plants, which remarkably reduces the economic benefits of 
agricultural production. Solving the adaptation problem of 
plants under chilling injury has always been a hot topic 

worldwide (Rigby and Porporato, 2008; Augspurger, 2013; 
Hatfield and Prueger, 2015). Therefore, studying the response 
mechanism of plants to chilling injury and discovering the 
functional genes of plants for cold resistance are of great 
importance to cope with global climate anomalies.

Pumpkin (Cucurbita maxima) is a typical warm-loving 
vegetable. It is often used as the rootstock in grafting many 
kinds of cucurbit crops because of its developed root system 
and strong resistance to soil-borne pathogens and abiotic stresses. 
Pumpkin rootstocks can reduce water loss by limiting the 
transpiration of grafted seedlings, promote the absorption and 
transportation of water and nutrients in grafted seedlings, and 
regulate the osmotic pressure in cells to alleviate the damage 
of plants under low-temperature stress (Schwarz et  al., 2010). 
However, the possible molecular regulatory mechanisms 
underlying pumpkin response to cold stress are not yet illustrated. 
In this study, the Regulator of Chromosome Condensation 1 
(CmRCC1) gene was characterized from a cold-tolerant pumpkin 
rootstock. The expression patterns of CmRCC1 in response to 
cold treatment were analyzed through quantitative real-time 
polymerase chain reaction (qRT-PCR). CmRCC1 was 
overexpressed in transgenic tobacco (Nicotiana benthamiana) 
plants to evaluate its function in root development and cold 
stress tolerance. Root morphology assays revealed that CmRCC1 
overexpression altered the root architecture under normal growth 
conditions. Moreover, CmRCC1-overexpressed (OxCmRCC1) 
plants showed good performance under cold stress. Generally, 
our results suggest that CmRCC1 plays important roles in plant 
cold response and can be  a candidate gene to improve the 
cold tolerance of crops in the future.

MATERIALS AND METHODS

Plant Materials and Cold Treatment of 
Pumpkin Seedlings
“Qingyan No. 1,” a pumpkin rootstock with low temperature 
tolerance, was used as the experimental material in this study. 
The pumpkin seeds were soaked with 1‰ KMnO4 for 15 min 
to conduct surface disinfection. Afterward, the seeds were 
soaked in warm water at 55°C, cooled naturally, soaked for 
12 h, and placed in a growth chamber at 30°C for germination. 
Then, the seeds were sown in 10 cm × 10 cm pots with peat–
vermiculite–perlite medium (2:1:1). The growth conditions were 
as follows: photoperiod, 12/12 h; day/night temperature, 28/18°C; 
light intensity, 16,000 Lx; and air humidity, 70–85%. Pumpkin 
seedlings at three-leaf stage were exposed to 4°C in a growth 
chamber (Ningbo Saifu DGX-260, China) for cold stress. The 
root, stem, and third true leaf of each plant were sampled at 
0, 3, 6, 12, and 24 h after low-temperature treatment. The 
samples were frozen at −80°C in liquid nitrogen before 
qRT-PCR analysis.

Subcellular Localization of CmRCC1
The full-length coding sequence (CDS) of CmRCC1 was amplified 
by PCR using 2× High-Fidelity Master Mix (Tsingke, Inc., 
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Beijing, China), and the fragments were inserted into the Bgl 
II site of the pCAMBIA1305.4-N-GFP vector by using 
ClonExpress II One Step Cloning Kits (Vazyme, Piscataway, 
NJ, United States) to generate 35S::GFP-CmRCC1 fusion protein 
under the control of the Cauliflower mosaic virus (CaMV) 
35S promoter. The construct and negative control 
(pCAMBIA1305.4-N-GFP) were transformed into Agrobacterium 
tumefaciens strain GV3101 and infiltrated into tobacco leaves 
according to previously described method (Sheludko et  al., 
2007). Leica SP8 confocal microscope was used to detect the 
GFP fluorescence signal with 4,6-diamidino-2-phenylindole 
(DAPI) as the nucleus marker.

Total RNA Extraction and Reverse 
Transcription
Total RNA was isolated using TransZol reagent (TransGen 
Biotech Inc., Beijing, China) in accordance with the 
manufacturer’s protocol. The extracted total RNA was dissolved 
in diethylpyrocarbonate-treated water. The cDNA template for 
gene cloning was synthesized from 2 μg of RNA using HiScript 
II One Step RT-PCR Kit (Vazyme, Piscataway, NJ, United States). 
While for qRT-PCR, the cDNA was synthesized from 1 μg 
total RNA using HiScript II Q RT SuperMix for qPCR (+g 
DNA wiper; Vazyme, Piscataway, NJ, United  States).

Generation of CmRCC1 Transgenic 
Tobacco Plants
The CDS of CmRCC1 was cloned into the pHellgate8 vector 
to generate the 35S::CmRCC1 construct by ClonExpress II One 
Step Cloning Kits. The construct was transformed into A. 
tumefaciens strain GV3101 and then transferred into tobacco 
plants using the leaf disc method (Horsch et al., 1985). Transgenic 
tobacco seeds were screened on MS medium suspended with 
kanamycin (50 mg/L). T2 homozygous lines were used for 
further experiments.

Root Morphology Assays
The roots of three uniform plants from each replicate were 
harvested and washed with deionized water. The root morphology 
was scanned using Imagery Scan Screen (Epson Expression 
11000XL, Regent Instruments, Canada). Root image analysis 
was conducted via the WinRHIZO 2003a software (Regent 
Instruments, Canada).

Yeast Two-Hybrid Verification
The open reading frames (ORFs) of CmRCC1 and CmLAZY1 
from “Qianyan No. 1” roots were amplified using sequence-
specific primers (Supplementary Table S1) and incorporated 
into pGBKT7 and pGADT7 vectors (Clontech, United  States), 
respectively, to verify the protein–protein interactions of CmRCC1 
with CmLAZY1. According to the manufacturer, the recombinant 
plasmids, pGADT7-CmLAZY1 and pGBKT7-CmRCC1, pGADT7 
and pGBKT7-CmRCC1, pGADT7-T and pGBKT7-lam (negative 
control), and pGADT7-T and pGBKT7-p53 (positive control), 
were introduced into the yeast strain, Y2H Gold. The 

transformants were grown on SD/−Leu/−Trp and SD/−Leu/−
Trp/−Ade/-His media to evaluate the interactions.

Luciferase Complementation Imaging 
Assay
As described previously, the ORF of CmLAZY1 was cloned 
into pCAMBIA-nLUC to yield the fusion construct, pCAMBIA-
CmLAZY1-nLUC, and the ORF of CmRCC1 was cloned into 
pCAMBIA-cLUC to generate the fusion construct, pCAMBIA-
CmRCC1-cLUC (Chen et al., 2008). Agrobacterium tumefaciens 
GV3101 was transformed with the empty vector and fusion 
constructs and incubated at 28°C for 16 h. Then, the A. 
tumefaciens cells were collected and resuspended at OD600 = 0.3. 
The tobacco leaves were then infiltrated with Agrobacterium 
strains containing the indicated constructs at a ratio of 1:1. 
After 3 days, the leaves were treated with luciferin, and firefly 
luciferase (LUC) signal was observed according to Xiong 
et  al. (2019).

Analysis of Chlorophyll Fluorescence
Chlorophyll fluorescence was measured by pulse amplitude-
modulated fluorometry (MAXI; Heinz Walz, Effeltrich, Germany) 
as previously described (Cheng et  al., 2016). The seedlings 
were adapted to the dark for at least 30 min before the 
measurements, and the whole area of the third leaf from the 
bottom was used for the experiment. The intensities of actinic 
light and saturating light were set to 280 and 4,000 μmol m−2 s−1, 
respectively. The maximum quantum yield of PS II (Fv/Fm) 
and the effective quantum yield of PS II (ΦPSII) were measured 
and calculated in accordance with the following equations (van 
Kooten and Snel, 1990): Fv/Fm = (Fm − Fo)/Fm and 
ΦPSII = (F’m − Fs)/F’m. The quantum yield of regulated energy 
dissipation (ΦNPQ) and the quantum yield of nonregulated 
energy dissipation (ΦNO) in PS II were calculated according 
to the equation (Kramer et  al., 2004): ΦPSII + ΦNPQ + ΦNO = 1. 
Electron transfer rate (ETR) was measured using a rapid light-
response curve.

Determination of Lipid Peroxidation
Lipid peroxidation was determined by measuring 
malondialdehyde (MDA) content as described by Hodges et al. 
(1999). Briefly, leaf samples (0.3 g) were ground in 3 ml of 
ice-cold 25 mmol/L HEPES buffer (pH 7.8) containing 0.2 mmol/L 
EDTA and 2% (w/v) polyvinylpyrrolidone. The obtained 
homogenates were centrifuged at 4°C for 20 min at 10,000 rpm, 
and the resulting supernatants were used to analyze MDA 
content. The samples were mixed with 10% trichloroacetic acid 
containing 0.65% 2-thiobarbituric acid (TBA) and heated at 
95°C for 25 min. MDA content was corrected for non-MDA 
compounds by subtracting the absorbance at 532 nm of a 
TBA-less solution that contained the plant extract.

Gene Expression Analysis
We amplified the PCR products for qRT-PCR analysis in 
triplicate using 2 × TransStart™ TOP Green qPCR SuperMix 
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A

B

FIGURE 1 | Phylogenetic analysis of RCC1 family proteins in Arabidopsis and subcellular localization of CmRCC1. (A) Phylogenetic tree of CmRCC1 with those 
identified RCC1 proteins from Arabidopsis. The phylogenetic tree was constructed using MEGA 7 with the Neighbor–Joining method. (B) Subcellular localization of 
CmRCC1 in tobacco epidermal cells. Nucleus was stained with DAPI. Co-localization between DAPI and GFP signals in 35S::GFP-CmRCC1 fusion protein was 
shown in merged picture.

(TransGen Biotech Inc., Beijing, China) in 10 μl qRT-PCR 
assays. PCR was performed using the QuantStudio 7 Flex 
Real-time PCR System (Applied Biosystems, Foster City, CA, 
United States). The cycling conditions consisted of denaturation 
at 95°C for 30 s, followed by 40 cycles of denaturation at 
95°C for 5 s, annealing at 58°C for 15 s, and extension at 
72°C for 10 s. The reference genes, CmCAC and NbACTIN, 
were used as the internal controls (Obrero et  al., 2011; Nie 
et  al., 2020). The gene-specific primers for CmRCC1 and the 

NbPIN gene family are listed in Supplementary Table S1. 
Relative gene expression was determined as previously described 
by Livak and Schmittgen (2001).

Statistical Analysis
The experiment involved a completely randomized block design 
with four replicates. Statistical analysis was performed using the 
SAS statistical package. The differences between the treatment 
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means were separated using Tukey’s test at a significance level 
of p < 0.05.

RESULTS

Identification and Characterization of the 
CmRCC1 Gene
CmRCC1 gene (CmaCh15G006130) was predicted to contain 
a 3,360 bp CDS isolated from 4,143 bp cDNA and encode the 
protein of 1,119 amino acids in the Cucurbit Genomics Database. 
A Pfam domain search was performed to characterize the 
pleckstrin homology (PH_12), RCC1 repeats, FYVE zinc finger, 
BRX N-terminal, and BRX domains of the CmRCC1 protein 
(Supplementary Figure S1A).1 Moreover, a database (The 
Arabidopsis Information Resource) search indicated 24 RCC1 
family proteins in A. thaliana, among which 15 protein members 
have been named and functionally annotated. The phylogenetic 
tree built from the alignment of CmRCC1 with the previously 
identified Arabidopsis RCC1s revealed the evolutionary distances 
between the sequences (Figure  1A). Among these sequences, 
CmRCC1 showed high similarity to the sequences of AtRLD1 
and AtRLD4.

The GFP-CmRCC1 fusion construct and GFP control in 
the pCAMBIA1305.4-N-GFP vector driven by CaMV35S 
promoter were transiently expressed in tobacco epidermal cells 
and visualized under a laser scanning confocal microscope to 
determine the subcellular localization of CmRCC1. The GFP 
fluorescence signal of GFP-CmRCC1 fusion protein was detected 
in the nucleus as confirmed by DAPI staining (Figure  1B).

1 http://pfam.xfam.org/search/sequence

Temporal and Spatial Responses of 
CmRCC1 Expression to Cold Stress
We detected the changes in CmRCC1 expression in the root, 
stem, and leaf at different time points after 24 h cold treatment 
to evaluate the response characteristics of CmRCC1 to cold 
stress in pumpkin. The transcription levels of CmRCC1 in the 
stem and leaf increased slowly with the extension of cold 
stress treatment, and they reached 2.13 and 3.15 times of the 
control (0 h) after 24 h treatment, respectively. However, the 
expression level of CmRCC1 in the pumpkin root peaked at 
3 h, and then reached 4.57 times at 24 h of cold treatment 
(Figure 2). These results indicate that CmRCC1 may be involved 
in the response of pumpkin root to early cold stress.

Involvement of CmRCC1 in the Control of 
Root Architecture and the Regulation of 
PIN Gene Expression
CmRCC1 was overexpressed in tobacco under the control of 
CaMV35S promoter to analyze the role of CmRCC1 in root 
development. The insertion of the CmRCC1 cassette in 28 
independent kanamycin-resistant transformants was confirmed 
by RT-PCR (Supplementary Figure S2). Three transformed 
lines (OxCmRCC1-1/−3/−6) which showed that the CmRCC1 
gene segregated in the Mendelian segregation ratio of 3:1, were 
subsequently selected to obtain T2 homozygous lines 
(Supplementary Table S2). qRT-PCR analysis of the CmRCC1 
transcripts in three independent lines revealed variable levels 
of transgene expression (Figure  3A). Compared with the wild 
type, all the overexpressed transgenic lines showed increased 
gravitropic set-point angle (GSA) in lateral roots (Figure  3B). 
Moreover, CmRCC1 overexpression increased the root diameter 
and volume of transgenic tobacco but not root length 
(Figures  3C–E).

In Arabidopsis, the characterized PIN proteins demonstrate 
specific expression patterns and are involved in polar auxin 
transport and root patterning (Paponov et  al., 2005). Thus, 
we  further measured the expression levels of four PIN genes 
in the roots of wild-type and CmRCC1 transgenic plants. As 
shown in Figure 4, PIN3 expression level remarkably increased 
in the CmRCC1 overexpression lines than in the wild type. 
However, the expression of PIN2 and PIN6 showed no substantial 
differences between the transgenic lines and wild type. By 
contrast, the expression level of PIN1 differentially decreased 
in the CmRCC1 overexpression lines compared with the wild type.

Interaction of CmRCC1 With CmLAZY1 
Protein
LAZY1 functions upstream of lateral auxin translocation in 
gravity signal transduction in the root and shoot of Arabidopsis 
and rice (Yoshihara and Iino, 2007; Taniguchi et  al., 2017). 
We  co-transformed pGADT7-CmLAZY1 and pGBKT7-
CmRCC1  in yeast cells and found that the transformants 
grew on SD/−Leu/−Trp/−Ade/-His media, which was 
consistent with the results of the positive control yeast cells 
(Figure  5A). Furthermore, we  performed luciferase 

FIGURE 2 | The time-course response in CmRCC1 gene expression to 
chilling stress in pumpkin. Root, stem, and leaf samples were collected at the 
indicated times under chilling stress. The data are the means of four replicates 
with SEs.
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complementation imaging assay to verify the interaction of 
CmRCC1 with CmLAZY1 in vivo. We  were able to image 
LUC signals in tobacco leaves that co-infiltrated with 
Agrobacterium strains that expressed CmLAZY1-nLUC and 
CmRCC1-cLUC, but no signal was observed in the negative 
controls (CmRCC1-cLUC/nLUC and nLUC/cLUC, Figure 5B). 
Together, the results suggest that CmRCC1 interacts with 
CmLAZY1 protein.

Increased Cold Tolerance in Transgenic 
Tobacco With CmRCC1 Overexpression
The seedlings of T2 transgenic lines and wild type were 
exposed to chilling stress at 4°C for 12 h to examine the 
possible role of CmRCC1 overexpression in the cold tolerance 
of tobacco. We  observed that the leaves in the wild type 
completely shrank, and the plants were lodging after chilling 
stress treatment, whereas the transgenic tobacco plants still 
stood upright with flat leaves and light wilting (Figure  6A). 
We  then measured the chlorophyll fluorescence of PS II in 
the third leaves of chilling-stressed and non-stressed plants 
in the wild-type and transgenic lines. The Fv/Fm and ΦPSII 

decreased by 28.6 and 56.7%, respectively, in the wild type 
after chilling stress in comparison with the control. However, 
Fv/Fm and ΦPSII decreased by 11.1–14.7 and 6.7–15.3%, 
respectively, in the CmRCC1-overexpressed lines in response 
to chilling stress (Figures 6B,C). A high ΦNO value indicates 
that photochemical energy conversion and protective 
regulatory mechanisms are inefficient. Therefore, it indicates 
that the plant is already damaged or will be  photodamaged 
upon further irradiation. Here, we  found ΦNO increased by 
36.6% after chilling stress in wild-type plants, whereas 
CmRCC1 overexpression compromised the increase in ΦNO 
in chilling-stressed plants (Figure  6D). By contrast, ΦNPQ 
showed no substantial differences between chilling-stressed 
and non-stressed plants in wild-type and CmRCC1 transgenic 
lines, which indicates that the photoprotection ability was 
not affected under chilling stress (Figure  6E). We  also 
analyzed the ETR versus incident photosynthetic photon 
flux density. Light-saturated ETR decreased by 55.0% in 
chilling-stressed wild-type plants. Again, the decrease in 
ETR was compromised in CmRCC1-overexpressed lines 
(Figure  6F). Moreover, increased MDA content (62.5%) was 
observed after 12 h of chilling stress in wild-type plants 

A B

C D E

FIGURE 3 | T2 generation phenotypes of three lines in overexpressed CmRCC1 transgenic tobacco. (A) Relative expression level of CmRCC1 in three different 
transgenic tobacco lines. (B) Gravitropic set-point angle (GSA) in lateral roots of WT and transgenic tobacco (OxCmRCC1-1/−3/−6). (C) Total root length in WT and 
transgenic lines. (D) Average root diameter in WT and transgenic lines. (E) Total root volume in WT and transgenic lines. WT, wild type. Samples were collected at 
the 4-week-old seedling stage. The data are the means of four replicates with SEs. Different letters indicate significant differences according to Tukey’s test 
(p < 0.05).
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compared with the control. However, no remarkable differences 
in MDA content were observed between the control and 
chilling-stressed transgenic lines (Figure  6G). Thus, 
we conclude that CmRCC1 overexpression increases the cold 
tolerance of transgenic tobacco.

DISCUSSION

Vegetable crops, particularly those from the Cucurbitacaeae 
and Solanaceae families, are extensively grafted for increased 

yield and enhanced stress tolerance (Gaion et  al., 2018). 
Facility cultivation producer would benefit from grafting to 
rootstocks that confer abiotic stress (i.e., cold) tolerance, 
which offer protection from soil-borne pathogens and 
maximize output by increasing yield (Williams et  al., 2021). 
The characterization and identification of resistance genes 
can amplify the contribution of a breeding program to 
improve rootstock resistance.

RCC1 is a eukaryotic protein with seven repeated domains 
that fold into a seven-bladed propeller structure (Renault 
et al., 1998). RCC1-like domains (RLDs) have been identified 

FIGURE 4 | Expression analysis of the PIN family genes in transgenic tobacco. Root samples were collected at the 4-week-old seedling stage. Data represent 
means and SE of four replicates. Different letters indicate significant differences according to Tukey’s test (p < 0.05).

A B

FIGURE 5 | Interactions between CmRCC1 and CmLAZY1. (A) Interactions between CmRCC1 and CmLAZY1 in the yeast two-hybrid system. Recombinant 
plasmids containing either pGADT7-T and pGBKT7-p53 or pGADT7-T and pGBKT7-lam were introduced into yeast Y2H Gold cells and used as positive and 
negative controls, respectively. Yeast cells were cultured on SD/−Leu/−Trp and SD/−Leu/−Trp/−Ade/-His media. (B) Interactions between CmRCC1 and CmLAZY1 
assayed with the luciferase complementation imaging assay. Tobacco leaves were divided into three parts and infiltrated with Agrobacterium strains harboring 
CmLAZY1-nLUC and CmRCC1-cLUC. The following two pairs of constructs were used as negative controls: CmRCC1-cLUC/nLUC and cLUC/nLUC. The images 
were captured with a charge-coupled device camera at 3 days post-inoculation (dpi).
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A

B C

D E

F G

FIGURE 6 | Chilling tolerance phenotypes in wild type (WT) and CmRCC1 transgenic plants. (A) Phenotypes of 4-week-old WT and transgenic plants under normal 
(24°C) and chilling stress (4°C) conditions. The picture of representative plants was taken after 12 h of 4°C treatment. (B) The maximum quantum yield of PS II 
(Fv/Fm). (C) The effective quantum yield of PS II (ΦPSII). (D) The quantum yield of nonregulated energy dissipation in PS II (ΦNO). (E) The quantum yield of regulated 
energy dissipation in PS II (ΦNPQ). (F) The electron transfer rate (ETR) at saturated light. (G) Malondialdehyde (MDA) content. Leaf samples were collected after 12 h 
of 4°C treatment for chlorophyll fluorescence analysis. The data are the means of four replicates with SEs. Different letters indicate significant differences between 
the treatments according to Tukey’s test (p < 0.05).
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in a variety of proteins that mediate diverse biological 
processes (Hadjebi et  al., 2008). Two Arabidopsis RCC1 
family proteins, UVR8 and TCF1, mediate UV-B response 
and tolerance to low temperature, respectively (Brown et al., 
2005; Ji et  al., 2015). Here, we  show that the CmRCC1 
protein plays a crucial role in the cold tolerance of transgenic 
tobacco. CmRCC1 shares conserved RCC1 repeat domains 
with the characterized Arabidopsis RCC1 family proteins, 
although the proteins differ concretely in sequence 
(Supplementary Figure S1). Similar to TCF1, CmRCC1 is 
localized in the nucleus, and the gene expression of CmRCC1 
is responsive to cold stress (Figures  1B, 2), which suggest 
a similar role of CmRCC1 during cold tolerance.

Photosynthesis is particularly sensitive to chilling during 
plant growth and development (Ruelland et  al., 2009). 
Photosynthetic light harvesting is regulated by 
nonphotochemical quenching (NPQ), which allows the 
dissipation of harmful excess energy as heat through its 
energy-dependent NPQ (qE) component to avoid photodamage 
under chilling stress (Li et  al., 2009; Niyogi and Truong, 
2013; Ruban, 2016; Lu et  al., 2020). In the green alga 
Chlamydomonas reinhardtii, UVR8 induces the accumulation 
of specific members of the light-harvesting complex (LHC) 
superfamily, particularly LHC Stress-Related 1 and 
Photosystem II Subunit S, which contribute to qE and reduce 
photodamage to the photosynthesis machinery under UV-B 
(Allorent et al., 2016). Our study showed that photoinhibition 
and photodamage around PS II were compromised in the 
CmRCC1-overexpressed lines under chilling stress 
(Figures 6B–D,F), which reveals a promising role of CmRCC1-
mediated photoprotective regulation of photosynthetic activity 
in the chloroplast during chilling stress. Interestingly, although 
an excessive photon flux density occurs in the cold and 
night (Wise, 1995), the present results showed that the wild-
type and transgenic plants retained some physiological means 
to protect themselves against excess light intensity during 
chilling in the light (Figure  6E).

A recent study indicated that RLD proteins, identified 
as LZY interactors, are essential regulators of polar auxin 
transport and root branch angle control (Furutani et  al., 
2020). Phylogenetic analysis revealed closer evolutionary 
distances between CmRCC1 and RLD family proteins 
(Figure  1A). Our results indicated that CmRCC1 
overexpression increased the GSA in lateral roots (Figure 3B), 
and the in vitro and in vivo interactions of CmRCC1 with 
CmLAZY1 protein suggest a possible role of CmRCC1  in 
the GSA control of lateral roots (Figure  5). Auxin is an 
important internal positive regulator during lateral root 
development, and genes of the PIN family have an important 
role in adaptation to stress responses through modulation 
in root system (Shibasaki et  al., 2009; Wang et  al., 2015; 
Zwiewka et  al., 2019). CmRCC1 overexpression induced 
decreased PIN1 expression and increased PIN3 expression 
in transgenic tobacco (Figure 4), which imply the differential 
roles of PIN family genes in the gravitropism regulation of 
lateral roots (Rosquete et  al., 2013). In addition to GSA, 
the length, diameter, and volume of root components 

determine root system architecture (RSA). The exposure of 
monocot and dicot plant roots to temperatures below or 
above their optimum temperature decreases (i) primary root 
length, (ii) lateral root density (numbers of lateral roots 
per unit primary root length), and (iii) the branching angles 
between primary and lateral roots, whereas the average lateral 
root length is unaffected (Mcmichael and Quisenberry, 1993; 
Seiler, 1998; Nagel et al., 2009). In the present study, transgenic 
tobacco lines overexpressing CmRCC1 exhibited increased 
root diameter and volume (Figures 3D,E), which help improve 
the soil volume that roots may access for the uptake of 
water and nutrients and further guarantee plant cold tolerance. 
Several NAC-type transcription factors from Glycine max 
were recently reported to increase lateral root formation by 
regulating the expression of auxin signaling-related genes, 
and improved cold tolerance was induced in transgenic 
plants with GmNAC20 overexpression (Yang et  al., 2019; 
Yarra and Wei, 2021).

We conclude that CmRCC1 overexpression could enhance 
cold tolerance by improving RSA and maintaining photosynthetic 
activity under cold stress. Functional evidence on the role of 
root plasticity will support breeders in their efforts to include 
root properties in their future selection pipeline for cold stress 
tolerance to improve crop yield and quality.
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Climate change is a major threat to global food security. Changes in climate can directly

impact food systems by reducing the production and genetic diversity of crops and

their wild relatives, thereby restricting future options for breeding improved varieties and

reducing the ability to adapt crops to future challenges. The global surface temperature

is predicted to rise by an average of 0.3◦C during the next decade, and the Paris

Agreement (Paris Climate Accords) aims to limit global warming to below an average

of 2◦C, preferably to 1.5◦C compared to pre-industrial levels. Even if the goal of the

Paris Agreement can be met, the predicted rise in temperatures will increase the

likelihood of extreme weather events, including heatwaves, making heat stress (HS)

a major global abiotic stress factor for many crops. HS can have adverse effects on

plant morphology, physiology, and biochemistry during all stages of vegetative and

reproductive development. In fruiting vegetables, evenmoderate HS reduces fruit set and

yields, and high temperatures may result in poor fruit quality. In this review, we emphasize

the effects of abiotic stress, especially at high temperatures, on crop plants, such as

tomatoes, touching upon key processes determining plant growth and yield. Specifically,

we investigated the molecular mechanisms involved in HS tolerance and the challenges

of developing heat-tolerant tomato varieties. Finally, we discuss a strategy for effectively

improving the heat tolerance of vegetable crops.

Keywords: climate change, abiotic stress, heat stress, molecular mechanism, vegetable, tomato

INTRODUCTION

Climate change, specifically a rise in ambient temperatures, is predicted to significantly affect
plant growth and development, resulting in a devastating reduction in crop productivity,
causing severe famine and limiting global food security (FAO-STAT, http://faostat.fao.org; Verisk
Maplecroft, https://www.maplecroft.com; (Bita and Gerats, 2013). According to the report of
the Intergovernmental Panel on Climate Change (IPCC), the accumulation of atmospheric
concentrations of greenhouse gases (GHGs), such as CO2, N2O, and CH4, which can absorb
infrared radiation reflected from the Earth’s surface, was caused by the combustion of fossil
energy sources and the associated GHG emissions. Changes in the atmospheric concentrations
of GHGs suggested an alteration in the energy balance of our climate, causing the global surface
temperature to increase by 0.3◦C during the next decade and is expected to reach 1.8–4.0◦C by 2100
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(Jones et al., 1999; Stocker et al., 2013). During the Conference
of Parties 21 (COP21) conference in Paris in 2015, governments
of most countries agreed to reduce the use of fossil fuels with the
ambition of a complete waiver at the end of the century, thereby
attempting to limit global warming to below a 2◦C increase,
preferably to 1.5◦C compared to pre-industrial levels. However,
even if the goal of the Paris Agreement is achieved, the initiated
threat of heat stress (HS) is not addressed in agriculture as HS
is a major global abiotic stress factor for many crops. Due to
the increased frequency of extreme weather events, including
heatwaves, HS remains a threat to global agricultural production
and food security. With 75% of the world’s poor living in rural
areas and nearly 50% of people in underdeveloped countries
relying on agriculture for income, these stakeholders are likely
to experience the most serious effects of climate change. In
addition, a population rise to 9 billion by the year 2050 and
rising food demand in rapidly growing economies, such as China
and India, will require a 70% increase in food production to
fulfill future needs. Increasing food production while climate
change is expected to lead to tremendous crop losses is a
challenge that can only be solved bymore sustainable agricultural
production systems using crop varieties that are more tolerant
to abiotic stresses than the presently used varieties. Insights into
the mechanisms allowing plants to grow and yield under stressful
conditions are key to breeding more stress-tolerant varieties.

Plants, as sessile organisms, are frequently affected by adverse
environmental factors, such as drought and temperatures that
are hotter or colder than their optimal range. Therefore, plants
adapt to stressful conditions to a certain extent. In general, when
the ambient temperature is 10–15◦C higher than the optimum
temperature range for plant cultivation, such conditions are
defined as HS (Wahid et al., 2007). HS can cause negative effects
on plant morphology, development, physiology, biochemistry,
and molecular pathways at all vegetative and reproductive stages.
Anther and pollen development at anthesis are very sensitive
to temperature fluctuations, causing failure of reproduction
and fertilization processes (Warrag and Hall, 1984; Monterroso
and Wien, 1990; Peet et al., 1998; Erickson and Markhart,
2002). Consequently, significant adverse effects on reproduction
and fertilization processes cause a reduction in fruit set and
lower quality fruit and vegetable yields (Bita and Gerats, 2013;
Hasanuzzaman et al., 2013). Significant efforts by researchers and
breeders are dedicated to overcoming the negative effects of HS.
Plants respond to temperature fluctuations and induce short-
term stress avoidance or acclimatization mechanisms, including
leaf re-orientation to create space, transpiration acceleration for
cooling, and alteration of membrane lipid composition (Wahid
et al., 2007). At the cellular level, plants adapt to HS through
various mechanisms, such as transcription, post-transcription,

Abbreviations: ABA, abscisic acid; AGL6, AGAMOUS-LIKE 6; AP3, APETALA3;

BRs, Brassinosteroids; DREBs, dehydration-responsive element-binding; ER,

endoplasmic reticulum; ET, ethylene; GAs, gibberellins; GHG, greenhouse gas;

HS, heat stress; HsfA1, heat stress transcription factor A1; HSFs, heat stress

transcription factors; HSPs, heat shock proteins; JA, jasmonate; PCD, programmed

cell death; PI, PISTILLATA; ROS, reactive oxygen species; sHSPs, small heat shock

proteins; SA, salicylic acid; TM6, TOMATOMADS BOX GENE6; TSS, total soluble

solids content; UPR, unfolded protein response.

translation, post-translation, and regulation, at different levels,
for example, in calcium, phytohormone, sugar, and lipid
signaling, and in primary and secondary metabolism (Bita and
Gerats, 2013). Moreover, thermotolerance is regulated by a
complex transcriptome network of distinct and interconnected
pathways to maintain protein homeostasis and minimize cellular
damage (Keller and Simm, 2018).

Tomato (Solanum lycopersicum), as a fruit vegetable crop, is
of immense importance to the global economy and food culture
and is a popular vegetable that is produced worldwide. China
is the world’s largest tomato producer, followed by India and
Turkey (FAOSTAT, http://www.fao.org/). Tomatoes are rich in
nutrients, such as vitamin C, β-carotene, and lycopene, which
have positive effects on human health (Bergougnoux, 2014).
Several institutions have developed tomato genetic resources
for researchers and breeders studying heat tolerance and many
traits of importance. The Solanaceae Genomics Network (SGN,
http://solgenomics.net/) is an online genomic database that
provides essential information for researchers. In the USA, the
Tomato Genetics Resource Center (TGRC) at the University of
California, Davis (http://tgrc.ucdavis.edu/) is an excellent source
of diverse germplasm, wild species, and core collections. In
Taiwan, the World Vegetable Center (http://seed.worldveg.org)
curates 8,835 tomato accessions, of which 6,676 are available
on request. In Japan, genetic resources of tomato plants have
been collected by the National Agriculture and Food Research
Organization (NARO) Genebank (https://www.gene.affrc.go.jp)
and the National BioResource Project (NBRP)-Tomato (https://
tomato.nbrp.jp). In the NBRP-Tomato, over 10,000 Micro-Tom
mutants, created by ethyl methanesulfonate (EMS) mutagenesis
and gamma-ray irradiation, have been collected (Watanabe
et al., 2007; Matsukura et al., 2008). Micro-Tom is becoming a
model plant for studying both fruit production and tolerance
to various abiotic and biotic stresses (Ezura, 2016). Researchers
can access information regarding this mutagenic line through the
online database TOMATOMA (http://tomatoma.nbrp.jp/index.
jsp) (Saito et al., 2011; Shikata et al., 2016).

Tomato plants are often exposed to temperature fluctuations
during cultivation, and HS significantly affects reproduction and
fertilization, leading to crop failure and a decrease in the quantity
and quality of harvested fruit (Prasad et al., 1999; Sato et al.,
2000). The morphological and physiological changes in response
to HS in tomatoes are different among entries or accessions,
at different development stages, and with varying HS exposure
periods. These changes are not only detected in vegetative organs,
such as leaves (Zhou et al., 2017), but also in reproductive organs,
such as flowers and gametophytes (Firon et al., 2006). Firon et al.
(2006) reported that the relationship between pollen viability and
fruit set in tomatoes was detected under HS conditions. Pan et al.
(2019) reported that the alteration of flower structure, such as
stigma exertion, was associated with jasmonate (JA) signaling and
other plant hormone pathways, resulting in low fruit setting.

We reviewed the effects of high temperatures on tomato plants
to address key processes determining plant growth and yield. This
review focuses on the molecular mechanisms, the morphological
and physiological mechanisms contributing to HS tolerance, and
the challenges in developing heat-tolerant vegetable varieties.
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MORPHOLOGICAL AND PHYSIOLOGICAL
PROCESSES IN TOMATO PLANTS UNDER
HS

Plant response to HS varies according to developmental stage,
species, genotype, and the timing ofHS events (Firon et al., 2006;
Barnabás et al., 2008; Sakata and Higashitani, 2008; Shanmugam
et al., 2013; Sharma et al., 2014) (Figure 1). HS resistance is
genetically diverse (Ayenan et al., 2019; Bineau et al., 2021).
Since their physiological mechanisms are equally diverse, we
will first explain the physiological mechanisms and then explain
the genetic diversity of HS resistance for breeding. Under HS,
plants exhibit many physiological responses, such as abscission
and senescence of leaves, growth inhibition of the shoots and
roots, and fruit damage, resulting in a substantial decrease
in plant productivity (Figure 1) (Vollenweider and Günthardt-
Goerg, 2005). Extreme HS affects performance and crop quality
characteristics. The productivity decrease under HS has been
attributed to decreased assimilatory capacity associated with
reduced photosynthesis caused by altered membrane stability,
enhanced maintenance respiration costs, and a reduction in
radiation use efficiency (Zhang et al., 2006; Reynolds et al., 2007;
Hasanuzzaman et al., 2013). At the beginning of cultivation,
reduced germination percentage, reduced plant emergence,
abnormal seedlings, poor seedling vigor, and reduced radicle and
plumule growth of germinated seedlings are major impacts of HS
and have been documented in various cultivated plant species
(Toh et al., 2008; Kumar et al., 2011; Piramila et al., 2012). When
tomato plants are cultivated at 42◦C, they sustain severe damage
at various stages of development, including seed germination,
vegetative and reproductive growth, and fruit setting (Wahid
et al., 2007).

In general, the intensity, duration, and rate of temperature
alteration during the growth and development of tomatoes
are the main factors for evaluating the influence of HS
(Wahid et al., 2007). During primary synthesis and respiration
processes, leaves retain stomata machinery, which regulates gas
exchange and water vapor between the atmosphere and the
intracellular space, resulting in an adaptation to changes in the
cultivation environment (Negi et al., 2008). An increase in CO2

concentration inhibits the opening and closing of stomata on
stomatal apertures (Medlyn et al., 2001; Hashimoto et al., 2006;
Ainsworth and Rogers, 2007; Ji et al., 2015). The temperature
on the leaf surface influences stomatal density and status; for
example, the opening and closing of stomata form a complex
network that controls gas exchange and water vapor to adapt
to abiotic stresses (Valladares and Pearcy, 1997; Reynolds-
Henne et al., 2010). Tomato plants of the cultivar Campbell 28,
when heat treated (45◦C), had increased stomatal conductance
compared to plants under control conditions (25◦C), indicating
that stomatal closure did not control the reduction in CO2

(Camejo et al. 2005). Increases in stomatal conductance have
been reported in plants exposed to HS (Radin et al., 1994; Zhou
et al., 2015), while others have found that stomatal conductance
is significantly reduced (Weston and Bauerle, 2007; Neill et al.,
2008; Lahr et al., 2015; von Caemmerer and Evans, 2015). It is
known that salicylic acid (SA) auxin, cytokinin, ethylene (ET),

FIGURE 1 | Adverse effects of heat stress (HS) on the vegetative and

reproductive phase in tomatoes.

brassinosteroids (BRs), and JA regulate stomatal function, while
abscisic acid (ABA) is not involved (Miura and Tada, 2014).

Heat stress adversely affects respiration and photosynthesis,
leading to a shortening of the life cycle and a significant
decrease in plant productivity (Barnabás et al., 2008). At the
beginning of HS, the response is expressed through structural
alterations in chloroplast protein complexes and reduced enzyme
activity (Bita and Gerats, 2013), followed by damage to the
cell membrane and the organization of microtubules. The
cytoskeleton can also be damaged, because HS negatively
influences membrane permeability, causing alterations in cell
differentiation, elongation, and expansion (Smertenko et al.,
1997; Potters et al., 2009). The retention of cellular membrane
function is essential for sustainable and stable photosynthetic
and respiratory continuity under HS (Chen et al., 2012).
Some researchers have reported that swelling and aberration of
grana stacks occur on photosynthetic membranes, resulting in
associated changes in energy allocation to photosystems and ion
leakage from leaf cells (Wahid and Shabbir, 2005; Allakhverdiev
et al., 2008).

The negative effect of HS on chlorophyll and the
photosynthetic apparatus results in the overproduction of
reactive oxygen species (ROS), which are involved in responses
to biotic and abiotic stresses (Vara Prasad et al., 2000; Shi et al.,
2015). HS reduces photosynthesis and respiratory activity by
increasing chlorophyllase activity and reducing the number of
photosynthetic pigments (Todorov et al., 2003; Sharkey and
Zhang, 2010). An increase in the concentration of ROS was
not only associated with programmed cell death (PCD) but
also with various metabolic reactions, such as DNA damage,
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enzyme activity impairment, lipid peroxidation in cellular
membranes, carbohydrate oxidation, protein denaturation,
and the breakdown of pigments (Bose et al., 2014). Hydrogen
peroxide (H2O2) is one of the main ROS components produced
by plants and fruit tissues under control and HS conditions.
In plants, H2O2 functions not only as an essential signal that
upregulates antioxidant enzyme activities but also mediates
ABA-induced stomatal closure to promote stress tolerance (Hu
et al., 2005). In addition, hydrogen peroxide accumulates and
enhances the thermotolerance of plants when they are treated
with low concentrations of SA (Horváth et al., 2007).

Ionic leakage is related to ROS accumulation under stress
conditions (Demidchik et al., 2014). Drought stress has been
found to result in increased ion leakage in drought-sensitive
tomato entry (Thirumalaikumar et al., 2018). There are two
popular methods for measuring ion leakage to estimate the heat
tolerance in plants: (i) the common ion leakage measurement
based on the total electrical conductivity released before and
after heating and (ii) the estimation of basal heat tolerance based
on the cell suspension or the gradual (linear) heating of plant
segments (Ilík et al., 2018). Total ionic leakage is among the most
important factors in determining plant responses to abiotic and
biotic stresses, as it is associated with stress-induced injury related
to PCD in plants (Zhu, 2016).

Antioxidant defense plays an important role in the response
of tomato plants to various abiotic stresses. HS causes serious
damage to antioxidant enzymes function; therefore, tomato
plants are required to regulate SA and activate other biochemical
pathways to enhance heat tolerance (Jahan et al., 2019). ROS
acts as a transduction signal of heat tolerance; hence, superoxide
dismutase (SOD) and ascorbic acid peroxidase (APX) are
involved in the antioxidant defense mechanism in tomato plants
in response to the negative effects of high temperature (Zhou
et al., 2019) (Table 1).

It has been reported that leaf senescence is accelerated by
HS during cultivation. Leaf senescence genes are correlated
with PCD and are regulated by multiple levels of chromatin
structure, transcription, post-transcription, translation, and post-
translation (Woo et al., 2013) (Table 1). Leaf senescence genes are
also interconnected with other genes responsible for responding
to abiotic and biotic stresses. Senescence upregulated 3 (SENU3)
is a ubiquitous cysteine protease (CP) that is associated with
vacuolar senescence in pepper (Drake et al., 1996; Xiao et al.,
2014). Another gene involved in leaf senescence is the rubisco
large subunit (RbcL), which is in the chloroplast DNA and
functions as a key enzyme for carbon assimilation and fixation
(Enyedi and Pell, 1992; Wang et al., 2015). RbcL expression is
regulated in response to environmental changes (Xu and Tabita,
1996).

MOLECULAR MECHANISM FOR
THERMOTOLERANCE IN TOMATOES

Plants respond to elevated temperatures and ensure survival
through various mechanisms, such as transcription, translation,
and regulation of calcium, phytohormone, sugar, and lipid

signaling, and of primary and secondary metabolism (Bita
and Gerats, 2013). Molecular pathway-related thermotolerance
has been identified in Arabidopsis, tomato, and other species
(Qu et al., 2013; Ohama et al., 2017) (Table 1). The complex
transcriptional pathways were reviewed by Ohama et al. (2017).
The HS factor (Hsf) is a transcription factor (TF) associated
with HS (Figure 2). Many eukaryotes have one to three Hsfs,
but plants have over 20, which are classified as A, B, and
C. Class A Hsfs are transcriptional activators. Ikeda et al.
(2011) found that class B Hsfs of Arabidopsis, HsfB1, and
HsfB2b, are transcriptional repressors that negatively express
heat-induced Hsfs (HsfA2, HsfA7a, HsfB1, and HsfB2b) and a
few heat shock protein genes. Yoshida et al. (2011) analyzed the
dehydration-responsive element-binding protein 2A (DREB2A)
promoter and discovered a heat shock element that functions
as a cis-acting element in the expression of HS responsiveness
of DREB2A. They generated multiple mutants and found that
HS-responsive expression of DREB2A was abolished in the
hsfa1a/b/d triple and hsfa1a/b/d/e quadruple mutants. They
further showed that HsfA1a, HsfA1b, and HsfA1d function
as major positive regulators of HS-responsive gene expression
and that four HsfA1-type proteins are important for gene
expression during normal plant growth. Therefore, HsfA1 is
the master regulator of the plant’s HS response (HSR). Due
to HS, HsfA1 causes a transcription cascade composed of
many TFs. Higashi et al. (2013) reported HsfA1d, a protein
identified through full-length cDNA Over-eXpressing gene
(FOX) hunting, using Thellungiella salsuginea, a species closely
related to Arabidopsis. cDNAs improve heat tolerance by
regulating HS-responsive gene expression. Ohama et al. (2016)
reported that the central region of HsfA1d, one of several
Arabidopsis HsfA1, is an important regulatory domain that
suppresses HsfA1d transactivation activity by interacting with
heat shock protein70 (HSP70) and HSP90. They designated this
region as the temperature-dependent repression (TDR) domain.
Overexpression of constitutively active HsfA1d, which lacks the
TDR domain, induced the expression of heat shock proteins in
the absence of HS, thereby conferring strong thermal stability
to the overexpressors. In this manner, HsfAs control many HS-
related factors, including DREB2, and the understanding of their
temperature-controlled mechanism is also progressing.

Four types of HsfA1 were isolated in Arabidopsis (HsfA1 a,
b, c, and d) (Liu et al., 2011), while four different types were
identified in tomatoes (HsfA1, a, b, c, e) (El-Shershaby et al.,
2019). In HsfA1 families, HsfA1a seems to have a unique function
as a master regulator for acquired thermotolerance, and it cannot
be replaced by other genes (Mishra et al., 2002; Scharf et al.,
2012). Other members of the HsfA1families are induced in
specific tissues and stages of the HSR (El-Shershaby et al., 2019).
SlHsfA1a function was confirmed by the heat tolerance levels
at the incorporation of two HsfA1 transgene cassettes, resulting
in a 10- to 15-fold increase in the overexpression line that
contained a single HsfA1a transgene cassette and co-suppression
line with two cassettes of transgene tandem inverted repeat
inserted, respectively (Baniwal et al., 2004). Moreover, with a
low abundance of mRNA, HsfA1a was constitutively expressed
(Fragkostefanakis et al., 2016). HsfA1d increases heat tolerance
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TABLE 1 | Key genes related to heat stress (HS) mechanisms are introduced in this review.

Gene/locus symbol Origin Defined function Related trait/phenotype References

SOD Tomato Antioxidant enzyme Antioxidant defense Zhou et al., 2019

APX Tomato Antioxidant enzyme Antioxidant defense Zhou et al., 2019

SENU3 Tomato, Pepper Senescence-associated cysteine

proteinase

Vacuolar localization protein

Leaf senescence Drake et al., 1996; Xiao et al.,

2014

RbcL Potato Carbon assimilation and fixation Leaf senescence Enyedi and Pell, 1992; Wang

et al., 2015

HsfA1 a, b, c, d Arabidopsis Transcriptional activators to HS Transcription regulatory network Liu et al., 2011; Ohama et al.,

2017

HsfA1 Arabidopsis Master regulator of HSR Transcription regulatory network Yoshida et al., 2011

HsfB1, HsfB2b Arabidopsis Transcriptional repressors Transcription regulatory network Ikeda et al., 2011

HsfA1d Thellungiella

salsuginea

HS-responsive gene expression,

Temperature-dependent repression

(TDR) domain

Transcription regulatory network Higashi et al., 2013; Ohama

et al., 2017

DREB2A Arabidopsis Transcriptional activators to HS Transcription regulatory network Ohama et al., 2017

HsfA1, a, b, c, e Tomato Transcriptional activators to HS Transcription regulatory network El-Shershaby et al., 2019

HsfA1b Tomato Later response gene in transcription

regulatory network

Transcription regulatory network El-Shershaby et al., 2019

ERF.C1/F4/F5 Tomato Ethylene-responsive transcription

factors

HS regulation Balyan et al., 2020

HSFA7, HSFA6b, HSFA4c,

HSFB1, HSFB2b

Tomato Downstream targets of HSFA Transcription regulatory network Rao et al., 2021

HSPs Arabidopsis Chaperone proteins regulating the

folding and accumulation of proteins,

localization, and degradation

Transcription regulatory network Kotak et al., 2007; Qu et al.,

2013

AP1 Arabidopsis Class A activity Flower morphology Wellmer et al., 2014

AP3, PI Arabidopsis Class B activity Flower morphology Wellmer et al., 2014

AG Arabidopsis Class C activity Flower morphology Wellmer et al., 2014

STK, SHP1, SHP2 Arabidopsis Class D activity Flower morphology Wellmer et al., 2014

SEP1, SEP2, SEP3, SEP4 Arabidopsis Class E activity Flower morphology Wellmer et al., 2014

AGL6 Arabidopsis MADS-box transcription factor Flower morphology Wellmer et al., 2014

TTS, TGL11 Tomato Pistil-specific expression Flower morphology Müller et al., 2016

TAP3, TM6, PI Tomato Class B activity Flower morphology
Müller et al., 2016

AGL6 Tomato MADS-box transcription factor, fruit

parthenocarpy

Flower morphology, Fruit

parthenocarpy

Klap et al., 2017

CLV Tomato Signal peptide, shoot, and floral

meristem regulation

Shoot and floral meristem Somssich et al., 2016; Fletcher,

2018; Quinet et al., 2019

WUS Tomato Homeodomain transcription factor,

shoot and floral meristem regulation

Shoot and floral meristem Somssich et al., 2016; Fletcher,

2018; Quinet et al., 2019

ELF3 Arabidopsis Transcriptional repressor Auxin-dependent primordia

production

Jones et al., 2021

TAG1, TAGL1 Tomato MADS-box transcription factor Fruit size
Gimenez et al., 2016

ZjDA3 Ziziphus jujuba ubiquitin-specific protease Fruit size Guo et al., 2021

CCS52A, WEE1 Tomato Cell cycle switch protein Fruit size Gonzalez et al., 2007;

Mathieu-Rivet et al., 2010

miRNA172 Tomato

Apple

miRNA Fruit size José Ripoll et al., 2015; Yao

et al., 2016

FAS, LC Tomato Flattening and fruit locule number Fruit size Rodríguez et al., 2011

SUN, OVATE Tomato Fruit elongation Fruit size Rodríguez et al., 2011

LIN5 Tomato Cell wall invertase Fruit sugar Fridman et al., 2000, 2004

SUT or SUC Arabidopsis,

Tomato, Potato

Sucrose transporter Fruit sugar Barker et al., 2000; Weise et al.,

2000; Hackel et al., 2006

SlVPEs Tomato Vascular processing enzymes,

negative regulators

Fruit sugar Ariizumi et al., 2011
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FIGURE 2 | Schematic transcriptional regulatory network in plants examined

in this review.

in soybean (Ohama et al., 2017). HsfA1b is a member of the
HsfA1 subfamily, which is induced under HS conditions (above
35◦C). Under HS conditions, HsfA1a was stably expressed,
whereas HsfA1b showed high variation in gene expression
in mature green fruits and young leaves (El-Shershaby et al.,
2019). In addition, the HsfA1b function is mainly controlled at
the transcriptional level by HsfA1 members (Fragkostefanakis
et al., 2016). HsfA1b was strongly expressed in fruits, and
high fluctuation was observed among different tissues. The
results suggested that HsfA1b is a later response gene under
HS (El-Shershaby et al., 2019). Several tolerant genes, such as
HsfA2, HsfA3, induced-heat shock protein HSPs, ET-responsive
transcriptional coactivator multiprotein bridging factor ER24
(LeMBF1), cytosolic ascorbate peroxidase 3 (SlAPX3) (a ROS
scavenger), and calcium-dependent protein kinase 2 (CDPK2),
were isolated from the anthers (Frank et al., 2009; Zinn et al.,
2010). Recently, Balyan et al. (2020) have reported that there
is redundancy in cultivar-specific HS regulation compared to
transcriptomes between resistant (CLN1621L) and susceptible
(CA4) cultivars. Enzymes and proteins related to plant defense
and abiotic stress are antagonistically expressed. This study
suggested that three ET-responsive TFs (ERF.C1/F4/F5), as
several novel HS-resistant genes, improved tomato HS resistance.
Rao et al. (2021) reported HSFA7, HSFA6b, HSFA4c, HSFB1,

and HSFB2b as new downstream targets of HSFA1a in tomatoes
duringHS.

Heat shock proteins are regulated by HSFs, which control
protein quality (Scharf et al., 2012). HSPs are crucial chaperone
proteins that are induced during HSR. The HSP family includes
a number of small HSPs (sHSPs) and sub-family proteins HSP60,
HSP70, HSP90, and HSP100 (Kotak et al., 2007; Qu et al., 2013).
The Hsp21 gene is related to chloroplasts and photosynthesis
(Neta-Sharir et al., 2005; Zhong et al., 2013), whereas HSP101
is among tolerant genes, such as stable Rubisco isoforms and
other genes identified from anther profiling (Zinn et al., 2010).
In HS, HSPs play important roles in the regulation of protein
quality through protein denaturation. HSP21 is a small HSP in
Arabidopsis, necessary for chloroplast development to protect
photosynthesis (Zhong et al., 2013). HSP101 functions as a
chaperone in protein degradation (Wang et al., 2004). Despite the
important role it plays in sHSP thermotolerance, the underlying
mechanisms are not known (Ohama et al., 2017).

Studying the expression levels of TFs and HSPs in tomatoes
under HS will help understand the molecular mechanisms of
mutant response to high temperatures.

INFLUENCE OF HS ON THE
REPRODUCTIVE ORGANS AND
REPRODUCTIVE PHASE IN TOMATO
PLANTS

The reproductive stage of the plant and the reproductive organs
are highly sensitive to HS, which is a major yield-reducing factor.
Various reproductive phases, especially stages including meiosis
in both male and female organs, pollen germination, pollen
tube growth, pollen/pistil interactions, fertilization and post-
fertilization processes, formation of the endosperm, and embryo
development, are highly sensitive to HS (Warrag and Hall, 1984;
Monterroso and Wien, 1990; Peet et al., 1998; Erickson and
Markhart, 2002).

Tomato is an autogamous species with a flower structure that
is compatible with self-pollination; the anther cones (stamens)
cover the style (stigma or pistil). The position and maturity of
the male (anther cone) and female (style) organs are markedly
affected by various abiotic stresses, including HS during bud
development, causing stigma (style) exertion in tomato flowers
(Figure 1) (Saeed et al., 2007; Yan et al., 2009; Pan et al.,
2019). The effects of elevated temperatures on tomato flower
morphology have been previously explored. The tomato stigma
under HS is exerted, preventing self-pollination, and causing
fruit-setting failure (Sato et al., 2006; Giorno et al., 2013). The
exertion of tomato stigmas induced by HS is associated with
various factors and pathways, such as JA signaling (Pan et al.,
2019). Pan et al. (2019) reported that stigma exertion induced by
HS was a result of the higher susceptibility of the stamen to HS
as compared to the pistil and the differences in cell morphology
in both. The discrepant coregulation of pectin, sugar, expansion,
and cyclin in stamens and pistils determined cell shape and
number by regulating cell expansion and division under HS.
Auxin is required to regulate high temperature-induced growth
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inhibition in both stamens and pistils. JA plays a crucial
role in protecting pistils against HS, and the JA/JA receptor
CORONATINE-INSENSITIVE 1 (COI1) signaling pathway is a
key hub in stigma exertion. Müller et al. (2016) reported that
concurrent reduction in pollen viability and pistil-like aberrant
formation of anthers under HS is caused by altered localization
of two pistil-specific gene products, TRANSMITTING TISSUE
SPECIFIC (TTS) and TOMATO AGAMOUS LIKE11 (TGL11).
This is accompanied by reduced expression of B-class genes,
such as TOMATO APETALA3 (TAP3), TOMATO MADS BOX
GENE6 (TM6), and PISTILLATA (PI) in the anthers (Kramer
et al., 1998; Busi et al., 2003; de Martino et al., 2006). These
reports showed that the downregulation of tomato B-class genes,
induced by HS, contributes to anther deformation and reduced
male fertility (Müller et al., 2016). Thus, flowers exposed to HS
showed negative effects at various developmental stages, such as
the inhibition of pollen release from anthers due to the failure
of anther dehiscence, stigma exposure due to decreased stamen
length, and pistil hyperplasia (Takeoka et al., 1991; Sato et al.,
2002, 2006).

Maintaining floral morphological homeostasis is important
because HS has adverse effects on flower morphology (Figure 3).
The ABCDE model genes include five classes, A, B, C, D, and
E of floral development, which is encoded using MAD-box
TFs (Rijpkema et al., 2010; Smaczniak et al., 2012), with the
exception of class A gene APETALA2 (AP2) (Jofuku et al., 1994).
In Arabidopsis, AP1 belongs to class A, AP3 and PI belong to
class B, AGAMOUS (AG) belongs to class C, SEEDSTICK (STK),
SHATTERPROOF1 (SHP1), and SHP2 belong to class D; and
SEPALLATA1 (SEP1), SEP2, SEP3, and SEP4 belong to class
E (Wellmer et al., 2014). In addition, the AGAMOUS-LIKE 6
(AGL6)-clade genes AGL6 and AGL13 play crucial roles in floral
organ development, especially in ovule formation (Murai, 2013).
In tomatoes, under mild HS, expression of the B-class PI, TAP3,
and TM6 genes is reduced in the anthers (Müller et al., 2016).
TM6 was partially silenced in response to temperature elevation,
resulting in a reduced frequency of pistilloid anthers, pollen
viability, and pollen quantity. Müller et al. (2016) suggested
that downregulation of tomato B-class genes is related to anther
deformations and reduces male fertility.

The AGL6-clade did not belong to the conventional ABCDE
model genes that regulate floral structure in plants but is likely
to play a role in the ovary formation (Schauer et al., 2009). In
tomato plants, the AGL6mutant is related to fruit parthenocarpy
(Klap et al., 2017). In addition, AGL6 also acts as a key regulator
of the transition between the state of “ovary arrest” imposed
toward anthesis and the fertilization-triggered fruit set (Klap
et al., 2017). Silencing AGL6 results in green petals and fused
sepals (Yu et al., 2017). The no apical meristem (NAM) protein is
involved in the separation between sepal boundaries and flower
whorls (Hendelman et al., 2013).

The reproductive phase of tomato plants starts from the first
bud formation with the development of pollen that is more
HS sensitive than female gametophytes and other vegetative
organs (Bokszczanin et al., 2013). There are some reports on
the pollen viability of tomato plants under HS, and flower buds
at 7–15 days before anthesis were the most heat-sensitive of

FIGURE 3 | Gene regulation to avoid adverse effects of heat stress on the

reproductive phase in tomatoes.

all developmental stages in tomato plants, as spindle formation
in the meiosis phase is hypersensitive to HS (Sato et al.,
2006). When pollen mother cells in the meiosis phase are
damaged by HS, the quality and quantity of pollen grains
are markedly reduced. As a matter of fact, tomatoes grown
under 32/26◦C day/night temperature could not release enough
pollen, resulting in diminished fruit set (Sato et al., 2000, 2006).
Additionally, pollen viability in tomato plants is controlled by
a series of factors that are directly or indirectly involved in
pollen thermotolerance. For example, secondary metabolites,
such as flavonoids, accumulated in the mature pollen, might
reduce the damage caused by ROS scavengers (Paupière et al.,
2017). HS negatively affected both the early and late stages of
pollen development. A complex network of metabolites and
plant hormones is involved in the thermotolerance machinery
of tomato pollen at different stages: (i) the early stage of pollen
development involves the accumulation of unfolded protein
response (UPR) in the endoplasmic reticulum (ER), cytoplasm,
changes in histones, alternative splicing, ROS homeostasis,
metabolic reprogramming, carbohydrates, plant hormones, and
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gibberellins (GAs); and (ii) the later stage of pollen development
involves UPRs, ROS, amino acids (proline), carbohydrates,
auxins, polyamines, flavonoids, and plant hormones (such as JAs,
ETs, BRs, and ABA). Furthermore, compatible stigma and pollen
also contributed to successful fruit and seed formation (Raja
et al., 2019). Therefore, these factors should be considered when
developing strategies to improve tomato fruit production under
high-temperature conditions.

NEGATIVE EFFECTS OF HS ON FRUIT
DEVELOPMENT IN TOMATO PLANTS

Heat stress suppressed tomato fruit development, resulting in
abnormal fruit shapes and negative changes in color processing.
HS not only decreases fruit setting but also influences fruit
dehiscence and fruit morphology, resulting in dehydration,
with wrinkled skin and dry, locular fruit cavities (Lin et al.,
2011). Fruit quality is controlled by the cell number and
cell size, sugar accumulation, traits related to fruit shape,
colorimetry, total solids, texture, and flavor (Cheniclet et al.,
2005; Chusreeaeom et al., 2014; Quinet et al., 2019). Fruit
size is determined by the coordinated control of cell division
and cell expansion. Fruit size is regulated by several molecular
mechanisms, including hormonal regulation, the CLAVATA-
WUSCHEL (CLV-WUS) signaling pathway, the MADS-box
family, the ubiquitin-proteasome pathway, quantitative trait loci
(QTLs), microRNA, and endoreduplication (Yuste-Lisbona et al.,
2020; Zhao et al., 2021). The CLV-WUS signaling pathway
regulates the maintenance of stem cells in shoot and floral
meristem, contributing to several agronomic traits, such as
flower and fruit numbers (Fletcher, 2018; Quinet et al., 2019).
The CLV-WUS feedback loop regulates meristem activity and
floral meristem size during the initial phase of tomato fruit
development, and it determines carpel number in flowers and,
thus, seed locules in fruit during the later phases (Rodríguez-Leal
et al., 2017). The signaling peptide CLV3 interacts directly with
CLV1 or CLV2, which are leucine-rich repeat receptor kinases,
and activates a signaling cascade that negatively regulates the
activation of the stem cell-promoting TF WUS (Somssich et al.,
2016). A loss-of-function mutation in any CLV genes, such as
natural mutations in fasciated (fas) and locule number (lc), results
in increased proliferation of stem cells and consequently the
development of extra floral organs and larger fruits (Barrero et al.,
2006; Xu et al., 2015; Fletcher, 2018). Jones et al. (2021) reported
that high temperatures bypass CLV signaling and upregulate
auxin through transcriptional repressor EARLY FLOWERING
3 (ELF3) in Arabidopsis; therefore, high temperatures and ELF3
regulate auxin-dependent primordia production. However, it
is unclear how CLV2/CRN is involved in auxin-dependent
flower initiation in Arabidopsis. Additionally, auxin and GA
signaling pathways stimulate and directly activate tomato fruit
sets (de Jong et al., 2009). TOMATO AGAMOUS1 (TAG1) and
ARLEQUIN/TOMATOAGAMOUS LIKE1 (TAGL1) genes, which
are members of the tomato MADS-box gene family, influence
fruit size in tomatoes (Gimenez et al., 2016). Tomatoes that
overexpress ZjDA3, an ortholog of Arabidopsis ubiquitin-specific

protease (DA3/UBP14) in Chinese jujube (Ziziphus jujubaMill.),
have reduced fruit size and weight (Guo et al., 2021). The level
of endoreduplication in tomatoes was correlated with cell size in
fruit pericarp (Cheniclet et al., 2005). The expression of CCS52A
(Cell cycle switch protein) or WEE1 (cell cycle-associated protein
kinase) genes involving endoreduplication in tomatoes affects cell
size and fruit size (Gonzalez et al., 2007; Mathieu-Rivet et al.,
2010). Although it is known that miRNA172 influences fruit
size regulation in horticultural plants, such as tomato and apple
(José Ripoll et al., 2015; Yao et al., 2016), their relationship in
tomatoes under HS is unclear. Four genes are related to fruit
shape in tomatoes; FASCIATED (FAS) and LOCULE NUMBER
(LC) control flattening and fruit locule number and SUN and
OVATE contribute to fruit elongation (Rodríguez et al., 2011).
HS increases parthenocarpic fruit production (Pan et al., 2017;
Xu et al., 2017; Shinozaki et al., 2018; Pham et al., 2020).
Parthenocarpic fruits are induced by several plant hormones,
such as GAs and auxin (Ariizumi et al., 2013; Bita and Gerats,
2013; Shinozaki et al., 2020). Additionally, ABA plays a critical
role in regulating transcript expression to induce plant defense
responses under HS (Scharf et al., 2012; Paupière et al., 2017; Rieu
et al., 2017).

In tomatoes, sugar content is closely linked to fruit
development (Kanayama, 2017) and is controlled by the
phosphoenolpyruvate carboxykinase gene (PEPCK) (Huang et al.,
2015), biochemical factors (Beckles et al., 2012), vacuolar
processing enzymes (Ariizumi et al., 2011), and putative sucrose
sensors (Barker et al., 2000). Total soluble solid (TSS or
Brix◦) represents the fruit sugar content. TSS content is highly
influenced by various biotic and abiotic stresses, including HS,
which also damages fruit morphology and quality. Tomatoes
have three different developmental stages (Ho, 1996): (i) cell
division to increase cell number that contributes to mature fruit
size, (ii) rapid cell expansion, and (iii) fruit ripening (Ezura,
2016). Sugar accumulation also generally consists of three steps:
first, the vascular system imports the sucrose and water influx;
second, starch biosynthesis and sugar metabolism; and third,
the breakdown of starch into glucose while fruits soften rapidly
(Carrari et al., 2006). In the TSS of tomato fruits, sugars (glucose,
galactose, and fructose) contributed the largest portion (Selahle
et al., 2014), and TSS commonly ranges from 4 to 6 ◦Brix among
different genotypes.

In tomatoes, the functional amino acid polymorphism of cell
wall invertase (LIN5) was encoded by Brix9-2-5, which regulates
fruit sugar content (Fridman et al., 2000, 2004). Fruit sugar
content and seed development are affected by the inhibition
of sucrose transporters. Several sucrose transporters (SUT or
SUC) that are essential membrane proteins localized in the
phloem sieve element, including LeSUT1, are expressed in leaves;
LeSUT2 is expressed in stems, fruits, and anthers, and LeSUT3
is expressed in ovaries and immature fruits (Barker et al., 2000;
Weise et al., 2000; Hackel et al., 2006). In addition, five genes
encode vascular processing enzymes (SlVPEs): two seed coating
type genes, SlVPE1 and SlVPE2, one seed type gene SlVPE4,
and two vegetative genes, SlVPE3 and SlVPE5 were reported
(Ariizumi et al., 2011). SlVPEs are negative regulators of sugar
content in tomato plants. Therefore, using transgenic RNAi lines
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for single or multiple gene expression could be an approach to
increase sugar accumulation in tomatoes.

BREEDING MATERIALS AND
TECHNOLOGY TO MITIGATE HS
INFLUENCE

The morphological and physiological traits in the vegetative
and reproductive phases, that are useful for identifying heat-
tolerant tomatoes, are summarized in Figure 1. Several breeding
lines have been recently identified and evaluated by focusing on
phenotypes and indicators to generate a heat-tolerant tomato
(Table 2). Zhou et al. (2015) described the differences in the
quantum efficiency of photosystem II (Fv/Fm) between the
heat-tolerant and heat-sensitive groups of tomato entries, and
they reported that Fv/Fm was useful as an early indicator of
HS tolerance. Subsequently, Poudyal et al. (2018) evaluated
some genotypes using Fv/Fm and identified some novel heat-
tolerant entries. Paupière et al. (2017) evaluated the accessions
of 17 different cultivated and wild tomato phenotypes to
high temperatures, focusing on a pollen viability screening
approach, and identified thermotolerant and thermosensitive
entries. Some heat-tolerant tomato mutants were identified from
over 4,000 lines of Micro-Tom tomato mutant collections by
evaluating pollen viability, fruit yield, and fruit setting under
long-term HS (Pham et al., 2020). Kugblenu et al. (2013)
evaluated heat adaptation traits, such as flower drop and fruit
number using commercial varieties, that are widely available
to farmers in West Africa. Under HS, tomato plants carry
the procera (pro) and procera-2 (pro-2) mutants, which are
loss-of-function mutants of tomato DELLA (SlDELLA); the
hypomorphic allele showed higher fruit set efficiency, and their
fruits were parthenocarpic (Shinozaki et al., 2018). In general,
there are two main approaches to studying thermotolerance in
tomato plants: screening the germplasm (for long-term mild
heat treatment) and physiological responses (for short-term heat
shock, up to 45◦C). Therefore, breeding and genetic engineering
strategies can be individually applied or suitably integrated to
develop HS tolerant lines or mitigate the effects of HS on
tomatoes. Meta-quality trait loci (meta-QTL analysis) and multi-
parent advanced generation intercross (MAGIC) have been used
to provide a higher mapping resolution in heat-tolerant tomato
breeding programs. In addition, speed breeding and genomic
selection (GS) significantly contribute to thermotolerance in
tomatoes (Ayenan et al., 2019; Aleem et al., 2020; Bineau et al.,
2021). There are several ways of mitigating the effects of HS

on tomatoes, for example, applying plant growth-promoting
rhizobacteria (PGPR) (Mukhtar et al., 2020), or using 6 ppm
sulfur (Ali et al., 2021), or nitrate seed priming (Kumar V. et al.,
2021). These breeding materials can be used to elucidate the
physiological responses conferring adaptation to HS and provide
a basis for further studies on the identification of heat-tolerant
lines and phenotyping segregating populations.

On the other hand, genetic modification (GM) technology
provides rapid and effective cultivars exhibiting tolerance to
diverse abiotic stresses, including HS, compared with traditional

breeding. There has been some research on the supply of heat
tolerance using various genes involved in the regulatory and
signaling pathways (Gerszberg et al., 2015) (Table 3). To date,
the provision of tolerance to HS was performed using transgenic
plants overexpressing TF or HSP involved in transcription
regulatory networks, such as HsfA1 (Mishra et al., 2002), hsp21
(Neta-Sharir et al., 2005),MasHSP24.4 (Mahesh et al., 2013), and
MT-sHSP (Nautiyal et al., 2005). Transgenic plants expressing
yeast S-adenosyl-l-methionine decarboxylase (SAMDC), which
is a key regulatory enzyme in polyamine biosynthesis, increased
the accumulation of spermidine and spermine and enhanced
antioxidant enzyme activity, thereby protecting membrane lipid
peroxidation. Subsequently, the plant was protected from HS
by improving the efficiency of CO2 assimilation through its
enhanced activity and protection (Cheng et al., 2009). Transgenic
tomato with an increased anthocyanin-associated R2R3-MYBTF,
Lycopersicon esculentum Anthocyanin 2 (LeAN2) overexpression,
is highly tolerant to HS (Meng et al., 2015). LeCDJ1 (Lycopersicon
esculentum chloroplast-targeted DnaJ protein) is involved in
the plant response to ABA. LeCDJ1 overexpressed plant
improved growth, chlorophyll content, lower malondialdehyde
accumulation, relative electrical conductivity, and less PSII
photoinhibition under HS (Kong et al., 2014). Transgenic tomato
plants overexpressing choline oxidase (COD), which is involved
in glycine betaine (GB) synthesis, showed a high accumulation
of GB. The codA-transgenic plants showed increased CO2

assimilation and photosystem II photochemical activity and
mitigated the accumulation of H2O2, superoxide anion radicals,
and malondialdehyde. Zhang et al. (2020) suggested the major
role of GB in HS tolerance and the importance of H2O2 as a
signaling molecule in heat resistance.

DEVELOPING HEAT-TOLERANT
TOMATOES FOR BREEDING

Genome analysis has progressed significantly and allows us
to breed genomes not only in major crops, such as rice but
also in vegetables, such as tomatoes. Large-scale phenotypic
analysis has also seen significant development. To make the
best use of these technologies, it is important to choose traits
carefully and conduct the evaluation that suits the objectives, in
an appropriate environment. In tropical regions, such as sub-
Saharan Africa (SSA) and Southeast Asia, where rapid population
growth is predicted in the future, sustainable production and
supply of vegetables will contribute to food security, household
improvement of farmers, nutrition improvement of residents,
and health promotion. However, currently, most of the vegetables
in the tropics are produced and consumed as it is. The primary
varieties cultivated are developed by foreign seed companies in
developed countries, and these varieties are not very resistant
to high temperatures and humidity. Insufficient resistance to
diseases results in instability in the yield and quality. Our
research team is promoting genome breeding research to
develop vegetables, such as tomatoes that are resistant to high-
temperature stress, by utilizing unused genetic resources with
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TABLE 2 | Heat-tolerant tomato germplasms and screening conditions.

Identified tolerant accessions or

genotype

Screening

environment

Screening conditions Traits and phenotypes References

LA1500, LA1563, LA1994, LA2093

(S. pimpinellifolium), LA3120, LA3183,

Bush Italian Roma, Super Sweet

Controlled

environment

Open field (for

validation)

67 genotypes, 2 heat tolerant

and 2 heat sensitive for

validation

HS: 36/28◦C for 4 d

67 genotypes

HS: 40◦C for 7 h

Pollen germination rate

Pollen tube length

Fruit set

Zhou et al., 2015

Doti Local 1, HRD 1, HRD 17, ST 10,

ST 52

Controlled environment

Open field

HS: 4 d at 38/28◦C, 5 d for

recovering

38/26◦C

Photosynthesis

Stomatal conductance

Plant size

Pollen viability

Fruit yield

Poudyal et al., 2018

LA2854, LA1478, Nagcarlang,

CL5915-153D4-

3-3-0, CL1131-0-0-13-0-6,

CLN1621F and CL5915-93D4-1-0-3

(highest pollen viability)

LA1580, LA2854 (S. pimpinellifolium),

CLN1621F, CL5915-206D4-2-2-0-4,

CLN65-349D5-2-0, M-82,

CL5915-93D4-1-0-3 (highest number

of pollen per flower)

Controlled

environment

HS: 32/26◦C (day/night)

Control: 25/19◦C (day/night

under 12-18 h of natural day

light for 1 month)

Number of pollen per flower

Pollen viability

Paupière et al., 2017

15 heat-tolerant tomato mutants Controlled environment

Greenhouse

HS: 35/25◦C, 16 h/8 h

light/dark, 60.0 µmol m−2 s−1

Control: 25◦C, 16 h/8 h

light/dark, 60.0 µmol m−2 s−1

Greenhouse: Over 35◦C (daily

maximum temperature)

Flower number

Fruit number

Fruit set

Fruit yield

Average fruit weight

Seed number

SPAD score

Pollen viability Pollen

germination

Pham et al., 2020

Nkansah (CLN2001A) (high fruit set) Controlled

environment

HS: 33.8/25.9◦C (day/night) Percentage of flower drop

Number of fruits

Days to flowering

Fruit yield per plant

Fruit weight

Number of truss

Number of flowers per truss

Number of fruits per plant

Kugblenu et al., 2013

procera (pro), procera-2 (pro-2) Greenhouse Summer conditions (June-

September 2014)

Fruit number

Fruit set

Fruit yield

Average fruit weight

Stem elongation

Brix value

Shinozaki et al., 2018

69 genotypes (13 and 19% of the

core collection and MAGIC

populations, respectively)

Greenhouse MAGIC

HS: 26.9/34.4◦C

Control: 21.2/28.8◦C

Core collection

HS: 27.5/35.5◦C

Control: 22.7/31◦C

Daily mean/maximal

temperatures

Stem diameter

Leaf length

Plant height

Flowering time

Flower number

Fruit number

Fruit set

Average fruit weight

Fruit color

Fruit pH

Bineau et al., 2021

excellent traits and making full use of marker selection based on
genomic information, especially in SSA and Southeast Asia.

In vegetable breeding, in addition to genome breeding
that makes full use of genome information and phenotyping
technology, there is great potential for genome editing that has

been developed in recent years. In countries with a product-based
mindset, unlike traditional GM crops, GM technology is used to
generate genome-edited crops, but null segregants do not contain
transgenes, which can be suggested using Southern hybridization
and PCR (El-Mounadi et al., 2020; Kumar S. et al., 2021).
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TABLE 3 | Representative genes available for improving heat tolerance in tomato plants.

Gene/locus symbol Source Expression Defined function References

HsfA1 Tomato Overexpression Transcription regulatory network Mishra et al., 2002

hsp21 Tomato Overexpression Accumulation of heat shock proteins

Transcription regulatory network

Neta-Sharir et al., 2005

MasHSP24.4 Musa acuminata Expression Accumulation of heat shock proteins

Transcription regulatory network

Mahesh et al., 2013

MT-sHSP Tomato Expression Accumulation of heat shock proteins

Transcription regulatory network

Nautiyal et al., 2005

SAMDC Yeast Overexpression Polyamine biosynthesis Cheng et al., 2009

LeAN2 Tomato Overexpression Anthocyanin-associated R2R3-MYB transcription factor Meng et al., 2015

LeCDJ1 Tomato Overexpression Chloroplast-targeted DnaJ protein Kong et al., 2014

codA Tomato Overexpression Glycine betaine (GB) synthesis Zhang et al., 2020

slmapk3 Tomato CRISPR/Cas9 Mitogen-activated protein kinases (MAPKs) family Yu et al., 2019

In this case, the deregulation process required for GM crops
becomes unnecessary; thus, commercialization is relatively easy,
and consumers’ resistance to GM can be excepted. The University
of Tsukuba leads the development and sale of the tomato variety
Sicilian Rouge High GABA (Sanatechssed; https://sanatech-seed.
com/en/), which has improved GABA contents (a component
that has the effect of suppressing blood pressure rise) through
genome editing (Nonaka et al., 2017; Lee et al., 2018; Yamamoto
et al., 2018; Gramazio et al., 2020). To date, many genes involved
in HS resistance have been identified. It is expected that the
improved genome editing technology will be used to improve
HS resistance by inducing mutations in the negative regulatory
genes, which are the key to HS resistance in vegetables, such
as tomatoes. Genome editing has already been used to improve
stress resistance in tomatoes. For example, the mitogen-activated
protein kinase (mapK) 3 gene, slmapK3 gene, branched-amino
acid (ALS1), cytidine base editor (CBE) genes, and LATERAL
ORGAN BOUNDARIES DOMAIN—LBD TF gene—SlLBD40
increased resistance to HS, sulfonylurea herbicide chlorsulfuron,
and drought, respectively (Ayenan et al., 2019; Yu et al., 2019;
Salava et al., 2021; Xia et al., 2021). Both the achievements of
genome editing technology with regard to tomatoes and the
identification of key genes, such as HsfA2, HsfB1, JA/COI1,
SlAGL6, and SlIAA9, are related to the thermotolerant acquires
mechanism in tomatoes, positively contribute to the breeding
of heat-tolerant tomato. On the other hand, considering the
future movement of products across countries, harmonization
between countries that handle genome editing on a product
basis and countries that handle genome editing on a process
basis is a future concern. Genome editing is an epoch-making
technique that can easily cause mutations that occur in nature
for the chosen study species. However, there is a concern that
consumers will reject it simply because it is a new technology
that manipulates the genome. Scientists need to obtain scientific
evidence and communicate it to society by communicating
closely with governments, producers, consumers, the media, and
other stakeholders.

It is necessary to elucidate the physiological mechanisms
underlying heat tolerance and facilitate breeding research
to improve both tolerance and recovery ability with respect
to resilience. Interdisciplinary approaches that go beyond
genetic breeding, such as improving HS resistance by utilizing

plant-microbial interactions by elucidating the relationship
between the microbiome and HS, may also be effective. By
utilizing Digital Transformation (DX), which has developed
remarkably in recent years, from the viewpoint of Genotype
x Environment x Management (G x E x M), to elucidate the
appropriate combination of excellent varieties (genotype),
cultivation environment and method (management), model
and recommend it to agricultural sites. Utilizing these various
innovations may improve climate change adaptation in
vegetables, such as tomatoes, by improving HS tolerance in a
broad sense.

CONCLUSION

The latest IPCC report clearly indicates that climate change
is currently occurring and will threaten food security in the
future. The increasing vulnerability of future food systems is a
point of concern. HS, resulting from climate change-induced
temperature increase, has a negative impact on all stages of
crop growth. For fruiting vegetables, such as tomatoes, even
moderate HS reduces fruit set and quality; therefore, enhancing
crop HS tolerance is among the best ways to adapt to climate
change. In this review, we discuss the important processes that
affect the growth and yield of tomatoes, especially HS. This
review examines the molecular, morphological, and physiological
mechanisms that contribute to HS tolerance and the challenges
of developing thermostable vegetable varieties. HS has several
complex adverse effects on a wide range of plant growth stages
in tomatoes. To understand plant tolerance mechanisms against
HS, it is necessary to investigate molecular tolerance mechanisms
at each growth stage and type of HS (short or long term).
There are several reports on gene regulation networks with
respect to short-term HS, but there are few regarding long-
term HS. Considering the need to produce heat-tolerant tomato
plants, it is crucial to determine how HS occurs in each target
area, select germplasm for screening heat tolerance materials,
and design molecular pathways to adjust to the target. The
nutritional and functional properties of vegetables, including
tomatoes, are valuable in terms of global food and nutritional
safety assurance. Studies investigating the rapidly increasing
HS tolerance and the development of heat-resistant vegetable
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varieties will contribute toward climate change adaptation and
the construction of sustainable and resilient food systems to
achieve sustainable development goals.
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Potato is one of the most important food crops in the world. Late blight, viruses,
soil and tuber-borne diseases, insect-pests mainly aphids, whiteflies, and potato
tuber moths are the major biotic stresses affecting potato production. Potato is
an irrigated and highly fertilizer-responsive crop, and therefore, heat, drought, and
nutrient stresses are the key abiotic stresses. The genus Solanum is a reservoir of
genetic diversity, however, a little fraction of total diversity has been utilized in potato
breeding. The conventional breeding has contributed significantly to the development
of potato varieties. In recent years, a tremendous progress has been achieved in the
sequencing technologies from short-reads to long-reads sequence data, genomes of
Solanum species (i.e., pan-genomics), bioinformatics and multi-omics platforms such
as genomics, transcriptomics, proteomics, metabolomics, ionomics, and phenomics.
As such, genome editing has been extensively explored as a next-generation breeding
tool. With the available high-throughput genotyping facilities and tetraploid allele calling
softwares, genomic selection would be a reality in potato in the near future. This mini-
review covers an update on germplasm, breeding, and genomics in potato improvement
for biotic and abiotic stress tolerance.

Keywords: biotic, abiotic, breeding, potato, genomics, omics approaches

INTRODUCTION

Potato (Solanum tuberosum L.) is the third most important food crop of the world after rice and
wheat. Potato suffers from various biotic and abiotic stresses, which may cause crop failure and yield
loss depending on their severity. The key factors affecting potato cultivation are (a) biotic stresses
including diseases like late blight, viruses, bacterial wilt, soil and tuber-borne diseases, insect-pests
like aphids, whiteflies, thrips, mites, hoppers, potato tuber moths, and potato cyst nematodes (Singh
et al., 2020); and (b) abiotic stresses like heat, drought, nutrient deficiency, salinity, and cold/frost

Frontiers in Plant Science | www.frontiersin.org 1 February 2022 | Volume 13 | Article 80567160

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.805671
http://creativecommons.org/licenses/by/4.0/
mailto:jageshtiwari@gmail.com
https://doi.org/10.3389/fpls.2022.805671
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.805671&domain=pdf&date_stamp=2022-02-07
https://www.frontiersin.org/articles/10.3389/fpls.2022.805671/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-805671 February 1, 2022 Time: 15:31 # 2

Tiwari et al. Genomics-Led Potato Improvement

stress (Handayani et al., 2019). Late blight is still the most
serious disease of potato, however, in the current climate
change scenario, viruses are becoming new threats especially for
healthy seed production. Similarly, heat and drought stresses
are major challenges in potato due to rising temperature,
erratic rainfall, and drought conditions (Singh et al., 2020).
Hence, management of these problems is very critical for
developing climate resilient varieties through an accelerated
breeding approach. Although conventional breeding has made
significant progress, it is relatively slow and harnessed the
limited potential of the Solanum gene pool (Hardigan et al.,
2017). Now, the potato genome sequences (Potato Genome
Sequencing Consortium, 2011) and resequence of wild/cultivated
species are available publicly, such as de novo sequencing
of two wild species namely S. commersonii (Aversano et al.,
2015) and S. chacoense “M6” (Leisner et al., 2018); and
resequencing of over 100 Solanum species (Hardigan et al.,
2017; Kyriakidou et al., 2020; Tiwari et al., 2021). The
rapid advancements in sequencing technologies, multi-omics
approaches, genome editing, and genomic selection coupled
with softwares/bioinformatics allow discovery of SNP markers,
genes, and regulatory elements for breeding and also to enhance
understanding of potato biology (Aksoy et al., 2015). This
mini-review highlights the prospects of germplasm, breeding,
and genomics in potato improvement for biotic and abiotic
stresses tolerance.

BIOTIC STRESSES IN POTATO

Late Blight and Viruses
Late blight, caused by the oomycete Phytophthora infestans
(Mont.) de Bary, is the most devastating disease of potato crop
worldwide. In the year 1845, this disease caused a complete loss
of potato crops in the European countries mainly Ireland, and
known as “Irish Famine.” More than 30 viruses are reported
to infect potato crop, of which major viruses are Potato virus
X (PVX), Potato virus Y (PVY), and Potato leaf roll virus
(PLRV) in the world; and Tomato leaf curl New Delhi virus-
potato (ToLCNDV) is a new problem in India. Potato viruses
are transmitted by contact/mechanical (e.g., PVX) and insect
vectors (e.g., PVY/PLRV), and cause mosaic or leaf curl and
mixed symptoms (Singh et al., 2020).

Soil and Tuber-Borne Diseases
Soil and tuber-borne diseases like dry rot (Fusarium oxysporum),
charcoal rot (Macrophomina phaseolina) and bacterial soft rot
(Pectobacterium atrosepticum) are the main problems involved
in the post-harvest, storage, and transport of potato. Black
scurf (Rhizoctonia solani) and common scab (Streptomyces
scabies) deteriorate tuber appearance. Bacterial wilt (Ralstonia
solanacearum) is also a serious disease, while wart caused by
Synchytrium endobioticum is a problem of hilly regions like
Darjeeling hills in India. These diseases are managed by using
healthy seeds, disinfection by boric acid treatment, cultural
practices, and crop rotation (Singh et al., 2020).

Insect-Pests
Insect-pests such as aphids, whiteflies, thrips, white grubs,
cutworms, leaf hopper, potato tuber moths, and mites infest
potato crop. Aphids (Myzus persicae) transmit viruses in two
ways i.e., persistent and circulative (PLRV), and non-persistent
(PVY). Whiteflies (Bemisia tabaci) transmit ToLCNDV-potato
virus. Thrips (Thrips palmi) transmit Groundnut bud necrosis
virus and cause stem necrosis disease. Importantly, potato
cyst nematodes (PCN) (Globodera rostochiensis and G. pallida)
are key problems in temperate regions. Besides, other insect-
pests are potato leaf hopper (Amrasca biguttula biguttula),
white grub (Brahmina coriacea), cutworm (Agrotis segetum),
potato tuber moth (Phthorimaea operculella), and mites
(Polyphagotarsonemus latus) (Singh et al., 2020).

ABIOTIC STRESS IN POTATO

Heat and Drought Stress
Heat stress is a great problem for potato crop, particularly
in early planted crop and after the harvest of the main rabi
crop under sub-tropical Indian conditions. A minimum night
temperature below 20◦C (day 25◦C) is essential for tuber growth
and development (Singh et al., 2015). Potato is mostly an irrigated
crop, except in rain fed hilly regions. Therefore, all growth
stages are sensitive to water availability such as germination,
foliage, and root/stolon/tuber growth. Thus drought i.e., moisture
deficit plays a very crucial role in determining potato yield
(Dahal et al., 2019).

Nutrient Deficiency, Salinity, and
Frost/Cold stress
Nutrients are very essential for plant growth, yield, and quality of
potato. Potato is a heavily fertilized crop especially for nitrogen
(N), and therefore reduction of N fertilizers is necessary to save
the environment and reduce the production cost (Zhang et al.,
2020). Nutrient deficiency drastically affects crop growth and
reduces yield. Besides, salinity is another problem due to soil or
irrigation water, which causes nutrient imbalance and restricts
plant growth. Frost/cold is also another issue of temperate
climates, where temperatures below −2◦C can result in a partial
or complete loss of crop (Ahmed et al., 2020).

GERMPLASM, MAPPING, AND
BREEDING

Potato Genetic Resources
Potato belongs to the genus Solanum (family: Solanaceae),
which contains over 2,000 species, of which nearly 235 are
tuber bearing potato species, where 73% are diploids (2x),
4% triploids (3x), 15% tetraploids (4x), and 8% pentaploids
(5x)/hexaploids (6x) (Hawkes, 1990). The cultivated potato
(S. tuberosum ssp. tuberosum) is a tetraploid (2n = 4x = 48).
Potatoes are classified into four major groups (i) S. tuberosum
group Andigenum of upland Andean genotypes (2x/3x/4x), and
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S. tuberosum group Chilotanum of lowland Chilean landraces
(4x), (ii) S. ajanhuiri (2x), (iii) S. juzepczukii (3x), and (iv)
S. curtilobum (5x) (Spooner et al., 2014). These species belong
to different endosperm balance numbers (EBNs) like 1EBN (2x),
2EBN (2x/4x), and 4EBN (4x/6x), where hybridization within the
same EBN species is successful but not with different EBN species
(Hawkes, 1990). Over 98,000 potato accessions are conserved ex
situ (in vitro), of which 80% are maintained in 30 key collections
worldwide (FAO, 2010). To harness the potential of diverse
species, a wide range of genetic variation has been recorded and
deployed through breeding and ploidy manipulation techniques
for potato improvement.

Linkage and Association Mapping
Gene mapping is important for molecular breeding. The complex
tetrasomic inheritance, acute inbreeding depression, and high
heterozygosity of potato complicate its genetic mapping. Linkage
mapping is the genetic association of traits with segregating
alleles of molecular markers in a defined mapping population.
The first linkage map was reported in 1988 using tomato RFLP
(restriction fragment length polymorphism) markers in diploid
species (S. tuberosum group Phureja/Tuberosum) (Bonierbale
et al., 1988). Then uncounted PCR-based molecular markers
like simple sequence repeat (SSR), amplified fragment length
polymorphism (AFLP), and diversity array technology (DArT)
were applied for mapping. Over 10,000 AFLP markers were used
to create an ultra-high-density (UHD) genetic and physical map
of potato (Van Os et al., 2006), which was used in the potato
genome sequencing. Sharma et al. (2013) constructed a dense
genetic and physical map for a diploid backcross progeny using
2,469 markers (SSR/AFLP/DArT/SNP). Numerous genes/QTLs
have been mapped in potato for various traits like late blight
resistance (Hein et al., 2009) and drought stress (Anithakumari
et al., 2012). On the contrary to linkage mapping, association
mapping identifies genes/QTLs associated with phenotypic
variation in a natural population based on the historical
recombination and linkage disequilibrium (Flint-Garcia et al.,
2003). In potato, diploid/tetraploid clones have been utilized in
association mapping for several agronomic traits (D’hoop et al.,
2014), particularly resistance to late blight (Gebhardt et al., 2004)
and Verticillium wilt (Simko et al., 2004) to name a few.

Marker-Assisted Selection
Over 40 traits are considered to be important in potato breeding.
Conventional breeding is a time consuming process mainly due
to several years of field evaluation and clonal selection. Hence,
identification of tightly linked markers with a target gene for a
trait is considered to be ideal for MAS. MAS allows a significant
decrease in field exposures by selection in the early stage, and
thereby reduces field exposures and breeding cycles. In potato,
a considerable number of linked markers have been developed
and deployed mainly for simply inherited traits like late blight,
viruses, and potato cyst nematode resistance (Ramakrishnan
et al., 2015). However, meager information is available on MAS
for complex traits like yield, nutrient use efficiency, heat, drought,
and cold stress.

PROGRESS IN GENOMICS-LED POTATO
IMPROVEMENT

Potato Genome
Sequencing/Resequencing
In 2011, the Potato Genome Sequencing Consortium (PGSC),—
formed by 26 international institutes belonging to 14 countries—
successfully deciphered the potato genome (840 Mb) containing
39,031 protein-coding genes using a homozygous doubled
monoploid (DM 1-3 516 R44) of S. tuberosum group Phureja
(2n = 2x = 24) (Potato Genome Sequencing Consortium, 2011)1.
Later Sharma et al. (2013) improved the DM potato assembly with
a more accurate arrangement of scaffolds and pseudomolecules.
Recently, a chromosome-scale long-read reference assembly
has been constructed (Pham et al., 2020). By now over 100
potato species have been sequenced/re-sequenced mostly using
Illumina platforms like wild S. commersonii (Aversano et al.,
2015), tuber-bearing Solanum species (Hardigan et al., 2017),
S. chacoense “M6” (Leisner et al., 2018), S. pinnatisectum-derived
somatic hybrid (Tiwari et al., 2021), and cultivated potato taxa
using Illumina and long-read (PacBio) technologies (Kyriakidou
et al., 2020; Table 1). The rapid advancement in sequencing
and bioinformatics has spurred innovation in discovery of
new genes/markers/haplotypes to enable better understanding of
potato biology (Zhou et al., 2020). Figure 1 illustrates different
approaches used in potato germplasm, breeding, and genomics-
led improvement for biotic and abiotic stresses tolerance.

Multi-Omics Approaches
Functional genomics allows the mining of genes for trait of
interest through transcriptome analysis like RNA sequencing and
microarray. Besides structural genomics, other omics approaches
are transcriptomics (genes), proteomics (proteins), metabolomics
(metabolites), phenomics (high-throughput phenotyping), and
ionomics (mineral ions). The aims of multi-omics approaches
are to acquire comprehensive and integrated understanding
of biological processes (system biology) to identify various
biological players/genes/regulatory elements underlying the traits
like heat and drought stress (Aksoy et al., 2015). Numerous
studies have been performed on transcriptomics in potato such
as heat (Tang et al., 2020), drought (Moon et al., 2018; Chen
et al., 2019), salinity (Li et al., 2020), and nitrogen deficiency
(Tiwari et al., 2020a,b) but limited work has been carried out
on proteomics, metabolomics, and ionomics (Hong et al., 2016;
Boguszewska-Mańkowska et al., 2020). A few recent research
works on multi-omics on biotic/abiotic stresses are mentioned in
Table 1.

Genome-Wide Genetic Diversity and
Association Studies Using
High-Throughput Genotyping
High-Throughput Genotyping (HTG) is an essential requirement
for genome-wide research on genetic diversity and association
studies. First, genotyping-by-Sequencing (GBS) is a now popular

1http://solanaceae.plantbiology.msu.edu/pgsc_download.shtml
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TABLE 1 | A few recent examples of application sequencing and multi-omics technologies in potato for biotic and abiotic stress resistance/tolerance.

Application System Traits/objectives References

Genome
sequencing

Illumina HiSeq (and PacBio in some
species)

Genome sequencing and structural variation in many
Solanum species

Hardigan et al., 2017; Kyriakidou
et al., 2020

S. checoense “M6” genome Leisner et al., 2018

S. commersonii genome Aversano et al., 2015

Genome-wide
genetic diversity
and GWAS

22K SNP array Construction of core collection Pandey et al., 2021

20 K SNP array Population structure, LD and SNP/haplotypes Vos et al., 2017

12K SNP array Population structure of CIP accessions Ellis et al., 2018

8.3 K SNP array Population structure and LD Berdugo-Cely et al., 2017

RenSeq/GenSeq Late blight and nematode resistance Strachan et al., 2019

20K SNP array Wart disease resistance Prodhomme et al., 2020

12 K SNP array Common scab resistance Yuan et al., 2020

8.3K SNP array Late blight resistance Mosquera et al., 2016

Genomic selection 8.3k SNP array Late blight resistance Stich and Inghelandt, 2018

8.3k SNP array Late blight and common scab resistance Enciso-Rodriguez et al., 2018

Transcriptomics Illumina Late blight, bacterial wilt, Cao et al., 2020

HiSeqTM2500 and PVY resistance

Illumina HiSeq2500 Common scab resistance Fofana et al., 2020

Ion torrent Colorado potato beetle resistance Bastarache et al., 2020

Illumina Potato cyst nematode Kochetov et al., 2020

NextSeq500 resistance

Illumina HiSeq × Ten Salt stress Li et al., 2020

Illumina NextSeq Drought stress Moon et al., 2018

Illumina HiSeq 4000 Drought stress Chen et al., 2019

Illumina HiSeq-2000 Heat stress Tang et al., 2020

Illumina Nitrogen stress Tiwari et al., 2020b;
Zhang et al., 2020

NextSeq500 Nitrogen stress

Illumina HiSeq 4000

Proteomics iTRAQ Late blight resistance Xiao et al., 2020

iTRAQ Bacterial wilt resistance Wang et al., 2021

Metabolomics LC-MS/MS Potato virus A resistance Rajamaki et al., 2020

GC-MS Salt stress Hamooh et al., 2021

LC-ESI-Q-TOF-MS/MS Nitrogen stress Jozefowicz et al., 2017

Transcriptomics
and metabolomics

Illumina HiSeq 4000, LC-MS Heat stress Liu et al., 2021

Proteomics and
metabolomics

2-DE Cold stress Li et al., 2021

LC-ESI-MS/MS

Phenomics (HTP) X-ray computed tomography (CT) Heat and drought stress Harsselaar et al., 2021

RGB camera and LED light system Drought stress Musse et al., 2021

Unmanned aerial vehicle Plant height and canopy cover Colwell et al., 2021

Genome editing CRISPR/Cas13a PVY resistance Makhotenko et al., 2019; Zhan
et al., 2019

CRISPR/Cas9

LD, linkage disequilibrium; CIP, International Potato Center; GWAS, Genome-Wide Association Studies; htp, high-throughput phenotyping.

method of HTG in crops including potato (Uitdewilligen et al.,
2013; Bastien et al., 2018). GBS has been applied effectively
in genome-wide studies in potato on genetic diversity and
population structure (Pandey et al., 2021), QTL mapping
(Schönhals et al., 2017), and SNP discovery (Caruana et al., 2019).
Secondly, the SNP array-based HTG system has already been

developed and applied in potato for population structure and
SNP discovery using 20K SNP array (Vos et al., 2015, 2017),
22K SNP array for starch phosphorylation (Khlestkin et al.,
2019), and 12K SNP array (Illumina) for genetic diversity
in the genbank of the International Potato Centre, Peru
(Ellis et al., 2018). Moreover, 8.3K SNP potato array has
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FIGURE 1 | A schematic presentation of different approaches used for genetic enhancement and improvement of potato under various biotic and abiotic stresses
applying breeding and modern genomics approaches like genome sequencing, functional genomics, genomics-assisted breeding through high-throughput
genotyping by SNP markers, omics (transcriptomics, proteomics, metabolomics, and ionomics), high-throughput phenotyping, genome editing, and genomic
selection.

been demonstrated in studies on Synchytrium endobioticum
resistance (Obidiegwu et al., 2015), genetic diversity (Berdugo-
Cely et al., 2017), and physical mapping of yield and quality traits
(Schönhals et al., 2017).

Genome-Wide Association Studies (GWAS) or linkage
disequilibrium (LD) mapping is a family-based mapping
approach to identify linked markers with the trait of interest in
a diverse population structure. GWAS is more useful in a diverse
germplasm which offers new perspectives toward the discovery of
new genes and alleles especially for complex traits. The software
STRUCTURE is very popular among scientific communities, and
GWASpoly has been developed for tetraploid potato (Rosyara
et al., 2016). GWAS has been applied in potato for QTLs/genes
via LD mapping using 20K SNP array (Vos et al., 2017), wart
resistance using 20K SNP array (Prodhomme et al., 2020) and
common scab resistance using 12K SNP array (Yuan et al., 2020).
Likewise, 8.3K SNP array has been used in LD mapping for
phenotype, yield, and quality traits (Sharma et al., 2018), late
blight resistance (Mosquera et al., 2016), and genetic diversity
in 809 andigenum Colombian accessions (Berdugo-Cely et al.,
2017). Applications of SNP array in potato for biotic and abiotic
stress traits are summarized in Table 1.

Genomic Selection
Genomic selection (GS) or genome-wide selection or genomics-
assisted breeding is a strategy to predict breeding model at

whole-genome level for both simple and complex inherited traits.
Therefore, partitioning of genetic variance and genome wide
prediction with allele doses is very important in tetraploid potato
(Endelman et al., 2018). GS allows the integration of phenotyping
and HTG data of a training population (both genotyped and
phenotyped) with a targeted breeding population (genotyped
only) for the prediction of genomic models to select superior
clones based on the genomic estimated breeding value (GEBV).
GS accelerates the breeding cycle with an increase in genetic gain
per unit time. Unlike animals and cereals, the application of GS
is very limited in tetraploid potato (Caruana et al., 2019) and
has been demonstrated recently for late blight and common scab
resistance (Enciso-Rodriguez et al., 2018; Stich and Inghelandt,
2018). The advancement in sequencing, softwares, HTG, HTP,
and marker-trait association can reduce the breeding cycle from
over 10 to as few as 4 years to increase the genetic gain in potato
(Slater et al., 2014; Table 1).

High-Throughput Phenotyping
Conventional phenotyping is often slow, has limited phenotyping
capability, and mostly relies upon destructive sampling. Hence,
modern High-Throughput Phenotyping (HTP) or phenomics
is an automated precision phenotyping system allowing
identification of key traits associated with phenotypic variation
under different growth conditions. HTP is usually based on
automation, sensors, high resolution imaging cameras (RGB,
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multi/hyperspectral and thermal sensors), unmanned aerial
vehicle (UAV) and robotics to record real-time images and
hardwares/softwares to analyze data from field or controlled
growth chamber2. HTP enables measurement of phenotype, yield
and its contributing traits, and physiological processes under
stress such as photosynthesis, nutrient uptake and transport
with precision and accuracy in a large set of genotypes with
non-destructive sampling, for example the LemnaTec Scanalyzer
3D platform (LemnaTech GmbH, Germany). HTP has been
applied in potato for phenology study in field (Prashar and
Jones, 2014), heat and drought (Harsselaar et al., 2021), drought
(Musse et al., 2021), and canopy cover using UAV (Colwell et al.,
2021). Examples of HTP in heat and drought stress in potato are
mentioned in Table 1.

Genome Editing
Genome editing is a powerful technology to create new variation
in the genome with desirable gene combinations. Earlier
sequence-specific nucleases (SSNs) methods like Zinc Finger
Nucleases (ZFNs) and Transcription Activator-Like Effector
Nucleases (TALENs) were used. Now, Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-
associated protein 9 (Cas9) is the most widely used genome
editing tool, which is an RNA-guided approach to target
DNA/RNA sequences. CRISPR/Cas9 has revolutionized the plant
research for multiple traits due to its ease in use, multiplexing
capability, cost-effectiveness, and high efficiency. Although, in
potato highly heterozygous and tetrasomic inheritance have
complicated its deployment (Butler et al., 2015; Andersson
et al., 2017) but found effective for PVY resistance using
CRISPR/Cas9 (Makhotenko et al., 2019) and CRISPR/Cas13a
(Zhan et al., 2019). Additionally, CRISPR/Cas9 has been
demonstrated in potato for various other traits like cold-
induced sweetening, glycoalkaloid content, homozygous mutants
generation, acetochalactate synthase 1 and granule bound starch
synthase genes (Nadakuduti et al., 2018; Dangol et al., 2019;
Table 1).

CONCLUDING REMARKS

Biotic and abiotic stresses are major limiting factors of yield
reduction in potato. Management of these stresses are more

2 http:/www.plantaccelerator.org.au/

challenging under the climate change scenario due to emergence
of new strains of pathogens and insect-pests, and erratic nature of
environmental factors. Potato improvement through genomics-
aided methods is essential to shorten the breeding cycle to
develop new varieties. Earlier, conventional breeding, bi-parental
linkage mapping, and MAS have been successfully demonstrated
in potato. The potato genome sequencing and resequencing of
Solanum species allow discovery of genes, markers and other
regulatory elements to provide better understanding of the
crop. Now, with the unprecedented advancement in sequencing
technologies, genomes of Solanum species (pan-genomics),
multi-omics for system biology approach (transcriptomics,
proteomics, metabolomics, and ionomics), HTG by GBS and
SNP array, HTP for precision phenotyping, GWAS and genomic
selection would play crucial roles in genomics-led improvement
of potato in the near future. There is an immense potential of
genome editing for rapid breeding of climate resilient varieties
resistant/tolerant to biotic and abiotic stresses. Nonetheless,
the availability of an efficient CRISPR/Cas system, target gene
selection, plant transformation, and off target mutants would be
some challenges in tetraploid crop. Overall, designs of potato
that apply genomics, particularly genome editing and genomic
selection, and other omics are inevitable in the future.
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Recent advances in potato genomics, transcriptomics, and transgenics under
drought and heat stresses: a review. Turk. J. Bot. 39, 920–940.

Andersson, M., Turesson, H., Nicolia, A., Fält, A. S., Samuelsson, M., and
Hofvander, P. (2017). Efficient targeted multiallelic mutagenesis in tetraploid
potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in
protoplasts. Plant Cell Rep. 36, 117–128. doi: 10.1007/s00299-016-2062-3

Anithakumari, A. M., Nataraja, K. N., Visser, R. G., and van der Linden, C. G.
(2012). Genetic dissection of drought tolerance and recovery potential by
quantitative trait locus mapping of a diploid potato population. Mol. Breed. 30,
1413–1429. doi: 10.1007/s11032-012-9728-5

Aversano, R., Contaldi, F., Ercolano, M. R., Grosso, V., Iorizzo, M., and Tatino,
F. (2015). The Solanum commersonii genome sequence provides insights into
adaptation to stress conditions and genome evolution of wild potato relatives.
Plant Cell 27, 954–968. doi: 10.1105/tpc.114.135954

Bastarache, P., Wajnberg, G., Dumas, P., Chacko, S., Lacroix, J., Crapoulet, N.,
et al. (2020). Transcriptomics-based approach identifies spinosad-associated
targets in the Colorado potato beetle. Leptinotarsa decemlineata. Insects 11:820.
doi: 10.3390/insects11110820

Frontiers in Plant Science | www.frontiersin.org 6 February 2022 | Volume 13 | Article 80567165

http:/www.plantaccelerator.org.au/
https://doi.org/10.1007/s00299-016-2062-3
https://doi.org/10.1007/s11032-012-9728-5
https://doi.org/10.1105/tpc.114.135954
https://doi.org/10.3390/insects11110820
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-805671 February 1, 2022 Time: 15:31 # 7

Tiwari et al. Genomics-Led Potato Improvement

Bastien, M., Boudhrioua, C., Fortin, G., and Belzile, F. (2018). Exploring the
potential and limitations of genotyping-by-sequencing for SNP discovery and
genotyping in tetraploid potato. Genome 61, 449–456. doi: 10.1139/gen-2017-
0236

Berdugo-Cely, J., Valbuena, R. I, Sa’nchez-Betancourt, E., Barrero,
L. S., and Yockteng, R. (2017). Genetic diversity and association
mapping in the Colombian central collection of Solanum tuberosum
L. Andigenum group using SNPs markers. PLoS One 12:e0173039.
doi: 10.1371/journal.pone.0173039
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Salt stress is one of the most important abiotic stresses as it persists throughout the
plant life cycle. The productivity of crops is prominently affected by soil salinization
due to faulty agricultural practices, increasing human activities, and natural processes.
Approximately 10% of the total land area (950 Mha) and 50% of the total irrigated area
(230 Mha) in the world are under salt stress. As a consequence, an annual loss of 12
billion US$ is estimated because of reduction in agriculture production inflicted by salt
stress. The severity of salt stress will increase in the upcoming years with the increasing
world population, and hence the forced use of poor-quality soil and irrigation water.
Unfortunately, majority of the vegetable crops, such as bean, carrot, celery, eggplant,
lettuce, muskmelon, okra, pea, pepper, potato, spinach, and tomato, have very low
salinity threshold (ECt, which ranged from 1 to 2.5 dS m−1 in saturated soil). These crops
used almost every part of the world and lakes’ novel salt tolerance gene within their
gene pool. Salt stress severely affects the yield and quality of these crops. To resolve
this issue, novel genes governing salt tolerance under extreme salt stress were identified
and transferred to the vegetable crops. The vegetable improvement for salt tolerance will
require not only the yield influencing trait but also target those characters or traits that
directly influence the salt stress to the crop developmental stage. Genetic engineering
and grafting is the potential tool which can improve salt tolerance in vegetable crop
regardless of species barriers. In the present review, an updated detail of the various
physio-biochemical and molecular aspects involved in salt stress have been explored.

Keywords: oxidative stress, physio-biochemical responses, antioxidant, transgenic crops, gene regulation, yield
loss

INTRODUCTION

Nearly, three thousand species of plants are being utilized for the food by human; anyhow,
presently, the total global population mainly depends mostly upon 20 species of crops for its
major calorie needs from which 50% is contributed by eight cereal crop species (Krishna et al.,
2019). The insufficient availability of vegetables is mainly due to increasing population, abiotic
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(drought, salt, heat, water logging, etc.) and biotic (virus,
viroids, bacteria, fungi, nematodes, and insects) stresses, which
potentially reduce the production and quality of the vegetable
crops (Ingram, 2011; Prasanna et al., 2015; Karkute et al., 2019;
Krishna et al., 2021a,b; Singh et al., 2021; Soumia et al., 2021). The
key challenge of modern agriculture is to fulfill the nutritional and
food security of the global growing population. Among abiotic
stresses, salt stress is the second most destructive stress as it
persists throughout the crop life cycle. Salinity stress is one of
the most important environmental constraints that limits the
economic productivity of vegetable crops (Hong et al., 2021).
Salinity in soil is influenced by a regular fluctuation in climatic
conditions, irrigation of crops with low quality water, excessive
use of ground water, and massive introduction of irrigation
associated intensive farming (Tiwari et al., 2010). Further,
prolonged water stress conditions in soil could result in increased
salinity in soil profile due to lack of leaching rain, increased bore
water salinity, and evaporation from irrigation dams. Vegetable
crops are more prone to climatic changes compared with other
horticultural crops (Giordano et al., 2021), and particularly,
salinity stress influences the growth and development throughout
their ontogeny. Salinity-induced oxidative stressed in vegetables
could affect the qualitative and quantitative value of vegetables
as this oxidative stress could lead to a plethora of biochemical
and physiological changes in plants (Kashyap et al., 2020,
2021). The most common of them include membrane damage,
leakage of substances causing water imbalance and plasmolysis,
disturbance in ROS detoxification system, changes in nutrient
flux and dynamics, and photosynthetic attributes. These changes
ultimately affect the physiological activities like respiration,
photosynthesis, transpiration, hormonal regulation, water use
efficiency, germination, production of antioxidants, and plasma
membrane permeability (Chourasia et al., 2021). The most
common approach adopted by plants during such extreme
conditions is transcriptional reprogramming of stress responsive
genes (Aamir et al., 2017; Tolosa and Zhang, 2020), although
the conventional breeding approaches have helped a lot in
developing stress-tolerant breeds of vegetables. However, we
do not still have developed optimum solutions to prevent the
economic losses of vegetables from salt stress, particularly, in
intensively irrigated areas (Machado and Serralheiro, 2017).
Transgenic technology for salt stress tolerance has been reported
as one of the most crucial tool in developing the stress-tolerant
vegetable crops (Kumar et al., 2017). For example, to avoid
salt tolerance in plants, genes encoding for proteins like Na+
“exclusion” (PM-ATPases with SOS1 antiporter, and HKT1
transporter), vacuolar compartmentalization of Na+ V-H+-
ATPase and V-H+-PPase with NHX antiporter, and also other
genes encoding proteins such as aquaporins and dehydrins that
are involved in mitigation of water stress during salinity have
been transferred and/or overexpressed in tomato or Arabidopsis
through transgenic technology (Kotula et al., 2020). Since tomato
is one of the most important vegetable crop and experimental
model for molecular biology studies, most of the research done
so far with respect to abiotic and biotic stresses have been done
in tomato (Meena et al., 2016, 2018; Zehra et al., 2017a,b).
For example, overexpression of LeNHX2 and SlSOS2 proteins

resulted in salinity tolerance in tomato transgenic lines (Maach
et al., 2021). The stress-responsive genes expressed during salinity
stress and their fine-tuning could be an eminent tool for
developing stress-resistant varieties.

On an average every year approximately 12 billion USD are
lost worldwide due to the salinity stress which greatly affects the
agriculture production (Zahedi et al., 2019). Almost 10% of the
world’s entire land area (950 Mha), 20% of the world’s cultivated
land (300 Mha), and approximately 50% of the total irrigated
land (230 Mha) are consequently distressed with extreme salinity
(Abiala et al., 2018).

SALT STRESS RESPONSES IN PLANTS

Important physiological and biochemical processes in plants
are adversely affected by salinity in various ways through an
intense concentration of salts and unavoidably leading to a
gradual reduction in plant growth. High salt concentration in
rhizosphere of plant cell causes osmotic effect, which remains as
a chief contributor to growth reduction during the preliminary
stages of a plant life cycle. Amendment in K+/Na+ ratio arises
when ions reach the plant cell through saline water, leading to
augmented Na+ and Cl− ion, inflicting extensive damage of
numerous physiological processes like protein metabolism and
enzyme activities (Tester and Davenport, 2003). The interactions
between salts and essential mineral nutrients may consequently
result in significant nutrient deficiencies and disproportion.
Ionic imbalances may also result in decreased uptake of various
significant minerals like potassium, manganese, and calcium
to the plants. However, in response to ionic and nutrient
imbalances, salt-tolerant plants have uniquely developed the
capability of accumulation and compartmentalization of Na+ and
Cl− in their matured leaves, but sensitive species at absurdly
high salinity stage cannot manage to compartmentalize the
ions or Na+ transport, leading to the ionic or osmotic effect.
Considerable reduction in plant height has been documented
under different abiotic stresses. Due to salinity, plants are
exposed to serious water deficit conditions that reduces the leaf
growth and leaf areas in several species such as wheat (Sacks
et al., 1997), poplar (Wullschleger et al., 2005), and cowpea
(Manivannan et al., 2007). One example of the physiological
changes in response to salt is shedding of the older leaves of
plants (Shao et al., 2008). The upsurge in root to shoot ratio
due to salinity conditions was found to be associated with
the ABA content of plants (Sharp and LeNoble, 2002). Plant
productivity under salinity is strongly correlated with biomass
distribution.

MECHANISM OF SALINITY TOLERANCE

Salinity tolerance is related to a list of morphological,
biochemical, molecular, and physiological traits that govern
the plant growth and productivity (Alexieva et al., 2001).
Morphological and physiological adaptation toward tolerance
to the salt-induced osmotic stress is also facilitated by
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reducing water loss from cuticle and stomata and maximized
uptake of water by root to maintain the osmotic adjustment
(Rai et al., 2021). Tolerance and adaptation to salt stress
are governed by a cascade of molecular networks, which
trigger response processes like production of stress proteins,
upregulation of antioxidants, and accumulation of compatible
solutes (Nahakpam and Shah, 2011) to provide homeostatic
reestablishment of cells and to repair and protect the damaged
membranes and proteins. On the basis of responses to salinity,
plants are categorized as either halophytes or glycophytes
(Flowers and Flowers, 2005). Under high saline conditions,
glycophytes are unable to survive, whereas halophytes can
easily grow and reproduce. Tissue tolerance and salt avoidance
are two main approaches implemented by plants to overcome
the salt stress. Plants also execute the compartmentalization
of ions in the plant tissues. To regulate their osmotic
pressure, plants continuously generate water-soluble and low
molecular-weight compatible solutes like sugars, glycinebetaine,
and proline and the metabolic processes of plants are not
disturbed. Plants also produce many enzymatic and non-
enzymatic antioxidants to minimize the adverse effect of
salinity. In the procedure of plant tissue tolerance, ions
compartmentalization occurs in the vacuole, resulting in
sustained salt concentration in cytosol, and thus the cytoplasm of
the plant cell can be protected from water stress and ion toxicity
(Chinnusamy et al., 2005).

To cope with salt stress many strategies have been evolved
and developed to secure the vegetable yield under salt stress
like transgenic development, regulation of transcription factors
(TFs), and grafting. In this review, we have presented updated
information on biotechnological interventions in vegetable crops
for salt stress.

TRANSGENIC VEGETABLES FOR SALT
STRESS TOLERANCE

Vegetables are the cheapest source of minerals, vitamins,
antioxidative phytochemicals, and consumed all over the world in
raw, semicooked, cooked, and/or in processed forms. Salt stress
does not affect vegetable yield but it also affects the nutritional
quality of the vegetables. Due to lack of novel salt tolerance in
the gene in many vegetable crops gene pools, the transgene has
been transferred from the non-parent sources like bacteria, fungi,
plant, and animals. For developing transgenic vegetable crops,
firstly gene is being identified, characterized, then transferred
in the desired vegetables for salt stress. The transgene is being
induced under salt stress and the upregulation or downregulation
of transgenes initiates a cascade of stress regulatory phenomenon,
which ultimately results in salt tolerance (Figure 1). Among
vegetable crops, Solanaceous crops like potato, tomato, capsicum,
and chili constitute major group of vegetables consumed all over
the world, and out of these, potato is the most important and
ranks third in the world in terms of economic importance and
a key agriculture crop for food and nutritional security. Potato is
cultivated globally and very sensitive to salt stress, and more than

60% crop loss is caused abiotic stresses including salt (Upadhyaya
et al., 2011; Xu et al., 2014; Shafi et al., 2017). To improve potato
yield and quality under salt stress condition, many transgenic
potato plants have been developed using different genes with
different modes of action (Shafi et al., 2017; Wang et al., 2019;
Ali et al., 2020). Many osmoprotectant genes like P5CS, mtlD,
and AtBADH have been transferred to potato, which significantly
improves the salt tolerance under salt stress (Karthikeyan et al.,
2011; Rahnama et al., 2011; Zhang et al., 2011). Like potato,
tomato is the second most important vegetable fruit crop
that belongs to the Solanaceae family and it is the highest
processed crop in the world. Tomato is a rich source of proteins,
minerals, carbohydrates, and vitamins, especially vitamin C.
Tomato also contains many phytochemicals like carotenes and
lycopenes which have anticancer properties and other health
benefits (Krishna et al., 2021a,b; Rai et al., 2021). In tomato
far salt stress tolerance, osmoprotectants genes like BADH-1,
ToOsmotin, Ectoine (ectA, ectB, and ectC), and coda gene have
been transformed in tomato, which reduces the impact of salt
stress by encoding osmoprotectant solutes (Moghaieb et al., 2000,
2011; Goel et al., 2010; Wei et al., 2017). To maintain the cellular
acidity under salt stress many Na+/H+ antiporter genes also
have been transformed like NHX1, TaNHX2, and LeNHX4 which
regulate the Na+/H+ to maintain cellular homeostasis (Zhang
and Blumwald, 2001; Yarra et al., 2012; García-Abellan et al.,
2014). Transgenes like cAPX, MdSOS2L1, AnnSp2, LeNHX2 and
SlSOS2, At FeSOD, and BcZAT12 have been also transformed
and works with different modes of action, details of the gene
transformed in tomato and their mode of action are summarized
in Table 1. Like potato and tomato, other important Solanaceous
crops like brinjal and chili face the salt stress; in these crops also
transgenics have been developed for salt stress, and details of
the transgenic crop in Solanaceae family are given in Table 1.
In vine crops group like cucumber, cucurbits, and bottle gourds
are also a very popular in vegetable crops and play an important
role in food and nutritional security, salt significantly reduced
the yield and quality of vine crops also (Park et al., 2014; Kim
et al., 2015; Sun et al., 2018; Li et al., 2020). In water melon HAL1
transferred which encodes for 32 kDa water soluble proteins
which protects from salt induced osmotic stress (Bordas et al.,
1997). Park et al. (2014), Han et al. (2015), and Kim et al.
(2015) transformed bottle gourds with AVP1 which encodes
vacuolar H+-pyrophosphatase, which regulate the proton pump
and ultimately maintains the cellular acidity to avoid salt stress
(Table 2). Cole crops like cabbage, cauliflower, mustard green,
rape seed, and Chinese cabbage constitute a major group of
leafy vegetable, which are considered as cheapest and richest
sources of mineral, vitamins, and oils and they play an important
role in nutrition and food security (Wang et al., 2010; Kim
et al., 2016; Ahmed et al., 2017; Luo et al., 2017). The cole
crops are very sensitive to the salt stress, and different genes
like CodA, PgNHX1, OsNASI, BnSIP1-1, APX, SOD, and LEA4-
1 have been transferred to sustain salt stress (Park et al., 2005;
Wang et al., 2010; Kong et al., 2011). Details of the gene
transferred and their mechanism of action in cole crops is given
in Table 3.
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FIGURE 1 | Mechanisms of transgene action in transgenic plants; downstream signaling process and transcription controls that stimulates stress-responsive
mechanisms to reestablish cellular homeostasis and damage repair.
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FIGURE 2 | Functional annotation of WRKY and NAC proteins. These functional annotation were retrieved from Cello2GO server and were structured around gene
ontologies like biological process, molecular function, and cellular component along with their localization probability. It is to be noted that both WRKY and NAC
proteins have diversified function with more specifically targeted to DNA binding or Nucleic acid binding transcriptional factor activity.

TRANSCRIPTIONAL REGULATION OF
SALINITY STRESS SIGNALING IN
VEGETABLES

Recently, it was demonstrated that during salt stress, the
expression level of multiple TFs increases much more compared
with their basal trends, which reflects their crucial role in
regulating the function mechanism and stress-dynamics of
stress-tolerance (Franzoni et al., 2019, 2020). TFs are key
regulators that play important roles in various stress responses
(Debbarma et al., 2019). In fact, TFs are the key players
that actually bind with the cis acting elements to regulate
the spatial and temporal expression of specific genes, or
genes regulating the functional activities of signal transduction
and/or other genes regulating the transcriptional efficiency
of stress-responsive genes under environmental stresses (Liu
et al., 2014). Therefore, transcriptomic characterization for
identification of stress-responsive TFs in plants or vegetable
crops could be useful as a prominent tool or may provide
a genetic resource for transgenic technology to improve the
stress-responsive traits in different crops (Hong et al., 2021).
The TFs belonging to WRKY, NAC, bZIP, MYB, and AP2/ERF
play a crucial role in modifying and fine-tuning of the
different stress-responsive genes involved in stress avoidance
(Golldack et al., 2014). We have provided a comparative
pie chart showing the functional annotation of two different
transcriptional factors WRKY and NAC having WRKY and NAC
domain. Based on functional annotation and gene ontology
structured around three ontological terms, biological processes,
molecular function, and cellular component, we reported and
confirmed the function of WRKY and NAC TFs as to bind
with DNA and also playing an important role in metabolism,
stress response, and nucleic acid binding transcriptional factor

activity (2) (Figure 2). During the last few years, many TFs
have been deployed for transgenic overexpression of different
TFs to mitigate various abiotic stresses (Tran et al., 2010).
For example, the overexpression of moso bamboo WRKY
(Phyllostachys edulis) in Arabidopsis uncovered the importance
of PeWRKY83 in imparting salinity tolerance in transgenic
Arabidopsis (Wu et al., 2017). SlAREB1, a bZIP transcriptional
activator that belongs to ABA-responsive element binding
protein (AREB)/ABA-responsive element binding factor (ABF)
subfamily overexpression in tomato lines, reported enhanced
salt and drought tolerance (Orellana et al., 2010). Furthermore,
with the help of CRISPR/Cas9 genome editing technology it
has now become possible to edit specific transcriptional factors
that could be directly or indirectly fine-tune the expression and
regulation of stress-responsive genes against salinity tolerance
in plants (Debbarma et al., 2019). For example, CRISPR/Cas9
mediated genome editing of SlMAPK3 gene in tomato affected
the expression level of other drought stress-responsive genes,
particularly, SlDREB, SlLOX, and SlGST in tomato. The
downregulation of these genes indirectly affected the salinity
response and provided tolerance to salinity. Moreover, genetic
engineering, gene silencing, CRISPR/Cas9 mediated-genome
editing, transgenic overexpression, gene complementation and
genetic transformation, mutant analysis studies done so far for
engineering better salt-tolerance strategies in various vegetable
and horticultural crops have of course identified novel signaling
pathways, interconnected networks, transcriptional activators
in mitigating salinity as well as other environmental stresses.
Recently, CRISPR/Cas9 technology has provided a novel
platform for precise editing of alleles that could assist in providing
stress tolerance in plants. Further, the latest advancement in
CRISPR-Cas system has sparked the genome editing revolution
in plant genetics and breeding. We have discussed the role of
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TABLE 1 | Transgene used for development of salt stress tolerance, their function and mechanism of action.

S. N. Genes Function Mechanism of action References

Potato (Solanum tuberosum)

1 P5CS Encodes for
pyrroline-5-carboxylate
synthetase (P5CS)

P5CS gene expression enhances proline content in the cells, proline is a
potential osmolyte and tolerate to salt stress

Karthikeyan et al.,
2011

2 StCYS1 Encodes for, Cysteine protease
inhibitors (CPI)

Cysteine protease inhibitors (CPI) is a cystatin protein superfamily and
facilities biological activities by cysteine protease inhibition

Liu et al., 2020

3 Glycinebetaine Glycinebetaine (GB)
synthesizing enzymes

Glycinebetaine GB is a osmolytes and potent compatible compound,
its accumulation does not hamper plants normal activities and help in
salt tolerance

Ahmad et al., 2014

4 StDREB1 Transcription factors Regulate differential gene expressions in the different signaling
pathways due to their different DNA-binding specificity

Bouaziz et al., 2013

5 AcBADH Encodes for betaine aldehyde
dehydrogenase

Betaine aldehyde dehydrogenase converts betaine aldehyde to glycine
betaine which predominantly accumulate in the leaves and stems in
dicot and monocot and enhance salt tolerance

Ali et al., 2020

6 AtNHX1 Na+/H+ antiporters AtNHX1 gene improves the absorption and transportation of the Na+ of
the host plant species and enhances salt stress tolerance

Wang et al., 2013

7 mtlD Encodes for mannitol
1-phosphate dehydrogenase

Mannitol accumulation increases in plants in response to osmotic
stresses like salt

Rahnama et al.,
2011

8 AtHKT1 Facilitates high-affinity
potassium transporter

HKTs actively involve at the plasma membrane level, HKT transporters
exclude Na+ from the leaves while increasing K+ transportation to
resist salt stress

Wang et al., 2019

9 PaSOD and
RaAPX

Encodes for superoxide
dismutase (SOD) and ascorbate
peroxide (APX) enzymes

SOD and APX enzyme system converts superoxide radical to hydrogen
peroxide (H2O2), followed by conversion of H2O2 to water and oxygen,
respectively

Shafi et al., 2017

10 Rat GLOase Over-expressing
L-gulono-c-lactone oxidase

Enhanced ascorbic acid accumulation have been reported to have
salt/osmotic stress

Upadhyaya et al.,
2010

11 GalUR L-gulono-1,4-lactone
conversion to AsA

D galacturonic acid reductase (GalUR over-expression enhances AsA
production enhances salt tolerance)

Upadhyaya et al.,
2009

12 GalUR Encodes for D galacturonic
acid reductase

Overexpression of GalUR, an ascorbate pathway enzyme enhances its
ascorbic acid content (L-AsA) and enhances salt tolerance

13 StNAC2 Regulates NAC transcription
factors

NAC proteins are plant-specific TFs and to play important roles in
abiotic biotic stresses

Xu et al., 2014

14 AtBADH Encodes for betaine aldehyde
dehydrogenase

Converts betaine aldehyde to glycine betaine, the elevated glycine
betaine level enhances cellular buffering capacity and stress tolerance

Zhang et al., 2011

Tomato (Solanum lycopersicum)

1 BADH-1 Over expression of betaine
aldehyde dehydrogenase

Betaine aldehyde dehydrogenase catalyzes conversion of betaine
aldehyde into glycine betaine which improves abiotic stresses tolerance

Moghaieb et al.,
2000

2 NHX1 Over expression the NHX1
antiporter

Over expressed NHX1 vacuolar Na+/H+ antiporter helps in maintaining
cellular integrity and improve salt stress tolerance

Zhang and
Blumwald, 2001

3 cAPX Over expression of APX Enhanced activity of ascorbate peroxidase activity reduces cellular
damage by scavenging the superoxides under salt stress

Wang et al., 2005

4 CaKR1 Over expression of LeSOD2,
LeAPX2, and LeAPX3

High transcript level of antioxidative enzyme machinery scavenge the
ROS under abiotic stresses

Seong et al., 2007

5 ToOsmotin Osmotic adjustment Over expression leads accumulation or compartmentalization of solutes
and also protect proteins denaturation under salt stress

Goel et al., 2010

6 Ectoine (ectA,
ectB and ectC)

Compatible solute Enhance peroxidase activity and decrease MDA contents by ectoine
accumulation

Moghaieb et al.,
2011

7 AtSlSOS2
(AtSlSOS2)

Homeostasis of Na+ and K+ Upregulation of the plasma membrane Na+/H+ (SlSOS1) and
endosomal-vacuolar K+, Na+/H+ (LeNHX2 and LeNHX4) antiporters,
responsible for Na+ extrusion out of the root, active loading of Na+ into
the xylem, and Na+ and K+ compartmentalization

Huertas et al., 2012

8 TaNHX2 Na+/H+ antiporter Na+/H+ antiporters are involved in intracellular ion (Na+), pH regulation
and K+ homeostasis in plants under salt stress

Yarra et al., 2012

9 HAL5 Maintaining Na+/K+

homeostasis
Maintenance of Na+ and K+ transporters like SlHKT1;2 and SlHAK5
improve homeostasis

García-Abellan
et al., 2014

10 MdSOS2L1 Codes for MdSOS2L1 protein
kinase

MdSOS2L1 protein kinase physically interacts with MdCBL1, MdCBL4,
and MdCBL10 proteins to increase tolerance against salt

Hu et al., 2016

11 coda Encode for glycine betaine Glycine betaine enhanced NaCl-induced expression of genes encoding
the K+ transporter, Na+/H+ antiporter, and H+-ATPase

Wei et al., 2017

(Continued)
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TABLE 1 | (Continued)

S. N. Genes Function Mechanism of action References

AnnSp2 Encodes annexins proteins AnnSp2 alleviated ABA sensitivity in tomato in the germination and
seedling stages under salt stress

Ijaz et al., 2017

12 SlCMO Choline monooxygenase (CMO) Is a key enzyme involved in the synthesis of glycine betaine, which is a
osmoprotectant that plays an important role in plant salt tolerance

Li Q. L. et al., 2018

13 LeNHX2 and
SlSOS2

Homeostasis of Na+ and K+

and Na+/H+ antiporter
Involves Na+ and/or K+ intracellular accumulation mediated by NHX
transporters

Baghour et al.,
2019

14 SlMYB102 Decrease the transcripts of
ABA-dependent genes

Suppress the expression of PP2Cs or protein phosphatases of PP2Cs
to help plants adapt to higher salt concentrations

Zhang et al., 2020

15 At FeSOD Encodes for super oxide
dismutase enzyme

The main function of these enzymes is the enzymatic conversion of
such a highly toxic molecule for cells as superoxide into hydrogen
peroxide (H2O2)

Bogoutdinova
et al., 2020

16 LeNHX4 K+, Na+/H+ antiporter An important mechanism to overcome salt stress is the exclusion of
Na+ from the cytoplasm, by the operation of Na+/H+ antiporters at the
plasma membrane or tonoplast. Plant NHX antiporters play a key role in
NaCl tolerance by the extrusion of Na+ out of cytosol

Maach et al., 2020

17 COMT1 Promote the synthesis of
melatonin

SlCOMT1 overexpression could maintain the balance of Na+/K+ and
decrease ion damage by activating salt overly sensitive (SOS) pathway
under salt treatment

Sun et al., 2020

18 BcZAT12 Encodes for C2H2 type zinc
finger protein

The C2H2 type zinc finger protein is known to confer tolerance to
dehydration, heat stress, salt and/or cold stresses

Rai et al., 2021

Brinjal (Solanum melongena)

1 Yeast HAL1 Encodes a water-soluble
protein

HAL1 and HAL3, which were involved in the regulation of K+ and Na+

transport, respectively, and considerably enhanced salt tolerance in egg
plants

Kumar et al., 2014

2 TaNHX2 Vacuolar Na+/H+ antiporter Na+/H+ antiporters are involved in intracellular ion (Na+), pH regulation,
and K+ homeostasis in plants

Yarra and Kirti,
2019

3 adc Biosynthetic of polyamine by
arginine decarboxylase

Accumulation of higher polyamine in cells works as a osmoprotectants Prabhavathi and
Rajam, 2007

4 mtlD Mannitol-1-phosphate
dehydrogenase

The accumulation of mannitol in the cytoplasm and increased tolerance
to salt stress

Prabhavathi et al.,
2002

Chili pepper (Capsicum annuum L.)

1 TaNHX2 Vacuolar Na+/H+ antiporter Na+/H+ antiporters are involved in intracellular ion (Na+), pH regulation,
and K+ homeostasis in plants

Bulle et al., 2016

2 PDH45 Encodes for Pea DNA Helicase
45

DNA and RNA helicases have proved their translational efficacy in
multiple crops by improving tolerance to salinity and drought stress.
DNA and RNA helicases, also known as molecular motors, are involved
in myriad cellular processes of protein turnover and protection

Shivakumara et al.,
2017

3 Osmotin Encodes for Osmotin is a
stress-responsive protein

Osmotin is a stress-responsive protein adapted to salinity and
desiccation and accumulates in saltadapted cells. Osmotin is an
abundant cationic 26-kDa protein that belongs to the family of PR-5
type proteins. Osmotin provides osmotolerance to plants probably by
facilitating the compartmentation of solutes

Subramanyam
et al., 2011

some of the important TFs that regulate the stress-tolerance
mechanism in plants.

WRKY Gene Family in Salt Tolerance in
Vegetables
WRKY gene family is one of the most important transcriptional
regulators that regulates stress tolerance mechanism in plants.
Many studies done till so far have highlighted the functional role
of WRKY gene signaling against various abiotic and biotic stress
response in plants (Aamir et al., 2017, 2018, 2019; Hichri et al.,
2017; Bai et al., 2018; Li et al., 2020). It has been well documented
that WRKYs gene-mediated plant defense is controlled by
both crossregulation and autoregulation, and extensive signaling

involving multiple protein partners like histone acetylases, MAP
kinases, MAP kinases kinases (MAPKK), calmodulin, 14-3-3
proteins, and other associated WRKYs partners in a complex
network and dynamic web with built in redundancy to fine
tune the transcriptional reprogramming, genetic-expression,
and stress-tolerance (Rushton et al., 2010). WRKYs prominent
role in both abiotic as well as biotic stress tolerance is well-
documented (Rushton et al., 2010; Phukan et al., 2016; Bai
et al., 2018). WRKYs role in salinity tolerance against various
horticultural crops and other plants is well reported (Table 4).
For example, Kashyap et al. (2020) reported the relevance of
tomato WRKY1, WRKY3, and WRKY72 in mitigating salt stress
in wild tomato Solanum chilense as the expression of these
WRKYs was more prominent and increased the expression in
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TABLE 2 | Transgenic crops developed in vine crops for salt stress tolerance.

S. N. Genes Function Mechanism of action References

Cucumber (Cucumis sativus L.)

1 LOS5 Encodes a molybdenum
cofactor (MoCo) sulfurase

Molybdenum cofactor (MoCo) sulfurase catalyzes the last step of ABA
biosynthesis in plants

Liu Z. et al., 2013

2 HAL1 HAL1 encodes a water soluble
protein (32 kDa)

Water soluble protein (32 kDa) that may modulate monovalent ion
channels, by affecting the set point of intracellular potassium
determined by the feedback regulation of the uptake system

Bordas et al., 1997

3 CsbHLH041 Encodes Basic helix-loop-helix
(bHLH) transcription factors

The bHLH genes are involved in processes such as metabolic
regulation, plant growth and development, and response to
environmental signals

Li et al., 2020

CmHKT1;1 Encodes a Na+ preferential
transporter

(HKT1) encodes a Na+ preferential transporter that principally controls
root-to-shoot Na+ delivery via the withdrawal of Na+ from the xylem
sap

Sun et al., 2018

4 Bottle gourds

5 AVP1 Encodes vacuolar
H+-pyrophosphatase

A vacuolar H+-pyrophosphatase encoded by the AVP1 gene is one of
the proton pumps in Arabidopsis and generates an H+ electrochemical
gradient across the tonoplast

Kim et al., 2015

6 AVP1 Encodes vacuolar
H+-pyrophosphatase

A vacuolar H+-pyrophosphatase encoded by the AVP1 gene is one of
the proton pumps in Arabidopsis and generates an H+ electrochemical
gradient across the tonoplast

Park et al., 2014

AVP1 Encodes vacuolar
H+-pyrophosphatase

A vacuolar H+-pyrophosphatase encoded by the AVP1 gene is one of
the proton pumps in Arabidopsis and generates an H+ electrochemical
gradient across the tonoplast

Han et al., 2015

Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai]

HAL1 A vacuolar Na+/H+ antiport Water soluble protein (32 kDa) that may modulate monovalent ion
channels, by affecting the set point of intracellular potassium
determined by the feedback regulation of the uptake system

Ellul et al., 2003

wild genotype compared with domestic and cultivated genotype
DVRT1. Villano et al. (2020) characterized the list of putative
WRKYs involved in various abiotic and biotic stresses in two wild
relatives of potato Solanum commersonii and Solanum chacoense,
and revealed the ScWRKY23 as multiple stress regulator WRKY
in wild potato (Villano et al., 2020). Likewise, Hichri et al. (2016)
also reported the expression of tomato WRKY3 in alleviating
salt stress (Hichri et al., 2016). Transcriptomic characterization
and function validation through qRT-PCR analysis unraveled the
expression profiling and importance of sweet potato WRKYs
after treatment with 150 mM salt stress (Qin et al., 2020).
In one work, Yue et al. (2019) provided the genome-wide
identification and characterization of 92 WRKY genes in
Chenopodium quinoa, and reported the importance of 25 WRKYs
in both development and stress tolerance. Similarly, genome-
wide identification and characterization of WRKYs in Cucumis
sativus (cucumber) unraveled the importance of CsWRKY9,
CsWRKY18, CsWRKY48, and CsWRKY57, in both heat and
salt stress tolerance (Chen et al., 2020). In another study,
based on Illumina RNA-seq transcriptomic studies, Tang et al.
(2014) reported the tissue-specific and differential expression
profiles of the Brassica rapa ssp. pekinensis (Chinese cabbage)
and further validated their role in different abiotic and biotic
stresses (Tang et al., 2014). Karanja et al. (2017a) reported 126
WRKYs in Raphanus sativus out of which 35 WRKYs had
differential expression in various abiotic stresses. Further, the
relevance of WRKY3 in salt tolerance could be better understood
as CRISPR/Cas9-mediated WRKY3 and WRKY4 mutagenesis in

Arabidopsis, decreasing both MeJA stress as well as decreased salt
tolerance in Arabidopsis (Li et al., 2020).

Ethylene Response Factors
The APETALA2/ethylene responsive factor (AP2/ERF) family
of transcription factor is one of the prominent groups of
transcriptional activator/regulator during various abiotic and
biotic stress responses in plants. ERF group has been further
classified or subdivided into the dehydration-responsive element-
binding proteins (DREBs). The AP2/ERF families in different
plants have been further subdivided based on the presence of
double AP2 domain, single AP2 domain, and/or single AP2
domain along with presence of a B3-DNA binding domain
(Nakano et al., 2006). The interaction of ERF proteins with
DRE/CRT motif and cis-acting elements is generally associated
with stress-responsive genes and plays a crucial role in mitigation
of various environmental stresses. For example, transgenic
overexpression of ERF1-V (Haynaldia villosa) in wheat provided
salt tolerance (Xing et al., 2017). Similarly, a ERF gene from
wheat (TaERF3) overexpression had significant results against salt
stress compared with control counterparts in wheat (Rong et al.,
2014). In one work, Yang et al. (2018) performed the microarray
analysis on salt-tolerant genes in wild tomato lines Solanum
pimpinellifolium PI365967’ under the effect of salt treatment and
reported the increased expression of five ERF genes (SpERF).
Sequence analysis and transcriptomic characterization of these
five SpERFs uncovered the crucial seven amino acid residues
that were involved in binding with GCC box in the promoter of
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TABLE 3 | Transgenic crops developed in cole crops for salt stress tolerance.

S. N. Genes Function References

Mustard green (Brassica juncea)

1 CodA Choline oxidase Prasad et al., 2000

2 PgNHX1 Vacuolar Na+/H+ antiporter Rajagopal et al.,
2007

3 AtLEA4-1 LEA4 protein Saha et al., 2016

4 Lectin Induced fungal resistance Kumar et al., 2015

5 Gly I Detoxification of methylglyoxal Rajwanshi et al.,
2016

6 Gly II Detoxification of methylglyoxal Saxena et al., 2011

AnnBj2 Upregulated expression of ABA-dependent
(RAB18) and ABA independent (DREB2B) genes

Ahmed et al., 2017

Rape seed (Brassica napus)

CodA Choline oxidase Huang et al., 2000

AtNHX1 Vacuolar Na+/H+ antiporter Zhang et al., 2001

YHem1 Accelerate endogenous 5-ALA metabolism Sun et al., 2015

LEA4-1 LEA4 protein Dalal et al., 2009

OsNASI 11 proteins upregulated including dehydrogenase,
GST, POD and Rubisco

Kong et al., 2011

DREB Expression of many stress-inducible genes Qamarunnisa et al.,
2015

BnSIP1-1 Regulates BnABI5, BnNAC485 or other
stress-related genes

Luo et al., 2017

PR10 Pathogenesis related Srivastava et al.,
2004

Chinese cabbage (Brassica campestris L. spp. Chinensis)

CodA Choline oxidase Wang et al., 2010

Cabbage (Brassica campestris)

LEA4-1 LEA protein Park et al., 2005

Cauliflower (B. oleracea var. botrytis)

APX, SOD Antioxidants

Napa cabbage (Brassica rapa ssp. Pekinensis)

BrGI Reduced expression of GI, enhanced salt tolerance Kim et al., 2016

ethylene responsive genes and were shown to be conserved in all
the reported ERFs (Yang et al., 2018). In recent years, ERF TFs
have been investigated in depth in various horticultural as well as
vegetable crops to enhance the breeding program as well as crop
improvement, with respect to various environmental stresses
in plants (Table 4). For example, transgenic overexpression
of tomato ERF84 (SlERF84) in Arabidopsis provided resistance
against salt and drought. Further, tomato ERFTF (Sl-ERF.B.3)
expression was found to be decreased/downregulated under
salinity stress and drought conditions, whereas it has been found
to be upregulated/increased following the exposure to cold, flood,
and heat response.

NAC Transcription Family
NAC (NAM, ATAF, and CUC) TFs have been considered
an important group of transcriptional activators that play an
important role in developmental programming as well as to
encounter challenges against various environmental constraints
(Tran et al., 2010; Puranik et al., 2012). The DNA binding
property of NAC TFs lie at their N-terminal end (Figure 3).
The expression of NAC proteins is highly dependent on the

promoter region as each and every NAC gene is characterized
by the presence of at least one unique cis-element type in their
promoter (Li et al., 2016). NAC TFs role in various abiotic
and biotic stress responses is well-documented (Table 4). For
example, salt-tolerance in tomato is well regulated by NAC1
transcription factor as the enhanced expression of SlNAC1 in
root, flower, seeds, and green fruits following the salt stress are
well known (Yang et al., 2011). Transcriptomic characterization
unraveled the importance of 10 NAC genes in tomato against
abiotic stresses (Song et al., 2015). In this context, Liu et al.
(2014) reported the relevance of tomato NAC transcription factor
SlSRN1 in mediating the positive defense response against biotic
stresses while regulating negatively to abiotic stress signaling (Liu
et al., 2014). Yang et al. (2011) reported the expression profiling of
tomato NAC1 (SlNAC1), an ATAF subfamily transcription factor
in different tissues (root, leaves, seeds, and fruit) under salt stress
(Yang et al., 2011). Likewise, potato NAC genes StNAC072 and
StNAC101 that have been reported as orthologs of known stress-
responsive Arabidopsis responsive to dehydration 26 (RD26)
were found to play a crucial role in mitigating abiotic stress
response (Singh et al., 2013). Wei et al. (2016) performed the
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TABLE 4 | Transcriptional regulation and their mode of action in vegetable crops for salt stress tolerance.

S. No. Transcription Factor/Gene/Protein Vegetable Functional aspects References

1. JUNGBRUNNEN1 (JUB1), a NAC transcription
factor

Solanum lycopersicum
(tomato)

Overexpression of JUNGBRUNNEN1 (JUB1)
increases salinity tolerance in tomato

Alshareef et al., 2019

2. BZR/BES transcription factor S. lycopersicum
(tomato)

BRASSINAZOLE RESISTANT 1 (BZR1) and
BRI1-EMS-SUPPRESSOR 1 (BES1) homologs
in have potential role in salt tolerance. SlBZR1D
played positive role in salt stress tolerance

Jia et al., 2021

3. Wild tomato WRKY1, WRKY3, and WRKY72 S. chilense (wild
tomato)

Salinity stress tolerance Kashyap et al., 2020

4. Transgenic overexpression of tomato ERF84 in
Arabidopsis

Arabidopsis thaliana Salt and Drought Li Q. L. et al., 2018

5. Transgenic overexpression of tomato ERF1 S. lycopersicum Salt Stress Lu et al., 2011

6. Microarray analysis for salt-tolerant genes in wild
tomato uncovered putative 5ERFs in alleviating salt
stress

S. pimpinellifolium Salt stress tolerance Yang et al., 2018

7. ScbZIP and SlbZIP S. chilense (wild
tomato) and

S. lycopersicum

Salinity stress tolerance Zhu et al., 2018;
Kashyap et al., 2020

8. Tomato SRN1 (Solanum lycopersicum
stress-related NAC1) plasma membrane-localized
protein with transactivation activity in yeast

S. lycopersicum Positively regulates defense response against
biotic stress but negatively regulates abiotic
stress response

Liu et al., 2014

9. Tomato NAC35 S. lycopersicum Induced by drought stress, salt stress, bacterial
pathogen, and signaling molecules

Wang et al., 2016

10. Tomato SlAREB1, a bZIP transcription factor,
member of the ABA-responsive element binding
protein (AREB)/ABA-responsive element binding
factor (ABF) subfamily

S. lycopersicum Salt stress and Drought stress tolerance Orellana et al., 2010

11. Tomato NAC4 and NAC35 S. lycopersicum Salt, Drought tolerance Biotic stress Zhu et al., 2014; Wang
et al., 2016

12. ZFP179, a salt responsive gene encoding a
Cys2/His2 zinc finger protein

Oryza sativa Overexpression of ZFP179 provided salt
tolerance

Sun et al., 2010

13. BnaABF2, a bZIP transcription factor Brassica napus Salt tolerance in Transgenic Arabidopsis Zhao et al., 2016

14. Chili NAC46 Capsicum annum Salt tolerance in transgenic Arabidopsis Ma et al., 2021

15. Tomato DREB2 S. lycopersicum and
A. thaliana

Salt tolerance Hichri et al., 2016

16. Tomato ERF84, ERF5 S. lycopersicum Positive regulation for Salt and drought
tolerance; negative regulation for biotic stress

Pan et al., 2012; Li Q.
L. et al., 2018

17. Chenopodium WRKY Chenopodium quinoa Stress tolerance and development Yue et al., 2019

18. CsWRKY9, CsWRKY18, CsWRKY48 and
CsWRKY57

Cucumis sativus Heat and salt stress tolerance Ling et al., 2011; Chen
et al., 2020

19. Radish WRKY Raphanus sativus Abiotic Stress tolerance Karanja et al., 2017a

20. Carrot WRKY20 Daucus carota DcWRKY20 made interaction with DcMAPK1
and DcMAPK4 Abiotic and biotic stress
tolerance

Li et al., 2016

21. Tomato NAC1; NAC3 S. lycopersicum Salt stress tolerance; NAC3 suppressed by salt
stress

Yang et al., 2011; Han
et al., 2012, 2014

22. Illumina RNA-seq transcriptomic studies of root,
stem and leaves in Chinese cabbage

Brassica rapa ssp.
pekinensis

Abiotic and biotic stress tolerance Tang et al., 2014

23. Carrot WRKYs in hormonal regulation and
mechanical injuries

Daucus carota Hormone and mechanical injuries Nan and Gao, 2019

24. Transcriptomic studies of sweet potato under salt
stress

Ipomoea batatas Salt stress tolerance Qin et al., 2020

25. Genome-wide identification and characterization of
tomato WRKYs under drought, salt and biotic
stress

S. lycopersicum Drought, Salt, and Biotic stress Huang et al., 2012

26. Genome-wide identification and characterization of
WRKYs in wild potato

S. commersonii and
S. chacoense

ScWRKY045 as multiple stress-responsive
regulator

Villano et al., 2020

27. Identification of biotic-stress responsive WRKY from
Brassica oleracea var. italica

B. oleracea var. italica Increased expression of BoWRKy6 against
biotic stress

Jiang et al., 2016

(Continued)
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TABLE 4 | (Continued)

S. No. Transcription Factor/Gene/Protein Vegetable Functional aspects References

28. Genome-wide characterization of potato WRKYs
and expression analysis of potato 22 WRKYs under
different stresses

S. tuberosum Increased upregulation of StWRKY01 and
StWRKY39 under different abiotic stresses.
StWRKY58 had highest expression profile
under drought and salt stress

Zhang et al., 2017

29. Genome-wide identification and characterization of
WRKYs in brinjal and Turkey berry

S. melongena L. S.
torvum Sw.)

Biotic stress response Yang et al., 2015

30 Tomato SR/CAMTA transcription factors SlSR1 and
SlSR3L

S. lycopersicum Negatively regulate disease resistance
response and SlSR1L positively modulates
drought stress tolerance

Li et al., 2014

31 Radish NAC145 Raphanus sativus Salt, heat and drought stresses Karanja et al., 2017b

32 Melon NAC14 Cucumis melo Overexpression of CmNAC14 increased the
sensitivity of transgenic Arabidopsis lines to salt
stress

Wei et al., 2016

33. Potato NAC proteins StNAC072 and StNAC101;
StNAC2

S. tuberosum StNAC072 and StNAC101 are orthologs of
known stress-responsive Arabidopsis
RESPONSIVE TO DEHYDRATION 26 (RD26)
involved in abiotic stress tolerance;
Overexpression of StNAC2 in transgenic potato
increased salt tolerance

Singh et al., 2013; Xu
et al., 2014

34. Watermelon WRKY ClWRKYs Citrullus lanatus Growth, Development, Biotic and Abiotic stress
response

Yang et al., 2018

35. Wild turnip WRKY (BsWRKYs) Brassica rapa Biotic and abiotic stress response Kayum et al., 2015

36. BjABR1, an AP2/ERF superfamily gene, from tuber
mustard

Brassica juncea var.
tumida Tsen et Lee

Abscisic acid and abiotic stress responses Xiang et al., 2018

37. Arabidopsis NAC2 A. thaliana Stress response and lateral root development He et al., 2005

38. Comparative transcriptome and proteome analysis
of salt-tolerant and salt-sensitive genotypes of
sweet potato and expression profiling of IbNAC07

Ipomoea batatas Salinity stress tolerance Meng et al., 2020

39. Genome wide characterization of WRKY genes in
summer squash

Cucurbita pepo Water and salt stress tolerance Bankaji et al., 2019

40. Genome-Wide Identification of AP2/ERF
transcription Factors in cauliflower

Brassica oleracea L.
var. botrytis

Salt and drought stress tolerance Li et al., 2017

41 Genome wide characterization of NAC family in
celery and further transcriptomic characterization
under salt stress AgNAC47 and AgNAC63 were
key player

Apium graveolens Heat, salinity, cold stress Duan et al., 2020

42 Genome-wide characterization of
homeobox-leucine zipper gene family in tomato
(Solanum lycopersicum)

S. lycopersicum Functional analysis of SlHDZ34 (III sub-family
member)under salinity stress revealed salt
stress tolerance

Hong et al., 2021

43 SlMYB02, a R2R3-type MYB transcription factor S. lycopersicum Salt tolerance Zhang et al., 2020

44. CabZIP25 Capsicum annum Salt tolerance Gai et al., 2021

45. Sweet potato bZIP IbbZIP1; IbABF4 A. thaliana Transgenic overexpression of IbbZIP1 in
Arabidopsis provided salt tolerance; IbABF4
imparted multiple stress tolerance

Wang et al., 2019

46. Tomato bZIP transcription factor SlAREB S. lycopersicum Salt tolerance Hsieh et al., 2010

47. SlbZIP38 tomato bZIP transcription factor S. lycopersicum Negative regulator of drought and Salt Stress
Tolerance

Pan et al., 2017

48. SlbHLH22 a Basic Helix-Loop-Helix (bHLH)
transcription factor in tomato

S. lycopersicum Transgenic over expression imparted high
tolerance to both salinity and drought

Waseem et al., 2019

49. AtMYB20 Arabidopsis R2R3-MYB transcription
factor

A. thaliana Negatively regulated type 2C serine/threonine
protein phosphatases to positively regulate salt
tolerance

Xu et al., 2014

50. SlMYB102, R2R3-type MYB gene S. lycopersicum Transgenic overexpression provided salt
tolerance

Zhang et al., 2020

genome-wide characterization of NAC transcription factor family
in melon (Cucumis melo L.) and evaluated their expression
profile during salt stress. Further, transgenic overexpression of

CmNAC14 in Arabidopsis resulted in increased salt-tolerance
(Wei et al., 2016). Karanja et al. (2017b) reported the tissue-
specific expression profiling of radish NAC TFs and reported
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the positive regulation of RsNAC023 and RsNAC080 toward all
types to abiotic stresses. Further, RsNAC145 had much more
active expression profile under salt, heat, and drought stresses
when compared with other genes that were expressed under
different abiotic stresses (Karanja et al., 2017b). Li et al. (2016)
investigated and characterized the list of putative NAC TFs
in water melon (Citruluslanatus) across the genome and also
checked the expression profile and potential function of several
NAC TFs in different stresses. Overall, transgene overexpression
of IbNAC7 in Arabidopsis provided salt tolerance. Recently, Duan
et al. (2020) provided the genome-wide characterization of NAC
gene family in leafy vegetable Apium graveolens and studied the
characterized WRKYs for their stress-tolerance attribute. It was
found that a total 111 NAC member were present based on
genomic studies. Further, transcriptomic characterization under
various abiotic stresses uncovered the AgNAC63 (ortholog of
ANAC072/RD26 role in mitigating salt, cold, and heat stresses).
However, the study reported tissue-specific higher expression
profiles AgNAC63 and AgNAC47 in leaves under the different
treatments (Duan et al., 2020).

Basic Leucine Zipper
The basic leucine (Leu) zipper (bZIP) family also includes one
of the most important group of transcriptional activator against
abiotic and biotic stress response (Pan et al., 2017). bZIP family
also plays an essential role in growth and development of plants
(Sornaraj et al., 2016). The bZIP name was based on the presence
of the bZIP domain. The bZIP domain is characterized by
some specific structural features that is located on an alpha-
helix. It has been reported that the first 18 amino acid residues
constitute the basic group followed by an invariant N-x7-R/K-
x9 motifs for nuclear localization and sequence-specific DNA
binding. However, for the second part, the Leu zipper region
composed of several heptad repeats of Leu amino acid or other
bulky amino acids, such as isoleucine, valine, phenyl nine,
tryptophan, or methionine, positioned exactly nine amino acids
toward the C-terminus, creating an amphipathic helix (Jakoby
et al., 2002; Nijhawan et al., 2008). It has been reported that
in bZIP transcriptional proteins, apart from the bZIP domain,
some other transcriptional active domains are found and play
an essential role in bZIP functioning. The most common site
that function as transcriptional activator include phosphorylation
site [R/KxxS/T (Furihata et al., 2006; Liao et al., 2008)] and
a string of glutamine rich motif. The basic part of the Leu
zipper interact with ACGT core region of the B-DNA sequences,
particularly, at A-box (TACGTA), G-box (CACGTG), and C-box
(GACGTC) (Izawa et al., 1993; Foster et al., 1994). In fact, during
the DNA–protein interaction of bZIP proteins with DNA motifs,
the half N-terminal of the bZIP domain interacts with DNA
major grove region, whereas the other C-terminal end of the Leu
zipper constitutes dimer formation for a coiled superimposed
structure, defined as zipper superimposed coiled structure, the
so-called zipper (Landschulz et al., 1988; Ellenberger et al.,
1992). bZIP proteins also play an essential role in imparting
tolerance against several abiotic as well as biotic stresses (Table 4).
For example, Gai et al. (2021) characterize the list of different
bZIP TFs in pepper and reported the relevance of CabZIP25 in

imparting salt tolerance as overexpression done in transgenic
Arabidopsis. Wang et al. (2018) identified the list of 54 and 50
bZIP proteins from whole-genome sequences of Vigna radiata
and Vigna angularis, respectively.

GRAFTING STRATEGIES IN VEGETABLE
CROPS FOR SALT STRESS TOLERANCE

Improving the productivity of vegetable crops is a challenge
under salt-affected soil or water. Hence, increasing salt tolerance
in vegetable crops will have a greater impact in nutritional and
economic security, particularly of (semi) arid regions, where
salinity in soil and water are widespread (Singh et al., 2020).
Traditional breeding programs have been attempted to improve
salt tolerance in crop plants (Borsani et al., 2003), but the
commercial success is limited due to the trait’s complexity.
Currently, major efforts are being directed toward genetic
transformation in plants to increase their tolerance, and despite
the trait’s complexity, the transfer of a single gene or a few
genes has resulted in claims of improved salt tolerance, such
as the expression of genes involved in the control of Na+
transport (Gaxiola et al., 2001). But, the genetically complicated
mechanisms of abiotic stress tolerance, as well as the possibility
for adverse side effects make this a challenging task (Flowers,
2004). However, unless a full proof practical and faster breeding
tool comes in vogue, a well-proven fast and eco-friendly
technique “vegetable grafting” can be deployed to increase
tolerance to stresses in vegetables. Vegetable grafting, in fact, has
emerged as an efficient tool to sustainably increase vigor and yield
of commercial cultivars under challenged growth environment by
mechanically attaching with resistant root genotypes.

Grafting Alleviates Salt Stress
Salinity disturbs dry mass partitioning between vegetative
and reproductive organs, whereas grafted plants exhibited less
alteration (Parthasarathi et al., 2021). In grafting, some rootstocks
may have better performance than the others, though their
response may change depending on level of salt concentration
in the growth medium (Singh et al., 2020; Bayoumi et al.,
2021). Numerous reports have demonstrated the ameliorative
response of grafting to salinity stress in cucurbitaceous crops
(e.g., melon, watermelon, and cucumber) involving the Cucurbita
interspecific hybrid rootstocks (Goreta et al., 2008; Rouphael
et al., 2012). The agronomic performance of pepper cv. “Adige”
under natural salinity condition was clearly evident with 75%
higher yield and with 31% lesser fruit damage (blossom end
rot) when it was grafted onto a salt-tolerant accession “A 25” as
rootstock in comparison with non-grafted control plants (Penella
et al., 2016). Eggplant (“SuqiQie”) grafting onto the rootstock of
wild eggplant (Solanum torvum cv. “Torvum vigor”) provided
salinity tolerance by minimizing the yield reduction under saline
stress (Wei et al., 2009). In contrary, Chen et al. (2003) found
that scion genotypes had a significant impact on the growth of
grafted tomato plants, regardless of the salinity of the growing
environment, but rootstock had no impact.
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FIGURE 3 | Hypothetical models showing the DNA binding and/or nucleic acid binding transcription factor activity of NAC proteins. (A) The structure of NAC
domain. (B) Structure of NAC binding DNA consensus sequences. (C) DNA–protein interaction of NAC proteins with relevant DNA sequences to fine tune the gene
regulatory aspects.

Mechanism of Salt Tolerance in Grafted
Plants
Grafting is a reciprocal integrative process; the salt tolerance
of grafted plants is influenced by both scion and rootstock
(Etehadnia et al., 2008). The positive response of grafting can
be attributed to more vigorous and robust root systems, greater
efficiency of roots for water and nutrient uptake with efficiency
to exclude salt-ions, higher photosynthesis, and better oxidative
defense system, hormonal regulations, and osmotic adjustment
of the grafted plants as compared with the non-grafted plants
(Amaro et al., 2014; Rouphael et al., 2017; Singh et al., 2020).

Root Characteristics
Root, besides providing physical support and anchor to the
plants, plays a crucial role in water and ion uptake and
their supply to aerial part that help regulate various plant
processes (Kumar et al., 2017). However, the alteration in root
characteristics is expected to occur since roots being the foremost
plant organ exposed to saline growth medium (Singh et al.,
2020), consequently the subsequent effects on water and mineral
uptake (Rouphael et al., 2017). The numerous reports claim
that grafting onto genetically strong root system can effectively

mitigate the effect of salinity on the performance of salt-sensitive
scion cultivars (Colla et al., 2013); hence it prompts the emphasis
of selecting the vigorous root stock for increasing salt tolerance
(Colla et al., 2013; Singh et al., 2020). Salinity depressed shoot
and root parameters, but grafted plants of tomato onto potato
rootstocks were able to avoid the changes in their growths with
balanced partitioning between vegetative and reproductive dry
masses (Parthasarathi et al., 2021). Furthermore, the tolerance
ability of grafting provided by the rootstocks is often associated
with the root morphological characteristics to exclude Na+
and/or Cl− under saline medium.

Regulation of Salt and Mineral Ions
Grafted plants tend to restrain Na+ and Cl− ions in their
root tissues, preventing them from being translocated to the
shoots and leaves in high concentrations. The diverse agronomic
responses of grafted plants to salinity in numerous studies were
resulted by the differential abilities of root genotypes to regulate
the uptake and/or translocation of ions of the salts, and of
nutrients, due to their competitive interactions (Rouphael et al.,
2017). The ability of rootstocks to minimize toxicity of Na+
and/or Cl− by exclusion and/or reduction of Cl− absorption by
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the roots, as well as the replacement or substitution of K+ by
total Na+ in the foliage has been related to the enhancement
of salt tolerance by grafting (Martinez-Rodriguez et al., 2008).
In pepper, salt-tolerant wild pepper rootstocks “ECU-973”
(Capsicum chinense) and “BOL-58” (Capsicum baccatum var.
pendulum) provided salinity tolerance in pepper (“Adige”) plants
by controlling Na+ and Cl− ions accumulation in shoots (Penella
et al., 2015). In spite of maintaining better control over Na+
and Cl− accumulation in their shoots, grafted plants were able
to maintain higher ratio of K+/Na+ in grafted cucumber on
pumpkin rootstock (Usanmaz and Abak, 2019), and higher K+
and Ca++ in grafted eggplant (Talhouni et al., 2019). Salinity
tolerance in a salt-sensitive cucumber (“Jinchun No. 2”) was
enhanced by grafting onto a salt-tolerant pumpkin rootstock
(“Chaojiquanwang”); this tolerance mechanism shows the better
ability of pumpkin rootstock to exclude Na+, and thus lesser
amount of Na+ ions (−69%) reaches the cucumber shoots
(Huang et al., 2013).

Physio-Biochemical Alterations
The tolerance response of grafting on vigorous rootstock
with efficiency to control Na+ ion accumulation in shoots
has been associated with the efficiency of rootstocks to
modulate water uptake by roots and losses by transpiration.
Grafting onto some rootstock was useful to maintain better
leaf water status than the others. Grafting tomato (“Ikram”)
on potato rootstock (“Charlotte”) was found promising to
increase salinity tolerance of 5.0 dS/m in grafted tomato with
enhanced water productivity (+56.8%) (Parthasarathi et al.,
2021). Grafting onto certain rootstocks was able to mitigate
salt induced photoinhibition of photosynthesis and consequently
growth of grafted plants (Liu Z. et al., 2013). As a coping
mechanism of oxidative damage, plants activate enzymatic
(i.e., ascorbate peroxidase, catalase, superoxide dismutase,
monodehydroascorbate reductase, dehydro ascorbate reductase,
and glutathione reductase) as well as non-enzymatic (i.e., reduced
glutathione, reduced ascorbate, carotenoids, and tocopherols)
antioxidant systems (Rouphael et al., 2017; Singh et al.,
2020). Grafting studies demonstrated that some of the graft
combinations have a better ability to mitigate salinity stress
by regulating antioxidative defense system than the others.
Salt-stressed eggplants experienced oxidative stress (higher
malondialdehyde, MDA), whereas grafted eggplants were capable
of mitigating ROS induced by oxidative stress as a result of
increased level of antioxidant enzymes (SOD, CAT, and APX)
(Talhouni et al., 2019). Polyamines increase under salinity stress
and hence increases plants tolerance; the increased level of
polyamines (free, soluble, and conjugated polyamines) provided
better tolerance to salinity (i.e., excess calcium nitrate) in grafted
seedlings than the non-grafted tomatoes (Wei et al., 2009).
Stegemann and Bock (2009) reported that plant grafting can
result in the exchange of genetic information via either large
DNA pieces or entire plastid genomes. However, gene transfer
is restricted to the contact zone between scion and rootstock.
Thus, the use of rootstock cannot change the sensitivity of
scion itself to salt stress. Working with model plant Arabidopsis,

Shi et al. (2002) reported that SOS1 (salt excessively sensitive)
gene is expected to play a role in the loading of Na+ into the
xylem tracheids from xylem parenchyma cells. Further reports
suggest that in Arabidopsis, high affinity K+ transporters (HKTs)
were involved in the removal of Na+ from the xylem (Rus et al.,
2001, 2006; Sunarpi et al., 2005; Davenport et al., 2007), and
hence the leaves were safe from Na+ ion toxicity. Furthermore,
it was recently discovered that expressing the Na+ transporter
HKT1;1 in the mature root stele of Arabidopsis thaliana utilizing
an enhancer trap expression system reduced Na+ build up in the
shoot by 37–64%, and hence increased salinity tolerance (Møller
et al., 2009). Using grafting experiments, it was discovered that
HKT1;1 expressed in the root rather than the shoot regulates Na+
accumulation in Arabidopsis shoots (Rus et al., 2006), implying
that the SOS1 analogous gene and HKTs are likely involved in
Na+ transport in the pumpkin rootstock, allowing it to limit Na+
transport from the root to the shoot.

Grafting onto some rootstocks has shown to also increase
scion’s tolerance to salinity by modulating the hormonal balance
namely of ABA, cytokinins, and polyamines (Rouphael et al.,
2017). The reduced transpiration with maintained leaf water
relations by elevated level of shoot ABA concentration under
salt stress have been reported (Singh et al., 2020). The enhanced
salinity tolerance in tomato was related to increased level of
ABA content in scion shoots, irrespective of the rootstocks
raised under saline condition (Chen et al., 2003). Likewise,
increased root-to-shoot cytokine transport by rootstock that
overexpressed cytokinin biosynthesis genes (e.g., isopentenyl
transferase) was associated with the increased salinity tolerance
in tomato presented by maintained stomatal conductance and
photosystem II efficiency accompanied with lesser accumulation
of toxic ions, consequently producing higher shoot and fruit
growths (Ghanem et al., 2011).

CONCLUSION

Abiotic stresses like salt stress which persists throughout plant’s
whole life cycle negatively affects plant yield and nutritional
quality. To ensure vegetable production under salt stress many
transgenes have been transferred to the vegetables. Transforming
vegetables are the one of the most reliable technique to cope salt
stress as most of the vegetable gene pool lack novel gene for salt
stress in its gene pool. To manage salt stress at molecular level,
the native TFs in the vegetable crops are also being regulated to
sustain yield and quality under salt stress. Grafting has shown
potential to alleviate salinity stress (water or soil) on the selected
vigorous and tolerant rootstocks. Certain wild accessions which
possess resistance to salinity but are difficult to introgress these
traits into commercial cultivars through traditional breeding
tools, can be utilized as rootstock to increase grafted scion’s
efficiency or tolerance to salinity. Plant biologists around the
world are grappling with the dilemma of exponential population
growth and rising food demand. Abiotic stress, such as salt, is a
major threat to agricultural productivity and has been linked to
worsening food security trends since the beginning. Soil salinity
and degradation of soil quality are linked to lower agricultural
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yields. The production of salinity-tolerant crops is the only way
to ensure global food. The actual yield produced by saline soils is
more than half of what was originally predicted for normal soils.
Organic matter and biodiversity are quite low in these soils.
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The effects of the climate change including an increase in the average global
temperatures, and abnormal weather events such as frequent and severe heatwaves are
emerging as a worldwide ecological concern due to their impacts on plant vegetation
and crop productivity. In this review, the molecular processes of plants in response
to heat stress—from the sensing of heat stress, the subsequent molecular cascades
associated with the activation of heat shock factors and their primary targets (heat
shock proteins), to the cellular responses—have been summarized with an emphasis
on the classification and functions of heat shock proteins. Vegetables contain many
essential vitamins, minerals, antioxidants, and fibers that provide many critical health
benefits to humans. The adverse effects of heat stress on vegetable growth can be
alleviated by developing vegetable crops with enhanced thermotolerance with the aid of
various genetic tools. To achieve this goal, a solid understanding of the molecular and/or
cellular mechanisms underlying various responses of vegetables to high temperature is
imperative. Therefore, efforts to identify heat stress-responsive genes including those
that code for heat shock factors and heat shock proteins, their functional roles in
vegetable crops, and also their application to developing vegetables tolerant to heat
stress are discussed.

Keywords: global warming, heat shock factor, heat shock protein, heat stress, thermotolerance, vegetables

INTRODUCTION

Vegetable crops mainly comprise sessile organisms. They routinely experience detrimental
conditions including biotic and abiotic stresses in natural fields. The current climate changes
including frequent extreme temperatures, strong storms, heavy rainfall, and harsh droughts directly
threaten normal vegetable development during the entire period of vegetative and reproductive
growth (Driedonks et al., 2016; Hansen et al., 2016; Bhutia et al., 2018). Global warming is one
of the main issues related to global climate change and is caused by increases of greenhouse gases
such as CO2, CH4, N2O, and hydrofluorocarbons (HFCs) that have been produced by urbanization
and industrialization (Bhutia et al., 2018; Zandalinas et al., 2021). According to climate models
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(Driedonks et al., 2016) and the report from the
Intergovernmental Panel on Climate Change (IPCC1), the
world mean temperature will rise by 0.5 to 4◦C in the twenty-
first century (Hansen et al., 2016; Zandalinas et al., 2021).
The changes in weather/climatic events such as temperature
and rainfall are found to reduce the yield of crops. Statistical
evidence shows that the temperature affects rice production
in Africa. It was also found that irrigated rice yields in West
Africa in the dry season would decrease by∼45% due to reduced
photosynthesis at extremely high temperatures (van Oort and
Zwart, 2018). This indicates that the elevated temperature
brought by climate change will result in significant losses in
crop yields and production (Ortiz et al., 2008; Hansen et al.,
2016). Plants have evolved to acquire the ability to induce
defense mechanisms against the adverse effects of high ambient
temperature on their growth (Ahuja et al., 2010; Bourgine and
Guihur, 2021; Tian et al., 2021). The tolerance of plants to
high ambient temperatures with no prior heat experience is
known as basal thermotolerance (BTT), whereas the ability to
overcome extremely high temperatures (HT) with pre-exposure
to mild HT (i.e., sub-lethal temperatures) is known as acquired
thermotolerance (ATT) (Ahuja et al., 2010; Bourgine and Guihur,
2021; Tian et al., 2021). The defense mechanisms against elevated
temperatures in plants are tightly associated with rapid changes
in gene expression in both BTT and ATT (Morimoto, 1998;
Feder and Hofmann, 1999). Indeed, high ambient temperatures
trigger a drastic cellular remodeling at the physiological and
molecular levels in plants to maintain homeostasis, thereby
allowing them to survive under adverse HT (Wang et al., 2004;
Ohama et al., 2017; Tian et al., 2021). Within these mechanisms,
how plants recognize HT and relay HT-induced signaling
downstream to modulate transcription is a central question
that plant researchers have been pondering for a long time.
It has recently been reported that Ca2+ plays important roles
in the perception, response, and adaptation of plants to heat
stress (HS) (Mittler et al., 2012; Ohama et al., 2017; Lee and Seo,
2021). The alteration of fluidity in the plasma membrane (PM)
in plants in response to HS can open cyclic nucleotide-gated
calcium channels (CNGCs) controlled by nucleotide cyclases,
thereby having Ca2+ move into the cytosol from the PM (Saidi
et al., 2009; Finka et al., 2012; Gao et al., 2012; Mittler et al.,
2012; Ohama et al., 2017). The Ca2+ ions are associated with
protein calmodulin 3 (CaM3) during HS and the complex of
Ca2+-CaM3 interacts with calcium/calmodulin-binding protein
kinase 3 (CBK3) and phosphatase PP7 to transduce cytosol heat-
stress response (HSR) signals into the nucleus by modulating
phosphorytion and dephosphorylation of HSFA1, respectively
(Liu et al., 2007, 2008; Mittler et al., 2012; Ohama et al., 2017).
Also, the increased levels of Inositol-1,4,5-triphosphate (IP3)
via the phosophoinositide-signaling pathway result in the influx
of Ca2+ into cytoplasm from intracellular Ca2+ pools such as
the endoplasmic reticulum (ER) and vacuole during HS (Zhang
et al., 2009; Zhou et al., 2009; Mittler et al., 2012; Ohama et al.,
2017). In addition, reactive oxygen species (ROS) produced
by respiratory burst oxidase homolog B (RbohB), RbohD, and
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NADPH oxidases are other candidate sensors of HS (Königshofer
et al., 2008; Miller et al., 2009; Suzuki et al., 2012). It has also
been demonstrated that the ROS causes accumulation of nitric
oxide (NO), which induces the activation of CaM3. The signaling
cascade of CaM3 ultimately influences the association of DNA
and heat shock factors (HSFs) in nucleus via the potential
involvement of HSFA1 activity (Xuan et al., 2010; Wang et al.,
2014; Ohama et al., 2017). Although Ca2+ and ROS are evaluated
as predicted signal transducers during HS, the full activation of
HSR in response of plants to HT cannot be exclusively explained
by them. This indicates that there may be other signal transducers
and multiple layers of signaling pathways including salicylic acid
(SA), ethylene (ET), abscisic acid (ABA), and jasmonic acid (JA)
signals (Fujita et al., 2006; Frank et al., 2009; Zhou et al., 2009).

The effect of HS on plants leads to diverse changes in
plant cells including the state of cellular membranes, structural
alterations in DNA and RNA species, and conformational
changes of proteins, cytoskeleton structures, and metabolites
(Ruelland and Zachowski, 2010; Mittler et al., 2012). For
instance, high ambient temperature influences fluidity of cellular
membranes containing primarily phospholipids, proteins, and
carbohydrates with the modification of membrane rigidification
(Ruelland and Zachowski, 2010). Also, high ambient temperature
affects the accessibility of nucleic acids, and it has been
determined that elevated temperatures induce the dissociation of
the histone protein H2A.Z from nucleosomes, which promotes
the chromatin accessibility to RNA polymerase II for the
expression of genes for heat-shock proteins (HSP) and HSF,
thus showing highly inductive and responsive gene expression
dynamics (Kumar and Wigge, 2010; Zhang H. et al., 2021). RNA
secondary structures can be affected by HS. It has been revealed
that HT leads to a change in translation rate, resulting from
the altered association of mRNAs with ribosomes (Matsuura
et al., 2010). Since structured nucleic acid molecules melt as the
temperature increases, it can be easily conceived that temperature
changes affect the conformation of regulatory RNAs (Narberhaus
et al., 2006). Indeed, the RNA secondary structure of internal
ribosome entry sites (IRESs), which are translation regulatory
elements of mRNAs, can be modified by HS to initiate translation
in a cap-independent manner (Dinkova et al., 2005; Ruelland
and Zachowski, 2010). Conversely, RNA secondary structures
that mask ribosomal binding sites at optimal temperature
can be modified by HS, allowing the conversion of non-
functional RNA to the competent RNA species with ribosomal
recruitment (Narberhaus et al., 2006). Heat stress also influences
the conformational changes of proteins that act as signaling
effectors in response to HT in plants (Ruelland and Zachowski,
2010). In Arabidopsis, the oligomerization of thioredoxin and/or
thioredoxin-like proteins is induced by HS, causing concomitant
functional switching from a disulfide reductase and foldase
chaperone to a holdase chaperone (Lee et al., 2009; Park et al.,
2009). It has also been reported that the elevated temperatures
from 27 to 42◦C in tobacco, and from 20 to 42◦C in Arabidopsis
cause severe damage to cytoskeletones including microtubules
(Smertenko et al., 1997; Müller et al., 2007). Furthermore,
tobacco BY-2 cells exposed to heat (50◦C, for 5 min) exhibited
depolymerization of actin microfilaments (Malerba et al., 2010),
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and such a defective phenotype was also observed in Arabidopsis
roots (Müller et al., 2007). Based on a report demonstrating that
heat triggers the accumulation of HSP70 and the heat-activated
MAP kinase (HAMK), both HSP70 and HAMK are likely to
be necessary to disassemble the cytoskeleton under HS (Suri
and Dhindsa, 2008). Altered enzymatic activities such as the
catalytic rate, and the un- or mis-folding of enzymes can also be
affected by HS, resulting in the imbalance of cellular metabolism
in plants (McClung and Davis, 2010; Ruelland and Zachowski,
2010; Suzuki et al., 2012). The steady-state efflux and influx of
metabolites such as sucrose, prolines, glycine-betaine, ascorbate,
glutathione, and ROS play an important role in heat response
and tolerance (Wang et al., 2004; Al-Whaibi, 2011; Mittler et al.,
2012). Reactive oxygen species were initially regarded as a toxic

by-product of aerobic metabolism. However, it is now apparent
that ROS such as superoxide and hydrogen peroxide are able to
function as signal molecules to induce the HSR (Miller et al.,
2007, 2009; McClung and Davis, 2010; Ruelland and Zachowski,
2010; Suzuki et al., 2012). In particular, the levels of ROS are
influenced by the participation of ROS-generating enzymes in
plant response to HT (Königshofer et al., 2008). The acquisition
of plant heat tolerance is closely associated with the synthesis of
chaperone proteins and the levels of non-enzymatic antioxidants
in response to HT (Kotak et al., 2007; Wahid et al., 2007;
Frank et al., 2009; Rampino et al., 2009). Many reports have
been published showing that HS influences protein conformation
which can drive a protein to be denatured, aggregated, and
un- or mis-folded, thereby being directly recognized by several

FIGURE 1 | General molecular mechanism of heat shock protein production and transcriptional regulation in response to heat stress in plant cells.

Frontiers in Plant Science | www.frontiersin.org 3 April 2022 | Volume 13 | Article 83715291

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-837152 April 5, 2022 Time: 15:46 # 4

Kang et al. Heat Stress Responses in Vegetables

FIGURE 2 | Schematic representation of available domains in the five major
families of heat shock proteins. NTD (N-terminal domain), NBD (Nucleotide
binding domain), MD (Middle domain), CTD (C-terminal domain), SBD
(Substrate binding domain), ED (Equatorial domain), ID (Intermediate domain),
AD (Apical domain), and ACD (Alpha-crystallin domain) are shown as boxes
with different colors based on their functions. Numbers in parenthesis indicate
the molecular weight distribution of each HSP family.

HSPs (Yamada et al., 2007; Scharf et al., 2012; Ohama et al.,
2017). Notably, plant HSPs play a crucial role in conferring
plant tolerance to HS, and they help facilitate proper folding of
target proteins by hindering denaturation and aggregation of the
proteins as molecular chaperones (Ahuja et al., 2010; Jacob et al.,
2017). For instance, under normal temperature conditions, HSFs
regulate the HSR and form inactive multiprotein complexes with
HSPs. On the other hand, under HS, HSFs dissociate from the
complex and form phosphorylated trimers, thereby allowing their
nuclear translocation and binding to heat-shock element (HSE)
to induce transcription of target genes (Kotak et al., 2007; Ahuja
et al., 2010; Scharf et al., 2012; Jacob et al., 2017; Ohama et al.,
2017). Indeed, transcriptomic and proteomic analyses revealed
that the abrupt changes in gene expression in response to high
ambient temperatures enhance a selected regulatory response and
synthesis of proteins linked to HSPs, HSFs, and HSR (Al-Whaibi,
2011; Jacob et al., 2017; Zandalinas et al., 2021). However, the
players and their mode of action in heat perception, HS-signaling
pathways and HSR still remain elusive in vegetable crops.

In this review, we give an overview of the HSPs with focus
on vegetable crops. Heat shock proteins play an essential role in
the regulation of HSFs and subsequently, the expression of heat
responsive genes. Moreover, a better understanding of HSPs will
enable us to widen our knowledge of interconnected mechanisms
underlying the complex regulatory networks of HSFs and heat
responsive genes at the physiological and molecular levels during
the adaptation of plants against HS. We also discuss the potential
applications of biotechnology for efficient development of crops
with enhanced thermotolerance to cope with climate change.

HEAT SHOCK PROTEINS INVOLVED IN
HEAT STRESS

In nature, plants are often exposed to various kinds of abiotic
stresses including low or high temperature, deficiency or excess

of water, high salinity, heavy metals and ultraviolet radiation
(Rucińiska-Sobkowiak, 2010; Bita and Gerats, 2013; Osakabe
et al., 2013; He et al., 2018). Among these, HS has significant
effects on plant growth, metabolism, and productivity (Rodríguez
et al., 2015). HS causes protein misfolding and/or denaturation,
leading to protein aggregation in plant cells by interactions
between exposed hydrophobic amino acid residues of affected
proteins (Nakajima and Suzuki, 2013). In response to HS, plants
synthesize molecular chaperones including HSPs that recognize
hydrophobic amino acid residues of non-native proteins and
promote folding and refolding of denatured proteins (Figure 1).
They are also responsible for assembling of multi-protein
complexes, transporting, and sorting of proteins into correct
compartments, controlling cell cycle and signal-transduction
under various stress conditions. The different classes of HSPs
play complementary and sometimes overlapping roles in protein
stabilization under thermal stress. The HSPs are generally
grouped into five major families based on their molecular weight:
HSP100, 90, 70, 60 and the small HSPs (sHSPs) (Figure 2 and
Table 1).

Heat stress (HS) influences the alteration of membrane fluidity
in plasma membrane (PM) in planta and activates the cyclic
nucleotide-gated calcium channels (CNGCs), resulting in the
movement of Ca2+ into the cytoplasm from the apoplastic
space. The Ca2+ ions are associated with protein calmodulin
3 (CaM3) during HS and the Ca2+-CaM3 complex binds to
either calcium/calmodulin-binding protein kinase 3 (CBK3) or
phosphatase PP7 to transduce cytosol heat-stress response (HSR)
signals into the nucleus by modulating phosphorylation and
dephosphorylation of the heat shock transcription factors (HSFs),
respectively. The elevated levels of inositol-1,4,5-triphosphate
(IP3) via the phosophoinositide-signaling pathway (PLC) lead
to an influx of Ca2+ into the cytoplasm from the pool
of intracellular Ca2+ ions including the ER and vacuoles
in response to HS and induce the same CaM3 signaling
pathway. ROS are generated by respiratory burst oxidase
homolog B (RbohB) and D (RbohD) during HS. RbohB/D-
produced O2

− is converted into H2O2, which depolarizes
PM as well as inducing the ROS/Redox signaling network
which is involved in the activation of HSFs. Also, H2O2 is
possibly increased in plant cells due to metabolic imbalances
and the production of ROS, resulting in the accumulation of
nitric oxide (NO) and the activation of calcium-channels that
subsequently trigger the activity of CaM3 as illustrated in the
(Figure 1). Upon HS stimuli, HSP interacts with unfolded
and aggregated proteins, thereby releasing HSF monomer. Heat
shock factor monomers trimerize and bind to HSEs within
promoter regions of heat shock genes. Heat shock factors
undergo several post transcriptional modifications (PTMs) such
as phosphorylation, which regulate the transactivation capacity
of HSF. Under normal conditions, HSPs directly bind to HSF
and provide negative feedback required to deactivate HSF. HSP70
and HSP40 together function as ATP-driven machines that
prevent aggregation of misfolded polypeptides and participate in
protein refolding. When denatured or misfolded proteins form
aggregates, ClpB/HSP100 is crucial for protein disaggregation,
refolding or degradation by protease especially during HS.
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TABLE 1 | Five major families of heat shock proteins and their major function under heat stress conditions.

HSP family/
MW (kDa)

Subcellular
location

Major functions under heat stress
conditions

Major domain

HSP100/
100-104

Cytosol
Mitochondria
Chloroplasts

Disaggregation of proteins and involvement in
protein degradation (Mishra and Grover, 2016).

NTD (N-terminal domain)
NBD (Nucleotide binding domain)

MD (Middle domain)

HSP90/
80-94

Cytosol
ER

Nucleus
Mitochondria
Chloroplasts

Protein folding, signal transduction (most of the
substrates of HSP90s are kinases and

transcription factors) (Kadota and Shirasu,
2012).

NTD
MD

CTD (C-terminal domain)

HSP70/
68-75

Cytosol
ER

Mitochondria
Chloroplasts

Assisting folding and refolding of non-native
proteins to block protein degradation in the ER

and protein import and translocation (Shiber
and Ravid, 2014).

NBD
SBD (Substrate binding domain)

HSP60/
57-60

Mitochondria
Cytosol

ER
Nucleus

Chloroplasts

Assisting folding and refolding of unfolded
polypeptides in the mitochondrial matrix (Martin

et al., 1992; Caruso Bavisotto et al., 2020).

ED (Equatorial domain)
AD (Apical domain)

ID (Intermediate domain)

sHSPs/
15-42

Cytosol
ER

Mitochondria
Chloroplasts
Membrane

Preventing aggregation and refolding of
unfolded polypeptides (Waters and Vierling,

2020).

NTD
ACD (Alpha-crystallin domain)

CTD

Consequently, HSPs as chaperones play a pivotal role in
conferring thermotolerance in plants. The dashed line indicates
an unknown pathway.

Heat Shock Protein 100 Family
The caseinolytic proteinase/heat shock protein 100 (Clp/HSP100)
proteins are members of the AAA+ protein group (ATPases
associated with various cellular activities) that act in protein
disassembly and/or protein degradation using the energy from
adenosine triphosphate (ATP) hydrolysis (Sauer et al., 2004;
Burton and Baker, 2005; Gul et al., 2021). In contrast to the typical
molecular chaperones which function in protecting proteins from
misfolding and aggregation, the Clp/Hsp100 proteins play a
wide variety of functional roles in eliminating non-functional
proteins and/or assisting the reassembly of denatured proteins
from the aggregated protein complexes. As such, the Clp/Hsp100
proteins contribute to the maintenance of protein homeostasis
in cells (Schirmer et al., 1996; Latterich and Patel, 1998;
Agarwal et al., 2001; Mishra and Grover, 2019). The Clp/Hsp100
proteins consist of hexameric rings and the structural features
are determined by nucleotide binding domains (NBD), spacer
(linker) region, the middle domain (MD), N-terminal domain
(NTD) and C-terminal domain (CTD) among diverse living
organisms from prokaryotes to eukaryotes (Dougan et al.,
2003; Schlieker et al., 2005; Butler et al., 2006). On the basis
of the number of NBD domains, the Clp/Hsp100 family is
classified into two major subclasses (class I and class II). The
first class ClpA, ClpB, ClpC, and ClpD proteins that harbor
two nucleotide binding domains (called ATP-binding domains)
separated by spacers are clustered as large Clp proteins ranging
from molecular weights of 68 to 110 kDa (Wang et al., 2004),
whereas the second class including ClpM, ClpN, ClpX, and ClpY

proteins that possess one NBD are grouped based on their low
molecular weights ranging from 40 to 50 kDa (Wang et al., 2004;
Mogk et al., 2008; Mishra and Grover, 2016). It was initially
reported that the system of Clp ATPase proteins are able to
hydrolyze casein in vitro (Hwang et al., 1987; Katayama-Fujimura
et al., 1987). Later, further investigations on two-component
protease systems revealed that the complexes of ClpA regulatory
machine with an AAA+ ATPase module and a proteolytic
component ClpP (Schelin et al., 2002) together with Lon protease
complex serve as protein choppers for the degradation of toxic
protein aggregates in cells (Wang et al., 2007). Moreover, the
ClpAP complex recognizes target aggregated proteins via the
guidance of the ClpS adapter that assists ClpAP to specifically
bind and chop the aggregated proteins (Dougan et al., 2002). In
addition to this, ClpB was initially found in bacteria and yeast,
and it was later reported that plant HSPs were identified with high
molecular weights of 100–110 kDa (Schirmer et al., 1994). Since
plants harbor semi-autonomous organelles such as chloroplasts
and mitochondria, plant ClpBs are classified into three different
forms ClpB-C (cytoplasmic), ClpB-P (chloroplastic), and ClpB-
M (mitochondrial) (Mishra and Grover, 2014). Although ClpB
is considered to be a functional ortholog of ClpA with high
similarity between the two proteins (Gottesman et al., 1990;
Sanchez and Lindquist, 1990), it has been experimentally shown
that ClpB could not replace the function of ClpA in protein
degradation due to the lack of the LIV-GFL motif required for
the interaction with ClpP (Weibezahn et al., 2004; Zolkiewski,
2006; Tessarz et al., 2008). Moreover, it was demonstrated that
ClpB plays an essential role in the denaturing and/or renaturing
pathway to release the native proteins from the aggregates rather
than the degradation pathway as other Clps do. Of note, it has
been displayed that ClpB is induced by HS in contrast to other
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Clps (Singh et al., 2010; Kim et al., 2012), indicating that ClpB is
crucial for the protein renaturation/denaturation from aggregates
especially during HS. Interestingly, the possible mechanism for
assisting protein folding toward native and functional form
from aggregates would be collaborated with the Hsp70 member,
which is another ATP-dependent chaperone that is involved in
refolding of liberated proteins by ClpB/HSP100 (Glover and
Lindquist, 1998; Goloubinoff et al., 1999). However, when the
aggregated proteins are interacted with other Clps and the
peptidase (ClpP) system, the proteins move to the degradation
pathway (Wang et al., 2004). The cellular roles of ClpB have been
widely studied from prokaryotes to eukaryotes such as bacteria,
yeast, and plants (Lindquist, 1986; Vierling, 1991; Wang et al.,
2004). Remarkably, it has been determined that the fine-tuned
expression of ClpB genes within cells is required for normal
growth, development, and adaptation to environmental stresses
including cold, heat, drought, and high salt (Yang et al., 2006).
In particular, it has been shown that ClpB proteins are essential
for rendering thermotolerance to organisms in response to HS.
The loss-of-function mutant ofClpB in E. coli remarkably affected
cell viability in response to abrupt HT (50 ◦C) with a slow
growth rate at 44 ◦C (Squires et al., 1991). Also, ScHSP104 in
Saccharomyces cerevisiae is one of the ClpB genes involved in
acquiring thermotolerance: ScHSP104 deficient yeast cells grew
and died at the same rate as the wild-type cells did when
exposed directly to HT although the mutant cells could not
acquire tolerance to heat after a mild pre-heat treatment (Sanchez
and Lindquist, 1990). Plant ClpB/HSP100 proteins have been
evaluated in diverse plant species includingArabidopsis (Lee et al.,
2007), wheat (Campbell et al., 2001), soybean (Lee et al., 1994),
maize (Nieto-Sotelo et al., 1999; Young et al., 2001), and rice
(Agarwal et al., 2003). Analyses of ClpB/HSP100 proteins have
been also conducted in vegetable crops such as pea, tomato,
pepper, carrot, spinach, potato, banana, rapeseed, and mustard
greens in response to heat and cold stresses.

Heat Shock Protein 90 Family
Heat shock protein 90 (HSP90; known as GroEL in E. coli) is
one of the most abundant heat-related proteins expressed in
cells accounting for 1–2% of total protein levels (Taipale et al.,
2010). Heat shock protein 90 is a highly conserved molecular
chaperone involved in the assembly, maturation, stabilization
and activation of key signaling proteins including regulatory
kinases, steroid hormone receptors and transcription factors
in plant cells (Kadota and Shirasu, 2012; Chen et al., 2019).
Most plants have several isoforms of HSP90 classified by their
subcellular localization in the cytoplasm (HSP90.1), nucleus
(HSP90.4), chloroplast (HSP90.5), mitochondria (HSP90.6), and
endoplasmic reticulum (ER; HSP90.7) (Milioni and Hatzopoulos,
1997; Krishna and Gloor, 2001; Xu et al., 2012). HSP90 exists in
the form of a dimer consisting of three main structural domains:
NTD, which binds ATP; MD, which is important for ATP
hydrolysis and client protein binding; and CTD, which mediates
HSP90 dimerization and client protein binding. ATP binding
to the NTD and its hydrolysis induce conformational change
which is essential for chaperone activity (Krishna and Gloor,
2001; Pearl and Prodromou, 2006). HSP90 proteins play a major

role in assisting the proper folding of other proteins together
with HSP70s (Picard, 2002) by acting as molecular chaperones,
signaling for the cellular quality control, trafficking of other HSP
proteins (Pratt and Toft, 2003) and stabilizing proteins against
HS (Marcu et al., 2002; Wang R. et al., 2016). Also, HSP90
proteins along with their co-chaperone HSP70s contribute to
the maintenance of cellular protein homeostasis by inactivating
HSF during attenuation/recovery of HSR (Hahn et al., 2011).
In Arabidopsis, HSP90 and the co-chaperone SUPPRESSOR OF
G2 ALLELE SKP1 (SGT1) positively regulate plant growth by
stabilizing the auxin co-receptor F-box protein TIR1 under
higher ambient temperature conditions (Wang R. et al., 2016),
showing that HSP90 participates in plant growth control under
changing thermal conditions.

Heat Shock Protein 70 Family
The heat shock protein 70 (HSP70) family (known as DnaK in
E. coli), one of the most ubiquitous classes of chaperones, is
highly conserved in all organisms, and also found in different
cellular compartments such as the cytosol, chloroplasts, ER and
mitochondria (Amir-Shapira et al., 1990; Radons, 2016; Usman
et al., 2017). The HSP70 family is the central hub of the protein
homeostasis network that prevents protein aggregation and uses
the energy of ATP hydrolysis to solubilize, translocate and
mediate the proper refolding and unfolding of proteins (Ben-
Zvi et al., 2004; Imamoglu et al., 2020). Heat shock protein 70
contains two major domains: one is the N-terminal nucleotide
binding domain for hydrolyzing ATP to ADP (Adenosine
diphosphate) and the other is the C-terminal substrate binding
domain (SBD) (Mayer, 2010). Under abiotic stress conditions
such as HS, HSP70 molecular chaperones also function as ATP-
driven unfolding/refolding machines that are capable of shifting
substrate polypeptides between various folding states together
with their co-chaperones such as HSP40 (Lee et al., 2007; Shiber
and Ravid, 2014; Palakolanu et al., 2016). The significance of
HSP70 regarding functional roles against HS was highlighted
by transgenic plants overexpressing AtHSP70-1 and NtHSP70-1
(Sung and Guy, 2003; Cazalé et al., 2009; Cho and Choi, 2009). In
addition, numerous experimental results have shown that HSP70
is involved in thermotolerance in various crops such as rice (Jung
et al., 2013), tomato (Hahn et al., 2011), and pepper (Guo et al.,
2014) under HS conditions.

Heat Shock Protein 60 Family
The heat shock protein 60 (HSP60) family (also known as
chaperonins, Cpn, and GroEL in E. coli) typically functions
inside the mitochondria together with the co-chaperone HSP10
to maintain protein homeostasis (Caruso Bavisotto et al., 2020).
However, they have also been found in other subcellular
compartments including the ER, cytosol, chloroplasts and
nucleus, and participate in folding and aggregation of many
proteins (Meng et al., 2018). Chaperonins are generally composed
of two rings, stacked back to back, consisting of subunits of
∼60 kDa molecular weight (Nguyen et al., 2021). Each oligomer
has three domains (1) the equatorial domain (ED), which has
the ATP-biding site, (2) the apical domain (AD), which hosts
client proteins and (3) the intermediate domain (ID), which
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transduces signals from the equatorial domain (Pipaón et al.,
2021). When signals are transmitted to the ID from ATP
binding and hydrolysis, conformational changes occur in the
AD corresponding to the open and closed forms (Xu et al.,
1997). Heat shock protein 60 proteins bind several types of
proteins before folding to block their aggregation (Parsell and
Lindquist, 1993) and stromal chaperones (Hsp70 and Hsp60)
are involved in functional conformation of newly transferred
proteins to the chloroplast (Jackson-Constan et al., 2001). Most
of the HSP60 family proteins are heat inducible and also required
for preventing protein aggregation, and mediating folding and
refolding in mitochondria under HS conditions (Martin et al.,
1992; Sharma et al., 2006).

Small Heat Shock Protein Family
Small heat shock proteins (sHSPs), which have a low molecular
mass of 15-42 kDa, are very diverse in plants (Wang et al.,
2004; Basha et al., 2006; Morrow and Tanguay, 2012). Small
heat shock proteins have a common alpha-crystallin domain
(ACD) containing 80–100 amino acid residues on the C-terminal
region, and contribute to degradation of proteins with unsuitable
folding (Seo et al., 2006). Small heat shock proteins are ubiquitous
ATP-independent molecular chaperones that bind and stabilize
misfolded or unfolding intermediates of substrate proteins in
an energy-independent manner (Ferguson et al., 1990; Miernyk,
1999; Waters and Vierling, 2020).

TRANSCRIPTIONAL REGULATION OF
HEAT SHOCK PROTEINS IN PLANTS
UNDER HEAT STRESS

Heat-stress response is known to be controlled by complex,
tight networks, including selective enhancement and repression
of gene expression in various metabolic processes, production
of chaperone proteins for cellular protein homeostasis and
other protective molecules that prevent targets from detrimental
effectors such as ROS. The regulation of this network is critical for
plant cells not only to adapt to various environmental conditions
linked to temperature, humidity and light, but also to protect
them from proteotoxic stresses. HSFs have a central function
as major regulators in HSR by regulating transcription of a
wide range of genes in several signaling and metabolic pathways
(von Koskull-Döring et al., 2007; Guy et al., 2008). Heat shock
factors are responsible for rapid synthesis and accumulation of
HSPs, molecular chaperones for preventing protein aggregation
and maintaining cellular protein homeostasis (Vierling, 1991;
Wang et al., 2004; Gupta et al., 2010; Schleiff and Becker,
2011). Heat shock factor activity in each cell is controlled
through sophisticated and complex feedback mechanisms and
protein interactions, allowing for rapid adjustment and flexibility
by diverse chaperones to changing environmental conditions
(Akerfelt et al., 2010).

The expression of HSPs is induced by HSFs that bind
the HSEs in the promoters of heat shock responsive genes
(Nover et al., 2001). Under normal conditions, monomeric HSFs
are bound to HSP70 in the cytoplasm. When plants are exposed

to HS, HSFs are released from HSP70-HSF complexes, and
phosphorylated in the cytoplasm, and form a trimer for biding
to HSEs in the nucleus (Liu et al., 2006). Overexpression
of HSF genes in turn turns on almost all heat shock genes
containing the HSE consensus sequence, conferring tolerance
to HS. HSP70/90 plays an important role in the regulation
of HSFA1 activity. HSP70/90 complex keeps HSFA1 inactive
under normal conditions by repressing transactivation activity
and nuclear localization of HSFA1 (Yamada et al., 2007; Hahn
et al., 2011). Recently, the temperature-dependent repression
(TDR) domain has been identified in the central region
of HSFA1d, one of the Arabidopsis HSFA1s responsible for
HS-dependent transactivation activity (Ohama et al., 2017).
Overexpression of constitutively active HSFA1d, which lacks the
TDR domain, induced the expression of heat shock proteins in
the absence of HS, thereby conferring strong thermal stability
in the overexpressing plants. Under HS conditions, HSFA1a
is released from the HSFA1-HSP70/90 complex and activated.
Of note, no TDR domain has been observed in mammalian
HSFA1 proteins although the repression of the activities of
HSFs by the HSP70/90 complex is generally conserved in
both plants and animals. Activated HSFA1 directly and rapidly
regulates expression levels of genes encoding important HS-
responsive transcription factors (TFs) such as DEHYDRATION-
RESPONSIVE ELEMENT BINDING PROTEIN 2A (DREB2A),
HSFA2, HSFA7a, HSFBs, and MULTIPROTEIN BRIDGING
FACTOR 1C (MBF1C) (Yoshida et al., 2011). Subsequently,
DREB2A directly regulates the gene expression level of
HSFA3 by creating a coactivator complex with NUCLEAR
FACTOR Y, SUBUNIT A2 (NF-YA2), NF-YB3, and DNA
POLYMERASE II SUBUNIT B3-1 (DPB3-1)/NF-YC10 (Chen
et al., 2010; Sato et al., 2014). HSFA3 knockout or knockdown
transgenic lines caused reduced expression of putative target
HSP genes under HS, thus HSFA3 is regarded as an important
HS-responsive TF (Schramm et al., 2008; Yoshida et al.,
2008). Furthermore, HSFA2 contributes to high levels of
modifications at specific histone tail residues (H3K4me2 and
H3K4me3) of ascorbate peroxidase 2 (APX2), HSP22, and
HSP18.2 (Sung et al., 2003; Charng et al., 2007; Lämke et al.,
2016). Heat stress memory is maintained for several days,
allowing plants to survive when they are exposed to the
next HS conditions (Yamaguchi, 2021). Strong/rapid expression
of sHSP genes including HSP21, HSP22, and HSP17.6C is
observed in primed plants compared to non-primed plants
(Yamaguchi et al., 2021). FORGETTER3 (FGT3)/HSFA3 is
needed to retain HS memory for several days following
HS exposure (Friedrich et al., 2021). A recent discovery
showed that genes encoding stem cell regulators such as
CLAVATA1 (CLV1), CLV3, and HSP17.6A, and the primary
carbohydrate metabolism gene FRUCTOSE-BISPHOSPHATE
ALDOLASE 6 (FBA6) are involved in the HS transcriptional
memory in the shoot apical meristem (Olas et al., 2021).
JUMONJI-C DOMAIN CONTAINING PROTEINs (JMJs) that
code for H3K27me3 demethylases are regulators of heat
acclimation through controlling the methylation status of HSP
loci (Pan et al., 2007; Xiao et al., 2016; Yamaguchi et al., 2021;
Yamaguchi and Ito, 2021).

Frontiers in Plant Science | www.frontiersin.org 7 April 2022 | Volume 13 | Article 83715295

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-837152 April 5, 2022 Time: 15:46 # 8

Kang et al. Heat Stress Responses in Vegetables

TABLE 2 | Gene expression pattern response to heat or cold stress in vegetables.

Vegetables Gene/
protein

Expression pattern Tissue Description References

Heat (H) Cold (C)

Tomato
(Solanum
lycopersicum)

SlHSP100 Up H: leaves Upregulation detected in both thermotolerant and
thermosensitive lines under HS.

Gul et al., 2021

HSP70
sHSP

Up *Up (H→ C) H/C: fruits Protein levels of HSPs were increased under HS.
*Increased protein levels at HT remained high for several

weeks even when transferred to low temperatures.

Sabehat et al.,
1996

SlHSP20 Up/
Down

Expression of 13 of all tested SlHsp20 genes was
drastically increased in both thermotolerant and

thermosensitive lines under HS, except for SlHsp15.7.

Yu et al., 2016

HSFA2
Hsp17-CII

Up H: flowers The highest induction of two genes was identified in the
anther tissues under HS.

Giorno et al., 2010

tom111
(homolog
from pea
HSP21),
tom66,

(homolog
from pea
HSP18.1)

Up **Up
(H→ C)

H: fruits,
flowers, leaves,

stems
C:

Mature-green
fruits

The expression of tom 111 and tom66 was induced by
HT.

**The expression was first decreased and re-induced
after the heated organs were transferred to low

temperature.

Sabehat et al.,
1998

LeHSP17.6 Up ***Up
(H→ C)

H/C: fruits Finally, Fruits with heating-and-chilling treatment
showed a high level of expression of LeHSP17.6.

***Increased expression of LeHSP17.6 at HT remained
during subsequent exposure to low temperatures for at

least one week.

Kadyrzhanova
et al., 1998

Pepper
(Capsicum
annuum)

CaHSP70 Up/
Down

H: leaves Expression of HSP70 gene was highly upregulated in
the thermotolerant line compared to the

thermosensitive line under HS.

Usman et al., 2015

CaHSP60 Up/
Down

Up H/C: leaves,
stems, roots

Fifteen (93% of total CaHSP60 genes) CaHSP60 genes
were upregulated under HS and cold stress, and only

CaHSP60-3 was downregulated in both
thermosensitive B6 and thermotolerant R9 lines.

Haq et al., 2019

CaHSP20 Up/
Down

H: leaves,
stems, roots,

flowers

Generally, the peaks of expression levels of CaHsp20
genes in the thermosensitive line B6 were higher than

the thermotolerant line R9.

Guo et al., 2015

CaHSP16.4 Up H: leaves, roots The expression level of CaHsp25.9 was higher in leaves
than that in roots, and was highest at 2 h after HS in
both thermosensitive B6 and thermotolerant R9 lines.

Feng et al., 2019

Soybean
(Glycine max)

GmHSP90 Up H: leaves A significant upregulation was observed in 12.
GmHsp90 genes within 30 min at 42◦C

Xu et al., 2013

GmHSP70 Up/
Down

H: leaves 29 genes out of 61 detectable GmHSP70s showed
upregulation under drought and HS conditions.

Zhang et al., 2015

GmHSP20 Up Up C: leaves 47 soybean Hsp20 genes were responsive to heat
shock stress, and 5 were also induced by cold stress.

Lopes-Caitar et al.,
2013

Pea
(Pisum sativum)

HSP70
PsHSFA

Up H: leaves,
cotyledons

The expression of PsHSFA and HSP70 was induced in
both leaves and cotyledons under HS.

Aranda et al., 1999

HSP17.9
HSP18.1

Up H: leaves The expression of HSP17.9 and HSP18.1 was highly
upregulated at the beginning of HS, and declined

rapidly after the stress.

DeRocher et al.,
1991

Potato
(Solanum
tuberosum)

18 kDa
sHSP

Up H: leaves The 18 kDa sHSP proteins were induced longer in the
heat tolerant cultivars than the heat sensitive cultivars.

Ahn et al., 2004

HSP100
HSP90
HSP80
HSP70
sHSP

Up
(during chilling

storage)

C: tuber Fifteen HSPs genes, including HSP100, HSP90,
HSP80, HSP70 and sHSP family were consistently
upregulated by low temperatures in both RNA and

protein levels, which may act to prevent cellular
damage from cold stress in potato tubers during

postharvest storage.

Lin et al., 2019

Lettuce
(Lactuca sativa)

HSP70 Up H: leaves,
stems

HT induced the expression of a gene encoding HSP70
that interacts with a calmodulin for heat induced bolting

tolerance.

Liu R. et al., 2020

HSP70
sHSP

Up H: leaves The sHSP and HSP70 genes were quickly and sharply
induced within 1 h treatment of HS.

Kang et al., 2021
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Extreme HT causes protein misfolding and denaturation.
Unfolded proteins can be degraded by the ubiquitin proteasome
system or autophagy (Buchberger et al., 2010; Amm et al., 2014;
Xu and Xue, 2019). It has been demonstrated that some ubiquitin
E3 ligases and autophagy-related genes play a critical role in
plant heat tolerance (Zhou et al., 2014; Li et al., 2015; Liu J.
et al., 2016; Gil et al., 2017). Transgenic plants overexpressing
ubiquitin or ubiquitin E3 ligases displayed enhanced BTT and/or
ATT (Tian et al., 2014; Liu J. et al., 2016), and Zhang Y.
et al. (2021) reported that silencing CARBOXYL TERMINUS OF
THE HSC70-INTERACTING PROTEINS (CHIP), a chaperone-
dependent ubiquitin E3 ligase caused reduced heat tolerance
in tomato. CHIP plays a critical role in HSR through the
misfolded proteins degradation induced by HS. Transgenic
Arabidopsis seedlings overexpressing PROTEIN WITH THE
RING DOMAIN AND TMEMB (PPRT1) encoding a C3HC4
zinc-finger ubiquitin E3 ligase showed enhanced BTT and ATT
(Liu Y. et al., 2020). Moreover, virus-induced gene silencing
(VIGS) of tomato AUTOPHAGY RELATED5 (ATG5) and ATG7
genes resulted in increased sensitivity of tomato plants to HS
(Zhou et al., 2014).

Understanding the dynamic behavior involving expression
levels of TFs and HSPs under HS will help understand the whole
regulatory network to adapt to HT.

Expression Patterns of HSP and HSF
Genes in Vegetables Under Heat Stress
Exposure to extreme temperature stresses such as heat and cold
induces cellular changes in plant cells (Guy, 1999; Bita and Gerats,
2013). Plants have evolved various physiological and molecular
adaptations to stresses in order to minimize damage and provide
cellular homeostasis (Theocharis et al., 2012; Awasthi et al.,
2015). In response to the extreme temperature stresses, plants
synthesize many stress-responsive proteins including HSP and
HSF by regulating gene expression (Guo et al., 2016a; Ul Haq
et al., 2019). So far, many studies on gene expression patterns
under heat and/or cold stresses in vegetable crops have been
reported and the collected information can be seen in Table 2.

Tomato (Solanum lycopersicum L.)
Tomato is one of the most economically important vegetable
crops worldwide (Campos et al., 2021). As global warming
leads to extreme weather events, a number of researchers have
examined the effects of heat and/or cold stresses on the expression
pattern of genes such as HSPs and HSFs, which play crucial roles
in thermotolerance in tomatoes (Tubiello et al., 2007).

Heat treatment has been found to induce chloroplastic
SlHSP100 genes in both thermotolerant and thermosensitive
tomato seedlings. The highest upregulation was observed in the
genotype 17903, which showed the highest ratio of cell viability
and cell membrane stability under HS, implying a crucial role for
the gene in ATT (Gul et al., 2021). Besides the role of HSP100
as a chaperone, Sabehat et al. (1996) found that tomato fruits
heated and then chilled showed a high level expression of both
HSP70 and sHSP family genes (14–25kDa) and enhanced chilling
tolerance compared to unheated fruits (Sabehat et al., 1996).
Similar results were also reported by Kadyrzhanova et al. (1998)

and Sabehat et al. (1998) where the expression of chloroplastic
HSP21 and HSP17.6 was first decreased and re-induced when
the heated fruits were transferred to low temperature. The
members of SlHSP20s in tomato were also upregulated in both
thermotolerant and thermosensitive lines under HS, except for
SlHsp15.7 (Yu et al., 2016). Moreover, it has been reported
that the expression of HSFA2, transcriptional activator of HSP
expression, and HSP17-CII was highly activated in the tomato
anther during its development under HS (Giorno et al., 2010).

Pepper (Capsicum annuum)
The production and consumption of pepper has steadily
increased worldwide due to its nutritional benefits and spice,
but it is thermosensitive (Crosby, 2008; Guo et al., 2014).
As with tomato, there has been a growing body of research
that explores the expression of HSP genes in pepper under
temperature stress conditions. Many HSPs including CaHSP70,
CaHSP60, CaHSP20, and CaHSP16.4 are upregulated in pepper
under HS (Guo et al., 2015; Usman et al., 2015; Feng et al.,
2019; Haq et al., 2019). HSP70 gene was significantly upregulated
in the thermotolerant line compared to the thermosensitive
line after 2 h of HS treatment at 42◦C, indicating that
the gene is quickly and sharply induced by heat shock and
plays a major role in thermotolerance (Usman et al., 2015).
Haq et al. (2019) observed that fifteen CaHSP60 genes were
upregulated under HS and cold stress, and only CaHSP60-3 was
downregulated in both thermosensitive B6 and thermotolerant
R9 lines (Haq et al., 2019).

Soybean (Glycine max)
Soybeans are members of the legume family of vegetables and
have been a staple of Asian cuisines for a long time. Soybean yield
is severely affected by temperature stresses. Under low or high
temperature stress conditions, HSPs are induced in soybean to
prevent cell damage caused by the temperature stresses. Xu et al.
(2013) studied the expression of GmHSP90 in relation to HS, and
observed a significant upregulation of this gene in early response
to HS (Xu et al., 2013). Expression patterns of soybean 61
GmHSP70 genes under HS and drought were analyzed. Among
those genes, 55 GmHSP70 genes were highly upregulated during
HS, and 29 GmHSP70 genes showed increased expression under
both heat and drought stress conditions, indicating that most of
the GmHSP70 genes play an important role in heat and drought
tolerance (Zhang et al., 2015). Similarly, 47 GmHSP20 genes
among 51 GmHSP20 candidates were found to be highly induced
under HS and 5 genes were induced under both heat and cold
conditions (Lopes-Caitar et al., 2013).

Pea (Pisum sativum)
Pea has long been important in the human diet due to its
starch, protein, and fiber content and the many phytochemical
substances it contains, but it is a cool season crop which is
heat-sensitive (Dahl et al., 2012). Therefore, some researchers
have investigated the expression of HSPs in pea during HS.
DeRocher et al. (1991) observed that the HSP18.1 mRNA peaked
at the beginning of the maximum temperature during 4 h gradual
HS (30–42◦C) period, and began to decline 6 to 8 h before the
amount of HSP18.1 protein reached maximum levels, implying
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TABLE 3 | Engineering temperature stress tolerance in plants.

Transgenic
plant

Stress Gene
targeted/

transferred

Gene
expression/

manipulation

Result References

Arabidopsis Heat AtHSP101 Down regulation/Antisense
inhibition or co-suppression

Decreased heat tolerance. Queitsch et al., 2000

AtHSF1 Overexpression of
AtHSF1-GUS and

GUS-AtHSF1

Increased HSP18 expression level at normal
temperatures and enhanced basic

thermotolerance.

Lee et al., 1995

CaHSP25.9
From pepper

Overexpression Increased heat tolerance.
Reduced accumulation of reactive oxygen species

(ROS).

Feng et al., 2019

CaHSP70
from pepper

Overexpression Increased heat tolerance including basal
thermotolerance and acquired thermotolerance.

Guo et al., 2016b

PfHSP21.4
from Primula

Overexpression Increased thermotolerance activity.
Increased antioxidant enzymes such as ascorbate

peroxidase (APX).

Zhang et al., 2014

TaHSP26
from wheat

Overexpression Increased thermotolerance.
Increased photosynthetic pigments, higher

biomass, and seed yield.

Chauhan et al., 2012

Down-regulation/Antisense
inhibition

Showed negligible thermotolerance.

LimHSP16.45
from David Lily

Overexpression of
LimHSP16.45-GFP

Enhanced viability of Arabidopsis cells under HS.
Induced more superoxide dismutase (SOD) and

catalase (CAT) activity.

Mu et al., 2013

Cold CsHSP17.7
CsHSP18.1
CsHSP21.8

from Camellia sinensis

Overexpression Increased root length in Arabidopsis under low
temperature.

Wang et al., 2017

PfHSP17.2
from Forrest primrose

Overexpression Enhanced freezing tolerance. Zhang L. et al., 2018

Tobacco Heat OsHSP101
(ClpB-C)
from rice

Overexpression Increased heat tolerance. Chang et al., 2007

ZmHSP16.9
from maize

Overexpression Increased tolerance to heat and oxidative stress. Sun et al., 2012

LeHSP21
from tomato

Overexpression Increased tolerance to heat and oxidative stress. Zhang et al., 2016

BcHSP70
from Brassica campestris

Overexpression Increased heat tolerance.
Increased the chlorophyll content, SOD and

peroxidase (POD) activities.

Wang X. et al., 2016

Cold CaHSP26
from sweet pepper

Overexpression Protected PSII and PSI from chilling stress. Guo et al., 2007

CaHSP22.5
from pepper

Overexpression Improved the tolerance of chilling stress.
Increased the activity of reactive oxygen

species-scavenging enzymes.

Li et al., 2018

Rice Heat AtHSP101 (ClpB-C) Overexpression Increased heat tolerance. Katiyar-Agarwal et al.,
2003

OsHSP18.6 Overexpression Increased heat tolerance.
Exhibited the lower levels of malondialdehyde
(MDA) and greater CAT and SOD activities.

Wang et al., 2015

Tomato Heat HSFA1b (AtHSF
A1b and β-glucuronidase

(gusA) fusion gene)

Overexpression Increased heat tolerance.
Increased the activity of soluble isoforms of APX.

Li et al., 2003

HSP24.4 Overexpression Increased heat tolerance.
Showed tissue specific expression in root, shoot,

and stem tissue under HS.

Mahesh et al., 2013

Unknown
(HT7 mutant)

EMS Micro-Tom mutant Heat tolerant tomato lines.
Highly expressed SlHSFA1b and SlHsp101 than

WT respond to HS.

Pham et al., 2020

Cold HSP Overexpression Increased chilling tolerance. Wang et al., 2005

HSFA1b (AtHSF
A1b and gusA fusion gene)

Overexpression Increased chilling tolerance.
Increased the activity of soluble isoforms of APX.

Li et al., 2003

sHSP23.8-M Overexpression Protected fruit from chilling injury. Escobar et al., 2021

(Continued)
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TABLE 3 | (Continued)

Transgenic
plant

Stress Gene
targeted/

transferred

Gene
expression/

manipulation

Result References

Knock-down Decreased chilling tolerance.
Showed wilting and skin wrinkles, partial

discoloration.

SlHSP17.7 Overexpression Increased tolerance response to cold stress. Zhang et al., 2020

Potato Heat DcHSP17.7
from carrot

Overexpression Increased cellular membrane stability and
tuberization.

Ahn and Zimmerman,
2006

Pepper Heat CaHSP60-6 Down regulation/
virus-induced gene

silencing (VIGS)

Reduced heat tolerance. Haq et al., 2019

Carrot Heat HSP17.7 Overexpression Increased heat tolerance (with an increase of
68-90% growth).

Malik et al., 1999

Down-regulation/Antisense
inhibition

Decreased heat tolerance (with a decrease of
12-26% growth).

Soybean Heat GmHsp90A2 Overexpression Increased heat tolerance.
Reduced chlorophyll loss and stabilized membrane

systems.

Huang et al., 2019

Knockout/
CRISPR/Cas9

Reduced heat tolerance.

that sHSP levels in plants may also be self-regulated or regulated
by some other heat-inducible protein.

Potato (Solanum tuberosum)
Potato is a vegetable crop that mainly grows in a temperate
climate, so HS can have a negative effect on the yield by
inducing physiological defects in tubers (Rykaczewska, 2017).
Hence, it is important to examine the accumulation of HSPs
in response to HS. Ahn et al. (2004) reported that the 18 kDa
sHSP proteins were synthesized for a longer time in the heat
tolerant cultivars compared to the heat sensitive cultivars under
strong heat shock temperature, suggesting that sHSP plays an
important role in the heat tolerance enhancement (Ahn et al.,
2004). Fifteen HSPs, including three HSP70s, two HSP80s,
one HSP90, one HSP100 and eight sHSPs were consistently
upregulated by low temperatures at both the RNA and protein
levels to reduce cellular damage and re-build cellular homeostasis
in potato tubers under cold stress during postharvest storage
(Lin et al., 2019).

Lettuce (Lactuca sativa)
Lettuce is an important cool season leafy vegetable with an
optimal growing temperature ranging from 17 to 28◦C (Holmes
et al., 2019). HT can facilitate the accumulation of gibberellin
(GA) which promotes lettuce bolding (Fukuda et al., 2012).
Under HT, it is suggested that induced expression of genes
encoding LsHSPs that interact with a calmodulin confers
enhanced tolerance to heat with bolting resistance in lettuce
(Liu R. et al., 2020). Recently, putative early heat responsive
HSP genes were identified by transcriptome profiling in lettuce
(Kang et al., 2021). Among them, sHSP and HSP70 genes
were quickly and sharply induced within 1 h in response to
HS, indicating that these genes could be potential candidates
as the breeding targets for the development of heat-tolerant
lettuce cultivars.

BREEDING FOR ELEVATED RESISTANCE
TO HEAT STRESS

Currently, the greatest risk to crop productivity and yields
associated with global climate change is being caused by extreme
weather events such as extreme hot and cold weather (Reddy
and Hodges, 2000). Therefore, improved tolerance to heat and
cold stress might be crucial in increasing yields for most crops.
Application of transgenic and genome editing technologies
could help to introduce desirable abiotic stress tolerance traits
into crop varieties (Sanghera et al., 2011; Lamaoui et al.,
2018). In recent years, there has been an increasing effort to
reveal functional roles of HSPs and HSFs using mutagenic and
transgenic plants for production of crops with enhanced heat
and/or cold tolerance (Table 3).

Model Plants
A number of researchers have used model plants such as
Arabidopsis, tobacco and rice for functional studies (proof of
concept) on genes involved in heat and cold stresses because
of the ease of genetic experiments (Rensink and Buell, 2004;
Koornneef and Meinke, 2010). Queitsch et al. (2000) examined
transgenic Arabidopsis plants containing HSP101 antisense
and/or co-suppression constructs, and found that they showed
normal growth but impaired ATT and BTT, indicating HSP101
plays a pivotal role in heat tolerance in Arabidopsis. In contrast,
transgenic Arabidopsis plants containing constitutively active
HSF-GUS fusion proteins caused increased HSP18 expression at
normal temperature by forming HSF trimers and their binding to
DNA, resulting in enhanced BTT (Lee et al., 1995).

In addition, transgenic approaches with other crop genes
have also been made with a fair degree of success. Genetically
engineered Arabidopsis plants overexpressing HSP genes from
pepper (Guo et al., 2016b; Feng et al., 2019), primula (Zhang et al.,
2014), wheat (Feng et al., 2019) and David Lily (Mu et al., 2013)
exhibited increased thermotolerance activity. Similar events were
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also observed under cold stress conditions by Wang et al.
(2017) and Zhang L. et al. (2018). They introduced CsHSP17.7,
CsHSP18.1, CsHSP21.8, and PfHSP17.2 from Camellia sinensis
and Forrest primrose into Arabidopsis for overexpression.
Transgenic plants showed increased root length and tolerance to
cold stress. Furthermore, overexpression of OsHSP101 (Chang
et al., 2007), ZmHSP16.9 (Sun et al., 2012), LeHSP21 (Zhang
et al., 2016), BcHSP70 (Wang X. et al., 2016), AtHSP101 (Katiyar-
Agarwal et al., 2003) and OsHSP18.6 (Wang et al., 2015)
conferred improved HS tolerance in tobacco and rice. These
results indicate that HSP genes from various crops play a key role
in developing thermotolerance.

Vegetables
Vegetable crops are very susceptible to abiotic stresses such
as high and low temperatures. Therefore, the development
of varieties that are tolerant to heat and cold stresses is an
important goal for improvement in crop productivity. Recently
investigators have examined the protective roles of HSP and
HSF against heat and cold stresses in transgenic vegetables. Li
et al. (2003) reported that increased activity of soluble isoforms
of ascorbate peroxidase (APX) and tolerance were observed
in the transgenic tomato plants overexpressing AtHSFA1b-
gusA fusion gene under heat and cold stress conditions. In
addition, 15 heat tolerant tomato lines were isolated through
screening of over 4000 ethyl methanesulfonate (EMS) Micro-
Tom mutants. Among the selected heat tolerant mutants,
the HT7 line displayed much higher fruit number and total
pollen number with enhanced viability under HS conditions.
Higher expression levels of SIHSFA1b3, which is known as
a master regulator that activates HSR (Mishra et al., 2002),
and HSP101 were detected in the leaves of HT7 compared
to those of WT after long-term exposure to HS, suggesting
that HT7 could be used as a breeding material for production
of tomato with improved heat tolerance (Pham et al., 2020).
Also, up and downregulated expression of HSP23.8 made it
possible for each transgenic plant to display the opposite
phenotype under low temperature conditions: Transgenic plants
overexpressing HSP23.8 gene showed increased cold tolerance
whereas decreased chilling tolerance, wilting, skin wrinkles and
partial discoloration were observed in the transgenic plant with
reduced expression ofHSP23.8 gene (Escobar et al., 2021). Similar
studies have reported that the HSP17.7 gene plays a role in
the HS tolerance in potato (Ahn and Zimmerman, 2006) and
carrot (Malik et al., 1999). Recently, it has been reported that
HS tolerance decreases in pepper when the CaHSP60-6 gene is
down-regulated by virus-induced gene silencing (VIGS) (Haq
et al., 2019). In particular, CRISPR-Cas9 based gene knockout
was applied to GmHSP90A2 in soybean, and the GmHSP90A2
mutant exhibited reduced heat tolerance (Huang et al., 2019).
In conclusion, major HSP and HSF genes are tightly related
to thermotolerance of vegetables. Thus, continuous efforts to
identify detailed functions and working mechanisms of HSP and
HSF genes are needed for the generation of vegetables with
enhanced heat/cold tolerance traits through precise manipulation
of genetic elements.

CONCLUSION AND FUTURE
PROSPECTS

Climate change including global warming is causing abrupt
changes in weather patterns, and extreme weather events that
threaten crop yields. Elevated temperatures, in particular, will
have a severe influence on the productivity and yields of
vegetables in agricultural fields. It is, therefore, indispensible to
understand the sophisticated mechanisms vegetable crops use to
adapt to changing temperature environments, from the signal
perception to gene expression in reponse to HS.

As mentioned above, recent research has elucidated that
an interplay of cooperative HSP, HSF, and HSR mechanisms
orchestrate the expression of heat-responsive genes as the plant
response to HS. Furthermore, research identifying TFs related
to abiotic stresses and their molecular functions has contributed
to the expansion of knowledge for the production of crops with
desired traits through genetic manipulation and/or molecular
breeding. Functional and cellular roles of some key TFs such as
HSFA1s and DREB2A have been determined in transcriptional
networks of HSR at the post-translational levels during HS.
Nevertheless, the current information on the functional roles
of HSP and HSF genes in vegetable crops is still insufficient
for their practical application to breeding. Transcriptional
regulation between HSPs and HSFs, and in-depth working
mechanisms and pathways of heat-related proteins during HSR
remain to be explored.

Chromatin immunoprecipitation sequencing (ChIP-seq) for
protein-protein complexes and reverse ChIP for mining the
upstream-gene regulatory sequences have been shown to be
effective tools to investigate potential interaction networks
between regulatory regions in HSE and proteins, respectively
(Machanick and Bailey, 2011; Shim et al., 2021). It will be
necessary to utilize these techniques to clarify the in-depth
mechanism underlying the gene regulatory relationships in
the HSPs and HSFs of vegetable crops during HSR. It is
becoming evident that microRNAs, small RNAs, and epigenetic
modulations in DNA, RNA, and protein species play a
pivotal role in HS memory (Guan et al., 2013; Stief et al.,
2014a,b; Lämke et al., 2016). Advances in high-throughput
small RNA sequences (RNA-seq) together with methylated
DNA and RNA-sequencing combined with IP will be of
help in determining the functions of TFs and epigenetic
regulators (Pall and Hamilton, 2008; Zhang H. et al., 2018;
Shen et al., 2019; Lee et al., 2021). In addition, state-of-art
next-generation sequencing (NGS) including quantitative trait
loci (QTL)-sequencing, genotyping-by-sequencing (GBS), and
genome-wide association studies (GWAS) have been successfully
developed and adopted for deciphering comprehensive genome
sequences, thus facilitating the identification of a wide variety
of molecular markers corresponding to target traits in crops
(Han et al., 2016; Jo et al., 2017; Lee et al., 2020; Jha et al., 2021).
Candidate and/or identified genes crucial for thermotolerant-
traits and HS-related pathways can be used for production of
transgenic vegetable crops via genetic engineering. Furthermore,
the clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein 9 (Cas9) and dead Cas9

Frontiers in Plant Science | www.frontiersin.org 12 April 2022 | Volume 13 | Article 837152100

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-837152 April 5, 2022 Time: 15:46 # 13

Kang et al. Heat Stress Responses in Vegetables

(dCas9) systems have been extensively introduced into crop
biotechnology as powerful tools for gene/genome editing in spite
of controversial GMO and non-GMO issues (Liu D. et al., 2016;
Pramanik et al., 2020; Gao, 2021; Kim et al., 2021). Indeed,
“Sicilian Rouge High GABA tomato” was recently developed
by using the CRISPR/Cas9 gene editing technology. It contains
high levels of gamma-aminobutyric acid (GABA), an amino acid
believed to aid relaxation and help lower blood pressure.2 All
the aforementioned technologies can be utilized for dissecting
action modes and intricate networks of HSP, HSF and HSR for
thormotolerance in vegetable crops.
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Purple blotch (PB) is one of the most destructive foliar diseases of onion and other
alliums, caused by a necrotrophic fungal pathogen Alternaria porri. There are no
reports on the molecular response of onion to PB infection. To elucidate the response
of onion to A. porri infection, we consequently carried out an RNAseq analysis of
the resistant (Arka Kalyan; AK) and susceptible (Agrifound rose; AFR) genotype after
an artificial infection. Through differential expression analyses between control and
pathogen-treated plants, we identified 8,064 upregulated and 248 downregulated
genes in AFR, while 832 upregulated and 564 downregulated genes were identified
in AK. A further significant reprogramming in the gene expression profile was also
demonstrated by a functional annotation analysis. Gene ontology (GO) terms, which are
particularly involved in defense responses and signaling, are overrepresented in current
analyses such as “oxidoreductase activity,” “chitin catabolic processes,” and “defense
response.” Several key plant defense genes were differentially expressed on A. porri
infection, which includes pathogenesis-related (PR) proteins, receptor-like kinases,
phytohormone signaling, cell-wall integrity, cytochrome P450 monooxygenases, and
transcription factors. Some of the genes were exclusively overexpressed in resistant
genotype, namely, GABA transporter1, ankyrin repeat domain-containing protein,
xyloglucan endotransglucosylase/hydrolase, and PR-5 (thaumatin-like). Antioxidant
enzyme activities were observed to be increased after infection in both genotypes
but higher activity was found in the resistant genotype, AK. This is the first report of
transcriptome profiling in onion in response to PB infection and will serve as a resource
for future studies to elucidate the molecular mechanism of onion-A. porri interaction and
to improve PB resistance in onions.

Keywords: onion, purple blotch, RNAseq, Alternaria porri, antioxidant, PR proteins

INTRODUCTION

Purple blotch (PB) is one of the most destructive foliar diseases in onion, caused by Alternaria porri
(Ellis) Cifferi. Purple blotch is prevalent in all onion-growing countries in the world (Kareem et al.,
2012). Symptoms of the disease encompass small chlorotic, water-soaked brown lesions on leaves,
and as infection advances lesion enlarges with purple spots, in a humid climate, these lesions are
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occasionally seen covered with black-purple spores. In India, its
high degree of severity is evidenced by heavy yield losses in both
bulb and seed crops, which vary between 2.5 and 85% (Tripathy
et al., 2013; Veeraghanti et al., 2017). For the management of
PB, mainly chemical fungicides were used, but its excessive and
repeated use led to an increase in production cost, deterioration
of the environment, and development of resistance in pathogen.
Although several bioagents have been reported to antagonize
A. porri (Tyagi et al., 1990; Prakasam and Sharma, 2012; Abdel-
Hafez et al., 2014; Gothandapani et al., 2015), their commercial
utility at the field level is limited. Therefore, in such condition,
improvement of host resistance by the selection, breeding, and
biotechnological tools will be the best sustainable approach
(Dar et al., 2020).

To date, limited sources of PB resistance have been reported
in onions (Ganesh and Veeregowda, 2007; Behera et al., 2013;
Tripathy et al., 2013; Nanda et al., 2016). The PB resistance in
onions is controlled by additive and non-additive gene effects
(Evoor et al., 2007) and a single dominant qualitative gene
(Abubakar and Ado, 2008). Furthermore, the novel PB-resistant
gene ApR1 was mapped using markers (AcSSR7 and ApR-450)
linked to PB resistance in the F2 population developed from Arka
Kalyan (AK) and Agrifound rose (AFR) (Chand et al., 2018).
Barring these few studies, the mechanism of PB resistance at a
molecular level is not fully known.

Plants respond to the invasion of the pathogen through
transcriptional regulation, and large-scale approaches such as
transcriptional analysis and genome-wide association studies
have been widely applied to uncover the molecular mechanism of
plant defense mechanisms (Gupta et al., 2016; Bartoli and Roux,
2017; Zhu et al., 2017; Juliana et al., 2018). Significant advances
in understanding defense processes have been made in many
crops, and the RNAseq for transcriptome analysis has become
a powerful tool to investigate plant disease responses in plants
where a high-quality genome sequence is not available (Ghodke
et al., 2020; Khandagale et al., 2020; Kim et al., 2021).

Onion (Allium cepa L.), from the Amaryllidaceae family, is
a vegetable of paramount importance in India and other parts
of the world (Chinnappareddy et al., 2013). India is the second
largest producer of onion among the major onion producer
countries of the world with a production of 26.7 million tons from
the 1.4-million-hectare area with a yield of 18.6 ton/ha in 2020.1

Although PB is inflicting significant losses to this economically
important crop, very less research is still being performed into
the molecular response against in a known PB-resistant cultivar.
Therefore, in this study, we examined biochemical and molecular
responses in resistant AK and susceptible AFR genotypes when
infected by A. porri.

MATERIALS AND METHODS

Plant Material and Pathogen
For this study, PB-resistant (AK) and susceptible (AFR) varieties
were selected for this study (Chand et al., 2018). Seeds of

1https://www.fao.org/faostat/en/#data/QCL

AK and AFR were procured from the Indian Institute of
Horticulture Research, Bangalore and National Horticultural
Research and Development Foundation, New Delhi, respectively.
Pure culture of A. porri was isolated from the experimental
field of ICAR-DOGR and is maintained on potato dextrose
agar (PDA). The identification of the pathogen was ensured
by amplifying the ITS region of the fungal DNA with
the primers ITS1 5’TCCGTAGGTGAACCTGCGG3’ and ITS4
5’CTGTTGGTTTCTTTTCCTCCGC3’ according to White et al.
(1990). The amplified fragment was purified and sequenced, and
the resulting DNA sequence was aligned with GenBank using
BLASTN at the National Center for Biotechnology Information
(NCBI) database which showed 100% identity with A. porri
(LC440611.1) and submitted in NCBI GenBank (OM131604).

Experiment
Seeds of both genotypes were surface sterilized with sodium
hypochlorite (4%) for 10 min and 70% alcohol for 30 s followed
by a three-time wash with distilled water. The seeds were sown
in plastic pots with sterilized soil, and after 45 days, the seedlings
were transplanted into fresh pots with similar sterilized soil. Each
pot contained 4 plants, 10 pots were used for each replication,
and the experiment was performed in triplicate. To prepare a
fungal pathogen spore suspension, mycelial plugs from A. porri
culture plate were transferred to a fresh PDA and incubated
at 25 ± 2◦C for 10 days. The fungal culture was scraped and
mixed with distilled water to obtain a final spore concentration
of 106 spores/ml. After 30 days of transplantation, the plants
were inoculated with a pathogen spore suspension. The leaves
were sprayed with pathogen spore suspension and allowed to
dry for 2 h, and then the pots were covered with a transparent
polythene bag for 24 h to maintain humidity. Control plants were
treated similarly, except for pathogen spore suspension; they were
sprayed with sterile water. The pots were kept in the greenhouse
at 25 ± 2◦C, and the leaf tissue was harvested from control and
inoculated plants at 5 dpi (day postinoculation), frozen in liquid
nitrogen, and stored in –80◦C until further studies.

RNA Isolation and Library Preparation
and RNA Sequencing
The total RNA of each control (AKC, AFRC) and infected (AKT,
AFRT) plant was extracted using the RNeasy Plant Mini Kit
(Qiagen). A pool of three plants was used for RNA isolation,
and as one replicate, such two replicates were used in this study.
Total RNA of each replicate was quantified using NanoDrop 1000
(Thermo Fisher Scientific, Waltham, MA, United States), and the
integrity was assessed on a 1% agarose gel. Further integrity of the
isolated RNA was assessed by Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, United States). An equal amount of
high-quality RNA having a RIN value above 7 from three plants
of each replicate was pooled and used for library preparation.
A total of 8 (AKC1, AKC2, AKT1, AKT2, AFRC1, AFRC2,
AFRT1, and AFRT2) next-generation sequencing libraries were
constructed according to the manufacturer’s protocol (NEBNext R©

UltraTM RNA Library Prep Kit for Illumina R©). These libraries
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were sequenced in both directions with a read length of 150 × 2
using the Illumina HiSeq 2500 platform.

De novo Assembly and Sequence
Annotation
The quality check for high throughput sequencing reads was
performed using FASTQC Toolkit version 0.11.9.2 The low-
quality reads (Q-value ≤ 20) were discarded using cutadapt
version 2.8,3 and the remaining reads were considered clean
reads. The obtained clean reads of the AK and AFR varieties
were assembled using Trinity assembler version 2.12.04 to build
a mega-assembly. The transcripts were then clustered using
the CD-HIT version 4.8.15 tool to generate a comprehensive
reference. Identity threshold was kept default, i.e., 90%. DESeq2,
an R package, was used for differential gene expression analysis
between control and treated samples of both resistant and
susceptible genotypes. Differentially expressed transcripts were
selected based on a cutoff log2 fold change of 2 and a cutoff
p-value of 0.05.

The clustered transcriptome was annotated using the
DIAMOND BLASTX version 2.0.9.1476 tool against NCBI’s
non-redundant protein database (NRDB),7 UniProt/SwissProt
database,8 and plantTFDB9 with a cutoff e-value of ≤10−5.
UniProt/SwissProt ID mapping functionality was used to get
gene ontology (GO) and pathway annotation for transcripts. The
Transeq utility from EMBOSS version 6.6.010 package was used
to convert the transcripts into the longest possible open reading
frame. Orthologous groups of protein sequences were identified
using a standalone version of emapper version 2.0.1 against
eggNOG version 5.0.11 Protein sequences were classified into
families and predicted domains, important sequence signatures
using a standalone version of InterProScan 5.39–77.0.12To
study pathogen receptor genes, we mapped the transcripts on
PRGDB13 manually curated reference protein sequences using the
DIAMOND BLASTX utility with an e-value of ≤ 10−5.

Validation of Differentially Expressed
Genes Using Quantitative Realtime-PCR
Total RNA was isolated from leaves of two biological replicates
at 5 dpi. The untreated plants were considered as a control in
the present experiment. The total RNA was isolated with the
RNeasy Plant Mini Kit (Qiagen, Germany) according to the
manufacturer’s guidelines. To eliminate potential genomic DNA
contamination, RNAs were treated with DNase I (Fermentas,
Lithuania). RNAs were quantified using NanoDrop (ND1000),

2https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
3https://github.com/marcelm/cutadapt/
4https://github.com/trinityrnaseq/trinityrnaseq/wiki
5http://weizhong-lab.ucsd.edu/cd-hit/download.php
6https://ab.inf.uni-tuebingen.de/software/diamond
7http://ftp.ncbi.nlm.nih.gov/blast/db/
8https://www.uniprot.org/
9http://planttfdb.cbi.pku.edu.cn/
10http://emboss.sourceforge.net/download/
11http://eggnogdb.embl.de/#/app/downloads
12https://www.ebi.ac.uk/interpro/download.html
13http://prgdb.org/prgdb4

and the integrity of the isolated RNA was assessed on
the formaldehyde-agarose gel (1%). First-strand cDNA was
synthesized to reverse transcription reaction from 1 µg RNA
using the RevertAid First Strand cDNA Synthesis Kit (Fermenats,
Lithuania) following the manufacturer’s instructions. cDNAs
were stored at –80◦C until used in quantitative realtime-PCR
(qRT-PCR).

Primers for selected PB-induced transcripts were designed
using Primer-BLAST14 to amplify a region of 160–230 bp.
Expression analyses of selected differentially expressed genes
(DEGs) were performed in LightCycler R© 480 II instrument
(Roche, Germany). A single 10 µl PCR mixture contained
1 × LightCycler R© 480 SYBR Green I master mix (Roche,
Germany), 1 µl of cDNA, and 1 µM of each primer (10
µM). The PCR cycling was programmed as follows: initial
denaturation at 95◦C for 5 min, 45 cycles at 95◦C for 10 s,
58◦C for 10 s, and 72◦C for 15 s. AcActin was used as a
reference gene. The details of primers used in the present
qPCR analyses are depicted in Supplementary Table 1. The
analyses were performed using two biological replicates along
with respective three technical replicates, and the relative fold
change in transcript concentration was measured according to
the 2−11CT method (Livak and Schmittgen, 2001).

Biochemical Analyses
Anti-oxidative and Defense Enzyme Assay
Leaf samples were harvested at 5 dpi from both control
and infected plants of resistant and susceptible genotype
for estimation of antioxidant enzyme activities of catalase
(CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX),
superoxide dismutase (SOD), and phenylalanine lyase (PAL).
Enzyme extract was prepared as per Roylawar and Kamble
(2017) with modification. The sample was ground in liquid
N2, and 200 mg of this sample was homogenized by adding
chilled potassium phosphate buffer of 0.1 M and pH of 7.2 with
Na-EDTA (0.1 M) and PVP (0.5%). The supernatant obtained
after centrifugation (14,000g) at 4◦C for 20 min was used for
performing enzyme assays.

Catalase
Catalase was determined by the decomposition of H2O2, which
was measured by recording the decrease in absorbance at 240 nm
(Volk and Feierabend, 1989). For the determination of CAT
activity, a 3 ml reaction volume was made up by adding the
reaction medium containing 0.1 M potassium phosphate buffer
(pH 7.0) and 30 mM H2O2 to the enzyme extract. One unit
activity of CAT was determined by the amount of enzyme that
used 1 µmol H2O2 per minute.

Ascorbate Peroxidase
The APX activity was assayed using a modified method of Nakano
and Asada (1981). The 1 ml assay mixture contained 0.5 M Tris
HCl buffer (pH 7.6), 0.1 mM Na2EDTA, 0.5 mM ascorbic acid,
and 5 mM H2O2 along with enzyme extract. To initiate the
reaction, H2O2 was added at last, and the absorbance at 290 nm
was recorded for 3 min. The enzyme activity was calculated by the

14https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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determination of reduction in ascorbate by using an extinction
coefficient of 2.8 mM−1 cm−1 that was expressed in terms of
millimole of ascorbate per minute per gram fresh weight.

Guaiacol Peroxidase
Peroxidase activity was assayed by using guaiacol as the substrate
by following the method described by Xu et al. (2011). The assay
system consisted of 0.1 M phosphate buffer pH 7.0, 30 mM
guaiacol, 20 mM H2O2, and a suitable aliquot of enzyme in
a final volume of 3 ml. The GPX activity was determined
spectrophotometrically by measuring the increase in absorbance
at 470 nm by the conversion of guaiacol to tetraguaiacol due to
its oxidation. The molar extinction coefficient of tetraguaiacol
was taken as 26.6 mM−1 cm−1. One unit of enzyme activity is
defined as the formation of 1 µmol product of tetraguaiacol by
the enzyme catalyzing the reaction per minute at 30◦C.

Superoxide Dismutase
The SOD activity was determined spectrophotometrically by
measuring the ability of the enzyme to inhibit the photochemical
reduction of nitro blue tetrazolium (NBT) (Beauchamp and
Fridovich, 1971). The assay mixtures contained 50 mM
phosphate buffer (pH 7.8), 60 µM riboflavin, 20 mM methionine,
1 mM EDTA, and 1 mM NBT together with enzyme extract. One
unit of enzyme activity was taken as the amount of enzyme that
caused the 50% inhibition of NBT reduction in the light which
recorded a reduction in absorbance reading at 560 nm of up to
50% compared with tubes without enzyme.

Phenylalanine Lyase
The PAL activity was estimated by referring to the method
of Khan and Vaidyanathan (1986), with modifications. The
estimation of PAL activity was performed based on the rate of
conversion of phenylalanine to cinnamate. A reaction mixture
was made by adding 1.5 ml of 50 mM Tris-HCL buffer (pH
8.3), 0.3 ml of 1 mM L-phenylalanine, 0.9 ml distilled water, and
0.3 ml of enzyme extract. Furthermore, this reaction mixture was
incubated in a water bath at 30◦C for 60 min. The reaction was
stopped by the addition of 1 ml of 2 N HCl. The absorbance of the
solution was recorded at 290 nm using a UV spectrophotometer.
A unit of enzyme activity is determined by the conversion of
1 µmol L-phenylalanine to cinnamic acid per minute.

Statistical Analysis
The data of qRT-PCR and enzyme assays were analyzed using
one-way ANOVA. Significant differences were analyzed using
Duncan’s multiple range tests (p < 0.05). The analyses were
performed using SPSS 16.0 and Microsoft excel. Figures were
prepared using OriginPro 8.5.

RESULTS

Symptoms After Alternaria porri
Infection
Inoculation of A. porri spore solution on AK and AFR developed
typical PB symptoms. In this study, the expected susceptible

variety (AFR) developed numerous larger lesions than AK
(Figure 1). The percent disease index (PDI) was evaluated at
3, 5, and 7 dpi in the greenhouse which was found higher
in AFR compared with AK (Supplementary Figure 1). We
sequenced the transcriptome at 5 dpi to study the differential
molecular response to PB.

RNA Sequencing Data and Gene
Expression in Response to Alternaria
porri
Reads and Assembly Stat
Paired-end RNA sequencing of control and inoculated plants
of both varieties was performed in duplicate using the Illumina
HiSeq 2500 platform, which yielded raw reads ranging from
46659974 to 119087128 (Supplementary Table 2). After data
filtering (q30), 97%–99% of reads were survived, and these reads
were further used for the construction of de novo assembly using
Trinity. A final mega assembly comprised a total of 122,660
non-redundant transcripts. The maximum transcript length was
15,682 bases with an average length of 640 bases. N50 value of
final assembled transcripts was 1,685 bases. The GC content of
the present transcriptome of onion was 42.99% (Table 1). RNA
sequencing raw reads were submitted to the NCBI SRA database
under BioProject: PRJNA796147.

Differential Gene Expression
Differential gene expression was compared between the A. porri
infected and control leaf samples of both resistant and
susceptible onion genotypes at 5 dpi. In susceptible genotype
AFR, 8,064 genes were upregulated, and 248 genes were
downregulated, whereas in resistant genotype AK, 832 transcripts
were upregulated, and 564 were downregulated on infection
by A. porri. A large portion of transcripts was unknown due
to the non-availability of well-annotated genomic resources
in onion. The top 100 significant differentially expressed
transcripts were schematically represented in the heat map
(Supplementary Figure 2). Details of differentially expressed
genes, such as fold change and functional annotation, are
provided in Supplementary Material 1.

Functional Annotation
The differentially expressed transcripts were functionally
annotated using gene ontology (GO) and orthologous groups
(COG) enrichment analyses. Total 188 DEGs of AK were
categorized to GO terms belonging to molecular function
(MF) of which 103 were upregulated transcripts and 85 were
downregulated, while in AFR, 202 were upregulated, and 27
downregulated DEGs were annotated as having MF. In AK,
the top three GO terms in the MF category are oxidoreductase
activity [GO:0016491], monooxygenase activity [GO:0004497],
and metal ion binding [GO:0046872], whereas in AFR,
oxidoreductase activity [GO:0016491], metal ion binding
[GO:0046872], and chitinase activity [GO:0004568] were
dominantly enriched. In the cellular component (CC) category,
49 transcripts were upregulated, and 65 were downregulated
in AK, whereas 103 transcripts showed upregulation, and
12 showed downregulation in AFR. GO terms in the CC
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FIGURE 1 | Purple blotch (PB) symptom development in onion after pathogen inoculation; (A) Agrifound rose (AFR) and (B) Arka Kalyan (AK).

category such as an integral component of the membrane
[GO:0016021], chloroplast thylakoid membrane [GO:0009535],
and cell wall [GO:0005618], were dominantly enriched in AK.
In AFR, an integral component of the membrane [GO:0016021],
extracellular region [GO:0005576], and chloroplast thylakoid
membrane [GO:0009535] were the top three GO terms
upregulated in the CC category. The biological process (BP)
category of GO annotation analyses revealed 57 upregulated
and 64 downregulated GO terms in AK and 127 upregulated
and 16 downregulated GO terms in AFR. GO terms, such
as pectin catabolic process [GO:0045490], photorespiration
[GO:0009853], and protein-chromophore linkage [GO:0018298],
were overrepresented in BP category in AK, whereas GO terms,
such as carbohydrate metabolic process [GO:0005975], cell wall
macromolecule catabolic process [GO:0016998], and chitin
catabolic process [GO:0006032], were highly enriched in AFR.

Gene ontology terms involved in plant defense response were
also overrepresented in the MF category such as hydrolase
activity, hydrolyzing O-glycosyl compounds [GO:0004553],
enzyme inhibitor activity [GO:0004857], and chitin-binding
[GO:0008061]. In the BP category, cell wall modification
[GO:0042545], glutathione metabolic process [GO:0006749], and
defense response [GO:0006952] are also enriched in present data
in response to PB disease in onion genotypes. The top ten GO
terms in each category are shown in Figure 2.

The analyses of the distribution of clusters of COG in
DEGs showed that the majority of genes are involved in
energy production and conversion, transcription, carbohydrate
transport and metabolism, posttranslational modification and
protein turnover, signal transduction, cell wall biogenesis, and

TABLE 1 | Assembly statistics of onion transcriptome in response to
purple blotch (PB).

Parameters Mega-assembly

Total No. of transcripts 122660

Length of transcriptome (Mb) 78536108

Max transcript length (bases) 15682

Average transcript length (bases) 640.27

Median transcript length (bases) 286

N50 length (bases) 1685

% GC 42.99

defense mechanism, which are involved in onion genotypes
after A. porri infection (Figure 3). Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway studies demonstrated
that most DEGs are involved in glycan metabolism,
carbohydrate degradation, lipid metabolism, and alkaloid
biosynthesis pathways.

Transcripts of DEGs were blasted against TFDB, and
several transcription factors were identified from the present
RNAseq data. Among them, NAC, ERF, MYB, bHLH, MYB-
related, and WRKYs were found to be dominant, and their
differential expression in response to PB disease in onion
reprogrammed the overall pattern of gene expression in disease
state (Supplementary Figure 4).

Furthermore, DEGs were examined for species distribution
and found that majority of annotated transcripts of AK were
matched with Elaeis guineensis (23.05%), followed by Asparagus
officinalis (9.38%) and Allium cepa (5.47%). In AFR, the majority
of annotated transcripts showed homology with E. guineensis
(21.32%) followed by A. officinalis (12.54%) and Allium sativum
(5.64%). The top ten species’ distribution of DEGs in both
genotypes is presented in Supplementary Figure 3.

Transcripts of both AK and AFR were blasted against
PRGdb, and we found that 73 transcripts showed homology
with reference pathogen receptor genes (PRGs) (Supplementary
Figure 3). Different PRGs were differentially expressed in AK and
AFR. Hm2, Serk3A, PBS1, Pid2, and Ve2 were top upregulated
PRGs in AFR, while Serk3A, Mlo, PBS1, and Pid2 were top PRGs
in AK. Details of PRGs with rgene-id are given in Supplementary
Material 2 and Supplementary Figure 5.

Defense-Related Differentially Expressed
Genes in Response to Purple Blotch in
Onion
Pathogenesis-Related Proteins in Response to
Alternaria porri
A total of seven classes of pathogenesis-related (PR) proteins
were found to be differentially expressed in onion genotypes
with response to PB infection. Expression of PR-1 (Antifungal),
PR-2 (β-1,3-Glucanase), PR-3 (Chitinases), PR-4 (Chitinases types
I, II), PR-5 (Thaumatin-like), PR-9 (Peroxidase), and PR-10
(Ribonuclease-like) was upregulated by several-fold on A. porri

Frontiers in Plant Science | www.frontiersin.org 5 April 2022 | Volume 13 | Article 857306112

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-857306 April 5, 2022 Time: 15:48 # 6

Khandagale et al. Onion RNAseq in Response to Purple Blotch

FIGURE 2 | Functional annotation of differentially expressed transcripts in response to PB in onion using gene ontology (GO); (A) AK and (B) AFR.

FIGURE 3 | Functional annotation of differentially expressed transcripts in response to PB in onion using orthologous groups (COG) categories; (A) AK and (B) AFR.
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infection in onion. Transcripts for PR-1 were upregulated by
3.6–5.7-fold, PR-2 by 3.7–6.7-fold, PR-3 by 3–8-fold, PR-4 by
5.2–9.2-fold, PR-5 by 3.7-fold, PR-9 by 7.2–13.1-fold, and PR-
10 by 4.7–8.1-fold. Among these, PR-5 was only upregulated in
resistant genotype AK.

Receptor-Like Kinases in Response to Alternaria
porri
Receptor-like serine/threonine-protein kinase, protein kinase
domain-containing protein, wall-associated receptor kinase-
like, brassinosteroid LRR receptor kinase, CBL-interacting
serine/threonine-protein kinase, and calcium-dependent protein
kinase were upregulated by 4.8, 3.8, 3.3, 7.8, 5.3, and 2.8 old,
respectively, in AK. Salt tolerance receptor-like cytoplasmic
kinase 1 (6.8-fold), receptor-like serine/threonine-protein
kinase (6.7-fold), protein kinase domain-containing protein
(4.1-fold), brassinosteroid LRR receptor kinase (6.2-fold), CBL-
interacting serine/threonine-protein kinase (11.7-fold), and
calcium-dependent protein kinase (3.4-fold) showed increased
expression in AFR.

Genes for Phytohormones in Response to Alternaria
porri
Genes involved in the phytohormone biosynthesis process were
differentially expressed onion genotypes under PB infection.
Transcripts for ethylene synthesis, such as 1-aminocyclopropane-
1-carboxylic acid synthase (ACS), and 1-aminocyclopropane-1-
carboxylic acid oxidase (ACO), were upregulated by 4.7–7.4-fold
and 3.6–7.2-fold in present studies. Similarly, transcripts for
key ABA biosynthetic gene 9-cis-epoxycarotenoid dioxygenase
(NCED) were upregulated by 4.6–6.2-fold in response to A. porri
infection in onion. Linoleate 9S-lipoxygenase, a jasmonic acid
marker gene, was upregulated 7.3-fold in AK and 4.5-fold in AFR.
Furthermore, 12-oxophytodienoate reductase, which is involved
in jasmonic acid signaling and oxylipin biosynthesis, was
overexpressed by 8.6-fold in AK and 3.5-fold in AFR. Transcripts
for Phospholipase A also showed 5.3-fold increased expression in
AK. Transcripts for auxin-responsive protein (−5- to −11-fold)
and auxin transporter (−4.3-fold) were downregulated in AK,
whereas auxin-related protein 2 and auxin-response protein were
found to be upregulated by 7.4- and 7.6-fold, respectively, in AFR.
In addition, several ethylene response factors (ERFs) were also
expressed differentially in onion in response to PB infection.

Cell Wall Integrity Genes in Response to Alternaria
porri
Genes involved in cell wall integrity, such as pectin methylesterase
inhibitors (PMEI) and polygalacturonase inhibitor proteins
(PGIPs), were found to be differentially expressed in onion
genotypes under biotic stress. PMEI and PGIP were upregulated
by 4.6- and 9.8-fold, respectively, in AK, whereas in AFR, PGIP
was upregulated by 10.8-fold. The expression of xyloglucan
endotransglucosylase/hydrolase with a function in cell wall
biogenesis [GO:0042546], cell wall organization [GO:0071555],
and the xyloglucan metabolic process [GO:0010411] was only
increased in AK. Pectate lyase with polygalacturonase activity
[GO:0004650] and pectin-catabolic process [GO:0045490] was
downregulated by −7.8-fold in AK, while it was upregulated by

4.7-fold in AFR. In addition, transcripts for pectinesterase
were also showed a 5–12-fold increased expression in
both the genotypes.

Cytochrome P450 Monooxygenases in Response to
Alternaria porri
Several CYPs were differentially expressed in the present RNAseq
dataset of onion under biotic stress imposed by PB. Transcript
levels of CYP81, CYP81E, CYP86A, CYP89A2, CYP71A1,
CYP71A9, CYP736A12, CYP709B2, CYP79A, and CYP85A1 were
found to be elevated. Among these, CYP81 and CYP85A1 were
found only in AK, whereas CYP86A and CYP81E were found to
be upregulated only in AFR.

Other Defense-Related Genes
Glutathione S-transferase is an important gene in plant defense
in biotic and abiotic stress response, and transcripts for this
gene were observed to be increased in AK by 3.2–9.9-fold and
in AFR by 3.3–14.5-fold, respectively. Other important defense
genes, namely, E3 ubiquitin-protein ligase, hypersensitive-induced
response protein 1, and BTB/POZ domain-containing protein,
were upregulated by 9. 1-, 3. 8-, 6.5-fold in AK and 7. 5-, 6.
1-, 4.8-fold in AFR, respectively. GABA transporter1 (GAT1)
and the ankyrin repeat domain-containing protein were highly
upregulated by 11.8- and 6-fold only in AK. A few proteases
and peptidases were also expressed differentially in onion on
PB infection. Thiol protease, aspartic protease, carboxypeptidase,
serine carboxypeptidase, and metacaspase were upregulated
in both genotypes.

Transcription Factors in Response to Alternaria porri
A large number of transcription factors have been expressed
differentially in onions in response to biotic stress imposed owing
to PB infection. ERF, WRKY, MYB, and NAC are the major
TFs that are upregulated in the current RNAseq dataset. They
are known to play a key role in the plant defense response
against abiotic and biotic stress elements by reprogramming
the gene expression pattern in the cell. In this study, ERF1,
ERF2, ERF14, ERF96, NAC62, NAC42, NAC47, and NAC7 and
several other defense-related transcription factors were found
to be upregulated.

Metabolism Related Genes in Response to Alternaria
porri
Transcripts involved in flavonoid biosynthesis were also
expressed differentially on PB infection in onion. Flavonoid
glucosyltransferase and flavonoid 3′-hydroxylase were upregulated
by 4.1- and 4.5-fold, respectively, in AK, while flavonoid 3′-
hydroxylase was upregulated 5.8-fold in AFR. Anthocyanidin
synthase and Chalcone synthase were downregulated by−4.4 and
−5.6-fold in AK and AFR, respectively.

Several transcripts for genes in carbohydrate metabolism
were expressed differentially on A. porri infection in onion
genotypes. Glycosyltransferase (8.2-fold), sucrose synthase (4.4-
fold), and xylose isomerase (3.1-fold) were overexpressed in
AK after PB infection. Similarly, in AFR, glycosyltransferase
(11-fold), sucrose phosphate synthase (6.3-fold), Fructokinase
1 (4.1-fold), and Invertase (3.2-fold) showed upregulation
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due to A. porri infection. Glyceraldehyde -3-phosphate
dehydrogenase was downregulated by 3.2–4.3-fold in both
onion genotypes in this study. Transcript for Beta-glucosidase
23 with functional annotation negative regulation of the defense
response [GO:0031348] was upregulated in AFR.

Amino acid transporters also showed differential expression
in onions in response to PB disease. Transcripts for amino
acid transporter protein (6.5-fold) and amino acid transporter
domain-containing proteins (4.7 to 8.5-fold) upregulated in AK.
Similarly, amino acid transporter protein (6.7-fold) and amino
acid transporter domain-containing proteins (6–10-fold) showed
upregulation in AFR.

Validation by Quantitative Realtime-PCR
For validation of transcriptome, we selected 15 differentially
expressed genes that play an important role in the plant defense
response against diseases. These selected genes code for PR
proteins and antioxidants, such as PR1, PR3, PR4, PR5, and PR9,
and glutathione-S-transferase. Some of them are also involved in
the synthesis of phytohormones, such as ACS, NCED, and LOX,
and few of them code for transcription factors such as MYB, ERF,
and NAC. Furthermore, genes for protein-containing BTP/POZ
domain, ankyrin repeat domain, and PGIP were also validated
using real-time qPCR (Figure 4). There was a good correlation
(R2 = 0.87) between the levels of expression of genes in RNAseq
and qPCR assays, which ascertain the reliability and quality of
present transcriptome analysis (Supplementary Figure 6).

Antioxidant Enzyme Assays
Biochemical changes associated with PB infection were examined
for the activity of antioxidant enzymes in the control and
infected resistant and susceptible onion genotypes at 5 dpi. It
was observed that infection with A. porri significantly increased
the activity of all antioxidant enzymes examined. The activity
of APX, GPX, and PAL was found significantly higher in the
resistant genotype AK, whereas CAT and SOD activity was higher
in the susceptible counterpart AFR. The catalase activity in
infected AFR and AK was 2.8-fold and 2-fold higher than their
respective controls, while the activity of ascorbate peroxidase was
higher by 1.8 and 3.5-fold in AFR and AK, respectively. The
guaiacol peroxidase activity was increased by 2.3-fold in AFR
and 2.6-fold in AK after A. porri infection. The SOD activity
was increased by 3.2-fold in AFR and 2.4-fold in AK after
infection. The PAL assay showed a higher increase in activity in
AK (2.4-fold) than in AFR (2.1-fold), while there is no significant
change in activity that was observed in controls of both the
genotypes (Figure 5).

DISCUSSION

Onion is an economically important crop in the world, and PB is
one of the most devastating diseases of this crop. There is limited
information available on the molecular response of onion to PB.
RNAseq is one of the efficient advanced approaches for studying
the molecular mechanism behind plant disease response. The

main aim of this study is the transcriptome profiling of PB-
resistant and susceptible genotypes.

Pathogenesis-Related Proteins
Pathogenesis-related (PR) proteins were synthesized by a plant
in adverse conditions owing to biotic or abiotic stress elements
and are a vital component of plant defense response. They are
involved in HR or SAR against pathogen infection and are
regulated by the complex panoply of signaling pathways. They
are classified into 17 families along with a putative new PR-18
group, which comprises fungus and SA-inducible carbohydrate
oxidases (Custers et al., 2004; Jain and Khurana, 2018). In this
investigation, PR proteins belonging to seven families (PR-1, PR-
2, PR-3, PR-4, PR-5, PR-9, and PR-10) were showed upregulation
in onion in response to PB disease. PR-4 proteins are comprised
of chitinases and also have ribonuclease activity, and these
accumulate in response to a pathogen attack or wounding. Bravo
et al. (2003) demonstrated that the fungal elicitors, wound,
exogenous ABA, and methyl jasmonate treatment resulted in
the production of ZmPR4 in maize. Recently, sugarcane PR-4
was reported to be involved in fungal cell death by virtue of
ribonuclease, chitosanase, and chitinase action (Franco et al.,
2019). Our previous study reported upregulation of chitinase
gene in response to Stemphylium blight in onion caused due to a
necrotrophic pathogen Stemphylium vesicarium (Roylawar et al.,
2021). PR-5 (thaumatin-like) imparted fungal disease resistance
in transgenic tobacco (Rajam et al., 2007). In addition, it has also
been reported that PR1, PR2, PR4, and PR5 are induced in garlic
after infection by Fusarium (Rout et al., 2016; Chand et al., 2017;
Anisimova et al., 2021). PR-9 is comprised of peroxidase and is
well known for its role in plant defense as a potent antioxidant in
ROS scavenging. These peroxidases were upregulated in apples by
the infection of Alternaria blotch caused by Alternaria alternata
(Zhang et al., 2015). Thus, higher expression of PR proteins
suggests the development of systemic acquired resistance against
A. porri in onion.

Transcription Factors
Few ERF transcription factors were upregulated in both
genotypes under pathogen attack. ERF1 is known to be
induced by phytohormones such as jasmonate and ethylene
and imparts resistance against necrotrophic pathogens in
Arabidopsis (Lorenzo et al., 2003; Berrocal-Lobo and Molina,
2004). Constitutive expression of ERF1 and ERF2 activates the
pathogen-inducible plant defensin 1.2 (PDF1.2) gene (Maruyama
et al., 2013). Similarly, the expression of JA/ET defense genes,
such as PDF1.2a, PR-3, and PR-4, was upregulated by ERF96 and
positively regulates the resistance to necrotrophic fungi, which
indicates its importance in ERF regulatory network (Catinot
et al., 2015). ERF14 is also known to play a key role in
defense against Fusarium oxysporum in Arabidopsis, and the
expression of other ERFs also depends on the expression of
ERF14. Further PDF1.2 and Chitinase expression levels were also
increased in ATERF14 overexpression lines, which suggests its
prominent role in plant defense (Oñate-Sánchez et al., 2007).
Thus, these ERFs might play a role via JA/ET signaling in PB
disease response in onion. Several WRKY transcription factors
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FIGURE 4 | Validation selected differentially expressed genes by relative qPCR analysis in AK and AFR at 5 dpi. Data refer to the most representative of two
independent repeated experiments. Each reaction was performed in triplicate, and values represent the average of these three technical replicates. Error bar showed
the standard error of the mean, and different letters suggest statistically significant differences as per Duncan’s multiple range test (p < 0.05).

were differentially expressed in response to A. porri infection in
onion. WRKY6 was reported to be a positive regulator for plant
resistance to necrotrophic pathogen via JA, ET, ABA-induced
gene expression, ROS accumulation, and upregulation of PR
genes against Phytophthora infestans and Ralstonia solanacearum
(Cai et al., 2015; Hong et al., 2018). Furthermore, WRKY65
was reported to play a key role in imparting resistance against
Alternaria tenuissima in herbaceous peony by regulating JA and
SA levels (Wang et al., 2020). MdWRKY75 was reported to
increase the resistance to A. alternata in apples primarily by
jasmonic acid signaling and antioxidant enzymes (Hou et al.,
2021). These WRKY TFs are also upregulated in onion in
response to PB infection and might be performing a similar
function in onion also. Several NAC transcription factors were
also upregulated in this study. NAC TFs were reported to be
involved in the induction of plant defense against Alternaria
brassicicola in Arabidopsis and Brassica (Saga et al., 2012; Mondal
et al., 2020). NAC7 was reported to be a negative regulator of

senescence and stay green trait in maize. RNAi lines of maize
exhibited delayed senescence as well as an increase in total
biomass (Mondal et al., 2020). In this study, NAC7 was highly
upregulated in susceptible genotype (AFR) which might be due
to higher senescence of leaves on PB infection. Similarly, several
other transcription factors, such as MYB, bZIP, and C2H2, were
also differentially expressed under A. porri infection in onion
genotypes under study. They showed differential expression in
other crops also in response to disease and plays important
role in plant immunity (Verma et al., 2017; Yuan et al.,
2019).

Phytohormones
Phytohormones, such as jasmonic acid, salicylic acid, abscisic
acid, and ethylene, play a key role in plant responses to
biotic and abiotic stresses. In this study, genes in jasmonic
acid and ethylene biosynthesis were highly upregulated in
response to A. porri infection. JA and ET are mainly involved
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FIGURE 5 | Effects of Alternaria porri infection on resistant and susceptible onion antioxidant and defense enzymes at 5 dpi. Data refer to the most representative of
two independent repeated experiments. Values are expressed as the average of three biological replicates, each consisting of three plants pooled together. Error bar
showed the standard error of the mean, and different letters suggest statistically significant differences as per Duncan’s multiple range test (p < 0.05).
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in defense against necrotrophic pathogens, while SA acts
against biotrophic pathogens (Dong, 1998; Glazebrook, 2005;
Zhang et al., 2018). Acyl-CoA oxidase, 12-oxophytodienoate
reductase, lipoxygenase, and 3-ketoacyl-CoA thiolase transcripts
in jasmonic acid biosynthesis were also reported to be
upregulated in response to other fungal diseases such as
Bakanae disease in rice (Matić et al., 2016), Fusarium head
blight of wheat (Pan et al., 2018), Fusarium wilt of Flax
(Galindo-González and Deyholos, 2016), and Sclerotium stem
rot in peanut (Bosamia et al., 2020). Ethylene is also an
important phytohormone that acts hand in hand with JA to fight
necrotrophic diseases. Key transcripts in ethylene biosynthesis,
namely, ACS and ACO, were highly expressed in onion in
response to A. porri infection. Transgenic rice with inducible
ACS expression exhibited enhanced resistance to Magnaporthe
oryzae and Rhizoctonia solani (Helliwell et al., 2013). Further
RNAseq studies also found the upregulation of ET synthetic
genes in response to the necrotrophic fungal pathogen (De
Cremer et al., 2013; Matić et al., 2016; Pan et al., 2018).
JA and ET modulate the expression of PR genes through a
signaling network comprising various transcription factors and
metabolites (Pieterse et al., 2012). NCED, a key gene in ABA
biosynthesis, was also upregulated in onion genotypes due to
infection of A. porri. ABA is known to regulate the various
processes in plant-pathogen interactions (Fan et al., 2009). It
plays an effective role in imparting disease resistance in plants
against necrotrophic fungi (Ton and Mauch-Mani, 2004; Boba
et al., 2020). PR1 and GST are the marker genes for the salicylic
acid and were reported to be induced in the present dataset
with response to PB in onion. GST’s main role is already
known as the removal of toxic compounds and acts as an
antioxidant. Upregulation of GST was reported in several plants
after infection by necrotrophic pathogens such as Alternaria
brassicicola (Schenk et al., 2000).

Cell Wall Integrity Genes
The cell wall is the first physical barrier to the pathogen,
and numerous changes occur in the cell wall in response
to the pathogen (Malinovsky et al., 2014). Necrotrophic
fungal pathogens degrade the cell wall matrix with the help
of the secretion of different enzymes. The plant maintains
cell wall integrity by inhibiting the cell wall degrading
enzymes by the expression of different enzymes such as
PMEI and PGIPs. The genes for these enzymes were highly
upregulated in onion in response to PB pathogen. In Arabidopsis,
it was found that PMEI helps in maintaining cell wall
integrity by inhibiting the pectin methylesterase which imparted
resistance against botrytis (Lionetti et al., 2017). PGIPs
protect the cell wall from pathogen, and insects attack by
inhibiting the depolymerization of pectin in the cell wall by
polygalacturonases (Kalunke et al., 2015). PGIPs not only protect
pectin from degradation but also lead to the production of
longer oligogalacturonides that can be recognized as damage-
associated molecular patterns that ultimately activate PTI and
slow down the colonization of pathogen (Federici et al., 2006).
These genes might also contribute toward defense response
against PB in onion.

Defense-Related Genes Exclusively
Expressed in Arka Kalyan
A few genes were exclusively showed upregulation in a resistant
genotype (AK), PR5, ankyrin repeat domains, GABA transporter,
CYP85A1, etc. PR5 was reported to induce phytohormones
and biotic and abiotic stresses in garlic. Its ectopic expression
in Arabidopsis increased resistance to Botrytis by constitutive
expression of defense-related genes, which suggests its broad
role in plant defense (Rout et al., 2016). Similarly, ankyrin
repeat domains are widely distributed and well-studied protein–
protein interaction domains in several processes in plants
including response biotic and abiotic stresses. In rice, ankyrin
repeat-containing protein involved in providing defense against
Magnaporthe oryzae, and overexpression lines showed higher
expression of SA and JA responsive genes (Mou et al., 2013).
Similarly, the expression of ankyrin repeat protein, GmARP1,
imparted resistance in transgenic soybean against Fusarium
virguliforme (Ngaki et al., 2016). CYPs are known to play an
important role in biotic and abiotic stress response in plants
by modulating levels of antioxidant molecules, phytohormones,
and other metabolites (Pandian et al., 2020). CYP85A1 is
reported to be involved in brassinosteroid biosynthesis, and its
overexpression in tobacco increased tolerance to Phytophthora
nicotianae in transgenic plants by elevating brassinosteroid level
and modulation of phytohormone and defense enzyme activities
(Duan and Song, 2019). This suggests that CYP85A1 might play
a role in defense response against pathogen. GABA accumulation
after abiotic or biotic stress is reported in several plants (Rashmi
et al., 2018), and it might help in enhancing host immunity
against fungal pathogens by modulating oxidative enzymes
(Shelp et al., 2021). GABA transporter 1 (GAT1) involved in
GABA influx into the cell (Batushansky et al., 2015). It suggests
GABA’s important role in plant defense response.

Metabolism-Related Genes in Response
to Alternaria porri Infection
Secondary metabolites play an important role in plant defense
against biotic and abiotic stresses by their antioxidant and
antibacterial properties. Onions are a rich source of secondary
metabolites such as flavonoids (Khandagale and Gawande, 2019).
Flavonoid glucosyl-transferase is involved in the glycosylation
of these flavonoids. They are known to regulate quercetin
and kaempferol levels in plants and govern the plant defense
against the pathogen (Campos et al., 2019). Flavonoid 3′-
hydroxylase, another gene in the flavonoid pathway, was reported
to be involved in the fungal pathogen-induced production of
phytoalexins (Boddu et al., 2004). Glycosyltransferase is one
of the players in JA-SA cross-talk during defense response
signaling in plants. The overexpression of UGT76B1 in
Arabidopsis increased the resistance against a necrotrophic
pathogen; Alternaria brassicicola also decreased the senescence
with upregulation of JA dependent pathway. On the contrary,
silencing of this gene led to reduced tolerance to A. brassicicola,
induction of SA pathway, and elevated resistance to the
biotrophic pathogen (von Saint Paul et al., 2011). Sugars
and carbohydrates are the prime sources of energy. Several
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carbohydrate metabolisms and energy production genes showed
differential expression in this study such as sucrose synthase,
sucrose phosphate synthase, and invertase. These are reported to
play role in defense response by interaction with phytohormones
signaling in plants (Morkunas and Ratajczak, 2014; Tauzin and
Giardina, 2014). The upregulation of these genes suggests that
they might be playing such a role in defense response against PB
in onion as well.

Pathogen Receptor Genes From PRGdb
PRGdb is a database of PRGs that provide constant updates on
plant resistance genes (Calle García et al., 2021). In this analysis,
we found 73 transcripts having homology with reference PRGs
in PRGdb. Hm1 and Hm2 code for the NADPH-dependent HC-
toxin reductases which were reported to protect maize from
the toxin produced by a fungal pathogen (Dehury et al., 2014).
Serk3a belongs to somatic embryogenesis receptor kinases and
is involved in defense response. Loss of function mutants for
Serk3a was unable to induce defense response against P. infestans
in tobacco (Chaparro-Garcia et al., 2011) and also did not
exhibit any defense response in potato after oligopeptide Pep-
13 treatment (Nietzschmann et al., 2019). PBS1 is a member of
receptor-like cytoplasmic kinases and is involved in the pattern
triggered defense response in plants (Swiderski and Innes, 2001;
Tang et al., 2017). Pid2 is a transmembrane receptor-like kinase
that plays role in a rice blast resistance (Sharma et al., 2016).
It was reported that E3 ubiquitin ligase and Pid2 interaction
involved in the regulation of cell death and immunity against rice
blast disease (Wang et al., 2015). Another PRG, Ve2, was found
to impart resistance to wilt caused by Verticillium (Chen et al.,
2017). These pathogen receptor genes might also play a key role in
imparting immunity against PB in onion. These PRGs need to be
investigated further for a better understanding of plant-pathogen
interaction in onion.

Antioxidant and Defense Enzymes
Biotic stress led to the generation of ROS in plants which
help to fight pathogen via HR, and PCD (Apel and Hirt,
2004; Roylawar et al., 2021) and ROS also act as secondary
messengers in signaling defense response (Yan et al., 2007;
Hasanuzzaman et al., 2020). In this study, activities of antioxidant
and defense enzymes, such as superoxide dismutase, catalase,
ascorbate peroxidase, guaiacol peroxidase, and phenyl ammonia
lyse, were increased in A. porri infected onion genotypes
over control plants. GPX protects cells by neutralizing ROS
radicals and functions as an antifungal agent in plant disease
response (Chavan et al., 2013; Pieczul et al., 2020). GPX is
also involved in lignin synthesis which acts as a barrier to
pathogen spread in infected tissues (Tayefi-Nasrabadi et al., 2011;
Roylawar et al., 2021). APX and CAT both play important
roles in scavenging hydrogen peroxide. CAT plays a key role
in the detoxification of H2O2 generated in peroxisome during
pathogen attacks (Meena et al., 2016; Roylawar et al., 2021).
Excessive H2O2 is scavenged by the ascorbate-glutathione cycle
involving APX and was reported that APX activity, as well as
gene expression level, gets elevated during pathogen infection
(Meena et al., 2016). SOD performs dismutation of highly toxic

oxygen radicals to oxygen and comparatively less toxic hydrogen
peroxide. SOD activity is often increased in various biotic
and abiotic stress situations, and higher activity is correlated
with the resistance to the oxidative stress caused by abiotic
stress as well as pathogens (Ehsani-Moghaddam et al., 2006;
Gill and Tuteja, 2010; Youssef et al., 2020). These enzyme
activities were also reported to be modulated by phytohormones
(Szöke et al., 2021). Thus, in this study, in onion, reprograming
of these genes led to the activation of antioxidant enzymes
in response to PB.

CONCLUSION

The present RNAseq analysis discovered several DEGs in onion
in response to PB disease. Functional annotation analysis by GO
and COG revealed that a large number of genes in several BPs
including defense-related terms were enriched. This suggests that
a large number of genes play role in PB response in onions.
Several pathogen recognition genes were also discovered from
PRGdb analysis. Defense-related genes, such as PR proteins,
antioxidants, phytohormones biosynthesis and signaling, cell wall
integrity, and transcription factors, were found to be induced in
PB disease in onion. Antioxidant enzymes were found to play
a key role in PB resistance in onion. Further investigation is
required to identify key candidate genes necessary for imparting
PB resistance using genetic engineering. This is the first report
of transcriptome analysis of onion in response to PB, and thus,
data generated in the present investigation will help researchers
for further research in PB-onion interaction.
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et al. (2020). The activity of β-glucosidase and guaiacol peroxidase in different
genotypes of winter oilseed rape (Brassica napus L.) infected by Alternaria black
spot fungi. Acta Physiol. Plant. 42:142.

Pieterse, C. M. J., Van derDoes, D., Zamioudis, C., Leon-Reyes, A., and Van Wees,
S. C. M. (2012). Hormonal modulation of plant immunity. Annu. Rev. Cell Dev.
Biol. 28, 489–521. doi: 10.1146/annurev-cellbio-092910-154055

Prakasam, V., and Sharma, P. (2012). Trichoderma harzianum (Th-3) a potential
strain to manage the purple blotch of onion (Allium cepa L.) caused by
Alternaria porri under North Indian plains. J. Agric. Sci. 4:266.

Rajam, M. V., Chandola, N., Goud, P. S., Singh, D., Kashyap, V., Choudhary,
M. L., et al. (2007). Thaumatin gene confers resistance to fungal pathogens as
well as tolerance to abiotic stresses in transgenic tobacco plants. Biol. Plant 51,
135–141. doi: 10.1007/s10535-007-0026-8

Rashmi, D., Zanan, R., John, S., Khandagale, K., and Nadaf, A. (2018). “γ-
aminobutyric acid (GABA): biosynthesis, role, commercial production, and
applications,” in Studies in Natural Products Chemistry, Vol. 57, ed. A. ur-
Rahman (Amsterdam: Elsevier), 413–452. doi: 10.1016/b978-0-444-64057-4.
00013-2

Rout, E., Nanda, S., and Joshi, R. K. (2016). Molecular characterization and
heterologous expression of a pathogen induced PR5 gene from garlic (Allium
sativum L.) conferring enhanced resistance to necrotrophic fungi. Eur. J. Plant
Pathol. 144, 345–360. doi: 10.1007/s10658-015-0772-y

Roylawar, P., and Kamble, A. (2017). β–amino butyric acid mediated changes in
cellular redox homeostasis confers tomato resistance to early blight. Australas.
Plant Pathol. 46, 239–249. doi: 10.1007/s13313-017-0484-1

Roylawar, P., Khandagale, K., Randive, P., Shinde, B., Murumkar, C., Ade, A., et al.
(2021). Piriformospora indica primes onion response against stemphylium leaf
blight disease. Pathogens 10:1085. doi: 10.3390/pathogens10091085

Saga, H., Ogawa, T., Kai, K., Suzuki, H., Ogata, Y., Sakurai, N., et al. (2012).
Identification and characterization of ANAC042, a transcription factor family
gene involved in the regulation of camalexin biosynthesis in Arabidopsis. Mol.
Plant Microbe Interact. 25, 684–696. doi: 10.1094/MPMI-09-11-0244

Schenk, P. M., Kazan, K., Wilson, I., Anderson, J. P., Richmond, T., Somerville,
S. C., et al. (2000). Coordinated plant defense responses in Arabidopsis revealed
by microarray analysis. Proc. Natl. Acad. Sci. U.S.A. 97, 11655–11660. doi:
10.1073/pnas.97.21.11655

Sharma, T. R., Das, A., Thakur, S., Devanna, B. N., Singh, P. K., Jain, P., et al.
(2016). Oscillating transcriptome during rice-Magnaporthe interaction. Curr.
Issues Mol. Biol. 19, 99–120.

Shelp, B. J., Aghdam, M. S., and Flaherty, E. J. (2021). γ-Aminobutyrate (GABA)
regulated plant defense: mechanisms and opportunities. Plants 10:1939. doi:
10.3390/plants10091939

Swiderski, M. R., and Innes, R. W. (2001). The Arabidopsis PBS1 resistance gene
encodes a member of a novel protein kinase subfamily. Plant J. 26, 101–112.
doi: 10.1046/j.1365-313x.2001.01014.x

Szöke, L., Moloi, M. J., Kovács, G. E., Biró, G., Radócz, L., Hájos, M. T., et al.
(2021). The application of phytohormones as biostimulants in corn smut
infected Hungarian sweet and fodder corn hybrids. Plants 10:1822. doi: 10.3390/
plants10091822

Tang, D., Wang, G., and Zhou, J. M. (2017). Receptor kinases in plant-pathogen
interactions: more than pattern recognition. Plant Cell 29, 618–637. doi: 10.
1105/tpc.16.00891

Tauzin, A. S., and Giardina, T. (2014). Sucrose and invertases, a part of the plant
defense response to the biotic stresses. Front. Plant Sci. 5:293. doi: 10.3389/fpls.
2014.00293

Tayefi-Nasrabadi, H., Dehghan, G., Daeihassani, B., Movafegi, A., and Samadi, A.
(2011). Some biochemical properties of guaiacol peroxidases as modified by salt
stress in leaves of salt-tolerant and salt-sensitive safflower (Carthamus tinctorius
L.) cultivars. Afr. J. Biotechnol. 10, 751–763.

Ton, J., and Mauch-Mani, B. (2004). Beta-amino-butyric acid-induced resistance
against necrotrophic pathogens is based on aba-dependent priming for callose.
Plant J. 38, 119–130. doi: 10.1111/j.1365-313X.2004.02028.x

Tripathy, P., Priyadarshini, A., Das, S. K., Sahoo, B. B., and Dash, D. K. (2013).
Evaluation of onion (Allium cepa L.) genotypes for tolerance to thrips (Thrips

tabaci L.) and purple blotch (Alternaria porri (E) Ciferri). Int. J. Biores. Stress
Manage. 4, 561–564.

Tyagi, S., Dube, V. P., and Charaya, M. U. (1990). Biological control of the purple
blotch of onion caused by Alternaria porri (Ellis) Ciferri. Int. J. Pest Manag. 36,
384–386. doi: 10.1080/09670879009371517

Veeraghanti, K. S., Naik, B. G., and Hegde, K. T. (2017). Management of purple
blotch disease of onion under field condition. J. Pharmacogn. Phytochem. 6,
1768–1769.

Verma, S., Gazara, R. K., and Verma, P. K. (2017). Transcription factor repertoire
of necrotrophic fungal phytopathogen Ascochyta rabiei: predominance of MYB
transcription factors as potential regulators of secretome. Front. Plant Sci.
8:1037. doi: 10.3389/fpls.2017.01037

Volk, S., and Feierabend, J. (1989). Photoinactivation of catalase at low temperature
and its relevance to photosynthetic and peroxide metabolism in leaves. Plant
Cell Environ. 12, 701–712. doi: 10.1111/j.1365-3040.1989.tb01630.x

von Saint Paul, V., Zhang, W., Kanawati, B., Geist, B., Faus-Keßler, T., Schmitt-
Kopplin, P., et al. (2011). The Arabidopsis glucosyltransferase UGT76B1
conjugates isoleucic acid and modulates plant defense and senescence. Plant
Cell 23, 4124–4145. doi: 10.1105/tpc.111.088443

Wang, J., Qu, B., Dou, S., Li, L., Yin, D., Pang, Z., et al. (2015). The E3 ligase
OsPUB15 interacts with the receptor-like kinase PID2 and regulates plant cell
death and innate immunity. BMC Plant Biol. 15:49. doi: 10.1186/s12870-015-
0442-4

Wang, X., Li, J., Guo, J., Qiao, Q., Guo, X., and Ma, Y. (2020). The WRKY
transcription factor PlWRKY65 enhances the resistance of Paeonia lactiflora
(herbaceous peony) to Alternaria tenuissima. Hortic. Res. 7:57. doi: 10.1038/
s41438-020-0267-7

White, T. J., Bruns, T., Lee, S., and Taylor, J. (1990). Amplification and Direct
Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics, in: PCR Protocols-
A Guide to Methods and Applications. San Diego, CA: Academic Press,
315–322.

Xu, X. M., Jeffries, P., Pautasso, M., and Jeger, M. J. (2011). Combined
use of biocontrol agents to manage plant diseases in theory and practice.
Phytopathology 101, 1024–1031. doi: 10.1094/PHYTO-08-10-0216

Yan, J., Tsuichihara, N., Etoh, T., and Iwai, S. (2007). Reactive oxygen species and
nitric oxide are involved in ABA inhibition of stomatal opening. Plant Cell
Environ. 30, 1320–1325. doi: 10.1111/j.1365-3040.2007.01711.x

Youssef, K., Roberto, S. R., Tiepo, A. N., Constantino, L. V., de Resende, J. T. V.,
and Abo-Elyousr, K. A. (2020). Salt solution treatments trigger antioxidant
defense response against gray mold disease in table grapes. J. Fungi 6:179.
doi: 10.3390/jof6030179

Yuan, X., Wang, H., Cai, J., Li, D., and Song, F. (2019). NAC transcription factors
in plant immunity. Phytopathol. Res. 1:3.

Zhang, C. X., Tian, Y., and Cong, P. H. (2015). Proteome analysis of pathogen-
responsive proteins from apple leaves induced by the alternaria blotch
Alternaria alternata. PLoS One 10:e0122233. doi: 10.1371/journal.pone.0122233

Zhang, W., Zhao, F., Jiang, L., Chen, C., Wu, L., and Liu, Z. (2018). Different
pathogen defense strategies in Arabidopsis: more than pathogen recognition.
Cells 7:252. doi: 10.3390/cells7120252

Zhu, L., Ni, W., Liu, S., Cai, B., Xing, H., and Wang, S. (2017). Transcriptomics
analysis of apple leaves in response to Alternaria alternata apple pathotype
infection. Front. Plant Sci. 8:22. doi: 10.3389/fpls.2017.00022

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Khandagale, Roylawar, Kulkarni, Khambalkar, Ade, Kulkarni,
Singh and Gawande. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 15 April 2022 | Volume 13 | Article 857306122

https://doi.org/10.1186/s12864-018-5012-3
https://doi.org/10.1186/s12864-018-5012-3
https://doi.org/10.3390/antiox9050454
https://doi.org/10.1146/annurev-cellbio-092910-154055
https://doi.org/10.1007/s10535-007-0026-8
https://doi.org/10.1016/b978-0-444-64057-4.00013-2
https://doi.org/10.1016/b978-0-444-64057-4.00013-2
https://doi.org/10.1007/s10658-015-0772-y
https://doi.org/10.1007/s13313-017-0484-1
https://doi.org/10.3390/pathogens10091085
https://doi.org/10.1094/MPMI-09-11-0244
https://doi.org/10.1073/pnas.97.21.11655
https://doi.org/10.1073/pnas.97.21.11655
https://doi.org/10.3390/plants10091939
https://doi.org/10.3390/plants10091939
https://doi.org/10.1046/j.1365-313x.2001.01014.x
https://doi.org/10.3390/plants10091822
https://doi.org/10.3390/plants10091822
https://doi.org/10.1105/tpc.16.00891
https://doi.org/10.1105/tpc.16.00891
https://doi.org/10.3389/fpls.2014.00293
https://doi.org/10.3389/fpls.2014.00293
https://doi.org/10.1111/j.1365-313X.2004.02028.x
https://doi.org/10.1080/09670879009371517
https://doi.org/10.3389/fpls.2017.01037
https://doi.org/10.1111/j.1365-3040.1989.tb01630.x
https://doi.org/10.1105/tpc.111.088443
https://doi.org/10.1186/s12870-015-0442-4
https://doi.org/10.1186/s12870-015-0442-4
https://doi.org/10.1038/s41438-020-0267-7
https://doi.org/10.1038/s41438-020-0267-7
https://doi.org/10.1094/PHYTO-08-10-0216
https://doi.org/10.1111/j.1365-3040.2007.01711.x
https://doi.org/10.3390/jof6030179
https://doi.org/10.1371/journal.pone.0122233
https://doi.org/10.3390/cells7120252
https://doi.org/10.3389/fpls.2017.00022
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-861637 April 27, 2022 Time: 15:26 # 1

REVIEW
published: 03 May 2022

doi: 10.3389/fpls.2022.861637

Edited by:
Mostafa Abdelwahed

Abdelrahman,
Aswan University, Egypt

Reviewed by:
Suresh Gawande,

Directorate of Onion and Garlic
Research (ICAR), India

Pradeep Kumar,
Central Arid Zone Research Institute

(ICAR), India

*Correspondence:
M. S. Parvathi

parvathi.cph@gmail.com;
parvathi.m@kau.in

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Crop and Product Physiology,
a section of the journal

Frontiers in Plant Science

Received: 24 January 2022
Accepted: 14 March 2022

Published: 03 May 2022

Citation:
Parvathi MS, Antony PD and

Kutty MS (2022) Multiple Stressors
in Vegetable Production: Insights

for Trait-Based Crop Improvement
in Cucurbits.

Front. Plant Sci. 13:861637.
doi: 10.3389/fpls.2022.861637

Multiple Stressors in Vegetable
Production: Insights for Trait-Based
Crop Improvement in Cucurbits
M. S. Parvathi1*†, P. Deepthy Antony2† and M. Sangeeta Kutty3†

1 Department of Plant Physiology, College of Agriculture Vellanikkara, Kerala Agricultural University, Thrissur, India, 2 Centre
for Intellectual Property Rights, Technology Management and Trade, College of Agriculture Vellanikkara, Kerala Agricultural
University, Thrissur, India, 3 Department of Vegetable Science, College of Agriculture Vellanikkara, Kerala Agricultural
University, Thrissur, India

Vegetable production is a key determinant of contribution from the agricultural sector
toward national Gross Domestic Product in a country like India, the second largest
producer of fresh vegetables in the world. This calls for a careful scrutiny of the threats
to vegetable farming in the event of climate extremes, environmental degradation
and incidence of plant pests/diseases. Cucurbits are a vast group of vegetables
grown almost throughout the world, which contribute to the daily diet on a global
scale. Increasing food supply to cater to the ever-increasing world population, calls
for intensive, off-season and year-round cultivation of cucurbits. Current situation
predisposes these crops to a multitude of stressors, often simultaneously, under field
conditions. This scenario warrants a systematic understanding of the different stress
specific traits/mechanisms/pathways and their crosstalk that have been examined in
cucurbits and identification of gaps and formulation of perspectives on prospective
research directions. The careful dissection of plant responses under specific production
environments will help in trait identification for genotype selection, germplasm screens
to identify superior donors or for direct genetic manipulation by modern tools for crop
improvement. Cucurbits exhibit a wide range of acclimatory responses to both biotic
and abiotic stresses, among which a few like morphological characters like waxiness
of cuticle; primary and secondary metabolic adjustments; membrane thermostability,
osmoregulation and, protein and reactive oxygen species homeostasis and turnover
contributing to cellular tolerance, appear to be common and involved in cross talk
under combinatorial stress exposures. This is assumed to have profound influence in
triggering system level acclimation responses that safeguard growth and metabolism.
The possible strategies attempted such as grafting initiatives, molecular breeding,
novel genetic manipulation avenues like gene editing and ameliorative stress mitigation
approaches, have paved way to unravel the prospects for combined stress tolerance.
The advent of next generation sequencing technologies and big data management of
the omics output generated have added to the mettle of such emanated concepts and
ideas. In this review, we attempt to compile the progress made in deciphering the biotic
and abiotic stress responses of cucurbits and their associated traits, both individually
and in combination.

Keywords: cucurbits, stress tolerance, biotic stress, abiotic stress, metabolic pathways breeding, grafting,
mitigation
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VEGETABLE PRODUCTION: THE
CUCURBIT CONTEXT

The vegetable crops belonging to the family Cucurbitaceae
are known as cucurbits or gourds. This important family of
vegetables contains 950 species in over 90 genera and is mainly
distributed in the tropics and subtropics (Schaefer and Renner,
2011). Cucurbit family includes several genera and represents
the largest tropical vegetable group (Roy and Chakrabarti, 2003;
Ebert et al., 2021), as summarized in Table 1

Wide variability is observed in the genetic makeup of the
members with monoploid chromosome number ranging from
seven (Cucumis sativus) to twenty (Cucurbita spp.) (Rai et al.,
2007; Choudhary et al., 2016; Samadia and Haldhar, 2017).
A great variability also exists in the utilization of these crops,
viz., salads (cucumber, gherkins, long melon), sweet dishes (ash
gourd, pointed gourd), pickles (gherkins), and desserts (melons).
Cucurbit seeds are also high in oil and protein content attesting to
their nutritive value (Rahman et al., 2008; Choudhary et al., 2015;
Bhargava et al., 2016).

Despite their wide adaptability and varied uses in different
parts of the world, their commercial cultivation is increasingly
facing the threats of climate change and consequent biotic and
abiotic stresses as well as genetic erosion. It is imperative that
a holistic approach on the scientific management of various
factors affecting the crop performance including development
of stress tolerant types, manipulation of metabolic pathways for
tolerance/resistance and their crosstalks, as well as propagation
strategies for withstanding biotic and abiotic stresses be adopted
for successful cucurbit production.

BIOTIC STRESS RESPONSES IN
CUCURBITS

Cucurbits are often attacked by a wide range of pests including
beetles, fruit flies, aphids, white flies, borers, mites etc. (Sharma
et al., 2016; Srivastava and Joshih, 2021; Table 2). The pests
include those affecting cucurbits worldwide as well as those which
are more pronounced in certain regions of the globe, where they
attain the status of primary pests. Cucumber moth, Diaphania
indica, is a potentially damaging pest of cucurbitaceous vegetables
worldwide (Chintha et al., 2002; Kinjo and Arakaki, 2002;
Hosseinzade et al., 2014; Dai et al., 2018; Jalali et al., 2019;
Capinera, 2020; Debnath et al., 2020; Khanzada et al., 2021).
The attractiveness of cucurbitaceous host plants for D. indica
was observed to depend on the species and condition of
the plant (uninfested and infested), and sex, mating status
and experience of the insect. Females that had experience of
cucumber, squash and melon plants were significantly attracted
to the same plant, and the larvae were attracted only to
volatiles of uninfested cucumber, squash and melon (Jalali et al.,
2019). Striped cucumber beetle (StCB) and the western striped
cucumber beetle (WStCB) are native to North America and
StCB is reported to have attained the status of primary pest in
northeastern and midwestern United States and eastern Canada
(Haber et al., 2021).

TABLE 1 | Diverse genera of family Cucurbitaceae.

Genera Common name Scientific name

Cucumis Cucumber Cucumis sativus L.

Muskmelon or
Cantaloupe

Cucumis melo L.

Citrullus Watermelon Citrullus lanatus subsp. vulgaris
(Schrad.) Fursa

Cucurbita Winter squash Cucurbita maxima Duchesne

Summer squash Cucurbita pepo L.

Pumpkin Cucurbita moschata Duchesne

Benincasa Wax or Ash gourd Benincasa hispida (Thunb.) Cogn.

Lagenaria Bottle gourd Lagenaria siceraria (Molina) Standl.

Luffa Ridge gourd Luffa acutangula (L.) Roxb.

Sponge gourd Luffa aegyptiaca Mill.

Momordica Bitter gourd Momordica charantia L.

Spiny gourd Momordica dioica Roxb. ex Willd

Coccinia Ivy gourd Coccinia grandis (L.) Voigt

Sechium Cho cho or Chayote Sicyos edulis Jacq.

Trichosanthes Snake gourd Trichosanthes cucumerina L.

Pointed gourd Trichosanthes dioica Roxb.

Although pests attack affects all stages of cucurbits, severity
and susceptibility depends on the plant type and stage of
incidence. Pests like red pumpkin beetle and leaf miner are
serious at seedling stage (Bains and Prakash, 1985) while beetles
[flea beetles (Phyllotreta cruciferae) and spotted cucumber beetles
(Diabrotica undecimpunctata)] were identified as major pests of
cucumber at vegetative stage (Alao et al., 2017). Plant growth
promoting rhizobacteria (PGPR) induced resistance was reported
to be more effective than insecticides for control of cucumber
beetles on cucumber possibly by inducing altered production of
allelochemicals acting as beetle attractants, repellents, or feeding
stimulants (Zehnder et al., 1997). The fruit fly (Zeugodacus
cucurbitae), a pest of summer squash, cucumber, pumpkin
and bitter gourd (Subedi et al., 2021) attacks only flowers
and fruits at crop maturity (Ram et al., 2009). Alao et al.
(2017) also demonstrated that at vegetative stage of the plant,
insect attack was considerably lower in cucumber compared to
watermelon, and was attributed to the presence of antixenosis
or antibiosis factors in cucumber. Some of the pests that attack
cucurbits like whiteflies, thrips and mites, transmit viruses
apart from causing feeding damage (Wisler et al., 1998; Park
and Lee, 2005; Messelink et al., 2008; Turechek et al., 2014).
Although cultivation under greenhouse conditions is reported
to be favorable for cucumber production, it is conducive
for the rapid development of insect and mite populations
(Messelink et al., 2020).

Climate change has led to resurgence of pests and their spread
to new areas and often the resistance of varieties breakdown
with the evolution of the pest. The fact that pests often
become resistant to commercial pesticide formulations in use
necessitates a study on pests and their management as well as
identification of resistant genotypes and the traits that confer the
resistance response.

Cucurbits are found to be affected severely by several
diseases including fungal, bacterial and viral diseases, and
nematodes, among which the viruses were reported to cause
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TABLE 2 | Major pests of cucurbits.

Pest Scientific name References

Fruit fly Bactrocera cucurbitae Haldhar et al.,
2014, 2017, 2018Leaf eating caterpillar Diaphania indica

Leaf miner Liriomyza trifolii

Aphids Aphis gossypii

Ash weevil Myllocerus subfasciatus

White flies Bemisia tabaci Wisler et al., 1998;
Wintermantel et al.,
2019

Beet armyworm Spodoptera exigua Haldhar, 2016

Red spotted mite Tetranychus urticae (Koch) Singh and
Raghuraman, 2011

Flower beetles Mylabris macilenta, Anthicus
crinitus, and Anthrenus subclaviger

Haldhar, 2013

Hadda beetle Epilachna vigintioctopunctata Haldhar et al.,
2014, 2017, 2018

Spotted cucumber
beetle

Diabrotica undecimpunctata Sharma et al., 2017

Striped cucumber
beetle

Acalymma vittatum Sharma et al., 2017

Melon aphid Aphis gossypii Ng and Perry, 2004

Red pumpkin beetle Aulacophora foveicollis (Lucas) Khan et al., 2012

the largest number of diseases (McCreight, 2011; Table 3).
Oomycete pathogens like Pseudoperonospora cubensis, causing
downy mildew, affects all major cucurbit crops, including
cucumber, muskmelon, squashes, and watermelon and can
assume epidemic proportions (Holmes et al., 2015). Virus
diseases, apart from causing reduction in vegetative growth
and crop yield, also results in poor fruit quality and makes
the plant susceptible to other pathogens as well (Sastry, 2013).
However, some studies have demonstrated that healthy wild
gourd plants (Cucurbita pepo ssp. texana) contract bacterial
wilt at significantly higher rates than virus infected plants.
Prior infection by Zucchini yellow mosaic virus (ZYMV)
was found to delay the subsequent onset and progression of
bacterial wilt disease by Erwinia tracheiphila (Shapiro et al.,
2013). Majority of the fungal diseases in cucurbits caused
by Stagonosporopsis cucurbitacearum (gummy stem blight and
black rot), Alternaria alternata (leaf spot), Fusarium solani
(damping off and wilt), Alternaria cucumerina (leaf spot)
and Myrothecium roridum (foliar and stem lesion) are seed
borne (Gannibal, 2011; Farrag and Moharam, 2012; Fish
et al., 2012). Bacterial pathogens like Acidovorax avenae
subsp. citrulli which causes fruit blotch of cucurbits is also
reported to be seed borne and contaminated seeds is the
main source of the bacterial inoculum (Block and Shepherd,
2008). Cucurbits adopt various strategies to resist or tolerate
diseases. Despite the fact that several genotypes showing
resistance to fungal, bacterial, viral and oomycete diseases
are available in the germplasm, long-term planting, variable
adaptability of pathogens and suppression of host resistance
mechanisms by the pathogens often leads to a gradual decline
in plant resistance (Chen et al., 2021; Gao et al., 2021;
Zhang S. et al., 2021).

TABLE 3 | Major diseases of cucurbits.

Disease Causal organism References

Fungal diseases

Cucurbit powdery
mildew

Podosphaera xanthii, Erysiphe
cichoracearum, and Sphaerotheca
fuliginea

Lebeda et al., 2016

Downy mildew Pseudoperonospora spp. Lebeda and Cohen,
2011

Anthracnose Colletotrichum orbiculare Wehner and Amand,
1995

Fruit rot Alternaria alternata, Fusarium equiseti,
Fusarium solani, Aspergillus spp.,
Phytophthora capsici, Penicillium
oxalicum, Bipolaris spp., Botrytis cinerea,
Cladosporium tenuissimum

Al-Sadi et al., 2011.

Damping off Pythium aphanidermatum, Phytophthora
melonis
(in cucumber)

Al-Sadi et al., 2008

Target leaf spot Corynespora cassiicola Li et al., 2012

Fusarium wilt Fusarium spp. Li et al., 2009

Bacterial diseases

Angular leaf spot Pseudomonas syringae Bhat et al., 2010

Bacterial wilt Erwinia tracheiphila Shapiro et al., 2014

Bacterial Fruit Blotch Acidovorax citrulli Wu et al., 2019

Viral diseases

Cucumber mosaic virus (CMV)

Cucurbit chlorotic yellows virus (CCYV) Sydänmetsä and
Mbanzibwa, 2016

Squash vein yellowing virus (SqVYV) Adkins et al., 2008

Zucchini yellow mosaic virus (ZYMV) Tsai et al., 2010;
Lecoq and Desbiez,
2012

Watermelon mosaic virus (WMV) Ayo-John et al.,
2014

Moroccan watermelon mosaic virus
(MWMV)

Arocha et al., 2008

Papaya ringspot virus (PRSV) Omar et al., 2011

Cucumber green mottle mosaic virus
(CGMMV)

Molad et al., 2021

Parasites

Root Knot disease Meloidogyne spp. Omar and Adam,
2018

ABIOTIC STRESS RESPONSES IN
CUCURBITS

Cucurbits are a vast group of vegetables which contribute to
the daily diet of a large portion of the world population and
are grown almost throughout the world. These vegetables are a
good source of nutrients and hence play a vital role in ensuring
nutritional security to mankind. Increasing food demands call
for intensive, offseason and year-round cultivation of cucurbits,
thereby predisposing these crops to a multitude of stressors like
high temperature, drought, salinity, heavy metal toxicity, nutrient
deficiency/toxicity, soil pH etc. The climate change scenario has
further intensified the predisposition to abiotic stressors- high
temperature, drought and salinity being the major players in
the global arena.

Plants support their growth and development even under
adverse conditions by developing several tolerance and
adaptation mechanisms. The biochemical, physiological
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and molecular responses elicited in response to abiotic stress are
guided by common stress tolerance pathways, shared by most of
the cultivated crops.

Heat Stress Response
Global warming is one of the most alarming effects of climate
change with a long term impact on agriculture, particularly
the vulnerable vegetable crops. Heat stress is a function of
temperature, duration/period of stress and rate of increase in
temperature. Cucurbits being warm season vegetables, are more
likely to be exposed to heat stress particularly the summer crop.
High temperatures can influence cell development, synthesis of
cell wall, plant hormonal connections, amalgamation of proteins,
stomatal regulation (thereby influencing photosynthesis, CO2
assimilation and respiration) etc. (Hasanuzzaman et al., 2012).

High temperatures adversely affect several physiological,
biochemical, morphological and molecular processes and
pathways in plants. Seed germination of cucumber and melon is
reduced drastically at 45 and 42◦C respectively (Kurtar, 2010).
The ideal temperatures for crop growth and development are
18.3–23.8◦C for squash, pumpkin, muskmelon and cucumber,
and 23.8–29.4◦C for watermelon. In cucumber (Cucumis sativus
L.) or watermelon (Citrullus lanatus L.), temperatures above
35◦C caused a reduction in flowers and sugar content (Lai et al.,
2018). Heat stress resulted in reduced biomass, root growth and
development, leaf area (Porter and Gawith, 1999; Al-Busaidi
et al., 2012; Balal et al., 2016) and decreased fruit length, fruit
diameter and reduced fruit weight (Balal et al., 2016). The
alterations in cell division, cell elongation, water loss and reduced
photosynthetic rate under heat stress resulted in reduced yield,
leaf area, biomass etc. (Hasanuzzaman et al., 2013).

The photosynthetic rate is positively correlated with the
chlorophyll content in the leaves (Lin et al., 2011). Plant growth
and yield are adversely affected due to reduced chlorophyll
under high temperature stress and subsequent reduction in
photosynthetic rate. In cucumber, heat stress induced reduction
in chlorophyll and photosynthetic rate has been observed (Balal
et al., 2016; Zhou et al., 2016). Reactive oxygen species (ROS)
levels are enhanced in the plant tissues in response to heat
stress which results in oxidative stress (Suzuki and Mittler,
2006; Potters et al., 2007; Pucciariello et al., 2012). During the
electron transport in photosynthetic process, electron leakage to
oxygen molecule results in generation of ROS (Sharma et al.,
2012). Plants have different mechanisms (enzymatic and non-
enzymatic) to detoxify the ROS. Several antioxidative enzyme
activities, i.e., superoxide dismutase (SOD), peroxidase (POD),
catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase
(GPX), glutathione reductase (GTR), monodehydroascorbate
reductase (MDHAR), etc. are generally reduced under heat stress
(Balal et al., 2016) and are upregulated in response to stress
particularly in tolerant species or in response to ameliorants
(Balal et al., 2016).

Another strategy to counteract stress induced osmotic damage
is the accumulation of various compatible solutes like proline,
glycine betaine (GB), amino acids, sugars, quaternary ammonium
and sulphonium compounds etc. (Majumder et al., 2009).
In cucumber, increased levels of proline, glycine betaine and

total soluble sugars were reported in response to heat stress
(Balal et al., 2016).

Screening of cucurbit genotypes based on these traits is an
effective strategy to identify stress tolerant lines/varieties. High
temperature tolerant varieties have been developed in cucurbits
such as AHW-19, AHW-65, Thar Manak (Watermelon), Thar
Samridhi (bottle gourd), Thar Karni (ridge gourd), Thar Tapish
(sponge gourd) etc. (Saroj and Choudhary, 2020).

Drought Stress Response
Cucurbits are warm season vegetable crops mostly cultivated
in the summer season, hence prone to drought stress if not
irrigated at critical stages of growth. Drought response is
classified into three categories viz., drought escape (shortening
the life cycle), drought avoidance (minimizing water loss or
maximizing water uptake thereby preventing exposure to stress)
and drought tolerance (helps the plant to withstand stress by
osmoregulation, osmotic adjustment, stomatal regulation etc.).
However, crop adaptation to drought may be achieved through
a balance between these three strategies (Saroj and Choudhary,
2020). Hence, a combination of different traits should be used
as a screening criterion for drought tolerance, rather than a
single trait (Singh and Sarkar, 1991). The important traits
to be considered while breeding for drought tolerance are
early vigor, root depth and density, low and high temperature
tolerance, carbon isotope discrimination, osmoregulation, low
stomatal conductance, leaf posture, reflectance and duration,
sugar accumulation etc. However, priority should be given to
those traits which can maintain stability of yield in addition
to overall yield (Parry et al., 2005). Some of the drought
tolerant genotypes identified are AHW-65 and Thar Manak in
watermelon, VRSM-58, AHS-10, AHS-82 in snapmelon etc. In
cucumber, drought stress reduces photosynthetic rate, increases
superoxide anion radicals (O2

.−), electrolyte leakage and lipid
peroxidation products like malondialdehyde (MDA), whereas
the activities of key antioxidant enzymes superoxide dismutase
(SOD) and peroxidase (POD) as well as soluble sugar and proline
contents are decreased (Wang J. et al., 2012; Zhang et al., 2013;
Fan et al., 2014; Sun et al., 2016).

Salinity Stress Response
Soil salinity has become a severe problem in agricultural
production. It is one of the major factors limiting plant growth
and productivity particularly in the arid and semi-arid regions
of the world (Parida and Das, 2005). Under salinity conditions,
stress is induced due to lower water potential of the root
medium, toxic effects of Na+ and Cl− and nutrient imbalance
by reduction in uptake or shoot transport (Colla et al., 2006).
Salinity stress response is multigenic, as a number of processes
involved in the tolerance mechanism are affected, such as various
compatible solutes/osmolytes, polyamines, ROS and antioxidant
defense mechanisms, ion transport and compartmentalization of
injurious ions (Sairam and Tyagi, 2004).

In cucumber, the salt tolerance in a genotype was associated
with higher relative water content (RWC), total chlorophyll
content, and SOD, CAT, and APOX activities, together with
the lower MDA and proline contents, and Na+ and Cl−
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concentrations (Furtana and Tipirdamaz, 2010). Sodium chloride
stress induces reduction in biomass, photosynthetic pigments,
and proline accumulation, while lipid peroxidation and K+,
Na+, and Cl− contents are increased (Hawrylak-Nowak, 2009).
The addition of 150 mM of NaCl to the nutrient solution of
a floating system where 30 varieties of Cucurbitaceae species
were cultivated, affected plant growth parameters (number of
leaves, shoot length, diameter and dry weight, root length and dry
weight) in a genotype-dependent manner (Modarelli et al., 2020).
Salinity reduced chlorophylla content by up to 49% in some
genotypes, whereas in others chlorophylla content increased by
up to 61%. Similarly, chlorophyllb was reduced by salinity by up
to 51% in some genotypes or increased by up to 64% in some
others. The increase in photosynthetic pigments was considered
as a consequence of the reduction of the leaf area and therefore
of the dilution effect. Moreover, salinity increased electrolyte
leakage by up to 509%, as compared to the non-salinized control.

Heavy Metal Toxicity
Heavy metal accumulation in soils is of great concern in
agricultural production due to the adverse effects on food
safety and marketability, crop growth due to phytotoxicity,
and environmental health of soil organisms (Gill, 2014). Heavy
metals cause irreversible damage to a number of vital metabolic
constituents and important biomolecules including injury to
plant cell walls and cell membranes. Mercury, lead, cadmium,
vanadium, arsenic, chromium etc. are some of the heavy metals
which are present as soil pollutants and cause severe damage to
the crops raised. A common consequence of heavy metal toxicity
is the excessive accumulation of ROS and methylglyoxal (MG),
both of which can cause peroxidation of lipids, oxidation of
protein, inactivation of enzymes, DNA damage and/or interact
with other vital constituents of plant cells.

Mercury (Hg) and lead (Pb) heavy metal stress results in
high peroxidase activity in cucumber, bottle gourd, sponge
gourd and bitter gourd (Khan and Chaudhry, 2006, 2010).
In melon, with increasing cadmium concentration, seedling
growth, net photosynthetic rate (Pn), stomatal conductance (gs),
transpiration rate (Tr), and stomatal limitation (Ls) decreased;
meanwhile, intercellular carbon dioxide concentration (Ci)
increased significantly (Zhang et al., 2016; Khan et al., 2020).
Hg induces oxidative stress in cucumber seedlings, resulting in
plant injury due to reduced activities of antioxidant enzymes
(catalase and ascorbate peroxidase), reduced chlorophyll
content, increased lipid peroxidation, protein oxidation etc.
(Cargnelutti et al., 2006).

TRAIT GENE DISCOVERY AND
FUNCTIONAL ANNOTATION-
INDIVIDUAL AND COMBINED STRESS
EVENTS

Trait based crop improvement assumes significance in the
context of the highly variable environmental conditions, which
often results in the co-existence of multiple stresses. Identification

of suitable traits/trait-combinations conducive for conferring
tolerance in different ecosystems is inevitable. There have been
promising reports on the functional characterization of different
stress responsive genes in cucurbits or the genes cloned from
cucurbits in model crops (Parmar et al., 2017; Nanasato and
Tabei, 2020). The High Affinity K+ Transporter (HKT) genes
encode Na+ and/or K+ transport systems, active at the plasma
membrane and play a crucial role in imparting salt tolerance
to different plant species e.g., HKT 1;5 in barley (Hazzouri
et al., 2018) and CmHKT1;1 in pumpkin (Fu et al., 2018). The
YUCCA proteins are critical partners in auxin biosynthesis in
plants, which have been reported to regulate response to abiotic
stresses and flower development in cucumbers. CsYUC8 and
CsYUC9 were specifically upregulated to elevate the auxin level
under high temperature in Cucumis sativus. CsYUC10b was
dramatically increased but CsYUC4 was repressed in response
to low temperature. CsYUC10a and CsYUC11 act against the
upregulation of CsYUC10b under salinity stress, suggesting that
distinct YUC members participate in different stress responses,
and may even antagonize each other to maintain the proper
auxin levels in cucumber (Yan et al., 2016). A wholistic
genomic and functional analysis of bHLH genes was attempted
in cucumber to identify 142 bHLH genes, classified into 32
subfamilies, among which five CsbHLH genes were found to
simultaneously respond to three abiotic stresses (NaCl, ABA
and low-temperature treatments). Targeted promoter analysis
also revealed many cis-elements responsive to multiple stresses
and plant hormones (Li et al., 2020). Similar attempts targeting
different traits have resulted in the identification of prospective
candidate genes, which have been functionally characterized
in either cucurbits or in model crops like Arabidopsis. There
have been reports on novel candidates such as intrinsically
disordered proteins belonging to Plant Group II LEA Proteins
with possible roles in multiple stress responses (Abdul Aziz
et al., 2021), which could be promising even in cucurbits.
The functional annotation of candidate genes in cucurbits has
been achieved by traditional over-expression or gene silencing
approaches, with recent advancements leading to the adoption
of advanced gene interference technologies and CRISPR/CAS
mediated gene editing approaches. The successful trait-gene
based crop improvement attempts in this direction in different
cucurbits have been tabulated in Table 4.

POSSIBLE CROSSTALK IN
PATHWAYS/MECHANISMS UNDER
COMBINED STRESSES

Challenges faced by plants come in multitudes and often
a combinatorial response to the simultaneous occurrence of
stresses, either abiotic or biotic or cross combinations, is actually
displayed by plants. A concerted effort to study cucumber
plants exposed to salt stress and thereafter infected with
Pseudomonas syringae pv lachrymans (Psl), revealed that there
were distinct changes in photochemistry, the antioxidant system,
primary carbon metabolism, salicylic acid (SA) and abscisic
acid (ABA) contents. The careful examination of hormonal
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TABLE 4 | Trait-gene discovery and functional or translational characterization in cucurbits.

Gene Source Crop Target Trait Remarks

Cbf1 Arabidopsis thaliana Cucumber (OE) Chilling tolerance Marker free
Gupta et al., 2012

CsWAX2 Cucumber Cucumber (OE) Abiotic and biotic stress response Wang et al., 2015

CsATAF1 Cucumber Cucumber (RNAi) Drought stress tolerance Wang J. et al., 2018

CsCaM3 Cucumber Cucumber (OE) High temperature stress tolerance Yu et al., 2018

CsYUC11 Cucumber Arabidopsis thaliana (OE) Salinity tolerance Yan et al., 2016

CsbHLH041 Cucumber Cucumber and Arabidopsis
thaliana (OE)

Salinity and ABA tolerance Li et al., 2020

CMV 2a/2b Watermelon Artificial microRNAs Virus resistance Liu et al., 2016

CsGPA1 Cucumber Cucumber (RNAi) Drought stress tolerance Liu et al., 2021d

CmRCC1 Pumpkin Tobacco (OE) Cold stress tolerance Wang et al., 2021

Chimeric gene construct containing
truncated ZYMVcp and PRSV W cp
genes

Citrullus lanatus
Watermelon

Citrullus lanatus
Water melon (RNAi)

Virus resistance Yu et al., 2011

CMV replicase Defective viral genome
mediated resistance against
CMV

Lilium Virus resistance Azadi et al., 2011

eIF4E Cucumber Cas9/subgenomicRNA
(sgRNA technology)

Virus resistance Chandrasekaran
et al., 2016

RBOHD Pumpkin CRISPR/Cas9-
mediated mutagenesis

Salinity tolerance Huang et al., 2019

RBOHD Pumpkin Arabidopsis thaliana (OE) Salinity tolerance Huang et al., 2019

CsWIP1 Cucumber CRISPR/Cas9-
mediated mutagenesis

Gynoecious phenotype Hu et al., 2017

ZW-20 Squash Cucumber Zucchini yellow mosaic virus
resistance

Fuchs and
Gonsalves, 1995

CZW-3
(CMV, ZYMV, and WMV2)

Squash Cucumber Virus resistance Fuchs and
Gonsalves, 1997

OE, overexpression; RNAi, RNA interference.

and redox balance as well as the carboxylate metabolism and
activities of some NADPH-generating enzymes indicated that
salt-stressed plants were more prone to pathogen infection.
There can be critical convergence points and master regulators
for the characteristic response to specific abiotic factor-
pathogen combination. In case of cucumber, the combinatorial
stress response to salt stress and P. syringae is dominated
by the abiotic factor. Modulation of SA-mediated defense,
hormonal, ROS/redox and metabolic signals are responsible for
predisposing cucumber plants to P. syringae after sequential
salt stress episodes making them highly susceptible (Chojak-
Koźniewska et al., 2018). Another important stressor is
temperature which has profound influence on the occurrence
of bacterial diseases caused by Ralstonia solanacearum (causal
agent of wilt in tomato), Acidovorax avenae (causal agent of
seedling blight and bacterial fruit blotch of cucurbits) and
Burkholderia glumae (causal agent of bacterial panicle blight
in rice) (Kudela, 2009; Pandey et al., 2017). Cucumber mosaic
virus (CMV) as an important viral invader of cucurbits has
significance in understanding its interactive specificities with
other stressors. CMV infection was found to impart improved
drought tolerance of Capsicum annum (pepper), S. lycopersicum,
and Nicotiana tabacum (tobacco) (Xu et al., 2008; Pandey et al.,
2017). The combinatorial effects between abiotic-abiotic and
abiotic-biotic pairs can be starkly different. Generally abiotic

stress combinations can have “only net effects and no stress
interactions,” leading to additive deteriorative effects due to co-
occurrence of two stresses together. It will be different for a
plant-pathogen system wherein, it may lead to enhanced or
reduced susceptibility to the pathogen; some pathogens also
modulate abiotic stress tolerance. In case of heat–pathogen
and drought–pathogen stress combinations, wherein multiple
individual stresses or sequential stresses occur one after the other,
either prior priming leading to stress memory or predisposition
can be the consequence (Pandey et al., 2017). CsbHLH041
is an important regulator in response to multiple abiotic
stresses like salinity and water deficit in cucumber (Li et al.,
2020). Phytohormonal variations can result in a common
response against both biotic and abiotic stressors such as similar
morphological root changes under CMV infection and a heavy
metal challenge like cadmium stress (Vitti et al., 2013). It was very
recently identified that there are distinct metabolite signatures,
with special reference to amino acids, associated with response
to salt and drought stresses in Cucumis melo L. (Chevilly et al.,
2021). High histidine contents and the ability to sequester salts
in vacuoles are expected to confer salt stress tolerance capacity.
However, varieties or cultivars with enhanced levels of isoleucine,
glycine, serine and asparagine exhibited drought stress tolerance.
There was a retardation in tolerance to abiotic stresses when the
phenylalanine levels were high (Chevilly et al., 2021).
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POSSIBLE STRATEGIES TO ACHIEVE
COMBINED STRESS TOLERANCE

A. Propagation Methods as a Means for
Combining Multiple Stress Tolerance
Traits
Vegetable grafting is a unique horticultural technique used in the
propagation of fruit vegetables due to the multitude of advantages
over the conventional propagation methods. Vegetable grafting
was primarily developed and practiced with an objective of
avoiding the damage caused by soil borne pathogens and pests
(Cohen et al., 2007). The scope for grafting has further widened
for combating abiotic stress tolerance, with the advancement
in our understanding of the rootstock mediated effect on
superior performance of scion, exploiting the physiological
stress tolerance reserved in the wild species (Colla et al., 2010,
2012). Grafting has emerged as a viable alternative to relatively
slower breeding approaches for enhancing environmental stress
tolerance in fruit vegetables (Flores et al., 2010). Grafting is a
special method of adapting plants to counteract environmental
stresses by grafting superior commercial cultivars onto specific
vigorous rootstocks (Lee and Oda, 2003).

Cucurbits are the first group of vegetables where grafting was
widely popularized to combat biotic stress particularly Fusarium
wilt. Research on cucurbit grafting began in the 1920s with the
use of Cucurbita moschata as a rootstock for watermelon in
Japan. Grafting is a quick, less expensive and viable solution
for combating soil borne pathogens and their novel races,
in comparison to the tedious breeding approach adopted for
developing resistant cultivars (Davis et al., 2008). Watermelon,
cucumber and melons are the major cucurbits which are
propagated using grafted seedlings in order to overcome biotic
and abiotic stresses.

(a) Grafting for Biotic Stress Tolerance in Cucurbits
In cucurbits, grafting has proven to impart resistance/tolerance
to several fungal, bacterial and nematode infections, soil borne
pathogens and even some viral as well as foliar pathogens. The
most devastating soil borne pathogen of cucurbits is Fusarium
oxysporum causing Fusarium wilt (FW). In watermelon and
cucumber, grafting is the most popular alternative for controlling
Fusarium wilt. Some of the achievements in combating biotic
stress in cucurbits through grafting has been summarized in
Table 5.

(b) Grafting for Abiotic Stress Tolerance in Cucurbits
Grafting has also emerged as an effective adaptive technique
to overcome abiotic stressors including drought, flooding,
waterlogging, salinity, heavy metal contamination, suboptimal
and supraoptimal temperatures, nutrient deficiencies, toxicities
etc. When the plants are exposed to these abiotic factors
beyond the threshold level for optimal biochemical/physiological
activity or morphological development, it results in reduction
of plant performance and subsequent yield reduction. In
cucurbits, several studies involving different rootstocks have

proven their efficiency in alleviating the adverse effects of a
number of abiotic factors; some of these have been summarized
in Table 6.

Under the present climate change scenario multiple stresses
in combination or separately, pose severe threat to vegetable
production including cucurbits. Use of rootstocks conferring
multiple stress resistance could be a sustainable and eco-friendly
alternative to the more complicated traditional/molecular
breeding approaches to develop multiple stress resistant varieties
(Table 7). The melon hybrid (Cucurbita maxima x Cucurbita
moschata), figleaf gourd (Cucurbita ficifolia), pumpkin, bottle
gourd and sponge gourd rootstocks have the potential to impart
multiple stress tolerance to scions of different cucurbits. Other
wild and cultivated species of cucurbits could also be explored for
their capabilities to confer multiple stress resistance to susceptible
species/varieties.

B. Genetic Manipulation Avenues for
Developing Stress Tolerance
(Conventional/Molecular
Breeding/Biotechnological)
(a) Breeding for Biotic Stress Tolerance
Screening of germplasm for resistance, utilization of the
identified resistant lines as donors for recombination breeding
or backcross breeding, interspecific crosses, mutation breeding
and manipulation using propagation strategies are the widely
used conventional strategies for the development of biotic stress
tolerant cucurbit genotypes. Cucurbits are widely affected by viral
diseases and among them bottle gourd is found to be moderately
resistant to viral disease caused by CMV and yellow mosaic virus
(ZYMV) (Provvidenti and Gonsalves, 1984; Provvidenti, 1995;
Ling and Levi, 2007). It also displays resistance to fungal diseases
like Fusarium wilt (Yetişir and Sari, 2003) and powdery mildew
(Kousik et al., 2008) and has been exploited in its use as rootstock
for watermelon (Yetişir and Sari, 2003; Keinath and Hassell,
2014).

Resistance to viruses as well as other pests and diseases
has also been identified in wild or semi-domesticated
types of bitter gourd (M. charantia var. muricata) (Asna,
2018). Previous studies also demonstrated the utility of
mutation breeding in the development of biotic stress tolerant
genotypes. Bitter gourd cultivar MDU 1 developed through
mutation breeding from the landrace MC 013, displayed
tolerance to pumpkin beetle, fruit fly and leaf spot diseases
(Rajasekharan and Shanmugavelu, 1984). The reported cucurbit
genotypes resistant to specific pathogens/pests are tabulated in
Table 8.

(b) Breeding for Abiotic Stress Tolerance
Genomic/genetic resources and plant transformation protocols
have recently been developed and standardized for cucurbits
(Nanasato et al., 2013; Sun et al., 2017; Montero-Pau et al., 2018,
2017). The characterization of the wild relatives of cucurbits
have aided in finding their potential use in breeding and other
related crop improvement initiatives (e.g., Holdsworth et al.,
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TABLE 5 | Rootstocks for combating biotic stress in cucurbits.

Sl No. Crop/Scion Rootstock Stress tolerance imparted Region Condition References

1 Watermelon Lagenaria siceraria
(16S-71)

Fusarium oxysporum f. sp.
niveum

China Open field Zhang M. et al., 2021

2 Oriental
melons (cv. makuwa) and
pickling melon

Cucurbita moschata
(Shirokikuza) and C. maxima ×
C. moschata (Shintosa)

Fusarium oxysporum Japan Open field Sakata et al., 2008

3 Watermelon Citrullus sp.
(RS-18, RS-10, RS-11)

Fusarium oxysporum Bangalore
(India)

Open field Pal et al., 2020

4 Watermelon L. siceraria
(WMXP-3938)

Phytophthora capsici United States Open field Kousik et al., 2012

5 Watermelon
(cv. Fiesta)

C. lanatus var. citroides
(RKVL 315 and 318)

Nematode
(Meloidogyne incognita)

– Open field Thies et al., 2010

6 Cucumber Cucurbita maxima and
C. moschata

Fusarium oxysporum;
Pythium aphanidermatum

Egypt Open field Reyad et al., 2021

Oman Green house Deadman et al.,
2009

7 Cucumber
(cv. Caspian 340)

C. maxima Pythium aphanidermatum - Open field Rostami et al., 2015

8 Cucumber (cv. Centenario) Lagenaria siceraria
(Lag 53)

Nematode (Meloidogyne
incognita)

Mexico Green house Suárez-Hernández
et al., 2021

9 Cucumber Benincasa hispida Black root rot
(Phomopsis sclerotioides)

– – Yamaguchi and
Iwadate, 2009

10 Cucumber, melon and
watermelon

Cucumis pustulatus Nematode (Meloidogyne
incognita) and Fusarium wilt

China Green house Liu et al., 2015

11 Melon Cucumis melo, Cucurbita
maxima × Cucurbita moschata

Fusarium oxysporum South Korea
Italy

Open field Lee, 1994; Nisini
et al., 2002

12 Inodorous melon Cucurbita maxima
Duchesne × Cucurbita
moschata Duchesne
(RS841, P 360, ES99-13, Elsi)

Fusarium oxysporum f. sp.
melonis and Didymella bryoniae

Italy Green house Crino et al., 2007

13 Honey dew melon (cv.
Honey yellow)
Galia melon (cv. Arava)

Cucumis metulifer
line (USVL-M0046)

Root knot nematode
Meloidogyne spp.

Florida
(United States)

Green house Guan et al., 2014

14 Oriental Melon C. moschata, C. metuliferus,
and Sicyos angulatus

Fusarium wilt – – Davis et al., 2008

15 Bitter gourd Luffa aegyptiaca Fusarium oxysporum – Open field Lin et al., 1998

16 Bitter gourd Citrullus colocynthis, Cucumis
metuliferus, Cucurbita
moschata

Nematode
(Meloidogyne incognita)

Tamil Nadu
(India)

Glass house Tamilselvi et al., 2017

2016). It was also interesting to note that many wild relatives
have multiple stress tolerance capacities, both biotic and abiotic.
Potential and documented use of wild cucurbits in breeding
with special emphasis on possession of traits such as abiotic and
biotic stress tolerance is tabulated in Table 9. It has also been
reported that many of the wild cucurbits are under the threat of
being endangered, demanding conservation interventions owing
to their tolerance potentials (Khoury et al., 2020).

Concerted efforts have been made to identify and characterize
the potential species and genotypes, among the different
cucurbits, considered tolerant to drought or heat or a
combination of both stresses (Saroj and Choudhary, 2020;
Mkhize et al., 2021). The potential tolerant sources have been
tabulated in Table 10.

The successful strategy for identifying the candidate tolerant
sources and developing elite donors is inclined towards a
physiogenetic approach including careful analysis of the key

physiological traits distinctly critical for each stress (Figure 1)
and subsequent characterization of the genetic basis for the
respective trait manifestation. However, it is pertinent that there
may be common physiological traits that can be capable enough
to confer tolerance to multiple stresses. Abiotic stress tolerance, in
particular, is a complex trait; the component primary, secondary
(constitutive or induced) and integrative traits will have their
distinct individual relevance under different stresses, along with
their contributory significance.

(c) Molecular Breeding and Biotechnological
Approaches for Crop Improvement in Cucurbits
Strategies adopted for development of stress tolerant genotypes
in cucurbits including conventional breeding, propagation
techniques, mitigation strategies etc. have contributed
immensely to the successful cultivation of members of the
cucurbit family. However, traditional approaches are often time
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TABLE 6 | Rootstocks for combating abiotic stress in cucurbits.

Sl No. Crop/Scion Rootstock Stress tolerance imparted Region Condition References

1 Cucumber Luffa cylindrica Drought China Growth
chamber

Liu, 2016

2 Cucumber Cucurbita moschata Salinity; low temperature China Open field Niu et al., 2019

China Open field Zhu et al., 2008

Japan Green house Shibuya et al., 2007

3 Cucumber Figleaf gourd (Cucurbita ficifolia Bouché) and bur
cucumber (Sicyos angulatus L.)

Low temperature – – Schwarz et al.,
2010

Cultivar ‘Infinity’ Figleaf gourd (Cucurbita ficifolia), bottle gourd
(Lagenaria siceraria cv. Sharda)

Low temperature Jodhpur (India) Unheated
green house

Kumar et al., 2019

4 Cucumber
(cv. Jinyou No. 35)

Momordica charantia L.
(Changlv)

Heat Stress tolerance China Plastic arched
shed

Xu et al., 2018

5 Cucumber
(cv. Ekron)

C. sativus L., C. maxima x C. moschata Salinity tolerance Italy Green house Colla et al., 2013

(cv. Jinchum No. 2) Cucurbita ficifolia China Green house Huang et al., 2010

6 Cucumber
(cv. Gian Co F1)

VSS-61 F1 Cucurbita pepo (squash) and Ferro
Cucurbita maxima × C. moschata

Heat and Salinity stress Egypt Net house Bayoumi et al.,
2021

7 Cucumber
(cv. Jinyou 35)

Cucurbita moschata
(Jinmama 519)

Chilling tolerance China – Fu et al., 2021

8 Cucumber
(cv. Akito)

C. maxima x C. moschata
Shintoza

Copper toxicity Italy Green house Rouphael et al.,
2008b

(cv. Creta) C. maxima × C. moschata
Power

Ni and Cd toxicity – – Savvas et al., 2013

(cv. Ekron) C. maxima × C. moschata
(P360)

Acidity and Al toxicity Italy Green house Rouphael et al.,
2016

9 Cucumber
(cv. Sharp 1, cv.
Natsubayashi)

Cucurbita sp.
(Shintosa-1gou, Hikaripower-gold,
Yuyuikki-black)

Organic pollutant (dieldrin) Japan Open field Otani and Seike,
2007

10 Watermelon
(cv. Crimson tide)

Lagenaria siceraria Flooding tolerance Turkey Green house Yetisir et al., 2006

11 Watermelon
(cv. Ingrid)

Cucurbita maxima × Cucurbita moschata
(PS1313)

Drought tolerance Italy Green house Rouphael et al.,
2008a

(cv. Zaojia 8424) (Qingyan zhenmu No. 1) Nitrogen use efficiency – Open field Nawaz et al., 2017

(cv. Crimson Sweet) C. maxima × C. moschata (Shintoza)
Citrullus colocynthis (L.) Schrad
(Esfahan)

Drought Italy Green house Bikdeloo et al.,
2021

12 Watermelon
(cv. Mahbubi)

Cucurbita pepo (Tiana F1 hybrid); Cucurbita
maxima

Cd toxicity Iran Green house Shirani-Bidabadi
et al., 2018

13 Watermelon
(cv. Zaojia 8424)

Cucurbita maxima × Cucurbita moschata
(Qingyan zhenmu No. 1) and Lagenaria siceraria
(Jingxinzhen)

Vanadium toxicity China – Nawaz et al., 2018

14 Bitter gourd Cucurbita moschata Low temperature United States Green house Wang J. et al., 2018

15 Bitter melon
(cv. New Known You #3)

Luffa cylindrica
(cv. cylinder #2)
Momordica charantia

Flooding tolerance China
China

Pot study
Pot study

Liao and Lin, 1996;
Peng et al., 2020

consuming and restricted by the available variation in the gene
pool. Biotechnological interventions can result in rapid and
sustainable development of crop varieties having high quality
and stress tolerance.

(i) Genome Sequencing, Mapping and Marker Assisted
Selection
Genome sequencing facilitates all subsequent analyses of
genome structure, organization and function. Genome sequences
have been published for major cucurbit family members like
cucumber (Huang et al., 2009; Osipowski et al., 2020), melon
(Garcia-Mas et al., 2012; Ruggieri et al., 2018), water melon (Guo
et al., 2013), zucchini (Montero-Pau et al., 2018; Xanthopoulou
et al., 2019), C. maxima (Sun et al., 2017), C. moschata
(Sun et al., 2017), bottle gourd (Wu et al., 2017), wax gourd

(Xie et al., 2019) etc. Genomic information has facilitated the
discovery of genes and pathways associated with several stress
response pathways leading to the development of stress tolerant
varieties or genotypes.

In cucumber, several quantitative trait loci (QTLs) associated
with resistance to virus, fungi and bacteria have been mapped.
QTLs associated with abiotic stress tolerance like cold, water
stress, temperature (Dong et al., 2020; Liu et al., 2021c), drought,
salt (Liu et al., 2021a) etc. have also been identified in cucumber
which can be utilized in breeding programs. Phytophthora crown
rot resistance in C. moschata. was detected on chromosome
4 (QtlPC-C04), 11 (QtlPC-C11), and 14 (QtlPC-C14) by bulk
segregant analysis and potential linked markers for utilization in
marker assisted selection (MAS) (Ramos et al., 2020). A genome-
wide association study (GWAS) based on 5,330 single-nucleotide
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TABLE 7 | Prospective rootstocks for multiple stresses tolerance interventions.

Sl No. Rootstock* Crops Biotic/abiotic stress tolerance

1 Cucurbita
maxima x Cucurbita
moschata

Cucumber Fusarium wilt,
Pythium, salinity, heat, Ni, Cd, Al
toxicity, acidity.

Watermelon Fusarium wilt, drought, Nitrogen
use efficiency, Vanadium toxicity

Melon Fusarium wilt, Didymella bryoniae

2 Cucurbita
moschata

Bitter gourd Nematode, low temperature

Cucumber Salinity, low temperature

Oriental melon Fusarium wilt

3 Lagenaria siceraria Watermelon Fusarium wilt, Phytophthora
capsici, Flooding, Vanadium toxicity

Cucumber Nematode (Meloidogyne incognita)

4 Luffa cylindrica Cucumber Drought

Bitter gourd Flooding

5 Cucurbita ficifolia Cucumber Low temperature, salinity

*The information on the rootstock can be derived from Tables 5, 6.

polymorphisms (SNPs) in bottle gourd accessions detected
HG_GLEAN_10011803 to be likely the major-effect candidate
gene for resistance against FW in bottle gourd (Yanwei et al.,
2021). Wang Y. et al. (2018) identified three major-effect
contributing QTLs for downy mildew resistance viz., dm5.1,
dm5.2, and dm5.3 and a major-effect QTL pm5.1 for powdery
mildew resistance in cucumber. CsGy5G015660, encoding
a putative leucine-rich repeat receptor-like serine/threonine-
protein kinase (RPK2), was identified as a strong powdery mildew
resistance candidate gene in a Korean cucumber inbred line, by
genome wide SNP profiling and corresponding RT-PCR analyses
(Zhang C. et al., 2021).

SSR marker ECM230 linked to the major QTL in melon
(Cucumis melo L.) was reported to be useful in selection for
resistance to CCYV (Cucurbit chlorotic yellows virus) (Kawazu
et al., 2018). Two additive QTLs affected the whitefly attack and
a major QTL that reduces acceptance by Aphis gossypii and 10
genome locations on five linkage groups involved in resistance to
hemipterans in melon have been identified (Boissot et al., 2010).
In cucumber, resistance to Watermelon mosaic virus (WMV) is
controlled by a single recessive gene designated as wmv02245
and was mapped to chromosome 6 (Chr.6) (Tian et al., 2016).
The bottle gourd genome sequence has facilitated the mapping
of Prs, conferring Papaya ring-spot virus (PRSV) resistance,
on chromosome 1 and the potential of a CAPS marker tightly
linked to the Prs locus in marker-assisted selection of PRSV
resistance in bottle gourd has been demonstrated (Wu et al.,
2017). Zhang et al. (2014) identified SSR17631 marker, which
could be used to screen cucumber resources with Fusarium wilt
resistance in molecular marker-assisted selection breeding. The
identified QTLs and associated markers can be effectively utilized
in screening, selection and gene pyramiding for multiple stress
tolerance in cucurbits.

(ii) Transgenic Development for Crop Improvement
Majority of the transgenics developed in cucurbits are for
development of virus resistance (Gaba et al., 2004). Transgenic
watermelon carrying a single chimeric transgene comprising a
silencer DNA from the partial N gene of Watermelon silver

TABLE 8 | Biotic stress resistant genotypes identified cross different cucurbits.

Pathogen/
pest

Crop Resistant genotype
identified

References

Tomato leaf curl
New Delhi virus

Luffa cylindrica
Roem.

DSG-6, DSG-7, DSG-9,
and DSG-10

Islam et al.,
2010

L. cylindrica (L.)
Roem

IIHR-137, IIHR-138,
IIHR-Sel-1

Kaur et al.,
2021

Potyviruses Cucumis melo PI 414723 and PI 124112 Martín-
Hernández
and Picó,
2021

Mosaic
diseases

M. charantia
var. muricata

IC 213312, AC-16/1,
AC-16/4, AC-16/9, and
AC-16/21

Asna, 2018

Broad
spectrum virus
diseases

Lagenaria
siceraria

USVL#1-8 and USVL#5-5 Ling et al.,
2013

Fruit rot Cucumis
sativus L.

PI109483, PI178884, and
PI214049

Colle et al.,
2014

Downy mildew Cucumis
sativus L.

PI 197088 Berg, 2020

Cucurbit
powdery
mildew

Momordica
charantia L.

THMC 153 and THMC 167 Dhillon et al.,
2018

Powdery
mildew

Citrullus lanatus PI 632755, PI 386015, PI
189225, PI 346082, PI
525082, PI 432337, PI
386024, and PI 269365

Tetteh et al.,
2010

Powdery
mildew

Cucumis
sativus L.

PI 418962, 418964,
432860, 432870, 197085,
197088, 605930, 279465,
288238, 390258, 390266,
330628, 426169, 426170,
321006, 321009, and
321011

Block and
Reitsma,
2005

Powdery
mildew

M. charantia
var. muricata

IC 213312, AC-16/1,
AC-16/4, AC-16/9, and
AC-16/21

Asna, 2018

Powdery
mildew

Cucumis
sativus L.

PI 197088 Wang Y.
et al., 2018

Anthracnose Cucumis
sativus L.

Dual, Regal, Slice, and Gy 3 Wehner and
Amand, 1995

mottle virus (WSMoV) fused to the partial coat protein (CP)
gene sequences of CMV, Cucumber green mottle mosaic virus
(CGMMV) and WMV demonstrated that fusion of different
viral CP gene fragments in transgenic watermelon contributed to
multiple virus resistance via RNA-mediated post-transcriptional
gene silencing (PTGS) (Lin et al., 2012). Transgenic cucumber
and melon lines harboring a hairpin construct of the Zucchini
yellow mosaic potyvirus (ZYMV) HC-Pro gene displayed
resistance to systemic ZYMV infection (Leibman et al., 2011).
Transgenic oriental melon carrying untranslatable chimeric
DNA with partial CP sequences of ZYMV and PRSV caused
RNA-mediated PTGS conferring high degrees of resistance to
ZYMV and PRSV W in C. melo (Wu et al., 2010). Transgenic
watermelon with resistance to CMV infection was developed by
expressing artificial microRNAs that target CMV 2a/2b genes
(Liu et al., 2016).
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TABLE 9 | Wild relatives of genus Cucurbita and their documented
tolerance/resistance potentials.

Taxon Tolerance/Resistance potentials

Cucurbita argyrosperma C. Huber
subsp. sororia (L. H. Bailey) L. Merrick
and D. M.
Bates

Resistant to BYMV and TmRSV

C. cordata S. Watson Drought-tolerant; resistant CMV, TRSV,
BYMV

C. digitata A. Gray Drought-tolerant; resistant to CMV,
TmRSV

C. ecuadorensis H. C. Cutler and
Whitaker

Resistant to papaya ringspot virus,
WMV, powdery mildew, downy mildew

C. lundelliana L. H. Bailey Resistant to SqLCV, CMV, powdery
mildew

C. okeechobeensis (Small) L. H. Bailey
subsp. Martinezii (L. H. Bailey) T. C.
Andres and Nabhan ex T. W. Walters
and D. S. Decker

Resistant to CMV, BYMV, TRSV,
bacterial leaf spot, powdery mildew,
downy mildew

C. okeechobeensis (Small) L. H. Bailey
subsp. okeechobeensis

Resistant to CMV, BYMV, TRSV,
bacterial leaf spot, powdery mildew,
downy mildew

C. palmata S. Watson Drought-tolerant; resistant to CMV,
TRSV, BYMV, TmRSV

C. pedatifolia L. H. Bailey Drought-tolerant; disease resistance
unstudied;
potential as bridge species between
xerophytic and mesophytic species

C. radicans Naudin Drought-tolerant; resistant to CMV,
TmRSV; BYMV

C. x scabridifolia L. H. Bailey Drought-tolerant

(iii) Non-transgenic Biotechnological Approaches
Heavy restrictions placed on genetically modified organisms
(GMOs) have resulted in the adoption of non-transgenic
approaches in crop plants. CRISPR/Cas9, the novel and
efficient tool for genome editing, was used in cucumber
for the disruption of the eIF4E for the development of
virus-resistant plants without otherwise affecting the plant
genome (Chandrasekaran et al., 2016). Use of CRISPR/Cas9-
mediated gene modification for Clpsk1 loss-of-function in
watermelon seedlings made them more resistant to infection by
Fusarium oxysporum f. sp. niveum indicating its effectiveness
for watermelon improvement (Zhang et al., 2020). Strategies
using the ability of dsRNAs to activate the plant RNA
silencing mechanism has also been exploited in cucurbits.
Exogenous application of in vitro-produced dsRNA molecules
derived from the HC-Pro and CP genes of ZYMV, conferred
significant protection ZYMV in watermelon and cucumber
(Kaldis et al., 2018).

C. Novel Stress Tolerance Pathways and
Mechanisms- the “Omics” Way
The evolution of high throughput next generation sequencing
technologies have aided in the generation of immense omics
resources for unraveling the more complex stress acclimation
responses in cucurbits as has been demonstrated in many

TABLE 10 | Abiotic stress tolerant genotypes/species of cucurbits.

Abiotic
stress

Crop Resistant genotype
identified

Source

Drought Cucumis melo var.
momordica

VRSM-58 Bihar, India

Cucumis melo var.
chate

Arya Rajasthan and
Haryana, India

Watermelon AHW-65; Thar Manak ICAR-CIAH,
Bikaner, India

Heat Cucumis melo var.
callosus

AHK-119, AHK-200 ICAR-CIAH,
Bikaner, India

Lagenaria siceraria Thar Samridhi

Luffa acutangula Thar Kami

Luffa cylindrica Thar Tapish

Cucumis melo var.
utilissimus

Thar Sheetal, AHC-2,
AHC-13

Citrullus lanatus AHW-19, AHW-66,
Thar Manak

Cucumis melo Mln 28, CU 311 Turkey

Cucumis melo var.
flexuosus

Armenian Cucumber Egypt

Drought and
Heat

Cucumis melo var.
callosus

AHK-119, AHK-200 ICAR-CIAH,
Bikaner, India

Cucumis melo var.
momordica

AHS-10, AHS-82

Drought and
Salt

Cucumis melo Cv.
reticulatus

Galia type Cv.1 Pre commercial
melons from Enza
Zaden, NetherlandsCucumis melo Cv.

inodorus
Piel de Sapo Cv. 3

Heavy metal
tolerance (Pb)

Citrullus lanatus NBT, ZM5 –

other crop species in the past two decades. The Cucurbit
Genome Database (CuGenDB) developed by the Fei Lab at
Boyce Thompson Institute, United States, serves as the integral
portal for functional and comparative genomics (Zheng et al.,
2019). The team has added on more tools to their armory
with the development of CucCAP (Grumet et al., 2020), which
helps in harnessing genomic resources for disease resistance and
management in cucurbit crops. The expression repertoire in
terms of transcriptomic and proteomic studies have also found
place in the cucurbit quest for tolerance to abiotic and biotic
stresses. RNA sequencing attempts have been made to prospect
genes involved in long-term waterlogging tolerance in cucumber,
unraveling transcript abundance specified to “plant hormone
signal transduction pathway” in the “environmental information
processing” category (Kreska et al., 2021). Salt stress specific
transcriptomic analysis revealed the differential regulation
of genes associated with carbon metabolism, biosynthesis
of amino acids, carbon fixation in photosynthesis, nitrogen
metabolism and fatty acid degradation in cucumber (Jiang
et al., 2020). This study assumes significance in the context
of the role of H2S in alleviating salinity stress wherein,
proteome analysis indicated differential regulation of proteins
involved in sulfur metabolism such as Cysteine synthase 1,
Glutathione S-transferase U25-like, Protein disulfide-isomerase,
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FIGURE 1 | Physiological trait-based screening for identification of drought
and heat stress tolerant sources.

and Peroxidase 2 (Jiang et al., 2020). WRKY transcription factors
were reported to regulate downy mildew resistance in cucumber
as evidenced by the higher expression of pattern recognition
receptor (PRR) proteins unravelled by transcriptome analysis
(Gao et al., 2021). Phenylpropanoid biosynthesis pathway
emerged as a key regulator of resistance to Corynespora cassiicola
stress in cucumber as revealed by transcriptome and miRNA
analysis (Wang X. et al., 2018). Sucrose biosynthesis and ABA
signal transduction were reported to be the key molecular
regulations under drought stress, specifically induced after 4 days
of drought stress in cucumber (Wang M. et al., 2018). Organellar
genome influence, with special emphasis to chloroplastic and
mitochondrial genomes in regulation of multiple traits have
been highlighted by interventions brought about by next
generation sequencing and omics in cucumber (Cucumis sativus
L.) (Pawełkowicz et al., 2016).

In Cucurbita pepo subsp. pepo, down regulation of SA
precursor related enzyme, CpPAL (Phenyl ammonia lyase)
was found to be associated with susceptibility, while defensin
overexpression was found to be related to tolerance (Ayala-
Doñas et al., 2021). Targeted metabolomics studies have been
attempted to understand the response of cucumber to silver
and silver nanoparticles (Zhang et al., 2018), sulfur (Liu et al.,
2021b) and elevated atmospheric CO2 (Li et al., 2018). An
interdisciplinary approach involving different fields of plant
sciences to culminate in adopting ionomics as an integrated
assessment of elemental accumulation, will hold potential
because molybdenum and iron are reported to mutually govern
their homeostasis in cucumber (Cucumis sativus) plants (Vigani
et al., 2017; Pita-Barbosa et al., 2019).

D. Stress Mitigation Strategies for
Cucurbits by Exogenous Amelioration
Cucurbits are a class of vegetables often grown in hot and
dry tropics, making them vulnerable to the exposure of
multiple stresses. The knowledge and information on the
different stress adaptive traits and mechanisms have paved the
way for employment of different biostimulants and chemical
ameliorants for sustainable management of different stressors.
Mycorrhizal associations in cucurbits have been proven to be
beneficial both under optimal and stressful conditions. The
symbiotic interaction with arbuscular mycorrhizal fungi (AMF)
has profound influence when multiple stresses occur at the
same time. There are commercial examples of mycorrhizal
consortia such as MycoApply R©, a four-species consortium, which
facilitates nutrient and water uptake1. A consortium of three
plant growth-promoting rhizobacterium (PGPR) strains (Bacillus
cereus AR156, Bacillus subtilis SM21, and Serratia sp. XY21), has
been reported to confer systemic tolerance to drought stress in
cucumber, by maintaining assimilation and growth vigor and
offering protection against oxidative stress damage (Wang C. J.
et al., 2012). Humic acid is a highly beneficial biostimulant
used in different crops to stimulate shoot and root growth and
enhance tolerance to stresses, which has also been demonstrated
in cucumber to influence yield and mineral nutrient uptake
under salinity stress exposure (Demir et al., 1999). Foliar
spray of Moringa leaf extract was found to be beneficial in
enhancing growth, harvest index, WUE, photosynthetic stability,
osmoregulation and membrane stability in Cucurbita pepo under
drought stress (Abd El-Mageed et al., 2017). Similarly, under
salinity stress, seed treatment/irrigation with a bacterial consortia
of Bacillus species, Bacillus pumilis, Trichoderma harzianum,
Paenibacillus azotoformans, and Polymyxa plays a role in
maintaining growth by regulating ion homeostasis in Cucurbita
pepo (Yildirim et al., 2006). Soil amelioration with Ascophyllum
nodosum was beneficial in Cucumis sativus against salinity
stress, which helped in maintaining fruit yield (Demir et al.,
1999). Resistance against Fusarium oxysporum induced wilt in
cucumber was effectively enhanced by a combination treatment
with GAWDA R© (an antioxidant formulation designed and
patented in Egypt) and an AMF consortia (Elwakil et al., 2013),
and exogenous nitrate nutrition operating through modulation
of photorespiration (Sun et al., 2021).

Brassinosteroids (BR) are naturally occurring plant steroids
with growth regulatory potential, which has been reported
to impart chilling stress tolerance in cucumber (Cucumis
sativus) by a chemico-genetic regulation of oxidative stress
management. BR-induced activation of plasma membrane-
bound NADPH oxidase (RBOH) results in the upregulation
of signaling molecules in the form of H2O2, which has a
role in activating subsequent stress response pathways (Xia
et al., 2009). Exogenous application of 24-Epibrassinolide
was found to alleviate the detrimental effects of root zone
temperature fluctuations in cucumber seedlings by regulating
hormonal and ion homeostasis (Anwar et al., 2018, 2019a,b;

1https://www.valentbiosciences.com/soilhealth/solutions/abiotic-stress-
mitigation-for-cucurbit-vegetables/
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Anwar and Kim, 2020). Amelioration of chilling stress in
cucumber seedlings by triadimefon (Feng et al., 2003), selenium
(Hawrylak-Nowak et al., 2010), and SA (Kang and Saltveit, 2002)
have also been reported. Drought tolerance was found to
be enhanced in cucumber plants treated with natural carbon
materials like shungite, which led to an increase in antioxidant
potential thereby reducing cellular damage (Kim et al., 2019).
Although there are many strategies employed to combat stress
incidence in cucurbits, development of novel technologies in the
form of ameliorative treatments can be effective, provided the

right traits and target mechanisms come under the purview of
the mitigation strategy.

FUTURE PERSPECTIVES IN CROP
IMPROVEMENT FOR MULTIPLE STRESS
TOLERANCE IN CUCURBITS

Cucurbits are vulnerable to simultaneous exposure of multiple
stressors and hence interventions at various levels are imperative

FIGURE 2 | Plant adaptive traits/mechanisms critical under each stressor and prospective trait-stress combinations under co-occurrence of different stresses in
cucurbits; (A) abiotic–abiotic, (B) abiotic–biotic.
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to achieve sustained crop production, even under adverse
climatic conditions. The choice of the apt component trait
for achieving tolerance to a stress episode is the key towards
effective crop improvement. Crop improvement relies on the
available diversity or creation of diversity as the source of
desirable traits, including abiotic and biotic stress resistance.
Genetic diversity is facing serious threat due to habitat loss
owing to human intervention and climate change. Efforts for
collection and conservation of cucurbit germplasm including
related species, distant species, wild relatives and landraces
needs to be expedited for their utilization in breeding programs,
biotechnological approaches and propagation methods. Grafting
has evolved as a relatively cheap and quick option for managing
the biotic and abiotic stressors. Although a good number
of commercial rootstocks have been identified, particularly in
the temperate regions, these attempts are very rare in the
tropical regions. Hence, systematic testing of genotypes and
wild relatives of cucurbits for their potential use as rootstocks
against multiple stresses should be a research priority. Rootstock
breeding in cucurbits leading to development of vigorous
intra and interspecific hybrid rootstocks conferring tolerance to
multiple stresses needs urgent attention. Hence, it is very crucial
to screen for the right plant traits/characters/mechanisms for
employing any of the prospective strategies discussed in this
review. A comprehensive account of the different plant adaptive
traits/mechanisms critical under each stressor (Figure 2) can
aid in the adoption of the correct trait(s) combination and the
approach in the event of a multiple stress exposure. With climate
change posing novel, varied and often multiple stresses to the
crops, strategies for screening for multiple stress resistance needs
to be evolved and employed. Even a moderate level of resistance
for multiple stress factors can confer tolerance to stresses through
cross-talk between various pathways and mitigate their damaging
effect. Targeted manipulation of tolerance traits will be possible if
a better understanding of the combined stress effects is realized.

Breeding approaches should focus on gene pyramiding for
multiple stress tolerance in cucurbits through a combination of
conventional and biotechnological approaches. Robust markers,
genomic prediction tools and phenotyping facilities need to be
developed for rapid screening and identification of stress tolerant
genotypes in cucurbits. Previous attempts in this direction
in vegetable crops like onion, including gene prospecting for
drought tolerance (Kutty et al., 2012) and molecular marker
identification by bulk segregant analysis of drought tolerance in
F2 population (Kutty et al., 2013), concerted with physiological,
morphological and biochemical characterization of drought
stress response in different onion cultivars (Kutty et al., 2014)
have been promising. Genes/gene products regulating multiple
molecular mechanisms thus identified can be combined together
by novel gene stacking approaches to alter multiple traits required
for combined stress tolerance, as has been demonstrated in
model crop plants (Vemanna et al., 2013; Pruthvi et al., 2014;
Parvathi et al., 2015). Multiple trait manipulation employing a
‘super regulatory gene/QTL’ capable of coordinating numerous
trait-related genes can help in developing genotypes tolerant
to multiple stresses (Parvathi and Nataraja, 2017; Parvathi
et al., 2021). Such initiatives would help in congregating the
indispensable traits in an ideal genotype/accession, that would
be critical for crop acclimation under a combination of stress
challenges. Advanced gene editing technologies can be of great
value in the view of multigenic control over tolerance in a
multiple stress scenario. A careful and concerted trait-specific
approach for each stress combination is imperative to achieve
optimal realizable crop performance.
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and Pląder, W. (2020). A high-quality cucumber genome assembly enhances
computational comparative genomics. Mol. Genet. Genom. 295, 177–193. doi:
10.1007/s00438-019-01614-3

Otani, T., and Seike, N. (2007). Rootstock control of fruit dieldrin concentration in
grafted cucumber (Cucumis sativus). J. Pesticide Sci. 2007:30007.

Pal, S., Rao, S. E., Hebbar, S. S., Sriram, S., Pitchaimuthu, M., and Rao, K. V.
(2020). Assessment of fusarium wilt resistant Citrullus sp. rootstocks for yield
and quality traits of grafted watermelon. Sci. Hort. 272:109497. doi: 10.1016/j.
scienta.2020.109497

Pandey, P., Irulappan, V., Bagavathiannan, M. V., and Senthil-Kumar, M. (2017).
impact of combined abiotic and biotic stresses on plant growth and avenues for
crop improvement by exploiting physio-morphological traits. Front. Plant Sci.
8:537. doi: 10.3389/fpls.2017.00537

Parida, A. K., and Das, A. B. (2005). Salt tolerance and salinity effects on plants:
a review. Ecotoxicol. Environ. Safety 60, 324–349. doi: 10.1016/j.ecoenv.2004.
06.010

Park, Y. L., and Lee, J. H. (2005). Impact of twospotted spider mite (Acari:
Tetranychidae) on growth and productivity of glasshouse cucumbers. J. Econ.
Entomol. 98, 457–463. doi: 10.1093/jee/98.2.457

Parmar, N., Singh, K. H., Sharma, D., Singh, L., Kumar, P., Nanjundan, J., et al.
(2017). Genetic engineering strategies for biotic and abiotic stress tolerance and
quality enhancement in horticultural crops: a comprehensive review. 3Biotech
7:239. doi: 10.1007/s13205-017-0870-y

Parry, M. A. J., Flexas, J., and Medrano, H. (2005). Prospects for crop production
under drought: research priorities and future directions. Ann. Appl. Biol. 147,
211–226. doi: 10.1111/j.1744-7348.2005.00032.x

Parvathi, M. S., and Nataraja, K. N. (2017). “Simultaneous expression of stress
regulatory genes for abiotic stress tolerance,” in Plant Tolerance to Individual
and Concurrent Stresses, ed. S. K. Muthappa (Springer).

Parvathi, M. S., Dhanyalakshmi, K. H., and Nataraja, K. N. (2021). “Molecular
mechanisms associated with drought and heat tolerance in plants and options
for crop improvement for combined stress tolerance,” in Agronomic Crops, ed.
M. Hasanuzzaman (Springer), 481–502. doi: 10.1007/978-981-15-0025-1_23

Parvathi, M. S., Sreevathsa, R., Rama, N., and Nataraja, K. N. (2015). Simultaneous
expression of AhBTF3, AhNFYA7and EcZF modulates acclimation responses
to abiotic stresses in rice (Oryza sativa L). Proc. Environ. Sci. 29, 236–237.
doi: 10.1016/j.proenv.2015.07.290
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(Cultivar RGC-1025) Reveals the Wax
Regulatory Genes Involved in
Drought Resistance
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N. Jayamma1, Merum Pandurangaiah1 and Chinta Sudhakar1*
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Cluster bean (Cyamopsis tetragonoloba L.) is one of the multipurpose underexplored
crops grown as green vegetable and for gum production in dryland areas. Cluster bean
is known as relatively tolerant to drought and salinity stress. To elucidate the molecular
mechanisms involved in the drought tolerance of cluster bean cultivar RGC-1025, RNA
sequencing (RNA-seq) of the drought-stressed and control samples was performed.
De novo assembly of the reads resulted in 66,838 transcripts involving 203 pathways.
Among these transcripts, differentially expressed gene (DEG) analysis resulted in some
of the drought-responsive genes expressing alpha dioxygenase 2, low temperature-
induced 65 kDa protein (LDI65), putative vacuolar amino acid transporter, and late
embryogenesis abundant protein (LEA 3). The analysis also reported drought-responsive
transcription factors (TFs), such as NAC, WRKY, GRAS, and MYB families. The relative
expression of genes by qRT-PCR revealed consistency with the DEG analysis. Key
genes involved in the wax biosynthesis pathway were mapped using the DEG data
analysis. These results were positively correlated with epicuticular wax content and the
wax depositions on the leaf surfaces, as evidenced by scanning electron microscope
(SEM) image analysis. Further, these findings support the fact that enhanced wax
deposits on the leaf surface had played a crucial role in combating the drought stress
in cluster beans under drought stress conditions. In addition, this study provided a set
of unknown genes and TFs that could be a source of engineering tolerance against
drought stress in cluster beans.

Keywords: drought stress, transcriptome, wax genes, cluster bean (Cyamopsis tetragonoloba L.), differentailly
expressed genes

INTRODUCTION

Cyamopsis tetragonoloba (L.) Taub. (Cluster bean) is a drought-adapted annual legume crop with
lower water requirements than many other dryland legume crops. Cluster beans can grow in
marginal soils because of their high water use efficiency, deep tap rooting system, etc. In India,
cluster bean is cultivated for its green vegetables, foraging cattle, green manure, and dry pods for
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guar gum production (Rao and Shahid, 2011; Global Agricultural
Information Network [GAIN], 2014). Globally, India ranks first
and produces about 80% of the world’s cluster beans, and
Rajasthan is the top state, making 75% of the total production
in India. Due to high prices and export demand for guar gum,
the cultivation of cluster bean is gradually increased in India
from the year 2010 onward, and the total area is about 5,345
ha with 615 kg per ha yield during the agricultural year 2018–
2019 (DoA, Government of India, Annual Report). The guar gum
produced from cluster beans is rich in galactomannan, which is
78–82% of the seed’s endosperm. Guar gum is an essential non-
toxic agrochemical, mostly an export product, and a source of
polysaccharide emulsifier used primarily in the food, cosmetic,
and pharmaceutical sectors (Mudgil et al., 2014). In addition, it
is also used in the oil and gas industry as a gelling agent and as
an additive in the milling industry (Coveney et al., 2000). The co-
products for guar are guar meal and guar bagasse used to produce
biofuels and other value co-products (Gresta et al., 2017).

Although cluster bean is considered a highly valued crop,
its productivity is lesser than other legume crops; consequently,
a significant gap exists between demand and export of guar.
Biotic and abiotic factors are major limiting factors for guar
yield enhancement. Thus, there is a need to increase the
productivity of cluster beans to meet the demand-supply
gap of cluster beans and their derivatives through genetic
enhancement (Kumar et al., 2020). To increase guar output, it is
necessary to produce cluster bean cultivars with improved abiotic
stress tolerance, particularly drought resistance, for growing
in the semi-arid tropics. The genetic improvement of cluster
beans for enhanced drought resistance is not achieved due
to insufficient genomic resources and inadequate germplasm
availability. C. tetragonoloba genome size has been estimated to
be approximately 580 Mbp using flow cytometry (Tyagi et al.,
2019). The present study adopted next-generation sequencing
(NGS) technologies to understand the detailed information
of the drought-stressed transcriptome of cluster beans. This
technology enables the identification of differentially expressed
genes (DEGs), the deciphering of metabolic pathways involved
in drought resistance, gum biosynthesis, and the identification
of DNA-based markers, all of which may open up new avenues
for molecular breeding to improve cluster bean production, gum
quality, and stress resistance.

For the past few decades, extensive research has been carried
out on applying omics technologies to identify many candidate
genes, proteins, and metabolic pathways of various crop species
under different stress conditions (Panda et al., 2021; Raza et al.,
2021). In recent years, transcriptome technology has become an
essential tool for analyzing the molecular mechanisms of abiotic
stresses in plants (Cai et al., 2019; Hasan et al., 2019). Global
transcriptome profiling of drought-stressed grain legumes, such
as chickpea (Garg et al., 2011; Hiremath et al., 2011; Kumar
et al., 2019), groundnut (Brasileiro et al., 2015; Zhao et al., 2018),
and lentil (Singh et al., 2017; Morgil et al., 2019), revealed a set
of DEGs involved in various metabolic pathways under stress
conditions. Following transcriptome analysis, Wu et al. (2016)
have identified 22 NAC TFs from drought-tolerant and drought-
sensitive genotypes of common bean. Transcriptome analysis

of drought-tolerant and drought-sensitive genotypes of wheat
showed significant induction or repression of genes involved in
secondary metabolism, nucleic acid synthesis, protein synthesis,
and transport in the tolerant genotype when compared with
the sensitive genotype (Kumar et al., 2018). RNA sequencing
(RNA-Seq) analysis has been employed to elucidate drought-
tolerance molecular mechanisms in other crops, such as cotton
(Hasan et al., 2019), buckwheat (Hou et al., 2019), and Proso
millet (Zhang et al., 2019). To date, very few studies on the
transcriptome analysis of C. tetragonoloba have been published.
For instance, Rawal et al. (2017) reported an RNA-Seq-based
transcriptome from the leaf, shoot, and flower tissues of Guar;
Tanwar et al. (2017) detailed the transcriptome of leaf tissues from
two leaf tissue guar varieties M-83 and RGC-1066. Al-Qurainy
et al. (2019) published a transcriptome of guar, accession BWP
5595 under various treatments, such as drought, salinity, and heat
stress. The present study was focused on targeted transcriptome
deep sequencing of a drought-adapted cultivar RGC-1025 to
characterize the genes responsible for the drought resistance. The
gene information thus obtained would pave the way for using
DEGs in developing strategies for drought resistance through
various approaches. Moreover, transcriptome data sets could
be valuable for novel gene discovery and the marker-assisted
selective breeding of cluster bean species.

MATERIALS AND METHODS

Screening Cluster Bean Cultivars for
Drought Tolerance
Initially, four cluster bean cultivars, namely, RGC-1025, RGC-
1038, RGC-1055, and RGC-1066, were screened for their drought
tolerance based on various parameters, such as germination,
seedling growth, biomass, relative water content (Barrs and
Weatherley, 1962), cell membrane injury (Leopold et al., 1981),
malondialdehyde (MDA) (Hodges et al., 1999), total chlorophylls
(Arnon, 1949), and total proline content (Bates et al., 1973).

Plant Samples, Processing, and
Sequencing
Seeds of cluster bean (C. tetragonoloba L.) cultivar RGC-1025
were sterilized in 0.5% (W/V) sodium hypochlorite solution
for 5 min, then rinsed thoroughly, and soaked in distilled
water for 30 min. Seeds were sown in earthen pots containing
soil and farmyard manure in a 3:1 proportion maintained in
the departmental botanical garden. After 20 days post-sowing,
drought stress was induced by withholding water to one set
of pots, and respective fully watered controls were maintained
in another set of pots. Ten days after stress imposition, fresh
leaf samples from five plants were collected, pooled, flash-
frozen in liquid nitrogen, and transported immediately to the
sequencing facility.

For total RNA-seq, total RNA was extracted using the Qiagen
RNeasy Plant Mini Kit with DNAse treatment (Thermo Fisher
Scientific, United States) as per the manufacturer’s instructions.
The quality and quantity of the RNA were estimated using
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a NanoDrop Spectrophotometer (Thermo Fisher Scientific,
United States) and Qubit Fluorometer (Thermo Fisher Scientific,
United States). The integrity of the RNA samples was analyzed
using Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA, United States). RNA-seq libraries were prepared with
Illumina-compatible NEB Next R© UltraTM II Directional RNA
Library Prep Kit (New England BioLabs, MA, United States).
In total, 500 ng of total RNA was taken for mRNA isolation,
fragmentation, and priming. Fragmented and primed mRNA
was subjected to first-strand synthesis followed by second-strand
synthesis. The double-stranded cDNA was purified using JetSeq
Clean Beads (Bioline Meridian Bioscience, Australia). Purified
cDNA was end-repaired, adenylated, and Illumina multiplex
barcode adapters were ligated as per NEBNext R© UltraTM II
Directional RNA Library Prep protocol, followed by second-
strand excision using USER enzyme at 37◦C for 15 min. Adapter-
ligated cDNA was purified using JetSeq Beads and was subjected
to 10 cycles for indexing (98◦C for 30 s, cycling (98◦C for 10 s,
65◦C for 75 s) and 65◦C for 5 min) to enrich the adapter-ligated
fragments. The final PCR product (sequencing library) was
purified with JetSeq Beads, followed by a library-quality control
check using Agilent 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, United States). A total of 7,629,816 short
reads were obtained, 150 bp length paired-end (P.E.) reads
and average fragment size of ∼400 bp were used, and three
biological replicates were processed for sequencing analysis with
Illumina HiSeqTM 4000, which was out-sourced at Genotypic
Technologies, Bengaluru, India.

Read Quality Control, Adapter Removal,
de novo Assembly, and Clustering
The reads were processed for quality assessment and low-quality
filtering before the FastQC tool assembly. The reads were then
processed by removing the adapter sequences and low-quality
bases (<q30) using the Cutadapt tool. Processed reads were
assembled using a graph-based approach by the rnaSPAdes
program. The characteristic properties, such as N50 length,
average length, maximum length, and a minimum length of
the assembled contigs, were calculated. De novo transcriptome
assembly of the processed reads from all the libraries was
done using Bowtie2 with end-to-end parameters. In the second
step of the assembly procedure, clustering of the assembled
transcripts based on sequence similarity is performed using the
Cluster Database at High Identity with Tolerance (CD-HIT)-
EST program1 with 95% similarity between the sequences. This
reduces the redundancy without excluding sequence diversity
used for further transcript annotation and the DEG analysis.

Functional Annotation of Transcripts
All unigenes were annotated using the BLASTX search tool on
Viridiplantae transcripts from the UniProt database containing
8,058,045 protein sequences and the NCBI non-redundant
database (N.R.). The cutoff e-value was 10−5, and the minimum
similarity was more significant than 40%. Gene ontology

1http:www.bioinformatics.org/cd-hit/

annotation was carried out using the Blast2go program and
visualized using Web Gene Ontology Annotation Plot (WEGO).2

Differentially Expressed Gene Analysis
and Pathway Analysis
DESeq, an R package, was used for differential expression
analysis. Sequencing (variable library size/depth) bias among
the samples was removed by library normalization using size
factor calculation in DESeq. DESeq normalized expression values
were used to calculate fold change for a given transcript. The
regulation for each transcript was assigned based on log2-fold
change. The transcripts that show a log2-fold change less than−1
are represented as downregulated. The values greater than one
are upregulated and between −1 and 1 are termed neutrally
regulated. Gene Ontology (GO) enrichment analysis and pathway
analysis for DEG were done against the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database. KAAS server was used
to analyze and characterize associated pathways. To obtain the
highly significant differential expression genes, the criterion of
the absolute value of reads per kilobase of transcript per million
reads (RPKM) ratio > 1,000 was used.

Mining of Simple Sequence Repeats
Simple sequence repeats (SSRs) were identified using the MISA
Perl script in each transcript (MIcroSAtellite identification tool).3

A simple repetition of motif length ranging from 1 to 6 bp was
identified with recommended default parameters of MISA.

qRT-PCR Analysis of Gene Expression
To evaluate the gene expression pattern from the DEG analysis,
the total RNA extracted, as mentioned earlier, from control and
drought-stressed cluster bean variety RGC-1025 was used for the
SYBR Green qRT-PCR assay. The qRT-PCR assay was performed
for 16 different stress-responsive genes selected from DEG
analysis. These genes include aldo-keto reductase 1 (AKR1), late
embryogenesis Abundant14 (LEA14), non-specific lipid transfer
protein, TFs MYB30, NAC4, scare crow-like protein1 (GRAS
TF’s), BHLH, GATA, malate dehydrogenase (MDH), aquaporin,
DNA helicase, nitrate reductase, proline dehydrogenase (PRODH),
serine hydroxy methyltransferase (SHMT), and thaumatin,
trehalose 6-phosphate phosphatase (TRE6PH) with actin and
tubulin genes as an internal control. For cDNA synthesis,
1 µg of total RNA from control and drought-stressed cluster
bean RGC-1025 samples was treated with a Turbo DNASE
treatment kit (Thermo Fisher Scientific, United States) as per the
manufacturer’s protocol to remove any DNA traces. cDNA was
synthesized using Revert Aid M-MuLV Reverse Transcriptase
(Thermo Fisher Scientific) as per the manufacturer’s instructions.
qRT-PCR mix was comprised of 1× using Power SYBR Green
Master Mix (Ambion, United States), 20 ng of cDNA, and 0.2
µM of forward and reverse primers. Supplementary Table 1
shows the primers used for the investigated genes. The RT-PCR
analysis was done on Applied Biosystems Step One Real-Time
PCR machine with standard cycling comprising 95◦C for 30 s, 40

2http://wego.genomics.org.cn/cgi-bin/wego/index.pl
3http://pgrx.ipk-gatersleben.de/misa/
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cycles of 95◦C for 1 s, 60◦C for 20 s, and a melt curve analysis.
Relative quantification was studied using 2−1 1 CT method
(Livak and Schmittgen, 2001). Each gene was analyzed in three
biological samples, and three reaction replicates were performed
for each biological sample.

Estimation of Epicuticular Wax and
Scanning Electron Microscope Imaging
of Leaf Surfaces for Wax Deposits
Leaf surface waxes exteriorly deposited were extracted and
quantified by a colorimetric assay reported by Mamrutha
et al. (2010). Carnauba wax was used as the standard for the
wax quantification assay. The wax content is represented as
µg/gm fresh weight.

An scanning electron microscope (SEM) examined the
epicuticular wax crystals. The third and fourth leaves of drought-
stressed and control plants were cut to 0.5 cm, mounted onto
standard stubs, and coated with gold particles using a fully
automated vacuum spotter smart coater (DII-29030SCTR, JOEL,
United States). The surfaces of the coated samples were observed
through an SEM (JOEL-JSM-IT500, Japan).

RESULTS

Screening Cluster Bean Cultivars for
Drought Tolerance
Cluster bean cultivars, namely, RGC-1025, RGC-1038, RGC-
1055, and RGC-1066, were screened for drought tolerance
and we found significant differences at the cultivar level in
morphological and biochemical traits under stress treatments.
Results revealed that among four cultivars evaluated; cultivar
RGC-1025 showed a lesser decrease in seedling growth, better
biomass, and relative water content; lesser extent of cell
membrane injury, lesser MDA, total chlorophylls content, and
significantly higher levels of osmoprotectant, proline when
compared to other cultivars (Supplementary Tables), suggesting
the relative tolerance of cultivar RGC-1025 over other cultivars
to drought stress. Therefore, we further extended transcriptome
studies to understand the molecular mechanisms conferring the
drought tolerance of cultivar RGC-1025.

Reads and de novo Assembly
To construct the transcriptome of cluster bean cultivar RGC-
1025, high-quality RNAs from three replicates of drought-
stressed and unstressed conditions (control) were sequenced.
An average of 18 million paired-end reads were used for the
downstream analysis after pre-processing. In total, 76,129,816
short reads were obtained using Illumina HiSeq 4000 Technology
(Table 1). Most of the reads had > 99.9% score. Around 97.5%
of the reads were retained in both the samples post-filtering.
The cleaned-up reads were assembled using the Bowtie2 tool.
CD-HIT was used to cluster redundant and similar isoforms.
Finally, 66,838 transcripts were clustered with an average length
of 955 bp. The non-redundant transcripts were considered as
unigenes and were further analyzed.

Characterization of Unigenes
All the obtained unigenes were annotated against the Uniprot
Viridiplantae sequence database, NCBI non-redundant database,
with a cutoff E-value of 10−5. Around 55.98% of the
unigenes were found to have hits in the public databases.
The transcripts with more than 30% identity were considered
during the analysis. These unigenes were classified as 31
functional categories. The significant fall under the category of
DNA templated transcriptional regulation (2.34%) among the
biological processes, the category of integral component of the
membrane (25.4%) under cellular components, and the category
of adenosine 5′-triphosphate (ATP) binding (13.14%) under
molecular function. The highest transcript matches during the
functional annotation with members of the family Fabaceae,
such as Glycine (10,131), Mucuna (5,826), Cajanus (4,533),
Cicer (2,632), Vigna (2,183), Phaseolus (2,111), Arachis (1,806),
Trifolium (1,597), and Medicago (1,524) (Figure 1).

Functional Classification
Differentially expressed genes were subjected to GO analysis
to achieve functional classification. As a result, 37,418 DEGs
fall into (i) molecular function, (ii) biological process, and
iii) cellular components. In total, 30,900 (50.2%) DEGs were
associated with molecular function terms, such as ATP binding
encoding transcripts, followed by metal ion binding transcripts,
DNA binding transcripts, zinc ion binding transcripts,
nucleic acid binding transcripts, protein kinase activity
transcripts, etc., and 16,410 (26.6%) DEGs were annotated
with cellular component terms, represented by the integral
component of the membrane encoding transcripts, followed
by nucleus components transcripts, cytoplasm components
transcripts, ribosome transcripts, plasma membrane transcripts,
retrotransposon nucleocapsid transcripts, etc., and 14,191 (23%)

TABLE 1 | Sample wise assembly statistics of cluster bean cultivar
RGC-1025 samples.

S. no Samples Control Stressed

1 Raw reads 43,110,222 33,019,594

2 Processed reads 42,051,780 32,208,984

3 Percentage of reads retained 97.5% 97.5%

4 Alignment to clustered transcripts (%) 89.00% 90.65%

5 Number of transcripts identified 123,594 106,025

6 Maximum contig length 21,802 15,999

7 Minimum contig length 31 31

8 Average contig length 489.6 521.9

9 Median contig length 261 266

10 Total contigs length 6,050,9220 55,334,262

11 Total number of non-ATGC characters 5,596 4,419

12 Contigs ≥ 100 bp 123,411 105,933

13 Contigs ≥ 200 bp 97,982 84762

14 Contigs ≥ 500 bp 26,684 25,767

15 Contigs ≥ 1 Kbp 15,221 14,891

16 Contigs ≥ 10 Kbp 5 7

17 Contigs ≥ 1 Mbp 0 0

18 N50 value 875 1003
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FIGURE 1 | Bar chart shows the number of BlastX hits of cluster bean cultivar RGC-1025 with maximum hits from members of the family Fabaceae.

DEGs were associated with biological process terms. This study
also observed that identical DEG sequences could exist in
more than one category. The most represented "biological
process" subcategories identified were DNA-templated
transcriptional regulation encoding transcripts followed by
translation components, carbohydrate metabolic process
transcripts, DNA integration transcripts, signal transduction
transcripts, intracellular protein transcripts, etc. (Figure 2 and
Supplementary Tables 2–4). In general, 12,866 genes were
found to be upregulated, 16,177 genes were downregulated,
and 27,782 genes had shown no change in their expression
levels in cluster bean cultivar RGC-1025 due to drought stress.
More interestingly, 3,745 transcripts were expressed only in the
stressed sample.

Differentially Expressed Genes in Kyoto
Encyclopedia of Genes and Genomes
Pathways
Kyoto Encyclopedia of Genes and Genomes is an online database
that deals with genomes and enzymatic pathways, and its
identifiers were looked to predict biochemical pathways related

to DEGs. Among 66,838 transcripts in unigene pathways,
17,211 transcripts against the KEGG pathways were identified.
Of the 203 pathways identified, the top forty pathways are
shown in Supplementary Table 5. DESeq analysis of the
transcripts revealed that the enzymes with the most frequency
of expression in the category of upregulated genes were
alpha dioxygenase 2 (9.4-fold), low temperature-induced
65 kDa protein (LTI65; 9.2-fold), putative vacuolar amino acid
transporter (9.05-fold), hexosyl transferase (EC 2.4.1.-; 7.95
fold), late embryogenesis abundant protein3 (LEA 3; 7.79-fold),
Putative anthocyanidin 3-O-glucoside 2′′-O-glucosyltransferase
(EC 2.4.1.297; 7.44-fold), Glucosyltransferases, Rab-like
GTPase Activators and Myotubularins (GRAM) domain
protein/abscisic acid (ABA)-responsive-like protein (putative
GRAM domain, P.H. domain-containing protein) (7.30-fold),
and cytochrome P450 monooxygenase (EC:1.14.14.80; 7.14-fold).
In the category of downregulated genes, the genes encoding
the following proteins were found to be downregulated, such
as putative CDP-alcohol phosphatidyl transferase class-I family
protein 3 (EC 2.7.8.1; 0.5-fold), NEDD4-binding protein 2
(0.49-fold), dihydrolipoamide acetyltransferase component
of pyruvate dehydrogenase complex (EC 2.3.1.-; 0.49-fold),
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FIGURE 2 | Pie chart shows drought-stressed cluster bean cultivar RGC-1025 Gene Ontology classification of transcripts into biological process, molecular
functions, and cellular components.

putative cyclic nucleotide-gated ion channel 14 (0.498), ATP
binding cassette (ABC) transporter G family member 28 (0.49-
fold), N-(5-phosphoribosyl) anthranilate isomerase (putative
phosphoribosyl anthranilate isomerase) (EC 5.3.1.24; 0.49-fold),
F-box/FBD/LRR-repeat protein (0.49-fold), and adenylate kinase
(EC:2.7.4.3; 0.49-fold). The heat map of DEGs showed the genes
expressed (Figure 3).

Differentially Expressed Transcription
Factors
Among the drought stress-responsive upregulated TF families,
NAC family TF was the most abundant (26%), followed by
MYB TFs (12%) and WRKY TFs (9%) (Figure 4A). Figure 4B
depicts the top 40 upregulated TFs under drought treatments
in cluster bean cultivar RGC-1025. Most renowned drought
stress-responsive TFs upregulated include NAC4, NAC3, NAC29,
NAC 104, and NAC18 from the NAC family, followed by
WRKY12, WRKY50, WRKY6, WRKY33, WRKY30, WRKY24,
WRKY42, WRKY53, WRKY70, and WRKY7 from WRKY
family, further followed by other TFs, such as homeobox
domain TFs, scarecrow/GRAS TFs, and ethylene-responsive TFs.
Among the downregulated TF families, the hemophagocytic
lymphohistiocytosis (HLH) TF family was the most abundant
(20%), followed by the cellular TF family (10%) and homeobox
domains (∼8%) (Figures 4C,D).

Simple Sequence Repeat Mining
A total of 21,494 SSRs were identified in the cluster bean data,
14,434 (67.15%) are mono-nucleotide repeats, 3,072 (14.29%) are

di-nucleotide repeats, 3,516 (16.35%) are tri-nucleotide repeats,
341 (1.58%) tetra-nucleotide repeats, 69 (0.32%) pentanucleotide
repeats, and 63 (0.25%) hexanucleotide repeats (Figure 5). The
21,494 potential SSRs identified from de novo transcriptome
sequencing data represent a significant addition to the limited set
of genic-SSR markers available in cluster bean cultivar RGC-1025.

Validation of Differentially Expressed
Genes by Quantitative Real-Time
RT-PCR
To verify the reliability of the expression profiles from RNAseq
data, qRT-PCR analysis was performed for DEG (Figure 6).
Results of the qRT-PCR assay for 16 stress-responsive genes
revealed consistency in gene expression patterns as compared
to that of the DEG analysis of the transcriptome of RGC-1025.
The relative fold change of both the qRT-PCR and NGS-DEG
is represented (Figure 6). Upregulation of stress-responsive TFs,
such as NAC4, MYB30, scarecrow-like protein (SCL-1), primary
helix-loop-helix TF (SlbHLH22), and TF bHLH 22, and the
overexpression of candidate stress-responsive functional genes,
such as DNA helicase, MDH, AKR1, LEA14, PDH, and SHMT,
during drought stress by improving the ROS scavenging system,
increasing osmotic potential, stomatal regulation, pH stability,
respiration, and β-oxidation of fatty acids could support further
the drought tolerance of cluster bean cultivar RGC-1025 (Ahmad
et al., 2017; Waseem et al., 2019). The correlation among the
expression patterns of the genes in NGS and qRT-PCR represents
the consistency of the data in the current study.
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FIGURE 3 | Heatmap shows the top 40 upregulated and downregulated genes of cluster bean cultivar RGC-1025 under control and drought stress.

Epicuticular Wax Content and Scanning
Electron Microscope Imaging of Leaf
Surfaces
The epicuticular wax content of the cluster bean cultivar RGC-
1025 during the drought stress was 610.36 ± 0.53 µg/dm2 as
compared to the control 432.41 ± 0.4 µg/dm2, which is 41.15%
higher as compared to its control. These epicuticular wax data
were supported by the SEM imaging of the leaf surfaces of control
and drought-stressed plants. The SEM image of the leaf surface
of RGC-1025 under drought stress showed enhanced wax crystal
deposits (Figure 7).

Mapping of the Wax Biosynthesis
Pathway in Cluster Bean Using
Differentially Expressed Gene Data
Among the genes differentially expressed in wax biosynthesis
pathway, there were upregulated genes that include KCS1
that encodes β-ketoacyl-CoA synthase 1 that is involved in
elongation of 24C fatty acids, WSD1 that encodes wax ester
synthase/diacylglycerol acyl transferase, which involves in wax
ester biosynthesis, KCR1 that encodes β-Ketoacyl-CoA reductase,
which is involved in very long-chain fatty acid elongation

(VLFCA elongation), FATB that encodes acyl-acyl carrier protein
thioesterase, which is engaged in supply of saturated fatty acids
for wax biosynthesis, CER4/FAR3 that encodes alcohol forming
fatty acyl CoA reductase, which is involved in formation of
C24:0 and C26:0 primary alcohols, protein WAX2 encoding gene,
CER17 also called Eceriferum1, which encodes for acyl-CoA
desaturase-like 4 protein that is involved in n-6 desaturation of
very long-chain acyl-CoAs, ABC transporter G family member
11, which encodes ABC transporter proteins that is involved in
secretion of surface waxes in interaction with CER5, which is an
another ABC transporter protein, and lipid transfer protein gene
that encodes a lipid transport protein, which has role in cuticular
wax export or accumulation. Finally, the upregulation of these
wax genes in the present study through transcriptome DEG data
reveals that these gene products are responsible for accumulating
or producing epicuticular wax in cluster bean cultivar RGC-
1025 (Figure 8). qRT-PCR analysis of selective wax genes showed
significant changes in the expression patterns and an increase
in the expression of the KCS1 gene was 1.85-fold, WSD1 gene
was 1.81-fold, KCR1gene was 3.73-fold, FATB gene was 1.8-fold,
CER4/FAR3 gene was 0.4-fold, protein WAX2 gene was 2.36-fold,
CER17 gene was 2.89-fold, ABC transporter G family member11
gene was 1.95-fold, and lipid transfer protein gene was 1.49-fold.

Frontiers in Plant Science | www.frontiersin.org 7 June 2022 | Volume 13 | Article 868142150

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-868142 June 22, 2022 Time: 14:28 # 8

Reddy et al. Transcriptome of Drought Adapted Cluster Bean

FIGURE 4 | (A) Upregulated transcription factor families of drought-stressed cluster bean cultivar RGC-1025. (B) Heatmap of the top 40 upregulated transcription
factors of cluster bean cultivar RGC-1025 in drought stress. (C) Downregulated transcription factor families of drought-stressed cluster bean cultivar RGC-1025.
(D) Heatmap of the top 40 downregulated transcription factors of cluster bean RGC-1025 in drought stress.

FIGURE 5 | Distribution of different classes of SSRs in cluster bean cultivar RGC-1025.

DISCUSSION

Cluster bean (C. tetragonoloba L.) is an annual legume crop
grown in arid and semiarid regions. Due to the lack of genomic

resources, presently, conventional breeding is the only means
of cluster bean improvement. In this regard, the availability of
genomic resources can serve as a good platform for cluster bean
improvement (Naoumkina et al., 2007; Tanwar et al., 2017).
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FIGURE 6 | Comparison of real-time PCR data and RNA-Seq differential gene expression data of cluster bean cultivar RGC-1025.

FIGURE 7 | Scanning electron microscopy (SEM) analysis (2,000 × with 20 µm bar scale) of epicuticular wax depositions on the leaf surfaces of cluster bean cultivar
RGC-1025 (A) control leaf and (B) drought-stressed leaf.

Cluster bean is known as relatively tolerant to abiotic stresses.
Genotypic variation in stress tolerance exists in cluster bean
cultivars (Alshameri et al., 2017), implying that it is a valuable
repository for genes that are resistant to these abiotic stresses,
and to use this genetic tank, the present study implemented a
de novo transcriptome analysis of a drought-tolerant cluster bean
cultivar RGC-1025.

The RNA-Seq (NGS) method offers a holistic view of the
transcriptome, revealing many novel transcribed regions, splice
isoforms, genic microsatellites, and the precise location of

transcription boundaries (Cloonan et al., 2008; Wang et al., 2009;
Li et al., 2010; Wilhelm et al., 2010). These technologies have been
widely exploited in numerous plant species to produce molecular
markers using transcriptome analysis (Dutta et al., 2011; Wang
et al., 2014). In the present study, Illumina HiSeq 4000
Technology generated 76,129,816 short reads from the control
and drought-stressed samples of cluster bean cultivar RGC-1025.

A cluster bean is a non-model plant without prior genome
knowledge; BLASTX was used to search for sequence similarity
and compare the assembled unigenes of the cluster bean
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FIGURE 8 | Upregulated genes involved in Wax biosynthesis pathway.

transcriptome against multiple databases. Around 55.98% of
the unigenes were obtained and annotated against the Uniprot
Viridiplantae sequence database and NCBI non-redundant
database, with a cutoff E-value of 10−5. According to species
distribution analyses, many plant species have sequences that are
homologous to cluster bean sequences. The highest transcript
matches during the functional annotation with members of the
family Fabaceae, such as Glycine (10131), Mucuna (5826), and
Cajanus (4533).

Gene Ontology analysis provides a set of dynamically
controlled and structured vocabularies for describing the roles
of genes in any organism (Ashburner et al., 2000). Based
on the sequence homology, 37,418 DEGs were assigned GO
terms and classified into three categories, namely, molecular
function, biological process, and cellular components. The
results of this study agree with those of other plant leaf
transcriptome investigations (Wu et al., 2015; Bose Mazumdar
and Chattopadhyay, 2016). Alpha-dioxygenase (-DOX) is
engaged in the catalysis of fatty acid oxygenation, resulting
in the production of a recently found category of oxylipins,
which plays a crucial role in shielding tissues from oxidative
damage and cell death under drought stress (Tirajoh et al.,
2005). Shi et al. (2015) reported that LTI30 protein positively
regulates drought stress resistance in Arabidopsis through
the modulation of ABA sensitivity, hydrogen peroxide levels,
and proline accumulation. Yang et al. (2015) reported from
their study that putative cationic amino acid transporter 9
(CAT9) mutation resulted in chlorotic leaves and overexpression
resulted in the formation of stems and inflorescence transgenic

Arabidopsis plants. Magwanga et al. (2018) also established the
role of LEA proteins in cotton drought stress tolerance. Zheng
et al. (2020) reported that the overexpressing phenotype of
Oryza sativa ABA responsive protein 1 (OsABAR1), a GRAM
protein-containing protein, showed resistance to drought and
salinity. Identifying many DEGs in this study could help to
gain in-depth knowledge of the diverse metabolic activities
involved in the stress-resistant mechanisms of cluster beans.
According to the gene function analysis, the KEGG database
revealed that among 66,838 transcripts, 17,211 transcripts were
allocated to 203 unigene pathways. A similar pattern was
discovered in the transcriptome of Phyllanthus amarus leaves
(Bose Mazumdar and Chattopadhyay, 2016).

Transcription factors are regulatory proteins involved in
various regulatory processes, such as biotic and abiotic stress
adaptation (Nakashima et al., 2014; Joshi et al., 2016). TF
genes, such as NAC, WRKY, MYB, and bZIP, have been
linked to drought stress responses (Gahlaut et al., 2016). NAC
genes are TFs specific to plants and are involved in growth,
development, and stress responses. Shi et al. (2018) reported
that GmWRKY12 confers drought and salt tolerance in soybean.
Auxins usually induce scarecrow-like genes and interact with
histone deacetylase, resulting in chromatin modeling in drought
stress (Gao et al., 2004; Sánchez et al., 2007). Similarly, Scarecrow-
like protein 1, one of the GRAS proteins, was upregulated in this
study during drought stress. Zhu et al. (2014) studied the role of
the SlNAC4 TF in combating drought and salinity stress through
RNAi-silenced transgenic tomato plants. Yu et al. (2016) also
proved that Cicer arietinum NAC4 (CarNAC4) TF overexpression
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in Arabidopsis conferred resistance to drought and salinity
stresses. Liu et al. (2013) reported enhanced dehydration and
drought tolerance through overexpression of AhNAC3 in tobacco
through enhanced superoxide scavenging. Tang et al. (2017)
reported that the overexpression of the peanut NAC4 gene
conferred drought tolerance in tobacco. These differentially
expressed TFs propose their significant role in combating
drought stress in cluster bean cultivar RGC-1025. SSRs are the
most useful molecular markers for genetics and plant breeding
applications (Hiremath et al., 2012). In the present study, 21,494
SSRs were identified in the cluster bean data, and the frequency
distribution of SSR markers agrees with previous reports in guar
(Kuravadi et al., 2014; Kumar et al., 2016).

Cuticular wax prevents non-stomatal water loss, allowing
plants to adapt to water-limited conditions (Kerstiens, 1996; Buda
et al., 2013). Cuticular waxes deposited on the plant’s organs
play a critical role in sustaining harsh environmental conditions,
such as drought (Jenks and Ashworth, 1999; Goodwin and
Jenks, 2005). Drought stress enhances the increased deposition
of waxes in many plants (Bondada et al., 1996; Samdur et al.,
2003; Cameron et al., 2006). Lee and Suh (2013) and Mamrutha
et al. (2017) reported that wax biosynthesis and its pathway
genes are regulated at transcriptional, post-transcriptional, and
translational levels. Guo et al. (2016) showed that drought-
induced accumulation of wax biosynthesis positively correlated
with drought-tolerant crops, such as wheat. In the present study,
the ECERIFERUM1 was upregulated by 7.82-fold during the
drought stress, revealing the upregulation of the wax biosynthesis
pathway. Bourdenx et al. (2011) reported that overexpression
of ECERIFERUM1 promotes wax’s very long-chain alkane
biosynthesis and influences plant response to biotic and abiotic
stresses. Xu et al. (2003) showed that an ABC transporter family
gene, AtTGD1, is involved in the inter-organelle lipid transfer
in Arabidopsis. Mizuno et al. (2013) reported that an ABC
transporter gene, Sb06g023280, is responsible for epi-cuticular
wax biosynthesis in Sorghum. Elango et al. (2020) assessed the
epicuticular wax variability in the extensive genetic pool of
Sorghum, and a genome-wide association mapping study showed
genic regions associated with epicuticular wax production.
Hence, the enhanced epicuticular wax content and the deposition
of wax crystals on the leaf surfaces are essential components
of plants for enhanced drought tolerance to overcome non-
stomatal water loss.

CONCLUSION

In summary, the Cluster bean cultivar RGC-1025 is proved
to have enhanced drought tolerance that was evident from
DEGs and analyzed from the transcriptome sequencing.
The transcriptome sequencing and analysis revealed that the
differential expression of the different stress responsible and
constitutive cellular TFs, the enhanced traits, such as enhanced
wax biosynthesis, and the upregulation of various genes involved
in wax biosynthesis played a key role in RGC-1025 to combat
drought stress efficiently.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://www.ncbi.nlm.
nih.gov/, #PRJNA669348.

AUTHOR CONTRIBUTIONS

CS conceptualized and supervised this study and wrote the
manuscript. BR performed the experiments. BR, AA, and MP
analyzed the transcriptome data. NJ, BV, and NJ performed RT
PCR analysis. All authors equally contributed to manuscript
revision, read, and approved the manuscript.

ACKNOWLEDGMENTS

We greatly acknowledge the Regional Agricultural Research
Station, Rekulakunta, for providing cluster bean seed material
and Yogi Vemana University, Kadapa for extending the SEM
facility. CS acknowledges the UGC, GoI, New Delhi for the BSR
(F.No. 26-13/2020-BSR) Faculty fellowship.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpls.2022.
868142/full#supplementary-material

REFERENCES
Ahmad, J., Bashir, H., Bagheri, R., Baig, A., Al-Huqail, A., Ibrahim, M. M., et al.

(2017). Drought and salinity induced changes in ecophysiology and proteomic
profile of Parthenium hysterophorus. PLoS One 12:e0185118. doi: 10.1371/
journal.pone.0185118

Al-Qurainy, F., Alshameri, A., Gaafar, A. R., Khan, S., Nadeem, M., Alameri, A. A.,
et al. (2019). Comprehensive stress-based de novo transcriptome assembly
and annotation of guar (Cyamopsis tetragonoloba (L.) Taub.): an important
industrial and forage crop. Int. J. Genomics 2019, 1–14. doi: 10.1155/2019/
7295859

Alshameri, A., Al-Qurainy, F., Khan, S., Nadeem, M., Gaafar, A. R., and Tarroum,
M. (2017). Appraisal of guar [Cyamopsis tetragonoloba (l.) Taub.] accessions
for forage purpose under the typical Saudi Arabian environmental conditions

encompassing high temperature, salinity and drought. Pakistan J. Bot. 49,
1405–1413.

Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts.
Polyphenoloxidase in Beta vulgaris. Plant Physiology. 24:1. doi: 10.1104/pp.
24.1.1

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al.
(2000). Gene ontology: tool for the unification of biology. Nat. Gene. 25, 25–29.
doi: 10.1038/75556

Barrs, H. D., and Weatherley, P. E. (1962). A re-examination of the relative
turgidity technique for estimating water deficits in leaves. Aus. J. Biol. Sci. 15,
413–428. doi: 10.1071/BI9620413

Bates, L. S., Waldren, R. P., and Teare, I. D. (1973). Rapid determination of
free proline for water-stress studies. Plant soil 39, 205–207. doi: 10.1007/
BF00018060

Frontiers in Plant Science | www.frontiersin.org 11 June 2022 | Volume 13 | Article 868142154

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.frontiersin.org/articles/10.3389/fpls.2022.868142/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2022.868142/full#supplementary-material
https://doi.org/10.1371/journal.pone.0185118
https://doi.org/10.1371/journal.pone.0185118
https://doi.org/10.1155/2019/7295859
https://doi.org/10.1155/2019/7295859
https://doi.org/10.1104/pp.24.1.1
https://doi.org/10.1104/pp.24.1.1
https://doi.org/10.1038/75556
https://doi.org/10.1071/BI9620413
https://doi.org/10.1007/BF00018060
https://doi.org/10.1007/BF00018060
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-868142 June 22, 2022 Time: 14:28 # 12

Reddy et al. Transcriptome of Drought Adapted Cluster Bean

Bondada, B. R., Oosterhuis, D. M., Murphy, J. B., and Kim, K. S. (1996). Effect of
water stress on the epicuticular wax composition and ultrastructure of cotton
(Gossypium hirsutum L.) leaf, bract, and boll. Environ. Experim. Bot. 36, 61–69.
doi: 10.1016/0098-8472(96)00128-1

Bose Mazumdar, A., and Chattopadhyay, S. (2016). Sequencing, de novo assembly,
functional annotation and analysis of Phyllanthus amarus leaf transcriptome
using the Illumina platform. Front. Plant Sci. 6:1199. doi: 10.3389/fpls.2015.
01199

Bourdenx, B., Bernard, A., Domergue, F., Pascal, S., Léger, A., Roby, D., et al.
(2011). Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-
long-chain alkane biosynthesis and influences plant response to biotic and
abiotic stresses. Plant Physiol. 156, 29–45. doi: 10.1104/pp.111.172320

Brasileiro, A., Morgante, C. V., Araujo, A. C., Leal-Bertioli, S., Silva, A. K., Martins,
A. C., et al. (2015). Transcriptome profiling of wild Arachis from water-limited
environments uncovers drought tolerance candidate genes. Plant Mol. Biol. Rep.
33, 1876–1892. doi: 10.1007/s11105-015-0882-x

Buda, G. J., Barnes, W. J., Fich, E. A., Park, S., Yeats, T. H., Zhao, L., et al. (2013).
An ATP binding cassette transporter is required for cuticular wax deposition
and desiccation tolerance in the moss Physcomitrella patens. Plant Cell 25,
4000–4013. doi: 10.1105/tpc.113.117648

Cai, X., Magwanga, R.O., Xu, Y., Zhou, Z., Wang, X., Hou, Y., et al. (2019).
Comparative transcriptome, physiological and biochemical analyses reveal
response mechanism mediated by CBF4 and ICE2 in enhancing cold stress
tolerance in Gossypium thurberi. AoB Plants 11:lz045. doi: 10.1093/aobpla/
plz045

Cameron, K. D., Teece, M. A., and Smart, L. B. (2006). Increased accumulation
of cuticular wax and expression of lipid transfer protein in response to periodic
drying events in leaves of tree tobacco. Plant Physiol. 140, 176–183. doi: 10.1104/
pp.105.069724

Cloonan, N., Forrest, A. R., Kolle, G., Gardiner, B., Faulkner, G. J., Brown,
M. K., et al. (2008). Stem cell transcriptome profiling via massive-scale mRNA
sequencing. Nat. Methods 5, 613–619. doi: 10.1038/nmeth.1223

Coveney, P. V., Silva, H. D., Gomtsyan, A., Whiting, A., and Boek, E. S. (2000).
Novel approaches to cross-linking high molecular weight polysaccharides:
application to guar-based hydraulic fracturing fluids. Mol. Simul. 25, 265–299.
doi: 10.1080/08927020008024503

Dutta, S., Kumawat, G., Singh, B. P., Gupta, D. K., Singh, S., Dogra, V., et al.
(2011). Development of genic-SSR markers by deep transcriptome sequencing
in pigeonpea [Cajanus cajan (L.) Millspaugh]. BMC Plant Biol. 11:17. doi:
10.1186/1471-2229-11-17

Elango, D., Xue, W., and Chopra, S. (2020). Genome wide association mapping
of epi-cuticular wax genes in Sorghum bicolor. Physiol. Mol. Biol. Plants 26,
1727–1737. doi: 10.1007/s12298-020-00848-5

Gahlaut, V., Jaiswal, V., Kumar, A., and Gupta, P. K. (2016). Transcription factors
involved in drought tolerance and their possible role in developing drought
tolerant cultivars with emphasis on wheat (Triticum aestivum L.). Theor. Appl.
Gen. 129, 2019–2042. doi: 10.1007/s00122-016-2794-z

Gao, M. J., Parkin, I., Lydiate, D., and Hannoufa, A. (2004). An auxin-responsive
SCARECROW-like transcriptional activator interacts with histone deacetylase.
Plant Mol. Biol. 55, 417–431. doi: 10.1007/s11103-004-0892-9

Garg, R., Patel, R. K., Tyagi, A. K., and Jain, M. (2011). De novo assembly
of chickpea transcriptome using short reads for gene discovery and marker
identification. DNA Res. 18, 53–63. doi: 10.1093/dnares/dsq028

Global Agricultural Information Network [GAIN] (2014). In: An Analysis of Guar
Crop in India. Report Number IN4035. Geneva :GAIN

Goodwin, S. M., and Jenks, M. A. (2005). “Plant cuticlef unction as a barrier to
water loss,” in Plant Abiotic Stress, eds M. A. Jenks and P. M. Hasegawa (Oxford:
Blackwell Scientific Publishers), 14–36.

Gresta, F., Ceravolo, G., Presti, V. L., D’Agata, A., Rao, R., and Chiofalo, B.
(2017). Seed yield, galactomannan content and quality traits of different guar
(Cyamopsis tetragonoloba L.) genotypes. Indust. Crops Prod. 107, 122–129. doi:
10.1016/j.indcrop.2017.05.037

Guo, J., Xu, W., Yu, X., Shen, H., Li, H., Cheng, D., et al. (2016). Cuticular wax
accumulation is associated with drought tolerance in wheat near-isogenic lines.
Front. Plant Sci. 7:1809. doi: 10.3389/fpls.2016.01809

Hasan, M. M. U., Ma, F., Islam, F., Sajid, M., Prodhan, Z. H., Li, F., et al. (2019).
Comparative transcriptomic analysis of biological process and key pathway in

three cotton (Gossypium spp.) species under drought stress. Int. J. Mol. Sci.
20:2076. doi: 10.3390/ijms20092076

Hiremath, P. J., Farmer, A., Cannon, S. B., Woodward, J., Kudapa, H., Tuteja, R.,
et al. (2011). Large-scale transcriptome analysis in chickpea (Cicer arietinum
L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant
Biotechnol. J. 9, 922–931. doi: 10.1111/j.1467-7652.2011.00625.x

Hiremath, P. J., Kumar, A., Penmetsa, R. V., Farmer, A., Schlueter, J. A., Chamarthi,
S. K., et al. (2012). Large-scale development of cost-effective SNP marker assays
for diversity assessment and genetic mapping in chickpea and comparative
mapping in legumes. Plant Biotechnol. J. 10, 716–732. doi: 10.1111/j.1467-7652.
2012.00710.x

Hodges, D. M., Delong, J. M., Forney, C. F., and Prange, R. K. (1999). Improving the
thiobarbitric acid reactive substance assay for estimating lipid peroxidation in
plant tissues containing anthocyanin and other interfering compounds. Planta
207, 604–611. doi: 10.1007/s004250050524

Hou, Z., Yin, J., Lu, Y., Song, J., Wang, S., Wei, S., et al. (2019). Transcriptomic
analysis reveals the temporal and spatial changes in physiological process
and gene expression in common buckwheat (Fagopyrum esculentum Moench)
grown under drought stress. Agronomy 9:569. doi: 10.3390/agronomy9100569

Jenks, M. A., and Ashworth, E. N. (1999). Plant epicuticular waxes: function,
production, and genetics. Horticult. Rev. 23, 1–68.

Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., et al.
(2016). Transcription factors and plants response to drought stress: current
understanding and future directions. Front. Plant Sci. 7:1029. doi: 10.3389/fpls.
2016.01029

Kerstiens, G. (1996). Cuticular water permeability and its physiological
significance. J. Experim. Bot. 47, 1813–1832. doi: 10.1093/jxb/47.12.1813

Kumar, J., Gunapati, S., Kianian, S. F., and Singh, S. P. (2018). Comparative
analysis of transcriptome in two wheat genotypes with contrasting levels
of drought tolerance. Protoplasma 255, 1487–1504. doi: 10.1007/s00709-018-
1237-x

Kumar, M., Chauhan, A. S., Yusuf, M. A., Sanyal, I., and Chauhan,
P. S. (2019). Transcriptome sequencing of chickpea (Cicer arietinum L.)
genotypes for identification of drought-responsive genes under drought
stress condition. Plant Mol. Biol. Rep. 37, 186–203. doi: 10.1007/s11105-019-
01147-4

Kumar, S., Palve, A. S., Patel, S. K., Selvanayagam, S., Sharma, R., and Rathore, A.
(2020). Development of genomic microsatellite markers in cluster bean using
next-generation DNA sequencing and their utility in diversity analysis. Curr.
Plant Biol. 21:100134. doi: 10.1016/j.cpb.2019.100134

Kumar, S., Parekh, M. J., Patel, C. B., Zala, H. N., Sharma, R., Kulkarni, K. S., et al.
(2016). Development and validation of EST-derived SSR markers and diversity
analysis in cluster bean (Cyamopsis tetragonoloba). J. Plant Biochem. Biotechnol.
25, 263–269. doi: 10.1007/s13562-015-0337-3

Kuravadi, N. A., Tiwari, P. B., Tanwar, U. K., Tripathi, S. K., Dhugga, K. S., Gill,
K. S., et al. (2014). Identification and Characterization of EST-SSR Markers
in Cluster Bean (Cyamopsis spp.). Crop Sci. 54, 1097–1102. doi: 10.2135/
cropsci2013.08.0522

Lee, S. B., and Suh, M. C. (2013). Recent advances in cuticular wax biosynthesis and
its regulation in Arabidopsis. Mol. Plant 6, 246–249. doi: 10.1093/mp/sss159

Leopold, A. C., Musgrave, M. E., and Williams, K. M. (1981). Solute leakage
resulting from leaf desiccation. Plant Physiol. 68, 1222–1225. doi: 10.1104/pp.
68.6.1222

Li, B., Ruotti, V., Stewart, R. M., Thomson, J. A., and Dewey, C. N. (2010). RNA-
Seq gene expression estimation with read mapping uncertainty. Bioinformatics
26, 493–500. doi: 10.1093/bioinformatics/btp692

Liu, X., Liu, S., Wu, J., Zhang, B., Li, X., Yan, Y., et al. (2013). Overexpression
of Arachis hypogaea NAC3 in tobacco enhances dehydration and drought
tolerance by increasing superoxide scavenging. Plant Physiol. Biochem. 70,
354–359. doi: 10.1016/j.plaphy.2013.05.018

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression
data using real-time quantitative PCR and the 2−11CT method. Methods 25,
402–408. doi: 10.1006/meth.2001.1262

Magwanga, R. O., Lu, P., Kirungu, J. N., Lu, H., Wang, X., Cai, X., et al. (2018).
Characterization of the late embryogenesis abundant (LEA) proteins family
and their role in drought stress tolerance in upland cotton. BMC Gen. 19:6.
doi: 10.1186/s12863-017-0596-1

Frontiers in Plant Science | www.frontiersin.org 12 June 2022 | Volume 13 | Article 868142155

https://doi.org/10.1016/0098-8472(96)00128-1
https://doi.org/10.3389/fpls.2015.01199
https://doi.org/10.3389/fpls.2015.01199
https://doi.org/10.1104/pp.111.172320
https://doi.org/10.1007/s11105-015-0882-x
https://doi.org/10.1105/tpc.113.117648
https://doi.org/10.1093/aobpla/plz045
https://doi.org/10.1093/aobpla/plz045
https://doi.org/10.1104/pp.105.069724
https://doi.org/10.1104/pp.105.069724
https://doi.org/10.1038/nmeth.1223
https://doi.org/10.1080/08927020008024503
https://doi.org/10.1186/1471-2229-11-17
https://doi.org/10.1186/1471-2229-11-17
https://doi.org/10.1007/s12298-020-00848-5
https://doi.org/10.1007/s00122-016-2794-z
https://doi.org/10.1007/s11103-004-0892-9
https://doi.org/10.1093/dnares/dsq028
https://doi.org/10.1016/j.indcrop.2017.05.037
https://doi.org/10.1016/j.indcrop.2017.05.037
https://doi.org/10.3389/fpls.2016.01809
https://doi.org/10.3390/ijms20092076
https://doi.org/10.1111/j.1467-7652.2011.00625.x
https://doi.org/10.1111/j.1467-7652.2012.00710.x
https://doi.org/10.1111/j.1467-7652.2012.00710.x
https://doi.org/10.1007/s004250050524
https://doi.org/10.3390/agronomy9100569
https://doi.org/10.3389/fpls.2016.01029
https://doi.org/10.3389/fpls.2016.01029
https://doi.org/10.1093/jxb/47.12.1813
https://doi.org/10.1007/s00709-018-1237-x
https://doi.org/10.1007/s00709-018-1237-x
https://doi.org/10.1007/s11105-019-01147-4
https://doi.org/10.1007/s11105-019-01147-4
https://doi.org/10.1016/j.cpb.2019.100134
https://doi.org/10.1007/s13562-015-0337-3
https://doi.org/10.2135/cropsci2013.08.0522
https://doi.org/10.2135/cropsci2013.08.0522
https://doi.org/10.1093/mp/sss159
https://doi.org/10.1104/pp.68.6.1222
https://doi.org/10.1104/pp.68.6.1222
https://doi.org/10.1093/bioinformatics/btp692
https://doi.org/10.1016/j.plaphy.2013.05.018
https://doi.org/10.1006/meth.2001.1262
https://doi.org/10.1186/s12863-017-0596-1
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-868142 June 22, 2022 Time: 14:28 # 13

Reddy et al. Transcriptome of Drought Adapted Cluster Bean

Mamrutha, H. M., Mogili, T., Lakshmi, K. J., Rama, N., Kosma, D., Kumar, M. U.,
et al. (2010). Leaf cuticular wax amount and crystal morphology regulate post-
harvest water loss in mulberry (Morus species). Plant Physiol. Biochem. 48,
690–696. doi: 10.1016/j.plaphy.2010.04.007

Mamrutha, H. M., Nataraja, K. N., Rama, N., Kosma, D. K., Mogili, T.,
Lakshmi, K. J., et al. (2017). Leaf surface wax composition of genetically
diverse mulberry (Morus sp.) genotypes and its close association with
expression of genes involved in wax metabolism. Curr. Sci. 112, 759–766.
www.jstor.org/stable/24912577

Mizuno, H., Kawahigashi, H., Ogata, J., Minami, H., Kanamori, H., Nakagawa, H.,
et al. (2013). Genomic inversion caused by gamma irradiation contributes to
downregulation of a WBC11 homolog in bloomless Sorghum. Theor. Appl. Gen.
126, 1513–1520. doi: 10.1007/s00122-013-2069-x

Morgil, H., Tardu, M., Cevahir, G., and Kavakli, I. H. (2019). Comparative RNA-
seq analysis of the drought-sensitive lentil (Lens culinaris) root and leaf under
short-and long-term water deficits. Funct. Integr. Genom. 19, 715–727. doi:
10.1007/s10142-019-00675-2

Mudgil, D., Barak, S., and Khatkar, B. S. (2014). Guar gum: processing, properties
and food applications—a review. J. Food Sci. Technol. 51, 409–418. doi: 10.1007/
s13197-011-0522-x

Nakashima, K., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2014). The
transcriptional regulatory network in the drought response and its crosstalk
in abiotic stress responses including drought, cold, and heat. Front. Plant Sci.
5:170. doi: 10.3389/fpls.2014.00170

Naoumkina, M., Torres-Jerez, I., Allen, S., He, J., Zhao, P. X., Dixon, R. A., et al.
(2007). Analysis of cDNA libraries from developing seeds of guar (Cyamopsis
tetragonoloba (L.) Taub). BMC Plant Biol. 7:62. doi: 10.1186/1471-2229-
7-62

Panda, A., Rangani, J., and Parida, A. K. (2021). Unraveling salt responsive
metabolites and metabolic pathways using non-targeted metabolomics
approach and elucidation of salt tolerance mechanisms in the xero-halophyte
Haloxylon salicornicum. Plant Physiol. Biochem. 158, 284–296. doi: 10.1016/j.
plaphy.2020.11.012

Rao, N. K., and Shahid, M. (2011). Potential of cowpea [Vigna unguiculata (L.)
Walp.] And guar [cyamopsis tetragonoloba (L.) Taub.] As alternative forage
legumes for. Emir. J. Food Agric. 23, 147–156.

Rawal, H. C., Kumar, S., Mithra, S. V. A., Solanke, A. U., Nigam, D., Saxena, S., et al.
(2017). High quality unigenes and microsatellite markers from tissue specific
transcriptome and development of a database in clusterbean (Cyamopsis
tetragonoloba, L. Taub). Genes 8, 313. doi: 10.3390/genes8110313

Raza, A., Razzaq, A., Mehmood, S. S., Hussain, M. A., Wei, S., He, H., et al. (2021).
Omics: The way forward to enhance abiotic stress tolerance in Brassica napus
L. G.M. Crops Food 12, 251–281. doi: 10.1080/21645698.2020.1859898

Samdur, M. Y., Manivel, P., Jain, V. K., Chikani, B. M., Gor, H. K., Desai, S.,
et al. (2003). Genotypic differences and water-deficit induced enhancement
in epicuticular wax load in peanut. Crop Sci. 43, 1294–1299. doi: 10.2135/
cropsci2003.1294

Sánchez, C., Vielba, J. M., Ferro, E., Covelo, G., Solé, A., Abarca, D., et al. (2007).
Two SCARECROW-LIKE genes are induced in response to exogenous auxin in
rooting-competent cuttings of distantly related forest species. Tree Physiol. 27,
1459–1470. doi: 10.1093/treephys/27.10.1459

Shi, H., Chen, Y., Qian, Y., and Chan, Z. (2015). Low temperature-induced 30
(LTI30) positively regulates drought stress resistance in Arabidopsis: effect on
abscisic acid sensitivity and hydrogen peroxide accumulation. Front. Plant Sci.
6:893. doi: 10.3389/fpls.2015.00893

Shi, W. Y., Du, Y. T., Ma, J., Min, D. H., Jin, L. G., Chen, J., et al. (2018). The
WRKY transcription factor GmWRKY12 confers drought and salt tolerance in
soybean. Int. J. Mol. Sci. 19, 4087. doi: 10.3390/ijms19124087

Singh, D., Singh, C. K., Taunk, J., Tomar, R. S. S., Chaturvedi, A. K., Gaikwad,
K., et al. (2017). Transcriptome analysis of lentil (Lens culinaris Medikus) in
response to seedling drought stress. BMC Genomics 18:1–20. doi: 10.1186/
s12864-017-3596-7

Tang, G. Y., Shao, F. X., Xu, P. L., Shan, L., and Liu, Z. J. (2017). Overexpression of
a peanut NAC gene, AhNAC4, confers enhanced drought tolerance in tobacco.
Russian J. Plant Physiol. 64, 525–535. doi: 10.1134/S1021443717040161

Tanwar, U. K., Pruthi, V., and Randhawa, G. S. (2017). RNA-Seq of guar (Cyamopsis
tetragonoloba, L. Taub.) leaves: de novo transcriptome assembly, functional
annotation and development of genomic resources. Front. Plant Sci. 8:91. doi:
10.3389/fpls.2017.00091

Tirajoh, A., Aung, T. S., McKay, A. B., and Plant, A. L. (2005). Stress-responsive
α-dioxygenase expression in tomato roots. J. Exper. Bot. 56, 713–723. doi:
10.1093/jxb/eri038

Tyagi, A., Sharma, P., Saxena, S., Sharma, R., Mithra, S. A., Solanke, A. U.,
et al. (2019). The genome size of clusterbean (Cyamopsis tetragonoloba) is
significantly smaller compared to its wild relatives as estimated by flow
cytometry. Gene 707, 205–211. doi: 10.1016/j.gene.2019.02.090

Wang, Z., Gerstein, M., and Snyder, M. (2009). RNA-Seq: a revolutionary tool for
transcriptomics. Nat. Rev. Gen. 10, 57–63. doi: 10.1038/nrg2484

Wang, Z., Yu, G., Shi, B., Wang, X., Qiang, H., and Gao, H. (2014). Development
and characterization of simple sequence repeat (SSR) markers based on RNA-
sequencing of Medicago sativa and in silico mapping onto the M. truncatula
genome. PLoS One 9:e92029. doi: 10.1371/journal.pone.0092029

Waseem, M., Rong, X., and Li, Z. (2019). Dissecting the role of a basic helix-
loop-helix transcription factor, SlbHLH22, under salt and drought stresses in
transgenic Solanum lycopersicum L. Front. Plant Sci. 10:734. doi: 10.3389/fpls.
2019.00734

Wilhelm, B. T., Marguerat, S., Goodhead, I., and Bähler, J. (2010). Defining
transcribed regions using RNA-seq. Nat. Prot. 5, 255–266. doi: 10.1038/nprot.
2009.229

Wu, J., Wang, L., and Wang, S. (2016). Comprehensive analysis and discovery of
drought-related NAC transcription factors in common bean. BMC Plant Biol.
16:193. doi: 10.1186/s12870-016-0882-5

Wu, Z. J., Li, X. H., Liu, Z. W., Li, H., Wang, Y. X., and Zhuang, J. (2015).
Transcriptome-based discovery of AP2/ERF transcription factors related to
temperature stress in tea plant (Camellia sinensis). Funct. Integr. Genom. 15,
741–752. doi: 10.1007/s10142-015-0457-9

Xu, C., Fan, J., Riekhof, W., Froehlich, J. E., and Benning, C. (2003). A permease-
like protein involved in E.R. to thylakoid lipid transfer in Arabidopsis. EMBO J.
22, 2370–2379. doi: 10.1093/emboj/cdg234

Yang, H., Stierhof, Y. D., and Ludewig, U. (2015). The putative Cationic Amino
Acid Transporter 9 is targeted to vesicles and may be involved in plant amino
acid homeostasis. Front. Plant Sci. 6:212. doi: 10.3389/fpls.2015.00212

Yu, X., Liu, Y., Wang, S., Tao, Y., Wang, Z., Shu, Y., et al. (2016). CarNAC4, a NAC-
type chickpea transcription factor conferring enhanced drought and salt stress
tolerances in Arabidopsis. Plant cell Rep. 35, 613–627.

Zhang, Y., Gao, X., Li, J., Gong, X., Yang, P., Gao, J., et al. (2019). Comparative
analysis of proso millet (Panicum miliaceum L.) leaf transcriptomes for insight
into drought tolerance mechanisms. BMC Plant Biol. 19:397. doi: 10.1186/
s12870-019-2001-x

Zhao, X., Li, C., Wan, S., Zhang, T., Yan, C., and Shan, S. (2018). Transcriptomic
analysis and discovery of genes in the response of Arachis hypogaea to drought
stress. Mol. Biol. Rep. 45, 119–131. doi: 10.1007/s11033-018-4145-4

Zheng, C., Zhou, J., Zhang, F., Yin, J., Zhou, G., Li, Y., et al. (2020). OsABAR1,
a novel GRAM domain-containing protein, confers drought and salt tolerance
via an ABA-dependent pathway in rice. Plant Physiol. Biochem. 152, 138–146.
doi: 10.1016/j.plaphy.2020.04.032

Zhu, M., Chen, G., Zhou, S., Tu, Y., Wang, Y., Dong, T., et al. (2014). A new
tomato NAC (N AM/A TAF1/2/C UC2) transcription factor, SlNAC4, functions
as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell
Physiol. 55, 119–135. doi: 10.1093/pcp/pct162

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Reddy, Anthony Johnson, Jagadeesh Kumar, Venkatesh, Jayamma,
Pandurangaiah and Sudhakar. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 13 June 2022 | Volume 13 | Article 868142156

https://doi.org/10.1016/j.plaphy.2010.04.007
https://doi.org/10.1007/s00122-013-2069-x
https://doi.org/10.1007/s10142-019-00675-2
https://doi.org/10.1007/s10142-019-00675-2
https://doi.org/10.1007/s13197-011-0522-x
https://doi.org/10.1007/s13197-011-0522-x
https://doi.org/10.3389/fpls.2014.00170
https://doi.org/10.1186/1471-2229-7-62
https://doi.org/10.1186/1471-2229-7-62
https://doi.org/10.1016/j.plaphy.2020.11.012
https://doi.org/10.1016/j.plaphy.2020.11.012
https://doi.org/10.3390/genes8110313
https://doi.org/10.1080/21645698.2020.1859898
https://doi.org/10.2135/cropsci2003.1294
https://doi.org/10.2135/cropsci2003.1294
https://doi.org/10.1093/treephys/27.10.1459
https://doi.org/10.3389/fpls.2015.00893
https://doi.org/10.3390/ijms19124087
https://doi.org/10.1186/s12864-017-3596-7
https://doi.org/10.1186/s12864-017-3596-7
https://doi.org/10.1134/S1021443717040161
https://doi.org/10.3389/fpls.2017.00091
https://doi.org/10.3389/fpls.2017.00091
https://doi.org/10.1093/jxb/eri038
https://doi.org/10.1093/jxb/eri038
https://doi.org/10.1016/j.gene.2019.02.090
https://doi.org/10.1038/nrg2484
https://doi.org/10.1371/journal.pone.0092029
https://doi.org/10.3389/fpls.2019.00734
https://doi.org/10.3389/fpls.2019.00734
https://doi.org/10.1038/nprot.2009.229
https://doi.org/10.1038/nprot.2009.229
https://doi.org/10.1186/s12870-016-0882-5
https://doi.org/10.1007/s10142-015-0457-9
https://doi.org/10.1093/emboj/cdg234
https://doi.org/10.3389/fpls.2015.00212
https://doi.org/10.1186/s12870-019-2001-x
https://doi.org/10.1186/s12870-019-2001-x
https://doi.org/10.1007/s11033-018-4145-4
https://doi.org/10.1016/j.plaphy.2020.04.032
https://doi.org/10.1093/pcp/pct162
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


SYSTEMATIC REVIEW
published: 28 June 2022

doi: 10.3389/fpls.2022.878498

Frontiers in Plant Science | www.frontiersin.org 1 June 2022 | Volume 13 | Article 878498

Edited by:

Mostafa Abdelwahed Abdelrahman,

Aswan University, Egypt

Reviewed by:

Pasala Ratnakumar,

Indian Institute of Oilseeds Research

(ICAR), India

Mingle Wang,

Huazhong Agricultural

University, China

*Correspondence:

Harsh Nayyar

harshnayyar@hotmail.com

Kadambot H. M. Siddique

kadambot.siddique@uwa.edu.au

Specialty section:

This article was submitted to

Crop and Product Physiology,

a section of the journal

Frontiers in Plant Science

Received: 18 February 2022

Accepted: 17 May 2022

Published: 28 June 2022

Citation:

Chaudhary S, Devi P,

HanumanthaRao B, Jha UC,

Sharma KD, Prasad PVV, Kumar S,

Siddique KHM and Nayyar H (2022)

Physiological and Molecular

Approaches for Developing

Thermotolerance in Vegetable Crops:

A Growth, Yield and Sustenance

Perspective.

Front. Plant Sci. 13:878498.

doi: 10.3389/fpls.2022.878498

Physiological and Molecular
Approaches for Developing
Thermotolerance in Vegetable Crops:
A Growth, Yield and Sustenance
Perspective
Shikha Chaudhary 1, Poonam Devi 1, Bindumadhava HanumanthaRao 2,3,

Uday Chand Jha 4, Kamal Dev Sharma 5, P. V. Vara Prasad 6, Shiv Kumar 7,

Kadambot H. M. Siddique 8* and Harsh Nayyar 1*

1Department of Botany, Panjab University, Chandigarh, India, 2World Vegetable Center, International Crops Research

Institute for the Semi-Arid Tropics (ICRISAT), Greater Hyderabad, Hyderabad, India, 3Marri Channa Reddy Foundation

(MCRF), Hyderabad, India, 4Crop Improvement Division, Indian Institute of Pulses Research, Kanpur, India, 5Department of

Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh Agricultural University, Palampur, India,
6Department of Agronomy, Kansas State University, Manhattan, KS, United States, 7 International Center for Agriculture

Research in the Dry Areas (ICARDA), Rabat, Morocco, 8 The University of Western Australia Institute of Agriculture, The

University of Western Australia, Perth, WA, Australia

Vegetables are a distinct collection of plant-based foods that vary in nutritional diversity

and form an important part of the healthy diet of the human being. Besides providing

basic nutrition, they have great potential for boosting human health. The balanced

consumption of vegetables is highly recommended for supplementing the human body

with better nutrition density, dietary fiber, minerals, vitamins, and bioactive compounds.

However, the production and quality of fresh vegetables are influenced directly or

indirectly by exposure to high temperatures or heat stress (HS). A decline in quality traits

and harvestable yield are the most common effects of HS among vegetable crops. Heat-

induced morphological damage, such as poor vegetative growth, leaf tip burning, and

rib discoloration in leafy vegetables and sunburn, decreased fruit size, fruit/pod abortion,

and unfilled fruit/pods in beans, are common, often rendering vegetable cultivation

unprofitable. Further studies to trace down the possible physiological and biochemical

effects associated with crop failure reveal that the key factors include membrane

damage, photosynthetic inhibition, oxidative stress, and damage to reproductive tissues,

which may be the key factors governing heat-induced crop failure. The reproductive

stage of plants has extensively been studied for HS-induced abnormalities. Plant

reproduction is more sensitive to HS than the vegetative stages, and affects various

reproductive processes like pollen germination, pollen load, pollen tube growth, stigma

receptivity, ovule fertility and, seed filling, resulting in poorer yields. Hence, sound

and robust adaptation and mitigation strategies are needed to overcome the adverse

impacts of HS at the morphological, physiological, and biochemical levels to ensure

the productivity and quality of vegetable crops. Physiological traits such as the stay-

green trait, canopy temperature depression, cell membrane thermostability, chlorophyll

fluorescence, relative water content, increased reproductive fertility, fruit numbers, and
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fruit size are important for developing better yielding heat-tolerant varieties/cultivars.

Moreover, various molecular approaches such as omics, molecular breeding, and

transgenics, have been proved to be useful in enhancing/incorporating tolerance and

can be potential tools for developing heat-tolerant varieties/cultivars. Further, these

approaches will provide insights into the physiological and molecular mechanisms that

govern thermotolerance and pave the way for engineering “designer” vegetable crops for

better health and nutritional security. Besides these approaches, agronomic methods are

also important for adaptation, escape and mitigation of HS protect and improve yields.

Keywords: high temperature, vegetables, heat, environment, climate change

INTRODUCTION

Vegetables are parts of plants cultivated worldwide for
consumption as flowers (e.g., cauliflower, broccoli), fruits (e.g.,
okra, tomato, cucumber, capsicum), leaves (e.g., spinach, lettuce,
brassica, cabbage), tubers (e.g., potato, sweet potato), pods and
seeds (e.g., common bean, chickpea, broad bean, mungbean,
peas) (Peet and Wolfe, 2000). Vegetables contain secondary
metabolites with bioactive properties, including carotenoids (e.g.,
carrots, pepper, tomato, spinach), polyphenols (e.g., tomato,
cabbage), glucosinolates (e.g., brassica), saponins (e.g., beans,
pea), and terpenes (e.g., carrots, tomato) (Crozier et al., 2006).
These bioactive compounds are metabolic intermediates of
primary metabolic processes, which are not essential for plant
growth but are used in plant defense responses and plant-insect
interactions and can stimulate human health. Clearly, vegetables
are an important part of the human diet as they replenish
our body with various nutrients, including vitamins, dietary
minerals, fibers, proteins, antioxidants, carbohydrates, small
amounts of fat, and phytochemicals with anticarcinogenic,
antiviral, antifungal, and antibacterial properties (Osagie and
Eka, 1998; Teng et al., 2021). While not a major energy source,
vegetables nourish our bodies with much-needed minerals
and vitamins. According to Food and Agriculture Organization
(FAO) statistics, vegetables are the source of dietary requirements
about 60% of vitamin A and 90% of vitamin C (Gruda, 2005).
Vegetables can earn extra income for farmers as they are seasonal
plants with higher yields per hectare than staple crops (Abewoy,
2018). The market value of vegetables is assessed by their quality;
FAO and WHO provide many quality attributes for grading
vegetables, e.g., color, size, shape, texture, aroma, shelf life,
and storability (Gruda, 2005). Vegetables are categorized into
two groups according to their growing season; warm-season
vegetables include capsicum, common bean, cucumber, cowpea,
okra, tomato, and mungbean (Peet and Wolfe, 2000), while
cool-season vegetables include brassica, broad bean, broccoli,
cabbage, cauliflower, lettuce, radish, spinach, soybean, pea, and
potato (Peet and Wolfe, 2000) (Table 1).

Like other crops, vegetables are also affected by environmental
changes that can render vegetable cultivation unprofitable.
Abiotic stresses, mainly the high temperature (heat stress.
HS), severely limit crop quantity, quality, nutritional status,
and production (Boote et al., 2005; Aleem et al., 2021).
High temperatures affect the overall growth and development

of vegetable crops by altering morphology, physiology, and
enzymatic activities. Heat stress (HS) accelerates phenology,
shortening the vegetative and reproductive stages. HS reduces
vegetable quality, such as changing the color and texture of
fruits (e.g., cucumber, pepper, and tomato) (Zipelevish et al.,
2000). In general, HS affects morphological, physiological, and
biochemical processes of the plant by hampering photosynthetic
activity, source-sink relationship, and altered enzymatic activities
(Bita and Gerats, 2013; Janni et al., 2020). The quality of
vegetables is also impacted by HS, through a change in color
and texture of fruit (e.g., cucumber, pepper, and tomato)
(Zipelevish et al., 2000). HS also affects the nutritional status
of vegetables; for instance, reducing lycopene in tomato (Gross,
1991) and β-carotene in spinach and lettuce (Oyama et al.,
1999) and increasing nitrate levels to harmful levels for
human consumption.

Due to climate change, in most regions of the world, rising
temperatures will decrease quantity and quality of vegetables
crops. Studies of Waithaka et al. (2013) suggested that changes in
the climate (increased temperatures) will also provide avenues to
grow crops in areas where they could not be grown previously.
Climate change scenarios further suggest that development
of crop and cultivar choice—especially for water-limited or
high-temperature areas—will be an important strategy to have
adequate yields under changing climate (Thomas et al., 2007).
Hence, targeted studies are needed to assess the impact of
high-temperature stress on the growth, yield, and quality (taste,
flavor, color, nutritional content) of vegetable crops, with suitable
agronomic strategies, developed to create heat-tolerant cultivars
or mitigate HS.

HEAT STRESS AND VEGETABLES

High temperatures adversely impact plant growth and
development (Hasanuzzaman et al., 2013). The constantly rising
average surface temperature due to global warming is stressful for
all plant growth and development phases, limiting metabolism
and productivity, particularly in tropical and subtropical
countries (Li et al., 2018). According to the newly released
sixth assessment report of IPCC (2021), temperature during the
twenty-first century is likely to increase by 1.5◦C of warming
within just the next two decades, and by 4.5◦C, depending on
the rate of greenhouse gas emissions. As plants are sedentary
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TABLE 1 | Threshold temperature for some vegetable crops at different stages of plant development.

Crop Family Threshold

temperature (◦C)

Response References

Cool season vegetables

Vegetative stage

Broccoli

(Brassica oleracea var. italica)

Brassicaceae 30◦C Reduced growth and development Hatfield and Prueger, 2015

Cabbage

(Brassica oleracea var. capitata)

Brassicaceae 30◦C Reduced growth and development Warland et al., 2006

Cauliflower

(Brassica oleracea var. botrytis)

Brassicaceae 25◦C Reduced leaf growth Lin et al., 2015

Reproductive stage

Brassica

(Brassica napus)

Brassicaceae 29◦C Reduction in flower number Morrison and Stewart, 2002

Broad bean

(Viciafaba)

Fabaceae 30/22◦C Accelerate Floral development Bishop et al., 2016

Broccoli

(Brassica oleracea var. italica)

Brassicaceae 35◦C Arrest of inflorescence development Björkman and Pearson,

1998

Seed filling/maturity stage

Chickpea

(Cicer arietinum L.)

Fabaceae 30◦C Reduced yield Summerfield and Wien,

1980

Lettuce

(Lactuca sativa)

Asteraceae 24◦C Reduced yield Jenni, 2005

Pea

(Pisum sativum)

Fabaceae 25.6◦C Reduced yield Pumphrey and Ramig, 1990

Potato

(Solanum tuberosum)

Solanaceae 30/20◦C Reduced yield Hancock et al., 2014

Warm season vegetables

Vegetative stage

Cucumber

(Cucumis sativus)

Cucurbitaceae 38◦C Impede growth and development Yu et al., 2022

Okra

(Abelmoschus esculentus)

Malvaceae 35◦C Decreased leaf size Hayamanesh, 2018

Reproductive stage

Capsicum

(Capsicum annuum L.)

Solanaceae 33◦C Inhibition of fertilization or early fruit

development

Erickson and Markhart,

2002

Common bean

(Phaseolus vulgaris)

Fabaceae 34/24◦C Reduced pollen viability Boote et al., 2005

Soybean

(Glycine max)

Fabaceae 26/20◦C Delay flowering and distort pod

development

Nahar et al., 2016

Tomato

(Lycopersicon esculentum)

Solanaceae 32/26◦C Abnormalities in male and female

reproductive tissues

Peet et al., 1998

Seed filling/maturity stage

Cowpea

(Vigna unguiculata)

Fabaceae 36/27◦C Reduced yield Craufurd et al., 1998

Okra

(Abelmoschsusesculentus)

Malvaceae 35◦C Reduced yield Hayamanesh, 2018

organisms, they acclimate to HS by using avoidance mechanisms
or programmed cell death (Mittler et al., 2012; Singh, 2013;
Zhang T. et al., 2020). Each vegetable crop has temperature
threshold for its growth and development; HS will occur beyond
the upper threshold for temperature (Wahid et al., 2007; Prasad
et al., 2008, 2017). HS impedes photosynthesis through reduced
carbon assimilation, ATP reduction, and oxidative damage
to chloroplasts, with simultaneous reductions in dry matter
accumulation and yield (Sharkey, 2005; Farooq et al., 2011). HS

adversely affects vegetative and reproductive plant parts (Bita
and Gerats, 2013); thus, the impact of HS varies depending on
the developmental stage and crop species (Prasad et al., 2017; Li
et al., 2018) (Table 2).

IMPACT ON VEGETATIVE GROWTH

Moderate high temperatures stimulate early vegetative growth
and accelerate physiological maturity (Nahar et al., 2015).
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TABLE 2 | Noticeable symptoms of heat stress in some vegetable crops.

Crop species Symptoms References

Cabbage (Brassica

oleracea var. capitata)

Loosening or bolting of heads,

smaller and tighter heads, rough

leaf texture

Chang et al., 2016

Capsicum (Capsicum

annuum)

Sun scald, yellowing and wilting Moretti et al., 2010

Cauliflower (Brassica

oleracea var. botrytis)

Leafy and uneven heads, puffy

buds, yellow eyes and leaves,

narrow leaves and hollow stems

Lin et al., 2015

Common bean

(Phaseolus vulgaris)

High fiber in pods, brown and

reddish spots in pods

Moretti et al., 2010

Lettuce (Lactuca sativa) Tip burn, bolting, loose puffy

heads, decreases β-carotene

content

Han et al., 2013

Potato (Solanum

tuberosum)

Secondary growth and heat

sprouting

Hancock et al., 2014

Spinach (Spinacia

oleracea)

Reduced leaf area and shoots

dry weight, reduces β-carotene

content

Chitwood et al., 2016

Tomato (Lycopersicon

esculentum)

Fruit cracking, sunscald,

hampered lycopene synthesis,

blossom end rot, internal white

tissue, blotchy ripening,

Moretti et al., 2010

During seed germination, HS reduces germination percentage
and seedling emergence, reduces radical and plumule growth in
germinated seedlings, and causes abnormal seedlings and poor
seedling vigor (Hasanuzzaman et al., 2013). At later stages of
vegetative growth, HS reduces plant height, leaf area, and leaf,
stem, pod, root, and total biomass (Kumar et al., 2013). Leafy
vegetables require proper growth and development of vegetative
parts for realizing only the yield but also the quality. In 45-
day-old cabbage plants exposed to 40◦C for 6, 12, 24, 48, or
72 h, HS caused loosening or bolting of heads, smaller and
tighter heads, and rougher leaf texture (Chang et al., 2016).
Likewise, in 30-day-old cauliflower plants exposed to 40◦C for
6, 12, 24, 48, 72, or 96 h, HS caused uneven heads, puffy buds,
yellow eyes, narrow leaves, reduced leaf growth, and reduced
petiole-to-blade ratio (Lin et al., 2015). HS (34.5◦C) further
delayed the curd induction stage and decreased the chlorophyll
content in cauliflower plants; effects were more distinct in heat
susceptible genotypes where they were unable to develop curd
at high temperature and continued their vegetative growth until
temperature fall below 30◦C (Aleem et al., 2021). Exposing 4- to
5-leaved lettuce seedlings to 42/37◦C for 3 days reduced seedling
germination and caused tip burn, rib discoloration, and bolting
(Jenni and Yan, 2009; Han et al., 2013). In spinach exposed to
35◦C for 21 days, HS decreased seed germination (Chitwood
et al., 2016). In potato, high temperature (30–40◦C) inhibited
tuber development and blocked the tuberization signal (Reynolds
and Ewing, 1989). Potato plants exposed to 30/20◦C (day/night)
for 1 week had reduced yields by 16% compared to plants
grown at 22/16◦C due to decreased carbon transport to the sink
organ (Hancock et al., 2014). Further, reduced yield has been
reported in 50 potato cultivars when exposed to heat stressed

conditions (35/28◦C) than control conditions (22/18◦C) (Zhang
G. et al., 2020). Likewise, in 6–7-leaved radish seedlings exposed
to 40◦C for 12 and 24 h, HS affected fleshy taproot growth and
development, reducing quality and yield (Zhang et al., 2013)
(Figure 1).

IMPACT ON REPRODUCTIVE GROWTH

Reproductive stage is highly sensitive to HS; even a single degree
increase for a few hours can be fatal for proper reproductive
growth, contributing to poor yields (Prasad et al., 2017).
However, studies on reproductive tissues are difficult to assess
because gamete development and fertilization are major events
that occur over short periods. Here, we categorize the effects
of HS in vegetables during three stages of reproduction: pre-
fertilization (flower bud initiation, flowering, male and female
gametophyte development), fertilization (pollen dehiscence,
pollination, pollen reception by stigma, pollen tube growth and
fertilization), and post-fertilization events (fruit/pod set, seed
development, seed filling) (Figure 2; Table 3).

Pre-fertilization Events
Flower Bud Initiation
High-temperature stress causes flower bud abortion and
abscission of reproductive organs inmany crop species, including
tomato (Levy et al., 1978; Pressman et al., 2002; Sato et al.,
2002), common bean (Konsens et al., 1991), pea (Guilioni
et al., 1997), brassica (Angadi et al., 2000), capsicum (Aloni
et al., 2001; Erickson and Markhart, 2002), resulting in severe
yield losses. Common bean grown at 32/27◦C (from flowering
to pod maturity) experienced greater abscission and drop of
flower primordia (2–5mm) and flower buds (>5mm) than at
27/17◦C (Konsens et al., 1991). In capsicum, high-temperature
stress (33◦C for 120 h) affected flower buds (<2.5mm) and
early pistil development less than stamen development, whereas
buds (3–4mm) during tetrad formation and dissolution were
highly sensitive to elevated temperature, leading to pollen sterility
(Erickson andMarkhart, 2002). Flower and flower bud abscission
also occurred in heat-stressed (35/15◦C for 7 days at early stage)
brassica species (Angadi et al., 2000). HS (32/28◦C) severely
affected flower initiation and development in tomato (Levy
et al., 1978; Sato et al., 2002). HS (32/26◦C for 8 days before
anthesis) in capsicum reduced and altered sucrose mobilization
and utilization by flower buds and flowers, resulting in fruit drop
and abscission and thus reducing yield by 17% compared to
normal sown (28/22◦C) (Aloni et al., 2001).

Flowering
HS during flowering reduces flower numbers by damaging flower
organs, reducing yield (Morrison and Stewart, 2002). HS also
decreases the number of flowering branches and thus flower
numbers per plant (Harsant et al., 2013). Damage to flower
organs has been reported in many crops, including chickpea
(Tickoo et al., 1996), common bean (Suzuki et al., 2001; Omae
et al., 2012), and mungbean (Kaur et al., 2015). Early flowering
and flower abortion are other impacts of HS, as reported in pea
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FIGURE 1 | A schematic representation of the effects of heat stress (HS) on vegetative and reproductive growth stages that reduce yield. Heat stress at the vegetative

stage promotes leaf damage, rib discoloration in leafy vegetables, biomass reduction in food legumes, and secondary tuberization in potato. Heat stress at the

reproductive stage negatively affects the overall route from Microspore Mother Cell (MMC) development to fruit setting/seed filling through pollination and fertilization.

The male gametophyte is more prone to heat stress, leading to poor pollen germination, pollen load, and pollen tube growth inside the style and inability to fertilize the

ovule at the required rate.

(Guilioni et al., 1997), tomato (Sato et al., 2004), common bean
(Omae et al., 2012), and mungbean (Sharma et al., 2016).

Male Gametophyte Development and Function
Threshold temperatures needed to impose damages in
reproductive tissues are less than the one needed to cause
injury to vegetative tissues. Male gametophytes are more
sensitive to HS than female gametophytes, with lower threshold
temperatures than vegetative tissues. HS damage can occur

pre-pollination or post-pollination, impairing fertilization and
ultimately reducing seed set (Sage et al., 2015). Pre-pollination
events that are highly susceptible to high temperature are (1)
meiosis I and meiosis II of the microspore mother cell (Young
et al., 2004), (2) development and subsequent dissolution of the
tapetum layer (Farooq et al., 2017), and (3) exine and intine
formation (Nahar et al., 2016). Post-pollination events affected
by HS are (1) pollen load, (2) pollen germination, (3) pollen tube
growth, and (4) fertilization (Hedhly et al., 2009; Sita et al., 2017).
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FIGURE 2 | Generalized overview of the effects of heat stress (HS) on the reproductive stage of plants, broadly categorized into three events: pre-fertilization,

fertilization, and post-fertilization. Heat stress affects the flowering stage by promoting early flowering and flower bud/flower abortion. During male gametophyte

development, heat stress disrupts meiosis and decreases tapetum growth, resulting in shriveled and non-viable pollen grains. During female gametophyte

development, heat stress reduces style and ovary size and callose deposition, reduces stigma receptivity, and causes early embryo abortion. Moreover, immature

dehiscence and malformed pollen grains result in poor pollination and fertilization. Heat stress during post-fertilization decreases the seed filling rate and disturb

source–sink relations, potentially reducing yield manifold.

The sensitivity of male gametophytes to HS varies according to
plant species (Li et al., 2018).

HS reduced fertility of microgametophytes in brassica (Rao
et al., 1992) and impaired meiosis in tomato, damaging pollen
germination and pollen tube growth (Foolad, 2005). In soybean,
HS reduced pollen production, germination, tube elongation,
and impaired pollen development (no apertures and disturbed
exile ornamentation) (Salem et al., 2007; Nahar et al., 2016;
Djanaguiraman et al., 2019). In capsicum, HS produced shrunken
and empty microspores without an exine layer (Erickson and
Markhart, 2002). Shriveled pollen grains under HS may be due to
decreased starch accumulation in anther walls and pollen grains
reducing soluble sugars for their development (Pressman et al.,
2002).

Female Gametophyte Development and Function
Female gametophytes are relatively more tolerant to HS than
male gametophytes (Hedhly, 2011). HS impairs megaspore

mother cell development by impeding meiosis, reducing
pistil size, reducing stigma receptivity due to poor pollen
adhesion, reducing stigmatic papillae for holding pollen grains,
interrupting nutrient transport from style to pollen impeding
pollen tube germination and growth, as noticed in chickpea
(Kaushal et al., 2016), bean (Porch and Jahn, 2001) and cowpea
(Ahmed et al., 1992). HS, reduced callose deposition in lentil
styles (Bhandari et al., 2017), reduced the amount of attractants
from ovule synergids cells that misguide the pollen tube (Saini
et al., 1983) to severely affect the fertilization. Furthermore,
HS damages the embryo sac and causes early embryo abortion,
likely arresting fertilization; for instance, in tomato, HS exposure
(40◦C for 3 h) for 4 days before anthesis resulted in aborted
embryos with degenerated eggs and synergids (Iwahori, 1965).
Abnormalities in embryo sac development have also been
observed in brassica, reducing seed set and yield (Polowick and
Sawhney, 1988). HS also reduced ovule viability in common
beans (Ormrod et al., 1967; Suzuki et al., 2001). Unlike, male
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TABLE 3 | Effect of heat stress on reproductive tissues of some vegetable crops.

Crop Heat stress Effect References

Brassica

(Brassica napus)

35/23◦C Reduced in-vitro pollen germinability, pollen viability, and thinner pollen

tubes with stunted & convoluted morphology.

Young et al., 2004

Microspore and pollen development are sensitive to heat stress. Sato et al., 2002

Bell pepper

(Capsicum annuum)

33◦C Pollen development (during megaspore mother cell (MMC) meiosis) is

greatly reduced.

Reduced pollen viability, reduced anther dehiscence, reduced mature pollen

grains, slightly swollen and deformed (affect pollen morphology) and without

exine layer.

Erickson and Markhart, 2002

Broad bean

(Vicia faba)

34/26◦C Pollen germination Bishop et al., 2016

Broccoli

(Brassica oleracea var. italica)

35◦C Arrested the development of flower buds Björkman and Pearson, 1998

Chickpea

(Cicer arietinum L.)

40/25◦C Pollen germination, pollen tube growth

Pod set

Devasirvatham et al., 2013

Common bean

(Phaseolus vulgaris)

33/27◦C

33/29◦C

Anther indehiscence and pollen sterility

Degeneration of tapetal cells.

Gross and Kigel, 1994

Cowpea

(Vigna unguiculata)

33/30◦C Another development Ahmed et al., 1992

Mungbean

(Vigna radiata L.)

>40/28◦C Reduced pollen viability, pollen germination, pollen load, stigma receptivity

and ovule viability

Sharma et al., 2016

Okra

(Abelmoschus esculentus)

45◦C Incomplete dehiscence, shrunken pollen, smaller anther sacs, reduced

pollen number, pollen viability, and pollen germination.

Hayamanesh, 2018

Pea

(Pisum sativum)

36/24◦C Decreased pollen germination, pollen tube growth, pod length, and seed

number per pod.

Jiang et al., 2015

Soybean

(Glycine max)

38/28◦C Decreased in-vitro pollen germination. Djanaguiraman et al., 2013b

Tomato

(Lycopersicon esculentum)

32/26◦C Reduced number of pollen grains, pollen viability, and pollen germination. Sato et al., 2002

31/25◦C Reduced number of pollen grains, pollen viability, and pollen germination. Firon et al., 2006

29◦C Decreased fruit number, fruit weight/plant and seed number/fruit Peet et al., 1998

gametophyte, detailed impacts of HS on female gametophyte
organs are, however, barely known. This may be because of the
reason that female gametophyte is protected inside the ovary and
sheltered and difficult to reach and dissect.

Fertilization
High-temperature stress (>30◦C) negatively impacts male and
female gametophyte development, leading to poor development
and deformities of reproductive tissues, limiting the fertilization
process in many plant species (Saini and Aspinall, 1982; Prasad
et al., 2017). HS also reported to affect the flower pollination rate
in tomato resulting in low fruit set with reduced lycopene content
and fruit quality (Alsamir et al., 2021) Indehiscent anthers, non-
viable pollen, and poor stigma receptivity are possible causes
for fertilization failure and sterility imposition in many crops,
including chickpea (Kumar et al., 2013), soybean (Board and
Kahlon, 2011), mung bean (Kaur et al., 2015), tomato (Pressman
et al., 2002), common bean (Porch and Jahn, 2001), and capsicum
(Erickson and Markhart, 2002).

Post-fertilization Events
Fruit/Pod Set
High-temperature stress affects the proportion of flowers
forming fruits (fruit set) (Prasad et al., 2000). HS (38/30◦C)

markedly decreased fruit weight (51.6%), fruit diameter (25%),
fruit length (30%), and seed number per fruit (57%) in
sweet pepper compared with normal temperature (33/21◦C)
(Thuy and Kenji, 2015). Peet et al. (1998) reported that high
temperature (29◦C) decreased fruit number (10%), total fruit
weight/plant (6.4%) and seed number/fruit (16.4%) inmale fertile
tomatoes compared to optimum temperature (25◦C). The high
temperature impaired pollen development and release, leading
to reduced fruit set in male-fertile tomatoes compared with
male-sterile lines. Similarly, fruit set and fruit size in tomato
plants declined at 29/23◦C compared to 24/18◦C (Saha et al.,
2010). HS seriously damaged fruit set in tomatoes exposed to
40◦C for 4 h before anthesis and reduced the pollen germination
from 79.5% (at 30/17◦C) to 30% and pod set from 63% (at
30/17◦C) to 14.9% (Rudich et al., 1977). In Common bean, high
temperature (32/27◦C) reduced the pod set from 17 to 97%, seed
set by 39–98%, and seeds/pod by 42 to 73% compared to control
temperature (22/17◦C) (Gross and Kigel, 1994). Similar finding
on bean plants exposed to even higher temperatures (40/30◦C)
had fewer filled pods, parthenocarpic pod development, sickle-
shaped pods, reduced seed size, and fewer seeds/pod and
total seeds than control condition (Prasad et al., 2002; Soltani
et al., 2019). In peas, high temperature (32◦C for 6 h) at the
reproductive stage increased the abortion rate of reproductive
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organs (flower buds and young pods) from 20 to 50% which
reduce seed yield (Bueckert et al., 2015).

Seed Development and Seed Filling
Seed formation and seed filling are the last phases of the life
cycle of seed plants; and; HS drastically affects seed development
and the seed-filling phase, increasing the fraction of abnormal
and shriveled seeds (Sehgal et al., 2018). In common bean, a
linear relationship between temperature and grain weight was
recorded resulting in a significant decrease in seed weight, i.e.,
0.07 g per ◦C when temperature was raised beyond 31/21◦C
(Prasad et al., 2002). Seed development starts from cell division
and, when seed cells are fully formed, storage reserves start
to accumulate (Egli, 1998). Direct effects of HS on division
and size of endosperm cells are well-documented (Commuri
and Jones, 2001). Reduced division and size of endosperm cells
results in accumulation of fewer carbohydrates, proteins, lipids,
and starch accumulate in developing seeds. HS also accelerates
the rate and duration of seed filling, resulting in abnormal
seeds and significant yield losses (Farooq et al., 2017). Not
only yields, HS affects seed quality characteristics, reducing
seed number and size, degrading nutrient composition, and
decreasing seed viability, through impaired nutrient uptake,
assimilate partitioning, and translocation (Prasad et al., 2008).
Starch, proteins, and lipids are the principal reserves transferred
from the main plant to developing seeds (Alencar et al., 2012),
but HS limits their synthesis and translocation during seed
filling, affecting grain quality (Farooq et al., 2017), and could
be due to decreased enzyme activity. The activity of starch
synthesizing enzymes, such as starch synthase, sucrose synthase,
and invertase, decrease under HS, as reported in pea (Smith and
Denyer, 1992) and chickpea (Kaushal et al., 2013). Similarly, HS
disrupts seed storage proteins, such as β-glycocynin and globulin
11S in soybean (Hashizume and Watanabe, 1979; Iwabuchi
and Yamauchi, 1984), and sucrose-synthesizing enzymes and
proteins that aid in sucrose translocation. Reduced sucrose
synthase activity affects the sucrose and starch ratio, decreasing
the transfer of soluble carbohydrates to developing ovules, as
reported in pea (Jeuffroy et al., 1990) and cowpea (Ismail and
Hall, 1999). Reduced crop duration and seed filling has been
correlated with an inefficient light capture ability (canopy growth
rate) in small plants, decreasing the photosynthetic rate and
thus seed size, as reported in soybean (Board and Kahlon,
2011). Prasad et al. (2002) reported a linear relationship between
temperature and grain weight in common bean, with seed weight
decreasing by 0.07 g per ◦C at temperatures above 31/2.

PHYSIOLOGICAL ASPECTS AND
CELLULAR FUNCTIONS UNDER HEAT
STRESS

Membranes
HS disrupts the organization of the plasma membrane by
increasing unsaturated fatty acids, thus making the membrane
more fluid (Hofmann, 2009), and influencing the cellular
functions by initiating a signal cascade (Firmansyah and
Argosubekti, 2020; Hassan et al., 2021). HS also accelerates the

kinetic energy and movement of various molecules through the
membrane. Further, protein denaturation and altered tertiary and
quaternary structure of membrane proteins increase membrane
fluidity (Savchenko et al., 2002). Thus, HS disturbs primary
processes of plant-like photosynthesis and respiration due to
increased permeability or solute leakage from cells (Figure 3).
Therefore, cell membrane thermostability trait used to evaluate
HS on plants and identify heat-tolerant and heat-sensitive
genotypes; for example, in soybean (Martineau et al., 1979),
potato (Chen et al., 1982), and cowpea (Ismail and Hall,
1999). The effectiveness of cell membrane thermostability
assays depends on the tissue type and stress type used for
plant adaptation. It is also unknown whether membrane
thermostability is linked to other plant characteristics that confer
heat tolerance, such as growth and yield.

Photosynthesis
Photosynthesis is highly sensitive to HS and photosynthetic
activity reduces drastically under HS. Studies have detailed
the affected photosynthetic mechanisms that ultimately reduce
the photosynthetic capacity of plants (Berry and Bjorkman,
1980; Sharkey, 2005). Thylakoid reactions, Rubisco activity, and
photosynthetic pigments are generally disturbed by HS. HS
primarily affects the physical state and structure of the thylakoid
membrane by triggering thylakoid leakiness and unstacking
thylakoids, damaging the D1 protein of PSII (Sharkey, 2005). To
counterbalance these reactions, zeaxanthin synthesis increases,
affecting the normal state of thylakoids (Havaux, 1996). HS
disturbs the electron flow between the two photosystems (PSI
and PSII) and reduces the photosynthetic efficiency of plants.
HS also accelerates the phosphorylation of light-harvesting
complex (LHCII) and disconnects it from PSII core complex,
thus decreasing its turnover rate, but increasing the turnover rate
of PSI (Wise et al., 2004). HS dephosphorylates core proteins
(D1, D2, and CP43), deactivating PSII (Yamamoto et al., 2016).
HS alters the fluorescence induction parameters, measured as
the Fv/Fm ratio; this ratio helps to determine the quantum
efficiency of PSII and indicates the rate of linear electron flow
and overall photosynthetic performance of plants (Jamil et al.,
2007). HS decreased chlorophyll a fluorescence, PII quantum
yield, photochemical quenching, and increased respiration rate
in soybean (Djanaguiraman et al., 2013a).

Along with thylakoid reactions, HS triggers the deactivation
of Rubisco (Crafts-Brandner and Salvucci, 2000). Rubisco
being dual enzyme catalyses the carboxylation of ribulose−1-5-
bisphosphate in the photosynthetic Calvin cycle and oxygenation
in the photorespiratory pathway; the ratio between two reactions
governs the photosynthetic efficiency of plant. But the elevated
temperature inhibits the CO2 fixation and increases the
oxygenase activity and reduces photosynthetic rate (Crafts-
Brandner and Salvucci, 2000). Rubisco activation is not only
associated with pH and Mg2+ concentration of stroma but
also with Rubisco activase (RA); an ATPase. RA induces
the activation of the Rubisco by increasing the proportion
of its active sites and brings conformational changes that
allow CO2 and Mg2+ for activation and carbamylation. High
temperature can disturb the pH and Mg2+ concentration of
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FIGURE 3 | Model representing morphological, physiological, biochemical, and molecular characteristics of plants under heat stress. Morphological damages at

vegetative and reproductive stages can be visualized as direct measures of plant stress. At the physiological level, these damages are associated with leaky plasma

membrane, altered transpiration, chlorophyll damage, reduced photosynthesis, respiration, and nodulation rate. Disturbed physiological processes can promote

oxidative stress damage observed through stress indicators like increased malondialdehyde (MDA) and hydrogen peroxide (H2O2) content. Protein damage and

impaired carbon and nitrogen metabolism due to impaired enzymatic activities further exaggerate stress levels at the biochemical level. Heat shock proteins (HSPs),

heat shock factors (HSFs), and quantitative trait loci (QTLs) related to heat stress responses of plants may play a key role in the plant adaptation. HSPs and HSFs have

a central role in regulating the activity of various genes that amplify the production of antioxidants and osmolytes and are helpful governing thermotolerance.

stroma, interfering with the carbamylation step of Rubisco
activation (Weis, 1981a,b) and also caused RA dissociation
because of its poor structural stability and heat labile nature
(Demirevska-Kepova and Feller, 2004). Few reports have
noticed that heat stress affects the photosynthesis through
heat sensitivity of Rubisco and RA activity, for instance in
tomato, heat stress (40◦C for 8 h for 6 days to 3 weeks old
plant) decreased the accumulation of Rubisco enzyme’s isoforms
(Parrotta et al., 2020), as in pea (Haldimann and Feller, 2005),
potato (Cen and Sage, 2005) and spinach (Zhao Q. et al.,
2018).

Pea plants exposed to HS reduced chlorophyll biosynthesis
due to the destruction of various enzymes involved in
biosynthetic pathways (Dutta et al., 2009; Aleem et al.,
2021). HS decreased the activity of first enzyme of the
biosynthetic pathway, 5-aminolevulinate dehydratase, in

cucumber (Tewari and Tripathy, 1998). Decreased chlorophyll
content, Chl a/b ratio, and chlorophyll/carotenoid ratio have
been reported in many crops under HS (Aien et al., 2011)
(Table 4). Similarly, HS stress causes pre-mature leaf senescence
in soybean leaves which results in decreased photosynthesis
primarily due to decreased chlorophyll content, higher reactive
oxygen species, lower antioxidants, and increased thylakoid
membrane damage (Djanaguiraman and Prasad, 2010). HS
increased ethylene production in leaves which was one of the
reasons of premature leaf senescence in soybean (Djanaguiraman
and Prasad, 2010). Detailed anatomical studies showed that HT
stress significantly increased the thicknesses of the palisade and
spongy layers and the lower epidermis (Djanaguiraman et al.,
2013a). In addition, HT stress damaged the plasma membrane,
chloroplast membrane, thylakoid membranes; mitochondrial
membranes, cristae, and matrix were distorted which led
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TABLE 4 | Effect of heat stress on photosynthesis in some vegetable crops.

Crop species Temperature Effect References

Broad bean

(Vicia faba)

42◦C Decreased content of Chl a, Chl b, and carotenoids Hamada, 2001

Cabbage

(Brassica oleracea var. capitata)

40◦C Decrease in Fv/Fm values and photosynthetic efficiency Chang et al., 2016

Cauliflower

(Brassica oleracea var. botrytis)

40◦C Significant reduction in chlorophyll fluorescence Fv/Fm
Inhibition of CO2 fixation and damage to photosynthetic electron

transport at site of PS II

Lin et al., 2015

Chickpea

(Cicer arietinum L.)

40/30◦C Reduced chlorophyll content Kaloki et al., 2019

Common bean

(Phaseolus vulgaris)

45◦C Partially-reversible inactivation of PS-II and dissociation of light

harvesting complex from reaction center of PS-II

Destruction of PS-II reaction center and formation of

quenching species

Costa et al., 2003

Cowpea

(Vigna unguiculata)

30/25◦C Reduced rate of photosynthesis McDonald and Paulsen, 1997

Cucumber

(Cucumis sativus L.)

33–48◦C Decline in PS II activity and photochemical quenching

Decreased net photosynthetic rate

Ding et al., 2016

42◦C Chlorophyll biosynthesis Tewari and Tripathy, 1998

Mungbean

(Vigna radiata)

>40/28◦C Decline in PS II activity Sharma et al., 2016

Okra

(Abelmoschus esculentus)

>39◦C Adverse effects on the photosynthetic apparatus Hayamanesh, 2018

Pea

(Pisum sativum)

>40◦C Decreased photosynthetic electron transport

Complete suppression of photosynthetic electron transfer

Haldimann and Feller, 2005

45◦C Decreased CO2 assimilation and O2 evolution Georgieva et al., 2000

Potato

(Solanum spp.)

25◦C Decreased photosynthetic rate

Decreased Chl a+b and carotenoid content

Aien et al., 2011

38◦C Rapid and irreversible loss of PS II Aien et al., 2011

Soybean

(Glycine max)

38/28◦C

38/30◦C

Decrease in leaf photosynthetic rate by 20.2%

Significantly affects net photosynthesis and total chlorophyll

content

Decreased chlorophyll content, photosynthetic rate,

Nahar et al., 2016

39/20◦C Severely damaged PSII site Li et al., 2009

Spinach

(Spinacia oleracea)

40◦C Inhibition of oxygen evolution

Cleavage of D1 protein of PSII

Yoshioka et al., 2006

Tomato

(Solanum lycopersicum)

36/38◦C Decreased Fv/Fm values and PS II damage

Decreased net photosynthetic rate

Decreased chlorophyll content

Zhou et al., 2017

to decreased photosynthesis (Djanaguiraman et al., 2013a)
(Figure 3).

Nitrogen Content, Fixation and Nodulation
Nitrogen is one of the main nutrients required by the plant
for proper growth, development and productivity. It is the
constituent of various important organic compounds like amino
acids, proteins, nucleic acids, enzymes, and the chlorophyll
molecule (Christophe et al., 2011). Nitrogen content in the plant
measured as nitrate, ammonium ions, and proteins. Besides
performing basic roles in plants, its metabolism is also very
crucial for heat tolerance because it increases the osmolyte
content and antioxidant enzyme activity (Ru et al., 2022).
Studies have also shown their role in promoting the HSP
production (Heckathorn et al., 1996). Osmolytes like proline
and quaternary ammonium compounds, being nitrogen rich and

accumulate in plants under heat stress conditions (Rivero et al.,
2004). Ammonium ion and proline accumulation confer heat
tolerance to tomato and promoting higher biomass production
(Rivero et al., 2004). During the reproductive period, nitrogen
concentration successively increases when temperatures rise
for example in pea, when high temperature occurs during or
after flowering seed N concentration is increased (Larmure
et al., 2005). Similarly, in soybean, seed N concentration
increases during the reproductive period at temperature 40/30◦C
(Thomas et al., 2003). Increases in the accumulation of proteins;
level of globulin protein storage causing a reduction of the
albumin/globulin content in mature seeds (Hurkman et al.,
2009). In pea, the final level of vicilin storage proteins was higher
under heat stress (Bourgeois et al., 2009). However, in tomato
roots, it has been reported that HS disturbs enzymes involve
in nitrogen metabolism (nitrate and ammonium assimilation)
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thereby decreasing total protein content and level of nutrient
uptake and assimilation (Giri et al., 2017). Further, studies on the
contrasting genotypes of brassica revealed that HS (40/30◦C for
7 days) negatively affected the activities of nitrogen assimilation
enzyme including Glutamate synthase (GOGAT), glutamine
synthetase (GS), glutamate dehydrogenase (GDH), more in heat
sensitive genotype (WS-6) as compared to heat tolerant genotype
(WS-1). These enzymes help in possessing better photosynthetic
nitrogen use efficiency (Yuan et al., 2017).

Symbiotic nitrogen fixation in leguminous crops depends on
the presence of appropriate Rhizobium species in the vicinity of
root zone, however, almost all processes starting from rhizobial
survival to host infection and nitrogen fixation dependmainly on
the environmental factors, such as soil temperature (Bordeleau
and Prévost, 1994). High temperature interferes with almost
all processes of symbiotic nitrogen fixation, directly as well as
indirectly, soil temperature affects not only the rhizobial survival
in the root zone but also the exchange of molecular signals
between two symbiotic partners (Alexandre and Oliveira, 2013).
Rhizobial strains have an optimum soil temperature (25–30◦C)
for their growth and nitrogen fixing ability and Rhizobia are
greatly affected by high soil temperature. However, optimum
temperature varies with the crop species, for instance, in soybean,
weak rhizobia were formed at 40◦C and no rhizobia were isolated
at 45◦C (Chen et al., 2002). HT interferes directly with nodule
development as it hampers nodule development and increases
nodule senescence (Aranjuelo et al., 2007). HS affects indirectly
the nitrogen fixation by inhibiting the formation of root
hairs, infection thread formation, reducing the nodulation sites,
adherence between bacteria and root hair (bacterial infection),
and bacteroid formation (Zahran, 1999; Hungria and Vargas,
2000; Alexandre and Oliveira, 2013).

Elevated temperature also affects nodule growth rate, nodule
size, and nodule fixation ability, as reported for common bean
exposed to HS (35 and 38◦C/8 h/day) at the flowering stage
(Hungria and Franco, 1993). Another study showed that at 47◦C
temperature no nodules were formed in common bean (Karanja
and Wood, 1988). Studies have shown that nodulation ability
varies inversely with temperature, and legume species differ
in their temperature endurance; for instance, common bean is
more sensitive to temperature stress than cowpea and soybean
for nitrogen fixation (Piha and Munns, 1987). In cowpea, the
optimum temperature for nodule growth and development is
30–36◦C; temperatures above 40◦C lead to fewer or no nodules
(Day et al., 1978). In common bean, nodules that formed at high
temperature (≥35◦C) were inefficient and unable to fix nitrogen
(Hungria and Franco, 1993). Piha and Munns (1987) noted that
nodules formed at 35◦C were small and had low nitrogenase
activity. The optimum temperature for nodule growth is 20◦C
for pea and 25–30◦C for soybean (Michiels et al., 1994).
HS decreased nodulation ability in mungbean (Sharma et al.,
2016). In common bean, HS affected nitrogen fixation due to
decreased activity of enzymes involved in nitrogen metabolism,
such as dinitrogenase complex, glutamine synthetase (GS), and
glutamine synthase (GOGAT), decreasing the concentration of
ureids-N in nodules and xylem sap (Hungria and Kaschuk,
2014). Prasad et al. (2000) observed that high soil temperatures
(35◦C) significantly decreased number of nodules and nodule dry

weight per plant compared to optimum soil temperature (25◦C)
in peanut.

C.N ratio: Plant growth and defense are both fuelled by
compounds synthesized from a common pool of carbon and
nitrogen, implying the existence of a competition for carbon and
nitrogen allocation to both metabolisms. The ratio of carbon to
nitrogen (C: N) of an organ is often regarded as a convenient
indicator of growth and quality. Almost a century ago, plant
nutrition was considered a crucial factor in controlling flowering
time. According to Klebs (1913), a high endogenous carbon:
nitrogen ratio promotes flowering, while a low carbon: nitrogen
ratio promotes vegetative growth. Inferred from the fact that
(a) conditions favoring photosynthetic CO2 fixation generally
accelerate flowering and (b) high nitrogen intake (fertilizers)
might delay or reduce reproductive development in some plants
(Bernier et al., 1981). The flowering percentage increased when
NH4NO3 concentration decreased from 16.5 to 8 g l−1, in tomato
plant (Dielen et al., 2001). Royer et al. (2013) revealed that
C:N ratio in the pool of resources in the total plant, were
correlated with the concentrations of diverse compounds of
the primary and secondary metabolisms in young tomatoes.
Under HS, Peet et al. (1997) found that in tomato plants, the
carbon and nitrogen metabolism get imbalanced, and stem and
petiole elongation consume too much nutrients, which in turn
reduces the dry matter storage of the plant, affecting tomato
quality and yield. Soil mixed with dry powder of Sesbania plant
(leaves + tender stems; C: N ratio 15.4) plays effective role in
enhancing resistance and resilience (stability) of soil microbial
activity against heat stress (Kumar et al., 2014). Heat stress may
accelerate leaf senescence and increase respiration rate which
consequently decreases plant N and C availability for seeds and
shorten the duration of seed filling period in soyabean (Egli and
Wardlaw, 1980). Thus, balanced C:N ratio plays an important
role in plant physiological process. Similarly, Larmure et al., 2005
demonstrated that the lower seed N concentration in pea plant
at the average temperature range (13–23◦C) can be explained by
prolonged duration of the seed-filling associated with the lower
seed N concentration, higher C availability for the seeds. Because
the rate of seed N accumulation per degree-day mainly depends
on N availability to seed filling, the rate of N accumulation was
higher at 25/20◦C than at lower temperature. HS reduces seed
size and modifies the C:N ratio in the period of seed formation in
pea (Guilioni et al., 2003).

Antioxidants and Oxidative Stress
Severe HS generates ROS, such as hydrogen peroxide (H2O2)
and superoxide radical (O−

2 ), as byproducts of the aerobic
metabolism, which adversely affect cellular metabolism,
such as lipid membrane peroxidation, and damage nucleic
acids and proteins (Bita and Gerats, 2013). Plants respond
to ROS production by activating enzymatic and non-enzymatic
ROS scavenging systems (Bita and Gerats, 2013). The main
ROS scavenging enzymes are superoxide dismutase (SOD),
catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX)
glutathione reductase (GR), whereas non-enzymatic chemical
are ascorbic acid (ASC) and glutathione (GSH) (Suzuki et al.,
2012). SOD helps scavenge O−

2 whereas CAT and POX degrade
H2O2. Elevated levels of these antioxidants are crucial in
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imparting thermotolerance in plants (Awasthi et al., 2014). In
soybean, ROS accumulation (mainly H2O2 and O−

2 ) due to
HS is associated with decreased enzyme activities of various
antioxidants (Djanaguiraman et al., 2005, 2013a). Similarly, GR
and CAT activities decreased in common bean under oxidative
stress (Babu and Devaraj, 2008). Likewise, decreased APX and
GR expression occurred in mungbean exposed to HS (Sharma
et al., 2016). However, relationship between antioxidant enzymes
and HS is far more complex in tomato where activity of SOD,
APX increased and CAT activity decreased (Zhou et al., 2014).
This complexity was also evident in capsicum where, NADPH
oxidase and CAT activity increased at high temperature (Gulen
et al., 2012). In chickpea, tolerant genotypes had higher SOD,
CAT, APX, and GR activity than sensitive genotypes under
HS (40/30◦C and 45/35◦C) (Kumar et al., 2013). Moderate HS
increases the expression of various enzymatic antioxidants, while
severe HS suppresses it (Wilson et al., 2014).

DEFENSE RESPONSES

In addition to antioxidants, plants endure HS by activating major
defense mechanisms which are mainly comprised of increased
production of heat shock proteins (HSPs) and compatible
solutes (Sakamoto and Murata, 2002; Wahid et al., 2007;
Mittler et al., 2012; Khan and Shahwar, 2020). HSPs are the
molecular chaperones that protect the misfolded proteins from
irreversible aggregation, sorting, translocation, and degradation,
important for establishing cellular homeostasis in normal and
stressed conditions (Vierling, 1991). There are five classes
of HSPs categorized according to their molecular weight:
HSP100, HSP90, HSP70, HSP60, and Small HSP (sHSP), and
located in the cytoplasm as well as cellular orgenelles, nucleus,
chloroplast, mitochondria, and endoplasmic reticulum (Wang
et al., 2004). Different chaperone families though have a
peculiar role but coordinate cellular homeostasis. Chaperones
also maintain crosstalk with signaling molecules, antioxidants
(acerbate peroxidase), and osmolytes (trehalose, proline, glycine
betaine) (Wang et al., 2004; Kang et al., 2022). Various
reports have confirmed accumulation of all HSP families in
different vegetables and food legumes under HS, with greater
accumulation of sHSPs than other HSPs, as reported for spinach
(Guy and Li, 1998), tomato (Preczewski et al., 2000), soybean
(Ortiz and Cardemil, 2001), common bean and cowpea (Simões-
Araújo et al., 2003), potato (Ahn et al., 2004), cabbage (Park
et al., 2013), pea (Talalaiev and Korduym, 2014), faba bean
(Kumar et al., 2015), capsicum (Li et al., 2015), chickpea (Meena
et al., 2017), and broccoli (Lin et al., 2019). Accumulation of
these proteins helps plants to re-establish homeostasis under HS
conditions. Hence, the expression level of HSPs and HSFs could
be manipulated genetically to improve heat tolerance ability.
Overexpression of HSPs facilitates transformed cells to endure
HS better than non-transformed cells (Grover et al., 2013); for
instance, overexpression of sHSP (HSP21) in transgenic tomato
imparts stable PSII, shielding photosynthesis from temperature-
dependent oxidative stress and accumulating more carotenoids
under HS (Neta-Sharir et al., 2005). Furthermore, overexpression
of HSFs facilitates the expression of HSPs; for example,
overexpression of HSFA1 in transgenic soybean enhanced the

expression of GmHSP70 leading to thermotolerance (45◦C) (Zhu
et al., 2006). Similarly, overexpression of transcription factor
(CaWRKY40) enhanced thermotolerance in capsicum (Dang
et al., 2013).

The role of various osmolytes, including proline and
glycine betaine, in imparting heat tolerance is well-documented
(Sakamoto and Murata, 2002). Osmolytes are low molecular
weight compounds that can buffer cellular redox potential under
HS. Proline is a well-studied osmolyte, concentration of which
increases by several-fold under stress conditions. A heat-tolerant
cabbage genotype accumulated more proline (and soluble sugars
and antioxidants) than a sensitive genotype (Song et al., 2019).
Similarly, Paul et al. (2014) even suggested using increased
proline and soluble sugars in potato under HS can used as
markers for selecting heat-tolerant genotypes. Increasing HS
gradually increased proline and soluble sugar contents in lettuce
seedlings, indicating heat tolerance (Han et al., 2013). The role of
proline in thermotolerance was also confirmed using exogenous
proline applications. Kaushal et al. (2011) noted that exogenous
treatment of proline induced thermotolerance in chickpea by
protecting the enzymes involved in carbon and antioxidant
metabolism. Glycine betaine is another compound that confers
heat tolerance; Aien et al. (2011) suggested that glycine betaine
imparts heat tolerance in potato genotypes under HS conditions.

Heat Avoidance
Heat avoidance through transpiration cooling is the best
strategy adopted by plants to minimize the losses (Julia and
Dingkuhn, 2013) Under moderately HS conditions, plants can
accelerate growth to promote plant thermonastic responses and
architectural changes to move susceptible parts away from soil
heat flow or to improve evaporative cooling (Havko et al.,
2020). In soybean, tomato, or cabbage, moderately high ambient
temperature induces hypocotyl elongation, and tomato displays
leaf hyponasty (Quint et al., 2016; Casal and Balasubramanian,
2019; Vu et al., 2019). Pea canopies architecture and leaf type
as traits of heat resistance can avoid heat and maintain a lower
canopy temperature as leafed cultivars have greater leaf surface
area and likely greater transpirational cooling, assuming soil
moisture availability and an adequate root system (Tafesse et al.,
2019). Another study showed that the leaf movement capacity in
beans was shown to function in direct sunlight avoidance and
benefited the plant by protecting it against photoinhibition and
by maintaining leaf temperatures lower than the air temperature
(Pastenes et al., 2004). Thus, as novel donors with higher heat
tolerance or escape provides, there is an ample evidence for
systematic exploration of wild species and accessions (Prasad
et al., 2017) for introducing these traits.

IDENTIFICATION OF TOLERANT
GENOTYPES AND IMPROVING
ADAPTATION AND MITIGATION TO HS

Physiological Approaches
Heat tolerance is a polygenic trait greatly influenced by
environmental changes (Blum, 2018). HS effects are stage-
specific, with the response at one stage differing from the
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response at another. Breeders employ various techniques
to minimize the impact of an unpredictable environment
on crops. Conventional breeding is the oldest but most
prevalent method, primarily based on selecting phenotypic plant
characters (Acquaah, 2015). In recent decades, new techniques
have emerged based on morpho-physiological plant characters
merged with conventional breeding methods to screen superior
varieties. These methods exploit inbuilt plant properties to
cope with HS and assist in selecting heat-tolerant genotypes.
Screening germplasm of various vegetable crops using various
physiological traits linked to heat tolerance would be useful for
breeding programs focused on developing HS tolerant genotypes.
Although there are several methods or traits used for screening,
some of the most common are discussed.

Stay-Green Assay
The stay-green character is the plant’s ability to retain chlorophyll
and remain green for longer to sustain photosynthesis,
especially during seed filling (Thomas and Howarth, 2000).
However, the adverse impacts of HS cause leaves structural
changes and chlorophyll degradation and it ultimately induces
premature, leaf senescence (Djanaguiraman and Prasad, 2010;
Jha et al., 2014). Moreover, the onset of HS during seed filling
affects various physiological processes, including increased leaf
senescence (chlorophyll loss), altered source–sink relationship,
and decreased assimilation of reserve foodmaterial in developing
seeds, limiting plant yield (Luche et al., 2015). Therefore,
delayed leaf senescence may be associated with heat tolerance,
enabling plants to maintain their photosynthetic ability (Lim
et al., 2007). High chlorophyll and carotenoid contents in leaves
improve the photochemical efficiency of plants and reduces ROS
concentration in plants such as tomato (Zhou et al., 2015) and
pea (Tafesse, 2018).

In addition, the stay-green character positively correlates
with canopy temperature depression. Stay-green genotypes have
lower canopy temperatures due to transpirational cooling than
non-stay-green genotypes (Kumari et al., 2013). In addition
to these modifications, HS also causes plant morphological
and architectural modifications like leaf hyponasty (measured
through leaf angles), leaf petiole elongation, small and thin leaves,
that are helpful for the plants to keep their canopies cool. For
instance, the cucumber species have hyponastic leaves (Park
et al., 2019) and reduced leaf size is found in potato (Tang
et al., 2018) and capsicum species (Utami and Aryanti, 2021)
under heat stress conditions. These processes involve various
signaling cascades that mediate the developmental shaping for
environment adaptation in plants (Gil and Park, 2019). This
trait is also associated with grain yield and quality and abiotic
stress tolerance (Kamal et al., 2019). Hence, the stay-green trait is
essential for improving crop yield and useful for imparting heat
tolerance (Joshi et al., 2007; Kusaba et al., 2013), and thus may be
an important genetic trait for improving crop yield under HS.

Canopy Temperature Depression
Canopy temperature depression (CTD) is usually measured as
the difference between air and canopy temperature, indicating
the plant’s ability to lower its foliar temperature by transpirational

cooling, as measured by an infrared thermometer. CTD also
reflects plant water status and is influenced by the plant’s ability
to extract water and the transpiration difference between air and
plant. Accordingly, CTD has been used to select heat-tolerant
and drought-tolerant genotypes. Plants that can maintain cooler
canopies during seed filling can tolerate high-temperature stress
(Munjal and Rana, 2003). Heat-tolerant varieties of capsicum
(Gajanayake et al., 2011) have been selected based on the stay-
green trait. In soybean, there is a direct relationship between
CTD, canopy greenness, photosynthetic rate, and yield (Kumar
et al., 2017). Thus, the CTD trait can be used as a critical genetic
trait for crop improvement aimed at increased yields at the
vegetative stage.

Cell Membrane Thermostability
HS is amounts of sensed by cell membranes of leaf tissues,
weakening cell membrane integrity/rigidity due to an increased
degree of unsaturated fatty acids that increase membrane
fluidity. This may change membrane permeability and disturb
the selective transport of molecules across the membrane,
affecting cellular homeostasis (Marcum, 1998). HS can directly
affect membrane integrity through photochemical modifications
during photosynthesis or ROS (Bita and Gerats, 2013). Cell
membrane thermostability (CMT) can be evaluated with an
electrolyte leakage test for screening crops for heat tolerance. The
method is simple, quick, and inexpensive compared with whole-
plant screening and can be used to assess plant tissue responses
at the vegetative stage (Yeh and Lin, 2003). Electrolyte leakage
is measured using a conductivity meter, with higher conductivity
values indicating higher membrane damage (Nyarko et al., 2008).
The CMT test has been used to screen heat-tolerant varieties of
many crops, including soybean (Martineau et al., 1979), potato
(Nagarajan and Bansal, 1986), cowpea (Ismail and Hall, 1999),
cabbage (Nyarko et al., 2008), cauliflower (Aleem et al., 2021)
chickpea (Kumar et al., 2013), mungbean (Sharma et al., 2016),
and cucumber (Ali et al., 2019).

Chlorophyll Fluorescence
Chlorophyll fluorescence—expressed as the Fv/Fm ratio (Fv:
variable fluorescence; Fm: maximum fluorescence)—is used to
detect the state of PSII function in terms of the energy absorbed
by PSII in chlorophyll and damage to photosynthetic apparatus
by excess light in vivo (Maxwell and Johnson, 2000). Chlorophyll
fluorescence is a rapid, reliable, and inexpensive procedure
for predicting photosynthetic performance under HS. Reduced
Fv/Fm values indicate damage to the light-harvesting complex
(Moradpour et al., 2021). Chlorophyll fluorescence has been
used to select heat-tolerant varieties of sweet pepper (Hanying
et al., 2001), common bean (Stefanov et al., 2011), chickpea
(Kaushal et al., 2013), mungbean (Kaur et al., 2015), tomato
(Zhou et al., 2015; Poudyal et al., 2018), and okra (Hayamanesh,
2018). Makonya et al. (2019) showed that tolerant chickpea
genotypes maintain higher Fv/Fm during HS than sensitive
genotypes, and Fv/Fm positively correlates with grain yield in the
field. Killi et al. (2020) reported the retention of PSII function
at elevated temperature positively correlated with antioxidant
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activity, confirming the applicability of this trait for selecting
heat-tolerant varieties.

Relative Water Content
Relative water content indicates the hydration status of plants and
reflects the balance between leaf water supply and transpiration
rate. Hence, it can measure leaf water deficit and the degree
of damage under HS (Mullan and Pietragalla, 2012). High
transpiration increases water loss, which can cause tissue
dehydration and wilting (Mazorra et al., 2002). Therefore,
genotypes that can maintain turgid leaves will minimize HS
effects and have numerous physiological advantages. Gowda
et al. (2011) suggested using RWC as selection criteria for
improving yield under HS. High temperature (40–42◦C) at the
vegetative and reproductive stage gradually reduced the RWC of
capsicum genotypes, more so at the reproductive stage (Puneeth,
2018). RWC has been used to select heat-tolerant genotypes
of mungbean (Sharma et al., 2016), capsicum (Puneeth, 2018),
common bean (Chavez-Arias et al., 2018), lentil (Sita et al., 2017),
tomato (Zhou et al., 2018), cucumber (Ali et al., 2019), and potato
(Handayani and Watanabe, 2020) where genotypes with high
RWC under HS were rated as heat tolerant.

Stomatal Conductance
Stomatal conductance measures the rate of carbon dioxide
entering or water vapor exiting stomata. This change in
transpiration rate facilitates changes in leaf temperature and
water potential (Farquhar and Sharkey, 1982). Leaf stomatal
conductance is often recognized as an important trait for
evaluating differences in response to changing environments.
It can be used to determine trait such as photosynthetic CO2

uptake, leaf temperature, and water loss (Vialet-Chabrand and
Lawson, 2019). Decreased stomatal activity under a changing
environment can significantly affect plant growth and biomass
(Way and Pearcy, 2012). In vivo stomatal conductance can
be measured with a steady-state leaf porometer and gas
exchange. HS increases in vivo adaxial stomatal conductance
relative to the control (Sharma et al., 2016). Low stomatal
responses under stress can limit photosynthetic rate and cause
unnecessary transpiration, decreasing plant water use efficiency
and productivity (Matthews et al., 2018). This phenomenon has
been used to select heat-tolerant genotypes of sweet pepper
(Hanying et al., 2001); tomato (Camejo et al., 2005; Abdelmageed
and Gruda, 2009), chickpea (Kaushal et al., 2013), and mungbean
(Kaur et al., 2015).While many studies have successfully used one
of the traits above to select heat-tolerant genotypes, combining
multiple traits would reflect heat tolerance better than relying on
a single trait.

Reproductive Function, Gamete Viability
and Fruit-Set
Fruit yield in vegetables crops is a function of fruit numbers and
fruit size. There is a strong and positive correlation between fruit-
set and gamete viability (Prasad et al., 2017). Gamete functions
(pollen and ovule) is the most important factor for fruit-set under
HS. In tomato, fruit-set has been shown to correlate with pollen
viability (Firon et al., 2006). In general, heat tolerant genotypes

maintain higher pollen viability compared to heat susceptible
genotypes (Dane et al., 1991). Gamete functions depend on its
viability, which can be evaluated by viability assays like staining,
in-vitro and in-vivo germination of pollen, and ovule function.
Genotypes are known to differ in gamete viability under HS
stress. Singh et al. (2015) concluded from their research on
tomato that traits like fruit-set and pollen viability could be
used as a strategy to screen genotypes for HS. In general, the
combination of gamete viability and fruit-set provide tolerance
to HS (Paupière et al., 2017b; Pham et al., 2020). Similarly
observations were also made on peppers (Aloni et al., 2001;
Reddy and Kakani, 2007).

Cardinal temperatures (Tmin, Topt, and Tmax) for pollen
grain germination can be used to screen germplasm for HT stress
tolerance. Results from in-vitro studies showed that genotypes
varied in response to temperature for cardinal temperatures,
and the differences in cardinal temperatures were mainly
responsible for tolerance/susceptibility of genotypes to HT stress
in soybean (Djanaguiraman et al., 2019) and peanut (Kakani
et al., 2002). The genotypes having higher ceiling temperature
(Tmax) for pollen germination values tend to be HT tolerant
in most cases. Cardinal temperature for pepper were different
among susceptible and tolerant cultivars (Reddy and Kakani,
2007) and can be used to identify temperature tolerant or
sustainable genotypes of pepper (Gajanayake et al., 2011). All the
aforementioned traits based on leaf function are used collectively
to select heat tolerant cultivars. Though many studies have
successfully employed one trait for selection of heat tolerant
genotypes, a combination of these traits reflects a better status
of heat tolerance rather than relying on a single trait.

OMICS APPROACHES

Genomics
Various modern genome-based technologies can be used to
introduce genetic variations for HS tolerance into plants.
Under high-temperature stress, plants activate a complex chain
of molecular responses, including heat-stress-responsive genes
that control primary and secondary metabolism, transcription,
translation, and lipid signaling, or protein modifications,
including phosphorylation HS transcription factors (HSFs) that
regulate differential expression of HSPs (Janni et al., 2020).
HSPs and HSFs are key players in the acquisition of the HS
response. HSFs are mainly involved in sensing and relaying the
HS signal to activate the response (Mittler et al., 2012). Genome-
wide associated studies (GWAS) have been conducted on a few
vegetable crops to search for novel genes and transcription factors
associated with heat tolerance. Genomic studies on cabbage
(Brassica rapa ssp.) disclosed the role of differentially expressed
long non-coding (lncRNAs), mRNAs, and microRNAs. Their
expression is associated with phytohormones such as salicylic
acid (SA) and brassinosteroids (BRs), possibly involved in heat
tolerance. Of these, 25 lncRNAs were co-expressed with ten
heat-responsive genes (Wang A. et al., 2019). NAC, a large
family of transcription factors, was analyzed in cabbage; 188
genes were identified that play a major role in resistance to
high-temperature stress (Ma et al., 2014). Analysis of the potato
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Hsp 20 gene family revealed 48 putative Hsp20 (StHsp20) that
accumulated under heat treatment. Different levels of these
transcripts were upregulated during different HS exposures.
The transcription of HSPs are regulated by HSFs that play an
important role in imparting thermotolerance in plants (Zhao P.
et al., 2018). Guo et al. (2015) characterized 35 putative Hsp 20
genes (CaHsp20) located on 12 chromosomes in thermotolerant
(R9) and thermosensitive (B6) lines of pepper in four tissues
(roots, stem, leaves, and flowers). Under high temperature stress
(40◦C), most of the CaHsp20 genes had higher expression in both
lines, more so in the thermosensitive line. Chidambaranathan
et al. (2018) identified 22 Hsfs in the desi (ICC4958) and kabuli
(CDC Frontier) genomes of chickpea (15-day-old seedlings;
heat treatment of 35 ± 2◦C). Field analysis was undertaken to
compare the expression pattern at the podding stage. HS at the
seedling and pod development stages upregulated the expression
of CarHsfA2, A6a, A6c, and B2a, indicating their role in
conferring HS tolerance in chickpea. Yang et al. (2016) recorded
26 HSF (Sly HSF) genes in tomato, with HS (38◦C) increasing
the expression of most, especially SlyHSF-05/07/13/18/20/23/24.
Expression of the SlyHSF-18 gene increased manifold compared
to the control, indicating its strong response and correlation
to high temperature sensitivity. Moreover, SlyHSF-02 was the
main regulator for activating the heat response and acquiring
thermotolerance in tomato.

Transcriptomics
Transcriptomics refers to the study of the transcriptome [entire
set of transcripts (mRNA, tRNA, and rRNA, miRNA, siRNA,
snRNA, snoRNA, and lncRNA)] expressed in a cell, tissue,
organ, or organism. It represents all RNA synthesized, including
protein-coding, non-coding, spliced, polyadenylated, and RNA-
edited transcripts (Imadi et al., 2015). Transcriptomics reveals
themolecular mechanism underlying the phenotype and explains
how genes are expressed and interconnected (Jha et al., 2017).
High throughput methods (microarray, RNA sequencing, RT-
PCR) are used to analyze the expression level of multiple
transcripts in different conditions. Several transcriptome studies
in vegetable crops under HS have revealed the molecular basis for
heat tolerance.

Transcriptome analysis in heat-stressed spinach (42◦C for
15 days) revealed the expression of 4,145 transcripts (2,420
upregulated and 1,725 downregulated) in heat-tolerant and heat-
sensitive genotypes (Guo et al., 2020). An enrichment analysis
showed that the major metabolic difference between tolerant and
sensitive genotypes was carbohydrate metabolism (Guo et al.,
2020). Similarly, transcriptome analysis revealed 23,000–30,000
expressed genes in soybean seeds and differentially expressed
genes (DEGs; 5–44% of expressed genes) (Gillman et al., 2019).
The DEGs were measured at high temperature in mature,
imbibed, and germinated seeds in a heat-tolerant (PI 587982A)
and conventional high-yielding variety (S 99-11986), with 7,789
DEGs common between genotypes, 11,833 common between
mature and imbibed seeds, and 13,344 common between imbibed
and germinated seedlings (Gillman et al., 2019). In capsicum,
seedling transcriptomics revealed 3,799 DEGs in R597 (heat-
tolerant genotype) and 4,010 DEGs in S590 (heat-sensitive

genotype), related to hormones, HSPs, transcription factors, and
calcium and kinase signaling (Li et al., 2015). Further, R597 had
higher expression of transcription factors and hormone signaling
genes than S590 (Li et al., 2015). Transcriptomic analysis of heat-
tolerant PS-1 and heat-sensitive H-24 tomato genotypes under
HS (40◦C for 1 h) revealed upregulated genes associated with
protease inhibitors, HSPs, and transcription factors, manifold
higher in the tolerant genotype than the sensitive genotype
(Sadder et al., 2014).

Proteomics
Proteomic analysis in heat-stressed radish leaves (advanced
inbred line NAU-08Hr-10) revealed eleven deferentially
expressed proteins, of which four belonged to HSPs, four to
energy and metabolism, two to redox homeostasis, and one to
signal transduction (Zhang et al., 2013). Comparative proteome
analysis of heat-tolerant (JG 14) and heat-sensitive (ICC16374)
chickpea genotypes under HS during anthesis revealed that
482 heat-responsive proteins (related to photosynthesis, energy
metabolism, and signaling molecules) were synthesized in
higher amounts in the heat tolerant genotype compared to the
sensitive genotype (Parankusam et al., 2017). Proteomics of
spinach (50-day-old) exposed to 37/32◦C for 24, 48, or 72 h
identified heat-stress-responsive proteins in heat-tolerant (Sp75)
and heat-sensitive (Sp73) lines (Li et al., 2019). The abundance
pattern indicated that HS inhibited photosynthesis, initiated
ROS scavenging pathways, and sped up carbohydrate and amino
acid metabolism. A comparative proteomic study showed that
heat-sensitive genotypes have a lower ability for photosynthetic
adaptation, osmotic homeostasis, and antioxidant enzyme
activities than heat-tolerant genotypes (Li et al., 2018). Ahsan
et al. (2010) used a proteomics approach to study the tissue-
specific protein expression pattern in heat-stressed soybean
seedlings (40 ± 2◦C for 12 h), identifying 61, 54, and 35
differentially expressed proteins in roots, leaves, and stem,
respectively. Many of the proteins related to HSPs and the
antioxidant system were upregulated.

Metabolomics
Recentmetabolite profiling has focused on importantmetabolites
that govern temperature stress tolerance (Guy et al., 2008).
Wang J. et al. (2019) studied the metabolism of heat-tolerant
(17CL30) and heat-sensitive (05S180) capsicum cultivars; the
tolerant genotype accumulated 94 differentially accumulated
metabolites (DEM) while the sensitive genotype accumulated
108 DEM. Both genotypes shared common metabolites, but they
were more highly expressed in tolerant genotypes. Metabolite
profiling of tomato anthers exposed to 38◦C for 2 h revealed
that flavonoids (alkaloids and flavonoids in young microspores)
protect against HS (Paupière et al., 2017a,b). A metabolomics
study on heat-stressed soybean seeds revealed 275 metabolites
that comprised antioxidants, including ascorbate precursors,
tocopherol, flavonoids, phenylpropanoids, which were more
enriched in tolerant than sensitive genotypes (Chebrolu et al.,
2016).
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MOLECULAR BREEDING

Of late, molecular breeding has emerged as one of the
important tools to identify progeny plants possessing the targeted
genes/QTLs including the presence of several genes or ascertain
the amount of genome of recurrent parent in a plant. Molecular
breeding relies on molecular markers and hence the outcome,
unlike the phenotyping, is not influenced by environmental
factors. The molecular breeding has been exploited successfully
in crop breeding and has led to the development of crop varieties
possessing resistance to diseases or varieties with resistance
genes pyramids (Janni et al., 2020). Molecular breeding methods
to improve heat tolerance include (i) transfer of quantitative
trait loci, (ii) marker-assisted selection. Other methods include
marker assisted recurrent selection, marker-assisted pyramiding,
and single nucleotide polymorphism. These methods pave the
way for breeding stress tolerance in plants (Collard and Mackill,
2007). These methods pave the way for breeding stress tolerance
in plants (Collard and Mackill, 2007).

Quantitative Trait Loci
QTL is a stretch of genomic regions on a chromosome that
is linked to a quantitative trait. Usually, this stretch contains
several genes and each QTL contribute partially to the trait in
question; and hence, several QTLs together govern a trait. In
molecular breeding, whole QTL is transferred to the recurrent
parent utilizing markers flanking to the QTLs and sometimes
using markers present within the QTL region. The exploitation
of molecular breeding for QTLs transfers in breeding programs,
a QTL must be well-defined and demonstrated to be linked to
a particular trait (Collard and Mackill, 2009). Heat tolerance is a
polygenic trait governed by several genes (Golam et al., 2012) and
several QTLs. Unprecedented advances in genomics, especially
molecular marker development, have identified numerous QTLs
contributing to HS tolerance by dissecting various traits ranging
from phenological, physiological, biochemical, reproductive
biology to yield and yield-related traits (Lucas et al., 2013; Wen
et al., 2019; Song et al., 2020; Jha et al., 2021; Vargas et al., 2021)
in various vegetable crops, including bottle gourd (Lagenaria
siceraria), cowpea (Vigna unguiculata [L.] Walp.), common
bean, chickpea, chili, and tomato (Table 5). In broccoli (Brassica
oleracea var. italica), five QTLs were identified under HS—
QHT_C02, QHT_C03, QHT_C05, and QHT_C07 from the heat-
tolerant parent and QHT_C09 from the heat-sensitive parent,
with a positive epistatic co-relation between QHT_C03 and
QHT_C05 for heat tolerance and APX activity was co-located
with QHT_C03 (Branham et al., 2017). Likewise, QTLs such as
QHT_C02, QHT_C05, and QHT_C09 were co-located with the
AP2 gene governing floral development under HS (Aukerman
and Sakai, 2003). Similarly, the meristem identity gene (TFL)
was associated with QHT_C02 (Duclos and Björkman, 2008).
Subsequently, two novel QTLs contributing to heat tolerance
were uncovered by phenotypic evaluation of double haploid-
based mapping population for two consecutive summer seasons
and by employing QTL-seq approach in broccoli (Branham and
Farnham, 2019). Recently, subjecting genome wide association
(GWAS) study of one hundred forty two lines unearthed a total

of fifty seven significant marker trait associations for various
physiological and yield related traits under heat stress in Brassica
rapa (Chen et al., 2022). In tomato, Xu et al. (2017) mapped
13 QTLs for heat tolerance linked with reproductive traits,
including pollen viability, pollen number, style protrusion, anther
length, style length, flower per inflorescence, and inflorescence
number. These QTLs showed additive effects and no epistatic
interaction. Likewise, six QTLs linked to fruit set in tomato
at high temperatures were identified (Grilli et al., 2007).
Based on evaluating recombinant inbred lines and introgression
lines developed from Solanum lycopersicum var. “MoneyMaker”
× S. pimpinellifolium across multi environments under high
temperature stress enabled in identification of 22 QTLs related
to reproductive traits (flower number fruit number and fruit
set proportion) on LG1, 2, 4, 6, 7, 10, and 11 explaining
phenotypic variation from 4 to 13% (Gonzalo et al., 2020). In
combination of phenotypic assessment of leaf cell membrane
stability by applying heat stress in F2 derivedmapping population
with QTL-seq approach in F2 derived mapping population
assisted in uncovering a total of seven QTLs qHT1. 1, qHT2. 1,
qHT2. 2, qHT5. 1, qHT6. 1, qHT7. 1, and qHT8. 1 conferring
heat tolerance in bottle gourd (Song et al., 2020). Likewise,
employing conventional QTL mapping and QTL-seq analysis
allowed in identifying a total of five major QTLs qHII-1-1,
qHII-1-2, qHII-1-3, qHII-2-1, and qCC-1-5 (qREC-1-3) related
to heat injury index under heat stress in tomato (Wen et al.,
2019). The authors performed the functional validation of the
underlying selected four potential candidate genes SlCathB2,
SlGST, SlUBC5, and SlARG1. To decipher genetic basis of heat
tolerance in cucumber, QTL analysis of mapping population
developed from “99281” (heat-tolerant) × “931” (heat-sensitive)
population phenotypically evaluated during summer 2018, 2019,
and 2020 allowed to identify one major QTL qHT1.1 on LG1
(Liu et al., 2021). There were 98 genes underlying this QTL. Of
these identified genes, expression ofCsa1G004990 candidate gene
was higher in “99281” than “931” genotype rendering it heat
tolerant. In order to shed light into the functional role of HSP20
contributing to heat tolerance, in Cucurbita moschata, genome
wide bioinformatic analysis enabled in unveiling 33HSP20 genes
across the genome (Hu et al., 2021). Functional validation of
CmoHSP20-7, 13, 18, 22, 26 and 32 genes indicated their possible
role in heat tolerance in Cucurbita moschata (Hu et al., 2021).

In cowpea, five QTLs governing pod set at high temperature,
namely Cht-1, Cht-2, Cht-3, Cht-4, and Cht-5, with CB 27 line
of cowpea donating alleles for four QTLs (Cht-1, Cht-2, Cht-
3, Cht-4) and IT82E-18 contributing alleles for Cht-5 (Lucas
et al., 2013). Combinations of any of the four QTLs with Cht-
5 positively correlated with heat tolerance in cowpea. Further,
the presence of all five QTLs in the same line had the strongest
positive correlation with heat tolerance (Lucas et al., 2013).
Recently, four QTLs were identified in chickpea that conferred
heat tolerance for filled pods (qfpod03_6), grain yield (qgy03_6),
total seed number (qvs05_6), and pod set (q% podset08_6)
using recombinant inbred lines produced from ICC 4567 (heat-
sensitive) × ICC 15614 (heat-tolerant) lines (Paul et al., 2018).
One QTL (qTBP5.2) was detected in lettuce, governing the tip-
burn resistance trait, therefore beneficial in breeding programs
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TABLE 5 | List of selected QTLs contributing to heat tolerance in vegetable crops.

Crop Mapping population Trait used Name of gene/

QTL

Type of

marker

Linkage

groups

Phenotypic

variation

References

Bottle gourd

(Lagenaria

siceraria)

L1 × L6 Relative electrical

conductivity

qHT1.1, qHT2.1,

qHT2.2, qHT5.1,

qHT6.1, qHT7.1, and

qHT8.1

SNP 1, 2, 5, 6, 7, 8 – Song et al., 2020

Cowpea

(Vigna

unguiculata)

CB27 x IT82E-18, RIL

141

– Cht−1, Cht−2, Cht−3,

Cht−4, Cht−5

SNP 2, 3, 6, 7, 10 11–18% Lucas et al., 2013

IT93K-503-1 x CB46,

RIL 113; IT84S-2246 x

TVu146, RIL 136

Seed coat browning Hbs-1, Hbs-2 and

Hbs-3

SNP 1, 3, 8 6–77% Pottorff et al.,

2014

Common bean

(Phaseolus

vulgaris)

IJR × AFR298, RIL Reproductive trait and

yield and yield traits

32 QTLs SNP 1, 2, 3, 4, 5, 8,

9, 10

7.8–36% Vargas et al., 2021

Chickpea

(Cicer arietinum)

DCP 92-3 ×

ICCV92944 RIL(184)

Phenological,

physiological and yield

related traits

77 QTLs SNP LG1–LG8 5.9–43.5% Jha et al., 2021

DCP 92-3 ×

ICCV92944F2(206)

Phenological and

physiological traits

2 QTLs SSR – Jha et al., 2019

ICC 4567 × ICC

15614, RILs(292)

Yield and yield traits 4 QTLs SNP CaLG05,

CaLG06

– Paul et al., 2018

GPF2 × ILWC292, RIL Phenological,

physiological and yield

related traits

28 + 23 QTLs SNP All LG groups

except LG8

5.7–13.7% Kushwah et al.,

2021

Chili

(Capsicum

annuum)

AVPP0702 × Kulai,

backcross

Reproductive and yield

trait

Hsp70 and sHsp gene SSR – – Usman et al., 2018

Tomato

(Lycopersicon

esculentum)

Nagcarlang ×

NCHS-1180 F2

Reproductive traits;

viz., pollen viability,

pollen number, style

length, anther length;

inflorescence number

and flowers per

inflorescence

qPV11, qPN7, qSP1,

qSP3, qAL1, qAL2,

qAL7, qSL1, qSL2,

qSL3, qFPI1 qIN1,

qIN8

SNP 1, 2, 3,7, 8, 11 10.5–38.7% Xu et al., 2017

MAGIC population Yield components,

phenology andfruit

quality

69 plasticity QTLs SNP Bineau et al., 2021

LA1698 × LA2093 Relative electrical

conductivity REC),

chlorophyll content

(CC) and maximum

photochemical

quantum

5 major QTLs qHII-1-1,

qHII-1-2,qHII-1-3,

qHII-2-1and qCC-1-5

(qREC-1-3)

SNP 1, 2 16.48% Wen et al., 2019

Solanum lycopersicum

var. “MoneyMaker” ×

S. pimpinellifolium

accession TO-937RIL

and IL

Reproductive traits viz.,

flower number, fruit

number per truss and

percentage of fruit set,

stigma exsertion

(SE),pollen viability (PV),

tip burn

22 QTLs SNP8K SNP

SOLCAP

Infinium chip

1, 2, 4, 6, 12 3.6–12.8% Gonzalo et al.,

2020

(Jenni et al., 2013). The information on genomes of crops is
expanding rapidly. The sequencing coupled with resequencing
will generate more information that will subsequently be used
to gather detailed knowledge of QTLs and genomic bases of
heat tolerance in crops. The closely-related crops share syntenic
relationships and possess similar genomic regions with each
other. In the forthcoming years, comparative genomic analysis
and advancements in knowledge of molecular biology might

allow us to transfer heat tolerant regions from one crop to
another, thereby expanding the repository of cold tolerance in
crop plants.

MARKER-ASSISTED SELECTION

As mentioned earlier, phenotype-based selection is prone to
environmental conditions sometimes leading to erroneous
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conclusions especially if trait is complex and conferred by
polygenes or QTLs. Under such circumstances, genotype-based
selection is more effective, precise and fast as compared to
phenotypic selection. Genotype-based selection rather than
phenotype-based selection is possible using markers linked
to gene of interest. Genotype-based selection utilizes DNA
markers that are linked tightly to the gene(s) of interest
(Collard and Mackill, 2007). For MAS, first step is to identify
markers linked to the gene or QTL using either mapping
populations or association mapping where a panel of genotypes
is used to identify liked markers. Subsequently, these markers
are used to ascertain transfer of the gene to the progeny
populations. Different types of markers, such as RFLP (restricted
fragment length polymorphism), AFLP (amplified fragment
length polymorphism), SSR (single sequence repeat), and SNPs
(single nucleotide polymorphisms), can be detected, and the
amount of variation in eachmarker can be determined. Using this
approach, gene mapping and identifying gene associations with
particular traits are useful for genetic crop improvement (Ruane
and Sonnino, 2007).

Paul et al. (2018) identified SNP markers linked to QTLs for
heat tolerance traits (50% flowering, podding behavior, total filled
pods, % pod set, total seed number, grain yield, biomass, harvest
index, 100-seed weight) in chickpea RILs (heat-tolerant ICC
15614×heat-sensitive ICC 4567). Composite interval mapping
analysis affirmed two genomic regions (CaLG05 and CaLG06)
with four QTLs (grain yield, total seed number, total filled pods,
% pod set). A GWAS used 16,877 SNPs to identify marker-
trait associations (MTA) in 135 diverse pea lines exposed to
>28◦C in the field to understand the genetic basis for heat
tolerance (Gali et al., 2019). The study identified 32 MTAs
and 48 candidate genes associated with various traits, including
chlorophyll concentration, photochemical reflectance index,
canopy temperature, reproductive stem length, internode length,
pod number, with the potential for developing heat-tolerant
cultivars (Tafesse et al., 2020). Lin et al. (2006) identified 14 RAPD
markers linked to heat tolerance traits (flower number, fruit
number, fruit set, yield) in tomato RILs derived from CL5915
(heat-tolerant) and L4422 (heat-sensitive) under HS. Developing
heat tolerant Capsicum annuum through transferring heat shock
protein encoding gene Hsp70 and sHsp from AVPP0702 into
Kulai an elite C. annuum cultivar by adopting marker assisted
back crossing approach is notable illustration of marker assisted
breeding for heat tolerance (Usman et al., 2018). Likewise, three
non-synonymous SNPs identified in the qHT2.1 major effect
QTL in bottle gourd (Song et al., 2020) and non-synonymous
SNP identified in the QHT_C09.2 QTL regions in broccoli
(Branham and Farnham, 2019) contributing to heat tolerance,
which could be potentially used as candidate markers for
screening heat tolerant bottle gourd and broccoli genotypes.

TRANSGENICS

Altering the genetic makeup of vegetable crops is a possible
solution for developing crops that can grow and reproduce well
under increasing temperatures. Plants have an inherent ability

to endure supra optimal temperatures (“basal thermotolerance”
or “acquired tolerance to increasing temperature”) (Grover et al.,
2013). The level of thermotolerance varies between plant species
depending on their genetic makeup and specific expression of
defense-related genes, however, levels of thermotolerance vary
in different plant species again due to differences in genetic
makeup of the plant species. Even within a species, genotypes
differ for reaction (tolerance or sensitive) to HS owing to varying
genetic makeup. Considerable number of genes/QTLs conferring
tolerance to HS has been identified in vegetable crops and these
genes/QTLs can be transferred from heat-tolerant genotypes to
heat-sensitive genotypes using transgenic approaches to develop
genetically modified heat tolerant crops. Genes expressed in heat-
tolerant crops can be transferred to heat-sensitive crops using
transgenic approaches to develop genetically modified heat-
tolerant crops. Candidate genes for development of transgenics
for heat tolerance are HSP, compatible osmolyte, and antioxidant
levels, and detoxifying pathways (Parmar et al., 2017).

Manipulating HSPs
Many vegetable crops have been manipulated for increased
expression of HSPs. For instance, in tomato, overexpression
of trehalose-6-phosphate synthase/phosphatase (TPSP) gene
derived from Escherichia coli increased the expression of HsfA1,
HsfA2, and HsfB1, which was linked to escalating Hsp17.8,
ER-sHsp and Mt-sHsp levels to impart heat tolerance (Lyu
et al., 2018). Similarly, overexpression of small heat shock
protein (CaHsp 25.9) improved thermotolerance in Capsicum
transgenic lines (R9 and B6) under HS, decreasing MDA content
and increasing proline and SOD content (Feng et al., 2019).
In transgenic potato lines, overexpression of the A2 HSc70
(Heat-Shock Cognate) allele-maintained tuber yield at elevated
temperature (Trapero-Mozos et al., 2018).

Manipulating Antioxidants
HS causes oxidative damage in plants; therefore, developing
transgenics with enhanced antioxidative mechanisms may
enhance thermotolerance in plants. Antioxidant mechanisms
were manipulated in pea by incorporating heat shock factor
gene (HsfA1d) from Arabidopsis thaliana. Under HS (42◦C),
transgenic pea plants had five-fold higher expression of HsfA1d
than wild pea, decreasing H2O2 accumulation, and higher SOD
and APX activities and proline content (Shah et al., 2020). Tang
et al. (2006) developed transgenic potato plants (SSA plants)
expressing Cu/Zn SOD and APX gene in chloroplasts under
the control of a SWPA2. The transgenic plants had less damage
induced by methyl viologen than non-transgenic plants. In the
same study, photosynthetic activity decreased by 29% in non-
transgenic plants but only 6% in transgenic plants under HS
(42◦C for 20 h). Overexpression of cytosolic APX (cAPX) in
transgenic tomato (Lycopersicon esculentum cv. Zhongshu No.
5) under HS (40◦C for 13 h) resulted in several-fold higher APX
activity than wild plants, reducing electrolyte leakage (24% in A9
line and 52% in A16 line) compared with wild plants. Similarly,
overexpression of cAPX in transgenic tomato increased tolerance
HS (Wang et al., 2006).
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Cross-Talk Between HSP and Redox
Mechanism
Equilibrium between ROS generation and ROS scavenging is
disturbed by the high temperature stress (Foyer and Noctor,
2005). One of the best strategies adopted by the plant cells is
the production of HSPs on exposure to high temperature (Wang
et al., 2004). HSPs positively affect thermotolerance by protecting
ROS scavenging system and actively resulting in lower ROS
concentration. HSPs also enable protein refolding, preventing
aggregation of non-native proteins and stabilize polypeptides
and membrane under stress conditions (Scarpeci et al., 2008).
It is unclear whether there is specific interaction between
HSPs and ROS scavenging machinery but ROS accumulation
is reduced via HSP induced ROS scavenging activity. Hence
the cross-talk between production of HSFs/HSPs and ROS
scavenging activity play important role in acclimation (Kang
et al., 2022). The communication between ROS and HSFs involve
Mitogen Activated Protein Kinase (MAPK). ROS dependent
phosphorylation can play vital role in HSF activation (Driedonks
et al., 2015). MAPK3 and MAPK6 are the key players which
are activated by H2O2 and further phosphorylate the HSFs, for
instance in tomato, heat induced MAPK transduces the heat
stress signal via HSFA3 (Link et al., 2002). Induction of heat
shock transcription factors HsfA2 and HsfA4 is reported to be
regulators of genes associated with ROS mitigation. HsfA4A is
the principle candidate to function as H2O2 sensor (Scarpeci
et al., 2008). At transcriptional level, HSPs are regulated by
HSFs that bind to the conserved regulatory element of heat
shock element (HSEs) and act as promoter for Hsp genes.
Under stress conditions ROS mainly H2O2 functions as signal
transduction molecule and cause HSF activation. ROS enhances
the dissociation of HSP and HSF complex and promote the HSF
trimerization and relocate the same to the nucleus leading to
activation of the expression of HSPs and other heat responsive
genes (Ul Haq et al., 2019) (Figure 4).

AGRONOMIC APPROACHES

By employing improved agronomic practices for different
crops has improved crop yields. These practices include better
soil, water, nutrient, weed, and pest management strategies,
selection of varieties, and appropriate planting times and planting
densities, and more and more (HanumanthaRao et al., 2016).
Agronomic practices control soil temperature by minimizing the
evaporation (Ferrante and Mariani, 2018) helping the cultivators
with sustained water use, proper fertilizer use, and improved land
maintenance, consequently improving crop quality and quantity.
In addition, agronomic practice also helps with increased
soil physical, chemical and microbial status. These help with
water and nutrient availability and plant uptake. Agronomic
practices for increasing vegetable crop yields that are efficient,
cost-effective, and easily adaptable for HS management are
described below.

Land preparation for planting involves tillage, seedbed
shaping, and mulching. These practices depend on the soil
type, physical and chemical properties. Sandy loam soils are

best for raising vegetables such as potato, cauliflower, lettuce,
cabbage, and tomato. Tillage includes breaking up/loosening the
soil by plow, favoring seed germination, and proper seedling
growth. Tillage also helps control weeds, aerate soil, and bury the
previous crop’s residues; the tillage method varies between crops
(Kladivko, 2001). However, the same benefits can be obtained
with no-till or minimum tillage practices that minimizes soil
disturbance and helps with building of soil organic carbon over
time. Mulching is a process of covering the soil with chopped
residues; it has many benefits, including reduced soil erosion and
water loss, which maintain soil temperature (Mulumba and Lal,
2008). Use of conservation agricultural practices with minimum
soil disturbance, grass mulch cover and crop rotations not only
significantly increased yield of green pepper but also decreased
irrigation water use and runoff, while increasing percolated water
in the root zone (Belay et al., 2020). Similarly, improved yields
of tomato, cucumber and bitter guard were observed under
conservation agriculture (Paudel et al., 2020). Conservation
agricultural practices in vegetable production systems has shown
to increase soil organic matter and nutrients (Belay et al., 2022).
Irrigation increases soil moisture, decreasing soil temperature
(by 2◦) compared to non-irrigated soil (Lobell and Bonfils,
2008). Water quality and supply varies according to soil type,
crop (warm- or cool-season), and weather conditions. Generally,
vegetable crops are irrigated at 4–6-day intervals during summer
and 14–15-day intervals during winter to reduce the high-
temperature effects. Many modern technologies for irrigation
are available that minimize water use, such as drip or trickle
irrigation and overhead micro-sprinklers.

Variety selection is a successful agronomic approach for
achieving high yields under high-temperature stress. Selection
characteristics include high yield, disease resistance, maturity
group, and grain quality (Pedersen, 2003). Suitable crop
genotypes need to be early maturing and high yielding to escape
heat by completing their life cycle early and thus perform better
under HS (Sekhon et al., 2010). Furthermore, shifting the sowing
time (early or late) is another strategy to avoid HS and avoid heat
induced yield reduction as has been reported in mungbean (up to
50%) and soybean where yield declined tremendously by delay in
the sowing date (Coventry et al., 1993; Miah et al., 2009). The goal
of selection of crop duration and time of planting is to avoid HS
during sensitive stages of reproductive development. In contrast,
late sowing has been used to screen large populations of chickpea
(Gaur et al., 2013), mungbean (Sharma et al., 2016), and lentil
(Sita et al., 2017) genotypes for heat tolerance, some of which
have been released (e.g., chickpea ICCV 92944) (Gaur et al.,
2013). Heat-tolerant varieties of some vegetable crops are listed in
Table 6. Hence, determining the ideal sowing time and selection
of heat tolerant varieties is crucial for growth, development, and
yield of crops.

Nutrients/Thermo-Protectants
HS can be alleviated by exogenous application of nutrients
or thermo-protectants as a seed pretreatment, foliar spray, or
by fertilizer application via broadcasting, pellet placement, or
band placement (Waraich et al., 2012; HanumanthaRao et al.,
2016). Macro-nutrients such as N, P, K, Ca, and Mg are
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FIGURE 4 | Cross talk between HSPs and redox reaction: -Heat stress imposes damages to plant like increased membrane fluidity, unfolding of proteins, ROS

production and dissociation of HSP70/90-HsfA1 complex. To endure HS, Plants activate various mechanisms to preserve their adaptation. First such mechanism is

the activation of cyclic nucleotide gated calcium (CNGC) channels that result in the movement of Ca2+ ions in to cytoplasm and bind with Calmodulin Protein (CaM3)

forming the Ca2+-CaM3 complex and help in the activation of Heat shock factors (HSFs). Second mechanism involves Phosphoinositol signaling pathway that also

lead to the influx of more Ca2+ in to the cytoplasm and merge with Ca2+-CaM3 pathway. Another mechanism during HS is the activation of ROS signaling network by

Respiratory Burst Oxidase Homolog D (RBOHD) that produce O2− which is converted in to H2O2 that is involved in the induction of HSFs activation. ROS like H2O2

also activate the HSFs complex through mitogen activated protein kinase (MAPK). On activation, HSFs move to the nucleus and activate HSE and HSP target genes.

HS also lead to the dissociation, of HSP70/90-HsfA1 complex; on dissociation HsfA1 undergoes trimerization that further activates the HSFs complex in the cytosol

and Heat shock element (HSE) in the nucleus. Their activation has many positive effects on the cellular metabolism like transcriptional regulation, activation of

antioxidant system and multi chaperone network (HSP60, HSP70, HSP90, HSP100, and sHSP) that may lower down the ROS levels in the cell and help in achieving

thermotolerance.

required by plants (>10mM) and help maintain structural and
functional integrity (Waraich et al., 2011). Nutrient deficiencies
alter the levels of tolerance to abiotic stresses. During HS, N
deficient plants were associated with increased lipid peroxidation,
while N supplemented plants tolerated photo-oxidative damage
(Kato et al., 2003). Likewise, K deficient plants had reduced
translocation of photo-assimilates to the sink organ, whereas K
application improved the translocation and utilization of photo-
assimilates, maintained cell turgidity, and upregulated enzymatic
activity under HS (Mengel et al., 2001; Cakmak, 2005), increasing
yield by 1.9-fold in Capsicum and 2.4-fold in tomato (Waraich
et al., 2012). Similarly, exogenous application of calcium (2 L/ha)
increased lettuce production under HS (Almeida et al., 2016).

Micronutrients such as B and Mn also provide heat
tolerance of plants by increasing antioxidant activity and

alleviating the damage induced by HS stress (Waraich et al.,
2011). Other elements such as Se increased enzymatic activity
and decreased membrane damage and ROS production in
soybean (Djanaguiraman et al., 2005). Seed pretreatment
and foliar application of thermoprotectant molecules such as
proline, glycinebetaine, salicylic acid, spermidine, putrescine,
GABA, ascorbic acid provides thermotolerance to crop plants
(HanumanthaRao et al., 2016). For instance, exogenous
application of proline mitigated HS effects in chickpea (Kaushal
et al., 2011). Ascorbic acid application to mungbean seedlings
under HS in a controlled environment improved seedling growth
(Kumar et al., 2011). In cucumber, a 1mM SA foliar spray
provided heat tolerance by increasing CAT activity and thus
reducing membrane damage and H2O2 levels (Shi et al., 2006).
Similarly, Kaur et al. (2009) reported that exogenous application
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TABLE 6 | Heat-tolerant varieties of some vegetable crops.

Crop Trait indicating tolerance Heat-tolerant varieties References

Broad bean

(Vicia faba)

Seed yield C.52/1/1/1 Abdelmula and Abuanja, 2007

Broccoli

(Brassica oleracea var. italica)

Gypsy and Packman Farnham and Bjorkman, 2011

Cabbage

(Brassica oleracea var. capitata)

Cell membrane thermostability Sousyu Chauhan and Senboku, 1996

ASVEG#1 Fu et al., 1993

Capsicum

(Capsicum annuum)

Mr. Lee No. 3 selex, CCA-119A,

Susan’s Joy, CCA-3288

Dahal et al., 2006

IIHR Sel.-3 Devi et al., 2017

Cauliflower

(Brassica oleracea var. botrytis)

IIHR316-1, IIHR371-1 and

PusaMeghna

Devi et al., 2017

Chickpea

(Cicer arietinum)

ICCV07110, ICCV92944 Kumar et al., 2013

Common bean

(Phaseolus vulgaris)

Chlorophyll fluorescence Ranit and Nerine RS Petkova et al., 2007

IIHR-19-1 Muralidharan et al., 2016

Cowpea

(Vigna unguiculata)

IT93K-452-1, IT98K-1111-1,

IT93K-693-2, IT97K-472-12,

IT97K-472-25, IT97K819-43 and

IT97K-499-38.

Timko and Singh, 2008

Lettuce

(Lactuca sativa)

S24 and S39 Han et al., 2013

Mungbean

(Vigna radiata)

Seed yield NFM-6-5 and NFM-12-14 Khattak et al., 2006

Biomass, number of flowers, pods

and seeds weight/plant

EC693357, EC693358, EC693369,

Harsha and ML1299

Sharma et al., 2016

Okra

(Abelmoschus esculentus)

Yield (fruit number) L2-11 and L4-48 Hayamanesh, 2018

Potato

(Solanum tuberosum)

Tuber yield and dry matter HT/92-621 and HT/92-802 Minhas et al., 2001

Pea

(Pisum sativum)

IIHR-1 and IIHR-8 Muralidharan et al., 2016

Soybean

(Glycine max)

Pollen traits 45A-46 Alsajri et al., 2019

Pollen traits DG 5630RR Salem et al., 2007

Spinach

(Spinacia oleracea)

Seed germination Ozarka II, Donkey, Marabu, and

Raccoon

Chitwood et al., 2016

Tomato

(Lycopersicon esculentum)

CL1131-0-043-0-6,

CL6058-0-3-10-2-2-2

PusaSadabahar, PusaSheetal,

Pusa Hybrid-1

Abdul-Baki, 1991*

Devi et al., 2017

of SA (10 and 20µM) to heat-stressed brassica seedlings (40–
55◦C) improved CAT and POX activities. Pretreatment of SA to
mungbean seedlings decreased lipid peroxidation and enhanced
antioxidant activity, improving membrane stability (Saleh et al.,
2007). In chickpea, a 100µM SA foliar spray to heat-stressed
seedlings (46◦C) increased proline content (Chakraborty and
Tongden, 2005). Thus, exogenous SA application mitigates

the harmful impacts of heat-induced damage by strengthening

antioxidative pathways. Foliar spray of Se (8µM) to cucumber

plants exposed to 40/30◦C during flower initiation (35–75 DAS)

decreased oxidative damage by stabilizing the antioxidative
mechanism and increasing ROS scavenging (Balal et al., 2016).

Microorganisms Imparting
Thermotolerance
In addition to other factors, plant-associated microorganisms,
including plant-growth-promoting rhizobacteria, endophytic
bacteria, and symbiotic fungi, play a significant role in
imparting thermotolerance in plants (Grover et al., 2011). Many
agriculturally important microbes have been discovered that
colonize and promote plant growth and aid in nutrient and
disease control through various direct and indirect methods
(Singh et al., 2016). The interaction betweenmicroorganisms and
host plants imparting stress tolerance is a complex process and
polygenic in nature. Ali et al. (2009) discovered a thermotolerant
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FIGURE 5 | Heat stress has various negative impacts on the plant like reducing vegetative and reproductive growth, interfering with the physiological and cellular

functions. To combat such impacts, plant activates multiple responses and heat avoidance mechanisms which can be used to identify heat resilient vegetable crops.

Different approaches categorized in this article for this purpose are physiological based, omics based, molecular breeding based and agronomic based. Such possible

options will pave the way for improving adaptation and mitigation of heat stress in vegetable crops.

strain of Pseudomonas sp. AMK-P6 in sorghum that elicits
HSPs synthesis under high-temperature stress, and improves
biochemical activities by inducing the synthesis of osmolytes such
as proline, sugars, amino acids, and chlorophyll. Pseudomonas
putida NBRI0987, a thermotolerant strain (<40◦C) was isolated
from the chickpea rhizosphere (Srivastava et al., 2008). A
recent study on different rhizobacterial strains of pigeon pea
at high temperature (30, 40, 50◦C) showed that S1p1 and
S12p6 were the most promising strains for plant growth
and development, stimulating auxin production, flavonoid
production, and siderophore formation (Modi and Khanna,
2018). It would be worth evaluating the effectiveness of these
microbes in vegetable crops for induction of thermotolerance.

Protected Cultivation
Growing vegetables in protected environments on small-scale
farms using modern technologies has gained considerable
attention for their high yields and quality and regular
vegetable supply in the off-season (Sabir and Singh, 2013).
Protected cultivation involves manipulating environmental
factors such as temperature, humidity, light, water, and soil by
designing suitable structures and following appropriate practices

(Wittwer and Castilla, 1995). The main practices for protected
cultivation are row tunnels, polytunnels, and mulching, which
are more beneficial than open-field cultivation with less demand
for fertilizers, pesticides, and water (Choudhary et al., 2013). In
tomato, using a fogging system for 20min/h (between 10 a.m. and
4 p.m.) in a hot shade house (>37◦C) obtained high fruit yields
with fewer physiological disorders (Ro et al., 2021). A similar
fogging system improved the antioxidant defense responses in
tomato plants (Leyva et al., 2013). Related approaches have been
used to cultivate cucumber, capsicum, and lettuce with high
yields (Sabir and Singh, 2013).

CONCLUSIONS

Vegetables are a distinct collection of plant-based foods that
vary in nutritional diversity and form an important part of
healthy diets. They also have great potential for boosting human
health. Exposure to high temperatures or HS can directly
or indirectly influence the production and quality of fresh
vegetables. Several heat-induced morphological damages, such as
poor vegetative growth, leaf tip burning, rib discoloration in leafy
vegetables, sun burned fruits, decreased fruit size; pod abortion,
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and unfilled pods are common, which can render vegetable
cultivation unprofitable. Key physiological and biochemical
effects associated with crop failure include membrane damage,
photosynthetic inhibition, oxidative stress, and reproductive
tissue damage. Reproductive stage has extensively been studied
and found to be more sensitive to HS as it directly affects yields
by reducing processes like pollen germination, pollen load, pollen
tube growth, stigma receptivity, ovule fertility, and seed filling,
resulting in poorer yields. Hence, sound and robust adaptation
strategies are needed to mitigate the adverse impacts of HS to
ensure the productivity and quality of vegetable crops.

Most important strategy to manage HS is deployment of
heat tolerant cultivars (Figure 5). Physiological traits, such as
stay-green trait, canopy temperature depression, cell membrane
thermostability, chlorophyll fluorescence, relative water
content, and stomatal conductance, are especially important
in developing high-yielding heat-tolerant varieties/cultivars.
Molecular approaches like omics, molecular breeding and
transgenics have the potential to enhancing heat tolerance
either by transferring heat tolerant genes/QTLs to elite cultivars
with the help of molecular markers or elucidating mechanisms
of tolerance leading to identification of heat tolerance genes
and transferring those across genera or families via genetic
modifications. Besides these approaches, simple agronomic
methods are also important for mitigating HS effects at the
grassroots level. Therefore, developing heat-tolerant plant types

using physiological, molecular, and breeding-based techniques
is essential for sustaining vegetable production systems and
human health. Further, these approaches will offer insight
into the physiological and molecular mechanisms that govern
thermotolerance and pave the way for engineering ‘designer’
vegetable crops for better health and nutritional security.
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Aquaporins (AQPs) constitute a highly diverse family of channel proteins that transport
water and neutral solutes. AQPs play crucial roles in plant development and stress
responses. However, the characterization and biological functions of RsAQPs in radish
(Raphanus sativus L.) remain elusive. In this study, 61 non-redundant members of
AQP-encoding genes were identified from the radish genome database and located
on nine chromosomes. Radish AQPs (RsAQPs) were divided into four subfamilies,
including 21 plasma membrane intrinsic proteins (PIPs), 19 tonoplast intrinsic proteins
(TIPs), 16 NOD-like intrinsic proteins (NIPs), and 5 small basic intrinsic proteins (SIPs),
through phylogenetic analysis. All RsAQPs contained highly conserved motifs (motifs 1
and 4) and transmembrane regions, indicating the potential transmembrane transport
function of RsAQPs. Tissue- and stage-specific expression patterns of AQP gene
analysis based on RNA-seq data revealed that the expression levels of PIPs were
generally higher than TIPs, NIPs, and SIPs in radish. In addition, quantitative real-time
polymerase chain reaction (qRT-PCR) revealed that seven selected RsPIPs, according
to our previous transcriptome data (e.g., RsPIP1-3, 1-6, 2-1, 2-6, 2-10, 2-13, and 2-14),
exhibited significant upregulation in roots of salt-tolerant radish genotype. In particular,
the transcriptional levels of RsPIP2-6 dramatically increased after 6 h of 150 mM NaCl
treatment during the taproot thickening stage. Additionally, overexpression of RsPIP2-6
could enhance salt tolerance by Agrobacterium rhizogenes-mediated transgenic radish
hairy roots, which exhibited the mitigatory effects of plant growth reduction, leaf relative
water content (RWC) reduction and alleviation of O2− in cells, as shown by nitro
blue tetrazolium (NBT) staining, under salt stress. These findings are helpful for deeply
dissecting the biological function of RsAQPs on the salt stress response, facilitating
practical application and genetic improvement of abiotic stress resistance in radish.
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INTRODUCTION

Soil salinization is one of the main abiotic stressors in
global agriculture production. Approximately 25% of the global
cultivated land area is salinized, and the problem has sequentially
deteriorated due to climatic variation and desertification (Tuteja,
2007; Zhu, 2016). Plant growth and development, as well as crop
yield, are severely hindered by salt stress. An excessive soil salt
content causes vegetable crops to be short, with yellow leaves
and brown roots (Chrysargyris et al., 2019; Daničić et al., 2021).
In addition, an unsuitable salt environment destroys the plasma
membrane structure, greatly increasing membrane permeability
and resulting in the destruction of the water balance in plants
(Ueda et al., 2016). Osmotic stress and radial water transportation
are mainly dependent on aquaporin (AQP) activity (Horie et al.,
2011; Chaumont and Tyerman, 2014; Laur and Hacke, 2014;
Bouda et al., 2018). AQPs are integral membrane proteins
that belong to the ancient superfamily of major intrinsic
proteins (MIPs), which are widely distributed in animals, plants,
and microbes (Gomes et al., 2009). Increasing evidence has
demonstrated that AQPs efficiently transport water and other
small molecule substrates and play important regulatory roles in
seed germination, tissue expansion, reproductive growth, fruit
ripening, water movement, and maintenance of cellular water
homeostasis in plants (Eisenbarth and Weig, 2005; Chen et al.,
2013; Moshelion et al., 2015; Shivaraj et al., 2017; Zargar et al.,
2017). In addition, when plants are exposed to abiotic stress,
AQPs quickly respond and regulate water transport, reducing
H2O2 accumulation and membrane damage by enhancing the
antioxidant system in plants (Hu et al., 2012).

The typical AQPs are composed of four monomers, and
each monomer contains six transmembrane domains (TM1–
TM6) and five connecting loops (LA–LE), forming independent
transmembrane pores localized on the intra-(LB, LD) or
extracytosolic (LA, LC, LE) sides of the membrane (Afzal et al.,
2016; Ozu et al., 2018). Through folding and linking, two
Asn-Pro-Ala (NPA) motifs form a narrow channel to control
the permeability of water (Murata et al., 2000), which plays a
vital role in water molecules across the membrane. Based on
protein sequence similarity and subcellular localization, AQPs
are divided into eight subfamilies, including plasma membrane
intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs),
NOD26-like intrinsic proteins (NIPs), small basic intrinsic
proteins (SIPs), uncategorized X intrinsic proteins (XIPs), GlpF-
like intrinsic proteins (GIPs), hybrid intrinsic proteins (HIPs),
and large intrinsic proteins (LIPs) (Danielson and Johanson,
2008; Hussain et al., 2020). Among them, PIPs are the subfamily
with the most members that can be categorized into two
phylogenetic subgroups, PIP1s and PIP2s, according to the
length of the N- and C-termini of PIPs (Tyerman et al., 1999).
PIP2s exhibit strong water permeability when expressed in
Xenopus oocytes, whereas PIP1s generally have much lower or
even no water channel activity (Fetter et al., 2004). PIP1 and
PIP2 aquaporins may interact to increase water permeability
(Hachez et al., 2013). PIP expression levels are complexly
regulated by various physiological and environmental stressors,
including plant hormones and abiotic stress (Kapilan et al., 2018),
especially under drought and salt stress (Srivastava et al., 2016).

Overexpression of PIP genes can improve salt tolerance of
transgenic plants in several plants, such as sugarcane (Tang et al.,
2021), barley (Alavilli et al., 2016), soybean (Zhou et al., 2014),
Leymus chinensis (Ma and Liu, 2012), durum wheat (Ayadi et al.,
2011), and rice (Guo et al., 2006). PIP genes might function as
regulators of plant salt tolerance.

Radish (Raphanus sativus L.) is an important root vegetable
crop belonging to the Brassicaceae family. Soil salinization and
secondary salinization causing salt stress seriously affect the
yield and quality of radish taproots. However, little information
on the AQP gene family is available on radish. In the present
study, a genome-wide analysis of the identification of AQP genes
was performed, and its evolutionary relationships, structural
characteristics, promoter analysis, and chromosomal distribution
were systematically characterized. Moreover, the transcript
profiles of RsPIPs in different developmental stages and tissues
are detected and seven selected genes are also performed for
differentially responsive genes under salt stress. Furthermore, the
biological function of RsPIP2-6 was validated by Agrobacterium
rhizogenes-mediated transgenic radish hairy roots in the face of
salt stress. These results provide fundamental insights for the
genetic improvement of salt tolerance traits and for revealing the
salt stress response mechanism of radish.

MATERIALS AND METHODS

Genome-Wide Identification of
Aquaporin Genes in Radish
The gene and protein sequence information for radish were
obtained from the public genome database (RGD1). The
candidate AQP proteins that included the Asn-Pro-Ala (NPA)
domain (PF00230) were identified through Pfam.2 The hidden
Markov model (HMM) search was then processed using
HMMER 3.03 to retrieve the sequences, and SMART4 and
CDD5 were employed to remove proteins with incomplete
AQP conserved domains, ensuring the reliability of all radish
aquaporin members (RsAQPs). Following this, Clustal W6 was
conducted for multiple sequence alignment, and all AQP protein
sequences, including radish and Arabidopsis, were imported to
generate the phylogenetic tree using MEGA 5.0 with neighbor-
joining (NJ) and the bootstrap value set to 1000. The Arabidopsis
AQP protein sequences were downloaded from the TAIR
database.7

Chromosome Localization, Protein
Properties, Gene Structure, and
Promoter Cis-Elements Analysis
The structural intron and exon characteristics of the RsAQP
family genes were determined using Gene Structure Display

1http://radish-genome.org/
2http://pfam.xfam.org
3http://hmmer.janelia.org/
4http://smart.embl-heidelberg.de/
5https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
6https://pir.georgetown.edu/pirwww/search/multialn.shtml
7https://www.arabidopsis.org/
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Server 2.0.8 The chromosome localization of RsAQPs was
plotted using MapChart software.9 The ExPASy ProtParam
tool10 was used to analyze the RsAQP protein properties,
including the number of amino acids (AAs), molecular weight
(MW), theoretical isoelectric point (pI), hydrophilicity index
(HI) and instability index (II). The conserved motifs of the
RsAQP family were identified using the MEME Suite 5.4.1.11

Moreover, transmembrane prediction was detected using Hidden
Markov Models Server v.2.0.12 Additionally, the promoter region
(1500 bp sequence upstream of the translation initiation sites)
of RsAQP genes was extracted and analyzed in the PlantCARE
database for the identification of potential cis-acting elements
(Lescot et al., 2002).

Expression Analysis of RsAQP Genes
The published RNA-seq data of five tissues (cortical, cambium,
xylem, root tip, and leaf) at six stages (7, 14, 20, 40, 60, and
90 days after sowing) were used to analyze the expression
patterns during radish development (Mitsui et al., 2015). Based
on the reads per kilobase per kilo (RPKM) values, the heatmap
was generated by TBtools13 (Chen et al., 2020). The expression
profiles of the identified RsAQP genes under salt stress were
extracted and performed from our previous transcriptome data
(Sun et al., 2016).

Plant Materials, Growth Conditions, and
Salt Treatments
Two previously screened advanced inbred radish lines, namely
the salt-sensitive (‘NAU-TR12’) and the salt-tolerant (‘NAU-
TR17’) genotypes, were used in this study (Zhang et al., 2021).
The seeds were rinsed and sterilized before germinating on moist
filter paper in the dark for 2 days. Subsequently, seedlings were
transferred into plastic pots and cultured at 25◦C day/18◦C night
with 16 h light/8 h dark, 60% relative humidity and 12,000 lx light.
After 3 (young seedling stage) and 8 (taproot stage) weeks, these
seedlings were transferred into the plastic container with a half-
strength Hoagland nutrient solution (Xu et al., 2013). During a
1-week slow seeding period, the plants were treated with 150 mM
NaCl solution and the NaCl-free nutrient solution was used as a
control (CK). Three biological replicates were employed in each
treatment, and each replicate included 20 seedlings. Different
tissues (such as leaf and root) were harvested in triplicate at 0,
6, 12, and 24 h after a continuous time under NaCl treatment.
Then, the samples were immediately frozen in liquid nitrogen
and subsequently stored at –80◦C for further use.

RNA Extraction and RT-qPCR Analysis
Total RNA extraction was performed with an RNAprep Pure
Plant Kit (Tiangen, Beijing, China), and cDNA was synthesized
using a PrimeScriptTM RT reagent kit (Takara, Dalian, China)
according to the manufacturer’s instructions. RT-qPCR analysis

8http://gsds.cbi.pku.edu.cn/
9https://mapchart.net/greece.html
10https://www.expasy.org/
11https://meme-suite.org/meme/
12https://services.healthtech.dtu.dk
13https://github.com/CJ-Chen/TBtools

was carried out on the LightCycler R© 480 System (Roche,
Mannheim, Germany). All primers used for RT-qPCR are listed
in Supplementary Table 3. RsActin was employed as the internal
standard to normalize expression. The relative expression level
was normalized to the RsActin gene and calculated using the
2−11Ct method (Livak and Schmittgen, 2001). Three replicates
were performed in this study.

The relative expression levels of the salt stress samples were
compared to those of the controls. The gene fragments for RT-
qPCR were isolated among young and taproot thickening periods
from two radish varieties: ‘NAU-TR12’ (salt-sensitive) and ‘NAU-
TR17’ (salt-tolerant).

Agrobacterium rhizogenes-Mediated
Transformation System of Radish
The coding sequence (CDS) of RsPIP2-6 was amplified
with the primer pair RsPIP2-6OE-F/RsPIP2-6OE-R. The PCR
fragments were then inserted between XbaI and KpnI restriction
sites (Supplementary Table 1). The plant expression vector
pCambia1300 with the 35S promoter included a green fluorescent
protein (GFP) tag. The recombination vector containing RsPIP2-
6 was transformed into A. rhizogenes strain MSU440.

RsPIP2-6-transformed radish hairy root composite plants
were obtained by infection, according to Wei et al. (2016).
The germinating radish seeds were sown on vermiculite and
cultured at 25◦C day/18◦C night with 16 h light/8 h dark, 60%
relative humidity and 12,000 lx light. After 4 days, seedlings with
consistent growth were selected, and the original roots of the
radishes were cut off. The growing tip and 0.5–1 cm elongated
hypocotyl (composite plants that contained the transformed
hairy roots with a wild-type shoot) were retained for A. rhizogenes
infection. Agrobacterium rhizogene harboring RsPIP2-6-GFP
(OE) or the empty vector (pCambia1300-GFP: EV) in 50 mL
LB liquid medium plus 50 mg/L streptomycin and 100 mg/L
kanamycin were incubated overnight at 28◦C on a rotary shaker
at 200 rpm until the OD600 reached 0.8–1.0 (Qin et al., 2021).
Bacterial cells were centrifuged at 5000 rpm for 5 min and re-
suspended in MS liquid medium (OD600 = 0.8–1.0) containing
100 µM acetosyringone (AS) and infected in the dark for 40–
60 min (Huang et al., 2022). Subsequently, the composite plants
were planted into a substrate (peat:vermiculite = 2:1) and treated
with 150 mM NaCl at four leaves and one shoot period for 6 days.
Three biological replicates were employed in each treatment.
Each sample of at least six seedlings was harvested for salt
treatment in the experiment, and three seedlings were randomly
selected and photographed.

Chlorophyll Fluorescence Measuring and
Histochemical Staining
Chlorophyll fluorescence was analyzed using a chlorophyll
fluorometer (IMAG-PAM). Three leaves and one shoot of soil-
grown OE and EV seedlings were treated with 0 or 150 mM
NaCl for 6 h before being subjected to chlorophyll fluorescence
determination. The seedlings were dark-adapted for at least
30 min before measurements. Fv/Fm was averaged from equal
circles of interesting areas on the leaves (Zhou et al., 2022).
Chlorophyll fluorescence images and chlorophyll fluorescence
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parameters of the samples were measured synchronously using
Imaging PAM software. Each sample of at least 9 seedlings was
used for chlorophyll fluorescence determination, and one leaf was
randomly selected photo. In addition, histochemical staining was
conducted with NBT, as previously described by Alvarez et al.
(1998), and RWC in leaves was determined according to Hu et al.
(2016). Three replicates were employed in each treatment, and
each replicate included at least three seedlings.

Statistical Analysis
All experiments in this study were performed with at least
three repetitions. The significance of differences determined by
one-way ANOVA followed by Duncan’s test among treatment
means using IBM SPSS Statistics 25 (IBM Corp., United States)
was defined as significant when P < 0.05, as indicated in
the figure legends.

RESULTS

Identification and Characterization of
RsAQPs in Radish
The homology search resulted in 62 putative AQP protein
sequences obtained in radish. After removing the sequence with
an incomplete NPA domain, 61 non-redundant and complete
aquaporin members were identified from the radish genome
database (Table 1). All members were correspondingly named
according to the classification of model plant Arabidopsis from
the TAIR database.14 Based on physical and chemical property
analyses, the protein sizes of RsAQPs varied from 122 to 553 AAs,
and 55 members (90.16% of all RsAQPs) were concentrated at
20–35 kDa. The theoretical pI values ranged from 4.96 to 10.07,
and the MWs ranged from 12.76 to 61.49 kDa. Additionally,
the average instability coefficient (IC) was 29.58, and most (58
members, 95.08%) were structurally stable, with an IC less than
40.00. Furthermore, all proteins except RsNIP6-3 were predicted
to be hydrophobic.

Phylogenetic Analysis of RsAQP Genes
To systematically classify the subfamily of RsAQPs and reveal
the evolutionary relationship with the aquaporin members of
Arabidopsis (AtAQP), a phylogenetic tree was constructed using
the neighbor-joining method with the amino acid sequences
(Figure 1). By homologue comparative analysis of the protein
sequences between RsAQPs and AtAQPs, the 61 RsAQPs
were separated into four distinct subfamilies according to
their grouping with AtAQPs, covering RsPIPs, RsTIPs, RsNIPs,
and RsSIPs. Among them, RsPIPs were the most abundant
subfamily, containing 21 members, which were further divided
into 2 subgroups containing 7 RsPIP1 members and 14 RsPIP2
members. There were 19 members involved in RsTIPs and 5
members in RsSIPs, which were clustered into 5 and 2 subgroups,
respectively. The orthologous sequence of AtNIP3-1 was not
identified in radish.

14http://www.arabidopsis.org

Gene Structure and Conserved Domain
Analysis of RsAQPs
Exon–intron organization analysis of the 61 RsAQPs showed
that the number of introns ranged from zero to seven, and
the same subfamily generally contained similar gene structures
(Figures 2A,B). Specifically, the RsSIP subfamily contained two
introns, while the RsPIP subfamily displayed three introns, except
for RsPIP1-7 and RsPIP2-10, which had two and one introns,
respectively. Most of the RsTIPs had two introns, except RsTIP1-5
and RsTIP1-6, which lacked introns. The structure of the RsNIP
subfamily was relatively complex, with the number of introns
varying from one to seven.

A total of 15 conserved motifs were generated from 61
RsAQPs (Figure 2C), and the motif compositions were similar
in the same subfamily. Among these, motifs 1 and 4 were
involved in all RsAQP proteins, suggesting that these motifs
were the basic region of RsAQPs. However, some motifs were
unique and were only detected in specific subfamilies. For
instance, motifs 7, 10, and 15 were detected only in RsPIPs,
whereas motifs 9 and 12 were uniquely distributed in RsNIPs
and RsTIPs, respectively. These special motifs might be the
characteristic domains of RsPIPs, RsTIPs, and RsNIPs. In
addition, some motifs were covered in different subfamilies.
For example, motifs 2, 5, and 6 could be discovered in
RsPIPs, RsTIPs, and RsNIPs, while motifs 3 and 8 were
both distributed in RsPIPs and RsTIPs. The diversity of
motif compositions in the RsAQPs family reflected their
evolutionary processes and contributed to their functional
differentiation.

Promoter Cis-Element Prediction and
Transmembrane Region Analysis
Various cis-acting elements, including stress-, development-,
and hormone-responsive elements, were widely distributed in
the promoter regions of the RsAQP genes (Figure 3). By
calculating the number of different cis-elements, the light-
responsive element was the most frequent in the RsAQP
promoter, followed by MeJA-responsive and abscisic acid-
responsive elements. Notably, defense and stress elements were
distributed in all RsAQP subfamilies. The wound-responsive
element only existed in the RsPIP and RsTIP promoters, while
the element involved in seed-specific regulation was only present
in the RsSIPs. Moreover, none of the elements involved in
cell cycle regulation were contained in the RsNIPs and RsSIPs
(Table 2). These results suggest that the transcriptional regulation
of different types of RsAQP genes was diverse, indicating the
diversity of RsAQP functions. Furthermore, other cis-elements
involved in osmotic stress, such as MBS (CAACTG), ABRE
(ACGTG) and ABA (TAACCA), were also observed in RsAQP
promoters. This suggests that these aquaporin members may be
regulated by various factors in radish, including drought and
ABA, which need to be experimentally demonstrated in further
studies. Moreover, all RsAQPs contained transmembrane regions
that varied from 3 to 12 (Supplementary Table 1), and more than
half (33 RsAQPs) comprised six typical transmembrane domains.
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TABLE 1 | Identification and characterization of AQP proteins in radish.

Protein name Gene ID Number of amino acids Molecular weight Theoretical pI Instability index Aliphatic index Hydropathy index

RsPIP1-1 Rs265710 286 30667.57 8.86 31.02 96.92 0.365

RsPIP1-2 Rs218100 286 30614.59 9.01 34.55 96.92 0.378

RsPIP1-3 Rs605220 286 30527.6 9.16 31.22 97.62 0.419

RsPIP1-4 Rs212290 286 30527.6 9.16 31.22 97.62 0.419

RsPIP1-5 Rs000570 286 30588.65 9.02 32.08 94.55 0.386

RsPIP1-6 Rs480800 286 30620.65 9.03 32.63 94.5 0.376

RsPIP1-7 Rs159240 287 30749.77 8.99 29.48 92.16 0.359

RsPIP2-1 Rs359040 283 21453.85 6.71 32.14 95.54 0.445

RsPIP2-2 Rs359080 283 30119.75 6.51 30.33 95.51 0.501

RsPIP2-3 Rs359050 285 30232.87 6.95 30.86 96.21 0.505

RsPIP2-4 Rs612380 285 30232.87 6.95 30.86 96.21 0.505

RsPIP2-5 Rs120730 283 30039.7 6.51 29.65 97.6 0.525

RsPIP2-6 Rs257780 287 30461.24 6.5 34.15 99.62 0.563

RsPIP2-7 Rs404730 285 30099.91 7.62 26.34 103.75 0.522

RsPIP2-8 Rs079440 283 30067.94 8.53 28.56 100.04 0.475

RsPIP2-9 Rs137470 285 30061.83 6.88 28.35 102.95 0.505

RsPIP2-10 Rs123510 288 30907.89 8.97 25.25 102.95 0.477

RsPIP2-11 Rs260210 202 21453.85 6.71 32.14 95.54 0.445

RsPIP2-12 Rs151510 281 29853.65 8.82 26.49 96.9 0.427

RsPIP2-13 Rs044090 282 29837.71 8.83 29 97.62 0.493

RsPIP2-14 Rs430170 281 29810.69 8.99 31.62 96.23 0.471

RsTIP1-1 Rs204560 251 25610.7 6.02 26.19 107.73 0.797

RsTIP1-2 Rs176140 253 25832.86 5.61 25.55 110.71 0.816

RsTIP1-3 Rs316110 253 25734.72 5.32 30.58 111.9 0.834

RsTIP1-4 Rs316050 253 25734.72 5.32 30.58 111.9 0.834

RsTIP1-5 Rs105440 252 25903.02 5.12 16.56 106.51 0.817

RsTIP1-6 Rs480080 252 25943.02 5.13 20.46 104.96 0.808

RsTIP2-1 Rs232070 248 24886.86 5.32 26.03 110.6 0.956

RsTIP2-2 Rs301510 249 25020.13 5.32 29.77 114.1 1.001

RsTIP2-3 Rs301530 249 25020.13 5.32 29.77 114.1 1.001

RsTIP2-4 Rs282040 248 24852.92 5.3 23.21 113.39 0.993

RsTIP2-5 Rs037700 217 22021.56 6.03 20.97 110.65 0.811

RsTIP2-6 Rs180310 138 14082.46 5.12 29.4 114.49 0.808

RsTIP2-7 Rs321260 145 14486.85 4.96 23.69 125.79 1.084

RsTIP2-8 Rs060660 465 46575.37 5.05 22.76 119.18 1.082

RsTIP3-1 Rs455830 267 28168.67 7.2 25.9 111.16 0.606

RsTIP3-2 Rs299110 267 28468.07 6.54 31.22 112.66 0.581

RsTIP3-3 Rs013400 268 28676.32 6.49 28.67 112.54 0.568

RsTIP4-1 Rs194740 249 26195.44 5.3 23 112.81 0.726

RsTIP5-1 Rs345340 255 26402.72 6.71 25.98 96.35 0.759

RsNIP1-1 Rs597390 297 31511.65 8.62 31.71 107.68 0.446

RsNIP1-2 Rs051540 297 31511.65 8.62 31.71 107.68 0.446

RsNIP1-3 Rs162110 289 30633.6 8.86 29.28 105.92 0.469

RsNIP2-1 Rs255960 282 30253.84 8.66 40.63 111.12 0.242

RsNIP2-2 Rs444150 324 34586.75 5.75 34.68 94.78 0.318

RsNIP2-3 Rs249950 323 34727.96 6.42 41.97 101.73 0.326

RsNIP4-1 Rs186920 283 30281.59 7.66 33.43 105.05 0.575

RsNIP4-2 Rs510390 278 29678.07 8.6 31.55 111.12 0.745

RsNIP4-3 Rs580980 283 30086.34 8.21 30.21 110.88 0.689

RsNIP4-4 Rs552680 283 30120.35 6.81 31.12 112.26 0.707

RsNIP5-1 Rs090820 301 31073.22 8.66 35.28 96.31 0.537

RsNIP6-1 Rs103230 305 31823.04 8.26 33.09 99.87 0.429

RsNIP6-2 Rs103190 242 24968.15 7 27.15 102.85 0.594

RsNIP6-3 Rs103210 553 61490.11 5.85 31.64 90.98 −0.265

(Continued)
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TABLE 1 | (Continued)

Protein name Gene ID Number of amino acids Molecular weight Theoretical pI Instability index Aliphatic index Hydropathy index

RsNIP7-1 Rs222440 127 13465.47 5.68 39.16 108.9 0.54

RsNIP7-2 Rs222590 122 12759.07 8.8 44.72 122.21 0.829

RsSIP1-1 Rs221110 239 25576.16 9.68 27.73 101.8 0.687

RsSIP1-2 Rs291150 255 27481.6 10.07 26.94 96.9 0.459

RsSIP2-1 Rs536450 237 25738.68 9.75 29.26 122.49 0.75

RsSIP2-2 Rs374490 238 26159.29 9.7 24.86 117.06 0.656

RsSIP2-3 Rs515300 237 25815.76 9.61 20.08 115.11 0.664

Chromosomal Localization Analysis of
RsAQPs
A total of 57 RsAQPs (93.44%) were successfully located on
nine chromosomes of radish through MapChart analysis, except
for RsSIP2-3, RsNIP4-2, RsNIP4-3, and RsNIP4-4 (Figure 4
and Supplementary Table 2). At least two members were
mapped on each chromosome. Interestingly, some RsAQPs were
located in clusters in certain chromosomal regions, especially on
chromosomes 2 and 6. Among them, chromosome 6 possessed
the largest number of RsAQP genes, followed by chromosomes
4 and 5, and the fewest number of RsAQP genes were found on
chromosomes 7 and 8.

Spatial and Temporal Expression
Patterns of RsAQPs
The expression profiles of the 61 RsAQP genes among different
tissues (cortical, cambium, xylem, root tip, and leaf) and
developmental stages (40, 60, and 90 days) were determined in
the publicly available RNA-seq data (Mitsui et al., 2015) and
presented in the heatmap (Figure 5). In total, the expression
levels of RsPIPs and RsTIPs were significantly higher than those
of RsNIPs and RsSIPs in all tissues. For the RsTIP subfamily,
RsTIP1-1 to RsTIP1-4, RsTIP2-2, and RsTIP2-3 showed high
expression within roots and leaves, while other RsTIP members
were expressed at extremely low levels. However, most RsPIPs
showed high transcript levels in the leaves and roots of the radish,
especially RsPIP2s. For example, RsPIP2-1, RsPIP2-2, RsPIP2-
3, RsPIP2-4 and RsPIP2-5 maintained relatively high expression
levels at the middle stage of the roots, while the expression
patterns of RsPIP2-6 were relatively higher at the earlier and later
stages (Figure 5A).

In the tissues for 40, 60, and 90 days, the expression levels of
RsPIPs and RsTIPs were also significantly increased compared to
RsNIPs and RsSIPs. For the RsTIP subfamily, RsTIP1-1 to RsTIP1-
4 and RsTIP2-1 to RsTIP2-4 were expressed at high levels. In the
RsPIP subfamily, RsPIP1-3, RsPIP1-4, RsPIP1-6, RsPIP2-13, and
RsPIP2-14 were highly expressed in the cortex, cambium, xylem,
root tip, and leaf. RsPIP2-6 was mainly expressed in the cortex,
cambium and xylem, while RsPIP2-1 was intensively expressed in
the cambium and xylem (Figure 5B). These RsPIP genes might
play critical roles in the development of radish roots.

Expression Profiles of RsPIPs in Different
Stages and Varieties Under Salt Stress
Based on our previous RNA-seq data in radish taproots and the
variation of the expression levels under salt stress (Xie et al., 2015;

Sun et al., 2016), seven RsPIPs (RsPIP1-3, 1-6, 2-1, 2-6, 2-10, 2-
13, and 2-14) were selected to further determine their expression
patterns by RT-qPCR under different salt exposure durations in
two radish varieties (Figure 6 and Supplementary Tables 3, 4). At
the seeding stage, almost all seven RsPIP genes were significantly
upregulated under salt stress in the salt-tolerant variety ‘NAU-
TR17,’ however, they did not show obvious variation in the salt-
sensitive variety ‘NAU-TR12’ (Figure 6A). The salt-responsive
expression profiles of these genes were screened at the taproot
thickening period in ‘NAU-TR17.’ As shown in Figure 6B, the
RsPIP2-1 and RsPIP2-6 genes exhibited sharp growth at 6 and
24 h, especially for RsPIP2-6, with a 250-fold increase.

Agrobacterium rhizogenes-Mediated
Overexpression of RsPIP2-6 Confers Salt
Tolerance in Radish With Transgenic
Hairy Roots
Agrobacterium rhizogenes-mediated transformation was
employed to determine the biological gene function of
RsPIP2-6 in radish when exposed to salt stress, based on
the transcript expression level. RsPIP2-6-overexpressing hairy
roots were successfully obtained, and transgenic positive hairy

FIGURE 1 | Phylogenetic relationship between the members of RsAQP and
AtAQP.
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FIGURE 2 | Conserved motifs and gene structure distribution of RsAQP proteins. (A) Phylogenetic tree of RsAQP proteins. (B) Exon–intron structure of AQP genes
in radish. (C) Conserved motif distribution of RsAQP proteins.

FIGURE 3 | Promoter cis-element prediction of RsAQP genes.
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TABLE 2 | Number of occurrences of each cis-acting element in the RsAQP promoter.

Responsive elements Cis-element Occurrences Total

Hormone MeJA-responsive element 162 352

Auxin-responsive element 28

Salicylic acid-responsive element 28

Abscisic acid-responsive element 102

Gibberellin-responsive element 32

Stress Drought-inducibility 30 105

Defense and stress-responsive element 36

Wound-responsive element 3

Low-temperature-responsive element 36

Development Light-responsive element 230 266

Meristem expression element 22

Cell cycle regulation element 7

Seed-specific regulation element 4

Endosperm expression element 3

FIGURE 4 | Chromosomal distributions of RsAQP genes.

roots were identified by PCR, GFP signal detection and RT-
qPCR (Figures 7A–C). The composite plants of OE with high
expression in hairy roots were used for functional verification,
while transgenic hairy root EV were used as a control. As
shown in Figure 7D, no significant phenotypic differences

were observed between the EV and OE plants under normal
conditions. After exposure to 150 mM NaCl solution for 6 days,
the leaves of EV plants were severely withered and yellowed or
were dead and had a lower RWC in the leaves, while OE plants
still grew vigorously and had a higher leaf RWC (Figures 7E,F).
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FIGURE 5 | Expression profiles of RsAQP genes in different stages and tissues. (A) RsAQP gene expression heatmap in six stages (7, 14, 20, 40, 60, and 90 days)
of two tissues (root and leaf). (B) RsAQP gene expression heatmap in three stages (40, 60, and 90 days) of five tissues (cortical, cambium, xylem, root tip, and leaf).

Additionally, the survival rate of EV plants was reduced to
55.5%, while OE exhibited a reduction of 88.8% compared
to their untreated conditions. Interestingly, the lateral root
numbers of OE were significantly more plentiful than EV. The
FluorCam chlorophyll fluorescence imaging system showed that

the fluorescence intensity of EV plants markedly decreased in
comparison to transgenic plants during salt stress (Figure 7G),
indicating that photosynthetic capacity (Fv/Fm) had a downward
trend. The photosynthetic capacity of transgenic plants was
higher than that of EV plants, which indicated that OE could

Frontiers in Plant Science | www.frontiersin.org 9 July 2022 | Volume 13 | Article 860742197

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-860742 July 14, 2022 Time: 6:49 # 10

Yi et al. RsAQPs Involved in Salt Stress

FIGURE 6 | Expression levels of RsPIP genes under NaCl treatment in young roots and the taproot thickening period. (A) Expression levels of RsPIP genes in young
roots for the indicated time (h) under 150 mM NaCl treatment. (B) Expression levels of RsPIP genes in the taproot thickening period for the indicated time (h) under
150 mM NaCl treatment. RsActin was used as an internal control for qRT-PCR. The relative expression levels of the RsPIP genes were calculated based on the
comparative threshold cycle (Ct). Statistical analysis was processed using GraphPad Prism 8. The significant difference was analyzed using IBM SPSS Statistics 25,
values with different lowercase letters indicate a significant difference at p < 0.05 according to Duncan’s multiple range tests. Each bar shows the mean ± SE of the
triplicate assay.

alleviate the damage caused by salt stress on photosynthesis
and could improve the salt tolerance of radish (Figure 7H).
NBT staining showed that EV exhibited more severe damage in

comparison with OE roots under salt stress (Figure 7I). Taken
together, these results indicate that RsPIP2-6 might be a positive
regulator in radish against salt stress.
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FIGURE 7 | Overexpression of RsPIP2-6 positively regulated salt tolerance in radish. (A) PCR identification of RsPIP2-6-GFP (1300-GFP-F/RsPIP2-6-GFP-R
primers) and 1300-GFP (1300-GFP-F/1300-GFP-R primers) in transgenic radish hairy roots. M: DL5000 marker; –, ddH2O; EV: radish hairy root containing empty
vector (pCambia1300-GFP), OE: radish hairy root overexpressing RsPIP2-6. (B) Green fluorescent protein (GFP) fluorescence in the hairy roots of radish. (C) Relative
expression levels of RsPIP2-6 in EV and OEs. (D) Phenotypes of EV and OE seedlings with 0 or 150 mM NaCl (150 mM for 6 days). (E) Statistical analysis of the
survival rates of EVs and OEs with 0 or 150 mM NaCl. (F) Relative water content of EVs and OEs in radish with 0 or 150 mM NaCl. (G) Lipid peroxidation visualized
by autoluminescence imaging. The color palette indicated luminescence intensity from low (purple) to high (black) values. (H) Fv/Fm rate in EVs and OEs radish with
0 or 150 mM NaCl. (I) Histochemical staining with NBT in the hairy roots of radish EVs and OEs with 0 or 150 mM NaCl. Each bar shows the mean ± SE of the
triplicate assay, values with different lowercase letters indicate a significant difference at p < 0.05 according to Duncan’s multiple range tests.

DISCUSSION

Characterization of AQP Gene Family
Members in Radish
The AQPs, as a class of multifunctional proteins, not only
participate in maintaining cellular water homeostasis in
plants but also in other physiological activities, such as seed
germination, growth and development, transport of nutrient
elements, heavy metal elements, CO2 transport, and stomatal
movement, especially abiotic stress tolerance (Martinez-Ballesta
and Carvajal, 2014). Accurate annotation of the AQP gene was
an important starting point for future research on the gene
function of analysis. An increasing number of AQP genes have
been identified in many plants via genome sequencing. The
AQP gene family has 39 members in Arabidopsis (Johanson
et al., 2001), 42 in apple (Liu et al., 2019), 59 in Brassica rapa
(Kayum et al., 2017), 33 in rice (Nguyen et al., 2013), 76 in

tobacco (De Rosa et al., 2020), 47 in tomato (Reuscher et al.,
2013), and 40 in chickpea (Deokar and Tar’an, 2016). However,
the number and molecular characteristics of AQP family genes
in radish are largely unclear. In the present study, 61 AQP genes
were identified by whole genome analysis of AQP-encoding
genes in radish. A higher number of RsAQP genes might
indicate specific amplification, with higher evolution and more
meticulous functional division. The RsAQP family was divided
into four subfamilies (PIP, TIP, NIP, and SIP) based on their
homology to AtAQPs. Interestingly, there were generally more
members of each subfamily of radish than Arabidopsis, but no
homologous genes of AtNIP3-1 were identified in radish. The
gene number of the PIP subfamily was significantly higher than
that of other subfamilies in most plants, including radish, which
indicated that PIPs had a more complex evolutionary process.
Additionally, all AQPs in B. rapa functional analysis showed
that most PIP subfamily proteins exhibited a high degree of
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identity with abiotic stress-related AQP proteins from other
plant species (Kayum et al., 2017). The phylogenetic relationship
of RsAQPs was also supported by both their gene structures
and conserved motifs. From an evolutionary perspective, the
increasing number of genes might be due to gene replication
events, including segmental and tandem duplication (Bancroft,
2001). Gene structure analysis showed that each subfamily
displayed a similar exon–intron organization in Arabidopsis and
radish (Jiang et al., 2020). Nineteen RsPIP genes contained three
introns, aside from RsPIP1-7 and RsPIP2-10. RsTIPs possessed
introns, with numbers varying from zero to three, which was
also similar to AtTIPs. Introns are related to gene evolution,
which has been proposed to affect gene expression (Rose, 2008).
More and longer introns exist in more highly expressed genes
(Ren et al., 2006). The gain/loss of exons and introns might be
the result of chromosomal rearrangements and fusions and can
potentially lead to the functional diversification of multiple gene
families (Xu et al., 2012).

The expression of AQP genes is regulated by various
stressors in plants, such as drought, salt, and cold (Feng
et al., 2018; Pawłowicz and Masajada, 2019). Promoter analysis
revealed that the RsAQP gene promoters contained cis-elements
in response to multiple hormones, stress, and development
(Table 2). Subsequently, the expression of seven RsPIP genes
was upregulated under salt exposure, indicating that they might
play a crucial role in the response to salt stress. Similar
results were also observed in soybean (Zhou et al., 2014),
Arabidopsis (Feng et al., 2018), and Canavalia rosea (Lin
et al., 2021). The distribution of RsAQP in linkage groups
showed tandem duplicated pairs, such as RsPIP2-1, RsPIP2-
2, RsPIP2-3, and RsPIP2-4, on the R6 chromosome, which
might have been caused by gene duplication during evolution.
Tandem duplications are a common phenomenon in nature,
such as leucine-rich repeat domains in asparagus with both
tandem genes and duplication across multiple chromosomes
(Die et al., 2018). Conserved motif analysis showed that all
RsAQP proteins shared the typical AQP domain. Motifs 1
and 4 were distributed in the four subfamilies (PIP, TIP,
NIP, and SIP), indicating that they were highly conserved
and might be the characteristic domain of the RsAQP family.
Motifs 9 and 12 were distributed only in the TIP and NIP
subfamilies, respectively.

Expression Divergence of RsAQP Genes
The expression level of AtPIP2 was downregulated under
salt stress in the roots of Arabidopsis (Boursiac et al.,
2005), while OsPIP2 was upregulated in rice (Guo et al.,
2006). In the present study, RsPIP2-6 increased dramatically
compared to other RsPIP genes in the taproot thickening
period of ‘NAU-TR17’ under salt stress. Therefore, RsPIP2-
6 might be a critical candidate gene for salt tolerance.
Each specific isoform, as well as the plant genotype, might
influence transcriptional aquaporin regulation under salt stress
in broccoli plants (Muries et al., 2011). FaPIP1;2 and FaTIP1;1
transcript levels increased after salt treatment in a highly salt-
tolerant genotype, whereas FaPIP2;1 remained a relatively stable
transcript level (Pawłowicz et al., 2017). The transcription

level of the PIP2;4 gene increased, while the PIP1;2, TIP1;1,
and TIP2;2 genes were reduced under salinity stress in
Piriformospora indica (Ghorbani et al., 2019). The seedlings and
reproductive stages were more vulnerable to salt stress than
the vegetative stages, while the roots were more sensitive than
other organs (Nam et al., 2015). These studies suggested that
AQPs from different species had a high sequence homology,
whereas they retained functional and regulatory specificity.
These different, even contradictory, transcriptional regulations
of AQPs might be caused by the tissue location of AQPs,
plant species and growth phase, and salt concentration and
duration of treatment.

The high efficiency of genetic transformation is an
indispensable factor in gene function verification and
germplasm improvement in radish. However, the efficiency
of A. tumefaciens-mediated transformation in radish is extremely
low, which greatly hinders gene function analysis (Muto et al.,
2021). Therefore, the high-throughput production of transgenic
plants in the short run is important for gene function research,
especially for plants with a “bottleneck” to plant regeneration
(Jian et al., 2009). To date, a fast and efficient transformation
technique with A. rhizogenes has been widely used for functional
genomics in plants (An et al., 2017; Che et al., 2019; Qin et al.,
2021). In radish, only two reports have been successful in
developing transgenic plants using the A. rhizogenes-mediated
method (Tanaka et al., 1985; Balasubramanian et al., 2018). Here,
A. rhizogenes-mediated transformation using composite plants
as explants was performed to determine the overexpression of
RsPIP2-6 in radish. As a result, RsPIP2-6-transformed plants
grew more vigorously, with a higher survival rate and a lower
degree of damage compared with empty vector-transformed
plants under salt stress. In a recent report, overexpression
of IbPSS1 improved salt tolerance in transgenic sweet potato
lines obtained from an A. rhizogenes-mediated transformation
system (Yu et al., 2020). GmLecRlk-overexpressing soybean
lines have significantly enhanced salt tolerance by A. rhizogenes
(Zhang et al., 2022). Similar to the above results, RsPIP2-
6 could also improve radish tolerance to salt stress using
the A. rhizogenes-mediated transformation system. This
finding provides a new idea for the breeding of genetically
modified radish.

CONCLUSION

In this study, 61 RsAQP genes were identified and characterized
based on radish genome data. Furthermore, phylogenetic
analysis, gene structure, conserved motifs, promoter cis-
elements, chromosome distribution, and RNA-seq expression
analysis of RsAQP were conducted. The expression profiles
of RsPIPs in different stages and tissues under salt stress
indicate that PIPs might play a vital role in maintaining
the water potential homeostasis of radish exposed to salt
stress. In addition, overexpression of RsPIP2-6 could enhance
salt tolerance by Agrobacterium rhizogenes-mediated transgenic
radish hairy roots, which showed enhanced tolerance to salt
stress. These results provide a beneficial resource for the
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evolution and function of RsAQPs and provide a basis for the
breeding and genetic engineering of radish.
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